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Abstract

This work examines the horofunction compactification of finite-dimensional normed vector spaces
with applications to the theory of symmetric spaces and toric varieties.

For any proper metric space X the horofunction compactification can be defined as the closure of
an embedding of the space into the space of continuous real valued functions vanishing at a given
basepoint. A point in the boundary is called a horofunction. This characterization though lacks
an explicit characterization of the boundary points. The first part of this thesis is concerned with
such an explicit description of the horofunctions in the setting of finite-dimensional normed vector
spaces. Here the compactification strongly depends on the shape of the unit and the dual unit ball
of the norm. We restrict ourselves to cases where at least one of the following holds true:

I) The unit and the dual unit ball are polyhedral.

II) The unit and the dual unit ball have smooth boundaries.

III) The metric space X is two-dimensional.

Based on a result of Walsh [Wal07] we provide a criterion for the convergence of sequences in
the horofunction compactification in these cases to determine the topology. Additionally we show
that then the compactification is homeomorphic to the dual unit ball. Later we give an explicit
example, where our criterion for convergence fails in the general case and make a conjecture
about the rate of convergence of some spacial sets in the boundary of the dual unit ball. Assuming
the conjecture holds, we generalize the convergence criterion to any norm with the property that all
horofunctions in the boundary are limits of almost-geodesics (so-called Busemann points). This
part of the thesis ends with a construction of how to extend our previous results to a new class of
norms using Minkowski sums:

IV) The dual unit ball is the Minkowski sum of a polyhedral and a smooth dual unit ball.

The second part of the thesis applies the results of part one to two different settings: first to sym-
metric spaces of non-compact type and then to projective toric varieties. For a symmetric space
X = G/K of non-compact type with a G-invariant Finsler metric we prove that the horofunction
compactification of X is determined by the horofunction compactification of a maximal flat in X.
With this result we show how to realize any Satake or Martin compactification of X as an appropri-
ate horofunction compactification. Finally, as an application to projective toric varieties, we give a
geometric 1-1 correspondence between projective toric varieties of dimension n and horofunction
compactifications of Rn with respect to rational polyhedral norms.





Zusammenfassung

Diese Arbeit befasst sich mit der Horofunktions-Kompaktifizierung endlichdimensionaler normierter
Vektorräume und Anwendungen derselben auf symmetrische Räume und torische Varietäten.

Die Horofunktions-Kompaktifizierung kann für jeden eigentlichen metrischen Raum X definiert
werden als der Abschluss einer bestimmten Einbettung des Raumes in den Raum der stetigen
reellwertigen Funktionen auf X, die an einem Basispunkt verschwinden. Die Punkte im Rand der
Kompaktifizierung sind heißen Horofunktionen. Bei dieser Definition fehlt allerdings eine ex-
plizite Beschreibung der Randpunkte. Im ersten Teil dieser Arbeit geht es um eine solche explizite
Charakterisierung der Horofunktionen für endlichdimensionale Vektorräume. Hierbei hängt die
Kompaktifizierung des Raumes stark von der Form des Einheits- und des dualen Einheitsballes
der Norm ab. Wir beschränken uns dabei auf Bälle, die mindestens eine der folgenden Bedingun-
gen erfüllen:

I) Der Einheitsball und sein dualer Ball sind polyedrisch.

II) Der Einheitsball und sein dualer Ball haben einen glatten Rand.

III) Der metrische Raum ist zweidimensional.

Ausgehend von einem Resultat von Walsh [Wal07] geben wir für diese Fälle ein Kriterium für die
Konvergenz von Folgen in der Horofunktions-Kompaktifizierung an, um die Topologie zu bestim-
men. Außerdem zeigen wir, dass in diesen Fällen die Kompaktifizierung homöomorph zum dualen
Einheitsball ist. Anschließend betrachten wir ein explizites Beispiel das zeigt, dass das Konvergen-
zkriterium im allgemeinen Fall nicht gilt und formulieren darauf aufbauend eine Vermutung über
die Konvergenzrate spezieller Folgen im dualen Einheitsball. Unter der Voraussetzung, dass die
Vermutung stimmt, verallgemeinern wir das Konvergenzkriterium für alle Normen, deren Horo-
funktionen Limiten von Fastgeodäten sind (sogenannte Busemann Punkte). Zum Abschluss dieses
Teils der Arbeit erweitern wir unsere bisherigen Resultate mit Hilfe der Minkowski-Summe um
alle Normen, die die folgende Bedingung erfüllen:

IV) Der duale Einheitsball ist die Minkowski-Summe eines polyedrischen und eines glatten Ein-
heitsballs.

Im zweiten Teil der Arbeit werden die Ergebnisse des ersten Teils auf zwei Situationen angewen-
det, nämlich auf symmetrische Räume von nicht-kompaktem Typ und auf projektive torische Va-
rietäten. Für einen symmetrischen Raum X = G/K von nicht-kompaktem Typ, der mit einer G-
invarianten Finslermetrik ausgestattet ist, zeigen wir, dass die Horofunktions-Kompaktifizierung
des Raumes bestimmt ist durch die Kompaktifizierung eines maximalen Flachs in X bestimmt
ist. Damit zeigen wir, wie jede Satake- und Martin-Kompaktifizierung von X als Horofunktions-
Kompaktifizierung bezüglich einer geeigneten Norm realisiert werden kann. Als Anwendung auf
torische Varietäten geben wir schließlich eine geometrische Bijektion zwischen n-dimensionalen
projektiven torischen Varietäten und der Horofunktions-Kompaktifizierung von Rn bezüglich einer
polyedrischen Norm an.



Acknowledgements

First of all, I would like to thank my advisor Anna Wienhard for her support throughout all these
years. In my Diploma thesis she introduced me to the exciting subject of horofunctions and sym-
metric spaces and as an advisor she always provided me with the right mixture of guidance and
freedom. In addition she always had an open ear for all kinds of questions and suggestions and
encouraged and supported me in my personal and scientific development. Thanks to her I found
my way into the mathematical community and I could benefit a lot from the lively and growing
research group she built up in Heidelberg.

I also want to thank my other coauthors Thomas Haettel, Cormac Walsh and especially Lizhen Ji
for many fruitful and exciting discussions. They exposed me to other areas of mathematics and
gave me a now look on the subject. Moreover I am very grateful for the friendly support I was
given by Koji Fujiwara in Kyoto. He made it possible that I could spend a wonderful month in
Japan where I learned a lot about Mathematics in Japan and on Japanese and could work at a great
place.

I gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft, first through the ERC-
consolidator grant 614733 and then since several years through the Research Training Group 2229
"Asymptotic invariants and limits of groups and spaces". I especially want to thank for giving me
the opportunity to actively take part in the conference "Perspectives on convex projective geome-
try" in summer 2019. I also acknowledge support from U.S. National Science Foundation grants
DMS 1107452, 1107263, 1107367 "RNMS: Geometric Structures and Representation Varieties"
(the GEAR Network): right at the beginning of my PhD I could participate in the GEAR Junior
Retreat 2014 in Ann Arbor, which was a great start for a PhD. In 2015 I was part of the semester
program "Dynamics on moduli spaces of geometric structures" at the "Mathematical Sciences
Research Institute" (MSRI) at Berkely and could join fascinating events there.

I am also grateful to the Faculty of Mathematics an Computer Science of Heidelberg University
and the Heidelberg Institute for Theoretical Studies for the inspiring work environment.

Further I would like to thank all members of the geometry groups in Heidelberg for filling the
institute with scientific and social life. Especially I want to thank Oliver Thomas and my office
mates Nicolaus Weidner, Florian Stecker and Mareike Pfeil, who became close friends over the
years and brought a lot of fun to the daily work. Thank you, Mareike and Oliver for carefully
reading through this thesis and giving me a lot of helpful feedback.

Last but not least I want to thank my family and especially my husband. Danke, Anette und
Dennis, für Eure stete Unterstützung von nah und fern, dass Ihr immer hinter mir standet und mir
die Freude an der Wissenschaft gezeigt habt. Danke Eike, Lukas und Sofia, dass ihr mit mir durch
alle Höhen und Tiefen der letzten Jahre gegangen seid und es immer geschafft habt, mich zum
Lachen zu bringen.



Contents

1 Introduction 1

2 Preliminaries 11

2.1 Subspaces and Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Convex Sets and Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Extremal Structure of Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Duality of Convex Sets and Faces . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Basics about the Minkowski Sum . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 A Pseudo-Norm and the Functions hE,p . . . . . . . . . . . . . . . . . . . . . . 35

3 Horofunction Compactification 39

3.1 Introduction to Horofunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1 General Introduction to Horofunctions . . . . . . . . . . . . . . . . . . . 39
3.1.2 Horofunctions of Normed Vector Spaces . . . . . . . . . . . . . . . . . 41
3.1.3 Convexity Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Characterization of Horofunctions via Converging Sequences . . . . . . . . . . . 46
3.2.1 Dual Sequences of Directions . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Specific Properties of the Three Cases I), II) and III) . . . . . . . . . . . 49
3.2.3 A Useful Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4 Characterization of Converging Sequences . . . . . . . . . . . . . . . . 54
3.2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.6 Counterexample to Theorem 3.2.6 in R3: the Cylinder . . . . . . . . . . 64
3.2.7 A Conjecture for the General Case . . . . . . . . . . . . . . . . . . . . . 70

3.3 The Homeomorphism between the Compactification and B◦ . . . . . . . . . . . 74
3.3.1 Definition and Properties of the Map mC . . . . . . . . . . . . . . . . . . 74

3.3.2 The Homeomorphism X
hor ≃ B◦ . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Sum of Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.1 Horofunctions and Sum of Norms . . . . . . . . . . . . . . . . . . . . . 94
3.4.2 The Compactification is Homeomorphic to the Dual Unit Ball . . . . . . 98
3.4.3 Refinement of Compactifications . . . . . . . . . . . . . . . . . . . . . . 103
3.4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 Symmetric Spaces 107

4.1 Preliminaries on Symmetric Spaces and Finsler Metrics . . . . . . . . . . . . . . 107
4.1.1 Lie Groups and Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1.2 Symmetric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.1.3 Root Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.1.4 Groups Associated with Subsets of Simple Roots . . . . . . . . . . . . . 121
4.1.5 Finsler Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vii



4.2 The Intrinsic Compactification and the Compactification of a Flat in X . . . . . . 125
4.2.1 The Closure of a Flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.2.2 Some Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.2.3 The Intrinsic Compactification versus the Closure of a Flat . . . . . . . . 132

4.3 The Satake Compactification of Symmetric Spaces . . . . . . . . . . . . . . . . 136
4.3.1 Satake Compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.3.2 The Compactification of a Flat in a Satake Compactification . . . . . . . 137
4.3.3 The Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.3.4 Realization of a Satake Compactification as a Horofunction Compactifi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.4 The Martin Compactification of Symmetric Spaces . . . . . . . . . . . . . . . . 151

5 Toric Varieties 155

5.1 Background Knowledge about Toric Varieties and Fans . . . . . . . . . . . . . . 155
5.1.1 Affine, Projective and Toric Varieties . . . . . . . . . . . . . . . . . . . 155
5.1.2 Rational Polyhedral Cones, Fans and Polytopes . . . . . . . . . . . . . . 157
5.1.3 Constructing a Toric Variety from a Fan . . . . . . . . . . . . . . . . . . 160
5.1.4 The Orbit-Cone-Correspondence . . . . . . . . . . . . . . . . . . . . . . 164

5.2 A Topological Model of Toric Varieties . . . . . . . . . . . . . . . . . . . . . . 168
5.2.1 Definition of the Topological Model TΣ . . . . . . . . . . . . . . . . . . 168
5.2.2 The Identification of the Models: XΣ � TΣ . . . . . . . . . . . . . . . . . 171

5.3 The Nonnegative Part of Toric Varieties and the Moment Map . . . . . . . . . . 175
5.3.1 The Nonnegative Part XΣ,≥0 of a Toric Variety XΣ . . . . . . . . . . . . . 175
5.3.2 How the Nonnegative Part XΣ,≥0 is Homeomorphic to a Polar Polytope P◦ 176

6 Outlook 179



1 | Introduction

The simplest compactification of a topological space is the Alexandroff compactification intro-
duced by Alexandroff in 1924 [Ale24]. It is also called one-point compactification by its way of
construction: Given a non-compact locally compact Hausdorff space X, construct a compact space
Xω := X ∪ {ω} by adding an additional point ω < X called the point at infinity. A topology on
Xω is given by the open sets as T = {U ⊆ X | U open } ∪ {Xω\C | C ⊆ X closed compact}. Then
Xω is compact and contains X as a dense open subset. Moreover, the space Xω is unique up to
homeomorphism.

The one-point compactification of the real line R can be imagined as first shrinking the real line to
the open interval (−1, 1) and then bending it such that the ends −1 and 1 almost touch each other
at the top. There we add the additional point ω. The result is a circle and the one-point compact-
ification of R is indeed homeomorphic to S1. This concept generalizes to higher dimensions: for
the Euclidean space Rn the one-point compactification Rn

ω is homeomorphic to the n-Sphere Sn.

There are many more compactifications of Rn when we allow more points to create the compact
space. For example by retracting any point along a straight line centered at the origin, the space
Rn is diffeomorphic to the interior of the unit sphere. Adding then the unit sphere gives another
compactification of Rn. Instead of shrinking the space homeomorphically into the interior of a
compact set, we can also add the sphere at infinity X(∞) to the space. The sphere at infinity is de-
fined as the set of equivalence classes of asymptotic geodesic rays, where two rays are equivalent,
if they remain within bounded distance from each other as they go to infinity. This compactifi-
cation is called the geodesic compactification and can not only be obtained for Rn but for every
simply connected non-positively curved Riemannian manifold. The picture of the space shrunk
into the interior of the sphere remains valid [BJ06, Prop. I.2.3]: the sphere at infinity X(∞) can be
identified with the unit sphere in the tangent space Tp0 X for any basepoint p0 ∈ X.

We want to keep this picture in mind when talking about the horofunction compactification, which
is the compactification we are most interested in.

The Horofunction Compactification

The horofunction compactification was introduced by Gromov [Gro81, §1.2] in 1981 as a gen-
eral method to construct compactifications of metric spaces. As horofunction compactifications
only require a proper metric space to be defined, they arise in many contexts. Alessandrini, Liu,
Papadopoulos and Su for example show that the Thurston compactification of the Teichmüller
space and its horofunction compactification with respect to the arc metric are homeomorphic.
The horofunction compactification of a complete simply connected non-positively curved man-
ifold was identified with the geodesic compactification in [BGS85, §3] by Ballmann, Gromov
and Schröder. In this thesis we will focus on finite-dimensional normed spaces. Karlsson, Metz
and Noskov [KMN06] describe horoballs for finite-dimensional normed spaces with polyhedral

1



2 Chapter 1. Introduction

norm and for Hilbert metrics on simplices. In their recent paper [CKS20], Ciobotaru, Kramer and
Schwer describe the horofunction compactification of finite-dimensional vector spaces with asym-
metric polyhedral norms. They use the ultrapower of X with respect to a free ultrafilter and plan to
use their techniques and results to obtain compactifications of buildings in a follow-up paper (in
preparation). Related results of buildings were first obtained in [Bri06].

For the construction of the horofunction compactification of a proper metric space (X, d) with
possibly asymmetric metric one embeds X into the space of continuous functions C̃(X) on X
which vanish at a fixed base point p0. The embedding is given in terms of the metric d:

X −→ Cp0(X)

z 7−→ ψz = d(·, z) − d(p0, z).

The closure of the image is the horofunction compactification X
hor
d of (X, d), where the structure

of the compactification crucially depends on the metric d. Though the embedding depends on
the basepoint p0, the compactifications with respect to different base points are homeomorphic.
Within the boundary ∂hor(X) of horofunctions there are special elements called Busemann points
which are given as the limits of almost geodesic sequences in X. It is often difficult to determine the
horofunction compactification of a given space. One simplification sometimes is not to consider
all horofunctions but to determine the set of Busemann points.

So let us go to the setting of a finite-dimensional normed vector space (X, ‖·‖). There Walsh
[Wal07] explicitly described all horofunctions and showed that a necessary and sufficient condition
for all horofunctions to be Busemann points is a relatively low condition on the shape of the dual
unit ball. Given a norm on a finite-dimensional vector space X, its unit ball B determines a dual
unit ball in the dual space given as the polar of the convex set B:

B◦ := {y ∈ X∗ | 〈y|x〉 ≥ −1 ∀x ∈ B}.

As B is closed, compact and convex, the same holds for its dual B◦ and both sets contain the origin
in their interior. An extreme set of B◦ is a convex subset of the boundary ∂B◦ not containing any
line-segment in B◦ without its endpoints (Definition 2.3.3). When B◦ is polyhedral, the extreme
sets of B◦ are exactly its faces and all of them arise as the intersection of B◦ with some affine
hyperplane. But in the more general setting, this is not true any more. Any boundary point of B◦

belongs to some extreme set and different extreme sets have disjoint relative interior.

Much work (like in [CKS20, KMN06]) has been done on the horofunction compactification of
finite-dimensional normed spaces applying many different techniques. But as far as we know,
only polyhedral norms have been considered up to now. We will generalize the theory to norms of
the following classes:

I) The unit ball is polyhedral.

II) The unit and the dual unit ball have smooth boundaries.

III) The space X is two-dimensional.

The second case can equivalently be described as B◦ only having smooth extreme points as extreme
sets. In all three cases the set of extreme sets of B◦ is closed and we can use the results by Walsh.

In order to explicitly describe the set of horofunctions, we follow [Wal07] and introduce a set of
maps hE,p : X → R depending on a convex set E ⊆ X∗ and a point p ∈ X by

hE,p(x) := − inf
e∈E
〈e|p − x〉 + inf

e∈E
〈e|p〉 .



3

This then yields the following description:

Corollary 3.1.10 The set of horofunctions of X is given as

∂hor(X) = {hE,p | E ( B◦ is a proper extreme set , p ∈ T (E)∗},

where T (E)∗ ⊆ X is a certain subspace of X of the same dimension as E. ◦

The above result determines the set of horofunctions in the boundary but gives no statement about
its topology. We will define a topology in terms of the convergence of sequences.

An important result in this thesis is the description of the convergence behavior of sequences in the

horofunction compactification to obtain a topology on X
hor

. To each extreme set F of the unit ball
B we can assign a unique exposed dual extreme set F◦ of B◦ which is maximal among all those
extreme sets of B◦ that minimize the dual pairing with F. For an unbounded sequence (zm)m∈N and
a point x ∈ X we consider its sequence of directions

(
zm−x
‖zm−x‖

)
m∈N, which is a sequence of points

on the boundary of the unit ball B. Each such point lies in the relative interior of an extreme set
Fm(x) of B. Taking the associated exposed duals Dm(x) of Fm(x) gives a sequence (Dm(x))m∈N
of extreme sets of B◦. As the set of extreme sets of B◦ is closed, all accumulation points of this
sequence are extreme sets. By D(x) we denote the set of accumulation points of (Dm(x))m. So for
each x ∈ X the set D(x) is a set of extreme sets of B◦. They play an important role when describing
convergent sequences and their limits.

Theorem 3.2.6 Let B ⊆ X be a unit ball and B◦ ⊆ X∗ its dual such that they belong to one of the

three cases I) − III) defined above. Let (zm)m∈N be an unbounded sequence in X.

Then the sequence
(
ψzm

)
m∈N converges to a horofunction hE′,p associated to an extreme set E′ ⊆ B◦

and a point p ∈ T (E′)∗ if and only if the following conditions are satisfied:

1) E := aff{D(x) | x ∈ X} ∩ B◦ is extreme.

2) The projection (zm,E)m∈N of (zm)m∈N to T (E)∗ converges.

If
(
ψzm

)
m converges, then E′ = E and p = limm→∞ zm,E . ◦

We have to restrict ourselves to the three cases mentioned before because there the structure of the
extreme sets of the dual unit ball is sufficiently nice. Otherwise the statement is not true anymore as
will be seen by an explicit counterexample (more details in Section 3.2.6): Consider R3 equipped
with a norm that has a cylinder as unit ball parallel to the z-Axis. Its dual is a rotated rhombus
with peaks on the z-axis, as shown in Figure 1.1.

B

zm−x
‖zm−x‖

zm−u
‖zm−u‖

F
zm

‖zm‖

B◦

qm,u

Em

qx

E

qm,x

e1

Figure 1.1: The cylindric unit ball (left) and its dual (right).

For the sequence zm = (−m2 + a,m + b,−m2 + c) with real parameters satisfying a − c > 1
2 we

can explicitly compute the limiting horofunction and it is the map hE,p associated to the extreme
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set E = conv{(0, 0, 1), (1, 0, 0)} ⊆ B◦ with parameter p = 1
2 (a − c − 1

2 ) · (1, 0,−1) ∈ T (E)∗.
But applying the theorem yields a horofunction hE,p̃ associated to the same extreme set but with a
different parameter: p̃ = p+ 1

4 ·(1, 0,−1) ∈ T (E)∗. We see that the parameter which we obtained as
the limit of the sequence (zm)m projected to the subspace T (E)∗ is not the right one by an additive
constant. It actually turns out that we get the correct p by projecting not to T (E)∗ but by projecting
each element zm to a different subspace T (Em)∗, where (Em)m∈N is a sequence of subsets of B◦ of
the same dimension as E and converging to E. Now the crucial point is that we can not take any
such sequence of subsets (otherwise E would already do it) but the convergence has to happen
with the correct rate depending on (zm)m: for every x ∈ X the sequence (qm,x)m ⊆ ∂B◦ satisfying〈
qm,x|zm − x

〉
= −‖zm − x‖, approaches the set Em faster than zm goes to infinity.

Inspired from the above example we make the following conjecture for the general case:

Conjecture 3.2.12 Let u1, . . . , uk ∈ X be points and for each j = 1, . . . , k, let (qm,u j)m ⊆ ∂B◦ be a

sequence of points satisfying
〈

qm,u j

∣∣∣ zm − u j

〉
= −‖zm − u j‖ for all m ∈ N, such that the set

Em := aff{qm,u1 , . . . , qm,uk } ∩ B◦

converges to E with dim(Em) = dim(E) for all m ∈ N. For each m ∈ N and a point x ∈ X
let qm,x ∈ ∂B◦ be an extreme point dual to

zm−x
‖zm−x‖ ∈ ∂B and let em,x ∈ Em a point such that the

sequences (qm,x)m and (em,x)m (or subsequences, if necessary) both converge to the same point

qx ∈ E. Then it holds: 〈
em,x − qm,x|zm

〉 −→ 0 ∀x ∈ X. ◦

We know that the left side of the pairing goes to 0 whereas the right side is unbounded and the
pairing can only be bounded, if the left side converges faster than the right one. That is, the points
em,x and qm,x approach each other fast enough. Under the assumption that the conjecture holds, we
can generalize our result for the convergence of sequences in the horofunction compactification to
the general setting:

Theorem 3.2.14 Assume Conjecture 3.2.12 holds. Let B ⊆ X be a unit ball and B◦ its dual

such that the set of extreme sets of B◦ is closed. Let (zm)m∈N be an unbounded sequence in X and

E := aff{D(x) | x ∈ X} ∩ B◦.
Let u1, . . . , uk ∈ X be points with k = dim(E)+ 1 and for each j = 1, . . . , k, let (qm,u j)m ⊆ ∂B◦ be a

sequence of points satisfying
〈

qm,u j

∣∣∣ zm − u j

〉
= −‖zm − u j‖ for all m ∈ N, such that with

Em := aff{qm,u1 , . . . , qm,uk } ∩ B◦

there holds

(A) dim(Em) = dim(E) and

(B) Em −→ E as m→ ∞.

Then the sequence
(
ψzm

)
m converges to a horofunction hE′,p for an extreme set E′ ⊆ B◦ and a point

p′ ∈ T (E′)∗ if and only if the following conditions are satisfied:

1) E as defined above is extreme.

2) The projection (zm,Em)m of (zm)m to T (Em)∗ converges.

If
(
ψzm

)
m converges, then E′ = E and p = limm→∞ zm,Em . ◦
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Earlier we said that we want to keep the picture in mind that we obtain the compactification by
adding boundary components to the space. For the horofunction compactification we saw that the
boundary points, i.e. the horofunctions, are indexed by the extreme sets E of the dual unit ball and
parameters p in a subspace of the same dimension as E. We can keep this picture in mind by the
following consideration: imagine the space X to be mapped into the interior of the dual unit ball
B◦ and a horofunction hE,p from the boundary mapped into E in a way depending on p ∈ T (E)∗.
This picture is maid rigorous in another main theorem of this thesis:

Theorem 3.3.10 Let (X, ‖·‖) be a finite-dimensional normed space with unit ball B ⊆ X and dual

unit ball B◦ belonging to one of the three cases I) − III) above and such that B◦ has only finitely

many connected components of extreme points.

Then the horofunction compactification X
hor

is homeomorphic to B◦. ◦

For the polyhedral setting, analog results using different techniques were also obtained in [KL18],
[CKS20] and [JS16].

The map that defines the homeomorphism has to respect the convergence behavior of sequences.
It is built out of several "smaller" maps mC : Rn −→ int(C) that map Rn into the interior of a
compact convex set C. Hereby the map mC generalizes the idea of a convex combination and is
inspired by the moment map from the theory of toric varieties. When C is a polytope, it can be
described as the convex hull of its extreme points c1, . . . , ck and the map mC is given as a real
convex combination over the extreme points of C:

mC(x) =
k∑

i=1

e−〈ci |x〉
∑k

j=1 e−〈c j |x〉
ci.

In the general setting where C has infinitely many extreme points, we can not take weighted sums
any more. Nevertheless, the same concept will be used then: we consider the weighted sum over
the finitely many isolated extreme points ci plus the sum over (the finitely many) integrals over
connected components A j of extreme points:

mC(x) =

∑k
i=1 e−〈ci |x〉ci +

∑l
j=1

∫
A j

e−〈v|x〉vdv
∑k

i=1 e−〈ci |x〉 +
∑l

j=1

∫
A j

e−〈w|x〉dw
.

The homeomorphism between the horofunction compactification and the dual unit ball B◦ is built
out of maps of the kind of mC in the following way, consistent with the picture we have in mind:

m : X
hor −→ B◦,

{
x ∈ X 7−→ mB◦(x) ∈ int(B◦),

hE,p ∈ ∂horX 7−→ mE(p) ∈ int(E).

So far we had to restrict ourselves to settings where the unit ball of the norm satisfies some con-
ditions about its structure of extreme sets. There is a way to extend the class of allowed norms
by taking a norm that is the sum of two norms ‖·‖1 and ‖·‖2 that belong to the previously allowed
cases I), II) and III):

‖·‖3 := ‖·‖1 + ‖·‖2.

Then the dual unit ball of our new norm ‖·‖3 is the Minkowski sum of the dual unit ball of the other
two norms. The only really new extension to the previous cases arises when we take one of the
norms to be polyhedral and the other one to be smooth. We want to follow the way we went before
and characterize convergent sequences with respect to the new norm and show that the resulting
horofunction compactification is homeomorphic to the dual unit ball. The first statement follows
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immediately by the construction of the new norm as a sum of two norms for which we already
know the convergence behavior: a sequence (zm)m∈N converges to a horofunction hE,p with respect
to ‖·‖3 if and only if (zm)m converges with respect to both ‖·‖1 and ‖·‖2 to horofunctions hE1,p1 and
hE2,p2 , respectively. The limiting function hE,p then is associated to the extreme set E obtained
as the Minkowski sum of the extreme sets E1 and E2. Given a point p in the Minkowski sum
M = A + D of two convex sets A and D, we can decompose the point p = a + d into summands,
such that a ∈ A and d ∈ D, but if p is not an extreme point of M, this decomposition is not
unique. This is the reason why we can not sum up the maps mE1 and mE2 to get the map mE for the
homeomorphism. Indeed, by doing so, we loose injectivity. But nothing prevents us from defining
mE and m in the same way as we did before. Doing so we can use the theory developed before for
norms belonging to the three cases to get the final result:

Theorem 3.4.7 Let X be a finite-dimensional normed space equipped with the norm

‖·‖3 = ‖·‖1 + ‖·‖2,

where ‖·‖1 is a polyhedral norm and ‖·‖2 is smooth. Denote by B◦3 the dual unit ball of ‖·‖3. Then

the horofunction compactification of X with respect to ‖·‖3 is homeomorphic to B◦3:

X
hor
‖·‖3 ≃ B◦3. ◦

So we have gained a new class of allowed norms:

IV) The dual unit ball arises as the Minkowski sum of a polyhedral unit ball and a smooth dual
unit ball with only extreme points.

Let us now explain what we actually did geometrically in terms of compactifications, a picture is
given in Figure 1.2. As B◦3 is the Minkowski sum of a polyhedral and a smooth set, the extreme
sets of B◦3 are either extreme points obtained as the sum of each an extreme point of B◦1 and B◦2,
or polyhedral extreme sets, obtained as the Minkowski sum of a face of the polytope B◦1 and an
extreme points of B◦2. By collapsing the connected components A j of extreme sets of B j to a point,
we get a homeomorphism from B◦3 to the polytope B◦1. On the other hand, shrinking every higher
dimensional extreme set of B◦3 to a points yields a homeomorphism from B◦3 to the smooth dual
unit ball B◦2.

Figure 1.2: The Minkowski sum of a hexagon and a circle (left) and the decomposition of
faces (right).

These identifications of extreme sets of B◦1 and B◦2 with those of B◦3 causes the identity map on X

to extend to continuous maps X
hor
‖·‖3 −→ X

hor
‖·‖1 and X

hor
‖·‖3 −→ X

hor
‖·‖2 . In other words, we constructed

by taking the sum of two given norms the least common refinement:
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Theorem 3.4.13 X
hor
‖·‖3 is the least common refinement of X

hor
‖·‖1 and X

hor
‖·‖2 . ◦

Constructing a new compactification out of given ones or identifying a given (new) compactifi-
cation with other well-known compactifications can reveal new aspects of the compactifications.
We will do so when dealing with the compactifications of symmetric spaces and compare the
horofunction compactification of the symmetric space with its Satake and its Martin compactifi-
cations.

Symmetric Spaces

Symmetric spaces arise in many areas of mathematics and physics and are an important class of
Riemannian or Finsler manifolds. They stand out due to their close relation to Lie groups and Lie
algebras. The class of irreducible symmetric spaces can be divided into three types - Euclidean
type, compact type and non-compact type. Symmetric spaces of Euclidean type are flat, i.e. have
sectional curvature equal to 0 and arise as the Riemannian product of some Euclidean Rk and a
flat (n− k)-torus. A symmetric space of compact type is indeed compact as it has constant positive
Ricci curvature. A basic example is the sphere Sn in the Euclidean space Rn+1. We are interested
in symmetric spaces of non-compact type, which have non-positive sectional curvature, and are
diffeomorphic to Rn. One of the simplest examples of a symmetric space of non-compact type is
the hyperbolic plane H2.

Before we go on, let us have a closer look at the example of the hyperbolic plane H2. The group
SL(2,R) is a semisimple Lie group that acts isometrically and transitively on the upper half plane
by fractional linear transformations, that is

(
a b
c d

)
.z =

az + b

cz + d

for any z ∈ H2. The stabilizer of the imaginary unit i is given by the subgroup SO(2). As
the action of SL(2,R) on H2 is transitive, this yields an identification of H2 with the quotient
SL(2,R)/SO(2).

The occurrence of such an identification is not specific to H2, but instead is characteristic for
symmetric spaces of non-compact type: Any symmetric space X of non-compact type can be
identified with a quotient G/K, where G, the isometry group of X, is a semisimple Lie group and
K = Gp0 is the stabilizer of a base point p0 ∈ X, which is a compact subgroup of G. Therefore
symmetric spaces can be studied in terms of Lie groups and Lie algebras. Therefore denote by
g and k the Lie algebras of G and K, respectively, then there is a maximal abelian subalgebra
a ⊆ p, where p is the Killing-orthogonal of k in g. As a Lie algebra, a carries the structure of
a finite-dimensional vector space and we can apply our results from Chapter 3 to investigate its
horofunction compactification. In order to do that, it remains to determine a norm on a.

Symmetric spaces carry a Riemannian metric but they also carry a Finsler metric, which is much
more interesting to us. A Finsler metric is a generalization of a Riemannian metric as it is a
continuous family of (possibly asymmetric) norms on the tangent spaces, which are not necessarily
induced by an inner product. Any G-invariant Finsler metric on X induces a Weyl group invariant
norm on a and also on a maximal flat F = exp(a).p0 � R

k. The flat F can both be seen as a metric
space of its own or as a part of the symmetric space X. A key result then is that both view points
lead to the same result:
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Theorem 4.2.18 Let X = G/K be a symmetric space of non-compact type. Consider a G-

invariant Finsler metric on X such that the dual unit ball belongs to one of the cases I) - IV) and

such that its set of extreme sets is closed. Let X
hor

be the horofunction compactification of X with

respect to this Finsler metric. Then the closure of a maximal flat F in X
hor

is isomorphic to the

horofunction compactification of F with respect to the induced metric. ◦

Comparison with other compactifications The above theorem allows us to compare the ho-
rofunction compactification of X with other well-known compactifications of by studying the
compactifications of the flat or of a. The first compactification we consider is the Satake com-
pactification.

Specific Satake compactifications have been realized as horofunction compactifications of Finsler
metrics before. Kapovich and Leeb [KL18] studied the polyhedral horofunction compactifica-
tion of finite-dimensional vector spaces in order to understand the Satake compactifications of
symmetric spaces of non-compact type. Satake compactifications have polyhedral unit balls in
a and we will come to the same conclusion in Chapter 4 but using different techniques. This is
also shown in [HSWW18] with respect to generalized Satake compactifications as introduced in
[GKW15]. Friedland and Freitas [FF04a, FF04b] described the horofunction compactification for
Finsler p-metrics on GL(n,C)/Un for p ∈ [1,∞], which they showed to agree with the visual
compactification for p > 1. Additionally they proved that the horofunction compactification of
the Siegel upper half plane of rank n for the 1-metric agrees with the bounded symmetric do-
main compactification, a minimal Satake compactification. The two books [GJT98] and [BJ06]
explain many more compactifications of symmetric spaces and show how they are related to each
other. They additionally give a unifying approach of how to construct them by adding boundary
components.

Before stating the result more precisely let us shortly describe the basic construction of Satake

compactifications X
S
τ as given by Satake [Sat60] in 1960. The index τ signifies that they are as-

sociated to irreducible faithful representations τ : G → PSL(n,C), which give rise to embeddings
X = G/K → P(H(Cn)), gK 7→ [τ(g)∗τ(g)], into the space of positive definite Hermitian matri-
ces. There are only finitely many isomorphism classes of Satake compactifications, determined by
subsets of the set of simple roots. The closure of a flat in a Satake compactification with respect
to the representation τ is homeomorphic to the convex hull conv(W(2µτ)) of the Weyl group orbit
of the highest weight µτ of the representation as shown by Ji [Ji97]. Now we state

Theorem 4.3.22 Let X = G/K be a symmetric space of non-compact type. Let τ be a faithful

irreducible projective representation of G, µ1, . . . , µn the weights and µτ the highest weight of τ.

With the Weyl groupW let D := conv(µ1, . . . , µn) = conv(W(µτ)) be theW-orbit of the highest

weight. Let B = −D◦ define a unit ball in the maximal abelian subalgebra a ⊆ p ⊆ g. Then the

Satake compactification X
S
τ is G-equivariantly isomorphic to the horofunction compactification of

X with respect to the Finsler metric defined by B. ◦

The other compactification we want to examine more closely is the Martin compactification. It
is constructed using the spectrum of the Laplace-Beltrami operator and has no direct geomet-
ric meaning. When λ0 denotes the bottom of the spectrum, then there is an associated Martin
compactification X ∪ ∂λ(X) for each λ ≤ λ0. A well know geometric interpretation of the Mar-
tin compactification is in terms of the maximal Satake and the geodesic compactification of X:

X ∪ ∂λ0(X) is homeomorphic to the maximal Satake compactification X
S
τ of X and X ∪ ∂λ(X) is

the least common refinement of the maximal Satake and the geodesic compactification of X. Our
previous results from Section 3.4 then allow us immediately to realize any Martin compactification
as a horofunction compactification:
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Theorem 4.4.2 Let X = G/K be a symmetric space of non-compact type. Let τ be a faithful

irreducible projective representation of G with generic highest weight µτ ∈ a+. With the Weyl

group W let D := conv(W(µτ)) be the W-orbit of the highest weight. Denote the norm on a

defined by the unit ball BS := −D◦ by ‖·‖S . Let ‖·‖E be the Euclidean norm ‖·‖E on a.

Then for λ = λ0, the Martin compactification X ∪ ∂λ0(X) is homeomorphic to the horofunction

compactification of X with respect the Finsler norm given by ‖·‖S on a.

For λ < λ0(X), the Martin compactification X ∪ ∂λ(X) is homeomorphic to the horofunction

compactification of X with respect to the Finsler norm given by the sum ‖·‖ = ‖·‖S + ‖·‖E on a. ◦

Toric Varieties

Our results about the horofunction compactification of a finite-dimensional normed spaces can also
be applied in a different setting, namely for toric varieties. Toric varieties provide a basic class of
algebraic varieties which are relatively simple. They are irreducible varieties over C that contain
the complex torus as a Zariski open subset such that the action of the torus on itself extends to an
algebraic action of the torus on the variety. A subclass of toric varieties are normal toric varieties
which can be described as an abstract toric variety XΣ constructed by a fan Σ ⊆ Rn. A fan is a
collection of strongly convex rational polyhedral cones satisfying the same building conditions
as simplicial complexes: given a cone σ ∈ Σ, then also every face of σ belongs to Σ and the
intersection of two cones is a common face of both. A polytope P in Rn defines a fan ΣP by taking
cones over its faces. But the converse is not true, there are fans that do not come from polytopes.
Therefore we restrict ourselves to projective toric varieties where it is known that the underlying
fan is induced by a rational convex polytope. It is well-known that many algebro-geometric and
cohomology properties of toric varieties XΣ are determined by combinatorial and convex properties
of their fans. We use this correspondence to combine projective toric varieties and horofunction
compactifications of Rn. Every toric variety XΣ has a nonnegative part XΣ,≥0 and we show that this
nonnegative part can be identified with a suitable horofunction compactification:

Theorem 5.3.8 Let X = XΣP be a projective toric variety of dimension n. Then the following are

homeomorphic:

1) the nonnegative part X≥0 of the toric variety X

2) the image of the moment map of the toric variety X

3) the horofunction compactification Rnhor
of Rn with respect to the norm ‖·‖P

These homeomorphisms give a bijective correspondence between projective toric varieties X of

dimension n and rational polyhedral norms ‖·‖ on Rn up to scaling in every dimension n ≥ 1. ◦

The homeomorphism here is given by the (toric) moment map µwhich provides a homeomorphism
between the nonnegative part XΣP,≥0 of the toric variety and the dual of the polytope P that defines
the fan ΣP. This map is well-known in the context of toric varieties and can be found in standard
literature (like [CLS11, Prop. 12.2.5] or [Ful93, §4.2]), but with slightly different notations. A
similar convexity result about the image of the (symplectic) moment map is also well know in
symplectic geometry and goes back to Atiyah [Ati82] and Guillemin-Sternberg [GS82]. The map
that we use for the homeomorphism between the horofunction compactification and the dual unit
ball is inspired by the moment map. Apart from the toric or symplectic setting, the moment map
does not seem to be widespread, especially not in the context of convex sets where we used it.
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To show Theorem 5.3.8 we define a topological model TΣ of the variety where we explicitly
describe the convergence behavior of sequences. The topological model is constructed as the
complex torus T to which we attach some boundary components. A key point then is to show that
the topological model TΣ and the usual construction of XΣ as the variety obtained from a fan are
homeomorphic as T -topological spaces.

Structure of the thesis

We start in Chapter 2 with preliminaries about some concepts needed later, especially in the third
chapter. We first unify notations abouts subspaces in Section 2.1 and then go over to convex sets
and (asymmetric) norms in Section 2.2. Important for us is the structure of extreme sets and the
notion of dual convex sets and faces, this will be treated in Sections 2.3 and 2.4. Further we will
show some basics about the Minkowski sum in Section 2.5 and especially determine how faces of
convex sets behave under the sum. The last part in the preliminary chapter (Section 2.6) introduces
the maps hE,p that will later give the horofunctions.

Chapter 3 deals with the horofunction compactification, mainly in the setting of a finite-dimensional
normed vector space. After a general introduction into horofunctions and especially horofunc-
tions on a finite-dimensional normed vector space (Sections 3.1), we state the main result about
the convergence behavior of sequences in the horofunction compactification in Section 3.2. The

homeomorphism X
hor ≃ B◦ is deduced in Section 3.3 and generalizes a result of joint work with

Lizhen Ji that was published on the arXiv as [JS16]. The extension of the previous results to the
case where the norm is the sum of two other norms is the content of Section 3.4.

Chapter 4 starts with an introduction to the theory of symmetric spaces and of Lie groups and Lie
algebras in Section 4.1. The justification for determining the horofunction compactification of a
symmetric space of non-compact type by compactifying a maximal flat is given in Section 4.2.
We then compare the horofunction compactification with the Satake (Section 4.3) and the Martin
compactification (Section 4.4). The results on the horofunction compactification and the Satake
compactification of symmetric spaces are joint work with Thomas Heattel, Cormac Walsh and
Anna Wienhard and published on the arXiv as [HSWW18].

Chapter 5 treats the theory of toric varieties. The basics on toric varieties and their construction
from fans is given in Section 5.1. After defining the topological model of a toric variety in Sec-
tion 5.2, we show the homeomorphism of the nonnegative part and the dual polytope in Section
5.3. The results of this chapter were deduced in joint work with Lizhen Ji and a shorter version
containing all results was published as [JS17].

In Chapter 6 we state some open problems and questions for future research work.
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Definition 2.1.5 Let V ⊆ Rn be a subspace. Then the orthogonal complement V⊥ of V is the
subspace orthogonal to all elements of V:

V⊥ := {y ∈ X | 〈y|x〉X = 0 ∀x ∈ V}. ◦

Remark 2.1.6 We could also have taken the quotient X/V(F) instead of F⊥, but since the orthog-
onal complement is more geometric, we use the complement V(F)⊥. ◦

A subspace V and its orthogonal complement V⊥ are complementary, that is, V ⊕ V⊥ = X. There-
fore every element x ∈ X can uniquely be written as

x = xV + xV ,

where xV ∈ V denotes the orthogonal projection to the subspace V and xV ∈ V⊥ the orthogonal
projection to V⊥.

Definition 2.1.7 An affine subspace A ⊆ X is the translate of a subspace V ⊆ X, that means there
is a point a ∈ X such that

A = a + V = {x = a + v ∈ X | v ∈ V}.

The empty set is also considered as an affine subspace. If ∅ , A , X, then the affine subspace A is
called proper. ◦

Definition 2.1.8 Let S ⊆ X be a non-empty set. The affine hull aff(S ) over S is the smallest affine
subspace containing S . ◦

The affine hull aff(S ) of a set S can equivalently be defined as the intersection of all affine spaces
containing S .

Just as we do for subspaces, we speak of affine (in)dependency of a set of points and we can make
basic operations on affine spaces like sums and intersections. The exact definitions and results are
given now.

Definition 2.1.9 A set {x1, . . . , xk} ⊆ X is called affinely independent, if for λ1, . . . , λk ∈ R the
combinations

k∑

i=1

λixi = 0 and
k∑

i=1

λi = 0

are only possible for λ1 = . . . = λk = 0. Otherwise the set of points is called affinely dependent.
The empty set ∅ and every set {x} are considered to be affinely independent. ◦

Remark 2.1.10 For linear independency we do not require that
∑

i λi = 0. So a set can be linearly
dependent but affinely independent but not the other way round. ◦

Example 2.1.11 In R2 consider the points

x1 =

(
−1
0

)
, x2 =

(
0
1

)
, x3 =

(
1
1

)
, x4 =

(
1
2

)
.

Then the set {x1, x2, x3} ⊆ R2 is linearly dependent but affinely independent. The set {x1, x2, x4} is
both linearly and affinely dependent. ◦

The following characterization helps to find affinely independent sets.

Proposition 2.1.12 ([Sol15, Thm 1.60]) The set {x1, . . . , xk} ⊆ X is affinely independent, if and

only if the plane aff(x1, . . . , xk) has dimension k − 1. ◦
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Proposition 2.1.13 ([Sol15, Thm. 1.4]) Intersections and finite weighted sums of affine spaces

are again affine spaces. ◦

Proposition 2.1.14 ([Sol15, Thm 1.2]) Let A ⊆ X be an affine subspace. Then A is the translate

of a unique subspace V ⊆ X given by

V = A − A = {x − y | x, y ∈ A}. ◦

Definition 2.1.15 The unique subspace of which the affine subspace A is a translate, is called the
space of translations of A and denoted by T (A).
For a subset S ⊆ X we denote by T (S ) the space of translations of aff(S ):

T (S ) := T (aff(S )) = aff(S ) − aff(S ). ◦

To obtain the space of translations of A it is actually enough to consider A translated by a non-
empty subset L of A. This holds especially when L only consists of a single point.

Corollary 2.1.16 ([Sol15, Thm. 1.2]) Let A ⊆ X be an affine subspace and L ⊆ A a non-empty
subset. Then

T (A) = A − L. ◦

Now that we assigned a subspace to every affine space A we can speak about the dimension of A.
It is defined as the dimension its space of translations:

dim(A) := dim(T (A)).

Similarly, for any non-empty set S ⊆ X we define ([Sol15, Def. 1.75]) the dimension of S by

dim(S ) := dim(aff(S )).

Then dim(S ) is the maximal number of affinely independent points in S minus 1.

Let the subset L in the corollary above be a single point, then we see that the space of translations
T (A) is a translate of A and we intuitively would say that A and T (A) are "parallel". This statement
is also consistent with the definition of parallelism:

Definition 2.1.17 Two non-empty affine subspaces A1, A2 are called parallel, if one of them con-
tains a translate of the other. ◦

Note that we do not require the affine subspaces to have the same dimension for being parallel.
Therefore parallelism is not an equivalence relation. An equivalent characterization of parallelism
of A1 and A2 is to require that one of their space of translations contains the other one:

Proposition 2.1.18 ([Sol15, Thm. 1.13]) Let A1, A2 ⊆ X be non-empty affine subspaces with

dim(A1) ≤ dim(A2). Then A1 and A2 are parallel if and only if T (A1) ⊆ T (A2). ◦

Corollary 2.1.19 In the situation of the proposition, if dim(A1) = dim(A2), then A1 and A2 are
parallel if and only if T (A1) = T (A2), that is, A1 and A2 are translates of each other. ◦

Soltan [Sol15] calls affine subspaces planes. We keep the notation of affine subspaces, to avoid
confusion with the common definition of a hyperplane, that is, an affine subspace of dimension
n − 1.

Important for us will be the following characterization of a hyperplane as the level set of the dual
pairing with some fixed vector:
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Proposition and Definition 2.1.20 ([Sol15, Thm 1.17]) An affine subspace H ⊆ X is a hyperplane

if and only if there is a point g , 0 ∈ X∗ and a scalar λ ∈ R such that

H = Hg
λ

:= {x ∈ X | 〈g|x〉 = λ}. (2.1)

The above representation is unique up to a common non-zero scalar multiple of g and λ:

Hkg
kλ = Hg

λ
∀k , 0. ◦

We will mainly consider the hyperplanes for λ = −1 and λ = 0.

Corollary 2.1.21 ([Sol15, Cor 1.18]) Two hyperplanes H = Hh
−1 and G = Gg

−1 in X are parallel if
and only if they are defined by the same point up to a scalar multiple: there is an α ∈ R such that

h = αg.

Therefore their (common) space of translations is given by

T (H) = T (G) = {x ∈ X | 〈h | x〉 = 0}. ◦

With the notations introduced above in Equation (2.1), we see immediately that the space of trans-
lations of H is the orthogonal complement to the subspace generated by h:

T (Hh
−1) =

(
V({h})⊥

)∗
= Hh

0 .

Every hyperplane H divides X into two closed half-spaces:

Definition 2.1.22 The affine half-spaces defined by a hyperplane Hh
λ

will be denoted by:

Vh
≥λ := {x ∈ X | 〈h|x〉 ≥ λ}

Vh
≤λ := {x ∈ X | 〈h|x〉 ≤ λ},

and similarly for Vh
>λ

and Vh
<λ

. ◦

2.2 Convex Sets and Norms

In this thesis we will often deal with compact convex sets as they can be seen as unit balls of a
norm they define. Therefore we will now state some basic results about general (i.e. not necessarily
compact) convex sets and the norm they define.

Definition 2.2.1 A non-empty subset C ⊆ X is called convex, if for any two points x, y ∈ C the
interval between them is contained in C, that is, for all 0 ≤ λ ≤ 1 it holds:

λx + (1 − λ)y ∈ C.

Also the empty set is defined to be convex. ◦

Generalizing the sum above to more than two points, we get a convex combination:

Definition 2.2.2 A convex combination of points x1, . . . xk ∈ X is a sum
∑k

i=1 λixi where λi ≥ 0 for
all i and

∑k
i=1 λi = 1. When all scalars λi are positive, we call it a positive convex combination. ◦
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The affine hull of a convex set ∅ , D ⊆ ∂relC in the relative boundary of a closed compact convex
set C ⊆ X is an affine subspace properly supporting C. Therefore D lies in a properly supporting
hyperplane to C. See [Sol15, Cor 6.9] for a proof.

Corollary 2.2.13 ([Sol15, Cor.6.10]) Let C ⊆ X be a proper convex set. Then a hyperplane H ⊆ X
properly supports C if and only if H ∩ cl C , ∅ and C is contained in one of the closed half-spaces
determined by H. ◦

The following observation will help us later when dealing with the dual unit ball of a norm.

Corollary 2.2.14 Let C ⊆ X be a compact convex set and H = Hh
λ

ba a hyperplane properly
supporting C. Then

either 〈h|c〉 ≥ λ ∀c ∈ C

or 〈h|c〉 ≤ λ ∀c ∈ C. ◦

As compact sets are bounded, it holds:

Corollary 2.2.15 (see also Prop. 2.3.1) Every closed compact convex set C ⊆ X has a supporting
hyperplane ◦

Hyperplanes are also used to separate convex sets:

Definition 2.2.16 Let S 1, S 2 ⊆ X be non-empty set. Then a hyperplane H ⊆ X separates S 1

and S 2 if S 1 and S 2 lie in the opposite closed half-spaces determined by H. The hyperplane H
properly separates S 1 and S 2 if S 1 ∪ S 2 * H. If there is a scalar ρ > 0 such that H separates the
ρ-neighborhoods Bρ(S 1) and Bρ(S 2), then H strongly separates. ◦

Proposition 2.2.17 ([Roc97, Thm. 11.1]) Let S 1 and S 2 be non-empty sets in X

1) S 1 and S 2 are properly separated by a hyperplane, if and only if there exists a point h ∈ X∗

such that

a) inf{〈h|s〉 | s ∈ S 1} ≥ sup{〈h|t〉 | t ∈ S 2}

b) sup{〈h|s〉 | s ∈ S 1} > inf{〈h|t〉 | t ∈ S 2}.

2) S 1 and S 2 are strongly separated by a hyperplane, if and only if there exists a point h ∈ X∗

such that

inf{〈h|s〉 | s ∈ S 1} > sup{〈h|t〉 | t ∈ S 2}. ◦

For convex sets, we even have:

Proposition 2.2.18 ([Sol15, Thm. 6.30/6.32]) Let C1,C2 ⊆ X be two non-empty convex sets.

1) C1 and C2 are properly separated if and only if relint(C1) ∩ relint(C2) = ∅.

2) C1 and C2 are strongly separated if and only if inf{‖x1 − x2‖ | x1 ∈ C1, x2 ∈ C2} > 0. ◦

As mentioned before, compact convex sets in X are closely related to norms. We now show this
relation and start with the definition of an asymmetric norm:

Definition 2.2.19 An asymmetric norm ‖·‖ on X is a function ‖·‖ : X → R≥0 satisfying:

1) For any x ∈ X, if ‖x‖ = 0, then x = 0.

2) For any α ≥ 0 and x ∈ X, ‖αx‖ = α‖x‖.

3) For any two vectors x, y ∈ X, ‖x + y‖ ≤ ‖x‖ + ‖y‖. ◦
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In particular, ‖x‖ and ‖−x‖ may not be equal to each other. If the second condition is replaced by
the stronger condition: ‖αx‖ = |α|‖x‖ for all α ∈ R, then ‖·‖ is symmetric and is a usual norm on
X.

Remark 2.2.20 It is rather confusing in the beginning to consider asymmetric norms and to get
used to the fact that possibly ‖x‖ , ‖−x‖. But in the relation with compact convex sets, this
asymmetric definition is much more natural than the symmetric one. More about asymmetric
norms can be found for example in [Cob13]. ◦

Given an asymmetric norm ‖·‖ on X, the unit ball B‖·‖ of the norm is given by

B‖·‖ = {x ∈ X | ‖x‖ ≤ 1}.

It is a compact convex subset of X which contains the origin as an interior point. Conversely, given
any convex compact subset C of X which contains the origin as an interior point, this defines an
asymmetric norm ‖·‖C on X by

‖x‖C := inf{λ > 0 | x ∈ λC}. (2.2)

If C is symmetric with respect to the origin then ‖·‖C is a norm on X.

It is easy to see that the unit ball of ‖·‖C is equal to C. Since any asymmetric norm ‖·‖ on X is
uniquely determined by its unit ball, it is of the form ‖·‖C for some closed convex domain C in X
containing the origin in its interior.

Definition 2.2.21 When P is a polytope, the asymmetric norm ‖·‖P is called a polyhedral norm.
If P ⊆ Rn is a rational polytope with respect to the integral structure Zn ⊆ X, the norm ‖·‖P is also
called a rational polyhedral norm. ◦

Remark 2.2.22 (Connections to the Minkowski and Hilbert geometry) Finite-dimensional normed
vector spaces are sometimes also called Minkowski geometry or Minkowski spaces as in [Tho96]
or [FK05]. This interplay between convex subsets of Rn and norms on Rn plays a foundational
role in the convex analysis of Minkowski geometry, see for example [Gru07] and [Tho96].

There is another metric space associated with a convex domain Ω of Rn. It is the domain Ω itself
equipped with the Hilbert metric defined on it. When Ω is the unit ball of R2, this is the Klein’s
model of the hyperbolic plane. In general, the Hilbert metric is a complete metric on Ω defined
through the cross-ratio, see [dlH93] for details. Since Ω is diffeomorphic to Rn, the Hilbert metric
induces a metric on Rn.

The polyhedral Hilbert metric associated with a polytope P is isometric to a normed vector space
if and only if the polytope P is the simplex [FK05, Theorem 2].

These discussions show that polyhedral norms on Rn, in particular rational polyhedral norms,
are very special in the context of the Minkowski geometry [Tho96] and the Hilbert geometry
[dlH93]. ◦

2.3 Extremal Structure of Convex Sets

In this section we will examine more closely the structure of the (convex) sets in the (relative)
boundary of a convex set. This will lead us to the notion of extreme sets and points, which play a
very important role in the description of horofunctions in the next section.
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Proposition 2.3.11 ([Sol15, Cor. 8.3/Thm. 8.9]) Let C ⊆ X be a convex set and F ⊆ C be an

exposed face. Then it holds:

1) The intersection of exposed faces of C is again an exposed face of C.

2) If F ∩ relint(C) , ∅, then F = C.

3) Then F ⊆ ∂rel(C) and dim(F) ≤ dim(C) − 1.

4) If C is closed, then so is F.

5) Distinct exposed faces of C have disjoint relative interior. ◦

Remark 2.3.12 The property of being an extreme set was transitive as seen in 2.3.6[(4)]. This
is not true any more for exposed faces as can be seen by the convex set on the right in Example
2.3.10, where the pink points are exposed faces of the green lines but not of C. Nevertheless, we
can find a sequence of sets such that each one is an exposed face of the next bigger one. ◦

Proposition 2.3.13 ([Sol15, Thm. 8.5]) Let C ⊆ X be a convex set and F ⊆ C an extreme set.

Then we can find a sequence S i of sets such that

F = S k ⊆ S k−1 ⊆ · · · ⊆ S 1 ⊆ S 0 = C

where S j ⊆ S j−1 is a proper exposed face for all 1 ≤ j ≤ k − 1. ◦

By the transitivity of extremality, each S j in the proposition above is an extreme set of C.

Corollary 2.3.14 ([Sol15, Cor. 8.6]) Let C ⊆ X be a convex set of dimension m > 0. Then every
extreme face F ⊆ C of dimension m − 1 is exposed. ◦

Although not every exposed point is extreme, the set of exposed points lies dense in the set of
extreme points:

Proposition 2.3.15 ([Sol15, Cor. 8.20]) Let C ⊆ X be a compact convex set, EC the set of extreme

points of C and EPC those of exposed points. Then

EPC ⊆ EC ⊆ cl(EPC). ◦

2.4 Duality of Convex Sets and Faces

From now on (if not stated otherwise) we denote by B ⊆ X a compact convex set of dimension n
containing the origin 0 in its interior. As mentioned before, such a set B defines a norm of which it
is the unit ball. This is why we will also name B a unit ball from now on. We will call extreme faces
just faces of B and state individually whether they are exposed or not. To any unit ball B in X we
can assign a set B◦ in the dual space X∗ which is also the unit ball of a norm. It this section we want
to explore the structure of this dual unit ball and of its faces and give a correspondence between
the faces of B and those of B◦. The understanding of this extremal structure and correspondence
is crucial for the proof of Theorem 3.2.6.

Definition 2.4.1 Let B ⊆ X be a non-empty compact convex set. Then its dual B◦ is a subset of
the dual space X∗ and defined as the polar of B:

B◦ := {y ∈ X∗ | 〈y|x〉 ≥ −1 ∀x ∈ B}. ◦
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Remark 2.4.2 Some authors define the polar and thereby the dual of a compact convex set by the
condition 〈y|x〉 ≤ 1 ∀x ∈ B. As long as B is symmetric, this makes as a set no difference. If B is
not symmetric, we get the same result with our definition by replacing x with −x and then acting
carefully with the signs. ◦

In Figure 2.7 there are given two examples of unit balls B in Rn and their duals B◦. The colors
indicate the pair of extreme sets that have dual pairing -1 with each other.

B B◦

Figure 2.7: Two examples of a compact convex set B (left) and its dual B◦ (right) in R2 and
R3. The color of faces indicate the pair of faces that have pairing equal to −1 with each other.

Coming from B ⊆ X we can define its dual B◦, but what happens if we take the dual again, so how
can we describe B◦◦ = (B◦)◦?. As for the origin 〈0|x〉 = 0 > −1 for any x ∈ X it is clear that 0 ∈ B◦

and therefore also 0 ∈ B◦◦. By definition it is also obvious that B ⊆ B◦◦. A precise description is
the following (from [Bee93, Thm. 1.4.6]):

Proposition 2.4.3 (Bipolar Theorem) Let S ⊆ X be a non-empty set. Then

S ◦◦ = cl conv(S ∪ {0}). ◦

Corollary 2.4.4 Let B ⊆ X be a compact convex set with the origin {0} in its interior. Then

B◦◦ = B. ◦

To determine the dual of a given convex set C can sometimes be difficult. In such a case it might be
helpful to see C as the intersection or union of other convex sets, whose duals are already known.
The following relations then help to get C◦:

Lemma 2.4.5 Let A, B ⊆ X be compact convex sets containing the origin in their interior. Then

1) If A ⊆ B then B◦ ⊆ A◦.

2) (A ∪ B)◦ = A◦ ∩ B◦.

3) (A ∩ B)◦ = conv(A◦ ∪ B◦). ◦
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Proof. The proof of the statements is a direct calculation using the definition of duality:

1) Let A ⊆ B and x ∈ B◦. Then 〈x|b〉 ≥ −1 for all b ∈ B. As B contains A we obviously have
x ∈ A◦.

2) Let x ∈ (A ∪ B)◦, i.e 〈x|a〉 ≥ −1 and 〈x|b〉 ≥ −1 for all a ∈ A and b ∈ B. This is equivalent
to x ∈ A◦ ∩ B◦ which shows equality.

3) We use the previous result and the Bipolar Theorem 2.4.3 to compute:

(A ∩ B)◦ = (A◦◦ ∩ B◦◦)◦

= [(A◦)◦ ∩ (B◦)◦]◦

= [(A◦ ∪ B◦)◦]◦

= (A◦ ∪ B◦)◦◦

= conv(A◦ ∪ B◦) �

We will now investigate how the extremal structure of B determines B◦. By the previous corollary
all these results can be applied to B◦ to get back the structure of B.

Take an extreme point p ∈ EB. It defines us a hyperplane

Hp
−1 = {y ∈ X∗ | 〈y|p〉 = −1}

and out of this two closed affine half-spaces V p
≥−1 and V p

≤−1 in X∗ (see Definition 2.1.22 on page
14). As the dual set B◦ consists of all points with dual pairing ≥ −1 with all elements of B, it is
clear that B◦ ⊆ V p

≥−1 and Hp
−1 supports B◦. This is the basic idea of the following characterization

of B◦:

Lemma 2.4.6 Let B = conv(EB) ⊆ X be compact convex with the origin in its interior. Then

B◦ =
⋂

p∈EB

V p
≥−1. ◦

Proof. By the previous discussion the inclusion ⊆ is clear. For the other direction take a point
x ∈ ⋂

p∈EB
V p
≥−1 and b ∈ B. As x and b are arbitrary, we have to show that 〈x|b〉 ≥ −1 to finish the

proof. By the Krein-Milman Theorem (Thm. 2.3.7) and the following comment on page 20 there
are finitely many extreme points pi ∈ EB and coefficients λi ≥ 0 satisfying

∑
i λi = 1 such that

b =
∑

i

λi pi.

Therefore, as 〈x|p〉 ≥ −1 for any extreme point p ∈ EB:

〈x|b〉 =
∑

i

λi 〈x|pi〉 ≥ −
∑

i

λi = −1,

as it was to show. �

Example 2.4.7 We calculate the unit balls of two standard norms in Rn.

1) Let {v1, . . . , vn} be a system of orthogonal vectors inRn and D = conv{v1,−v1, v2,−v2, . . . ,−vn}
be our unit ball. Denote by {v∗1, . . . , v∗n} the dual basis in (Rn)∗. For each j ∈ {1, . . . , n} we
have

H
±v j

−1 =



n∑

i=1

aiv
∗
i

∣∣∣∣∣∣∣
ai ∈ R, a j = ∓

1〈
v∗j |v j

〉
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Example 2.4.12 Two examples of compact convex sets B and their duals B◦ are given in Figure
2.10. The colors indicate the duality between the faces. In the polyhedral case (a) every face has
exactly one dual face.

a)

F

B

G
B◦

F ◦

G◦

b)

F

B
G

B◦

E1

E3

E2

G◦

Figure 2.10: Two convex sets and their duals with dual faces. In the polyhedral case (a), every
face has exactly one dual face. In the general case (b), a face can have several dual faces.

In example (b), the face F has three faces dual to it: E1, E2, E3. The face E2 is the exposed dual
face and the other two are in its relative boundary and not exposed faces of B◦. Such a duality
relation holds for any of the four points where the boundary is not smooth. In the smooth part of
the boundary of B, as for the extreme point G, we again have only one dual face. ◦

Lemma 2.4.13 Let F ⊆ C be a proper face. Then F◦ ⊆ C◦ is an exposed face given by

F◦ =
⋂

f∈F

H f
−1 ∩C◦. ◦

Proof. The characterization of the exposed dual face as the intersection of all hyperplanes follows
directly by definition:

F◦ = {y ∈ C◦ | 〈y | f 〉 = −1 ∀ f ∈ F}
=

⋂

f∈F

H f
−1 ∩C◦.

To see that F◦ is exposed we first show that the intersection is not empty. As an extreme set of C,
the set F is contained in some hyperplane HF supporting C. So there is a point d ∈ X∗ such that
HF = Hd

−1 and therefore especially 〈d| f 〉 = −1 for all f ∈ F. For the intersection not to be trivial
it remains to show that d ∈ C◦. As HF supports C and 0 ∈ C we have C \ (HF ∩ C) ⊆ Vd

≥, that is,
〈d|x〉 > −1 for all x ∈ C \ (HF ∩C). Together with 〈d | x〉 = −1 for all x ∈ HF ∩C we have d ∈ C◦.
The next step is to show that F◦ is extreme. Recall that F◦ ⊆ C◦ is an extreme set, if some interior
point of a line in C◦ lies in F◦, then also both endpoints of the line. Therefore let y ∈ F◦ be a point
and y1, y2 ∈ C◦ such that y = λy1 + (1 − λ)y2 ∈ F◦ for some λ ∈ (0, 1). For any x ∈ F we have

−1 = 〈y|x〉 = λ 〈y1|x〉 + (1 − λ) 〈y2|x〉 ≥ −1,

as both y1, y2 ∈ B◦. Equality holds if and only if 〈y1|x〉 = 〈y2|x〉 = −1 and therefore y1, y2 ∈ F◦.
As F◦ contains all points that have dual pairing −1 with every element of F, it is exposed. Oth-
erwise there would be an exposed face G ⊆ C◦ in whose relative boundary F◦ lies and also
〈G | F〉 = −1 would hold in contradiction to the definition. �
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Remark 2.4.14 In Example 2.4.12 above we saw that for a face F there might be several faces
of B◦ dual to F. Actually, a face can have infinitely many faces dual to it. But they all are in
the relative boundary of a unique exposed dual face F◦. As for a polytope every extreme set is
exposed, a face F of a polytope has a unique dual face and thenD(F) = {F◦}. ◦

We described F◦ as the intersection of B◦ with the hyperplanes H f
−1 for all f ∈ F. Actually it is

also enough to either intersect all hyperplanes defined by the extremal points of F or to take just
one hyperplane associated to a relative interior point of F:

Lemma 2.4.15 Let F ⊆ B be a face and EF the set of extreme points of F. Then there are the

following two descriptions of the exposed dual of F:

1) F◦ =
⋂

e∈EF
He
−1 ∩ B◦.

2) F◦ = Hg
−1 ∩ B◦ for any g ∈ relint(F). ◦

Proof. (1) As every extreme point of F lies in the relative boundary of F, the inclusion ⊆ is clear.
For the other way round let y ∈ ⋂

e∈EF
He
−1 ∩ B◦, then 〈y | e〉 = −1 for all e ∈ EF and 〈y | x〉 ≥ −1

for all x ∈ B. We have to show that 〈y | f 〉 = −1 for all f ∈ F and not only for the extreme points.
By the discussion after Proposition 2.3.7 there are finitely many λi ≥ 0 and ei ∈ EF such that

f =
∑

i

λiei and
∑

i

λi = 1.

Then

〈y | f 〉 =
∑

i

λi〈y | ei〉 = −
∑

i

λi = −1.

(2) In the case where F is a single point, the statement in obviously true. So let’s assume F is not
a point. The inclusion ⊆ is again trivial and it remains to show that Hg

−1 ∩ B◦ ⊆ F◦ =
⋂

f∈F H f
−1

for any g ∈ relint(F). Let y ∈ Hg
−1 ∩ B◦, that is, 〈y|g〉 = −1 where g ∈ relint(F) is fixed, and

〈y| f 〉 ≥ −1 for every f ∈ F by the duality of B and B◦. We have to show that 〈y| f 〉 = −1 for all
f ∈ F. Assume there is an f ∈ F such that 〈y| f 〉 > −1 and let ε > 0 be small enough such that
g + ε(g − f ) is a point in F. Such an ε can always be found because F is convex and g ∈ relint(F)
and f ∈ F. Then

〈y|g + ε(g − f )〉 = −1 − ε − ε 〈y| f 〉 < −1 − ε + ε = −1,

which means that g + ε(g − f ) < B. As ε was arbitrary, this contradicts that g lies in the relative
interior of F, so we conclude 〈y| f 〉 = −1 for all f ∈ F. �

We conclude this section about the duality of faces by a look at the subspaces that are defined by
dual faces.

Proposition 2.4.16 Let F ⊆ B be a proper face and E ∈ D(F) a face of B◦ ⊆ X∗ dual to F. Then

T (E)∗ ⊆ T (F◦)∗ ⊆ V(F)⊥

and

dim(F) + dim(E) ≤ n − 1.

If B is polyhedral, then T (E)∗ = V(F)⊥ and dim(F) + dim(E) = n − 1. ◦
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Proof. Let E ∈ D(F) be an extreme set, E ⊆ F◦ ⊆ B◦. The first inclusion is clear. To see
that T (F◦)∗ ⊆ V(F)⊥ we remember the definition of the space of translations (Def. 2.1.15):
T (F◦) = F◦ − F◦ = {x − y | x, y ∈ F◦}. As every element of F◦ has dual pairing equal to −1 with
any element of F we have 〈t| f 〉 = 0 for any t ∈ T (F◦) and f ∈ F, so T (F◦)∗ ⊆ V(F)⊥.

For the statement about the dimensions we use that dim(V(F)) = dim(F) + 1 because 0 < F and
thereby dim(V(F)⊥) = n − dim(F) − 1. As dim(E) ≤ dim(F◦) ≤ dim V(F)⊥ for any E ∈ D(F) we
calculate

dim(F) + dim(E) ≤ dim(F) + n − dim(F) − 1 = n − 1.

If B is polyhedral, then D(F) = {F◦} and it remains to show that V(F)⊥ ⊆ T (F◦)∗. By Corollary
2.1.21 we fix some z ∈ F◦ such that T (F◦) = aff(F◦) − z. Let x ∈ (V(F)⊥)∗ and ε > 0, then

〈z + εx| f 〉 = 〈z| f 〉 + ε 〈x| f 〉 = −1 ∀ f ∈ F.

As a polytope has only finitely many vertices, the pairing of z with any extreme point not in F
can be uniformly bounded away from −1 by some positive constant. So there is a δ > 0 such that
〈z|e〉 > −1 + δ for all e ∈ EB \ EF . By e1, . . . , ek let us denote the extreme points of B that are not
in F and by f1, . . . fl those contained in F. Set α := mini 〈x|ei〉. Let y ∈ B \ F and λi, µ j ∈ [0, 1]
such that

∑
i λi +

∑
j µ j = 1 and

y =
k∑

i=1

λiei +

l∑

j=1

µ j f j.

Note that the coefficients λi and µ j in the convex combination are not necessarily unique. As y < F
it is k ≥ 1 and we can arrange the ei in a way such that λ1 , 0. Then

〈z + εx|y〉 =
∑

i

λi 〈z|ei〉 +
∑

j

µ j

〈
z| f j

〉
+ ε

∑

i

〈x|ei〉 + ε
∑

j

µ j

〈
x| f j

〉

> −
∑

i

λi + δ
∑

i

λi −
∑

j

µ j + ε
∑

i

λi 〈x|ei〉

≥ −1 +
∑

i

λi(δ + εα).

As δ and α are independent of y, we can choose ε small enough such that 〈z + εx|y〉 > −1 for all
y ∈ B \ F. This implies that z + εx ∈ F◦ or equivalently x ∈ 1

ε
(aff(F◦) − z) = T (F◦). Therefore

T (F◦)∗ = V(F)⊥ and the formula for the dimension follows in the same way as above. �

For more details on polars and polyhedral convex sets see for example [Bee93] or [Roc97, §19].

In Theorem 3.2.6 we want to characterize sequences in X that converge to horofunctions in the

horofunction compactification X
hor

. The structure of the compactification strongly depends on
the face structure of the dual unit ball B◦ of the norm we are considering. We will have to
split up the sequence into parts lying in different subspaces depending on the faces F ⊆ B and
E ∈ D(F) ⊆ B◦.

Notation Let A ⊆ X be a subset and x ∈ X. We fix the following notations for projections of x
onto the subspaces T (A) and T (A)⊥:

xA := xT (A) := projT (A)∗(x)

xA := xT (A) := proj(T (A)⊥)∗(x).
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We use the same notation for projections with respect to subspaces of X∗ Let S ⊆ X∗ be a subset
and x ∈ X. We fix the following notations for projections of x onto the subspaces dual to T (S ) and
T (S )⊥:

xS := xT (S ) := projT (S )∗(x)

xS := xT (S ) := proj(T (S )⊥)∗(x).

Note that (T (S )⊥)∗ = (T (S )∗)⊥. ◦

According to the inclusions given in the previous proposition we have the following splitting up
of an element x ∈ X:

x = xV(F) + xE + (xF◦)
E +

[
xV(F)

]F◦
.

As T (F◦)∗ ⊆ V(F)⊥, the expression
(
xV(F)

)F◦
means that we project to the orthogonal complement

of T (F◦)∗ within the subspace V(F)⊥. By Proposition 2.4.16 we have the identities

((
xV(F)

)
F◦

)
E
= xE ,

((
xV(F)

)
F◦

)E
= (xF◦)

E ,
(
xV(F)

)
F◦
= xF◦ .

Figure 2.11 shows schematically how to obtain this splitting step-by-step.

x

xV(F) xV(F)

(
xV(F)

)
F◦

((
xV(F)

)
F◦

)
E

((
xV(F)

)
F◦

)E

(
xV(F)

)F◦

Figure 2.11: Splitting up an element x ∈ X into the various subspaces depending on a face
F ⊆ B and a face E ∈ D(F) ⊆ B◦ dual to it.

Additionally we get

xE = xV(F) + (xF◦)
E +

[
xV(F)

]F◦
,

xV(F) = xE + (xF◦)
E +

[
xV(F)

]F◦
,

xF◦ = xE + (xF◦)
E ,

xF◦ = xV(F) +
[
xV(F)

]F◦
.

2.5 Basics about the Minkowski Sum

A nice way to obtain new unit balls out of given ones is to take the Minkowski sum of the unit balls.
This gives us a new unit ball (that is a compact convex set). In this section we first want to collect
some basic properties of the Minkowski sum and then examine in more detail the face structure of
the new unit ball and how it is related to the faces of the summands. In the following chapter we
will also see that the Minkowski sum behaves well with the horofunction compactification.
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Definition 2.5.1 Let A,D be two sets4 in X. Then the Minkowski sum M of A and D is defined as

M := A + D = {a + d |a ∈ A, d ∈ D}. ◦

Remark 2.5.2 The Minkowski sum is associative and can therefore be calculated for arbitrarily
many sets. For simplifying notations we restrict ourselves to the sum of two sets. Nevertheless,
all results presented here are also true for more summands, the proofs go through the same. ◦

Lemma 2.5.3 The Minkowski sum commutes with taking the convex hull:

conv(A + D) = conv(A) + conv(D),

for sets A,D ⊆ X. ◦

Proof. We first show the inclusion ⊆. Let m ∈ conv(A + D) be an arbitrary element. Then m can
be written as a convex combination of elements m1, . . . ,mk ∈ A + D:

m =
k∑

i=1

λimi,

with 0 ≤ λ1, . . . , λk ≤ 1 satisfying
∑

i λi = 1. Moreover, each mi can be split into mi = ai + di, with
ai ∈ A and di ∈ D for all i ∈ {1, . . . , k}. Together we obtain:

m =
k∑

i=1

λi(ai + di) =
∑

i

λiai +
∑

i

λidi ∈ conv(A) + conv(D).

For the other inclusion ⊇ let m ∈ conv(A)+conv(D) be arbitrary with a ∈ conv(A) and d ∈ conv(D)
such that m = a + d. Then we express a and d as convex combinations of elements a1, . . . , ak ∈ A
and d1, . . . , dl ∈ D:

a =
k∑

i=1

λiai, d =
l∑

j=1

µ jd j,

with coefficients 0 ≤ λ1, . . . , λk ≤ 1 and 0 ≤ µ1, . . . , µl ≤ 1 satisfying
∑

i λi = 1 as well as∑
j µ j = 1. These partitions of 1 are used in the next calculation, where we replace a and d step by

step by the above sums to obtain

m = a + d =
k∑

i=1

λiai +

k∑

i=1

λid

=

k∑

i=1

λi (ai + d)

=

k∑

i=1

λi


l∑

j=1

µ jai +

l∑

j=1

µ jd j



=

k∑

i=1

l∑

j=1

λiµ j(ai + d j).

As both the sums over λi and µi are equal to 1, the coefficients in the last sum also add up
to 1 and we conclude that m is a convex combination of elements in A and D and therefore
m ∈ conv(A + D). �

4To minimize confusion, we avoid letters B and C for general (non necessarily convex) set in X.
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Given a point m in the Minkowski sum M, there might be several pairs of points (c1, c2) ∈ C1 ×C2

such that their sum is equal to m. But for exposed faces of M the decomposition is unique (see
also [Wei07, Thm. 3.1.2] for polytopes and [Sol15, Thm 8.10 (2)] for general convex sets), as the
following proposition shows:

Proposition 2.5.8 Let C1,C2subsetX be compact convex sets in X and M = C1 + C2 their

Minkowski sum. Let F ⊆ M be an exposed face of M. Then there are unique exposed faces

F1 ⊆ C1, F2 ⊆ C2 such that F = F1 + F2. ◦

Proof. To not get confused by the notation, see Figure 2.13 for a visualization. Without loss of
generality, we assume that all sets contain the origin in their relative interior. As an exposed face,

B◦
1

+F1

F ′
1

H1

H ′
1

B◦
2

=F2

H2

F ′
2

H ′
2

B◦
3

F

HF

F ′

H ′
F

Figure 2.13: The Minkowski sum of a square and a circle gives a bigger square with rounded
corners. The blue and green faces F ⊆ M are exposed and uniquely the sum of exposed faces
F1 ⊆ C1 and F2 ⊆ F2.

F is the intersection of M with a supporting hyperplane HF , F = M ∩ HF . So there is a unique
h ∈ X∗ such that HF = Hh

−1 = {x ∈ X | 〈h|x〉 = −1}. Then h is a point in the boundary of
M◦ ⊆ X∗ but not necessarily an extreme set of it. For each j ∈ {1, 2} there are two hyperplanes
supporting C j that are parallel to HF . Let H j be the one that has smaller dual pairing with h. Then
as C j lies entirely in one of the two closed half-spaces defined by H j, the hyperplane can also be
characterized as

H j =

{
x ∈ X

∣∣∣∣∣∣ 〈h|x〉 = inf
q j∈C j

〈
h
∣∣∣q j

〉}
.

The sets C j are compact, so infq j∈C j

〈
h
∣∣∣q j

〉
is a scaler, the hyperplanes H,H1 and H2 are parallel,

as required. Set F j := C j ∩ H j, that is,

F j =

{
x ∈ C j

∣∣∣∣∣∣〈h|x〉 = inf
q j∈C j

〈
h
∣∣∣q j

〉}
.

Then F j ⊆ C j are exposed faces and their sum gives back F:

F = {x ∈ M | 〈h|x〉 = −1}

=

{
x ∈ M | 〈h|x〉 = inf

q∈M
〈h|q〉

}

=

{
c1 + c2 ∈ M = C1 +C2

∣∣∣∣∣∣〈h|c1 + c2〉 = inf
q j∈C j

〈h |q1 + q2 〉
}

=

{
c1 + c2 ∈ M = C1 +C2

∣∣∣∣∣〈h|c1〉 + 〈h|c2〉 = inf
q1∈C1

〈h |q1 〉 + inf
q2∈C2

〈h |q2 〉
}

= F1 + F2.
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The last line in the calculation above enforces the uniqueness of the decomposition, as all the
points in C j \ F j have dual pairing bigger than infq j∈C j

〈
h
∣∣∣q j

〉
with h. �

Corollary 2.5.9 Exposed points of M are the sum of exposed points of C1 and C2. ◦

Recall that every exposed face is also extreme but not vice versa. Nevertheless, the proposition
above is also true for extreme sets (see [Sol15, Thm. 7.15 (2)] for an alternative proof):

Proposition 2.5.10 Let C1,C2 be compact convex sets in X and M = C1 + C2 their Minkowski

sum. Let F ⊆ M be an extreme set of M. Then there are unique extreme sets F1 ⊆ C1, F2 ⊆ C2

such that F = F1 + F2. ◦

Proof. For a examples of the notation see Figure 2.14. If F is exposed, the statement is the same

C1

+

H1

G1

C2

=
G2

H2

M

G

HG

F

T (HG)

G̃1

F̃1

T (HG)

G̃2 = F̃2

T (HG)

F̃

G̃

Figure 2.14: To get the decomposition of the orange extreme point F which is not exposed,
we consider the decomposition of the exposed blue face G.

as in Proposition 2.5.8 before. Therefore assume that F is extreme but not exposed. Then F
is an extreme set of an exposed face G ⊆ M and lies in its relative boundary. By the previous
proposition, G can uniquely be decomposed into two exposed faces G j ⊆ C j (with j ∈ {1, 2}):

G = G1 +G2.

All supporting hyperplanes HG and H j at G ⊆ C and G j ⊆ C j, respectively, that were constructed
in the proof of Prop. 2.5.8, were defined as supporting hyperplanes minimizing the dual pairing
with a fixed h ∈ X∗. Therefore all of them are parallel, that is, they all have the same set of
translations:

T (HG) = T (H1) = T (H2) ≕ T (H).

Now we consider orthogonal projections G̃, G̃ j ⊆ T (H) to this subspace, denoted by a tilde over
the set. Then there are s, s j ∈ T (H)⊥ such that

G = G̃ + s

G j = G̃ j + s j, ( j ∈ {1, 2}).

Together with G = G1 +G2 = G̃1 + s1 + G̃2 + s2 we get

G̃ = G̃1 + G̃2.
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The orthogonal projection F̃ of F to T (H) is given such that F = F̃ + s with the same s ∈ T (H)⊥

as before and therefore F̃ is an extreme set of G̃ so that we now have the following situation in
T (H):

• G̃ = G̃1 + G̃2 is the Minkowski sum of two compact convex sets,

• F̃ ⊆ G̃ is an extreme set.

If F̃ is an exposed face of G̃ in T (H), then we use Proposition 2.5.8 to decompose F̃ = F̃1 + F̃2

and then set F j = F̃ j + s j to be done. If F̃ is not exposed, we conclude by induction that F can
be decomposed as the unique sum of two extreme sets. As dim(T (H)) = n − 1 < n = dim(X) and
since every extreme point in the boundary of a line segment is exposed, the statement follows. �

Every extreme set of a polytope P, that is not a facet, lies in the relative boundary of some higher
dimensional proper face or facet. This is not true for general compact convex sets, as the exam-
ple of the Euclidean unit ball shows. But if an extreme set is lying in the relative boundary of
another one, this structure is compatible with the Minkowski sum (see [Wei07, Cor. 3.1.5] for
polytopes):

Lemma 2.5.11 Let M = C1 + C2 be the Minkowski sum of two compact convex sets. Let F ⊆ G
be extreme sets of M with unique decompositions F = F1 + F1 and G = G1 +G1. Then F1 ⊆ G1

and F2 ⊆ G2 are extreme. ◦

Proof. The main idea of the proof is that extreme sets of a Minkowski sum can uniquely be
decomposed into extreme sets of the summands.
We first consider the case where G is exposed. As in the proof of Proposition 2.5.10 we project to
the subspace T (H), where H denotes a supporting hyperplane to M such that G = H ∩ M. Then
in T (H) we have

G̃ = G̃1 + G̃2

F̃ = F̃1 + F̃2,

where F̃ j is an extreme set of G̃ j, respectively. Therefore F j ⊆ G j are extreme sets. In the case
when G is not exposed, we project to lower dimensional subspaces until the projection of G is
exposed and conclude as before. As the relation of being an extreme set of another is remained
under orthogonal projections, the proof follows. �

We now show a proposition that explicitly constructs the faces F1 and F2 in the decomposition of
F by considering the decomposition of the extreme points of F.

Proposition 2.5.12 Let F = F1 + F2 be the decomposition of an extreme set in the Minkowski

sum M = C1 + C2 of two compact convex sets C1,C2. For each extreme point e ∈ EF let e1 ⊆ F1

and e2 ⊆ F2 be the unique extreme points such that e = e1 + e2. Denote by E j ⊆ F j, j = 1, 2, the

set of all these summands. Then the faces F1 and F2 are the convex hulls of the points E1 and E2

respectively:

F j = conv(E j). ◦

Proof. By Lemma 2.5.11 we know that for j = 1, 2, the points e j are extreme points of F j,
respectively. Therefore all sums of the form e1+e2 give elements of F but not necessarily extreme
points of it.
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So every e ∈ F◦ can be written as e = et + s for some et ∈ T (F◦) ⊆ (
V(F)⊥

)∗. Then for any
f ∈ V(F) it holds

〈e| f 〉 = 〈et + s| f 〉 = 〈s| f 〉

as it was to show. �

The lemma shows that all elements of F◦ have the same dual pairing with an element of F. We
will sometimes write 〈F◦| f 〉 in such a situation when f ⊆ T (F◦)⊥.

Remark 2.6.2 As all duals of F that are not exposed are in the relative boundary of the exposed
dual, the lemma above holds for every dual E ∈ D(F) of F. ◦

In the proof of Proposition 2.5.8 on page 32 we defined a hyperplane (for j = 1, 2) by

H j =

{
x ∈ X

∣∣∣∣∣∣ 〈h|x〉 = inf
q j∈C j

〈
h
∣∣∣q j

〉}
,

where C j are two compact convex sets. The infimum on the right is attained at a point q ∈ C j that
is "the furthest away" from h. More geometrically, take the orthogonal hyperplane Hh

0 and shift
it in the direction away from h, such that the pairing of the hyperplane with h gets smaller and
smaller. Then q will be a point in the intersection of C j with the latest shifted parallel hyperplane
that has non-empty intersection with C j. So it is then is a supporting hyperplane.

This is a useful concept when dealing with duality and the basic idea of the pseudo-norm, see also
[Wal07, p.5]:

Definition 2.6.3 Let C ⊆ X∗ be a convex set. For every x ∈ X define

|x|C := − inf
q∈C
〈q|x〉 . ◦

In general, this is not a norm. But by the polarity of the unit balls B and B◦, |·|B◦ is a norm, since

|·|B◦ = − inf
q∈B◦
〈q|·〉 = ‖·‖.

Therefore we call |x|C the pseudo-norm of x with respect to C.

The following technical lemma will be used later in the proof of Theorem 3.2.6

Lemma 2.6.4 Let C be a compact convex set and EC be the set of its extreme points. Then the

pseudo-norm over C is the infimum of the dual pairing with the extreme points of C:

|x|C = − inf
e∈EC

〈e|x〉 . ◦

Proof. Define a function f : C −→ R via f (q) = 〈q|x〉. As C is compact and f is continuous and
affine, f takes its minimum and its maximum on the boundary of C. Indeed, if the extrema would
only lie in the interior of C, the derivative would be 0 there. As f is affine, it would be constant in
contradiction to the assumption that it takes its extrema not on the boundary. As the boundary of
C is the union of compact convex sets, we can conclude in the same way that f takes its minimum
and maximum on the extreme points EC of C. �

Corollary 2.6.5 If P = conv{p1, . . . , pk} is a convex polytope, then

|x|P = − inf
i=1,...,k

〈pi|x〉. ◦
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We now have all ingredients to introduce real-valued functions on X which will later turn out to be
the horofunctions of X with respect to our norm ‖·‖ (see [Wal07, p.5] for a different notation):

Definition 2.6.6 For every proper face E ⊆ B◦ ⊆ X∗ and every p ∈ T (E)∗ ⊆ X we define the
function

hE,p : X −→ R,

y 7−→ |p − y|E − |p|E . ◦

The above definition of hE,p would also be well-defined for any p ∈ X. We restrict ourselves to
p ∈ T (E)∗ to gain uniqueness of functions as the following lemmas show.

Lemma 2.6.7 Let E ⊆ B◦ be an extreme set. Then for all p, y ∈ X there holds

hE,p(y) = |p − y|E − |p|E = |pE − y|E − |pE |E = hE,pE (y),

where as usual pE denotes the projection of p to T (E)∗. ◦

Proof. Let EE be the set of extreme points of E. Then as pE ∈ (T (E)∗)⊥ and by Lemma 2.6.1 we
obtain

hE,p(y) = |p − y|E − |p|E = − inf
e∈EE

〈e|p − y〉 + inf
e∈EE

〈e|p〉

= − inf
e∈EE

[
〈e|pE − y〉 + 〈e|pE〉

]
+ inf

e∈EE

[
〈e|pE〉 + 〈e|pE〉

]

= |pE − y|E − |pE |E . �

As indicated in the proof above, shifting the extreme set E behaves well with the functions hE,p in
the sense, that the shift can be added separately:

Lemma 2.6.8 Let E ⊆ B◦ be an extreme set and s ∈ X∗ a parameter to shift E. Then for any

p ∈ T (E)∗ and y ∈ X, we have

hE+s,p(y) = hE,p(y) + 〈s|y〉. ◦

Proof. Let EE be the set of extreme points of E. Then the extreme points EE+s of the shifted set
E + s are given by EE+s = {e + s|e ∈ EE}, and thereby

hE+s,p(y) = − inf
q∈EE+s

〈q|p − y〉 + inf
q∈EE+s

〈q|p〉

= − inf
e∈EE

[〈e|p − y〉 + 〈s|p − y〉] + inf
e∈EE

[〈e|p〉 + 〈s|p〉]

= − inf
e∈EE

〈e|p − y〉 + inf
e∈EE

〈e|p〉 − 〈s|p − y〉 + 〈s|p〉

= hE,p(y) + 〈s|y〉. �

With the restriction p ∈ T (E)∗, the definition of the function hE,p is unambiguous: Two function
hE,p and hF,q are the same, if and only if E = F and p = q ∈ T (E)∗. In other words:

Lemma 2.6.9 Let E1 , E2 be two faces of B◦ with dual faces F1, F2 ⊆ B, respectively. Then

there are no points p1, p2 ∈ X such that hE1,p1 = hE2,p2 . ◦
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Proof. Without loss of generality let dim E1 ≥ dim E2. Assume there are p1 ∈ T (E1)∗ and
p2 ∈ T (E2)∗ such that hE1,p1 = hE2,p2 . Then

−|p1|E1 = hE1,p1(p1) = hE2,p2(p1) = |p2 − p1|E2−|p2|E2 . (2.4)

Now consider the cones K(F j) over the exposed duals F j = E◦j ⊆ B for j ∈ {1, 2}. If the two cones
are not the same, choose y ∈ X such that p1 − y ∈ K(F1) but p1 − y < K(F2). If the two cones
coincide, this means that E2 ( E1 is an extreme set that is not an exposed set of B◦. Then we can
choose y ∈ X such that the infimum infq∈E1 〈q|p1 − y〉 is not taken in E2 but at some other extreme
point of E1. In both cases we have 〈e | p1 − y〉 > infq∈E1〈q | p1 − y〉 for all e ∈ E2 ⊆ F◦2 . As E1 and
E2 are compact convex, their infimum is attained in their boundary and we get

inf
q∈E2

〈q|p1 − y〉 > inf
q∈E1

〈q|p1 − y〉 .

Using this and Equation (2.4) we compute

hE2,p2(y) = − inf
q∈E2

〈q|p2 − y〉 − |p2|E2

= − inf
q∈E2

{〈q|p2 − p1〉 + 〈q|p1 − y〉} − |p2|E2

< |p2 − p1|E2 + inf
q∈E1

〈q|p1 − y〉 − |p2|E2

= −|p1|E1 + inf
q∈E1

〈q|p1 − y〉 = hE1,p1(y).

This contradicts the assumption that hE1,p1 = hE2,p2 , as we found a point on which they do not
coincide. �



3 | Horofunction Compactification

The horofunction compactification was introduced by Gromov [Gro81, §1.2] in 1981 as a general
method to construct compactifications of metric spaces. Walsh described the horofunction com-
pactification of finite-dimensional normed vector spaces in [Wal07]. In the case when the convex
unit ball B is a finite sided polytope, the horofunction compactification has been described in detail
in [JS16], see also [KMN06] for a description of horoballs.

This section is structured as follows: After a short introduction following [Wal14a] we will con-
centrate on the compactification of a finite-dimensional normed vector space. We explicitly de-
scribe (Theorem 3.2.6) the topology of the compactification using the convergence behavior of
sequences. Hereby we extend the results for polyhedral norms in [JS16] to all norms in a two-
dimensional space and to smooth norms in any dimension. Based on an example (Section 3.2.6)
we make a conjecture (Conjecture 3.2.12) for the general case with the only restriction that the
set of extreme sets of the dual unit ball is closed and that it only has finitely many connected
components of extreme points. Theorem 3.3.10 provides a homeomorphism between the com-
pactification and the dual unit ball B◦. At the end of the chapter (Section 3.4) we generalize the
previous results (namely Theorem 3.2.6 and Theorem 3.3.10) to normed spaces where the dual
unit ball is the Minkowski sum of a polyhedral and a smooth norm.

Throughout the section, we will use the notation introduced in the preliminary chapter. If there is
no danger of confusion, we sometimes write (zm)m instead of (zm)m∈N for sequences in X.

3.1 Introduction to Horofunctions

We start with short introduction to the horofunction compactification of a metric space and then fo-
cus on finite-dimensional normed spaces. Finally we prove a convexity result (Convexity Lemma
3.1.16) that will be used in Section 4.2.

3.1.1 General Introduction to Horofunctions

For this general introduction let (X, d) be a locally compact not necessarily symmetric metric
space, that is, d(x, y) , d(y, x) for x, y ∈ X is possible. Assume the topology to be induced by the
symmetrized distance

dsym(x, y) := d(x, y) + d(y, x)

for all x, y ∈ X. Let C(X) be endowed with the topology of uniform convergence on bounded sets
with respect to dsym. Fix a basepoint p0 ∈ X and let Cp0(X) be the set of continuous functions on

39
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X which vanish at p0. This space is homeomorphic to the quotient of C(X) by constant functions,
C̃(X) := C(X) / const. The compactification is obtained by embedding X into C̃(X) via the map

ψ : X −→ C̃(X)

z 7−→ ψz,
(3.1)

where for all x ∈ X

ψz(x) := d(x, z) − d(p0, z). (3.2)

By using the triangle inequality it can be shown that this map is injective and continuous. If (X, d)
is nice enough, it is also an embedding with compact image:

Lemma 3.1.1 ([Wal14a, Prop. 2.2])

1) If dsym is proper, i.e. every closed ball is compact, then the closure of the set {ψz |z ∈ X} in

C̃(X) is compact.

2) Let additionally X be geodesic, i.e., every two points are connected by a geodesic, and let

d be symmetric with respect to convergence, that is, for a sequence (xm)m∈N in X and some

x ∈ X the following condition holds:

d(xm, x) −→ 0 iff d(x, xm) −→ 0.

Then ψ is an embedding of X into C̃(X). ◦

Definition 3.1.2 The horofunction boundary ∂hor(X) of X in C̃(X) is defined as

∂hor(X) :=
(

clψ(X)
)
\ ψ(X).

Its elements are called horofunctions. If clψ(X) is compact, then the set

X
hor

:= clψ(X) = X ∪ ∂horX

is called the horofunction compactification of X. ◦

Remark 3.1.3

1) The definition of ψz and therefore also those of ψ and ∂hor(X) depend on the choice of the
basepoint p0. One can show by a short calculation (see also [Wal14a, p.4]) that if we choose
an alternative basepoint, the corresponding boundaries are homeomorphic.

2) All elements of clψ(X) are 1-Lipschitz with respect to dsym. Indeed, by the triangle inequal-
ity, Equation (3.2) immediately turns to ψz(x) ≤ d(x, y) + ψz(y) for all z ∈ X. Similarly, for
horofunctions η ∈ ∂hor(X) it holds η(x) ≤ d(x, y) + η(y) for all x, y ∈ X. ◦

From now on we assume all conditions from Lemma 3.1.1 to be satisfied such that ψ is an em-
bedding with compact image and identify X with ψ(X). Then a sequence (zm)m ⊆ X converges to
a horofunction η ∈ ∂hor(X) if the sequence of associated maps converges uniformly over compact
subsets. We will use the following notation: ψzm −→ η.

Rieffel [Rie02, Thm. 4.5] showed that there are special sequences that always converge to a
horofunction η ∈ ∂horX, namely those along so-called almost-geodesics.

Definition 3.1.4 An almost geodesic in a metric space (X, d) with base point p0 is a sequence
(xm)m∈N in X such that d(p0, xm) is unbounded and for all ε > 0 and

d(p0, xm) + d(xm, xn) < d(p0, xn) + ε, (3.3)

for m and n large enough, with m ≤ n. ◦
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Note that this is a slight variation of the original definition by Rieffel [Rie02, Def. 4.3]. The main
difference is that his almost geodesics were parameterized to have approximately unit speed. The
equivalence to our definition can be found in [Rie02] as Lemma 4.4 .

Definition 3.1.5 A Busemann point is a horofunction in ∂hor(X) that is the limit of some almost
geodesic sequence in X. ◦

Note that not all horofunctions have to be Busemann points.

3.1.2 Horofunctions of Normed Vector Spaces

From now on we consider (X, ‖·‖) to be a finite-dimensional normed vector space where the norm
is not required to be symmetric. As basepoint we choose the origin. Then the map ψ for defining
horofunctions can be written as

ψz(x) = ‖z − x‖ − ‖z‖.

Note that we have to distinguish between ‖z − x‖ and ‖x − z‖ as the norm might not be symmetric.
In this setting, Walsh obtains a very nice criterion to answer the question when all horofunctions
are Busemann points:

Proposition 3.1.6 ([Wal07, Thm. 1.2]) Consider any finite-dimensional normed vector space.

Then every horofunction is a Busemann point if and only if the set of extreme sets of the dual unit

ball is closed. ◦

We assume from now on that the set of extreme sets of the dual unit ball of our space is closed.

The topology used in the proposition is the Chabauty topology on the space of all closed subspaces
of the dual unit ball: If X is any locally compact topological space, then the space Sub(X) of all
closed subspaces of F is endowed with a natural compact topology called the Chabauty topology
(see [Bou63] for details). When X is metrizable, then Sub(X) is also metrizable, and a sequence
of closed subspaces (Fn)n∈N converges to F in Sub(X) if:

• for any x ∈ F, for any n ∈ N, there exists xn ∈ Fn such that the sequence (xn)n∈N converges
to x, and

• for any sequence (xn)n∈N in X such that for any n ∈ N we have xn ∈ Fn, every accumulation
point of (xn)n belongs to F.

As our space is locally compact and Hausdorff, the Chabauty topology coincides with the Painlevé-
Kuratowski topology used by Walsh. More details about the different topologies can be found in
[Bee93] or [Pat21, Prop. 2.11].

In the very same paper [Wal07] Walsh also gives a rather explicit description of the set of all
Busemann points. He describes them as the Legendre-Fenchel-transforms f ∗E,p of certain functions
depending on proper faces E ⊆ B◦ and points p ∈ X:

fE,p : X∗ −→ [0,∞],

q 7−→ fE,p(q) := IE(q) + 〈q|p〉 − inf
y∈E
〈y|p〉, (3.4)

where the indicator function IE(q) is 0 for q ∈ E and ∞ elsewhere. The Legendre-Fenchel-
transform f ∗ of a function f : X → R ∪ {∞} is given by

f ∗ : X∗ −→ R ∪ {∞},
w 7−→ sup

x∈X

(〈w|x〉 − f (x)
)
.
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More about it can be found for example in [Bee93, §7.2]. The result of Walsh can be stated as
follows.

Proposition 3.1.7 ([Wal07, Thm. 1.1.]) Let (X, ‖·‖) be a finite-dimensional normed vector space

and the notations be as above. Then the set of Busemann points is the set

{ f ∗E,p |E ⊆ B◦ is a (proper) extreme face, p ∈ X}. ◦

We show now that our previously defined maps hE,p (see Definition 2.6.6 on page 37) are exactly
these Busemann points.

Lemma 3.1.8 ([Wal07, p.5]) Let E be a face of B◦ and p ∈ X. Then

f ∗E,p(·) = hE,p(·) = |p − ·|E − |p|E . ◦

Proof. By definition, we obtain for all y ∈ X:

f ∗E,p(y) = sup
x∈X∗

(
〈x|y〉 − fE,p(x)

)

= sup
x∈X∗

(
〈x|y〉 − IE(x) − 〈x|p〉 + inf

q∈E
〈q|p〉

)

= sup
x∈E

(〈x|y − p〉) + inf
q∈E
〈q|p〉

= − inf
x∈E

(〈x|p − y〉) + inf
q∈E
〈q|p〉

= |p − y|E − |p|E . �

Corollary 3.1.9 Let pE be the projection of p to the subspace T (E)∗ ⊆ X. Then it holds

f ∗E,p = f ∗E,pE
. ◦

Proof. The statement follows directly by Lemma 2.6.7. �

Corollary 3.1.10 In summary (because we assume that the set of extreme sets of B◦ is closed) we
can describe the set of horofunctions easily as

∂horX = {hE,p |E ⊆ B◦ is a (proper) face, p ∈ T (E)∗}. ◦

Proof. The statement is a direct consequence of Proposition 3.1.7 and Lemma 3.1.8. �

To describe the topology of X
hor

, we characterize converging sequences in Section 3.2.

Remark 3.1.11 For a normed vector space (X, ‖·‖), the map ψ to define the horofunction was given
as ψz(x) = ‖z − x‖ − ‖z‖ for all x, z ∈ X. When B denotes the unit ball of ‖·‖, it holds ‖·‖ = | · |B◦
and we can rewrite this expression as

ψz(x) = |z − x|B◦ − |z|B◦ = hB◦,z.

So it is reasonable to expect the limit of the sequence
(
ψzm

)
m be related to a function hE,p where E

and p are related to the sequence (zm)m. ◦
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Lemma 3.1.14 Let (xm)m∈N be an almost geodesic in a metric space (X, d). Then, for any ε > 0,

d(xi, x j) + d(x j, xk) < d(xi, xk) + ε

for i, j, and k large enough, with i ≤ j ≤ k, ◦

Proof. Applying Equation (3.3) to both summands on the left hand side and using the triangle
inequality we get, for i, j, and k large enough, with i ≤ j ≤ k,

d(xi, x j) + d(x j, xk) < d(p0, xk) − d(p0, xi) + 2δ

≤ d(p0, xi) + d(xi, xk) − d(p0, xi) + 2δ

= d(xi, xk) + 2δ,

where p0 ∈ X denotes the basepoint. The conclusion follows with ε = 1
2δ. �

If (xm)m is an almost geodesic converging to a Busemann point ξ, then

ξ(x) = lim
m→∞

(
d(x, xm) + ξ(xm)

)
for all x ∈ X, (3.5)

where ξ(xm) = ψxm(xm) = −d(p0, xm).

Lemma 3.1.15 Let (xm)m and (ym)m be almost geodesics in a metric space (X, d) converging to

the same Busemann point ξ. Then there exists an almost geodesic (zm)m that has infinitely many

points in common with (xm)m and also infinitely many points in common with (ym)m. ◦

Proof. Choose a sequence (εi)i of positive real numbers such that
∑∞

i=0 εi is finite. Define the
sequence (zi)i inductively in the following way. Start with z0 := p0. Given zi with i even, use (3.5)
to define zi+1 := x j, where j ≥ i is large enough such that ξ(zi) > d(zi, zi+1) + ξ(zi+1) − εi. Given zi

with i odd, do the same but this time using the sequence (ym)m.

Observe that by Equation (3.5) we know that the sequence (d(p0, zi)+ξ(zi))i converges to ξ(p0) = 0
as i tends to infinity.

Since horofunctions are 1-Lipschitz, it holds ξ(x) − ξ(y) ≤ d(x, y) for all x, y ∈ X and thereby
especially −ξ(y) ≤ d(p0, y) as ξ(p0) = 0. So for all m, n ∈ N, with m ≤ n it holds

d(zm, zn) ≤
n−1∑

i=m

d(zi, zi+1)

<

n−1∑

i=m

(ξ(zi) − ξ(zi+1) + εi)

= ξ(zm) − ξ(zn) +
n−1∑

i=m

εi

≤ ξ(zm) + d(p0, zn) +
n−1∑

i=m

εi.

Adding d(p0, zm) to both sides, we see that (zi)i is an almost geodesic because the error term∑n−1
i=m εi becomes arbitrarily small as m and n become large and d(p0, zm) + ξ(zm) −→ 0. �

We will now prove a convexity result for a pair of almost geodesics converging to the same Buse-
mann point.
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Lemma 3.1.16 (Convexity Lemma) Let (xn)n and (yn)n be almost geodesics in a finite-dimensional

normed space (X, || · ||) converging to the same Busemann point ξ. Let (λn)n be a sequence of co-

efficients in [0, 1], and write mn := (1− λn)xn + λnyn, for all n ∈ N. Then (mn)n converges to ξ and

has an almost geodesic subsequence. ◦

Proof. Since the horofunction compactification is compact and metrizable, to show that (mn)n

converges to ξ it is enough to show that every limit point η of (mn)n is equal to ξ. By taking a
subsequence if necessary, we may assume that (mn)n converges to a horofunction η.

By Lemma 3.1.15, there exists an almost geodesic sequence (zn)n that has infinitely many points
in common with both (xn)n and (yn)n. Since almost geodesics always converge to a horofunction,
(zn)n has a limit, which must necessarily be ξ. By taking subsequences if necessary, we may
assume that zn = xn when n is even, and zn = yn when n is odd.

Define the sequence (wn)n by

wn :=


xn, if n is even;

mn, if n is odd.
(3.6)

The construction of the sequences (zn)n and (wn)n are schematically shown in Figure 3.2. We will

xn

yn

mn

wn

zn

Figure 3.2: A schematic description how the sequences (zn)n and (wn)n in the proof of Lemma
3.1.16 are constructed out of (xn)n, (yn)n and (mn)n.

show that (wn)n is an almost geodesic.

We first claim that, given any ε > 0, if i, j, k ∈ N with i < j < k are large enough and such that i
and k are even, and j is odd, then

d(wi,w j) + d(w j,wk) < d(wi,wk) + ε. (3.7)

Here, d(x, y) := ||y − x|| is the distance function associated to the norm.

Indeed, note that the distance function d(·, ·) is convex in each of its arguments. This implies that

d(wi,w j) = d(xi,m j) ≤ (1 − λ j)d(xi, x j) + λ jd(xi, y j) and

d(w j,wk) = d(m j, xk) ≤ (1 − λ j)d(x j, xk) + λ jd(y j, xk).

Adding the two equations and applying Lemma 3.1.14 to the almost geodesics (xn)n and (zn)n, we
get

d(wi,w j) + d(w j,wk) < d(xi, xk) + ε,

for i, j, and k large enough. This establishes the claim as wn = xn for n even.

Let k and n be natural numbers satisfying k < n. We now want to show than (wn)n is an almost
geodesic. There are four cases, depending on whether k and n are even or odd. We consider only
the case where both are odd; the other cases are similar but less complicated. Using the triangle
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inequality, the claim just established and the fact that (xi)i is an almost geodesic, we have for any
ε > 0:

d(p0,wk) + d(wk,wn) ≤ d(p0,wk−1) + d(wk−1,wk) + d(wk,wk+1) + d(wk+1,wn)

< d(p0,wk−1) + d(wk−1,wk+1) + d(wk+1,wn+1) − d(wn,wn+1) + 2ε

≤ d(p0,wn+1) − d(wn,wn+1) + 4ε

≤ d(p0,wn) + 4ε,

if k and n are large enough. The same inequality can be proven in the other cases. We conclude
that (wn)n is an almost geodesic.

Observe that both ξ and η are limit points of (wn)n. Since this sequence is an almost geodesic, it
has a unique limit. Hence, ξ and η are equal. �

3.2 Characterization of Horofunctions via Converging Sequences

The main theorem of this section (Theorem 3.2.6) characterizes all sequences converging to a ho-
rofunction depending on the structure of the unit ball B and its dual B◦ in X. It shows the strong
dependence of the horofunctions on the shape of the dual unit ball, which is the underlying princi-
ple of the homeomorphism in Theorem 3.3.10. This result is also used in Section 5.3 to establish
a geometric 1-1 correspondence between the nonnegative part of n-dimensional projective toric
varieties and horofunction compactifications of Rn with respect to rational polyhedral norms. If
not stated otherwise, we assume that at least one of the following holds true:

I) The unit ball is polyhedral.

II) The unit and the dual unit ball have smooth boundaries.

III) The space X is two-dimensional.

The second case can equivalently be described as B◦ only having smooth extreme points as extreme
sets.

In all three cases the set of extreme sets of B◦ is closed and so every horofunction is a Busemann
point by Proposition 3.1.6. Therefore we can use Corollary 3.1.10 to determine all horofunc-
tions.

This subsection is structured as follows: We will start with some notational conventions and then
specify the special properties of the unit ball B and its dual B◦ in the three cases above. The proof of
Theorem 3.2.6 will be based on Lemma 3.2.4, which shows that we can always find subsequences
that satisfy the conditions we need for characterizing convergent sequences. The proof of both the
lemma and the theorem will be split up in three parts according the three cases for B. After some
examples to illustrate the theorem, we will explain in detail an example in Section 3.2.6 where the
unit ball does not belong to one of the three cases above and where the statement of Theorem 3.2.6
is not true. This will lead us to a conjecture for the convergence behavior in the general setting in
Section 3.2.7.
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3.2.1 Dual Sequences of Directions

From now on (unless stated otherwise) let B ⊆ X be the unit ball of a norm and B◦ ⊆ X∗ its
dual. Let (zm)m∈N be an unbounded sequence. For some x ∈ X, the normed sequence of directions(

zm−x
‖zm−x‖

)
m∈N is a sequence of points in the boundary of B. So each point of this sequence lies is

the relative interior of some extreme set Fm(x) of B. Let Dm(x) ⊆ B◦ denote the exposed dual
of Fm(x). Then (Dm(x))m∈N ⊆ B◦ is a sequence of extreme sets of B◦ and by duality it holds
〈qm|zm − x〉 = −‖zm − x‖ for all qm ∈ Dm(x). As the set of extreme sets of B◦ is closed, all
accumulation points of this sequence are extreme sets. To stress that these accumulation points
can be extreme points, but also higher dimensional extreme sets, we call them accumulation sets.
Denote by D(x) the set of all accumulation sets of the sequence (Dm(x))m.

Doing this construction for every point x ∈ X, we consider the following set:

E := aff{D(x) | x ∈ X} ∩ B◦.

Though D(x) is a set of faces of B◦, E is not necessarily extreme or a subset of the boundary of
B◦, but may also contain interior points. Note that E strongly depends on the sequence (zm)m.

Definition 3.2.1 For a sequence (xm)m∈N and a set S we denote by xm
⊆−−→ S that (xm)m has all its

accumulation points in relint(S ). ◦

Assume for our sequence (zm)m ⊆ X that there is an extreme face F ⊆ ∂B with zm
‖zm‖

⊆−−→ F. Then

also zm−x
‖zm−x‖

⊆−−→ F for any x ∈ X and the sequence (Dm(x))m of duals will converge to an extreme set
in the relative boundary of the exposed dual F◦ or to F◦ itself . Now it is an interesting question
whether we only obtain subsets in the relative boundary as limits or whether we get the whole
exposed dual. It can be answered partially:

Lemma 3.2.2 Let (zm)m ⊆ X be an unbounded sequence and B the unit ball. Let F ⊆ ∂B be an

extreme face such that
zm
‖zm‖

⊆−−→ F and F◦ ⊆ B◦ its exposed dual. If the projected sequence (zm,F◦)m

is bounded, then E = F◦. ◦

Proof. Let d = dim(F◦) ≤ n − dim(F) − 1 be the dimension of the exposed dual. As E ⊆ F◦

we already know that dim(E) ≤ d and we want to show that equality holds. We will do this by
showing that we can find d + 1 points y1, . . . , yd+1 ∈ X such that D(y j) is an extreme point of
B◦ for all j = 1, . . . d + 1 and their affine hull aff{D(y1), . . . ,D(yd+1)} has dimension d, that is,
D(y1), . . . ,D(yd+1) are affinely independent.

We first consider the case where B and B◦ are polyhedral. Then B has only finitely many facets
and the idea of the proof is to shift the sequence such that it remains in the cone over a facet As
then dim(F◦) = d, the face F◦ has at least d+1 vertices e j, j ∈ {1, . . . , d+1}, whose affine hull has
dimension d. So there are at least d + 1 facets F j of B that have F in their relative boundary. As
(zm,F◦)m is bounded, it has a converging subsequence (ym)m with ym −→ y for some y ∈ T (F◦)∗.
Choose now y1, . . . yd+1 ∈ X such that for each j ∈ {1, . . . , d + 1} and m big enough the sequence
(ym − y j)m lies in the interior of the cone K(F j). Then

ym−y j

‖ym−y j‖ ∈ relint(F j) and so Dm(y j) = e j for

m big enough. Therefore all dual sequences are disjoint and the statement is shown.

Now we look at the case where B is not polyhedral. Then it has infinitely many extreme points
and we can not conclude as before. But since it is enough to find d + 1 points such that their dual
accumulation sets are affinely independent, we construct a polytope P◦ ⊆ B◦ indescribed in the
dual unit ball around the origin such that there holds:
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x

y

B

f(x)

x

y

B◦

E

e1

e2

Figure 3.4: The converse of Lemma 3.2.2 is not true: also an unbounded projection can yield
to the whole exposed dual.

Then zm
‖zm‖

⊆−−→ F = {(1, 0)} and F◦ = conv{(−1,−1), (−1, 1)} ⊆ B◦. The projection to T (F◦)∗ is

zm,F◦ =

(
0

(−1)mm

)
,

which is unbounded. For x ∈ R2 the sequence (Dm(x))m of duals is given by

Dm(x) =

{(
−1

(−1)m + 1

)}
,

and has the two accumulation sets e1 := {(−1, 1)} and e2 := {(−1,−1)}. Therefore E = F◦. ◦

3.2.2 Specific Properties of the Three Cases I), II) and III)

We briefly discuss the properties of B and B◦ in the three cases given in the beginning of this
section.

I) Polyhedral norms Let B be polyhedral. Then also B◦ is polyhedral, that is, both can be
described as the convex hull of finitely many distinct points or, equivalently, as the intersection of
finitely many half-spaces. All extreme faces of B and B◦ are exposed, every extreme face of B has
exactly one (exposed) dual face in B◦ and their dimensions sum up to n− 1. Any extreme face that
is not a facet lies in the relative boundary of a facet and the union of all closed facets covers the
whole boundary.

II) B and B◦ are smooth Consider a unit ball B ⊆ X such that every extreme face of both B and
B◦ is an extreme point. Then the boundaries of B and B◦ are smooth and every extreme face is also
exposed. So also here we have a 1-1 correspondence between the extreme points of B and those
of B◦ and for an extreme face F ⊆ B it holds

(F◦)◦ = F. (3.8)

An example for such a unit ball would be the Euclidean unit ball, not necessarily centered but
such that the origin is still contained in its interior. The dual unit ball then is an ellipsoid, probably
shifted and rotated, but with the origin in the interior.
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faces of B faces of B◦

facets corner points

without non-exposed point

with one non-exposed point

with two non-exposed points

between two facets

between a facet and

a smooth part

between two smooth parts

smoothly exposed points smoothly exposed points

smoothly exposed point smoothly exposed point

Table 3.1: An overview over the types of faces and their duals in two dimensions.

3.2.3 A Useful Lemma

Before we state the theorem to characterize converging sequences, we first show a lemma which
already contains the main idea of the characterization.

Lemma 3.2.4 Let B ⊆ X be a unit ball and B◦ its dual such that they belong to one of the three

cases I) - III) defined above.

Then every unbounded sequence (zm)m∈N has an unbounded subsequence satisfying the following

two conditions:

1) E := aff{D(x) | x ∈ X} ∩ B◦ is an extreme set of B◦.

2) The projection of (zm)m to T (E)∗ converges to a point p := limm→∞ zm,E . ◦

Proof. As mentioned before, we will split up the proof into the three cases and prove them sepa-
rately. Recall that E depends on the sequence (zm)m∈N via D(x), which is the accumulation set of
the sequence (Dm(x))m, where for each x ∈ X and m ∈ N, the set Dm(x) ⊆ B◦ is the face dual to
that face of B the contains zm−x

‖zm−x‖ in its relative interior.





3.2. Characterization of Horofunctions via Converging Sequences 53

It remains to show that the dual face F◦ actually is E = aff{D(x) | x ∈ X}. Let L◦ = {l}◦ be an
extreme point of F◦ (i.e. an extreme point of B◦ in the relative boundary of F◦) and L ⊆ B its
dual facet. Then the cone K(L) has K(F) in its boundary and as the distance of (zmk )k to K(F) is
bounded, there is an x ∈ X such that zmk − x ∈ K(L) for k big enough. This yields

Dmk (x) =

(
zmk − x

‖zmk − x‖

)◦
∈ L◦,

for k big enough. Such an x ∈ X can be found for every extreme point of F◦ which shows that
F◦ = aff{D(x) | x ∈ X} ∩ B◦ = E. For the lemma to be proven in the polyhedral case we still have
to show that the projection of (zmk )k to T (E)∗ converges. By Proposition 2.4.16, T (E)∗ = V(F)⊥

and as (zmk )k has bounded distance to K(F), the projection (zmk ,E)k is bounded. Therefore (zmk ,E)h

has a converging subsequence and the lemma is proven.

II): B and B◦ only have extreme points In this case, B and B◦ are smooth and only have extreme
points in their boundaries. Let E = aff{D(x) | x ∈ X} ∩ B◦ be given as above. We have to show
that E is an extreme point in the boundary of B◦. Equivalently, all sequences (Dm(x))m of extreme
points have to converge to one point e ∈ ∂relB◦. By the definition of Dm(x) and Equation (3.8) we
get the condition

Dm(x) =

(
zm − x

‖zm − x‖

)◦
!−−→ e,

or, on the side of B:

zm − x

‖zm − x‖ −→ f , ∀x ∈ X

where F = { f } = E◦. Since the sequence of directions of a shifted sequence converges if and only
if the sequence of directions of the unshifted sequence converges, we obtain for our smooth unit
ball the condition

∃F = { f } ⊆ ∂B :
zmk

‖zmk‖
−→ f ,

for some subsequence
(
zmk

)
k of (zm)m. As ∂B is compact, we can always find such a subsequence.

Therefore E = {e} is an extreme point.

As T (E) = 0, the projection onto this subspace is trivial and the second condition is redundant in
this case.

III): dim(X) = 2 and B is arbitrary In the two-dimensional case there are only two kinds of
extreme sets in the boundary of B and B◦: one-dimensional facets and zero-dimensional extreme
points. The sequence of directions

(
zm−x
‖zm−x‖

)
m∈N lives on the boundary ∂B which is a compact subset

of X. Therefore the sequence has a convergent subsequence and without loss of generality we call
this subsequence again

(
zm−x
‖zm−x‖

)
m

.

If the sequence
(

zm
‖zm‖

)
m

converges within a facet F, then we have the same situation as in the

first part of the polyhedral case: for any x ∈ X also the sequence
(

zm−x
‖zm−x‖

)
m

converges within F
and E = F◦ is an extreme point. The subspace T (E)∗ is trivial and the projection of (zm)m to it
converges obviously.

Now assume zm
‖zm‖

⊆−−→ F where F = { f } is an extreme point. Then also for any shifted sequence it

holds zm−x
‖zm−x‖

⊆−−→ F and E ⊆ F◦, where F◦ is the exposed dual of F. If E = F◦ we are done with
the first condition. Otherwise recall that the sequence (Dm(x))m was a sequence of extreme sets of
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B◦ converging to the relative boundary of F◦. As F◦ only has two extreme points in its relative
boundary and we assume E , F◦, E has to be one of these two extreme points and is therefore
also an extreme set.

To see that the second condition of the lemma is fulfilled, we assume dim(E) = 1, otherwise the
statement is trivial. Then its dual face F is a corner point (because dim(F) + dim(E) = 1) and
V(F)⊥T (E)∗. Since the set E = F◦ is the whole exposed dual (and not only a relative boundary
point of it), we know that for both sides of the relative boundary of B around F there is an x ∈ X
such that the sequence of directions (or a subsequence) remains on that side. This is equivalent
to (zm,E)m being bounded. Therefore we can find a subsequence such that the projection (zm,E)m

converges. �

3.2.4 Characterization of Converging Sequences

In Corollary 3.1.10 we described the set of Busemann points of X with respect ot a given unit
ball as the set of functions hE,p, where E ⊆ B◦ is a proper extreme set and p ∈ T (E)∗ is a
point. Our goal now is to give the topology of this set by determining the limit of unbounded
sequences converging in the compactification. Recall that we only consider unit balls whose set
of extreme sets is closed. So the set of Busemann points hE,p is the set of all horofunctions of the
compactification by Proposition 3.1.6.

Remark 3.2.5 The approach to describe the topology by convergent sequences is justified by the
following discussion in [BJ06, §I.8.9]: A convergence class of sequences C is a class of pairs
((ym)m∈N, y∞) consisting of an unbounded sequence (ym)m∈N and a limit point y∞ ∈ X satisfying
several convergence conditions. Elements of the class are called C-convergent and denoted by

ym
C−→ y∞. To a subset A ⊆ X assign the set A, the set of all points y in X such that there is a

sequence in A that C-converges to y. Then a subset A ⊆ X is called closed provided A = A. The
convergence class of sequences C uniquely defines a topology on X such that a sequence (ym)m∈N
converges to a point y∞ ∈ X with respect to this topology, if and only if ((ym)m∈N, y∞) ∈ C. The
obtained topological space is a compact Hausdorff space if and only if the limit of every convergent
sequence is unique and if every sequence in X has a convergent subsequence. ◦

Theorem 3.2.6 Let B ⊆ X be a unit ball and B◦ ⊆ X∗ its dual such that they belong to one of the

following cases:

I) The unit ball is polyhedral.

II) The unit and the dual unit ball have smooth boundaries.

III) The space X is two-dimensional.

Let (zm)m∈N be an unbounded sequence in X. Then the sequence
(
ψzm

)
m∈N converges to a horofunc-

tion hE′,p associated to an extreme set E′ ⊆ B◦ and a point p ∈ T (E∗ if and only if the following

conditions are satisfied:

1) E := aff{D(x) | x ∈ X} ∩ B◦ is extreme.

2) The projection (zm,E)m∈N of (zm)m∈N to T (E)∗ converges.

If
(
ψzm

)
m converges, then E′ = E and p = limm→∞ zm,E . ◦



3.2. Characterization of Horofunctions via Converging Sequences 55

Proof. We have to show two directions for the proof. We start with a sequence (zm)m∈N fulfilling
both conditions with respect to some extreme face E ⊆ B◦ and p := limm→∞ zm,E ∈ T (E)∗ and
show, that it converges to the associated horofunction hE,p. Just as in the previous lemma, the
proof will be split up in three parts.

I): B is polyhedral Let B be polyhedral and assume both conditions are satisfied for a sequence
(zm)m∈N. Then by the first condition, all accumulation sets D(x) of the sequences (Dm(x))m dual
to the shifted sequences

(
zm−x
‖zm−x‖

)
m

for any x ∈ X are either in the relative boundary of the extreme
set E or they are E itself. As B and B◦ are polyhedral, they only have finitely many faces and
therefore for any x ∈ X the sets Dm(x) are contained in D(x) for m big enough: there is an M ∈ N
for each x ∈ X such that

Dm(x) = D(x) ∀m ≥ M.

Let {E j} j∈{1,...,k} be the set of extreme sets in the relative boundary of E. Their dual faces F j := E◦j
all have the face F := E◦ in their relative boundary. For every x ∈ X and m ∈ N big enough there
is a j ∈ {1, . . . , k} such that zm−x

‖zm−x‖ ∈ F j, that is, it lies in one of the faces around F. Then for any
point e j ∈ E j it holds

−1 =

〈
e j

∣∣∣∣∣
zm − x

‖zm − x‖

〉
= inf

q∈B◦

〈
q

∣∣∣∣∣
zm − x

‖zm − x‖

〉
.

This means that (for m big enough) the infimum over B◦ is attained at some extreme point of E.

Using Lemma 2.6.1 with zm,E ∈ K(F) = (T (E)∗)⊥ we compute for m big enough:

ψzm(x) = ‖zm − x‖ − ‖zm‖
= − inf

q∈B◦
〈q |zm − x 〉 + inf

q∈B◦
〈q |zm 〉

= − inf
q∈E
〈q |zm − x 〉 + inf

q∈E
〈q |zm 〉

2.6.1
= −

〈
E

∣∣∣zE
m

〉
− inf

q∈E

〈
q
∣∣∣zm,E − x

〉
+

〈
E

∣∣∣zE
m

〉
+ inf

q∈E

〈
q
∣∣∣zm,E

〉

→ − inf
q∈E
〈q |p − x 〉 + inf

q∈E
〈q |p 〉 = hE,p(x).

II): B and B◦ only have extreme points The idea of the proof in the smooth case is to define (for
every x ∈ X \ {0} because x = 0 is trivially true) a sequence of new unit balls Bm(x), where each of
them coincides with B at the points zm

‖zm‖ and zm−x
‖zm−x‖ such that Bm behaves locally polyhedral. See

Figure 3.8 for a picture.

To do so, let x ∈ X \ {0} be a point and let

um :=
zm

‖zm‖
and vm :=

zm − x

‖zm − x‖

be extreme points in ∂B. We first take only those m ∈ N into account such that um , vm. If
dim(X) = n ≥ 3 let y1, . . . , yn−2 ∈ X be points, such that for all m ∈ N with w j

m :=
zm−y j

‖zm−y j‖ ∈ ∂B the

affine plane

Hm := aff{um, vm,w
1
m, . . . ,w

n−2
m }

is a well-defined hyperplane in X not containing the origin. Denote by V+m the half-space defined
by Hm containing the origin. We set

Bm := B ∩ V+m.
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Figure 3.8: Schematic pictures to illustrate the notations and the idea of the proof.

Bm is then for each m ∈ N a closed convex ball containing the origin in its interior and defines
a norm ‖·‖m. As B was convex, so is Bm(x) and Fm := Hm ∩ Bm is a facet of Bm with Hm as
supporting hyperplane. Therefore there is exactly one extreme point Em = {em} ⊆ B◦m dual to Fm.

Such a unique extreme point em exists for every m and we claim that the sequence (em)m∈N ⊆ X∗

converges to a point e ∈ ∂B◦.
As E = aff{D(x) | x ∈ X} ∩ B◦ is an extreme point, we know by the proof of Lemma 3.2.4 on page

53 that zm
‖zm‖

⊆−−→ f , where { f } = F = E◦ is the extreme point dual to E. Then also zm−z
‖zm−z‖

⊆−−→ f for
any z ∈ X. Note that the facet Fm and therefore also the point em strongly depends on the choice
of the points x and y1, . . . , yn−1. Nevertheless the point e is unique. Indeed, the sequence (Hm)m∈N
of hyperplanes (which define the point em) converges to a hyperplane H supporting B at f . By
the smoothness of ∂B, the hyperplane H is unique. The point e then is the point defined by H via
〈e|h〉 = −1 for any h ∈ H. In other words, E = {e} = F◦.

As Bm ⊆ B it holds ‖·‖m ≥ ‖·‖ and especially since Bm and B coincide at um and vm by construction
we have

‖zm‖m = ‖zm‖ and ‖zm − x‖m = ‖zm − x‖.

As Em is dual to the facet Fm it also holds

‖zm‖m = − inf
q∈Bm

〈q|zm〉 = − inf
q∈Em

〈q|zm〉 = − 〈em|zm〉 ,

‖zm − x‖m = − inf
q∈Bm

〈q|zm − x〉 = − inf
q∈Em

〈q|zm − x〉 = − 〈em|zm − x〉 .

Therefore we calculate:

ψzm(x) = ‖zm − x‖ − ‖zm‖
= ‖zm − x‖m − ‖zm‖m
= − 〈em|zm − x〉 + 〈em|zm〉 = 〈em|x〉
−→ 〈e|x〉 = hE,p(x).

In the case where um = vm for a subsequence (zmk )k ⊆ (zm)m, let {dmk } = {umk }◦ ⊆ ∂B◦m be the
sequence of dual points. Then

ψzmk
(x) = ‖zmk − x‖ − ‖zmk‖
= − 〈

dmk |zmk − x
〉
+

〈
dmk |zmk

〉
=

〈
dmk |x

〉

−→ 〈e|x〉 = hE,p(x).
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previous case, we look at the hyperplanes Hvm
−1,H

um
−1 supporting B◦ at qm,x, qm,0, respectively. But

now we consider points in the intersection of aff(E) with these two hyperplanes:

hm,x ∈ Hvm
−1 ∩ aff(E)

hm,0 ∈ Hum
−1 ∩ aff(E).

(3.10)

As all hyperplanes are supporting and qm,x → ex as well as qm,0 → e0, the intersections are
non-empty for m big enough and we have

hm,x −→ ex

hm,0 −→ e0.
(3.11)

Recall from page 36 and page 42 our description of horofunctions for any x ∈ X:

hE,p(x) = |p − x|E − |p|E = − inf
q∈E
〈q|p − x〉 + inf

q∈E
〈q|p〉 .

Now we claim that infq∈E 〈q|p − x〉 = 〈ex|p − x〉. We already know that the infimum over E is
attained in one of its two relative boundary points (or both, if p − x ∈ V(E)⊥). Without loss of
generality, let us assume infq∈E 〈q|p − x〉 = 〈e1|p − x〉. Then

〈e1 − e2|p − x〉 < 0 if p − x < (V(E)⊥)∗. (3.12)

As qm,x ∈ ∂B◦ was the point in the boundary minimizing the dual pairing with zm− x, we also have
〈
e1 − qm,x|zm − x

〉 ≥ 0. As
〈
e1 − qm,x

∣∣∣ zE
m

〉
≤ 0 because

〈
E

∣∣∣∣ zE
m

‖zE
m‖

〉
= −1 is minimal, we see that

〈
e1 − qm,x|zm,E − x

〉 ≥ 0.

Since zm,E → p, the convergence qm,x → e2 would lead to a contradiction with Equation (3.12)
and thereby

ex = e1

as we wanted to show.
If p − x ∈ (V(E)⊥)∗, then 〈e1|p − x〉 = 〈e2|p − x〉 and the claim is trivially true.

Similarly we get infq∈E 〈q|p〉 = 〈e0|p〉. Together we obtain

hE,p(x) = |p − x|E − |p|E
= − inf

q∈E
〈q|p − x〉 + inf

q∈E
〈q|p〉

= − 〈ex|p − x〉 + 〈e0|p〉 .

(3.13)

Finally we compute

ψzm(x) = ‖zm − x‖ − ‖zm‖
= − 〈

qm,x|zm − x
〉
+

〈
qm,0|zm

〉

(3.10)
= − 〈

hm,x|zm − x
〉
+

〈
hm,0|zm

〉

=
〈
hm,0 − hm,x|zm

〉
+

〈
hm,x|x

〉

(3.10)
=

〈
hm,0 − hm,x|zm,E

〉
+

〈
hm,x|x

〉

(3.11)−−−−→ 〈e0 − ex|p〉 + 〈ex|x〉

= − 〈ex|p − x〉 + 〈e0|p〉
(3.13)
= hE,p(x).

If x = 0, then ψzm(0) = 0 = hE,p(0), which completes the first part of the proof in this case.
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The other direction This part of the proof is the same for all three cases and based on Lemma
3.2.4. We assume the sequence (ψzm)m to converges to hE,p with E ⊆ B◦ an extreme set and
p ∈ T (E)∗. We have to show that (zm)m∈N fulfills both conditions above. By Lemma 3.2.4, (zm)m

has a subsequence fulfilling both conditions with respect to some extreme set E′ ⊆ B◦ and a point
p′ ∈ T (E′)∗. By the first part of the proof, this subsequence converges to some horofunction hE′,p′ .
As two horofunctions only coincide if their associated extreme sets and points coincide (recall
Lemma 2.6.9 on page 37), it has to be E = E′ and p = p′. This follows for any (sub-)subsequence
of (zm)m for which reason both conditions of the theorem are fulfilled for E and p. �

Remark 3.2.7 In [JS16] it is shown that if the norm is polyhedral, then a sequence (zm)m∈N ⊆ X
converges to a horofunction, if and only if the following conditions are satisfied:

1) The sequence is unbounded: ‖zm‖ −→ ∞.

2) The projection zm,V(F) of zm to V(F) lies in the cone K(F) for m big enough.

3) The distance of the projection to the relative boundary of the cone is unbounded:
d(zm,V(F), ∂relK(F)) −→ ∞ as m→ ∞.

4) The orthogonal projection of zm to V(F)⊥ is bounded and converges to p:
‖zV(F)

m − p‖ −→ 0 as m→ ∞.

This "old" criterion is actually equivalent to the more general one we have shown here. Some
arguments used in the proof of Lemma 3.2.4 and Theorem 3.2.6 for the polyhedral case are based
on this equivalence. As we are dealing with polytopes, there is a 1-1-correspondence between the
faces of B and those of B◦ (see Remark 2.4.14) and their dimensions sum up to n − 1. Therefore,
when E ⊆ F denotes the dual face of F ⊆ B, we have T (E) = V(F)⊥, which gives us immediately
the equivalence between the two respectively last items of the two criteria. So it remains to show
that the following two statements are equivalent:

(a) zE
m lies in the cone K(F) and has unbounded distance to its relative boundary.

(b) E = aff{D(x) | x ∈ X} ∩ B◦ is extreme.

Assume condition (a) holds. Then there are finitely many vertices e1, . . . , ek ∈ ∂B◦ such that
E = conv{e1, . . . , ek} and for each of them there is an xi ∈ X with

D(xi) = ei. (3.14)

On the other hand, D(x) ∈ {e1, . . . , ek} for all x ∈ X, otherwise E would have an additional extreme
point. Let Fi := {ei}◦ ⊆ B be the corresponding facets of B. Then as E is a face, their intersection

F :=
k⋂

i=1

Fi

is non-empty and F is the face of B that is dual to E. As F is a common face of all Fi, for all
x ∈ X there holds zm − x ∈ K(Fi) for some i ∈ {1, . . . , k} and m big enough. The relative boundary
of F consists of faces of B that are the intersection of some facets Fi with some facets that do not
belong to {F1, . . . , Fk}. If the distance of the sequence

(
zm,V(F)

)
m to ∂relK(F) would be bounded,

that is, has bounded distance to at least one boundary face, we could find an x ∈ X such that for
m big enough zm,V(F) − x lies in a facet that is not dual to an extreme points of E. As

(
zV(F)

m

)
m

is
bounded, also zm− x lies for m big enough in the (probably closed) cone over a facet not belonging
to {F1, . . . , Fk}, so E had to have another extreme point. (See the proof of Lemma 3.9 in [JS16]
for more details.) By the boundedness of

(
zV(F)

m

)
m

and as zm − x ∈ K(Fi) for all x ∈ X and m big
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enough, also the projection zm,V(F) ∈ K(F) for m big enough. Otherwise
(
zm,V(F)

)
m would stay

within bounded distance to ∂relK(F).

Now assume (b) holds. Then the equivalence follows from the proof of Lemma 3.2.4 on page 51:
there we constructed E as the dual face of F, where F was the intersection of all faces to which
(zm)m has bounded distance. ◦

3.2.5 Examples

Before we go on with a discussion why we had to restrict B to some special cases, we want to give
some examples to illustrate the conditions of Theorem 3.2.6 and to give the reader some intuition
how sequences converge. In all examples below we consider R2 but equipped with different norms
and sequences of the form zm = (n, f (n)) ∈ R2 following a function f : R→ R.

Example 3.2.8 We start with R2 equipped with the 1-norm. Its dual is the ∞-norm as seen in
Example 2.4.12 before. The unit ball B and its dual B◦ as well as the notation of faces are shown
in Figure 3.10, the functions we consider are shown in Figure 3.11.

x

y

B
F1

F3

F2

x

y

B◦

E1

E2

E3

Figure 3.10: The unit ball B and its dual B◦ with some of their faces colored: faces that are
dual to each other have the same color.

x

f(x)

f1.2

1 (x) = 1.2

f−0.8

1
(x) = −0.8

f0.6

2 (x) = 0.6x

f1.8

2 (x) = 1.8x

f−0.45

2
(x) = −0.45x

x

f(x)

f4(x) =
1

2
sin(5x) + 1

f3(x) = log(2x)

Figure 3.11: The functions the sequences in this example follow. The colors correspond to
those in Figure 3.10 and show the extreme set of B◦ that defines the horofunction the sequence
is converging to. The purple function f4 defines a sequence that does not converge.

1) For some constant c ∈ R and m ∈ N consider the constant function f c
1 (x) = c. This gives us

the sequence
(
z(1)

m

)
m

with

z(1)
m =

(
m
c

)
∈ R2.

The sequence runs along a line parallel to the x-axis shifted by c. Then for any x ∈ R2 the
sequence

(
z(1)

m − x
)
m

goes again along a line parallel to the x-axis but now with a different
y-component. Therefore the sequence of directions lies either in F1 (if c − x2 > 0), in F2 (if
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c−x2 = 0) or in F3 (if c−x2 < 0) and always converges to F2. This gives us E = E1∪E2∪E3

and as E1, E3 are extreme points in the relative boundary of E2 we have

E = E2.

The projection of z(1)
m to E is its second component, therefore we conclude

ψz(1)
m
−→ hE2,p

with p = (0, c) ∈ T (E)∗.

2) Next we consider sequences
(
z(2)

m

)
m∈N of the form

z(2)
m =

(
m
sm

)
∈ R2

with s , 0. For any s > 0 the direction of the sequence lies in F1. Shifting the sequence
by some x ∈ R2 may lead to a direction through a different face for some small m, but at
some point, the sequence of directions will come back to F1 and remain there. So no matter
how we chose the slope s of the sequence, all sequences of this type converge to the same
horofunction hE1,p where p = 0. If s < 0 then ψz(2)

m
→ hE3,p (p = 0) by the same argument.

3) One might think that an easier condition for finding the appropriate face F is to look at the
limit of the sequence

(
zm−x
‖zm−x‖

)
m

of directions and then take the dual face instead of first taking
the sequence of dual faces and then their limit. The following example shows that is does
not work: take f3(x) = log(2x) for x > 0 and

z(3)
m =

(
m

log(2m)

)
∈ R2.

Then the sequence of directions converges to F2. But the second component of each z(3)
m is

unbounded and therefore
(
z(3)

m,E2

)
m

does not converge. This happens because log(2m) grows
slower than m.

We do not have convergence with respect to E2, but maybe this was just the wrong extreme
set to look at. A closer look to the sequence of directions shows that for any x ∈ R2, the
direction zm−x

‖zm−x‖ lies in F1 for m ∈ N big enough. Therefore D(x) = E1 and with E = E1 the
second requirement of the convergence of the projection is trivial. So we get with p = 0

ψz(3)
m
−→ hE1,p.

4) Now let f4(x) = 1
2 sin(5x) + 1 be the function defining the sequence

z(4)
m =

(
m

1
2 sin(5m) + 1

)
∈ R2.

Similar as in the first example, shifting
(
z(4)

m

)
m

by some x ∈ R2 yields no relevant difference
in the first component and only in the second one. Again all directions can lie in F1, F2 or
F3 and we get again

E = E2.

But now the projection of
(
z(4)

m

)
m

to T (E)∗ is z(4)
m,E = (0, f3(m)), which does not converge.

The second condition of the theorem is not satisfied and we conclude that in this case ψz(4)
m

does not converge at all. (This also turns out when doing the calculation directly.) ◦
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Example 3.2.9 Wo now consider the same sequences as before but with respect to a different
norm, namely a norm that can be seen as a blown-up version of the 1-norm. We already have seen
this unit ball and its dual in Example 2.4.12. Figure 3.12 shows B and B◦ with the notation of
faces, and the sequences we consider are again shown in Figure 3.13, where the colors indicate
the extreme set associated to the limiting horofunction.

x

y

B Ft

Fs

F3

F2 = F4

x

y

B◦

E2

E4

Es

Et

Er

Figure 3.12: The unit ball B of Example 3.2.9 can be seen as a blown-up of the 1-norm. Its
dual is the convex hull of four small circles. The colors in the picture show again some faces
of B and their duals in B◦, according to the sequences in Figure 3.13.
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Figure 3.13: In Example 3.2.9 we consider the same sequences as before but now with a
curved norm. The colors correspond to those in Figure 3.12.

1) The sequence
(
z(1)

m

)
m

with

z(1)
m =

(
m
c

)
∈ R2

shows the same converging behavior as in the first example above because the boundary
point (1, 0) ∈ ∂B is still extreme and not smooth. Therefore

(
ψz(1)

m

)
m

converges to hE2,p with

p = (0, c) ∈ T (E2)∗.

2) In the polyhedral case, all sequences of the form

z(2)
m =

(
m
sm

)
∈ R2

converged to the same horofunction associated to the vertex in the third quadrant. In the
blown-up 1-norm, the dual unit ball has infinitely many smooth extreme points there be-
tween the facets. If s , t , 0, then the two sequences z(2)

m,s = (m, sm) and z(2)
m,t = (m, tm)

will converge to different horofunctions ψEs,p, ψEt ,p, respectively, where Es , Et are ex-
posed points of B◦ in the second (if s, t < 0) or third (if s, t > 0) quadrant. As there holds
T (Es)∗ = T (Et)∗ = {0}, we have p = (0, 0) in both cases.

3) For the function f3 that gives us

z(3)
m =

(
m

log(2m)

)
∈ R2,
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the sequence of directions still converges to F2 = {(1, 0)}. Also all sequences of the shifted
directions converge to F2. For their dual sequence it holds Dm(x) → E4 for all x ∈ R2,
because there is always an M ∈ N such that zm − x lies in the first quadrant for all m ≥ M.
E4 is the lower extreme point of E2. Therefore, with p = 0,

ψz(3)
m
−→ hE4,p.

4) The sequence
(
z(4)

m

)
m

with

z(4)
m =

(
m

1
2 sin(5m) + 1

)
∈ R2

still does not converge by the same reason as above: the affine hull aff{D(x) | x ∈ R2} is the
extreme set E2, but the projection

(
zm,E2

)
m is not convergent. ◦

Example 3.2.10 Next we consider R2 equipped with the Euclidean norm which has the unit circle
as unit and dual unit ball. For the notations Figure 3.14 and Figure 3.15.

x

y

B Ft

Fs

Fr

F2

x

y

B◦

Et

Es

Er

E2

Figure 3.14: The unit ball B of Example 3.2.10 is the unit circle. Its dual is also a unit circle
and for a face F = { f } ∈ ∂B the dual face is F◦ = {− f }∗. The colors correspond to the
sequences in Figure 3.15.
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Figure 3.15: In Example 3.2.10 we take the same sequences as in the two examples before
but now with respect to the Euclidean norm. The colors are in accordance with Figure 3.14.

Here every extreme set of B◦ is an extreme point and the second condition of the theorem is
redundant. Now all sequences we considered so far converge and those with directions converging
to F all converge to the same horofunction associated to the extreme point E1 = {(−1, 0)} ∈ B◦

with p = (0, 0):

ψz(1)
m
, ψz(3)

m
, ψz(4)

m
−→ hE2,p.

For the sequences of the second type z(2)
m,s = (m, sm) the limit again depends on the parameter s.

With

Es :=


− 1√

1+s2

− s√
1+s2

 ∈ ∂B◦
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we have with p = (0, 0)
ψz(2)

m,s
−→ hEs,p.

This is because of the special geometry of the Euclidean unit ball, where v◦ = −v∗ for any extreme
point v ∈ ∂B. Two sequence with different slope s and t converge do different horofunctions. ◦

We have seen in the examples that it is not enough to consider the direction of a sequence to
determine the right face associated to the horofunction. But the direction gives the extreme face in
whose relative boundary the actual limiting extreme set will be.

Remark 3.2.11 The easiest examples to consider are sequences following straight lines and they
are important enough to show the general behavior of convergence. All sequences in a regular
direction, that is, within the interior of a facet, collapse and converge to the horofunction associ-
ated to the dual vertex, independent of any translation or direction. For a sequence in a singular
direction associated to a lower dimensional face F, we have the same collapsing behavior for
the zm,F-part and a blowing-up in the orthogonal direction V(F)⊥, which is encoded by the point
p ∈ T (E)∗ = V(F)⊥ in the definition of hE,p. ◦

3.2.6 Counterexample to Theorem 3.2.6 in R3: the Cylinder

If B is not one of the three cases considered above, the conclusion in Theorem 3.2.6 does not hold.
To see what can go wrong, we look at the example of a cylinder in R3, see also Figure 3.16.

B

zm−x
‖zm−x‖

zm−u
‖zm−u‖

F
zm

‖zm‖

B◦

qm,u

Em

qx

E

qm,x

e1

Figure 3.16: The cylindric unit ball and its dual.

On R3 we consider the norm

‖(x, y, z)‖ := max

(√
x2 + y2, |z|

)
,

whose unit ball is a symmetric cylinder along the z-axis with radius and height 1. It can also be
obtained by rotating the unit ball of the ∞-norm in two dimensions around the z-axis. Its dual
is the rotated unit ball of the 1-norm, namely the convex hull of the points e1 := (0, 0, 1) and
e2 := (0, 0,−1) and the unit circle in the xy-plane.

For some parameters a, c ∈ R satisfying

a − c − 1

2
> 0 (3.15)

and some b ∈ R we will investigate the behavior of the sequence (zm)m∈N given by

zm :=



−m2 + a
m + b
−m2 + c
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with norm ‖zm‖ = m2−c for m big enough by Condition (3.15). The sequence
(

zm
‖zm‖

)
m

of directions
stays in the cylinder bottom and converges to F := {(0, 0,−1)} ∈ ∂B.

Now take a point x̄ = (x, y, z) ∈ R3 with

‖zm − x̄‖ =
√

(m2 − a + x)2 + (m + b − y)2 ≕
√

W(x̄).

In this example we will denote points in R3 over-lined and components of such vectors without.
Note that

√
W(x̄) is also of order 2 with respect to m. Then with

qm,x̄ :=
1

√
W(x̄)



m2 − a + x
−m − b + y

0

 ∈ ∂B◦

it holds
〈
qm,x̄|zm − x̄

〉
= −‖zm − x̄‖.

This means that qm,x̄ ∈ Dm(x̄) is dual to zm−x̄
‖zm−x̄‖ . If we choose instead a different point x̄′ ∈ R3 and

m big enough such that ‖zm − x̄′‖ = |−m2 + c − z′| = m2 − c + z′, then

〈
e1|zm − x̄′

〉
= −‖zm − x̄′‖,

that is, the point e1 is dual to zm−x̄′

‖zm−x̄′‖ . So for every x̄ = (x, y, z) ∈ R3 and m big enough, the dual
Dm(x̄) of the sequence of directions belongs to one of the following cases:

Dm(x̄) =



qm,x̄ if
√

W(x̄) > |m2 − c + z|,
e1 if

√
W(x̄) < |m2 − c + z|,

conv{qm,x̄, e1} if
√

W(x̄) = |m2 − c + z|.
(3.16)

The last case occurs exactly when zm
‖zm‖ lies in the circular intersection of the cylinder barrel and

the bottom. To determine E = aff{D(x̄) | x̄ ∈ R3} ∩ B◦ we have to know where qm,x̄ converges to.
So we calculate:

qm,x̄ =
1

√
W(x̄)



m2 − a + x
−m − b + y

0



=

[√
m4 + (1 − 2(a − x))m2 + 2(b − y)m + (a − x)2 + (b − y)2

]−1


m2 − a + x
−m − b + y

0



=



√
1 +

1 − 2(a − x)

m2
+

1

m4

[
2(b − y)m + (a − x)2 + (b − y)2

]

−1



1 − a−x
m2

− 1
m −

b−y
m2

0



−→



1
0
0

 .

By Equation (3.16) we then have

E = conv{(0, 0, 1)︸  ︷︷  ︸
e1

, (1, 0, 0)}.
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As a next step, the criterion in Theorem 3.2.6 on page 54 tells us to compute the limit of the
projected sequence

(
zm,E

)
m to get the parameter p. Doing this we obtain for all m ∈ N:

zm,E =
a − c

2



1
0
−1

 ≕ p̃. (3.17)

Following the theorem, we would now conclude ψzm −→ hE,p̃ as m→ ∞.

But when we do the calculation explicitly, we get a different result. To see this, consider the Taylor
expansion of the square root in R around s = 0,

√
1 + s =

∞∑

n=0

(−1)n(2n)!

(1 − 2n)(n!)24n
sn = 1 +

1

2
s − 1

8
s2 +

1

16
s3 − . . . , (3.18)

which converges for |s| < 1. This gives us

√
W(x̄) =

√
m4 + (1 − 2(a − x))m2 + 2(b − y)m + (a − x)2 + (b − y)2

= m2

(
1 +

1 − 2(a − x)

2m2
+

1

2m4

[
2(b − y)m + (a − x)2 + (b − y)2

]
+ O(m−4)

)

= m2 +
1

2
− a + x + O(m−1) (3.19)

and similarly for x̄ = 0:

√
W(0) = m2 +

1

2
− a + O(m−1).

Using this we compute for a general x̄ ∈ R3:

ψzm(x̄) = ‖zm − x̄‖ − ‖zm‖

= max

(
m2 +

1

2
− a + x + O(m−1), m2 − c + z

)
−max

(
m2 +

1

2
− a + O(m−1), m2 − c

)

−→ max

(
x +

1

2
− a, z − c

)
−max

(
1

2
− a, −c

)
,

because in the limit, the m2 annihilate each other. This expression can be simplified as

max

(
x +

1

2
− a, z − c

)
−max

(
1

2
− a,−c

)
=

1

2
[max (2x + 1 − 2a, 2z − 2c) −max (1 − 2a, −2c)]

=
1

2

[
max

(
2x + 1 − 2a − 1

2
+ a + c, 2z − 2c − 1

2
+ a + c

)
+

1

2
− a − c +min (2a − 1, 2c)

]

=
1

2

[
max

(
2x +

1

2
− a + c, 2z − 1

2
+ a − c

)
+min

(
a − c − 1

2
, −a + c +

1

2

)]

= −min


a − c − 1

2

2
− x, −

a − c − 1
2

2
− z

 +min


a − c − 1

2

2
, −

a − c − 1
2

2



= −min



〈

1
0
0



∣∣∣∣∣∣∣∣∣

a − c − 1
2

2



1
0
−1

 −



x
y
z



〉
,

〈

0
0
1



∣∣∣∣∣∣∣∣∣

a − c − 1
2

2



1
0
−1

 −



x
y
z



〉

+min



〈

1
0
0



∣∣∣∣∣∣∣∣∣

a − c − 1
2

2



1
0
−1



〉
,

〈

0
0
1



∣∣∣∣∣∣∣∣∣

a − c − 1
2

2



1
0
−1



〉
= hE,p(x̄),
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where

p :=
a − c − 1

2

2



1
0
−1

 = p̃ − 1

4



1
0
−1

 .

The additional summand 1
4 comes from the m in the second component of zm, in particular from

the relation of the first and the second component because of the Taylor expansion of the root
(Equation (3.18)).

To see the dependence even better, we consider the more general sequence

zλm =



−m2 + a
λm + b
−m2 + c



for any λ ∈ R. When we do the calculation (so without using the theorem), we get convergence to
hE,pλ with

pλ := p̃ − λ
2

4



1
0
−1

 .

Therefore if and only if λ = 0, the calculated parameter and the parameter obtained by using the
theorem coincide.

So the extreme set E we determined following Theorem 3.2.6 is the right one, only the parameter
p̃ we obtained by projecting (zm)m to T (E)∗ is not correct and differs from the correct p by an
additive constant.

The question now is how to obtain the right parameter p. We will find it again by projecting to
a subspace, but this time not to T (E)∗ but to some subspace associated to the dual point qm,ū of

zm−ū
‖zm−ū‖ for some ū ∈ R3.

To construct Em, let ū = (u, v,w) ∈ R3 be a fixed point such that ‖zm − ū‖ =
√

W(ū) is given as
above:

√
W(ū) =

√
(m2 − a + u)2 + (m + b − v)2

=
√

m4 + (1 − 2(a − u))m2 + 2(b − v)m + (a − u)2 + (b − v)2.

According to the notations used before we set

qm,ū :=
1

√
W(ū)



m2 − a + u
−m − b + v

0

 ∈ ∂B◦

and define the sequence (Em)m ⊆ B◦ ⊆ X∗ by

Em := conv{e1, qm,ū}.

Note that here Em is a one-dimensional extreme set of B◦ and as qm,ū −→ (1, 0, 0), the sequence
(Em)m satisfies

Em −→ E.
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For each m ∈ N, the subspace T (Em)∗ is spanned by tm := qm,ū − e1. It holds

〈tm|tm〉 =
1

W(ū)

{
(m2 − a + u)2 + (m + b − v)2 +W(ū)

}
= 2.

For the projection of (zm)m to the subspace T (Em)∗ we obtain (again by using the Taylor expansion
of the square root):

zm,Em =
〈tm|zm〉
〈tm|tm〉

tm

=
1

2
√

W(ū)

[
−m4 + m2(2a − u) − m2 + m4 + m2

(
−a + u +

1

2

)
− cm2 + O(m)

]
tm

=
1

2
√

W(ū)

[
m2

(
a − 1

2
− c

)
+ O(m)

]
tm

−→
a − c − 1

2

2



1
0
−1

 = p.

So projecting to Em seems - at least in this example - to be the right way. Note that the limit of
the projection is independent of the point ū ∈ R3. Therefore we can project zm to any subspace
parallel to an affine space of the form conv{qm,ū′ , e1} for some ū′ ∈ R3 with ‖zm− ū′‖ =

√
W(ū′).

For each m ∈ N big enough, the point qm,ū ∈ ∂B◦ is an extreme point of B◦ lying on the circle
that is the intersection of B◦ with the xy-plane. Now one could think of other sequences (Gm)m of
extreme sets of the form

Gm = conv{gm, e1}
where (gm)m ∈ ∂B◦∩(xy)-plane is a sequence with gm −→ (1, 0, 0) and then compute the projection
of (zm)m to T (Gm)∗. To see what happens, we consider the following sequences:

g(1)
m =



√
m4−1

m4

−1/m2

0


, g(3)

m =



cos(1/m)
− sin 1

m
0

 , g(5)
m =



√
1 − 1

m1.9

1/m0.95

0


,

g(2)
m =



√
1 − 1

m2.1

−1
m1.05

0


, g(4)

m =



√
m2−1

m2

−1/m
0


, g(6)

m =



√
m−1

m

−1/
√

m
0


.

We take the projection of (zm)m to the subspaces T (G j
m)∗ for j = 1, . . . , 6, with

G j
m := conv

{
g( j)

m , e1

}

and then compute the limits
p j := lim

m→∞
zm,G j

m
.

As results we get

p1 = p2 =
a − c

2



1
0
−1

 = p̃, p3 = p4 =
a − c − 1

2

2



1
0
−1

 = p,

and the projections to the subspaces T (G5
m)∗ and T (G6

m)∗ diverge. Why do we get such a different

behavior? The six sequences
(
g( j)

m

)
m

above all converge to the point (1, 0, 0), but they distinguish
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each other by how fast they do so. Only when the ratio of the second to the first component roughly
goes by 1

m (as for
(
g(3)

m

)
m

and
(
g(4)

m

)
m

), we get the limit p. If the rate of convergence is faster, the

projection converges to p̃. This happens for
(
g(1)

m

)
m

,
(
g(2)

m

)
m

and also when we project directly to E.

When the convergence of
(
G j

m

)
m

to E is too slow, then the projection of (zm)m to T (G j
m)∗ diverges,

this can be observed for
(
g(5)

m

)
m

and
(
g(6)

m

)
m

. So whether or not we obtain the right p depends on
the velocity of (gm)m converging to (1, 0, 0).

To see even more explicitly how the limit of
(
zm,Gm

)
m depends on the rate of the convergence

g( j)
m → (1, 0, 0), we calculate another example. For γ > 0 let

g(7)
m =



√
1 − 1

m2γ

−1/mγ

0



and set G7
m = conv{g(7)

m , e1} to be the extreme set whose space of translates T (G7
m)∗ is spanned

by the vector tm,7 := g(7)
m − e1. Then there holds

〈
tm,7|tm,7

〉
= 2 and with the Taylor expansion√

1 − 1
m2γ = 1 − 1

2m2γ +
1

8m4γ + O(m−6γ) we get

zm,G7
m
=

〈
tm,7|zm

〉
〈
tm,7|tm,7

〉 tm,7

=
1

2

[(
1 − 1

2m2γ
+

1

8m4γ
+ O(m−6γ)

)
(−m2 + a) − 1

mγ
(m + b) + m2 − c

]
tm,7

=
1

2

[
−m2 +

1

2
m2−2γ − 1

8
m2−4γ + O(m2−6γ) + a + O(m−2γ) − m1−γ − bm−γ + m2 − c

]
tm,7

=
1

2

[
a − c +

1

2
m2−2γ − m1−γ + O(m2−4γ)

]
tm,7

−→



p̃ if γ > 1,
p if γ = 1,
∞ if γ < 1

Let us summarize these observations: For an extreme set Gm = conv{gm, e1} where gm → (1, 0, 0)
is a sequence of extreme points with first components [gm]1 ∈ O(m2) and second components
[gm]2 we have for ε > 0

zm,Gm −→



p̃ if [gm]2 ∈ O(m1+ε),
p if [gm]2 ∈ O(m),
±∞ if [gm]2 ∈ O(m1−ε).

Here is another point of view: To have the right rate for the sequence to converge does also mean,
that qm,ū ∈ Em and qm,x̄ ∈ Dm(x̄) approach each other in the right speed, which depends on (zm)m.
To see this we compute:

〈
qm,x̄ − qm,ū|zm

〉
=

〈
1

√
W(x̄)



m2 − a + x
−m − b + y

0

 −
1

√
W(ū)



m2 − a + u
−m − b + v

0



∣∣∣∣∣∣∣∣∣



−m2 + a
m + b
−m2 + c



〉

=
1

√
W(x̄)

[
−m4 + m2(2a − x − 1) + O(m)

]
+

1

W(ū)

[
m4 + m2(1 − 2a + u) + O(m)

]

=
1

m2 − a + x − 1
2 + O(m−1)

[
−m4 + m2(2a − 1 − x) + O(m)

]
(3.20)
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+
1

m2 − a + u − 1
2 + O(m−1)

[
m4 + m2(1 − 2a + u) + O(m)

]

=
−m6 + m4(2a − 1 − x) + m4(a − u + 1

2 ) + m6 + m4(1 − 2a + u) + m4(−a + x − 1
2 ) + O(m3)

m4 + O(m2)

=
O(m3)

m4 + O(m3)

−→ 0.

So all terms of order m4 annihilate each other. If we had not taken qm,ū but one of the sequences

g( j)
m with a different rate of convergence, we would not have had such a nice canceling that gives

us the convergence to 0.

3.2.7 A Conjecture for the General Case

Inspired by the example in the previous section, we now want to reformulate Theorem 3.2.6 such
that it holds for any norm on X whose set of extreme sets of the dual unit ball is closed. Although
we are convinced that the statement is true, its proof relies on a conjecture about the convergence
behavior.

We already know how to determine the extreme set E ⊆ B◦ and that for finding the parameter
p ∈ T (E)∗ we have to determine the limit of the projection of the sequence (zm)m to an appropriate
subspace. Now the important question is how to characterize this subspace. It should be the space
of translates of a subset Em ⊆ B◦ (not necessarily extreme), that has the same dimension as E
and converges to it. But we know that "convergence of Em to E" alone is not enough, the example
above shows that the crucial point is the rate of convergence. In Equation (3.20) we saw that (Em)m

has the right speed if for every point x ∈ X, the points qm,u ∈ Em and qm,x ∈ B◦ approach each
other faster than (zm)m goes to infinity. Note that from now on we write again x ∈ X instead of
x̄ ∈ R3 because we will not make calculations using the components of a point.

The correct sequence Em in the example was defined as the convex hull of the two points e1

and qm,u, that were both of the form Dm(y) for some y ∈ X. So we guess that Em in general
should be defined as the intersection of B◦ with the affine hull of several points of the form Dm(u j)
with u j ∈ X. Defined like this, Conjecture 3.2.12 states that Em actually has the right rate of
convergence, that is, an analog of Equation (3.20) holds.

As usual denote by B ⊆ X a unit ball and by B◦ ⊆ X∗ its dual. Let (zm)m∈N be an unbounded
sequence in X and E := aff{D(x) | x ∈ X} ∩ B◦ an extreme set. See also Figure 3.17 for the
following notations: Let u1, . . . , uk ∈ X be points with k = dim(E) + 1 and for each j = 1, . . . , k,
let (qm,u j)m ⊆ Dm(u j) ⊆ ∂B◦ be a sequence of points satisfying

〈
qm,u j

∣∣∣ zm − u j

〉
= −‖zm − u j‖ for

all m ∈ N such that for

Em := aff{qm,u1 , . . . , qm,uk } ∩ B◦ (3.21)

the following two conditions hold:

(A) dim(Em) = dim(E);

(B) Em −→ E as m→ ∞;

For a point x ∈ X we denote by qm,x ∈ ∂B◦ a point dual to zm−x
‖zm−x‖ ∈ ∂B. Then by the definition

of E we know that any converging subsequence of (qm,x)m∈N converges to a point in the relative
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Figure 3.17: The notation used in the conjecture.

boundary of E. Let qx be such a limit point of a subsequence, also denoted by (qm,x)m. As Em

converges to E, there is a sequence of points em,x ∈ Em such that

em,x −→ qx.

Note that em,x ∈ Em can be of the form em,x = qm,u j for some j ∈ {1, . . . , k} but doesn’t have to be.
Let the sequence (zm)m projected to T (Em)∗ be convergent:

zm,Em −→ p.

Conjecture 3.2.12 With the notations introduced above it holds:

〈
em,x − qm,x |zm

〉 −→ 0 ∀x ∈ X. ◦

An equivalent reformulation of the conjecture is the statement that the projection of (zm)m to any
subspace of the form (3.21) have the same limit:

Lemma 3.2.13 Let u1, . . . , uk and s1, . . . , sk ∈ X be points and for each j = 1, . . . , k, let (qm,u j)m ⊆
∂B◦ and (qm,s j)m ⊆ ∂B◦ be two sequences of points dual to

zm−u j

‖zm−u j‖ ,
zm−s j

‖zm−s j‖ , respectively, such that

E1
m := aff{qm,u1 , . . . , qm,uk } ∩ B◦

E2
m := aff{qm,s1 , . . . , qm,sk } ∩ B◦

(3.22)

are two sequences of sets satisfying conditions (A) and (B) above. Let limm zm,E1
m
= p1 ∈ T (E)

and limm zm,E2
m
= p2 ∈ T (E) denote the limits. Then Conjecture 3.2.12 holds if and only if

p1 = p2. ◦

Proof. We use the notations introduced before with a superscript j ∈ {1, 2} associated to the

sequences, respectively. Assume we have
〈

e j
m,x − qm,x

∣∣∣∣ zm

〉
−→ 0 for any x ∈ X and for j = 1, 2.

Recall that by our notations it holds

e j
m,x, qm,x −→ qx ∈ aff(E),

e j
m,0, qm,0 −→ q0 ∈ aff(E).

Then by assumption we know that

〈
e1

m,x − qm,x

∣∣∣ zm − x
〉
−

〈
e2

m,x − qm,x

∣∣∣ zm − x
〉
−

〈
e1

m,0 − qm,0

∣∣∣ zm

〉
+

〈
e2

m,0 − qm,0

∣∣∣ zm

〉
︸                                                                                                         ︷︷                                                                                                         ︸

:=µ

−→ 0,

because each summand goes to 0.
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Computing the expression yields

µ =
〈
e1

m,x − e1
m,0|zm

〉
−

〈
e1

m,x|x
〉
−

〈
e2

m,x − e2
m,0|zm

〉
+

〈
e2

m,x|x
〉

=
〈

e1
m,x − e1

m,0

∣∣∣ zm,E1
m

〉
−

〈
e1

m,x

∣∣∣ x
〉
−

〈
e2

m,x − e2
m,0

∣∣∣ zm,E2
m

〉
+

〈
e2

m,x

∣∣∣ x
〉

−→ 〈qx − q0|p1〉 − 〈qx|x〉 − 〈qx − q0|p2〉 + 〈qx|x〉
= 〈qx − q0|p1 − p2〉 .

So it must hold 〈qx − q0|p1 − p2〉 = 0 for all x ∈ X. Note that the points p1, p2 ∈ T (E)∗ are
independent of x. Since E is spanned by k + 1 elements of the form qx, the condition can only be
satisfied if p1 = p2.

To conclude in the other direction we first consider the case where dim(E) = 0. Then given two
sequences

(
E1

m

)
m

and
(
E2

m

)
m

as in the lemma, the projections are trivial. So we have to show that

the conjecture holds for any sequence (Em)m of extreme points of the form em,x = qm,u ∈
(

zm−u
‖zm−u‖

)◦

for some u ∈ X with Em −→ E. Let x ∈ X be some point. Then (qm,x)m and (qm,u)m are sequences
of extreme points of B◦ converging to E ≕ {e}. We assume that we have subsequences (also
denoted with the index m) such that qm,u , qm,x, otherwise the statement is trivial. Pick a sequence
(rm)m∈N ⊆ X∗ of points satisfying

〈
qm,u|zm − u

〉
= 〈rm|zm − u〉 and

〈
qm,x|zm − x

〉
= 〈rm|zm − x〉 and

such that rm → e. Such a sequence can be found by looking at the supporting hyperplanes at qm,u

and qm,x which are not parallel, because qm,x , qm,u. Then as qm,u, qm,x → e, we have

〈
qm,u − qm,x|zm

〉
=

〈
qm,u|zm − u

〉
+

〈
qm,u|u

〉 − 〈
qm,x|zm − x

〉 − 〈
qm,x|x

〉

= 〈rm|zm − u〉 + 〈
qm,u|u

〉 − 〈rm|zm − x〉 − 〈
qm,x|x

〉

=
〈
qm,u − rm|u

〉 − 〈
qm,x − rm|x

〉 −→ 0.

When dim(E) ≥ 1, we define a new set by

Ex
m := aff{qm,x, qm,s2 , . . . , qm,sk }

with some points s2, . . . , sk ∈ X such that {s2, . . . sk} ∩ {u1, . . . uk} , ∅ and such that (A) and (B)
hold for Ex

m. As {qm,x} ∈ Dm(x) is a point dual to zm−x
‖zm−x‖ , the set Ex

m is as in Equation (3.22) and we
know that

p1 = lim
m

zm,E1
m
= lim

m
zm,Ex

m
.

We want to show that the conjecture holds with respect to a sequence (e1
m,x)m ⊆

(
E1

m

)
m

and (qm,x)m.

As Ex
m and E1

m both converge to E, there is a point qx ∈ E and a sequence (e1
m,x)m with e1

m,x ∈ E1
m

such that qm,x, e1
m,x → qx ∈ E. Note that by the choice of s2, . . . , sk, the sets Ex

m and E1
m have for

each m ∈ N at least one point in common, which we call ym. Then we calculate
〈

e1
m,x − qm,x

∣∣∣ zm

〉
=

〈
e1

m,x − ym

∣∣∣ zm

〉
+

〈
ym − qm,x

∣∣∣ zm

〉

=
〈

e1
m,x − ym

∣∣∣ zm,E1
m

〉
+

〈
ym − qm,x

∣∣∣ zm,Ex
m

〉

=
〈

e1
m,x − ym

∣∣∣ zm,E1
m

〉
+

〈
ym − qm,x

∣∣∣ zm,E1
m
+ zm,Ex

m
− zm,E1

m

〉

=
〈

e1
m,x − qm,x

∣∣∣ zm,E1
m

〉
+

〈
ym − qm,x

∣∣∣ zm,Ex
m
− zm,E1

m

〉

−→ 〈qx − qx| p1〉 = 0.

As
(
E1

m

)
m
⊆ B◦ was an arbitrary sequence of sets fulfilling the conditions given previous to the

conjecture, we have shown that the conjecture holds also if dim(E) ≥ 1. �

Under the assumption that the conjecture holds, we can now reformulate Theorem 3.2.6 for X
equipped with any norm (see again Figure 3.17 for the notations):
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Theorem 3.2.14 Assume Conjecture 3.2.12 holds. Let B ⊆ X be a unit ball and B◦ its dual such

that the set of extreme sets of B◦ is closed. Let (zm)m∈N be an unbounded sequence in X and

E := aff{D(x) | x ∈ X} ∩ B◦. Let u1, . . . , uk ∈ X be points with k = dim(E) + 1 and for each

j = 1, . . . , k, let (qm,u j)m ⊆ ∂B◦ be a sequence of points dual to
zm−u j

‖zm−u j‖ , such that with

Em := aff{qm,u1 , . . . , qm,uk } ∩ B◦

there holds

(A) dim(Em) = dim(E) and

(B) Em −→ E as m→ ∞.

Then the sequence
(
ψzm

)
m converges to a horofunction hE′,p for an extreme set E′ ⊆ B◦ and a point

p′ ∈ T (E′)∗ if and only if the following conditions are satisfied:

1) E as defined above is extreme.

2) The projection (zm,Em)m of (zm)m to T (Em)∗ converges.

If
(
ψzm

)
m converges, then E′ = E and p = limm→∞ zm,Em . ◦

Proof. We want to show that the sequence
(
ψzm

)
m converges to the horofunction hE,p where E and

p are as given in the conjecture. Let x ∈ X be a point and let qm,0, qm,x ∈ ∂B◦ be points dual to zm
‖zm‖

and zm−x
‖zm−x‖ , respectively. Then by the definition of E we know that any converging subsequence

of (qm,x)m converges to a point in the relative boundary of E. Let qx be such a limit point of a
subsequence, which we also denote by (qm,x)m. Then as Em −→ E there is a sequence (em,x)m of
points em,x ∈ Em such that

em,x −→ qx.

Similarly for qm,0 −→ q0 we get a sequence (em,0)m ⊆ Em with

em,0 −→ q0.

So using the conjecture we calculate:

ψzm(x) = ‖zm − x‖ − ‖zm‖
= − 〈

qm,x|zm − x
〉
+

〈
qm,0|zm

〉

= − 〈
em,x|zm − x

〉
+

〈
em,x − qm,x|zm − x

〉
+

〈
em,0|zm

〉
+

〈
qm,0 − em,0|zm

〉

=
〈
em,0 − em,x|zm

〉
+

〈
em,x|x

〉
+

〈
em,x − qm,x|zm

〉 − 〈
em,x − qm,x|x

〉
+

〈
qm,0 − em,0|zm

〉

=
〈
em,0 − em,x|zm,Em

〉
+

〈
em,x|x

〉 − 〈
em,x − qm,x|x

〉
+

〈
em,x − qm,x|zm

〉
+

〈
qm,0 − em,0|zm

〉

= − 〈
em,x|zm,Em − x

〉
+

〈
em,0|zm,Em

〉 − 〈
em,x − qm,x|x

〉
+

〈
em,x − qm,x|zm

〉
︸             ︷︷             ︸

−→0

+
〈
qm,0 − em,0|zm

〉
︸             ︷︷             ︸

−→0

−→ − 〈qx|p − x〉 + 〈q0|p〉 = hE,p(x).

The fact than hE,p can be written as the sum of pairings as in the last equation, follows by the same
argument as in the two-dimensional case in the proof of Theorem 3.2.6 on page 58.

For the other direction we have to show that Lemma 3.2.4 on page 51 is satisfied also for an
arbitrary norm. The proof goes as in the two-dimensional case (see page 57) combined with an

induction over the dimension. Assume zm
‖zm‖

⊆−−→ F where F ⊆ B is an extreme set. If F is a facet or(
zm,F◦

)
m is bounded, we are done. Otherwise we consider the subspace T (F◦)∗ ⊆ X equipped with
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a norm B′ which is the dual of F̃◦ ⊆ T (F◦), where F̃◦ is obtained by projecting and shifting F◦ to
T (F◦) such that it contains the origin in its interior. In this subspace we now have an unbounded
sequence which has a subsequence (z′m)m with

z′m
‖z′m‖B′

⊆−−→ F′ ⊆ B′.

By induction and as the two-dimensional case is already shown, it follows that Lemma 3.2.4 is also
true for an arbitrary norm. The rest of the proof is the same as the proof of Theorem 3.2.6. �

3.3 The Homeomorphism between the Compactification and B◦

In the last part of this section we construct a homeomorphism m between the horofunction com-

pactification X
hor

and the dual unit ball B◦. This will be done in Theorem 3.3.10. The homeomor-
phism will be put together by a map mB◦ from X into the interior of B◦ and maps mE from ∂horX
into the interior of each extreme set E in the boundary of B◦. To do so, we first define a more
general map mC , which maps a finite-dimensional vector space to the interior of a compact convex
set C of the same dimension. Hereby we restrict ourselves to the cases where C is polyhedral,
smooth or two-dimensional, so to the same cases as B◦ was restricted to in Theorem 3.2.6. The
structure of the map is motivated by the moment map known from the theory of toric varieties.
See for example [Ful93, §4.2] for a description. Up to some signs which come from the definition
of the dual unit ball, the same result as Proposition 3.3.9 for a polytope C can be found in [Ful93,
p. 82] but with a different proof. The moment map was also used to realize the closure of a flat
in the Stake compactifications as bounded polytopes in [Ji97]. In this section, we will use a lot of
calculus, which is justified by the identification X ≃ Rn. More about it can be found in [Col12].

3.3.1 Definition and Properties of the Map mC

Let C ⊆ X∗ be an m-dimensional closed compact convex set belonging to one of the following
three cases:

I) C is polyhedral.

II) Every extreme set of C is an extreme point and all of them are smooth.

III) m = dim(C) = 2.

Additionally we make the following constraint:

Constraint: We only consider convex sets C that have finitely many connected components of
extreme points.

The set EC consists of extreme points of C, there are isolated extreme points and extreme points in
a smooth part (recall Definition 2.3.5 on page 19). The set EC can now be split up in its connected
components: Let ci ∈ ∂C (for i ∈ {1, . . . , k}) denote the isolated extreme points and A j ⊆ ∂C (for
j ∈ {1, . . . , l}) the connected components of smooth parts of extreme points. Then

EC =
⋃̇

ci ⊔
⋃̇

A j.



3.3. The Homeomorphism between the Compactification and B◦ 75

The basic idea for the map mC is to define it as a convex combination of the extreme points in
EC . If all extreme points of C are isolated, that is, C is polyhedral, then we really have a convex
combination. If there is a smooth part in the boundary, we would have a sum over uncountably
many extreme points. Instead we will integrate over smooth parts using Dirac functions.

For a simplified notation, we define for a bounded function f : X∗ → R or f : X∗ → X∗:

∫̃

∂C
f (v)dv :=

k∑

i=1

f (ci) +
l∑

j=1

∫

A j

f (v)dv

where we use the (component wise) Lebesgue measure for the integrals. Note that non-extreme
points of the boundary ∂C are not considered by this notation as they are obtained as convex
combinations of extreme boundary points. For each connected component

D ∈ {A j, {ci} | j = 1, . . . , l; i = 1, . . . , k} ⊆ ∂C

and a point x ∈ X define a map ϕD
x : X∗ −→ R by

ϕD
x (v) :=

e−〈v|x〉
∫̃
∂C

e−〈w|x〉dw
χD(v),

where χD is the indicator function of the set D. Summing them all up for all D ∈ {A j, {ci}} gives
us the following function ϕx : X∗ → R:

ϕx =

k∑

i=1

ϕ
ci
x +

l∑

j=1

ϕ
A j
x .

As ϕx(v) ≥ 0 for all v ∈ X∗ and as integration of ϕx over X∗ gives 1 because of the indicator
functions, ϕ is a probability measure on X∗. Thus integrating over the boundary of C as defined
above gives an element in the interior of C, see also the proof of the main theorem in [RW58].
Using this we define the map mC from X into the interior of C in such a way that will later turn
out to be compatible with the convergence to horofunctions.

Definition 3.3.1 Let C ⊆ X∗ be an m-dimensional closed compact convex set. We define

mC : X −→ int(C)

x 7−→ mC(x) =

∫̃

∂C
ϕx(v)vdv. ◦

Writing out all short notations we get due to the indicator functions in the definition of ϕD
x :

mC(x) =

∑k
i=1 e−〈ci |x〉ci +

∑l
j=1

∫
A j

e−〈v|x〉vdv
∑k

i=1 e−〈ci |x〉 +
∑l

j=1

∫
A j

e−〈w|x〉dw
,

where c1, . . . , ck are the isolated extreme points of C and A1, . . . , Al are the connected components
of smooth parts of EC . Since the dual pairing is continuous, it is clear that mC is continuous.

Remark 3.3.2 If C is polyhedral, then all of its extreme points are isolated and the map mC

simplifies to

mC(x) =
k∑

i=1

e−〈ci |x〉
∑k

j=1 e−〈c j |x〉
ci. (3.23)
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Remark 3.3.5 When dim(C) = m < n, we can write any x ∈ X as x = xC + xC , where xC ∈ T (C)∗

and xC ∈ (T (C)⊥)∗. Then as the pairing of any element of C with xC is the same (see Lemma 2.6.1
on page 35) we get

mC(x) = mC(xC). ◦

Therefore we will from now on assume C to have full dimension, that is, m = n.

In the end we want to have a map m built out of several maps like mC that is compatible with
the convergence of sequences to horofunctions. To achieve that, we first examine the behavior of
sequences and extreme points under dual pairing:

Notation From now on let C ⊆ X∗ be an n-dimensional compact convex set with the origin in its
interior belonging to one of the three cases I), II) III) stated at the beginning of the section. Denote
by C◦ ⊆ X its dual set. Let (zm)m∈N ⊆ X be an unbounded sequence such that

zm

‖zm‖
⊆−−→ F

for some extreme set F ⊆ C◦. As in the previous section let E = aff{D(x)|x ∈ X} ∩C ⊆ F◦. ◦

Lemma 3.3.6 For all extreme points e, e1, e2 ∈ EE of E and an extreme point v ∈ EC \EE it holds:

a)
〈
e1 − e2

∣∣∣zE
m

〉
= 0

b) 〈e − v |zm 〉 −→ −∞ and
〈
e − v

∣∣∣zE
m

〉
−→ −∞. ◦

Proof.

a) Let e1, e2 ∈ ∂relE be extreme points, then their difference is an element of T (E). As the
notation zE

m denotes the projection of zm to the space orthogonal to T (E), the statement
follows.

b) Now let e ⊆ EE be an extreme point of E and v ∈ EC \ EE extreme but not in the relative
boundary of E. Since E ⊆ F◦ is a subset, we have to distinguish between x ∈ EF◦ and
v ∈ EC\EF◦ . We first assume v to be an extreme point of B◦ not in the relative boundary of
F◦. Let γm = γm(v) and δm = δm(e) ∈ R be defined by

〈
v
∣∣∣∣∣

zm

‖zm‖

〉
= −1 + γm,

〈
e
∣∣∣∣∣

zm

‖zm‖

〉
= −1 + δm.

By the duality of C and C◦ we know that γm, δm ≥ 0. As E ⊆ F◦, the point v is not an
extreme point of E, so the dual exposed set {v}◦ ⊆ C◦ is an extreme set of C◦ having empty

intersection with F. As zm
‖zm‖

⊆−−→ F, we conclude that there is some γ = γ(v) > 0 such that

γm > γ > 0

whereas

δm −→ 0 as m→ ∞.
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Note that γ = γ(v) is a positive constant only depending on v that bounds γm(v) away from
0. Additionally we know that

zm,E

‖zm‖ −→ 0 as E ⊆ V(F)⊥. Therefore there is an M ∈ N such

that δm −
〈
e − v

∣∣∣∣ zm,E

‖zm‖

〉
< 1

2γ for all m ≥ M.

Together we compute

〈e − v|zm〉 = ‖zm‖
〈
e − v

∣∣∣∣∣
zm

‖zm‖

〉

= ‖zm‖(−1 + δm + 1 − γm)

< −‖zm‖(γ − δm) −→ −∞

and
〈
e − v

∣∣∣zE
m

〉
=

〈
e − v|zm − zm,E

〉

= ‖zm‖
(
δm − γm −

〈
e − v

∣∣∣∣∣
zm,E

‖zm‖

〉)

< −1

2
‖zm‖γ −→ −∞.

It remains the case where v ∈ ∂rel(F◦) (and still v < E). Such an extreme point only exists if
E ( F◦ which we thereby assume. So

(
zm,F◦

)
m has to be unbounded, otherwise E = F◦ by

Lemma 3.2.2. As e − v ∈ T (F◦), because e ∈ ∂rel(E) ⊆ ∂rel(F◦), the dual pairings simplify
to

〈e − v |zm 〉 =
〈
e − v

∣∣∣zm,F◦
〉

〈
e − v

∣∣∣zE
m

〉
=

〈
e − v

∣∣∣(zm,F◦)
E
〉
,

where the orthogonal complement is taken within T (F◦). We will show the result by itera-
tively constructing new unit balls and their duals in lower dimensional subspaces. The idea
of the first step (and analogous for the following ones) is to take F◦ as new dual unit ball in
T (F◦) having E and v in its relative boundary. As F◦ is a face of C and therefore does not
contain the origin as an relative interior point, we will have to shift F◦ with all its extreme
sets to T (F◦). See Figure 3.19 for a sketch.

The details go as follows. First let s1 ∈ X∗ be a shifting parameter such that

C1 := F◦ + s1 ⊆ T (F◦)

is a convex compact set having the origin in its relative interior. Then taking its dual within
T (F◦) and T (F◦)∗ gives us a new compact convex set C◦1 ⊆ T (F◦)∗ around the origin.
Remember the definition

E = aff {D(x)|x ∈ X}
where D(x) = limm→∞ Dm(x) is the set of accumulation sets Dm(x) =

(
zm−x
‖zm−x‖

)◦
. The zm,V(F)-

part is dominant and guarantees that zm
‖zm‖

⊆−−→ F, whereas the zm,F◦-part determines the
behavior within aff(F◦) and thereby to which extreme set of F◦ the sequence converges.
Note that we assumed E , F◦ and therefore

(
zm,F◦

)
m is unbounded by Lemma 3.2.2. When

only considering the part in T (F◦), the sequence of duals converges to the extreme set

E1 := E + s1 ⊆ C1.

This means that when we only consider the subspace T (F◦)∗ we have the following situ-

ation: we have an unbounded sequence
(
zm,F◦

)
m with

zm,F◦
‖zm,F◦ ‖

⊆−−→ F1 for some extreme set





80 Chapter 3. Horofunction Compactification

a) If c ∈ EC is a vertex of C, then

e〈e0−c|zm〉 −→
{

e〈e0−c|p〉 if c ∈ E
0 if c < E.

b) If f : X∗ → R or f : X∗ → X∗ is bounded on A j and A j ∩ E = ∅, then
∫

A j

e〈e0−v|zm〉 f (v)dv −→ 0.

c) If f : X∗ → R or f : X∗ → X∗ is bounded on A j, {e0} = A j ∩ E and {e0} and A j do not both

intersect the boundary of a common facet at a point different to e0, then
∫

A j

e−〈v|zm〉
∫

A j
e−〈w|zm〉dw

f (v)dv −→ f (e0). ◦

Proof.

a) When both e0 and c are extreme points of E (c = e0 is also possible), then e0 − c ∈ T (E)
and therefore 〈e0 − c|zm〉 =

〈
e0 − c|zm,E

〉 −→ 〈e0 − c|p〉. If c < E is a vertex of C, then the
convergence to 0 follows directly by Lemma 3.3.6.

b) Let A j be a connected component of the set EC of extreme points of C having empty inter-
section with E. This case only occurs when dim(C) = 2 since there is only one connected
component of EC in the smooth case and none in the polyhedral one. Then for any point
v ∈ A j we have e〈e0−v|zm〉 −→ 0 by Lemma 3.3.6. We now show that the convergence is
uniform, as we then also have convergence of the integral over A j.

As A j is a connected component of extreme points not intersecting E, it is strongly separated
from E.

vm

e0 H−1

zm

E = F ◦

Aj

Hm
−λ

vm = s

E = {e0}
H−1

zm

F ◦

Hm
−1

Aj

Figure 3.20: left: A j is strongly separated from E and Hm
−λ lies in between for m big enough.

right: E = {e0} lies in the boundary of the facet F◦ and Hm
−1 converges to F◦, so there is no

strong separation between the limit H−1 and A j.

Let Hm
−1

:= H
zm
‖zm‖
−1 be the the hyperplane supporting C at a point dual to zm

‖zm‖ ∈ ∂C◦. Let

H−1 denote the limit of this sequence of hyperplanes for m → ∞. As zm
‖zm‖

⊆−−→ F this limit
actually exists and is a hyperplane supporting C at F◦. There are two cases to distinguish
now, see Figure 3.20 for a picture: either H−1 ∩ A j = ∅ or there is an s ∈ A j such that
H−1 ∩ A j = {s}.

• In the first case, we can find a 0 < λ < 1 such that for m big enough Hm
−λ and also the

limiting hyperplane H−λ strongly separate E and A j. Let vm ∈ A j be a point for each
m ∈ N with minimal distance to Hm. By the strong separation, there is a δ > 0 and an

M ∈ N such that
〈
e0 − vm

∣∣∣∣ zm
‖zm‖

〉
< −δ < 0 for all m ≥ M. Then

〈e0 − v|zm〉 ≤ 〈e0 − vm|zm〉 < −δ‖zm‖ ∀v ∈ A j, m ≥ M.
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• In the second case where H−1 ∩ A j = {s}, the extreme point E = {e0} lies in the
relative boundary of the facet F◦, and s is the other extreme point of F◦, like shown

in Figure 3.20 on the right. In this case
〈
s
∣∣∣∣ zm
‖zm‖

〉
→ −1 just as for the pairing with

e0 and we do not have a strong separation. We assume that s is the point of A j that

minimizes the pairing

∣∣∣∣∣
〈
e0 − s

∣∣∣∣ zm,F◦
‖zm‖

〉∣∣∣∣∣, otherwise divide A j into two parts, where the

part not containing s belongs to the first case above. Then as
(
zV(F)

m

)
m
=

(
zm,F◦

)
m is

unbounded, we can find an δ > 0 such that
〈
e0 − v

∣∣∣∣∣
zm,F◦

‖zm‖

〉
≤

〈
e0 − s

∣∣∣∣∣
zm,F◦

‖zm‖

〉
< −δ < 0

for all v ∈ A j. Since
〈
e0 − v

∣∣∣∣∣
zF◦

m
‖zm‖

〉
≤ 0 for m big enough, we have for all v ∈ A j:

e〈e0−v|zm〉 = e

〈
e0−v|

zm,F◦
‖zm‖

〉

e

〈
e0−v|

zm,F◦
‖zm‖

〉

< e−δ‖zm‖.

By the compactness of A j, let ṽ ∈ A j be a point maximizing | f (v)| over A j. Then for any
ε > 0 there is an N > M ∈ N such that for all m ≥ N it holds

|e〈e0−v|zm〉 f (v)| = e〈e0−v|zm〉| f (v)|
≤ e〈e0−vm |zm〉| f (ṽ)|
< e−δ‖zm‖| f (ṽ)| < ε.

Therefore we have uniform convergence and the integral over A j goes to 0 as it was to show.

c) Now let the intersection {e0} := A j∩E be non-empty. Then for all v ∈ A j \ {e0} we still have
e〈e0−v|zm〉 −→ 0, but now there is no strong separation between E and A j\{e0} as in the case
before. Let γ : I −→ A j be a parametrization of A j with a closed set I ⊆ Rn containing the
origin such that γ(0) = e0, and extend γ by 0 to Rn. We now want to show that

δm(v) :=
e−〈v|zm〉

∫
A j

e−〈w|zm〉dw
χA j(v)

is a Dirac-sequence around e0. This then gives us the convergence we have to show. It is
obvious that δm(v) ≥ 0 for all v ∈ A j and that

∫
A j
δm(v)dv = 1. As last condition for (δm)m

to be a Dirac-sequence, we have to show that for any ε > 0 it holds
∫

A j\Bε(e0)
δm(v)dv −→ 0,

where Bε(e0) is the ball with radius ε around e0.

When for all points in A j\Bε(e0) the numerator of δm uniformly goes to 0 while the denom-
inator remains positive, we are done. δm(v) remains the same if we expand the fraction with
e〈b|zm〉 for some b ∈ X∗. So our goal now is to find a point b ∈ A j such that 〈b − v|zm〉 −→ −∞
for all v ∈ A j \ Bε(e0) and 〈b − w|zm〉 > 0 for all points w in some subset of A j ∩ Bε(e0) of
measure greater than 0.

Let ε > 0 be given. Let E◦ ⊆ C◦ ⊆ X be the face dual to E and define the cones

K+e0
:=

⋂

g∈E◦
Vg
≥−1

K−e0
:=

⋂

g∈E◦
Vg
≤−1,
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In both cases (where e0 is a corner point or ∂C is smooth at e0), we found a point c and a pair
of cones with apex c such that e0 ∈ K−c . Now we can choose a point b , e0 ∈ A j ∩ int(K−c )
and consider the (shifted) cones K−b and K+b with apex b. Their bounding hyperplanes are
again parallel to those of K−e0

and K+e0
. By construction it holds:

A j \ Bε(e0) ⊆ K+b , and e0 ∈ K−b . (3.24)

If there is a part of A j not contained in K+b , take b closer to e0. As e0 is not in the relative
boundary of a facet that also touches A j on the other side, we can always choose b , e0.
Then by Equation (3.24) we have

b − v ∈ K−0 ∀ v ∈ A j \ Bε(e0),

b − w ∈ K+0 ∀ w ∈ K−b .

As zm
‖zm‖

⊆−−→ F, we know that (for m big enough) the hyperplanes Hzm
0 orthogonal to zm and

passing through the origin either converge to the bounding hyperplanes of K−0 and K+0 or
(only for dim(C) = 2) intersect K−0 only at the origin. This means that b − v ∈ Vzm

≤0 for all m

big enough. So for any v ∈ A j \ Bε(e0) it is
〈
b − v

∣∣∣∣ zm
‖zm‖

〉
< δ < 0 for m big enough and for

some δ > 0 by strong separation. Note that we chose b to be in the interior of K−c , so even if
v is close to ∂Bε(e0)∩ A j, the vector b− v points into K−0 , and the pairing is strictly negative
and bounded away from 0.

Similarly
〈
b − w

∣∣∣∣ zm
‖zm‖

〉
> 0 for all w ∈ K−b ∩A j and m big enough. By convexity of C, the set

K−b ∩ A j ⊆ Bε(e0) is connected and contains more than one point, so it has measure greater
than 0.

Therefore we found the point b ∈ A j satisfying

〈b − v |zm 〉 = ‖zm‖
〈
b − v

∣∣∣∣∣
zm

‖zm‖

〉
uni f .
−−−−→ −∞ ∀v ∈ A j \ Bε(e0),

〈b − w|zm〉 > 0 ∀w ∈ K−b ∩ A j.

Now we can compute the integral of δm(v) over A j \ Bε(e0) and get:

∫

A j\Bε(e0)
δm(v)dv =

∫

A j\Bε(e0)

e−〈v|zm〉
∫

A j
e−〈w|zm〉dw

dv

=

∫

A j\Bε(e0)

e〈b−v|zm〉
∫

A j\Bε(e0)
e〈b−w|zm〉dw +

∫
Bε(e0)

e〈b−w|zm〉dw
dv

−→ 0,

as the second term in the denominator is not vanishing whereas the numerator is. Therefore
δm is a Dirac-sequence.

Using the Dirac-sequence δm around e0 we compute:
∫

A j

e−〈v|zm〉
∫

A j
e−〈w|zm〉dw

f (v)dv =

∫

A j

δm(v) f (v) −→ f (e0). �

Let us come back to the map mC . The following lemma contains the most important feature of
the map: it guarantees its surjectivity and will later be the continuity of the map m, which will be
constructed as several maps mC put together according to the combinatorics of B◦.
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Lemma 3.3.8 With the notations as on page 77, assume that p = limm→∞ zm,E exists. Then

mC(zm) −→ mE(p). ◦

Proof. This proof is based on the previous lemma and we have to distinguish several cases de-
pending on the shape of C.

I) C is polyhedral C being polyhedral means that there are only isolated extreme points, there-
fore mC has the simplified expression (3.23) without integrals. By the first part of the previous
lemma, we get for some e0 ∈ EE:

mC(zm) =
k∑

i=1

e−〈ci |zm〉
∑k

j=1 e−〈c j |zm〉
ci =

∑

i

e〈e0−ci |zm〉ci
∑

j e〈e0−c j |zm〉

−→
∑

c′i∈EE

e〈e0−c′i |p〉c′i
∑

c′j∈EE
e
〈
e0−c′j |p

〉 = mE(p).

II) C and C◦ are smooth C being smooth is the contrary case to C being polyhedral, as we now
only have one (smooth) connected component of EC . Then E = {e0} consists of a single point and
mE(p) = e0. The convergence now follows immediately with the third part of the previous lemma
,where now f (v) f v:

mC(zm) =

∫

∂C

e−〈v|zm〉
∫
∂C

e−〈w|zm〉dw
vdv −→ e0 = mE(p).

III) dim(C) = 2 and C is arbitrary In this case we have to consider the full expression for mC:

mC(zm) =

∑k
i=1 e−〈ci |zm〉ci +

∑l
j=1

∫
A j

e−〈v|zm〉vdv
∑k

i=1 e−〈ci |zm〉 +
∑l

j=1

∫
A j

e−〈w|zm〉dw
.

For the extreme set E there are several cases to consider, refer also to Table 3.1 on page 51 and the
discussion before.

• If E is isolated, that is, all of its (one or two) extreme points are isolated, then the integrals
over all smooth parts go to 0 and we basically have the same calculation as in the polyhedral
case.

• Next we consider the case where E = conv{e1, e2} is a non-isolated facet, that is, at least one
of e1 and e2 lies in the relative boundary of some smooth connected component. Then we
always have one of the following two situations (see also Figure 3.22):

(A) E is surrounded by two smooth parts, say e1 ∈ A1 and e2 ∈ A2. Let the enumeration
be such that A1 is the component whose second endpoint a1 , e1 ∈ ∂relA1 is closer to
aff(E) than the second endpoint a2 , e2 of A2.

(B) E has only one vertex in the relative boundary of a smooth part, let e1 be this one. The
other vertex e2 is isolated and, by relabeling the extreme points, we assume e2 = c2.
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E
(A)

e1 e2

A2A1

S

T

a2

a1 h
H

(B)
Ee1 e2 = c2

A2A1

S

T

a1 h
H

Figure 3.22: The decomposition of A2 to construct the translating homeomorphism. left:
The case (A) where E is surrounded by smooth parts. right: In case (B) the extreme point
e1 lies in the boundary of the smooth part A1 and e2 is a vertex.

In both cases, we next want to identify a part S of A2 with A1 by a (bijective) translation
ϕ parallel to E. Using this bijection we will later replace the integral over S by an integral
over A1 when computing the convergence of mC . The identification is illustrated in Figure
3.22. We now explain it rigorously:

Let H be a hyperplane passing through a1 parallel to E, that is, with T (H) = T (E). Let
a1 , h ∈ H ∩ ∂C be the other intersection point of H with the boundary of C. In case (A)
we have h ∈ A2 and h splits up A2 in two parts S and T where e2 ∈ S . In case (B) we define
S ⊆ ∂C to be the part between e2 and h without E. In both cases, for each point a ∈ A1

there is a corresponding point s ∈ S such that their difference ta := s − a lies in T (E), that
is, there is a bijection

ϕ : A1 −→ S

a 7−→ a + ta
(3.25)

with ta ∈ T (E). Especially e1 + te1 = e2.

We first consider case (A), where E is surrounded by two smooth parts A1 and A2 and the
two vertices e1, e2 of E are not isolated. Then

mC(zm) =

∑k
i=1 e−〈ci |zm〉ci +

∑l
j=1

∫
A j

e−〈v|zm〉vdv
∑k

i=1 e−〈ci |zm〉 +
∑l

j=1

∫
A j

e−〈v|zm〉dv

=

∑
i e〈a1−ci |zm〉ci +

∑
j≥3

∫
A j

e〈a1−v|zm〉vdv
∑

i e〈a1−ci |zm〉 +
∑

j≥3

∫
A j

e〈a1−v|zm〉dv +
∫

A1
e〈a1−v|zm〉dv +

∫
A2

e〈a1−v|zm〉dv
(3.26)

+

∫
A1

e−〈v|zm〉∫
A1

e−〈w|zm〉dw
vdv +

∫
A2

e−〈v|zm〉∫
A1

e−〈w|zm〉dw
vdv

∑
i

e〈a1−ci |zm〉∫
A1

e〈a1−w|zm〉dw
+

∑
j≥3

∫
A j

e〈a1−v|zm〉∫
A1

e〈a1−w|zm〉dw
dv + 1 +

∫
A2

e−〈v|zm〉∫
A1

e−〈w|zm〉dw
dv
.

The extreme point a1 ∈ ∂relA1 has the following property: any point of A1 and S has less or
equal distance to aff(E) than a1 and any other extreme point (both isolated or in a smooth
part) has bigger distance to aff(E). Therefore

〈a1 − ci|zm〉 −→ −∞ ∀i ∈ {1, . . . , k}
〈a1 − v|zm〉 −→ −∞ ∀v ∈ A j ∪ T, j ≥ 3
〈a1 − v|zm〉 ≥ 0 ∀v ∈ A1 ∪ S .

This shows that the first fraction in Equation (3.26) goes to 0. To get the convergence of the
second fraction we first consider the integral over A2 in the numerator. In the computation
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we will replace the integral over S ⊆ A2 by an integral over A1 using the translation map ϕ:

∫

A2

e−〈v|zm〉
∫

A1
e−〈w|zm〉dw

vdv =

∫

S

e−〈v|zm〉
∫

A1
e−〈w|zm〉dw

vdv +

∫

T

e−〈v|zm〉
∫

A1
e−〈w|zm〉dw

vdv

=

∫

A1

e−〈a+ta |zm〉
∫

A1
e−〈w|zm〉dw

(a + ta)da +

∫

T

e−〈v|zm〉
∫

A1
e−〈w|zm〉dw

vdv

=

∫

A1

e−〈a|zm〉
∫

A1
e−〈w|zm〉dw

e−〈ta |zm,E〉(a + ta)da +

∫

T

e〈a1−v|zm〉
∫

A1
e〈a1−w|zm〉dw

vdv

=

∫

A1

δm(a)e−〈ta |zm,E〉(a + ta)da +

∫

T

e〈a1−v|zm〉
∫

A1
e〈a1−w|zm〉dw

vdv

−→ e−〈te1 |p〉(e1 + te1) + 0 = e−〈e2−e1 |p〉e2.

(3.27)

For the convergence we used the Dirac-sequence δm(a) and the fact that 〈a1 − v|zm〉 → −∞
for all v ∈ T . For the integral over A2 in the denominator of the second fraction in Equation
(3.26) we obtain similarly

∫

A2

e−〈v|zm〉
∫

A1
e−〈w|zm〉dw

dv −→ e−〈te1 |p〉 + 0 = e−〈e2−e1 |p〉.

All together we get from Equation (3.26):

mC(zm) =

∑
i e〈a1−ci |zm〉ci +

∑
j≥3

∫
A j

e〈a1−v|zm〉vdv
∑

i e〈a1−ci |zm〉 +
∑

j≥3

∫
A j

e〈a1−v|zm〉dv +
∫

A1
e〈a1−v|zm〉dv +

∫
A2

e〈a1−v|zm〉dv

+

∫
A1

e−〈v|zm〉∫
A1

e−〈w|zm〉dw
vdv +

∫
A2

e−〈v|zm〉∫
A1

e−〈w|zm〉dw
vdv

∑
i

e〈a1−ci |zm〉∫
A1

e〈a1−w|zm〉dw
+

∑
j≥3

∫
A j

e〈a1−v|zm〉∫
A1

e〈a1−w|zm〉dw
dv + 1 +

∫
A2

e−〈v|zm〉∫
A1

e−〈w|zm〉dw
dv

−→ e1 + e〈e1−e2 |p〉e2

1 + e〈e1−e2 |p〉
=

e−〈e1 |p〉e1 + e−〈e2 |p〉e2

e−〈e1 |p〉 + e−〈e2 |p〉
= mE(p).

In case (B) where E has an isolated vertex e2 = c2, the computation goes similar. But instead
of summing over the isolated vertex e2 we replace it by an integral over S combined with a
Delta distribution and get (by using the translation ϕ and the transformation rule):

e−〈e2 |zm〉e2 =

∫

S
e−〈v|zm〉vδ(v − e2)dv

=

∫

A1

e−〈a|zm〉e−〈ta |zm,E〉(a + ta)δ(a + ta − e2)da.

So dividing by an integral over A1 yields:

e−〈e2 |zm〉
∫

A1
e−〈w|zm〉dw

e2 =

∫

A1

e−〈a|zm〉
∫

A1
e−〈w|zm〉dw

e−〈ta |zm,E〉(a + ta)δ(a + ta − e2)da

−→ e−〈te1 |p〉(e1 + te1)δ(e1 + te1 − e2) = e−〈e2−e1 |p〉e2,

and similarly
e−〈e2 |zm〉

∫
A1

e−〈w|zm〉dw
−→ e−〈e2−e1 |p〉.
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Using this we compute:

mC(zm) =

∑k
i=1 e−〈ci |zm〉ci +

∑l
j=1

∫
A j

e−〈v|zm〉vdv
∑k

i=1 e−〈ci |zm〉 +
∑l

j=1

∫
A j

e−〈v|zm〉dv

=

∫
A1

e−〈v|zm〉∫
A1

e−〈w|zm〉dw
vdv

∑
i

e〈b−ci |zm〉∫
A1

e〈b−x|zm〉dx
+ 1 +

∑
j≥2

∫
A j

e〈b−v|zm〉dv
∫

A1
e〈b−x|zm〉dx

+

∑
i e〈e0−ci |zm〉ci +

∑
j≥2

∫
A j

e〈e0−v|zm〉vdv
∑

i e〈e0−ci |zm〉 +
∑

j

∫
A j

e〈e0−w|zm〉dw

Lem.3.3.7−−−−−−−→ e0 + 0 = mE(p).

Recall that in the first fraction we have the integral over a Dirac sequence in the numerator
and both fractions in the denominator vanish by the choice of the point b.

• It remains the case where E = {e0} lies in the relative boundary of a facet G ⊆ ∂C. We can
not conclude as in the exposed case: let s denote the other extreme point of G. Then we can
not find a point b , e0 such that s ∈ int K+b as it was needed before.

If F◦ = E = {e0} ( G, that is, the exposed dual F◦ of F is E, then the hyperplanes H
zm
‖zm‖
−1 will

not converge to G and we conclude as is the previous case with shifted cones, but replace
the hyperplane tangent to G by one that supports at e0 but is not parallel to T (G).

If the exposed dual F◦ of F is G we will make a calculation similar to the one in the case
were we had E = conv{e1, e2}, but with the following difference: The sequence

(
zm,F◦

)
m is

unbounded now and does not converge. Just as we did before (with F◦ playing the role of
E, e0 the one of e1 and s the one of e2), let S denote some part of the boundary ∂C on the
other side of F◦ and define a translation map ϕ : A1 → S by a 7→ a + ta with ta ∈ T (F◦).
See Figure 3.24 for a picture

Ge0 = F ◦
s = x

SA1

T

a1 h
H

G = F ◦e0 s = x

SA1

T

a1 h
H

Figure 3.24: The decomposition of ∂C to construct the translating homeomorphism between
A1 and S ⊆ ∂C. left: When {e0} = F◦, we conclude as before by strong separation. right: e0

nd s ∈ S are both in the relative boundary of F◦ = G.

Let x ∈ S be the point closest to e0 in the direction of F◦ and let S be small enough such
that

〈
e0 − x|zm,F◦

〉
< −δ < 0 for some δ > 0. Then we compute (like in case (A) above)

∣∣∣∣∣∣∣

∫

S

e−〈v|zm〉
∫

A1
e−〈w|zm〉dw

vdv

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

A1

e−〈a+ta |zm〉
∫

A1
e−〈w|zm〉dw

(a + ta)da

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∫

A1

e−〈a|zm〉
∫

A1
e−〈w|zm〉dw

e−〈ta |zm,E〉(a + ta)da

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

A1

δm(a)e−〈ta |zm,F◦〉(a + ta)da

∣∣∣∣∣∣

≤ e−〈tx |zm,F◦〉
∣∣∣∣∣∣

∫

A1

δm(a)(a + ta)da

∣∣∣∣∣∣ −→ 0,
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or similarly (like in case (B)):

∣∣∣∣∣∣∣
e−〈e2 |zm〉

∫
A1

e−〈w|zm〉dw
e2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

A1

e−〈a|zm〉
∫

A1
e−〈w|zm〉dw

e−〈ta |zm,E〉(a + ta)δ(a + ta − e2)da

∣∣∣∣∣∣∣

≤ e−〈tx |zm,F◦〉
∣∣∣∣∣∣∣

∫

A1

e−〈a|zm〉
∫

A1
e−〈w|zm〉dw

(a + ta)δ(a + ta − e2)da

∣∣∣∣∣∣∣
−→ 0.

Therefore we get

mC(zm) −→ e0 = mE(p).

In total we have shown, that if our convex set C is two-dimensional, we always get the desired
convergence mC(zm) −→ mE(p). �

The convergence result mC(zm) −→ mE(p) we proved in the previous lemma guarantees the sur-
jectivity of the map mC . This is shown in the next proposition. For notational reasons, we state
the proposition for Rn. As X is a finite-dimensional normed vector space, the same statement and
proof also holds for X, see [Col12] for more details.

Proposition 3.3.9 Let C ⊆ (Rn)∗ be a compact convex set. Then the map mC : Rn −→ int(C) is

bijective. ◦

Proof. To show injectivity, define the function

f : Rn −→ R,

x 7−→ ln


k∑

i=1

e−〈ci |x〉 +
l∑

j=1

∫

A j

e−〈v|x〉dv

 .

Then mC = −∇ f is the negative gradient of f . To prove injectivity of mC on Rn, we show that f
is strictly convex and then use a description of strict convexity including the derivative. We define
the function

g : Rn −→ R,

x 7−→
k∑

i=1

e−〈ci |x〉 +
l∑

j=1

∫

A j

e−〈v|x〉dv,

such that f (x) = − ln
(
g(x)

)
. Recall Hölder’s inequalities for any p, q > 0 with 1

p +
1
q = 1:

n∑

i=1

|aibi| ≤


n∑

i=1

|ai|p


1
p


n∑

i=1

|bi|q


1
q

(3.28)

and

∫

S
| f (x)g(x)|dx ≤

(∫

S
| f (x)|pdx

) 1
p
(∫

S
|g(x)|qdx

) 1
q

(3.29)
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for all a1, . . . , an, b1, . . . , bn ∈ R, and S ⊆ Rn a measurable subset with f , g measurable functions
on S . Take p = 1

λ
and q = 1

1−λ for some λ ∈ (0, 1), then we have for all x , y ∈ Rn:

g (λx + (1 − λ)y) =
k∑

i=1

e−〈ci |λx+(1−λ)y〉 +
l∑

j=1

∫

A j

e−〈v|λx+(1−λ)y〉dv

=
∑

i

e−λ〈ci |x〉e−(1−λ)〈ci |y〉 +
∑

j

∫

A j

e−λ〈v|x〉e−(1−λ)〈v|y〉dv

(3.29)
≤

∑

i

e−λ〈ci |x〉e−(1−λ)〈ci |y〉 +
∑

j


∫

A j

e−〈v|x〉dv


1
p

∫

A j

e−〈v|y〉dv


1
q

,

by the choice of p and q. To apply Hölder’s inequality again, we put the two sums together. We
set

at :=


e−λ〈ct |x〉 if t = 1, . . . , k,
(∫

At−k
e−〈v|x〉dv

) 1
p if t = k + 1, . . . , k + l,

and

bt :=


e−(1−λ)〈ct |y〉 if t = 1, . . . , k,
(∫

At−k
e−〈v|y〉dv

) 1
q if t = k + 1, . . . , k + l.

Then we get (using p = 1
λ

and q = 1
1−λ ):

g (λx + (1 − λ)y) ≤
k+l∑

t=1

|atbt|

(3.28)
≤


∑

t

|at|p


1
p

∑

t

|bt|q


1
q

=


k∑

i=1

e−〈ci |x〉 +
l∑

j=1

∫

A j

e−〈v|x〉dv



1
p


k∑

i=1

e−〈ci |y〉 +
l∑

j=1

∫

A j

e−〈v|y〉dv



1
q

= g(x)λg(y)1−λ.

Therefore

f (λx + (1 − λ)y) = ln
(
g(λx + (1 − λ)y)

)

≤ ln
(
g(x)λg(y)1−λ)

= λ f (x) + (1 − λ) f (y)

by the monotonicity of the logarithm. So f is convex. It is actually strictly convex as the following
argument shows. In the discrete Hölder’s inequality (3.28) it holds equality if and only if ap

i = αbq
i

for all i ∈ 1, . . . , n with α > 0 as all our summands are positive. For the continuous inequality
(3.29) it must be | f |p = α|g|q almost everywhere. Both conditions together yield to e−〈e|x〉 = αe−〈e|y〉

for all e ∈ EC or, equivalently,

〈e|y − x〉 = ln(α) ∀e ∈ EC .

As the extreme points EC span an n-dimensional subset of Rn, this can only be satisfied if x = y,
which is a contradiction to our assumption. So we never have equality in Hölder’s inequality
which means that f is strictly convex.
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For a function s : D −→ R with D ⊆ Rn convex, strict convexity is equal to the generalized
monotonicity condition1

s(x) > s(y) + 〈∇s(y)| x − y〉 (3.30)

for all x, y ∈ D with x , y. So let x, y ∈ Rn with x , y, then applying Equation (3.30) twice we get

f (x) > f (y) + 〈∇ f (y)| x − y〉
> f (x) + 〈∇ f (x)| y − x〉 + 〈∇ f (y)| x − y〉 .

Consequently, as ∇ f (x) = −mC(x), we have 〈mC(x) − mC(y)|x − y〉 < 0. Therefore mC(x) , mC(y)
for all x , y ∈ Rn and injectivity is shown.

We show that mC is onto by showing that the derivative of mC is a negative definite matrix and
therefore invertible. Using the Inverse Mapping Theorem2 we then prove surjectivity. Recall that

mC(x) =

∑k
i=1 e−〈ci |x〉ci +

∑l
j=1

∫
A j

e−〈v|x〉vdv
∑k

i=1 e−〈ci |x〉 +
∑l

j=1

∫
A j

e−〈w|x〉dw

for all x ∈ Rn. We use the notation that an superscript denotes the corresponding component of
the vector. Then with the abbreviation

M :=


k∑

i=1

e−〈ci |x〉 +
l∑

j=1

∫

A j

e−〈w|x〉dw



2

> 0

and we compute

∂(mC)α

∂xβ
(x) =

1

M




k∑

i=1

e−〈ci |x〉 +
l∑

µ=1

∫

Aµ

e−〈w|x〉dw



−
k∑

j=1

e−〈c j |x〉cαj cβj −
l∑

ν=1

∫

Aν

e−〈v|x〉vαvβdv



−

−
k∑

i=1

e−〈ci |x〉cβi −
l∑

µ=1

∫

Aµ

e−〈w|x〉wβdw




k∑

j=1

e−〈c j |x〉cαj +
l∑

ν=1

∫

Aν

e−〈v|x〉vαdv





=
−1

M


k∑

i, j=1

e−〈ci+c j |x〉(cαj cβj − cαj cβi ) +
l∑

µ,ν=1

∫

Aµ

∫

Aν

e−〈v+w|x〉(vαvβ − vαwβ)dvdw

+

k∑

i=1

l∑

µ=1

∫

Aµ

e−〈ci+v|x〉(vαvβ + cαi cβi − cαi vβ − vαcβi )dv



=
−1

M


∑

i< j

e−〈ci+c j |x〉(cαi − cαj )(cβi − cβj ) +
∑

µ<ν

∫

Aµ

∫

Aν

e−〈v+w|x〉(vα − vβ)(wα − wβ)dvdw

+
∑

i,µ

∫

Aµ

e−〈ci+v|x〉(vα − cαi )(vβ − cβi )dv

 .

Let a = (a1 . . . am) ∈ Rn be some arbitrary vector. We want to show that the quadratic form defined
by the derivative of mC is negative definite:

aT ∂mC

∂x
a = (a1, . . . , an)



∂(mC)1

∂x1 (x) · · · ∂(mC)1

∂xn (x)
...

. . .
...

∂(mC)n

∂x1 (x) · · · ∂(mC)n

∂xn (x)





a1

...

an


=

n∑

α,β=1

aαaβ
∂(mC)α

∂xβ
(x)

!
< 0.

1See [Col12, Thm 7.5] for the general setting.
2See [Col12, Thm. 8.1] for a general normed space X.
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As all three summands of the derivative have the same structure, we only show the calculation for
the first summand. The other two go the same.

[
aT ∂mC

∂x
a

]

1st summand

=
−1

M

n∑

α,β=1

aαaβ


∑

i< j

e−〈ci+c j |x〉(cαi − cαj )(cβi − cβj )



=
−1

M

∑

i< j

e−〈ci+c j |x〉


∑

α,β

aα(cαi − cαj )aβ(cβi − cβj )



=
−1

M

∑

i< j

e−〈ci+c j |x〉

∑

α

aα(cαi − cαj )


2

=
−1

M

∑

i< j

e−〈ci+c j |x〉
(
〈a|ci − c j〉

)2
< 0.

By the Inverse Mapping Theorem we know now that mC is a local isomorphism and that its image
is open in int(C). It remains to show that the image is also closed. Assume that the image is
open but not closed, then there exists a point on the boundary of the image that lies in the interior
of C, say y ∈ ∂mC(Rn) ∩ int(C). So we can find a sequence (ym)m∈N ⊆ mC(Rn) converging to
y. Let (xm)m∈N ⊆ Rn be the corresponding sequence of preimages. Then there are two cases
to distinguish. If xm −→ ∞, we can find a subsequence also denoted by (xm)m, which fulfills
all conditions of Lemma 3.2.4 with respect to C◦. As we are only interested in limits, we can
assume by Lemma 3.3.4 that C contains the origin. Let F ⊆ C◦ be the corresponding face and
E ⊆ C its dual. Then by Lemma 3.3.8 we know that ym = mC(xm) −→ mE(p) ∈ relint(E). As
E is an extreme set in the boundary of C, this contradicts our assumption. It remains to prove
the case where (xm)m∈N is contained inside a compactum. Then we can find a subsequence (xmk )k

converging to some point x ∈ Rn. By continuity of mC and uniqueness of limits we conclude
y = mC(x) lies in the image of mC and not in its boundary. As y was some arbitrary boundary
point, the image of mC is also closed in C and therefore the whole C. Overall we have shown that
the map mC is bijective. �

3.3.2 The Homeomorphism X
hor ≃ B◦

The extreme sets of a dual unit ball are compact convex sets. So for each of them we have a
homeomorphism from a (sub)space into the interior of the extreme set given by the map mC we
defined in the previous section (see Proposition 3.3.9). Putting all of them together respecting the

combinatorics of B◦ will give us a homeomorphism from the horofunction compactification X
hor

to the dual unit ball B◦.

Theorem 3.3.10 Let (X, ‖·‖) be a finite-dimensional normed space with unit ball B ⊆ X and dual

unit ball B◦ belonging to one of the following three cases:

I) B is polyhedral.

II) Every extreme set of B is an extreme point and all of them are smooth.

III) dim(B) = 2 and EB◦ has finitely many connected components.

Then the horofunction compactification X
hor

is homeomorphic to B◦ via the map

m : X
hor −→ B◦,

{
x ∈ X 7−→ mB◦(x),

hE,p ∈ ∂horX 7−→ mE(p).
◦
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Proof. The proof is structured as follows. We first show that the map is well-defined and bijective,
then we prove continuity. As both spaces involved are Hausdorff and compact, this is enough to
conclude that the map is a homeomorphism.

The map mC (recall Definition 3.3.1) maps an n-dimensional normed vector space Xn into the
interior of a closed compact convex set C ⊆ (Xn)∗ of dimension n. We will use this map for with
respect to the dual unit ball C = B◦ and X and also with respect to faces C = E of B◦ and the space
T (E)∗.

The map m is well-defined: Recall that in the previous discussion, we assumed the set C to have
the same dimension as the surrounding space to obtain injectivity. A face E ⊆ B◦ lies not in the
space T (E) but in the affine space aff(E) ⊆ X∗ of the same dimension. Nevertheless, with mE as
defined in Definition 3.3.1 on page 75, we have mE(p) ∈ int(E) ⊆ aff(E) by Lemma 3.3.4 and mE

is bijective.

So for each extreme set E ⊆ B◦ (including B◦ itself), mE(p) is a homeomorphism from T (E) into
the interior of E. Since the interiors of any two different extreme sets have empty intersection and
B◦ =

⋃̇
E⊆B◦ extreme int(E), we have bijectivity.

It remains to show that m is continuous on the boundary of the faces. For continuity from the inte-
rior of B◦ to the boundary, we first take a sequence (zm)m∈N ⊆ X that converges to a horofunction
hE,p. Then by Theorem 3.2.6, we know that zm,E → p and E = aff{D(x)|x ∈ X} ∩ B◦ is an extreme
set. With Lemma 3.3.8 we conclude that

m(zm) = mB◦(zm) −→ mE(p) = m(hE,p).

as m −→ ∞.

For the continuity within the boundary, the argument is similar. The basic idea is to use the already
shown continuity from the interior to the boundary on a lower dimensional subspace, where the
unit ball is given by the dual of a projected and translated face of B◦ (similar as in the proof of
Lemma 3.3.6). Let hEm,pm −→ hE,p be a sequence of converging horofunctions. Now we have to
consider the cases depending on the shape of B separately.

I) B is polyhedral If B and B◦ are polyhedral, then B◦ has only finitely many faces and we can
go over to a subsequence

(
hE0,pm

)
m

with a fixed face E0 of B◦ and it holds hE0,pm −→ hE,p. Let

Ẽ0 := E0 + t denote the projection of E0 to T (E) with t ∈ X∗ such that Ẽ0 contains the origin in its
interior. By Lemma 2.6.8 we get

hẼ0,pm
= hE0,pm + 〈t|·〉 −→ hE,p + 〈t|·〉 = hE+t,p.

The set Ẽ0 ⊆ T (E0) ⊆ X∗ is a polytope containing the origin as an interior point and can be taken
as the dual unit ball for a norm on T (E)∗ with unit ball BE0

:= (Ẽ0)◦ ⊆ T (E0)∗ ⊆ X. So for some
y ∈ T (E0)∗ we have by Remark 3.1.11

ψ
BE0
pm

(y) = hẼ0,pm
(y) −→ hE+t,p(y).

This tells us that E + t is a face of Ẽ0 = E0 + t, so E is a face of E0. By the convergence shown
above we know that

mẼ0(pm) −→ mE+t(p)

which is (by Lemma 3.3.4) equivalent to the convergence

mE0(pm) −→ mE(p),

as it was to show. As there are only finitely many subsequences each of them consisting of the
horofunctions associated to a different face of B◦, the convergence follows.
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II) B and B◦ are smooth When B and B◦ are both smooth, then any extreme set E of B◦ is an
extreme point E = {e} with

hE,p(x) = 〈e|x〉 ,
mE(p) = e

for any x ∈ X where p = 0. A sequence of horofunctions (hEm,pm)m∈N converging to a horofunction
hE,p now is nothing else than the convergence 〈em|x〉 −→ 〈e|x〉 for any x ∈ X where Em = {em}. So
clearly mEm(p) −→ mE(p) as desired.

III) dim(X) = 2 and B is arbitrary For the case where dim(B◦) = dim(B) = 2 recall that
we assume B◦ to have only finitely many connected components of EB◦ . So we can consider a
subsequence of

(
hEm,pm

)
m

converging to hE,p such that either Em = E0 is a fixed facet of B◦ or
Em = {em} ∈ A0 is a sequence of extreme points in one fixed connected component of EB◦ . Then
we conclude as either in the polyhedral or smooth case to see that mEm(pm) −→ mE(p). Note that
we were only considering the subsequence so far. But as this holds for any of the finitely many
subsequences, the statement is shown. �

3.4 Sum of Norms

In this section we want to generalize the results from the previous section to a new norm. So far
we only considered polyhedral or smooth norms in X and the two-dimensional case. Now we want
to add another case IV) to the three cases investigated before.

Given two norms ‖·‖1 and ‖·‖2 on X that belong to the three cases I) - III) considered so far, we we
can define a third norm on X by

‖·‖3 := ‖·‖1 + ‖·‖2.

For each i ∈ {1, 2, 3} denote by Xi the space X with norm ‖·‖i and by Bi and B◦i the unit and dual
unit ball associated to ‖·‖i. We assume that the set of extreme sets of B◦3 is closed.

3.4.1 Horofunctions and Sum of Norms

We first describe the horofunction compactification of X3, that is, we want to generalize Theorem
3.2.6. By Corollary 3.1.10 we know that

∂horX3 = {hE,p | E ⊆ B◦3 proper extreme, p ∈ T (E)∗}.

So the first thing we have to know is how the unit and dual unit ball of X3 = (X, ‖·‖3) look like:

Lemma 3.4.1 There holds:

1) B◦3 = B◦1 + B◦2.

2) B3 =
(
B◦1 + B◦2

)◦
.

where we take the Minkowski sum of the sets. ◦
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Proof.

1) We start with the inclusion ⊆. Let v ∈ B3 ⊆ X be a point of B3, that is, there holds
‖v‖3 = ‖v‖1 + ‖v‖2 ≤ 1. Let λ := ‖v‖1 ∈ [0, 1]. Then ‖v‖2 ≤ 1 − λ and therefore v ∈ λB1 and
v ∈ (1 − λ)B2 by the definition of a norm with respect to a compact convex set as given in
Equation (2.2) on page 18. We have to show that the dual pairing of v with any element of
B◦1 + B◦2 is bigger or equal than −1. Let y = a + b ∈ B◦1 + B◦2 ⊆ X∗ be arbitrary. Then we
conclude

〈y|v〉 = 〈a|v〉 + 〈b|v〉 ≥ −λ − (1 − λ) = −1.

As y was arbitrary, we have v ∈ (
B◦1+B◦2

)◦. For the other inclusion ⊃, let v ∈ (
B◦1+B◦2

)◦ ⊆ X.
Then 〈x|v〉 ≥ −1 for all x ∈ B◦1 + B◦2 ⊆ X∗. Equivalently,

〈a|v〉 + 〈b|v〉 ≥ −1 ∀a ∈ B◦1, b ∈ B◦2. (3.31)

We have to show that v ∈ B3, i.e. ‖v‖3≤ 1. Assume λ := ‖v‖1 > 1. Then v < B1 but
v ∈ λB1. Set v′ = 1

λ
v ∈ ∂B1 with ‖v′‖1 = 1 and let a ∈ B◦1 be such that 〈a|v′〉 = −1. Then

〈a|v〉 = λ〈a|v′〉 = −λ < −1. So for some b ∈ B◦2 with 〈b|v〉 < 0 it would be 〈a|v〉+ 〈b|v〉 < −1,
which is a contradiction to Equation (3.31). Such a b always exists because B2 and therefore
also B◦2 is a convex set containing the origin in its interior. Therefore λ = ‖v‖1 ≤ 1.
Assume δ := ‖v‖2 > 1 − λ. Then v ∈ δB2 and we define v′′ = 1

δ
v ∈ ∂B2. Let b ∈ B◦2 with

〈b|v′′〉 = −1. Then we would obtain 〈a|v〉 + 〈b|v〉 = λ〈a|v′〉 + δ〈b|v′′〉 = −λ − δ < −1 in
contradiction to Equation (3.31). Therefore ‖v‖2 ≤ 1 − λ and in total we obtain

‖v‖3 = ‖v‖1 + ‖v‖2 ≤ λ + 1 − λ = 1,

so v ∈ B3.

2) For the statement about the unit ball B3 note that all sets B1, B2, B◦1 and B◦2 are convex sets
with the origin in their interior. Therefore by the Bipolar Theorem 2.4.3

B◦3 =
(
(B◦1 + B◦2)◦

)◦
= B◦1 + B◦2. �

The dual unit ball B3 is the Minkowski sum of the two dual unit balls B1 and B2. So let us shortly
recall from Section 2.5 what we know about Minkowski sums:

Let E be an extreme set of B◦3 = B◦1 + B◦2. Then there are unique proper extreme sets E1 ⊆ B◦1 and
E2 ⊆ B◦2 such that

E = E1 + E2

and it holds for j = 1, 2:
dim E j ≤ dim E ≤ dim E1 + dim E2

Any extreme point e of E = conv(EE) can be decomposed uniquely into two extreme points
e1 ∈ E1, e2 ∈ E2 and it holds

E1 = conv(E1), and E2 = conv(E2),

where E1,E2 are the sets of all these summands for all extreme points e of E. For more details see
Proposition 2.5.12 on page 34.

Now we want to see how horofunctions and Minkowski sums of the dual unit ball interact. For
p ∈ T (E)∗ let

p1 := projE1
(p), and p2 := projE2

(p)
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B◦
1

+F1

F ′
1

H1

H ′
1

B◦
2

=F2

H2

F ′
2

H ′
2

B◦
3

F

HF

F ′

H ′
F

Figure 3.25: The Minkowski sum of a square and a circle gives a bigger square with rounded
corners. The blue (green) face F ⊆ B◦3 (F′ ⊆ B◦3 are exposed and uniquely the sum of exposed
faces F1 ⊆ B◦1 (F′1 ⊆ B◦1) and F2 ⊆ B◦2 (F′2 ⊆ B◦2).

denote the projections of p to the subspaces T (E∗1) and T (E2)∗, respectively.

As an example to illustrate the notation we give here again the same picture as before in the proof
of Proposition 2.5.8:

Lemma 3.4.2 It holds:

inf
q∈E
〈q|p − x〉 = inf

r∈E1

〈r|p1 − x〉 + inf
s∈E2

〈s|p2 − x〉. ◦

Proof. The statement is shown by a short calculation where we use that the extreme set E is a
compact set, so that the infimum over E is attained at its extreme points EE (see Lemma 2.6.4). In
the second step we will use this fact in the other direction by taking the infimum not only over the
extreme points but also over some interior points:

inf
q∈E
〈q|p − x〉 = inf

q∈EE

〈q|p − x〉 = inf
q∈E1+E2

〈q|p − x〉

= inf
r∈E1;
s∈E2

〈r + s|p − x〉 = inf
r∈E1

〈r|p − x〉 + inf
s∈E2

〈s|p − x〉

= inf
r∈E1

〈
r
∣∣∣pE1 + pE1 − x

〉
+ inf

s∈E2

〈
s
∣∣∣pE2 + pE2 − x

〉

= inf
r∈E1

〈r|pE1 − x〉 + inf
s∈E2

〈s|pE2 − x〉

= inf
r∈E1

〈r|p1 − x〉 + inf
s∈E2

〈s|p2 − x〉. �

Corollary 3.4.3 With the notations above, we have for hE,p ∈ ∂horX3:

hE,p = hE1,p1 + hE2,p2 ,

where hE1,p1 ∈ X
hor
1 and hE2,p2 ∈ X

hor
2 are the horofunctions associated to E1 = conv(E1) ⊆ B◦1 and

E2 = conv(E2) ⊆ B◦2. ◦

Proof. The main calculation was already done in Lemma 3.4.2, it remains to put the results to-
gether:

hE,p(x) = − inf
q∈E
〈q|p − x〉 + inf

q∈E
〈q|p〉

= − inf
r∈E1

〈r|p1 − x〉 + inf
s∈E2

〈s|p2 − x〉 + inf
r∈E1

〈r|p1〉 + inf
s∈E2

〈s|p2〉

= hE1,p1(x) + hE2,p2(x). �
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Remark 3.4.4 In the two lemmas above we do not need that the convex set E = E1 + E2 is a face
of B◦3. The proof works the same for every convex sets G1 ⊆ B◦1,G2 ⊆ B◦2 with G = G1 +G2 and
we get:

hG,q = hG1,q1 + hG2,q2 ,

with q ∈ T (G)∗ and q1 = qG1 ∈ T (G1)∗ as well as q2 = qG2 ∈ T (G2)∗. ◦

As long as E1 + E2 is a face of B◦3 and there is a point p ∈ T (E)∗ such that it holds for the
projections p j = projE j

(p) = pE j ∈ T (E j)∗ for j = 1, 2, we can construct a horofunction of X3 as
hE1,p1 + hE2,p2 . Therefore we have:

Corollary 3.4.5 The set of horofunctions of X3 is determined by the horofunctions of X1 and X2:

∂horX3 =

{
hE1,p1 + hE2,p2

∣∣∣∣∣∣
hE j,p j ∈ ∂horX j, E1 + E2 ⊆ B◦3 proper face,
p j = pE j ∈ T (E j)∗ for some p ∈ T (E)∗( j ∈ {1, 2})

}
. ◦

We now describe the convergence of sequences to horofunctions in the boundary of X equipped
with ‖·‖3, as we did in the last section for the horofunction compactification with a norm belonging
to one of the three cases I) - III). For some z ∈ X let ψ j

z denote the map ψz ∈ C̃(X) (as defined in
Equation (3.2) on page 40) with respect to the norm ‖·‖ j (for j ∈ {1, 2, 3}). Then we compute for
all x ∈ X:

ψ3
z (x) = ‖z − x‖3 − ‖z‖3 = ‖z − x‖1 + ‖z − x‖2 − ‖z‖1 − ‖z‖2
= ψ1

z (x) + ψ2
z (x)

So also the converging behavior in X3 is given by the convergence of sequences with respect to
‖·‖1 and ‖·‖2. The following Lemma makes it even more obvious:

Lemma 3.4.6 Let (zm)m∈N ⊆ X be an unbounded sequence. Then with E = E1 +E2 ⊆ B◦3 extreme

it holds:

ψ3
zm
−→ hE,p ∈ ∂horX3 if and only if

{
ψ1

zm
−→ hE,p ∈ ∂horX1 and

ψ2
zm
−→ hE,p ∈ ∂horX2.

◦

Proof. We start with a converging sequence (zm)m∈N ⊆ X such that ψ3
zm
−→ hE,p ∈ X

hor
3 . As

E = E1 + E2 with p1 = pE1 and p2 = pE2 we know by Corollary 3.4.3 that

hE,p = hE1,p1 + hE2,p2 .

By assumption,

ψ3
zm
= ψ1

zm
+ ψ2

zm
−→ hE,p = hE1,p1 + hE2,p2 .

Let hG1,q1 ∈ X
hor
1 be the limit of

(
ψ1

zm

)
m

with respect to ‖·‖1, that is, G1 ⊆ B◦1 is a proper extreme set

and q1 ∈ T (G1)∗. Similarly denote by hG2,q2 ∈ X
hor
2 the limit of

(
ψ2

zm

)
m

with respect to ‖·‖2. Then
we obtain by Remark 3.4.4

ψ3
zm

‖·‖3−−−→ hG1,q1 + hG2,q2 = hG1+G2,q
!
= hE,p,

where q ∈ T (G1 + G2)∗ such that q1 = qG1 and q2 = qG2 . Therefore again by Remark 3.4.4
E = G1 + G2 with G1 ⊆ B◦1 and G2 ⊆ B◦2 is an extreme set and p = q ∈ T (E)∗. As we also have
E = E1 + E2 we conclude by the uniqueness of the face decomposition in the Minkowski sum:

E1 = G1 and E2 = G2. (3.32)
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Using this we immediately get

p1 = pE1 = qG1 = q1 and p2 = pE2 = qG2 = q2.

Therefore we have shown that

ψ1
zm
−→ hE1,p1 and ψ2

zm
−→ hE2,p2 .

Now assume we have the convergence ψ1
zm
−→ hE,p ∈ ∂horX1 and ψ2

zm
−→ hE,p ∈ ∂horX2 such

that E = E1 + E2 ⊆ B◦3 is extreme. Then the convergence follows directly from Corollary 3.4.3.
Note that we can always find a unique p ∈ T (E)∗ with projections p1 ∈ T (E1)∗ and p2 ∈ T (E2)∗

because E = E1 + E2. �

3.4.2 The Compactification is Homeomorphic to the Dual Unit Ball

Finally we want to show that also in case IV) the horofunction compactification is again homeo-
morphic to the dual unit ball. As the Minkowski sum of two polytopes is again a polytope and the
Minkowski sum of two smooth convex sets is again smooth, the only new case to consider is the
sum of two norms where one of them is polyhedral and the other one is smooth:

Theorem 3.4.7 Let X be a finite-dimensional normed space equipped with the norm

‖·‖3 = ‖·‖1 + ‖·‖2,

where ‖·‖1 is a polyhedral norm and ‖·‖2 is smooth. Denote by B◦3 the dual unit ball of ‖·‖3. Then

the horofunction compactification of X with respect to ‖·‖3 is homeomorphic to B◦3:

X
hor
3 ≃ B◦3. ◦

Before we give the proof, let us look at the face structure of B◦3. In Figure 3.26 the notation is
illustrated for the 1−norm and the Euclidean norm in R2.

P

F3

F4

F1

F2

p1p2

p3 p4

+ S

H
q1
−t1

S1S2

S3 S4

f1

f2

f3

f4 = B◦
3

A1

E1

A2

E2

A3

E3

A4

E4

Figure 3.26: The decomposition of faces for the Minkowski sum of a square and a circle. The
Minkowski sum on the right is scaled by 1

2 .

We know that B◦3 is the Minkowski sum of a polytope P and a smooth ball S . Let p1, . . . , pl be
the vertices of P and F1, . . . , Fk its facets. Then each facet Fi ⊆ P ⊆ X∗ determines a parallel
hyperplane Hqi

−1, where qi ∈ P◦ ⊆ X is the vertex dual to Fi. Let ti := max{s > 0 | Hqi
−s ∩ S , ∅}

be the parameter such that the intersection of the hyperplane Hqi
ti and S consists of a single point.

Set

{ fi} := H
q j
−ti ∩ S
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to be this intersection point. So for each i ∈ {1, . . . , k} we obtain a point fi ∈ ∂S and these k points
f1, . . . , fk determine a decomposition of the boundary in the following way: to each vertex p j of P
(for j = 1, . . . , l) there corresponds a facet G j ⊆ P◦. We set

S j :=
⋃

g∈G j

{
s ∈ S | s = inf

r∈S
〈g|r〉

}
.

So each component S j corresponds to a vertex p j of P. By construction, if p j is a vertex of the
facets F j1 , . . . , F jr of P, then S j has corner points f j1 , . . . , f jr ∈ S . Two components S i and S j

only intersect in their common boundary and the points in the boundary of each S j are in relation
to lower-dimensional faces of P: the point s ∈ S i1 ∩ . . . ∩ S ir corresponds to the face spanned by
pi1 , . . . , pir . So especially if Fi ⊆ P is a facet with vertices pi1 , . . . , pis , then fi is a corner point of
all corresponding parts and

fi = S i1 ∩ · · · ∩ S is .

Coming from the decomposition just described, the facets Ei and smooth parts A j of B◦3 have the
following form:

Ei = Fi + fi for i = 1, . . . , k facets of B◦3
A j = p j + S j for j = 1, . . . , l smooth parts of B◦3.

(3.33)

Note that B◦3 can not have isolated extreme points: any extreme point of B◦3 is uniquely the sum
of two extreme points, one of P, which is isolated and one of S , which lies in a smooth part.
Thereby also the extreme point of B◦3 is at least in the boundary of a smooth part and therefore not
isolated.

The homeomorphism between X
hor
3 and B◦3 will be given by the same map as before in Theorem

3.3.10:

m : X
hor
3 −→ B◦3,

{
x ∈ X 7−→ mB◦(x),

hE,p ∈ ∂horX 7−→ mE(p),

where for an n-dimensional compact convex set C ⊆ X∗ we have (as defined in Definition 3.3.1):

mC : X −→ int(C)

x 7−→ mC(x) =

∫̃

∂C
ϕx(v)vdv.

As B◦3 has no isolated extreme points, the expression simplifies to

mC(x) =

∑l
j=1

∫
A j

e−〈v|x〉vdv
∑l

j=1

∫
A j

e−〈w|x〉dw
.

We have already shown the homeomorphism between the compactification and the dual unit ball
for polyhedral and smooth unit and dual unit balls. This will help us now as we can often (but not
always) use some of the results given in Section 3.3.

Let us state and proof the most important ingredients for the proof first. The lemmas we have
to adapt are the convergence of fractions of integrals over smooth parts in the boundary (Lemma
3.3.7) and the continuity of mC for a sequence in the interior (Lemma 3.3.8).

Let (zm)m∈N ⊆ X be an unbounded sequence such that

zm

‖zm‖
⊆−−→ F
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for some extreme set F ⊆ B3. Then the sequence of directions also converges with respect to ‖·‖1
and ‖·‖2. As in the previous section let E = aff{D(x)|x ∈ X3} ∩ B◦3 ⊆ F◦ be an extreme set (see
Lemma 3.4.6) and assume that the projection converges to a point: p := limm→∞ zm,E .

As we did in the proof of Lemma 3.3.8 we want to replace the integral over a smooth part A j ⊆ B◦3
using a translation ϕ (as defined in Equation (3.25)). According to the decomposition B◦3 = P + S
let G ⊆ P be a face and s0 ∈ S be an extreme point such that

E = G + s0. (3.34)

Let EG be the extreme points of G and IG ⊆ {1, . . . , l} be those indices belonging to G such that
G = conv{p j | j ∈ IG}. Without loss of generality let the parts S j be enumerated in a way such
that 1 ∈ IG. Then we find a small subset U1 ⊆ S 1 with s0 ∈ U1 such that for each j ∈ IG we have
a translating map ϕ j : U1 →⊆ S j given by u 7→ u + tu for some tu ∈ T (G) = T (E). The subset
U1 ⊆ S 1 and the map ϕ j can be found by the convexity of S and because the hyperplane tangent
to S at s0 is parallel to T (E) = T (G). Translations in the directions of T (E) are enough because
the parts S j with j ∈ IG correspond to the vertices of G. Note that ϕ j(s0) = s0 which means that
us0 = 0, because s0 ∈

⋂
j∈IG

S j.

Lemma 3.4.8 It holds:
∫

S j

e−〈v|zm〉∫
U1

e−〈w|zm〉dw
f (v)dv −→ f (s0) ∀ j ∈ IG,

∫
S j

e−〈v|zm〉∫
U1

e−〈w|zm〉dw
f (v)dv −→ 0 ∀ j < IG.

for all functions f : X∗ → R or f : X∗ → X∗ that are bounded on S . ◦

Proof. Let V1 := S 1\U1 be the complementary subset of U1 in S 1 not containing s0. For all
j ∈ IG denote by U j = ϕ j(U1) ⊆ S j the image of U1 in S j and V j := S j\U j the corresponding
complement. Note that the boundary of S is smooth and only contains extreme points, so we can
use the result of Lemma 3.3.7(c) for U j. A similar calculation as in Equation (3.27) in the poof of
Lemma 3.3.8 yields for all j ∈ IG:
∫

S j

e−〈v|zm〉
∫

U1
e−〈w|zm〉dw

f (v)dv =

∫

U j

e−〈v|zm〉
∫

U1
e−〈w|zm〉dw

f (v)dv +

∫

V j

e−〈v|zm〉
∫

U1
e−〈w|zm〉dw

f (v)dv

=

∫

U1

e−〈ϕ(u)|zm〉
∫

U1
e−〈w|zm〉dw

f (ϕ(u))du +

∫

V j

e−〈s0−v|zm〉
∫

U1
e−〈s0−w|zm〉dw

f (v)dv

=

∫

U1

e−〈u|zm〉
∫

U1
e−〈w|zm〉dw

e−〈tu |zm〉 f (ϕ(u))du +

∫

V j

e−〈s0−v|zm〉
∫

U1
e−〈s0−w|zm〉dw

f (v)dv

=

∫

U1

δm(u)e−〈tu |zm,E〉 f (ϕ(u))du +

∫

V j

e−〈s0−v|zm〉
∫

U1
e−〈s0−w|zm〉dw

f (v)dv

−→ e−
〈
us0 |p

〉
f (s0) = f (s0).

The second equation we want to show has to be valid for all j < IG. These are exactly those indices
such that the corresponding smooth parts S j ⊆ ∂S do not contain the point s0. Therefore we have
a strict separation between s0 and S j and we can directly adapt the proof of Lemma 3.3.7 (b) and
get the desired convergence. �

The next thing we have to show is the compatibility of mC with the convergence of interior se-
quences to horofunctions, that is, the analogue of Lemma 3.3.8.
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Lemma 3.4.9 With the notations given on page 100 it holds:

mC(zm) −→ mE(p). ◦

Proof. We will use the decomposition of connected components A j = p j + S j ⊆ P+ S of extreme
points as given in Equation (3.33) to compute:

mC(zm) =

∑l
j=1

∫
A j

e−〈v|zm〉vdv
∑l

j=1

∫
A j

e−〈w|zm〉dw
=

∑
j

∫
S j

e−〈v+p j |zm〉(v + p j)dv
∑

j

∫
S j

e−〈w+p j |zm〉dw

=

∑
j e−〈p j |zm〉 ∫

S j
e−〈v|zm〉(v + p j)dv

∑
j e−〈p j |zm〉 ∫

S j
e−〈w|zm〉dw

=

∑
j∈IG

e〈p1−p j |zm〉 ∫
S j

e−〈v|zm〉(v + p j)dv
∑

j∈IG
e〈p1−p j |zm〉 ∫

S j
e−〈w|zm〉dw +

∑
j<IG

e〈p1−p j |zm〉 ∫
S j

e−〈w|zm〉dw
(3.35)

+

∑
j<IG

e〈p1−p j |zm〉 ∫
S j

e〈s0−v|zm〉(v + p j)dv
∑

j∈IG
e〈p1−p j |zm〉 ∫

S j
e〈s0−w|zm〉dw +

∑
j<IG

e〈p1−p j |zm〉 ∫
S j

e〈s0−w|zm〉dw
. (3.36)

By Lemma 3.4.8 the second fraction (3.36) goes to 0. For the first fraction we compute:

(3.35) =

∑
j∈IG

e〈p1−p j |zm〉 ∫
S j

e−〈v|zm〉(v + p j)dv
∑

j∈IG
e〈p1−p j |zm〉 ∫

S j
e−〈w|zm〉dw +

∑
j<IG

e〈p1−p j |zm〉 ∫
S j

e−〈w|zm〉dw

=

∫
S 1

e−〈v|zm〉(v + p1)dv +
∑

j∈IG\{1} e
〈p1−p j |zm〉 ∫

S j
e−〈v|zm〉(v + p j)dv

∫
U1

e−〈v|zm〉dv +
∫

V1
e−〈v|zm〉dv +

∑
j∈IG\{1} e

〈p1−p j |zm〉 ∫
S j

e−〈w|zm〉dw +
∑

j<IG
e〈p1−p j |zm〉 ∫

S j
e−〈w|zm〉dw

=

∫
S 1

e−〈v|zm〉∫
U1

e−〈w|zm〉dw
(v + p1)dv +

∑
j∈IG\{1} e

〈p1−p j |zm,E〉 ∫
S j

e−〈v|zm〉∫
U1

e−〈w|zm〉dw
(v + p j)dv

1 +
∫

V1

e−〈v|zm〉∫
U1

e−〈w|zm〉dw
dv +

∑
j∈IG\{1} e

〈p1−p j |zm,E〉 ∫
S j

e−〈v|zm〉∫
U1

e−〈w|zm〉dw
dv +

∑
j<IG

e〈p1−p j |zm,E〉 ∫
S j

e〈s0−v|zm〉dv∫
U1

e〈s0−w|zm〉dw

−→
s0 + p1 +

∑
I∈IG\{1} e

〈p1−p j |p〉(s0 + p j)

1 +
∑

I∈IG\{1} e
〈p1−p j |p〉

=

∑
I∈IG

e−〈p j+s0 |p〉(p j + s0)
∑

I∈IG
e〈p j+s0 |p〉 = mE(p),

because the vertices of E = G + s0 are given by EE = {p j + s0 | j ∈ IG}. �

Let us now proof Theorem 3.4.7 using the two lemmas above.

Proof of Theorem 3.4.7. We want to show that the map m is a homeomorphism between X
hor
3 and

B◦3. Bijectivity follows directly from Lemma 3.3.9 because the proof given there was for a general
compact convex set C independent of its shape. In the last part of the proof we have to use Lemma
3.4.9 to show that the image m(Rn) ⊆ int(C) is closed.

For continuity from the interior we use again Lemma 3.4.9 to see that when (zm)m∈N is a sequence
converging to a horofunction hE,p, then

m(zm) = mB◦3(zm) −→ mE(p) = m(hE,p).
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Now let
(
hEm,pm

)
m
⊆ ∂horX3 be a sequence of horofunctions converging to a horofunction hE,p ∈

∂horX3. The boundary of B◦3 has infinitely many extreme points but we can decompose it into
finitely many parts each consisting of extreme sets of the same type. To do so, denote by Ar

i ⊆ ∂B◦3
for i = 1, . . . lr a connected component of r-dimensional extreme sets. In Figure 3.27 (page 105) on
the right, each colored part is one connected component: A0

i is blue, A1
i is green and A2

i is orange.
We already had A0

i = A j the connected components of extreme points before. For r = n − 1 each
connected component consists of a single facet, so ln−1 = k. Then

∂B◦3 =
n−1⋃

r=0

lr⋃

i=1

Ar
i .

By the finiteness of the number of these components,
(
hEm,pm

)
m

has a subsequence such that the
sequence (Em)m of associated faces lies in one component Ar

i . If r = 0 or r = n − 1 we know by
Theorem 3.3.10 that m(hEm,pm)→ m(hE,p). So assume 0 < r < n − 1. Then each Em is of the form
Em = G + sm where G = conv{p j | j ∈ IG} ⊆ P is an r-dimensional face and sm ∈ S are extreme
points. Therefore we have

m(hEm,pm) =

∑
j∈IG

e−〈p j+sm |pm〉(p j + sm)
∑

j∈IG
e−〈p j+sm |pm〉 .

Let E = G′ + s be the decomposition of E where G′ ⊆ G is a face and s ∈ S with sm → s. If
G′ = G then pm ∈ T (Em)∗ = T (E)∗ = T (G)∗ converges to p ∈ T (E)∗, and we get

m(hEm,pm) =

∑
j∈IG

e−〈p j+sm |pm〉(p j + sm)
∑

j∈IG
e−〈p j+sm |pm〉 −→

∑
j∈IG

e−〈p j+s|p〉(p j + s)
∑

j∈IG
e−〈p j+s|p〉 = m(hE,p).

If G′ ( G is a proper face then pm ∈ T (G)∗ is unbounded by Lemma 3.2.2. As all sets Em are
parallel to G (and therefore of course also to each other) we conclude in the same way as in the
polyhedral case of Theorem 3.3.10 by considering the unbounded sequence (pm)m in the subspace
T (G)∗. Thereby we get

m(hEm,pm) −→ m(hE,p).

So we have shown bijectivity and continuity of the map m. Since our spaces considered are
Hausdorff, we conclude that m is a homeomorphism. �

Let us put all previous main results of this chapter in a common theorem:

Theorem 3.4.10 Let X be a finite-dimensional normed vector space. Let B ⊆ X be a unit ball and

B◦ ⊆ X∗ its dual such that they belong to one of the following cases:

I) The unit ball is polyhedral.

II) The unit and the dual unit ball have smooth boundaries.

III) The space X is two-dimensional and EB◦ has finitely many connected components.

IV) The dual unit ball B◦ is the Minkowski sum of a polyhedral and a smooth dual unit ball with

only extreme points.

Let (zm)m∈N be an unbounded sequence in X. Then the sequence
(
ψzm

)
m∈N converges to a horo-

function hE′,p associated to an extreme set E′ ⊆ B◦ and a point p ∈ T (E′)∗ if and only if the

following conditions are satisfied:
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1) E := aff{D(x) | x ∈ X} ∩ B◦ is extreme.

2) The projection (zm,E)m∈N of (zm)m∈N to T (E)∗ converges.

Further, E′ = E and p = limm→∞ zm,E .

Additionally the horofunction compactification of X is homeomorphic to the dual unit ball B◦:

X
hor ≃ B◦. ◦

3.4.3 Refinement of Compactifications

Given two norms on a space X we constructed a third norm on X as the sum of the other two in
the previous section. A question that comes up now is how to compare the associated compactifi-
cations of the same space equipped with different norms.

Definition 3.4.11 Let X1, X2 and X3 be three Hausdorff compactifications of a space X. Then X3

is called a refinement of X1 if the identity map on X extends to a continuous map X3 −→ X1.
If X3 is a refinement of both X1 and X2, then it is called a common refinement. ◦

Lemma 3.4.12 ([BJ06, Prop. I.16.2]) Given two compactifications X1 and X2, then they admit a

unique least common refinement denoted by X1 ∨ X2. ◦

Theorem 3.4.13 Let two norms ‖·‖1, ‖·‖2 on a finite-dimensional normed vector space X belong

to one of the three cases I) - III). Let a third norm on X be defined as

‖·‖3 := ‖·‖1 + ‖·‖2.

For j = 1, . . . , 3 set X j := (X, ‖·‖ j).

Then X
hor
3 is the least common refinement of X

hor
1 and X

hor
2 . ◦

Proof. To see that X
hor
3 is a common refinement of X

hor
1 and X

hor
2 we have to show that the identity

map on X extends to continuous maps f1 : X
hor
3 −→ X

hor
1 and f2 : X

hor
3 −→ X

hor
2 of the compacti-

fications.
Using the previous notations E = E1 + E2, p1 = projE1

(p) and p2 = projE2
(p), we define the maps

in the following way for j = 1,2:

f j : X
hor
3 −→ X

hor
j ,

{
x ∈ X 7−→ x ∈ X,

hE,p ∈ ∂horX3 7−→ hE j,p j ∈ ∂horX j.

As the Minkowski sum is symmetric, we will show everything only for f1 and X
hor
1 . The proof for

f2 and X
hor
2 goes the same.

By construction, E1 ⊆ B1 is an extreme set and p1 ∈ T (E1)∗, where T (E1)∗ has the same dimension
as E1. Therefore the map f1 is well-defined.

We have to show continuity both for a sequence (zm)m ⊆ X of interior points and a sequence
(hEm,pm)m ⊆ ∂horX3 of horofunctions. The convergence from the interior is exactly the content of
Lemma 3.4.6.

For the convergence within the boundary, let
(
hEm,pm

)
m
⊆ ∂horX3 be a sequence in the horofunction

boundary with respect to ‖·‖3 such that hEm,pm −→ hE,p ∈ ∂horX3.
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For each extreme set Em, E ⊆ B◦3 let Em = Em,1 + Em,2 and E = E1 + E2 be its unique decom-
positions with Em, j, E j ⊆ B◦j extreme sets for j ∈ {1, 2}. By pm, j := (pm)T (Em, j) ∈ T (Em, j) and
p j := pT (E j) we denote the projections of pm and p for each m ∈ N. Then

hEm,1,pm,1 + hEm,2,pm,2 = hEm,pm −→ hE,p = hE1,p1 + hE2,p2 .

Assume that
(
hEm,1,pm,1

)
m

converges to some hG1,q1 with G1 ⊆ B◦1 and q1 ∈ T (G1)∗ and similarly
hEm,2,pm,2 −→ hG2,q2 with G2 ⊆ B◦2 and q2 ∈ T (G2)∗. Again using the unique decomposition of the
Minkowski sum as above (see Equation (3.32) and below), wo conclude

E = G1 +G2

p = q1 + q2

and therefore

E1 = G1 and E2 = G2

p1 = q1 and p2 = q2.

Therefore f1, f2 are continuous extensions of the identity to the boundary and we have shown that
X3 is a common refinement of X1 and X2. It is the least common refinement because there is a
unique decomposition of faces of B◦3 into those of B◦1 and B◦2 which determines the convergence

behavior. Adding another compact convex set to B◦3 still gives a refinement of X1 and X2, but not
the least common refinement. �

Remark 3.4.14 Now that we know that X
hor
3 is the least common refinement of X

hor
1 and X

hor
2 ,

Lemma 3.4.6 is a special case of [GJT98, Lem. 8.23]. ◦

3.4.4 Example

An example of a norm that is obtained as the sum of a polyhedral and a smooth norm, is the
following:

Example 3.4.15 We consider R3 with the norm

‖(a, b, c)‖ = |a| + |b| + |c| +
√

a2 + b2 + c2

for all (a, b, c) ∈ R3. Then ‖·‖ is the sum of the 1-norm ‖·‖1 and the Euclidean norm ‖·‖2.

The dual unit ball B◦ of ‖·‖ is the Minkowski-sum of the dual unit ball B◦1 of ‖·‖1, which is a unit
sphere, and the dual unit ball of ‖·‖2, which is a cube. Figure 3.27 shows how to obtain B◦ by
putting a sphere on each corner of the cube (left) and then taking the convex hull (middle). B◦

is shown on the right. The 8 blue parts A0
j are connected components of extreme points, the 12

green parts A1
i are one-dimensional extreme sets and the orange parts are the 6 facets. Dividing

the sphere centered at the origin in its eight parts S j each in one octant, then a blue part A0
j of B◦ is

the sum of one the S j ⊆ ∂S and the vertex of the cube in the same octant. The green components
A1

i arise as the sum of the boundary of two neighboring components S i ∩ S k of the unit sphere and
an edge of the cube that connects the two corresponding octants. Finally, the faces are obtained as
the sum of a point which is the intersection of four components of S and a facet of the cube.

The unit ball B corresponding to B◦ can be imagined as a blown up octahedron with vertices on
the axes at distance 1

2 from the origin. The vertices and the parts in the coordinate planes are not
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Figure 3.27: The dual unit ball as sum of a cube and a sphere.

Figure 3.28: The corresponding unit ball B.

smooth, giving the one- and two-dimensional faces of B◦. The parts of B within a quadrant are
smooth, giving the blue parts of B◦. A picture of B is drawn in Figure 3.28.

Let us now look at the converging behavior of some sequences to see how convergence with respect
to ‖·‖ is related to convergence with respect to ‖·‖1 and ‖·‖2.
Let the following sequence be given:

zm = (−m, a, b)

for some a, b ∈ R. Then with respect to ‖·‖1, the sequence ψzm converges to the horofunction hE1,p1

with face E1 = {(1, y, z) ∈ R3 | |y|, |z| ≤ 1} and parameter p2 = (0, a, b) ∈ T (E1)∗. With respect to
‖·‖2 the sequence converges to a horofunction associated to the extreme point E2 = {(1, 0, 0)}. So
we know that

ψzm −→ hE,p

with

E =
{
(2, y, z) ∈ R3

∣∣∣ |y|, |z| ≤ 1
}
,

p = (0, a, b).

Let us look at a different sequence, now we take

ym = (−am,−bm, c)
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where a, b > 0. With respect to the two norms (for j = 1, 2) we have ψ
‖·‖ j
ym
−→ hE j,p j with

E1 = {(1, 1, z) | |z| ≤ 1} , p1 = (0, 0, c),

E2 =

{(
a√

a2+b2
, b√

a2+b2
, 0

)}
, p2 = 0.

The extreme set to which
(
ψym

)
m

converges to with respect to ‖·‖ is thereby given as

E =

{(
1 +

a
√

a2 + b2
, 1 +

b
√

a2 + b2
, z

) ∣∣∣∣∣∣ |z| ≤ 1

}

and p = (0, 0, c).

In Lemma 3.4.6 we saw that the convergence with respect to ‖·‖ is uniquely determined by the
convergence behavior with respect to ‖·‖1 and ‖·‖2. To see this, let us look at a sequence that does
not converge for B1 but does for B2. Let

xm = (m, sin(m), cos(m)).

Then

ψxm(x) = ‖xm − x‖ − ‖xm‖

=

√
(m − x)2 + (sin(m) − y)2 + (cos(m) − z)2 + |m − x| + |sin(m) − y| + |cos(m) − z|

−
√

m2 + 1 − m − |sin(m)| − |cos(m)|

does not converge. Looking more carefully, we see that the two summands with the roots together
converge, they come from ‖·‖2 and indeed,

(
ψ
‖·‖2
xm

)
m

converges. But the other parts do not converge

because of the signs of sin and cos and also
(
ψ
‖·‖1
xm

)
m

does not converge. ◦



4 | Symmetric Spaces

Symmetric spaces arise in many areas of mathematics and physics and are an important class
of Riemannian or Finsler manifolds. Especially helpful is their close relation to Lie groups and
Lie algebras. In this chapter we examine the horofunction compactification of a symmetric space
X = G/K of non-compact type.

The symmetric space X carries a G-invariant Finsler metric and we could determine the horofunc-
tion compactification of X as a metric space, but this is rather difficult. Instead we apply our results
on the horofunction compactification of a finite-dimensional normed space to a maximal abelian
subalgebra a contained in the Lie algebra g of G whose norm will be obtained by the G-invariant
Finsler metric on X. The corresponding flat F = exp(a) in X, that is, a complete totally geodesic
submanifold isometric to some Rk, can be seen as a subspace of X and therefore one compacti-
fication of F is its closure in the compactification of X. It is also a metric space of its own by
the connection to a and thus has an intrinsic horofunction compactification. Our first main result
(Theorem 4.2.18) will be that these two compactifications of F coincide. Afterwards we compare
the horofunction compactification of X with two other well-known compactifications of X, namely
the Satake and the Martin compactification. We give an explicit description of how to realize a
Satake (Theorem 4.3.22) or a Martin compactification (Theorem 4.4.2) of X as a horofunction
compactification respect to an appropriate G-invariant Finsler metric.

4.1 Preliminaries on Symmetric Spaces and Finsler Metrics

In this section we give some background about Lie theory, Symmetric Spaces and Finsler geom-
etry. Basic references are [Hal15], [Hel78], [Kna02] and [Kir08] for Lie Groups and Symmetric
Spaces and [Pla95], [Run59] or [BCS00] for Finsler Geometry.

4.1.1 Lie Groups and Lie Algebras

We first recall some basic properties of Lie groups and Lie algebras that we will need later to
determine the horofunction compactification of a symmetric space of non-compact type.

Definition 4.1.1 A Lie Group is an algebraic group (G, ∗) that is also a smooth manifold such that
the following holds:

1) the group operation G ×G → G; (g, h) 7→ g ∗ h is smooth,

2) the inverse map G → G; g 7→ g−1 is smooth. ◦

A Lie group homomorphism (respectively isomorphism) is a homomorphism (respectively iso-
morphism) of Lie groups that is a smooth map.

107
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Example 4.1.2 We give some examples of Lie groups. Let K = R or K = C.

• (Rn,+) and (Rn \ {0}, ·) are Lie groups

• (S1, ·) is a Lie group

• GL(n,K) = {A ⊆ Matn(K) | det(A) , 0} ⊆ Kn2
is a (matrix) Lie group. Some of its

subgroups are Lie groups as well and called the classical groups:

SL(n,K) = {A ∈ GL(n,K) | det(A) = 1}
O(n) = {A ∈ GL(n,R) | AAT = 1}

SO(n) = {A ∈ O(n) | det(A) = 1}

U(n) = {A ∈ GL(n,C) | AA
T
= 1}

SU(n) = {A ∈ U(n) | det(A) = 1}

• GL(V) = Aut(V), the set of automorphisms, of a K-vector space V is a Lie group with
the composition as group structure. If V is finite-dimensional, GL(V) and GL(n,K) are
isomorphic. ◦

Note that a Lie group does not have to be connected. Therefore we often consider the connected
component of the identity.

Proposition 4.1.3 ([Kir08, Thm. 2.6]) Let G be a real or complex Lie group and denote by G◦

the connected component of the identity. Then G◦ itself is a (real or complex) Lie group. ◦

Definition 4.1.4 A Lie Algebra is a vector space V over a field K that carries a bilinear operation
(called bracket operation or Lie bracket)

[·, ·] : V × V −→ V

(x, y) 7−→ [x, y],

that satisfies the following conditions:

1) [x, x] = 0 for all x ∈ V ,

2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ V (Jacobi identity). ◦

We will consider Lie algebras over K = R or K = C. In these cases, where the field has character-
istic zero, the first condition is equivalent to antisymmetry: [x, y] = −[y, x].

A Lie algebra homomorphism (respectively isomorphism) f : V1 → V2 is a linear homomorphism
(respectively isomorphism) of Lie algebras V1,V2 such that

f ([x, y]) = [ f (x), f (y)]

for all x, y ∈ V1.

Example 4.1.5 We give some examples of classical Lie algebras.

• R with the Lie bracket [x, y] := xy − yx is a Lie algebra with trivial Lie bracket.
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• gl(n,K) for K = R or K = C is a Lie algebra with the commutator as Lie bracket containing
all n × n matrices over K. Some of its subalgebras are:

sl(n,K) = {X ∈ gl(n,K) | tr(X) = 0}
so(n) = {X ∈ gl(n,R) | X = −XT } (this implies tr(X) = 0)

u(n) = {X ∈ gl(n,C) | X = −X
T }

su(n) = {X ∈ u(n) | tr(X) = 0}

• gl(V) = End(V), the set of Endomorphisms, of a K-vector space V is a Lie algebra with the
commutator as Lie bracket. In the case where V is finite-dimensional, it is isomorphic to
gl(n,K). ◦

Connection between Lie group and Lie algebra

Let (G, ∗) be a Lie group. We now want to assign a Lie algebra g to G. Denote by LV(G) the
set of all left-invariant vector fields on G and by π : LV(G) → TeG; X 7→ Xe the evaluation at
the identity e ∈ G. Then π is a linear isomorphism. We want to establish a Lie algebra structure
on TeG. As TeG is the tangent space of a manifold, it is a vector space of the same dimension as
the manifold G. So it remains to define a Lie bracket on TeG. It will be induced by a Lie bracket
on LV(G). Note that by the isomorphism π, the set LV(G) also carries the structure of a vector
space and becomes a Lie algebra with the commutator as Lie bracket:

Lemma 4.1.6 ([Kna02, I.1, Ex.(5)]) The bracket operation [X,Y] := X ◦ Y − Y ◦ X for all X,Y ∈
LV(G) makes LV(G) into a Lie algebra. ◦

Now that we have turned LV(G) into a Lie algebra, we want to use the isomorphism π to carry
the Lie bracket over from LV(G) to TeG:

Lemma 4.1.7 ([Kna02, I.10 (p.69)]) Define a bracket operation on TeG as the induced Lie bracket

of π:

[X,Y] := π([π−1(X), π−1(Y)]) ∀X,Y ∈ TeG.

With this bracket operation, TeG is a Lie algebra and the map π is a Lie algebra isomorphism. ◦

Definition 4.1.8 Let (G, ∗) be a Lie group. The Lie algebra g of G (also denoted by L(G)) is the
Lie algebra TeG with the Lie bracket defined above. ◦

Lie’s third Theorem states that given a Lie algebra g, we can find a Lie group G that has g as
its Lie algebra. But since L(G) = TeG is a local property, G is not necessarily unique if G is not
connected. But there is a unique connected simply-connected Lie group G withL(G) = g (see also
[Kir08, Cor. 3.43]). Therefore when speaking about the Lie group G associated to a Lie algebra,
we mean G◦, the connected component of the identity.

The map between a Lie algebra g to its Lie group G is given by the exponential map:

Definition 4.1.9 ([Hel78, Ch. II, Prop. 1.4, Cor. 1.5]) Let X ∈ g and let γX : (R,+) −→ G be the
unique geodesic such that γ̇X(0) = X. Then the exponential map exp : g −→ G is defined by

exp(X) := γX(1). ◦

The map exp is not a global diffeomorphism but there are neighborhoods 0 ∈ U ⊆ g and e ∈ V ⊆ G
such that the restriction exp|U : U → V is a diffeomorphism.
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Remark 4.1.10 ([Kir08, Ex. 3.3]) For matrix Lie groups G ⊆ GL(n,K) the exponential map exp

as defined above coincides with the exponential of matrices: eA =
∑

k
Ak

k! for A ∈ gl(n,K). So the
Lie algebra L(G) is given by

L(G) = {A ∈ gl(n,K) | etA ∈ G ∀t ∈ R}.

Note that for X ∈ gl(n,K) it holds

det(eX) = etr(X), (4.1)

which can easily be seen for diagonal matrices but also holds in general by Jacobi’s formula. ◦

Example 4.1.11 Let us consider the matrix Lie groups and Lie algebras given in Example 4.1.2
and 4.1.5. The Lie group GL(n,K) consists of all invertible matrices. As for all X ∈ gl(n,K) the
exponential etX is invertible for all t ∈ R, we have

L(GL(n,K)) = gl(n,K).

The condition for a matrix to be in SL(n,K) was to have determinant equal to 1. By Equation
(4.1), the matrix X ∈ gl(n,K) lies in SL(n,K) if and only if tr(X) = 0. This was exactly the
defining condition for sl(n,K) and we get

L(SL(n,K) = sl(n,K).

Now let us consider the Lie group O(n) which had AAT = 1 as defining equation. This implies
that A and AT commute. Let X ∈ gl(n,K) with A = eX . Then AT = eXT

and we get

1 = AAT = eXeXT
= eX+XT

because X and XT also commute. So we need X + XT = 0 for X to be in L(O(n)). The skew-
symmetry implies tr(X) = 0 with was the equivalent condition for det(eX) = 1. Therefore

L(O(n)) = L(SO(n)) = so(n,K).

A similar calculation shows that

L(U(n)) = u(n)

L(SU(n)) = su(n).

Here we get different Lie algebras associated to U(n) and SU(n) because the condition X = −X
T

does not imply tr(X) = 0. ◦

The strong connection between Lie groups and their algebras can also be seen in terms of homo-
morphisms. By taking the differential, Lie group homomorphisms (respectively isomorphisms)
induce Lie algebra homomorphisms (respectively isomorphisms):

Lemma 4.1.12 ([Kna02, I. 10 (p.72)]) Let G,H be Lie groups and let g, h be their Lie algebras.

If f : G → H is a Lie Group homomorphism (respectively isomorphism), then its differential

(d f )e : g→ h is a Lie algebra homomorphism ((respectively isomorphism). ◦

We now want to recall the definition of representations of Lie groups and Lie algebras which will
especially lead us to the adjoint representation that plays an important role in the theory of roots
below.
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Definition 4.1.13 Let G be a Lie group and V be a finite-dimensional real vector space. A Lie
group representation is a homomorphism of G into the general linear group of V:

ρ : G −→ GL(V)

A group homomorphism ρ : G → PGL(V) is called a projective representation. ◦

Definition 4.1.14 Let g be a Lie algebra over a field K and let V be a K-vector space. A Lie
algebra representation is a Lie group homomorphism of g into gl(V):

ρ : g −→ gl(V). ◦

Remark 4.1.15 As gl(V) is the Lie algebra of GL(V), a Lie group representation ρ : G → GL(V)
induces a Lie algebra representation (d ρ)e : g→ gl(V). ◦

For us the most important representation will be the adjoint representation which is associated to
the Lie bracket. For some g ∈ G let cg : G → G denote the conjugation by g that sends h ∈ G to
ghg−1. This is a Lie group isomorphism and its differential

Ad(g) := (d cg)e : g→ g

is an isomorphism of Lie algebras and especially it is a linear isomorphism. So for each g ∈ G we
associated an element in GL(g) to it, in other words, we have a map

Ad : G −→ GL(g)

g 7−→ Ad(g).

The map Ad is a Lie group homomorphism and called the adjoint representation of G. Its dif-
ferential is a Lie algebra representation also called the adjoint representation of g, and is given
by

ad := (d Ad)e : −→ gl(g)
X 7−→ ad(X),

where ad(X)(Y) = [X,Y].

4.1.2 Symmetric Spaces

In this section we want to give a short overview over the theory of symmetric spaces of non-
compact type and their connection to Lie groups and Lie algebras.

Definition 4.1.16 A (globally) symmetric space X is a connected Riemannian manifold (X, g)
with an isometry sp : X −→ X for every point p ∈ X, such that p is a fixed point of the isometry,
sp(p) = p, and such that the differential at p is direction-reversing: dsp |p = − idTpX . ◦

Remark 4.1.17 Let γ be a geodesic on X with γ(0) = p, then sp(γ(t)) = γ(−t). Since additionally
s2

p = idX , the isometry sp is also called a geodesic symmetry. ◦

From now on let X denote a symmetric space if not stated otherwise. Products of symmetric spaces
are again symmetric spaces. Any irreducible symmetric space X allows a decomposition

X � En × X+ × X−



112 Chapter 4. Symmetric Spaces

where En is of Euclidean type, X+ is of compact type and X− is of non-compact type. Symmetric
spaces of Euclidean type are flat and are isometric to some Rn. A symmetric space of compact type
has non-vanishing sectional curvature ≥ 0 and is compact. We are interested in symmetric spaces
of non-compact type, who have non-vanishing sectional curvature ≤ 0 and are non-compact1 The
isometry group of a symmetric space of non-compact type is also non-compact and semisimple.

From now on let X be a symmetric space of non-compact type.

Equipped with the compact-open topology2, the group Isom(X, g) of isometries becomes a lo-
cally compact topological group that acts continuously on X. As the topology on X comes from
the distance associated to the metric g, the compact-open topology on Isom(X, g) coincides with
the topology of uniform convergence on compact subsets. By the Myers-Steenrod Theorem,
Isom(X, g) carries a smooth structure which is compatible with the group structure. Therefore

G := Isom(X, g)

carries the structure of a Lie group (see also [Hel78, Ch. IV, Lem. 3.2]).

We fix some point p0 ∈ X and denote the stabilizer of p0 in G by

K := Gp0 = { f ∈ G | f (p0) = p0}.

Then K is a compact subgroup of G ([Hel78, Ch.IV, Thm. 2.5]).

The group G = Isom(X, g) of isometries and also its connected component G◦ of the identity act
transitively on X. So X is a homogeneous space and we can identity the symmetric space X with
the space of left cosets G◦/K:

Proposition 4.1.18 ([Hel78, Ch. IV, Thm. 3.3]) Let (X, g) be a symmetric space with isometry

group G = Isom◦(X, g) and K = Gp0 for some p0 ∈ X. Then K is a compact subgroup of G and

G/K � X

by the analytic diffeomorphism gK 7→ gp0. ◦

Recall that we only consider symmetric spaces of non-compact type. In that case, the Lie group G
is a semisimple Lie group with trivial center ([Ebe96, Prop. 2.1.1]).

So far we came from the geometric side of the story and assigned a pair of Lie groups G,K to a
symmetric space X. This allows us to work with Lie groups and compact subgroups when talking
about symmetric spaces.

We could also have defined a symmetric space algebraically via a (Riemannian) symmetric pair.
This is a pair (G,H) of Lie groups satisfying an inclusion relation with respect to an involutive
automorphism σ on G. Let

Gσ := {g ∈ G | σ(g) = g}

denote the set of fixed points of σ and (Gσ)◦ its connected component of the identity.

1Here is a precise definition: A symmetric space M is called a symmetric space of non-compact type, if M is of non-
positive sectional curvature, simply connected and not the Riemannian product of an Euclidean space Rk (k ≥ 1)
and another manifold N.

2This topology is generated by the open sets W(U,C) := { f ∈ Isom(X, g) | f (C) ⊆ U}, where U ⊆ X is open and
C ⊆ X is compact.
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Proposition 4.1.19 ([Hel78, Ch. IV, Thm. 3.3]) Let X = G/K be a symmetric space with G =
Isom◦(X, g) and K = Gp0 for some p0 ∈ X. Then the mapping

σp0 : G −→ G

h 7−→ sp0 h sp0

is an involutive automorphism of G such that

(Gσp0 )◦ ⊆ K ⊆ Gσp0 . ◦

Note that with the notations introduced on page 111 we have

σp0 = csp0
.

The result above motivates the following definition that brings us to the algebraic way of con-
structing symmetric spaces.

Definition 4.1.20 Let G be a connected Lie group and H ≤ G a closed subgroup. We call (G,H)
a symmetric pair, if there is an involutive automorphism σ : G −→ G such that

(Gσ)◦ ⊆ H ⊆ Gσ.

If AdH ⊆ GL(g) is compact, (G,H) is called a Riemannian symmetric pair. ◦

Proposition 4.1.21 ([Hel78, Ch. IV, Prop. 3.4]) Let (G,H) be a symmetric pair with involution

σ and π : G −→ G/H the usual projection. Denote by p0 := π(e) = eH the image of the identity

element of G. Then with any G-invariant Riemannian metric h on G/H, the manifold G/H is a

symmetric space and the geodesic symmetry sp0 is independent of the choice of h and fulfills

sp0 ◦ π = π ◦ σ. ◦

Example 4.1.22 We look at our favorite example from the algebraic side: let G = SL(n,R) and
K = S O(n). Then we define an involution on G with respect to the identity matrix p0 = In by

σ = σIn : G −→ G

g 7−→ (g−1)T .

Then

Gσ = {g ∈ SL(n,R) | (g−1)T = g} = SO(n) = K

For n = 2, the space SL(2,R)/SO(2) � H2 is a model of the hyperbolic plane and SL(n,R)/SO(n)
can be seen as a generalization of it. ◦

For a symmetric space X = G/K, the groups G and K are Lie groups. Therefore it is reasonable to
deal with X not only in terms of Lie groups but also via the associated Lie algebras to gain more
structure. Let σp0 be the involutive automorphism as in Proposition 4.1.19 and let g be the Lie
algebra of G. By the identification g = TeG we obtain the involution θp0 : g −→ g given by the
differential

θp0 = (dσp0)e.

The following connection using the exponential map between the involution σ on G and θp0 on g
holds true for all X ∈ g:

σp0(etX) = etθp0 (X).
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As θp0 is an involution, it is diagonalizable and the only possible eigenspaces are those to the
eigenvalues 1 and −1. Then the positive eigenspace

k := {X ∈ g | θp0(X) = X}. (4.2)

turns out to be the Lie algebra of K, see [Hel78, Ch. IV, Thm. 3.3]. For the negative eigenspace
we set

p := {X ∈ g | θp0(X) = −X}. (4.3)

We can write g as the direct sum of vector spaces

g = k ⊕ p.

This decomposition is called the Cartan decomposition of g with Cartan involution θp0 .

As θp0 preserves the Lie bracket, that is θp0[X,Y] = [θp0(X), θp0(Y)] for all X,Y ∈ g, it holds:

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

The usual projection π : G → G/K � X; g 7→ g.p0 is a submersion and its differential d(π)e has
kernel k. Therefore we get the isomorphism

p � Tp0 X.

Example 4.1.23 For the space SL(n,R)/S O(n) with n ≥ 2 the group G = SL(n,R) is semisimple
with Lie algebra

g = sl(n,R) = {X ∈ gl(n,R) | tr(X) = 0}.

We want to determine the subspaces p and k as the eigenspaces of the involution θp0 = d(σp0)e. In
Example 4.1.22 we defined the involution on G via σ(g) = (g−1)T . Therefore θp0(X) = −XT for
all X ∈ g. For the eigenspaces we get:

p = {X ∈ g | θp0(X) = −X} = {X ∈ g | XT = X}
= {X ∈ gl(n,R) | tr(X) = 0, X = XT }

is the space of traceless symmetric matrices and

k = {X ∈ g | θp0(X) = X} = {X ∈ gl(n,R) | X = −XT } = so(n)

are the skew-symmetric matrices. ◦

4.1.3 Root Spaces

We will now investigate more the structure of G and g of symmetric spaces of non-compact type,
that is, of semisimple Lie algebras. References for this section can be found in [Ebe96, p.71ff],
[FH91, §14] or [Kna02].

Recall the Cartan decomposition g = k ⊕ p where p was the eigenspace of θp0 to −1 and p � Tp0 X.
Let a ⊆ p be a maximal abelian subalgebra. Note that p is not an algebra itself, so by an abelian
subalgebra of pwe mean a subspace of p that is an subalgebra of g. As [p, p]∩p = {0}, a subalgebra
of p is automatically abelian. There is not a unique maximal abelian subalgebra a ⊆ p but all of
them are pretty similar to each other:
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Lemma 4.1.24 ([Hel78, Ch. V, Lemma 6.3])

(i) All maximal abelian subalgebras of p are conjugate to each other over K, that is, for all

a, a′ ⊆ p maximal abelian there is a k ∈ K such that Ad(k)a = a′.

(ii) Let a be a maximal abelian subalgebra of p. Then p = Ad(K)a =
⋃

k∈K Ad(k)a. ◦

The dimension of a maximal abelian subspace of p is independent of our choice of a. So we will
give it a name.

Definition 4.1.25 Let X be a symmetric space and p as above. The rank of X is the dimension of
some maximal abelian subspace of p. ◦

The rank of X can alternatively be defined as the maximal dimension of any flat totally geodesic
subspace of X, a so-called flat:

Definition 4.1.26 A k-flat F in X is a complete, totally geodesic k-dimensional submanifold of X
isometric to a Euclidean space Rk. ◦

The two different ways of defining the rank of X are justified by the following lemma:

Lemma 4.1.27 ([Ji05, Prop. 4.70]) Let a be a maximal abelian subalgebra of p and p0 ∈ X a

chosen basepoint. Let A := exp(a) be the corresponding subgroup of G.

(i) The orbit F := A.p0 is a k-flat in X.

(ii) Any k-flat of X passing through the basepoint p0 is of the form F = exp(a).p0 for some

maximal abelian subalgebra a ⊆ p. ◦

By the close relation between maximal abelian subalgebras and k-flats, it is not surprising that
k-flats are also conjugate to each other:

Proposition 4.1.28 ([Ebe96, Prop. 2.10, p.85]) Let F1 and F2 be k-flats in X and p1 ∈ F1, p2 ∈ F2

points. Then there is a g ∈ G such that g(p1) = p2 and g(F1) = F2. ◦

To determine the horofunction compactification of a we need a bilinear form on it. We take the
Killing form κ of g:

κ : g × g −→ K,

(X,Y) 7−→ κ(X,Y) := tr(ad(X) ◦ ad(Y))

As X is of non-compact type, the Killing form κ is a positive definite bilinear form on p. On the
vector space k, κ is negative definite and a positive definite bilinear form on g is given by

φp0(X,Y) := −κ(θp0(X),Y) for X,Y ∈ g,

where θp0 is the differential of the involution σp0 at e ∈ G. With respect to κ and φp0 the subspaces
p and k are orthogonal ([Ebe96, 2.7.1]).

Example 4.1.29 Let us determine the Killing form κ on gl(n,C). A basis of the space is given by
the se of matrices {Ei j}i, j, where Ei j is the matrix with an 1 at the (i, j)-entry and zeros anywhere
else. For some X,Y ∈ gl(n,C) we compute for the (a, b)-component of (ad(X) ◦ ad(Y)) (Ekl):

[X, [Y, Ekl]]ab =
∑

m

(
Xam[Y, Ekl]mb − [Y, Ekl]amXmb

)

=
∑

m

(XamYmkδlb) − XakYlb − XlbYak +
∑

m

(XmbYlmδak)

= (XY)akδbl + (YX)lbδak − XakYlb − XlbYak.
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The entire matrix then is given by

[X, [Y, Ekl]] =
∑

a,b

[X, [Y, Ekl]]abEab

=
∑

a,b

((XY)akδbl + (YX)lbδak − XakYlb − XlbYak) Eab

=
∑

a

(XY)akEal +
∑

b

(YX)lbEkb −
∑

a,b

(
XakYlbEab + XlbYakEab

)
.

The coefficient of this matrix with respect to the basis element Ekl is

ekl =
∑

a

δak(XY)ak +
∑

b

δbl(YX)lb −
∑

a,b

δakδbl(XakYlb + XlbYak)

= (XY)kk + (YX)ll − (XkkYll + XllYkk).

To get the trace of the map ad(X) ◦ ad(Y) we now have to sum over all these coefficients:

tr(ad(X) ◦ ad(Y)) =
∑

k,l

ekl = n
∑

k

(XY)kk + n
∑

l

(YX)ll − 2
∑

k,l

XkkYll

= 2n tr(XY) − 2 tr(X) tr(Y).

On gl(n,C), the Killing form κ is thereby given as

κ(A, B) = 2n tr(AB) − 2 tr(A) tr(B) ∀A, B ∈ gl(n,C).

The Killing form κ on sl(n,C) now can be obtained by restricting the Killing form of gl(n,C) to
sl(n,C). Therefore we obtain

κ(A, B) = 2n tr(AB) ∀A, B ∈ sl(n,C). ◦

The adjoint representation ad(X) for any X ∈ p is symmetric with respect to the Killing form, that
is,

κ(ad(X)Y,Z) = κ(Y, ad(X)Z) ∀Y,Z ∈ p.
Now let a ⊆ p be a maximal abelian subspace. Then [X,Y] = 0 and by the Jacobi identity, the
operators ad(X) and ad(Y) commute for all X,Y ∈ a. Therefore all maps ad(X) with X ∈ a are
simultaneously diagonalizable with a κ-orthogonal transformation. For each α ∈ a∗ = Hom(a,C)
we thus define the following subset:

gα := {X ∈ g | ad(H)X = α(H)X ∀H ∈ a}.

Definition 4.1.30 A linear map α ∈ a∗ \ {0} is called a root, if gα , 0. Then gα is the root space of
α. By Σ we denote the set of roots:

Σ := {α ∈ a∗ | α is a root }. ◦

Σ is non-empty and furthermore we get the root space decomposition

g = g0 ⊕
∑

α∈α
gα.

By the definition of the adjoint representation we have ad(H)(X) = [H, X] and therefore, since a is
abelian, it holds a ⊆ g0. If α is a root, then so is −α. Furthermore, for two roots α, β ∈ Σ it holds
[gα, gβ] ⊆ gα+β if α + β ∈ Σ is again a root and equals 0 otherwise ([Ebe96, 2.7.3.]).
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For a root α ∈ Σ ⊆ a∗ its kernel ker(α) = {H ∈ a | α(H) = 0} is a hyperplane which divides
the vector space a into several connected components. We will often identify a with a∗ using the
Killing form κ: for an element α ∈ a∗ we set Hα ∈ a to be the unique element such that

κ(Hα,H) = α(H) ∀H ∈ a.

Given two linear maps α, β ∈ a∗ we also use the notation

κ(α, β) := κ(Hα,Hβ).

Definition 4.1.31 The connected components of a \⋃α∈Σ ker(α) are called Weyl chambers. ◦

An element H ∈ a that lies in the interior of a Weyl chamber is called regular, that is, α(H) , 0
for all α ∈ Σ. Otherwise H it is called singular.

Now we fix one Weyl chamber a+ of a. Then a root α is called positive (denoted by α > 0) if it is
positive on a+. The Weyl chamber a+ is called the positive Weyl chamber and the set of positive
roots is denoted by Σ+:

Σ+ := {α ∈ Σ | α(H) > 0 ∀H ∈ a+}.

Definition 4.1.32 A positive root α ∈ Σ+ is called simple, if α is not the sum of two positive roots.
The set of simple roots is denoted by ∆:

∆ := {α ∈ Σ+ | α(H) is not the sum of two positive roots}. ◦

The simple roots form a basis of Σ in the sense that we can express every root as a linear combi-
nation of elements in ∆ with integer coefficients which are either all ≥ 0 or all ≤ 0.

Example 4.1.33 As an example, let us look at the roots in sl(n,C). An abelian subalgebra is given
by the diagonal traceless matrices:

a :=

H = diag(h1, . . . , hn)

∣∣∣∣∣∣∣
∑

i

hi = 0

 .

Let α ∈ a∗ be a linear map. For α to be a root, the equation

[H, X] = α(H)X for all H ∈ a

has to have a non-trivial solution. As [H, X]i j = (hi − h j)Xi j this is satisfied for α = αi j with
i , j ∈ {1, . . . , n}, where αi j ∈ a∗ is given by

αi j(H) = hi − h j,

for every H = diag(h1, . . . , hn) ∈ a. The root space then is given as the span of the matrix Ei j with
entry 1 exactly in the (i, j)-component:

gαi j = CEi j,

and g0 = a. So the roots are

Σ = {αi j ∈ a∗ | i , j}.

Since an element H ∈ a lies in the kernel of a root αi j if its i-th and j-th diagonal entry coincides,
the Weyl chamber decomposition yields:

a \
⋃

αi j∈Σ
ker(αi j) =

diag(h1, . . . , hn)

∣∣∣∣∣∣∣
∑

i

hi = 0, hi , h j ∀i , j

 .
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Example 4.1.36 We want to continue the example of SL(n,C) and compute its Weyl group. We
start with the normalizer

NK(a) = {k ∈ K | kHk−1 ∈ a ∀H ∈ a}.

Let H = diag(h1, . . . , hn) ∈ a be a diagonal matrix with
∑

i hi = 0. Then for a component of the
conjugate of H by some k ∈ K we get with k−1 = kT :

(kHk−1)i j =
∑

a

hakiak ja.

For the product to be an element of a again, we need all non-diagonal elements to be zero. Using
hn = −

∑n−1
i hi we get the condition

n−1∑

a=1

ha(kiak ja − kink jn) = 0 ∀ha ∈ C.

Therefore

kiak ja = kink jn ∀a = 1, . . . , n − 1.

Together with the orthonormality of k we get 0 =
∑n

t kitk jt = nkink jn which then yields

kiak ja = 0 ∀a = 1, . . . , n; i , j.

So in each column of k there can only be one non-zero element. On the other hand, we know that
(kkT )ii =

∑
t k2

it = 1, therefore not all elements of a row can be zero. As k is a square matrix, it has
to be a permutation matrix with entries 1 and −1, that is, one non-zero element in each row and
column. These describes the elements of the normalizer NK(a).

For the centralizer CK(a), the defining condition restricts to kHkT = H for all H ∈ a. We get the
additional condition

(kHkT )ii =
∑

t

htk
2
it

!
= hi ∀i = 1, . . . , n.

Since CK(a) ⊆ NK(a), we get

CK(a) = {diag(c1, . . . , cn) | ci ∈ {±1}}.

So in the quotient we can neglect the signs of the elements of the permutation matrix and get

W = NK(a)/CK(a) � S n,

that is, the Weyl group is isomorphic to the permutation group on n elements. Recall that we
saw in Example 4.1.33 that the Weyl chambers distinguish from each other by the order of their
elements, so permuting the n diagonal elements gives the action of the Weyl group on the Weyl
chambers. ◦

There is also a Cartan decomposition on the level of groups using the positive Weyl chamber a+:

Lemma 4.1.37 (Cartan decomposition; [Hel78], Thm.V.6.7 and Thm.IX.1.1) Let a+ be a positive

Weyl chamber. Set A+ := exp(a+) ⊆ G and denote by A+ its closure. Note that A+ = exp(a+). For

every element g ∈ G there exist some k1, k2 ∈ K and a unique a ∈ A+ such that g = k1ak2. We

shortly write

G = KA+K,

and call this a Cartan decomposition of G. ◦
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Roots are special cases of weights, which are eigenvalues of representations. Let τ : g→ gl(V) be
an irreducible finite-dimensional representation. Then the vector space V decomposes in a direct
sum

V =
⊕

µ

Vµ,

where µ ∈ a∗ are finitely many linear maps such that τ(H) acts on each Vµ by scalar multiplica-
tion:

τ(H).v = µ(H) · v ∀H ∈ a, v ∈ Vµ.

The eigenspaces Vµ are called the weight spaces and the eigenvalues µ ∈ a∗ are called weights. So
the roots are exactly the weights of the adjoint representation.

For each representation there is a distinguished weight µτ, called the highest weight of the repre-
sentation τ. It has the property, that we can express all the other weights µi as

µi = µτ −
∑

α∈∆
ci,αα, (4.4)

where the ci,α are all non-negative integers. As our representation is assumed to be faithful, µτ . 0
(see [GJT98, Lem. 4.16]).

Definition 4.1.38 Let µi be a weight of the representation τ and µτ the highest weight. The support
of µi is the set

Supp(µi) = {α ∈ ∆ | ci,α > 0} = {α ∈ ∆ | ci,α , 0},

where the ci,α are the coefficients as in Expression (4.4). ◦

Example 4.1.39 Let us continue our example of SL(4,C) with positive Weyl chamber a+ ={
diag(h1, . . . , hn)

∣∣∣∑i hi = 0, h1 > . . . > hn

}
.

1) We consider the adjoint representation whose weights are the roots. With respect to the
positive Weyl chamber a+ the highest weight it α14.

Next we want to determine the support of the root α12. Note that for all roots of sl(n,C) it
holds αi j+α jk = αik and αi j = −α ji for all i , j , k ∈ {1, . . . n}. Thereby α12 = α14−α23−α34

and we see that

Supp(α12) = {α23, α34}.

Similarly we get the supports of the other positive roots:

Supp(α14) = ∅, Supp(α24) = {α12},
Supp(α13) = {α34}, Supp(α34) = {α12, α23},
Supp(α23) = {α12, α34}, Supp(α12) = {α23, α34}.

For the non-positive roots we have

α41 = α14 − 2α12 − 2α23 − 2α34

and using this we compute for example

α42 = −α24 = −(α14 − α12) = α14 − α12 − 2α23 − 2α34.

As all positive roots have ci,α ∈ {0, 1} we see that all non-positive roots have support equal
to ∆.
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2) Now we consider the standard representation, which is obtained by the standard inclusion

SL(n,C) ֒→ GL(n,C) with the standard action on Cn. From the condition H.v
!
= µ(H) · v for

all H ∈ a, we obtain the weights βi ∈ a∗ for i ∈ {1, . . . , n} defined by

µi(H) = hi

for all H = diag(h1, . . . , hn) ∈ a. The highest weight with respect to a+ then is

µτ = β1 ∈ a∗.

Now we go on for n = 4. By the identification a � a∗ we get

β1 = µτ =
1

8
diag

(
3

4
,−1

4
,−1

4
,−1

4

)
.

For the support of the other weights we compute for H = diag(h1, . . . , h4) ∈ a

(β1 − α12)(H) = h1 − h1 + h2 = β2(H),

which means that the support of β2 is α12. Similarly we get:

Supp(β1) = ∅, Supp(β2) = {α12},
Supp(β3) = {α12, α23}, Supp(β4) = {α12, α23.α34} = ∆.

For the other weights we again have

−β1 = β1 − 2α12 − 2α23 − 2α34

and we conclude as before

Supp(−β1) = Supp(−β2) = Supp(−β3) = Supp(−β4) = ∆. ◦

4.1.4 Groups Associated with Subsets of Simple Roots

Let ∆ be the set of positive roots and I ⊆ ∆ a subset. Associated to this set I we will now define
analogs of the Lie algebras and Lie groups introduced before. The notations are compatible with
those in [GJT98]. Let

aI :=
⋂

α∈I

kerα

be the intersection of the hyperplanes where the roots α ∈ I vanish. aI itself is a vector space with
a Weyl chamber system, which is exactly the restriction of the Weyl chamber system of a to aI .
Let aI be the orthogonal complement of aI in a with respect to the Killing form : a = aI ⊕ aI .
Denote by

AI := exp(aI) and AI := exp(aI)

the connected subgroups of A with Lie algebras aI and aI , respectively. Then we similarly have
A = AI × AI .

When we denote by
z := Cg(aI)



122 Chapter 4. Symmetric Spaces

the centralizer of aI in g, we get a new semisimple Lie algebra gI as the derived algebra of z:

g
I := [z, z].

Here again we get a Cartan decomposition gI = kI ⊕ pI , where

k
I := k ∩ gI and p

I := p ∩ gI .

The set aI ⊆ pI is a maximal abelian subalgebra. The Weyl chambers of aI are the orthogonal
projections of the Weyl chambers in a onto aI and we get a positive Weyl chamber aI,+ as the
projection of a+. The roots then can be split up as Σ = ΣI ∪ ΣI , where

α ∈ ΣI ⇐⇒ α(H) = 0 ∀H ∈ aI .

Corresponding to the positive Weyl chamber we get the sets of positive roots Σ+I and ΣI,+.

We now have the analogous structure theory as before associated to a subset I ⊆ ∆. Therefore it is
not surprising, that we can also construct an I-associated symmetric space XI that is a subspace of
X. This can be done the following way:

Let GI be the Lie group associated to gI , that is, GI is the derived subgroup of the centralizer of AI

in G. The Lie group K I of kI is a maximal compact subgroup of GI and K I M is is the centralizer
of AI in K, where M = CK(A). Then

XI := GI/K I

is a symmetric space of non-compact type that can be identified with the orbit XI = GI .p0.

Similarly as before, WI = NKI (AI)/CKI (AI) is the Weyl group of GI while WI < W is the
subgroup generated by the reflections in the hyperplanes ker(α) for α ∈ I.

Let n =
⊕

α∈Σ+ gα be the Lie algebra obtained as the direct sum of the positive root spaces and N
the associated nilpotent Lie group. It has a connected subgroup NI < N associated to I with Lie
algebra

nI :=
⊕

α∈Σ+I

gα.

Example 4.1.40 To get an idea what these definitions mean we look at SL(4,C) and some subsets
of simple roots. We know by Example 4.1.29 that the Killing form on sl(4,C) is given by

κ(A, B) = 8 tr(AB).

Recall from Example 4.1.33 that the simple roots are given by

∆ = {α12, α23, α34}

where αi j(H) = hi − h j for all H = diag(h1, . . . , h4) ∈ a.

We start with I = {α12}. Then

aI = ker(α12) =
{
diag(h, h, t, s) ∈ a | s = −2h − t; h, t ∈ C}

is a Weyl chamber wall and its orthogonal complement is the one-dimensional subspace

aI = {diag(x,−x, 0, 0) ∈ a | x ∈ C}.

The set of roots then can be split up as (note that αi j = −α ji)

ΣI = {α12, α21} and ΣI = {±α13,±α14,±α23,±α24,±α34}.
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Next we shortly look at the case J = {α12, α23}. We get a one-dimensional subspace

aJ = ker(α12) ∩ ker(α34) = {diag(h, h, h,−3h) | h ∈ C}

with its orthogonal complement

a
J = span

{
diag(1,−1, 00), diag(0, 1,−1, 0)

}
.

For the roots we obtain

ΣJ = {±α12,±α13,±α23}
ΣJ = {±α14,±α24,±α34}.

For L = {α12, α34} we get

aL = ker(α12) ∩ ker(α34) = {diag(h, h,−h,−h) | h ∈ C}
a

L = span
{
diag(1,−1, 00), diag(0, 0, 1,−1)

}
.

Although the dimensions of aL and aL are the same as before for J, the structure is quite different.
The set of roots decomposes as

ΣL = {±α12,±α34}
ΣL = {±α13,±α14,±α23,±α24}. ◦

Generalized horocyclic decompositions

We will later make use of the generalized Iwasawa decompositions of G, respectively the general-
ized horocyclic decompositions of X.

Lemma 4.1.41 For every I ⊆ ∆ and aI ∈ AI , we have the following decomposition:

X = aIK IaI−1
NIA · p0, (4.5)

where the A component is unique up to the following condition: for every a, a′ ∈ A, we have

aIK IaI−1
NIa · p0 = aIK IaI−1

NIa′ · p0 if and only if (aI)−1a and (aI)−1a′ are conjugated by some

element inWI .

The classical Iwasawa and horocyclic decompositions G = NAK resp. X = NA · p0 correspond to

I = ∅. ◦

Proof. Up to translating by aI−1
, we can assume for simplicity that aI = e. Recall that XI was the

relative symmetric space XI = GI/K I identified as the orbit XI = GI · p0 of p0 in X. According to
[GJT98, Corollary 2.16], we have the following generalized horocyclic decomposition (also called
Langlands decomposition):

X = AINIX
I = AINIG

I · p0.

Furthermore, in this decomposition, the components in AI , NI and XI ≃ GI · p0 are unique.

The group K I is a maximal compact subgroup of the semisimple group GI , and AI is a Cartan
subgroup of GI , so we can consider the Cartan decomposition of GI as

GI = K IAIK I ,

where the component in AI is unique up to conjugation by some element inWI .
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Fix some point p ∈ X. According to the two previous decompositions, we can find aI ∈ AI ,
uI ∈ NI , kI ∈ K I and aI ∈ AI such that

p = aIuIk
IaI .p0

where aI and uI are unique and aI is unique up to conjugation by some element in WI . As AI

commutes with K I , we also have

p = (aIuIa
−1
I )kIaIa

I .p0.

Since AI and K I M normalize NI , we have (aIuIa−1
I )kI ∈ K INI .

As a consequence, p ∈ K INIaIaI .p0, where aIaI ∈ A is unique up to conjugation by some element
inWI (notice thatWI commutes with aI ∈ AI). �

4.1.5 Finsler Geometry

A Finsler metric on a smooth manifold M generalizes the concept of a Riemannian metric. It is
a continuous family of (possibly asymmetric) norms on the tangent spaces, which are not neces-
sarily induced by an inner product. See [BCS00], [Pla95] and [Run59] for a reference on Finsler
geometry.

Definition 4.1.42 Let M be a smooth manifold. A Finsler metric on M is a continuous function

F : T M −→ [0,∞)

such that, for each p ∈ M, the restriction F|Tp M : TpM −→ [0,∞) is a (possibly asymmetric)
norm. ◦

The length and (forward) distance on a Finsler manifold can be defined in the same way as on a
Riemannian manifold:

Definition 4.1.43 The length of a curve γ : [0, 1] ⊆ R −→ M is defined as

L(γ) :=

∫

I
F(γ(t), γ̇(t))dt.

The forward distance between two points p, q ∈ M is given by

dF(p, q) := inf
γ

L(γ),

where the infimum is taken over all piecewise continuously differentiable curves γ : [0, 1] −→ M
with γ(0) = p and γ(1) = q. ◦

Remark 4.1.44 As the norms on the tangent spaces do not have to be symmetric, we have in
general dF(p, q) , dF(q, p). ◦

The symmetric space X carries a G-invariant Riemannian metric, which is essentially unique (up
to scaling on the irreducible factors). However, X also carries many G-invariant Finsler metrics.

Recall that a norm on a vector space was uniquely determined by its unit ball. We have a similar
result for Finsler metrics on homogeneous spaces.

Lemma 4.1.45 ([Pla95, Ex. 6.1.2]) Let M be homogeneous, that is, there is some topological

group G which acts transitively on M by diffeomorphisms. Let p0 ∈ M be a point and C ⊆ Tp0 M
a convex Gp0-invariant ball. Then there is exactly one G-invariant Finsler metric on M with C as

unit ball of this norm ‖·‖. ◦
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The closed unit ball on Tp0 M is given by

BF
p0

:= {Y ∈ Tp0 M | F(p0,Y) ≤ 1}, (4.6)

which is a convex body. It is defined separately in each tangent space. Based on the previous
lemma, Planche gives the following identification:

Proposition 4.1.46 ([Pla95, Thm. 6.2.1]) There is a bijection between

i) theW-invariant convex closed balls B of a,

ii) the Ad(K)-invariant convex closed balls C of p,

iii) the G-invariant Finsler metrics on X. ◦

In particular, any G-invariant Finsler metric on X gives rise to a (not necessarily symmetric) norm
on the vector space a, whose unit ball is theW-invariant convex ball B, and it is in turn completely
determined by this norm. Using this equivalence, we can define a polyhedral Finsler:

Definition 4.1.47 A G-invariant Finsler metric on X is said to be polyhedral if its W-invariant
convex ball B in a is a finite sided polytope. ◦

Polyhedral norms give Finsler metrics that are not Riemannian. To get the Riemannian metric we
choose the Euclidean norm as shown in the following example:

Example 4.1.48 If we choose the Euclidean unit sphere with respect to the norm induced by the
Killing form κ as theW-invariant convex ball in a, then the corresponding Finsler structure on the
symmetric space X = G/K induces a Riemannian metric on g for all V,W ∈ Tp0 X by

gp0(V,W) :=
1

2

[
F(p0,V +W)2 − F(p0,V)2 − F(p0,W)2

]
.

The other way round we have

F(V) :=
√

gp0(V,V). ◦

4.2 The Intrinsic Compactification and the Compactification of a Flat

in X

Let X = G/K be a symmetric space with G = Isom(X) and K = Gp0 for some base point p0 ∈ X.
Throughout this section, we will assume that the associatedW-invariant vector norm on the flat
a is such that every horofunction is a Busemann point. According to [Wal07, Thm. 1.2], this is
equivalent to asking the set of extreme sets of the dual unit ball to be closed. This is a very mild
condition, satisfied for example by every polyhedral norm.

Let d be the distance function associated to a G-invariant Finsler metric on X = G/K, and
ψ : X → C̃(X), z 7→ ψz with ψz(x) = d(x, z) − d(p0, z) the embedding defined in Subsection 3.1.1
on page 39. Let us state some basic observations.

Lemma 4.2.1 The function ψp0 : X → R is K-invariant. Moreover, for every g ∈ G, the function

ψg.p0 is gKg−1-invariant. ◦
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Proof. Fix g ∈ G and k ∈ K. Then, for any x ∈ X, we have

ψg.p0((gkg−1).x) = d((gkg−1).x, g.p0) − d(p0, g.p0)

= d(x, gk−1g−1g.p0) − d(p0, g.p0)

= d(x, g.p0) − d(p0, g.p0) = ψg.p0(x).

So ψg.p0 is gKg−1-invariant. �

Lemma 4.2.2 The map ψ : X → C̃(X) is K-equivariant, that is, ψk.z(x) = k · ψz(x) for all x, z ∈ X
and k ∈ K. Hereby the action of K on C̃(X) is given by k · f (x) := f (k−1x). ◦

Proof. Fix x, z ∈ X and k ∈ K. Then

ψk.z(x) = d(x, k.z) − d(p0, k.z)

= d(k−1.x, z) − d(p0, z)

= ψz(k
−1.x) = k · ψz(x). �

The previous two lemmas will now help us to determine the horofunction compactification of X.

Lemma 4.2.3 Let G = KA+K be a Cartan decomposition and X = KA+.p0. Then

X
hor
= ψ(X)

C̃(X)
= ψ(KA+.p0)

C̃(X)
= K ψ(A+.p0)

C̃(X)
.

In particular, the horofunction compactification ψ(X)
C̃(X)

is determined by the horofunction com-

pactification of the flat F = A.p0, or more precisely of a closed Weyl chamber F+ = A+.p0. ◦

Proof. Since ψ(A+.p0)
C̃(X)

is a compact subspace of C̃(X) and K is a compact subgroup of G

which acts continuously on C̃(X), we deduce that the space K ψ(A+.p0)
C̃(X)

is a compact subspace

of C̃(X). Since it contains ψ(KA+.p0), we conclude that ψ(KA+.p0)
C̃(X)
⊆ K ψ(A+.p0)

C̃(X)
. As the

converse inclusion is clear, we conclude that

ψ(KA+.p0)
C̃(X)
= K ψ(A+.p0)

C̃(X)
. �

Note that the closure of ψ(A+.p0) is taken in C̃(X) but not in C̃(A+.p0).

In order to understand the horofunction compactification ψ(A+.p0)
C̃(X)

of a closed Weyl chamber
a+ in C̃(X), we will first compare it to the closure in the so called intrinsic horofunction compact-
ification in C̃(A.p0), which we define in the next section.

4.2.1 The Closure of a Flat

The intrinsic compactification of the flat F = A.p0 is the horofunction compactification of F

within the space of continuous functions on F = A.p0, i.e. ψ(F)
C̃(F)

. That is, we see F = A.p0

as a space of its own. Since the exponential map exp : a → A.p0 is a diffeomorphism, the
intrinsic compactification is homeomorphic to the horofunction compactification of the normed
vector space a with respect to the norm defined by the W-invariant convex ball B. The aim of
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this section is to compare the intrinsic compactification of F with the closure of the flat F in the
horofunction compactification of X.

In Theorem 4.2.17 we will give for any G-invariant Finsler metric on the symmetric space an
explicit homeomorphism between the intrinsic compactification of a flat and the closure of a flat in
the horofunction compactification of the symmetric space X. To minimize confusion, we introduce
the following notation: Let

ψX : X −→ C̃(X)

z 7−→ ψX
z := d(·, z) − d(p0, z)

(4.7)

be the embedding of X into the space of continuous functions on X vanishing at p0. The closure
of ψX in C̃(X) gives the horofunction compactification of X with respect to the G-invariant Finsler
norm defining d.

We denote by d also the restriction of the distance function to the flat F = A.p0 ⊆ X and let

ψF : F −→ C̃(F)

z 7−→ ψF
z := d(·, z) − d(p0, z)

(4.8)

denote the embedding of F into the space of continuous functions on F vanishing at p0. The
closure of ψF(F) ⊆ C̃(F) is the intrinsic compactification of F. We set F+ := A+.p0.

Types of Sequences and Horofunctions

We have seen in Lemma 4.2.1 that each function ψg.p0 is invariant under the conjugate gKg−1 of
the maximal compact subgroup K. In order to study the invariance properties of horofunctions, we
will use the study of limits of conjugates of K (see [GJT98, Chapter IX]). In order to describe such
limits, we need to introduce the notion of type of a diverging sequence of elements in A. Roughly
speaking, the type of a sequence encodes the roots "along which" the sequence goes to infinity.

Definition 4.2.4 A sequence (an)n∈N in A+ is said to be of type (I, âI), where I is a proper subset
of ∆ and âI ∈ AI , if

i) for α ∈ I, the limit limn→∞ α(log an) exists and is equal to α(log âI),

ii) for α ∈ ∆\I, there holds α(log an)→ +∞. ◦

To minimize notational confusion, we denote elements in AI that define the type of a sequence by
a hat: âI ∈ AI .

Example 4.2.5 As as example let us look at some sequences in SL(4,C) and determine their types.
We start with

log(an) = diag(n + 4, n, 6,−2n − 10) ∈ a+

with a+ =
{
diag(h1, . . . , h4) | ∑i hi = 0, h1 > h2 > h3 > h4

}
as determined in Example 4.1.33.

Then we compute

α12(log(an)) = 4;

α23(log(an)) = n − 6;

α34(log(an)) = 2n + 16.

Therefore (an)n has type (I, âI) with I = {α12} and limit âI = diag(e2, e−2, 1, 1) ∈ aI .
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Next we consider the sequence (bn)n∈N given by

log(bn) = diag(n + 1, n, n − 10,−3n + 9).

We again compute

α12(log(bn)) = 1;

α23(log(bn)) = 10;

α34(log(bn)) = 4n − 19.

Now the limit of α23 is also finite and we get J = {α12, α23} and b̂J = diag(e4, e3, e−7, 1) such that
(bn)n has type (J, b̂J).

The last sequence we want to look at is

log(cn) = diag(n + 8, n,−n + 2,−n − 10).

Here we get

α12(log(cn)) = 8;

α23(log(cn)) = 2n − 2;

α34(log(cn)) = 12.

Therefore we know that (cn)n∈N has type (K, ĉK) with K = {α12, α34} and ĉK = diag(e4, e−4, e6, e−6).
◦

The main result on limits of conjugates of K is the following.

Proposition 4.2.6 ([GJT98, Proposition 9.14]) Let (an)n∈N be an unbounded sequence in A+ of

type (I, âI). In the space of closed subgroups of G, endowed with the Chabauty topology, the

sequence (anKan
−1)n∈N converges to âIK I M(âI)−1NI . ◦

Recall that we gave a short definition of the Chabauty topology after Proposition 3.1.6.

Remark 4.2.7 Since the groups âIK I M(âI)−1NI arise as limits of the maximal compact subgroups
under conjugations by sequences of type I in A, the (generalized) Iwasawa decompositions can
thus be seen as limits of the Cartan decomposition. ◦

We will now use this result to deduce some invariance for horofunctions.

Lemma 4.2.8 Let (an)n∈N be a sequence in A+ of type (I, âI) such that (ψX
an.p0

)n∈N converges to ξ.

Then ξ is âIK I M(âI)−1NI-invariant. ◦

Proof. For each n ∈ N, the function ψX
an.p0

is invariant under anKa−1
n , because K = Gp0 is the

stabilizer of the base point p0. Since the sequence (anKa−1
n )n∈N converges to âIK I M(âI)−1NI in

the Chabauty topology (see Proposition 4.2.6 above), for every g ∈ âIK I M(âI)−1NI there exists a
sequence (kn)n in K such that the sequence (ankna−1

n )n converges to g. Therefore, for every p ∈ X
we have

ξ(g.p) − ξ(p) = lim
n→+∞

ψX
an.p0

(g.p) − ψX
an.p0

(p)

= lim
n→+∞

d(g.p, an.p0) − d(p, an.p0)

= lim
n→+∞

d(ankna−1
n .p, an.p0) − d(p, an.p0) = 0.

As a consequence, ξ is invariant under âIK I M(âI)−1NI . �
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Definition 4.2.9 A horofunction η ∈ ∂ψF(F+)
C̃(F)

is said to be of type (I, âI), where I is a proper
subset of ∆ and âI ∈ AI , if there exists an almost geodesic sequence (an)n∈N in A of type (I, âI)
such that the sequence (ψF

an.p0
)n∈N converges to η in C̃(F). Note that, since we assumed that every

horofunction is a Busemann point, a horofunction may have several types, but has at least one
type. ◦

Lemma 4.2.10 Let η ∈ ∂ψF(F+)
C̃(F)

be a horofunction which has two types (I, âI) and (J, b̂J),
where I, J ⊆ ∆ with âI ∈ AI and b̂J ∈ AJ . Then the horofunction η also has type (I ∩ J, ĉI∩J) for

some ĉI∩J ∈ AI∩J . ◦

Proof. Let (an)n∈N and (bn)n∈N be two almost geodesic sequences in A+ of different types (I, âI)
and (J, b̂J) respectively, such that the sequences (ψF

an.p0
)n∈N and ψF

bn.p0
)n∈N both converge to η. For

every n ∈ N, we define

cn := exp

(
1

2
log(an) +

1

2
log(bn)

)
.

The sequence (cn)n∈N has type (I∩ J, ĉI∩J), where ĉI∩J ∈
(
exp

(
1
2 log(âI) + 1

2 log(b̂J)
)

AI∩J

)
∩AI∩J .

According to the Convexity Lemma (Lemma 3.1.16), the sequence (ψF
cn.p0

)n also converges to η.
As a consequence, η has type (I ∩ J, ĉI∩J). �

Lemma 4.2.11 Let η ∈ ∂ψF(F+)
C̃(F)

be a horofunction of type (I, âI), where I ( ∆ and âI ∈
AI . If η is invariant under AL for some subset L ⊆ I, then η also has type (I\L, ĉI\L) for some

ĉI\L ∈ AI\L. ◦

Proof. Let (an)n∈N be an almost geodesic sequences in A+ of type (I, âI) such that the sequence
(ψF

an.p0
)n∈N converges to η. Fix c ∈ AL,+. For each k ∈ N, the sequence (ψF

ckan.p0
)n∈N converges to

ck · η = η, since η is invariant under AL. As a consequence, there exists nk ∈ N such that, for every
n ≥ nk, and for every a ∈ A such that d(p0, a.p0) ≤ k, we have

∣∣∣∣d
(
a.p0, c

kan.p0

)
− d(a.p0, an.p0)

∣∣∣∣ ≤
1

k + 1
.

We can also assume that the sequence (nk)k is increasing. Fix a ∈ A. For every k ≥ d(p0, a.p0)
we have |d(a.p0, ckank .p0) − d(a.p0, ank .p0)| ≤ 1

k+1 and |d(p0, ckank .p0) − d(p0, ank .p0)| ≤ 1
k+1 .

Therefore, we have

lim
k→∞

ψckank .p0
(a.p0) = lim

k→+∞
d(a.p0, c

kank .p0) − d(p0, c
kank .p0)

= lim
k→+∞

d(a.p0, ank .p0) − d(p0, ank .p0)

= η(a.p0) − η(p0).

As a consequence, the sequence
(
ψF

ckank .p0

)

k∈N
converges to η.

To conclude, observe that the sequence (ckank )k∈N has type (I\L, ĉI\L), for some ĉI\L ∈ AI\L. �

4.2.2 Some Technical Lemmas

Before we come to the comparison of the compactifications of a flat in the next section, we state
some technical results that will be used in the proof of Theorem 4.2.17. They are all about finding
subsets of the simple roots that satisfy some orthogonality and invariance conditions.
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Definition 4.2.12 Two subsets I, J of ∆ are said to be orthogonal if the roots α and β are orthog-
onal for every α ∈ I and β ∈ J. A subset I ⊆ ∆ is called irreducible if it is not a disjoint union of
two proper orthogonal subsets. ◦

Lemma 4.2.13 Fix a subset I of ∆ and consider a linear subspace V of aI which is invariant

under the action of WI . Then there exists a subset J ⊆ I such that V = aJ , and J and I\J are

orthogonal. ◦

Proof. Let I = J1 ⊔ J2 ⊔ · · · ⊔ Jr be the decomposition of I into irreducible subsets. The
linear representation of WI on aI decomposes as the direct sum of the irreducible representa-

tions aI =
r⊕

j=1

a
J j . Since V is a WI-invariant subspace, there exists R ⊆ {1, 2, . . . , r} such that

V =
⊕

j∈R
a

J j . As a consequence, we have V = aJ , where J =
⊔

j∈R
J j. �

Lemma 4.2.14 Let C be a non-discrete subset of AI . Let L ⊆ I denote the smallest subset such

that the following conditions are satisfied:

i) C ⊆ cAL for all c ∈ C,

ii) L and I\L are orthogonal.

Then the smallest closed subgroup of WIA containing all conjugates

{cWIc−1 | c ∈ C} is equal toWIAL. ◦

Proof. In this proof, we will identify A with its Lie algebra and thus consider A as a vector space.
Up to conjugating, we can assume that the affine subspace of A spanned by C contains 0. Let
Γ ⊆ WIA denote the smallest closed subgroup containing all conjugates {cWIc−1 | c ∈ C}. Since
C is non-discrete, Γ is not discrete and the linear part of Γ is equal toWI . So the identity compo-
nent Γ0 of Γ is a vector subspace of AI containing C. Since Γ0 is invariant underWI , we deduce
according to Lemma 4.2.13 that Γ0 = AL, for some L ⊆ I such that L and I\L are orthogonal. �

Lemma 4.2.15 Let η ∈ ψF(F+)
C̃(F)

be a horofunction that has two types (I, âI) and (I, b̂I) with

âI , b̂I ∈ AI . Then there exists a subset L ⊆ I such that :

i) âI ∈ b̂IAL,

ii) the roots in L and I\L are orthogonal, and

iii) η isWIAL-invariant. ◦

Proof. For simplicity, up to translating by (âI)−1, we may assume that âI = e.

Fix λ ∈ [0, 1]. For each n ∈ N, let cn = exp
(
(1 − λ) log an + λ log bn

) ∈ A. According to the
Convexity Lemma 3.1.16, the sequence (ψF

cn.p0
)n∈N converges to η. The sequence (cn)n∈N is of type(

I, (b̂I)λ
)
, where (b̂I)λ denotes exp(λ log b̂I). Since the sequence (ψF

cn.p0
)n∈N converges to η, we

know by Lemma 4.2.8 that η is (b̂I)λWI
(
(b̂I)λ

)−1
-invariant for every λ ∈ [0, 1]. Let L ⊆ I be the

smallest subset such that b̂I ∈ AL and such that the roots in L and in I\L are orthogonal.Then by
Lemma 4.2.14, η is invariant underWIAL. �

Lemma 4.2.16 Let η ∈ ψF(F+)
C̃(F)

be a horofunction that has two types (I, âI) and (J, b̂J) where

J ( I ⊆ ∆. There exists a subset L ⊆ I such that :
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i) J ∪ L = I,

ii) the roots in L and I\L are orthogonal, and

iii) η isWIAL-invariant. ◦

Proof. Let (an)n and bn be the sequences of type I and J converging to η. For simplicity, up to
translating by (âI)−1, we may assume that âI = e. Up to passing to a subsequence, let us partition
I\J into I\J = I1 ⊔ I2 ⊔ · · · ⊔ Ip such that:

• ∀1 ≤ i ≤ p,∀α, β ∈ Ii : limn→+∞
α(log bn)
β(log bn) ∈ (0,+∞),

• ∀1 ≤ i < j ≤ p,∀α ∈ Ii,∀β ∈ I j : limn→+∞
α(log bn)
β(log bn) = 0.

Fix 1 ≤ i ≤ p and for some α ∈ Ii define

tn :=
1

α(log bn)

such that tn −→ 0 as n→ +∞. Fix λ > 0. For each n ∈ N, let

cn = exp
(
(1 − λtn) log an + λtn log bn

) ∈ A.

According to Lemma 3.1.16, the sequence (ψF
cn.p0

)n∈N converges to η. Let us define

ĉIi := lim
n→+∞

(
πIi(bn)

)tn ∈ AIi ,

where πIi(bn) denotes the orthogonal projection of bn onto AIi . This definition makes sense because
the sequence converges: for any β ∈ Ii, we have

β

(
log

(
πIi(bn)

)tn
)
= tnβ(log bn) =

β(log bn)

α(log bn)
,

so limn→+∞ β
(
log

(
πIi(bn)

)tn
)
∈ (0,+∞).

On the other hand, for any β ∈ ∆\Ii, we have

β

(
log

(
πIi(bn)

)tn
)
= 0, (4.9)

so the limit ĉIi ∈ AIi exists. Furthermore, we have ĉIi ∈ (AIi)+. Let

Ji := J ⊔ I1 ⊔ · · · ⊔ Ii.

For every γ ∈ ∆\Ji we have

γ(log cn) = (1 − λtn)γ(log an) + λtnα(log bn) −→ +∞.

For every γ ∈ J ∪ I1 ∪ · · · ∪ Ii−1 we have

γ(log cn) = (1 − λtn)γ(log an) + λtnγ(log bn) −→ γ(log âI) = 0.

For every γ ∈ Ii we have

γ(log cn) = (1 − λtn)γ(log an) + λtnγ(log bn)

−→ γ(log âI) + λγ(log ĉIi) = λγ(log ĉIi).
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As a consequence (using Equation (4.9)) the sequence (cn)n∈N is of type
(
Ji, (ĉIi)λ

)
, where (ĉIi)λ

denotes exp(λ log ĉIi). Since the sequence (ψF
cn.p0

)n∈N converges to η, we deduce by Lemma 4.2.8

that η is (ĉIi)λWIi
(
(ĉIi)λ

)−1
-invariant.

As cIi ∈ (AIi)+, we know by Lemma 4.2.14 that η is also invariant under AIi . Because this is true
for every 1 ≤ i ≤ p, we conclude that η is invariant under AI\J .

Since the sequence (an)n∈N is of type (I, e), and the sequence (ψF
an.p0

)n∈N converges to η, we know

by Lemma 4.2.8 that η isWI-invariant. Therefore η is invariant underWI and AI\J . The smallest
closed subgroup of WIAI containing both WI and AI\J is WIAL, where L ⊆ I is the smallest
subset containing I\J such that the roots in L and in I\L are orthogonal. We conclude that η is
invariant underWIAL. �

4.2.3 The Intrinsic Compactification versus the Closure of a Flat

Recall that on a flat F we have two compactification to consider: the intrinsic compactification of

F, namely ψF(F+)
C̃(F)

, and the closure of F in X
hor

, namely ψX(F+)
C̃(X)

. In this section we define
an explicit map from the intrinsic compactification of the flat F into the horofunction compactifi-
cation of X. For this we use the invariance shown in Lemma 4.2.8 and the generalized horocyclic

decomposition X = aIK IaI−1
NIA.p0 from Lemma 4.1.41.

For a horofunction η of type (I, âI) we define the following map:

ψX
η : X −→ R,

âIkI(âI)−1uIa.p0 ∈ X 7−→ η(a.p0).

Theorem 4.2.17 The following map

φ : ψF(F+)
C̃(F)
−→ ψX(X)

C̃(X)
,

{
ψF

z 7−→ ψX
z for z ∈ F+,

η 7−→ ψX
η for η of type (I, âI).

is a well-defined, continuous embedding. ◦

Proof. We will first show that φ is well-defined and then continuity. As the restriction to F+

is a left-inverse to φ, we deduce that φ is injective. Since ψF(F+)
C̃(F)

is compact, φ is then an
embedding.

Well-definedness

We want to prove that the map φ is well-defined. To do so, we first show that the formula defining
φ is independent of the choice of the component in A. Then we will show that if η has two types,
then φ still defines the same horofunction independent of the types.

Consider first a horofunction η ∈ ∂ψF(F+)
C̃(F)

which has some type (I, âI) and consider two
decompositions âIkI(âI)−1uIa.p0 = âIk′I(âI)−1u′Ia

′.p0 of the same point in X as given in Equation
(4.5). According to Lemma 4.1.41, there exists w ∈ WI such that (âI)−1a′ = w(âI)−1aw−1. By
Lemma 4.2.8 we know that η is invariant under âIWI(âI)−1, so

η(a′.p0) = η
(
âIw(âI)−1aw−1.p0

)
= η

(
(âIw(âI)−1)a.p0

)
= η(a.p0).
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This means that the formula defining φ does not depend on the choice of the A component in the
decomposition X = âIK I(âI)−1NIA.p0.

Consider now a horofunction η ∈ ∂ψF(F+)
C̃(F)

which has two types (I, âI) and (J, b̂J). We will
prove that the two formulas defining φ(η), for each type, agree. Let (an)n∈N, (bn)n∈N ⊆ A+ be
two sequences of type (I, âI) and (J, b̂J) respectively, such that (ψF

an.p0
)n∈N and (ψF

bn.p0
)n∈N both

converge to η. Up to passing to a subsequence, we may assume that the sequences (ψX
an.p0

)n∈N and
(ψX

bn.p0
)n∈N converge to ξ and ξ′ respectively.

We need to prove that ξ = ξ′, which will be done by induction on |I|+ |J|. As we know (see Lemma
4.2.10) that η also has type (I ∩ J, ĉI∩J) for some ĉI∩J ∈ AI∩J , we assume from now on that J ⊆ I.

Assume first that |I| + |J| = 0, so I = J = ∅. According to Lemma 4.2.8, ξ and ξ′ are both
N-invariant, so for every p = ua.p0 ∈ X = NA.p0, we have ξ(p) = η(a.p0) = ξ′(p). Therefore
ξ = ξ′.

By induction, fix m ∈ N and assume that if |I| + |J| ≤ m, then ξ = ξ′. Consider now I, J such that
|I| + |J| = m + 1. We will distinguish the two cases J = I and J ( I.

The case J = I Assume that J = I. By Lemma 4.2.15 we know that there is a subset L ⊆ I such
that L and I\L are orthogonal and η isWIAL-invariant. Therefore by Lemma 4.2.11, we know that
η also has type (I\L, ĉI\L), for some ĉI\L ∈ AI\L. Let (cn)n∈N denote a sequence of type (I\L, ĉI\L)
such that the sequence (ψF

cn.p0
)n∈N converges to η. Up to passing to a subsequence, assume that the

sequence (ψX
cn.p0

)n∈N converges to some ξ′′.

The result will now follow by two inductions. Since âI ∈ b̂IAL (see Lemma 4.2.15) and âI
, b̂I ,

we know that L , ∅. Therefore (recall that I = J) we have |I| + |I\L| < |I| + |I| = m + 1, so
|I| + |I\L| ≤ m. By induction applied to the sequences (an)n∈N and (cn)n∈N, we deduce that ξ = ξ′′.
By induction applied to the sequences (bn)n∈N and (cn)n∈N, we deduce that ξ′ = ξ′′. In conclusion,
we have ξ = ξ′. This concludes the induction, and finishes the proof that ξ = ξ′ in the case where
J = I.

The case J ( I Assume that J ( I. Similarly to the case before, we first observe an extra
invariance of η: By Lemma 4.2.16 we know that there is a subset L ⊆ I with I = J ∪ L such that L
and I\L are orthogonal and η isWIAL-invariant. To conclude the result by induction, we have to
distinguish again two cases depending on whether I \ L = J or not.

Since η is invariant under AL, we deduce again by Lemma 4.2.11 that η has type (I\L, ĉI\L), for
some ĉI\L ∈ AI\L.

If I\L ( J, then |I| + |I\L| < |I| + |J| and |J| + |I\L| < |I| + |J|, so by applying the induction twice,
we know that ξ = ξ′.

We are left with the case I\L = J. In this case J and L = I\J are orthogonal and η is AI\J-invariant.
We show that ξ = ξ′.

By the orthogonality of J and L = I\J we have the orthogonal decomposition AI = AJAL. Let
us decompose âI = âJ âL ∈ AJAL. Up to translating by (âJ âL)−1, we can assume that âJ = e and
âI = âL ∈ AL.
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As ΣJ and ΣL are orthogonal, we have the decomposition K I = KJKL, with KJ and KL commuting.
Furthermore KJ and AJ are commuting. Since AL ⊆ AJ , we deduce that âL commutes with KJ . In
particular,

âLK I(âL)−1 = KJ âLKL(âL)−1. (4.10)

Let p ∈ X be any fixed point. We will show that ξ′(p) = ξ(p). This will be done by showing that
ξ′(p) = η(cL.p0) = ξ(p) for some cL ∈ AL that will be defined on the way. We start with ξ′(p).

Using Equation (4.10) in the generalized horocyclic decomposition given in Lemma 4.1.41, we
get X = âLK I(âL)−1NIA.p0 = KJNI âLKL(âL)−1A.p0. Write

p = kJuI â
LkL(âL)−1c.p0 ∈ X, (4.11)

where kJ ∈ KJ , uI ∈ NI , kL ∈ KL and c ∈ A. According to Lemma 4.2.8 and because we assumed
âJ = e, we know that ξ′ is invariant under KJ MNJ . Since NI ⊆ NJ , we conclude that

ξ′(p) = ξ′
(
âLkL(âL)−1c.p0

)
. (4.12)

In the decomposition A = ALAL, let us write c = cLcL. Then

âLkL(âL)−1c = cLâLkL(âL)−1cL ∈ cLGL. (4.13)

By the Iwasawa decomposition it is GL = NLALKL, and therefore we can find uL ∈ NL and
dL ∈ AL such that uLâLkL(âL)−1cL ∈ dLKL. As K = G.p0 we get from Equation (4.13):

uL ·
(
âLkL(âL)−1c.p0

)
= cLdL.p0. (4.14)

We claim that
ξ′(p) = ξ′

(
cLdL.p0

)
,

or equivalently by Equation (4.12) and (4.14), that

ξ′
(
âLkL(âL)−1c.p0

)
= ξ′

(
uLâLkL(âL)−1c.p0

)
.

Since the sequence (bnKb−1
n )n∈N converges to KJ MNJ in the Chabauty topology (see Propo-

sition 4.2.6), and as uL ∈ NL ⊆ NJ , there exists a sequence (kn)n∈N such that the sequence
(bnknbn

−1)n∈N converge to uL. Therefore:

ξ′
(
uLâLkL(âL)−1c.p0

)
− ξ′

(
âLkL(âL)−1c.p0

)

= lim
n→+∞

d
(
uLâLkL(âL)−1c.p0, bn.p0

)
− d

(
âLkL(âL)−1c.p0, bn.p0

)

= lim
n→+∞

d
(
bnknb−1

n âLkL(âL)−1c.p0, bn.p0

)
− d

(
âLkL(âL)−1c.p0, bn.p0

)

= 0.

Hence ξ′
(
uLâLkL(âL)−1c.p0

)
= ξ′

(
âLkL(âL)−1c.p0

)
, so

ξ′(p) = ξ′
(
cLdL.p0

)
.

By assumption, η is invariant under AI\J = AL. Since we have cL ∈ AL as well as dL ∈ AL and
since ξ′ and η coincide on A, we have

ξ′(p) = ξ′
(
cLdL.p0

)
= η

(
cLdL.p0

)
= η(cL.p0).
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Next we want to show that also ξ(p) = η(cL.p0). According to Equation (4.11) and Lemma 4.2.8,
we have

ξ(p) = ξ
(
kJuI â

LkL(âL)−1c.p0

)
= ξ(c.p0) = η(c.p0),

because c ∈ A. Since c = cLcL and η is invariant under AL, we conclude that ξ(p) = η(cL.p0).
Therefore ξ′(p) = ξ(p), and as p was some arbitrary point, we get ξ = ξ′.

We have shown that in any case, if η has two types (I, âI) and (J, b̂J) with associated sequences
(an)n and (bn)n respectively, then the limits ξ = limn ψ

X
an.p0

and ξ′ = limn ψ
X
bn.p0

coincide. This
shows that the map φ is well-defined.

Continuity

We want to prove that the map φ is continuous. It is clear that φ is continuous on the interior

ψF(F+). So we need to show that φ is continuous at η for some fixed η ∈ ∂ψF(F+)
C̃(F)

.

Claim 1 Let (an)n∈N be an almost geodesic sequence in A+ such that the sequence (ψF
an.p0

)n∈N
converges to η. Then (ψX

an.p0
)n∈N converges to φ(η).

Proof of Claim 1. Up to passing to a subsequence, we may assume that the sequence (an)n∈N has
some type (I, âI) and that the sequence (ψX

an.p0
)n∈N converges to some ξ. By Lemma 4.2.8, ξ is

invariant under âIK I M(âI)−1NI , so for every p = âIkI(âI)−1uIa.p0 ∈ X = âIK I(âI)−1NIA.p0, we
have ξ(p) = ξ(a.p0) = η(a.p0).

Furthermore, since φ is well-defined and η has type (I, âI), we can use this type in the definition of
φ(η), and thus φ(η)(p) = η(a.p0) = ξ(p). In conclusion, ξ = φ(η), so (ψX

an.p0
)n∈N converges to φ(η)

in C(X). �

Claim 2 Let (ηn)n∈N be a sequence in ∂ψF(F+)
C̃(F)

converging to η in C̃(F). Then (φ(ηn))n∈N
converges to φ(η) in C̃(X).

Proof of Claim 2. Up to passing to a subsequence, we may assume that the sequence (φ(ηn))n∈N
converges to some horofunction ξ in C̃(X). Up to passing again to a subsequence, we may assume
that there exists I ( ∆ such that for each n ∈ N, ηn is of type (I, âI

n) for some âI
n ∈ AI . For

each n ∈ N, consider a sequence (an,m)m∈N of type (I, âI
n) converging to ηn. Up to passing to a

subsequence, we may assume that the sequence (âI
n)n∈N is of type (J, âJ) for some J ⊆ I and some

âJ ∈ AJ . For each n ∈ N, one can find some mn ∈ N such that the sequence (an,mn)n∈N is of type
(J, âJ) and converges to η.

Fix
p = âJkJ(âJ)−1uJc.p0 ∈ X = âJKJ(âJ)−1NJA.p0.

Since the sequence (âI
nK I M(âI

n)−1NI)n∈N converges to âJKJ M(âJ)−1NJ in the Chabauty topology
(see Proposition 4.2.6), there exist sequences (kI

n)n∈N in K I M and (un,I)n∈N in NI such that the
sequence (âI

nkI
n(âI

n)−1un,I)n∈N converges to âJkJ(âJ)−1uJ . Hence

ξ(p) = lim
n→+∞

φ(ηn)(âI
nkI

n(âI
n)−1un,Ic.p0)

= lim
n→+∞

ηn(c.p0)

= η(c.p0)
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= φ(η)(âJkJ(âJ)−1uJc.p0)

= φ(η)(p).

As a consequence, we have ξ = φ(η), so the sequence (φ(ηn))n∈N converges to φ(η). �

So we have proven that the map φ in Theorem 4.2.17 is continuous. This concludes the proof of
the theorem. �

The just proven embedding shows that the horofunction compactification of the flat F = A.p0 in

X
hor

is the same as the intrinsic compactification of the flat:

Theorem 4.2.18 Let X = G/K be a symmetric space of non-compact type. Consider a G-invariant

Finsler metric on X such that the dual unit ball belongs to one of the cases I) - IV) and such that

its set of extreme sets is closed. Let X
hor

be the horofunction compactification of X with respect to

this Finsler metric. Then the closure of a maximal flat F in X
hor

is isomorphic to the horofunction

compactification of F with respect to the induced metric. ◦

4.3 The Satake Compactification of Symmetric Spaces

In this section we want to introduce the generalized Satake compactification of a symmetric space
X = G/K of non-compact type. There are several ways to define this compactification, we will
follow the one Satake went in his paper [Sat60] and like it is done in [BJ06, I.4].

4.3.1 Satake Compactifications

The Satake compactification is defined in two steps. In the first one, we construct the Standard-

Satake compactification Pn
S

of a space Pn, which is independent of X. The second step is based
on an embedding of X into Pn as totally geodesic submanifold and depends on a representation τ
of G.

The first step Define the space

Pn := PSL(n,C)/
PSU(n)

and identify it via the map m PSU(n) 7−→ m m∗ (for m ∈ PSL(n,C)) with the space of positive
definite Hermitian matrices, where m∗ := mT denotes the conjugate transpose of m ∈ PSL(n,C).
Let Hn be the real vector space of Hermitian matrices and P(Hn) the corresponding compact
projective space. For A ∈ Hn we denote the corresponding equivalence class in P(Hn) by [A]. As
Pn ⊆ Hn is a subset, the map

i : Pn −→ P(Hn)

A 7−→ [A], (4.15)

is a PSL(n,C)-equivariant embedding. Therefore we define

Pn
S

:= i(Pn) ⊆ P(Hn)

to be the Standard-Satake compactification. Note that this is a general construction independent
of X.
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The second step Let τ : G −→ PSL(n,C) be a faithful irreducible projective representation of
G. With the map

iτ : X = G/K −→ Pn

gK 7−→ τ(g)τ(g)∗ (4.16)

we can embed X into Pn as totally geodesic submanifold. There is a 1-to-1-correspondence be-
tween such embeddings and faithful projective representations of G into PSL(n,C) with the ad-
ditional condition τ(θ(g)) = (τ(g)∗)−1 for all g ∈ G, where θ denotes the Cartan involution on G.
Indeed, this additional conditions assures that τ(K) ⊆ PSU(n) and thereby τ(k)τ(k)∗ = id for all
k ∈ K. With this we define

X
S
τ := iτ(X) ⊆ Pn

S

as the Satake compactification of X with respect to the representation τ.

The action of G on Pn is given by

g · A = τ(g) A τ(g)∗, for g ∈ G, A ∈ Pn.

Therefore the first embedding iτ is G-equivariant and X
S
τ is a G-compactification, that is, the G-

action on X extends to a continuous action on X
S
τ .

Note that there are finitely many isomorphism classes of Satake compactifications, one associated
to any proper subset I ⊆ ∆, see [BJ06, Prop. I.4.35] for details. Equivalently, the isomorphism
class only depends on the Weyl chamber face of a+ containing the highest weight µτ. If µτ is
generic, that is, it is contained in the interior of a+ (that corresponds to I = ∅), then the resulting
compactification dominates all other Satake compactifications. Therefore, it is called the maximal

Satake compactification of X and denoted by X
S
τ . A Satake compactification that is dominated by

all the others is called minimal. In this case |I| = |∆ − 1|. We will see more about this later when
talking about isomorphic Satake compactifications in Proposition 4.3.20.

Remark 4.3.1 The same construction also works when τ is not irreducible. Then we obtain the
generalized Satake compactification X

S
τ as introduced and described in [GKW15]. For generalized

Satake compactifications there are infinitely many isomorphism classes. ◦

Other ways to construct the Satake compactification of X are to use parabolic subgroups and
boundary components that are glued together appropriately. Descriptions for this can be found in
[BJ06].

4.3.2 The Compactification of a Flat in a Satake Compactification

We now compare the Satake compactification with the horofunction compactification of X with
respect to an appropriate polyhedral G-invariant Finsler metric.

With the Cartan decomposition (see Lemma 4.1.37 on page 119) we can write X = KA+.p0,
where K is compact. By the previous section and Theorem 4.2.17, it is sufficient to show that
we have an W-equivariant homeomorphism between the closures of A.p0 in the horofunction
compactification and the Satake compactification respectively.

For the closure of the flat F = A.p0 in the Satake compactification we use the following result:

Proposition 4.3.2 ([Ji97, Prop.4.1]) Let τ : G → PSL(n,C) be a faithful irreducible projective

representation. Let µ1, . . . , µk be the weights of τ. Then the closure of the flat A.p0 in the Satake

compactification X
S
τ isW-equivariantly isomorphic to conv(2µ1, . . . , 2µk) ⊆ a∗. ◦
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4.3.3 The Topology

In Theorem 3.2.6 and the remark thereafter we explained explicitly the convergence behavior of
sequences in the horofunction compactification. We now want to state a similar result for the
Satake compactification to finally see in Theorem 4.3.18 that with the appropriate choice of B,

convergence in X
S
τ is equivalent to convergence in X

hor
. We follow [BJ06, I.4.15.ff].

As in the decomposition X = Kea
+

p0 the group K is compact, we will consider limits of the form
iτ(eHm p0) with iτ as in (4.16) and Hm ∈ a+ unbounded. We choose a suitable basis of Cn such
that

τ(eH) = diag
(
eµ1(H), . . . , eµn(H))

is a diagonal matrix for all H ∈ a. Then

iτ(e
Hm p0) =

[
diag

(
e2µ1(Hm), . . . , e2µn(Hm)

)]
.

It will turn out later, that convergent sequences can be characterized by special subsets of the
simple roots, so-called µτ-connected subsets:

Definition 4.3.6 Let µτ be the highest weight of the representation τ. Then a subset I ⊆ ∆ is called
µτ-connected, if the set I ∪ {µτ} is connected, that is, it is not the union of two subsets orthogonal
to each other with respect to the Killing form κ. ◦

Remark 4.3.7 An easy way to decide graphically whether a subset I ⊆ ∆ is µτ-connected or not
is to consider the Dynkin diagram3 of the roots. Add {µτ} as a vertex to the diagram and join it
with an edge to all those vertices of simple roots that are not perpendicular to µτ with respect to κ.
Then I is µτ-connected if and only if I ∪ {µτ} is a connected subset in the diagram. ◦

There is a close connection between µτ-connected subsets of ∆ and the support of the weights as
it was defined in Definition 4.1.38 on page 120:

Lemma 4.3.8 ([BJ06, Prop. I.4.18])

(1) Let µi be a weight of the representation τ. Then its support Supp(µi) is a µτ-connected subset

of ∆.

(2) Let on the other hand I ⊆ ∆ be µτ-connected. Then there is a weight µ j of τ such that

I = Supp(µ j). ◦

Example 4.3.9 We consider again SL(4,C) with the adjoint and the standard representation. The
Dynkin diagrams of both representations are shown in Figure 4.5. For notations see the Examples
4.1.33, 4.1.40 and 4.2.5 before.

α12 α23 α34

µτ=α14

α12 α23 α34

µτ=β1

Figure 4.5: The Dynkin diagram of sl(4,C) for the adjoint representation (left) and the stan-
dard representation (right).

3The Dynkin diagram is a graph whose vertices are given by the set of simple roots ∆. Two vertices are connected
with (up to three directed) edges, if the corresponding roots are not orthogonal. The number of edges depends on
the angle between the roots.
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1) Let us start with the adjoint representation. With the highest weight µτ = α14 the µτ-
connected subsets are:

∅, {α12}, {α34}, {α12, α23}, {α12, α34}, {α23, α34}, ∆.

This can either be calculated or seen by the Dynkin-diagram of sl(4,C). By Example 4.1.39
we know that

Supp(α14) = ∅, Supp(α24) = {α12},
Supp(α13) = {α34}, Supp(α34) = {α12, α23},
Supp(α23) = {α12, α34}, Supp(α12) = {α23, α34}.

So the proper µτ-connected subsets of ∆ are in 1-to-1 correspondence with the positive roots.
When looking for a root with support I = ∆ we get all the negative roots.

2) For the standard representation, the µτ-connected subsets are (see Figure 4.5 on the right):

∅, {α12}, {α12, α23}, ∆.

The support of the weights was computed in Example 4.1.39 as

Supp(β1) = ∅, Supp(β2) = {α12},
Supp(β3) = {α12, α23}, Supp(β4) = {α12, α23, α34} = ∆.

and all non-positive roots have support ∆. Here again all weights have a µτ-connected subset
as support and we find a weight with support I for all µτ-connected subsets I of ∆. ◦

Recall that a positive chamber in aI was given by aI,+ :=
{
H ∈ aI

∣∣∣α(H) > 0 ∀α ∈ I
}
. Its closure

will be denoted by aI,+.

Let (Hm) j∈N ⊆ a+ be an unbounded sequence of type (J, âJ), that is, it satisfies the following
conditions:

(1) for α ∈ J the limit lim j→∞ α(Hm) = α(log âJ) exists and is finite,

(2) for α ∈ ∆ \ J there holds α(Hm) −→ +∞.

Let I ⊆ J be the largest µτ-connected subset contained in J. It exists uniquely because the property
of being µτ-connected is closed under unions and the empty set is also µτ-connected.

Let H∞ = log(âI) ∈ aI,+ be the unique vector in aI,+ such that α(H∞) = lim j→∞ α(Hm) for α ∈ I. If
I = J then H∞ = log(âJ). Otherwise, since aI ⊆ aJ , note that H∞ does not depend on the limits of
α(Hm) for α ∈ J\I. For simplicity of notation let the weights of τ be ordered as follows: µ1 = µτ
and µ1, . . . , µk are all the weights with Supp(µi) ⊆ I. Let µk+1, . . . , µr be the other weights. As Hm

and therefore also iτ(eHm p0) is not bounded, we have k ≤ r − 1 because I = ∆ is not possible by
the unboundedness of (Hm)m. With this ordering we obtain as limit

iτ(e
Hm p0) =

[
diag

(
e2µ1(Hm), . . . , e2µr(Hm)

)]

=
[
e2µτ(Hm) diag

(
1, e−2

∑
α∈∆ c2,αα(Hm), . . . , e−2

∑
α∈∆ cr,αα(Hm)

)]

=
[
diag

(
1, e−2

∑
α∈∆ c2,αα(Hm), . . . , e−2

∑
α∈∆ cr,αα(Hm)

)]

−→
[
diag

(
1, e−2

∑
α∈I c2,αα(H∞), . . . , e−2

∑
α∈I ck,αα(H∞), 0, . . . , 0

)]
,

where we used the notation of Equation (4.4) in the first step and in the last step we used the fact
that for each i ≥ k + 1 there is an α < I such that ci,α > 0 and that therefore the whole expression
goes to zero.
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Example 4.3.10 We look at some of the sequences in SL(4,C) already considered in Example
4.2.5 on page 127.

Let
Hm = diag(m + 4, m, 6, −2m − 10) = log(am).

Then (see Example 4.2.5) Hm has type (I = {α12}, âI) with H∞ = log(âI) = diag(2,−2, 0, 0). The
set I is µτ-connected with respect to the adjoint representation, where µτ = α14. By Example
4.3.9 we know that apart from α14 also the root α24 has support contained in I. We enumerate the
weights (i.e. the positive roots) in the following order:

µ1 = α14 µ2 = α24

µ3 = α12 µ4 = α13 µ5 = α23 µ6 = α34 µ7 = α41

µ8 = α42 µ9 = α21 µ10 = α31 µ11 = α32 µ12 = α43.

For the non-positive roots µ7, . . . , µ12 we have µ j(Hm) < 0 for m big enough and

e2(µ j(Hm)−µτ(Hm)) −→ 0 ∀ j = 7, . . . , 12.

Therefore we will omit their explicit expression in the following calculation and just indicate their
presence by some dots. Then we get

iτ(e
Hm .p0) =

[
diag

(
e2α14(Hm), e2α24(Hm), e2α12(Hm), e2α13(Hm), e2α23(Hm), e2α34(Hm), ·, ·, ·, ·, ·, ·

)]

=
[
diag

(
e2(3m+14), e2(3m+10), e2·4, e2(m−2), e2(m−6), e2(2m+16), ·, ·, ·, ·, ·, ·

)]

=
[
e6m+28 diag

(
1, e−8, e−6m−20, e−4m−32, e−4m−40, e−2m+4, ·, ·, ·, ·, ·, ·

)]

−→
[
diag

(
1, e−8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)]

=
[
diag

(
1, e−2α12(H∞), 0, . . . , 0

)]
.

Next we look at the sequence

H′m = diag (m + 8, m, −m + 2, −m − 10)

with type associated to K = {α12, α34} and H′∞ = diag(4,−4, 6,−6). The set K is µτ-connected
with respect to the adjoint representation and the roots with support contained in K are

µ1 = α14, µ2 = α24, µ3 = α13, µ4 = α23.

The remaining two positive roots are µ5 = α12 and µ6 = α34. As above (omitting non-positive
roots) we calculate:

iτ(e
H′m .p0) =

[
diag

(
e2α14(H′m), e2α24(H′m), e2α13(H′m), e2α23(H′m), e2α12(H′m), e2α34(H′m), ·, ·, ·, ·, ·, ·

)]

=
[
diag

(
e2(2m+18), e2(2m+10), e2(2m+6), e2(2m−2), e2·8, e2·12, ·, ·, ·, ·, ·, ·

)]

=
[
e4m+36 diag

(
1, e−16, e−24, e−40, e−4m−20, e−4m−12, ·, ·, ·, ·, ·, ·

)]

−→
[
diag

(
1, e−16, e−24, e−40, 0, 0, 0, 0, 0, 0, 0, 0

)]

=
[
diag

(
1, e−2α12(H∞), e−2α34(H∞), e−2(α12+α34)(H∞), 0, . . . , 0

)]
.

Next we take now the same sequence but consider the standard representation. It has highest
weight µτ = β1 as given in Example 4.2.5 and the set K is not µτ-connected. The largest µτ-
connected subset contained in K is I = {α12}. Then the weights µ1 = β1 and µ2 = β2 have support
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contained in I whereas µ3 = β3 and µ4 = β4 do not. Here now we get (with dots instead of the
terms with non-positive weights):

iτ(e
H′m .p0) =

[
diag

(
e2β1(H′m), e2β2(H′m), e2β3(H′m), e2β4(H′m), ·, ·, ·, ·

)]

=
[
diag

(
e2(m+8), e2·m, e2(−m+2), e2(−m−10), ·, ·, ·, ·

)]

=
[
e2m+16 diag

(
1, e−16, e−4m−12, e−4m−36, ·, ·, ·, ·

)]

−→
[
diag

(
1, e−16, 0, 0, 0, 0, 0, 0

)]

=
[
diag

(
1, e−2α12(H∞), 0, . . . , 0

)]
. ◦

In their book [BJ06, §I.4.20], Borel and Ji show that the map

iI : ea
I,+ −→ X

S
τ ,

H∞ 7−→
[
diag

(
1, e−2

∑
α∈I c2,αα(H∞), . . . , e−2

∑
α∈I ck,αα(H∞), 0, . . . , 0

)]
. (4.17)

is well defined and an embedding. With the conditions for (Hm)m as stated above we have already
the important aspects of the proposition about converging sequences:

Proposition 4.3.11 ([BJ06, Prop. I.4.23]) Let (Hm)m ∈ a+ be an unbounded sequence. Then(
eHm p0

)
m

converges in X
S
τ if and only if there is a µτ-connected subset I ⊆ ∆ satisfying

(S1) for all α ∈ I the limit limm→∞ α(Hm) exists and is finite,

(S2) for all µτ-connected subsets I′ ⊆ ∆ properly containing I, there is an α ∈ I′ \ I with

α(Hm) −→ ∞.

Let H∞ be the unique vector in aI,+ such that α(H∞) = limm→∞ α(Hm) for all α ∈ I. Then, with

the above ordering of the weights,

iτ(e
Hm p0) −→ iI(e

H∞) =
[
diag

(
1, e−2

∑
α∈I c2,αα(H∞), . . . , e−2

∑
α∈I ck,αα(H∞), 0, . . . , 0

)]
.

The closure of the positive chamber ea
+

p0 in X
S
τ is given by

iτ(ea
+ p0) = iτ

(
ea
+

p0

)
∪

∐

I⊆∆
µτ−conn.

iI

(
ea

I,+
)
� a+ ∪

∐

I⊆∆
µτ−conn.

aI,+. ◦

Before we come to the identification of convergent sequences in X
hor

and X
S
τ , we show some

lemmas about the connection of µτ-connected subsets of I to faces of B the boundary of aI,+.
Both results will be needed in the proof of Theorem 4.3.18. We start with some notations: Let
a+I = aI∩a+ be the restricted positive Weyl chamber and a+I = aI∩a+ its closure aI . By BaI = B∩aI
we denote the restriction of B to aI .

Lemma 4.3.12 Let I ⊆ ∆ be a µτ-connected subset. Then

dim(aI) = dim a − #I. ◦

Proof. Assume the statement would not be true for some I ⊆ ∆ which we choose minimal. As we
are taking intersections of hyperplanes for constructing aI , we know that dim aI > dim a − #I, as
we loose maximal one dimension with each element of I. In other words

#I > dim a − dim aI .
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Take aI , the orthogonal complement of aI in a. Then dim aI = dim a − dim aI . With the identi-
fication a ≃ a∗ via the Killing form κ, a root α ∈ a∗ is orthogonal to its own kernel ker(α) and
therefore I ⊆ aI . But that means, that we have a (dim a − dim aI)-dimensional subspace in which
lie #I simple roots. As #I > dim a − dim aI , this is a contradiction to the fact that simple roots are
linearly independent. �

Lemma 4.3.13 Let the notations be as before. Then the relative boundary of a+ is given as

∂rel a
+ =


⋃

∅,J⊆∆
aJ

 ∩ a+. ◦

Proof. Recall that for a subset I ⊆ ∆, we defined aI =
⋂
α∈I ker(α). As every positive root in Σ+

can be written as a linear combination of simple roots with positive integer coefficients, we have

a
+ = {H ∈ a | α(H) > 0 ∀α ∈ Σ+} = {H ∈ a | α(H) > 0 ∀α ∈ ∆}.

The closure of the positive Weyl chamber is given by a+ = {H ∈ a | α(H) ≥ 0 ∀α ∈ ∆}. Therefore

∂rela
+ = {H ∈ a+ | ∃α ∈ ∆ : α(H) = 0}
= {H ∈ a | ∃α ∈ ∆ : α(H) = 0} ∩ a+

=

( ⋃

∅,J⊆∆
aJ

)
∩ a+. �

Now we want to give the correspondence between proper faces of B and µτ-connected proper
subsets I ( ∆. Let us first look at the face structure of D =W(µτ) and its negative dual B = −D◦.
Note that B is polyhedral. We again identify a � a∗ via the Killing form and denote the unique
element of a associated to an element α ∈ a∗ again by Hα. As D is the orbit of the highest weight
µτ under the Weyl groupW, which acts by reflection at the Weyl chamber walls, the facets of D
are orthogonal to one-dimensional intersections of Weyl chamber walls. Therefore all vertices of
B ⊆ a lie on such one-dimensional Weyl chamber faces.

Let F = conv{b1, . . . , bk} ⊆ ∂B be a convex polyhedral subset with vertices b j ∈ ∂B. Then for
each b j there is a subset I j ⊆ ∆ such that b j ∈ aI j and dim(aI j) = 1. Now we set

I := I1 ∩ . . . ∩ Ik ⊆ ∆.

Then I contains exactly all those roots, such that F is contained in aI . Since aJ ∩ aK = aJ∪K for all
J,K ⊆ ∆, the set I is the maximal one satisfying

F ⊆ aI

and it holds
dim(F) = dim(aI) − 1.

Given a subset I ⊆ ∆, let FI ⊆ a+ be the unique face of B determined by

BaI ∩ a+ = FI ∩ a+, (4.18)

where BaI = B ∩ aI is the restricted unit ball.

When restricting F = conv{b1, . . . , bk} to intersect a+, then the above two definitions are inverse
to each other.
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The face F∅ associated to ∅ ⊆ ∆ is the facet of B that covers a+ (and probably more). By Lemma
4.3.13, all cones in the boundary of a+ correspond to non-empty subsets I ⊆ ∆. Now we have to
characterize those subsets I ⊆ ∆ that correspond to faces of B∩ a+ and not only convex polyhedral
sets.

Lemma 4.3.14 F is a face of B if and only if I is µτ-connected. ◦

Proof. Let I ⊆ ∆ be not µτ-connected. Then there are J,K ⊆ ∆ orthogonal to each other with
I ∪ {µτ} = J ∪ K. Without loss of generality assume µτ ∈ J. Then K ⊆ I and for all roots α ∈ K it
holds

κ(α, µτ) = 0.

Therefore Hµτ is contained in the subspace aK . This means that the polyhedral set D ⊆ a has a
vertex (namely Hµτ) in the subspace aK and −Hµτ ∈ aK is a vertex of −D. By duality, B = −D◦

then has a facet orthogonal to aK . As Hµτ ∈ a+, and thereby also −Hµτ ∈ a+, this facet is exactly

F∅. Let FI ⊆ B be the subset associated to I (see Equation (4.18)) with FI ∩ a+ , ∅. The Weyl
groupW acts by the reflections at the hyperplanes and especially also at those containing aI and
aK , where aI ⊆ aK . As FI ⊆ F∅ ∩ aI and F∅ is orthogonal to aK , the set F is not a face but lies in
the interior of F∅.

Let now on the other hand I ⊆ ∆ be a µτ-connected subset. Then µτ < aI as I is not orthogonal to
µτ. Since a+I = aI ∩ a+ , ∅ and µτ ∈ a+, no element in theW-orbit of µτ lies in a+I , which means

that D does not have a vertex in a+I . Consequently also −D has no vertex lying in −a+I and F∅ is

not orthogonal to a+I . This is equivalent to FI ⊆ aI (given by BaI ∩ a+ = FI ∩ a+) being a face of
B. �

The correspondence now follows directly:

Corollary 4.3.15 Let F be the set of proper faces of B and ∆ the set of simple roots. Let a+ denote
the closure of the positive Weyl chamber in a. Then there is a 1-to-1 correspondence

{F ∈ F | F ∩ a+ , ∅} 1−1←→ {I ( ∆ | I is µτ − connected}. ◦

Using the above result, it is now easy to describe the relative boundary of the cone over a face of
B by intersection of Weyl chamber walls associated to µτ-connected subsets:

Lemma 4.3.16 Let F ⊆ B be a face and I ⊆ ∆ the associated µτ-connected subset. Then

∂relKF ∩ a+ =
( ⋃

I I′⊆∆
µτ−con.

aI′

)
∩ a+. ◦

Proof. In the subspace aI the face F is a facet of the restricted unit ball BaI . So it plays the role F∅
did before with respect to B ⊆ a. Because of the same orthogonality and reflecting argument for
not-µτ-connected subsets as in the proof of Lemma 4.3.14, we only have to consider µτ-connected
subset I′ of ∆ to be faces in the relative boundary of F. As everything is happening in aI now, the
respective subsets I′ have to contain I as a proper subset. As F might reach out over the positive
Weyl chamber, intersecting with a+ gives the result. �
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Then a sequence converges in the Satake compactification X
S
τ if and only if it converges in the

horofunction compactification a
hor

. ◦

Proof. We will the theorem by comparing the conditions on converging sequences given in Re-
mark 3.2.7 and in Proposition 4.3.11 on page 59 and 143 respectively.

⇒ Let (Hm)m ∈ a+ be an unbounded sequence such that (eHm p0)m converges in X
S
τ . Then we

know by Proposition 4.3.11 on page 143, that there is a µτ-connected subset I ⊆ ∆ satisfying
the following two conditions:

(S1) For all α ∈ I the limit limm→∞ α(Hm) exists and is finite.

(S2) For all µτ-connected subsets I′ ⊆ ∆ properly containing I, there is an α′ ∈ I′ \ I with
α′(Hm) −→ ∞.

Recall that with D = conv(µ1, . . . , µk), the set B := −D◦ defines aW-invariant unit ball in
a. This gives us a G-invariant Finsler structure on X. Note that as the representation is finite,
B is a convex polyhedral unit ball. Denote by B◦ its dual in a∗, that is, B◦ = −D. Let F be
the set of proper extreme sets of B. For notational reasons define

zm := Hm,

and consider (zm)m∈N as a sequence in a+. To show that (ψzm)m converges to some horofunc-
tion hE,p we have to show that (zm)m∈N fulfills all four conditions of Remark 3.2.7 on page
3.2.7.

As Hm was assumed to be an unbounded converging sequence, ‖zm‖B −→ ∞. Therefore the
first condition is fulfilled.

For the next three conditions we have to choose an extreme set F ∈ F and a point p ∈ V(F)⊥.
Choose F ∈ F corresponding to I from (S 1) as defined by the correspondence in Lemma
4.3.15. As F is a proper extreme set of a unit polyhedral ball, it does not contain the
origin. Hence dim V(F) = dim a − #I, where V(F) is the subspace generated by F. With
dim aI = dim a − #I and and since F ⊆ aI we conclude that

V(F) = aI .

Now we split our sequence (zm)m into two parts depending on I, according to the splitting
of a into aI and aI . For every m ∈ N let zm = zm,I + zI

m with zm,I = zm,V(F) ∈ aI and

zI
m = zV(F)

m ∈ aI be the projections of zm to aI and aI respectively.

For the second conditions of Remark 3.2.7 we have to show that the projected sequence
(zm,I)m lies in KF for n big enough. KF is a (dim aI)-dimensional subset of aI and entirely
contains F. As F ∩ a+ , ∅, we also have KF ∩ a+ , ∅. By the construction of F in Equation
(4.18) we know that F is the maximal dimensional extreme set of BaI in aI and therefore

covers at least a+I . Hence

aI ∩ a+ = KF ∩ a+.

Since zm ∈ a+ for all m ∈ N and Weyl chamber walls of a common Weyl chamber have
angle ≤ π

2 between them because of theW-action, we have

zm,I ∈ a+.

Therefore
zm,I ∈ aI ∩ a+ = KF ∩ a+ ⊆ KF .
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We know by (S 1) that the limit limm−→∞ α(Hm) exists and is finite for all α ∈ I. It is
α(Hm) = α(zI

m) for α ∈ I. As α(H) = κ(Hα,H) for all H ∈ a, also the limit limm zI
m exists

and is finite. Set

p := lim
m−→∞

zI
m ∈ aI = V(F)⊥.

Then

‖zm − zm,I − p‖B −→ 0

as m −→ ∞ and the last condition of the criterion in Remark 3.2.7 is shown.

Now we want to show that the distance between (zm,I)m and ∂relKF goes to infinity as m →
∞. By (S 2), in every µτ-connected subset I′ ⊆ ∆ properly containing I, there is an α′ ∈ I′ \ I
such that α′(Hm) −→ ∞. Assume d(∂relKF , zm,I) < ∞ and let M := supm∈N d(∂relKF , zm,I).
As the relative boundary ∂relKF ∩ a+ is the union of cones of the form aI′ ∩ a+ with I (
I′ ⊆ ∆ is µτ-connected, there has to be a µτ-connected subset J ⊆ ∆ with I ⊆ J such that
d(aJ , zm,I) ≤ M for all m ∈ N. Set hm := zm,I . We can split hm up again to hm = hm,J + hJ

m

with hm,J ∈ aJ ∩ aI = aJ and hJ
m in the orthogonal complement of aJ in aI . Then

d(aJ , zm,I) = d(aJ , hm,J + hJ
m) = d(aJ , h

J
m) < M (4.19)

because hm,J ∈ aJ . As αJ(zm) = αJ(hI
m)+αJ(zI

m) for all αJ ∈ J\I and by the boundedness of
(zI

m)m, Equation (4.19) is a contradiction to the requirement of (S2), namely that there is an
αJ ∈ J with αJ(Hm) −→ ∞. Therefore the third condition of the remark is shown.

⇐ Now let (zm)m∈N be a sequence converging in the horofunction compactification with unit
ball B = −D◦. Let F ∈ F be the extreme set of B that corresponds to this sequence. As by
Remark 3.2.7 ‖zm‖B −→ ∞, we have an unbounded sequence. The convergence in the Satake
compactification requires (Hm)m := (zm)m ⊆ a+, but we only know that (zm,V(F))m ⊆ KF for
m large enough. As described in the proof of Lemma 4.3.15, KF might be bigger than a+.
That is, F belongs not only to a+ but also to other Weyl chambers. Remember that we chose
the positive Weyl chamber arbitrarily. So we could choose another of those chambers F
belongs to as positive Weyl chamber. Then the µτ-connected subset I ⊆ ∆ corresponding to
F would still be µτ-connected with respect to this new a+. This is because F is orthogonal to
the Weyl chamber wall between these Weyl chambers and therefore I remains µτ-connected.
So by passing to a subsequence we can assume (Hm)m = (zm)m ∈ a+ for a suitable choice
of a positive Weyl chamber. For the first of the two conditions for a sequence to converge
in the Satake compactification we have to show, that for all α ∈ I the limit limm→∞ α(Hm)
exists and is finite. As (zm,I)m ∈ aI it is

α(Hm) = α(zm,I + zI
m) = α(zI

m)

with zm,I ∈ aI and zI
m ∈ aI for all m ∈ N. Then as ‖zI

m − p‖B = ‖zm − zm,I − p‖B −→ 0, the
limit of (zI

m)m exists and is finite. As α ∈ a∗ is a linear form, also α(zI
m) exists and is finite.

The second condition to show is that in every µτ-connected subset I′ ⊆ ∆ properly contain-
ing I such that for all α′ ∈ I′ \ I there holds α′(Hm) −→ ∞. The a+-part of the relative
boundary of KF contains only those Weyl chamber walls aI′ where I′ is µτ-connected and
properly contains I, see also Lemma 4.3.16. By Remark 3.2.7, d(zm,I , ∂relKF) −→ ∞. As-
sume there is a µτ-connected subset I′ ⊆ ∆ with I ( I′ such that there is an α′ ∈ I′ \ I with
α′(Hm) 9 ∞. Take a maximal of those subsets. This means in the relative boundary of KF

there is an aI′ ∩ a+ =
⋂
β′∈I′ ker(β′)∩ a+ with α′(Hm) is bounded for all α′ ∈ I′. But this is a

contradiction to the requirement that d(zm,I , ∂relKF) −→ ∞. �
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Definition 4.3.19 Two compactifications X
1
, X

2
are called isomorphic, if the identity map on X

extends to a homeomorphism between them. ◦

As stated above, there are only finitely many isomorphism classes of Satake compactifications,
depending on the Weyl chamber face the highest weight belongs to. The explicit statement goes
as follows:

Proposition 4.3.20 ([BJ06, Prop. I.11.15]) Let τ1, τ2 : G −→ PSL(n,C) be two irreducible

faithful projective representations of G whose highest weights µτ1 , µτ2 belong to the same Weyl

chamber face. Then the corresponding Satake compactifications X
S
τ1
, X

S
τ2

are isomorphic. ◦

Let us explain next how this isomorphism also works for the corresponding horofunction com-
pactifications. Two horofunction compactifications of X with two different polyhedral unit balls
B1 and B2 are isomorphic, if B1 and B2 are combinatorially the same and if additionally their
extreme sets lie in the same directions. Otherwise we could find a sequence going through an
extreme set of B1 but not of B2 and which would therefore converge to different boundary points,
and the identity could not extend to an homeomorphism on the boundaries.

Let D = conv
(W(µτ)

)
for some representation τ and let B = −D◦ be the negative polar of D.

Each extreme point of B corresponds to a facet of D and B is the convex hull of all its vertices. So
let E be a face of D. By the construction of D via reflections with respect to the Weyl chamber
walls, there is a (probably empty) subset J ⊆ ∆ such that E is invariant under reflections at aJ .
This means that E is orthogonal to each Weyl chamber wall aα with α ∈ J. The corresponding
extreme point pE will lie on aJ when a is identified with a∗ via κ.

Let now τ1, τ2 be two different representations of G with highest weights µτ1 , µτ2 in the same Weyl
chamber face. Then the convex hulls D1 and D2 are combinatorially the same. Let E1 ⊆ D1, E2 ⊆
D2 be two corresponding extreme faces. Then they are invariant with respect to reflections at
the same Weyl chamber walls. This means that they are parallel to each other. Because of this
parallelism and the discussion before, the corresponding extreme points pE1 and pE2 of B1 and
B2, respectively, lie in the same Weyl chamber face and therefore in the same direction. With
this, all extreme sets of B1 and B2 are pairwise in the same direction and so the corresponding
horofunction compactifications are isomorphic.

4.3.4 Realization of a Satake Compactification as a Horofunction Compactifica-

tion

Proposition 4.3.21 Let X = G/K be a symmetric space of non-compact type. Let τ be a faithful

irreducible projective representation of G, and µ1, . . . , µn its weights. Let D := conv(µ1, . . . , µn) ⊆
a∗. Let B = −D◦ the dual closed convex set in the maximal abelian subalgebra a ⊆ p ⊆ g.
Then the closure of the flat A.p0 in the Satake compactification isW-equivariantly isomorphic to

the closure of the flat A.p0 in the horofunction compactification of X with respect to the Finsler

metric defined by B. ◦

Proof. By Theorem 4.2.17, it suffices to compare the closure of A+.p0 in the Satake compacti-
fications with the closure of A+.p0 in the flat compactification of A.p0 with respect to the norm
defined by B. By Proposition 4.3.2 and Theorem 3.2.6, both areW-equivariantly homeomorphic
to the closed convex conv(µ1, . . . , µn) = D = −B◦.
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As by Theorem 4.3.18 a sequence (Hm)m ∈ a converges in the Satake compactification X
S
τ if

and only if it converges in the horofunction compactification X
hor

with respect to the G-invariant
Finsler metric defined by B, the statement follows. �

Theorem 4.3.22 Let X = G/K be a symmetric space of non-compact type. Let τ be a faithful

irreducible projective representation of G and µ1, . . . , µn its weights. Let D := conv(µ1, . . . , µn).
Let B = −D◦ define a unit ball in the maximal abelian subalgebra a ⊆ p ⊆ g. Then the Satake

compactification X
S
τ is G-equivariantly isomorphic to the horofunction compactification of X with

respect to the Finsler metric defined by B. ◦

Proof. We show that a sequence converges in the Satake compactification X
S
τ if and only if it

converges in the horofunction compactification X
hor

with respect to the G-invariant Finsler metric
defined by B. Let xn ∈ X be a sequence. Then we can write xn = kn · an p0, where kn ∈ K and
an ∈ A+ is uniquely determined. Up to passing to a subsequence we can assume that xn converges

in X
S
τ and that kn converges to an element k ∈ K. Therefore Theorem 4.3.22 is a consequence of

Proposition 4.3.21. �

Remark 4.3.23 Note that Theorem 4.3.22 describes explicitly the convex unit ball of the Finsler
metric which induces the horofunction compactification realizing the Satake compactifications.
For classical Satake compactifications the convex D (and hence also the unit ball B) has a particu-
larly simple description as it is just the convex hull of the Weyl group orbit of the highest weight
vector of τ. In order to obtain the Satake compactification determined by a subset I ⊆ ∆ one has
to choose a representation τ, whose highest weight vector has support equal to I. ◦

Remark 4.3.24 For generalized Satake compactifications, the same result as Proposition 4.3.2

holds: X
S
τ is W-equivariantly homeomorphic to the convex hull D of the Weyl group orbit of

the highest weights µτ1 , . . . , µτk of the irreducible components in a∗. Therefore the convex hull
D can have more than one vertex in a Weyl chamber and its negative dual B := −D◦ has some
of its vertices on Weyl chamber walls but not all of them. Therefore a different criterion for the
convergence of sequences is needed, one that does not depend on µτ-connected subset of ∆ but
chooses subsets of roots in a different way. Such a criterion will be given in a new version of
[GKW15]. ◦

4.4 The Martin Compactification of Symmetric Spaces

The Martin compactification can be defined for any complete Riemannian manifold X using the
spectrum of the Laplace-Beltrami operator and has no direct geometric interpretation. We will give
a short introduction on the basic idea first and then give a geometric characterization of the Martin
compactification of a symmetric space X of non-compact type in terms of the maximal Satake and
the geodesic compactification. Finally we show how we can realize the Martin compactification
as a horofunction compactification with respect to an appropriate norm.

We start with a short description of the basic construction of the Martin compactification. More
details can be found in [BJ06, §I.7], [Ji97] or [GJT98, §VI]. For us let X be a symmetric space
of non-compact type. Consider the Laplace-Beltrami operator ∆ which is a generalization of the
Laplacian on Rn and is also defined as the divergence of the gradient of a function: ∆ f = ∇ · ∇ f .
In local coordinates, ∆ is given by

∆ f =
1
√

g

n∑

i, j=1

∂i

( √
|g|gi j∂ j f

)
,
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where ∂i := ∂
∂xi

is the frame of the tangent bundle T M and g is the metric tensor with |g| := |det(gi j)|.

Let the operator be normalized such that ∆ ≥ 0. We want to look at the spectrum of ∆, that is, we
consider the eigenvalue equation

−∆u = λu.

Let λ ∈ R be an eigenvalue and

Cλ(X) := {u ∈ C∞(X) | ∆u = λu, u > 0}

the cone of associated eigenfunctions. If λ = 0, then C0(X) is the set of harmonic functions. Let
λ0 = λ0(X) denote the bottom of the spectrum of −∆. By a result of Cheng and Yau [CY75],
the space of eigenfunctions Cλ(X) is non-empty if and only if λ ≤ λ0(X). To each such λ ≤ λ0

one can associate a Martin compactification X ∪ ∂λ(X), defined by the asymptotic behavior of the
Green’s function4 Gλ(x, y) of ∆− λ. Each boundary point ξ ∈ ∂λ(X) then corresponds to a positive
eigenvalue function Kλ(x, ξ) ∈ Cλ(X), called the Martin kernel function. It is given as the limit
of the normalized Green functions Kλ(x, ym) := Gλ(x, ym)/Gλ(x0, y). Note that Kλ(x, y) is smooth
on X\{y}, satisfies the eigenvalue equation ∆Kλ(x, y) = λKλ(x, y) and for the basepoint x0 it holds
Kλ(x0, y) = 1.

Although the Martin compactification is not particular geometric, it can be described in terms of
the maximal Satake and the geodesic compactification. Before we give the identification explic-
itly, let us shortly recall the construction of the geodesic compactification (see [BJ06, §I.2] for
details).

Geodesic compactification Let γ1, γ2 be two geodesic rays in X. Then they are called equivalent
and denoted by γ1 ∼ γ2, if

lim sup
t→∞

d(γ1(t), γ2(t)) < ∞.

This gives an equivalence relation with equivalence classes denoted by [γ]. The sphere at infinity
X(∞) is the set of all equivalence classes:

X(∞) := {[γ] | γ is a geodesic in X}.

It can be canonically identified with the unit sphere (with respect to the Riemannian metric on X)
in p. Attaching the sphere at infinity to X gives us the geodesic compactification X ∪ X(∞).

Let us look at the geodesic compactification in a. The unit sphere of the Riemannian metric is a
Euclidean ball. By our results in the previous section the geodesic compactification is homeomor-
phic to the horofunction compactification of X with respect to the Riemannian metric, that is, the
Euclidean norm on a. This can also be seen by a direct comparison with the convergence behav-
ior of sequences we discussed in Example 3.2.9 in Chapter 3: parallel sequences have bounded
distance and thereby converge to the same limit function. But sequences following straight lines
through the origin in different directions converge to different horofunctions.

The Martin compactification then can be characterized in the following way:

Proposition 4.4.1 ([BJ06, Prop. I.7.15]) The Martin compactification X ∪ ∂λ0(X) is isomorphic

to the maximal Satake compactification X
S
max.

For λ ≤ λ0(X), the Martin compactification X ∪ ∂λ(X) is the least common refinement of the

maximal Satake compactification X
S
max and the geodesic compactification X ∪ X(∞):

X ∪ ∂λ(X) = X
S
max ∨ X ∪ X(∞). ◦

4Gλ(x, y) is a positive symmetric function such that ∆Gλ(x, y) − λGλ(x, y) = δ(x − y) and Gλ(x, ym)→ 0 for ym → ∞.
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Weyl chamber walls as pictured in Figure 4.10 on the left. In the end we want the horofunction
compactification of a to be homeomorphic to this rounded hexagon, so we choose B := −M◦ ⊆ a
as unit ball. B is a blown-up hexagon with corner points on the Weyl chamber wall, see the right
picture in Figure 4.10. When we take the horofunction compactification of X with respect to the
Finsler norm defined by B, the compactification is homeomorphic to the Martin compactification
X ∪ ∂λ(X).

Next we want to look at the convergence behavior of sequences. Let us first consider the sequence

Hm = diag(2m + k,−m,−m − k) = diag

(
0,

k

2
,−k

2

)
+ diag

(
2m + k,−k

2
,−k

2

)

for some k > 0. It is of type I = ({α23},HI) with HI = exp
(
diag

(
0,− k

2 ,−
k
2

))
∈ AI . The limiting

direction is L = diag(2,−1,−1) ∈ aI . So we have the same limiting direction for all k ∈ R but their
limits in the Martin compactification differ because each k defines a different type. This behavior
coincides well with the convergence behavior in the horofunction compactification with respect to
B. The limiting direction lies in aI where B has a corner point F and it determines the extreme set
F◦ to which the horofunction is associated. The extreme sets are shown in Figure 4.11. The type
of (Hm)m corresponds to the parameter p ∈ aI which is bounded.

ker(α12)

ker(α23)

ker(α13)

a
+ : t1 > t2 > t3

E

F ◦

ker(α12)

ker(α23)

ker(α13)

a
+ : t1 > t2 > t3

F

Figure 4.11: left: The dual unit ball with the extreme sets F◦ and E. right: The unit ball
with the extreme point F in the limiting direction.

Let us now change the sequence by replacing k with log(m) which now is unbounded:

H′m = diag
(
2m + log(m),−m,−m − log(m)

)
.

Then the new sequence (H′m)m has type I = ∅ which is exactly what we want because that corre-
sponds to a smooth extreme point of B. To know which one, we look at the limit of directions and
get L′ = diag(2,−1,−1) as before. This limit in the Martin compactification corresponds to the
horofunction associated to the non-exposed extreme point E in the relative boundary of F◦. ◦
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Toric varieties provide a basic class of algebraic varieties which are relatively simple. Many
algebro-geometric properties of projective toric varieties XΣP can be described in terms of a defin-
ing polytope P in Rn. Important for us is a homeomorphism between the non-negative part XΣ,≥0

of a projective toric variety and the dual polytope P◦. We will use this correspondence to explain
how the non-negative part XΣ,≥0 is homeomorphic to the horofunction compactification of Rn with
respect to a suitable norm. To do so, we introduce a topological model TΣ of the toric variety with
a characterization of convergent sequences. A key point then will be an identification between the
topological model TΣ and the toric variety XΣP constructed in the usual way.

5.1 Background Knowledge about Toric Varieties and Fans

We now give a summary of several results on toric varieties which are needed to understand
and prove Theorem 5.3.8. The basic references for this section are [Ful93], [CLS11], [Oda88],
[Oda78], [AMRT10], [Cox03], and [Sot03]. To minimize notational confusion, we will in this
Chapter denote more-dimensional elements in Rn or Zn (or in their dual spaces) by bold letters.

5.1.1 Affine, Projective and Toric Varieties

Originally, varieties were introduced as the solution set of a set of equations. The easiest examples
are affine and projective varieties:

An affine variety is the zero-locus of a set S of polynomials,

V = V(S ) = {x ∈ Cn | f (x) = 0 ∀ f ∈ S } ⊆ Cn.

A projective variety is the zero-locus of a set S of homogeneous polynomials:

V = V(S ) = {x ∈ Pn | F(x) = 0 ∀F ∈ S } ⊆ Pn.

By the Hilbert Basis Theorem, the set S can be assumed to be finite. So affine (or projective) vari-
eties can be embedded into Cn (or Pn) for some n. Morphisms between varieties are regular maps,
that is, they are maps which are locally given by polynomials. There are also abstract varieties
that can not be embedded. For us an abstract variety X is obtained by gluing finitely many affine
varieties Vα along common Zariski open (definition see below) subsets: Let Vα be finitely many
affine varieties such that for all α, β there are Zariski open subsets Vβα ⊆ Vα and isomorphisms
gβα : Vβα � Vαβ such that the following three conditions are satisfied for all α, β, γ:
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1) gαβ = g−1
βα

,

2) gβα(Vβα ∩ Vγα) = Vαβ ∩ Vγβ,

3) gγα = gγβ ◦ gβα on Vβα ∩ Vγα.

Then we define the abstract variety X by

X :=
∐

α

Vα/ ∼,

where the equivalence relation is given by x ∼ y if and only if x ∈ Vβα, y ∈ Vαβ such that
y = gβα(x). With Wα := {[x] ∈ X | x ∈ Vα} we get an open cover of X. As Wα � Vα by the
projection on the equivalence class, X locally looks like an affine variety. This definition is due to
[CLS11, Def. 3.0.5] and corresponds to the gluing of schemes. We will use this construction later
in Subsection 5.1.3 to construct the toric variety XΣ associated to a fan Σ out of affine varieties
Uσ.

Sometimes the affine/projective varieties as we described them above are named affine/projective
algebraic sets and only called varieties, if they are irreducible, that is, if they can not be written as
the union V1 ∪V2 of two (smaller) algebraic sets V1 , V,V2 , V . We will call both kinds varieties
and distinguish between general and irreducible ones.

The topology on algebraic varieties is the Zariski topology. Closed sets in this topology are the
general algebraic varieties as defined above. So for two varieties V2 ⊆ V1 the complement W :=
V1 \V2 is called a Zariski open subset of V1. Considering the set S 2 of (respectively homogeneous)
polynomials defining V2, then W are exactly those points of V1 where not all equations of S 2

vanish.

Definition 5.1.1 A toric variety over C is an irreducible variety V over C such that

1) the complex torus T := (C×)n can be embedded as a Zariski open subset of V and

2) the action of T on itself by multiplication extends to an algebraic action of T on V . ◦

Example 5.1.2 We collect some examples of toric varieties:

1) (C×)n itself is a toric variety.

2) Consider
W := V(x1 · . . . · xn) = {z ∈ Cn | zi = 0 for some i ∈ {1, . . . , n}},

where zi denotes the i-component of z. The identity (C×)n = Cn \W tells us that (C×)n ⊆ Cn

is a Zariski open subset. Therefore Cn is an affine toric variety.

3) Pn is also a toric variety. To see this, consider the algebraic set

U := Pn \W,

where W = V(x0x1 · · · xn) . Then under the embedding

(C×)n −→ Pn

(t1, . . . , tn) 7−→ (1 : t1 : . . . : tn)

(C×)n can be identified with U and is therefore a Zariski open subset of Pn. The torus action
is given by

(t1, . . . , tn).(x0 : x1 : . . . : xn) = (x0 : t1x1 : . . . : tnxn)

and shows that Pn is a projective toric variety.
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4) If V,W are toric varieties, so is V ×W. Therefore P1 × P1 is a toric variety to which we will
come back again later in Example 5.1.15. ◦

Associated to the torus (C×)n, there are two important classes of maps: the characters, which
are regular group homomorphisms χ : (C×)n −→ C×, and the one-parameter subgroups (or co-
characters), which are regular group homomorphisms λ : C× −→ (C×)n.

A point m = (a1, . . . , an) ∈ Zn defines a character χm by

χm : (C×)n −→ C×

t 7−→ χm(t) = tm =

n∏

j=1

t
a j

j .
(5.1)

All characters of (C×)n arise this way, therefore the group M := Homreg((C×)n,C×) of characters
is isomorphic to Zn.

The one-parameter-subgroup associated to u = (b1, . . . , bn) ∈ Zn is

λu : C× −→ (C×)n

r 7−→ λu(r) = (rb1 , . . . , rbn).

All one-parameter-subgroups of (C×)n are defined this way, so we again have an isomorphism of
the group of one-parameter-subgroups to Zn, N := Homreg(C×, (C×)n) � Zn.

When we combine these two maps, we get a map χm ◦ λu : C× −→ C× given by r 7→ r〈m|u〉, where
〈m|u〉 = ∑

j aibi is the normal dot product on Zn.

Remark 5.1.3 Most literature does not work directly with Zn and Rn but in a more general setting
where the algebraic torus T = Gn

m is not equal but isomorphic to (C×)n. Then characters are regular
group homomorphisms χ : T −→ C× with M = HomZ(T,C×) � Zn and one-parameter-subgroups
are elements of N = HomZ(C×,T ) � Zn. The isomorphism T � (C×)n induces dual bases of M
and N such that even in the general setting, characters are Laurent monomials and one-parameter-
subgroups are monomial curves. ◦

5.1.2 Rational Polyhedral Cones, Fans and Polytopes

We fix the standard lattice Zn in Rn, which gives Rn an integral structure and also a Q-structure,
Qn ⊆ Rn. As cones and their faces play an important role when building toric varieties, we recall
the definition:

Definition 5.1.4 A rational polyhedral cone σ ⊆ Rn is a cone generated by finitely many elements
u1, · · · , um of Zn, or equivalently of Qn:

σ = {λ1u1 + . . . + λmum ∈ Rn | λ1, · · · , λm ≥ 0}. ◦

Usually, σ is assumed to be strongly convex: σ ∩ −σ = {0}, that is, σ does not contain any line
through the origin. As we require a cone σ to be generated by only finitely many elements, every
extreme face of σ is exposed and will be just called a face.

For each strongly convex rational polyhedral cone σ, we can define its dual cone:
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faces of the dual polytope ∆◦ is called the normal fan of the polytope ∆ (it is defined for example
in [Cox03, pp. 217-218] or [Ful93, Proposition, p. 26]). Is is usually constructed by normal cones
of the ∆, see also [Wei07] for more details. ◦

It is known that not every fan Σ in Rn comes from such a rational convex polytope P, as the
following example shows.

Example 5.1.12 ([Ful93, p.25]) Take the fan generated as follows: at first consider the eight half-
lines through the origin and one of the vertices of a standard cube. Now replace the vertex (1, 1, 1)
by (1, 2, 3). Then it is not possible to find eight points, one on each of the half-lines, such that for
each of the six cones, the four corresponding generating points lie on one affine hyperplane. This
can be seen by trying to solve the corresponding system of linear equations. ◦

In [Ful93, p. 26] and [Cox03, p. 219], the polar P◦ of a rational polytope P is used to construct a
toric variety. Recall the definition of the polar of a convex polytope:

P◦ = {v ∈ Rn | 〈v, u〉 ≥ −1, for all u ∈ P}. (5.3)

When P is a rational convex polytope containing the origin as an interior point, then so is P◦.

By Remark 2.4.14 on page 27 (see also [Ful93, p. 24] or [HSWW18, Lemma 3.7]), we know that
there is a duality between P and P◦ which is given by an one-to-one correspondence between the
set of faces of P and the set of faces of P◦ which reverses the inclusion relation. Explicitly, to each
face F of P there is a unique dual face F◦ of P◦ satisfying:

1) For any x ∈ F and y ∈ F◦ it holds: 〈x, y〉 = −1,

2) dim(F) + dim(F◦) = n − 1.

5.1.3 Constructing a Toric Variety from a Fan

The way how a toric variety XΣ is constructed from a fan Σ and a description of its topology in
terms of Σ is crucial to the proof of Theorem 5.3.8. Given a fan Σ in Rn, its associated abstract
toric variety XΣ is constructed as follows in two steps:

Step 1: Build affine toric varieties Uσ

We first construct an affine toric variety Uσ for each cone σ ∈ Σ. By Gordan’s Lemma, the affine
semigroup,

S σ := σ∨ ∩ Zn = {m ∈ Zn | 〈m|u〉 ≥ 0 ∀u ∈ σ}

is finitely generated and it contains the origin, see also [CLS11, p. 30]. Let m1, . . . ,mk ∈ σ∨ ∩ Zn

be a set of generators of this semigroup, that is,

S σ =


k∑

i=1

aimi|ai ∈ Z≥0

 .

Consider the map
ϕ : (C×)n −→ Ck,

t 7−→ (χm1(t), · · · , χmk (t))
(5.4)
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based on the characters as defined in Equation (5.1). Taking the Zariski closure of the image we
get the affine toric variety Uσ:

Uσ := ϕ((C×)n) ⊆ Ck. (5.5)

This means that Uσ is the smallest variety containing the image ϕ((C×)n). See [CLS11, Thm.
1.1.8] for a proof that is actually is an affine toric variety.

Remark 5.1.13 From the algebraic geometry side of the story, Uσ is often defined as the spectrum
of the coordinate ring C[S σ], that is, the set of its prime ideals:

Uσ = Spec(C[S σ]). (5.6)

A subset of the set of prime ideals are the maximal ideals, Specm(C[S σ]) which correspond to
closed points of Uσ. Since S σ is a semigroup, closed elements in (i.e.elements of Specm(C[S σ]))
correspond to semigroup homomorphisms from S σ to C, where C is regarded a group under mul-
tiplication. See [Ful93, Sec. 1.3] for details on this construction.

From these two ways to describe the affine variety Uσ there are also two ways to describe closed
points of Uσ: as points in Ck or as semigroup homomorphisms γ : S σ → C. We will give this
bijective correspondence explicitly in Section 5.1.4 on page 164. For more details see the remark
after Proposition 1.2 in [Oda88] or Theorem 1.2.18 and Proposition 1.1.17 in [CLS11], where YA
denotes the Zariski closure of the image of the map (5.4) in a slightly more general setting (see
Definition 1.1.7 in [CLS11]).

The coordinate ring of Uσ is

C[S σ] = span{tm | m ∈ S σ} ⊆ C[t1, t
−1
1 , t2, t

−1
2 , . . . , t−1

n ]. ◦

Step 2: Glue the Uσ together to XΣ

For any two cones σ1, σ2 in Σ, if σ1 is a face of σ2, then Uσ1 is a Zariski open subvariety of Uσ2 .
Since for any two cones τ, σ ∈ Σ the intersection τ∩σ is a common face of both τ and σ, Uτ∩σ can
be identified with a subvariety of both Uτ and Uσ. The isomorphism gστ : Uτ ⊃ Uσ∩τ � Uτ∩σ ⊆ Uσ

satisfies the compatibility conditions given on page 156.

So we glue the affine toric varieties Uσ together along these common subvarieties (i.e. with respect
to the relation ∼ coming from the inclusion relation of faces) to obtain the abstract variety XΣ:

XΣ :=
⋃

σ∈Σ
Uσ/ ∼ .

This abstract variety actually is toric. To see this, we need an embedded torus and a continuous
extension of the torus action on itself to XΣ. For the embedded torus, note that every fan contains
the origin {0} as a face and (see Example 5.1.15(1) below) it is U{0} = T . Therefore XΣ canonically
contains T as a Zariski open subset. To get the torus action, we see elements of Uσ as maps
γ : S σ → C. For some t ∈ T we then get t.γ ∈ Uσ given by:

t.γ : S σ −→ C

m 7−→ χm(t)γ(m).

This gives us an action on the affine varieties Uσ and by gluing also on XΣ. For the trivial cone
{0}, the action coincides with the usual group multiplication on T

The toric variety XΣ is compact if and only if the support of Σ is equal to Rn, that is, if Σ gives a
rational polyhedral decomposition of Rn ([Cox03, Thm. 9.1]).
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together to P1 × C with coordinates ([t1 : t2], y−1). For XΣ we have to glue these two pieces
together identifying the second components. Therefore we obtain

XΣ = P
1 × P1

with coordinates ([t1 : t2], [s1 : s2]). Another way to describe this toric variety is as a
quotient by a group action, see [CLS11, §5] for the general theory and the Examples 5.1.3,
5.1.8 and 12.2.2 in [CLS11] for this specific example. It is not hard to see that

P1 × P1 =
C4 \

(
(C × {0}) ∪ ({0} × C2)

)/
(C×)2,

with the torus action on P1 × P1 given by (t1, t2).(a, b, c, d) = (t1a, t1b, t2c, t2d) for all
(t1, t2) ∈ T = (C×)2 and (a, b, c, d) ∈ C4.

4) We look again at the cone given in the first example of Example 5.1.9. Its dual cone is
generated over Z≥0 by the three elements

m1 = (1, 0), m2 = (1, 1), m3 = (1, 2).

The map ϕ then maps some t = (t1, t2) ∈ (C×)2 to the point (t1, t1t2, t1t2
2) ∈ C3. For the

coordinate ring we obtain

C[S σ] = C[t1, t1t2, t1t2
2] = C[X,Y,Z]/

〈Y2 − XZ〉

and thereby the affine variety is

Uσ = {(x, y, z) ∈ C3 | y2 − xz = 0} ⊆ C3,

which is a cone over a conic. ◦

Coming from the above construction of XΣ, there is a strong correspondence between fans Σ ⊆ Rn

and toric varieties which are normal2, namely:

1) For every fan Σ of Rn, there is an associated toric variety XΣ, which is a normal algebraic
variety.

2) If a toric variety X is a normal variety, then X is of the form XΣ for some fan Σ in Rn.

Because of this correspondence, toric varieties are often required to be normal, for example in
[Ful93]. In this thesis, we follow this convention and require all toric varieties to be normal. The
following lemma shows that this is not a strong restriction:

Lemma 5.1.16 ([CLS11, Thm. 1.3.5]) Uσ = Spec(C[S σ]) is normal if and only if σ ⊆ Rn is a

strongly convex rational polyhedral cone. ◦

Remark 5.1.17 In [Cox03, Ex. 7.1 and Thm. 7.2] Cox gives the following characterization of
normality for affine toric varieties: only if we take all generators mi such that S σ is generated by
them over the nonnegative integers Z≥0, then the affine variety Uσ defined as the Zariski closure
of the map ϕ (Equation (5.5)) is the normal affine toric variety defined by σ and the lattice Zn as
given in Equation (5.6). If we use less generators mi then we change the lattice (i.e. get another
toric variety) or loose normality. ◦

2Normality is a quite algebraic condition for general varieties, Remark 5.1.17 shows what it means in our context of
toric varieties.
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those characters, that can be extended regularly to the (partial) compactification of T by Uσ. More
details can be found in [CLS11, Thm. 1.1.17] and its proof.

For the other way, let m1, . . . ,mk ∈ S σ be a set of generators. Then the point associated to a map
γ : S σ −→ C is given by

(γ(m1), . . . , γ(mk)) ∈ Uσ ⊆ Ck.

We now define the distinguished point xσ, more details about it can be found in [CLS11, p.116],
where the distinguished point is denoted by γσ:

Definition 5.1.20 For each cone σ, the distinguished point xσ is defined to be the semigroup
homomorphism

xσ : S σ = σ
∨ ∩ Zn −→ {0, 1}

m 7−→
{

1 if m ∈ S σ ∩ σ⊥ = σ⊥ ∩ Zn

0 otherwise.

◦

As σ⊥ is a face of σ∨, for m,m′ ∈ S σ we have m +m′ ∈ S σ ∩ σ⊥ if and only if both m and m′

are already elements of S σ ∩ σ⊥. This shows that the map xσ as defined above is a semigroup
homomorphism.

The smallest cone {0} of the fan Σ has {0}∨ = {0}⊥ = Rn as dual cone and the distinguished point
is (1, · · · , 1) in this case. The T -orbit through this point gives the embedding of T into Uσ. Recall
that any one-parameter subgroup λ : C× → (C×)n was of the form

λu(z) = (zb1 , · · · , zbn),

where u = (b1, · · · , bn) ∈ Zn. Let u be an integral vector contained in the relative interior of
the cone σ. By [CLS11, Proposition 3.2.2] (see also [Cox03, p. 212] or [Ful93, p. 37]), the
distinguished point is given by

xσ = lim
z→0

λu(z) ∈ Uσ.

This limit exists and the two definitions of xσ are equivalent by the following argument: For
u ∈ σ∩ Zn, the limit point limz→0 λu(z) corresponds to the semigroup homomorphism given by

αu : S σ −→ C

m 7−→ lim
t→0

t〈m,u〉.
(5.7)

As u was chosen to be in the relative interior of σ, we have 〈m,u〉 ≥ 0 for all m ∈ S σ and the limit
exists. The pairing 〈m,u〉 vanishes for exactly those m ∈ S σ that are elements of σ⊥, otherwise
the pairing is positive. As the parameter t has the pairing in the exponent, the homomorphism
from Equation (5.7) corresponds to the map given in Definition 5.1.20.

Before we state the Orbit-Cone-Correspondence, we have a look at some examples about the
correspondence stated above.

Example 5.1.21

1) We first consider the fan given in Example 5.1.15 (3). It has nine cones and it gives us
XΣ = P1 × P1 as toric variety. The action of T = (C×)2 is given by

(s, t) . ([1 : x], [1 : y]) = ([1 : sx], [1 : ty])
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for (s, t) ∈ T and ([1 : x], [1 : y]) ∈ P1 × P1. In other words, T is contained in XΣ via
(t1, t1) 7−→ ([1 : t1], [1 : t2]). For u = (a, b) ∈ relint(σ1) in the first quadrant, we have
a, b > 0 and therefore

λu(t) = ([1 : ta], [1 : tb])
t→0−−−→ ([1 : 0], [1 : 0]).

For the face µ1 < σ1, a is still positive while b = 0. Then tb = 1 for any t ∈ C and we get

λu(t) = ([1 : ta], [1 : tb])
t→0−−−→ ([1 : 0], [1 : 1]).

A similar calculation using homogeneous coordinates can be done for any of the nine cones.
The results are listed in Table 5.7.

cone conditions for u = (a, b) limt→0 λu(t)
σ12 a, b > 0 ([1 : 0], [1 : 0])
σ23 a < 0, b > 0 ([0 : 1], [1 : 0])
σ34 a, b < 0 ([0 : 1], [0 : 1])
σ14 a > 0, b < 0 ([1 : 0], [0 : 1])
µ1 a > 0, b = 0 ([1 : 0], [1 : 1])
µ2 a = 0, b > 0 ([1 : 1], [1 : 0])
µ3 a < 0, b = 0 ([0 : 1], [1 : 1])
µ4 a = 0, b < 0 ([1 : 1], [0 : 1])
τ = {0} a = b = 0 ([1 : 1], [1 : 1])

Figure 5.7: The distinguished points xσ for all cones σ of the fan Σ of P1 × P1 as given in
Figure 5.5.

Note that there are three kinds of limits, depending on the dimension of the cone. Accord-
ingly the dimension of a T -orbit of such a limit for a cone σ is n − dim(σ) over C.

Now we want to calculate the distinguished point by using Definition 5.1.20. As the two-
dimensional cones σi j are generated by e∗i , e

∗
j and are all self-dual, the distinguished point

is (0, 0) for all four of them. Note that we get the same for all four cones because these
are the coordinates in a local chart. By the action of the torus and the gluing of the Uσi j to
XΣ, we get the same results as in Table 5.7 above. Now consider the one-dimensional cone
µ1 generated by e1. It is a face of σ12 and σ14. Its orthogonal cone is the y-axis, whose
positive part is a face of σ∨12 and its negative part is a face of σ∨14. Therefore the second
component now is mapped to 1 instead of 0 by the distinguished point xµ1 which then gives
us xµ1 = (0, 1) in local coordinates or ([1 : 0], [1 : 1]) as above. The other one-dimensional
cones go the same. For the trivial cone {0} the distinguished point maps all generators to 1,
as its dual cone is R2. This then gives us ([1 : 1], [1 : 1]).

2) We come back to Example 5.1.15(4), which was the affine variety associated to the cone
given in Example 5.1.9(1). In Figure 5.8 we show again the picture we had before: S σ was
generated by the three elements

m1 = (1, 0), m2 = (1, 1), m3 = (1, 2)

and we already know that

C[S σ] = C[t1, t1t2, t1t2
2] = C[X,Y,Z]/

〈Y2 − XZ〉.
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Definition 5.1.22 For σ ∈ Σ we denote the orbit of the associated distinguished point xσ under
the action of the torus by orb(σ):

orb(σ) := T.xσ ⊆ XΣ. ◦

The previously announced bijective correspondence between T -orbits and cones now states as
follows:

Proposition 5.1.23 (Orbit-Cone-Correspondence) For every toric variety XΣ of the fan Σ, there

is a bijective correspondence between cones σ ∈ Σ and T = (C×)n-orbits in XΣ given by the orbit

of the distinguished point xσ ∈ Uσ. The orbit orb(σ) = T.xσ is a complex torus isomorphic to

(C×)n−dimσ. In particular, the open and dense orbit (C×)n corresponds to the trivial cone {0}. ◦

More about this correspondence can be found for example in [Ful93, §3.1], [CLS11, Thm. 3.2.6]
and [Cox03, §9]

5.2 A Topological Model of Toric Varieties

In order to better understand the toric variety XΣ as a compactification of (C×)n, we now want to
give a topological description of XΣ which clearly shows its dependence on the fan Σ and also
describes explicitly sequences in (C×)n which converge to points in the complement XΣ \ (C×)n.
The topological model TΣ will be constructed as the complex torus T to which we attach some
boundary components O(σ). Later in this section we will then show that the topological model
TΣ and the usual construction of XΣ as the variety obtained from a fan are homeomorphic as T -
topological spaces. The key point of this homeomorphism will be an identification of the boundary
components O(σ) of TΣ with the T -orbits orb(σ) in XΣ. The identification is based on the fact that
both are associated to the same cone σ ∈ Σ in the fan and each of them contains a distinguished
point xσ ∈ Uσ and 0σ ∈ O(σ), respectively, that correspond to each other.

5.2.1 Definition of the Topological Model T Σ

Note that in terms of the standard integral structure iZ ⊆ C, we have an identification (iZ)\C � C×
via the map z 7→ e−2πz. When Re(z) −→ +∞, it holds e−2πz → 0. Figure 5.9 shows a picture how
the identification works.

0

1

e
−2πz

− 1

2π
ln(z)

(iZ)\C
C∗

Figure 5.9: The identification (iZ)\C � C×.

Then the n-dimensional exponential map gives an identification

(iZn)\Cn
� (C×)n

z 7−→ e−2πz = (e−2πz1 , · · · , e−2πzn).
(5.8)
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Conversely, using the complex logarithm − 1
2π ln, we get an identification

(C×)n
� (iZn)\Cn

a 7−→ − 1

2π
ln(a),

(5.9)

where for a = (r1eiθ1 , . . . , rneiθn) the image is given by

− 1

2π
ln(a) =

1

2π
(ln(r1) + iθ1, . . . , ln(rn) + iθn).

Given a fan Σ ⊆ Rn, we will now define a bordification TΣ of the torus T = (C×)n and show in
Proposition 5.2.11 that TΣ is homeomorphic to the toric variety XΣ as T -topological spaces.

Definition 5.2.1 For each cone σ ∈ Σ, define a boundary component

O(σ) := (iZn)\Cn/ spanC(σ). ◦

By πσ we denote the projection map

πσ : (iZn)\Cn −→ (iZn)\Cn/ spanC(σ) = O(σ).

Note that O(σ) is a complex torus (C×)n−dimσ of dimension n − dimσ. When σ = {0}, then
O(σ) = T . Later we will identify O(σ) with the T -orbits orb(σ) as defined in Definition 5.1.22.

Definition 5.2.2 Define a topological bordification TΣ by

TΣ := T ∪
∐

σ∈Σ,
σ,{0}

O(σ) (5.10)

with the following topology: A sequence

zm = xm + iym ∈ T = (iZn)\Cn,

where xm ∈ Rn and ym ∈ Zn\Rn, converges to a point z∞ ∈ O(σ) for some σ ∈ Σ if and only if the
following conditions hold:

1) The real part xm can be split up as xm = x′m + x′′m such that for m −→ +∞ it holds:

a) x′m is contained in the relative interior of the cone σ and its distance to the relative
boundary of σ goes to infinity,

b) x′′m is bounded.

2) the image of zm in O(σ) = iZn\Cn/ spanC(σ) under the projection πσ : (iZn)\Cn → O(σ)
converges to the point z∞:

πσ(zm) −→ z∞. ◦

Note that the imaginary part ym of zm lies in the compact torus Zn\Rn = (S1)n, and the second
condition controls both the imaginary part ym and the bounded component x′′m of the real part xm.
It is clear from the definition that the bordification TΣ is a compactification of T if and only if the
support of Σ is equal to Rn.





5.2. A Topological Model of Toric Varieties 171

the distance of xm to the relative boundary of σ is bounded. So we can not fulfill condition
1a) of Definition 5.2.2 with respect to the cone σ. Indeed, we could construct x′m ∈ relint(σ)
with unbounded distance to ∂rel(σ), but then the second part x′′m can not be bounded.

So we try τ1 next. We already have a suitable splitting given in Equation (5.11). Now we
have to determine the image of zm under the projection πτ1 , where spanC(τ1) = C(2,−1). A
system of linear equations yields

zm =

[
m − k

5
+ i

(
−1

5
y2 +

2

5m

)] (
2
−1

)
+

[
2k

5
+ i

(
2

5
y2 +

1

5m

)] (
1
2

)
,

and we conclude

zm −→ z∞ =

[
2k

5
+ i

2

5
y2

] (
1
2

)
∈ O(τ1). ◦

So far we have TΣ constructed as T to which we attached some boundary components O(σ) and
with a topology how sequences on T converge to these boundary parts. What is still missing is
a continuous action of T on TΣ compatible with the topology. Note that by the identification
(iZn)\Cn

� (C×)n, Cn and iZn\Cn act on T and on every boundary component O(σ) by translation.
These translations are compatible in the following sense.

Lemma 5.2.5 Let zm ∈ T = iZn\Cn be as sequence convergent in O(σ) ⊆ TΣ. Then for any vector

z ∈ Cn, or rather its image in iZn\Cn, the shifted sequence zm + z is also convergent. Furthermore,

lim
n→+∞

(z + zm) = πσ(z) + lim
n→+∞

zm. ◦

Proof. The proof follows directly from Definition 5.2.2 using the linearity of the projection and
the fact that z is constant. �

This implies the following result about the torus action on TΣ:

Proposition 5.2.6 The action of T = (C×)n on itself by multiplication extends to a continuous

action on TΣ, and the decomposition of TΣ into O(σ) as given in Equation (5.10) gives the orbit

decomposition of TΣ with respect to the action of T . ◦

Proof. We note that the multiplication of the torus T on itself and on the boundary components
O(σ) corresponds to translation in Cn and iZn\Cn by Equation (5.9). Then the statement follows
from Lemma 5.2.5. �

5.2.2 The Identification of the Models: XΣ � T Σ

We know want to identify the topological model TΣ with the abstract variety XΣ, which both
contain the torus T . We will do this by identifying the boundary components O(σ) ⊆ TΣ with
the T -orbits orb(σ) ⊆ XΣ and show compatibility with the convergence of sequences. This will
happen in Proposition 5.2.11. Before we come to that we define a distinguished point 0σ in
the bordification TΣ which will play the same role under convergence as the distinguished point
xσ ∈ Uσ ⊆ XΣ which we defined in Definition 5.1.20.

Definition 5.2.7 Consider the projection π′σ : Cn → O(σ) = (iZn)\Cn/ spanC(σ). Then the
distinguished point 0σ in O(σ) ⊆ TΣ is defined to be the image of the origin of Cn under π′σ:

0σ := π′σ(0) ∈ O(σ). ◦
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Remark 5.2.8 Note that the projection πσ after Definition 5.2.1 was only given for (C×)n. The
projection π′σ arises from πσ by continuous extension. ◦

Lemma 5.2.9 For any cone σ ∈ Σ, a sequence zm in (C×)n = T converges to the distinguished

point xσ in the toric variety XΣ if and only if it converges to the distinguished point 0σ in the

topological model TΣ. ◦

Proof. Recall that by Definition 5.1.20 under the embedding ϕ : (C×)n → Cn, the coordinates tmi

of the distinguished point xσ are either 1 or 0, depending on whether the element mi ∈ σ∨ ∩ Zn

is zero or positive on σ. This implies that a sequence zm ∈ (C×)n converges to the distinguished
point xσ if and only if the following conditions are satisfied:

1) zm
m

m→∞−−−−→ 0 if m ∈ σ∨ ∩ Zn with m|σ > 0,

2) zm
m

m→∞−−−−→ 1 if m ∈ σ∨ ∩ Zn with m|σ = 0.

Note that the vectors in σ∨ ∩ Zn with m|σ ≥ 0 span the dual cone σ∨, i.e., linear combinations
of these vectors with nonnegative coefficients give σ∨. In terms of the identification (C×)n =

iZn\Cn, write zm = xm + iym with xm, ym ∈ Rn as in the definition of the topology of TΣ. Then
(zm)m = e−2π〈zm |m〉. As the dual cone σ∨ is the intersection of all positive half-spaces generated by
the faces τ < σ, the above conditions for zm are equivalent to the following conditions:

1) The real part xm can be written as xm = x′m + x′′m such that when m→ +∞,

a) the first part x′m is contained in the interior of the cone σ and its distance to the relative
boundary of σ goes to infinity,

b) the second part x′′m is bounded.

2) The image of zm in O(σ) = iZn\Cn/ spanC(σ) under the projection

iZn\Cn → iZn\Cn/ spanC(σ)

converges to the image in O(σ) of the zero vector in Cn.

By the definition of TΣ, this is exactly the conditions for the sequence zm to converge to the
distinguished point 0σ in TΣ. �

Example 5.2.10 In Example 5.2.4 we had two sequences converging to different cones with re-
spect to the topology of TΣ. Now we look at the same sequences again to illustrate the equivalence
of converging conditions given in the proof before. The generators of S σ were

m1 = (1, 0), m2 = (1, 1), m3 = (1, 2).

We first look at

zm =

(
m
k

)
+ i

(
y1

y2

)

with y1, y2 ∈ Z\R, from which we know that it converges with respect to σ to z∞ = 0 = 0σ. We
want to verify that also zm → xσ. To do so, we have to show that z

m j
m → 0 for all j ∈ {1, 2, 3}. By

the identification (iZn)\Cn
� (C×)n in Equation 5.8 we get

zm =

(
e−2πme−2πiy1

e−2πke−2πiy2

)
,

and therefore for the limits when m→ ∞:

(zm)m1 = e−2πme−2πiy1 −→ 0
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(zm)m2 = e−2πme−2πke−2πi(y1+y2) −→ 0

(zm)m3 = e−2πme−4πke−2πi(y1+2y2) −→ 0.

So for this class of sequences, the convergence behavior in TΣ and XΣ coincides. For the second
sequence

zm =

(
2m
−m + k

)
+ i

(
1
m
y2

)

we already know that in the topological model it converges to z∞ =
[

2
5 k + i 2

5 y2

]
(1, 2). So we set

k = y2 = 0 such that the sequence converges to the distinguished point 0(τ1). Now we have to
show that it also converges to the distinguished point xτ1 in XΣ. The identification then yields

zm =

(
e−4πme−2πi 1

m

e2πm

)

and so

(zm)m1 = e−4πme−2πi 1
m −→ 0

(zm)m2 = e−4πme2πme−2πi( 1
m ) −→ 0

(zm)m3 = e−4πme4πme−2πi( 1
m ) −→ 1.

This was exactly the distinguished point xτ1 we calculated before in Example 5.1.21. ◦

With these examples and Lemma 5.2.9 in mind, we are now ready to show the identification
XΣ ≃ TΣ. This description of the toric variety XΣ as a topological T-space will be one key result in
the proof of Theorem 5.3.8. Although the proposition is well known in literature (see for example
[AMRT10, pp. 1-6], [Oda78, §10], [Cox03, p. 211] or [Ful93, p. 54]), it is usually not explicitly
written down or proven.

Proposition 5.2.11 The identity map on T = (C×)n extends to a homeomorphism XΣ → TΣ,
which is equivariant with respect to the action of T = (C×)n, and the T -orbits orb(σ) in the toric

variety XΣ are mapped homeomorphically to the boundary components O(σ). ◦

Proof. The idea of the proof is to use the continuous actions of T on XΣ and TΣ to extend the
equivalence of convergence of interior sequences to the distinguished point xσ = 0σ (Lemma
5.2.9) to other boundary points.

Under the action of T , the orbit T · 0σ in TΣ gives O(σ). As pointed out in the Orbit-Cone-
Correspondence (Prop. 5.1.23 on page 168), the orbit orb(σ) = T · xσ in XΣ gives the orbit
corresponding to σ. It can be seen that the stabilizer of the distinguished point xσ ∈ orb(σ) in
T = iZn\Cn is equal to the subgroup i(spanC(σ) ∩ Zn)\ spanC(σ) (see [CLS11, Lemma 3.2.5]).
By the definition of TΣ, the stabilizer of the point 0σ ∈ O(σ) is also equal to i(spanC(σ) ∩
Zn)\ spanC(σ). Therefore, there is a canonical identification between orb(σ) and O(σ).

By Lemma 5.2.9, for any sequence zm in T , zm → xσ in XΣ if and only if zm → 0σ in TΣ. Take any
such sequence zm ∈ (C×)n with limm→+∞ zm = xσ. and let tm ∈ (C×)n be any converging sequence
with limm→∞ tm = t∞. For both the toric variety XΣ and the bordification TΣ, the continuous
actions of T on XΣ and TΣ in Proposition 5.2.6 imply that the sequence tmzm converges to t∞ · xσ
in XΣ, and to t∞ · 0σ ∈ O(σ) in TΣ respectively. This implies that a sequence of interior points
zm in T converges to a boundary point in the orbit orb(σ) ⊆ XΣ if and only if it converges to
a corresponding point in O(σ) ⊆ TΣ. Since σ is an arbitrary cone in Σ and tm is an arbitrary
convergent sequence in (C×)n, this proves the topological description of toric varieties. �
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Remark 5.2.12 The identification between XΣ and TΣ allows one to see that when a sequence
(xm)m of points in the real part Rn of the complex torus iZn\Cn goes to infinity along the directions
contained in a cone σ of the fan Σ, the sequence xm will converge to a point of a complex torus
iZn\Cn/ spanC(σ) of smaller dimension. Hence the compact torus (S1)n, which is the fiber over
xm in the toric variety, will collapse to a torus of smaller real dimension dimσ. The behavior of
converging sequences is schematically shown in Figure 5.11 and Figure 5.12.

• × •

τ

O(τ)

• ×

• ×

Figure 5.11: Within a chamber all fibers collapse in the same way: Both circles are collapsed
to points (left). Fibers parallel to a wall collapse differently, depending on the wall and the
distance to it (right). Only one circle is collapsed to a point.

• × •

• ×

× •

σ O(σ)

τ2

τ1

O(τ2)

O(τ1)

•

•

•

•

•

•

• × •

• ×

× •

Figure 5.12: left: The collapsing behavior of the fibers when the base point moves to infinity.
Depending on the direction of movement either one or both circles are collapsed. right: The
global picture of collapsing of a whole toric variety.

Such a picture of toric varieties including also the compact part of the torus (C×)n is often de-
scribed in connection with the moment map of toric varieties (for a reference see [Ful93, p. 79] or
[Mil08]). We will come back to this map later. ◦

Lemma 5.2.13 Under the identification of XΣ with TΣ in Proposition 5.2.11, the distinguished

point xσ in XΣ corresponds to the image 0σ of the origin of Cn in TΣ under the projection π′σ.When

the orbit O(σ) is identified with (C×)r, where r = codim(σ) = dimC(Cn/ spanC(σ)), then 0σ
corresponds to (1, · · · , 1). ◦

Proof. As mentioned before on page 165, the distinguished point x{0} for the trivial cone σ = {0}
of the fan Σ is (1, · · · , 1). Under the identification (C×)n

� iZn\Cn in Equation (5.9) on page
169, the distinguished point x{0} corresponds to the image of the origin of Cn under the projection
Cn → iZn\Cn = O({0}). So for σ = {0}, xσ corresponds to 0σ in O(σ) ⊆ TΣ.

For any nontrivial cone σ ⊆ Σ, the distinguished point xσ in the orbit orb(σ) is equal to the
limit limt→0 λu(t) in XΣ, where u is an integral vector contained in the relative interior of the
cone σ. We need to determine the limit limt→0 λu(t) in the bordification TΣ. When we identify
(C×)n with Rn × iZn\Rn = iZn\Cn using the logarithm as above in Equation (5.9), the complex
curve t 7→ λu(t) = tu for t ∈ C is mapped to a complex line in iZn\Cn with slope given by u.
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Hence its real part is a straight line in Rn through the origin with slope u, that is, it is of the form
s 7→ (m1s, · · · ,mns) for some s ∈ R, and λu(t) is contained in spanC(σ).

By the definition of the topology of TΣ above, limt→0 λu(t) converges to the distinguished point 0σ
in O(σ), that is, to the image of the origin of Cn in O(σ). �

5.3 The Nonnegative Part of Toric Varieties and the Moment Map

Every toric variety XΣ has a nonnegative part XΣ,≥0. In this last section about toric geometry, we
state our main result, namely that the nonnegative part XΣ,≥0 is homeomorphic to the horofunction

compactification Rnhor
with respect to a suitable norm. We start with a description of the nonneg-

ative part XΣ,≥0. See also [Ful93, p. 78], [Oda88, §1.3], [CLS11, §12.2] and [Sot03, §6] for more
details.

5.3.1 The Nonnegative Part XΣ,≥0 of a Toric Variety XΣ

In one dimension, the real part of C× is R× = R>0 ∪ R<0 and its positive part is R>0. Similarly
we have (R×)n as the real part of (C×)n, which has 2n-connected components. The positive part of
(C×)n is (R>0)n. Under the identification (C×)n

� iZn\Cn = Rn × iZn\Rn (Equation (5.9) on page
169) the positive part (R>0)n corresponds to Rn × i0 � Rn.

The basic idea for the construction of the real or the nonnegative part of a toric variety is to replace
all complex numbers C by real numbers R or nonnegative numbers R≥0. So instead of (C×)n we
consider the action and embedding of the real torus (R×)n. Doing so, we denote the real part of XΣ
by XΣ,R and get

Definition 5.3.1 [Sot03, Definition 6.2] For any toric variety XΣ, the closure of the positive part
(R>0)n in the real part XΣ,R is called the nonnegative part of XΣ, denoted by XΣ,≥0. ◦

Remark 5.3.2 A more constructive definition of XΣ,≥0 is given in [CLS11, Prop. 12.2.3] and
[Ful93, §4.2] and goes similarly as we did for XΣ in Section 5.1.3: Let Σ be a fan and σ ∈ Σ. For
the affine variety Uσ = HomZ,reg(S σ,C) we define its nonnegative part Uσ,≥0 by restricting the
possible image of the semigroup homomorphism:

UΣ,≥0 := HomZ,reg(S σ,R≥0).

The real part is given by

UΣ,R := HomZ,reg(S σ,R).

Gluing the UΣ,≥0 (UΣ,R) together along common open subsets given by common faces of cones as
we did before, we get the subset XΣ,≥0 ⊆ XΣ (XΣ,R ⊆ XΣ) that is closed in the classical topology.
When we replace the semigroup homomorphism γ : S σ → C with its absolute value |γ|, we get a
retraction Uσ → Uσ,≥0. Gluing these retractions together accordingly to the gluing to obtain XΣ,
we get a retraction XΣ → XΣ,≥0.

As a subgroup of the complex torus T , the compact real torus S N ≃ (S1)n acts on XΣ. The retraction
from XΣ to XΣ,≥0 then yields an homomorphism

XΣ,≥0 ≃ XΣ
/
S N

. ◦



176 Chapter 5. Toric Varieties

Example 5.3.3 We consider once again the example of P1 × P1 as given in Example 5.1.15 on
page 162. Replacing complex with real numbers yields

(P1 × P1)≥0 =
R4
≥0 \

(
(R2 × {0}) ∪ ({0} × R2)

)/
R2
>0
.

By the action (r1, r2).(a, b, c, d) = (r1a, r1b, r2c, r2d) for (r1, r2) ∈ R2
>0 and (a, b, c, d) ∈ R4 we can

scale the first two and the second two entries such that

(P1 × P1)≥0 = {(a, b, c, d) ∈ R4
≥0 | a + b = 1; , c + d = 1}.

In a two-dimensional affine subspace of R4
≥0 this is a square. So combinatorially the positive part

(P1 × P1)≥0 it is the same as the unit square in R2 and this was exactly the dual polytope P◦ when
constructing P1 × P1 from the fan over a polytope P as in Example 5.1.19. Such a correspondence
is the result of Theorem 5.3.8. ◦

If we denote Rn/ spanR(σ) by OR(σ), then for any two cones σ1, σ2, it holds that OR(σ1) is
contained in the closure of OR(σ2) if and only if σ2 is a face of σ1. Under the identification in
Proposition 5.2.11, XΣ,≥0 can be described as follows:

Proposition 5.3.4 For any fan Σ of Rn, the nonnegative part XΣ,≥0 is homeomorphic to the space

Rn
Σ := Rn ∪

∐

σ∈Σ,
σ,{0}

OR(σ) (5.12)

with the following topology: An unbounded sequence xm ∈ Rn converges to a boundary point x∞
in OR(σ) = Rn/ spanR(σ) for a cone σ if and only if one can write xm = x′m + x′′m such that the

following conditions are satisfied:

1) when m→ +∞, x′m is contained in the cone σ and its distance to the relative boundary of σ

goes to infinity,

2) x′′m is bounded,

3) the image of xm in OR(σ) under the projection Rn → Rn/ spanR(σ) = OR(σ) converges to

x∞. ◦

This proposition was explained in detail and proved in [AMRT10, pp. 2-6] and motivated Propo-
sition 5.2.11 above.

This yields the following result:

Corollary 5.3.5 The translation action of Rn on Rn extends to a continuous action on XΣ,≥0, and
the decomposition of XΣ,≥0 in Equation (5.12) is the decomposition into Rn-orbits. This decom-
position of the nonnegative part of the toric variety XΣ,≥0 is a cell complex dual to the fan Σ. If
Σ = ΣP for a rational convex polytope P containing the origin as an interior point, then this cell
complex structure is isomorphic to the cell structure of the polar set P◦. ◦

5.3.2 How the Nonnegative Part XΣ,≥0 is Homeomorphic to a Polar Polytope P◦

The main result of this section in to show that the nonnegative part of a projective toric variety is
homeomorphic to the horofunction compactification of Rn with respect to a suitable norm. The
connection between these objects will be the bounded convex polytope P ⊆ Rn, that gives on the
one hand side the fan defining the toric variety and which on the other hand side is the unit ball
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of the norm determining the horofunction compactification. More precisely, the nonnegative part

XΣ,≥0 and the compactification R
hor

are both homeomorphic to the dual polytope P◦.

Let P be a rational convex polytope containing the origin as an interior point and let XΣP be
the associated projective variety. The homeomorphism between the nonnegative part of the toric
variety XΣP,≥0 and the dual polytope P◦ = conv{m1, . . .mk} is given by the algebraic moment map.
Let P◦ be scaled such that the vertices m j of P◦ are all integer points. Then the algebraic moment
map is given by

µ : XΣP −→ Rs

x 7−→ 1
∑k

j=1|χm j(x)|

k∑

j=1

|χm j(x)|m j.

So the image of the map is a convex combination of the vertices of P◦ and thereby contained
in P◦. It is not only contained as some subset, but also the structure of XΣP,≥0 with its boundary
components coming from the orbits OR(σ) corresponds to the face structure of the convex polytope
P◦. Recall that by definition, each cone σ of ΣP corresponds via µ to a unique face Fσ of P, which
in turn corresponds (see Remark 2.4.14) to a dual face F◦σ of the polar set P◦. Then the result on
the homeomorphism coming from the moment map can be stated as follows:

Proposition 5.3.6 The moment map induces a homeomorphism

µ : XΣP,≥0 → P◦

such that for every cone σ ∈ ΣP, the positive part of the orbit O(σ) as a complex torus, or equiv-

alently the orbit OR(σ) in Proposition 5.3.4, is mapped homeomorphically to the relative interior

of the face F◦σ corresponding to the cone σ. ◦

Proof. The proof of the proposition can be found in [CLS11, Prop. 12.2.5] and [Ful93, §4.2] but
we again have to be careful with the notations. As mentioned before in the proof of Proposition
5.1.18, our main references [CLS11, Cox03, Ful93] use the normal fan (i.e. the fan over the dual
polytope) to construct the toric variety, whereas we use directly the fan over the polytope. But as
we assume our polytopes to be maximal dimensional and containing the origin as an interior point,
it holds (P◦)◦ = P and therefore the statement is true as stated above. �

The homeomorphism between the horofunction compactification X
hor

of a finite-dimensional
normed vector space X and the dual unit ball B◦ we constructed in Section 3.3 was inspired by this
moment map.

For more details about the moment map and the induced homeomorphism see [Oda88, p. 94],
[Ful93, §4.2], [Sot03, §8] and [JS16, Thm. 1.2].

Remark 5.3.7 A similar convexity result about the image of the (symplectic) moment map is also
well know in symplectic geometry. Consider a symplectic toric manifold (M2n, ω), that is, M is
a compact connected symplectic manifold with a faithful action of the torus T n of dimension n
and a moment map µ : M → Rn. It was shown independently by Atiyah [Ati82] and Guillemin-
Sternberg [GS82] that the image of the moment map is the convex hull of the fixed points of the
action of the torus and therefore a convex polytope. ◦

It remains now to put all ingredients about the homeomorphism together to the main result of this
section:
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Theorem 5.3.8 Let X = XΣP be a projective toric variety of dimension n. Then the following are

homeomorphic:

1) the nonnegative part X≥0 of the toric variety X

2) the image of the moment map of the toric variety X

3) the horofunction compactification Rnhor
of Rn with respect to the norm ‖·‖P

These homeomorphisms give a bijective correspondence between projective toric varieties X of

dimension n and rational polyhedral norms ‖·‖ on Rn up to scaling in every dimension n ≥ 1. ◦

Proof. Let P be a rational polytope containing the origin as an interior point. Let Σ = ΣP be the
fan obtained by taking cones over the faces of P. By Propositions 5.3.4 and 3.2.7 on page 59,
an unbounded sequence of Rn converges to a boundary point in the compactification Rn

Σ if and

only if it converges in the horofunction compactification Rnhor
with respect to the polyhedral norm

‖·‖P. Therefore, the two compactifications Rn
Σ and Rnhor

of Rn are homeomorphic. Proposition
5.3.4 again implies that the nonnegative part XΣ,≥0 of the toric variety is homeomorphic to the

horofunction compactification Rnhor
. �

Remark 5.3.9 Given the one-to-one correspondence between the toric varieties and rational poly-
hedral norms in Theorem 5.3.8 and the fact that each polytope P also determines a Hilbert metric
dH(·, ·) on the interior int(P) of P, one natural question is whether there exists a similar relation
between XΣP,≥0 and the horofunction compactification of (int(P), dH(·, ·)). The results in [Wal14b]
and [Wal14a] show that besides the Hilbert metric, Funk metric and reverse Funk metric should
also be considered, and that the horofunction compactifications of the Funk metric seems to be
related to XΣP◦ ,≥0, the toric variety associated to the polar set P◦, and the horofunction compactifi-
cation of the Hilbert metric is more complicated. ◦
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In the previous chapters we have seen how to interpret the horofunction compactification of a
finite-dimensional normed space as the dual unit ball of the norm. Additionally we saw how to
realize other compactifications of symmetric spaces of non-compact type as horofunction com-
pactifications of the space with an appropriate norm. We now discuss some open problems and
questions for future research work.

Generalization of Theorem 3.2.6

In Theorem 3.2.6 we determined the topology of the compactification by the convergence behavior
of sequences. Thereby we had to restrict ourselves to unit balls that have a particular nice shape.
It may be possible to generalize this theorem to any norm for which the set of extreme sets of the
dual unit ball is closed. We gave an idea of how to deal with this problem in Section 3.2.7. Our
approach is based on a conjecture about the right rate of convergence of a sequence of sets in the
dual unit ball B◦. Future work in this direction could either lead to a proof of Conjecture 3.2.12 or
to a different approach of determining the point p.

Playing around with norms

Apart from taking the Minkowski sum of two compact convex sets in Rn, there are many more
natural operations on the set of convex sets, like taking the intersection or the convex hull of
two or more compact convex sets. The only restriction for us on such an operation is that the
new set is still compact convex and has the origin as an interior point. Then we can determine
the horofunction compactification of the space with respect to this norm. If its set of extreme
sets is still closed (which is not necessarily true) we can calculate all its horofunctions with the
techniques shown before. But it remains to interpret this new compactification in terms of the
previous ones.

Question 6.0.1 What operations on compact convex sets extend to operations on the correspond-
ing horofunction compactifications? ◦

We already saw that the Minkowski sum of the dual unit balls lead to the least common refinement
of the compactifications. And in Section 4.3 we already mentioned that taking the convex hull of
the Weyl group orbits of each irreducible component leads to a generalized Satake compactifica-
tion.

In their book [BJ06] Borel and Ji discuss many more of compactifications of symmetric and locally
symmetric spaces. They also present a uniform approach to construct them by adding boundary

179
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components and show how these compactifications are related to each other in terms of refine-
ments or quotients. This is the starting point for many interesting questions: How does the horo-
function compactification fit into the picture? Are there other compactifications than the Satake
and the Martin compactification that can be realized as a horofunction compactification? How is
corresponding unit ball then obtained?

(Dual) generalized Satake compactifications

It seems plausible that any generalized Satake compactification as defined in [GKW15] can be
realized as the horofunction compactification for a G-invariant polyhedral Finsler metric, but it
remains to verify this. This correspondence would then allow us to define the dual generalized

Satake compactification X
S
τ

∗
like this:

Definition 6.0.2 Let τ : G → PSL(n,C) be a faithful projective representations and X
S
τ the as-

sociated generalized Satake compactification. The dual generalized Satake compactification X
S
τ

∗

is defined to be the horofunction compactification of X with respect to the polyhedral G-invariant
Finsler metric defined by the unit ball B = D = conv(µ1, . . . , µk). ◦

Question 6.0.3 Is there a geometric way to interpret the duality between X
S
τ and X

S
τ

∗
? ◦
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