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Abstract

Through globalization of the industry and the collaboration of nations world wide the

importance of machine translated documents is rising. Many new ideas and concepts

were proposed in the recent years to improve the overall quality of machine translation

(MT). A lot of focus in machine learning is going towards the research of alternative

learning techniques, as the basic existing paradigms such as supervised, unsupervised and

reinforcement learning are not a perfect fit for every task. Imitation learning is a technique

which combines the exploratory aspect of reinforcement with the efficiency of supervised

learning. Through the usage of an interactive expert, the learning model, also called

student, is able to obtain intermediate feedback for it’s predictions at any given point in

time. Thereby the student is aware of it’s mistakes by considering the difference of it’s and

the expert’s prediction from this point. Imitation learning can improve all major problems

for training artificial neural networks given the right expert. These are: the time it takes

to train a model, the acquisition of data and most importantly the overall performance

given some specific metric.

The most common quality evaluation metric used for MT is BLEU. It is based on the

n-gram precision between the generated translation, given some input, and the reference

translation. Therefore it is non-differentiable and can not be used as a loss to train a MT

model directly. For the training usually the maximum likelihood estimation (MLE) is used,

such that the likelihood of each token in the output, given the input sequence, is maximized.

This creates a discrepancy between training (MLE) and validation objective (BLEU). This

thesis tries to overcome this issue by directly learning on the differences of the expected

BLEU from the student and the expert in an imitation learning scenario. The expert is

represented by a traditional statistical machine translation (SMT) model that should help

the student in solving the problems mentioned above. For this a novel data aggregation

method Aggregate Data using approximated BLEU explorations (ADBLEU) based on

imitation learning was implemented. After conducting several experiments, validating

different approaches of data aggregation, it is shown that it is not possible to significantly

improve the state-of-the-art student, due to limitations of the SMT expert.



Zusammenfassung

Durch die zunehmende industrielle Globalisierung und der daraus einhergehenden interna-

tionalen Zusammenarbeit steigt die Bedeutung von maschinell übersetzten Dokumenten.

In den letzten Jahren wurden viele neue Ideen und Konzepte vorgeschlagen, um die

Gesamtqualität der maschinellen Übersetzung zu verbessern. Ein Schwerpunkt im Bereich

des maschinellen Lernens liegt in der Erforschung alternativer Lerntechniken. Das hat

den Hintergrund, dass die bestehenden Paradigmen, wie überwachtes, unüberwachtes und

verstärkendes Lernen nicht für jede Aufgabe optimal geeignet sind. Eine Technik, die den

explorativen Aspekt des Verstärkungslernens mit der Effizienz des überwachten Lernens

kombiniert, ist das Lernen durch Imitation. Durch den Einsatz eines interaktiven
”
Lehrer“

ist der
”
Schüler“ in der Lage, zu jedem Zeitpunkt, ein Zwischenfeedback für seine Vorher-

sagen zu erhalten. Durch die Abweichung seines Lösungsvorschlages, zu dem des Lehrers,

wird dem Schüler sein eigener Fehler bewusst. Dadurch können essenzielle Probleme, wie

zum Beispiel die Trainingszeit, die Datenerfassung und die Gesamtleistung anhand einer

bestimmten Metrik, bei dem Training von künstlichen neuronalen Netzen, verbessert wer-

den.

Die gebräuchlichste Metrik zur Qualitätsbewertung bei der maschinellen Übersetzung ist

BLEU. Sie basiert auf der Präzision der N-Gramme zwischen der generierten Übersetzung

und der Referenzübersetzung. Dadurch ist BLEU nicht differenzierbar und kann auch nicht

direkt als Verlustfunktion für das Training in der maschinellen Übersetzung verwendet

werden. In der Regel wird für das Training die Maximum-Likelihood-Schätzung verwen-

det, so dass die Wahrscheinlichkeit jedes Tokens in der Ausgabesequenz, entsprechend der

Eingabesequenz, maximiert wird. Dadurch entsteht eine Diskrepanz zwischen Trainings-

und Bewertungsziel. In dieser Arbeit wird dieses Problem versucht zu umgehen. In einem

Imitationslernszenario wird der Schüler direkt durch Unterschiede des erwarteten BLEU-

Ergebnisses zwischen sich und dem Lehrer trainiert. Der Lehrer wird durch ein SMT-

Modell (Statistical Machine Translation) dargestellt, das dem Studenten bei den genannten

Problemen helfen soll. Hierfür wurde eine neue Methode basierend auf dem Imitation-

slernen entwickelt: Das Aggregieren von Daten mit angenäherten BLEU-Explorationen

(ADBLEU). Die durchgeführten Experimente, in denen verschiedene Ansätze der Date-

naggregation validiert wurden, zeigen, dass es aufgrund von Einschränkungen bei dem

SMT-Lehrers nicht möglich ist, den State-of-the-Art-Schüler signifikant zu verbessern.
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1. Introduction

1.1. Motivation

The worldwide demand for communication between nations with different languages for the

globalization of industry and the cultural exchange is constantly increasing. As a result, the

requirements for Machine Translation (MT) have also been growing. Recent advances in

Neural Machine Translation (NMT) with, for the subject, unconventional machine learning

paradigms such as Reinforcement Learning (RL) have shown great success (Bahdanau,

Brakel, et al., 2017; Ranzato et al., 2016; Wu et al., 2017), where systems that generate

state-of-the-art performance are further improved using the exploratory nature of RL.

Traditionally RL comes from the subject of control theory where either the environment

or the rewards are unknown. The reward can usually be defined as a function that is

based on actions and states. Doing an action in a certain state will yield a reward either

immediately or at a later point in time. To understand what action in which state was

good and which was bad, the accumulated reward at the end of the sequence of actions

and states has to be assigned to individual steps. Therefore many different actions are

taken to obtain knowledge of how the reward at the end of the sequence changes. In

complex environments with millions of state-action pairs it can be tedious to learn how to

obtain the highest reward from every state. Asking an expert that knows the environment

and how to maximize the reward from every state sounds like a logical approach. The

expert might be interactively queried to give an estimation of how to optimally continue

the sequence given the current state. For instance in machine translation this expert

might be a human that helps the system, also called student, to complete partially finished

translations. Through this the student iteratively learns how to complete partially created

translations in any state through data aggregation. This approach of learning is a part

of Imitation Learning (IL), which can be seen as a machine learning paradigm between

supervised and reinforcement learning. Because MT systems need large amounts of data

using humans to complete their partial translations is infeasible. Therefore in this work a

Statistical Machine Translation (SMT) system was used as an expert. SMT systems were

mainly used before it was possible to train all of the free parameters that a NMT model

needs to perform well. To output translations they learn the correspondences between

source and target language by training on coocurrences of phrases in large amounts of

aligned text. Typically SMT systems perform worse than NMT but are faster to train and

to generate translations. To test if a state-of-the-art NMT system can be improved using

IL with an interactive SMT expert the experiments described in this work were conducted.

1.2. Purpose and Research Question

Consequently, it is from major interest if and how a NMT model can be revised using

imitation learning. Therefore, one of the most dominant questions is:

Can a state-of-the-art neural machine translation student be improved by using

a statistical machine translation expert in an imitation learning scenario?

1



1.3. Approach

This thesis will answer this research question. The main purpose is therefore to show if the

hypothesis in question is possible and how it can be achieved. The trained NMT model

will be tested in various metrics that are intended to represent different components of

successful machine translation. This is done to show detailed insight of improvements in

for example robustness when shifting the domain of the text, fluency of the generated text,

generalization to unseen data and human judgement of the translation quality.

1.3. Approach

This work focuses on showing if it is possible to improve the performance of a state-of-the-

art NMT system using an inferior sub-optimal SMT expert and if it is, what is needed to

do it. To answer this question the implementation of an imitation learning framework for

the integration of the SMT expert and a NMT student was done. The global objective for

every MT system is to generate good translations on unseen data measured in BLEU, a

common non-differentiable MT quality estimation metric.

First a dataset was selected that was flexible, fast to test on and still representable for the

general case of MT. An existing SMT expert was modified for the usage in an IL context

and adapted for the framework. The expert interfaces with the framework through word

translation lattices that are weighted using an approximation of BLEU. Several experi-

ments were done on the dataset to validate the overall performance of the expert and to

show that the performance of it is usable for this scenario. The data aggregation imitation

learning algorithm Aggregate Data using approximated BLEU explorations (ADBLEU)

was constructed using the fundamental ideas from previous works (Daumé et al., 2009;

Ross & Bagnell, 2014; Ross, Munoz, et al., 2011). To test this method, a state-of-the-art

baseline student was trained. The method aggregates data by using partial translations

and exploratory actions of the student and continuing it with the expert. On a basic level

this data is used to guide the student towards the best possible translations with regards

to the expert. The student can infer a loss between it’s and the expert’s belief how to

continue the sentence. Therefore the student is directly optimized for the global objective.

Various ways of data aggregation were tested using different exploration methods. In the

end the tests to answer the main research question were conducted using the best possible

parameters for the method obtained from previous evaluations.

1.4. Scope and Limitations

Due to the fixed time schedule of this project some limitations concerning the dataset size

and the amount of experiments had to be done. With the research question in mind a

smaller, more flexible dataset was chosen, such that experiments could be done in quick

succession. This helped to quickly find problems in the implementation and for the opti-

mization of the hyperparameters. On the other hand by using this smaller dataset, not all

capabilities of the method are fully represented. Applying a larger dataset on the same

problem could yield similar but different results. As this work is mainly focused on show-

ing if it is possible to improve a NMT student using a SMT expert, it was not necessary

2



1.5. Outline

to further experiments or use larger datasets. Nevertheless in section 7.2 suggestions for

improvements of the method and it’s scope are done for future work.

1.5. Outline

This thesis will start with the theoretical foundations, evaluation metrics for MT and basic

machine learning paradigms in chapter 2. The fundamentals shown in the theoretical part

will be used in the following chapters and therefore should be understood by the reader.

In chapter 3 the concept of the work is related to other methods that either try to solve

a similar problem with a different method or use a similar method to solve a different

problem. It is therefore put into a research perspective. Then the main methodology of

the work follows in chapter 4. There the concept, algorithm and objectives are shown to

the reader in detail. After that the results of the proposed method and the comparison

to other MT systems in chapter 5 are presented. At last the results are analyzed in detail

in chapter 6 and a conclusion is drawn to answer the research question and reveal options

for future work in chapter 7.

3



2. Theoretical Foundations

In this chapter the basics of machine translation will be shown. This includes statistical and

neural machine translation with both it’s benefits and drawbacks. Furthermore, Moses, a

statistical machine translation toolkit will be reviewed. As a common way of evaluating

translations the n-gram based score BLEU is introduced. Additionally different paradigms

of machine learning are considered in the scope of decisions making. Finally decision

processes will be reviewed in more detail and illustrated by some fundamental algorithms

from this field.

2.1. Preliminaries

To keep notation relevant to this work as standardized and as simple as possible several

variables and equations are introduced here. The notations mostly follow the ones from

(Ross & Bagnell, 2014; Ross, Munoz, et al., 2011) as they are used in most literature

reviewed in section 3 and follow the usual form for structured prediction and reinforcement

learning. Notations introduced in the sections of the text are to be prioritized over these

ones here.

• Source sentence of length I X = {x1, ..., xI}

• Target sentence of length J Y = {y1, ..., yJ}

• Set of k actions A = {a1, ..., ak}

• Set of n states S = {s1, ..., sn}

• Current time step t with sequence length/ task horizon T

• Pa(s, s
′) probability that action a in state s at time t will lead to state s′ at time

t+ 1

• Ra(s, s
′) immediate reward for transitioning from state s to state s′ after taken action

a

• Student’s/learned policy π or π̂ (depending on conditions)

• Expert’s policy π∗

• Distribution of states dtπ for policy π being executed from time step 1 to t− 1

• Expected cost C(s, a) for performing action a in state s bounded by [0, 1]

• Expected cost Cπ(s) = Ea∼π(s)[C(s, a)] according to π in s

• Total cost of executing policy π for T steps J(π) =
∑T

t=1Es∼dtπ [Cπ(s)]

• Expected future cost-to-go Qπt (s, a)

• Cost-weighted training example (s, t, a,Q)

4



2.2. Machine Translation

In this work mostly the finite horizon control problem in the form of Markov Decision

Process (MDP)s with states s and actions a is considered. The i.i.d. assumption of the

MDP can not be made in this setting because of the policy iteration in data and policy

aggregation methods. Policies from previous generations are used to create demonstration

that the current policy is learning of.

In the domain of machine translation it might not always be necessary to define an action a

at time step t and state s. Considering each token x in a source sentence X is represented

by an action a that leads from s at time step t to s′ at time step t + 1. In the decision

process xi is depended on previous the token xi−1, therefore each token in a sequence X

is unique, even if the token might be the same. Then it can be assumed that the graph

that is created by the states and it’s transitions/action is acyclic. Therefore for machine

translation either the state dimension s or the time dimension t can be omitted because

after taking a set of actions the possible actions in t and s will be equal At == As.

Furthermore the synonyms for student: learner and learned policy are used interchangeable

and should be derived from the context. The same applies for synonyms of expert like

teacher, oracle or expert policy.

2.2. Machine Translation

MT is the task of autonomously translating one language into another using a software

translation system. On a basic level, the system tries to match a sentence in the source

language to the best possible sentence in the target language.

2.2.1. Statistical Machine Translation

SMT is one type of MT and uses a data-driven approach where bilingual and monolin-

gual corpora are used as main source of knowledge. The idea of SMT comes from the

information theorem of (Shannon, 1948) where it is shown that the amount of information

in a message can be represented as how surprising it is for the receiver. This is because

generally speaking unknown information is more interesting than known information. The

informational content I of an event decreases as the probability of the event occurring in-

creases. (Shannon, 1948) describes the expected value of I as the entropy with a discrete

random variable X as:

H(X) = E[I(X)] = E[− log(P (X))] (2.1)

Explicitly it can be written as:

H(X) = −
n∑
i=1

P (xi) logP (xi) (2.2)

Where E is the expected value operator, n is the number of random variables and the

logarithm is usually to the basis 2, 10 or e. This finding can be used in the task of MT

as the source of information for a sentence can be represented as a sequence of symbols

governed by a set of probabilities. It is shown that it will choose successive symbols

5



2.2. Machine Translation

according to certain probabilities depending on preceding choices as well as the particular

symbols in question. This is also know as a discrete Markov process, where each element in

a finite sequence {S1, S2, ..., Sn} has a set of transitions with probability Pi(j) to go from

state Si to state Sj . To get information of the Markov process each transition corresponds

to, depending on the model, a character, word or phrase. When going through the sequence

of states the transition with the highest probability is taken, resulting in the most probable

translation. For example in English it is more likely that character “H” is successive to “T”

than to “Q” so the probability on the transition from state PH(T ) is larger than the one

of PH(Q).

Before in 2016 NMT systems became popular it was simply infeasible to train large scale

neural networks. SMT systems were state-of-the-art and used by Microsoft, Google and

Yandex (Translator, n.d.; Turovsky, 2016; Yandex Blog, 2017). SMT systems learn the

correspondences between source and target language by training on coocurrences of usually

words or phrases, that can be seen as distinct entities. Coocurrence tries to simulate

semantic relations between entities and can be described as a higher level counting of

them or a global representation of the context the entity occurs in. It is then possible to

measure the statistical correlation between the coocurrences of such entities. They can

also be seen as Mutual Information trying to measure the dependence and the information

obtained from one entity through another (Bordag, 2008).

Because this approach does not rely on dictionaries or grammatical rules it provides the

best translations using phrases where the context around a given word is used instead

of trying to perform single word translations. The basic idea is to separate the source

sentence into phrases, translate them into the target language and concatenate them in

the correct order. To show why phrased-based translation are preferable in SMT systems

an example from (Zens, 2008) is presented here. In figure 2.1 the German source sentence

“Wenn ich eine Uhrzeit vorschlagen darf?” and the English target sentence “If I may

suggest a time of day?” are separated into words and phrases. The black squares show the

direct translation of German words (x-axis) and English words (y-axis). The boxes that

envelop the squares represent the phrases that get matched from one language to another,

the matching is also shown in the table on the right. Using the translation probability and

Bayes rule the SMT system tries to find the best translation from source sentence X to

target sentence Y as follows:

arg max
Y

P (Y |X) = arg max
Y

P (X|Y )P (Y ) (2.3)

By this a separate language P (Y ) and translation model P (X|Y ) are obtained. During

decoding the input sentence X is split into phrases xi. Each phrase xi is then translated

into a phrase of the target language yi and might be reordered. The translation model

P (X|Y ) is given by a probability distribution that is obtained by the statistical correla-

tion of the coocurrences in the bilingual corpus and a distortion model that manages the

different positions of phrases in the languages. Through n-gram overlap and usually an

additional length penalty factor the language model P (Y ) is obtained. The best possible

translation for X is then given by Ybest = arg maxY P (X|Y )P (Y ).
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Figure 2.1.: Example of phrase-based translation and the list of used phrase pairs (Zens,
2008).

SMT systems generally work well when trained on a large amount of parallel corpora. Par-

allel corpora are sentence aligned texts where each sentence is usually delimited by a break

line. Each sentence from the source is matched exactly to one sentence of the target with

the same id. Learning from coocurrences of phrases or words introduces problems when

trying to translate into morphology-rich languages such as German. Often single instances

of compound words in the target language occur during test time but have not been en-

countered during training. Additionally the system is mostly unable to correct typos or

singleton errors. That is why SMT systems got mainly replaced by NMT systems.

2.2.2. Neural Machine Translation

SMT systems count phrase pairs and their occurrences to model similarities between them

but they do not share statistical weights in the estimation of translation probabilities. On

unseen data this leads to a general sparsity problem because it is unlikely that the context

of distinct phrases are the same in different occurrences. NMT systems on the other hand

are based on neural networks which share weights and can be an universal approximator

for any function given the right architecture as proven by (Debao, 1993; Hornik, 1991) and

others. For a classification problem, such as MT, usually the parameters of the network

are trained using the cross-entropy. Entropy is the amount of bits required to transmit a

randomly selected message from a probability distribution as shown in equation 2.2. When

the target probability distribution is denoted as D and the approximation of the target

probability distribution (the prediction of the model) as Q then the cross-entropy is the

number of additional bits to represent an event using Q instead of D and can be written
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Figure 2.2.: Illustration of a feed-forward neural network for predicting a single output
word at time t. (Y. Bengio et al., 2003)

as:

H(D,Q) = −
n∑
i=1

PD(xi)logPQ(xi) (2.4)

Where n is the number of possible events x, PD(xi) and PQ(xi) are the probabilities of

the event in distributions D and Q respectively.

Another function to discretely compare two distributions is the negative log-likelihood

which is based on the maximum-likelihood estimation (MLE). For Bernoulli and Multi-

noulli probability distributions the cross-entropy and negative log-likelihood can be used

interchangeably as a loss function and will yield the same result (Murphy, 2013). Before

the output of the network for a multi class classification problem is used in the loss func-

tion they usually get passed to the softmax activation function. The softmax squashes the

output of the network of size n into the range 0− 1 to get a normalized representation of

the output values that sums to 1. It is defined as:

S(xi) =
exi∑n
j e

xj
(2.5)

Where n is the number of classes and xi is the network output for class i also called logit.

We can then interpret the output of the softmax as the probabilities that a certain set of

features belongs to a certain class.

(Y. Bengio et al., 2003) were the first to propose a feed forward neural network to learn the

distributed representation for words to address the problem of data sparsity of SMT. Their

concept for predicting a single word at time t by a sequence of input words using a neural

network is shown in figure 2.2. They decompose the function of the neural network with a

mapping C from any element word i in the vocabulary V to a real vector C(i). Therefore
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C represents the distributed feature vectors associated with each word in the vocabulary.

C is represented by a |V | ×m matrix of free parameters. For their experiments they used

vocabulary size of |V | = 17000 and m = 30, 60, 100 features. Training their network for

only 5 epochs on the AP news dataset with around 14 million words would take 3 weeks

on 40 CPUs. At the time their model shifted the problem of MT to a computational

problem of learning parameters, as they out-performed every state-of-the-art statistical or

example based model by using learned representations of words. Due to the architecture

of the network the model was still limited by a fixed context size, which later was solved

by (Mikolov et al., 2010) who proposed a language model based on a Recurrent Neural

Network (RNN) to obtain a dynamic context length. RNNs transfer information through

time by connecting nodes from a directed graph along a temporal sequence. The context

of previous predicted instances from time step t − 1 in the sequence is given to the node

at time step t. Therefore information can be transmitted through time and dependencies

of words with respect to previous words can be modeled.

The next big improvement was done by (Kalchbrenner & Blunsom, 2013) who used an end-

to-end encoder-decoder structure for machine translation. Their model encodes the sources

sequence {x1, ..., xn} to a new continuous representation {z1, ..., zn} using a Convolutional

Neural Network (CNN). In the decoder, z is then used to sequentially generate the target

sequence {y1, ..., ym}.
Encoding a whole sentence into a single vector Z does not represent the context of each

word but only the sentences as a whole. To overcome this problem (Bahdanau, Cho, et

al., 2016) introduced the attention mechanism, which creates a representation of learned

context vectors {h1, ..., hn} for each zn. At every time step of decoding, each context

vector is of different importance and therefore the attention is set on different parts of the

sentences representation for each decoding step. This allows for modeling dependencies in

sequences without regard to their distance in the input or output sequences.

This mechanism was used and further improved by (Vaswani et al., 2017) who showed that

convolutional and recurrent building blocks can be completely substituted with their self-

attention mechanism. A simple example is given in figure 2.3, where for the input sequence

Thinking Machines the first self-attention calculation is shown step by step. Each word of

the sequence is embedded into a context vector xi and multiplied by three weight matrices

which are learned during training wQ, wK , wV (not shown in the figure). The matrices

correspond to queries, keys and values respectively, the resulting vectors are denoted qi, ki,

vi. Then a score is calculated by taking the dot-product of the query and the key vector

and dividing it by the dimensionality of the key vector dk
1. The softmax function is

then applied on all scores of the input and the respective values are multiplied to acquire

a scaled value vector. These scaled vectors are then summed to get the output of the

self-attention for the first word.

To extend the model’s ability to focus on different position in the sequence they introduce

multi-head-self-attention. The method creates multiple self attention heads which all have

their own weight matrices wQn , wKn , wVn , where the number of heads n is usually 4 - 8.

1According to (Vaswani et al., 2017) the 1√
dk

factor is applied to obtain more stable gradients.
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Figure 2.3.: Overview of self-attention calculation for a single instance of a simple sequence.
(Alammar, 2018)
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Figure 2.4.: Moses decoder using the beam search algorithm (Koehn, 2013)

Thus the calculation for each word needs to be done n times. Additionally the output z for

each attention head is scaled by another learned weight matrix, to scale the representation

subspaces of each individual head.

Their Transformer architecture is completely based on self-attention in the encoder and

the decoder and set new state-of-the-art performance in less training time, because it is

not bound to the sequential part of the decoder and therefore it is more parallelizable. To

this day, most competitive models for MT are still based on the Transformer architecture.

2.3. Machine Translation Utilities

In this section utilities that are used later in the course of this work are shown. For

instance the SMT toolkit Moses will be reviewed in more detail as it provides the expert

for the imitation learning with knowledge. Furthermore the most common metric for the

evaluation of MT systems will be introduced. Additional some metrics that are closer to

human judgement are shown.

2.3.1. Moses SMT

A popular open source toolkit for phrase-based SMT is called Moses by (Koehn et al.,

2007). It can train language models for two language pairs only using sentence parallel

corpora. During training Moses learns the coocurrences between two languages and exports

the phrases together with their statistical correlation into lookup-tables, also called phrase-

tables. To accelerate decoding, possible phrases for the translations of the source sentence

are picked from the phrase-tables before the decoding begins. In figure 2.4 an example

of the beam search of Moses is shown. Each box in the graph has three rows the first

one marked with e: represents the current target translation hypothesis, row f: labels

the words in the source sentence that are already translated with an asterisk and the last

row p: shows the current accumulated probability. During decoding the target output
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is generated from left to right in phrase sized steps. New states are sequentially created

by extending each hypothesis with phrases of translations that covers some of the source

input words which were not yet translated. The current probability of the new state is the

probability of the original state multiplied with the translation, distortion and language

model probability of the added phrasal translation, following the model described in section

2.2.1. Final states are hypotheses that cover all target words. Among these the hypothesis

with the highest probability is selected as best translation.

Through this exhaustive search all possible translations are obtained. To optimize the

algorithm hypothesis that never have the chance of being among the best translations are

being discarded early. When considering all possible hypothesis (states), the upper bound

for the number states can be estimated as: N ∼ 2ns |VY |2ns. Where ns is the number

of words in the source sentence and |VY | is the size of the target vocabulary, thus 2ns

becomes the critical part and needs to be limited. In practice the number of sensible

target words |VY | gets lower for each word generated, as in most cases repeating words for

examples should have a very low probability. Each state that is used in the beam search

by Moses not only includes the cost (1− probability) of the currently build hypothesis but

also the future cost that estimates how much it will cost to continue the sentence from this

point. The future cost estimation favors hypotheses that already covered difficult parts

of the sentence and discount hypotheses that covered the easy parts first. To limit the

search space (lattice) these metrics are used in two different pruning methods. Histogram

pruning keeps a fixed number of hypothesis at any time, while beam threshold pruning

limits the number of hypothesis based on a relative factor α of the probability of the best

hypothesis Pb. So every hypothesis that has a probability Pi < αPb gets pruned. For the

expert described in this work it is beneficial to use threshold pruning. Whenever pruning is

mentioned in the context of Moses search spaces, it can be assumed that threshold pruning

is meant (Koehn, 2013).

In this project Moses is used to generate search spaces for each source sentence and saving

them as files. This provides knowledge of the target sentence through the learning process

of Moses and is used in the oracle, the teacher for the reinforcement learning algorithm,

later.

2.3.2. BLEU

Human evaluations of machine translation is the best method to qualitatively compare

translations, but it is also expensive and time consuming when comparing large-scale data

sets. Thus the automatic evaluation metric BLEU was proposed by (Papineni et al.,

2002) and it is still the pseudo standard when evaluating translations today. To obtain

near human evaluation accuracy BLEU uses a modified n-gram precision that clips each

n-gram to the maximum number of times it occurs in the reference. For example:

• Candidate: the cat sits on the tree

• Reference: a cat is sitting on the tree

All candidate n-gram counts and their corresponding maximum reference counts are col-

lected. The candidate counts are clipped by their corresponding reference maximum value.

12



2.3. Machine Translation Utilities

In this example there are five 1-grams, two 2-grams and one 3-gram. The word “the” oc-

curs twice in the candidate but only once in the reference, thus the 1-grams are clipped to

a count of four. The candidate counts are then summed and divided by the total number

of candidate n-grams with the following equations from (Papineni et al., 2002):

BLEU = BP · exp(
N∑
n=1

wn log pn) (2.6)

Where N defines the maximum n-gram size, wn is an uniform weight 1/N , pn is the

modified precision as described above and the brevity penalty BP is defined as:

BP =

1, if c > r

e1−r/c, if c ≤ r
(2.7)

Here r and c are the number of words in the reference and candidate respectively. In a more

abstract way 1-grams are used to measure the equality, where n-grams of further order are

used to compare the fluency of candidate and reference. Throughout this work BLEU is

used in many different places showing it’s capabilities in measuring MT performance but

also demonstrating it’s drawbacks.

2.3.3. Metrics Closer to Human Judgement

In this section three additional metrics for natural generated language that are closer to

real human judgement will be introduced briefly.

Firstly METEOR (Metric for Evaluation of Translation with Explicit ORdering) by (Baner-

jee & Lavie, 2005) was designed to fix some of the problems found in BLEU, and also

produce good correlation with human judgement at the sentence or segment level. It is

based on the harmonic mean and recall of the unigram precision. On a corpus level it

correlates up to 96.4% to human judgement, while BLEU only achieves 81.7% (Banerjee

& Lavie, 2005).

BLEURT by (Sellam et al., 2020) indicates to what extent the candidate conveys the

meaning of the reference. Like METEOR is used to bring evaluation closer to human

judgement. Models are not calibrated like BLEU as the results are not in the range of

[0, 1]. Instead, they mimic the WMT Metrics Shared Task’s human scores, which are

standardized per annotator. It is suggested to interpret the absolute values rather than

using the metrics for comparison. BLEURT creates these ratings by pretraining BERT

(Bidirectional Encoder Representations from Transformers) from (Devlin et al., 2019) for

quality evaluation. Generated text from the MT system is again evaluated by the BERT

model which has access to multi dimensional representations of used words. In contrast

BLEU is limited to the n-gram overlap and there can not evaluate sentences in the same

way. BLEURT is particularly robust to both domain and quality drifts and showed that

it can model human assessment with superior accuracy.

The GLEU score is an evaluation metric by (Mutton et al., 2007) that measures fluency

by examining different parser. Each produces output that can be taken as representing
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degree of ill-formed grammar. In their paper it is shown that is correlates more to a human

machine translation rating than for example BLEU.

2.4. Learning to make decisions

In this section different learning methods will be reviewed. The problem definition of

taking independent decisions in every state that maximize the goal of the task will be

shown. Therefore equations and theorems will be introduced that are needed to describe

the problem. The main focus will be on learning how to take decisions with RL, IL and

Inverse Reinforcement Learning (IRL).

2.4.1. Introduction to Reinforcement Learning

In supervised learning the learner makes a prediction based on the current input and the

learned parameter. It then gets a feedback from a loss function that defines the difference

of the prediction and the references given the current input. The parameters are modified

by their total contribution to the loss. The objective for the system is to generalize it’s

responses so that it does good predictions on unseen data.

Unsupervised learning generally addresses problems where the goal is to find structures or

clusters in the data without references or supervision.

In reinforcement learning there is no direct signal for every prediction (action) that shows

how good or bad that action was - the learner is not directly told which actions to take.

Instead there are rewards that are given at any point in the sequence of actions by a reward

function. Rewards might be delayed, such that an action that was taken in the beginning

of the sequence yields a reward at the end. To discover the actions that maximize the

reward, the learner has to try non-optimal local actions and therefore get information

about the possible global reward (Sutton & Barto, 2018).

In general it is the process of making a sequence of decisions which goal it is to maximize

the cumulative reward. These decision processes are based on the Hidden Markov Model

(HMM) where each state possesses the Markov property. The Markov property says that

a future state st+1 with t ∈ {1, ..., N} is only dependent on the current state st where S is

a finite set of N states. Thus state is a Markov state if:

P (st+1|st) = P (st+1|s1, ..., st) (2.8)

Generally the HMM can then be described as:

P (st, a1:t, o1:t) = P (ot|st)
∫
P (st|st−1, at)P (st−1, a1:t−1, o1:t−1)dst−1 P (at) (2.9)

Where ot, at and st are the observation, action and state at time t respectively. The parts

of the equation have different responsibilities regarding observations, motions and actions.

For example, an automatic cleaning robot is used to clean the floor of a room. It’s task is

to clean all possible positions (states) of the floor and do movements (actions) based on

measurements and it’s current location. The sensors for the measurements and the electric

motors for the motions are not perfect and have tolerances, thus their uncertainty needs to
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Figure 2.5.: The agent–environment interaction in a Markov decision process (Sutton &
Barto, 2018).

be taken into consideration. If for example the motor only has 95% probability of taking an

action it needs to be modeled probabilistic. Therefore the measurement model is defined

as the probability of observations depending on the current location P (ot|st). The motion

model is given by the probability of the current location conditioned on previous location

and the current action P (st|st−1, at). The current action is also modeled probabilistic

with P (at). Now assume the robot has left the station and did a couple of actions. Then

P (st−1, a1:t−1, o1:t−1) is the old belief of the last location st−1. Based on the old belief, the

motion model, the measurement model and the current action a current belief is estimated

P (st, a1:t, o1:t).

In situations where modeling of decision making is required usually an extension of HMMs

are used - Markov Decision Processes (MDPs). MDPs add a reward function to the HMM

which is based on the action at taken in state st and describes how good or bad an action in

a certain state was. The reward is defined as R(st, at) with the state transition probability

Psa(·). In figure 2.5 the agent-environment interaction in a MDP is shown. The agent

or policy π maps states to actions S −→ A in discrete time steps; actions interact with

the environment; the agent is given a reward and new state by the environment after

each action. A MDP can then be defined as a tuple of (S,A, Psa(·), γ, R) where R is

the reward function and γ the discount factor for rewards. The agent’s objective is to

maximize the amount of reward it receives over time. By obtaining rewards after each

action, be it immediate or delayed, RL can solve MDP without explicit specification of the

transition probabilities. Generally taking an action and not receiving an immediate reward

is unintuitive, as the agent expects a reward or cost based on the last action. To overcome

this issue an estimation of a value function is introduced that estimates how good it is

for the agent to be in a given state. Where “how good” is defined by the expected future

reward for being in that state. Accordingly value functions are based on the policy which

describes the way of acting in states. A value function for policy π evaluated at state st is

given by:

V π(st) = E[R(st) + γV π(st+1)|π] (2.10)

Where the value V is the expected value over the distribution of the state sequence

(st, st+1, st+2, ...) that is gone over when executing π starting from st. Furthermore an
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action-value function can be defined as:

Qπ(st, at) = E[R(st, at) + γQπ(st+1, at+1)|π] (2.11)

An optimal value or action-value function is then given by the policy that maximizes all

values V or action-values Q.

V ∗(s) = max
π

Vπ(s) (2.12)

Q∗(s, a) = max
π

Qπ(s, a) (2.13)

Additionally with the Bellman optimality it is know that there must be a deterministic

optimal policy for the MDP, such that π is then an optimal policy iff for all s ∈ S.

π(s) = arg max
a∈A

Qπ(s, a) (2.14)

The goal of RL is to find a policy π that maximizes the value function for all s ∈ S as

shown by (Sutton & Barto, 2018). In many real world applications RL has shown it’s

potential. For example in the early 90’s the TD-Gammon of (Tesauro, 1992) learned to

play back-gammon on a grandmaster level with very little background knowledge on the

game. There are many more application such as optimizing DRAM access (Ipek et al.,

2008), mastering the complex game of GO (Silver et al., 2016) and more.

Through reinforcement learning it has been shown that taking near optimal actions in

complex unknown environments can be learned. Trying every possible action in such

an environment and observing the reward can be costly, thus computational intensive.

Learning from demonstrations before exploring the environment has shown to be more

effective and will be reviewed in the next sections.

2.4.2. Imitation and Inverse Reinforcement Learning

RL works well when the reward function, or at least a good approximation of it, is known

for most pairs of actions and states. In some tasks defining a reward function might be

difficult due to the complexity of the environment. To give an example from a natural

perspective: For a human the most general reward signal for any kind of task could be

the release of dopamine. For a student this can be achieved by getting a good grade after

studying the whole month or getting a paycheck after a long day of work. For young

kids this is not that trivial since they do not know what is right or wrong; they do not

know how to interact with the environment such that a reward is released. Just through

exploring their surrounding environment the learning process would be very slow. That is

why they usually try to learn from the behavior of their parents and by exploring.

In machine learning this concept is called imitation learning, apprentice ship learning or

learning from demonstrations. In the simplest form this can be done by directly trying

to copy it. This is called behavioral cloning and generally is closer to supervised learning

where the student learns a policy which maps states to actions directly. The student is

usually defined by a set of parameters, such as a neural network, which are fit to solve a
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certain problem. This way of learning was popular in the early stages of imitation learning.

Examples which successfully applied this method with experts’ demonstrations as training

data are (Hayes & Demiris, 1995; Isaac & Sammut, 2003; Pomerleau, 1989).

To give an example where behavioral cloning does not work: A student (policy being

trained) should learn how to drive a car from point A to point B within a city. The

student already knows how to drive in general but does not know the city very well. The

expert (who knows the city) can recommend a path from point A to B. At each intersection

(state) along the path the expert gives an indication (action) where to go. Assuming the

student learned from the expert’s behavior and follows the expert’s path the first few steps

but eventually takes a wrong turn. The student will have to turn around until the path

of the expert is reached again. It will only get to point B, it’s destination (and obtain a

reward), when following the expert’s path. Therefore the student is forced to clone the

behavior of the expert.

This can be improved by Direct Policy Learning (DPL) which uses an interactive expert

that can finish a path or trajectory at any given state. The method works as follows:

During training the student predicts a trajectory S1:T by rolling out it’s policy to a certain

state st at time step t. Where T is the number of states in the complete trajectory. The

expert is then queried to continue the trajectory from st and maximize the expected future

reward. st is either chosen randomly or at a point where the student is uncertain what

action to take. In the scenario of the example the reward is only obtained at the end of

the sequence. When using behavioral cloning for training the student, this means there

would not be a signal how good the trajectory S1:t−1 is. There is only a 0-1 reward signal

how good the action at in state st was. Thus the student would only learn to take the

expert’s action a∗t in state st. In DPL on the other hand, the student learns to recover

from it’s mistakes with the expert’s continuation St:T .

In the context of MT usually the Maximum Likelihood Estimation (MLE) is used as a

multi-class classification objective. Unfortunately, this training objective is not always a

good surrogate for the test error because it only maximizes the ground truth probability

and ignores the wealth of information provided by structured losses. Furthermore, it

introduces inconsistencies between training and prediction (such as exposure bias), which

may negatively impact test results. In IL a learner tries to mimic an expert by observing

it’s behavior. Based on the observed the learner tries to map states to actions. Rewards

give the learner a signal of how good the last action in that state was. Delayed rewards

lead to more complex decision making, as the learner might not immediately receive an

useful signal. Cloning the expert’s behavior works for learning direct mappings but is

insufficient for more complex reward functions. Imitating an expert can usually not be

described as a straight forward prediction. Learning a hidden reward function in IL is

based on matching features of states from the learned to the expert’s policy. Decisions are

made using structured predictions which have multiple dependencies between them. For

example when translating a sentence with a MT system, each word has strong conditional

dependence on the sequence of words before. Generally a structured prediction problem
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can be defined as a normal supervised learning problem:

L = E(x,y)∼D [` (y∗, ŷ;x)] (2.15)

Where D is an unknown distribution of input space x and output space y. The loss `

defines the distance between the true value y∗ and the predicted value ŷ given x. Therefore

doing structured prediction in a MDP can be described as matching of features for each

individual decision. More specifically in IL the knowledge is transferred from features of

decisions from the expert to the student via structured predictions.

(Abbeel & Ng, 2004) proposed that approximating the expert’s reward function directly

is more desirable. This is because there is generally a difference in learning how to copy

expert’s demonstrations and learning the hidden objectives of the expert that maximize

the reward. The problem of deriving a reward function from observed behavior is called

inverse reinforcement learning. Unlike RL where the reward is obtained at the end of each

sequence, the goal of IRL is to learn rewards for each action of the expert. (Ng & Russell,

2000)

The goal of IRL is to find a set of possible reward functions R(s) such that the expert’s

policy π∗ is the optimal policy π in the MDP. For simplicity then assume that optimal

policy π is π(s) ≡ a1,∀s. From the Bellman optimality it can be said that π(s) ≡ a1, ∀s
iff

(Pa1 − Pa)(I − γPa1)−1R � 0 (2.16)

Where Pa1 and Pa are probability matrices of taking the optimal action a1 and the every

other action a. � denotes that every element in the matrix or vector should fulfill the

condition of ≥. Therefore for every action taken the reward R needs to be ≥ 0. For a

small set of states this can be solved with linear programming.

For the case of infinite state space (Ng & Russell, 2000) did the assumption that there

is a finite set of feature functions φi(s) for approximating the value function. Therefore

rewards can be defined as a sequence of linear functions of features:

R(s) = α1φ1(s) + α2φ2(s) + ...+ αdφd(s) (2.17)

Where φ are feature mapping functions that project from the state space into real numbers

and α are the parameter to be learned. This means that a policy can be learned that is

as good as the expert by matching feature function φ by:

µ(π) = Eπ[
∞∑
t=1

γtφ(st)] ∈ Rk (2.18)

V π(s) = w · µ(π) (2.19)

(Ratliff et al., 2006) used this feature mapping for learning behaviors as a maximum margin

structured prediction problem over a space of policies. Such that an optimal policy can

be trained on the structure prediction problem to mimic the expert’s behavior. Their
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formulation is based on Support Vector Machine (SVM) objective and can be written as:

R(w) =
1

N

N∑
i=1

(max
y∈Y

(wTφ(xt, y) + `(yt, y))wTφ(xt, yt)) +
λ

2
||w||2 (2.20)

Through this the deviations from the expert’s demonstrations are penalized and the learner

is driven to produce similar outputs as the expert. They validate their results by planning

trajectories on satellite images of paths, such that a certain cost is reduced. The two

objectives that they observe are staying on the road along the path and hiding in the trees

(staying on the road as short as possible). For both objectives they obtain good results,

representing near optimal paths. Another example where IRL was applied successfully is

the work of (Shimosaka et al., 2014). They showed that learning rewards from the expert’s

behavior can be used in complex real world scenarios. In their work they proposed a

formulation of defensive driving on residential roads with IRL. The authors provide new

feature descriptors for computing reward functions to represent risk factors on residential

roads such as corners, barrier lines, and speed limitations. Their results show that they

successfully managed to model risk anticipation and defensive driving for this scenario.

Throughout this section different imitation and inverse reinforcement learning methods

were reviewed. All of these methods try to solve MDPs, but there is no method that

works well on every decision process. The method that should be used for a specific

problem is depend on many aspects.

• Is a reward function given or can it be easily approximated?

• What complexity does the environment have?

• Are there expert’s observation that can be used during training?

• Can the expert be queried interactively?

These questions should be answered before defining the learning method that solves the

MDP representing the global problem.

2.4.3. Fundamental Algorithms

In this section different methods for solving tasks that are modeled with MDPs will be

reviewed. As stated in section 2.4.2 MDPs describe decision processes where each state is

assumed to have the Markov property, so that it is only depended on the current state and

action. They express the framework for learning to take decisions in known and unknown

environments. Over the last years many problems were solved using these methods: in

games, path finding and other structured prediction tasks. Here a theoretical view on

some of the algorithms used in these tasks is given.

(Daumé et al., 2009) proposed a method for Search-based Structured Prediction (SEARN)

which decomposes structured prediction into multiple classification tasks, where each label

of the structured output is predicted by a classifier. The global task is then to optimize

the unknown reward/loss function that can be expressed as a linear combination of these
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2.4. Learning to make decisions

classification tasks (features). In general the student generates a roll-in (trajectory) con-

sisting of states and actions till the end of the sequence T . The expert creates for each

action at in the sequence a roll-out with the expected future cost estimate. Such estimates

place the expert back in an identical state for each action and require T roll-outs. SEARN

iteratively improves the learner by generating a new non-stationary policy every epoch. At

the end of each epoch the weights of the policies from the previous epochs are aggregated

to obtain a new policy. This policy is then used for the structured prediction in the new

epoch.

Similarly SMILe by (Ross & Bagnell, 2010) takes the approach of SEARN but reuses al-

ready observed errors, such that the total number of required roll-outs decreases. SMILe

can also be adapted for general structured prediction and would provide similar guarantees

to SEARN but without requiring roll-outs of full expected future cost for every prediction.

These kinds of methods are know as policy aggregation methods and output a stochastic

learned policy.

In contrast, DAGGER, proposed by (Ross, Munoz, et al., 2011) aggregates data each

epoch to improve the same learner. The learned policy is therefore stationary and deter-

ministic and in their work they show that the policy is guaranteed to perform well after a

certain amount of made errors. Polices trained with SEARN or SMILe do not have strong

guarantees and can fail in real world scenarios due to stochastic nature (Ross, Munoz,

et al., 2011). To show the difference of policy and data aggregation the training routines

of DAGGER and SEARN are shown in algorithm 1. Both algorithms expect a training

dataset X for the supervised learning part, an expert’s policy π∗ and a learning rate β.

Unique lines of the code from the respective methods are labeled with #SEARN and

#DAGGER, the rest of the code remains the same for both.

At first a probability p is defined by the learning rate β and the current epoch i (line 3). A

stochastic policy π is then sampled using p, such that for each action the expert’s policy π∗

is used with a probability p or the learned policy from the last epoch Hi−1 is used with a

probability 1− p (line 4). π is used to predict each instance of the training data. For each

instance x and each action ât a cost-sensitive tuple is generated (line 9-16). Representative

features Φt are extracted given x and all previous actions â1:t−1 (line 9). Depending on

the method either the stochastic policy π or the expert’s policy π∗ is used to predict, for

each possible action ajt in x, the continuation a′t+1:T that minimizes the expected future

cost. Then based on the previous actions â1:t−1, the current action ajt and the predicted

continuation a′t+1:T the loss w.r.t. the ground truth is calculated (line 13). A new tuple of

features and cost is created for every possible action in â1:T and added to D. At the end

of each epoch a new policy hi is trained on D (line 18).

The difference of DAGGER and SEARN for collecting data is in line 5, where SEARN

sets the dataset of examples to ∅ every epoch, DAGGER concatenates all examples. For

DAGGER the knowledge of previous policies is represented by the aggregated data and

transferred to the new policy by training on this data. Where for SEARN all previous

policies are summed and the learning rate is used as an additional scaling factor to transfer

more knowledge of more recent policies to the new policy. This way both methods become

Follow-The-Leader (FTL) algorithms, where in each iteration the knowledge derived from
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2.4. Learning to make decisions

Algorithm 1 Training routine for SEARN and DAGGER

Input: training dataset X, expert’s policy π∗, learning rate β
Output: best policy on validation set Hn

1: Dataset of examples D = ∅
2: for i to n do
3: p = (1− β)i−1

4: π = pπ∗ + (1− p)Hi−1

5: D = ∅ #SEARN
6: for x in X do
7: Predict π(x) = â1:T

8: for ât in π(x) do
9: Extract features Φt = f(x, â1:t−1)

10: for all actions ajt in ât do
11: Predict a′t+1:T = π(x|â1:t−1, a

j
t ) #SEARN

12: Predict a′t+1:T = π∗(x|â1:t−1, a
j
t ) #DAGGER

13: Estimate cjt = `(â1:t−1, a
j
t , a
′
t+1:T )

14: end for
15: Add (Φt, ct) to D
16: end for
17: end for
18: Train policy hi with CSC(D)

19: Hi = β
∑i

j=1
(1−β)i−j

1−(1−β)i
hj #SEARN

20: Hi = hi #DAGGER
21: end for

the expert through cost-sensitive examples is increasing over the number of epochs.

Another method for approximating a global reward function from an expert using data

aggregation is called AGGREVATE. It was proposed by (Ross & Bagnell, 2014) and is

an extension to DAGGER that learns to choose actions to minimize the cost-to-go of the

expert rather than the 0-1 classification loss of cloning it’s actions. The major difference

between the methods is that for only one so called exploration action at in π(x) a continu-

ation from the expert is done (as in line 12 of algorithm 1). The position t in the sequence

π(x) is thereby sampled uniformly from t ∈ {1, 2, ..., T}. In their paper they define the

cost-to-go of the expert’s policy π∗ from t till T as: Q̂ = `(a′t:T ). Therefore Q̂ can be seen

as a replacement for cost cjt in line 13. Less formally, it represent the expert’s opinion

of how to continue a sentence optimal from a (non-optimal) starting point given by the

student. The cost-weighted examples {s, t, a, Q̂} are then added to D as in line 16. Like in

DAGGER a policy with a Cost-Sensitive-Classifier (CSC) is trained on all examples that

are collected during the epochs.

One difference of the two methods is the amount of examples collected for each sample x

in X. Where DAGGER observes an action ajt chosen by the expert in every visited state

t along the trajectory and therefore collecting T data points, AGGREVATE only collects

a single one per trajectory.

This work follows the concept of AGGREVATE because querying an expert for every state

in the trajectory is not feasible due to it’s prediction speed. The algorithm used will be

reviewed in more detail in chapter 4.3. Additionally the amount of information or entropy
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obtained by each example generated by the expert along the trajectory decreases due to

repetitions of continuations. To give an example from the MT domain when translating

from German to English:

• Source: Er spielt mit dem Ball im Hof

• Reference: He is playing with the ball in the yard

• Student’s translation: He plays with the ball at home

Then each of the expert’s continuation with it’s respective cost-to-go estimates could be

something like this:

1. He - is playing with the ball in the yard (0.0)

2. He plays - with the ball in the yard (0.2)

3. He plays with - the ball in the yard (0.2)

4. He plays with the - ball in the yard (0.2)

5. He plays with the ball - in the yard (0.2)

6. He plays with the ball at - the yard (0.4)

In this example the student took two actions differently than the expert. Translating

“spielt” with “plays” and “Hof” with “home”. In either method the student is learning from

it’s mistakes through the expert’s future cost estimates. Learning on the examples above

will improve the student but is costly and inefficient. As the amount of additional entropy

in the examples from 3-5 is insignificant because the cost related to the mistake made

in “plays” is already included in example 2. Additionally in the worst case the number

of examples generated in each epoch can be up to T · X. Where T here is the average

number of tokens in a sequence and X the size of the dataset. This makes training a

MT system on a large dataset using DAGGER impractical. AGGREVATE will sample a

random exploration action for each instance x in the training data, thus creates X new

samples every epoch. Generally the information obtained from examples generated in

epoch Di will be lower than the ones generated in epoch Di+1, such that the total amount

of information gained from each sentence when training with AGGREVATE is higher than

with DAGGER.

An improvement to SEARN was proposed by (Chang et al., 2015). With their approach

LOLS they show how to train a policy that learns how to search better than the reference

policy/teacher. Their method follows the concept of SEARN but only uses the learned

policy from the previous epoch as a roll-in policy and a stochastic policy for roll-outs. To

repeat, SEARN uses a stochastic policy for roll-ins based on β. In their analysis they

observe the cost of generating examples with deterministic and stochastic policies for both

roll-in and roll-outs. By taking one-step deviations and executing different actions ajt for

all t in T they try to find local optimal decisions even when the roll-in policy is sub-

optimal. They show that using the reference policy as roll-in causes the state distribution

to be unrealistically good. As a result, the learned policy never learns to correct for
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2.4. Learning to make decisions

previous mistakes, performing poorly when testing. The concept of LOLS policy mixture

was adapted in ADBLEU and will be shown in section 4.3.
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3. Related Work

This chapter will be mainly focused around similarities and differences of other work related

to this thesis. Analogies and comparisons will be made for methods that have objectives

similar to the method proposed here.

For instance, (Zhang et al., 2017) proposed a method to combine the advantages of tradi-

tional SMT and NMT by exploiting an existing phrase-based SMT model. Contrary, the

SMT system is used to calculate a phrase-based decoding cost for the n-best outputs from

NMT system. Based on the cost a ranking is generated. The best translation according

to the ranking is passed back to train the NMT system. The challenge is that the NMT

outputs may not be in the search space of the standard phrase-based decoding algorithm.

For the interface between NMT and SMT they propose a soft forced decoding algorithm

which tries to find the best path in the SMT search space given the NMT input. They

show that the re-ranking of NMT hypothesis with a SMT system can improve the test

error of the NMT system.

A different approach was proposed by (Sun, Venkatraman, et al., 2017) who derived a

policy gradient method for imitation learning and sequential prediction. They are using the

reduction of IL and sequential prediction to online learning as shown in (Ross & Bagnell,

2014) to learn policies represented by expressive differentiable function approximators.

For that they compare IL to RL using cumulative regret RN =
∑N

n=1 (µ (πn)− µ (π∗))

to measure the speed of learning. Furthermore they validate their theory on robotics

simulations and dependency parsing on handwritten algebra. For every test they did the

trained policy reached near expert or sometimes even super-expert levels of performance.

Their results show that IL is significantly more effective than RL for sequential prediction

with near optimal cost-to-go oracles.

Closely related to this (Leblond et al., 2018) proposed SEARNN, a method that learns

to search like SEARN but models each state of the MDP with a cell of a RNN which is

also used as a differentiable function approximator. Like SEARN they try to minimize

the difference between the global and the local objective by learning to search for the

trajectory with the least cost. Their training method follows the one shown in algorithm

1 from section 2.4.3 with some modifications.

For training they use two different policies for roll-in and roll-out. The roll-in is defined as

a context of all actions taken a ∈ {a1, ..., at−1} by the roll-in policy. This can be seen as

the feature extraction of the RNN, where the hidden state ht−1 yields the features used in

the roll-outs. The roll-out RNN is used to create a cost-sensitive example for each possible

action at for time step t in the sequence. The resulting cost vector for each time step t

is used in the loss calculation for each RNN cell. An intermediate dataset from tuples of

initial state, all previous actions and cost vector is created. For the classification the RNN

itself is used.

In figure 3.1 an example of the roll-in/roll-out mechanism is shown in the context of

OCR, where the goal is to predict the characters in the image correctly. The roll-in
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Figure 3.1.: Illustration of the roll-in/roll-out mechanism used in SEARNN for OCR from
the paper of (Leblond et al., 2018).

extracts features sequentially by passing the context of the characters of each RNN cell

to the next. Here for t = 3 each possible character/token is taken to observe the cost

estimate from the roll-out RNN. This is done for every token in the set of token V and for

every time step in T , thus a cost matrix with the size V × T is obtained.

SEARNN could also be applied to use an external oracle by using teacher forcing. During

teacher forcing parts of the reference are given to the network as input, such that these

tokens have to be correct. Using parts of the expert’s output during teacher forcing

would yield additional references. This way the student would generalize better on unseen

data. To amplify the effect SEARNN could be also combined with DAGGER to create T

references for each training instance.

Analog to this (S. Bengio et al., 2015) proposed to bridge the gap between training and

testing time with scheduled sampling. During training their approach is to use scheduled

sampling of either the reference or the model itself to generate the previous token at−1 for

the token under consideration at. In the early phases of training scheduling was set, such

that at−1 is sampled from the reference. The more the model approaches convergence the

more at−1 is sampled from the model itself. Their objective was to improve the performance

of RNNs in the supervised learning context. Still it can be applied to imitation learning,

where the scheduling is based on the expert and the learned policy. Like DAGGER the

method requires multiple queries to the expert in one training sample and therefore can

be too slow to use during training time.

(Cheng et al., 2018) proposed LOKI, a strategy for policy learning that combines IL and a

policy gradient RL method. Their method executes an IL algorithm for a random number

of iterations and then switches to RL. They show that if the time of switching is set

correctly the learner can outperform the expert. The idea is to use the supervised aspect

of IL in the early stages to quickly bring the initial policy closer to the expert’s policy and

then use the exploration of RL in the later to improve performance.

Another method that also tries to bridge the gap and interpolates between imitation

learning and reinforcement learning is THOR by (Sun, Bagnell, et al., 2018).

The methods reviewed in this chapter try to train a policy by mimicking an expert. Differ-

ent procedures are applied to reduce the domain gap between training where a reference or

expert is available and testing where it is absent. Most of them try to tackle the problem

by using stochastic policies of student and expert to generate roll-ins and roll-outs. By
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using the student’s policy for roll-in the model is trained to recover and learn from it’s

mistakes. Taking differences of estimated future cost-to-go for complete trajectories in-

stead of a 0/1 loss for each action, help the student by understanding mistakes better and

therefore improving faster. These methods mainly differ in the way that they transfer the

knowledge from the expert to the student, either by doing different types of aggregation

or changing the mixture of roll-in and roll-out policies.

In contrast, this thesis shows if it is possible to directly learn the global objective through

IRL. It is therefore novel that it uses this approach in the topic of MT to directly optimize

for the BLEU score. In the paper of (Leblond et al., 2018) MT is also considered one of

the possible fields of application for SEARNN. But it is different to the method proposed

here as they are using each cell of a RNN as a regressor directly without an additional

expert.
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4. Methods

The method described in this work, ADBLEU, can be mainly split into two parts. The

first is the oracle (expert) using the extracted lattices files from the Moses SMT system as

a main source of knowledge. This knowledge is then used in the second part, the training

process, to give the student additional information. The student’s interfaces with the

expert through queries of roll-outs or continuations which can be provided interactively or

parallelized in large quantities. Through a data aggregation learning method the knowledge

is transferred from the expert to the student. This is done iteratively to a point where the

student out-performs the expert.

4.1. SMT Oracle (Expert)

The main target of ADBLEU is to improve the performance of the student’s NMT model

measured in BLEU. During the training of the student, the SMT Oralce is used as a the

expert to provide additional information and guide partial translated sentences from the

student in the right direction to maximize BLEU. The generation of lattices with Minimum

Bayes-Risk (MBR) decoding and the linear BLEU approximation follows the method of

(Tromble et al., 2008). The base implementation of the oracle was provided by (Sokolov

et al., 2013) using the finite-state transducer library OpenFst by (Allauzen et al., 2007).

It was then modified to the needs of this work, mainly to be able to fix the student’s

prefixes in lattice generation, work on large-scale datasets and to meet the state-of-the-art

performance required during training.

4.1.1. Lattice Generation and Partial Translation

A translation word lattice is a compact representation for large N-best lists of translation

hypotheses and their likelihoods. The lattice is a weighted acyclic finite state automaton

containing states and transitions between them. Each transition has a word and a weight

assigned to it. Candidate paths in the lattice consist of sequential transitions beginning

at the initial and ending at a final state. Factorization of weights along a candidate path

produces a total cost according to the model used, for example the BLEU approximation

described later in section 4.1.2.

To show how a translation word lattice with a fixed prefix is generated a toy example is

given below. Additionally visualization is given in figure 4.1. The reference and source

sentence are denoted as R and S respectively. The prefix coming from the student is

defined as P .

• S: die katze sitzt auf dem baum .

• R: the cat sits on the tree .

• P : my cat stands on

P ⊂ R will denote that for the sequence of transitions in P there is at least one candidate

path also containing these transitions starting from the initial state in R. Equally P 6⊂ R
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4.1. SMT Oracle (Expert)

Figure 4.1.: Shows the process of finding the best translation word lattice given a fixed
prefix. (a) Word lattice weight according to the prefix to find the closest rep-
resentation of it in the lattice. (b) The best possible representation of the
prefix. (c) Combination of the original word lattice and the prefix representa-
tion.

denotes that there is no path in R that contains P .

In this example P 6⊂ R was deliberately chosen to show how the oracle can react to prefixes

coming from the student which are not in the translation lattice. To obtain a weighted

word translation lattice the following steps are done:

1. Split the phrase lattice extracted by Moses into a word translation lattice E Moses

and assign the initial weight θ0 to each transition.

2. Obtain E Partial by re-weighting E Moses based on the linBLEU approximation

(section 4.1.2) with P as a reference, such that words that appear in P are being

favored. E Partial is shown in figure 4.1 (a), the sequence of green states shows the

closest possible path to P according to the current lattice.

3. Extract E Partial Path from E Partial as shown in figure 4.1 (b).

4. Re-weight E Moses according to linBLEU again but this time with the original ref-

erence R and get E Final.

5. Check if P ⊂ E Final:

a) Yes: Go over all transitions in P and match them to the transitions in the

according states in E Final starting from the initial state. In the states that

were passed delete all other transitions, leaving only the student’s prefix as a

starting sequence.

b) No: Follow E Partial Path and delete the equal transitions in E Final to obtain

the point in the lattice where according to linBLEU is the closest end point to

the prefix. Concatenate in front of this point a path of the student’s prefix P as

shown in figure 4.1 (c) and set it’s first state as the only initial (starting) state.
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4.1. SMT Oracle (Expert)

6. Re-weight E Final again according to the reference R to get the best possible trans-

lation word lattice given a fixed prefix P .

7. Find the n shortest paths where n is the number of unique paths from E Final.

If P ⊂ R, P is forced as the only path for the prefix in the lattice. If P 6⊂ R the graph

represents an adapted search space to a fixed prefix P , where the connection point of P

and the lattice is the end of the best representation of P in the lattice. For example if a

student starts translating a sentence and at some point does not know how to continue,

the expert is asked how to continue from that point on. The expert reinterprets his idea

of translating the sentence (shortest path in the original word lattice) and tries to find the

best translation based on the student’s prefix (shortest path in the prefix adapted lattice).

4.1.2. BLEU Approximation

The SMT oracle relies on the cooccurrences and the statistical correlation that Moses

learned during training and ultimately output into the lattice files for each sentence. Each

hypothesis build by the system contains a stack of phrases with their probabilities gener-

ated by the beam search. The objective of the SMT system is to maximize the probabilities

(minimize the cost) for all sentences given the individual phrase probabilities as described

in section 2.2.1.

As shown in the section 2.2.2 NMT systems are usually trained doing minimization on

the cross-entropy loss function. It is continuous and differentiable, thus it can be used for

back propagating gradients through the network and adjusting it’s parameter.

Due to the counting of n-grams BLEU is not differentiable, so it can not be used directly

when training a NMT model using gradient descent. This leads to the problem of expert

and student being optimized in general for the same but mathematically for different ob-

jectives. Additionally the evaluation metric during testing which ultimately decides how

good a model is, is yet another objective. Therefore providing additional information with

the expert such that the student can learn from it, is non-trivial. To overcome the gap be-

tween the objectives a linear approximation of BLEU, which was originally introduced by

(Tromble et al., 2008), is used to fine-tune the oracle. They show that the contribution of

a single sentence can be approximated by computing a first order expansion of the change

of log BLEU when removing that sentence from the corpus. The log BLEU implied by a

single candidate e and a reference sentences r can be written as a linear function of the

modified n-gram precision as follows:

lin BLEU(e) = θ0 |e|+
N∑
n=1

θn
∑
u∈Σn

cu (e) δu(r) (4.1)

Where θ0, ..., θN are parameters of the method, cu(e) is the number of times the n-gram

u appears in e, and δu(r) is an indicator variable testing the presence of u in r: it is equal

to 1 if the n-gram u appears in r, and to 0 otherwise (Sokolov et al., 2013). The second

sum in the equation is equal to the modified n-gram precision pn from the original BLEU

score shown in section 2.3.2, equation 2.6 weighted by the parameter δn. The parameters
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Figure 4.2.: Gridsearch for p and r with a beam threshold of b = 0.4 without teacher
forcing.

can then be set to maximize the approximation of BLEU by using N = 4 following the

method of (Tromble et al., 2008):

θ0 = 1, θn = −
(
4p · rn−1

)−1
(4.2)

Where p and r are average values of the corpus unigram precision and common n-gram and

(n-1)-gram ratio, respectively. The constant value of θ0 roughly accounts for the brevity

penalty and the values of θn are increasing rewards for matching n-grams (Sokolov et al.,

2013).

To maximize linBLEU not only the best possible values for p and r have to be found but

also different prefix lengths and beam thresholds need to be taken into consideration. The

beam threshold as described in section 2.3.1 strongly affects lattice generation by pruning

candidates translations. Additionally to simulate different translation states of the student

the parameter need to be adjusted for various prefix length.

Equation 4.2 can not be solved for p and r analytically. Therefore a gridsearch was done

for p and r from 0.1 − 0.95 with a step size of 0.05 and beam thresholds ranging from

0.1 − 0.9 with a step size of 0.1. Prefixes were taken from the reference with a length of

0%− 80% and a step size of 20%.

In figure 4.2 a gridsearch over all values of p and r for a beam threshold of b = 0.4

is shown. In this case no prefixes were used to show the maximum BLEU that can be

achieved by the oracle with b = 0.4. The plot shows the BLEU approximations through
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Figure 4.3.: Left: BLEU score over prefix lengths taken from the reference. Right: Dif-
ference of BLEU score from one discrete prefix length to the next. Each line
represents a different amount of threshold pruning b for the beam search.

equation 4.2 depending on p and r. The colors are scaled to the minimum and maximum

BLEU values of the data under consideration used for the plot.

From equation 4.2 it is trivial that p > 0 otherwise the term is 0. Independent of the beam

threshold for every p < 0.1 the unigram precision contribution to the term is too low, such

that the approximation fails to represent BLEU. r can be seen as a fine-tuning parameter

for the n-gram precision ratio. To show how the best parameter for the approximation

were extracted now the results for the gridsearches are reviewed.

Figure A.1 in the appendix shows the evaluations of four gridsearches of BLEU. The first

and second row correspond to a beam threshold of b = 0.1 and b = 0.2 respectively.

The first column shows the evaluation with no prefix and the second column with BLEU

averaged over all prefixes sizes mentioned before. If for example the plot with b = 0.1 and

no prefix is compared to the one in figure 4.2 the restriction that comes from the beam

threshold becomes visible. It limits the flexibility during the beam search by pruning

possible hypothesis in the process. Thus for increasing beam thresholds the BLEU values

are squashed together more, eventually making p and r redundant. Furthermore figure

A.1 shows in the second column that a higher beam threshold can correspond to better

BLEU scores when using parts of the reference as prefix. This observation can be made

when comparing b = 0.1 and b = 0.2 with the prefix length of 20% and 40%.

Figure 4.3 demonstrates the influence of the prefix length with regards to the beam

thresholds on the BLEU. The left plot shows the BLEU score over all prefix length used.

On the right the difference of BLEU from one discrete prefix length to the next can be

observed. The only significant improvement of BLEU for b = 0.1 can be seen when using

no prefixes, where it is almost 10 BLEU better than the gridsearch with b = 0.2. This is

counter intuitive because every path that exists in the lattices of larger beam thresholds

should also exists in the ones with less pruning. But as no MT system is perfect, Moses also

introduces a domain gap between the target and the predicted distribution. When forcing

the prefix into the lattice the flexibility of the larger lattices becomes a problem as the
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beam search takes more hypothesis into consideration. The SMT system has more options

to minimize the cost of the hypothesis but not necessarily maximize BLEU. Therefore it

generates hypothesis that represent possible good translations according to Moses, but do

match the reference suffix. With slightly less flexibility the lattice is limited, such that it

is more likely to reconstruct the reference sentence. A trivial consequence for higher beam

thresholds is that the reference suffix might not be in the lattice anymore. In this scenario

it can be observed until 40% prefix lengths. Then the lattices become so inflexible from

the relatively long prefixes that the beam threshold becomes less important.

After all the prefixes used in this evaluation are not “real” prefixes from the student. Using

parts of the reference as a prefix is done for simulation and should only show how the beam

threshold and different prefix lengths correlate with BLEU. To get a better understanding

of how suboptimal prefixes influence the continuation performance, GoogleTranslate™ was

used to generate good but imperfect translations w.r.t. the references. For an ideal

interpretation multiple sets of prefixes would have to be gathered with different qualities

of translations, to simulate the different translation qualities that the oracle encounters

during the training of the student. This would result in an optimization problem where

not only the gridsearch had to be done over the different prefix lengths for each p and r

but also for prefixes with different translations quality. As an approximation for this an

evaluation of the gridsearch for prefixes generated with GoogleTranslate will follow.

For this experiment the development set of IWSLT14 was used for evaluation. N = 1953

sentences were remaining after cleaning the corpora. The average sentence length is 20.38

words per sentence. The inferred sentences from the translator were cut uniformly random

for 0−80% of their length to obtain the prefixes p ∈ P . T defines the number of token in a

sentence. The average value of T for the prefixes
∑N

i=1 T (pi) is 8.58 where the theoretical

value is 8.15. This difference can be assumed as a normal deviation considering the size of

the development set. It is assumed that the set of prefixes is a representative approximation

for set of prefixes generated by a converged student.

In figure 4.4 the difference of BLEU for the oracle’s continuations of the prefixes from

GoogleTranslate and the reference are compared. Here the best possible beam threshold, in

the setting, b = 0.1 was used. The drop in performance from reference to GoogleTranslate

prefixes is almost 30 BLEU. This is because the oracle has to recover sentences that come

from a completely different MT system with a larger vocabulary. Therefore the oracle

encounters words never seen during training and the plots are not really representative for

this case. The main reason the experiment was done is because of the shape of the curve, so

how the parameter p and r change when working with imperfect prefixes. One can observe

that the shape of the curves are almost equal. For the reference there is a slight decrease

in BLEU from around p = 0.5 to p = 0.3 that is not visible in the scores of the other plot.

The gridsearch was additionally done for the beam thresholds b ∈ {0.2, 0.3, 0.4} to back

up the findings here. They all show similar behavior and can be found in the appendix

A.2, A.3 and A.4.

32



4.1. SMT Oracle (Expert)
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Figure 4.4.: Evaluation in BLEU of the oracle’s recovery for imperfect prefixes with a beam
threshold of b = 0.1.

4.1.3. Decoding Performance

Training time is a main metric when comparing MT systems. Large RNN based systems

take weeks to train until convergence. The oracle is a crucial part of the training routine

and is executed at least once for each instance in the training dataset. Therefore it’s

runtime needs to be evaluated carefully.

The oracle is loaded once for the whole training process. For each used beam threshold

it creates shards of lattices, input and output symbols from the translations word lattices

output by Moses. Shards limit the memory consumption at any given time during the

decoding process, because not every lattice has to be loaded simultaneously. They are

generated once for each dataset and beam threshold. The size and the number of sentences

in total and in each shard is saved in a config file. When the oracle is loaded the first time

and there is no existing config file the lattices are split into shards and the new config

is saved. If the same dataset is loaded again the config file is validated and the already

existing shards are used. The time it takes to create the shards will be denoted oracle’s

loading time.

When generating continuations with the oracle the most time consuming part is composing

the lattices and finding the n shortest paths. When translating sentences they do not have

dependencies between them, such that each one can be generated by an individual thread.

Therefore this part is highly parallelized, so execution is fast. In figure 4.5 the memory

consumption, loading and continuation time are shown over the beam threshold ranging

from 0.1 to 0.9. Both y-axes used for memory in megabyte and time in seconds are drawn

logarithmic to show the exponential effect of the beam threshold. It can be seen that the

memory consumption decreases from around 1MB for a b = 0.1 to a 1/100 of it’s original

size (10KB) for b = 0.9. This also affects the oracle’s loading and continuation time as

33



4.2. NMT Model (Student)
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Figure 4.5.: Oracle’s performance for memory consumption, loading and continuation time
for each sentence.

the graphs consist of less states and transitions. When using the oracle as an expert in

an IL environment both required BLEU performance and runtime should be taken into

consideration.

4.2. NMT Model (Student)

Modeling sequence prediction tasks like MT is usually done with artificial neural networks

by approximating a function that predicts a sequence of output tokens Y given an input

sequence X. For a long time RNNs have been the architecture of choice when handling

sequence data in MT tasks. An RNN has by design a recurrent part that needs to be

computed in series. Training complex RNNs with millions of parameters on large scale

datasets can take multiple weeks on state-of-the-art hardware. The urge for faster training

times has led to extended research in alternative architectures. In 2017 the Transformer

architecture by (Vaswani et al., 2017) was proposed. It completely replaces the convolu-

tional and recurrent building block with self-attention as already stated in section 2.2.2.

Additionally it reached new state-of-the-art performance while being more parallelizable.

Therefore it was chosen as a neural network architecture that is representing the student

in this work.

4.2.1. Design Choices

As a framework for training, testing and developing the student, Fairseq by (Ott et al.,

2019) is used. It is a sequence modeling toolkit written in PyTorch that is fast and

extensible. Additionally it provides support for mixed precision and multi-GPU training.

The abstract implementation of Fairseq makes adding new modules easy. It was chosen

over other NMT toolkits because it already includes most of the functionalities that were

needed to build the framework of the ADBLEU method namely: optimizers, learning rate

schedulers, predefined models, scoring and various search algorithms for decoding.

For ADBLEU shown in section 4.3 a new training routine, criterion and sequence decoder

were implemented.
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4.2. NMT Model (Student)

The interaction with the expert written in C++ is done via the pybind11 Python wrapper

module by (Jakob et al., 2017). Pybind11 provides an easy to use interface for fast,

paralellized C++ code. Exporting an object from C++ to Python for example, can be

done by defining a wrapper object and instantiating it in Python. The wrapped C++

object can then be used like a normal object within Python. Pybind11 will interface

almost all data structures like arrays, vectors and maps, such that the usage of C++

functions in Python is straightforward.

4.2.2. Baseline

The baseline is represented by a neural network using the Transformer architecture. It

will act as a reference when converged and as a starting point for fine-tuning using AD-

BLEU. The parameters of the Transformer were set according to the Fairseq model for

the IWSLT14 translation task. The model is slightly smaller than the base Transformer

model proposed by (Vaswani et al., 2017). That is, the encoder and decoder feed forward

embedding dimensionality and number of attention heads reduces to half of its original

size, thus from 2048 to 1024 and from 8 to 4 respectively.

The baseline is trained using inverse square root scheduling and the adaptive optimizer

Adam (Kingma & Ba, 2017). For the scheduling a fixed amount of warmup updates are

done. They work like normal updates during training but with a very small learning rate.

It allows adaptive optimizers to estimate the way the gradient will take and therefore help

pushing the network in the right direction. Inverse Square Root is a learning rate schedule

1/
√

max(n, k) where n is the current training iteration and k is the number of warmup

steps. This sets a constant learning rate for the first steps, then exponentially decays the

learning rate until pre-training is over. Training is usually limited by an early stopping

metric or a maximum number of updates. Patience is an example for early stopping that

stops training after no improvement on the validation set was done for N consecutive

epochs, where N is usually between 5− 20 depending on the dataset and the architecture

of the network.

In section 5 a review of multiple baselines trained to various stages will be given to see

how the expert in the IL algorithm can handle different qualities of baseline outputs.

Furthermore a converged baseline will be used as a reference.

4.2.3. Decoding and Exploration Actions

During the inference of standard autoregressive NMT models new sentences are generated

based on a token-level. To generate a so called hypothesis each output token is predicted

using the input sequence and the previous predicted token. For each token of the output

the input tokens are encoded into a context of embeddings. To decode a single token

the attention mechanism scales these contexts based on the importance for the respec-

tive output tokens. Due to the complexity searching for the best token over the whole

vocabulary with an exhaustive search is usually infeasible (the vocabulary is the same as

the set of actions A and a token is equal to an action a). Thus using a beam search the

n-best candidate tokens with the highest scores are considered. Where n can be set as a
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4.2. NMT Model (Student)

parameter, to either keep more or less candidate tokens in the selection. This way each

hypothesis is progressively build and evaluated. At the end a list of finalized hypotheses

is returned which can then be further evaluated through e.g. BLEU. The beam search is

not described in more detail here as it was already illustrated in section 2.3.1 in the scope

of SMT.

For ADBLEU one step deviations at a randomly sampled time t are done in the MDP.

These so called exploration actions at are used as a point where the difference of expected

cost-to-go Q − Q̂ from the student and the expert is taken, where Q with the learned

policy π is defined as Q =
∑T

t Es∼dtπ [Cπ(s)], equally the expert’s expected cost-to-go can

be defined with policy π∗. The training method and the loss function 4.3 of the method

will be elaborated in section 4.3. The focus here will be the decoding process, where it

is assumed that it is needed to decode a sentence up to the exploration action at time

t. Therefore the sequential decoding/inference process is done to obtain the student’s

prediction â1:t of the source sentence up till time step t of the output. For each output

token in the sequence the network predicts the positional likelihood of each token in the

vocabulary A. Taking an exploration action can be done using the following ways:

1. Take the most probable token according to the student (largest logit/odd). This helps

the student to exploit the oracle, useful for decreasing training time in the beginning.

2. Take an uniformly random sampled token from A. This is what is done by (Ross

& Bagnell, 2014) in AGGREVATE. This results in slow training times but high

generalization of the model.

3. Create a stochastic exploration action, where a random token is sampled with a

probability P and the most probable token is taken with 1 − P . This will decrease

training speed in the beginning, but ultimately results in a more generalized model

4. Use the oracle’s representation for the sequence already predicted by the student

â1:t. Continue this sequence with the oracle to obtain a∗t:T . Force the student to

take action a∗t from the oracle. By this the student is forced into the direction of

the oracle. In later stages of the training when the student is almost as good as the

oracle this might be necessary to still obtain useful information from the oracle.

In principle there are many more ways to obtain an exploration action. The desired

methods usually combines exploitation of the oracle for faster learning and exploration of

the MDP for robustness of the model. For example this could be a scheduled alternative of

case 3. where P dependents on the learning rate, such that in later stages of the training

P is increased and the main source of knowledge during training goes from exploitation

to exploration.

In this work cases 3. and 4. will be reviewed later, in section 5.

4.2.4. Data Aggregation

To receive expert’s trajectories in the training process of the student an interface between

them is needed. In general the student should be able to query the expert interactively, for
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4.3. ADBLEU Training Method

single instances and for whole datasets. As shown in section 2.4.2 imitation learning can

be used to supply the learner with additional data. For the method proposed in section

4.3 the expert is used to create roll-outs at:T given the student’s prefix â1:t−1 for a ran-

domly sample time t and any exploration action at. Given this method there are multiple

options to generate different amounts of training data with the expert. In a sense of data

aggregation the connection between the student and the expert can be seen as a N ×M
relation, where N and M are, respectively, the amounts of training instances that the

student and the expert can create from a single prefix of the student â1:t−1. For example

with a single prefix, N = |A| training instances could be created by taking every possible

exploration action at ∈ A in the vocabulary. Then for each tuple of prefix and exploration

action (â1:t−1, at), M = |C| roll-outs can be generated, where C is the set of unique paths

in the word translation lattice of the expert. Additionally every time step in T could be

used for exploration. Therefore there are N ×M × T possible data aggregations for a

single instance (sentence pair) in the training set.

Furthermore datasets of examples collected in each epoch can be aggregated, like in DAG-

GER. Dataset D in epoch i would result in Di = Di
⋃
Di−1, iteratively increasing the set

of examples. Different procedures of data aggregation and their effect on the ADBLEU

training method are evaluated in the results (section 5).

4.3. ADBLEU Training Method

In this section the main training method: Aggregate Data using approximated BLEU

explorations (ADBLEU) will be presented. First an overview will show the general proce-

dure, the interaction between student and expert and the way the data is aggregated. Then

the proposed algorithm will be analyzed in more detail. Two criterions, BLEU squared

error (BSE) and Scaled BLEU Squared Error (S-BSE), will be introduced that should

transfer knowledge from the expert’s to the student’s policy through BLEU differences.

Additionally comparisons to some fundamental algorithms from section 2.4.3 will be made.

In figure 4.6 the training routine for ADBLEU is shown. For each epoch at first the

original dataset is read by the student. The current policy creates the roll-ins by inferring

all sentences and taking an exploration action at a randomly sampled time step. This

aggregated data is then passed to the expert to continue the trajectories and obtain the

roll-outs/training instances. The completed sentences are used for training the student.

When training on the current dataset is done, it is omitted and the next epochs start with

a new dataset.

The inverse reinforcement learning method proposed here uses data aggregation to recover

an unknown reward function. It does so by generating reward-sensitive examples of states

s, actions a, time t and the estimated future reward Q̂ provided by the expert. For each

input x in the dataset X one or multiple examples of (s, a, t, Q̂) can be created in one

epoch. Data generation is done by doing exploration actions once for each input, following

the approach of AGGREVATE by (Ross & Bagnell, 2014). In contrast to AGGREVATE

here a reward rather than a cost is used for future estimates.
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4.3. ADBLEU Training Method

Figure 4.6.: Training routine with data aggregation using an expert. Every epoch starts
with the original dataset at (1).

Algorithm 2 ADBLEU training routine with imitation learning and reward-to-go

Input: training dataset X, expert’s policy π∗, exploration randomness β
Output: trained policy π̂n
1: Initialize policy π̂0

2: for i = 1 to N do
3: Dataset of examples D = ∅
4: for x in X do
5: Predict π̂i−1(x) = â1:T

6: Sample uniformly t ∈ {1, 2, ..., T}
7: if Probability β then
8: Random exploration action at = a ∈ A
9: else

10: Best exploration action at = π̂i−1(s)
11: end if
12: Predict a′t+1:T = π∗(x|â1:t−1, at) and observe reward-to-go Q̂ at time t

13: Add normalized reward-to-go difference k(σ(Q(â1:t))− (Q̂−Q(â1:T )))2 to D
14: end for
15: Train policy π̂i = argmina∈A

∑
j Dj(s, t, a)

16: end for
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4.3. ADBLEU Training Method

Algorithm 2 shows the training algorithm of ADBLEU with imitation learning defined as

a regression problem using the S-BSE loss. For simplicity a short form of k is defined here

as k ≡ k(Q̂,Q(â1:T )). The algorithm can be described as follows:

For each instance of the training dataset X the student’s (learned) policy π̂i−1 of epoch

i infers the sentence x (line 5). Then t is uniformly sampled from 1 to T where T is

the length of the sequence. The inferred sentence â1:T is partially used as a roll-in up

to the point t − 1. With probability β an exploration action at at time step t is taken

completely random from all possible actions A. With probability 1 − β the best possible

action at at time step t according to the student is taken (line 7-11). The expert predicts

the continuation a′t+1:T based on the partial roll-in â1:t−1 and the exploration action at. An

example is obtained by taking the normalized squared difference of the student’s and the

expert’s estimated future reward k(σ(Q(â1:t))− (Q̂−Q(â1:T )))2. Where k is an indicator

function that is 1 if Q̂ ≥ Q(â1:T ) and 0 otherwise. σ is a normalized scaling function that

squashes the values in the range (−1, 1) (e.g. tanh). Q(â1:t) is the student’s reward-to-go

starting at t. It is the maximum value of the unormalized output before the softmax layer

(logit) of the neural network, that is the student. Q̂−Q(â1:T ) is the expert’s reward-to-go

starting at t normalized by the student’s reward-to-go for the whole sequence.

This means that if the expert’s reward-to-go estimate is lower than the student’s ones, the

whole equation is 0, thus the student does not learn from this instance because it is already

better than the expert in this case. Additionally both terms are normalized either by the

scaling function σ or by the differences of future reward estimates. σ is parameterized for

the expected minimum and maximum values of Q(â1:t), such that the largest expected

values are roughly mapped to 1 and the smallest to -1 so no information is lost. The first

term Q(â1:t) estimates how good the student is with regard to the roll-in and exploration

action. The second term Q̂−Q(â1:T ) estimates how good the roll-out of the student w.r.t.

the expert is. In the end a squared difference is obtained that estimates how good the

student’s exploration action at was w.r.t the expert. The criterion is named S-BSE and is

defined as in line (13):

` = k(σ(Q(â1:t))− (Q̂−Q(â1:T )))2 (4.3)

In contrast the proposed argmax regression criterion by (Ross & Bagnell, 2014) uses the

unnormalized Q(â1:t)− Q̂ and therefore does not account for future rewards of the expert

being worse than the student’s. The original criterion from their paper adapted for rewards

rather than cost will be denoted as BSE. This rather complex objective is needed to directly

optimize for the global objective - BLEU. As mentioned in the previous chapters the MLE

training loss of the student is not always a good surrogate for the test error. Even if the

test error is lowered, it is not a guarantee that the BLEU score is improved. BLEU in this

instance can be seen as the hidden reward that is not directly known by the expert nor

by the student. Additionally there is the discrepancy between the objective of the student

(NMT) and the expert (SMT) that was reviewed before. By finding approximations of

BLEU for the terms used in the loss and normalizing them, the method proposed here

tries to directly optimize for the global objective.
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Algorithm Roll-in Roll-out #Roll-outs

DAGGER π π∗ X × T
SEARN π π X × T
SMILe π π∗ X × T

AGGREVATE π π∗ X
LOLS π̂ π X × T

ADBLEU π̂ π∗ X

Table 4.1.: Comparison of imitation learning algorithms with respect to their roll-in and
roll-out policies.

To achieve this, at first the expert was optimized for BLEU using the approximation in

section 4.1.2. Then both main terms of equation 4.3 were scaled into the range (−1, 1)

to make them comparable. Therefore for each of the student’s interpretation of instance

x ∈ X a score is taken that measures the performance of the exploration action w.r.t. the

expert and BLEU. This signal is given to the student, such that it learns what action is

good and which is bad. The assumption can be made that in theory after N epochs the

student learns to predict each action at of each instance x ∈ X better or equally good as

the expert.

Following Theorem 2.2 from (Ross & Bagnell, 2014) this can be shown after N iterations

collecting m regression examples with a probability of at least 1− δ:

J(π̂) ≤ J (π∗)+2
√
|A|T

√
ε̂class + ε̂regret +O(

√
log(1/δ)/Nm)+O

(
QmaxT log T

αN

)
(4.4)

Where the total cost of executing π for T steps is denoted as J(π) =
∑T

t=1Es∼dtπ [C(s, π(s))].

ε̂regret denotes the empirical average online learning regret on the training examples. ε̂class

denotes the empirical regression regret of the best regressor on the aggregated dataset. In

theory this guarantee holds, in practice however using a sub-optimal oracle and BLEU

differences there are many small deviations that make the algorithm perform differently.

Results and evaluation for a real task will follow in section 5.

Now the question of why AGGREVATE was chosen as a basis algorithm in this method

will be elaborated. Some of the algorithms that were reviewed in section 2.4.3 will be

taken into consideration here. Mostly 3 factors need to be taken into account: Roll-in,

Roll-out policy and number of times the expert gets queried in the method. In table 4.1 the

algorithms are set side by side. Where π∗, π̂ and π are the expert’s, learned and mixture

policies respectively. The stochastic policy π is usually defined as π = βπ∗+(1− β) π̂ with

learning rate β, such that the influence of the expert’s policy decreases over time. The size

of the dataset is denoted as X and the average sequence length of the instances in X is

denoted as T . The algorithms DAGGER, SEARN, LOLS, and SMILe execute the expert

for each action in each instance of X, thus doing X × T roll-outs. When considering the

performance of the oracle proposed in section 4.1 this would result in a very slow training

routine. Like AGGREVATE, ADBLEU only queries the expert ones for every sequence in

X. Furthermore the learned rather than a stochastic policy is used for roll-ins as proposed

by (Chang et al., 2015) (LOLS). They show that doing roll-ins with expert’s policies is not
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4.3. ADBLEU Training Method

preferable because it puts the student in a state that is already very good therefore might

not be in the student’s scope.

ADBLEU uses the learned policy as roll-in and the expert’s policy as roll-out once for

every sample in the dataset X. When thinking about training time this might only be

reasonable when using an already decent student. In the case of MT where there is

additional supervised training data available the student should be first trained on this

using the MLE objective. For instance if the student is in the beginning of the training

it’s understanding of how to generate a sentence is weak. Then learning from a single step

deviation, that is the exploration action, only gives the student a signal for the difference

at that position of the sentence. The MLE objective on the other hand considers the loss of

the whole prediction w.r.t. the reference. The amount of information is greater, thus the

student learns faster. After the student is able to output good predictions ADBLEU can

be used to improve the models capability to generalize and increase overall performance.

The empiric results on this will be reviewed in section 5.
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5. Results

This chapter will give an overview of the achieved results, the used data and the experiment

process. Furthermore the results for the proposed training method ADBLEU with different

variations of hyperparamters and data aggregation methods will be presented.

5.1. Data Preparation and Hyperparameters

The experiments were done on the IWSLT14 dataset for German to English translation.

It is a dataset of a collection of human translated talks from the TED conference. TED

talks are multidisciplinary in many different research topics and therefore not bound to

a single domain of text. The dataset consists of the following sets with their respective

number of sentences for each set in brackets: training (160k), validation (7k), testing (5k)

and development (2k). It was then tokenized using the Moses tokenizer (Koehn et al.,

2007) to separate punctuation from words using spaces and to replace symbols in words

like aren’t with aren &apos;t. After that it was lowercased and cleaned by omitting miss-

aligned sentences and sentences with a length of more than 50 tokens in both source and

target. A Byte Pair Encoding (BPE) vocabulary was created with subword-nmt (Sennrich

et al., 2016) by iteratively counting symbol pairs and replacing the most frequent with

a new symbol. This merged symbols represent character-level n-grams and form a new

vocabulary. The joint source-target vocabulary size was set to 32000 unique BPE tokens.

The dataset was then encoded using the generated BPE vocabulary. This design choice

was made because of the rather small dataset size of IWSLT14.

The fundamental hyperparameters for training the Transformer model with MLE and

fine-tuning it with ADBLEU are mostly the same, as shown in table 5.1. Equal parameters

during fine-tuning are adopted from the baseline and denoted with a #.

For training the baseline 4000 warmup updates with the inverse square root scheduling

were used. Warmup updates work like normal updates during training but with a very

small learning rate. It allows adaptive optimizers to estimate the direction the gradient

will take and therefore help pushing the network in the right way. Inverse Square Root

is a learning rate schedule 1/
√

max(n, k) where n is the current training iteration and

Parameter Baseline Fine-tune

Learning Method Supervised Inverse Reinforcement
Criterion Cross Entropy Scaled BLEU Squared Error
Optimizer Adam (β1 = 0.9, β2 = 0.98) #

Learning Rate 5× 10−4 5× 10−7

Learning Rate Scheduler Inverse Square Root Fixed
Dropout 0.3 #

Weight Decay 1× 10−4 #
Warmup Updates 4000 0
Token per Batch 4096 #

Table 5.1.: Fundamental hyperparameters for training a baseline model with MLE and
fine-tuning with ADBLEU.
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Figure 5.1.: BLEU performance, training and validation loss over the course of training
the baseline represented by a Transformer model. The hyperparameters are
set according to table 5.1.

k is the number of warmup steps. This sets a constant learning rate for the first steps,

then exponentially decays the learning rate until pre-training is over. For fine-tuning, the

baselines hyperparameters are reloaded from it’s last state. The learning rate schedule is

changed to a fixed schedule together with a smaller learning rate of 5 × 10−7 to do only

minor adjustments to the weights when using the BSE or S-BSE criterion.

5.2. NMT Baseline

In this section the results for the experiments made to answer the main research question

will be presented. The performance will be validated in different tasks, metrics and con-

vergences states of the baseline and the after fine-tuning with ADBLEU.

In figure 5.1 the performance of the baseline Transformer during training is shown. The

model converged after 25 epochs with a patience of 5 or about 22k steps with 4096 tokens

processed in each step. The plot shows the loss as the sum of the negative log-likelihood

on training and validation set. After 20 epochs or 17.5k steps the best performance, in

terms of the lowest loss on the validation set, is achieved. In the following sections different

states of the baseline e.g. after 5k, 10k or 17.5k steps (i.e. best performance during con-

vergence) will be used as a starting point for fine-tuning with ADBLEU or as a reference

to compare to. In the figure the discrepancy between the training and global objective

becomes visible. As the training and validation loss are still decreasing to the end of the

plot, the BLEU score stops increasing at some point. Further elaboration on this will be

done in the discussion (chapter 6).
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Figure 5.2.: BLEU performance on validation set during fine-tuning using the ADBLEU
method with different starting points and IRL objectives.

5.3. Inverse Reinforcement Learning BLEU Objectives

Here the training results using the inverse reinforcement learning objectives for direct

BLEU learning BSE and S-BSE will be shown. Both can be used interchangeably as a

criterion in the training process of ADBLEU. As elaborated in section 4.3, BSE corresponds

to the regression transformation explained in the paper of (Ross & Bagnell, 2014) using

BLEU directly. Furthermore S-BSE is a scaled version of this criterion which is normalized

between (−1, 1) and only takes data points into account which the student can learn from,

i.e. where the expert’s expected reward-to-go is higher.

Figure 5.2 shows the effect of fine-tuning the baseline model from the starting points 5k,

10k and 17.5k steps respectively. The experiments have been made for both proposed IRL

objectives and were stopped after 8 hours of fine-tuning. Both objectives are decreasing the

BLEU score on the validation set with increasing number of training iterations. For all of

them a trend was visible and therefore no additional steps were needed. To further analyze

this trend of BLEU decreasing with increasing number of steps, another experiment was

done. This time using an even smaller learning rate of 10−7, the S-BSE objective and

fine-tuning for 15k steps after 17.5k steps of baseline training. Then a comparison of the

training and validation loss was done to show the overarching problem of the method.

This is illustrated in figure 5.3. It becomes visible that the training objective (S-BSE)

correlates with the validation objective (MLE) at first but after around 7.5k steps they

diverge.

To understand the problem of the method further investigation was done by logging addi-

tional parameters. For this the most representative and logical scenario, that is, having a

converged baseline and fine-tuning it with the S-BSE objective, was used as an example.

The fine-tuning process of conv. S-BSE will be analyzed in more detail. It was first intro-
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Figure 5.3.: Training, validation loss and validation BLEU of the ADBLEU method using
the S-BSE objective for 15k steps of fine-tuning after baseline convergence.

duced in figure 5.2 for the illustration of the change of BLEU over the number of steps.

The following parameters were additionally logged over the course of the training for the

whole training set and each individual batch:

• Bo: The average BLEU score of the oracle.

• Bs: The average BLEU score of the student.

• Boe: The average BLEU score of the oracle’s using the exploration action of the

student.

• The ratio of Bo/Bs which shows for how many sentences the oracle’s continuations

were better than the student’s inferred sentences. This corresponds to the indicator

function of the S-BSE objective in equation 4.3.

In figure 5.4 the BLEU scores of the oracle’s, student’s and the oracle using student’s

exploration actions are displayed. Additionally Bo/Bs shows for how many of the sentences

in the training set the oracle’s continuation was better (in terms of BLEU) than the

student’s prediction. As the student’s performance gets worse by training on sub-optimal

examples, Bo/Bs increases. Furthermore the correlation between the score of the model

taking the exploration action (exploration logit) and the BLEU score of the sentence

taken and averaged over the training set is shown. This was measured using the Pearson

correlation and an exploration randomness (probability of taking a completely random

action from the vocabulary) of 0.1 and resulted in a value of 0.04−0.07. This means there

is basically no correlation between the exploration action taken and the BLEU score of

the sentences that are used as references during training. Further evaluation on the effect

of this will be discussed in chapter 6.

As translations cannot only be measured by the precision of n-gram overlap additional

metrics were used to measure the performance. In table 5.2 the results for the evaluation

on the IWSLT14 test set with four additional metrics are shown. The two models that are
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Figure 5.4.: BLEU performance of student(Bs), oracle(Bo), oracle with student exploration
action(Boe) and the ratio of oracle to student BLEU(Bo/Bs) over the course
of fine-tuning the model.

Metric Baseline (17.5k) Fine-tuned best (26.3k) Fine-tuned last (34.2k)

BLEU 34.34 34.06 33.66
GLEU 0.665 0.663 0.66
METEOR 0.57 0.569 0.564
BLEURT 0.17 0.173 0.172
Perplexity 6.11 6.06 6.11

Table 5.2.: Comparison of the baseline and a fine-tuned model trained with ADBLEU using
the S-BSE objective on the test set. The best model is evaluated according to
the NLL loss on the validation set.
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Figure 5.5.: Mean and variance of perplexity over number of generated tokens for baseline
and fine-tuned models.

compared against the baseline are fine-tuned using ADBLEU and the S-BSE criterion. The

Fine-tuned last model is fine-tuned for additional 34.2k− 17.5k = 16.7k steps. Where the

Fine-tuned best was trained for 26.3k − 17.5k = 8.8k steps and selected by the minimum

NLL loss on the validation set from the models during fine-tuning.

GLEU, METEOR and BLEURT were introduced in section 2.3.3. They are metrics that

are closer to human judgement of machine translated text. The perplexity shows how

certain the model is at predicting the respective tokens. Based on the definition done

in section 2.2.1 it can be calculated using the cross entropy between the predicted and

the reference distribution as an exponent for the basis 2. Therefore a lower perplexity

corresponds to the model being more certain about what token to take and is therefore

better.

In the experiments the best fine-tuned model exceeds the performance of the last fine-tuned

model in all of the measured metrics. Compared to the baseline the best fine-tuned model

performs slightly better in BLEURT and perplexity but fails to improve BLEU, GLEU

and METEOR. Based on these findings another experiment displayed in figure 5.5 was

conducted. It shows the mean and variance of the perplexity for each consecutive token

for the test setting explained above. The plot shows that the models are more uncertain

in the beginning of generating a sequence and get more certain after around 10 tokens.

This is expected as for the initial tokens the self-attention mechanism has less tokens from

the output to condition on. The high variance after 30 generated tokens can be explained

by the few samples actually reaching that length. Additionally auto-regressive models

get increasingly uncertain with more generated tokens. The consequences thereof will be

further explained in the section 6.1.
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Oracle s BLEU s GLEU BLEU GLEU
Beam Thresh.

0.1 14.88 12.69 30.69 32.82
0.2 14.10 12.13 29.43 31.88
0.3 12.73 11.06 27.95 30.75
0.4 11.71 10.25 26.88 29.88

Table 5.3.: Quality of oracle’s actions grouped by beam threshold and measured in forms of
BLEU and GLEU. The prefix s denotes the suffix version of the corresponding
metric.

5.4. Data Aggregation

The way data is aggregated directly influences the learning process of the student, as men-

tioned in section 4.2.4. Therefore evaluations for several hyperparameters that influence

data aggregation are shown here. For instance, creating large aggregated datasets each

epoch results in a less flexible system, whereas smaller datasets let the student learn more

dynamic, due to the knowledge that is inferred every epoch.

ADBLEUs data aggregation can be adjusted using hyperparameters. The influence of

these hyperparameters on the fine-tuning process was approved on the validation set of

IWSLT14. Following hyperparameters were taken into consideration for generating data:

• Beam Threshold: This limits the number of hypotheses based on a relative factor of

the probability of the best hypothesis (reviewed in detail in section 4.1.2).

• Number of Continuations: The count of continuations generated for each sentence.

The BLEU approximation sometimes fails to represent the real BLEU score. Multiple

continuations can help to find the best sentence according to BLEU by considering

multiple unique paths in the word translation lattice.

• N-gram Order: The number of n-grams that are taken into consideration when

approximating BLEU with the oracle.

• Exploration Randomness: The probability by which a random token from the vo-

cabulary is used as the exploration action.

• N-best Explorations: The n-best tokens at the exploration position according to the

student.

In figure 5.6 a correlation matrix of the data aggregation parameters and the scoring

metrics is visualized, where −1 or blue is strongly anti-correlated and 1 or orange is

strongly correlated. Based on the findings in the correlation matrix, the parameters that

are most influential are analyzed further in the tables 5.3 and 5.4.

Where the quality of oracle’s and student’s exploration actions measured in BLEU, GLEU

and their respective suffix metric is shown. A suffix version of a metric is calculated

by taking the difference of the score of the hypothesis and the prefix with regard to the

reference. Formally:

s g(h, p, r) = g(h, r)− g(p, r) (5.1)
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Figure 5.6.: Correlation of data aggregation hyperparameters with scoring metrics.

Student s BLEU s GLEU BLEU GLEU
Beam Thresh. Explo. Rand.

0.1 0.1 13.59 11.56 29.16 31.58
0.3 13.42 11.41 28.28 30.72
0.5 12.86 10.97 27.19 29.74

0.2 0.1 13.01 11.17 28.23 30.87
0.3 12.44 10.70 27.27 29.98
0.5 11.89 10.26 26.12 28.95

0.3 0.1 11.66 10.10 26.86 29.84
0.3 11.38 9.89 26.05 29.06
0.5 10.79 9.42 24.83 27.96

0.4 0.1 10.76 9.38 25.95 29.07
0.3 10.32 9.06 24.90 28.13
0.5 9.88 8.70 23.88 27.20

Table 5.4.: Quality of student’s exploration actions grouped by beam threshold, explo-
ration randomness and measured in forms of BLEU and GLEU. The prefix s
denotes the suffix version of the corresponding metric.
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Figure 5.7.: Variation of BLEU and GLEU score for the 5-best exploration actions of the
student. Pos corresponds to the respective position in the descending sorted
n-best list.

Where the function g() is the scoring metric, h is the hypothesis under consideration,

r is the reference and p is the prefix of the hypothesis. The resulting function s g() is

an approximation of the suffix by the corresponding scoring metric with regards to the

reference. In other words, it gives an indication how good the suffix generated, by the

oracle, is with respect to the reference.

The exploration randomness corresponds to the probability Pt of taking a completely

random action/token from the vocabulary at time step t as the exploration action. Table

5.4 shows that the scores are barely influenced by the exploration randomness.

In figure 5.7 the statistical distribution of the 5-best exploration actions by the student in

BLEU and GLEU is given. The box-plot shows the distribution of the data in quartiles

for each position in the 5-best list. A box with it’s whiskers is divided into quartiles which

are bound by 5 values with define 4 areas in the plot. The first range Q0 is set by the

minimum and visualized by the lower whisker. Q1 represents the lower edge of the box

and is defined by the median of the lower half of the dataset. The line in the middle of the

plot is the median or Q2. Similar to Q1, Q3 is displayed as the top edge of the box and

is set by the median of the upper half of the dataset. Finally Q4 is the top whisker and

shows the maximum. Additionally outliers can be shown by crosses outside of the Q0−Q4

range.
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6. Discussion

This chapter will cover the detailed evaluation of the achieved results, the chosen method-

ology and the validity of the experiments. First the results from chapter 5 will be analyzed

and the baseline is matched against the fine-tuned model in different configurations. Fi-

nally in section 6.2 the chosen objectives, algorithms and the overall experiment setup will

be evaluated and compared to other inverse reinforcement learning approaches.

6.1. Results interpretation

In this section the evaluation of the obtained results for the baseline and fine-tuned model,

using the proposed data aggregation methods, is done. At first investigation will be done

on the data aggregation method of ADBLEU which can be adjusted using different pa-

rameters. These parameters are essential for the performance of the expert and therefore

also crucial for the overall training process. In the method the student learns directly from

the differences of the expected BLEU reward-to-go during training. If the difference of

expert’s and student’s expectation is high the student learns faster. To achieve this the

expert has to create decent continuations for the student’s prefixes at any given position

in the sentence. This is why so much optimization went into the hyperparameters of the

SMT expert and the data aggregation method.

In figure 5.6 the correlation of some of these hyperparameters is shown. As expected the

beam threshold pruning parameter is almost directly anti-correlated to the scoring metrics.

From the evaluation of section 4.1.3 it is known that there are computational limitations

for decreasing this parameter. To create continuations in feasible time for all sentences

in the training set the beam threshold must be set to 0.2 or higher. Surprisingly the n-

gram order, which defines the n-grams that the precision for the word translation lattices

is calculated on, is also anti-correlated. For this measurement only the n-gram order of

three and four were taken into consideration which means that the n-gram order of three

is beneficial for the overall performance. The number of continuations on the other hand

has almost no effect on the score, whereas the exploration randomness shows again an

anti-correlated behavior, which is expected due to the fact that random tokens used in

exploration generally perform worse in terms of BLEU. Based on this finding further re-

search was done on the most relevant parameters, the beam threshold and the exploration

randomness. The results are shown for oracle’s/expert’s exploration in table 5.3 and for

student’s exploration in 5.4. The student’s exploration is done by concatenating the stu-

dent’s prefix â1:t−1 with the most probable token based on the student’s expectation at

time step t and the oracle’s continuations at+1:T . Now considering the probability Pt at

which a random token would be taken as an exploration action. For instance, the average

BLEU score on the validation set using a probability Pt = 0.1 is 30.87. When changing

only this parameter to Pt = 0.5 the resulting BLEU score changes to 28.95. If now the way

how BLEU is computed is considered, it is clear that Pt only changes the probability of this

very token to contribute to the n-gram precision, but not to way the oracle interprets the

sentence. This difference in BLEU really shows how inflexible the oracle is to alternating
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prefixes and exploration actions. Despite the student generating it’s most probable or a

random token, the oracle will generate the same continuation most of the times.

For the oracle’s exploration the student’s prefix â1:t−1 is concatenated with the most prob-

able token based on the oracle’s expectation at time step t and the oracle’s continuations

at+1:T . In this case doing random explorations does not make any sense because the vo-

cabulary is the same for the oracle and the student, therefore a random exploration from

the student and the oracle would result in the same outcome and was already done for the

student.

Furthermore a validation on the n-best exploration tokens from the student was done to

display the error that is incurred when not using the best exploration token. Due to the

way BLEU works with the concept of counting n-grams, it is expected that everything that

is deviating from the reference results in a drop of the score. But when considering that

the GLEU score also behaves in the same way and is supposed to correspond to fluency

rather than n-gram overlap, the finding done previously is additionally underlined. The

oracle is inflexible and will generate the same continuations no matter what exploration

token it gets from the student. This problem will strongly influences the overall results

and will be shown in the next paragraph.

In figure 5.1 the most important metrics over the course of training are shown for the

baseline. After the first epoch ends at around 2k steps, the initial data point is recorded.

The peak BLEU 34.5 and lowest validation loss 2.66 is taken at 17.5k steps. This was the

starting point for most further fine-tuning using the ADBLEU method. In non-convex op-

timization it can often be the case that a local optimum in the loss function is interpreted

as a global optimum. If the optimization is stuck in a local optimum, it can be hard to

find a way out. It was tried to systematically excluded this problem by using multiple

starting points in terms of number of steps that the baseline was trained for, such that

in principle a global optimum could have been found. Figure 5.2 shows six measurements

that were done to obtain the main results showing the global objective, BLEU, that shall

be maximized. The starting points 5k, 10k, and 17.5k steps of baseline training, were

used respectively to exclude that the optimization is stuck in a local rather than a global

optimum. Additionally starting from more than one baseline shows how the training per-

formance develops for different qualities of outputs of the student. Three measurements

were done for both objectives BSE and S-BSE using the same hyperparameters. The ini-

tial data point for all curves begins after the first epoch of training with the respective

objective. First the results of the BSE objective will be evaluated.

It is noticeable that for all starting points BLEU heavily decreases in a rather small amount

of steps. Starting from 10k and 17.5k shows the same behavior of decreasing BLEU slowly

for two epochs and then going down rapidly. It is somewhat different for the starting point

of 5k steps where it instantly declines at a high rate. This difference can be explained by

the changing qualities of prefixes that the student produces and which are then forwarded

to the expert to complete them. Additionally the used learning rate is possibly set to

high, which would lead to a strong change of the parameters of the model and therefore

would explain the rapid decline of BLEU. As the BSE objective was only used in the

early phases of the project no more hyperparameter tuning was done for it. Therefore it

52



6.2. Method reflection

might not have been optimized to the best possible extend. It was eventually completely

replaced by the scaled version, S-BSE, as it yielded better results in all tests done. It is

still worth mentioning as the BSE objective directly corresponds to the argmax regression

definition in (Ross & Bagnell, 2014) for their cost-to-go objective, thus showing that it is

not applicable to this context of directly optimizing for BLEU, is still a relevant finding.

Similar to BSE, S-BSE completely fails to train the student when the prefixes are of bad

quality. This is acceptable, as by definition the data aggregation method of ADBLEU is

intended to be used for fine-tuning an already decent system due to the exploration and

the single step deviations. Doing exploration with a system that is still very perplex of

what token to take in each position, will lead to slow training in general. For the starting

points of 10k and 17.5k the fine-tuning process shows a smoother behavior which can be

broken down to a near optimal learning rate and qualitatively good prefixes generated by

the student. Still the model fails to improve the BLEU score on the validation set.

Based on this further investigation was done using the converged baseline at 17.5k steps

and fine-tuning it with the S-BSE objective and an even smaller learning rate of 10−7 for

now 15k steps. This should approximate how the method behaves in the limit using tiny

updates. The results for this measurement are shown in figure 5.3. It shows that for the

first 7.5k training steps the training and validation loss are both decreasing. Surprisingly

this does not affect the BLEU score on the validation set, showing once more the discrep-

ancy between the negative log-likelihood or cross entropy loss and BLEU.

Over the course of this work BLEU showed it’s benefits and drawbacks multiple times.

On the one hand it is a common metric for measuring the quality of MT output and is

fast to calculate. On the other hand it is not differentiable and the correlation to human

judgement in comparison to other metrics is quite low, as mentioned in section 5.3. There-

fore additional metrics where used to verify the quality of the natural generated language

by the baseline and the fine-tuned model using ADBLEU. Table 5.2 shows that even if

BLEU decreased more complex metrics which are closer to human judgement can increase

over the baseline. Considering the rather small difference between the baseline and the

fine-tuned model these improvements could have probably been achieved with training the

baseline for the same amount of steps on the regular dataset without data aggregation.

This additional experiment has not been done and is left for future work.

6.2. Method reflection

The data aggregation and inverse reinforcement learning method proposed in this work -

ADBLEU - tries to tackle the problem of machine translation and it’s discrepancy of the

surrogate negative log-likelihood loss during training and the global objective of BLEU

during testing. Various examinations were made to find the optimal parameters for the

method. Starting with a SMT oracle that uses the approximation of BLEU from word

translations lattices with Minimum Bayes-Risk decoding in section 4.1.2. The free pa-

rameters of the function that approximates BLEU were found by doing a gridsearch on

the IWSLT14 corpus that was later used to train the student. Additionally the decoding

parameters of the SMT system were evaluated carefully to find a compromise between
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decoding speed and hypothesis quality. The oracle was tuned, such that it outputs the

best possible translation with regards to the BLEU approximation in feasible decoding

time. Measurements, like the gridsearch in figure 4.2, showed that the SMT system is able

to output good translation hypothesis with regards to BLEU, in general. In comparison

to the baseline the oracle is able to output sentences that have a higher BLEU score, even

when the word translation lattice is pruned to obtain better decoding speed. This was first

shown in figure 4.3, were it can be observed that the oracle is able to continue sentences

starting with a reference prefix well, resulting in outputs that scored 40 BLEU or higher for

all of the beam thresholds ranging from 0.1 to 0.4. This performance can only be achieved

when doing full translations or when the reference is given as a prefix. When continuing a

prefix of a sentence generated by a third-party system, like the student, the oracle mostly

fails to recover the sentence and output quality degrades massively. Further investigation

was done to simulate non-perfect prefixes by the use of the conventional online translation

system GoogleTranslate. Figure 4.4 showed that even for the best feasible beam threshold

of 0.1 the system is not able to come close to it’s original performance.

In the context of using the oracle as an expert in an imitation learning scenario the as-

sumption was made that additional data that coming from the expert can still be beneficial

in the training process. As (Chang et al., 2015) has shown that with the right policy man-

agement during training the student can achieve above expert performance. Therefore

the ADBLEU algorithm was introduced to generate additional data with the choice of

two different inverse reinforcement learning objectives: BSE and S-BSE. Both try to di-

rectly optimize the model for the best possible BLEU score. With default parameters the

ADBLEU algorithm follows, on a basic level, the one from (Ross & Bagnell, 2014) with

a slight variation in roll-in policy. As shown by (Chang et al., 2015) instead of using a

stochastic policy of expert and student it is beneficial to use just the student’s policy for

roll-ins. Expert roll-in policies put the student in an already too good state, such that it

does not learn from it’s own mistakes during training.

When aggregating training data many different methods and hyperparamerters can be

used. All try to create additional examples based on the knowledge of the expert to train

the student. For example the method of DAGGER continuously increases the size of the

dataset by concatenating examples from previous epochs. Therefore the knowledge from

the previous epochs is not only given to the current epoch by adjusting the parameters

of the model but also through old examples that are still in the dataset. This makes the

system inflexible and hard to train on real world datasets.

In AGGREVATE and ADBLEU for each sentence pair in the dataset a new data point

is generated every epoch. Exploration is done through taking one step deviations at ran-

domly sampled time step t within the sequence. Each aggregated dataset is only used

for one epoch. When using an already pretrained system it therefore stays more flexible

and potentially converges faster. On the other side using methods like ADBLEU or AG-

GREVATE to train a system from scratch result in long and costly training times. As

already pointed out by (Cheng et al., 2018) to train a policy fast it is advisable to first

learn on imitation, or if at hand supervised data, and then do further exploration with

reinforcement learning. In the case of MT, there is plenty of supervised training data
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available for most languages. Training a student on the supervised data and then contin-

uing the training with imitation learning using the ADBLEU method with a SMT expert

seems logical. In a real world scenario however the student can only learn from examples

which actually provide something to learn from, i.e. having a higher BLEU score than

the student’s prediction itself. Through the use of surrogate losses and approximations

an additional loss of information is infused. Therefore the student is only able to learn

from examples which are a lot better than it’s own prediction measured in BLEU. This

problem is especially visible when using the unnormalized BSE objective, which uses every

data point generated from student’s prefix, exploration action and oracle’s continuation

no matter how good or bad it is. Figure 5.2 shows this problem very clearly: the better

the performance of the student the faster it degrades due to bad continuation from the

expert. Based on this a normalized and scaled version of the BLEU-Squared-Error was

proposed. The S-BSE objective tries to overcome the previously mentioned problems by

selecting training examples where the oracle’s continuation is better then the student’s.

This decreased the rate at which the system degraded but the student still could not learn

from the cherry picked examples.

Figure 5.4 essentially shows the problem of the whole process. Starting from a converged

baseline the student is better on 75% of examples from the training data. Therefore only

25% of the oracle’s continued sentences are used as new training data. As the student’s

performance degrades over time also the oracle’s continuations get continuously worse, as

they are partly based on it (by the prefix). At some point the oracle is performing better

on 60% of training dataset but the student still can not learn from these examples because

they are only marginally better. Now looking back at the problem, that the oracle is

performing bad when the prefix differs to much from the original reference - and the circle

closes.

The oracle is limited by the prefix performance of the student, in the best case the oracle

outputs continuations that are on average slightly better then the ones from the student.

But the student is only able to learn from examples that are a lot better due to the surro-

gate loss. This creates a process of continuously degrading the student’s performance with

regards to BLEU. In other more complex MT metrics the exploratory data aggregation

can improve the performance of the student as shown in table 5.2.

After all ADBLEU is a data aggregation method that tries to bring the objective during

training and testing time of MT models closer together. It does so by trying to iteratively

improve the student’s predictions by making it knowledgeable of it’s own mistakes and

giving adaptive references from a SMT expert. In general the method of inverse reinforce-

ment learning through data aggregation has shown it’s potential throughout this work.

Using a more versatile expert that is less bound to the quality of the prefix would result

in better continuations. With better training examples the student would most probably

improve over the baseline. This thought will be continued in section 7.2.
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7. Conclusion

Now an answer to the research questions will be given based on the evaluations and in-

terpretations made in the last chapter. Additionally a final conclusion will be drawn and

possible improvements and modifications will be shown for future work.

7.1. Conclusions

This research was aimed to solve the question of: Can a state-of-the-art neural machine

translation student be improved by using a statistical machine translation expert in an

imitation learning scenario?

For this experiment the IWSLT14 English to German corpus was used. The expert was

build by using a SMT system that is based on word translation lattices which are weighted

using a linear BLEU approximation. To evaluate the free parameters of the function a

gridsearch was done to get the best approximation with regards to BLEU. The learning

part or student of the experiment was represented by a neural network using the state-

of-the-art Transformer architecture. Transferring knowledge from the SMT expert to the

NMT student was done through the novel data aggregation algorithm ADBLEU that was

introduced in this work. It is based on partial translation and exploration actions from

the student and continuations from the expert. Through parameterization the method

can be adjusted to different needs. In general the data is aggregated by first inferring

each input sequence of the training data with the student to a randomly sampled point t.

Then depending on the parameters of the method a single exploration action is taken at

point t either randomly, based on the student’s or the expert’s belief what the best action

might be with regards to the future expected reward. In the case of MT this action cor-

responds to a single token or word. Given the inference of the student, concatenated with

the exploration action, the expert is queried to continue the trajectory. The difference of

the student’s and the expert’s belief how to continued the sentence measured in BLEU is

used as a loss function. In essence the knowledge is transferred to the student through

the difference of BLEU of the expert’s and the student’s way of continuing a translation

started by the student.

Two optimization objectives BSE and S-BSE were introduced to directly train the student

on the global objective - BLEU. BSE represents the original argmax regression objective

proposed by (Ross & Bagnell, 2014). It uses every aggregated data point to infer a loss,

no matter how the quality of the continuation is. S-BSE is a modified and normalized

version that scales the output and only takes data points where the expert is providing

better continuations than the student. In several evaluations throughout this work S-BSE

showed better performance than BSE and was therefore also used for the final results.

Together with the flexible data aggregation concept of ADBLEU, the S-BSE objective can

be seen as one of the main contributions of this work.

As proposed by previous work it is not advisable to train the student with a data aggre-

gation method like this from scratch. The initial output of the student directly correlates

with the amount of knowledge that is transferred, by the oracle, for each sample. For
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instance, if the student generates every bad quality sentences the expert will not be able

to provide useful information. Using a pretrained student and fine-tuning it with the ad-

ditional data from the method to improve the overall performance is the main purpose of

the method.

In different experiments throughout this work, considering many alternative data aggre-

gation techniques, it was shown that the method, as it is, has a major problem: The SMT

expert is not flexible enough to react to the student’s prefixes and exploration actions. A

single experiment was particularly revealing where the BLEU performance of the expert’s

continuations were measured with changing levels of randomness on the student’s explo-

ration action. It was shown that the probability at which a random token would be taken

as an exploration action would hardly affect the resulting BLEU score of the continuation.

In further investigation it was revealed that this is caused by the expert mostly generating

the same continuation no matter what the prefix is. This inflexibility of the expert has

shown to be the main problem of the method.

Additionally other experiments provided in this work have displayed that the SMT expert

is not able to improve the performance of an already trained NMT student. Therefore in

this setting the overarching research question can be answered by saying: It is not possible

to improve a NMT student with a SMT expert due to fact that the expert is not adaptive

enough to react to mistakes made by the student. This means that the student cannot

learn from it’s mistakes based on the expert’s continuations. Consequently, the maximum

quality difference between the student’s and the expert’s continuation is limited, so that

very little additional information that can be generated by the expert.

7.2. Future work

This section will show how the findings from the last section can be used in future work

to improve the proposed method. It will be also shown how to create a system with slight

modifications that can use this concept for enhanced learning.

To improve the overall performance of the method a NMT rather than a SMT expert could

be used. Using an architecture with more parameters than the baseline and training it

on a larger corpus of text would result in a more flexible expert that could be used as a

drop in replacement. This way a more generalizable expert would be provided to possibly

overcome the issues mentioned in the last section. In contrast to the SMT expert it could

actually help the student to recover from it’s mistakes and not only suggest the same

continuation independent of the student’s output. Through the simple and generalized

interface provided in the implementation done for this research, essentially any expert

that generates natural language, conditioned on the student’s output, could be used.

Additionally scheduled hyperparameters for the data aggregation method of ADBLEU

could be introduced to improve training. For instance, setting the exploration randomness

based on the learning progress of the student would simplify the training for the student in

the beginning. This would bring the training closer to supervised learning in the beginning

and later would be increasingly like reinforcement learning. As suggested by previous works

this helps to improve training time when starting from scratch and increases the overall
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performance later.

Furthermore, the progress made in recent years by for example (Cheng et al., 2018; Leblond

et al., 2018; Sun, Venkatraman, et al., 2017) in the field of policy gradient methods could be

used for imitation learning. These methods usually use RNNs because each cell of the RNN

can be seen as a single regressor. When using the same architecture for student and expert

the differences in each cell for the same input could be used for imitation learning, where

for each token in the sequence the corresponding cell would output a multi-dimensional

representation of the student’s and expert’s belief directly. Therefore the difference of the

expert and the student can be used for training without using a surrogate loss. Then

the policy instead of the value-function is optimized directly to overcome several known

problems.

Additionally to further validate the proposed methods, the experiments could be conducted

on larger datasets. It would be interesting to see if the data aggregation on larger datasets

result in better generalization of the model, or worse. An open question is therefore if

applying a larger dataset on the same problem could yield similar but different results.
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Daumé, H., Langford, J., & Marcu, D. (2009). Search-based structured prediction. CoRR,

abs/0907.0786. http://arxiv.org/abs/0907.0786

Debao, C. (1993). Degree of approximation by superpositions of a sigmoidal function.

Approximation Theory and its Applications, 9 (3), 17–28. https://doi.org/10.1007/

BF02836480

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep

bidirectional transformers for language understanding.

Hayes, G., & Demiris, Y. (1995). A robot controller using learning by imitation. Citeseer,

676.

I

https://doi.org/10.1145/1015330.1015430
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://www.aclweb.org/anthology/W05-0909
http://arxiv.org/abs/0907.0786
https://doi.org/10.1007/BF02836480
https://doi.org/10.1007/BF02836480


Bibliography

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural

Networks, 4 (2), 251–257. https://doi.org/https://doi.org/10.1016/0893-6080(91)

90009-T

Ipek, E., Mutlu, O., Mart́ınez, J. F., & Caruana, R. (2008). Self-optimizing memory

controllers: A reinforcement learning approach. 2008 International Symposium on

Computer Architecture, 39–50. https://doi.org/10.1109/ISCA.2008.21

Isaac, A., & Sammut, C. (2003). Goal-directed learning to fly., 258–265.

Jakob, W., Rhinelander, J., & Moldovan, D. (2017). Pybind11 – seamless operability be-

tween c++11 and python [https://github.com/pybind/pybind11].

Kalchbrenner, N., & Blunsom, P. (2013). Recurrent continuous translation models. Pro-

ceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-

cessing, 1700–1709. https://www.aclweb.org/anthology/D13-1176

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization.

Koehn, P. (2013). Moses Core Algorithm. Retrieved March 7, 2021, from http://www.

statmt.org/moses/?n=Moses.Background

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,

Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., & Herbst, E.

(2007). Moses: Open Source Toolkit for Statistical Machine Translation.

Leblond, R., Alayrac, J.-B., Osokin, A., & Lacoste-Julien, S. (2018). Searnn: Training rnns

with global-local losses.

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., & Khudanpur, S. (2010). Recurrent
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Figure A.1.: Comparison of gridsearches with respect to their beam threshold and prefix
sizes, evaluated on BLEU over p and r.
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Figure A.2.: Evaluation of BLEU performance of oracle recovery for imperfect prefixes
with a beam threshold of b = 0.2.
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Figure A.3.: Evaluation of BLEU performance of oracle recovery for imperfect prefixes
with a beam threshold of b = 0.3.
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Figure A.4.: Evaluation of BLEU performance of oracle recovery for imperfect prefixes
with a beam threshold of b = 0.4.
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