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Doktorvater: Prof. Dr. Meinhard Kieser





Contents

List of Abbreviations iii

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and Structure of the Present Work . . . . . . . . . . . 3

2 Methods 5

2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Methods for Borrowing Historical Data . . . . . . . . . . . . . . . 6

2.3 The Power Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Frequentist Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 Type I Error Rate . . . . . . . . . . . . . . . . . . . . . . 11

2.6.2 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.3 Rejection Regions . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Determination of Power Parameter . . . . . . . . . . . . . . . . . 18

2.7.1 Global Approach . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.2 Local Approach . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.3 Independent Approach . . . . . . . . . . . . . . . . . . . . 24

2.8 Sample Size Calculation . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . 26

2.9.1 Determination of Power Parameter . . . . . . . . . . . . . 26

2.9.2 Algorithm for Sample Size Calculation . . . . . . . . . . . 27

3 Results 29

3.1 Systematic Investigations . . . . . . . . . . . . . . . . . . . . . . 29

i



ii Contents

3.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Global Overview . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Variation in Parameter Values . . . . . . . . . . . . . . . 32

3.1.4 Comparison of Considered Approaches . . . . . . . . . . . 37

3.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Clinical Trial Example - The FaSScinate Trial . . . . . . . . . . . 47

4 Discussion 53

4.1 Contributions to Research and Discussion . . . . . . . . . . . . . 53

4.2 Limitations and Directions for Future Research . . . . . . . . . . 58

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Summary 61

5.1 Summary (English) . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Zusammenfassung (Deutsch) . . . . . . . . . . . . . . . . . . . . 62

Bibliography 65

A Additional Tables and Figures 69

A.1 Systematic investigations concerning the choice of the parameter γ 69

A.2 Actual type I error rate of the chi-square test . . . . . . . . . . . 71

A.3 Actual type I error rate of the chi-square test . . . . . . . . . . . 72

B R Code 73

Curriculum Vitae I



List of Abbreviations and

Symbols

� α: type I error rate

� α0: level of significance

� 1− β0: statistical power

� c: number of responders in the control group

� cH : number of responders in the historical control group

� δ: parameter that determines the amount of historical data that is incor-

porated in the new trial

� ∆ = πT − πC : rate difference between true proportion of responders of

the treatment and true proportion of responders of the control arm

� H0: null hypothesis

� H1: alternative hypothesis

� nC : number of patients in the control group

� nCH : number of patients in the historical control group

� nT : number of patients in the treatment group

� nTH : number of patients in the historical treatment group

� pC : proportion of responders in the control group

� pCH : proportion of responders in the historical control group

� pT : proportion of responders in the treatment group

� pTH : proportion of responders in the historical treatment group

iii



iv Contents

� πC : true proportion of responders in the control arm

� πT : true proportion of responders in the treatment arm

� t: number of responders in the treatment group

� tH : number of responders in the historical treatment group



List of Figures

2.1 Actual type I error rate for control arm borrowing (top) and for

two-arm borrowing (bottom) depending on true control rate πC

∈ [0.5, 0.9] using various values of δ. . . . . . . . . . . . . . . . . 13

2.2 Top: Actual type I error rate depending on borrowing parameter

δ ∈ [0, 1] for various observed historical rate differences. Bottom:

Power to reveal an effect of ∆ = 0.12 depending on borrowing

parameter δ ∈ [0, 1] for various observed historical rate differ-

ences. The dots identify δ∗ = maxα≤0.05{δ : δ ∈ [0, 1]}, the

maximum value of δ controlling the type I error rate α at the

nominal significance level of α0 = 0.05. . . . . . . . . . . . . . . . 15

2.3 Boundary of the rejection regions for several values of δ, c denotes

the number of responses in the control arm, t denots the number

of patients in the treatment arm. . . . . . . . . . . . . . . . . . . 19

2.4 Actual type I error rate depending on the sample size of the new

trial for cH = 65 responders within nCH = 100 patients in the

historical control arm, tH = 75 responders within nTH = 100

patients in the historical treatment arm, a fixed πC = 0.65 and a

fixed borrowing parameter δ = 0.4. . . . . . . . . . . . . . . . . . 28

3.1 Boxplot of sample size saved accumulated over all scenarios and

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Relative frequencies of the number of steps until convergence of

the algorithm described in Subsection 2.9.2. . . . . . . . . . . . 33

3.3 Boxplots of the proportion of saved sample size for different values

of the observed historical rate difference. . . . . . . . . . . . . . . 34

3.4 Boxplots of δ∗ for different values of the observed historical rate

difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Boxplots of proportion of sample size saved for various values of

δ∗ (rounded to one decimal place). . . . . . . . . . . . . . . . . . 35

v



vi List of Figures

3.6 Boxplots of the proportion of sample size saved for different values

of the true control rate πC . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Boxplots of the proportion of sample size saved for different values

of the true effect size ∆. . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Boxplots of the proportion of sample size saved for several dif-

ferences between observed historical control rate pCH and true

control rate πC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Boxplots of the proportion of sample size saved with respect to

various differences between observed historical control rate dif-

ference pTH − pCH and true control effect size ∆. . . . . . . . . . 38

3.10 Proportion of sample size saved for the global (red), local (green)

and independent (blue) approach. . . . . . . . . . . . . . . . . . . 39

3.11 Boxplots of the difference in the proportion of saved sample size

saved between the global, local, and independent approach. . . . 39

3.12 Scatterplots of the proportion of sample size saved between the

three approaches. Top left: local (y-axis) vs global (x-axis) ap-

proach. Top right: independent (y-axis) vs global (x-axis) ap-

proach. Bottom left: independent (y-axis) vs local (x-axis) ap-

proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.13 Boxplots of the attained values of δ∗ in all scenarios for the three

considered approaches. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.14 Scatterplots comparing the resulting δ∗ between the three ap-

proaches. Top left: local (y-axis) vs global (x-axis) approach.

Top right: independent (y-axis) vs global (x-axis) approach. Bot-

tom left: independent (y-axis) vs local (x-axis) approach. . . . . 42

3.15 Proportion of sample size saved for the three different approaches

(red=global, green=local, blue=independent) for varying observed

historical difference (from 0.01 to 0.3, respectively). . . . . . . . 43

3.16 Resulting value of δ∗ for the three different approaches (red=global,

green=local, blue=independent) for varying observed historical

difference (from 0.01 to 0.3, respectively). . . . . . . . . . . . . . 44

3.17 Proportion of sample size saved for various values of δ∗ (range 0-1,

rounded to one decimal place) for the three different approaches

(red=global, green=local, blue=independent). . . . . . . . . . . 44

3.18 Proportion of sample size saved for the three different approaches

(red=global, green=local, blue=independent) for varying true

control proportion πC . . . . . . . . . . . . . . . . . . . . . . . . 45

3.19 Proportion of samples size saved for the three different approaches

(red=global, green=local, blue=independent) for varying true ef-

fect size ∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



List of Figures vii

3.20 Proportion of samples size saved for the three different approaches

(red=global, green=local, blue=independent) for varying differ-

ence between true and observed historical control proportion.

The boxplot for 0.2 in the local approach (green) is missing, since

for these scenarios the respective value of πC was not located in

the respective 1−γ confidence interval of πC (see Subsection 3.1.1). 46

3.21 Rejection regions in terms of number of responders in the treat-

ment group t for different test procedures with fixed number of

control responses c=38 (πC = 0.23). . . . . . . . . . . . . . . . . 49

A.1 Actual type I error rate of the chi-square test for different sample

sizes over the range of the true control proportion (πC). The

darker the colour the larger the sample size (ranging from 10 to

1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 Test statistics and actual type I error rates α of a normal dis-

tributed test statistics for various values of δ. The red area rep-

resents the true type I error rate α. The underlying scenario is:

cH = 65 responders out of nCH = 100 patients in the historical

control arm, cH = 75 responders out of nTH = 100 patients in

the historical treatment arm, n = 200 patients per arm in the

new trial and a true control proportion πC = 0.7. . . . . . . . . . 72





List of Tables

2.1 Fourfold table of a clinical trial with binary outcome. . . . . . . . 6

2.2 Fourfold table of a clinical trial with binary outcome and incor-

porated historical data. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 δ∗(the maximum value of δ controlling the type I error rate) for

various values of γ (from the procedure of Berger and Boos (1994)). 23

3.1 Initial sample sizes in the sample size calculation procedure for

the different values of πC and ∆. . . . . . . . . . . . . . . . . . . 35

3.2 δ∗ and gain in power by incorporating historical data while simul-

taneously controlling the type I error rate for the FaSScinate trial

for local, global, and independent approach. Thereby, δ∗ denotes

the maximum amount of incorporated historical data that still

guarantees type I error rate control, πC denotes the true control

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Results of the sample size calculation procedure for the FaSSci-

nate trial for local and global approach. δ∗ denotes the maximum

amount of incorporated historical data that still guarantees type

I error rate control. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Results of the sample size calculation procedure for the FaSS-

cinate trial for local and global approach.The use of the global

grid indicates that the values of πC are corrected to two decimal

places. The local grid divides the respective 1− γ confidence in-

terval in equidistant parts (number= number grid steps; without

rounding to a specific number of decimal places). . . . . . . . . . 50

A.1 δ∗(the maximum value of δ controlling the type I error rate) for

various scenarios and values of γ. . . . . . . . . . . . . . . . . . 70

A.2 1−γ confidence interval for the true control proportion for various

scenarios and values of γ. . . . . . . . . . . . . . . . . . . . . . . 70

ix





Chapter 1

Introduction

1.1 Background

Clinical trials often examine the efficacy of new experimental treatments versus

placebo or, if available, the current gold standard therapy. The classic design

of such a study is the comparison of a new treatment with one established or

placebo treatment, a so-called two-arm clinical trial. An important aspect is

the choice of the number of patients to be included. For ethical and economic

reasons, the sample size should be neither too high nor too low. Including too

many patients does not only consume excessively high resources in terms of

time, costs, and personnel, but also unnecessarily exposes patients to a study

burden or (potentially) ineffective therapy. On the other hand, it is necessary

to collect an adequate number of patients in order to achieve a sufficiently

high probability for detecting a positive treatment effect, i.e. a high statistical

power. Thereby, the number of patients actually needed to be recruited in the

trial depends not only on the size of the effect to be revealed but rather on the

characteristics of the variables by which the study objective will be assessed,

the so-called primary endpoints of the trial. In order to keep the complexity

of the study low, often only one endpoint is determined to be the primary

endpoint in the respective clinical trial. A main characteristic of this primary

endpoint is its scale, that may range from binary outcome (e.g. response vs no

response to a treatment) up to continuous outcome (e.g. biomarker values). In

many trials, binary outcomes are used as the primary endpoint, also due to their

simple construction with respect to a clear interpretation of the study objective.

However, the use of binary data is in general associated with an increased sample

size required for the study, as binary data is the type of data that comprises

the least information. In summary, it is generally more challenging to achieve

sufficient power in a clinical study with a binary endpoint than with other

1



2 Chapter 1. Introduction

endpoints because the sample size required is significantly increased.

Especially in the field of rare diseases, it is a particular difficulty to conduct

an adequately powered study, as the available number of patients for a clini-

cal trial is severely limited. One way to increase the power of such studies is

to incorporate existing information from previous studies, so-called ’historical

data’. In the literature, methods for the integration of historical data into the

control group have mainly been investigated so far. Promising (both frequentist

and Bayesian) methods have been developed, studied, and compared against

each other (Viele et al., 2014; Chen et al., 2000, 2011; Duan et al., 2006; Hobbs

et al., 2011; Rietbergen et al., 2011; Schmidli et al., 2014). Viele et al. (2014)

gave an comprehensive overview over existing methods. In comparison to the

exclusive use of historical control data, there is only sparse literature on the

integration of historical data from both arms, i.e., ’borrowing’ information from

both intervention and control arm (Gamalo-Siebers et al., 2017; Weber et al.,

2018). This may be due to the fact that historical control data are more readily

available, especially if the control group of the new study is a placebo group.

However, incorporating historical control data does reduce the required sample

size solely in the control arm of the new trial.

Nevertheless, there are situations in which the inclusion of historical data

from both treatment arms can be useful, e.g. in the field of rare diseases, where

the number of patients required in the currently planned study may be reduced

or, vice versa, the power of the trial may be increased. Information may also be

available for these scenarios from studies already performed, e.g. from previous

pilot studies or trials where the new primary endpoint has already been assessed

as a secondary endpoint. In both cases (control arm and two-arm borrowing),

however, the question arises as to which requirements historical data must meet

in order to be suitable for integration into a new study.

One of these requirements could be that large heterogeneity between the

results of historical and current data could prove to be an obstacle for the

successful integration of the historical data. Therefore, this should be penalized

by the model that comprises the merging of the two data sources. For the case

of control arm borrowing, it has already been shown that this heterogeneity

results in an inflation of the type I error rate. However, it is not clear whether

this result also applies to the case of a two-arm incorporation of historical data.

Nevertheless, control of this quantity is of particularly interest since it is a

main requirement for its suitability in the regulatory context (ICH E9 expert

working group, 1999). As countermeasures, approaches which do not include

the full information from the historical data but rather downweight it by a

factor, have been proposed. In particular, the so-called ’power prior’ approach

uses this method, where the scaling factor controlling the downweighting can be
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handled in a straightforward way (Ibrahim et al., 2015). However, the optimal

determination of the scaling factor is currently still under discussion (Gravestock

et al., 2017).

1.2 Objectives and Structure of the Present Work

In this thesis, the integration of historical experimental and control data in

the planning and evaluation of two-arm clinical trials with a binary endpoint

will be investigated. For sample size calculation based on binary endpoints,

the resulting sample size does not only depend on significance level, power,

and the assumed treatment effect, but is additionally influenced by the true

response rate of the control group. This parameter mainly influences the type I

error rate inflation in case that integration of historical data is only done for the

control arm. Therefore, the appropriate handling of this nuisance parameter is of

particular importance. Furthermore, these considerations should be integrated

into a framework that allows the control of the type I error rate at the nominal

significance level. Finally, it will be investigated whether and how this approach

can lead to a benefit in terms of increased power or vice versa to a reduced

sample size for a new clinical trial.

The outline of this thesis is as follows. In Chapter 2, the statistical methods

are introduced. In particular, the general framework and notation is presented

in Section 2.1. Afterwards, different general approaches for incorporation of his-

torical data are compared and assessed for its suitability for the two-arm case.

Then, Section 2.3 introduces the power prior framework and the application to

binary data is examined. Following this, the subsequent analysis is presented

in a frequentist (Section 2.4) and Bayesian (Section 2.5) framework. In Section

2.6, the operating characteristics in terms of type I error rate, power and the

resulting rejections regions are examined. Based on these considerations, three

approaches to handle and control the incorporation of historical data are intro-

duced in Section 2.7 and their application to a sample size calculation procedure

is presented in Section 2.8. Afterwards, some practical recommendations are

given in Section 2.9 in order to simplify and thus, accelerate the presented cal-

culation procedures. In Chapter 3, results from investigations and examples are

presented. In detail, the performance of the proposed approaches is examined

by systematic investigations on various scenarios in Section 3.1 and is illustrated

in more detail by means of a clinical trial example in Section 3.2. Finally, the

proposed methods and the corresponding results are evaluated, compared, and

discussed in Chapter 4.

Comment: Major parts of the content of this work have already been pub-
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lished (Feißt et al., 2020). This publication has been written by myself but

includes comments and corrections from the co-authors.



Chapter 2

Methods

2.1 Framework

The framework supposed in this thesis is given by a two-arm clinical trial with

binary outcome. The primary analysis is a two-sided test at a significance level

α0 assessing the test problem

H0 : πC = πT versus H1 : πC 6= πT ,

where πC denotes the true response rate for the control arm and πT the true

response rate for the treatment arm.

In the following, higher rates indicate a preferable outcome, e.g. response

to treatment, nevertheless the two-sided test framework is maintained. In the

further course of this thesis it will be elaborated why this framework is preferred.

Furthermore, the existence of historical data from a single historical two-

arm trial with binary data in the following form is assumed: nCH , cH , and

nCH−cH denote the number of patients, responders, and non-responders in the

historical control arm, respectively. Similarly, nTH , tH , and nTH−tH denote the

number of patients, responders, and non-responders in the historical treatment

arm, respectively. Analogously, the data of the new clinical trial is denoted by

nC , c, and nC − c as number of patients, responders and non-responders in

the control arm of the new trial and, similarly, nT , t, and nT − t as number

of patients, responders, and non-responders in the new treatment arm. This is

depicted in Table 2.1.

As in the work by Viele et al. (2014), the investigations in this thesis are

limited to the case where the historical data is fixed and, therefore, the perfor-

mance characteristics (e.g. type I error rate and power) are conditional on fixed

historical response rates. This refers to the case in which the data of an already

5



6 Chapter 2. Methods

Table 2.1: Fourfold table of a clinical trial with binary outcome.

Control arm Treatment arm
Responders c t
Non-responders nC − c nT − t
Total nC nT

completed historical trial is incorporated into a new trial.

Thus, in the following, the integration of existing historical experimental

and control data in the planning and evaluation of two-arm clinical trials with

a binary endpoint will be investigated.

2.2 Methods for Borrowing Historical Data

Viele et al. (2014) presented different methods of incorporating historical control

data into a new trial. In detail, they outlined six approaches:

1. Separate analysis: historical data are ignored, standard analysis of current

study data.

2. Pooling: incorporating the whole historical information as if they had been

observations of the new trial.

3. Single arm trial: the cutoff-rate ’to beat’ in the treatment arm is deduced

from the historical data (no control arm in the current study).

4. Test-then-pool: first a test is performed whether the historical control data

are comparable to the current control data and then the data is pooled.

5. Power priors: the amount of historical data incorporated in the current

study is controlled by a parameter.

6. Hierarchical modeling: assuming a distribution across historical studies

and current study and measuring the variation across studies. A larger

variation leads to a smaller amount of historical data incorporated into

current study.

Viele et al. (2014) focused their presented approaches solely on incorporating

historical control data. Therefore, in the next step, the suitability of these

methods for incorporation of historical two-arm data in the framework of this

thesis is examined, respectively. Since the approaches which are developed in

this thesis should provide a framework that can be used already in the planning

phase of a new study, approaches that are based on the availability of current

study data will not be suitable for further investigations.
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1. Separate analysis: analysis solely based on the current study data.

Suitable for two-arm data.

2. Pooling: pooling historical and current study data as they are from one

study.

Suitable for two-arm data.

3. Single arm trial: as the focus is on two-arm randomized controlled trials

in this study, this approach is not suitable for this thesis.

Not suitable for the framework considered in this thesis.

4. Test-then-pool: Viele et al. suggest to test the comparability of historical

and current study data. Therefore, the data of the new study has to be

available. However, in the current framework of this thesis (integration of

historical data in the planning and evaluation of two-arm clinical trials)

this assumption is not met.

Not suitable for the framework considered in this thesis.

5. Power priors: this approach is presented in more detail in Section 2.3.

The parameter that controls the amount of historical data integrated in

the current study can be predetermined without knowledge of the current

study data. Thus, this approach fits to the framework considered in this

thesis.

Suitable for two-arm data.

6. Hierarchical modeling: as in the test and pool approach, in this approach

the current study data has to be available and this assumption is not

met. Furthermore, building a hierarchical model based on only two or few

studies has been shown to perform rather poorly (Seide et al., 2019).

Not suitable for the framework considered in this thesis.

In summary, the suitable methods range from a separate analysis (ignor-

ing the historical data, standard analysis) to pooling (incorporating the whole

historical information as if they had been observations of the new trial). One

method that presents a compromise between separating and pooling is the so-

called ’power prior’ approach, a Bayesian approach first introduced by Ibrahim

et al. (2000). Thereby, a parameter controls the amount of historical informa-

tion that is borrowed from the historical data and ranges from 0 (no borrowing,

separate analysis) to 1 (incorporation of whole information, pooling). Thus,

the power prior approach already comprises the separating and the pooling ap-

proach. Therefore, in the following, this work is focusing on the power prior

approach and its application to the integration of historical two-arm data in the

planning and evaluation of two-arm clinical trials with binary outcome.
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2.3 The Power Prior

The power prior approach is a Bayesian approach, i.e. its idea is developed

based on the principles of Bayesian statistics. In Bayesian statistics, for esti-

mating a parameter of interest, the ’prior’ knowledge about the parameter is

updated by collected data into a ’posterior’ knowledge. Considering probability

distributions, thereby a prior distribution illustrating the prior knowledge about

the parameter (which can also be a non-informative flat distribution, e.g. the

uniform distribution) is combined with a distribution derived from the collected

data, the so called likelihood function, to a posterior distribution illustrating

the posterior knowledge about the parameter of interest. This posterior distri-

bution can again be used as a prior distribution for a new data collection. This

reflects the idea of the power prior approach by updating a prior distribution

at first by initially collected data (e.g. historical data) and afterwards updated

with currently collected data (e.g. data of a current study). Thereby, in order

to limit or control the ’influence’ of the initially collected data on the posterior

distribution, their likelihood function is depending on a so called ’power param-

eter’, in the following denoted as δ. As the name suggest, the likelihood of the

initially collected data is thereby provided with an exponent δ.

In the following, this principle is presented in a mathematical framework

in the context of this thesis. Thus, an initial prior f0 of a treatment effect ∆

(parameter of interest) is updated by the likelihood L based on the historical

data xH (initially collected data), raised to the power of a weight δ ∈ [0, 1] :

fH (∆|xH , δ) ∝LH (∆|xH)
δ
f0(∆),

where fH denotes the power prior. Note that ’proportional to’ means that the

resulting distribution has to adjusted by a constant to get a standardized distri-

bution (with probabilities ranging from 0 to 1). The principle of the weighting is

straightforward: When δ = 0, the likelihood factor becomes 1, and thus only the

initial prior is used, corresponding to a separate analysis in which the historical

data are not used at all. Similarly, when δ = 1, the likelihood factor is fully

used (not downweighted) and therefore, it is the same as the usual Bayesian

updating process of the initial prior, but now for the power prior as the initial

prior. This corresponds to a situation of complete pooling historical and new

data.

Updating the power prior fH by the likelihood L based on the data of the

new study x, the posterior distribution f is proportional to the power prior

and the likelihood of the new data L:

f (∆|x, xH , δ) ∝ L (∆|x)fH (∆|xH , δ) ∝ L (∆|x) LH (∆|xH)
δ
f0(∆).
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Table 2.2: Fourfold table of a clinical trial with binary outcome and incorporated
historical data.

Control arm Treatment arm
Responders c+ δcH t+ δtH
Non-responders (nC − c) + δ(nCH − cH) (nT − t) + δ(nTH − tH)
Total nC + δnCH nT + δnTH

In the case of two-arm trials with binary outcome, one is often interested in the

posterior distribution of the true effect measured in terms of the rate difference

∆ = πT − πC based on binomial likelihoods. Of course, also odds ratio or

risk ratio might be the summary measure of interest in such situations. In

this thesis the focus lies on the rate difference, however, the methods developed

in this thesis can be straightforwardly adapted to other summary measures of

interest.

When working with binary outcomes, the standard method in the corre-

sponding Bayesian framework is to work with Beta distributions, that lead to a

so-called Beta-binomial model. Using Beta distributions as prior distributions

along with a binomial likelihood of the binary data, also leads to a Beta poste-

rior distribution. A framework where the posterior distribution is in the same

distribution family as the prior probability distribution is called a conjugate

analysis. Conjugate analyses can be considered as worthwhile to achieve, since

their handling is straightforward. For Beta(α, β) distributions (with parameters

α and β), the determination of the parameters α and β in the case of binary

outcome as is follows: If there are c responders within the nC patients in the

control arm, the initial prior Beta(α0, β0) of the trial arm is updated to the

posterior distribution following a Beta(α0 + c, β0 + nC − c) distribution. Simi-

larly, if the initial prior is updated with the power prior likelihood, the historical

data are simply downweighted with the factor δ to the power prior following a

Beta(α0 + δcH , β0+δ(nCH − cH)) distribution, where cH denotes the number

of responders within nCH patients in the historical control arm. Thus, the pos-

terior distribution of the control arm based on the power prior has the form of

a Beta(α0 + c+ δcH , β0 + (nC − c) + δ(nCH − cH)) distribution.

2.4 Frequentist Analysis

Based on the principle of the simple form of the beta distribution, the power

prior approach for binary outcomes from Section 2.3 can be transformed straight-

forwardly to a frequentist fourfold table with subsequent analysis (Zaslavsky,

2013). One simply adds the weighted historical data to the respective cell of the

fourfold table (see Table 2.2). Thereby, nC , c, and nC − c are the number of
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patients, responders and non-responders, respectively, in the new control arm,

and nt, t, and nt− t are the number of patients, responders and non-responders

in the new treatment arm. δ ∈ [0, 1] determines the amount of historical data

that is incorporated in the new trial, nCH , cH , and nCH−cH are the number of

patients, responders and non-responders, respectively, in the historical control

arm, and nTH , tH , and nTH − tH are the number of patients, responders and

non-responders in the historical treatment arm. In addition, if there is initial

prior information in the form of a prior distribution, it can again be similarly

added to the respective cell. Note that in the following, the investigations are

limited to the case where there is no initial prior information, i.e., a vague,

non-informative prior is used.

After determination of δ (which will be intensively evaluated in the further

sections of this thesis) the fourfold table (Table 2.2) can be statistically analyzed,

i.e. the test problem from Section 2.1 can be evaluated. A plethora of statistical

procedures have been developed with regard to hypothesis testing in four-fold

tables. Common procedures are the chi-square test, Fisher’s exact test, the

z-test (proportion test) as well as exact unconditional tests (e.g. the Fisher-

Boschloo test). For a specific clinical trial application, the use of the latter class

of tests could be more favorable (Lydersen et al., 2009). However, their use is

involved with a larger computational effort and therefore, they are not suitable

for extensive systematic investigations as performed in Chapter 3. Lydersen

et al. (2009) recommend to refrain from the use of Fisher’s exact test due to

the fact that this test is too conservative. In addition, for a two-sided test

problem applied to a 2x2 fourfold table, the chi-squared test and the z-test are

equivalent (since the z-test statistic corresponds to the square root of the test

statistic of the chi-squared test (Fagerland et al., 2017)). However, the z-test

and the chi-squared are merely approximate tests, thus, for small sample sizes,

the true type I error rate occasionally exceeds the nominal significance level.

Nevertheless, the further systematic investigations of this thesis are based on

the chi-square test procedure, as the computational effort over the wide range

of parameter settings is more feasible than for exact unconditional tests.

2.5 Bayesian Analysis

Following the Bayesian methodology, the method at hand is to work with us-

ing Beta distributions (following Section 2.3). However, analytical computation

of the posterior distribution of ∆ = πT − πC , i.e. the difference of two beta-

distributed parameters, is not trivial (because no conjugated model is available)

(Kawasaki and Miyaoka, 2012; Lee, 2004; Howard, 1998; Altham, 1969; Nurmi-

nen and Mutanen, 1987). Nevertheless, this problem can be solved by perform-
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ing Monte Carlo simulation (Chen et al., 2012) to obtain the empirical posterior

distribution.

Seen from another perspective, in order to achieve a conjugate analysis, in

the two-arm framework there exists a further Bayesian approach based directly

on the difference ∆ = πT − πC .

This approach directly models the difference ∆ = πT − πC as the parame-

ter of interest and assumes underlying normal distributions for prior and like-

lihood (achieving a conjugate analysis). Therefore, the posterior distribution

f(∆|x, xH , δ) for ∆ based on the historical data xH , the data of the new study

x, and the power parameter δ ∈ [0, 1] from the power prior approach is given as

follows (using the same notation as in Section 2.3):

f (∆|x, xH , δ) ∝ L (∆|x) LH (∆|xH)
δ
f0(∆).

Based on the assumption of normality it follows

L (∆|x) ∼ N
(
pT − pC ,

pT (1− pT )

nT
+
pC (1− pC)

nC

)
,

where pT = t/nT and pC = c/nC . Similarly:

LH (∆|xH) ∼ N
(
pTH − pCH ,

pTH (1− pTH)

nTH
+
pCH (1− pCH)

nCH

)
,

where pTH = tH/nTH and pCH = cH/nCH . Again, prior knowledge (e.g. from

further historical trials) can be included straightforwardly through the initial

prior f0(∆). However, as mentioned above, in this thesis the focus lies on the

case where historical information from only one historical trial is available and

thus in the following a non-informative prior (reflecting the case that there is

no initial knowledge) is used.

2.6 Operating Characteristics

By integrating historical data, the operating characteristics (e.g. type I error

rate, power) of the current trial may be altered. In the following, the influence

of the historical data on important operating characteristics is examined, i.e.

the type I error rate, the power, and the rejection regions.

2.6.1 Type I Error Rate

The type I error rate is the probability of falsely rejecting the null hypothesis H0.

As a result of integrating historical data, the type I error rate may change. Thus,
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it may be inflated and thereby violate the nominal significance level which leads

to the urgency to control the amount of inflation. In the frequentist framework,

the actual type I error rate can be determined by calculating the proportion of

fourfold tables that reject the null hypothesis weighted by their probability of

occurrence under the null hypothesis πT = πC :

nC∑
c=0

nT∑
t=0

P (c, nC | πC) · P (t, nT | πT = πC)

·I (P (c, nC , t, nT , δ, cH , nCH , tH , nTH | πT = πC) < α0) , (1)

where P (x, n|π) denotes the probability for x success in n trials by a binomial

success probability of π and I is the indicator function (i.e. a function that is

1 if the condition in brackets is fulfilled and 0 otherwise). Note that from the

formula of the type I error rate it follows that the type I error rate is depending

on the true control proportion πC for this binary framework.

In case that the borrowing of historical data is limited to the control arm, a

type I error rate inflation occurs if the observed historical control rate notably

differs from the true control rate πC (see e.g Viele et al. (2014)). For two-

arm borrowing, the type I error rate is rather independent from the difference

between the observed historical and the true rate πC which is equal to πT under

the null-hypothesis. Figure 2.1 depicts the actual type I error rate for the

scenario where it is assumed that there are:

� 65 responders within 100 patients in the historical control arm,

� 75 responders within 100 patients in the historical treatment arm,

� 200 patients in both the new control and the new treatment arm,

� a significance level of α0=0.05,

considering both the approach of control arm borrowing and two-arm borrowing

with values of δ = 0, 0.2, 0.4, 0.6, 0.8 and 1 (depicted in a color spectrum ranging

from blue to red). Note that the ’waves’ in the type I error curves are due to

the character of the chi-squared distribution, since the actual type I error rate

is dependent on the true control proportion πC and on the sample size n (see

Figure A.1 in the appendix).

For the control arm borrowing approach (Figure 2.1 top), one can see that

the more the observed historical control rate (i.e. number of responses divided

by number of patients in the control arm) differs from the true control rate πC ,

the higher the type I error rate inflation is. Similarly, the smaller the amount

of borrowing δ, the smaller the type I error rate inflation is. For δ= 0, the

type I error rate is about 0.05, which corresponds to the nominal significance
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Figure 2.1: Actual type I error rate for control arm borrowing (top) and for
two-arm borrowing (bottom) depending on true control rate πC ∈ [0.5, 0.9]
using various values of δ.
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level α0. For the two-arm borrowing approach (Figure 2.1 bottom), the type I

error rate is mainly influenced by δ but not by the true control response rate

πC . For δ= 0.2 and 0.4, the actual type I error rate is completely below the

nominal significance level. Actually, instead of the difference between historical

observed data and the true parameters, the observed historical difference is the

main factor influencing the inflation of the type I error rate in case of two-arm

borrowing. In Figure 2.2 (top), the type I error rate for increasing δ (0 to 1, on

the x-axis) is displayed for

� an increasing historical difference ranging from 0 to 0.3 (in intervals of

0.05, depicted in a color spectrum ranging from blue to red),

� 65 responders within 100 patients in the historical control arm,

� 65+x (x ranging from 0 to 30 in intervals of five) responders within 100

patients in the historical treatment arm,

� 200 patients per arm in the new trial,

� a fixed true control response rate of πC = 0.65,

� a significance level of α0 = 0.05.

It can be observed that for every scenario the type I error functions (i.e. the

actual type I error rate depending on the amount δ of historical data that is

included) are nearly convex and show some values below the significance level.

Thus, it may be concluded that for every scenario there exists a δ > 0 such that

the significance level is controlled at α0 = 0.05. For small observed historical

differences, even full borrowing is possible while controlling the type I error rate

at the time. The maximal value of δ which still ensures type I error rate control

mainly depends on the rate difference between treatment groups observed in the

historical study: the larger the difference, the smaller is the maximal δ.

Regarding the Bayesian analysis, the definition of the type I error rate is

based on continuous distributions (instead of discrete count data, as in the

frequentist fourfold approach). Thus, the type I error for the assessment of the

test problem:

H0 : ∆ = πT − πC = 0 versus H1 : ∆ 6= 0,

has to be based on integrals in stead of sums and therefore, can be calculated
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Figure 2.2: Top: Actual type I error rate depending on borrowing parameter δ
∈ [0, 1] for various observed historical rate differences. Bottom: Power to reveal
an effect of ∆ = 0.12 depending on borrowing parameter δ ∈ [0, 1] for various
observed historical rate differences. The dots identify δ∗ = maxα≤0.05{δ : δ ∈
[0, 1]}, the maximum value of δ controlling the type I error rate α at the nominal
significance level of α0 = 0.05.
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as: ∫ ∞
−∞

N

(
0,
πCnC + πCnT
nC + nT

)
(x)

·(I (P (∆> 0 | nCH , nTH , nC , nT , πC , pCH , pTH)> 0.975)

+I (P (∆< 0 | nCH , nTH , nC , nT , πC , pCH , pTH)> 0.975))dx,

where

P (∆> 0 | nCH , nTH , nC , nT , πC , pCH , pTH)

=

∫ ∞
0

N

(
∆,

πCnC + πCnT
nC + nT

)
(x) ·N

(
∆̂H ,

pCHnCH + pTHnTH
nCH + nTH

)δ
(x)d∆

with ∆̂H = pCH − pTH = cH
nCH

+ tH
nTH

and N
(
µ, σ2

)
(x) = 1√

2πσ2
exp(− (x−µ)2

2σ2 )

denoting the density function of the normal distribution with mean µ and vari-

ance σ2.

Compared to the frequentist framework, this Bayesian framework produces

very similar results regarding type I error rate and δ∗. Systematic comparisons

between these two frameworks can be found in Chapter 3.

2.6.2 Power

The aim of incorporating historical data is that the use of additional information

leads to a benefit, i.e. an increase in power or, vice versa, a reduction of the

required sample size for the new trial. Thus, just like the type I error rate, the

power is an operating characteristic of main interest.

Despite the fact that a two-sided test problem is considered, in this the-

sis, the power of an effect pointing in the direction of the observed effect in

the historical data is evaluated. This is due to the fact that a power increase

by simultaneously controlling the type I error rate is in contradiction with the

construction of uniformly most powerful tests in the theory of mathematical

statistics, since the likelihood ratio test (which is equivalent to the chi-square

test in the case of a fourfold table) is the uniformly most powerful test ac-

cording to the Neyman-Pearson lemma (Kopp-Schneider et al., 2020) (Witting,

1985). This fact is discussed more detail in the further course of this thesis and

especially in Chapter 4.

Similarly to the case of calculating the type I error rate (see Equation 1,

Subsection 2.6.1), in the frequentist analysis the power calculation is based on

the proportion of fourfold tables that reject the null hypothesis, weighted by

their probability of occurrence, but now assuming that πC 6= πT , i.e. that there

is a clinically relevant effect πT − πC > 0 to be detected.
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Accordingly, based on the fourfold table approach, the power amounts to

nC∑
c=0

nT∑
t=0

P (c, nC | πC) · P (t, nT | πT )

·I(P (c, nC , t, nT , δ, cH , nCH , tH , nTH | πT = πC) < α0) , (2)

where again, P (x, n|π) denotes the probability for x success in n trials by a

binomial success probability of π and I is the indicator function.

As in the case of the type I error rate, the observed historical difference is

the main factor influencing the power. Figure 2.2 (bottom) shows the power

for increasing δ (0 to 1, on the x-axis) and increasing historical difference (0

to 0.30, in intervals of 0.05, depicted in a color spectrum ranging from blue to

red) for the same scenarios as in the previous subsection (based on true rates

of πC = 0.65 and πT = 0.77; accordingly, the initial power without borrowing

amounts nominal to 0.758). The dots identify δ∗, the maximum value of δ by

controlling the type I error rate at the significance level of α0 = 0.05 (for a

fixed πC = 0.65). Therefore, the ’price’ that has to be paid when borrowing full

information can be quantified: There is no or merely a slight increase in power

for the scenarios where the type I error rate is always controlled up to δ∗= 1

(observed historical difference of 0 or 0.05). Vice versa, for larger observed

historical differences (0.25, 0.3), δ∗ gets smaller, i.e., fewer information can be

borrowed and, thus, the gain in power becomes smaller as well. Therefore,

the incorporation of historical data while at the same time controlling the type

I error seems the most beneficial in case of moderate observed historical rate

differences (0.05-0.2).

Similarly as for the Bayesian calculation of the type I error rate, the formula

for the Bayesian calculation of the power can be derived (see Section 2.5):∫ ∞
−∞

N

(
d,
πCnC + πCnT
nC + nT

)
(x)

·(I (P (∆> 0 | nCH , nTH , nC , nT , πC , πT , pCH , pTH)> 0.975)

+I (P (∆< 0 | nCH , nTH , nC , nT , πC , πT , pCH , pTH)> 0.975))dx,

where

P (∆> 0 | nCH , nTH , nC , nT , πC , πT , pCH , pTH)

=

∫ ∞
0

N

(
∆,

πCnC + πTnT
nC + nT

)
(x) ·N

(
∆̂H ,

pCHnCH + pTHnTH
nCH + nTH

)δ
(x)d∆

with ∆̂H = pCH−pTH = cH
nCH

+ tH
nTH

and N
(
µ, σ2

)
denoting the density function
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of the normal distribution with mean µ and variance σ2. In addition, the effect

size to detect is denoted by d.

Note that in this section the definition of the power was based only on d

(and not on |d|). Thus, only the power in direction in favor of the observed

historical effect is calculated. For calculating the two-sided power the formulas

in this section have to adapted by basing the formula on |d| instead of d.

2.6.3 Rejection Regions

Another operating characteristic of interest is how the incorporation of historical

data influences the rejection regions of the corresponding statistical test. As its

name suggests, the rejection region covers the area of observed effects where the

null hypothesis is rejected, i.e. the amount of values for which the p-value of the

corresponding statistical test falls below the nominal significance level α0. In

a clinical trial with binary outcome, the location of this region depends on the

observed rates in the control arm (pC) and in the treatment arm (pT ), and the

corresponding sample sizes (nC , nT ), respectively. The combinations of these

values where the p-values firstly fall below the significance level α0 is called

boundary of the rejection region. In Figure 2.3 the boundary of the rejection

region of a chi-square-test with nC = nT = 200 for various combinations of c

(number of responses in the control arm, x-axis) and t (number of responses in

the treatment arm, y-axis) are depicted for several values of the power parameter

δ. In addition, it is assumed that there is data from a historical trial available,

i.e. the same as in Subsections 2.6.1. and 2.6.2 (65 responses within 100 patients

in the control arm and 75 responses within 100 patients in the treatment arm).

The areas above the respective upper lines and the areas below the respective

lower lines per color are the rejection regions.

It can be seen that by integration of historical data the upper boundaries of

the rejection region decrease, as well as the lower boundaries. However, the

lower boundaries decrease to a greater extent than the upper limits. Thus, as a

consequence, by integration of historical data the rejection regions are becoming

smaller. Therefore, integrating historical data is only beneficial when focusing

on the benefit for revealing an effect in direction of the effect observed the

historical data. This fact and its consequences are discussed in further detail in

the Chapter 4.

2.7 Determination of Power Parameter

The choice of the value for the weighting parameter δ is a topic which is currently

still under discussion. Methods range from determination (e.g. by an expert)
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Figure 2.3: Boundary of the rejection regions for several values of δ, c denotes
the number of responses in the control arm, t denots the number of patients in
the treatment arm.
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to treating δ as an unknown parameter (e.g. fully Bayes approach (Gravestock

et al., 2017)) or estimation based on the data of the historical and the new study

(e.g. empirical Bayesian approach (Gravestock et al., 2017)). Nevertheless, all

methods have in common that they aim to reduce the occurring type I error

rate inflation, i.e. when the type I error rate exceeds the nominal significance

level α0. Furthermore, in application in a clinical trial it is of main interest

to control the type I error rate. In the ideal case the type I error rate can be

controlled below the nominal significance level.

2.7.1 Global Approach

A possible interpretation of Subsection 2.6.1 may be that for every scenario

there exists a value δ∗ > 0 that determines the maximal δ which still guarantees

type I error rate control. Furthermore, from Formula (1) (Subsection 2.6.1)

it also follows that the type I error rate depends on the true control response

rate πC , which can be regarded as a so-called ’nuisance’ parameter. Nuisance

parameters are parameters which one primarily does not intend to estimate, but

need to be considered nonetheless (Fagerland et al., 2017). Compared to the

case of control arm borrowing, in the case of two-arm borrowing, the unknown

value of πC has a rather small impact on the type I error rate (see Figure 2.1

bottom). However, type I error rate control needs to be ensured for all possible

values of πC because δ∗ depends on πC , and since δ∗ determines the amount

of historical data integrated into the fourfold table on which the type I error

calculation is based, the resulting type I error rate consequently also depends

on πC . Therefore, δ∗ can be determined by calculating the maximal δ for which

the actual type I error rate α falls below a predetermined value α0 for all values

of πC , and then taking the minimum of all maximal δ . This approach is valid

due to the convexity of the type I error functions (see also Figure 2.2 (top)):

δ∗ = min
πC ∈[0,1]

max{0 < δ ≤ 1 | α(δ | cH , nCH , tH , nTH , nC , nT , πC) < α0} . (3)

In the following, this procedure is referred to as the ’global approach’ for the

determination of δ∗.

Thereby, the convexity of the type I error functions in terms of δ is a crucial

assumption for this ’minimax’ approach. In the case of a normally distributed

test statistic (which is closely related to the test statistic of the chi-square test,

due its relationship to the z-test (Fagerland et al., 2017)), it is possible to prove

the convexity of the type I error functions.

For this purpose, a normally distributed test statistic is considered. Note

that in this thesis the presented calculations were based on the chi-square test
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statistic. Since the test statistic of a test based on a chi-square distribution can

be converted into a normal distribution by taking its square root and adding

a sign function depending on the direction of the treatment effect, the result

obtained for the normal distribution can be transferred to the chi-square test

setting. However, the test statistic of the chi-square test is only approximately

chi-square distributed and thus, the type I error curves that can be seen in

Figure 2.2 (top) are only approximately convex.

The proof is divided into three parts: At first, the convexity of a standard

normally distributed test statistic modified by the inclusion of historical data

by increasing δ is proven. At second, it is proven that if a two-dimensional

function is convex in one variable, then the one-dimensional function resulting

from integration over the other variable is convex, too. Based on these results,

the convexity of the type I error rate in terms of δ is proven in the third part.

Part I:

It is assumed the random variable T to be a standard normally distributed

test statistic, which becomes shifted due to the inclusion of historical data.

Furthermore, it is assumed that the test statistic of the historical data follows

a N (µ̂, σ̂2) distribution, with µ̂, σ̂2 estimated from the historical data. Based

on the concept of the power prior (with a uniform initial prior) it follows:

T (x, δ) ∝ 1√
2π

exp(−x2) · 1
√

2π
δ

exp

(
−δ(x− µ̂)

2

2σ̂2

)

as the distribution function of the test statistic T . To prove the convexity in δ,

it is assumed x to be a constant and consider the function

T (δ) =
a

bδ
exp (−δc) ,

where a, b and c are positive constants. Convexity can be shown by the positivity

of the second derivative of T (δ). The second derivative T ′′ of T (δ) based on

the chain rule and product rule is

T ′′(δ) =
a

bδ
exp (−δc)

(
c2 + c · ln(b) +

1

4
(ln(b))

2

)
=

a

bδ
exp (−δc) (c+

1

2
ln(b))2

which is positive since each of the factors is positive.

Part II:

In this part, it is proven that if f(x, y) is a function that is convex in y for

all x ∈ [a, b], then
∫ b
a
f (x, y) dx is also convex in y.

To prove this it is defined: g (y) :=
∫ b
a
f (x, y) dx for a, b ∈ R. A further
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definition of the convexity of a function g is given by showing that:

g (λy1 + (1− λ) y2) ≤ λg (y1) + (1− λ) g(y2)

for all real y1, y2 ∈ R and 0 ≤ λ ≤ 1. It follows from the convexity of f and

the monotonicity of the integral that

g (λy1 + (1− λ) y2)

=

∫ b

a

f (x, λy1 + (1− λ) y2) dx

≤
∫ b

a

λf (x, y1) + (1− λ) f (x, y1) dx

= λ

∫ b

a

f (x, y1) dx+ (1− λ)

∫ b

a

f (x, y2) dx

= λg (y1) + (1− λ) g(y2) .

Part III:

At last, the results of part I and part II are used to show the convexity of

the type I error rate in δ. Based on the test statistic T, the type I error rate in

terms of δ is

Type I error(δ) =

∫ q

−∞
T (x, δ)dx+

∫ ∞
r

T (x, δ)dx

with q and r denoting the α
2 and 1 − α

2 - quantile of the standard normal

distribution, respectively. Note that the improper integrals are integrable since

the integrand is a probability distribution. Each of the terms on the right hand

side is convex due to the results of part I and part II. Thus, due to the fact that

the sum of two convex function is also convex, the type I error rate is convex in

δ. q.e.d.

2.7.2 Local Approach

Since especially for the chi-square tests the actual type I error rate is sensitive to

very small or large values of πC (see Figure A.1 and Fagerland et al. (2017))),

it might be reasonable that control of the type I error rate does not need to

be ensured for the whole range of πC . One possible way to achieve this is the

Berger and Boos procedure (Berger and Boos, 1994). Berger and Boos propose

to control the type I error rate only in a 1− γ confidence interval of a nuisance

parameter (πC), which is built based on the historical control data. However,
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Table 2.3: δ∗(the maximum value of δ controlling the type I error rate) for
various values of γ (from the procedure of Berger and Boos (1994)).

γ 1− γ confidence interval for πC δ∗

0 (global approach) [0; 1] 0.41
0.00001 [0.42; 0.84] 0.4
0.0001 [0.45; 0.82] 0.4
0.0005 [0.47; 0.80] 0.39
0.001 [0.48; 0.79] 0.39
0.002 [0.49; 0.79] 0.36
0.01 [0.51; 0.77] 0

to guarantee global control of the significance level by α0, it has to be locally

adjusted to α0 − γ. Then, δ∗ can be determined by calculating the maximum

δ in the 1 − γ confidence interval of πC based on a local significance level of

α0 − γ:

δ∗ = min
πC ∈[a,b]

max{0 < δ ≤ 1 | α(δ | cH , nCH , tH , nTH , nC , nT , πC) < α0 −γ} , (4)

where [a, b] is the respective 1−γ confidence interval and γ has to be prespecified.

Since the type I error functions for πC are nearly flat (Figure 2.1), a quite small

value can be chosen for γ, or, vice versa, a relatively wide confidence interval.

For example, Lydersen et al. found that γ = 0.0001 is approximately optimal

under rather general conditions (Lydersen et al., 2012). In the following, the

impact of various values of γ on the resulting value of δ∗, is investigated. Hereby

the following scenario is examined:

� 65 responders within 100 patients in the historical control arm,

� 75 responders within 100 patients in the historical treatment arm,

� 200 patients per arm in the new trial.

The results are depicted in Table 2.3. Despite the fact that the range of the

confidence intervals are very similar for 0.0001 ≤ 0.01, only the values γ ≤ 0.001

resulted in a similar large δ∗ while decreasing for higher values. Generally, larger

values of γ lead to smaller δ∗ (type I error functions for πC have to lie below

a stricter local significance level of α0 − γ) and smaller values of γ lead to

unnecessarily broad confidence intervals including rather unrealistic (i.e. large

difference between observed historical rates and true rates) or too sensitive (i.e.

extremely small or large values of πC) scenarios. Thus, the recommendation of γ

= 0.0001 seems to be legitimate. Therefore, in the presented framework as well

as in the Results (see Chapter 3), a value of γ = 0.0001 is considered. However,

a uniformly optimal value of γ for all scenarios does not exist but depends on
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the specific situation. Further, more systematic considerations were conducted

and confirmed the reasonable choice of the value 0.0001; those considerations

can be found in Appendix A.2.

In the following, this procedure is referred as the ’local approach’ for the

determination of δ∗.

2.7.3 Independent Approach

To avoid conflicts with the nuisance parameter especially for very low and very

high values of πC , not only is it possible the reduce the range of values for

which the type I error rate has to be controlled (local approach) but also the

approach for the estimation of δ∗ can be made independent of πC . This can be

done by a so-called variance-stabilizing transformation (e.g. arcsine transfor-

mation (Yu, 2009)) resulting in a constant variance for all values of a nuisance

parameter. Especially for the presented Bayesian framework from Section 2.5,

where one works directly with the difference of the proportions ∆ = πT − πC ,

it could be desirable and elegant to get rid of the dependency of the nuisance

parameter πC . Therefore, a variance-stabilizing transformation by the function

f(p) = arcsin
√
p was applied. This results in a constant variance which is only

depending on the sample sizes of the trials. Subsequently, calculation of the

true type I error rate α can be obtained by:∫ ∞
−∞

N

(
0,
nC + nT
2nCnT

)
(x) · (I (P (∆> 0 | nCH , nTH , nC , nT )> 0.975)

+I (P (∆< 0 | nCH , nTH , nC , nT )> 0.975))dx

and

P (∆ > 0 | nCH , nTH , nC , nT )

=

∫ ∞
0

N

(
∆,

nC + nT
2nCnT

)
(x) ·N

(
∆̂H ,

nCH + nTH
2nCHnTH

)δ
(x)d∆

again, with ∆̂H = pTH − pCH and N
(
µ, σ2

)
denoting the density function of

the normal distribution with mean µ and variance σ2. Based on this definition

of the type I error rate, δ∗ can be determined (independent from πC) by

δ∗ = max{0 < δ ≤ 1 | α(δ | cH , nCH , tH , nTH , nC , nT ) < α0} . (5)

Similarly to the definition of the type I error rate, the formula for the power
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can be obtained by:∫ ∞
−∞

N(d,
nC + nT
2nCnT

)(x) · (I (P (∆> 0 | nCH , nTH , nC , nT )> 0.975)

+I (P (∆< 0 | nCH , nTH , nC , nT )> 0.975))dx

with the same notations as above and where d denotes the assumed effect size.

In the following, this procedure is referred as the ‘independent approach’ for the

determination of δ∗.

Note that the use of a variance-stabilizing transformation is arguable, since

especially for the very high and the very low values of πC the transformation is

inexact (Warton and Hui, 2011). Therefore, the benefits by using this method

should be treated with caution and the results presented in this thesis will be

interpreted accordingly (see Chapters 3 and 4).

2.8 Sample Size Calculation

When planning a new trial, one usually aims to achieve a prespecified power

1− β0, e.g. 0.8 or 0.9 as the probability to reveal an assumed effect with effect

size ∆. As it follows from Subsection 2.6.2, the proposed methods can be em-

ployed to yield an increased power. Vice versa, they can also be used to reduce

the sample size required to achieve a prespecified target value for the power. For

the presented framework, an integration of historical data is not sensible in all

scenarios, as it mainly depends on the observed rate difference of the historical

data (see Subsection 2.6.2) whether there is an advantage or not. If in a respec-

tive scenario an increase of power can be achieved, it follows that there further

exist combinations of δ∗, nC , and nT , with nC and nT smaller than derived

from the initial sample size calculation (without incorporation of historical data

but based on the same assumptions). To identify the optimal combination, i.e.

those resulting in the largest reduction in sample size (compared to the initial

sample size), the combination of nC , nT and δ∗ with the smallest nC and nT has

to be determined. Note that in general this most beneficial combination should

be accompanied by the largest possible δ∗ (by simultaneously controlling the

type I error rate). In summary, for performing a sample size calculation based

on

� a predefined significance level,

� a predefined power to reveal an assumed effect size of ∆,

� for given historical data,
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one has to find the value of δ∗ that results in the smallest sample size nC and

nT in a ’new’ trial.

However, searching for this combination would be based on a large compu-

tational effort since for every combination in the grid of nC , nT , and δ∗, the

respective true type I error rate and power have to be calculated. In order

to reduce this effort and to accelerate the calculation processes, some practical

recommendations are therefore given in the following section.

2.9 Practical Considerations

The methods proposed in the previous sections are particularly computation-

ally intensive, especially the ’grid search’ over a huge amount of parameter

combinations in the sample size calculation procedure requires a rather large

computational effort.

In general, the calculations presented in this work are based on extensive

exact calculations of the type I error rate and the power (e.g. Equation (1),

Subsection 2.6.1). Thereby, a double sum over the sample sizes of a new trial

is considered, which increases by the square of the sample size. Therefore, for

large sample sizes, a determination of the type I error rate and power could be

accomplished more efficiently by simulations to reduce the computation effort.

In the following, some further practical aspects, methods, and algorithms are

presented, which can reduce the computation effort or improve the estimation

for the above introduced calculation methods.

2.9.1 Determination of Power Parameter

To find the maximal δ for the amount of πC , the nested intervals procedure

(which works due to the convexity of the type I error functions, see Subsection

2.7.1) can be used. The nested intervals procedure restricts the value of interest

(in this case: the root of a function) in a sequence of nested intervals with

decreasing width. Thus, the value of δ∗ can be determined with arbitrarily

precise accuracy. On the one hand, this method considerably decreases the

number of computations, and on the other hand the computational effort can

be controlled by determining the accuracy of the estimation.

Furthermore, for the local approach the determination of a confidence inter-

val is not straightforward, since there are many different approaches to estimate

a confidence interval for a binomial proportion. Methods range from a normal

approximation interval to exact methods (Brown et al., 2001). In the case of the

local approach the use of the Clopper-Pearson confidence interval may be prefer-

able since it always fulfills the coverage criterion and thus guarantees the main-
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tenance of the confidence level (Fagerland et al., 2017). The Clopper-Pearson

confidence interval is an exact interval for estimating a binomial proportion and

its limits can be calculated based on Beta distributions.

2.9.2 Algorithm for Sample Size Calculation

Finding the value of δ∗ for the sample size calculation procedure from Section

2.8 via a ’grid search’ requires a rather large computational effort, since for every

possible combination of nC , nT , and δ∗ the type I error rate and the power have

to be calculated, respectively. Therefore, the following algorithm may be useful

to find this combination in a less time-consuming way, based on predetermined

values for significance level α0, power 1− β0, and πC and πT :

� Step 1: calculate nC and nT based on the predetermined parameter values

(standard sample size calculation) and opt for the local approach, the

global approach or the independent approach (see Subsections 2.7.1, 2.7.2

and 2.7.3).

� Step 2: calculate δ∗0 as in Equations (3), (4) or (5) (depending on the

chosen approach) based on cH , nCH,, tH , nTH , nC , nT , and πC . By the

integration of the historical data, it has to be checked if an increase in

power is obtained. If not, then stop, as the integration of historical data

does not yield any benefit.

� Step 3: decrease nC and nT until the smallest values are reached such

that power still lies above the predefined power level 1− β0.

� Step 4: calculate δ∗1 as in (3), (4) or (5) (depending on the chosen ap-

proach) based on cH , nCH,, tH , nTH , nC , nT , and πC and on the new nC

and nT from Step 3.

� Step 5:

– If δ∗1 > δ∗0 , obtain an increase in power as in Step 2 and go back to

Step 3 with δ∗1 = δ∗0 and with nC and nT from Step 4.

– If δ∗1 ≤ δ∗0 , stop. nC , nT (from Step 4), and δ∗0 represent the prefer-

able combination.

This algorithm works since for decreasing sample sizes nC and nT (Step 3)

the type I error rate decreases as well. This phenomenon occurs only if the

type I error rate is slightly below the nominal significance level. This is due

to the fact that for increasing nC and nT and fixed δ∗, the ’weight’ of the

historical data decreases and, therefore, the type I error rate approaches the
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Figure 2.4: Actual type I error rate depending on the sample size of the new
trial for cH = 65 responders within nCH = 100 patients in the historical control
arm, tH = 75 responders within nTH = 100 patients in the historical treatment
arm, a fixed πC = 0.65 and a fixed borrowing parameter δ = 0.4.

nominal significance level. This fact is depicted in Figure 2.4 for the scenario

cH = 65 responders within nCH = 100 patients in the historical treatment arm,

tH = 75 responders within nTH = 100 patients in the historical control arm,

fixed πC = 0.65, and fixed δ = 0.4. Note that the ’mountains and valleys’ are

due to the discrete character of the chi-square test statistic.

Note that if in the algorithm δ∗1 > δ∗0 (Step 5) and one therefore has to go

back to Step 3, this is regarded as an additional algorithm step in the following

chapter, in which the number of steps required by the algorithm is evaluated.

Furthermore, for the independent approach this algorithm simplifies, because

the calculation of δ∗0 and δ∗1 (Step 2 and Step 4) is independent from πC and

therefore the computational effort is strongly reduced.

The code based on the programming language R (Ihaka and Gentleman,

1996) for the presented sample size calculation procedure for each of the three

approaches presented in this thesis can be found in Appendix B. Note that due

to practical reasons (the function chisq.test from R produces the result ’NA’ for

zeros in the fourfold tables), the sums in the code which are based on Equations

(1, see Subsection 2.6.1) and (2, see Subsection 2.6.2) start at 1 instead of 0.

Nevertheless, this aspect is negligible, since omitting these scenarios does not

have any impact on the results presented in this thesis.
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Results

Comment: The results presented below differ in some instances slightly from

those already published in Feißt et al. (2020) (mainly regarding the independent

approach). This is due to recently optimized calculations implemented in the

programming code. However, this does not affect the conclusions made in this

publication.

3.1 Systematic Investigations

Based on the considerations in the previous chapter, it can be assumed that for

every scenario a value δ∗ can be determined so that a certain amount of two-arm

historical data (represented by δ∗) from a previously performed clinical trial can

be incorporated in a current two-arm trial while simultaneously controlling the

type I error rate at the nominal significance value. However, it is not clear so

far whether this integration of historical information may result in a benefit

in terms of an increase in power or, vice versa, a sample size reduction, since

this depends on the shape of the observed historical data. To detect factors

that favor a successful incorporation (i.e. type I error rate control and sample

size reduction), systematic investigations are performed in the following for the

above proposed global, local, and independent approach. The main outcome

of interest is determined as the percent sample size saved compared to the

sample size required without integration of historical data. Thereby, the most

beneficial (in terms of saved sample size, compare Section 2.8) combination of

the parameters δ∗, nC , and nT is calculated. To reduce the computation effort,

the algorithm presented in Subsection 2.9.2 is used.

29
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3.1.1 Setup

In the following, the setup of the systematic investigations is defined. Possible

influence factors are varied and the resulting values of δ∗ and proportion of

sample size saved are considered. The setup of considered parameter values is

as follows:

� True control proportion πC = 0.1, 0.2, 0.3, 0.4,

� Effect size ∆ = πT − πC = 0.1, 0.15, 0.2, 0.25,

� Responses in historical control and treatment arm cH = 20; tH = 21, 22, . . . , 50,

� Sample size of the historical trial nCH = nTH = 100,

� Nominal significance level α0 = 0.05,

� Power 1− β0 = 0.8,

� Berger and Boos parameter (solely for the local approach) γ = 0.0001.

Thus, a total of 480 scenarios (4 different values for πC , 4 different values

for ∆, 30 different values for tH) were included in the investigation. Note that

due to the symmetry of the binomial distribution, only response rates smaller

than 0.5 are investigated; corresponding results for response rates larger than

0.5 would be identical. Variation of further parameters was not examined due

to the following reasons:

� Number of responses in the historical control arm cH : only the difference

between cH and πC is of interest, which is already reflected by the variation

of πC .

� Sample sizes of the historical trial nCH , nTH : the amount of historical data

that is borrowed remains always the same, due to an anti-proportional re-

lationship between the historical sample size and the borrowing parameter;

e.g., if nCH = nTH = 100 and δ∗ = 0.25 then, if nCH = nTH = 50, a value

of δ∗ = 0.5 is obtained. However, there are scenarios where the amount of

historical data will be limited (e.g. due to a low number of patients in the

historical study and δ∗ is limited to 1). However, it follows from Figure 2.2

that the most beneficial scenarios are not those accompanied with larger

δ∗ and therefore the limitation of the historical data to a ’realistic’ value

of nCH = nTH = 100 seems legitimate.

� nCH 6= nTH and nC 6= nT : in most cases, unbalanced designs are not

of interest since the largest power (and therefore the largest reduction in



3.1. Systematic Investigations 31

sample size) is achieved for a balanced design. The more unbalanced the

scenarios are, the larger the inflation of the type I error rate is (since the

considered situation becomes more and more similar to the case of one-

arm (control arm) borrowing) and thus, less sample size can be saved (see

Figure 2.1 top). Nevertheless, there are situations in clinical trial practice

where unbalanced designs are used or where unbalanced data of the sample

sizes of historical trials are unbalanced. The presented approaches are also

able to deal with this case (see Section 3.2).

� The Berger and Boos parameter γ (solely for the local approach): for the

main investigations as defined above, γ is set to γ = 0.0001 as proposed

in Subsection 2.7.2.

� Significance level α0 and power 1−β0: the proposed approaches work in the

same way for (realistic) values other than α0 = 0.05 and 1− β0 = 0.8. No

fundamental difference are expected for different parameter values since

changing these characteristics would linearly transform the value space of

the outcome parameters but not change the fact that a certain scenario

is more beneficial than another. In addition, it would become difficult

to compare the results for different values of α0 and β0 if they would be

altered.

Altogether, 480 scenarios for each of the different approaches (global, local,

and independent) are considered and compared in the following. For each of

these three approaches, every calculation step where the maximum of the actual

type I error rate has to be found is based on an amount of 101 equidistant

values of πC , respectively. Similarly, also the amount of attainable values for

δ∗ is restricted to a number with two decimal places. Note that for the local

approach in the scenarios including πC = 0.4, this value was not located in the

respective 1 − γ confidence interval for πC calculated based on the historical

control data (e.g. the Clopper-Pearson confidence interval for cH = 20 and

nCH = 100 is [0.075; 0.387]). Therefore, for these scenarios, no calculations

were performed. However, in order to obtain the same amount of scenarios for

the three approaches, respectively, for these scenarios, the historical data was

modified by adding 10 responses in each historical treatment arm (i.e. cH = 30

and tH = 31, ..., 60).

3.1.2 Global Overview

Summarizing all 1440 scenarios for the three approaches, up to 22.2% of the

sample size could be saved by integration of historical data. However, in 14.2%
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Figure 3.1: Boxplot of sample size saved accumulated over all scenarios and
approaches.

of the scenarios, no benefit at all from incorporating historical data could be ob-

served. In more than 50% of the scenarios, the sample size reduction amounted

to at least 12.7% (median). Figure 3.1 shows a boxplot of the proportion of the

saved sample size, the whiskers range from the minimum (no sample size saved)

up to the maximum (22.2%).

To reduce the computational effort, the algorithm presented in Subsection

2.9.2 was used. In some cases the algorithm needed up to 5 steps to converge.

In most cases, however, only one or two steps were required indicating a fast

convergence of the algorithm in the majority of the scenarios (see Figure 3.2).

3.1.3 Variation in Parameter Values

In this subsection, the influence of difference parameters on the results of the

systematic investigations are evaluated. The results presented in this subsection
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Figure 3.2: Relative frequencies of the number of steps until convergence of the
algorithm described in Subsection 2.9.2.

are accumulated over all three approaches and over all scenarios not differenti-

ated, respectively. As already stated above, the main influencing factor on the

increase in power and, vice versa, the proportion of sample size saved seems to

be the observed historical rate difference. Figure 3.3 illustrates the dependency

of the outcome variable ’proportion of sample size saved’ on the observed his-

torical rate difference. It can be seen that for small differences none or only

few reduction in sample size is achieved; the most benefit is achieved when the

differences ranges from 0.08 to 0.18. The benefits slowly decreases for increas-

ing rate differences. In the range of 0.08 to 0.15, a minimum benefit of at least

7.5% can be achieved. The parameter δ∗ substantially determines the amount

of historical data that is included into the new trial. Its dependence on the

observed historical rate difference is depicted in Figure 3.4.

For differences of 0.01 to 0.06, the complete historical data is incorporated.

With increasing historical rate difference, δ∗, representing the amount of incor-

porated historical data included into the new trial, is decreasing. For a given

historical rate difference, the resulting range of admissible values for δ∗ is rather

small, which is illustrated by the short range of most boxplots depicted in Figure

3.4.

Figure 3.5 depicts the proportion of sample size saved depending on the

resulting value of δ∗ (rounded to one decimal place).
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Figure 3.3: Boxplots of the proportion of saved sample size for different values
of the observed historical rate difference.

Figure 3.4: Boxplots of δ∗ for different values of the observed historical rate
difference.
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Figure 3.5: Boxplots of proportion of sample size saved for various values of δ∗

(rounded to one decimal place).

Table 3.1: Initial sample sizes in the sample size calculation procedure for the
different values of πC and ∆.

πC \ ∆ 0.1 0.15 0.2 0.25
0.1 195 97 60 41
0.2 292 137 81 54
0.3 356 162 93 60
0.4 388 173 97 62

It can be seen that the most beneficial combinations are those with 0.15 ≤
δ∗ ≤ 0.84. However, for every decimal class of δ∗ there exist scenarios where a

high amount of samples size can be reduced. Nevertheless, for values of δ∗ near

1, there is only low benefit in the majority of scenarios.

For varying true control proportion πC , the proportion of saved sample size

remains nearly the same, which can be seen in Figure 3.6. For an increasing

true effect size ∆, the reduction in sample size is slightly more pronounced. The

results are shown in Figure 3.7 and the different initial sample sizes (deduced in

the first step of the calculation based on sample size calculation for a chi-square

test) can be found in Table 3.1.

Figure 3.8 shows that the proportion of sample size saved slightly decreases

if the observed historical control rate pCH differs from the true control rate πC .

Note that this discrepancy was the main influence factor on the actual type I
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Figure 3.6: Boxplots of the proportion of sample size saved for different values
of the true control rate πC .

Figure 3.7: Boxplots of the proportion of sample size saved for different values
of the true effect size ∆.
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Figure 3.8: Boxplots of the proportion of sample size saved for several differences
between observed historical control rate pCH and true control rate πC .

error rate in the case of one-arm borrowing (see Figure 2.1). It can be seen that,

also in the two-arm borrowing approach, this inconsistency (between observed

control proportion) is slightly penalized in form of an inflation of the type I

error rate and vice versa in less sample size saved. However, these effects do

not occure in a comparable amount as in the one-arm borrowing. This will be

further discussed in the Chapter 4.

In Figure 3.9, the influence of the difference between observed historical

rate difference pTH − pCH and true effect size ∆ on the sample size reduction

is displayed. For an increasing difference between observed historical and true

effect size, the proportion of sample size saved slowly decreases (from a difference

of 0 to 0.11). Subsequently, it decreases to a greater extent for differences of

0.12 to 0.2. For differences larger than 0.2, the proportion of sample size saved

is constantly equal to 0. This phenomenon can be explained by the fact that an

difference larger than 0.2 induces both a historical rate difference of 0 to 0.05

and an effect size of 0.25. For these scenarios, the incorporation of historical

data is not accompanied with a benefit and thus no sample size can be saved.

3.1.4 Comparison of Considered Approaches

Figure 3.10 displays the proportion of sample size saved for the three approaches

(i.e. the global approach (2.8.1), the local approach (2.8.2), and the independent
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Figure 3.9: Boxplots of the proportion of sample size saved with respect to
various differences between observed historical control rate difference pTH−pCH
and true control effect size ∆.

approach (2.8.3)). The benefit for the local approach is slightly higher than

that for the global approach, whereas the benefit for the independent approach

is slightly higher than that for the two remaining approaches. The median and

maximum proportions of samples size saved increase from 11.0% and 21.0% in

the global approach over 12.4% and 22.2% in the local approach up to 15.1% and

22.2% in the independent approach. The proportion of scenarios without any

benefit slightly ranges from 14.4% over 15% to 13.1%, meaning that the amount

of scenarios without any benefit remain nearly the same. In detail, nearly all

scenarios that achieve no benefit in the independent approach are also scenarios

with no benefit in the local and global approach.

Figure 3.11 compares the results of the different approaches directly by dis-

playing a boxplot of the difference in samples size saved in the corresponding

scenarios. The results in terms of proportion of sample size saved are very simi-

lar for the local and global approach, i.e., the majority of the scenarios (82.1%)

differ by only 3% or less (in 46.3% they are equal). However, there are several

scenarios where the difference is larger (up to 11%). Furthermore, there are

generally more scenarios in which the local approach performs better than the

global approach instead of the reverse (32.7% vs 21.0%). Comparing the inde-

pendent approach to the global approach and the local approach, it performs
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Figure 3.10: Proportion of sample size saved for the global (red), local (green)
and independent (blue) approach.

Figure 3.11: Boxplots of the difference in the proportion of saved sample size
saved between the global, local, and independent approach.
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Figure 3.12: Scatterplots of the proportion of sample size saved between the
three approaches. Top left: local (y-axis) vs global (x-axis) approach. Top right:
independent (y-axis) vs global (x-axis) approach. Bottom left: independent (y-
axis) vs local (x-axis) approach.

better: In only 3.8% and 5.0% of the scenarios, the global approach and the lo-

cal approach are superior, while in 76.7% and 73.8% of all considered scenarios,

the independent approach shows better results in terms of proportion of sample

size saved, respectively.

Figure 3.12 shows scatter plots of the proportion of sample size saved com-

pared between the respective approaches; each dot illustrates a separate consid-

ered scenario. The results shown in Figure 3.12 confirm the findings displayed

in Figure 3.11: The results are similar with slight advantages for the local and

particularly for the independent approach. Furthermore, these advantages are

independent from the amount of sample size saved. Figure 3.13 and 3.14 illus-

trate the resulting values for δ∗ for the three different approaches via boxplots,
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Figure 3.13: Boxplots of the attained values of δ∗ in all scenarios for the three
considered approaches.

and, respectively, via comparative scatterplots. In summary, the resulting values

of δ∗ are very similar for the three approaches. However, for the local approach,

there are a few scenarios that show higher values for δ∗ than the global and

the independent approach. After identifying these scenarios, it was found that

these are scenarios where the maximum of the type I error function (in depen-

dence of the true control proportion πC) is located outside of the respective

confidence interval of πC and, therefore, the use of the local approach is accom-

panied with a larger benefit in terms of amount of incorporated historical data.

Thus, the resulting values of δ∗ for the global and independent approach are

nearly identical.

In the following, the influence of the different parameters on the performance

of the three different approaches is evaluated. At first, the proportion of sample

size saved in dependence of the observed historical rate difference is depicted

separately for the three approaches (see Figure 3.15). All approaches show the

same behavior, i.e., there is no or less sample size saved for small difference.

The highest proportion in reduced sample size occurs for moderate differences

(e.g. from 0.08 to 0.15), and there is a decreasing benefit for an increasing rate

difference. However, up to a difference of 0.3 (highest value for this parameter),

the decrease of the benefit for the global and local approaches advances to the

case of no benefit, but the independent approach still gives a benefit of at least

7% of proportion of sample size saved.

A similar behavior of the three approaches for different values of the observed
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Figure 3.14: Scatterplots comparing the resulting δ∗ between the three ap-
proaches. Top left: local (y-axis) vs global (x-axis) approach. Top right: inde-
pendent (y-axis) vs global (x-axis) approach. Bottom left: independent (y-axis)
vs local (x-axis) approach.
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Figure 3.15: Proportion of sample size saved for the three different approaches
(red=global, green=local, blue=independent) for varying observed historical
difference (from 0.01 to 0.3, respectively).

historical rate difference can also be seen in Figure 3.16 and Figure 3.17. In

Figure, 3.16 the resulting value of δ∗ for the three approaches in dependence of

this rate difference is depicted. For the global and local approach there exist

scenarios for a rate difference of 0.22 to 0.25 where the resulting value of δ∗ is

δ∗ = 0 and thus, incorporation of historical data is not beneficial. In Figure

3.17, the resulting sample size reduction for various values of δ∗ (rounded to

one decimal place) is depicted. Again, no large differences to the general trend

(independent approach is most beneficial) can be found.

Figure 3.18 shows the proportion of sample size saved for varying true control

proportion πC separated for the three approaches. As for the combining results,

each of the approaches show a slight decrease in sample size saved for increasing

πC . Figure 3.19 displays the proportion of sample size saved for varying true

effect size ∆ separated for the three approaches. For the global approach, there

is only a slight increase, if any at all, whereas for the global approach there is

an increase in sample size saved for increasing ∆.

The proportion of sample size saved for varying difference between true and

observed historical control proportion is shown in Figure 3.20. As in Subsection

3.1.3, the proportion of sample size saved is decreasing for an increasing differ-

ence. This decrease is more pronounced for the global and the local approach.
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Figure 3.16: Resulting value of δ∗ for the three different approaches (red=global,
green=local, blue=independent) for varying observed historical difference (from
0.01 to 0.3, respectively).

Figure 3.17: Proportion of sample size saved for various values of δ∗ (range 0-1,
rounded to one decimal place) for the three different approaches (red=global,
green=local, blue=independent).
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Figure 3.18: Proportion of sample size saved for the three different approaches
(red=global, green=local, blue=independent) for varying true control propor-
tion πC .

Figure 3.19: Proportion of samples size saved for the three different approaches
(red=global, green=local, blue=independent) for varying true effect size ∆.
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Figure 3.20: Proportion of samples size saved for the three different approaches
(red=global, green=local, blue=independent) for varying difference between
true and observed historical control proportion. The boxplot for 0.2 in the
local approach (green) is missing, since for these scenarios the respective value
of πC was not located in the respective 1 − γ confidence interval of πC (see
Subsection 3.1.1).

Note that for the local approach, there is no boxplot for a difference of 0.2 since

the respective value for πC was located outside the corresponding confidence

interval (see Subsection 3.1.1).

3.1.5 Summary

In summary, up to 22.2% of the initial sample size can be saved by incorporating

historical data. Thereby, the algorithm proposed in Subsection 2.9.2 can highly

reduce the computational effort to find the most beneficial combination of δ∗

and the samples sizes of the new trial nC and nT since, in the majority of

the scenarios, it converges after one additional step. As already forecasted in

Chapter 2, the main influencing factor on a beneficial incorporation of historical

data is the observed difference in sample size saved, as can be seen from Figure

3.3. The further possible influencing parameters show only slight differences

when varied. In contrast to a setting in which only historical control arm data

is incorporated, the two-arm case is merely slightly impacted by a difference

between true and assumed response proportions. Comparing the three different

approaches to estimate δ∗, i.e. the global, local, and independent approach, the
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independent approach shows the slightly best performance in terms of sample

size saved, while the local approach performs slightly better than the global

approach. No scenarios occurred in which the different approaches produced

widely dissimilar results.

3.2 Clinical Trial Example - The FaSScinate Trial

To demonstrate the proposed methods for the incorporation of historical data

in two-arm trials with binary outcome, a clinical trial example is considered,

the ’Safety and efficacy of subcutaneous tocilizumab in adults with systemic

sclerosis’ (FaSScinate) trial (Khanna et al., 2016). In this trial, the efficacy and

safety of tocilizumab in patients with Systemic sclerosis (SSc), a rare connective

tissue disorder, was investigated. It is characterized by tightening and thickening

of the skin, whereby multiple internal organs are involved including heart, lung,

kidneys, and gastrointestinal tract. The FaSScinate trial was a randomized,

double-blind, placebo-controlled phase II trial. An important secondary binary

endpoint was the proportion of patients achieving an improvement in the so-

called modified Rodnan skin score (mRSS) by at least 4.7 points from baseline

to week 24. A change in the mRSS of 4.7 points or more was deemed clinically

important and can be regarded as a treatment response. In the FaSScinate

trial, 10 responders within 44 placebo patients and 16 responders within 43

tocilizumab patients were observed.

It is assumed that a subsequent new trial in SSc is planned which investi-

gates the former secondary endpoint as the new primary endpoint. With the

developed framework, the (historical) FaSScinate study data can be integrated

into a new trial in order to potentially achieve a gain in power or, vice versa, a

reduced sample size.

First, the gain in power while simultaneously controlling the type I error

rate is considered. For this, based on the results of the FaSScinate trial, the

following parameters for the sample size calculation are assumed: πC = 0.23

and πT − πC = 0.14. To achieve a power of 1 − β0 = 0.8 with a two-sided

significance level of α0 = 0.05, a sample size of nC = nT = 167 is needed

in a trial without borrowing using the chi-square test for the analysis. The

historical data observed in the FaSScinate are cH = 10, tH = 16, nCH = 44,

and nTH = 43. Furthermore, γ = 0.0001 is chosen (see Subsection 2.7.2)

and the respective 0.9999 confidence interval (Clopper-Pearson, based on the

observed historical control rate) for πC is [0.050; 0.526].

The results for δ∗ are shown in Table 3.2. The value for δ∗ amounts to 0.35

for local, and 0.37 for global type I error rate control, respectively. Since the

global (minimum) δ∗ was contained in the confidence interval (at πC = 0.39),
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Table 3.2: δ∗ and gain in power by incorporating historical data while simul-
taneously controlling the type I error rate for the FaSScinate trial for local,
global, and independent approach. Thereby, δ∗ denotes the maximum amount
of incorporated historical data that still guarantees type I error rate control, πC
denotes the true control rate.

Global approach Local approach Independent ap-
proach

δ∗ 0.37 (minimum
at πC = 0.39)

0.35 (minimum
at πC = 0.37)

0.46

Minimum gain
in power

-0.002 (at πC =
0.82)

0.01 (at πC =
0.05)

Not applicable

Maximum gain
in power

0.060 (at πC =
0.31)

0.058 (at πC =
0.33)

Not applicable

Mean gain in
power

0.031 0.039 Not applicable

Power at πC =
0.25

0.851 0.848 0.861

the global approach leads to a higher δ∗, and, therefore, the maximum gain

in power is achieved for the global approach. For almost every value of πC , a

gain in power can be observed; only for the unrealistic values near πC = 0.8

(differing greatly from the observed historical rate of 0.23), a decrease in power

occurs. Therefore, since the local approach restricts the range of πC to the

more stable and realistic scenarios in the confidence interval, there are better

results for minimum and mean gain in power for this approach. Furthermore,

the local approach guarantees a positive minimum gain in power (0.01). Note

that these considerations do not apply to the independent approach, since it

is, as its name suggests, independent of πC . With this approach a value of

δ∗ = 0.46 was obtained.

Considering the rejection regions for this clinical trial example may help

to illustrate the idea and strategy of the proposed procedures. Therefore, the

rejection regions are built based on the same control proportion in the observed

data (i.e. 0.23; the control proportion is fixed due to its impact on the rejection

region). Rejection of the null hypothesis using a test without incorporation of

historical data in such a situation occurs when the number of responders in the

intervention group either lies in the interval [0; 24] or in the interval [55; 167];

thus the rejection region would be R = [0; 24] ∪ [55; 167] (with fixed number of

control responses c = 38). With historical data based on an optimal δ∗ (global

approach) of 0.37, the rejection region changes to R = [0; 21] ∪ [54; 167], and

based on a δ∗ of 1 (which does not control the type I error rate) the rejection

region is R = [0; 16] ∪ [50; 167]. To provide a more comprehensive evaluation of

these results, they are also compared to rejection regions of a two-sided test with
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Figure 3.21: Rejection regions in terms of number of responders in the treatment
group t for different test procedures with fixed number of control responses c=38
(πC = 0.23).

α0 = 0.1 without any historical data, resulting in a rejection region R = [0; 26]

∪ [52; 167]. Thus, the proposed procedure results in an even smaller lower part

of the rejection region than the α0 = 0.05 test procedure, but in an upper part

of the rejection region that can be classified to lie between the α0 = 0.05 and

α0 = 0.1 test procedure. The rejection regions are illustrated in Figure 3.21.

As it was illustrated already in Subsection 2.6.3 and will be considered in

further detail in Chapter 4, the inclusion of historical data (by increasing δ)

increases the power only in favor of an effect observed in the historical data.

Thus, the rejection region is expanded for an effect in favor of the observed

effect in the historical, but at the same time the rejection region for an effect in

the opposite direction is shrunken.

Additionally, the benefit in reduced sample size that can be achieved by

incorporating the historical information of the FaSScinate trial into a new trial

is considered. With the same parameter values as above (πC = 0.23, πT −πC =

0.14, 1 − β0 = 0.8, α0 = 0.05, cH = 10, tH = 16, nCH = 44, nTH = 43, γ

= 0.001), the sample size can be reduced by 24 patients (14.4%) with the local

approach, by 26 patients (15.6%) with the global approach and by 28 patients

(16.8%) using the independent approach (see Table 3.3). Thus, in this specific

scenario the independent approach leads to a higher benefit as compared to the

global and local approach.

Furthermore, the global approach leads to a higher benefit than the local

approach. On the first sight this is surprising, since the local approach just

shrinks the range of values for πC ensuring type I error rate control to a 1− γ
confidence interval (by simultaneously decreasing the significance level to α0−γ).

If the maximum of the actual type I error rate lies outside the corresponding

confidence interval, this reduction would lead to a benefit in terms of sample

size saved compared to the global approach. Simultaneously decreasing the
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Table 3.3: Results of the sample size calculation procedure for the FaSScinate
trial for local and global approach. δ∗ denotes the maximum amount of incor-
porated historical data that still guarantees type I error rate control.

Global ap-
proach

Local ap-
proach

Independent
approach

Initial sample size 167 167 167
New sample size 141 143 139
Saved sample size (%) 26 (15.6 %) 24 (14.4 %) 28 (16.8%)
δ∗ 0.44 0.37 0.46
Steps 2 1 2

Table 3.4: Results of the sample size calculation procedure for the FaSScinate
trial for local and global approach.The use of the global grid indicates that the
values of πC are corrected to two decimal places. The local grid divides the
respective 1− γ confidence interval in equidistant parts (number= number grid
steps; without rounding to a specific number of decimal places).

Number grid steps δ∗ Sample size saved πC with max
α

49 (global grid) 0.44 26 (15.6%) 0.35
50 (local grid) 0.37 24 (14.4%) 0.469
100 (local grid) 0.37 23 (13.8%) 0.469
200 (local grid) 0.37 23 (13.8%) 0.501
400 (local grid) 0.37 22 (13.2%) 0.431

significance level by a small value of γ = 0.0001 should not noticeably influence

the results. Therefore, one would expect that for nearly every scenario, the

local approach is at least as beneficial as the global approach. The reason why

there are scenarios where the global approach is still more beneficial than the

local approach is due to the respective values of πC for which the actual type I

error rate is calculated. There are two reasons why, in this specific scenario, the

global approach performs better than the local approach. At first, for a fixed

true control proportion πC , a fixed δ, and for increasing sample size of the new

trial nC and nT , the actual type I error rate does not increase monotonously for

all scenarios but ’jumps’ upwards and downwards. This can be seen in Figures

2.4 and A.1, and is due to the character of the chi-square distribution (Fagerland

et al., 2017). This ’jumping’ intensifies if values of πC are near πC = 0.5 (see

Figure A.1). The second reason is that, in the local approach, the range of

values for πC is shrunken but the number of values where the type I error rate

is controlled remains identical to the global approach. This results in a grid of

these values that is more dense which may result in finding a higher maximum

of the actual type I error rate. This fact is depicted in Table 3.4. It can be seen

that changing the grid from a global to a local one (49 to 50 grid steps) and

thus controlling the type I error rate for other values of πC changes the benefit
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in δ∗ and sample size saved. Increasing the number of grid steps up to 400 steps

further slightly decreases this benefit.

In summary, the benefit in terms of power increase or, vice versa, in terms of

sample size saved in specific scenarios is not only depending on the parameters

of the specific scenario but also on the distribution of the test statistic which is

used (in this thesis: the chi-square distribution) as well as on the grid on which

the calculations are based. Note that these latter consideration of the global and

local approach do not refer to the independent approach, since this approach was

built independently from πC and is based on the normal distribution. However,

as already stated above, there are other aspects of this approach which can be

criticized and which will be dealt with in more detail in Chapter 4.
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Chapter 4

Discussion

4.1 Contributions to Research and Discussion

In this thesis, a framework is presented which allows to integrate historical

two-arm data of a previous trial in the planning and analysis of a two-arm

clinical trial with binary outcome while simultaneously controlling the type I

error rate. The resulting approaches, i.e. the global, local, and independent

approach, are based on the Bayesian power prior method. It is shown that

the idea of the power prior method can be transferred straightforwardly into

a frequentist fourfold table setting. For all three approaches, the amount of

historical data that may be incorporated into a new clinical trial is controlled

by a factor δ that ranges from 0 (no borrowing) to 1 (full borrowing). The

maximum amount of borrowed data which still ensures control of the type I

error rate depends substantially on the characteristics of the historical data.

The conducted systematic investigations show that up to 22% of the initial

sample size can be saved by incorporation of historical data. However, the

integration of the historical data is not always accompanied by a benefit in

terms of an increased power or a reduced sample size (e.g. no benefit occures

in case of an observed historical rate difference ≤0.02).

Comparing the three approaches presented in this thesis with regard to ben-

efit in terms of sample size saved, systematic investigations showed that the in-

dependent approach performs slightly better than the local approach, whereas

the local approach performs in summary slightly better than the global ap-

proach. Since the type I error rate depends on the true control proportion πC ,

the local and global approach control this rate over the whole range [0; 1] at the

nominal significance level of α0 (globally) or within a 1− γ confidence interval

to a reduced significance level of α0 − γ, resulting in a total type I error rate

of α0 (locally), respectively. As the name suggests, the independent approach

53
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works independently of πC , directly targets the rate difference ∆. Therefore, the

computation effort for this approach is rather smaller in comparison to the two

other approaches. However, some aspects of this approach can be seen critically.

At first, working with a variance stabilizing transformation is arguable since,

especially for the very high and the very low values of πC , the transformation

used in this thesis is inexact (Warton and Hui, 2011). Despite this, alternatively

proposed transformation methods are subject to other weaknesses as well (Feder

et al., 2020). Furthermore, working in a Bayesian framework and subsequently

considering and comparing operating characteristics like type I error rate and

power may be seen critically since the concepts of type I error rate and power

were initially created for frequentist testing and then translated to the Bayesian

setting, and the correct interpretation of Bayesian hypothesis test results is still

under discussion in the literature (Lesaffre et al., 2020). Nevertheless, the pre-

sented Bayesian setting provides a direct way and represents a mathematically

elegant solution.

In the scenarios that were considered in this thesis, the local approach leads

for most situations to a larger benefit compared to the global approach; however,

there are also scenarios where the latter one is advantageous. On the first

sight, this is surprising since the local approach simply shrinks the range of

admissible values for πC where the type I error rate has to be controlled to a

1− γ confidence interval (by simultaneously decreasing the significance level to

α0−γ). However, if the value of δ∗ determined with the global method was found

in the respective confidence interval of the local approach, the global approach is

the better choice because there is no benefit for reducing the range of values for

πC while simultaneously reducing the local significance level. Furthermore, the

calculations on which the results for the global and the local approach are based

on only ensure control of the type error on a grid of values of πC . Therefore,

changing the grid (by changing the approach) may lead to a change in the

results of the calculations. In addition, the discrete character of the chi-square

distribution may lead to non-monotonous behavior of the model parameters

for increasing or decreasing values. Nevertheless, if one is mainly interested in

ensuring a substantial gain in power, it is usually better to reduce the range of

πC to the more realistic and therefore more beneficial values in the confidence

interval of the local approach. However, this issue is negligible regarding the

sample size calculation since it is only based on one particular value of πC .

The main influencing factor determining the amount of historical data that

is allowed to be incorporated, while at the same time controlling the type I

error rate, is the observed difference of the historical response rates. This is

due to the fact that large differences are in contrast to the assumption of equal

response rates assumed under the null hypothesis, which leads to an inflation
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of the type I error rate. Although full borrowing (i.e. use of the total historical

data) for small observed historical differences is possible without inflation of the

type I error rate, these scenarios do not lead to a gain in power if the observed

historical difference is small in relation to the true difference. Therefore, the

largest benefit is achieved for moderate (i.e. from 0.05 to 0.2) historical rate

differences. At first sight, it seems arguable that the proposed methods penalize

a large observed treatment effect in the historical data by limiting the amount

of borrowable historical information. However, the probability for rejecting

the null hypothesis in a new trial becomes shifted by the historical data and,

therefore, influences the type I error rate. Thus, it has to be taken into account

that a larger observed treatment effect increases the shift in the decision of a

rejection of the null hypothesis. Furthermore, the proposed methods result in a

benefit for a wide range of values for the observed historical rate differences. On

the one hand, if there is a large observed historical rate difference, there certainly

is a lower need for a benefit in saved sample size since the required sample size

in a new trial would be considerably smaller (if the sample size calculation is

based on the historical data). On the other hand, a small observed difference

indicates a small true effect resulting in a larger sample size needed to achieve a

sufficiently high power to detect the effect in a new trial. In this case, borrowing

a large amount of historical data is desirable and simultaneously favored by the

proposed approaches.

Since the extent of the type I error rate inflation mainly depends on the

historical rate difference, this causes a problem in the case of two-arm borrow-

ing: Here, a heterogeneity between observed historical data and true underlying

effects of the new trial is not necessarily penalized in terms of an increased type

I error rate as it is in the case of one-armed borrowing (i.e. borrowing solely in

the control arm). Thus, for two-arm borrowing, it is even more important that

the choice of a possible historical trial does not solely depend on a data-driven

justification but is additionally based on further external criteria. Therefore,

it may be useful to verify the choice of a historical trial by Pocock’s criteria

(Pocock, 1976) (see chapter ’Acceptable Historical Control’ of this paper) for

integration of historical data:

’The acceptability of a historical control group requires that it meets the

following conditions:

1. Such a group must have received a precisely defined standard treatment

which must be the same as the treatment for the randomized controls.

2. The group must have been part of a recent clinical study which contained

the same requirements for patient eligibility.

3. The methods of treatment evaluation must be the same.

4. The distributions of important patient characteristics in the group should
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be comparable with those in the new trial.

5. The previous study must have been performed in the same organization

with largely the same clinical investigators.

6. There must be no other indications leading one to expect differing results

between the randomized and historical controls. For instance, more rapid ac-

crual on the new study might lead one to suspect less enthusiastic participation

of investigators in the previous study so that the process of patient selection

may have been different.’

It appears reasonable to extend these criteria to the case of two-arm clinical

trials. By doing, they should be verified to an equally rigorous extent for both

arms of the studies.

To achieve an increase in power while simultaneously controlling the type I

error rate, it is crucial that the type I error rate function depending on δ (the

parameter controlling the amount of historical data which will be incorporated)

is at least partly below the prespecified significance level. To add some intuition

to this fact, one can consider the distribution of a standard normal test statistic.

In the two-sided test procedure, the type I error rate can be illustrated as the

sum of the integral of the density function of the test statistic from -∞ to the

α/2-quantile and the integral from the 1- α/2-quantile to ∞. For an increasing

amount of historical data incorporated (controlled by δ), this distribution gets

more peaked and shifted in direction of the observed rate difference in the his-

torical data. As a result, the integral in direction of the observed effect increases

while the other integral simultaneously decreases. However, for small δ the first

integral’s increase is not as substantial as the second integral’s decrease. Thus,

the type I error rate first slightly decreases before it increases. This is depicted

in Figure A.2 in the Appendix. Based on this illustration, it follows that the

procedure does not achieve the same beneficial result in the case of a one-sided

testing procedure since in this case, only the first integral increases while there

is no part of the function that decreases. Thus, the type I error function would

not fall below the nominal significance level and it would not be possible to

control the type I error rate by the nominal significance level when increasing δ.

Incorporation of historical data would then always result in a type I error rate

inflation. It should, however, be noted that the proposed test procedure could

easily be adapted to a one-sided setting under the specification of an upper

limit for the one-sided significance level, e.g. 2α0. Furthermore, it follows from

this illustration that the possible gain in power only occurs when the true effect

indicates a favorable treatment effect for the treatment group as compared to

the control group. Simultaneously, the power to reveal a favorable effect for the

control group as compared to the treatment group decreases. This can also be

seen by considering the rejection regions presented for the clinical trial example
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(Figure 3.21) and the rejection regions in Figure 2.3. Thus, the proposed proce-

dures achieve their benefit only in the two-arm borrowing and two-sided testing

case by reducing the power to reveal a favorable treatment effect for the control

group as compared to the treatment group, while still controlling the type I

error rate at the prespecified significance level α0. Thus, the incorporation of

historical data ’shifts’ the rejection regions under the null hypothesis in favor of

the effect observed in the historical data. In summary, the increase in power is

mainly based on the shift of the rejection regions in favor of the effect observed

in the historical data. This follows the Bayesian idea of using prior knowledge

for decision-making which is translated into a frequentist setting in the proposed

methods while at the same time assuring control of the type I error rate.

Achieving an increase in power while simultaneously controlling the type I

error rate seems at first glance to contradict the theory of the most powerful

test (Kopp-Schneider et al., 2020): Since the likelihood ratio test (which is

equivalent to the chi-square test in the case of a fourfold table) is the uniformly

most powerful test according to the Neyman-Pearson lemma, it is not possible

to find a ’better’ test (in terms of higher power by simultaneously controlling

the type I error rate). Thus, in this thesis the benefit in terms of an increase in

power or sample size saved is defined only on the basis of revealing a treatment

benefit which corresponds with the direction of the treatment effect observed in

the historical data. From a theoretical point of view, a two-sided test procedure

should achieve a sufficiently high power in both directions of the alternative

hypothesis. However, in practice this is hardly ever considered, especially in

the case of a binary outcome, as in this case the power is not symmetric for an

assumed effect. Here, the power to reveal a given effect size is depending on

the true control proportion and thus there is not the same power for revealing

an effect into both directions of the alternative hypothesis, respectively (e.g.,

for a fixed sample size n the power for revealing an effect between 0.3 and 0.4

is higher than the power for revealing an effect between 0.4 and 0.5). Based

on these perspectives, the proposed procedure delivers on its promises, i.e. an

increase in power (for true treatment effects favoring the treatment group over

the control group) by simultaneously controlling the type I error rate.

The determination of δ∗ requires a large computational effort, especially

for sample size calculation, since the most beneficial combinations of a wide

range of parameters has to be found. Therefore, several practical recommen-

dations are suggested in this thesis. In detail, an algorithm is developed (see

Subsection 2.9.2) to find this most beneficial (in terms of saved sample size)

combination of nC , nT (sample sizes of the new trial) and δ∗, which was found

to usually converge in only one or two steps. Nevertheless, the approaches re-

main computationally intensive, especially in case of large sample sizes, since
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the computation time for the repeated calculation of the actual type I error rate

and the power increases quadratically with increasing n. Therefore, for very

large sample sizes (e.g. n >> 300) it is recommended to determine type I error

rate and power by simulations.

In comparison, other adaptive weighting approaches considered in the lit-

erature (e.g. Gravestock & Held 2017) do not work directly with the aim to

control the type I error rate at a prespecified significance level, but merely assess

the agreement between the current and the historical data. Contrarily, in the

procedures presented in this thesis, the observed data of the new study are not

included in the calculations, but only the data of the historical trial are.

4.2 Limitations and Directions for Future Re-

search

In this work, the evaluations were limited to the case where the historical data

is fixed. However, there are further frameworks for merging historical data and

data of a current or planned trial. These include, for example, that the historical

data may also be handled as random thus taking into account the uncertainty

of historical data. Furthermore, there also exists a framework where one plans

to use the historical data prior to the conduct of the historical study. This

would, e.g., be the case in a seamless phase II/III trial, where it is prospectively

decided that the phase II data will be combined and analyzed together with

the phase III data. Nevertheless, an extensive examination and comparison of

these approaches would go beyond the scope of this thesis and therefore, is not

further considered.

Furthermore, for the results presented in this thesis extensive calculation

had to be performed. Therefore, the resulting fourfold tables were analyzed

using the commonly used chi-square test for the global and local approach.

This choice can be seen critically, since this test is an approximate test and

therefore type I error rate control may not be met in general since the true type

I error rate occasionally exceeds the nominal significance level. Furthermore, its

discreteness may lead to inhomogeneous results (e.g. the type I error function is

not homogeneously convex, see Figure 2.2). However, calculations based on the

chi-square test are considerably faster compared to unconditional tests, such as

the Fisher Boschloo test. For a specific clinical trial application, the use of this

class of tests could be more favorable.

Furthermore, the systematic investigations could have been done more ex-

tensively by extending them to a lot of more scenarios and parameters to be

evaluated. However, to handle the computational effort, the investigations per-
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formed in this thesis were selected to represent a plausible range of scenarios

common in praxis.

In future work, the framework could be extended to other outcomes, e.g.

continuous or survival endpoints. Furthermore, the presented framework and

its methods could be applied or compared to alternative frameworks allowing

to incorporate the historical data in a current study.

4.3 Conclusion

Within this thesis, a framework is proposed to integrate existing data for the

planning and analysis of a subsequent clinical trial. The focus was on the

application to two-arm trials with binary outcome. It was shown that for specific

scenarios a gain in power can be achieved or the required sample size can be

reduced and thus resources can be saved. These methods were developed with

the vision that they will support the further streamlining of the development of

drugs and medical devices, especially in the field of rare diseases.
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Chapter 5

Summary

5.1 Summary (English)

The aim of this thesis was to examine whether and how two-arm data of a his-

torical clinical trial can be incorporated into a newly performed clinical trial. It

was investigated whether this incorporation can be accompanied with a benefit

in terms of increasing the power or, vice versa, reducing the required sample

size of a new clinical trial as compared to a trial without borrowing. Reducing

the required sample size generally also reduces the time effort and the cost of

the new clinical trial and can thus be regarded as highly desirable from an op-

erational perspective. Furthermore, reducing the sample size and duration of a

clinical trial can also be considered as beneficial from a patient perspective, as

efficacious treatments will find their way into clinical practice more rapidly.

In a regulatory context, a necessary condition for the successful incorpora-

tion of historical data into a new study is the control of the type I error rate

by predefined significance level. In general, the type I error rate inflates with

increasing amount of historical data. Thus, in this thesis approaches were de-

veloped which are based on a method that allows controlling the amount of

historical data incorporated into the new trial – the so-called ’power prior’ ap-

proach. This Bayesian method was transferred into a frequentist framework,

since the statistical concepts of type I error rate and power were originally de-

veloped within the inference theory of a frequentist setting.

In the course of this thesis, it was shown that for a two-sided statistical

test procedure incorporating an increasing amount of historical two-arm data

leads to a type I error rate that initially decreases before increasing. Thus, it

was possible to determine an amount of historical data which could be incor-

porated under a simultaneous control of the type I error rate at the predefined

significance level. It was demonstrated that the extent of this amount depends
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on various parameters. In order to reduce and control the impact of these

so-called nuisance parameters, three different approaches were developed, that

determine the amount of historical data to be incorporated. In the further

course of this thesis, these three approaches were examined and compared with

focus on benefit in terms of proportion of sample size saved. It was shown that,

by incorporation of historical two-arm data, the power to reveal the effect in

favor of the same effect as observed in the historical data can be increased in

numerous scenarios. Consequently, the required sample size for a new trial can

be reduced for many practically relevant situations. However, some scenarios

were identified in which the incorporation of historical data is not accompanied

with a benefit.

The approaches proposed in this thesis were particularly computationally

intensive. Therefore, general recommendations were given in order to diminish

the computational effort. In addition, an algorithm was developed that substan-

tially reduces the amount of calculations that have to be performed by using

the proposed procedures.

In summary, in this thesis it could be shown that incorporation of historical

two-arm data into a new clinical trial can be beneficial in terms of an increase

in power or, vice versa, a reduction in required sample size, while the type I

error rate can simultaneously be retained under the nominal significance level.

However, the existence and magnitude of this benefit largely depends on the

underlying historical data. Thus, scenarios were identified that are accompanied

with a high benefit or with no benefit all.

5.2 Zusammenfassung (Deutsch)

Das Ziel dieser Arbeit war es, zu untersuchen, ob und wie Daten einer bere-

its durchgeführten (historischen) zweiarmigen klinischen Studie in eine neue

klinische Studie eingebunden werden können. Es wurde überprüft, ob diese Ein-

bindung mit einem Mehrwert im Sinne einer Erhöhung der Power beziehungswei-

se einer Reduzierung des erforderlichen Stichprobenumfangs einer neuen klini-

schen Studie im Vergleich zu einer konventionellen Studie ohne Einbindung his-

torischer Daten einhergehen kann. Eine Reduzierung des erforderlichen Stich-

probenumfangs reduziert in der Regel auch den zeitlichen Aufwand und die

Kosten einer neuen klinischen Studie. Dies kann daher aus operativer Sicht als

sehr wünschenswert angesehen werden. Darüber hinaus kann eine Reduzierung

des Stichprobenumfangs und der Dauer einer klinischen Studie auch aus Sicht

der Patienten als vorteilhaft angesehen werden, da wirksame Behandlungen

schneller ihren Weg in die klinische Praxis finden können.

In einem regulatorischen Kontext ist eine notwendige Bedingung für die



5.2. Zusammenfassung (Deutsch) 63

erfolgreiche Einbindung historischer Daten in eine neue Studie die Kontrolle

der Wahrscheinlichkeit eines Fehlers 1. Art unterhalb eines vorgegebenen Sig-

nifikanzniveaus. Im Allgemeinen vergrößert sich jedoch die Wahrscheinlichkeit

des Fehlers 1.Art mit steigendem Anteil an eingebundenen historischen Daten.

Daher wurden in dieser Arbeit Ansätze entwickelt, die auf einer der sogenann-

ten Power-Prior-Methode beruhen, welche es erlaubt, den Anteil der in die neue

Studie einfließenden historischen Daten zu kontrollieren. Diese Bayes’sche Me-

thode wurde in einen frequentistischen Rahmen überführt, da die statistischen

Konzepte des Fehlers 1. Art und der Power ursprünglich innerhalb der Inferenz-

theorie eines frequentistischen Settings entwickelt wurden.

Im Rahmen dieser Arbeit wurde gezeigt, dass für ein zweiseitiges statistisches

Testproblem mit steigendem Anteil an historischen Daten aus zwei Studienar-

men die Wahrscheinlichkeit eines Fehlers 1. Art zunächst abnimmt, bevor er

zunimmt. Dadurch war es möglich, bei gleichzeitiger Kontrolle der Wahrschein-

lichkeit eines Fehlers 1. Art zum vorgegebenen Signifikanzniveau, einen ent-

sprechenden Anteil an historischen Daten in eine neue Studie einzubinden. Es

wurde gezeigt, dass das Ausmaß dieses Anteils von verschiedenen Parametern

abhängt. Unter der Berücksichtigung dieser sogenannten Störparameter, wur-

den drei verschiedene Ansätze entwickelt um den Anteil der einzubeziehenden

historischen Daten zu bestimmen. Im weiteren Verlauf dieser Arbeit wurden

diese drei Ansätze insbesondere bezüglich der Möglichkeit Stichprobenumfang

einzusparen untersucht und miteinander verglichen. Es konnte gezeigt werden,

dass durch die Einbeziehung historischer Daten in vielen Szenarien die Power zur

Aufdeckung des gleichen Effekts, wie er in den historischen Daten beobachtet

wurde, erhöht werden kann. Folglich kann der erforderliche Stichprobenumfang

für eine neue Studie für viele praktisch relevante Situationen reduziert werden.

Es wurden jedoch auch einige Szenarien identifiziert, in denen die Einbeziehung

historischer Daten nicht mit einem Mehrwert verbunden ist.

Die in dieser Arbeit entwickelten Ansätze sind mit einem hohen Rechenauf-

wand verbunden. Es wurden daher praktische Empfehlungen gegeben, um

diesen zu verringern. Darüber hinaus wurde ein Algorithmus für die Bestim-

mung des optimalen Stichprobenumfangs entwickelt, der den Rechenaufwand

bei den entwickelten Verfahren deutlich reduziert.

Zusammenfassend wurde in dieser Arbeit gezeigt, dass die Einbeziehung his-

torischer Daten aus zwei Studienarmen in eine neue Studie mit einem Mehrwert

verbunden sein kann. Dieser Mehrwert spiegelt sich im Sinne eine Erhöhung

der Power zugunsten des Effekts, wie er in den historischen Daten beobachtet

wurde beziehungsweise in einer Reduzierung des erforderlichen Stichprobenum-

fangs wider. Gleichzeitig wird dabei die Wahrscheinlichkeit eines Fehlers 1. Art

durch das vorgegebene Signifikanzniveau eingehalten. Die Existenz und das
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Ausmaß dieses Mehrwerts hängt jedoch maßgeblich von den zugrundeliegenden

historischen Daten ab. Es wurden sowohl Szenarien identifiziert, die mit einem

hohen als auch solche, die mit gar keinem Mehrwert einhergehen.
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Appendix A

Additional Tables and

Figures

A.1 Systematic investigations concerning the choice

of the parameter γ

In the following, the impact of various values of γ on the resulting value of δ∗, is

investigated (see Subsection 2.7.2). Hereby the following scenario are examined:

� 50, 60 and 70 responders within 100 patients in the historical control arm

(cH),

� 5, 10, 15, 20 and 25 more responders within 100 patients in the historical

treatment arm than in the historical control arm (tH − cH)

� 200 patients per arm in the new trial (nC and nT ),

� γ = 0, 0.00001, 0.0001, 0.0005, 0.001, 0.002 and 0.01

69
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Table A.1: δ∗(the maximum value of δ controlling the type I error rate) for
various scenarios and values of γ.

cH tH γ =
0

γ =
0.00001

γ =
0.0001

γ =
0.0005

γ =
0.001

γ =
0.002

γ =
0.01

50 55 1 1 1 1 1 1 1
50 60 0.46 0.46 0.46 0.45 0.44 0.43 0
50 65 0.2 0.2 0.19 0.19 0.14 0.12 0
50 70 0.09 0.09 0.09 0.09 0 0 0
50 75 0.03 0.03 0.03 0 0 0 0
60 65 1 1 1 1 1 1 1
60 70 0.43 0.43 0.43 0.42 0.4 0.38 0
60 75 0.18 0.18 0.18 0.16 0.14 0 0
60 80 0.09 0.09 0.09 0.06 0 0 0
60 85 0.03 0.03 0.03 0 0 0 0
70 75 1 1 1 1 1 1 1
70 80 0.38 0.37 0.37 0.36 0.34 0.32 0
70 85 0.15 0.15 0.14 0.13 0.11 0 0
70 90 0.06 0.06 0.06 0.03 0 0 0
70 95 0.03 0.02 0 0 0 0 0

Table A.2: 1− γ confidence interval for the true control proportion for various
scenarios and values of γ.

cH γ =
0

γ =
0.00001

γ =
0.0001

γ =
0.0005

γ =
0.001

γ =
0.002

γ = 0.01

50 [0;1] [0.29;0.71] [0.31;0.69] [0.33;0.67] [0.34;0.66] [0.34;0.66] [0.37;0.63]
60 [0;1] [0.38;0.79] [0.40;0.78] [0.42;0.76] [0.43;0.75] [0.44;0.75] [0.47;0.72]
70 [0;1] [0.48;0.87] [0.50;0.86] [0.52;0.84] [0.53;0.84] [0.54;0.83] [0.57;0.81]
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A.2 Actual type I error rate of the chi-square
test

Figure A.1: Actual type I error rate of the chi-square test for different sample
sizes over the range of the true control proportion (πC). The darker the colour
the larger the sample size (ranging from 10 to 1000).
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A.3 Actual type I error rate of the chi-square
test

Figure A.2: Test statistics and actual type I error rates α of a normal distributed
test statistics for various values of δ. The red area represents the true type I
error rate α. The underlying scenario is: cH = 65 responders out of nCH = 100
patients in the historical control arm, cH = 75 responders out of nTH = 100
patients in the historical treatment arm, n = 200 patients per arm in the new
trial and a true control proportion πC = 0.7.
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R Code

1 ##### Input:

2

3 #c_old: number of responders in the historical control arm

4 #t_old: number of responders in the historical treatment arm

5 #nc_old: number of patients in the historical control arm

6 #nt_old: number of patients in the historical treatment arm

7 #nc: number of patients in the new control arm

8 #nt: number of patients in the new tretment arm

9 #delta: factor that determines the amount of borrowed historical

information

10 #pi: true control proportion

11 #ES: effect size pi_T-pi_C

12 #parts: number of parts in which the area of the true control

proportion is divided (rec .:100)

13 #alpha: significance level

14 #power: power to detect the effect

15 #gamma: parameter of the Berger and Boos procedure

16

17

18 ######### General functions

19 #################################

20

21 require(compiler)

22

23

24 ##### Indicator function

25 #################################

26 Indicator <-function(x,min ,max){

27 if(min <=x && x<=max){

28 y<-1

29

30 }

31 else{

32 y<-0
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33 }

34 return(y)

35 }

36

37 ##### Function for calculating the true type I error

38 #################################

39 truealpha <-function(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta ,pi){

40 p<-matrix(c(rep(0,nc*nt)),nrow=nc)

41 for (i in 1:(nc -1)){

42 for(j in 1:(nt -1)){

43 tab <-matrix(c(c_old*delta+i,nc_old*delta+nc -c_old*delta -i,t_old*

delta+j,nt_old*delta+nt-t_old*delta -j),nrow =2)

44 p[i,j]<-dbinom(i,nc,pi)*dbinom(j,nt ,pi)*(1- Indicator(chisq.test(tab

,correct=FALSE)$statistic ,-1,qchisq (0.95 ,1)))

45 }

46 }

47

48 g3<-sum(p)

49 return(g3)

50 }

51 truealpha <-Vectorize(truealpha)

52 truealpha <-cmpfun(truealpha)

53

54

55

56 ##### Function for calculating the true power

57 #################################

58 truepower <-function(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta ,pi,ES){

59 p<-matrix(c(rep(0,nc*nt)),nrow=nc)

60 for (i in 1:(nc -1)){

61 for(j in 1:(nt -1)){

62 tab <-matrix(c(c_old*delta+i,nc_old*delta+nc -c_old*delta -i,t_old*

delta+j,nt_old*delta+nt-t_old*delta -j),nrow =2)

63 p[i,j]<-dbinom(i,nc,pi)*dbinom(j,nt ,pi+ES)*(1-Indicator(chisq.test(

tab ,correct=FALSE)$statistic ,-1,qchisq (0.95 ,1)))

64 }

65 }

66

67 g3<-sum(p)

68 return(g3)

69 }

70 truepower <-Vectorize(truepower)

71 truepower <-cmpfun(truepower)

72

73

74

75

76

77

78 #################################
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79 #### Local Procedure

80 #################################

81

82

83 #### Function that calculates delta^* for a fixed true control

proportion

84 #################################

85 sc<-function(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,pi,ES,gamma ,alpha){

86

87 thealpha <-alpha -gamma

88

89

90 #Nested intervals procedure

91 delta_opt <-0

92 delta <-0:2/2

93 alpha1 <-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta [1],pi)

94 alpha2 <-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta [2],pi)

95 alpha3 <-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta [3],pi)

96

97 #1. Step

98 if(thealpha >alpha3)

99 {delta_opt <-1}

100

101 else{

102

103 if(alpha2 >thealpha)

104 {delta1 <-0

105 delta2 <-0.25

106 delta3 <-0.5

107 alpha_l<-alpha1

108 alpha_r<-alpha2}

109

110 else

111 {delta1 <-0.5

112 delta2 <-0.75

113 delta3 <-1

114 alpha_l<-alpha2

115 alpha_r<-alpha3}

116

117

118 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta2 ,pi)

119

120

121

122 #2.Step

123 if(alpha_m<thealpha){

124 delta_l<-delta2

125 delta_m<-round(( delta2+delta3)/2,2)

126 delta_r<-delta3

127 }
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128

129 else{

130 delta_l<-delta1

131 delta_m<-round(( delta1+delta2)/2,2)

132 delta_r<-delta2

133 }

134

135 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta_m,pi)

136

137

138 #3.Step

139 if(alpha_m<thealpha){

140 delta1 <-delta_m

141 delta2 <-round (( delta_m+delta_r)/2,2)

142 delta3 <-delta_r

143 }

144

145 else{

146 delta1 <-delta_l

147 delta2 <-round (( delta_l+delta_m)/2,2)

148 delta3 <-delta_m

149 }

150

151 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta2 ,pi)

152

153 #4.Step

154 if(alpha_m<thealpha){

155 delta_l<-delta2

156 delta_m<-round(( delta2+delta3)/2,2)

157 delta_r<-delta3

158 }

159

160 else{

161 delta_l<-delta1

162 delta_m<-round(( delta1+delta2)/2,2)

163 delta_r<-delta2

164 }

165

166 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta_m,pi)

167

168 #5.Step

169 if(alpha_m<thealpha){

170 delta1 <-delta_m

171 delta2 <-round (( delta_m+delta_r)/2,2)

172 delta3 <-delta_r

173 }

174

175 else{

176 delta1 <-delta_l

177 delta2 <-round (( delta_l+delta_m)/2,2)
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178 delta3 <-delta_m

179 }

180

181 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta2 ,pi)

182

183 #6.Step

184 if(alpha_m<thealpha){

185 delta_l<-delta2

186 delta_m<-round(( delta2+delta3)/2,2)

187 delta_r<-delta3

188 }

189

190 else{

191 delta_l<-delta1

192 delta_m<-round(( delta1+delta2)/2,2)

193 delta_r<-delta2

194 }

195

196 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta_m,pi)

197

198 #7.Step

199 if(alpha_m<thealpha){

200 delta1 <-delta_m

201 delta2 <-round (( delta_m+delta_r)/2,2)

202 delta3 <-delta_r

203 }

204

205 else{

206 delta1 <-delta_l

207 delta2 <-round (( delta_l+delta_m)/2,2)

208 delta3 <-delta_m

209 }

210

211 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta2 ,pi)

212

213 #8.Step

214 if(alpha_m<thealpha){

215 delta_l<-delta2

216 delta_m<-round(( delta2+delta3)/2,2)

217 delta_r<-delta3

218 }

219

220 else{

221 delta_l<-delta1

222 delta_m<-(floor (100*(delta1+delta2)/2))/100

223 delta_r<-delta2

224 }

225

226 delta_opt <-max(0,delta_m)

227 }
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228

229 return(list(delta_opt=delta_opt))

230

231

232 }

233

234

235

236 ### Function that calculates delta^*

237 #################################

238 localpro <-function(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,ES,parts ,gamma ,

alpha){

239 cpu <-0

240 cpo <-0

241 delta <-0

242 power0 <-0

243 power1 <-0

244 power2 <-0

245 alpha0 <-0

246 alpha1 <-0

247 alpha2 <-0

248 power <-0

249 delta_min <-0

250

251

252 #Calculate the Pearson Clopper Confidence Interval

253 cpu <-qbeta(gamma/2,c_old ,nc_old -c_old+1) # pu = BETAINV(x/2;k;n-k

+1)

254 cpo <-qbeta(1-gamma/2,c_old+1,nc_old -c_old) #po = BETAINV(1-x/2;k+1;

n-k)

255

256 #Seperate the interval in parts

257 steps <-0

258 step <-(cpo -cpu)/parts

259 for(i in 1: parts){

260 steps[i]<-cpu+(i)*step

261 }

262 steps <-c(cpu ,steps)

263

264 #Calculate delta for every pi in the Confidence interval

265 for(i in 1: length(steps)){

266 fit <-sc(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,steps[i],ES,gamma ,alpha)

267 delta[i]<-fit$delta_opt

268 }

269

270 delta_max <-min(delta)

271

272 alpha <-0

273 power <-0

274 for(i in 1: length(steps)){
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275 alpha1[i]<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta_max ,

steps[i])

276 power1[i]<-truepower(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta_max ,

steps[i],ES)

277 alpha0[i]<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt ,0,steps[i])

278 power0[i]<-truepower(c_old ,t_old ,nc_old ,nt_old ,nc ,nt ,0,steps[i],ES)

279 }

280

281 return(list(alpha1=alpha1 ,power1=power1 ,delta_max=delta_max ,delta=

delta ,power0=power0 ,

282 alpha0=alpha0 ,steps=steps))

283

284

285 }

286

287

288 ##### Function for the sample size calculation for the local

procedure

289 ##################################

290 samplesizerl <-function(c_old ,t_old ,nc_old ,nt_old ,pi,ES ,parts ,alpha ,

power ,gamma){

291

292 #1. SampleSizeCalculation initial

293 library(pwr)

294 w<-ES.h(pi+ES ,pi)

295 n<-ceiling(pwr.2p.test(h=w,power=power ,sig.level=alpha)$n)

296 nc<-n

297 nt<-n

298

299 #2. Algorithm

300 #Calculate Confidence interval

301 cpu <-qbeta(gamma/2,c_old ,nc_old -c_old+1) # pu = BETAINV(x/2;k;n-k

+1)

302 cpo <-qbeta(1-gamma/2,c_old+1,nc_old -c_old) #po = BETAINV(1-x/2;k+1;

n-k)

303

304 # Steps in the algorithm

305 if(pi<cpu || pi>cpo){print(’Error: pi is not in the confidence

interval ’)}

306 else{

307

308 steps <-1

309 fit <-localpro(c_old ,t_old ,nc_old ,nt_old ,nc,nt,ES ,parts ,gamma ,alpha)

310 delta <-fit$delta_max

311 pi<-max(fit$steps[which(round(fit$steps ,digits =2)==pi)])

312 power1 <-fit$power1[which(fit$steps==pi)]

313

314 while(power1 >power){

315 power1 <-truepower(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta ,pi ,ES)

316 nc<-nc -1
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317 nt<-nt -1

318 }

319 nc<-nc+1

320 nt<-nt+1

321

322 fit <-localpro(c_old ,t_old ,nc_old ,nt_old ,nc,nt,ES ,parts ,gamma ,alpha)

323 delta1 <-fit$delta_max

324 power1 <-fit$power1[which(fit$steps==pi)]

325

326 while(delta1 >delta){

327 steps <-steps +1

328 while(power1 >power){

329 power1 <-truepower(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta1 ,pi ,ES)

330 nc<-nc -1

331 nt<-nt -1

332 }

333 delta <-delta1

334 nc<-nc+1

335 nt<-nt+1

336 fit <-localpro(c_old ,t_old ,nc_old ,nt_old ,nc,nt,ES ,parts ,gamma ,alpha)

337 delta1 <-fit$delta_max

338

339 }

340 nc+1

341 nt+1

342 n_won1 <-n-nc

343 n_won2 <-n-nt

344

345 return(list(fit=fit ,n_won1=n_won1 ,n_won2=n_won2 ,n=n,nc=nc,nt=nt ,

delta=delta ,delta1=delta1 ,steps=steps))}

346 }

347

348 ### Output

349 #fit: alpha and power values at each pi

350 #n_won1;n_won2: saved sample size in the control arm and the

treatment arm , respectively

351 #n: initial sample size

352 #nc;nt: new reduced sample size

353 #delta: delta^*

354 #delta1: last delta in the algorithm

355 #steps: values of pi where delta^* was calculated

356

357 #################################

358 ##### Global procedure

359 #################################

360

361 ### Function that calculates delta^* for a fixed true control

proportion pi

362 #################################

363 sc1 <-function(c_old ,t_old ,nc_old ,nt_old ,nc,nt,pi ,ES,alpha){
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364

365 thealpha <-alpha

366 delta_opt <-0

367

368 #Nested intervals procedure

369 delta <-0:2/2

370 alpha1 <-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta [1],pi)

371 alpha2 <-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta [2],pi)

372 alpha3 <-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta [3],pi)

373

374

375 #1. Step

376 if(thealpha >alpha3)

377 {delta_opt <-1}

378

379 else{

380

381 if(alpha2 >thealpha)

382 {delta1 <-0

383 delta2 <-0.25

384 delta3 <-0.5

385 alpha_l<-alpha1

386 alpha_r<-alpha2}

387

388 else

389 {delta1 <-0.5

390 delta2 <-0.75

391 delta3 <-1

392 alpha_l<-alpha2

393 alpha_r<-alpha3}

394

395

396 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta2 ,pi)

397

398

399 #2.Step

400 if(alpha_m<thealpha){

401 delta_l<-delta2

402 delta_m<-round(( delta2+delta3)/2,2)

403 delta_r<-delta3

404 }

405

406 else{

407 delta_l<-delta1

408 delta_m<-round(( delta1+delta2)/2,2)

409 delta_r<-delta2

410 }

411

412 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta_m,pi)

413
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414

415 #3.Step

416 if(alpha_m<thealpha){

417 delta1 <-delta_m

418 delta2 <-round (( delta_m+delta_r)/2,2)

419 delta3 <-delta_r

420 }

421

422 else{

423 delta1 <-delta_l

424 delta2 <-round (( delta_l+delta_m)/2,2)

425 delta3 <-delta_m

426 }

427

428 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta2 ,pi)

429

430

431 #4.Step

432 if(alpha_m<thealpha){

433 delta_l<-delta2

434 delta_m<-round(( delta2+delta3)/2,2)

435 delta_r<-delta3

436 }

437

438 else{

439 delta_l<-delta1

440 delta_m<-round(( delta1+delta2)/2,2)

441 delta_r<-delta2

442 }

443

444 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta_m,pi)

445

446 #5.Step

447 if(alpha_m<thealpha){

448 delta1 <-delta_m

449 delta2 <-round (( delta_m+delta_r)/2,2)

450 delta3 <-delta_r

451 }

452

453 else{

454 delta1 <-delta_l

455 delta2 <-round (( delta_l+delta_m)/2,2)

456 delta3 <-delta_m

457 }

458

459 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta2 ,pi)

460

461

462 #6.Step

463 if(alpha_m<thealpha){
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464 delta_l<-delta2

465 delta_m<-round(( delta2+delta3)/2,2)

466 delta_r<-delta3

467 }

468

469 else{

470 delta_l<-delta1

471 delta_m<-round(( delta1+delta2)/2,2)

472 delta_r<-delta2

473 }

474

475 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta_m,pi)

476

477

478 #7.Step

479 if(alpha_m<thealpha){

480 delta1 <-delta_m

481 delta2 <-round (( delta_m+delta_r)/2,2)

482 delta3 <-delta_r

483 }

484

485 else{

486 delta1 <-delta_l

487 delta2 <-round (( delta_l+delta_m)/2,2)

488 delta3 <-delta_m

489 }

490

491 alpha_m<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta2 ,pi)

492

493 #8.Step

494 if(alpha_m<thealpha){

495 delta_l<-delta2

496 delta_m<-round(( delta2+delta3)/2,2)

497 delta_r<-delta3

498 }

499

500 else{

501 delta_l<-delta1

502 delta_m<-(floor (100*(delta1+delta2)/2))/100

503 delta_r<-delta2

504 }

505

506 delta_opt <-max(0,delta_m)

507 }

508

509 return(list(delta_opt=delta_opt))

510 }

511

512

513
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514 ### Function that calculates delta^*

515 #################################

516 globalpro <-function(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,ES,parts ,alpha)

{

517 cpu <-0

518 cpo <-0

519 delta <-0

520 power0 <-0

521 power1 <-0

522 power2 <-0

523 alpha0 <-0

524 alpha1 <-0

525 alpha2 <-0

526 power <-0

527 delta_min <-0

528

529

530 #seperate the values of pi in parts

531 steps <-(0: parts/parts)[2: parts]

532

533 #Calculate delta for each pi

534 for(i in 1: length(steps)){

535 fit <-sc1(c_old ,t_old ,nc_old ,nt_old ,nc,nt,steps[i],ES ,alpha)

536 delta[i]<-fit$delta_opt

537 }

538

539 delta_max <-min(delta)

540

541 alpha <-0

542 power <-0

543 for(i in 1: length(steps)){

544 alpha1[i]<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta_max ,

steps[i])

545 power1[i]<-truepower(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,delta_max ,

steps[i],ES)

546 alpha0[i]<-truealpha(c_old ,t_old ,nc_old ,nt_old ,nc ,nt ,0,steps[i])

547 power0[i]<-truepower(c_old ,t_old ,nc_old ,nt_old ,nc ,nt ,0,steps[i],ES)

548 }

549

550 return(list(alpha1=alpha1 ,power1=power1 ,delta_max=delta_max ,delta=

delta ,power0=power0 ,

551 alpha0=alpha0 ,steps=steps))

552

553

554 }

555

556

557 ##### Function for the sample size calculation for the global

procedure

558 #################################
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559 samplesizeri <-function(c_old ,t_old ,nc_old ,nt_old ,pi,ES ,parts ,alpha ,

power){

560

561 #1. SampleSizeCalculation inital

562 library(pwr)

563 w<-ES.h(pi+ES ,pi)

564 n<-ceiling(pwr.2p.test(h=w,power=power ,sig.level=alpha)$n)

565 nc<-n

566 nt<-n

567

568 #2. Algorithm

569 steps <-1

570 fit <-globalpro(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,ES,parts ,alpha)

571 delta <-fit$delta_max

572 power1 <-fit$power1[pi*100]

573 while(power1 >power){

574 power1 <-truepower(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta ,pi ,ES)

575 nc<-nc -1

576 nt<-nt -1

577 }

578 nc<-nc+1

579 nt<-nt+1

580

581 fit <-globalpro(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,ES,parts ,alpha)

582 delta1 <-fit$delta_max

583 power1 <-fit$power1[pi*100]

584

585 while(delta1 >delta){

586 steps <-steps+1

587 while(power1 >power){

588 power1 <-truepower(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta1 ,pi ,ES)

589 nc<-nc -1

590 nt<-nt -1

591 }

592 delta <-delta1

593 nc<-nc+1

594 nt<-nt+1

595 fit <-globalpro(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,ES,parts ,alpha)

596 delta1 <-fit$delta_max

597

598 }

599 nc+1

600 nt+1

601 n_won1 <-n-nc

602 n_won2 <-n-nt

603

604 return(list(fit=fit ,n_won1=n_won1 ,n_won2=n_won2 ,n=n,nc=nc,nt=nt ,

delta=delta ,delta1=delta1 ,steps=steps))

605 }

606
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607 #################################

608 #### Independent Procedure

609 #################################

610

611

612 #### Function that calculates the true typ I error

613 #################################

614 normalalpha <-function(c_old ,t_old ,nc_old ,nt_old ,nc,nt,delta ,pi,ES){

615 p1<-c_old/nc_old

616 p2<-t_old/nt_old

617 n_neu <-nc

618 mu<-p2 -p1

619 pi1 <-pi

620 pi2 <-pi+ES

621 sigma <-sqrt(p1*(1-p1)/nc_old+p2*(1-p2)/nt_old)

622 sigma_neu <-sqrt(pi1*(1-pi1)/nc+pi2*(1-pi2)/nt)

623

624 #function that simulates the indicator function

625 big0 <-function(y){

626 big00 <-0

627 for(i in 1: length(y)){

628 wkt <-function(x){( dnorm(x,y[i],sigma_neu)*((dnorm(x,mu,sigma))^

delta))}

629 int <-integrate(wkt ,lower=-Inf ,upper=Inf)

630 wkt1 <-function(x){( dnorm(x,y[i],sigma_neu)*((dnorm(x,mu,sigma))^

delta))/int$value}

631

632 big <-integrate(wkt1 ,lower=-Inf ,upper =0)$value

633

634

635 if(big >0.975|big <0.025){

636 big00[i]<-1

637 }

638 else big00[i]<-0

639 }

640 return(big00)

641 }

642 w<-function(x){dnorm(x,(pi2 -pi1),sigma_neu)}

643 ww<-function(x){w(x)*big0(x)}

644 prob <-integrate(ww,lower=-1.5,upper =1.5)$value

645 return(prob)

646 }

647

648

649 ### Function that calculates delta^*

650 #################################

651

652 optdelta <-function(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,pi,ES){

653 delta0 <-0

654 delta <-0:100/100
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655 for(i in 1:101){

656 delta0[i]<-normalalpha(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,delta[i],pi,

ES)

657 }

658 delta_opt <-delta[max(which(delta0 <0.05))]

659 return(delta_opt)

660 }

661

662 ##### Function for the sample size calculation for the independent

procedure

663 #################################

664 samplesizer <-function(c_old ,t_old ,nc_old ,nt_old ,pi,ES){

665

666 #1. SampleSizeCalculation

667 power <-0.8

668 library(pwr)

669 w<-ES.h(pi+ES ,pi)

670 n<-ceiling(pwr.2p.test(h=w,power =0.8,sig.level =0.05)$n)

671 nc<-n

672 nt<-n

673

674 #2. Calculate delta^* and power

675 delta <-optdelta(c_old ,t_old ,nc_old ,nt_old ,nc,nt ,pi ,0)

676 power1 <-normalalpha(c_old ,t_old ,nc_old ,nt_old ,nc,nt,delta ,pi,ES)

677

678

679 while(power1 >power){

680 power1 <-normalalpha(c_old ,t_old ,nc_old ,nt_old ,nc,nt,delta ,pi,ES)

681 nc<-nc -1

682 nt<-nt -1

683 }

684 nc<-nc+1

685 nt<-nt+1

686

687 delta1 <-optdelta(c_old ,t_old ,nc_old ,nt_old ,nc ,nt,pi ,0)

688

689 steps <-1

690 while(delta1 >delta){

691 steps <-steps+1

692 while(power1 >power){

693 power1 <-normalalpha(c_old ,t_old ,nc_old ,nt_old ,nc,nt,delta ,pi,ES)

694 nc<-nc -1

695 nt<-nt -1

696 }

697 delta <-delta1

698 nc<-nc+1

699 nt<-nt+1

700 fit <-optdelta(c_old ,t_old ,nc_old ,nt_old ,nc,nt,pi ,0)

701

702 }
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703

704

705 n_won1 <-n-nc

706 n_won2 <-n-nt

707

708 return(list(fit=fit ,n_won1=n_won1 ,n_won2=n_won2 ,n=n,nc=nc,nt=nt ,

delta=delta ,delta1=delta1 ,steps=steps))

709 }

710

711

712 #################################

713 #################################

714 ###Input:

715 #c_old: number of responders in the historical control arm

716 #t_old: number of responders in the historical treatment arm

717 #nc_old: number of patients in the historical control arm

718 #nt_old: number of patients in the historical treatment arm

719 #nc: number of patients in the new control arm

720 #nt: number of patients in the new tretment arm

721 #delta: factor that determines the amount of borrowed historical

information

722 #pi: true control proportion

723 #ES: effect size pi_T-pi_C

724 #parts: number of parts in which the area of the true control

proportion is divided (rec .:100)

725 #alpha: the significance level

726 #power: the power to detect the effect

727 #gamma: parameter of the Berger and Boos procedure

728

729 ### Output

730 #fit: # alpha1 and power1: alpha and power values

after borrowing for each pi

731 # delta_max , delta: delta^* and the max delta for each pi

732 # power0 , alph0: alpha and power values without borrowing for each

pi

733 #n_won1;n_won2: saved sample size in the control arm and the

treatment arm , respectively

734 #n: initial sample size

735 #nc;nt: new reduced sample size

736 #delta: delta^*

737 #delta1: last delta of the algorithm

738 #steps: values of pi where delta^* was calculated

739

740 #################################

741 ###### Example from the Manuscript (Clincial trial example from

Chapter 3)

742 #################################

743

744 ########## Local procedure:

745 #################################
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746 fit1 <-samplesizerl(c_old = 10,t_old = 16,nc_old = 44,nt_old = 43,pi

= 0.23,ES = 0.14, parts = 100,alpha = 0.05, power = 0.8, gamma =

0.0001)

747

748 ########## Global procedure:

749 #################################

750 fit2 <-samplesizer(c_old = 10,t_old = 16,nc_old = 44,nt_old = 43,pi

= 0.23,ES = 0.14, parts = 100,alpha = 0.05, power = 0.8)

751

752 ########## Independent procedure:

753 #################################

754 fit2 <-samplesizeri(c_old = 10,t_old = 16,nc_old = 44,nt_old = 43,pi

= 0.23,ES = 0.14, parts = 100,alpha = 0.05, power = 0.8)
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Rädeker L., Schwab M., Frey P. E., Friedrich M., Sliwinski S., Steinle J., Fink

C. A., Leuk A., Ganschow P., Ottawa G. B., Klose C., Feißt M., Dörr-Harim
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