
DISSERTATION

submitted to the

Combined Faculty for the Natural Sciences and Mathematics

of

Heidelberg University, Germany
for the degree of

Doctor of Natural Sciences

Put forward by
Stefan Kosnac, M.Sc.

born in
Eberbach, Germany

Heidelberg, 2021

Analysis of On-Chip Inductors and
Arithmetic Circuits in the Context of

High Performance Computing

Advisor: Prof. Dr.-Ing. Ulrich Brüning

Date of oral examination: ..

Abstract

The increase in computing performance of integrated circuits over the last decades
through shrinking transistor and interconnect sizes by several orders of magnitude
has enabled many technological advancements. Today the design of high performance
computing (HPC) systems is mainly limited by two major factors: I/O-bandwidth and
power consumption. This work takes an in-depth view on one aspect of each of those
limitations. Firstly, the I/O-bandwidth is addressed with an analysis of on-chip inductors
for high-speed SerDes designs. Secondly, the design of arithmetic circuits for addition,
multiplication, and floating-point computation is analyzed.

While the on-chip structures have scaled down extremely, the pin count of packages
could not be increased accordingly, which is known as pin limitation. Thus, I/O cells are
required to increase the bandwidth per pin to serialize the parallel data for transmission.
Such SerDes have to cope with signal degradation caused by channels for multi-gigahertz
signals by employing dedicated circuits. This includes an adequate signal termination,
which is however compromised by the parasitic capacitance of the electrostatic discharge
protection. This work analyzes how the capacitance can be compensated with on-chip
inductors to reduce reflections back into the channel.

Unlike other devices, on-chip inductors are rarely provided by process design kits
(PDKs) so layout and modeling has to be done by the designer. This work presents an
evaluation of different methods for parameterized cells for inductors. The background
on analytical inductance calculations is researched and different approximations of the
mean distance formula found in literature are compared. A new expression for the
internal inductance of straight wires is derived. The influence of oxide and substrate, skin
effect, metal fill, and process corners is analyzed. Inductor simulation with field solvers
and associated problems are presented. This work closes the gap between simulated
S-parameters and lumped models used in circuit design with a Markov-Chain Monte-Carlo
fitting technique. Using these results, it is shown how a lumped model can be expressed
in terms of layout geometry, similar to what is commonly available for PDK devices. The
result is accurate enough to be used for circuit optimization.

The processors used in data-centers, HPC systems, and many other devices are
almost exclusively proprietary designs from established companies with instruction set
architectures (ISAs) associated with high licensing costs. In 2010, the open-standard
RISC-V ISA was released by the University of California, Berkeley, and has obtained great
momentum in the last few years. It is said to start a “new era of computer architecture”
as many companies and universities start to develop – often small – custom RISC-V
cores. It is crucial to include very fast arithmetic units into such cores for RISC-V to
enter the HPC environment.

Therefore, this work analyzes an IEEE 754 floating-point unit for fused multiply-add
operations developed at the Computer Architecture Group at Heidelberg University.
Design, verification, and a power-performance-area (PPA) analysis are presented. Com-
parable designs available in the open-source space tend to prefer high-level descriptions
of multiplication and addition. This work investigates if there are potential gains in
PPA that can be achieved through gate-level implementations of arithmetic circuits.
However, the results strongly suggest that modern back-end tools are perfectly capable to
outperform custom structures and design effort should be directed towards other aspects.

Zusammenfassung

Die Rechenleistung integrierter Schaltungen konnte in den letzten Jahrzehnten aufgrund
immer kleinerer Strukturen extrem gesteigert werden und ermöglichte einen signifikanten
Fortschritt in vielen Bereichen der Technologie. Der Entwurf von Hochleistungsrechnern
ist heutzutage durch zwei wesentliche Beschränkungen bestimmt: I/O-Bandbreite und
Leistungsaufnahme. Diese Arbeit schaut im Detail auf jeweils einen Aspekt, der diese
beiden Beschränkungen betrifft. Im Bereich der Bandbreite behandelt sie eine Analyse des
Entwurfs integrierter Spulen für SerDes-Technologie. Im zweiten Teil beschäftigt sie sich
mit arithmetischen Schaltungen für Multiplikation, Addition und Gleitkommaoperationen.

Die Anzahl an Pins, die eine integrierte Schaltung mit der Umgebung verbinden, konnte
nicht im gleichen Maße gesteigert werden wie die Rechenleistung (“pin limitation”). Daher
muss die Datenrate pro Pin gesteigert werden, indem parallele Daten für die Übertragung
serialisiert werden. Dies ist die Aufgabe von SerDes-Schaltungen, die Daten im Bereich
von mehreren Gigabit pro Sekunde übertragen. Dies erfordert unter anderem eine
Impedanzanpassung, die verhindert, dass Teile des Signals in den Übertragungskanal
reflektiert werden. Allerdings wird die Qualität dieser Schaltung durch die Kapazität von
Schutzdioden gegen elektrostatische Entladungen beeinträchtigt. Diese Arbeit beschäftigt
sich mit möglichen Schaltungen, um diese Kapazität durch Spulen zu kompensieren.

Im Vergleich zu anderen Bauteilen sind Spulen nur selten in Process Design Kits (PDKs)
zu finden, sodass deren Layout und Modellierung vom Designer selbst übernommen werden
müssen. Daher stellt diese Arbeit verschiedene Methoden der Layout-Erzeugung für
Spulen vor. Zusätzlich werden die Möglichkeiten analytischer Methoden zur Berechnung
der Induktivität erforscht und ein neuer Ausdruck für die interne Induktivität von geraden
Drähten wird hergeleitet. Die Auswirkungen von Oxid, Substrat, Skin Effekt, Metal Fill
und Prozesstoleranzen, sowie die Verwendung von Feldsimulatoren werden untersucht.
Mit Hilfe eines Markov-Chain Monte-Carlo Fitting-Algorithmus kann die Design-Lücke
zwischen Ersatzschaltbild und simulierten S-Parametern geschlossen werden. Mit diesen
Erkenntnissen wird am Beispiel einer T-coil ein Modell erzeugt, welches – ähnlich wie
PDK-Modelle – zum Optimieren von Schaltungen genutzt werden kann.

Mikroprozessoren in Rechenzentren und Endnutzergeräten enthalten fast ausschließlich
proprietäre Technologie großer Firmen, u.a. Instruktionssätze (ISAs), die hohen Lizenz-
gebühren unterliegen. An der University of California, Berkeley, wurde daher 2010 die
offene RISC-V ISA veröffentlicht, die großen Zulauf in den letzten Jahren erhalten hat.
Viele Firmen und vor allem Universitäten entwickeln nun – oftmals kleinere – eigene
RISC-V-Prozessoren. Damit RISC-V auch im Bereich der Hochleistungsrechner eingesetzt
werden kann, werden schnelle arithmetische Schaltungen gebraucht.

In dieser Arbeit wird eine IEEE 754 Gleitkommaeinheit für “fused multiply-add”-
Operationen bzgl. Leistung, Taktrate und Flächenbedarf analysiert, die am Lehrstuhl
für Rechnerarchitektur der Universität Heidelberg entwickelt wurde. Vergleichbare
Einheiten im “open-source”-Bereich nutzen abstrakte Beschreibungen für Multiplikation
und Addition. In dieser Arbeit untersucht daher, ob auf Gatter-Ebene entworfene
Schaltungen bzgl. der oben genannten Metriken einen Vorteil bieten. Es stellt sich
allerdings heraus, dass heutige Synthesewerkzeuge in der Regel bessere Ergebnisse erzielen
und der Aufwand vorzugsweise in andere Bereiche investiert werden sollte.

Acknowledgments

A huge project like this thesis is never done without the support of others, whom I would
like to thank here. First and foremost my wife Vera Wolthoff, who encouraged me to
keep going, especially at times where the work seemed overwhelming. Her support was in-
valuable during the final months of writing this thesis. I am thankful to have her in my life.

I would like to express my gratitude to my advisor Prof. Ulrich Brüning, who provided
me with the opportunity to write this thesis at the Computer Architecture Group. He
supported me with valuable advice throughout the course of this work and my entire
studies.

Special thanks go to Markus Müller and Maximilian Thürmer from Extoll GmbH for
their advice and useful discussions, as well as for arranging the opportunity to include my
inductor designs into actual silicon. Markus Müller also provided some valuable support
during phases when the tools just did not seem to ever simulate my designs.

I am grateful to my colleague and fellow PhD student Tobias Markus for the great
time and discussions we had throughout the years.

Finally, I would like to thank my parents for their support over almost a decade of
studying. Their continued encouragement motivated me to complete this thesis.

Contents

1 Introduction 1
1.1 Motivation . 4
1.2 Contributions . 5
1.3 Outline . 7

2 High-Speed Serial Communication 9
2.1 SerDes Architecture . 9

2.1.1 Channels . 10
2.1.2 Termination . 11
2.1.3 Components . 13

2.2 Electrostatic Discharge . 18
2.2.1 ESD Testing Models . 18
2.2.2 ESD Failures . 23
2.2.3 ESD Protection Circuits . 25

2.3 ESD Device Compensation . 29
2.3.1 Distributed ESD Protection . 30
2.3.2 Lumped ESD Protection – The T-Coil 34
2.3.3 Parasitic Series Resistance . 41
2.3.4 The Pad Capacitance . 42

3 On-Chip Inductors 47
3.1 Inductor Layout . 48

3.1.1 Inductor Types . 48
3.1.2 Layout Generation . 52
3.1.3 PyCells . 53
3.1.4 SKILL PCells . 58
3.1.5 XCells . 60

3.2 Inductance . 61
3.2.1 Self-Inductance . 61
3.2.2 Mutual Inductance . 68

Contents

3.2.3 Geometric and Arithmetic Mean Distances 69
3.3 Modeling of Inductors . 75

3.3.1 Segmented Circuit Models . 75
3.3.2 Lumped Circuit Models . 77
3.3.3 Skin and Proximity Effect . 82
3.3.4 Metal Fill . 85
3.3.5 Process Corners . 88

3.4 Simulation of Inductors . 90
3.4.1 Layout Extraction . 91
3.4.2 Field Solvers . 93

3.5 Synthesis of Inductors . 99
3.5.1 Lumped T-Coil Model . 99
3.5.2 Parameter Estimation . 100
3.5.3 Analytic T-Coil Model . 107
3.5.4 Inductor Synthesis . 119
3.5.5 Conclusion . 121

3.6 Test Structures . 122
3.6.1 Layout . 122
3.6.2 Measurements . 125

4 Floating-Point Arithmetic 129
4.1 Number Formats . 129

4.1.1 IEEE 754 . 130
4.1.2 Posits . 132
4.1.3 Machine Learning . 134

4.2 Fused Multiply-Add . 136
4.2.1 Introduction . 136
4.2.2 FMA Unit Design . 137
4.2.3 FMA Unit Verification . 139
4.2.4 FMA Unit Back-End . 141
4.2.5 Conclusion . 146

5 Hardware Arithmetic 149
5.1 Multipliers . 150

5.1.1 Wallace Tree . 151
5.1.2 Dadda Tree . 153
5.1.3 Comparison . 157

5.2 Adders . 158
5.2.1 Carry-Select Adder . 158

Contents

5.2.2 Parallel Prefix Adders . 160
5.2.3 Carry-Lookahead Adder . 168

5.3 Verification . 171
5.4 Synthesis . 173

5.4.1 Methodology . 173
5.4.2 Results . 177
5.4.3 Conclusion . 182

6 Conclusion 185
6.1 Summary . 185
6.2 Outlook . 188

List of Abbreviations 191

List of Figures 195

List of Tables 201

List of Listings 203

References 205

1

C
h

a
p

t
e

r

Introduction

Substantial advances in semiconductor fabrication have accelerated technological inno-
vation in the last decades according to Moore’s Law. Device sizes have shrunk several
orders of magnitude and while early computers had separate components for various tasks,
i.e. external graphic processing units or I/O controllers, it is now possible to integrate
nearly all functionality onto one die, or at least package. As a consequence, these designs
are now called System-on-Chips (SOCs). High integration comes with reduced energy
consumption for the same performance since interconnects between and the size of the
components is reduced. This allows to integrate more and more functionality and to also
raise the performance, which in turn leads to an overall increase in power consumption of
the SOC. However, this trend is heavily constrained by two major factors: pin count and
power. This thesis will address one specific aspect concerning each of these two limitations.

With increased functionality, more pins are needed to supply the SOC with data, but
pin size has not scaled down enough to keep up with the increasing transistor count.
Fig. 1.1 shows the pin count of sockets, mainly for x86 processors from Intel and AMD,
starting with the 16-pin Intel 4004 from 1971. The TR4/sTRX4 sockets for AMD Ryzen
Threadripper and the SP3 socket for AMD EPYC processors have the highest pin count
with 4094. This is an increase of around 256 times within the last 50 years, during which
the transistor count increased from the Intel 4004 with 2250 transistors to around 40
billion transistors of an EPYC Rome processor. Thus, the pin increase is faced with
roughly an 18 million times increase in transistors. Therefore, the number of package
and die pins is a serious limitation for large SOCs and conversely the data rate per pin
has to be increased. Wide parallel data paths are still used on-chip at comparatively
moderate frequencies in the high megahertz and low gigahertz regimes. To communicate

1

with other chips, this parallel data has to be serialized and increased in frequency in the
same ratio to match the bandwidth. This functionality is provided by a serializer, and
deserializer at the receiving end, with the pair usually called SerDes. Given the analog
nature of signals on cables or Printed Circuit Board (PCB) tracks, generally referred to
as channels, a SerDes is also the interface from the digital domain of computing to the
analog domain of signal transmission. As an interface to the outside, the SerDes needs
to be protected against Electrostatic Discharge (ESD), which may occur during assembly
or handling of the chip. This is actually done with all sensitive pins, however, especially
at high data-rates, the ESD protection degrades the signal quality at the SerDes in- and
output. It also causes reflections back into the channel, which harm signal integrity and
lead to reduced link performance or even failure. To achieve both ESD robustness and
good signal quality, on-chip inductors can be applied and their design for this application
is one aspect addressed by this thesis.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
101

102

103

Year

Pi
n

C
ou

nt

Intel 4004 & 8086 (DIP)
AMD Threadripper (sTRX4)

Fig. 1.1: Socket pin count of x86 desktop and server CPUs, starting with the Intel 4004
in a dual in-line package (DIP) with 16 pins, and up to 4094 pins of a current
AMD Threadripper sTRX4 socket. Data taken from [1].

The second major limitation is the electrical power consumed by chips, the so called
power wall, which is directly related to their operating temperature. Hence, the thermal
integrity of the chip limits the maximum power it can draw in order to allow the
corresponding cooling technique to dissipate the generated heat. As power is proportional
to the product of clock frequency and the square of voltage, this also places a performance
constraint on digital logic. Historically, processor speed has been improved by increasing

2

the clock frequency. If the clock frequency scaling of the 1990s would have continued,
processors would have run at more than 10 GHz by 2010. Obviously, this did not come
true and at the end of 2020, the fastest clocked commodity desktop processor – the Intel
Core i9-10900K – offers a single-core “turbo” clock frequency of 5.3 GHz [2]. Although
significantly higher clock rates have been achieved through “over-clocking”, this is only
possible via expensive cooling solutions and increased operating voltages. The latter
enables higher speeds due to faster signal slew-rates, which effectively causes power to
depend more than linear on frequency while computing performance stays linear. Hence,
increasing the voltage above the nominal value results in a decreasing “performance per
watt” ratio. As a consequence, CPU design has shifted towards multi-core microprocessors,
and clock frequencies have remained more or less constant, except for minor increases.
Modern multi-core processors are capable of frequency and voltage scaling to lower
their power consumption while idle or increase performance when demanding software is
executed. A general observation is that single-core clock frequencies are often higher than
multi-core clock frequencies, which is primarily due to power limitation when all cores are
used. Assuming software can be parallelized, adding more cores increases performance
and power consumption approximately linearly. As many workloads are embarrassingly
parallel, for example Monte-Carlo codes or hosting a large number of clients on a single
server, this has allowed to continue the scaling of CPU performance with transistor
count. The largest core count for x86 CPUs is offered today by AMD’s Threadripper
and EPYC processors with 64 cores and 128 threads via Simultaneous Multithreading
(SMT). However, somewhat countering the trend towards higher integration, AMD uses
a chiplet approach to maintain the yield for CPUs this large. Instead of a single die,
up to nine dice are used within an EPYC Rome package [3]. The dice are connected
within the package via AMD’s Infinity Fabric on-package, a SerDes-based communication
scheme for short ranges of 10 to 20 mm [3]. Besides the power wall, which caps the
maximum performance, energy costs and battery life are also two major drivers towards
more energy-efficient hardware.

In addition to the technical limitations for high performance chips, economical costs
are also to be considered. Top of the line processors are nowadays almost exclusively
manufactured by large companies – for example Intel and AMD for x86 processors in
the desktop and server market. Whereas mobile devices are dominated by ARM-based
chips, which is a Reduced Instruction Set Computer (RISC) architecture that has to be
licensed from ARM Ltd., either in form of IP cores or an architectural license, if detailed
customization is intended. The high licensing costs associated with the aforementioned
Instruction Set Architectures (ISAs) in conjunction with the high engineering and
manufacturing costs has kept most smaller companies or universities from attempting
custom processor development. To change this, the RISC-V ISA was created at the

3

1.1. MOTIVATION

University of California, Berkeley (UC Berkeley) [4]. It has gained great momentum
in the last years as the ISA has a high quality and zero licensing costs. Additionally,
a tremendous ecosystem in terms of software support has developed in the last years,
including compiler and operating system support. First hardware implementations have
also been manufactured by various companies and research groups. An example are
Western Digital Corp.’s SweRV cores, which are used to replace their current state-
machine logic and flash controllers, and are also employed for other embedded tasks [5].
The source code has actually been made open-source by Western Digital on GitHub [6],
further strengthening the popular belief that RISC-V will become the “Linux of hardware”.
To develop and maintain the RISC-V ISA itself, the RISC-V foundation was created.
The availability of this free, well supported ISA has started a new “era” of computer
architecture. In the context of this new ISA and the trend towards energy-efficient high
performance computing, this thesis presents an analysis of addition and multiplication in
terms of Power-Performance-Area (PPA). Furthermore, a Fused Multiply-Add (FMA)
floating-point unit developed by Kaiser at the Computer Architecture Group (CAG) at
Heidelberg University [7] is analyzed regarding PPA.

1.1 Motivation

As highlighted before, this work presents two topics addressing the current main bottle-
necks of High Performance Computing (HPC) systems, pin and power limitation. The
first part of this work is motivated by the necessity to incorporate ESD protection into
high-speed SerDes designs to avoid the failure of expensive and critical components due
to ESD damage. The ESD protection devices are usually diodes capable of deflecting
high currents for a short amount of time. However, they possess a parasitic capacitance,
which will impede the signal termination at the I/O pin. Most standards, e.g. Peripheral
Component Interconnect Express (PCIe), allow only a certain amount of signal reflection.
Thus, the parasitic capacitance has to be compensated to be standard compliant and
provide ESD protection. This is usually achieved with on-chip inductors [8]. However, the
challenge is not only to understand the circuit level of such termination networks but also
how to map their inductors to a corresponding layout. While several designs of different
termination networks are discussed in literature, e.g. [9] and [10], the procedure of how
these results were achieved is not shown. In particular, the inductor design process is not
discussed, it is only benchmarked to show that it is feasible in the given context. Hence,
it seems the design of custom on-chip inductors does heavily rely on the experience of
the designer.

Somewhat simplified, on-chip inductors are wires routed with the intention to leverage
their parasitic inductance. Besides the design rules, there are few constraints, which

4

1.2. CONTRIBUTIONS

creates many degrees of freedom for the designer. This freedom is usually mitigated for
other circuits with relatively fast feedback through simulation and parameterized cells
for layout design. However, for on-chip inductors both are not available. So designs in
literature have to be heavily experience-based with a certain amount of “trial and error”.
In any case, the topic is poorly covered in literature so far. Most work concerning the
layout and properties of on-chip inductors is relatively old, with the oldest one known to
the author dating back to 1972 [11]. Thus, the motivation for this work is to analyze the
physics and tools needed to conduct a more “straight forward” inductor design, replacing
the usual procedure of iterating through many designs.

The previously introduced RISC-V ISA has sparked a large number of developments
in processor design throughout industry and universities. The CAG at Heidelberg
University also planned to organize a project in this context, together with several
partners from universities and companies [12]. Part of this proposal was to develop
a scalable energy-efficient processor architecture based on RISC-V. The proposal was
eventually rejected, but development of a RISC-V pipeline and related components
continued within the framework of several bachelor and master theses at the CAG,
e.g. [13], [14]. Every processor development eventually needs an Arithmetic Logic Unit
(ALU), where the actual processing is performed, and which is therefore a special point for
potential optimizations with regard to energy-efficiency and performance. Floating-point
performance in particular is crucial for most scientific applications. Thus, an FMA unit
was developed and verified during a master’s project by Kaiser [7] at the CAG. Here, this
FMA unit was synthesized and a power analysis was conducted in a 22nm technology.
The results of design, verification, and synthesis were published in [15]. The multiplier
within this unit turned out to be a limiting factor. Therefore, this work analyzes several
multiplier and adder structures in terms of PPA to investigate if there are potential gains
by implementing them with structured code on the gate-level. Most open-source designs
only use built-in operators to describe these operations and rely on the synthesis tools to
efficiently implement them.

1.2 Contributions

This work contributes to the aforementioned topics in the following ways:

ESD Compensation and On-Chip Inductors

• An analysis of circuits using two-terminal inductors and T-coils to compensate the
parasitic ESD device capacitance for SerDes designs in advanced nodes is conducted.
Special attention is paid to the capacitance of the pads that connect the SerDes to

5

1.2. CONTRIBUTIONS

the package, and the series resistance of the T-coil.

• On-chip inductor design is heavily based on the experience of the designer and
usually an iterative process. Custom on-chip inductors are often necessary because
foundry-provided parameterized cells (PCells) are rarely available and not flexible
enough to cover the required properties. So this work evaluated several methods to
create PCells for on-chip inductors.

• Analytic approaches for on-chip inductor sizing have largely vanished from literature
in the last one to two decades. The emphasis of most publications is on the schematic
level or on results measured or simulated for a specific design. However, this does
not aid the design of new on-chip inductors. A lot can still be learned from
researching analytic methods for inductance calculation developed in the last 100 to
150 years. This work provides a comprehensive overview on the basics of inductance
calculation and derives a new expression for the internal inductance of round wires,
which has not been published before to the knowledge of the author. Furthermore,
the background on the mean distance method for inductance calculation of wires
with an arbitrary cross-section is explained.

• The design and optimization of inductors is usually done with simplified schematics
called lumped models. However, the actual layout does comprise several additional
effects that can only be partly represented with such models. This work discusses
the influence of oxide and substrate, skin effect, metal fill, and process corners.

• Accurate electromagnetic simulation of on-chip structures like inductors has become
a necessity at data-rates supported by state-of-the-art serial links. Simple layout
extraction does not suffice anymore. The difficulties and experiences with some tools
are reported in this work. Furthermore, it presents an automated characterization
flow for on-chip inductors based on existing Electronic Design Automation (EDA)
tools, which significantly speeds up the design space exploration. To close the loop
to the schematic design phase, the extraction of lumped model parameters from
simulated S-parameters has been implemented with a Markov-Chain Monte-Carlo
(MCMC) code. Some early results were presented at CDNLive 2018 [16].

• Unlike other devices used in integrated circuit designs, custom inductors can hardly
be optimized in the schematic design phase. Devices like transistors can be sized
and simulated with a foundry provided model that translates the geometry into
electrical characteristics. This is not possible for custom inductors. Therefore,
a methodology to create an analytic inductor model has been derived with the
help of the automated characterization flow, the fitting technique and formulas for
analytic inductance calculation. This methodology facilitates a forward design flow
of on-chip inductors, instead of the usual “trial and error” approach. The resulting

6

1.3. OUTLINE

model may be used for “inductor synthesis”, i.e. mapping a lumped model inductor
schematic to a corresponding layout that is optimized with regard to the created
model. This presents an important step towards closing the design gap of on-chip
inductors compared to other devices.

• A brief evaluation of ESD compensation test structures applying T-coils in a 22nm
technology, including measurement results, is presented. Furthermore, some lessons
learned in regard to the termination layout are summarized.

Arithmetic Circuits

• A discussion of a SystemVerilog FMA unit design and its verification, as well as a
PPA analysis in a 22nm technology, are presented. The results have been published
in vol. 6 no. 2 of Supercomputing Frontiers and Innovations in 2019 [15].

• Open-source RISC-V core designs do not incorporate specialized circuits for addition
and multiplication but instead rely on synthesis tools to efficiently map Hardware
Description Language (HDL) operators like “+” and “*” to hardware. This work
analyzes potential benefits of structural code for adders and multipliers in modern
technologies and with modern EDA tools. Therefore, the theory behind hardware
adders and multipliers is revisited and the resulting circuits have been designed at
the gate-level and compared in terms of PPA.

1.3 Outline

This thesis takes an in-depth view at two aspects of high-speed integrated circuit design.
Chapters 2 and 3 are dedicated to the first aspect, on-chip inductors for high-speed
SerDes designs. The second aspect is the analysis of arithmetic circuits and is covered in
chapters 4 and 5.

Chapter 2 introduces SerDes technology and places the ESD protection into this context.
It then discusses different circuits using inductors to compensate the parasitic capacitance
of the ESD devices. In chapter 3, the focus switches to the design of on-chip inductors.
It starts with the layout process and presents multiple ways to automate it with PCells.
This is followed by a derivation of the inductance of a straight wire and the introduction
of the mean distance method for inductance calculations. The third section of this chapter
discusses different ways to model inductors and the influence of oxide and substrate, skin
effect, metal fill, and process corners. It should then be obvious that no exact analytic
formulas exist, so the next section focuses on experiences with field solvers and layout
extraction tools. It also describes the automated characterization flow developed in this
work. In the fifth section, the MCMC fitting technique is presented, which fits lumped

7

1.3. OUTLINE

circuit models to simulated S-parameters. Finally, all previously discussed aspects of
on-chip inductors are combined to derive a model that maps geometry to lumped models
parameters. The chapter is then concluded with a brief discussion of Time-Domain
Reflectometer (TDR) measurement results of test structures in a 22nm node, and some
lessons learned.

Chapter 4 starts with a short introduction to floating-point number formats, namely
IEEE 754 and Posits. It then presents design, verification, and a PPA analysis of the
RISC-V-conform IEEE 754 FMA floating-point unit developed at the CAG. Chapter 5
goes deeper into the details of arithmetic circuits and presents different architectures
for adders and multipliers. They are compared in terms of PPA to generic “+” and “*”
operators, which can be used in SystemVerilog.

The thesis is concluded in chapter 6 with a summary of the results, the insights gained
from them, and an outlook towards future work.

8

2

C
h

a
p

t
e

r

High-Speed Serial Communication

With the ever increasing demand for computing performance and data storage, I/O
technology is required to further increase bandwidth. However, as a consequence of
pin limitation, this leads to increasing data-rates per pin, requiring circuit designers to
deal with a variety of additional electrical effects, which become significant at higher
signal frequencies. Another challenge on top of this is the ESD protection, which is
accompanied by a parasitic capacitance that degrades high frequency signals. To put
the ESD device compensation into context, section 2.1 provides an overview on some
aspects of SerDes design. Furthermore, it briefly presents the architecture of the SerDes
this work is based on, which is described in more detail by Müller [17] and Thürmer [18].
Section 2.2 continues with background on ESD protection circuits, while section 2.3 deals
with on-chip inductors as a method to compensate the negative side-effects on signal
quality introduced by the ESD protection.

2.1 SerDes Architecture

In addition to the aforementioned pin limitation, there are other reasons not to use
parallel data transmission for off-chip communication in most applications. The routing
of large interfaces needs more engineering time as well as more costly PCBs with a large
number of layers. Furthermore, signal skew between the lanes of a parallel interface has
to be carefully controlled [19]. An example is the routing of Dynamic Random Access
Memory (DRAM) chips or even Dual Inline Memory Modules (DIMMs). Hence, scaling
I/O bandwidth by using more lanes is very expensive and therefore not a feasible method.
Instead, the bandwidth per pin is usually increased from generation to generation. PCIe
is a perfect example for this development as the number of lanes a link can comprise

9

2.1. SERDES ARCHITECTURE

has been constant over the last iterations, but the data-rate per lane has significantly
increased. This increase is much faster than the quality improvement of the transmission
medium, e.g. of PCB traces, connectors and cables, called channel. As a consequence of
the detrimental channel properties, the signal quality is heavily impacted in the domain of
multiple Gbps links. To push data-rates further, additional circuits have been employed
on both transmitter and receiver to mitigate these effects.

This section is split into three parts, firstly the properties of channels are discussed,
secondly signal termination is explained in the context of serial links, and lastly an
overview of state-of-the-art SerDes components is presented.

2.1.1 Channels

In conjunction with the data-rate, the channel is the most defining constraint for a SerDes
design as it determines the quality of the transmitted signal to a large extend. The entire
connection between transmitter output pad and receiver input pad is usually referred to
as the channel. Channels typically exceed on-chip wire dimensions and are physically
large compared to the wavelength of signals and are therefore modeled as transmission
lines. However, they still vary in length significantly from tens of millimeters to tens of
meters. The distortions a channel introduces into the signal are best visualized by the
Single-Bit Response (SBR). An example is shown in Fig. 2.1.

Main Cursor

Pre-Cursors Post-Cursors

1

Post-Cursors
caused by reflection

t/UI0 5 10 15 20 25 30-5

0

S
B
R

 n
or

m
a
liz

ed

Fig. 2.1: Example of a single-bit response. Graphic constructed based on [19].

The SBR of a channel is the time-domain response to a singular rectangular pulse with
a width of one Unit Interval (UI), i.e. a single bit. It is sampled by the receiver with
the receiver clock, thus the magnitude is only of interest at discrete, UI spaced times
marked with a small circle. The receiver clock is ideally aligned to the maximum of the
SBR, the main cursor. Fig. 2.1 shows that a single bit actually causes non-zero cursors
at many more sampling times, meaning symbols are interfering with each other, which is

10

2.1. SERDES ARCHITECTURE

called Intersymbol Interference (ISI). Depending on their position relative to the main
cursor, these cursors are called pre- and post-cursors. Usually an SBR of a channel has
much more post-cursors than pre-cursors [19]. One reason for this is that reflections at
impedance discontinuities need some time to bounce back and forth to be seen at the
receiver. Such late post-cursors are very difficult to compensate, which makes it crucial
to avoid discontinuities within the channel, and at the transmitter and receiver. The
former is part of package, track, connector or cable design while the latter is an explicit
part of SerDes design.

2.1.2 Termination

To avoid reflection at the receiver or transmitter both have to present an input impedance
identical to the characteristic impedance of the channel, Z0, which is in many cases a
50 Ω impedance. This may seem arbitrary but has been chosen for most channels as the
30 dB cutoff frequency is maximized at this channel impedance for a coaxial cable [18].
So to achieve this, a termination resistor RT is applied, as shown in Fig. 2.2.

Z0

Vch,in Vch,out

CL

RT

Vtx CL RT

Vrx

Fig. 2.2: Simplified transmission system with TX (left), channel and RX (right). Note
that Vrx and Vch,out are not the same voltage, even if it is drawn here due to
simplicity. Vch,out comes from the channel and has therefore a source impedance
of Z0, which acts in series.

However, the ESD diodes add a significant capacitance CL and thus compromise the
termination. In addition to CL, there is also the pad capacitance increasing the capacitive
load even further. The transfer functions and termination impedances for Fig. 2.2 are
given by Eqs. 2.1 to 2.3. Here x||y means the impedance of x and y in parallel and it is
assumed to bind more than other arithmetic operators.

Htx =
Vch,in
Vtx

=
Z0||CL

RT + Z0||CL
(2.1)

Hrx =
Vrx

Vch,out
=

RT ||CL

Z0 +RT ||CL
(2.2)

Ztx = Zrx = RT ||CL (2.3)

11

2.1. SERDES ARCHITECTURE

An important property of a transfer function is its cut-off frequency, where the magnitude
falls below 1/

√
2. For Hrx and Htx the cut-off frequency is given by Eq. 2.4. Since

RT = Z0 = 50 Ω is desired for signal integrity, the expression can also be simplified a bit.

ωc =
1

CLZ0||RT

RT→Z0=
2

CLZ0
(2.4)

Every impedance discontinuity along the channel and at its ends causes a part of the
signal to be reflected. The amount of reflection is given by the one-port S-parameter
magnitude |S11|, where ZT is the termination impedance.

Γ = |S11| =
∣∣∣∣ZT − Z0

ZT + Z0

∣∣∣∣ (2.5)

Note that SerDes usually operate on differential signals as this has various benefits like
reduced crosstalk. Nevertheless, it is valid to consider the termination circuits for most
calculations to be single-ended as the coupling between the channels is assumed to be
zero. To ensure compatibility between devices, standards like PCIe or Ethernet also
specify the quality of the termination a SerDes has to achieve. This is usually done by
specifying an upper limit of the reflection as a function of frequency. As an example,
Fig. 2.3 shows the masks for 10G and 25G Ethernet, PCIe 4.0 and JESD204C. The
reflection for a CL of 300 fF is included for reference as this is a typical value for an ESD
capacitance. It is lower compared to the standards’ requirements, however these comprise
not solely the level required for the ESD compensation alone but also include the pad
and package. Note that the common mode return loss and sometimes even the common
to differential conversion have separate constraints that need to be met.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
−20

−15

−10

−5

0

Frequency [GHz]

S
D

D
11

[d
B

]

Ethernet 10.3125 Gbps
Ethernet 25.78125 Gbps

PCIe 4.0 16 Gbps
JESD204C 16 Gbps

CL = 300 fF

Fig. 2.3: Compliance masks for differential return loss SDD11, including package.

12

2.1. SERDES ARCHITECTURE

2.1.3 Components

While the requirements for SerDes are manifold depending on their target application,
the encountered problems are similar and common methodologies to deal with them
are applied in state of the art designs. A SerDes is composed of a number of different
functional blocks that are dedicated to lower the Bit Error Rate (BER) of the link.
Fig. 2.4 shows the coarse architecture of the SerDes that provided the context for this
work. The upper part and bottom parts show the receiver and the transmitter units,
respectively, which together are also called transceiver. In addition, a Phase-Locked Loop
(PLL) provides the clock signal for both. The overall idea of this architecture is to use
equalizers to flatten the system transfer function. The three most common techniques to
do this are a Feed-Forward Equalizer (FFE) at the TX and a Continuous-Time Linear
Equalizer (CTLE) and a Decision Feedback Equalizer (DFE) at the RX. Furthermore, as
the system is self-clocking, a clock-recovery is implemented to recover the clock from the
data-stream. Together, these two mechanisms are sufficient to achieve high data-rates
for typical channels. This subsection takes a brief look at some of these components.

Receiver (RX)

Transmitter (TX)

PLL

Termination
& ESD CTLE Samplers

& DFE Deserializer

Control & Calibration Logic

Clocking

Clocking

CDR Logic

Driver
& ESD

Equalizer Serializer

Control & Calibration Logic

Fig. 2.4: Simplified SerDes architecture overview with the serial interface on the left and
the parallel interface on the right (based on [17]).

13

2.1. SERDES ARCHITECTURE

Feed-Forward Equalizer

The FFE is usually a Finite Impulse Response (FIR) filter, i.e. it combines delayed
versions of its input to generate a weighted sum output signal. This is usually done
at the TX because the delays can be realized with flip-flops without introducing noise.
Depending on the choice of the coefficients, pre- and post-cursors of the channel can
be lowered, but it is not feasible to use the FFE to cancel reflection induced cursors.
Since the signal swing is limited, the low frequency content is damped to emphasize the
high frequency content in the signal. This technique can also be used to modulate a
PAM-4 signal, which is a 4-level signaling scheme used to increase the bandwidth that is
expected to be part of PCIe 6.0. According to an analysis of Yuan [19], most designs use
a maximum of four taps due to diminishing returns. Certain (minimum) configurations
can also be demanded by standards, e.g. PCIe 4.0 demands a 3-tap FFE. As digital bits
are weighted to produce the output signal, the FFE is usually described in the z-domain,
as shown in Fig. 2.5. Common topologies for the driver itself are Current Mode Logic
(CML) or Stub Series Terminated Logic (SSTL). The implementation of an SSTL driver
for this SerDes architecture is described in [20].

z-1 z-1 z-1

a1a0 a2 a3

IN

OUT

Fig. 2.5: Block-diagram of a 4-tap FIR filter.

Continuous-Time Linear Equalizer

Within the analog front-end of the receiver, the overall low-pass behavior of the channel
is equalized with a CTLE in most SerDes designs. An example schematic of an active
version is shown in Fig. 2.6. It is basically an amplifier with a split current source to
implement a source degeneration using RS and CS . The transfer function is given in
Eq. 2.6 and it can be tuned by adapting the degeneration with an equalization algorithm.
The zero is used to cancel the first-order pole of the channel, while the poles are used to

14

2.1. SERDES ARCHITECTURE

amplify the higher frequencies depending on the data-rate.

HCTLE(s) =
gm
CD

·
s+ 1

RSCS(
s+ 1+gmRS/2

RSCS

)
·
(
s+ 1

RDCD

) (2.6)

A drawback of the CTLE is the noise amplification as it cannot distinguish between signal
and noise. Thus, Signal-to-Noise Ratio (SNR) is traded with bandwidth. Therefore,
the sizing of the CTLE circuit comprises a lot of trade-offs, which also involve other
components of the receiver. More details on CTLE design are found in [18].

RS

CS

RD RD

V +
in V −

in

V +
out

V −
out

CD CD

Fig. 2.6: Active CTLE with source degeneration.

Decision Feedback Equalizer

In contrast to the CTLE, the DFE does not amplify noise and is an efficient method to
remove post-cursor ISI. It is build as an Infinite Impulse Response (IIR) filter by feeding
back the received bits the sampler has already decided on. The received data is weighted
according to the post-cursors of the channel that are to be compensated and added to
the sampler input to “correct” the sampled voltage, hence increasing the probability
for a correct decision. This is of course a recursive approach that assumes the received
bits were decided correctly, otherwise the correction will likely increase the error rate.
However, typical serial links are operated at error rates at or even below 10−12, which is
enough to get the DFE back if a single error occurs. The weighted summation of the
previous bits has to be completed before the current bit is sampled, which imposes a
tight timing constraint on the feedback path, especially when considering that a full-rate
design, as shown in Fig. 2.7, has to run with the line speed. Since this is especially critical

15

2.1. SERDES ARCHITECTURE

for the first tap as the sampler typically has a longer clock to output delay than a digital
flip-flop, so called loop-unrolled or speculative DFE architectures are built. They use two
samplers, where each has the first tap statically applied with a different sign, thus the
settling time is removed and a multiplexer then chooses the correct decision based on
the previous bit. Additionally, the operating frequency of the DFE can be reduced using
half- or even quarter-rate designs. A half-rate DFE splits the data stream into “even”
and “odd” bits and uses basically two DFEs – but running at half the clock frequency
– to sample the bits in both streams. This is possible by cross-coupling every second
feedback path between the two and can also be extended to quarter-rate architectures at
the cost of a huge increase in complexity. A detailed analysis of DFE architectures can
be found in a previous work of the author [21].

a1

IN OUT
Comp. &
SR-Latch

Latch FF FF

a2 a3

S Dk Dk-1 Dk-2

f ff f

Fig. 2.7: 3-tap full-rate direct DFE architecture. Φf is the full-rate clock.

Clocking

Serial links normally do not transmit a distinct clock signal along with the data, which
would also be hard to do for todays ten to hundred Gbps links. The low bit times would
require an extremely accurate skew management in the range of pico seconds. Thus, the
data-stream has to be self-clocking, i.e. the TX has to assure enough transitions are
present in the data stream to allow the RX to use a Clock Data Recovery (CDR) circuit
to extract the clock and align the sampling position to the data. A detailed analysis of
the CDR used in this SerDes can be found in [17].

Physical Coding Sublayer

Besides the “raw” analog to digital interface composed of the components described so
far, which is called the Physical Media Attachment Layer (PMA), additional measures
are needed to provide a functional interface to the Media Access Layer (MAC). One
standard for such an interface is the PHY Interface for PCI Express Architectures (PIPE).
It defines a set of signals to ensure compatibility between the PHY (contains PMA and
PCS) and MAC layer. The PCS performs data encoding, i.e. extending the data payload

16

2.1. SERDES ARCHITECTURE

by additional bits as well as scrambling, to ensure a minimum of transitions and enable
clock recovery. A common coding scheme is an 8b/10b code, which adds two additional
bits to each byte to ensure a maximum run length of five bits. However, this wastes one
fifth of the link bandwidth and was thus replaced in more recent standards by 64b/66b
and 128b/130b coding. It is used in PCIe 1.0 to 2.0 and some older Ethernet standards,
whereas PCIe 3.0 to 5.0 have switched to a 128b/130b code. In addition to the line
coding, data scrambling is often applied, which pseudo-randomizes the data stream so
that it contains many transitions. This is usually done through an XOR combining the
data with a Pseudorandom Binary Sequence (PRBS) generated by a Linear-Feedback
Shift Register (LFSR). The same LFSR is used at the receiver to descramble the data.
This does not need synchronization since the receiving LFSR can extract the state of the
transmitting LFSR from the data stream (self-synchronizing).

17

2.2. ELECTROSTATIC DISCHARGE

2.2 Electrostatic Discharge

The oldest descriptions of electrostatic phenomena by humans date back into ancient
Egypt, nearly 5000 years ago, when the Egyptians referred to electric fish as “thunderer
of the Nile” [22]. The probably most commonly known electrostatic phenomenon is the
separation of charge by rubbing amber on fur, which was observed in ancient Greece.
The built-up electrostatic potential can discharge suddenly upon contact with conductive
materials. If this happens with pins of fragile electric components, irreversible damage
can occur – if they are not properly protected. So called ESD events can occur over
the whole lifetime of semiconductor devices. Chip design, for instance, needs to follow
antenna rules to avoid relatively large floating shapes connected to a gate, which could
build up charge during manufacturing, ultimately leading to a breakdown of the gate
insulator material (oxide breakdown). After manufacturing, in packaging and application,
especially the pins need to be protected. This is done by handling sensitive devices in
ESD controlled environments where charge cannot build up due to grounded machines
and personnel. However, ESD events can still happen outside these environments or
through careless handling. As a consequence, protection schemes need to be applied at
the device level, i.e. on-chip. To verify these protection schemes, a series of ESD testing
models has been standardized, which are presented in the next subsection. After this,
a short overview of possible ESD failures is presented. The section is concluded with a
discussion of ESD protection circuits usually applied in chip design.

2.2.1 ESD Testing Models

To verify the ESD robustness of a given protection circuit, may it be by physical testing
or in simulation, there are several models specifying different ESD wave forms, which
are assumed to cover certain scenarios of ESD. The most common ones are covered
in this subsection. These models can be grouped according to the number of pins of
the Device Under Test (DUT) involved. The first group involves two pins, so the DUT
forms a conductive path between the ESD source and ground. An exhaustive test of
all combinations of two pins might take a long time since modern packages can have
thousands of pins. To provide an example, the current AMD Socket TR4, used for Ryzen
Threadripper processors, is designed for ICs with a 4094-contact Flip-Chip Land Grid
Array (FCLGA) package [23]. The second group involves only one DUT pin. Here the
DUT and a conductive object are charged to different potentials and, upon contact, a
displacement current flows to equalize the potentials.

The requirements for testing ESD robustness are specified in a plethora of standards.
It is quite complicated to get an overview as several organizations are involved. However,
the Electrostatic Discharge Association (ESDA), an independent trade association in the

18

2.2. ELECTROSTATIC DISCHARGE

United States, provides a comprehensive overview of ESD standards [24]. Historically,
the first ESD standards where developed by the United States Military, which include
MIL-STD-750, MIL-STD-883 and MIL-STD-1686 [25]. However, the effort of developing
separate military standards decreased and the United States Department of Defense
assigned the ESDA to transfer MIL-STD-1686 into the commercial standard ANSI/ESD
S20.20. As the name of this standard suggests, the ESDA is accredited by the American
National Standards Institute (ANSI). On an international level, the International
Electrotechnical Commission (IEC), an international standards organization located in
Geneva, Switzerland, has released standards under the name IEC 61340. These are
also used in Germany as DIN IEC/TR 61340. Furthermore, there is IEC 61000-4-2,
which concerns testing ESD immunity. Starting in 2010, the ESDA combined some of
their standards with JEDEC Solid State Technology Association (JEDEC) standards.
The most recent versions of the combined standards are called ANSI/ESDA/JEDEC
JS-001-2017, which covers the Human Body Model (HBM), and ANSI/ESDA/JEDEC
JS-002-2018, which covers the Charged Device Model (CDM). These two models are
the most important ones for semiconductor devices. There are many more ESD related
standards [24], but listing them here is beyond the scope of this document.

Human Body Model (HBM)

The HBM aims to model the discharge from a charged human body. Note that this is a
two pin event, i.e. the charge enters via one device pin and leaves over any one other
pin to ground. Charge can build up in the body due to charge separation when walking.
Shoes and/or dry air act as an insulator to the floor and environment. Particularly in
clean rooms where the air is very pure, special measures need to be taken to assure
charge cannot build up in personnel. It is possible to test structures with the HBM at
wafer level during the development of new technology nodes [26].

≈100 pF

≈1.5 kΩ

DUT

Fig. 2.8: Human Body Model discharge circuit according to JS-001-2010.

Fig. 2.8 shows the equivalent circuit used to test HBM ESD robustness. The charge
stored on the human body is modeled with a capacitor, usually assumed to be 100 pF
large, and the discharge happens through a relatively large resistor. Before testing, the

19

2.2. ELECTROSTATIC DISCHARGE

capacitor gets pre-charged to a defined voltage via a large resistor in the low MΩ range.
The capacitor is then switched with a high-voltage relay to the discharge resistor of
1.5 kΩ. Commonly a voltage of ±2 kV is used, there are however several classes ranging
from under 250 V to more than 8 kV according to the previously mentioned JS-001-2017
standard (this was taken from the 2010 version of the standard as the 2017 version is not
freely available). The current waveform of the ESD event is also specified in JS-001-2010
and shown for 2 kV in Fig 2.9.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

Time [ns]

H
B

M
C

ur
re

nt
[A

]

Fig. 2.9: Simplified HBM current waveform according to JS-001-2010 for a 2 kV discharge.
The rise time usually lies between 2 ns and 10 ns and is probably caused by the
finite switching speed of the relay – but is not present in the equivalent circuit.
Peak current (1.2 A to 1.48 A) and decay time (130 ns to 170 ns) are defined by
the resistor, capacitor, and pre-charge voltage.

Charged Device Model (CDM)

This model considers a charged device instead of a charged external entity, and is to be
classified as a single pin event. Charge is built up during handling of the device, e.g. when
it “slides along the plastic rails of the production line and discharges upon touchdown
on the PCB” [25]. The CDM “is considered to be the [...] best representation of what
can occur in automated handling equipment used in manufacturing and the assembly of
integrated circuits (ICs) today. It is well known that the largest cause by far of ESD
damage to an IC during device handling [...] is from charged device events” [27]. Since the
JS-002 standard is not freely available, the following information is from its predecessor
ESDA standard ANSI/ESD S5.3.1-2009. For testing purposes, a controlled charge is
required to be generated on the device. There are two methods described: The first is the
direct charging method where the DUT pins are charged via a 100 MΩ resistor – either
all simultaneously or only a VSS pin with ohmic connection to the substrate. The second
method, the Field-Induced Charged Device Model (FICDM), uses an electric field plate

20

2.2. ELECTROSTATIC DISCHARGE

to charge the device. Both methods discharge after charging via one pin and repeat the
procedure until all pins are tested.

The module capacitance is assumed to be in the range of 1 pF to 30 pF. Note that
the S5.3.1-2009 standard does only specify waveforms for “verification modules” of 4 pF
and 30 pF as the waveform depends on the DUT. The equivalent circuit and waveform
shown in Fig. 2.10 and 2.11 are therefore only typical examples. The CDM event involves
high but also highly damped currents. The important distinction to the HBM is the
significantly shorter duration of around 2 ns. Similar to the HBM, several voltage classes
are defined ranging from 125 V to 2 kV.

DUT
5 pF

25 Ω 10 nH

Fig. 2.10: Typical Charged Device Model equivalent circuit [25].

0 0.5 1 1.5 2 2.5 3 3.5 4

0

5

Time [ns]

C
D

M
C

ur
re

nt
[A

]

Fig. 2.11: Simplified CDM current waveform according to the circuit in Fig. 2.10, similar
to S5.3.1-2009, for a 500 V discharge.

Machine Model (MM)

This model simulates an arc discharge [28] of a charged machine component across two
pins of the DUT. However, its relevance has decreased and it is, e.g., not required in
the automotive industry anymore [25]. This fact is also underlined by the non-existing
merged standard from the ESDA and JEDEC, which does exist for the HBM and the
CDM – but it is still showing up sometimes and is therefore worth mentioning here.

21

2.2. ELECTROSTATIC DISCHARGE

The ESDA standard for the Machine Model (MM) is ANSI/ESD S5.2-2009. It gives an
example circuit for testing as shown in Fig. 2.12. Compared to the HBM, the resistance
is very low and the size of the capacitor is roughly doubled.

200 pF

10Ω 700 nH

DUT

Fig. 2.12: Machine Model equivalent circuit according to S5.2-2009.

The current waveform, shown in Fig. 2.13, is a weakly damped oscillation with higher
peak currents compared to the HBM. Again, there are several voltage classes defined by
S5.2-2009, reaching from 25 V to 400 V.

0 20 40 60 80 100 120 140 160 180 200

−5

0

5

Time [ns]

M
M

C
ur

re
nt

[A
]

Fig. 2.13: Simplified MM current waveform according to S5.2-2009 for a 400 V discharge
with the specified peak current within 7.0 A ± 10%. The period of the first
pulse is specified to be between 66 ns and 90 ns.

Transmission Line Pulse (TLP)

The Transmission Line Pulse (TLP) is not a required ESD test, but it is used during
technology development to obtain the current voltage characteristics of the semiconductor
devices during ESD events [26]. Standards on TLP testing are ANSI/ESD STM5.5.1-2014
and IEC 62615:2010. First commercial TLP testers became available in the 1990s, while
the idea dates back to the time after World War II. Using short pulses in the form of
square waves allows to measure the device properties without thermal destruction. The
rise time is usually below 10 ns for a 100 ns pulse and the total energy is chosen to be
identical to the HBM event [28]. To test shorter events like the CDM, the Very Fast

22

2.2. ELECTROSTATIC DISCHARGE

Transmission Line Pulse (VFTLP) has been developed, allowing for pulses with rise
times in the low hundred pico second and pulse widths in the low nano second range. A
standard for VFTLP is ANSI/ESD SP5.5.2-2007.
A TLP tester uses a voltage source to pre-charge a transmission line, which is then
allowed to discharge into the DUT. The pulse width is directly determined by the length
and propagation speed of the transmission line.

Other ESD Models

There are a more ESD models, listed for example in [28], but they are either not considered
or not required in the technologies in focus of this work. So they are only briefly named
and described here.

• Charged Cable Model – Discharge from a cable onto a chip or system. The cable
is modeled by a relatively large capacitor in the order of 1 nF which is discharged
through a resistor. Compared to Radio-Frequency (RF) signals the event is much
slower and its duration is determined by the cable length.

• Charged Cassette Model – Models the discharge of a charged storage or game
cartridge during mounting into the respective socket as it may appear in consumer
electronics. Seems to have been developed in the era of popular handheld game
consoles. The current waveform is similar to the MM, although the capacitance is
much lower at around 10 pF.

Discharge Path

It should be noted that the current waveforms shown in this subsection are assuming that
the discharge happens through a short. This is usually valid as working ESD protection
circuits should ideally act as a short circuit to deflect the ESD current. However,
predefined ESD modules for circuit simulators sometimes model the event with a fixed
current source, which is either due to the above assumption of a short or some other
reason.

2.2.2 ESD Failures

Another aspect of ESD are the failures inflicted to unprotected circuits, or by ESD events
too strong for the protection devices. These failures can occur to almost any device
on a chip if it is affected by the ESD event. The simulation of the ESD protection is
usually limited to applying an ESD source module in a circuit simulator and observing
voltages at different nets, which are assumed to break if certain voltages are exceeded.
An example for this may be the gate of the input amplifier of a receiver circuit. This
provides a baseline, but actual ESD failures can be much more complex and can occur at

23

2.2. ELECTROSTATIC DISCHARGE

unexpected places. Voldman [29] provides a comprehensive discussion of possible failures
and their consequences. He also observed that an ESD design methodology or EDA
tool is still missing, especially in comparison to advances made in other areas of chip-
design. Nevertheless, it should be noted that a significant part of ESD design and testing
is, and only can be reasonably done, by semiconductor companies – not chip design teams.

The first failure condition is a high temperature along the discharge path. Melting
materials can change crystal structure or cause changes in doping concentration as well
as displace material. Liquid metal may flow into the dielectric [29], which changes the
resistance of interconnects. Even without melting, thermal strain caused by different
expansion coefficients might cause mechanical stress between metal and dielectrics. The
behavior of material under electrical heating can be described by various electro-thermal
models [29], [30]. The second failure mechanism is exceeded breakdown voltages, which
mostly concerns insulators. The most delicate of these is the gate oxide, which gets
thinner with each node shrink to increase the control of the gate over the channel.
However, this also decreases the voltage necessary to reach the critical electrical field
strength for a breakdown. The same mechanism applies to any two neighboring metal
lines, both vertically and horizontally, as well as vias. Therefore, metal capacitors formed
from densely packed metal stripes, separated by dielectric, are vulnerable. The same is
true for inductors built from interconnect wires, which are one main aspect of this work.
Fig. 2.14 shows how the “under-pass” of an inductor presents a critical point for ESD
failure. For the T-coil network discussed in the next section, Voldman identifies the part
connecting pad and ESD devices to be the point of potential failure. However, as stated
before, the simulation of possible breakdowns within interconnects is not supported in
any feasible manner and is not focused on in this work.

IN OUT

Upper
Layer

Lower
Layer

Via

Under-Pass
Oxide Breakdown

Fig. 2.14: Possible ESD failure of an on-chip inductor.

24

2.2. ELECTROSTATIC DISCHARGE

And thirdly, besides a complete breakdown of a device, there is also the possibility
that it is only degraded. A MOSFET device may have its threshold voltage altered,
e.g. through charge injection. Another failure mechanism is a so-called soft breakdown
where the gate charge leaks into the dielectric. Such a soft breakdown usually leads to
a hard breakdown in a relatively short time [29]. Also passive components may suffer
from degradation as a change in impedance may modify properties like the reflection
coefficient at RF pins.

Historically, ESD robustness of semiconductor chips has been at its peak in the late
1990s. It has increased until 1997 through improvements in design and process technology.
However, when the performance of designs could no longer be increased as easily as
“promised” by Moore’s Law, lowering the ESD robustness was accepted. As data-rates
continue to rise, this trend will likely shrink ESD protection in the future.

2.2.3 ESD Protection Circuits

So far, possible ESD events and failures have been presented so to conclude this section,
a common ESD protection circuit is discussed. The circuit shown in Fig. 2.15 uses diodes
and power clamps as protection devices. It includes all three different kinds of pins,
power, ground, and I/O. There are other protection strategies using NFETs or thyristors,
but they are not considered in this work as the latter, for instance, may have a trigger
speed too low for fast CDM events.

Digital
I/O

Digital
VDD

Digital
VSS

Analog
I/O

Analog
VDD

Analog
VSS

Digital
Circuits

Analog
Circuits

Power
Clamp

Power
Clamp

Digital VDD
?
≈ Analog VDD

Fig. 2.15: ESD protection circuit for designs with two power domains, which can deflect
any discharge polarity between any two pins.

The fundamental idea of ESD protection circuits is to deflect high currents through
dedicated devices to protect the fragile internal circuits. So it would be ideal if the

25

2.2. ELECTROSTATIC DISCHARGE

protection device could act like a short circuit during an ESD event, while behaving like
an open circuit during normal operation. This leads to diodes as basic elements for this
job as they can conduct high currents or isolate two nodes. During normal operation, VDD

usually is larger than or equal to the I/O voltage, which in turn is larger than or equal
to VSS. Thus, diodes can only be applied in one direction between those nets, otherwise
they would prevent the protected circuit from functioning. Due to this however, it is also
not possible for the diodes to deflect ESD events with the same voltage relation. Hence,
an additional circuit is needed to also protect against this second half of events, which is
called power clamp. A frequency-triggered power clamp as it is commonly applied [31] is
shown in Fig. 2.16.

VDD

VSS

Fig. 2.16: RC- or frequency-triggered power clamp.

The power clamp is switched off at operating conditions, but in case of an ESD event,
the RC branch triggers the inverter chain and turns on the discharge transistor, called
clamp device. To trigger the inverter chain, the time-constant of the RC branch has
to be greater than the HBM (and MM) time constant so that the spike on VDD is not
transferred to the input of the first inverter and it registers a “zero” due to the risen
VDD. Furthermore, the RC time constant also determines the on-duration of the clamp
device, which has to be long enough to deflect most of the discharge current. However,
it cannot be chosen too large to avoid accidentally triggering the power clamp during
ramp-up of VDD at power-on. In more recent designs, the three inverters have been
reduced to a single one for improved trigger speed [31]. Conversely, the inverter chain
had the advantage of a smaller first stage that had less load on the RC branch. An
alternative to the frequency-triggered is the voltage-triggered power clamp. It triggers
when VDD is above a certain threshold. In this design, the clamp device is held off via a
resistor to VSS and activated via a string of series-connected diodes connected to VDD. A
pre-built power clamp is usually available in Process Design Kits (PDKs).

26

2.2. ELECTROSTATIC DISCHARGE

Protection across Power Domains

The circuit in Fig. 2.15 is split into two power domains, which is a commonly encountered
scenario, e.g. digital and analog domains are separated to avoid noise transfer from
the digital to the analog circuits via the power and ground rails. The coupling of the
two power domains via a pair of anti-parallel diodes is necessary to conduct discharge
currents between pins belonging to two different voltage domains. However, this can only
work if the voltages are similar enough to keep the diodes from conducting during normal
operation. With more diodes in series per string, higher differences can be tolerated.
Furthermore, as power domains are usually kept separate to lower noise, a trade-off
in terms of ESD protection and coupling between the power domains has to be found.
The device connecting the power rails can be omitted, but the ground device is usually
required.

HBM Protection

In advanced nodes, typically only HBM and CDM events are considered. The HBM event
involves a discharge through any two pins, even pins associated with different voltage
domains. So the protection scheme needs to provide a save current path for a large
number of combinations of two pins and on top of that, for both negative and positive
ESD voltages. Moreover, this protection circuit is expected to work while the chip is not
powered, which is important as ESD events tend to cover scenarios during device handling.
Looking only at a single voltage domain, there are six different discharge scenarios possible
(three pin combinations times two voltage polarities). Their corresponding discharge
path is listed in Tab. 2.1. Fig. 2.15 also shows that two stages of diodes are applied at
the I/O pin. The ones closest to the I/O-pin are called primary, and the ones closest to
the internal circuitry, secondary diodes.

First Pin Second Pin Discharge Path
VDD I/O power clamp and lower primary diode
VDD VSS power clamp
I/O VDD upper primary diode
I/O VSS upper primary diode and power clamp
VSS VDD diode parallel to power clamp
VSS I/O lower primary diode

Tab. 2.1: Possible ESD scenarios in a single power domain and their discharge path. This
assumes a positive ESD voltage at the first pin. Swapping the pins results in
the corresponding negative voltage discharge path.

The table shows that the power clamp, although it is placed between the power and
ground rails, is also used for half of the ESD events involving the I/O pin. Thus, the

27

2.2. ELECTROSTATIC DISCHARGE

resistance of this whole path is important for ESD robustness. Regarding events between
pins of different power domains, they are deflected similarly but are conducted across
the inter-domain devices.

CDM Protection

In contrast to the HBM event, the CDM emulates the discharge of a charged substrate
through any single pin. In case this is an I/O pin, the primary diodes are insufficient to
avoid damage at input gates. As the CDM event involves higher currents than the HBM
event at around 5 A to 30 A, an active primary diode with an on-resistance of around 1 Ω
still results in too high voltages across the receiver gate. Therefore, the secondary diodes,
which are much smaller (roughly ten times), and an ESD resistor are used to implement a
voltage divider that significantly lowers the gate-source voltage to avoid oxide breakdown.
This additional protection is usually only required for gates, i.e. typically at input pins,
and omitted for outputs.

Parasitic Diode Capacitance

During normal operation, the diodes are in reverse direction and their significant property
influencing RF signals is their reverse capacitance. This capacitance is caused by the
depletion region around the p-n junction in reverse operation. Its thickness depends on
the magnitude of the reverse voltage and as a consequence the capacitance does so, too.
A common relation for this is given by Eq. 2.7.

Cj(V) = Cj(0) ·
(
1− V

Vbi

)−nj

(2.7)

The built-in or diffusion voltage Vbi depends on the doping strengths of the p and n
area. nj depends on the doping gradient from one contact to the other. An abrupt
junction yields nj = 0.5, while a constant gradient yields nj ≈ 0.3. The voltage dependent
capacitance is to be considered when the compensation circuit is designed, which is done
by simulating the diodes at the correct DC bias. However, it will not be possible to
design voltage dependent inductors compensating the transient, signal dependent change
in capacitance.

28

2.3. ESD DEVICE COMPENSATION

2.3 ESD Device Compensation

The previous section has motivated the importance of ESD protection, as well as its
negative impact on RF designs. This section provides a discussion of on-chip inductor-
based capacitance compensation. There are other means for compensation like PCB
based inductors [32], however they are not considered here as the SerDes should be a
stand-alone Intellectual Property (IP) block. Furthermore, the separation between ESD
devices and a PCB inductor is too large in the multi-GHz domain. Another method uses
high-speed amplifiers to mirror the input voltage to an intermediate node of the diodes to
cancel their capacitance [33] (called bootstrapping). As these amplifiers need power, are
also making use of an inductor, and present an additional capacitive load, this method
is not applied here. Instead, the focus lies on using only passive inductors. For these,
a variety of different circuits are proposed in literature for a multitude of applications.
They can be classified as shown in Fig. 2.17.

Can the ESD devices be split?

Distributed ESD Protection Lumped ESD Protection

On-Chip
Transmission Line LC Ladder

Inductive
Peaking T-Coil

Fig. 2.17: Attempt to classify on-chip inductor-based circuits for ESD compensation.

This section will begin with the distributed circuits, which are then followed by the
lumped circuits. As the T-coil allows to ideally compensate the diode capacitance,
neglecting all kinds of secondary effects, it is the circuit of choice. The section is therefore
concluded with an analysis of two additional parasitic effects on the T-coil design –
the series resistance of the inductor windings and the capacitance of the pad. Where
necessary, this section already makes some arguments that are related to the physical
layout of the circuits. For more details on these refer to chapter 3. The previous section
has shown that the receiver CDM network includes a set of secondary diodes and an
ESD resistor. These are attributed to the input stage of the receiver and, along with
its input capacitance, neglected. As such, the calculations done in this section can be
transferred unchanged to the transmitter output. A co-design of ESD compensation, and
receiver front-end and transmitter driver is beyond the scope of this work but will likely
be beneficial in future designs, though also much more complicated.

29

2.3. ESD DEVICE COMPENSATION

2.3.1 Distributed ESD Protection

The idea behind a distributed compensation scheme is to continue the channel on-chip
and incorporate the diode capacitance in this transmission line [34]. Such a scheme makes
use of the possibility to split ESD devices in smaller parts, which is not always possible.
The termination resistor is then free of the parallel capacitor and can easily terminate
the channel. This structure is shown in Fig. 2.18.

IN,Vin

Z0 Zline

CL/n

Zline

CL/n RT

OUT,Vout

Fig. 2.18: Distributed compensation scheme with parasitic ESD device capacitance split
into n parts.

The on-chip transmission line impedance, Zline =
√

Lline/Cline, is chosen to satisfy the
condition in Eq. 2.8.

Z0
!
=

√
Lline

Cline + CL/n
(2.8)

This distributed structure has several drawbacks. Chaining ESD devices along a trans-
mission line will result in different resistances from the pad to each of them. This may
cause imbalanced ESD currents flowing through each device, with the highest current
stress on the one closest to the pad. Consequently, this device may break and limit ESD
tolerance [8]. Another important aspect is the size necessary to build a transmission line
on chip. There are basically three different regimes of electrical design, separated by the
relative size of the system to the wavelength of the signals [35]. If the geometric size of
the system is much smaller than the signal wavelength (l � λ), problems are solved with
circuit theory where voltages are assumed to be constant over the extent of a net. For
similar sizes (l ≈ λ), in the regime of microwave engineering, the variation of voltage due
to phase differences over the length of a conductor has to be taken into account. And for
very high frequencies (l � λ), problems can be treated with the methods of geometrical
optics [35]. Considering the range of SerDes bit-rates from 10 Gbps to 32 Gbps, which
provided the context for this work, frequencies up to 16 GHz – and at most 48 GHz as
the second term in the Fourier series of a periodic rectangular function – can be expected.
For typical medium length channels the 48 GHz will never actually cross the channel
twice to make reflection at this frequency of any concern. Thus, overestimated by quite a
bit, the shortest wavelength to be considered is λ = c/48 GHz ≈ 6.25 mm. This is more

30

2.3. ESD DEVICE COMPENSATION

than ten times the length of the entire SerDes block (≈ 600 µm). Hence, it is unrealistic
to work with transmission line properties for capacitance compensation. The circuit will
actually behave like an LC ladder network.

Another aspect of this is that a simple estimation of the wire length required to provide
the necessary Lline also results in lengths above 1 mm. In section 3.2, an approximate
formula for the inductance of a straight wire with rectangular cross-section will be derived.
Assuming Cline to be zero, CL to be 300 fF, and width plus thickness of the wire to be
10 µm, Eq. 2.8 can be transformed into Eq. 2.9 relating the number of segments n with
the length of a segment l.

n · l ·
(

ln
(

l

5 µm

)
+ 0.5

)
= 3750 µm (2.9)

Choosing n = 10 results in a segment length of l = 106 µm. This is of course only
approximate but highlights space as the main drawback of this approach. The large
space required is also pointed out by Kim et al. [36].

Two-Stage LC Ladder

Instead of a transmission line, the Zline can be simply replaced by an inductor to build an
actual LC ladder network. A typical inductor for this application takes around (40 µm)2,
hence it is not possible to use more than two inductors per pin (see Fig. 2.22). The
schematic is shown in Fig. 2.19. While it is technically a lumped circuit, it is still
considered a “distributed ESD protection” in this work because the ESD devices are
split.

IN,Vin

Z0

CL1

LP1

CL2

LP2

CL3 RT

OUT,Vout

Fig. 2.19: Two-stage LC ladder network.

The performance of this circuit, as well as of the following circuits in this section, is
optimized by minimizing the reflection around s = 0, where s = jω is the complex angular
frequency. This is done by using the free parameters to cancel the same number of terms
in a series expansion of Γ at s = 0. Transfer functions are analyzed after the optimal
parameters are inserted and can therefore only be optimized by choosing the location of
the output voltage or with parameters not needed to optimize the reflection. One might
argue that a complex metric to trade reflection versus bandwidth and group delay may

31

2.3. ESD DEVICE COMPENSATION

be a better way to achieve lower bit error rates. However, this requires knowledge about
the exact channel, which is often not possible, e.g. PCIe cards have to operate in a large
number of different mainboard designs. Hence, it is hardly possible to assess how much
reflection is too much. Nevertheless, the priority of reflection over the transfer function
in this context is not pointed out in literature very well to the author’s knowledge and is
therefore highlighted here.

This two-stage peaking circuit has four free parameters, LP1, LP2, and two of the
capacitors, as their overall sum is fixed to CL. The optimal configuration is found for
CL1 = CL3 and CL2/CL = (

√
5− 1)/2 ≈ 0.618. Note that this is the golden ratio. The

inductors are sized to LP1 = LP2 = CLZ
2
0/2 in this configuration. Fig. 2.20 compares the

reflection to the uncompensated case, as well as another (suboptimal) configuration that
simply splits the diodes into two halves. The corresponding transfer function magnitudes
are shown in Fig. 2.21. The location of the output in this circuit is optimal in terms of
flat magnitude and group delay, which are two properties usually desired to reduce signal
distortion.

The suboptimal variant using CL1 = 0, CL2 = CL3 and LP1 = LP2 was implemented
in this work for a SerDes design in a 28nm technology. A micrograph of this is shown in
Fig. 2.22. The diodes consisted of twenty elements and were split into two packs of ten.
Despite being far from the optimal solution for this topology, this layout was chosen due
to difficulties with tools, the methodology, and a lack of experience in the first months
of this work. The inductors were sized based on analytic formulas found in literature.
However, this was possibly quite inaccurate (more on this in chapter 3). It was originally
planned to already use a T-coil design, but this attempt was discarded due to a missing
methodology to simulate and extract the electrical properties of the T-coil layout.

32

2.3. ESD DEVICE COMPENSATION

0 5 10 15 20 25 30 35 40 45 50
−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency [GHz]

R
efl

ec
tio

n
Γ

[d
B

]

w/o compensation
suboptimal split
optimal split

Fig. 2.20: Reflection of the two-stage ladder network for CL = 300 fF.

0 5 10 15 20 25 30 35 40 45 50
−20

−15

−10

−5

0

Frequency [GHz]

Tr
an

sf
er

Fu
nc

tio
n

[d
B

]

w/o compensation
suboptimal split
optimal split

Fig. 2.21: Transfer function of the two-stage ladder network for CL = 300 fF.

33

2.3. ESD DEVICE COMPENSATION

320 µm

160 µm
D

io
de

s

D
io

de
s

D
io

de
s

D
io

de
s

TX P

TX N

RX P

RX N

LP1

LP2

Power
Ground

Grid

Fig. 2.22: A two-stage ladder network applied to a 28nm SerDes design. The black
circles are the bumps which are connected to LP1 via the thick, grainy, yellow,
‘L’-shaped traces.

2.3.2 Lumped ESD Protection – The T-Coil

As distributed ESD devices can impede the protection, it is worthwhile to take a closer
look on lumped ESD protection schemes. The simplest is inductive peaking using a
single inductor in series with RT . Unfortunately, the improvement in reflection is very
poor [8]. This can be changed by inserting more peaking inductors into the circuit, e.g.
one in every branch as shown in Fig. 2.23. The three inductors are covering basically any
relevant version of this circuit in terms of input impedance. Note that a parallel inductor
to ground is not possible since this would cause complete reflection at low frequencies.
Before considering any transfer functions, the reflection has to be optimized. It is given
in Eq. 2.10. From the DC point, RT = Z0 is obvious and already inserted to shorten the
expression.

Γ =
(Lz + Lr − CLZ

2
0)s+ (Lz − Lr)CLZ0s

2 + (LzLr + LzLc + LrLc)CLs
3

2Z0 + (Lz + Lr + CLZ2
0)s+ (Lz + Lr + 2Lc)CLZ0s2 + (LzLr + LzLc + LrLc)CLs3

(2.10)

Fortunately, the numerator polynomial of the reflection has three coefficients that vanish
for Lz = Lr = CLZ

2
0/2 and Lc = −CLZ

2
0/4. The immediate observation is the negative

Lc, which cannot be realized with a simple inductor. However, negative inductors can be

34

2.3. ESD DEVICE COMPENSATION

IN,Vin

Z0 Lz

OUTL,Vl

Lc

CL

Lr

RT

OUTZ,Vz

OUTC,Vc OUTR,Vr

Fig. 2.23: Possible inductor positions for an inductive peaking network.

created through coupling of two or more positive inductors. This line of thought may
have led to the development of the so-called T-coil. A T-coil is a 3-terminal inductor
that is created from a 2-terminal inductor by splitting it in two halves with an additional
third terminal called center tap. In principle, this center tap can be placed anywhere on
the wire between the other two terminals. The inductance seen as a 2-terminal inductor
is Ltot, which is consequently split into two parts by the center tap. Then the self-
inductances of both parts are called La and Lb. However, the splitting demands to take
the mutual inductance Lm = k

√
LaLb between both parts into account, where k ∈ [0, 1]

is the coupling factor. The total inductance is now given by Ltot = La + Lb + 2Lm. This
coupling also existed in the two-stage ladder network but could be neglected there as
lateral coupling is much weaker than vertical coupling. Hence, to achieve a significant
coupling, the inductor halves of the T-coil are stacked above each other on different
layers. This is also a significant advantage of the T-coil compared to the two-stage ladder
as it uses only the space of a single inductor.

L1
Ltot

L2

k

L1
La Lb

L2

CT

L1
L1 L2

L2

L3

CT

Fig. 2.24: Center tap splits coil (left) in two coupled parts (center), which are represented
by a three inductor equivalent circuit (right).

A relation between (La, Lb, Lm) and (L1, L2, L3) can be derived as the equivalent
circuit has to show the same behavior when the center tap is floating as the 2-terminal
inductor. Therefore, La + Lb + 2Lm = Ltot = L1 + L2 has to be true. Similar conditions
are found for a floating L1- or L2-terminal: L1 + L3 = La and L2 + L3 = Lb. Solving for
the equivalent circuit parameters arrives at the results in Eqs. 2.11 to 2.13. It is worth

35

2.3. ESD DEVICE COMPENSATION

to point out that some publications tend to prefer working with the equivalent circuit,
i.e. (L1, L2, L3), while others favor the coupled inductors, i.e. (La, Lb, Lm). The former
is preferred in this thesis as it has the advantage of removing the coupling factor from
the expressions derived for L1 and L2.

L1 = La + Lm = La + k
√
LaLb (2.11)

L2 = Lb + Lm = Lb + k
√
LaLb (2.12)

L3 = −Lm = −k
√
LaLb (2.13)

Fig. 2.25 shows the lumped ESD protection network with a T-coil. Compared to the
peaking circuit, an additional capacitor CB is added. The vertical stacking of the inductor
halves causes a significant bridging capacitance between them, which is included as a
capacitor from L1 and L2. The most important aspect is that it does not prohibit perfect
impedance matching but can be used to tune certain transfer functions. Since the internal
node of the inductors is not existing anymore, OUTL cannot be used any longer to connect
input or output of the internal circuitry.

IN,Vin

Z0

CL RT

OUTZ,Vz

OUTC,Vc OUTR,Vr

CB

L1 L2

L3

Fig. 2.25: Termination network using a T-coil.

The reflection can be easily calculated through a Π-to-T conversion of the Π-network
formed by L1, L2, and CB , as shown in [37] and Fig. 2.26. This allows to easily calculate
the termination impedance and therefore the reflection. Eq. 2.14 only shows the numerator
since the denominator is not needed to set Γ to zero.

Γ =
(L1 + L2 − CLZ

2
0) · s+ CLZ0(L1 − L2) · s2 + CL(L1L2 + (L3 − CBZ

2
0)(L1 + L2)) · s3

...
(2.14)

Every coefficient has to be zero, which yields three conditions. The one for s2 demands
L1 = L2. From this, the coefficient of s sets L1 = L2 = CLZ

2
0/2. Putting this into the

coefficient for s3 results in L3 = (CB − CL/4)Z
2
0 . Thus, the condition of a matching

network sets all inductances of the network to defined values, but CB remains as a degree
of freedom.

36

2.3. ESD DEVICE COMPENSATION

Z1 =
L1s

(L1+L2)CBs2+1

L1
Z2 =

L2s
(L1+L2)CBs2+1

L2

Z3 =
L1L2CBs3

(L1+L2)CBs2+1

L3

CT

Fig. 2.26: T-coil converted to star topology.

Transfer Functions in the Matched T-Coil Network

There are three possibilities to connect the input/output of the internal circuitry to the
T-coil network, OUTZ, OUTR and OUTC. This consideration can be divided in two sub-parts:
One for applying the network at the input of a receiver and another one for the output of a
transmitter. For calculating the transfer function, it is important to consider the channel
as it occurs as a source impedance of the input voltage at the receiver and as a load
impedance for transmitter circuits. Since some papers apply the T-coil for bandwidth
improvement of amplifiers, their load impedance might be different and therefore different
results are obtained for these circuits. At DC, each transfer function has a value of 1/2
because of the voltage divider of Z0 and RT . This offset of −6 dB does not alter the shape
of the transfer functions, hence they are normalized to H(0) = 1. Another assumption
made is that internal circuitry does not present any load to the T-Coil network, and thus
their properties do not influence the reflection and transfer functions. This is of course
a simplification. Calculating the transfer functions under the above conditions for the
receiver yields Eqs. 2.15 to 2.17. This is a perfect transfer function at OUTZ and a second
order all- and low-pass at OUTR and OUTC, respectively.

Hz(s) = 1 (2.15)

Hr(s) =
CBCLR

2
T s

2 − CLRT s/2 + 1

CBCLR2
T s

2 + CLRT s/2 + 1
(2.16)

Hc(s) =
1

CBCLR2
T s

2 + CLRT s/2 + 1
(2.17)

Before discussing the above functions, it is insightful to point out why they are identical
for transmitter circuits. A CML transmitter acts like an ideal current source under
the above simplifications. As such, it does not load the node it is connected to and
does not change the termination impedance. The resulting transfer impedance Vz/Iin

37

2.3. ESD DEVICE COMPENSATION

can be transformed into a transfer function by using the transfer conductance gm of
the transistor: Iin = gmVin. Normalizing so that H(0) = 1 then cancels the gm and
therefore also results in the above transfer functions. In case of an SSTL driver, the
only possible configuration is the all-pass as it has to be in series with RT . At this
point, it seems obvious where the RX and TX should be connected. However, due to the
series resistance of a real inductor, the associated voltage drop can be too much for the
internal circuitry when directly attached to the pad. For the other two transfer functions,
CB can be chosen for specific properties. The low-pass has a maximally flat amplitude
response with CB = CL/8 (MFA, Butterworth) and a maximally flat group delay with
CB = CL/12 (MFED, Bessel). The all-pass achieves maximally flat group delay as well,
also at CB = CL/12, which cancels the second order term in the group delay series
expansion (Eq. 2.18). A flat group delay is usually preferred for signal transmission.

τg,all(ω) = CLZ0 +

(
3CBC

2
LZ

3
0 −

C3
LZ

3
0

4

)
ω2 +O(ω4) (2.18)

The discussed transfer functions are plotted in Fig. 2.27 and 2.28 along with the uncom-
pensated diodes. The reflection is not plotted as it is trivial for this circuit.

0 5 10 15 20 25 30 35 40 45 50
−10

−8

−6

−4

−2

0

Frequency [GHz]

Tr
an

sf
er

Fu
nc

tio
n

[d
B

]

w/o T-coil
Hz and Hr

Hc MFA
Hc MFED

Fig. 2.27: Magnitude of T-coil network transfer functions for CL = 300 fF.

38

2.3. ESD DEVICE COMPENSATION

0 5 10 15 20 25 30 35 40 45 50

0

2

4

6

8

10

12

14

16

Frequency [GHz]

G
ro

up
D

el
ay

[p
s]

w/o T-coil
Hz

Hr MFED
Hc MFA
Hc MFED

Fig. 2.28: Group delay of T-coil network transfer functions for CL = 300 fF.

To get a possibly more expressive parameter for the pole tuning than CB, a variety of
mappings to other parameters is introduced by various papers. This does not produce
much insight into the T-coil circuit but can avoid confusion when comparing different
sources in literature.

Coupling Factor

The inductor coupling factor k is commonly used to replace CB. This is done via Eq. 2.13
and by inserting the inductor values as calculated for perfect matching. The resulting
quadratic equation yields only one valid result, for which L3 has to be negative.

L3 = −k
√
(L1 + L3)(L2 + L3) ⇒ CB =

CL

4

1− k

1 + k
(2.19)

In turn, also L3 can be expressed in terms of k.

L3 = −CLZ
2
0

2

k

1 + k
(2.20)

Damping Factor

The low-pass transfer function Hc is sometimes compared to the canonical form of a
second-order function with a cut-off frequency ω0 and a damping factor ζ. Paramesh et
al. [38] use this to map CB to ζ. It is also common to encounter L3, k, and ω0 in terms

39

2.3. ESD DEVICE COMPENSATION

of ζ as shown in Eqs. 2.21 to 2.24.

1

CBCLZ2
0s

2 + CLZ0s/2 + 1

!
=

1

s2/ω2
0 + 2ζs/ω0 + 1

⇒ CB =
CL

16ζ2
(2.21)

L3 = −CLZ
2
0

4

(
1− 1

4ζ2

)
(2.22)

k =
4ζ2 − 1

4ζ2 + 1
(2.23)

ω0 =
4ζ

CLZ0
(2.24)

This is done to achieve an expression for the bandwidth. It is found that the −3 dB
frequency of this circuit is given by Eq. 2.25. Note that [38] is missing the outer square
root in the below expression.

ω-3dB =
4ζ

CLZ0

√
1− 2ζ2 +

√
(1− 2ζ2)2 + 1 (2.25)

To quantify the improvement achieved with the T-coil, the bandwidth extension factor
(BWXF) is defined in [38]. However, the circuit considered in [38] is an amplifier stage
with only CL as load. In case this amplifier would drive a channel, Z0 would have to be
considered in parallel to CL, effectively reducing the BWXF by a factor of 2.

BWXFamplifier =
ω-3dB

1/(CLZ0)

ζ=1/
√
2

= 2
√
2 (2.26)

Pole Angle

The poles of the canonical second order system are located at s1/2 = −ω0(ζ ∓
√

ζ2 − 1)

in the complex plane. Galal et al. [8] use this to express ζ as a function of the pole angle.
Hence, the known pole angles for MFA (θ = 135°) and MFED (θ = 150°) can be inserted
directly to obtain the corresponding transfer function.

tan(θ) =
Im
{
s1/2

}
Re
{
s1/2

} =
∓
√
ζ2 − 1/j

ζ
⇒ ζ =

1√
1 + (tan(θ))2

(2.27)

CB =
CL

16

(
1 + (tan (θ))2

)
150°
=

CL

12

135°
=

CL

8
(2.28)

L3 = −CLZ
2
0

16

(
3− (tan (θ))2

)
150°
= − CLZ

2
0

6

135°
= − CLZ

2
0

8
(2.29)

k =
3− (tan (θ))2

5 + (tan (θ))2
150°
=

1

2

135°
=

1

3
(2.30)

40

2.3. ESD DEVICE COMPENSATION

2.3.3 Parasitic Series Resistance

The previous subsection analyzed the most basic design equations for the ideal symmetric
T-coil. A real T-coil will suffer from parasitics, with the most dominant parasitic intrinsic
to the T-coil being its finite series resistance. Fig. 2.29 shows the equivalent circuit for
the resistive T-coil.

L1
R1 L1 L2 R2

L2

CB

L3

R3

CT

Fig. 2.29: T-coil with parasitic resistance and bridging capacitance.

Adding three additional resistors renders exact solutions as shown before very compli-
cated. It is possible to derive some expressions, but they are very involved and do not
provide much insight. R1 and R2 are, depending on the metal thickness, below 3 Ω. R3

is much smaller and below 100 mΩ as it is only a contact wire to access the mid point of
the T-coil. Since the winding resistance changes with the inductance, it is difficult to
optimize it concurrently. Therefore, the resistance is usually tolerated. Nevertheless, it is
interesting to see how much this degrades the impedance matching for a circuit designed
with the ideal T-coil. For this, R1 = R2 = 10R3 = Rw is assumed. The termination
resistor is tuned for each curve in Fig. 2.30 to RT = Z0 − R1 − R2. This is also done
within the SerDes adaptation via a tuneable RT , which is also used to compensate process
variation of the termination resistor. The bridging capacitance is set to CB = CL/12

as it influences the termination impedance when the T-coil becomes resitive. It can be
concluded that the resistance of a typical T-coil, as used in this work, is still low enough
to be neglected during inductor sizing.

41

2.3. ESD DEVICE COMPENSATION

0 5 10 15 20 25 30 35 40 45 50
−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency [GHz]

R
efl

ec
tio

n
Γ

[d
B

]

w/o T-coil
Rw = 0.5 Ω
Rw = 1 Ω
Rw = 2 Ω
Rw = 4 Ω
Rw = 8 Ω

Fig. 2.30: Reflection of resistive T-coil for CL = 300 fF.

2.3.4 The Pad Capacitance

Up to this point only the ESD diode capacitance CL was considered, however the pad
itself is actually a large plate capacitor whose size heavily depends on the structures
beneath it. As such, it is highly interesting to analyze the potential influence it might
have on the termination quality of the circuit. Fig. 2.31 again shows the T-coil network
but with an added CP to represent the pad. Unlike CL, CP can neither be split nor
moved behind an inductor.

IN,Vin

Z0

CP

CL RT

CB

L1 L2

L3

Fig. 2.31: Termination circuit using a T-coil, including the pad capacitance CP .

42

2.3. ESD DEVICE COMPENSATION

Therefore, the reflection cannot be canceled with a T-coil anymore, but the second to
fourth terms in the series expansion can be set to zero by using an asymmetric T-coil
with the parameters in Eqs. 2.31 to 2.34. CB cannot be used to cancel the fifth term
and is chosen to minimize the group delay for the all-pass transfer function. The below
equations show that L1 and L2 are generally larger but also skewed depending on the
ratio of CP /CL. The asymmetry of the resulting T-coils rises very fast with higher CP .
For CP = CL/3, they are already a factor of two apart. The equations do not result
in a valid T-coil for arbitrary CP , which limits the maximum pad capacitance to be
tolerated by an asymmetric T-coil. Although the limit is set by CB to CP ≈ 0.315CL, it
can be set to zero for higher pad capacitances. Then the limit is imposed by k ≥ 0 and
increased to (

√
2− 1)CL. Although these limits seem to be reasonable, a T-coil using

stacked inductors with zero bridge capacitance cannot be built. The same goes for zero
coupling. At these limits, the circuit gradually transforms into the LC ladder network
(CL1 = CP , CL2 = CL, CL3 = 0), requiring two independent inductors.

L1 =

(
1 +

CP

CL

)
· (CL + CP)Z

2
0

2
L1 > 0 ⇒ CP ≥ 0 (2.31)

L2 =

(
1− CP

CL

)
· (CL + CP)Z

2
0

2
L2 > 0 ⇒ CP ≤ CL (2.32)

L3 = −
(
1− 3

C2
P

C2
L

)
· CLZ

2
0

6
0 ≤ k ≤ 1 ⇒ CP ≤ CL/

√
3 (2.33)

CB =
C4
L − 6C2

LC
2
P − 12CLC

3
P − 3C4

P

12CL(CL + CP)2
CB > 0 ⇒ CP / 0.315CL (2.34)

Since symmetric T-coils are easier to build than asymmetric ones, it is worthwhile to
consider the optimal parameters for this configuration. It will perform worse due to a
missing degree of freedom but still has the layout advantage of single T-coil instead of
two inductors. The third term in the series expansion of the reflection cannot be canceled
due to the missing degree of freedom, but the second and fourth terms vanish for the
inductances in Eqs. 2.35 to 2.37. CB is chosen to optimize the group delay of the all-pass
transfer function again. This time, CP is limited to CL/3 by k ≤ 1.

L1 = L2 =
(CL + CP)Z

2
0

2
L1, L2 > 0 ⇒ CP ≥ 0 (2.35)

L3 = −
(
1 + 3

CP

CL

)
· CLZ

2
0

6
0 ≤ k ≤ 1 ⇒ CP ≤ CL/3 (2.36)

CB =
C3
L + 6C2

LCP + 21CLC
2
P + 12C3

P

12(CL + CP)2
CB > 0 ⇒ CP ≥ 0 (2.37)

The T-coil has the main drawback that the pad capacitance cannot be incorporated

43

2.3. ESD DEVICE COMPENSATION

into the ESD capacitance, which is possible with the ladder network. Furthermore, the
asymmetric T-coil transforms into the ladder network when CP ≥ (

√
2− 1)CL. Due to

this, the two-stage ladder network is revisited again, and CP is now considered as a part
of CL1. It turns out that the size of CP defines four different regimes where the circuit
topology changes as some components become zero.

CP range Limit Topology
(CP /CL) ∈ [0,

√
5− 2) CL1 ≥ CP optimal split

(CP /CL) ∈ [
√
5− 2,

√
2− 1) CL2 ≤ CL suboptimal split (CL1 is too large)

(CP /CL) ∈ [
√
2− 1, 1) LP2 ≤ 0 no split (CL1 = CP , CL2 = CL, CL3 = 0)

(CP /CL) ∈ [1,∞] - inductive peaking (LP2 = 0)

Tab. 2.2: The size of the pad capacitance defines four different regimes for the two-stage
ladder network.

The larger CP becomes, the more the circuit transforms into simple inductive peaking.
In the first regime, an optimal split is still possible, and CL1 contains CP plus a small
portion of CL. At approximately 0.24CL, CL1 consists only of the pad capacitance and
cannot get smaller, thus resulting in an suboptimal split. Raising CP further moves
all parts of CL from CL3 to CL2 causing it to become zero at CP = (

√
2− 1)CL. Note

how this coincides with the asymmetric T-coil at this pad capacitance. The next regime
causes LP2 to decrease, which becomes zero at CP = CL, as does L2 in the asymmetric
T-Coil. For pads with a greater capacitance than the ESD devices, only a single inductor
peaking circuit is left.

Fig. 2.32 shows that the ladder network has very poor impedance matching when CP

exceeds the value that still allows for an optimal split. The asymmetric T-coil performs
better than the symmetric one, which is expected. The transfer functions are also heavily
impacted by the pad capacitance. It should therefore be reduced as much as possible.

To assess the actual value of CP that is to be expected in a typical design and potential
layout optimizations, several variations of the pad layout have been simulated with
the EMX field solver. The eight different layouts are shown in Fig. 2.33. Blue is the
redistribution (uppermost) layer, while purple is directly below and green below that.
The octagonal shape is the pad, and the vertical lines on the redistribution layer are a
common way to run power and ground. They are connected to the horizontal stripes in
an alternating pattern. From these lines, all circuits in this area are connected to power
and ground. The pattern is called power grid. The structure was fitted to a ∆-topology
of capacitors between pad, power, and ground. The CP given below the subfigures is
calculated as the sum of the capacitance from pad to power and pad to ground. For
reference, also the capacitance of the power grid is given.

44

2.3. ESD DEVICE COMPENSATION

0 5 10 15 20 25 30 35 40 45 50
−60

−50

−40

−30

−20

−10

0

Frequency [GHz]

R
efl

ec
tio

n
Γ

[d
B

]

w/o comp.
asym. T-coil
sym. T-coil
LC ladder

Fig. 2.32: Reflection of the asymmetric and symmetric T-coil networks, compared to
the two-stage ladder and uncompensated network. Each is plotted for a pad
capacitance of 10%, 20%, and 30% of CL = 300 fF.

The layouts in the first and third row are using a width-to-spacing ratio of 5:1, and
the ones in the second and fourth row a 1:1 ratio. Additionally, different variants are
presented in the four quadrants. The upper left quadrant only uses power grid on the
layer below the pad, while the upper right uses power grid on both layers. On the lower
left, the layer below the pad is left empty, while on the lower right, metal fill is inserted.
The simulation shows that the capacitance varies significantly between all designs. So
just for matching of the differential signal paths, it is already worth it to carefully layout
the structures below the pad. Fortunately, this effort can be limited to the next two
layers below the pad as the layouts on the left clearly show an immense decrease in
capacitance by skipping only a single layer. Furthermore, the upper half of the layouts
shows that the grid below the pad greatly shields the pad from structures below that grid.
Finally, the lower half of layouts shows that metal fill has a significant impact on the pad
capacitance. Hence, it has to be kept at a minimum. The analyzed circuits have shown
that the pad capacitance should be at most around 0.24CL, which is CP = 72 fF for the
typical diodes used in this work. Therefore, only minimum metal fill can be allowed
on the layer directly below the pad and the power grid below should be kept as thin
as possible. This shows that there is already extreme effort required just to achieve a
relatively reasonable pad compensation.

45

2.3. ESD DEVICE COMPENSATION

(a) CP = 351 fF and Cpow2gnd = 312 fF (b) CP = 355 fF and Cpow2gnd = 695 fF

(c) CP = 256 fF and Cpow2gnd = 139 fF (d) CP = 257 fF and Cpow2gnd = 318 fF

(e) CP = 54 fF and Cpow2gnd = 320 fF (f) CP = 93 fF and Cpow2gnd = 321 fF

(g) CP = 52 fF and Cpow2gnd = 143 fF (h) CP = 87 fF and Cpow2gnd = 143 fF

Fig. 2.33: Eight variants of possible layouts below the octagonal pad shape.

46

3

C
h

a
p

t
e

r

On-Chip Inductors

The previous chapter has elaborated on the importance of inductors in chip design,
especially for compensating capacitive input loads. In this chapter, the design process for
on-chip inductors is discussed in detail. The first section looks at different methods to
generate on-chip inductor layouts as these are very seldom provided by PDKs. Besides
the layout, a big question to answer is how its electrical properties correspond to the
schematic. The fundamental task is to close the design gap between electrical (schematic)
and geometric (layout) parameters. To do this, section 3.2 starts with the basics of
inductance calculation by considering the cylindrical wire and shows that even this
simple case is more complicated than expected. The mean distance approximation is
explained to calculate the self- and mutual inductance for arbitrary wire cross-sections.
Then, section 3.3 shows how on-chip inductors are modeled in the schematic, as well as
the influence of oxide, substrate, skin effect, metal fill, and process corners. The next
section discusses layout extraction and field solvers, and presents a scripted flow that
uses the layout generation and various EDA tools to transform geometric parameters
into S-parameters. In section 3.5, an MCMC fitting technique is used to map simulated
S-parameters to schematic-based models. Using the aforementioned results, the creation
of a model for T-coils in this particular process, which can be used for design optimization,
is described. The chapter is concluded with an analysis of time-domain measurements
from silicon test structures, and a brief overview on the challenges faced to integrate
T-coils and ESD devices into SerDes layouts.

47

3.1. INDUCTOR LAYOUT

3.1 Inductor Layout

This section discusses possible inductor layouts and how to generate them automatically.
The latter is essential to explore the design space in an efficient manner. The first
part shows the various limitations and constraints imposed by advanced nodes and
planar technologies in general, and takes a look at feasible inductor geometries and
their properties. The following subsections discuss different approaches to parameterized
cells (PCells). These cells are the foundation for layout generation and are available in
different flavors, namely Synopsys PyCells, Cadence SKILL PCells, and XCells. Cadence
Virtuoso, the analog design environment used in this work, is SKILL based, so SKILL
PCells are the native form of parameterized cells and are often provided in PDKs for
all basic devices. The term SKILL PCell is used in this work to differentiate from the
general term PCell. Since SKILL is a proprietary language, there has been an initiative to
develop PyCells, which are based on the Python language and aim to reduce the coding
effort. Another approach for a more graphical design of PCells is available from Cadence,
the PCell Designer. A tool that allows to graphically design PCells and generate the
necessary SKILL code. Due to shortcomings of all these approaches, the XCells were
developed at the CAG at Heidelberg University using a Python to SKILL translation
layer and a constraint-based approach [39].

3.1.1 Inductor Types

On-chip inductors are essentially metal traces arranged in a way that their geometry
causes a significant (parasitic) inductance. By being a parasitic property of a metal
trace, the inductor is by default not present in the schematic design phase but has to be
included for accurate simulation results. This raises a methodology problem, which is
addressed later in this chapter.

Section 2.3 has identified T-coils as a method to compensate the capacitive load caused
by ESD diodes. Therefore, this section is limited to discussion of T-coil layouts. The
location of the third pin, the center tap, adds a degree of freedom, but the layout of
simple two-terminal inductors is easily derived by just omitting this third pin. As a
consequence, the layouts and properties of two-terminal inductors are basically identical
and most results can be transferred to other on-chip inductors.

Before spending any effort on creating parameterized cells for inductors, it is worth
mentioning that the 22nm PDK considered in this work did provide an inductor capable
of forming a T-Coil. However, this inductor is intended to be used for oscillator circuits
in PLLs. Thus, it is required to provide a high quality factor to reduce the damping
of the oscillation. To achieve this, a low resistance is desirable, which comes with thick
metal traces provided by the redistribution layer, i.e. the thick top metal layer used for

48

3.1. INDUCTOR LAYOUT

pads. Furthermore, eddy currents are reduced by special fill patterns to avoid large and
especially contiguous metal shapes. To protect the inductor from its surroundings, special
guard structures are applied. Photographs of such inductors can be seen in Fig. 3.1. It
can be observed that octagonal layouts are chosen for this use case, as a more circular
design reduces the length of the traces and therefore decreases the resistance, while the
inductance stays roughly the same. More than eight edges are prohibited by most modern
technologies as angles other than 45° and 90° are not allowed by the design rules. In fact,
45° angles are almost exclusively limited to the redistribution layer. An exception are
again the foundry-sponsored PCells, which can use more relaxed design rules as their
environment is carefully controlled and the designs are verified by the foundry.

(a)

(b)

Fig. 3.1: Micrographs of inductors used for LC-oscillators in a 28nm (a) and a 22nm (b)
PLL design. The inductor on the left has an outer diameter of 169.2 µm, while
the one on the right has 100 µm. The displayed size ratio of both inductors is
identical to the actual size ratio. The PLLs were designed at the CAG and
Extoll GmbH though not in the context of this work.

The special design rules and the verified performance do make the PDK inductor an
attractive solution for oscillators, but the foundry PCell does not allow inner diameters
below 70 µm. This prohibits placing the inductor in between pads because they have a
center to center spacing of 150 µm and a diameter of 81.6 µm. So there is only a spacing
of 68.4 µm, which renders this foundry PCell non-feasible for the T-coil design targeted

49

3.1. INDUCTOR LAYOUT

in this work. The pads, or rather the solder balls above the pads, are the black circles
in Fig. 3.1. The SerDes makes use of differential signaling so two T-coils need to be
placed between two vertically arranged pads. Placing them below the pads is introducing
a huge coupling capacitance and significantly degrades the electrical properties of the
inductors, as it presents a large contiguous metal plate that allows eddy currents to
flow. This arrangement was analyzed in the early stages of this work with the goal to
save area but is of course very naive in retrospect. Eddy currents are mitigated by the
PDK inductors by using special minimum-sized fill patterns. Due to these constraints, it
becomes necessary to design custom PCells.

The design of inductors in planar technologies is practically compelled to use the lateral
dimensions as vertical inductors suffer from different layer thicknesses and the use of vias.
With the requirement to use only 90° bends, the square spiral is the most trivial inductor.
By placing a third pin, the center tap (CT), anywhere on the spiral, a T-coil is created. It
is shown in Fig. 3.2 and called tapped T-coil in this thesis, analogous to [40]. Note that
the red and blue parts indicate the two halves of the T-coil, not different layers. This
T-coil has the advantage to require only a single layer so the design does not depend
much on the metal stack. However, it is rather difficult to use this layout to build a
symmetric T-coil.

• non-symmetric
• arbitrary tapping ratios
• single layer
• high self-inductance
• low terminal-to-terminal capacitance
• medium mutual coupling

L1

L2

CT

Fig. 3.2: Tapped T-coil.

Mohan [40] also shows two more variants of this in a discussion of transformers. A
transformer is identical to two inductors in close proximity and is converted into a T-coil
by shortening one terminal of each, the first and second inductor. The variants shown
by Mohan are the interleaved and stacked transformer, and their T-coil versions are
shown in Fig. 3.3 and 3.4. In contrast to the tapped T-coil, the interleaved T-coil is
indeed symmetric, but the opposing current directions in neighboring segments lower
the inductance significantly. As a result, it provides too low inductance per area to fit

50

3.1. INDUCTOR LAYOUT

between pads.

L1

L2

CT

• symmetric
• single layer
• low self-inductance
• low terminal-to-terminal capacitance
• low mutual coupling

Fig. 3.3: Interleaved T-coil.

• symmetry depends on layers
• double layer
• high self-inductance
• high mutual coupling
• medium terminal-to-terminal capaci-

tance

CT

L1

L2

Fig. 3.4: Stacked T-coil.

Of these variants, the stacked T-coil fits best for the targeted use case. The need
for two relatively thick and similar layers is actually not a hindrance in the considered
technologies. Both provide a pair of thicker metal layers below the redistribution layer.
And using two layers with current flowing in the same direction results in a high self-
inductance per area. The vertical separation also leads to increased mutual-inductance
compared to the lateral coupling of the tapped T-coil. Last but not least, it is symmetric
due to identical layer types, which is perfect for impedance matching.

All T-coil variants share the problem that an additional metal trace is needed to
contact the CT pin and route it to the cell boundary. The layer of this trace has to be
different from the layers used for the windings. This adds non-ideal properties compared
to the equivalent circuit model but cannot be avoided. By making this trace part of
the T-coil cell, it is included in the EM-simulation and does not cause layout-dependent
changes when the T-coil is inserted in its environment. Lateral coupling to structures
outside the cell boundary is smaller than coupling to structures above and below the

51

3.1. INDUCTOR LAYOUT

cell. So to avoid that other structures are placed below or above the inductor on unused
layers, a special foundry-defined fill pattern can and should be included as simulation
results show in section 3.3. This fill pattern consists of very small square shapes to assure
the inductor is manufactured correctly, but it also reduces eddy currents compared to
regular fill. The implications of these fill structures on layout extraction are discussed
later in section 3.4.

3.1.2 Layout Generation

The different kinds of possible layouts for T-coils can all be easily drawn in the layout
entry tool. However, coming from the schematic design phase, there is little indication
on what to draw. Thus, many iterations will likely be needed to get the “correct”
layout with the desired electrical properties. Each iteration entails altering the layout by
hand. Consequently, a lot of repetitive work is saved if the redraw process is automated.
Furthermore, as soon as fill or guard structures are introduced, automation is inevitable.
Several methods were evaluated and applied over the course of this work. They will be
presented in the following subsections in chronological order. This subsection aims to
give a brief background on why all these methods were evaluated.

Starting with the first attempt to design a T-coil for ESD capacitance compensation,
it was obvious that a method to generate different T-coil layouts will be needed. Without
any experience, it was guaranteed that more than one inductor had to be designed
before the “right” one was found. The method of choice was to write a SKILL function,
accompanied by a set of helper functions, which took the geometric parameters and drew
a T-coil layout in the currently active layout entry window. Beforehand, the SKILL
functions had to be loaded into Virtuoso. As mentioned before, this first attempt aimed
to place the inductor below the pad. However, EM-simulation revealed relatively late
that the designed T-Coil was too large and that placing it below the pad was not a good
idea. Furthermore, no method to convert the S-parameters produced by the simulator
to schematic parameters existed at this point. So due to time constraints, a simpler
square spiral two-terminal inductor, like the tapped T-Coil, was finally implemented
as SKILL PCell and used in the submitted design. The layout for these inductors was
determined via formulas found in literature [41]. This was the 28nm design which is
shown in Fig. 2.22. Coming from this, the goal was still to deploy a T-coil in the next
design (22nm), albeit smaller and between the pads. A T-coil PCell had to be created
but not necessarily with SKILL. The intention was to find an easier and more portable
method to design PCells, now that a technology change was ahead. Potentially, even
other parts of the SerDes layout could be automated in this way. This led to the idea to
try the Python-based PyCells, which are described in the next subsection.

52

3.1. INDUCTOR LAYOUT

3.1.3 PyCells

PyCells were developed by the company Ciranova, which was aquired by Synopsys in
2012. The concept behind the PyCells is to enable the description of layout in Python,
while providing existing EDA tool support by writing PCell information to OpenAccess
files. OpenAccess is an EDA database format designed for interoperability between
tools of different vendors. It is “open” in the sense that the code can be seen and
modified when paying the membership fee [42]. The Silicon Integration Initiative (Si2)
manages these memberships. It was created to enable design tool interoperability and
within it the OpenAccess Coalition formed, a coalition of many major semiconductor
companies. OpenAccess provides an API to the database format, and in contrast to
other EDA standardization attempts, there is also a C++ reference implementation
available, which was donated by Cadence Design Systems in 2002 [43]. The format can
store, among many other things, schematic and layout information like ports, shapes,
nets, and parasitics. Files use the .oa extension. So to make PyCells compatible with
other EDA tools, Ciranova developed a Python wrapper for the reference implementation
of the OpenAccess API [44]. This allows to access and modify design files in Python code.
An IDE, called PyCellStudio, with debugging capabilities is also provided. The designer
can now benefit from object-oriented programming to lower the amount of repetitive
code and of course other features Python provides. The PyCells are expected to greatly
reduce the coding required for a specific task compared to the Cadence-specific SKILL
PCells. Furthermore, with the use of layer-mapping files and technology-independent
functions of the PyCell API, a high degree of reusability of existing code in case of a
technology change can be achieved.

PyCell Code

The research conducted on PyCells was one of the first things done for this thesis. In the
meantime, PyCells are still being developed by Synopsys, and also the 22nm technology
considered here was recently announced to receive PyCell support, which was not available
a few years ago. So some compatibility issues might have vanished by the time this thesis
is completed, and also some PyCell API details may have changed. Nonetheless, this
subsection takes a look at the PyCell code structure with the example of a simple square
spiral inductor, which was created in the framework of this work and is shown in Lst. 3.1.
The following information on the PyCell API is taken from the “Python API Reference
Manual” [45]. The implemented PyCell named InductorSpiralSquare inherits from a
class called DloGen. “Dlo” on its own stands for “Dynamic Layout Object” and wraps the
oaDesign class of the OpenAccess API. Consequently, DloGen is the class to inherit from
when writing a layout generator. This is an abstract class containing virtual methods,
from which the presented code implements three. The first is defineParamSpecs and

53

3.1. INDUCTOR LAYOUT

it allows to specify the parameters, their default values, and a description. It is also
possible to include different types of constraints. Via the RangeConstraint, the outer
diameter is limited to a reasonable range. Turn width and spacing are not constrained
here. The number of turns is intended to allow half and quarter turns, which is checked
by a StepConstraint. If a diameter or number of turns that violates these constraints is
entered by the PyCell user, one of three actions can be executed: REJECT, ACCEPT, and
USE_DEFAULT. This is specified via the action argument and is by default set to REJECT
the value. Another useful constraint is the ChoiceConstraint. It allows to provide a list
of choices for the parameter, which are two layer names as strings in this case. The second
method, setupParams, transfers the PyCell parameters to internal variables. Additional
computations with the parameters can be done here. In this example, the parameters are
simply assigned and the layer string is converted to a Layer object. The third function is
genLayout and generates the layout, as the name suggests. Here, a square spiral and two
pins at the start and end points should be drawn. In line 26, a new (layer,purpose)-pair
is created for the pins as the default purpose stored in self.layer is “drawing”. The
next two lines place the text “L1” and draw the pin shape of the first pin. Then, the
loop draws the spiral by iterating over the number of sides, i.e. quarter turns n. When
the last rectangle is placed, the second pin is created at the corresponding position.

54

3.1. INDUCTOR LAYOUT

1 from cni.dlo import *
2 from cni.constants import *
3
4 class InductorSpiralSquare(DloGen):
5
6 @classmethod
7 def defineParamSpecs(cls, specs): # define parameters and default values
8 specs('diameter', 35.0, 'outer␣diameter', RangeConstraint(low=15.0, high=150.0))
9 specs('width', 3.4, 'turn␣width')

10 specs('spacing', 1.15, 'turn␣spacing')
11 specs('turns', 2.25, 'number␣of␣turns', StepConstraint(step=0.25, action=REJECT))
12 specs('layer', 'metal1', 'inductor␣layer', ChoiceConstraint(['metal1','metal2']))
13
14 def setupParams(self, params): # process parameter values entered by user
15 self.diameter = params['diameter']
16 self.width = params['width']
17 self.spacing = params['spacing']
18 self.turns = params['turns']
19 self.layer = Layer(params['layer'])
20
21 def genLayout(self): # generate layout
22 d = self.diameter
23 w = self.width
24 s = self.spacing
25 n = int(4.0*self.turns)
26 layer_pin = Layer((self.layer).getLayerName(), 'pin')
27 Text(layer_pin, "L1", Point(w/2.0, w/2.0), 1.0, Location.UPPER_RIGHT)
28 Rect(layer_pin, Box(0,0,w,w))
29 for i in range(0, n):
30 x0, x, x3 = max((i//4-1)*(w+s),0), (i//4)*(w+s), (i//4+1)*(w+s)
31 if i%4 == 0: # bottom
32 Rect(self.layer, Box(x0, x, d-x, w+x))
33 if i==n-1:
34 Text(layer_pin, "L2", Point(d-x-w/2.0, w+x-w/2.0), 1.0, Location.UPPER_RIGHT)
35 Rect(layer_pin, Box(d-x-w, x, d-x, w+x))
36 if i%4 == 1: # right
37 Rect(self.layer, Box(d-w-x, x, d-x, d-x))
38 if i==n-1:
39 Text(layer_pin, "L2", Point(d-x-w/2.0, d-x-w/2.0), 1.0, Location.UPPER_RIGHT)
40 Rect(layer_pin, Box(d-x-w, d-x-w, d-x, d-x))
41 if i%4 == 2: # top
42 Rect(self.layer, Box(x, d-w-x, d-x, d-x))
43 if i==n-1:
44 Text(layer_pin, "L2", Point(x+w/2.0, d-x-w/2.0), 1.0, Location.UPPER_RIGHT)
45 Rect(layer_pin, Box(x, d-w-x, x+w, d-x))
46 if i%4 == 3: # left
47 Rect(self.layer, Box(x, x3, w+x, d-x))
48 if i==n-1:
49 Text(layer_pin, "L2", Point(x+w/2.0, x3+w/2.0), 1.0, Location.UPPER_RIGHT)
50 Rect(layer_pin, Box(x, x3, x+w, x3+w))

Listing 3.1: PyCell code for a square spiral inductor.

55

3.1. INDUCTOR LAYOUT

PyCell Studio

Synopsys provides a tool environment for the PyCells, which includes an integrated
development environment (IDE) called PyCell Studio. It is started via the command
cndbg, and provides a code editor and a layout pane, which can display the PyCell to
provide visual feedback. Running the code via the “play” button, executes a tool called
cngenlib. It generates an OpenAccess database library, which can then be read by
Virtuoso to utilize the PyCells. To get the PyCell generated, it has to be registered for
generation in the definePcells() function as shown in Lst. 3.2.

1 from InductorSpiralSquare import *
2
3 def definePcells(lib):
4 lib.definePcell(InductorSpiralSquare , "InductorSpiralSquare")

Listing 3.2: Registering InductorSquareSpiral as a PCell to generate it via cngenlib.

Fig. 3.5: The IDE PyCell Studio 2017.06 can be used to develop and debug PyCell code.
The InductorSpiralSquare from Lst. 3.1 is shown here.

56

3.1. INDUCTOR LAYOUT

Santana Technology File

Besides the PyCell code, it is necessary to provide a technology file to the cngenlib
command to generate the OpenAccess database library for Virtuoso. This technology file
is also needed to display the layers within PyCell Studio and has to be in the Santana
format, which a reference manual exists for [46]. However, the 22nm PDK only provides
the technology file in the Cadence DF II format, which is anticipated in the Santana
reference manual, and a conversion tool, called cntechconv, is provided. This was tested
for the 22nm technology file but yielded errors like “Illegal quoted expression”. It was
found that this error originates from the multi-line 'ref-expressions in the DF II file.
According to the Cadence help system they are used to add a reference ID to constraints,
which can then be displayed in the “Annotation Browser” or Design Rule Check (DRC).
The conversion error can be solved by commenting out all 'ref expressions and then the
corresponding rules are transferred to the Santana file. A shell script has been created
which conducts all these steps and prepares the technology file for the next steps:
./tech_conv_22nm.sh <techfile.tf>
cntechconv <techfile.tf_modified.tf> -o <techfile.tf_santana.tech>

A few issues encountered on the way are listed here:

• There is still a conversion error regarding the substrate layer for the 22nm technology
file. The corresponding section has been commented out. This may result in a few
missing rules in the converted file.

• The cngenlib tool is missing two minWidth rules for the layers CA and CB. The
rules were added with the values found in the original technology file. It is not
clear why they are not converted.

• The parent directory to the directory with the PyCell code has to be added to the
$PYTHONPATH environment variable. If this is not done correctly, Virtuoso cannot
find the PyCell.

• The $OA_PLUGIN_PATH environment variable contains the paths to Virtuoso plugins
(.plg). It should be set correctly by sourcing the PyCell Studio script.

• The gcc version of the PyCell Studio and the system running Virtuoso should
match to properly use the PyCells.

These issues with the technology file conversion and the lack of support in the 22nm
PDK led to the decision to not further use PyCells. Converting technology files can
cause all kind of different problems in the long run. Furthermore, building PyCells with
transistors requires to code a lot of special cases due to complex design rules in advanced
nodes. A lot of error prone work can be saved, when PDK PCells are simply used in
custom PCells. It is not feasible to draw transistors, or even code parameterized ones, by
hand.

57

3.1. INDUCTOR LAYOUT

3.1.4 SKILL PCells

The previous section has shown that PyCells are a viable method to create PCells, but
missing support makes them complicated to apply. Therefore, the focus of this work
switched back to write PCells in SKILL to be compatible with Virtuoso and the target
technologies. In contrast to the PyCell’s cngenlib command, SKILL PCell code can
be loaded into Virtuoso via its command window using a simple (load <pcell.il>)
command. The PCell can then be found in the library manager and used in the layout
editor like foundry-provided PCells. Except in the case of changes, the code is no longer
needed as it is converted into the OpenAccess format and stored in the corresponding
Virtuoso library. The basic SKILL function to define a PCell is shown in Lst. 3.3.
pcDefinePCell is provided with a triple of library, cell, and view name, to determine
where to place it in the Virtuoso library manager. Then a sequence of parameters along
with their default values can be specified.

1 (pcDefinePCell (list (ddGetObj "<library_name>") "<cell_name>" "<view_name>")
2 (
3 (<param_1_name> <param_1_default_value >)
4 ...
5 (<param_n_name> <param_n_default_value >)
6)
7
8 <pcell_code>
9)

Listing 3.3: Function to define a SKILL PCell.

To facilitate the coding process of the different inductor types, several SKILL functions
were developed in this work to encapsulate common structures, such as drawing a spiral.
Another motivation to encapsulate functionality within functions is to enable support for
different technologies. The stack-up change is only the obvious difference; there are also,
among others, the purpose of the label layer or the (layer,purpose)-pair for LVS-resistors.
The latter is handled as metal layer plus a dedicated purpose in one technology and
a single new resistor layer but with different purposes depending on the metal layer
in the next technology. Further process dependent functions are needed, e.g. for fill
structures and via sizes. Last but not least, there is functionality to support the needs
of different tools. Some tools cannot read every (layer,purpose)-pair and assign it the
correct properties for simulation. For example, the purpose for fill and differently colored
(multi-patterning) metal shapes has to be mapped to the “drawing” purpose to get the
shapes recognized as metal and simulated properly. Furthermore, thousands of small
fill shapes cannot be simulated with (every) field solver in reasonable time. So as an
approximation, the metal shapes on at least the lower layers should provide a way to
be scaled up for simulation. Fig. 3.6 shows an example of the layouts generated by the
stacked T-coil SKILL PCell but neglects fill shapes etc. The basic geometry of such a

58

3.1. INDUCTOR LAYOUT

T-Coil is described by four parameters: outer diameter d, turn width w, turn spacing s,
and number of turns n. Note that s is not the complex angular frequency in this chapter.

CT

L1

L2
s

w

d

Fig. 3.6: Stacked T-coil layout generated with the SKILL PCell code (n = 2.5 turns; fill
shapes are not shown). The layer order from top to bottom is blue, purple,
green, and vias are black.

PCell Designer

The Cadence PCell Designer is only mentioned here for completeness. It provides a
graphical programming interface to create PCells. The GUI can deploy PCells and
provides a lot of geometric functions to facilitate the design. For example, “turtle
programming” is supported, which follows the idea of a turtle moving with a pen over
paper. It can move with either the pen up or down on the paper, i.e. just move, or move
and simultaneously draw lines. There are also logic functions operating on 2D shapes,
basic control structures like loops, and the possibility to incorporate existing PCells.
The PCells are then “programmed” by building hierarchical structures with commands,
similar to the tree view known from file browsers on PCs. For more in-depth information
and discussion about the PCell Designer, the reader is referred to T. Markus [39]. He
implemented a couple of different PCells, which were actually used in a SerDes design, and
showed that the use of PCells for common structures found in full-custom design improves
quality and speed of the layout procedure. However, the PCell Designer approach was
ultimately discarded by Markus in favor of XCells before noteworthy attempts were

59

3.1. INDUCTOR LAYOUT

made in this work to port the inductor SKILL PCell code. Thus, a PCell Designer
implementation of inductors was neglected.

3.1.5 XCells

The shortcomings of the SKILL PCell approach led to the investigation of another method
for layout generation via parameterizable cells. This new method is based on a socket
communication provided by Virtuoso. Via this socket, it is possible to send SKILL
commands to, and retrieve answers from, Virtuoso. The key point here is that most
functionality provided by Virtuoso is actually accessible via SKILL. Building upon this,
an open-source Python tool called Skillbridge, available on GitHub [47], was developed
at the CAG by T. Markus and N. Buwen. It wraps the socket communication into
Python and makes it possible to interact with almost any SKILL functionality Virtuoso
provides. The obvious consequence from having all these possibilities at hand in Python,
a language far more popular compared to SKILL, is to write code more conveniently
to increase the usability of this interface. This work is not open-sourced and part of a
collaboration between the CAG and the company EXTOLL GmbH. An in-depth view
on this can be found in [39]. Part of this code can be used to develop so-called XCells,
a novel approach to “parameterized cell”-based layout generation. Lst. 3.3 shows the
SKILL code construct used to declare a SKILL PCell. XCells, however, make no use of
this and do not register in the Virtuoso Library Manager at all. Instead, they appear
in the “Constraint”-mode of the schematic editor as constraints that can be associated
with schematic instances. For example, a resistor pair can be constrained to comprise a
passive load used in an amplifier circuit, but the sizing of the resistors is done as usual
by entering the values into the foundry PCell properties. Moving to the layout stage,
the schematic instances are placed somewhere in the layout plane with the Virtuoso
“Generate” menu. Switching again to the “Constraint” mode, one finds the previously
declared constraints still associated with the placed instances. Via a custom menu created
along with the XCell code, layout generation can be triggered for all, or only selected,
constraints. This process is parameterized via the constraint parameters, which are
natively supported by Virtuoso. Custom parameters required for the specific layout
generation task can be added to the constraint in the corresponding XCell Python code.
XCells for inductors have not been completed within the framework of this thesis. The
corresponding constraint is to be associated with an LVS-resistor.

60

3.2. INDUCTANCE

3.2 Inductance

Up to now, this work has presented termination circuit topologies and how to generate
inductor layouts. However, the connection between both still remains unclear. Therefore,
this section will address the theoretical foundations of what inductance is and how to
calculate it for certain geometries. As shown in the previous sections, the motivation
to look at on-chip inductors emerged during the SerDes design. Naturally, the research
initially focused on literature that addressed ESD device compensation. However, most
papers do not even dedicate a short section to elaborating on how to solve the problem
without simulation or measuring physical test-structures. Therefore, this work also
followed a simulation-based approach for a long time, which is not wrong but lacks a
lot of insight, which one tends to compensate with trial and error. This consumes a lot
of time, which could be spent on approaching the problem in an analytic manner. A
paper by Sunderarajan S. Mohan on “Simple Accurate Expressions for Planar Spiral
Inductances” [41] finally delivered the correct references, and unfolded a lot of analytical
calculations and even some historical perspectives. Therefore, the idea of this section
is to provide deep insight into which amount of the inductance calculation can be done
analytically. It shows that a significant amount of work was already done by James Clerk
Maxwell around 1873 in his book “A Treatise on Electricity and Magnetism” [48]. Maxwell
even noticed the importance of the Geometric Mean Distance (GMD) of conductor cross-
sections, which is presented later in this section. A few decades later, Edward Bennett
Rosa, chief-physicist at the U.S. National Bureau of Standards (today NIST), published
a comprehensive collection of inductance calculations over the years from 1907 to 1916.
In 1999, Mohan combined and approximated these results to derive simple expressions
for on-chip inductors in his Ph.D. thesis at Stanford University [40].

3.2.1 Self-Inductance

In principle, self-inductance L, also called simply inductance, is only defined for current
loops by the ratio of magnetic flux Φ through the area enclosed by the loop and the
current I flowing in this loop. More complicated topologies, like a coil with n turns,
are sometimes considered to enclose the magnetic flux several times, and the enclosed
magnetic flux is then called flux linkage Ψ. This word sometimes occurs in the context of
inductance calculation but represents simply the total magnetic flux enclosed and is thus
identical to magnetic flux. For completeness though not related to this work, it should
be noted that the definition of the term flux linkage is extended in the (controversial)
discussion of memristors (see [49]).

L :=
Φ

I
≡ Ψ

I
=

NΦsingle-turn
I

(3.1)

61

3.2. INDUCTANCE

From Faraday’s law of induction, one of the Maxwell equations, the well known relation
between voltage and current across an inductor can be derived.

VL = −
∮
∂A

Eds =

∫
A

∂B
∂t

dA =
dΦ
dt

=
d(LI)

dt
= L

dI
dt

(3.2)

Note that the first minus sign stems from the usual circuit theory definition where voltage
and current direction are equal. Furthermore, it is assumed that the geometry, i.e. A and
L, do not change over time. Since on-chip inductors are static topologies, this is a valid
assumption. This equation also contains the relation of magnetic flux to magnetic flux
density B, which is the actual vector field for magnetism. In general, the flux density is
the quantity needed to derive the inductance of an (arbitrary) current distribution. The
discussion of the inductance of a straight wire with radius R and length l constitutes the
starting point for all following calculations. Its derivation is actually not easily found and
a number of misconceptions are spread in the literature, which will be mentioned later at
the appropriate steps. It is insightful to start with the magnetic flux density of an infinite
straight wire carrying a current I distributed homogeneously over its cross-section. In
cylindrical coordinates, the magnetic field is given by Eq. 3.3, where ϕ̂ is the tangential
unit vector.

Bw,∞(r) = µ0I

4π
ϕ̂

2/r, r > R

2r/R2, r ≤ R
(3.3)

The energy of the magnetic field is computed and set equal to the energy stored in an
inductor with inductance L and the identical current I.

1

2
LI2

!
=

1

2µ0

∫
V

Bw,∞(r)Bw,∞(r)dV (3.4)

=
1

2µ0

∫ l/2

−l/2

∫ ∞

0

∫ 2π

0
Bw,∞(r)Bw,∞(r)rdφdrdz (3.5)

=
2πl

2µ0

(∫ R

0
Bw,∞(r)Bw,∞(r)rdr +

∫ ∞

R
Bw,∞(r)Bw,∞(r)rdr

)
(3.6)

=
2πl

2µ0

µ2
0I

2

4π2

(∫ R

0

r3

R4
dr +

∫ ∞

R

1

r
dr
)

(3.7)

=
µ0lI

2

4π

(
1

4
+

∫ ∞

R

1

r
dr
)

→ ∞ (3.8)

⇒ Lw,int =
µ0l

8π
(3.9)

The inductance Lw,int derived with Eq. 3.4 from the finite part is called internal inductance
as it is caused by the energy stored in the magnetic field within the conductor volume.
However, also the part outside the wire, called external inductance, needs to be finite. At
first glance, it seems impossible to calculate since the above integral does not converge

62

3.2. INDUCTANCE

even for a wire segment of finite length l. In fact, every infinitesimal segment of length
dz of an infinite straight wire carrying a constant current I stores an infinite amount of
magnetic energy. This fact leads to a lot of confusion and causes people to assume the
inductance of a straight wire cannot be calculated, or they even consider the internal
inductance to be the correct result. However, this is not true! The error made in
the previous attempt lies in the magnetic field used. While the calculation may have
considered only a finite part of the wire in the energy calculation, the magnetic field used
was the field of the infinite wire. So to get the correct result, the magnetic field of a
finite wire has to be computed. This may seem trivial in retrospect but is hard to figure
out when researching the inductance of a straight wire, due to a lot of misconceptions.
The main confusion probably arises from the fact that, due to the radial symmetry of the
wire and current distribution, it is assumed that the current in a wire segment causes a
field only in radial direction, when it actually contributes to the field at every point in
space. So the parts that were intended to be neglected by integrating only over the finite
wire length actually still contribute to the field in the integration volume.
For time-invariant current density distributions J(r), the magnetic field can be calculated
with the Biot-Savart law.

B(r) = µ0

4π

∫
V

J(r′)× r − r′

|r − r′|3dV ′ (3.10)

It can be shown that a uniform current inside a cylinder produces the same magnetic
field outside of this cylinder as a current concentrated at the axis of the wire [50]. Thus,
an alternative version of the Biot-Savart law for the case of a current I flowing along a
curve described by a vector c can be used. Of course the resulting field is only valid for
r ≥ R.

dB =
µ0I

4π
· dc × (r − c)

|r − c|3 (3.11)

Using the norm of the cross product and replacing the sine function with the ratio of
the side opposite to θ and the hypotenuse (see Fig. 3.7), the following integral for the
magnetic flux density is obtained. As expected the result is also a function of z.

Bw,ext(r) =
µ0I

4π
ϕ̂

∫ l/2

−l/2

rdc
(r2 + (c− z)2)3/2

(3.12)

=
µ0I

4π
ϕ̂ ·

(
l/2 + z

r
√

r2 + (l/2 + z)2
+

l/2− z

r
√
r2 + (l/2− z)2

)

63

3.2. INDUCTANCE

z

r

c

r

√
r2 + (c− z)2

r

θ

∣∣∣dc×(r−c)
|r−c|

∣∣∣ = sin(θ)dc = rdc√
r2+(c−z)2

l/2

R

Fig. 3.7: Illustration of the magnetic flux density calculation for a finite straight cylindri-
cal wire.

After calculating the external magnetic flux density (r ≥ R), it is necessary to also
consider the internal magnetic field. Rosa assumes it to be the same as for the infinite
wire [50]. Although, this assumption may be approximately valid for reasonably long
wires at their center (z = 0) as will be shown later, it cannot be exact even though Rosa
claims to derive an exact formula. The field of the infinite wire can be calculated with
Ampère’s law. ∮

∂A
B(r)ds = µ0Ienc (3.13)

The integral of the magnetic field along a closed loop is proportional to the current
flowing through the area enclosed by it. This law cannot be applied in the case of a
finite wire because the magnetic field of the return path is not present. The infinite
wire however can be thought of as closed at infinity. So this is one reason why Rosa’s
assumption is invalid. Another one is that the tangential magnetic field – the magnetic
field is only tangential here – has to be continuous at the wire surface in the absence
of surface currents. However, using the internal field of the infinite wire results in a

64

3.2. INDUCTANCE

discontinuity at r = R. So instead of calculating the magnetic field inside the conductor
with Ampère’s law, this thesis proposes to use the Biot-Savart law again. But this time
the current I is scaled by r2/R2 to only consider the current inside a cylinder with radius
r. This does not change the integral in Eq. 3.12.

Bw,int(r) =
µ0I

4π
ϕ̂ · r2

R2
·

(
l/2 + z

r
√

r2 + (l/2 + z)2
+

l/2− z

r
√

r2 + (l/2− z)2

)
(3.14)

It is useful to look at the limit of the large term in the brackets for l to infinity, which
results exactly in the factor of 2 present in Eq. 3.3. So the case of the infinitely long wire
can be derived from the finite one, which is a valuable consistency check. To visualize
the magnetic field in z and r direction, Fig. 3.8 and 3.9 show the relative magnitude of
the magnetic field over both axes normalized to R. The R in the factor on the y-axis
originates from the r in front of the square roots in Eq. 3.14 when normalized to r/R,
while the remaining expression is already dimensionless. Both plots show five curves
for different lengths. The figures also visualize how the lines approach the limit of the
infinite wire and especially that the radial field is continuous at r = R. Although, Rosa’s
assumption is already a good approximation at l = 5R at the center of the wire (z = 0).

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

z/R

4
π
R
/µ

0
I
·|

B
(R

,ϕ
,z
)|

l = R
l = 2R
l = 5R
l = 10R
l → ∞

Fig. 3.8: The relative magnetic flux density along the z-axis.

65

3.2. INDUCTANCE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

1.5

2

r/R

4
π
R
/
µ
0
I
·|

B
(r
,ϕ

,0
)|

l = R
l = 2R
l = 5R
l = 10R
l → ∞

Fig. 3.9: The relative magnetic flux density along the r-axis.

The next step is to finally calculate the inductance for the finite wire. A volume
integral over the squared field from the energy based approach of Eq. 3.4 is complicated.
Hence like Rosa, this thesis continues by calculating the magnetic flux. The conceptual
challenge is now the area over which the magnetic flux is integrated as inductance is only
defined for closed loops, but a finite straight wire does not enclose a certain area. Rosa
saw this problem too and dedicated a short section in [50] to provide an explanation or
definition for open circuits: “The actual self-inductance of any closed circuit of which it
[the open circuit] is a part will be the sum of the self-inductances of all the parts, plus
the sum of the mutual inductances of each one of the component parts on all the other
parts.” – i.e. it is simply defined as the inductance of a part of a closed circuit. Thus,
the flux through the right half-plane due to the external magnetic flux density is to be
calculated by integrating over r and z.

Φw,ext =

∫
Bw,ext(r)dA (3.15)

=
µ0I

4π

∫ ∞

R

∫ ∞

−∞

(
l/2 + z

r
√
r2 + (l/2 + z)2

+
l/2− z

r
√
r2 + (l/2− z)2

)
dzdr (3.16)

=
µ0I

4π

∫ ∞

R

2l

r
dr → ∞ (3.17)

However, the integral does still not converge. Rosa found this mistake made by others,
too. The actual area for the integration is not the complete right half-plane but only the

66

3.2. INDUCTANCE

area for −l/2 ≤ z ≤ l/2 because only these field lines cross the wire when the current
changes. Rosa explains it as follows: “When the current in the wire decreases, the field
everywhere decreases in intensity, and we think of the lines as collapsing upon the wire;
that is, moving in from all sides upon the wire. But those lines above BB’ and below AA’
do not cut the wire, and hence contribute nothing to the self-inductance.” [50], where
“above BB’ and below AA’” means |z| ≥ l/2. Due to this, the integration in z is now
limited to the range along the wire.

Φw,ext =

∫
Bw,ext(r)dA (3.18)

=
µ0I

4π

∫ ∞

R

∫ l/2

−l/2

(
l/2 + z

r
√

r2 + (l/2 + z)2
+

l/2− z

r
√
r2 + (l/2− z)2

)
dzdr (3.19)

=
µ0I

4π

∫ ∞

R

2

r

(√
r2 + l2 − r

)
dr (3.20)

=
µ0I

4π

(
2l ln

√
l2 +R2 + l

R
− 2
√

l2 +R2 + 2R

)
(3.21)

The external inductance is now finite and for the total inductance, Rosa just added the
internal inductance from Eq. 3.9. As explained before, this thesis intends to use Bw,int(r)
and calculate the magnetic flux like before. However, in contrast to the external flux, the
internal flux density has to be weighted with the wire cross-section it actually crosses,
when thinking of a decreasing current. As a check for correctness of this way of thinking,
Rosa compared his result (although obtained with the internal field of the infinite wire)
to the internal inductance calculation via the field energy.

Φw,int =

∫
r2

R2
Bw,int(r)dA (3.22)

=
µ0I

4π

∫ R

0

r4

R4

∫ l/2

−l/2

(
l/2 + z

r
√

r2 + (l/2 + z)2
+

l/2− z

r
√
r2 + (l/2− z)2

)
dzdr (3.23)

=
µ0I

4π

∫ R

0

2r3

R4

(√
r2 + l2 − r

)
dr (3.24)

=
µ0I

4π
· 2

15R4

(
2l5 − 3R5 +

(
3R2 − 2l2

) (
l2 +R2

) 3
2

)
(3.25)

Note that the limit l → ∞ does not yield the internal inductance from Eq. 3.9 but ∞.
This is because the limit has to be applied only for the flux density since the integration
borders should not go to infinity.

67

3.2. INDUCTANCE

The combination of both results finally gives the inductance of a straight wire Lw.

Lw =
Φw,int +Φw,ext

I
(3.26)

=
µ0

2π

l ln
√
l2 +R2 + l

R
−
√

l2 +R2 +R+
2l5 − 3R5 +

(
3R2 − 2l2

) (
l2 +R2

) 3
2

15R4

l�R
≈ µ0l

2π

(
ln
(
2l

R

)
− 3

4
+

4R

5l
− R2

6l2

)
(3.27)

l�R
≈ µ0l

2π

(
2l

3R
− l3

6R3

)
(3.28)

l≈R
≈ µ0l

2π

(
0.589 + 0.488 · l −R

R
− 0.097 ·

(
l −R

R

)2
)

(3.29)

The approximations are given for later reference in the next subsections. An example
value calculated with this formula is 1.5 µH for a wire with a diameter of 1 mm and a
length of 1 m. The approach for the internal field and, as a consequence, the expression
for the internal inductance of the finite round wire are not found in literature to the
knowledge of the author.

3.2.2 Mutual Inductance

Structures more complex than a single straight wire can sometimes be composed of
multiple straight wires. In addition to the self-inductance, the interaction between the
wires also needs to be considered. A changing current in the first wire will induce a
voltage in the second wire and vice versa. This is described by the mutual inductance.
Consider two parallel wires of equal length l at a center-to-center distance d. Following
the line of thought from Rosa [50], the magnetic field lines that cut the second wire,
when the current in the first wire decreases, is found by integrating in Eq. 3.19 from d to
infinity instead from R to infinity.

M2w =
µ0l

2π

(
ln

√
l2 + d2 + l

d
−

√
l2 + d2 − d

l

)
(3.30)

This expression is only exactly valid for two filaments, i.e. infinitesimal thin wires.
Another, more general method to calculate the mutual inductance between two wire
filaments is the Neumann formula shown in Eq. 3.31. It is derived from the vector
potential of the magnetic field. Given a number of closed circuit loops, the formula
describes the mutual inductance from loop i on loop j. Note that the expression is

68

3.2. INDUCTANCE

symmetric in indices, so Lij = Lji.

Lij =
µ0

4π

∮
Cj

∮
Ci

dridrj
|ri − rj |

(3.31)

For two parallel filaments this can be simplified, since dri and drj are parallel. The
resulting expression from Eq. 3.32 is identical to Eq. 3.30.

M2w =
µ0

4π

∫ l/2

−l/2

∫ l/2

−l/2

1√
d2 + (z − z′)2

dzdz′ (3.32)

3.2.3 Geometric and Arithmetic Mean Distances

So far, only conductors with a circular cross-section have been discussed. In practice, other
cross-sections are also very important, particularly rectangular ones for on-chip inductors.
The previous calculations were already quite cumbersome, and it does not seems likely
to get handy results for more complicated cross-sections. However, the inductance of
conductors with arbitrary cross-sections can be calculated with the Neumann formula
(Eq. 3.31). This is based on “the theorem that the self-inductance of a circuit is equal
to the sum of all the mutual inductances of the component parts of the circuit” [50], i.e.
the sum of all the mutual inductances between every pair of current filaments starting
at two points on the wire cross-section at a distance d = |r − r′| apart. This is done by
integrating twice over the area of the cross-section.

Lself =
1

A2

∫
A

∫
A′

M2w(d, l)dA′dA (3.33)

Divided by the square of the cross-sectional area A, this is essentially an arithmetic
mean of the mutual inductance over the cross-section. The Neumann integral is basically
an integral over an inverse distance and will contain a dominant term in the form of
ln(d) [51]. Other terms may appear depending on the shape of the curves Ci and Cj , e.g.
for two straight wires it was the second term in Eq. 3.30. For circular filaments, the
mutual inductance is given by elliptic integrals. This is also described in the various
references used in this section. For on-chip inductors, mainly straight filaments are
relevant. M2w can hardly be integrated analytically. For this reason, an approximation is
made by Rosa [50] for small distances compared to the filament length because wires are
usually longer than their diameter (Eq. 3.34). As a side note, an analytical solution for
the mutual inductance of two rectangular wires is given by [52]. However, the resulting
expression is very large even without the integration borders inserted.

M2w
l�d
≈ µ0l

2π

(
ln (2l)− ln (d)− 1 + d/l − d2/4l2

)
(3.34)

69

3.2. INDUCTANCE

The arithmetic mean of these terms is much easier to calculate. The first one would be
ln(d). Note that the arithmetic mean of the logarithms of some values xi is the logarithm
of the geometric mean of these values (Eq. 3.35).

1

n

n∑
i=1

ln (xi) = ln

 n

√√√√ n∏
i=1

xi

 (3.35)

This observation leads to the importance and definition of the Geometric Mean Distance
(GMD) in analytic inductance calculations.

ln (GMD) :=
1

A2

∫
A

∫
A′

ln (d)dA′dA (3.36)

The linear term defines the Arithmetic Mean Distance (AMD), and the square term the
Arithmetic Mean Square Distance (AMSD).

AMD :=
1

A2

∫
A

∫
A′

ddA′dA (3.37)

AMSD2 :=
1

A2

∫
A

∫
A′

d2dA′dA (3.38)

As a first application of this method, the self-inductance of a straight wire of length l

and radius R is calculated again. Maxwell derived the GMD of a circle in [53]. He was
presumably the first one to notice the importance of the GMD in inductance calculation.
To find the AMD and AMSD of a circular cross-section, one should take a closer look at
the expression to be integrated.

d = |r − r′| =
√
r2 + r′2 − 2rr′ cos (ϕ− ϕ′) (3.39)

While the AMSD removes the square-root in the integral and renders it therefore trivial
to calculate, the AMD is not easily calculated. It was derived in an example in [54].
This paper provides “bounds on the average distance between two points uniformly and
independently chosen from a compact convex subset of the s-dimensional Euclidean
space” [54]. So the mean distances for a disc are the following.

GMD• = exp(−1/4) ·R ≈ 0.779R (3.40)

AMD• =
128

45π
·R ≈ 0.905R (3.41)

AMSD• = R (3.42)

70

3.2. INDUCTANCE

Replacing the terms in Eq. 3.34 with the appropriate mean values then yields an
approximate expression for the self-inductance of a wire with a circular cross-section.

Lw,md =
µ0l

2π

(
ln (2l)− ln (GMD•)− 1 + AMD•/l − AMSD2

•/4l
2
)

(3.43)

=
µ0l

2π

(
ln (2l)− ln (R)− 3

4
+

128

45π
· R
l
− R2

4l2

)
(3.44)

This expression for a wire with circular cross-section was not found in literature by
the author, only its components. The exact value for AMD• never showed up in
the context of inductance calculation. Some even believe “This integral cannot be
solved analytically.” [55]. Compared to the exact formula in Eq. 3.27, Lw,md has larger
magnitudes in the linear and square term.

Another approach taken by Weaver [51], replaces every d in M2w with GMD• for an
approximate formula. Weaver did not actually explain why but only that he neglects
higher order mean distances. In fact, (almost) the same was also done by Greenhouse [56]
and criticized by Mohan [40] for not being mathematically well founded. Eqs. 3.45
to 3.47 show the series expansions of the formula proposed by Weaver. The constants
are rounded to three digits.

Lw,weaver
l�R
≈ µ0l

2π

(
ln
(
2l

R

)
− 3

4
+ 0.779 · R

l
− 0.152 · R

2

l2

)
(3.45)

l�R
≈ µ0l

2π

(
0.642 · l

R
− 0.088 · l3

R3

)
(3.46)

l≈R
≈ µ0l

2π

(
0.580 + 0.489 · l −R

R
− 0.094 ·

(
l −R

R

)2
)

(3.47)

A comparison of the constants in all three series expansions shows that using the GMD
for all d yields an approximate formula that is in very good agreement with the exact
expression. One might expect this to be the case for long wires since a comparison of
the series expansions of Lw and M2w, neglecting the linear and higher terms, results in d

being equal to the GMD. For short wires, however, the exact reason why this fits so well
remains unclear.

Aebischer et al. discusses the mean distance method and proposes another variant of
the mean distance formula [55]. They also use the exact expression for M2w, but instead
of replacing every d with the GMD, they use the AMD for the linear term and AMSD
for every d2. However, they also do a series expansion of the terms, for which they
used the AMSD as an approximation, around d = AMSD• and compute a correction
term to increase the accuracy. Adding both leads to their final formula for which here
only the series expansions are shown as they facilitate an easier comparison to other

71

3.2. INDUCTANCE

approximations.

Lw,aebischer
l�R
= Lw,md +O

(
R4

l4

)
(3.48)

l�R
≈ µ0l

2π

(
0.061 + 0.642 · l

R
− 0.101 · l3

R3

)
(3.49)

l≈R
≈ µ0l

2π

(
0.634 + 0.475 · l −R

R
− 0.097 ·

(
l −R

R

)2
)

(3.50)

For long wires this results in the same expression as for the initial mean distance formula
plus higher order terms. For short wires, a constant terms shows up and for medium
lengths the constant term is higher than it should be.

The integration over a conductor cross-section can also be done with a Monte Carlo
code. To investigate this, a Monte Carlo Python code has been developed and higher
order mean distances have been computed. The results in Tab. 3.1 show that the first
three – exactly known – mean distances are computed correctly. They are used for
another approximation Lw,md,numeric.

Mean Distance Integrand Numerical Value Absolute Error Rounded Value
GMD ln(d) 0.778799(9656181976) 8.175 · 10−7 0.77880
AMD d 0.905414(8839886084) 0.967 · 10−7 0.90541
AMSD d2 1.000000(7791999586) 7.792 · 10−7 1.00000
- d4 1.136221(1315214665) - 1.13622
- d6 1.232193(2598736391) - 1.23219
- d8 1.304775(4703107082) - 1.30478
- d10 1.362207(1403827725) - 1.36221

Tab. 3.1: Numerical values from Monte Carlo integration with 1010 random point pairs
in a circle with R = 1. The third column shows the error relative to the known
exact values and suggests that at least six digits can be trusted. The last
column contains the rounded values.

The approximate formulas presented so far are compared to the exact self-inductance
in Fig. 3.10 and 3.11. They show the relative error of the corresponding approximate
formula L≈ to the exact formula Lw, ∆w = L≈/Lw − 1. The first observation is that
for moderately long wires, l & 3R, the error for all formulas is around 2%, i.e. for all
practical cases every formula can be used without relevant error. As expected from
the previous series expansions, the formula given by Weaver fits well over the whole
range. For l → 0 the error is approximately 3.84%. The formulas approximating the
mutual inductance for long wires fall apart around l ≈ R, as expected. These are Lw,md,
Lw,aebischer and Lw,md,numeric. The result from numeric integration of M2w, Lw,numeric,
however, also diverges from Lw for short wires. This was not expected and cannot be

72

3.2. INDUCTANCE

explained by the author. A numerical problem can be ruled out as several methods lead
to the same result: numerical integration with Mathematica, Monte Carlo integration
with Python, and Monte Carlo integration with Python using the bigfloat package for
increased precision. The internal inductance, which is dominating the self-inductance
for “disc-like” wires, proposed by Rosa, Lw,int, does also not explain this discrepancy. It
fits even worse. Most likely, the Neumann integral is not defined very well if Ci and Cj
are no proper loops and their separation is large compared to their size. Another reason
could be that the Neumann integral is actually not well defined when integrated over the
same area twice, which is done for the self-inductance. For large l, this might not be a
problem as M2w is approximated with a logarithm in this domain, but for small l it is a
1/d function.

With this last point remaining unsolved, this discussion of the cylindrical conductor has
provided the insight that self- and mutual inductance of wires with arbitrary cross-section
can be computed using some kind of mean distance approximation. However, the result
is only reliable for at least l & 3R. This line of thought, despite being much less verbose
about the backgrounds, was used by Mohan to derive approximate formulas for on-chip
inductors.

The comparison of the previous formulas was done for a round wire because an exact
solution is available for it, which the approximations can be compared to. Likely the
same relation holds true for different cross-sections, especially wires with a rectangular
cross-section as they occur in chip design. There, the lateral dimension is called the width
w and the vertical dimension the thickness t. Both GMD and AMD of a rectangular
cross-section are quite complicated to calculate. The former was done by Maxwell in [57],
the latter can be found in [54], and the AMSD is trivial to calculate.

ln(GMD�) = ln
(√

w2 + t2
)
− w2

6t2
ln

(√
1 +

t2

w2

)
− t2

6w2
ln

(√
1 +

w2

t2

)
(3.51)

+
2w

3t
arctan

(
t

w

)
+

2t

3w
arctan

(w
t

)
− 25

12

≈ ln (w + t)− 1.5 (3.52)

AMD� =
1

15

(
w3

t2
+

t3

w2
+
√

w2 + t2
(
3− w2

t2
− t2

w2

))
(3.53)

+
1

6

(
t2

w
ln

(
w +

√
w2 + t2

t

)
+

w2

t
ln

(
t+

√
w2 + t2

w

))

≈
√
w2 + t2 + 0.46wt

3
(3.54)

AMSD2
� =

1

6

(
w2 + t2

)
(3.55)

The approximate formula for GMD� is actually valid for every aspect ratio of the cross-

73

3.2. INDUCTANCE

section. This was reported by Rosa [50] but can also be shown easily by looking at the
series expansion for a square or even a one-dimensional cross-section. For AMD�, the
approximation is given by Mohan and is also very accurate for different aspect ratios [40].

100 101 102
−2

0

2

4

6

8

l/R

Er
ro

r
to

L
w

[%
]

∆w,md
∆w,weaver
∆w,aebischer
∆w,md,numeric
∆w,numeric

Fig. 3.10: Errors of mean distance formulas for the self-inductance of a straight wire
with circular cross-section (l > R).

10−1 100
−40

−20

0

20

40

l/R

Er
ro

r
to

L
w

[%
]

∆w,md
∆w,weaver
∆w,aebischer
∆w,md,numeric
∆w,numeric

Fig. 3.11: Errors of mean distance formulas for the self-inductance of a straight wire
with circular cross-section (l < R).

74

3.3. MODELING OF INDUCTORS

3.3 Modeling of Inductors

So far, this chapter has presented possible geometries for on-chip inductors and how
their layout can be generated, as well as the basics of inductance calculation for straight
wires with arbitrary cross-section. This section discusses how inductors are modeled
in the circuit design flow. The fundamental problem with custom on-chip inductors
is that they are made up of wires and are therefore not properly represented in the
schematics. Every other component in chip-design has a variety of PCells provided with
the PDK, e.g. transistors, diodes, resistors, capacitors, etc. These PCells serve two main
aspects: they provide a model for simulation, and they contain the corresponding layout.
Inductors can be modeled with the help of ideal schematic devices from the Virtuoso
“analogLib”, but there is no layout available as they are not part of the PDK. Having
non-PDK devices in a schematic causes the Layout Versus Schematic (LVS) check to
fail because they are not found in the layout. Thus, it is mandatory to provide multiple
schematic views of a custom inductor for different purposes. For fast simulation and
design, “analogLib”-devices are the best way to go. Inductors appear only as metal traces
in the layout, but the devices connected to them are logically not connected to the same
net so for LVS checks, LVS-resistors are necessary. They are part of the PDK-PCells
and act as net separators for the LVS check but do not alter the physical properties of a
wire. At least one additional third view is often needed, which contains an “nport” to
include an S-parameter file with the “actual” behavior of the inductor. S-parameters
and the question how to simulate inductors are discussed in the next section. In this
section, the modeling with “analogLib”-devices, the influence of metal fill, skin effect,
and process corners are discussed, based on the example of a two-terminal square spiral
inductor, which is shown in Fig. 3.13. This gives an estimation on the magnitude of the
aforementioned effects, and the results can be transferred to the T-coil relatively easy.

3.3.1 Segmented Circuit Models

The term “segmented circuit models” originates from Mohan [40]. Long et al. [58] called
this kind of models “scalable inductor models”, while Galal et al. [8] used the term
“distributed model”, even if the model is not a distributed-element circuit like ,e.g.,
a transmission line. Regardless of the name, the idea behind this kind of inductor
modeling is to model segments of the inductor, e.g. each turn or even each side of a
turn, with dedicated circuits. Multiple versions of differently sized segment models are
then combined according to the number of segments the inductor comprises. To reflect
capacitive coupling and mutual inductance between the segments, different approaches
are taken. Long et al. [58] shows a dependent current source in each segment, which
is intended to model the mutual inductance. Another approach is taken by Galal et

75

3.3. MODELING OF INDUCTORS

al. [8] by adding a coupling branch between neighboring segments but neglecting further
interactions. Fig. 3.12 shows the model used by Long et al. [58] to describe a single
inductor segment. The SEG_i_0 and SEG_i_1 pins are used to build a series circuit
according to the number of segments. The size of the dependent current source is given
by Iseg,i = IjMseg,ji/Lseg,i, where Ij is the current flowing through Lseg,j [58].

SEG_i_0 SEG_i_1
Rseg,i Lseg,i

Cseg,i

Iseg,i

Cox,i

Csi,iRsi,i

Cox,i

Csi,i Rsi,i

Fig. 3.12: π-model of an inductor segment i used in [58].

These segmented models have several drawbacks. Firstly, they comprise a lot of
segments for inductors with multiple turns. The size of such a circuit can easily surpass
that of the rest of the design in terms of components [40]. This variability in circuit
size can be tolerated to model a specific inductor but is impractical for circuit design
because the large number of components makes transfer functions too complicated for
optimization, and the circuit needs to be updated every time the number of segments
changes. Secondly, it is very difficult to accurately estimate the large number of parameters
or derive them from simulation of single segments. Long et al. [58] suggests to calculate
the model parameters on a per segment basis, i.e. the self-inductance with a mean
distance approximation for rectangular cross-sections and the capacitors and resistors
via simple expressions. Such formulas are given by Yue et al. [59], [60]. However, for
the mutual inductance this would involve a sum with complexity O(n2), or adequate
approximations. This could of course be solved by writing a kind of custom “field solver”
that computes all mutual inductances numerically with the Neumann integral, but this
is no feasible solution.

76

3.3. MODELING OF INDUCTORS

L1

L2

s

w

d

Fig. 3.13: Layout of the 2-terminal square spiral inductor analyzed in this section (n = 2.5
turns; fill shapes are not shown; the purple layer is on top of the green layer;
vias are black).

3.3.2 Lumped Circuit Models

As an alternative to the segmented circuit models, so-called lumped circuit models are
widely used, e.g. in [61], [62]. They are simpler and their structure is fixed, so they
are independent of the inductor geometry. The contributions of different segments of
the inductor are lumped into only a few elements covering the first order properties.
While this is not as accurate compared to segmented models or even S-parameters, it
is this simplicity that makes them feasible for circuit design and optimization. These
models are usually accurate up to the self-resonant frequency of the inductor, which is
the range of interest for on-chip inductors [40]. What is important to understand is that
for verification before tape-out via post-layout simulations, it is perfectly adequate to
use S-parameters. However, for design and fast system simulation, it is important to
map the complex properties described with the S-parameters to a first order model. This
is also why segmented circuit models have no real use case; they are less precise than
S-parameters and too complicated to design with. For this reason, the focus of this work
lies on the lumped circuit models, sometimes also called equivalent models. Fig. 3.14
shows the widely used π-model for two-terminal on-chip inductors. The properties of the
inductor are modeled with a series inductance Ls and series resistance Rs, as well as the
inter winding capacitance Cs. The influence of oxide and substrate is taken into account
with the branches to ground.

77

3.3. MODELING OF INDUCTORS

L1 L2
Ls Rs

Cs

Cox

CsiRsi

Cox

Csi Rsi

Fig. 3.14: The lumped π-model of a spiral inductor as found in literature. Parameters
are the series inductance Ls, series resistance Rs, inter winding capacitance
Cs, oxide capacitance Cox, and the substrate properties Csi and Rsi.

Series Inductance – Current Sheet Method

Compared to the resistors and capacitors in the π-model, it is very difficult to compute
the series inductance because an appropriate formula has to take the mutual inductance
between all the segments into account. This is technically also true for the inter-winding
capacitance, but it is often considered to have its main contribution from the metal
under/over-pass, which is then simply computed as a plate capacitor [59]. In modern
technologies, the wire thickness is not negligible anymore compared to the width, so
technically lateral capacitive coupling between the segments will have a contribution to
Cs. There have been multiple equations proposed in literature to calculate the inductance
of planar inductors. However, to the knowledge of the author, the work of Mohan [40] is
the most extensive in this area. He compares other formulas to his own derivations so
there is no point in comparing them again in this work. The main proposal of Mohan
is the current sheet method, which is based on the mean distance method explained in
the previous section. The term current sheet implies a conductor with one-dimensional
cross-section. This work builds upon the results of Mohan in section 3.5, hence an
overview of his derivation is given here. For a simple planar spiral, his result is given
by Eqs. 3.56 to 3.58 and Tab. 3.2. The permeability of the material is included via µ.
On-chip interconnect is typically made of copper, which has a relative permeability of 1.

Ls =
davgn

2µ

2
· c1 ·

(
ln
(
c2
ρ

)
+ c3ρ+ c4ρ

2

)
(3.56)

ρ =
nw + (n− 1)s

davg
(3.57)

78

3.3. MODELING OF INDUCTORS

davg = d− nw − (n− 1)s (3.58)

Layout c1 c2 c3 c4
Square 1.27 2.07 0.18 0.13
Hexagon 1.09 2.23 0.00 0.17
Octagon 1.07 2.29 0.00 0.19
Circle 1.00 2.46 0.00 0.20

Tab. 3.2: Coefficients for the current sheet self-inductance formula given in Eq. 3.56 [40].

With the background from section 3.2, the general structure of the expression looks very
familiar. Nevertheless, the following will briefly present the steps performed by Mohan
to derive this formula. His derivation is the continuation of the inductance calculations
made in the previous section – or as Greenhouse states “All theoretical equations for
calculations involving planar rectangular inductors having one or more turns employ
in their derivation the self-inductance of a straight conductor.” [56]. The steps of the
derivation are illustrated in Fig. 3.15. As a first step, Mohan calculates the GMD, AMD,
and AMSD for a line cross-section, i.e. a rectangular cross-section with t = 0. From
this, the self-inductance of a rectangular current sheet is deduced. This is then extended
to two parallel current sheets with opposite current directions. The same is done for
trapezoidal current sheets because the sides of planar inductors are trapezoidal. The
results are then combined to compute the self-inductance of a square current sheet. The
last step makes the transition from a single square current sheet to n concentric current
sheets. As this would involve the computation of O(n2) mutual inductances, Mohan
proposes an approximation by defining the ratio of width to length of a conductor ρ and
inserting it for w/l in the formula derived in the previous step for the square current sheet.
This is of course only exactly valid for s = 0, but Mohan validates this approximation
by comparison to a summation method from Greenhouse [56], which actually sums up
all mutual inductances with a granularity of segments. Furthermore, he computes some
corrections for finite spacing and thickness. These terms are presented in section 3.5.

79

3.3. MODELING OF INDUCTORS

(a) Rectangular current sheet.

(b) Rectangular current sheets with opposite cur-
rent directions.

(c) Trapezoidal current sheet.

(d) Trapezoidal current sheets with opposite cur-
rent directions.

(e) Square current sheet. (f) n concentric, square current sheets.

Fig. 3.15: Steps taken by Mohan [40] to derive the current sheet approximation. The
red arrows denote the current direction.

80

3.3. MODELING OF INDUCTORS

Lumped Parameters

To analyze the effects of metal fill and process corners, the inductor in Fig. 3.13 has been
simulated for various settings. Therefore, it is useful to calculate the Y-parameters for
this network because they allow to connect simulated or measured S-parameters with
the model parameters. The Y-parameter matrix of the lumped π-model consists of two
components, a series admittance Ys comprised of the three series elements between L1
and L2, and a shunt admittance Ysi dependent on the three components used to model
the oxide and substrate. With this, the Y-parameter matrix is given by Eq. 3.61.

Ys = sCs +
1

Rs + sLs
(3.59)

Ysi =
sCox + s2CoxRsiCsi
1 + sRsi(Cox + Csi)

(3.60)

Yπ =

(
Ys + Ysi −Ys

−Ys Ys + Ysi

)
(3.61)

There are only two independent Y-parameter components, although with a real and
imaginary part each but six parameters in the model, so it is not possible to solve for
all parameters and plot them as a function of frequency. However, series and shunt
admittance can be used to compute four parameters at low frequencies. At higher
frequencies, the capacitances Cs and Csi influence these values, as well as not modeled
frequency dependent effects like the skin effect. To visualize the influence of different
effects, some of the Eqs. 3.62 to 3.65 are plotted in literature. Since the shunt branches
are actually not identical for an asymmetric inductor, R×

si and C×
ox are averaged here

as the lumped π-model employs identical branches. Note that Eq. 3.63 is, unlike the
other three expressions, not identical to Ls at low frequencies but also includes CsR

2
s.

However, this value is typically below 1 pH and can be neglected.

R×
s (f) := −Re

{
1

Yπ,12

}
= Rs +O(f2) (3.62)

L×
s (f) := −Im

{
1

ωYπ,12

}
= Ls − CsR

2
s +O(f2) (3.63)

R×
si (f) := Re

{
2

Yπ,11 + Yπ,12 + Yπ,21 + Yπ,22

}
= Rsi +O(f2) (3.64)

C×
ox(f) := Im

{
Yπ,11 + Yπ,12 + Yπ,21 + Yπ,22

2ω

}
= Cox +O(f2) (3.65)

In addition to the four curves above, often also the single-ended inductance L× and the
quality factor Q are computed and plotted against the frequency. By plotting these,
effects of design changes on the performance in typical applications can be understood
relatively easy. For, e.g., oscillators it is relevant to achieve high quality factors to reduce

81

3.3. MODELING OF INDUCTORS

the signal damping. For other applications, like amplifiers, it might be more important
to obtain a certain inductance L× to achieve a desired bandwidth improvement. L×

s is of
less importance in this case because usually one terminal of the inductor is connected
to either power or ground. Thus, the corresponding Ysi branch has no effect and at the
other pin, the inductor behaves like an inductance L×.

L×(f) := Im
{

2

ωYπ,11 + ωYπ,22

}
(3.66)

Q(f) := − Im {Yπ,11 + Yπ,22}
Re {Yπ,11 + Yπ,22}

(3.67)

3.3.3 Skin and Proximity Effect

It is well known that alternating currents follow an exponentially decreasing density
within conductor cross-sections, which is called skin effect. This influences both the
resistance and the inductance of a wire and makes them frequency dependent. In case
of a constant overall current through the cross-section, the external inductance remains
unchanged. However, the scaling with r2/R2 done to compute the internal magnetic field
in Eq. 3.14 would now include an exponential factor, rendering an analytic solution more
complicated. Nevertheless, it can be concluded that the internal inductance will decrease
as for a given radius r < R the enclosed current is less than for a uniform DC current.
Visually, this would cause the graphs in Fig 3.9 to become dented towards lower values
in the range [0, 1]. Since only the internal inductance is reduced by the skin effect, the
overall inductance does not decrease significantly at higher frequencies. This can be seen
in Fig. 3.16, which shows the ratio of both inductance parts as a function of wire length
versus radius. The length of the wiring used in typical on-chip inductors is much larger
than the width or thickness of it so the external inductance is the dominant contribution.
Probably for this reason, literature does not spend much effort on modifying inductance
calculation due to skin effect. In contrast to the inductance, the series resistance is not
comprised of a “field” outside the conductor and is affected significantly by the skin effect.
The current density for a round wire is approximately described by Eq. 3.68. The correct
solution involves Bessel functions in cylindrical coordinates and can be found in [63]. It
is possible to calculate the current density for a rectangular cross-section, as is done by
Gerling [64], however the solution is rather complicated and for the purpose of this work,
a simpler description is sufficient to visualize the general impact of the skin effect on the
series resistance of on-chip inductors.

J(r) = JS exp
(
−R− r

δ

)
and δ ≈

√
2

σwµwω
(3.68)

82

3.3. MODELING OF INDUCTORS

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

l/R

L
w
,e

xt
/L

w
,in

t

Fig. 3.16: Ratio of external and internal inductance of a straight round wire as calculated
in Eq. 3.26 for a uniform current.

Here, JS is the current density at the wire surface, which is identical to the DC current
density as it is not affected by the skin depth δ. The latter depends solely on the material
properties of the wire, i.e. the specific conductivity σw and the permeability µw, and the
frequency, but not on the geometry of the wire. Thus, a bunch of thinner wires is usually
favored over a single thicker wire in many applications to mitigate the skin effect. This is
not a feasible approach for on-chip inductors because spacing rules are increasing the
effective width of the turns significantly. Using Eq. 3.68, the simple case of a round wire
allows to calculate the ratio of AC to DC resistance.

R(ω)

R(0)
=

JSπR
2

2π
∫ R
0 J(r)rdr

=
R2

2δ(R− δ(1− exp(−R/δ)))
(3.69)

Fig. 3.17 shows the skin depth for copper and it is well below 1 µm for frequencies above
5 GHz. The red curve shows the resistance increase due to skin effect in a round copper
wire with a radius of 1.4 µm. The increase in resistance is not negligible as compared to
the decrease in inductance.

While the skin effect alters the current distribution within a wire due to the interaction
between the current filaments, a similar effect arises when several wires are closely
together, called proximity effect. The current in one wire changes the distribution of
current in the other wire, and vice versa. Depending on the relative current direction
in both wires, the current density is either increased or decreased toward the common
center of the wires. The calculations behind this effect are complicated and beyond the

83

3.3. MODELING OF INDUCTORS

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

Frequency [GHz]

δCu [µm]
RCu(f)/RCu(0)

Fig. 3.17: Skin depth and resistance increase for a round copper wire with a radius of
1.4 µm. This is representative of a typical wire used for on-chip inductors in
advanced nodes.

scope of this work. A detailed analysis is even more involved than the exact skin effect
equations and hardly applicable to more complex geometries. The important observation
is that the result also describes an increase in series resistance, thus it can be treated
similar to the skin effect. The details will be computed by field solvers and can hardly
be mapped to lumped circuit models.

Frequency-Dependent Lumped Models

The question remains on what to do with the frequency dependency of resistance and
inductance in lumped circuit models. Making lumped components frequency dependent,
severely compromises their simplicity and removes the advantage they provide for circuit
design and optimization. Thus, it is not desirable to extend lumped models with a
frequency parameter. Instead, fitting can be applied to determine the optimal model
parameters resulting in the minimum deviation from the actual S-parameters in the
frequency range of interest. This effectively averages the parameters but only over the
frequency dependent effects that could not be represented in the lumped model. For
the series resistance, the DC value could also be a reasonable approximation because it
allows to minimize S11(0), which has the tightest constraint across standards according
to Fig. 2.3. Another advantage of the DC resistance value is the computation of DC
operating points, which are calculated in most analog circuit simulations before a small
signal analysis is performed.

84

3.3. MODELING OF INDUCTORS

3.3.4 Metal Fill

Metal fill is another very important aspect to ensure chip designs can actually be
manufactured, and thus it also influences the design of on-chip inductors. The underlying
problem concerns density gradients on each process layer and therefore also on the metal
layers. The manufacturing steps include the etching of structures using chemicals as well
as mechanical polishing steps. Areas with very low density can then become slightly
dished, which causes structures, which are to be exposed in subsequent process steps in
the same area, to be out of focus. Hence, the yield may be decreased, or it may not be
possible to manufacture the design at all. Thus, small fill shapes are scattered in between
the shapes drawn by the designer to smooth out the density and meet the design rules.
Usually this is done by an automated tool and not manually. This section has presented
how a two-terminal inductor is modeled and in this subsection this model is used to
study the influence of metal fill on the model parameters.

Design of Metal Fill

In the 22nm technology considered in this work, special design rules regarding the metal
fill of inductors are provided. Using a marker layer, these rules can be applied to a certain
area in the design, which in turn is prohibited to include more than metal interconnect.
The fill shapes are allowed to be very small and the overall density to be minimal. It is
obvious from the law of induction that reducing the area of the shapes in turn reduces
the induced electric field and thus the dissipated energy. The sizes of the fill shapes
can be looked up in the design manual and incorporated into the PCells to have them
automatically generated. It is not advisable to hand this task to a fill tool as it is better
to maintain complete control of the layout within the inductor area and include fill early
on into simulations. In addition, it is easy to incorporate the the generation of the fill
patterns into PCells so there is not reason to not do so.

Simulation of Metal Fill

Field solvers usually create a mesh to partition the device to be simulated into smaller
parts for which a single point of electric and magnetic field strengths is calculated. The
smaller the mesh cells, the higher the accuracy of the result, and the longer the runtime
of the simulator. For straight wires, e.g. segments of inductors, it is possible to reduce
the number of grid points to enable reasonable runtimes. However, the number of mesh
cells needed for tens of thousands of fill shapes cannot be reduced below the number of fill
shapes as the fill shapes are not a continuous piece of metal. Hence, simplifications have to
be employed to include metal fill with these simulators. The SKILL PCell code developed
in this work uses the fill parameter to not only generate the fill for manufacturing but

85

3.3. MODELING OF INDUCTORS

also to up-scale this fill to drastically reduce the number of fill shapes for field solvers.
This was not necessary for EMX (see section 3.4), a field solver specifically designed for
on-chip structures. Layout extraction engines can be configured to simplify small shapes
if required, so the scaling of fill is technically not necessary in this case.

Influence of Metal Fill

Fig. 3.18 shows the results produced with EMX (full-wave mode) for the inductor shown
in Fig. 3.13. Following the law of induction, a changing magnetic field will cause current
loops in nearby conductive objects. These eddy currents are dissipating energy from the
magnetic field, which is primarily reflected in an increased R×

s . The series inductance
L×
s is changed only by a few pH. The initial drop is caused by the skin effect, while

the rise towards higher frequencies is the result of Cs. The substrate resistance is at a
plausible value [61] and not altered much by the metal shapes. It decreases towards higher
frequencies due to Csi. The oxide capacitance is slightly increased due to the coupling to
the fill shapes. Towards higher frequencies, it converges to the series connection of oxide
and substrate capacitance: CoxCsi/(Cox +Csi). The single-ended inductance L× increases
earlier than the series inductance as it involves a higher capacitance. The quality factor is
reduced significantly because of the energy loss through eddy currents in the fill shapes.

86

3.3. MODELING OF INDUCTORS

0 10 20 30 40 50
0

1

2

3

Frequency [GHz]

R
× s

[Ω
]

(a) Series resistance.

0 10 20 30 40 50

225

230

235

240

Frequency [GHz]

L
× s

[p
H

]

w/o metal fill
w/ metal fill

(b) Series inductance.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

R
× si

[k
Ω

]

(c) Shunt resistance.

0 10 20 30 40 50

6

8

10

Frequency [GHz]

C
× ox

[fF
]

(d) Shunt capacitance.

0 10 20 30 40 50

230

240

250

260

Frequency [GHz]

L
×

[p
H

]

(e) Single-ended inductance.

0 10 20 30 40 50
0

5

10

15

20

25

Frequency [GHz]

Q

(f) Quality factor.

Fig. 3.18: Influence of metal fill.

87

3.3. MODELING OF INDUCTORS

3.3.5 Process Corners

Process corners are used to model the effects of manufacturing variations on devices and
wires. As inductors are basically just wires and fill, only the interconnect corners (RC-
corners) are required to simulate the variation of their electrical properties. Temperature,
voltage, and doping concentrations are usually not considered because their influence is
minimal. For each RC-corner, there is a stack-up file that contains the specific changes
to geometry and material properties. These files are provided in multiple formats for
different tools (see section 3.4). The two-terminal inductor used as an example in this
section (Fig. 3.13) has been simulated with EMX (full-wave mode) for each RC-corner,
including metal fill. The results are shown in Fig. 3.19 and serve to get an estimate of the
magnitude of variation. The min/max-values are not singular process corners but simply
the highest and lowest value across all corners at each frequency. Thus, they present the
absolute highest deviations at all frequencies, but this is enough to get an idea of the
order of magnitude by which a typical inductor may vary across chips. The deviation of
the inductance is below ten percent, while the resistance varies a little more, especially
towards higher values, which is probably due to the influence of metal fill. As a result,
the quality factor also exhibits a larger deviation towards lower values. The consequence
from this is that, if it is possible to simulate the design for different RC-corners, which is
not always the case as will be discussed in the next section, it should be done. However,
it seems unrealistic to find an inductor for a given application and then alter its geometry
such that the electrical performance stays the same but the variation over RC-corners is
made more favorable. Hence, the corner analysis is basically just used for verification of
on-chip inductors but not taken into account in the design phase.

Now the series inductance Ls was simulated for the example inductor and can be
compared with the current sheet formula, which estimates an inductance of 279 pH.
Including spacing and thickness corrections, the value lowers to 271 pH. Overall, this is a
very good result, especially considering that no complicated tools, no expensive licenses,
and only a couple of minutes are needed to do the calculation. However, there seems to
be room for improvement, so an attempt on reducing this error with the help of field
solver results is presented in section 3.5.

88

3.3. MODELING OF INDUCTORS

0 10 20 30 40 50
0

1

2

3

Frequency [GHz]

R
× s

[Ω
]

(a) Series resistance.

0 10 20 30 40 50

220

230

240

Frequency [GHz]

L
× s

[p
H

]

typical RC
min/max RC

(b) Series inductance.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

R
× si

[k
Ω

]

(c) Shunt resistance.

0 10 20 30 40 50

6

8

10

Frequency [GHz]

C
× ox

[fF
]

(d) Shunt capacitance.

0 10 20 30 40 50

220

230

240

250

260

Frequency [GHz]

L
×

[p
H

]

(e) Single-ended inductance.

0 10 20 30 40 50
0

5

10

15

Frequency [GHz]

Q

(f) Quality factor.

Fig. 3.19: Influence of process corners, including metal fill.

89

3.4. SIMULATION OF INDUCTORS

3.4 Simulation of Inductors

To complement the previous section, this section discusses how on-chip inductors can
be simulated. Using the current sheet formula, which calculates the DC inductance, is
not enough for post-layout verification. It is necessary to properly simulate the inductor
layout to ensure it has the expected properties. This section is split into two parts. The
first part focuses on the layout extraction engine Quantus QRC from Cadence. In the
second part, field solvers are discussed, which have been used throughout the course of
this work.

Before diving into the details of this section, it is important to adjust the expectations
for it. While there are many tools, like Advanced Design System (ADS) from Keysight
Technologies or Sigrity from Cadence, that are well suited to simulate PCBs, it is much
more complicated to obtain reliable results for on-chip structures. Field simulations are
not easily set up in a couple of hours and are not a one time procedure that is check marked
in the verification plan. This is mainly due to two reasons: the availability of stack-up
files, and the lack of the correct inductor layout to simulate. In chip design, the Back End
of Line (BEOL), i.e. the metal layers used to interconnect the devices, is described with a
stack-up, usually defined in a so-called technology file. It contains the material properties
and thicknesses of the layers available in the corresponding technology, as well as their
ordering and additional information. Since these files contain explicit information about
the technology, they are often encrypted, especially for advanced semiconductor processes,
and can only be read by the appropriate tool. Furthermore, there is a significant amount
of different formats available. The “qrcTechFile” is used by Cadence tools to read in
information for layout extraction – it is encrypted in all technologies this work dealt with.
There is also the interconnect technology (.ict) format, which is an ASCII-based text file
with a syntax to describe semiconductor technologies and also holds some information for
Cadence tools. It can be viewed with a simple text editor or the Cadence tool ViewICT,
which translates it into a graphical representation. However, these files do not contain
all stack-up information necessary to simulate inductors. Therefore, foundries sometimes
provide separate files for field solvers that are actually intended for this use case. More
details on these files are presented in this section.

Even if an inductor layout has been correctly simulated, this does of course not imply
that it has the intended properties, nor that it is an optimal solution given the large
space of possible inductors. In the likely case it does not have the intended properties, it
has to be optimized in an iterative and time-consuming trial and error process. This
problem is addressed partly in this section and extensively in the next section.

90

3.4. SIMULATION OF INDUCTORS

3.4.1 Layout Extraction

So far, this chapter has presented the background on analytical inductance calculation.
However, this is hardly the approach someone starting out with on-chip inductor design
would be looking into right from the start, without background knowledge and experience.
Literature on ESD compensation and the large number of seemingly available tools hint
strongly towards simulation as the way to go. The same was the case for this work, and
the most straight forward design process is to simply draw an inductor in the layout
editor and then try to simulate it. Hence, the initial attempts to create a fitting inductor
for ESD compensation were inevitably based on trial and error. Consequently, the layout
procedure was automated as described in section 3.1, but still a lot more steps had to be
performed manually to assess the electrical parameters via simulation. The amount of
manual work required per inductor was in fact too large to realistically find a satisfying
solution within a reasonable time frame. Furthermore, trial and error approaches always
have that uncertainty about how long it takes to find a solution and if one is found, there
is a bitter taste associated with it because there is little indication how close the result
is to an optimal solution. This led to the idea to take the automation even further in
this work, with the goal of specifying only the geometrical parameters as an input and
obtaining the electrical parameters as a result. To this end, an automated flow using
the Quantus QRC extraction engine from Cadence was implemented. The results of this
work were presented at CDNLive EMEA 2018 [16]. This section will detail the flow up
to the generation of S-parameters. The transformation of S-parameters into electrical
parameters is presented in the next section. Fig. 3.20 shows an overview of the entire
flow. The process of creating and extracting an inductor involves a lot of steps. Starting
with the geometrical parameters, it requires to create a layout view, run the LVS check,
extract the layout with QRC, and generate the S-parameters with a simulator. Manual
execution of these steps for all inductors consumes a lot of time and is hardly conducted
consistently. The flow is controlled by a bash script that accepts the required input via
command line parameters. An example command line would look like this:
./inductor.bash --process cmos22 --inductor IND_SQUARE_SPIRAL \
--diameter 40.0u --width 3.0u --spacing 1.8u --turns 2.5 --layer MX

Since layer names change from technology to technology, some one-time work is needed
to extend the flow. If new inductors are to be supported, new PCells have to be created.
Virtuoso executes a SKILL file called libInit.il when entering a library in the library
manager if it is present in the library folder on the file system. So the SKILL PCells that
are intended to be located in this library can be loaded in this file via the SKILL load
function, (load <pcell.il>). This ensures the OpenAccess PCells in the library are
always in sync with the code but causes some delay in accessing the library. Therefore,
loading the PCells should probably only be done when the code is updated. It is most

91

3.4. SIMULATION OF INDUCTORS

PCell

Geometry

Layout
GDSII

LVS

.cdl
lvs options
rule file

Database

QRC

command file
pin order file

SPICE
netlist

Spectre

spectre netlist

S-Parameter

Fig. 3.20: Block diagram of the automated extraction flow. A command line with
geometry parameters is translated into S-parameters.

feasible to include the generated OpenAccess PCells into version control, too.
The user specifies the inductor geometry via parameters to the flow script. Then the

first step executed by the flow is to create a cell containing a layout view of the inductor
corresponding to the geometry specified on the command line. To do this, a short code
is generated with Python containing SKILL commands that can be executed without
the Virtuoso GUI by passing it to Virtuoso with the -replay flag. This functionality
is intended to replay a series of commands that has been executed in the Virtuoso
GUI. The SKILL code opens the layout view, places a PCell instance with the given
parameters, and saves it afterwards. In the next step, the strmout command is used
to convert the layout view into the GDSII-format to hand it over to the cdnspvs tool,
which conducts an LVS check required for layout extraction. However, cdnspvs needs
more input files. Obviously, a schematic is required; it can be provided by a text-based
.cdl-file, which is easier to create than an OpenAccess schematic view of the inductor cell.
The .cdl-file contains metal resistors to logically separate the nets used by the inductor.
These resistors are needed for the LVS check to correctly identify the inductor but do
not have any physical relevance. The final two files to run cdnspvs are an options and
a rule file containing settings normally supplied via the GUI – most importantly the
layout and schematic to be compared. cdnspvs is advised to create the database required
by QRC with the -qrc_data flag. The extraction tool qrc is again controlled with a
command file, which contains the settings that are otherwise specified in the GUI. As the
name suggests, extraction is normally performed to include post-layout parasitics in the
form of resistance (R) and capacitance (C). However, it is possible to let QRC extract

92

3.4. SIMULATION OF INDUCTORS

inductance (L) of and coupling (k) between nets when it is executed in “RLCk” mode.
Capacitance extraction is set to coupled to properly account for capacitances between
neighboring shapes. The accuracy of capacitance extraction is enhanced by using the
Quantus 3D Field Solver (Quantus FS). It computes capacitances with the actual design
geometry, instead of using simpler capacitance models defined in the technology file.
The runtime is not significantly longer, even at the high accuracy settings, as inductor
layouts do not comprise a lot of shapes. However, this field solver is quite simple and
does not provide the same feature for inductances. Furthermore, to extract the “Lk”
correctly, a region, metal layers, and net names have to be supplied, and only the nets
meeting these criteria have their inductance and inductive coupling extracted by QRC.
The output format for the extracted netlist is SPICE. Along with the output format, it
is necessary to specify the -pin_order_file option. It is provided with yet another file
that defines the order of the pins in the SPICE netlist; otherwise this order can vary,
which causes problems in the remainder of the flow. The S-parameters are simulated
by calling the circuit simulator Spectre. The testbench is described in the .scs-format
(Spectre Circuit Simulation Netlist) and contains three S-parameter sources with 50 Ω
reference impedance, the extracted netlist, and simulation settings, including an output
path for the S-parameters. The last step, the transformation of the S-parameters to
lumped circuit parameters, is described in section 3.5.

The main drawback of this flow is that QRC does perform certain simplifications
during inductance extraction as it is not a field solver. This has been tested with a PDK
inductor, which a foundry provided model was available for, in order to rule out potential
simulation errors as a reliable field solver was not available at this time. However, the
PDK inductor also uses some special design rules, which the extraction might not work
very well for. QRC matches segments of the layout to known structures to annotate
parasitics, which might produce better results for the custom inductors presented in
this work. Although, Cadence would not spend effort on integrating field solvers into
its Virtuoso environment if QRC could already properly handle inductance extraction
accurately at all frequencies.

3.4.2 Field Solvers

Field solvers are the most accurate way to simulate inductors and distributed electrical
structures in general. They numerically solve the Maxwell equations for given boundary
conditions, e.g. for the geometry of an inductor. Several tools exist to do this, but
there are technical and licensing barriers to overcome to simulate on-chip inductors.
“Furthermore, [...] considerable experience is required on the part of the user to simulate
on-chip inductors” [40]. Field solvers have a variety of flags for tweaking them, and
it requires time to get an overview and analyze their effect on the results. The work

93

3.4. SIMULATION OF INDUCTORS

with some tools is described in this subsection. This is not intended as a comprehensive
overview and there are many more tools available, which could not be evaluated due to
licensing costs and the sheer amount of effort required to do so. The tools used in this
work are ADS 2012 from Keysight Technologies, and Sigrity and EMX from Cadence.

The analog chip design environment used in this work was Cadence Virtuoso, so
particular attention was paid to tools from Cadence that enable inductor simulation.
Over the last years, there has been increasing effort from Cadence to incorporate various
field solvers into the Virtuoso environment. Keysight Technologies offers a tool called
GoldenGate, which integrates with Virtuoso and allows to simulate on-chip inductors. It
has been only briefly tested at the beginning of this work, but it requires a separate license.
Unfortunately, no noteworthy results have been documented from this. Then Cadence
integrated their in-house field solver Sigrity into the Virtuoso layout editor, which was
primarily marketed for PCB and package simulation before. This integration has been
tested in this work with the help of a “beta” evaluation license, with mediocre success.
When the evaluation license ran out, a custom stack-up file was created for use with
ADS 2012, again with mediocre success. In 2020, Cadence bought Integrand Software
Inc., a company offering the field solver EMX, which was previously not available for
universities but mainly for foundries. Hence, few months prior to the end of this work,
EMX could also be evaluated.

A field solver usually needs two different inputs to simulate a device, materials and
geometry. The former defines which electromagnetic properties, i.e. conductivity, permit-
tivity, and permeability, the materials used to build and enclose the device have. The
latter describes the shape of the device and its environment. Foundries tend to provide
stack-up files that include this information for various tools. Unfortunately, there is
no standardized format available so the correct tool has to be purchased to utilize the
available files. While it is sometimes possible to manually convert or create such files, as
has been done in this work, it is strongly advisable to select the tool depending on the
files available and not the other way around.

Sigrity

The company Sigrity was acquired by Cadence in 2012 [65]. Since then, the Sigrity
software was mainly distributed with PCB and package design tools offered by Cadence.
However, it was integrated into the “Electromagnetic” workspace of the Virtuoso layout
editor in 2018, to enable EM-simulation of passive on-chip components. In the context
of this thesis, an evaluation license could be used to do some tests of this integration
while it was still in an early stage. Thus, this is no description of the actual software
that can be licensed from Cadence today, but only intends to motivate the decisions
taken in this work. The plug-in allows to read in the “qrcTechFile” to load the stack-up

94

3.4. SIMULATION OF INDUCTORS

information. In addition, the locations of the ports have to be specified. However, the
ports could only be properly created via the automatic placement and if it did not work,
the manual alternative was not functional. In case the configuration was done successfully,
it could then be saved into the binary .clf-format. Unfortunately, the creation of this
configuration file could not be automated, e.g. by using SKILL, due to the necessary
graphical interaction. Starting the external Sigrity software directly from the Virtuoso
layout editor was also not yet functional, but the .clf-file could be imported into Sigrity
manually. However, the “Conformal Outer Box” setting, which is important for specifying
the boundary conditions correctly in Sigrity, was quietly deselected during the import
process but could be re-selected manually afterwards. The main difficulty with Sigrity was
the import of the stack-up, which showed partly wrong material properties, especially for
the vias. After changing these to “realistic” values, some inductors could be successfully
simulated, meaning they showed reasonable results, but of course there was no measure
on how accurate they were.

Advanced Design System

Another field simulator available for this work was Advanced Design System (ADS) from
Keysight Technologies. It is usually used to simulate all kinds of different electromagnetic
designs like PCBs or antennas. Therefore, it is theoretically also possible to simulate
on-chip structures with ADS. It was considered for this work as the license for the Sigrity
plug-in described before had expired. However, only an older version from 2012 was
available. There are stack-up files in the 22nm PDK used in this work available for ADS
but only for the “millimeter wave” stack-ups, which did not include the stack-up in use.
Some technologies provide multiple stack-up variants for different application areas, but
not all files are available for each variant. Furthermore, the foundries use recent versions
of ADS to generate the stack-up files in an encrypted format, which in turn requires
an up-to-date version of ADS to be decrypted. Thus, the stack-up could not be easily
imported into the ADS version from 2012. In fact, trying to do so results in program
crashes. However, the most important stack-up information could be extracted from the
stack-up viewer in Sigrity, which displayed the decrypted data (at least partly). Hence, a
new stack-up file could be built manually for ADS. For the text-based .ltd-format, it is
necessary to specify the material properties of metal layers, dielectrics, and vias. The
stack-up is then built by a sequence of statements that defines the order, thicknesses, and
materials of the layers, as well as their layer number. The latter is needed in conjunction
with a layer mapping file so that the layout in the GDSII-format, which has been exported
from Virtuoso, can be imported into ADS. The ports are created manually in the ADS
layout editor, but it does not provide a command line interface to script all these manual
steps to facilitate an automated flow. The runtime of the simulations is in the order of

95

3.4. SIMULATION OF INDUCTORS

several hours to days, especially if fill shapes are included. This was one of the reasons
to include scalable fill into the PCells described in section 3.1. Several settings have been
compared to study their influence on the simulation results, and acceptable results could
be achieved in this work. An “expert user” might have found more optimized settings, but
this shows again that such tools require considerable experience. The simulation results
shown in the previous section were produced with Cadence EMX, which is discussed next.
The same two-terminal inductor has been simulated with ADS, though with a scaled-up
metal fill and a lower conductor thickness due to the different stack-up. The results show
an increased series resistance and inductance but decreased inter-winding capacitance,
which is expected. This 22nm technology allows for an increased substrate resistance
below inductors, which was not modeled into the manually created stack-up for ADS
and thus, Rsi was significantly lower. Last but not least, the oxide capacitance was very
similar. It can be concluded that the manually created stack-up can produce results that
look reasonable but for expensive tape-outs, it is worthwhile to invest in a tool that can
actually read one of the supplied stack-up files in the given PDK.

EMX

Unlike the previously presented solvers, EMX (ElectroMagentic eXtraction) is specifically
targeting semiconductor applications. While originally developed by Integrand Software
Inc. and almost exclusively provided to semiconductor manufacturers, it was acquired by
Cadence in 2020 and integrated into their layout editor. EMX seems to be the “golden”
standard with regards to on-chip EM-simulation. Most foundry-provided inductor models
are created with this software. Therefore, also the stack-up files (.proc) required by
EMX are provided with some PDKs but again not necessarily for all stack-up variants.
EMX was evaluated in the last few months of this work with a license provided by
Cadence. Unfortunately, the .proc-files were not available for the stack-up that was used
to implement the ESD protection. So the ADS results could not be directly validated with
EMX. Cadence also offers Clarity, a massively parallel, fully 3D solver that makes use of the
finite element method. It could also be used for on-chip structures, but it is more targeted
towards system level simulation, e.g. connectors, boards, bond wires, and packages [66].
On-chip structures are mostly planar and their simulation can be significantly accelerated
by solving the integral form of Maxwell’s equations, which is called the method of moments.
EMX makes use of the fast multipole method, which again increases the speed of the
method of moments. This gives EMX a significant speed advantage versus full-fledged
3D solvers in the special case of on-chip inductors [65]. Furthermore, the accuracy of
EMX has been “extensively verified against silicon measurements” [67] as it is used by all
major foundries to model and characterize their passive components.

96

3.4. SIMULATION OF INDUCTORS

PCell

Geometry

Layout
GDSII

EMX

EMX settings

S-Parameter

Fig. 3.21: Block diagram of the automated EMX-based flow.

The automated layout extraction flow presented before was eventually discontinued
due to the limited capability of QRC to extract inductance. In addition to that, the
available field solvers could not be operated in a feasible manner via a command-line
interface. Finally, the long simulation times of field solvers put the last nail into the
coffin of this approach. However, the availability of EMX suddenly revived the idea again
as it possesses all three aforementioned properties: a fast simulation (albeit without
metal fill), a command-line interface, and EM-simulation capability. The usage of EMX
is much simpler compared to ADS or Sigrity due to its more focused application area. It
is invoked directly from the Virtuoso layout editor and recognizes pin labels as ports,
and those are already generated by the PCells. Furthermore, a shell script containing
the EMX command line is automatically generated when the simulator is started. Thus,
the procedure of the QRC-based flow could be vastly simplified as the layout can be
directly simulated (see Fig. 3.21). However, without the GUI it is still necessary to
manually generate the GDSII file. The runtime for a single inductor is only one to two
minutes depending on the complexity and size of the inductor. Quite a portion of this
time is consumed to start Virtuoso in replay mode and check out licenses. When metal
fill is included, the runtime increases to a few hours, but EMX is the only field solver
considered in this work that could simulate the actual metal fill with its tens of thousands
of shapes. Fig. 3.22 shows the difference between the less accurate “quasi-static” and
the “full-wave” mode for the two-terminal inductor discussed in the previous section,
including metal fill. The differences are negligible and the runtimes are similar so the
other results presented in this thesis were simulated with the full-wave mode.

97

3.4. SIMULATION OF INDUCTORS

0 10 20 30 40 50
0

1

2

3

Frequency [GHz]

R
× s

[Ω
]

(a) Series resistance.

0 10 20 30 40 50

225

230

235

240

Frequency [GHz]

L
× s

[p
H

]

quasi-static
full-wave

(b) Series inductance.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

R
× si

[k
Ω

]

(c) Shunt resistance.

0 10 20 30 40 50

6

8

10

Frequency [GHz]

C
× ox

[fF
]

(d) Shunt capacitance.

0 10 20 30 40 50

230

240

250

260

Frequency [GHz]

L
×

[p
H

]

(e) Single-ended inductance.

0 10 20 30 40 50
0

5

10

15

20

25

Frequency [GHz]

Q

(f) Quality factor.

Fig. 3.22: EMX “full-wave” vs. “quasi-static”.

98

3.5. SYNTHESIS OF INDUCTORS

3.5 Synthesis of Inductors

So far, it has been shown that the lumped models are well suited for circuit design and
optimization, but their components or parameters are not constant over frequency due to
various effects. Furthermore, not all parameters can be computed from the S-parameters
independently. Both problems can be alleviated by fitting the lumped model to the
simulated S-parameters, which effectively averages the parameters over frequency.

The current sheet approximation is good but still has room for improvement. Mo-
han [40] tried to mitigate this by adding correction terms for finite conductor thickness
and spacing. An analytic derivation considering thickness and spacing right from the
start is at least very complicated if possible at all, and not pursued in this work. Instead,
an updated formula is derived for the stacked T-coil with the help of simulation results.

Up to this point, most aspects were discussed on two-terminal inductors for simplicity
but for ESD compensation, the focus now shifts towards T-coils. This section aims to
combine the aspects discussed so far for on-chip inductors to provide a methodology for
an educated design instead of having to resort on trial and error. Therefore, the section
is split into four parts. The first part motivates the lumped T-coil model used for the
remainder of this section. Then, the second part presents a fitting method to extract
the model parameters from simulated S-parameters. In the third part, the current sheet
formula from Mohan, including its correction terms, is discussed and fitted to a set of
automatically generated and simulated T-coils. The resulting model is then used in the
fourth part to derive a T-coil layout that is optimized with respect to this model and a
few simple constraints.

3.5.1 Lumped T-Coil Model

This section uses the lumped T-coil model shown in Fig. 2.29. It has been used in
section 2.3 to design the ESD compensation. Compared to the π-model of the two-
terminal inductor, it neglects the substrate branches. Mohan also provided formulas
for the stacked T-coil, for which he used the lumped circuit model shown in Fig. 3.23.
The top and bottom inductors, Ls,t and Ls,b, are again modeled with the current sheet
formula and a constant coupling factor of k = 0.9, which is relatively high compared to
the results shown later in this section. The bridge capacitance Cov is calculated with the
oxide thickness between the inductors and their overlapping area. Mohan reduced the
substrate branches to single capacitors. Technically, the substrate capacitors could be
incorporated into the diode or pad capacitance, but that adds complexity to the analysis
presented in this section and does not provide additional insight. This section will show

99

3.5. SYNTHESIS OF INDUCTORS

that compared to the influence of wires connecting to the T-coil, the substrate is less
important. Especially the center-tap connection needs to be considered, which was not
done in Mohan’s work.

L1 L2
CT

Cov

k

Rs,t
Ls,t Ls,b Rs,b

Cox,t Cox,m Cox,b

Fig. 3.23: Lumped circuit model for the stacked T-coil used by Mohan [40].

3.5.2 Parameter Estimation

Structures like transmission lines and on-chip inductors are commonly described with
S-parameters obtained from EM-simulation tools. The previously presented QRC flow
also generates them as the output format. S-parameters are typically stored in the
text-based Touchstone file format. These files can be used in simulation at the schematic
level by using “nports” from the Virtuoso standard library. However, the simulation
with these is more time-consuming and they are less expressive compared to lumped
circuit models. Hence, there is value in mapping the simulated S-parameters to lumped
models. EMX does also offer such a feature, however the supported models are more
complex compared to the ones discussed in this section and seem to be intended more
for modeling an existing inductor instead of designing a new one. A brief test revealed
that EMX fitted “strange” values for some parameters. This might not be problematic
for the overall circuit but shows that fitting to lumped models is not a trivial task. A
custom fitting solution was built in this work with Python, which can use either a least
squares or an MCMC algorithm to estimate the electrical parameters from simulated
S-parameters.

Touchstone Reader

As a first step, a Python class SParameterFile was developed to read in the S-parameters
stored in Touchstone files. These can contain them either as real and imaginary parts or
magnitude and phase pairs. The latter is automatically transformed into the former as
the value range of real and imaginary parts of S-parameters is confined to the interval

100

3.5. SYNTHESIS OF INDUCTORS

[−1, 1]. This is better suited for fitting routines because magnitude and phase have
different value ranges so it is more difficult to weight them equally. The SParameterFile
object stores the read data as a list of SParameter objects. Each can hold a frequency
value and the corresponding S-parameter matrix. The stored data can be converted to
Y- and Z-parameters provided a reference impedance.

Lumped Model S-parameters

A Python class called InductorTapped defines the lumped model, for which the parame-
ters have to be fitted, as shown in Fig. 2.29. It provides a function to compute the 3-port
S-parameters for given model parameters. This is done by transforming the circuit into
star topology and computing the Y-parameters. From this, the S-parameters can be
computed via a matrix multiplication. 1 is the unity matrix and Z0 the port impedance,
usually 50 Ω. Fitting directly to Y-parameters is not feasible as their value range is not
bounded.

S = (1− Z0Y) · (1+ Z0Y)−1 (3.70)

Y-parameters are preferred over Z-parameters because the latter are not properly defined
without a substrate branch to ground. Even with a capacitive branch to ground, they are
infinite at DC. This can be also seen in Fig. 3.25, which shows a 3D view of a T-coil with
the ports represented by red arrows. The reference plane is located below the inductor,
on the opposite end of the arrows. There is no conductive path from any inductor pin to
this reference plane. However, the definition of Z-parameter matrix elements given in
Eq. 3.71 demands this conductive path.

Zij =
Vi

Ij

∣∣∣∣
∀k 6=j:Ik=0

, Yij =
Ii
Vj

∣∣∣∣
∀k 6=j:Vk=0

(3.71)

The condition ∀k 6= j : Ik = 0 means all ports except for port j are open, and at port
j, a current Ij is flowing. Then the voltage at port i is divided by this current, but
since all other ports are open, the voltage Vi tends towards infinity, resulting in infinite
Z-parameters. Y-parameters, on the other hand, are well defined. All ports except for
j are shorted to the reference plane and a voltage Vj is applied to port j. The current
flowing through port i is finite and divided by this voltage.

Fig. 3.24: Projection of a T-coil (created with Keysight ADS 2012).

101

3.5. SYNTHESIS OF INDUCTORS

Fig. 3.25: 3D-view of a T-coil (created with Keysight ADS 2012).

MCMC Fitting

The Python code developed to fit the lumped model to the S-parameters can do this
with two different methods. The first is a least squares fit conducted with the scipy
module [68]. This was fine for the S-parameters produced by QRC, which could be
approximated very well by the lumped circuit. As QRC uses a lot of simplifications, it was
expected that EM-simulation results would be much harder to fit. So as an alternative
to the classical least squares fit, another method was evaluated to cover possibly more
complex S-parameters and to avoid getting stuck in local minima, which can happen
during least squares fits. A popular method to fit models with tens or hundreds of
parameters is to use Markov-Chain Monte-Carlo algorithms. These are used to sample a
posterior Probability Density Function (PDF) as it appears in Bayesian Inference. An
overview of the underlying principles will be presented here to explain the various terms
as these algorithms are advanced statistical methods. First is the term Bayesian, which
refers to Bayes’ theorem (Eq. 3.72), that can be used to compute dependent probabilities.

P (A|B) =
P (B|A)P (A)

P (B)
(3.72)

This can be illustrated with a six sided dice. An experiment with three dice rolls is done
and there are two possible results A, ‘at least two rolls are 4’, and B, ‘first roll is not
4’. Before rolling the dice, the probability to roll at least two 4s is P (A) = 2/27. The
probability of result B is P (B) = 5/6. The conditional probability to roll at least two 4s

102

3.5. SYNTHESIS OF INDUCTORS

if the first roll is not a 4, is given by the conditional probability P (A|B) = 1/36. Bayes’
theorem can now be used to compute the probability P (B|A) = 5/16, i.e. how likely it
is that the first dice roll was not a 4 when it is known that overall at least two 4s were
rolled.

Transferring this to the problem of fitting a model with parameters Θ to data D, this
results in Eq. 3.73.

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
∝ P (D|Θ)P (Θ) (3.73)

The left side is the probability of the model given the data, also called posterior probability.
So this is the PDF that has to be computed to derive the estimated model parameters.
This is also a fundamental difference to least squares, which computes parameter estimates
with errors instead of PDFs over the parameter space. On the right side, there is the
probability P (D|Θ) of the data given a set of parameters times the probability of the
parameters P (Θ). The former is called the likelihood and has to be implemented as a
function that calculates how well a given set of parameters represents the data. The
latter is called prior, i.e. a function that contains all a-priori knowledge available on
the parameters. In most cases, it is reasonable to assume a flat prior, which makes
all parameter values equally likely. However, the prior is also the place to provide this
algorithm with boundaries. Thus, the prior is chosen to be flat within a certain range
of parameters but zero outside to exclude unreasonably large or small values. The
third part is the probability of the data P (D), which is unknown, but constant. It is
called marginalized likelihood or sometimes model evidence and is equal to the product of
likelihood and prior marginalized, i.e. integrated, over all parameters.

P (D) =

∫
P (D|Θ)P (Θ)dΘ (3.74)

If there are multiple models to be fitted to the same data, this value can be used to
determine which model fits best, hence the name evidence. In cases with a single model,
it presents a simple constant that does not depend on the parameters Θ, so only the
proportionality from Eq. 3.73 is considered. To summarize, the basic procedure conducted
by this approach is to transform the prior into a posterior PDF by using the likelihood
function and the data. If the same inductor would be simulated again, e.g. at different
frequency points, the posterior distribution could be used as the new prior to compute
an updated posterior. This is called Bayesian updating.

In most cases, this cannot be solved analytically and numerical methods are applied. A
common method is to sample a chain of random numbers from the posterior PDF. If this
is done a large number of times, the resulting distribution approximates the posterior.

103

3.5. SYNTHESIS OF INDUCTORS

A relatively old MCMC algorithm to create such a chain is the Metropolis-Hastings
(M-H) algorithm. An initial version was presented in 1953 by Metropolis et al. [69],
which was later generalized by Hastings [70] in 1970. The details are beyond the scope
of this section, but this algorithm needs to be tuned by setting N(N + 1)/2 parameters
to work correctly [71]. Here N is the dimension of Θ. This makes the M-H algorithm
complicated to apply as there is no foolproof method to set these parameters for different
problems [71]. An improved algorithm was developed by Goodman & Weare [72]. It
“significantly outperforms” [71] M-H based algorithms through various computational
advantages and much less free parameters. Instead of a single Markov-Chain, an ensemble
of walkers creates multiple chains. During initialization the walkers are distributed
randomly across the parameter space. In every step, the position of each walker Θi(t)

is updated with the position of another, randomly selected, walker Θj(t) as shown in
Eq. 3.75. r is a random value drawn from a specific distribution.

Θi(t) → Θi(t+ 1) = Θj + r(Θi(t)−Θj) (3.75)

For algorithmic reasons, this has to be done in series, i.e. Θi(t) is replaced immediately
with Θi(t+ 1), and then the next Θj is drawn from the updated ensemble. However, the
new position is only accepted with a certain probability based on the ratio of the posterior
probability of the new and old position. As the initial distribution of the walkers is not
related to the posterior PDF, there is a certain amount of “burn-in” steps required. The
length of this phase depends on the model and data, but can easily be determined and
excluded from the result. As the details are beyond the scope of this work, this is only a
coarse description of the algorithm.

Foreman et al. [71] developed a Python module called emcee, which allows to use the
Goodman & Weare algorithm as a well-proven MCMC Python code and with relatively
low effort. The prior and likelihood functions have to be user-defined and handed to
the emcee.EnsembleSampler method. In case of the T-coil, the model SΘ is given by
the function in Eq. 3.76, where Θ = (L1, L2, L3, CB) and the ports are numbered in
the order CT, L1, L2. The resistors are not fitted but simply calculated at f = 0 to get
proper DC operating points with the resulting model. Each of the nine S-parameter
components has a real and imaginary part so there are 18 single-valued functions, which
are all weighted equally in the likelihood function. It could be considered to weight the
off-diagonal element with 1/2 because the T-coil is a linear device and the matrix is

104

3.5. SYNTHESIS OF INDUCTORS

symmetric, but this was not done for the results presented in this thesis.

SΘ(f,Θ) =

 SΘ,11(f,Θ) SΘ,12(f,Θ) SΘ,13(f,Θ)

SΘ,21(f,Θ) SΘ,22(f,Θ) SΘ,23(f,Θ)

SΘ,31(f,Θ) SΘ,32(f,Θ) SΘ,33(f,Θ)

 (3.76)

The data is given by SD(fi). Here, the fi are the simulated frequency points (in total
nf). A common approach is to define a Gaussian likelihood function. emcee works with
the natural logarithm of the likelihood, the log-likelihood L.

L = ln(P (D|Θ)) = −1

2

nf−1∑
i=0

(
∆2

DΘ,i

σ2
i

+ ln
(
2πσ2

i

))
(3.77)

The difference of model and data for the i-th frequency fi is defined by Eq. 3.78. This is
the sum of squares for each of the 18 S-parameter functions.

∆2
DΘ,i =

3∑
j=1

3∑
k=1

(Re (SD,jk(fi)− SΘ,jk(fi)))
2 + (Im (SD,jk(fi)− SΘ,jk(fi)))

2 (3.78)

The error of each frequency point σi is unknown as there is no indication of a simulator
error. Obviously, it cannot be set to zero, but it can be included into the model as
σi = σ for all data points. There is no reason to assume different error bars for each
data point. Furthermore, it would lead to overfitting. Including σ is important to get
valid credibility intervals for the remaining parameters as their errors are scaled with
σ. Compared to the other parameters, σ does not describe the T-coil and is called a
nuisance parameter, which can be marginalized over. The results of an emcee run are
presented with a corner plot, which can be created with the corner module [73]. The
corner plot shows a histogram for each parameter, which simply presents the samples
drawn for the specific parameter. For a large enough number of samples drawn, this is
equivalent to the marginalized PDFs of the parameters. This is given by Eq. 3.79 for L1

and is analogous for the other parameters.

P (L1|D) =

∫∫∫∫
P (Θ, σ|D)dL2dL3dCBdσ (3.79)

The two-dimensional plots leave two parameters remaining after marginalization. This
can be used to analyze correlations between the parameters. σ for example is uncorrelated
to every other parameter, which is expected; whereas the others show an elliptic PDF
indicating some correlation. Finally, the parameters are estimated by taking the 16th,
50th, and 84th percentile of the sorted sample vector. For a large enough sample size,
this is equivalent to “µ± σ” if the maginalized PDFs can be assumed as Gaussian, which

105

3.5. SYNTHESIS OF INDUCTORS

is reasonable in this case. Fig. 3.26 shows the marginalized PDFs for the T-Coil shown
in Fig. 3.25. However, it should be noted that for multi-modal likelihood functions the
parameters that maximize this likelihood are not identical to the estimates extracted
from the marginalized PDFs. In such a case, it is much more complicated to extract
parameter estimates and the corresponding procedure has to be specifically decided on
according to the problem at hand.

L1 [pH] = 379.50+1.90
−1.89

37
2

37
6

38
0

38
4

38
8

L
2

[p
H

]

L2 [pH] = 380.26+1.89
−1.89

−14
2

−14
0

−13
8

−13
6

−13
4

L
3

[p
H

]

L3 [pH] = −138.19+1.03
−1.03

22
.8

23
.1

23
.4

23
.7

C
B

[fF
]

CB [fF] = 23.29+0.14
−0.14

37
2

37
6

38
0

38
4

38
8

L1 [pH]

25
.6

26
.4

27
.2

28
.0

28
.8

σ
[‰

]

37
2

37
6

38
0

38
4

38
8

L2 [pH]

−14
2

−14
0

−13
8

−13
6

−13
4

L3 [pH]

22
.8

23
.1

23
.4

23
.7

CB [fF]

25
.6

26
.4

27
.2

28
.0

28
.8

σ [‰]

σ [‰] = 26.82+0.45
−0.44

Fig. 3.26: Example corner plot of parameters (Θ, σ). Shown are the marginalized poste-
rior PDFs for each model parameter as a histogram, along with the 16th, 50th
(median), and 84th percentile.

106

3.5. SYNTHESIS OF INDUCTORS

3.5.3 Analytic T-Coil Model

In this subsection the results of this chapter are combined to derive a model that maps
geometry parameters to lumped model parameters, i.e. a function MT-coil.

MT-coil : (d,w, s, n) 7→ (R1, R2, R3, L1, L2, L3, CB) (3.80)

This is possible because many inductors can be simulated automatically using EMX and
PCells. Furthermore, a viable fitting technique has been found to automatically estimate
the lumped model parameters of these inductors. Last but not least, the formulas
provided by Mohan [40] are a good foundation to build on. The resulting model will of
course be specific to this type of T-coil and this process, but the insight it provides is
actually independent of that and the methodology can be transferred to similar problems.
Therefore, it allows to build inductors in a forward design flow instead of an iterative “trial
and error” approach. This subsection is split into three parts. Firstly, the distribution of
the generated inductors in the geometry space is described. Secondly, the error of the
inductance from Mohan’s T-coil model is analyzed. In the last part, the parameters in
this model are optimized to best describe the simulated inductors.

Geometry Space

Before the large number of inductors was generated, a few constraints had to be applied
to obtain a feasible set of inductors. This chapter has shown that the layout of each
type of on-chip inductor is described by a certain set of geometric parameters (d,w, s, n).
However, the stacked T-coil PCell has further parameters, e.g. to set metal layers or
draw metal fill. It is enough to focus only on a fixed layer combination because for ESD
compensation, the pair of thicker metals below the redistribution layer is the optimal
choice. The other layers can be neglected as they have much larger parasitic resistance,
which compromises ESD performance and signal integrity. This will certainly be similar
for other applications as series resistance in inductors is usually not desirable. The center
tap was placed on the redistribution layer for the generated T-coils. Furthermore, the
metal fill parameter has to be deactivated to reduce the runtime of the EMX simulation
from hours to minutes. So the remaining parameters are the aforementioned four that a
designer actually wants to tune: outer diameter d, turn width w, turn spacing s, and the
number of turns n. A simple approach would be to sweep each parameter, but this has to
be done more sophisticatedly. The four variables cannot be chosen independently as this
will result in invalid geometries. A small inductor cannot accommodate as many turns as
a larger one. So the following condition is checked to ensure enough space is kept free in

107

3.5. SYNTHESIS OF INDUCTORS

the center to reasonably place the vias to connect all three parts of the inductor.

max(6 µm, d/3) ≤ d− 2dnew − 2(dne − 1)s (3.81)

A significant drawback of this is that it results in considerably more high than low
diameter T-coils to be generated. So the accuracy of the resulting model will be heavily
biased towards larger diameters. This is especially critical since the diameter is usually
the primary constraint imposed on the inductor design, while the other parameters can
be chosen almost independent of the surrounding structures. So to avoid this, constraint-
random generation was applied for w, s, and n, but the diameter was stepped equally
from 20 µm to 60 µm in steps of 4 µm.

0 10 20 30 40 50
Frequency [GHz]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
e{
S
1
1
}

(b
lu

e)
,I

m
{S

1
1
}

(r
ed

)

0 10 20 30 40 50
Frequency [GHz]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
e{
S
1
2
}

(b
lu

e)
,I

m
{S

1
2
}

(r
ed

)

0 10 20 30 40 50
Frequency [GHz]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
e{
S
1
3
}

(b
lu

e)
,I

m
{S

1
3
}

(r
ed

)

0 10 20 30 40 50
Frequency [GHz]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
e{
S
2
1
}

(b
lu

e)
,I

m
{S

2
1
}

(r
ed

)

0 10 20 30 40 50
Frequency [GHz]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
e{
S
2
2
}

(b
lu

e)
,I

m
{S

2
2
}

(r
ed

)

0 10 20 30 40 50
Frequency [GHz]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
e{
S
2
3
}

(b
lu

e)
,I

m
{S

2
3
}

(r
ed

)

0 10 20 30 40 50
Frequency [GHz]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
e{
S
3
1
}

(b
lu

e)
,I

m
{S

3
1
}

(r
ed

)

0 10 20 30 40 50
Frequency [GHz]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
e{
S
3
2
}

(b
lu

e)
,I

m
{S

3
2
}

(r
ed

)

0 10 20 30 40 50
Frequency [GHz]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
e{
S
3
3
}

(b
lu

e)
,I

m
{S

3
3
}

(r
ed

)

Fig. 3.27: S-parameters of the (60 µm, 1.6 µm, 1.3 µm, 7.0) T-coil and fitted lumped circuit
model (dashed). The real parts are blue and the imaginary parts red.

Larger inductors start to inhibit many more second and higher order effects for five
and more turns already at frequencies below 50 GHz as their distributed nature becomes
relevant. Fig. 3.27 shows the S-parameters of the most extreme case found in the generated
inductors. The lumped circuit model can certainly not approximate the inductor at more
than 25 GHz. This should not impede the model much as the fraction of these inductors
is around 2% and their influence on the model likelihood is diminished by their fit error,
which is significantly higher than that of other inductors (ten to hundred times).

The second constraint is s ≤ w because the model from Mohan even assumes that the
spacing is truly smaller than the width. In total, 1089 inductors have been generated
and fitted with emcee. The fit takes the most time but can also be easily parallelized.

108

3.5. SYNTHESIS OF INDUCTORS

Mohan’s Inductance Model

Before updating the model proposed by Mohan, it should be checked how big the error
to the fitted parameters actually is. Here, this analysis is limited to the inductance as
it is the interesting part. The expression proposed by Mohan, including the correction
terms, is shown in Eq. 3.82 [40]. The last term in the first line corrects the GMD term
for finite thickness, while the second line comprises the corrections for finite spacing, for
all three terms, GMD, AMD, and AMSD.

Lnsq,cor =
2µ0n

2davg
π

·
(

ln
(
2.067

ρ

)
+ 0.178ρ+ 0.125ρ2 − 1

n
ln
(
w + tct

w

))
(3.82)

+
2µ0n

2davg
π

(
0.5

(n− 1)s2

(ρdavg)2
+ 0.178

(n− 1)s

ndavg
+ 0.0833

(n− 1)s(s+ w)

d2avg

)
L1,Mohan = 1.9 · Lnsq,cor (3.83)

L2,Mohan = 1.9 · Lnsq,cor (3.84)

L3,Mohan = −0.9 · Lnsq,cor (3.85)

Mohan approximates the coupling factor to be k = 0.9 for all inductors. He only lowers
k if the inductors are not exactly stacked above each other and neglects the influence of
the vertical extension of the inductors as “The thicknesses of the top and bottom metal
layers and the thickness of the oxide between them has only a second order effect on
k” [40]. With the MCMC fit results for each inductor, the different variations of the
above expression can be easily compared to study the influence of the various correction
terms. To visualize this, the cumulative distribution of inductors over the relative error
between Mohan’s model and the fitted inductance is plotted: |(Lmodel − Lfit)/Lfit|. A
steep slope and a graph located at the left side means a higher prediction quality of the
corresponding formula. At first glance, there are a lot of possible combinations of terms
that could be compared, but this number can be reduced by a fair amount. While it is
interesting to compare the effect of the mean distance terms, it is not meaningful to apply
the AMSD correction for spacing when only the GMD term of the current sheet part is
used. This results in the following interesting combinations. The current sheet terms
are either used up to the GMD, AMD, or AMSD. Then, these three variants double by
adding the thickness correction and then double again by adding the spacing correction
terms. As noted before, the spacing correction is always applied up to the corresponding
current sheet terms. Note that Mohan did not derive AMD and AMSD corrections for
finite thickness. So this results in twelve interesting formulas to be analyzed. Two plots
are needed for each model, one for L3, and only one for L1 and L2 as the inductors are
assumed to be symmetric.

109

3.5. SYNTHESIS OF INDUCTORS

The plots show a poor correlation to the simulated inductors. While L1 + L2 shows
an error between 20 to 120 percent, L3 is even larger with a range of 50 to 600 percent.
This renders the formulas unusable for the inductors considered in this work but does
by no means imply that Mohan’s model is bad as several assumptions made by Mohan
are not valid in this case. The three mean distance approximations are grouped by
color in Figs. 3.28 and 3.29. It is easily visible that using only the GMD terms (red)
is generally better than adding the AMD (green) or even AMSD (blue) terms. Thus,
the deviation from the current sheet assumptions are large enough that higher order
terms actually do more harm than good. Considering the correction for finite thickness,
it is clearly visible that it improves the error a lot as it basically splits the graphs into
two groups. The finite spacing correction is more subtle but again leads into the wrong
direction as it always increases the error. The conclusion of these findings is that the
thickness correction is extremely important, which is reasonable as the thickness of the
used layers is in the same order of magnitude as the turn width of the T-coils. To explain
the increase of error by adding the other terms, it is important to look at the differences
between Mohan’s inductors and the ones created in this work. Firstly, there is the size,
with Mohan considering inductors with an outer diameter roughly an order of magnitude
larger, approximately in the range of 150 µm to 700 µm [40]. This also implies wider
conductors, which reduces the influence of the finite thickness. Larger conductors also
reduce the error caused by offsets like vias. In particular for very small T-coils in the
simulated set, i.e. for around 20 µm, the via used to connect to the redistribution layer
and the associated additional metal is relatively large and adds a substantial offset. This
already leads to the next important point, the additional wire to route the center-tap
terminal to the border of the T-coil. Its self-inductance renders L3 more positive than it
would be without it and thus decreases the effective k. Last but not least, it is to be
noted that the fitted inductance is an average across the frequency, which is – according
to section 3.3 – lower than the DC inductance computed in Mohan’s model. This shows
that analytic results should always be cross-checked with simulation because it is very
difficult to extract and understand the assumptions made in such formulas in literature.
It is likely that the specific design at hand deviates in at least one aspect that was not
anticipated by the designer.

110

3.5. SYNTHESIS OF INDUCTORS

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

Relative error [%]

T
-c

oi
ls

be
lo

w
er

ro
r

[%
] GMD

GMD & s
GMD & t
GMD & t & s
AMD
AMD & s
AMD & t
AMD & t & s
AMSD
AMSD & s
AMSD & t
AMSD & t & s

Fig. 3.28: Cumulative distribution of the relative error for L1,Mohan + L2,Mohan.

0 50 100 150 200 250 300 350 400 450 500 550 600
0

20

40

60

80

100

Relative error [%]

T
-c

oi
ls

be
lo

w
er

ro
r

[%
] GMD

GMD & s
GMD & t
GMD & t & s
AMD
AMD & s
AMD & t
AMD & t & s
AMSD
AMSD & s
AMSD & t
AMSD & t & s

Fig. 3.29: Cumulative distribution of the relative error for L3,Mohan.

111

3.5. SYNTHESIS OF INDUCTORS

Updated Inductance Model

As demonstrated, the model proposed by Mohan cannot be used effectively for the type
of T-coil to be designed in this work. However, deriving more accurate analytic formulas
is very difficult because the integrals for the mean distances get very complicated when
finite thickness is included. So instead, this work proposes an updated model that makes
use of the knowledge presented so far in this work: firstly Mohan’s corrected model for
the square current sheet, secondly the mean distance formula for the inductance of a
straight wire with rectangular cross-section, and thirdly the MCMC fitting technique.
This results in Eqs. 3.86 to 3.91. There are two main differences to Mohan’s model: The
numeric constants are changed into fitting parameters, one for each term and one for k;
and the self-inductance of the center-tap wire Lct is added to L3 with the approximated
formula of the self-inductance of a straight wire with rectangular cross-section. The
length lct of this wire varies depending on the number of turns, for whole turns it is
longer and for half turns shorter, and also its thickness tct is different from the thickness
of the windings t. So in addition to the twelve models plotted previously, the center-tap
correction adds another twelve variations to be analyzed.

ΘL = (k,m0,m1,m2, t0, s0, s1, s2, c0, c1, c2) (3.86)

Lnsq,fit =
2µ0n

2davg
π

·
(

ln
(
m0

ρ

)
+m1ρ+m2ρ

2 +
t0
n

ln
(
w + t

w

))
(3.87)

+
2µ0n

2davg
π

(
s0

(n− 1)s2

(ρdavg)2
+ s1

(n− 1)s

ndavg
+ s2

(n− 1)s(s+ w)

d2avg

)
L1 = L2 = (1 + k) · Lnsq,fit (3.88)

Lct =
µ0lct
2π

·

(
ln
(

c0lct
w + tct

)
+ c1 ·

√
w2 + t2ct + 0.46wtct

lct
+ c2 ·

w2 + t2ct
l2ct

)
(3.89)

lct =

davg, n ∈ N

ρdavg, (n+ 0.5) ∈ N
(3.90)

L3 = −kLnsq,fit + Lct (3.91)

Instead of plotting all 24 curves, it is more efficient to look at Tab. 3.3 first and then
plot only the interesting cases. It shows the parameters obtained from emcee as well as
the Bayesian Information Criterion (BIC) of each model. The BIC is a model selection
criterion that favors the model with the lowest value. It is defined in Eq. 3.92

BIC := Nparams · ln(Ndata)− 2 ln(Lmax) ≈ Nparams · ln(Ndata)− 2 ln(L(Θopt)) (3.92)

112

3.5. SYNTHESIS OF INDUCTORS

The first term penalizes adding more and more parameters and aims to prevent over-
fitting, while the second term favors large likelihood values. Nparams and Ndata are the
number of parameters and data points, respectively. The approximation assumes that the
likelihood for the optimal parameters is equal to the global maximum of the likelihood
function. Since the resulting marginalized posteriors seem well defined and narrow, this
should be a valid simplification. emcee does not provide the global maximum, so this is
also a necessary choice.

Starting with the first column for k, every second entry shows a value close to 0.46, while
the next one is always much larger. This also coincides with the center-tap correction
and demonstrates how k is underestimated by neglecting the self-inductance of that
wire segment. This also indicates that the influence of other wires connecting to the
T-coil is most likely substantial, even if it is neglected in this work. The value of the
BIC can be used to quickly estimate the relevance of the three corrections. The BIC is
reduced significantly stronger when the thickness and center-tap corrections are applied,
compared to the spacing correction (bold entries). In line with to the observation that
the AMD and AMSD terms tend to increase the error as the extracted inductances are
quite far from valid current sheet assumptions, the BIC does also not decrease much
when adding these terms. In addition, these terms exhibit values very different from
their “normal” values when compared to Mohan’s model, which further indicates that
the AMD and AMSD terms are artificial here.

Fig. 3.30 and 3.31 show again the cumulative distribution of the relative error. The
effects described above are most visible in the plot for L3. The error was dramatically
reduced compared to the raw Mohan model. Despite its simplicity, the “GMD & t & c”
model already achieves low errors. The corner plot for this model is shown in Fig. 3.32.

Note that BIC and relative error do not necessarily correlate because the log-likelihood
function did not minimize the relative error but instead a Gaussian expression (Eq. 3.93).

− 1

2

((
Lmodel − Lfit
σ ·∆Lfit

)2

+ ln
(
2π(σ ·∆Lfit)

2
))

(3.93)

Theoretically, an alternative would be to fit the model directly to the set of S-parameters,
i.e. without an intermediate fit of each T-coil to the lumped model. Unfortunately, this
is computationally very expensive and practically not a feasible solution. Thus, to still
consider a bad fit of a T-coil to the lumped model (see Fig. 3.27), the above Gaussian
likelihood function has been chosen over the relative error in this work. Nevertheless,
plotting the latter is much more instructive.

113

3.5. SYNTHESIS OF INDUCTORS

k m0 m1 m2 t0 s0 s1 s2 c0 c1 c2 BIC
0.45 1.41 20068
0.58 1.26 7.72 19631
0.45 1.61 -2.22 19880
0.59 1.43 -2.03 8.07 19373
0.47 2.17 -1.62 18705
0.64 1.86 -1.55 14.83 16999
0.47 2.15 -1.92 1.55 18600
0.64 1.83 -1.88 1.70 16.58 16567
0.46 1.26 0.29 20041
0.72 0.77 1.08 0.17 29.40 18621
0.46 1.23 1.13 0.74 -7.66 19839
0.71 0.87 1.03 -1.24 -0.41 0.16 28.61 18395
0.46 2.60 -0.36 -1.77 18630
0.68 1.43 0.45 -1.29 0.55 20.19 15979
0.46 2.10 0.71 -2.14 5.12 -9.07 18399
0.68 1.37 0.71 -1.60 2.34 -2.57 0.74 18.34 15461
0.46 0.99 1.80 -2.23 20024
0.80 0.54 3.02 -2.79 11.06 -2.26 83.93 18434
0.46 0.86 3.89 -3.81 2.54 -17.97 10.59 19824
0.78 0.55 4.19 -4.40 0.77 -12.15 12.83 6.10 1.48 71.47 18224
0.46 2.82 -0.82 0.68 -1.79 18633
0.72 1.27 0.82 -0.49 -1.22 12.87 -3.86 60.94 15844
0.46 2.60 -1.92 3.79 -2.22 2.42 11.97 -24.72 18358
0.72 1.34 -0.06 1.13 -1.56 1.08 7.04 -11.27 21.27 -7.52 64.96 15183

Tab. 3.3: Fitted parameters for the inductance model.

114

3.5. SYNTHESIS OF INDUCTORS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

20

40

60

80

100

Relative error [%]

T
-c

oi
ls

be
lo

w
er

ro
r

[%
]

GMD
GMD & c
GMD & s
GMD & t
GMD & t & c
GMD & t & s & c
AMD & t & s & c
AMSD & t & s & c

Fig. 3.30: Cumulative distribution of the relative error for L1 + L2.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

20

40

60

80

100

Relative error [%]

T
-c

oi
ls

be
lo

w
er

ro
r

[%
]

GMD
GMD & c
GMD & s
GMD & t
GMD & t & c
GMD & t & s & c
AMD & t & s & c
AMSD & t & s & c

Fig. 3.31: Cumulative distribution of the relative error for L3.

115

3.5. SYNTHESIS OF INDUCTORS

k = 0.64+0.00
−0.00

1.8
0

1.8
3

1.8
6

1.8
9

1.9
2

m
0

m0 = 1.86+0.01
−0.01

−1.6
4

−1.6
0

−1.5
6

−1.5
2

−1.4
8

t 0

t0 = −1.55+0.02
−0.02

12
.5

15
.0

17
.5

20
.0

c 0

c0 = 14.83+1.14
−1.06

0.6
16

0.6
24

0.6
32

0.6
40

0.6
48

k

11
.6

12
.0

12
.4

12
.8

13
.2

σ

1.8
0

1.8
3

1.8
6

1.8
9

1.9
2

m0

−1.6
4

−1.6
0

−1.5
6

−1.5
2

−1.4
8

t0

12
.5

15
.0

17
.5

20
.0

c0

11
.6

12
.0

12
.4

12
.8

13
.2

σ

σ = 12.40+0.19
−0.19

Fig. 3.32: Corner plot for the “GMD & t & c” model.

Bridge Capacitance Model

The bridge capacitance is as important for the ESD compensation as the inductances.
Therefore, some model formula needs to be found for it as well. Unfortunately, much
more than a simple model proportional to the area of the windings is not easily derived
or found. However, extending the proportionality parameter a0 to a monomial of the
geometry parameters is quite potent. The six variants shown in Eqs. 3.94 to 3.99 have
been fitted to the data, and the results are shown in Fig. 3.33 and Tab. 3.4. Note that the
length of the inductor is proportional to ndavg. The models are generally less accurate
compared to the ones for the inductance.

One would expect the simple formula with an additional offset to be at least equally

116

3.5. SYNTHESIS OF INDUCTORS

accurate to the one without that offset. However, this is not the case here because as
mentioned before, the log-likelihood function did not minimize the relative error but an
expression as shown in Eq. 3.93. This weights every T-coil according to its error, while
the relative error treats every T-coil equally. A simple check has revealed that indeed the
ones with a large deviation from the model are much more likely to also have a larger
error on their fit result.

CB,simple = a0 · ndavgw (3.94)

CB,monom = a0d
a1wa2sa3na4 · ndavgw (3.95)

CB,simple,offset = a0 · ndavgw + b0 (3.96)

CB,monom,offset = a0d
a1wa2sa3na4davg + b0d

b1wb2sb3nb4 (3.97)

CB,monom,simple = a0d
a1wa2sa3na4 (3.98)

CB,monom,avg = a0d
a1wa2sa3na4da5avg (3.99)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Relative error [%]

T
-c

oi
ls

be
lo

w
er

ro
r

[%
]

Simple
Monomial
Simple w/ Offset
Monomial w/ Offset
Simple Monomial
Monomial w/ davg

Fig. 3.33: Cumulative distribution of the relative error for CB.

a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 BIC
0.0567 5871
0.0335 0.2538 -0.451 -0.014 0.0632 2306
0.0471 2.9314 5599
0.0035 0.5711 0.7385 0.1111 1.4267 0.1756 0.9422 -0.028 -0.375 -0.012 1746
0.0160 1.5179 0.3560 -0.080 0.7515 2344
0.0250 0.7545 0.4723 -0.040 0.9396 0.6038 2284

Tab. 3.4: Fitted parameters for the bridge capacitance models. Note the unit of d, w, s,
and davg is µm, while CB is in fF, so the units of a0 and b0 follow from this
but are different depending on the model.

117

3.5. SYNTHESIS OF INDUCTORS

Resistance Model

The resistances are the most prominent parasitics associated with the T-coils. For the
simulated set of T-coils, only the DC value has been determined and it is basically a
function of the inductor length divided by the turn width. The length is proportional to
ndavg for the turns and a piecewise function identical to the one used for the center-tap
correction of the inductance. A simple first order model would therefore be given by
Eqs. 3.100 to 3.101.

R1,simple = R2,simple = a1 ·
ndavg
w

(3.100)

R3,simple = a3 ·
davg
w

1, n ∈ N

ρ, (n+ 0.5) ∈ N
(3.101)

Fig. 3.34 shows that the accuracy is good enough but with some slight modifications,
it can be improved substantially. Since the T-coils are not perfectly symmetric, R2 is
handled separately in this “complex” model. Also an offset parameter is added to account
for vias. For R1, the offset is only applied below a certain turn width wv. Without this
a “jump” in error for the last ten percent of inductors can be noticed. This is a side
effect of via spacing rules, which suddenly increases the number of vias connecting the
spirals above a certain turn width. It occurs in R1 and not R2 because the index 1 is
the lower spiral. In cases where the number of vias grows more smoothly, this could of
course be proportional to the total via area, e.g. w2. The results in Tab. 3.5 show that
the “complex” model also has a much lower BIC.

R1,complex = a1 ·
ndavg
w

+

b1, w < wv

0, w ≥ wv

(3.102)

R2,complex = a2 ·
ndavg
w

+ b2 (3.103)

R3,complex = b3 + a3 ·
davg
w

1, n ∈ N

ρ, (n+ 0.5) ∈ N
(3.104)

a1[mΩ] b1[mΩ] a2[mΩ] b2[mΩ] a3[mΩ] b3[mΩ] BIC
23.737 0 0 0 13.315 0 -14881
23.769 24.533 23.853 -30.226 10.577 32.100 -20879

Tab. 3.5: Fitted parameters for the resistance models.

118

3.5. SYNTHESIS OF INDUCTORS

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

Relative error [%]

T
-c

oi
ls

be
lo

w
er

ro
r

[%
]

Simple R1

Simple R2

Simple R3

Complex R1

Complex R2

Complex R3

Fig. 3.34: Cumulative distribution of the relative error for R1, R2, and R3.

3.5.4 Inductor Synthesis

The MT-coil function cannot be inverted to obtain the inverse function mapping elec-
trical parameters to geometry. However, it can be evaluated extremely fast compared
to EM-simulation. It is therefore possible to do something like “inductor synthesis”,
i.e. automatically find the “optimal” inductor for a given problem. This subsection
demonstrates the idea on an example. In this case, an ESD capacitance CL = 300 fF
and a termination resistor RT = Z0 −R1 −R2 are connected to the T-coil as shown in
Fig. 2.25. The “optimal” T-coil is defined as the one that minimizes the average reflection
in the range from 0 to 50 GHz. In case of an actual termination circuit, this could be
done in a more sophisticated way, e.g. by applying a weight to favor low reflection at low
frequencies, but it is enough to demonstrate the general idea. The optimization has been
implemented in Python and delivers a result within in a few minutes. Fig. 3.35 shows
the simulated reflection with the lumped model calculated by the optimizer, the actual
S-parameters of the T-coil with and without metal fill, and the fitted lumped models
derived from the S-parameters.

119

3.5. SYNTHESIS OF INDUCTORS

0 5 10 15 20 25 30 35 40 45 50
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Frequency [GHz]

|Γ
|

Lumped Model MT-coil
Lumped Model Fitted
Lumped Model Fitted w/ Fill
S-Parameters
S-Parameters w/ Fill

Fig. 3.35: Comparison of the different descriptions of the “synthesized” T-coil (53.1 µm,
5.1 µm, 1.2 µm, 2.5).

At first glance, the different curves seem not to be correlated at all, especially the
lumped model with the calculated parameters. However, the actual difference is not really
significant. The magnitude of the reflection is a value between zero and one, and all five
curves are below 0.1. This similarity between the curves becomes especially obvious when
compared to the uncompensated circuit shown in Fig. 3.36. It can also be observed that
the reflection is not influenced much by the metal fill, so it can well be ignored during
the design phase and should not result in surprises when it is included for verification.
In fact, including up-scaled metal fill only hurts simulation performance and does at best
not introduce additional errors. The lumped model chosen for the T-coil also seems to
describe the layout closely enough, despite its simplicity.

Through various tests with the optimizer code it has been observed that, given a
constant diameter, the optimal T-coil always was the one with the lowest spacing (here
1.2 µm). This was not anticipated but is logical in retrospect. The larger the T-coil
becomes, the higher the series resistance. Thus, if the required inductance can be achieved
with a smaller T-coil with fewer and wider turns, it performs better than a larger T-coil
that delivers the same inductance. Closer turns increase the mutual inductance between
the segments and thus the self-inductance of the T-coil.

120

3.5. SYNTHESIS OF INDUCTORS

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

|Γ
|

Lumped Model MT-coil
Lumped Model Fitted
Lumped Model Fitted w/ Fill
S-Parameters
S-Parameters w/ Fill
w/o T-coil

Fig. 3.36: A different perspective on the quality of the T-coil model.

3.5.5 Conclusion

This chapter, and this section in particular, demonstrated on the example of T-coils, how
custom passive on-chip structures built from metal interconnect can be analyzed, modeled,
and designed. Simple formulas exist already in literature, but these are always subject
to approximations and assumptions that can be easily misinterpreted or overlooked. So
relying solely on those is very dangerous and lacks any verification. The only way to
verify such structures are field solvers; layout extraction is not suited for frequencies of
multiple ten gigahertz. These field solvers are complicated to configure correctly and
are also often quite expensive. In this regard, the main conclusion from the experience
collected in this work is that a lot of difficulties and uncertainties can be avoided if a
field solver is selected that can accurately read in the stack-up descriptions provided
in the PDK. Writing custom stack-up files is tedious, error prone, time consuming,
and not necessarily possible at all due to encrypted PDK files. However, in the case
simulations of such structures can be performed, this section detailed a way to map
the resulting S-parameters to lumped models, which are often used for circuit design
because they facilitate optimization. Depending on the complexity of the structure that
is to be designed, a smaller number of simulated S-parameters may already be enough
to interpolate the design space and create a model that can be used to determine the
optimized layout. This is a much more directed approach than “trial and error” iterations.
It also provides the designer with insight on the problem and a sense for the quality of
the results.

121

3.6. TEST STRUCTURES

3.6 Test Structures

This section describes the layout of the RX termination and measurement results on
silicon test structures, including some lessons learned.

3.6.1 Layout

The schematic of the RX termination is presented in Fig. 3.37. The Analog Front-End
(AFE), the secondary diodes, and the CDM protection resistor are connected to the
all-pass point behind L2, so only the primary diodes are compensated. The termination
resistors can be tuned and the input voltage of the AFE is adjusted with an operational
amplifier in feedback configuration. A simplified version of the corresponding layout is
shown in Fig. 3.38. Only the upper metal layers are present and the lower parts of the
building blocks are abstracted with a red box. An exception to this is the power grid of
the AFE, which is not present, and the excluded metal fill.

−

+Vref

VDD
RT

RT

L2

L2

L1

L1

C
B

CB

IN_N

IN_P

L3

VDD

L3

VDD

Resd

Resd

VDD

VDD

AFE

AFE

Fig. 3.37: Simplified schematic of the RX termination and ESD protection (w/o power
clamp).

The power is supplied through the wide tracks on the left (VDD) and the right (VSS),

122

3.6. TEST STRUCTURES

and the octagonal pads are IN_N and IN_P. To reduce the capacitive coupling to the pads,
the T-coils are placed in between them. The area above them is exclusively used for
circuits regarding termination and ESD protection, while the AFE and the remainder of
the RX (not shown here) is placed below them. The power clamps are located at the top
to leave room for the other blocks and to prevent too much power grid below the upper
pad. To reduce the deviation from the lumped model as much as possible, the primary
diodes and the termination resistors were placed close to the T-coil. However, the diodes
also need a low impedance connection to the power clamps via the power and ground
rails. The one-sided power rails complicate this matter as only one connection can make
use of the thick redistribution layer on each side, while the other connection has to be
provided via the power grid on lower metal layers. The center node of the termination
resistors is connected to the operational amplifier, which receives its reference voltage
from a dedicated digital-to-analog converter. The thin wires through the CDM resistor
are leading to the AFE, which has the secondary ESD-diodes in close proximity.

A major challenge in the design of this structure was the fact that it could not be
simulated in its entirety with a field solver. This is theoretically possible with EMX,
however EMX was not available at this time, and it is currently still impossible due to
missing EMX files for this particular stack-up. Thus, the design process was simplified
to only simulating the T-coil with ADS and Sigrity, neglecting further interactions to
surrounding structures and contributions of wires connecting to the T-coil. In addition,
the pad capacitance was not included in the design process for simplicity as the hassle with
the field solvers and technology file did consume a lot of time. As discussed in section 2.3,
this certainly leaves a lot of performance on the table. As a consequence of the missing
attention to the pads, the power grids below them differ as the AFE is not a part of the
termination top level cell, which causes an unknown skew in capacitance. Furthermore,
the remaining free space was filled automatically, introducing further uncertainties.

Considering the significant impact of, e.g., the pad and the center-tap wire, it is obvious
that optimizing only the T-coil is simply not enough. The structures below the pad
and the wires connecting the pad, the diodes, and the termination resistor to the T-coil
also have to be carefully designed. With the tools and experience from this work, it
might be promising to pursue a more monolithic approach in the future. The circuit and
layout described in this subsection is currently split into several cells in the Virtuoso
library. It would be much more convenient in terms of controlling parasitic effects if
most structures on the three uppermost layers of the entire area shown in Fig. 3.38 were
designed and EM-simulated as a single cell. This could include an identical power grid
and manually placed metal fill below both pads to lower their capacitance skew. The
structures placed by the AFE designer as well as the other termination circuits below
the upper pad should then only contribute a second order effect, leaving much less room

123

3.6. TEST STRUCTURES

Primary
ESD-Diodes

Primary
ESD-Diodes

Power
Clamp

Power
Clamp

Secondary
ESD-Diodes

Secondary
ESD-Diodes

Termination
Resistor

Array

Termination
Resistor

Array

CDM
Resistor

Operational
Amplifier

Reference
Voltage

Analog
Front-End

VDD VSS

Fig. 3.38: Simplified layout of the RX termination and ESD protection (AFE power grid
is not shown).

124

3.6. TEST STRUCTURES

for post-layout “surprises”.
As an outlook: this monolithic cell could be optimized by first finding the minimum

possible pad capacitance (lower is always better in this context) and then building a
PCell that can automatically adjust and connect the T-coil. In case only a slow and
complicated field solver solution exists, the approach of the previous section might be
most useful, i.e. fitting lumped models to a set of simulated designs to interpolate the
design space. However, with a fast simulator like EMX, it could actually be more feasible
to simulate a large number of such structures and sweep over the set of S-parameters
in the Virtuoso simulator environment. In any case, there is much to be gained from
further optimization in future designs.

3.6.2 Measurements

To measure the effects of different T-coil layouts a small set of test structures was
manufactured in a 22nm node. They consist of variations of the layout shown in Fig. 3.38
and are all simplified versions of the RX with everything but the termination and ESD
devices removed. The AFE has been replaced with an equivalent metal capacitor. This
was mainly done for simplicity as it also removed the need to connect all the configuration
signals of the RX, which could have interfered with the productive part of the chip.

Fig. 3.39 shows micrographs of the four variants. The first is the same structure
that was also included into the productive SerDes lanes – but with the RX removed,
as mentioned before. This aimed at enabling a comparison of how much this changes
the termination. The second version is a T-coil with narrower turns and an additional
half turn, which results in a higher inductance. The third option is designed simply
without a T-coil so the pads are directly connected to the primary diodes. Last but not
least, the fourth version again uses the T-coil that was also included into the productive
lanes but without special inductor fill rules, and therefore an increased amount of fill.
Additionally, it also comprises a grid of decoupling capacitors (decap) placed below the
inductors. These four structures were mainly intended to assess how much care has to be
taken when designing T-coils.

The measurements were conducted with a TDR. A vector network analyzer could
have provided more accurate results but was not available at the time. Before the actual
measurement, the differential DC termination resistance of each lane was tuned with the
termination resistor RT to be as close as possible to 100 Ω. Then, the impedance of the
test structures and a productive SerDes lane was measured. The raw results are plotted
in Fig. 3.40.

The first two spikes are aligned for all curves and are caused by the connector between
the cables and the test PCB. The dips between 2.5 and 3.0 nanoseconds are caused
by the package and on-chip termination. To facilitate a comparison, Fig. 3.41 shows a

125

3.6. TEST STRUCTURES

(a) Complete view of the test lanes.

(b) RX T-coil. (c) Alternative T-coil.

(d) Without T-coil. (e) RX T-coil with decap and metal fill.

Fig. 3.39: Micrographs of all four termination test structures. The RX AFE was replaced
with a metal capacitor and the remaining RX was replaced with metal fill.

126

3.6. TEST STRUCTURES

zoomed-in version. All five curves are aligned on the falling edge of the package dip. This
was necessary because the trace length on the PCB is different for each lane. Without a
T-coil, the termination resistor needs to be set to a higher value – as expected. Note
that the values enclosed by the brackets are the typical values of RT expected at the
corresponding settings, not the measured values. RT is even above 50 Ω without a T-coil,
which is probably due to process variations. The alternative T-coil requires a lower RT

because it has a higher series resistance, while the remaining three are identical because
they use the same T-coil. It is clearly visible that the variant without a T-coil (yellow)
performs worst by far in terms of reflection. Next is the T-coil surrounded by regular
metal fill and decoupling capacitors (light blue). Placing such structures near the T-coil
is obviously affecting the termination quality. Surprisingly, the alternative T-coil (dark
blue) with its higher inductance performs better than the T-coil that has also been
applied in the productive SerDes lanes (green). The reason for this is that the T-coil
for this tape-out was designed to compensate only the primary ESD diodes and the pad
capacitance was completely neglected. In section 2.3, it is shown that the inductance of a
symmetric T-coil has to be larger when a pad capacitance is present. This also explains
why the same T-coil performs differently in the productive SerDes lane (red) than within
the test structure. By reducing the RX layout to a metal capacitor and metal fill, the
capacitance of the pad above the RX AFE changed significantly. These results strongly
support the previous findings that structures below the pad have to be planned with
much more care in future designs.

127

3.6. TEST STRUCTURES

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
80

85

90

95

100

105

110

115

Time [ns]

Im
pe

da
nc

e
[Ω

]

SerDes RX (46.5 Ω)
Test RX T-Coil (46.5 Ω)
Test alt. T-Coil (43.4 Ω)
Test w/o T-Coil (51.9 Ω)
Test Decap/Fill (46.5 Ω)

Fig. 3.40: Full impedance profiles. The expected value of RT is given in brackets.

2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3
80

85

90

95

100

105

110

115

Time [ns]

Im
pe

da
nc

e
[Ω

]

SerDes RX (46.5 Ω)
Test RX T-Coil (46.5 Ω)
Test alt. T-Coil (43.4 Ω)
Test w/o T-Coil (51.9 Ω)
Test Decap/Fill (46.5 Ω)

Fig. 3.41: Aligned impedance profiles to compare the on-chip termination. The expected
value of RT is given in brackets.

128

4

C
h

a
p

t
e

r

Floating-Point Arithmetic

High Performance Computing systems increase their performance over time due to tech-
nology enhancements, larger systems, and more efficient architectures. This performance
increase is displayed in the TOP500 list [74], a ranking of the world’s most powerful
HPC systems. The unit of performance is TFlop/s, i.e. floating-point operations per
second. These performance values are assessed with the LINPACK benchmark [75], a
linear algebra code written in Fortran. This demonstrates that floating-point calculations
are at the center of high-performance computing.

This chapter now switches the focus from I/O technology to the second part covering
computing. The first section provides an introduction to floating-point numbers as a
preparation of the following sections. In the second section, an overview of a FMA floating-
point unit developed by Kaiser at the CAG at Heidelberg University is presented [7].
Kaiser also implemented a Universal Verification Methodology (UVM) based verification
environment to ensure correctness of the design. This thesis extends the work done
by Kaiser in two ways: Firstly, with an additional verification testbench that executes
test patterns generated by the TestFloat software [76], [77], and secondly, with a Power-
Performance-Area (PPA) analysis of the FMA unit. Most of the content of the second
section, including the results, has been published in an issue of Supercomputing Frontiers
and Innovations [15].

4.1 Number Formats

This section aims to introduce the basics on binary number formats needed for the
remainder of this chapter. As the name “computer” suggests, the primary purpose of
digital circuits is to perform computations, which requires a representation of numbers.

129

4.1. NUMBER FORMATS

This representation will always be a finite set of values, thus the fundamental issue that
needs to be solved is to define an efficient encoding that contains the numbers commonly
used and that is “hardware-friendly” to ensure fast execution of calculations. The simplest
mapping is found for natural numbers as their binary representation, extended to a
certain number of bits, is directly used as encoding scheme. These are called unsigned
integers. Whole numbers can be defined by using the two’s complement, called signed
integers. Most numeric applications, e.g. simulation codes, are using real numbers that
include a decimal point. However, real numbers are not countable and as such it is not
possible to map them in a continuous way on a finite set of values as it is done with
natural numbers. There will always be an infinite amount of real numbers between
each pair of representations. This is usually not an issue but opens the possibility to
make trade-offs in terms of accuracy, dynamic range, and computation performance. An
easy way to implement real numbers are fixed-point numbers. They are integers with
an implicit fixed scaling factor that is only applied when the number representation is
to be interpreted. Their main drawback is the limited dynamic range, which depends
only on the number of bits used for their representation. In contrast to this, there are
floating-point numbers, which have an explicit variable scaling factor, i.e. one encoded
into the binary representation. This allows to define the dynamic range without increasing
the number of bits used to represent those values. The discussion in this section is mostly
limited to IEEE 754 and Posit floating-point numbers.

4.1.1 IEEE 754

The arguably most commonly known floating-point number format is described by
the IEEE 754 standard, with its latest iteration being from 2019 [78]. This number
representation is derived from the normalized scientific notation, which is shown in
Eq. 4.1. Here B is the corresponding base of the numeral system. The IEEE 754 standard
defines binary and decimal flaoting-point representations, this section, however, will focus
only on binary numbers.

x = a · Bb and 1 ≤ |a| < B (4.1)

The IEEE 754 format splits the representation of a number into three parts. A single bit
encodes the sign of a, a certain number of bits the exponent b, and the remaining bits
the absolute value of a.

sign

31
exponent

30 23
fraction (or trailing significant)

22 0

Fig. 4.1: 32-bit IEEE 754 binary floating-point number representation.

130

4.1. NUMBER FORMATS

The normalized numbers, i.e. not the special cases, represented in the bit pattern
shown in Fig. 4.1, are interpreted as shown in Eq. 4.2.

represented value = (−1)sign · Bexponent−bias · 1.fraction (4.2)

The exponent is encoded as an unsigned integer in this format, so it is possible to compare
numbers by comparing their representation (ignoring the sign bit). Thus, the bias is only
needed when the representation is interpreted. It is defined as bias = 2size(exponent)−1 − 1

for an almost symmetrical exponent range around zero. Since the numbers are normalized
to avoid duplicate representations for the same number, the “1” before the fraction is
actually a constant for binary numbers. Hence it is not encoded, which allows to store
an additional fraction bit. Due to not being encoded but implicitly assumed, it is called
the hidden bit. Together with the fraction it is called the significant.

There are quite a few special values besides these normalized numbers. They are
described by two special exponent values. If the exponent is zero, the number is either
positive or negative “0”, or a subnormal number, depending on whether the fraction is
zero or not. The subnormal numbers are number smaller than what can be achieved
via the smallest exponent. They provide a tapered way towards zero by changing the
hidden bit to “0” and are needed in particular to avoid underflows from additions and
subtractions. An underflow occurs if the result of an operation is smaller than the
smallest representable number. This is avoided as the smallest subnormal number is
equal to the smallest difference of two numbers.

If the exponent is equal to 2size(exponent) − 1, it either represents positive or negative
infinity, or a not a number (NaN), again depending on whether the fraction is zero or not.
NaNs are needed to represent results of operations that are outside the representable
range, e.g. imaginary numbers. If the Most Significant Bit (MSB) of the fraction is “1”,
then the NaN is “quiet” (qNaN), else it is a “signaling” NaN (sNaN). The latter will
cause an exception to signal the occurrence of a NaN, while the former will continue
operations and keep quiet about the NaN. The standard suggests to encode diagnostic
information into qNaNs [78].

Total Size [bit] Exponent Size [bit] Fraction Size [bit]
16 5 10
32 8 23
64 11 52
128 15 112

Tab. 4.1: IEEE 754 binary floating-point formats [78].

Tab. 4.1 shows the various sizes defined for binary floating-point numbers in the IEEE
754 standard. The parameters for larger sizes can be derived by a formula given in the

131

4.1. NUMBER FORMATS

standard but are not shown here as they have less practical relevance.

4.1.2 Posits

The IEEE 754 format uses fixed sizes for the exponent and fraction fields, which largely
decouples magnitude and precision. Independent of the relative size of two numbers
in this format, their precision is identical until the borders of the format are reached,
i.e. the subnormal numbers or infinity. An alternative to this is a tapered floating-point
format, which reduces precision gradually for very large and very small numbers by
including a scheme to vary exponent and fraction size. The idea is to provide higher
precision at values close to one. A tapered format has been first proposed by Morris
in 1971 [79]. In 2017, Gustafson proposed a new tapered floating-point format called
posits [80]. Except for the sign, the remaining parts of the format can vary in position
and size as the regime field can grow to the right. This is exactly what makes these
numbers tapered floating-point numbers. An example is shown in Fig. 4.2.

sign

31
regime ↔

30 26

exponent

25 23

fraction
22 0

Fig. 4.2: 32-bit posit floating-point number representation (es = 3). Note that the regime
field can grow to the right.

Exponent and fraction are interpreted identical to IEEE 754 floating-point numbers,
except that there is no exponent bias and that they can be pushed to the right (partly
and even entirely) to make room for a growing regime. The regime is a unary coded
(thermometer code) “super exponent”, i.e. it is always presented as a sequence of identical
bits terminated with the opposite bit. This causes the minimal regime length to be
two bits for posits with a total of more than two bits and only one bit for 2-bit posits.
This shows that if the regime grows up to the Least Significant Bit (LSB), the implicit
bit at position ‘‘-1” is assumed to terminate the regime. Two parameters are needed
to describe a posit format. Gustafson chose the total width N and the exponent size
es. The behavior of the regime can be understood relatively easily with the following
procedure: The value 1.0 is encoded in the posit format with a “1” at position N − 2.
When it gets incremented, the exponent field will start to fill up until it saturates. This is
when the regime starts to grow by one bit to the right, decreasing the size of the fraction
by one, and the exponent field is “reset” to zero. Therefore, an additional regime bit
actually scales the represented value by useed = 22

es . The unary coding of the regime
sometimes leads to the first impression that the format is very wasteful. However, the
opposite is true as it uses every available bit pattern for a meaningful number and does

132

4.1. NUMBER FORMATS

not even include NaNs. There are only two special values, 0 and not a real (NaR). The
NaR also represents ±∞. Gustafson often presents the posit encoding scheme mapped
to the projective reals, a circular real axis. A 5-bit version (es = 1) is shown in Fig. 4.3.

0
0
0
0
0
→

+
0
0
0
0

0

0
0
0
0
1
→
+
0
0
0
1

1
/6
4

0
0
0
1
0
→
+
0
0
1
0

1
/16

00011
→
+0011

1
/8 00100

→
+0100

1
/4 00101→

+0101

3 /8
00110→+0110

1 /2

00111→+0111

3 /4

01000→+10001

01001
→+1001

3 /2

010
10→

+10
10

2

01
01
1→

+1
01
1

3

01
10
0→

+
11
00

4

01
10
1
→
+
11
01

8
0
1
1
1
0
→
+
1
1
1
0

16

0
1
1
1
1
→
+
1
1
1
1

6
4

1
0
0
0
0
→

-
0
0
0
0

±
∞

1
0
0
0
1
→
-
1
1
1
1

-
6
4

1
0
0
1
0
→
-
1
1
1
0

-
16

10011
→
-1101

-8

10100
→
-1100

-4

10101→
-1011

-3

10110→-1010
-210111→-1001 -3 /2

11000→-1000 -1

11001
→-0111

-3 /4

110
10→

-01
10

-1 /
2

11
01
1→

-0
10
1

-3
/8

11
10
0→

-
01
00

-1
/4

11
10
1
→
-
00
11

-
1
/8

1
1
1
1
0
→
-
0
0
1
0

-
1
/1
6

1
1
1
1
1
→
-
0
0
0
1

-
1
/6
4

Fig. 4.3: 5-bit posits with es = 1 visualized on the projective reals. Taken from [81].

The visualization shows that the posits have the same ordering as signed integers using
the two’s complement. Furthermore, a posit is negated by taking the two’s complement.
The posits originated from universal numbers (unum) proposed by Gustafson [82]. In
fact, posits are also called Unum Type III. Unum Type I is a variable size floating-point
format for interval arithmetic and thus not very suitable for hardware implementations.
Unum Type II on the other hand uses a constant size and an encoding similar to posits.
However, there are no fields for regime, exponent, and fraction. Instead, a set of 2N−3− 1

real numbers xi is chosen to define how the type II unums are interpreted. As shown in
Fig. 4.4, this has the advantage that division can be conducted by mirroring the number
on the horizontal axis. However, multiplication of these numbers is now very expensive
as the value of a number cannot be extracted by interpreting a fraction like an integer
anymore. Instead, lookup tables for the xi are needed. As this is only feasible for low
sizes (below 20 bit [80]), Gustafson invented the posits that provide a linear fraction,
which can be utilized by existing multipliers but therefore have to use more expensive
division. Nevertheless, this trade-off is extremely interesting.

133

4.1. NUMBER FORMATS

0
0
0
0
0

0

0
0
0
0
1

00010

1
/ x

3 00011
00100

1
/ x
2

00101

00110

1 / x1

00111

010001

01001

010
10

x1

01
01
1

01
10
0

x 2

01
10
1

01
11
0

x 3

0
1
1
1
1

1
0
0
0
0

±
∞

1
0
0
0
1

10010
-
x
3

1001110100
-x
2

10101

10110
-x1

10111

11000 -1

11001

110
10

-1 /
x1

11
01
1

11
10
0

-1
/ x
2

11
10
1

11
11
0

-
1
/ x
3

1
1
1
1
1

Fig. 4.4: 5-bit unum type II defined with x1, x2, and x3, visualized on the projective
reals. Based on [80].

In the last years, a debate started on whether posits are superior to IEEE 754 floating-
point numbers or not. The discussion has spread on hardware efficiency, low level math
routines, algorithms, special corner cases, and many more, where either one or the other
expose deficiencies or shows strengths. Quite a few of these have been discussed by
Dinechin et al. in [83]. It is beyond the scope of this work to take a closer look on each of
these aspects, but a comment on the hardware effort should be given here. The decoding
of special values is often attributed to being a drawback of IEEE 754 floating-point
numbers. However, posits on the other hand do require a leading zero counter to decode
the regime size. Once decoded, the internal data-path for both formats is actually rather
similar. The draft posit standard [84] defines es = log2(N) − 2 for N ∈ {8, 16, 32, 64},
which leads to a maximum significant size of 58 bit for N = 64. This is 5 bit larger
compared to 64-bit IEEE 754 numbers, rendering the multipliers and adders slightly larger
and therefore also slower. Concerning rounding, posits are expected to be somewhat
easier on hardware resources as the IEEE 754 requires more complicated rounding modes.
Overall, hardware effort should be similar for both formats although this has not actually
been demonstrated in this work. An FMA posit unit including support for the quire, an
accumulator register, has been designed and verified by Melzer in a master’s thesis at
the CAG [85].

4.1.3 Machine Learning

Machine learning and artificial intelligence have attracted a lot of attention and research
resources in the last decade. The training of neural networks is a demanding task for

134

4.1. NUMBER FORMATS

commodity hardware like Central Processing Units (CPUs) and Graphics Processing
Units (GPUs). A major reason for this is the overhead associated with the floating-point
format used to calculate the weights and structure of neural networks. It turns out
that 64-bit or 32-bit floating-point values offer way more precision than needed in many
cases. By lowering the number size further, significant speed-ups can be achieved at
negligible accuracy loss. Therefore, new formats have been developed in the last years to
reduce the memory bandwidth and arithmetic hardware size. NVIDIA derived a 19-bit
format called TensorFloat-32 (TF32) by using the exponent size of IEEE 754 32-bit
numbers and the fraction size of IEEE 754 16-bit numbers [86]. Another, more popular
format is Google’s bfloat16 format, which is basically the upper half of the IEEE 754
32-bit format [87]. It is already applied in production use in Google Tensor Processing
Units (TPUs). The format has gained relatively high attention and even papers on
hardware implementations have been published, e.g. Hutchins et al. present a FMA
bfloat16 unit [88]. A common function used in neural networks is the sigmoid function
calculating 1/(1+exp(−x)), which is extremely expensive to compute. Therefore, simpler
approximations like rectifier functions are often used. Gustafson points out that 8-bit
posits with es = 0 are perfectly suited for neural network training and especially to
compute the sigmoid function. Flipping the first bit of these posits and shifting them
right by two places approximates the result of a sigmoid function extremely well [80].

135

4.2. FUSED MULTIPLY-ADD

4.2 Fused Multiply-Add

The results presented in this section have been published in vol. 6 no. 2 of Supercomputing
Frontiers and Innovations in 2019 [15].

4.2.1 Introduction

The RISC-V ISA developed at the UC Berkeley has become extremely popular since its
inception in 2010. Large technology companies have started to support RISC-V, and first
implementations and software support are now available. The open license of RISC-V
differentiates it fundamentally from other ISAs like x86 or ARM. Traditionally, high costs
associated with licensing have prevented open source processor designs for these ISAs,
especially at universities. Therefore, RISC-V is said to spawn a “new era for computer
architecture”. Thus, a major motivation for the work presented in this section was the
goal to eventually develop a RISC-V processor core at the CAG at Heidelberg University.
Other companies and universities have also developed RISC-V processors in the last
years. Most prominently SiFive, a spin-off of the UC Berkeley, has already produced
RISC-V silicon, released on its HiFive prototyping boards [89]. Furthermore, there are
several variants of Western Digital’s SweRV core targeting primarily embedded tasks,
like state machines and flash controllers [6]. The most notable university projects in
this area are the PULP Platform (Parallel Ultra Low Power) at the ETH Zurich and
the Berkeley Out-Of-Order Machine (BOOM), as well as the Rocket Chip Generator
at the UC Berkeley. SiFive is offering first high performance designs today, but a few
years ago, the focus in the RISC-V community was primarily on low-power embedded
applications. Therefore, development at the CAG was aiming towards the HPC direction,
and a key step to establishing RISC-V for HPC is to provide fast floating-point arithmetic
in hardware. This is underlined by the most prominent ranking of HPC systems, the
TOP500 list [74]. The metric used to compile this list is the floating-point performance
based on the LINPACK benchmark [75]. This is a linear algebra code that performs
matrix multiplications, which involve scalar multiplications with subsequent additions.
To improve the execution of such operations, so called Fused Multiply-Add units are
commonly found in HPC processors. The fusion of both operations poses an advantage
in speed and accuracy over two independent operations. Kaiser has designed and verified
such an FMA unit in the context of a master’s thesis at the CAG [7]. It supports 64-bit
IEEE 754 floating-point numbers. The IEEE 754 standard leaves some implementation
details open to the designer, e.g. which rounding modes to implemented or the behavior
when tinyness is detected before or after rounding [90]. Hence, results computed on
different systems can vary, which is often criticized by supporters of the posit format.
The RISC-V standard avoids such differences in functionality between different RISC-V

136

4.2. FUSED MULTIPLY-ADD

compliant Floating-Point Units (FPUs) by fixing these decisions. However, they are not
identical to, e.g., Intel FPUs.

At the time when Kaiser started the development of the FMA unit, there was no
high-speed open-source hardware implementation of the IEEE 754 floating-point standard
available. The PULP Platform only contained a preliminary 32-bit FPU [91], which has
now been replaced by a design called “fpnew” [92]. The old design was also missing the
rounding mode roundTiesToAway, which is mandatory for RISC-V. The arguably most
widely known implementation of a RISC-V FPU is the HardFloat developed by Hauser
at the UC Berkeley [93], [94]. It is used within different cores, or core generators, like
the SOC generator Rocket [95] and the out-of-order core Berkeley Out-of-Order Machine
(BOOM) [96]. The fastest Rocket implementation (in 2017) is SiFive’s U54 Rocket on
the TSMC 28nm HPC process with 1.5 GHz [97]. HardFloat can be expected to be a
reliable implementation due to its appearance in multiple projects and existing instances
in silicon. However, it is developed using the high-level hardware generation language
Chisel (Constructing hardware in a Scala embedded language) [98]. Chisel is built on
Scala, a language based on the Java virtual machine. It was created at the UC Berkeley
in 2010 with the intention to increase the design productivity and reusability of code.
Therefore, Chisel offers the possibility to write hardware generators. A drawback of
a new language is the compatibility with back-end tools. The current solution of this
problem is an automated translation to Verilog if the design is to be synthesized. This
process does contain a lot of “expert knowledge”. We decided not to go the Chisel route
and used SystemVerilog instead, in order to make potential low level optimizations easier
to add later on.

4.2.2 FMA Unit Design

This subsection will provide a brief overview of the FMA design. As shown in Tab. 4.2,
the FMA unit supports all four double-precision fused operations defined in the RISC-V
ISA, as well as add, subtract, and multiply. It supports all rounding modes required by
the IEEE 754-2008 standard and additionally roundTiesToAway, which is mandatory
for RISC-V. Division and square root have been designed and verified by Henger at the
CAG in a master’s project [99]. The division and square root use a Goldschmidt and
Newton-Raphson algorithm, respectively – i.e. iterative approaches, calculating multiple
intermediate results with the FMA unit.

Fig. 4.5 shows the interface and architecture of the FMA unit, which is based on [100].
It comprises the three 64-bit inputs port_a, port_b, and port_c for the operands, and
the 64-bit wide output port_res for the result. The type of operation is determined by op,
the rounding mode by rm, and exceptions are signaled at the output exception_flags.

137

4.2. FUSED MULTIPLY-ADD

Instruction Description Operation
FADD Add A+ C
FSUB Subtract A− C
FMUL Multiply A ·B
FMADD Fused Multiply-Add A ·B + C
FMSUB Fused Multiply-Subtract A ·B − C
FNMSUB Negative Fused Multiply-Subtract −A ·B + C
FNMADD Negative Fused Multiply-Add −A ·B − C

Tab. 4.2: RISC-V floating-point instructions supported by the FMA design.

port_b[63:0]port_a[63:0]

Product Generation

64 Bit

52 Bit

Compression Tree

3:2 Compressor Row

Shift Alignment

Conditional invert

64 Bit

107 Bit 106 Bit
106 Bit

Adder and
complement

port_c[63:0]

58 Bit

Leading Zero
Anticipator

Normalization Shift

Sign-/Exponent
Transformation

Rounding Overflow and Sign Handling

111 Bit
111 Bit

164 Bit

54 Bit

165 Bit

n_c
n_b

n_a

165 Bit

effective_subtract

bypass_fifo

52 Bit0 n_b

op

0

13 Bit

Result Classifier

52 Bit 52 Bit52 Bit

rm[2:0] op[4:0]

5 Bit

3 Bit

signs and exponents
64 Bit

leading_zeros

si
gn

is
_q

n
an

is
_i

n
f

is
_s

u
b

_o
r_

n
o

rm
is

_z
er

o
in

va
lid

_o
p

er
at

io
n

te
n

ta
ti

ve
_s

ef
fe

ct
iv

e
_s

u
b

tr
ac

t

ex
p

o
n

en
ts

si
gn

_u
p

d
at

e

port_res[63:0] exception_flags[4:0]

d

st
ic

ky

Fig. 4.5: FMA unit architecture, including three pipeline stages (dashed lines) [15].

A forward flow control (not shown here) is implemented via valid_in and valid_out.
valid_in can also be used for clock-gating inside the FMA unit. In the following,
the main components of the design are described in more detail. The Sign-/Exponent
Transformation transforms the operand exponents from the biased representation into 2’s

138

4.2. FUSED MULTIPLY-ADD

complement and checks if the operands are normal, i.e. no special values. Furthermore,
it calculates the difference between the product’s exponent (eA + eB) and the addends
exponent (eC). It also generates an effective subtraction bit indicating if the absolute
values of A ·B and C are added or subtracted. The Result Classifier handles operations
with special values, such as qNaN, sNaN, zero, infinity, and subnormal numbers. Product
Generation and Compression Tree perform the main part of the multiplication. Therefore,
they take the significants of the operands A and B and provide the product in carry-save
representation, i.e. a carry and a sum vector, which need still to be added. This allows
to take the additional 3:2 Compressor Row to add another operand (significant of C)
at the cost of a single full-adder delay. This is the reason why fusing both operations is
more energy efficient. A more detailed explanation of this is given in chapter 5. For a
floating-point addition, it is necessary to align the addends according to their exponent
by shifting one of them relative to the other. This is done by the Shift Alignment in
parallel to the compression tree. There is the case where one addend is much larger than
the other, so the smaller one is completely absorbed and doesn’t change the result. The
Adder and Complement resolves the carry-save representation as well as the following 2’s
complement into a 1’s complement intermediate result. In parallel to the Adder, a so
called Leading Zero Anticipator estimates the leading zeros of the intermediate result for
the normalization. The latter is then done by the Normalization Shift. Afterwards, the
result is finalized by the Rounding, Overflow and Sign Handling unit, which determines
if there is an overflow and performs rounding based on this information.

4.2.3 FMA Unit Verification

The FMA unit does not have a complex state, but it can still not be verified by iterating
through all possible inputs. There are two methods for verification, formal or simulation-
based. Although there have been formal verifications of FPUs in the last years [101],
[102], the proposed design is verified in a simulation-based way due to the larger amount
of time needed for the corner cases in the execution of the formal methods [103], [104].
Since a verification environment for an FMA unit does not have to react to its internal
state, stimuli for it can be generated statically. It can also be generated offline, which
both increases the performance of the tests. Such a stimuli generator is presented by
Aharoni et al. and works using a constraint solver [105]. Unfortunately, the actual code
is not open-source, only a set of pre-generated single-precision inputs. Consequently, we
decided to use the industry standard simulation-based UVM utilizing the Specman e
hardware verification language.

Key challenges of verification are the reference model and the generation of test patterns
that actually reveal hidden bugs, since not all input combinations can be tested. The
latter is addressed by the use of the UVM, which performs constrained-random online

139

4.2. FUSED MULTIPLY-ADD

stimuli generation and thus also facilitates automation. To keep track of which parts have
been tested, code coverage as well as functional coverage are collected. The next aspect is
checking the behavior of the Design Under Verification (DUV), which a reference model
is needed for. It allows to automatically generate the answer to the question whether
a transaction has been executed correctly by DUV or not. Behavioral models are the
common way to solve this issue and are usually developed by a verification engineer for
the specific design. Fortunately, there are already existing implementations of the IEEE
754 standard. However, executing the FMA operation simply in e is not a valid solution.
The abstraction layers between e and the actual instruction executed prohibit any control
on how the multiplication and addition are actually executed. Separate instructions
produce different results compared to fused operations. To circumvent this, we integrated
the FPU of an Intel processor using the Function Level Interface (FLI) provided by
Specman e. This interface is used to execute C code containing Intel Intrinsics [106],
i.e. essentially assembler code to execute the exact FMA instruction that the DUV is
executing. The physical Intel FMA unit can likely be assumed as correct and is also an
extremely fast reference model.

However, this C code is not sufficient as a reference model for a RISC-V-conform FPU.
As mentioned before, the implementation details are slightly different between Intel and
RISC-V. To also verify these differences, another reference model has been integrated. It
was developed by Hauser to verify the HardFloat FPU and is a software implementation
of the IEEE 754 standard written in C, called SoftFloat [107], [108]. Instead of just
filling the holes using this model, it was integrated in parallel to the Intel model and
if possible, both models were also checked against each other. A simplified view of the
UVM monitor is shown in Fig. 4.6.

Monitor

Intel
Reference
Model

Softfloat
Reference
Model

Scoreboard

=

Coverage
Collector

=In-
Packet

Out-
Packet

TLM TLM

Fig. 4.6: UVM monitor using the Intel Intrinsics and the SoftFloat reference model [15].

140

4.2. FUSED MULTIPLY-ADD

TestFloat

Hauser also created a tool that generates tests for IEEE 754 implementations, called
TestFloat [76], [77]. A small testbench that executes the TestFloat sequences has been
developed in the present work to complement the UVM-based verification environment
created by Kaiser [7]. TestFloat is a command line tool and simply prints lines into the
terminal (stdout), each containing input and expected output values for a given type
of floating-point operation as hexadecimal values. The expected result and exception
flags are computed by TestFloat via SoftFloat. Of course the design has already been
verified with SoftFloat, but the reason for also performing verification with TestFloat is
mainly to make use of the different generation algorithm. Thus, it is possible to use it
for offline generation. However, redirecting all the generated tests into a file and reading
them back during simulation is difficult due to the large file sizes. To circumvent this,
the read-in of the tests has been converted into a pseudo-online generation by reading
directly from stdin – so each test is completed before the next test can start and no
expensive file I/O is needed. The code of the driver and checker module is shown in
Lst. 4.1. It reads the test values from stdin and drives them to the DUV. It also keeps a
small queue of the last five results and exceptions to compare them to the delayed output
of the FMA pipeline. TestFloat specifies two levels of testing with a different number of
tests. However, simulator speed currently limits testing to the around six million tests in
level 1, which needs around 38 min. Level 2 comprises around 180 billion tests, which
would demand spending effort on parallelization. (The verification with TestFloat is not
included in [15].)

4.2.4 FMA Unit Back-End

The back-end implementation in this work was done in a recent 22nm Fully-Depleted
Silicon-On-Insulator (FDSOI) technology. A silicon-on-insulator process applies an
additional insulator layer to remove the diodes between drain/source and the substrate.
Furthermore, the channel is fully depleted, i.e. not weakly doped, to reduce leakage
current. The insulator layer acts like a back-gate, which can be used to modify the
transistor’s threshold voltage. A back-gate bias voltage generator can later be used
to apply a voltage to the back-gate, called Body Bias (BB). This allows to tune the
circuit for either more performance, or lower leakage, or to compensate process corners.
The latter already emphasizes that this bias needs to be treated like process, voltage,
and temperature in static timing analysis. The GF22FDX process offers four types of
transistors for different applications: high (HVT), regular (RVT), low (LVT), and super
low (SLVT) threshold voltage devices. Since no low power implementation was intended
but instead a performance analysis, the SLVT standard cell library was chosen.

141

4.2. FUSED MULTIPLY-ADD

1 module testfloat_stdin #(
2 parameter MANTISSA_WIDTH = 53,
3 parameter EXP_WIDTH = 11
4)(
5 input logic res_n,
6 input logic clk,
7 output logic [EXP_WIDTH+MANTISSA_WIDTH -1:0] port_a,
8 output logic [EXP_WIDTH+MANTISSA_WIDTH -1:0] port_b,
9 output logic [EXP_WIDTH+MANTISSA_WIDTH -1:0] port_c,

10 output logic valid_in,
11 input logic [EXP_WIDTH+MANTISSA_WIDTH -1:0] port_res,
12 input logic [7:0] exception_flags
13);
14
15 localparam STDIN = 32'h8000_0000;
16 localparam N = EXP_WIDTH+MANTISSA_WIDTH -1; // = 63
17 logic [N:0] r_queue [4:0]; // "queue" of last 5 expected results
18 logic [7:0] e_queue [4:0]; // "queue" of last 5 expected exceptions
19 int i;
20 logic res_n_delay;
21 assign #8 res_n_delay = res_n; // starts assertions when first result is ready
22
23 always @(posedge clk or negedge res_n) begin
24 if(~res_n) begin
25 i <= 0; valid_in <= 0; port_a <= 0; port_b <= 0; port_c <= 0;
26 end else begin
27 valid_in <= 1;
28 if(!$feof(STDIN)) begin
29 $fscanf(STDIN,"%h␣%h␣%h␣%h␣%h",port_a,port_b,port_c,r_queue[i],e_queue[i]);
30 // correct for different NaN encoding of TestFloat
31 r_queue[i] = (&r_queue[i][N-1:MANTISSA_WIDTH -2]) ? 64'h7ff8000000000000 : r_queue[i];
32 i = (i+1)%5;
33 end else begin
34 $finish;
35 end
36 if(res_n_delay) begin
37 assert (r_queue[i] == port_res) else begin
38 $display("Expected:␣%h,␣DUV:␣%h", r_queue[i], port_res); $finish;
39 end
40 assert (e_queue[i] == exception_flags) else begin
41 $display("Expected:␣%h,␣DUV:␣%h", e_queue[i], exception_flags); $finish;
42 end
43 end
44 end
45 end

Listing 4.1: TestFloat driver and checker module.

Synthesis Results

The floorplan was kept rather simple for this first implementation. Only the height was
defined to be 119.68 µm. The length was adjusted to yield a utilization of 80%. A more
detailed placement will be part of future work when more submodules are described

142

4.2. FUSED MULTIPLY-ADD

at a lower abstraction level, allowing for more control on what is synthesized. Possible
optimizations have been researched in this work after the publication of these results
in Supercomputing Frontiers and Innovations. They are discussed in chapter 5. Pin
placement was done with a later application in a RISC-V processor implementation in
mind. RISC-V suggests a dedicated floating-point register file, which will need three
read- and one write-port to provide the operands for fused operations. Assuming the
register file will be located left of the FPU in a pipeline, the operand and result pins were
placed on the left side in an interleaved manner using metal layers 3 to 6 and a spacing of
0.35 µm. The remaining pins are also placed on the left side with a spacing of 1.4 µm on
metal 3 following the pins of port_a. This is shown in Fig. 4.7a. Depending on the exact
register file size, this spacing may need to be changed in the future. To get a realistic
timing, scan insertion was conducted even for this first synthesis run. This replaces
all Flip-Flops (FFs) with Scan Flip-Flops (SFFs) that have a multiplexer in the data
path to switch between the regular input (D) and the scan input (SI). The additional
multiplexer delay reduces the time available for other logic, but a scan chain is needed for
chip testing. The effect of the clock distribution was also considered by performing Clock
Tree Synthesis (CTS). This adds a buffer tree to the design to distribute the clock to all
clock inputs and assures that the rising clock edge reaches every FF within a defined time
window. Subsequent to CTS, the design was routed. After routing, the timing was met
for a cycle time of 666 ps, i.e. 1.5 GHz, over all recommended implementation corners
without using Forward Body Bias (FBB). Fig. 4.7b shows the area over target frequency.

The synthesis results for the lower frequencies (blue curve) were obtained using the
recommended corners for setup and hold analysis: slow and fast process, 10% voltage
deviation around the nominal voltage of 0.8 V, and a temperature of −40 ◦C and 125 ◦C.
From these recommended corners the tools identified the combination (SS, 0.72 V, 125 ◦C,
RC max) to be most critical for timing. The currently only partially optimized design
suffers from a significant area increase with rising target frequency. Fig. 4.7b shows
that the area roughly doubles from 1.2 GHz to 1.5 GHz. From there, the corners were
adjusted for higher frequencies. It is interesting to observe how much a FBB can increase
performance. For this design, it allows to reach frequencies up to 1.8 GHz (red curve).
To see how the design performs typically, it was synthesized only with typical corners
(brown curve) and also with their forward body biased versions (black curve). Typical
corners are available for 25 ◦C and 85 ◦C. Here, the tools identified (TT, 0.8 V, 85 ◦C,
RC nominal) to be most critical for timing. This allowed us to reach up to 2.3 GHz.
The tools used were Cadence Genus and Innovus. Note that with only typical corners,
higher frequencies can be reached than with the recommended corners using FBB. This
shows that it is not possible, at least for this design, to compensate a worst-case corner
completely by using FBB.

143

4.2. FUSED MULTIPLY-ADD

co
nt

ro
l

4x
 6

4-
bi

t
flo

at
 p

or
ts

 (
in

te
rle

av
ed

)

11
9.

6 8
 µ

m

(a) Pin placement.

1 1.2 1.4 1.6 1.8 2 2.2 2.4
15

20

25

30

35

Target Frequency [GHz]
A

re
a

[1
03

µm
2]

Recommended Corners w/o BB
Recommended Corners with FBB
Typical Corners w/o BB
Typical Corners with FBB

(b) Area over target frequency for different corner setups.

Fig. 4.7: FMA unit synthesis results.

Power Analysis

For all points presented in Fig. 4.7b, a power analysis based on a value change dump
(vcd) file containing stimuli was conducted. The stimuli were generated with a modified
test from the verification environment using Cadence Xcelium. The testbench contained
the netlist, derived after all the previously described synthesis steps where executed, and
applied a clock signal of the corresponding target frequency. The test itself applied new
operands every clock cycle and performed a random operation with a random rounding
mode. The total power consumption for each synthesized design is shown in Fig. 4.8.
The values were calculated for a typical corner (TT, 0.8 V, 85 ◦C, RC nominal), with the
ones implemented with FBB having their power determined with the corresponding FBB
corner. This corner was chosen as it best resembles the most likely operation condition.
The clock tree makes up between 0.77 % and 1.56 % of the total power from high to low
target frequencies, which seems plausible for a small design. The power analysis was
done with Cadence Innovus/Voltus.

Fig. 4.8 shows that the power increases with area and frequency as expected. The

144

4.2. FUSED MULTIPLY-ADD

1 1.2 1.4 1.6 1.8 2 2.2 2.4

50

100

150

200

250

Target Frequency [GHz]

Po
w

er
[m

W
]

Rec. Corners w/o BB
Rec. Corners with FBB
Typ. Corners w/o BB
Typ. Corners with FBB

Fig. 4.8: Power over target frequency for different corner setups.

power consumed by the 2.3 GHz implementation at different operating frequencies is
shown in Fig. 4.9. The linear rise of power with frequency is expected, but the values
also show that a faster design, which uses more area, also consumes more power at lower
operating frequencies than a design implemented for that particular target frequency –
which is important to consider when dynamic frequency scaling is applied. Besides the
total power (black curve), Fig. 4.9 also shows the three parts which make up the total
power. These are the switching power representing the loading/unloading of nets, and
the power used internally in the standard cells. They make up the linear part. The third
part (brown curve) is the leakage power, which is constant at 33.6 mW over the operating
frequency. This high leakage current is caused by using SLVT standard cells and FBB.

1 1.2 1.4 1.6 1.8 2 2.2 2.4

50

100

150

200

250

Operation Frequency [GHz]

Po
w

er
[m

W
]

Standard Cell Power
Switching Power
Leakage Power
Total Power

Fig. 4.9: Power of the 2.3 GHz implementation over operation frequency.

145

4.2. FUSED MULTIPLY-ADD

Tab. 4.3 compares the two most similar FMA implementations from this work and
from [109] in terms of the metrics used in [109]. We calculated the performance of our
design by assuming two floating-point operations per clock cycle, i.e. the maximum
throughput possible. This was also done in [109]. Their design runs with 1.81 GHz in
a 45nm technology using low threshold devices and six pipeline stages. Compared to
our synthesis result at 1.8 GHz for a typical process with super-low threshold devices,
we have a similar power per performance but are roughly a factor of three smaller in
terms of area per performance. The latter is contributed to technology scaling. The
former is probably due to the low pipeline depth of three versus six. A lower number of
pipeline stages makes it harder to achieve timing and thus requires the synthesis tool
to use additional logic to fit the combinational logic into the cycle time. This fast area
increase was observed in Fig. 4.7b. Furthermore, our design is not optimized for power.

Property 45nm FMA Our 22nm FMA
Vth low super low
VDD in V 0.9 0.8
Pipeline Depth 6 3
Frequency in GHz 1.81 1.8
Area in µm2 49839 19066
W/GFLOPS 0.0253 0.0264
mm2/GFLOPS 0.0145 0.0053
W/mm2 1.75 4.98

Tab. 4.3: Comparison of our synthesis results with [109].

Another interesting aspect can be seen in Fig. 4.10, which shows power density over
target frequency. Power density scales linearly with frequency as expected, but the second
observation is that using FBB keeps the power density constant, whereas going from slow
to typical corners reduces power more than one would expect from the area shrink alone.
This shows again that FBB is not enough to compensate worst-case corners.

4.2.5 Conclusion

A RISC-V- and IEEE 754-conform FMA unit which passed the complete ASIC design
flow was designed and verified using different techniques. The PPA analysis demonstrates
that the design is comparable to existing implementations like HardFloat and results
presented in [109]. However, many more aspects need to be researched in order to reach
optimum performance. The timing reports have identified that the critical paths are
almost always ending at registers behind the Compression Tree. Hence, it might be useful
to consider a new placement of the pipeline stages. This could also be automated by
using the retime functionality of the Genus synthesis tool. It allows to automatically
position registers within a cloud of combinational logic to optimize timing and/or power.

146

4.2. FUSED MULTIPLY-ADD

1 1.2 1.4 1.6 1.8 2 2.2 2.4
2

4

6

8

Target Frequency [GHz]

Po
w

er
D

en
sit

y
[W

/m
m

2]

Rec. Corners w/o BB
Rec. Corners with FBB
Typ. Corners w/o BB
Typ. Corners with FBB

Fig. 4.10: Power/Area over target frequency for different corner setups.

This is a trade-off as the FMA unit has less outputs than inputs, so moving registers
towards the inputs tends to increase their number and therefore power. The general
viability of re-timing registers is limited by the capability of the front-end tool (Genus) to
estimate interconnect and placement because the back-end (Innovus) cannot reposition
registers anymore. Simple experiments resulted in Genus underestimating wire delay in
spite of using physical layout estimation. Cadence has since presented new tool support
allowing for closer integration of front-end and back-end. This shows that EDA software
is going to be able to achieve the quite significant savings possible through automated
pipelining. Therefore, manual effort spend on placing register stages will become less
important.

Another possible aspect could be to optimize the multiplication and addition through
gate-level implementations, instead of relying on the synthesis tool. Kaiser already added
a structural (not gate-level) description of the Compression Tree with the intention to
access the partial products that allow to “sneak” in the addition via the 3:2 Compressor
Row. However, the synthesis tool was still able to translate it to whatever standard cells
it saw fit. Thus, the resulting netlist did not contain the intended tree structure. This
led to the idea to investigate whether actual gate-level implementations of arithmetic
hardware are more efficient than simple ‘*’ and ‘+’ operators. Chapter 5 presents the
results of this research.

147

5

C
h

a
p

t
e

r

Hardware Arithmetic

Chapter 4 has pointed out that arithmetic circuits are a potential target for optimizing the
performance floating-point hardware. This chapter takes a closer look on how multipliers
and adders are built and whether manually designed implementations have any benefits
over the logic generated by synthesis tools. A major motivation for revisiting these
components in this thesis is that the performance of many common applications like
machine learning, digital signal processing including video compression, and of course
HPC applications, heavily depends on the speed of basic hardware arithmetic functions
used in specialized and general purpose hardware. From a power efficiency point of
view, it is debatable if such an analysis can provide much benefits since data movement
consumes much more power than the actual computation. Nevertheless, saving power
where possible cannot be wrong.

This chapter is structured as follows: the first section will present the basics of
binary multiplication and discuss different tree structures used for multipliers. As these
multipliers fundamentally rely on additions, the chapter continues with an in-depth
view of adder circuits in the second section. The goal of this effort is to understand
which trade-offs can be made and if the design of custom structures is worth the effort
considering the capabilities of recent synthesis tools. The third section deals with the
verification process of these custom structures to ensure that the results are based on
correct designs. Section 5.4 then comes back to the initial problem of performance and
power consumption. The adder and multiplier variations are synthesized, including place
& route, and a detailed PPA analysis is presented.

149

5.1. MULTIPLIERS

5.1 Multipliers

This section presents the principles of multiplier circuits and starts with terminology. An
expression A ·B is called a product, while A is called multiplier and B multiplicand. Both
are also factors. For integer multiplication, the simplest way to compute the product is
by adding copies of the multiplicand: A ·B =

∑A
i=1B. However, this is a very slow and

inefficient method, both manually and especially for hardware implementations, since
the number of steps, i.e. cycles, does depend on the value of A. Another method comes
from the following observation, where B is the base or radix of the numeral system and
ai and bj are the digits of A and B.

P =

n−1∑
i=0

m−1∑
j=0

aibjBi+j (5.1)

So depending on the number of digits n and m, there are nm so-called partial products
aibj , weighted with the corresponding power of the base. This is often represented in
a rhombus-like figure as shown in Tab. 5.1. These partial products need to be added
with consideration of possible carries. Note that there is no dependency of the number of
partial products on the operand values. The terms aiB are called summands.

a0bm−1 a0bm−2 · · · a0b1 a0b0 a0B

+ a1bm−1 a1bm−2 · · · a1b1 a1b0 a1B

+

+ an−2bm−1 an−2bm−2 · · · an−2b1 an−2b0 an−2B

+ an−1bm−1 an−1bm−2 · · · an−1b1 an−1b0 an−1B

pm+n−1 pm+n−2 · · · p1 p0 P

Tab. 5.1: Partial products and summands.

For binary numbers (B = 2), the partial products of the operand digits can be computed
by a two-input logical AND. This is exactly what is done in hardware multipliers in a first
stage called partial product generation. In the next stage, these partial products need to
be summed up, where m = n is now assumed as this is commonly the case in hardware.
A simple sequential method to do this is given by adding the summands one by one with
an adder, e.g. a Carry-Ripple Adder (CRA), which results in a delay of O(n2). This can
be improved by using adders with logarithmic time like the Ccarry-Lookahead Adder
(CLA) to O(n log(n)). Using multiple CLAs composed in a tree structure, the delay can
be further reduced to O

(
log(n)2

)
. However, it is possible to reduce the time complexity

of multiplication to O(log(n)) through special tree structures called carry-save trees. It
is cumbersome to describe them in structural SystemVerilog but much easier in other

150

5.1. MULTIPLIERS

languages like Python. Thus, a Python code has been developed for this work to generate
the SystemVerilog code for these tree structures. Furthermore, the tool also generates
the TikZ code to visualize the trees in LaTeX as shown in this section. The TikZ code
also serves as a useful tool to debug the tree generation.

5.1.1 Wallace Tree

C. S. Wallace was the first to describe a multiplier circuit with delay O(log(n)) in 1964.
His paper “A Suggestion for a Fast Multiplier” [110] basically made the observation
that Carry-Save Addition (CSA) can be done in O(1). CSA means the carries are not
propagated, and the result of a CSA has therefore two components, a sum vector and
a carry vector. A half-adder does actually perform a CSA, and the same is true for a
full-adder whose carry-in is used as a third input. Hence, a row of n full-adders is an
n-bit three-operand carry-save adder. Wallace further proposed to group the summands
– not the partial products as is sometimes assumed or not described precisely – into
groups of three to add them in parallel. With respect to their weight, they are fed into
rows of full-adders. Since the summands in each group are shifted relative to each other,
half-adders are added left and right as “padding” where only two partial products remain
per column. Due to the CSA, every group of three summands is reduced to two results
by each stage. The remaining summands (“number of summands modulo 3”) from the
grouping phase are just passed to the next stage and grouped along with the results from
the previous stage. Thus, the number of summands is reduced to at most 2/3 in each
stage. When this process is finished, the remaining two summands are added with a
conventional adder. The delay of a CSA is O(1), but the tree is O(log(n)) deep and the
final addition also takes O(log(n)). Hence, the overall delay is O(log(n)) – a remarkable
result as it shows multiplication and addition have the same time complexity. However,
this comes at a price in terms of a gate count complexity of O(n2 log(n)). An example
for 12-bit operands is shown in Fig. 5.1. Each black dot is a partial product, each red
one a sum, and each blue one a carry. The rectangles with rounded corners are full- and
half-adders, taking the enclosed dots as an input. Their outputs are presented in the
next stage as sum in the same and as carry in the next higher column.

partial product sum carry

full-
adder

half-
adder

151

5.1. MULTIPLIERS

Fig. 5.1: 12-bit Wallace tree: 102 full-adders, 34 half-adders.

152

5.1. MULTIPLIERS

5.1.2 Dadda Tree

Based on the work of Wallace, L. Dadda published a paper called “Some Schemes for
Parallel Multipliers” [111] in 1965, which approaches the additions of the partial products
in a more general way by omitting the implicit and unnecessary grouping caused by
thinking of summands. This change in the way of thinking is represented by regrouping
the partial products from the rhombus structure to a triangular one. Comparing Fig. 5.1
and Fig. 5.3 illustrates this. Note, however, that Dadda kept the rhombus structure for
the first stage in his drawings in [111], unlike presented here. It can be observed that the
order in which the partial products within each column are summed can be completely
arbitrary.

Dadda deduces several schemes as the title of his paper suggests, until he concludes
with what is nowadays called the Dadda tree. This subsection presents his deduction in
a shortened version because it provides some insight. He starts with so-called parallel
(N,M)-counters as the basic elements needed for calculating the sum of each column.
These are simply logic functions with N inputs and M = dlog2(N + 1)e outputs. The
number of ones among the inputs is presented binary-coded at the output. Since the
number of output bits is smaller than the number of input bits for N > 2, the output
is considered a “compressed” version of the input. Therefore, the parallel counters are
also called compression cells. The two smallest, i.e. the (2, 2)- and (3, 2)-counter, are
most commonly known as half- and full-adder. After presenting the first two schemes
applying (N,M)-counters with N chosen according to the column size, he realizes that
for arbitrary (N,M), the counters are complex logic functions not available in most cases.
This is still true today as there are no standard cells for the complex counters in modern
technologies but only for half- and full-adders. It is interesting to note that even using
only half-adders (as they are the smallest counters possible) still yields a functional tree
structure. Even though they are not obviously reducing the number of bits to be summed,
they shift a carry to the left, i.e. to a higher weight. A central observation regarding
these structures is that bits in columns with a corresponding weight of 22n or greater
are always zero and can be neglected in subsequent stages. A product of n-bit numbers
cannot be wider than 2n bit. Unfortunately, using only half-adders is a bad choice as
Dadda found the number of stages is no longer O(log(n)) but instead O(2n).

So after realizing structures composed purely of half-adders are not feasible, he also
allows full-adders. In each stage, the maximum amount of full-adders is applied to each
column to provide a maximum reduction and consequently a minimum number of stages.
If necessary, an additional half-adder is applied in a column as well. However, it is not
necessary to apply a half-adder if every column to the right has less than three elements
because these columns will remain untouched from any carry propagation and can be
directly transferred into the results. As in the first stage, each group of three partial

153

5.1. MULTIPLIERS

products in a column is applied to a full-adder; this is sometimes confused with the
description of the Wallace tree because the partial products are confused with summands.
As a reference for a “naive” implementation synthesis, results are also shown for this tree,
called “MaxReduce” in this thesis, in absence of a better name. This tree applies the
maximum number of full-adders per column plus a possible half-adder. An example with
12-bit operands is shown in Fig. 5.2.

The 12-bit MaxReduce tree shows that the twelve rows of partial products are reduced
to eight rows by the first stage. Dadda noticed that this amount of reduction is a waste
of adders in the first stage because besides the eight rows, also a nine row configuration
could be reduced to six rows by the second stage. This is because d8/1.5e = 6 = d9/1.5e.
Thus, starting from the output of the last stage, for which he knew it has two rows, Dadda
deduced the optimal number of rows per stage. If ri is the row count of the i-th stage
looking from the end, where r1 = 2, the maximum number of rows that can be reduced
to ri is ri+1 = b1.5 · ric. This sequence basically defines the Dadda tree algorithm:

2, 3, 4, 6, 9, 13, 19, 28, 42, 63, ...
The first stage of the Dadda tree is built by reducing the n rows of partial products to
the largest number smaller than n in this sequence by the first stage – so that under the
consideration that full- and half-adders on the right of a column increase the number of
its elements by propagating a carry, each column contains not more rows than defined by
the sequence. To consider this carry propagation, it is most practical to start with the
column on the right and move to the left as carries are also propagated from right to left.
This is also what the Python tree generator developed in this work does. It contains a
list filled with partial products for each column and starts its loop with column zero. If
an adder needs to be placed in the tree, the corresponding carry bit is appended to the
list representing the next higher column. It might be worth noting that this sequential
approach does not lead to chained adders within one stage, which means every stage still
has the delay of one full-adder only. An example Dadda tree is shown in Fig. 5.3. Dadda
does not provide a proof but assumes that this is the variant using the lowest number of
adders.

154

5.1. MULTIPLIERS

Fig. 5.2: 12-bit MaxReduce tree: 100 full-adders, 48 half-adders.

155

5.1. MULTIPLIERS

Fig. 5.3: 12-bit Dadda tree: 99 full-adders, 11 half-adders.

156

5.1. MULTIPLIERS

5.1.3 Comparison

The Wallace and Dadda trees have been compared on a theoretical level by Townsend
et al. [112]. They also derived the analytical expressions for the number of full- and
half-adders, as well as the width of the subsequent Carry-Propagating Adder (CPA)
needed to add the final two rows. The formulas are given in Tab. 5.2.

Property Wallace (n > 5) Dadda
full-adder count n2 − 4n+ 1 + #stages n2 − 4n+ 3
half-adder count ≥ n n− 1
CPA width 2n− 1− #stages 2n− 2

Tab. 5.2: Scaling of component count for Wallace and Dadda multipliers [112].

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

1,000

2,000

3,000

4,000

Operand Size n

#
FA

+
#

H
A

Dadda Tree
Wallace Tree
MaxReduce Tree

Fig. 5.4: Combined number of full- and half-adders for different trees.

157

5.2. ADDERS

5.2 Adders

The previous section has shown that the speed advantage of the multiplier trees is based
on delaying the carry-propagation by using Carry-Save Addition (CSA). This delay
saves the carry-propagation, hence the name Carry-Save Addition. The two remaining
summands still need a final Carry-Propagating Adder (CPA). An interesting way to look
at multipliers is to see them as multi-operand adders with the Wallace tree designed on
word-level and the Dadda tree on bit-level [113]. From this perspective, it is obvious why
multiplication has the same time complexity as addition. Up to today, a large variety of
adders has been developed. This section gives an overview on this topic, to explore the
design space for architectures to be evaluated in the context of modern synthesis tools.
A master’s thesis by Lynch from 1996 [114] on binary adders provides a lot of insight.
An addition is comprised of two summands A = {an−1, . . . , a0} and B = {bn−1, . . . , b0}
resulting in a sum S = {sn, . . . , s0}. The calculation of the sum bits is usually expressed
with Eqs. 5.2 and 5.3.

si =

xor(ai, bi, ci), i < n

cn, i = n
(5.2)

ci+1 = majority(ai, bi, ci) and c0 = cin (5.3)

The dependency of the sum bit at index i on all operand bits with index lower or equal
to i is expressed using a new bitvector C = {cn, . . . , c0}, called carry. This carry vector
appears as a third operand and limits the speed of addition [114]. The simplest method
for addition is called serial by Lynch but should rather be named sequential as it uses
a result register where each cycle one bit of the result is computed and the carry bit
is fed back for the next cycle. It is obviously impractical for high-speed computations
and not even area or energy efficient as the operand bits need to be multiplexed for the
single full-adder instance. If an n-bit result register is used over a single one, even the
output has to multiplexed. The combinational version of this is called Carry-Ripple
Adder (CRA). It is a chain of n− 1 full-adders starting with a half-adder connected with
their carry in- and outputs. This is very area efficient but has linear time complexity as
the carry generated by the half-adder may ripple to the end of the chain.

5.2.1 Carry-Select Adder

As more transistors could be crammed onto chips, higher performance became a reasonable
optimization criterion, and logic was added to improve speed by parallelism. A first
variant of such a parallel adder is the Carry-Select Adder (CSL), a divide-and-conquer
approach [114], i.e. the operands are split in a lower and upper half, both added separately

158

5.2. ADDERS

by a CRA. However, the upper half is replicated once to compute the result for both
potential outcomes of the lower half’s carry-out bit. The result is then multiplexed and
the time delay approximately cut in half for large enough n. As Lynch [114] considers a
fixed number of sub-adders, he concludes that the CSL has a linear time complexity. It
can however be easily shown that if the number of sub-adders, mcsl, is allowed to change
with

√
n, a time complexity of O(

√
n) is achieved (Eq. 5.4). For simplicity, the second

step assumes full-adder delay td,fa and multiplexer delay td,mux to be equal to 1.

td,csl,fix =
n

mcsl
· td,fa + (mcsl − 1) · td,mux ⇒ td,csl,fix = 2

√
n− 1 (5.4)

The absolute time can be further optimized by using variable block sizes. The optimal
layout would be a constant increase in sub-adder size from ncsl towards the MSB in steps
of dtd,mux/td,fae. This ratio should be around 1 in most technologies as the multiplexer
delay is usually smaller than a full-adder delay. Thus if a block completes addition, the
carry from the previous block is already available. Eq. 5.5 connects ncsl with n, and
Eq. 5.6 is the delay with full-adder and multiplexer delays again set to 1. Inserting
Eq. 5.5 in Eq. 5.6 via ncsl results in a optimal delay for mcsl =

√
2n – lower compared to

the version with fixed-size blocks but with the same general time complexity.

n =

mcsl−1∑
i=0

ncsl + i = mcslncsl +
mcsl(mcsl − 1)

2
(5.5)

td,csl,var = ncsl +mcsl − 1 (5.6)

⇒ td,csl,var =
√
2n− 1/2 (5.7)

Of course, both calculations did not consider any remainders occurring when dividing
the adder into sub-adders but capture the general idea.

Another way to use the divide-and-conquer strategy is the conditional sum addition. It
is similar to the CSL but uses a block size of only one bit. Except for the LSB, each block
“speculatively” computes the addition for both possible carries. The results are then fed
into a multiplexer tree, which is also “speculative”, i.e. there are two multiplexers at each
stage to propagate both possible results for the corresponding block. The carry-out of the
LSB full-adder steers the multiplexer of the next higher bit to choose the correct result.
This result is then used for the next two bits, then the next four bits, the next eight bits
and so on. From this, it is obvious that the path from carry-in to carry-out contains
O(log(n)) multiplexer delays. Note that the time complexity compared to the CSL is not
reduced as a consequence of adding speculation to almost every bit but instead by adding
a “speculative” multiplexer tree. A carry-select with block size of one would actually
have time complexity O(n). A nice schematic of both adders can be found in [113]. The
conditional sum adder is not analyzed further in this work, but the next subsection will

159

5.2. ADDERS

show the parallel prefix version of it, called Sklansky adder [115], [116].

5.2.2 Parallel Prefix Adders

Logarithmic time complexity is the target delay scaling to be achieved for many arith-
metic/combinational circuits. The previous methods for addition are possible solutions,
but their exact trade-offs “remain in the dark”. The fundamental problem adders aim to
solve is the carry propagation (Eq. 5.3). Such a problem is called a prefix computation. A
prefix function X 7→ Y = f◦,n(X) for an associative two-input Boolean operator ◦ takes
an n-bit input vector X = {xn−1, . . . , x0} and computes the result Y = {yn−1, . . . , y0}
as follows.

y0 = x0

y1 = x1 ◦ y0 = x1 ◦ x0
y2 = x2 ◦ y1 = x2 ◦ x1 ◦ x0 (5.8)

...

yn−1 = xn−1 ◦ yn−2 = xn−1 ◦ · · · ◦ x2 ◦ x1 ◦ x0

The dependency of the sum at index i on all operand bits with lower or equal index,
which is generally abstracted with the carry, is such a prefix function with a slightly
more complicated operator, called Fundamental Carry Operator (FCO). This operator
is associative and can therefore be parallelized to achieve high-speed addition. Hence,
adders built based on this idea are called Parallel Prefix Adders (PPrAs). In a wider
context, they are categorized together with the CLA as propagate-generate adders by
Lynch [114]. The majority function of the carry in Eq. 5.3 can be rewritten into the form
shown in Eq. 5.9. To simplify the notation, “·” and “+” are used for the Boolean AND
and OR, respectively.

ci+1 = majority(ai, bi, ci) = aibi + (ai + bi)ci = gi + pici (5.9)

The bits gi and pi, implicitly defined by this equation, are commonly called generate
and propagate, respectively; hence the name propagate-generate adders used by Lynch.
When the generate bit is set, a carry will be produced at index i and passed to the higher
index regardless of the incoming carry. In contrast, a set propagate bit only says that an
incoming carry is passed to the next higher index. However for this meaning, pi should
be rather computed with an XOR to exclude the generate case. Indeed, most literature
uses this interpretation of propagate (instead of the one mentioned previously) as this
does not change the value of ci+1. Lynch [114] actually calls the OR-based signal transfer
instead of propagate. In this work, the XOR-version is ignored and the OR-version is

160

5.2. ADDERS

called propagate as this is the common name, and the following derivations do not come
across the XOR-version in any way.

Based on the two previously discussed signals, the FCO is defined by Eq. 5.10. The ◦
from the introduction of the prefix function is now used for the FCO as this is a common
symbol used in literature.

(g1, p1) ◦ (g0, p0) := (g1 + p1g0, p1p0) (5.10)

Using the FCO, the carry equation can be rewritten into Eq. 5.11.

(ci+1, 0) = (gi, pi) ◦ (ci, 0) = (gi + pici, 0) (5.11)

It is now obvious how the carry vector is the result of a prefix computation.

(c0, 0) = (cin, 0)

(c1, 0) = (g0, p0) ◦ (cin, 0)

(c2, 0) = (g1, p1) ◦ (g0, p0) ◦ (cin, 0) (5.12)
...

(cn, 0) = (gn−1, pn−1) ◦ · · · ◦ (g0, p0) ◦ (cin, 0)

Compared to Eq. 5.8, the carry-in (cin, 0) is somewhat impractical for an elegant notation,
and it is convenient to redefine this as shown in Eq. 5.13.

(Gi:i, Pi:i) := (gi−1, pi−1) and (G0:0, P0:0) := (cin, 0) (5.13)

The colon notation facilitates the following range relation.

(Gi:j , Pi:j) : = (Gi:i, Pi:i) ◦ · · · ◦ (Gj:j , Pj:j) (5.14)

= (Gi:k, Pi:k) ◦ (Gk−1:j , Pk−1:j) ∀k ∈ N : j ≤ k ≤ i (5.15)

⇒ ci = Gi:0 (5.16)

Since the FCO is associative, it is possible to parallelize the logic function for each Gi:0 by
using a binary tree structure. However, this results in many separate trees that need to be
arranged in a way to share most of their logic to save FCO instances. This is exactly the
place where variation comes into the design and several variants with different trade-offs
have been proposed in literature. A three-dimensional taxonomy using variables (l, f, t)

was provided by Harris [116], and is shown in Fig. 5.5. The dashed lines in Fig. 5.5 mark
the plane f + t+ l = log2(n)− 1, where Harris locates all PPrA variants published before
his paper [116]. He concludes the inherent trade-off between these networks are those

161

5.2. ADDERS

Fig. 5.5: Taxonomy of Parallel Prefix Adders with n = 16. The three dimensions are
logic levels log2(n) + l, fan-out 2f + 1, and horizontal wire tracks 2t with
l, f, t ∈ {0, . . . , log2(n)− 1}. Picture taken from [116].

three dimensions. This is extremely useful for understanding the relation between the
PPrA architectures from several decades but does not necessarily point to an optimum
in terms of the Power-Performance-Area metric. The taxonomy shows the Brent &
Kung [117], the Kogge & Stone [118], and Sklansky [115] adders are on the extreme ends
regarding logic levels, wiring tracks, and fan-out, respectively. On the other hand, Ladner
& Fischer, Han & Carlson, and Knowles are representing trade-offs between pairs of the
extremes. To limit the number of PPrA variants to analyze, this work focuses on the
architectures located at the corners of this triangle as these should be the interesting
cases.

Prefix Graphs

A common graphical representation of those adders is called a prefix graph. It consists
of prefix cells, i.e. the hardware structure to compute the FCO for two inputs. To

162

5.2. ADDERS

improve readability of these graphs in this work, the cells are not simply shaped or
colored differently as it is often done in literature, e.g. [114], [116], but labeled with
the index, indicating the operand bit range over which the FCO has been computed at
the output of this cell. Fig. 5.6 has an overview of the different prefix cells used. The
blue cell transforms the operand bits (ai, bi) into the generate and propagate signals
(Gi+1:i+1, Pi+1:i+1). A red cell performs a full FCO operation on the two inputs provided
whereas a yellow cell does not compute the propagate part. Since P0:0 is always zero, Pi:0

is zero for all i because it is computed via an AND which includes P0:0. Hence, the yellow
cells save an AND gate compared to the red cells. The green cells are simple buffers. For
better visibility the ranges inside the prefix cells including index zero are written in a
bold font.

Note that P0:0 can be set to zero even when no carry input is needed. This can be seen
in two ways: Firstly, it is true for an adder with carry-in set to zero, which has to behave
like an adder without carry-in; thus leaving (cin = 0, 0) out of the prefix calculation has
to be identical to not doing so. Secondly, as no carry input exists, a carry can only be
generated at index zero. Therefore, all information about a carry from index zero is
already captured in g0. To avoid the synthesis of unnecessary gates for a static cin = 0,
Eq. 5.13 can be redefined to yield Eq. 5.17. This is important as all gates in the code
will be set to “preserve” for the synthesis tool.

c0 = cin = 0 ⇒ (Gi:i, Pi:i) := (gi, pi) ⇒ ci := Gi+1:0 (5.17)

163

5.2. ADDERS

ai, bi

i : i

Gi+1:i+1, Pi+1:i+1

and or

Gi+1:i+1 Pi+1:i+1

ai bi

or and and

Gi:j Pi:j

Gi:k Gk−1:j Pi:k Pk−1:j Gk−1:j , Pk−1:jGi:k, Pi:k

i : j

Gi:j , Pi:j

Gk−1:0, 0Gi:k, Pi:k

i : 0

Gi:0, 0

or and

Gi:0

Gk−1:0
Gi:k Pi:k

Gi:j Pi:j

Gi:j Pi:j

buf buf

Gi:j , Pi:j

i : j

Gi:j , Pi:j

ci ≡ Gi:0ai, bi

i

si

xor xor

si

ai bi ci ≡ Gi:0

Fig. 5.6: Propagate and generate calculation cell (blue), prefix cells (red, yellow, green),
and sum cell (gray).

164

5.2. ADDERS

a0, b0a1, b1a2, b2a3, b3a4, b4a5, b5a6, b6a7, b7

0:01:12:23:34:45:56:67:78:8

0:01:02:13:24:35:46:57:68:7

0:01:02:03:04:15:26:37:48:5

0:01:02:03:04:05:06:07:08:1

0:01:02:03:04:05:06:07:08:0

a0, b0a1, b1a2, b2a3, b3a4, b4a5, b5a6, b6a7, b7

01234567

s0s1s2s3s4s5s6s7s8

Fig. 5.7: 8-bit Parallel Prefix Adder with carry input, expressed in the cells from Fig. 5.6.

Fig. 5.7 shows a whole adder in the graphical notation defined by Fig. 5.6. Since only
the arrangement of the prefix cells (red, yellow, green) changes from adder to adder, the
other cells are mostly omitted for the rest of this chapter. Furthermore, only adders
using the carry input are considered for synthesis. This increases the number of operands
in the prefix network by one. However, the prefix graphs later in this section can either
be interpreted as graphs for (n − 1)-bit operands plus a carry-in or graphs for n-bit
operands without a carry-in. The structure does not change. It is worth to comment
on one additional aspect regarding the carry input. In case n is a power of two like in
the example above, it seems especially inefficient to provide the carry-in as it causes
the prefix tree for cn ≡ Gn:0 to contain at least log2(n) + 1 FCO stages. However, this
additional delay for cn is saved in the summation stage because sn ≡ cn. The use of cin

is not equivalent to increasing n as it does not increase the number of sum bits.

165

5.2. ADDERS

Brent & Kung Adder

The prefix graph of the adder proposed by Brent & Kung [117] arranges the FCOs in a
binary tree. This leaves many columns unfinished and requires a second inverse binary
tree to compute all prefixes. As such, its delay is td,bk = (2 log2(n)− 2) · td,fco + td,buf if
n is a power of two. For arbitrary n, the formula is more difficult. Note that Harris [116]
treats FCO and buffer delay equally for his taxonomy as he only considers the depth in
terms of prefix cells (red, yellow, green) and does not distinguish between them. The
structural SystemVerilog description developed in this work to synthesize the Brent &
Kung adder, and the other PPrAs, does not include the buffer prefix cells. This actually
violates the maximum fan-out of two, as given by the taxonomy for the Brent & Kung
adder, in some places and also reduces its delay by the before mentioned buffer delay,
i.e. by one prefix cell delay. However, buffers are something the synthesis tool can insert
automatically when needed and it turns out that a fan-out of three is perfectly fine
in a 22nm technology. Otherwise, if all buffers shown in this prefix graph would be
synthesized, possible advantages of these adders would be immediately burned.

0:01:12:23:34:45:56:67:78:89:9

0:01:02:23:24:45:46:67:68:89:8

0:01:02:23:04:45:46:67:48:89:8

0:01:02:23:04:45:46:67:08:89:8

0:01:02:23:04:45:06:67:08:89:0

0:01:02:03:04:05:06:07:08:09:0

Fig. 5.8: 10-bit Brent & Kung prefix graph.

Kogge & Stone Adder

The adder described by Kogge & Stone [118] includes a prefix graph with the lowest
possible delay of td,ks = dlog2(n)e · td,fco, and a minimum fan-out. If n is a power of two
and the carry input is used, the depth of the prefix graph is actually increased by one.
However, as explained before, this additional delay is absorbed in the summation stage.

166

5.2. ADDERS

The same is true for the Sklansky adder. The low delay and fan-out are achieved by
connecting every two neighboring cells with an FCO in the first stage, then every cell
with its neighbor two columns apart in the second stage, then the ones four columns
apart, and so on. The cost of this is a large cell count and many horizontal wire tracks.
Harris defines the number of wire tracks to be the highest number of parallel wires that
cross and/or start/end on the same column in a single stage. An example can be seen in
column “4:4” in Fig. 5.9 where three parallel “arrows” with different starting points are
crossing this column and one starts at “4:1” – thus this adder is considered to have four
horizontal wire tracks. The Brent & Kung adder only has single wires crossing columns
in each stage, while the Sklansky adder (see Fig. 5.10) might seem to have multiple
crossings but the arrows all start at the same cell and are therefore only a single wire
that is tapped multiple times. Hence, both Brent & Kung and Sklansky are located at
t = 1 in the taxonomy by Harris. The explanation of how these wire tracks are counted
is actual very short or almost non-existent in [116]. Furthermore, the concept might
be suited to classify the PPrAs, but it might be more expressive to use the prefix cell
count instead. Especially in modern technologies, routing congestion in an adder circuit
is rather unlikely to cause trouble. However, the overall size of a module influences
performance and power significantly (see section 5.4).

0:01:12:23:34:45:56:67:78:89:9

0:01:02:13:24:35:46:57:68:79:8

0:01:02:03:04:15:26:37:48:59:6

0:01:02:03:04:05:06:07:08:19:2

0:01:02:03:04:05:06:07:08:09:0

Fig. 5.9: 10-bit Kogge & Stone prefix graph.

Sklansky Adder

The third variant to be considered in this work is the Sklansky adder [115]. It actually
originates from a paper on conditional sum addition, but the corresponding prefix graph
is sometimes called Sklansky adder, e.g. by Harris [116]. It has minimal delay, identical
to the Kogge & Stone adder, but in comparison far fewer cells at the cost of fan-outs as

167

5.2. ADDERS

high as n/2. Similar to the multiplexer tree in the conditional sum adder, the carry-in
determines the first bit, then the next two, then the next four, and so on. The high
fan-out of n/2 is of course also found in the conditional sum adder in the last multiplexer
stage.

0:01:12:23:34:45:56:67:78:89:9

0:01:02:23:24:45:46:67:68:89:8

0:01:02:03:04:45:46:47:48:89:8

0:01:02:03:04:05:06:07:08:89:8

0:01:02:03:04:05:06:07:08:09:0

Fig. 5.10: 10-bit Sklansky prefix graph.

5.2.3 Carry-Lookahead Adder

The term Ccarry-Lookahead Adder (CLA) is difficult to define exactly and needs a
historical perspective to differentiate it from the previously discussed adders. Exactly
like the PPrAs, it includes a first stage, which translates operand bits into propagate
and generate signals. However, instead of feeding these signals into a prefix graph, the
disjunctive normal form of each carry bit is implemented as shown in Eqs. 5.18 [119].
Thus, the CLA is considered to be computing each carry bit in parallel.

(c0, 0) = (cin, 0)

(c1, 0) = (g0, 0) ◦ (cin, 0)

(c2, 0) = (g1 + g0p1, 0) ◦ (cin, 0) (5.18)

(c3, 0) = (g2 + g1p2 + g0p1p2, 0) ◦ (cin, 0)

(c4, 0) = (g3 + g2p3 + g1p2p3 + g0p1p2p3, 0) ◦ (cin, 0) =: (gG, pG) ◦ (cin, 0)

...

Since no terms are shared, this method does not scale and gates with fan-in of O(n) are
required [120], or trees of gates with a lower fan-in. If a single gate is to be used, this
carry-lookahead logic is limited to at most four or five bits [114], [119]. To alleviate the
problem in this case, smaller groups of operand bits, e.g. four bits, are then augmented

168

5.2. ADDERS

with a group generate signal, gG, as well as a group propagate signal, pG. Both are
defined via Eq. 5.18. These group signals are then combined using the exact same carry-
lookahead logic used in the 4-bit group. This scheme implements term sharing through
a tree structure and allows to reach logarithmic time complexity. The carry-lookahead
logic essentially includes multi-valency FCO cells. Since the term sharing can be done in
many ways within the CLA, the term Ccarry-Lookahead Adder can be and sometimes is
actually seen as an umbrella term for Parallel Prefix Adders. While the latter includes
only prefix graphs using 2-input FCOs, the former term can comprise multi-valency
operators. When the group size is lowered to two bit, the group propagate and generate
signals are then simply computed with the FCO, which therefore results in the PPrA
version of the group-based CLA described before. This variant is presented in [121] as
the CLA, and is also called Ccarry-Lookahead Adder in the remainder of this work even
though the umbrella term Ccarry-Lookahead Adder is a valid definition. The prefix
graph of this variant is shown in Fig. 5.11.

An important distinction to the previously presented PPrAs is how the carry-in is
handled. The prefix graph of the CLA is built by grouping the operand bits into pairs
of two within the first stage, regardless if the carry-in is used or not. This leads to an
inefficient handling of the carry-in and causes an additional FCO stage, independent of
n. The graph without the carry-in, or rather including the carry-in as an additional
operand like the other PPrAs, is derived from the one in Fig. 5.11 by shifting the yellow
cells one row towards the top and adjusting the connections made to the carry-in column
and the indices properly. The delay of this CLA is similar to the Brent & Kung prefix
graph (without the one buffer delay) if the carry-in is included as an additional operand:
td,cla = (2 log2(n)− 2) · td,fco. Otherwise, it is one FCO delay greater. Tab. 5.3 attempts
to place both variants of the CLA in the taxonomy of Harris [116]. The number of wire
tracks is 2 when the carry-in is treated separately. This can be understood with Fig. 5.11
where the connection from “0:0” to “8:0” runs in parallel to the wire from “4:0” to “6:0”
and “5:0”. In case the carry-in is included in the operands, the former connection would
also start at “4:0” thus leaving only a single track. The fan-out on the cell driving this
single wire is therefore increased by one. To the knowledge of the author, there has been
no previously reported attempt that puts the CLA into this taxonomy.

Version Logic Levels log2(n) + l Fan-out 2f + 1 Wire Tracks 2t

CLA (included cin) 2 log2(n)− 2 log2(n) 1
CLA (separate cin) 2 log2(n)− 1 log2(n)− 1 2
Brent & Kung 2 log2(n)− 1 2 1
Kogge & Stone log2(n) 2 2log2(n)−1

Sklansky log2(n) 2log2(n)−1 1

Tab. 5.3: Placing the Ccarry-Lookahead Adder in the taxonomy suggested by Harris.

169

5.2. ADDERS

0:01:12:23:44:45:56:67:78:89:9

0:01:02:13:34:35:56:57:78:79:9

0:01:02:03:34:15:56:57:78:59:9

0:01:02:03:04:05:56:57:78:19:9

0:01:02:03:04:05:06:07:78:09:9

0:01:02:03:04:05:06:07:08:09:0

Fig. 5.11: 10-bit carry-lookahead prefix graph (separate cin).

170

5.3. VERIFICATION

5.3 Verification

The SystemVerilog code describing the multipliers and adders discussed in the previous
sections had to be verified to assure they are logically equivalent to a “+” and “*”
operator. This was done using formal verification tools. Formal verification defines
correct behavior to be equivalent to non-violated assertions. This requires correct and
exhaustive assertions, and that all valid stimuli are applied to the DUV to ensure the
assertions are correct in all cases. However, the verification of simple arithmetic functions
is much simpler. A single assertion checking for equivalence of the structured code and
the “+” and “*” operators is sufficient. There is also no sequential complexity because all
modules are combinational functions. JasperGold from Cadence has been used for this
job as it provides a Tcl interface, which allows to script verification across the operand
size n. The verification itself is done by so-called engines, of which JasperGold provides
approximately thirty. These engines apply different algorithms to prove the correct
behavior of the DUV, and are therefore suited for different types of designs and assertions.
Some are looking for errors with very deep sequential traces, while others test more input
combinations but only a few cycles each. However, the engine descriptions and names
did not reveal an obvious choice for arithmetic functions so a test run was performed
with every engine using an 11-bit Wallace multiplier. Fig. 5.12 shows that the engine
G2, a variant of the G engine, is optimal. With the exception of the Tri engine, all other
engines had significantly longer runtimes.

G G2 Tri Others
0

10

20

30

40

50

7.6
4.2

17.1

60

JasperGold Engines

R
un

tim
e

[s]

Fig. 5.12: Runtime comparison of JasperGold engines for an 11-bit Wallace multiplier.

Fig. 5.13 shows the runtimes needed to verify the multipliers with the corresponding
tree for different operand widths n. The exponential increase is a result of the 22n

171

5.3. VERIFICATION

possible input values. A runtime of above one hour is reached at n = 17 already. The
Wallace multiplier seems to need less time and reaches n = 18. This result shows the
limit of formal verification when the tool cannot make simplifying assumptions since
it does not recognize the structural code to represent a multiplier. The operand sizes
that have been synthesized were therefore verified using simulation – but of course not
exhaustively. It should be noted that the adder implementations can be proven for huge
operand size, e.g. 512 bit, in a couple of seconds using the Tri engine. A possible reason
for this could be that the adders are written using loops, while the multipliers are simply
a generated list of full- and half-adder instances. JasperGold seems to be able to make
certain simplifications for loops, which greatly speeds up the verification.

2 4 6 8 10 12 14 16 18

10−2

10−1

100

101

102

103

104

Operand size n

R
un

tim
e

[s]

MaxReduce Tree
Wallace Tree
Dadda Tree

Fig. 5.13: Runtime for different multipliers with JasperGold’s G2 engine.

In addition to JasperGold, this work also verified some of the arithmetic modules
using the open-source tool SymbiYosys [122]. Similar to JasperGold, it provides multiple
engines. However, a more detailed analysis is beyond the scope of this document.

172

5.4. SYNTHESIS

5.4 Synthesis

The multipliers and adders presented in this chapter are analyzed in terms of the Power-
Performance-Area metric in this section. The first subsection presents the methodology
used to produce the results shown in the second subsection.

5.4.1 Methodology

Comparing synthesized designs has a huge potential to compare “apples and oranges”.
Therefore, this first subsection is dedicated to describe the methodology in more detail.

Gate Transfer Level

All arithmetic modules have been expressed with standard cell instances using a specific
instance name, which allows to filter them in the Cadence Genus Tcl script interface.
This enables preserving these instances, i.e. to prohibit the synthesis to switch them with
other standard cells during optimization steps. Only the driving strength is allowed to
be modified. This conserves the architecture that is synthesized, which is crucial because
otherwise only the starting point for the synthesis might be a Kogge & Stone adder,
but the actual synthesized design is just some circuit that behaves like an adder. For
the counters within the multiplier trees, full- and half-adder standard cells have been
employed. The final adder is left for the synthesis tool to decide. It is just a simple
“+”. The prefix cells used by the PPrAs are comprised of an AO21 complex-gate for the
reduced (yellow) FCO and an additional two-input AND gate for the full (red) FCO.
Despite being a complex-gate, it is available in multiple technologies. The other prefix
cells are implemented as shown in Fig. 5.6, except for the buffer, which is simply ignored
and can be inserted by the synthesis tool if needed. The sum bit is not computed via a
three-input XOR because the operand bits can already be processed in parallel to the
prefix graph.

Synthesis Flow

The target technology is a 22nm FDSOI process. A set of shell scripts was used to
execute the flow for the different modules and provided a simplified command line to
ensure all synthesis steps are conducted consistently between runs. Simplified, the basic
steps for logic synthesis are the following.

• Generic Synthesis: express HDL code with generic gates

• Mapping: map generic gates to standard cells

• Placement: place standard cells and pins in floorplan

173

5.4. SYNTHESIS

• Clock-Tree Synthesis: insert clock tree starting from clock pin

• Routing: connect standard cells with wires

• Signoff: final checks for timing and Design for Manufacturing (DFM)

The first two steps are commonly known as the front-end, which transforms the HDL
code into a Gate Transfer Level (GTL) netlist. A GTL netlist expresses the design with
the cells found in the corresponding standard cell library of the target technology. During
this process it also performs logic optimization to ensure the GTL-netlist achieves timing,
i.e. is free of setup- and hold-violations. The netlist is then handed over to the back-end,
which executes the remaining four steps. The back-end tool places the standard cells into
a defined floorplan area, creates a clock-tree, and routes the wires to connect all cells. As
a final step, a detailed RC-extraction is performed to get an accurate timing information
including all parasitics.

This is the traditional flow, which has obvious drawbacks. The first is its forward
direction that strictly separates the single steps from HDL to layout. As a result, this
flow cannot reliably find the optimum physical implementation of the HDL design. There
is no way for the front-end to know which challenges the back-end has to face to place
and route the netlist. In literature, the 250nm node is often considered to be the turning
point where the gate delay has become smaller than the wire delay [123]. Thus, the
contribution to total path delay that the front-end considers (gate delay) has turned
from dominant to small, while the reversed situation is true for the back-end (wire delay).
Therefore, this flow has become extremely inaccurate with shrinking feature sizes. While
there have been changes “on both ends”, the overall structure remained unchanged until
today.

The front-end has been improved with physical-awareness, and the back-end can do
in-place optimization. The former allows to add various levels of physical information to
the logic synthesis, e.g. to provide a floorplan and call the back-end tool to trial-place
the current netlist to estimate wire lengths, which are then combined with RC-data from
the technology file to improve the accuracy of the netlist. Conversely, the back-end tool
has been given some methods to alter the netlist. Most prominently, it can insert buffers
or duplicate logic to match driving strength requirements. However, it cannot do logic
transformations, so it is still dependent on a certain quality of the front-end flow.

It is an important step to realize this as it explicitly presents a drawback of high-level
HDL code. Precisely, if the implementation of a “+”-operator is decided by the front-end
tool to contain long “ripple”-paths because the target clock frequency is rather low, the
back-end may still not be able to implement the design. It has no chance to split this
long path in two parts if it is necessary due to wire delay.

174

5.4. SYNTHESIS

Floorplan

Synthesis adds the additional complexity of physical extension to the logical description
of a design. Two designs can now be different, even when the overall logical behavior and
HDL description do not change. So to ensure comparability between the results, several
aspects need to be considered. The first aspect to address is the constraint file (.sdc),
which specifies the target clock frequency. It usually also includes input and output
delays, as well as the load assumed to be present at output pins. However, arithmetic
modules are usually found within pipelines, i.e. they are preceded and succeeded by a
register stage, and input and output loading are determined by the size of these registers.
Therefore, to avoid estimating (arbitrary) values for these constraint parameters, the
actual synthesized design includes a register stage before and after the combinational
logic.

Another possible inconsistency may be the summation order within the multiplier trees,
which is logically not important but could influence the synthesis results. This problem
is similar to changing the order of the pin placement. Since every pair of operand pins
is needed for the partial product generation, the place & route algorithm has enough
opportunities to distribute the partial products regardless of the pin order. This has
been tested and timing differences were negligible. Hence, it should be save to assume
that the order of partial product summation is also not significant.

The next issue is the floorplan, especially the pin placement. The floorplan has been
made (200 µm)2 in size, which is enough to easily accommodate all circuits that have
been synthesized. All pins were placed centered on the left side because placing them on
opposite sides requires to scale the floorplan to provide a fair comparison over different
operand widths. To argue for a certain scaling factor as a function of n for every design
would be difficult and time consuming. The pins themselves are located on metal 4 as this
the first horizontal layer excluding the smallest layers metal 1 and metal 2. The standard
cell library is an eight track library and the spacing between pins has been set to two
tracks for the adders, and six tracks for the multipliers. Lower and greater spacings were
tested but did not significantly impact timing. Operand and result bits are interleaved
in a {a[i],b[i],product[2*i],product[2*i+1]} and {sum[i],a[i],b[i]} manner,
respectively. The clock pin is centered in between.

Timing Analysis

To measure if the clock period constraint is met, timing analysis is needed. This is more
complicated than simple sums of gate delays. As with every manufactured good, there
are some tolerances between instances. For semiconductor chips, these tolerances cannot
be pushed to a low enough level to be considered insignificant. Hence, they have to be
accounted for during the design phase to avoid low yield through many defective devices.

175

5.4. SYNTHESIS

Commonly, these variations are accounted for by using so called PVT-corners. Historically,
there were process (P), voltage (V), and temperature (T). The former describes variations
of the semiconductor properties, e.g. due to differences in doping concentration. The
latter two are operating conditions. As mentioned before, the delay contribution of
wires rose from insignificant to dominant compared to gate-delay with shrinking process
nodes. As a consequence, RC-corners were added to include variations in metal geometry
affecting resistance and capacitance. PVT- and RC-corner combinations, where the
combined delays are especially high or low, are then used to model global variations.
However, there are also local variations along paths, which is called on-chip variation.
To increase or decrease the delay globally, i.e. independent of the path length, is either
too pessimistic or too optimistic – for example it is unlikely that all devices along a
long path are all slow (or fast). Rather a statistical approach is desired, which provides
a probability distribution of the path delay [124]. This can be done with Statistical
On-Chip Variation (SOCV), which is supported by the Cadence synthesis flow and was
used in this work.

Power Analysis

Power consumption was determined in this work with the GTL-netlist of the design after
the post-route optimization run. This netlist was simulated within a testbench, which
applied randomized operands to it and dumped all waveform data into a value change
dump file (.vcd). This waveform data can then be read by the synthesis tools and used
to sum up the number of charge/discharge cycles for each net in the extracted physical
layout. By simulating thousands of calculations, a stable average power consumption is
achieved. The power is calculated for typical operating conditions, but the synthesis is
done with slow and fast corners.

Register Retiming

The placement of register stages, which was done manually for the FMA unit, can actually
be automated with Genus. This feature is called register retiming. Genus can analyze
the logic and move registers within combinational logic to optimize the timing. However,
the quality seems to heavily depend on the amount of physical information Genus can
use during optimization. It is not possible to transfer the retime property into Innovus.
Therefore, the position of the retimed registers is fixed for the back-end flow. This makes
the approach very rigid as the most complicated delay part, the wires, are not considered
for retiming properly. Nevertheless, with future tool improvements this feature will likely
make manual register placement obsolete. Retiming has been investigated at the CAG
but has not been applied to the results presented in this section.

176

5.4. SYNTHESIS

5.4.2 Results

The power consumption of Complementary Metal-Oxide-Semiconductor (CMOS) circuits
is commonly described in literature by Eq. 5.19. It is split into two parts, the first term
describes the dynamic power consumed through charging and discharging wires, gates,
and other parasitic capacitances. The overall consumed power is then determined by
the number of such charge/discharge cycles per time. In Eq. 5.19, the capacitances for
the whole circuit are summed up into Ctotal and multiplied with an average switching
factor α. The second part is called static power because it does not depend on the clock
frequency fclk and is caused by a continuous leakage current Ileak, which is the sum over
all standard cells in the circuit.

Pcmos = αfclkCtotalV
2

DD + IleakVDD (5.19)

Both Ctotal and Ileak are proportional to the number of gates and nets in the circuit,
which in turn are proportional to the area required by the circuit. For a PPA analysis, it
is more convenient to use Eq. 5.20. The operating voltage used for the presented results
is constant, VDD = 0.8 V.

Pcmos
Acmos

= βfclk + γ (5.20)

Thus, power density is expected to be a linear function of clock frequency. The plots in
this section only show the area and power of the combinational logic, i.e. without the
register stages. Only an operand width of 64 bit is considered because the scaling with
the operand width is similar between all structures and does not provide much insight.

Adders

The three PPrAs discussed in section 5.2 as well as the CLA have been analyzed from
500 MHz up to their maximum frequency in steps of approximately 100 MHz. As a
reference, an adder using the “+”-operator of SystemVerilog has been included. The
Kogge & Stone adder needs significantly more power and area compared to all the
other adders, which was expected from the prefix graphs. Together with the Sklansky
adder, it reaches a much higher maximum frequency compared to the CLA and Brent &
Kung adder. This is also not very surprising due to the lower number of FCO stages.
Nevertheless, the “+”-adder performs much better in regard to all metrics. It can use all
standard cells available, which is clearly utilized by Genus for a more optimized structure.
Unfortunately but expectedly, the netlist produced by Genus is not easily interpreted.
From the gates report of the fastest variant it can be observed that a large number of
gates used by Genus have an inverted output, i.e. NAND, NOR, or complex-gates like
OAI21. These are of course cheaper in CMOS in terms of area and delay compared to

177

5.4. SYNTHESIS

their counterparts used in the structured code.
Fig. 5.16 shows that the linear scaling with target clock frequency from Eq. 5.20 can

be observed. The area increase with rising target frequency in Fig. 5.15 is due to the
higher driving strengths needed to meet timing. It varies more for the “+”-adder because
it is also allowed to add more logic to speed up the circuit.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Target Clock Frequency [GHz]

C
om

b.
Lo

gi
c

Po
w

er
[m

W
]

Carry-Lookahead
Brent & Kung
Kogge & Stone
Sklansky
“+”-Adder

Fig. 5.14: Power consumption of the combinational logic over target clock frequency for
64-bit operand adders including a carry input.

178

5.4. SYNTHESIS

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

50

100

150

200

250

300

350

400

Target Clock Frequency [GHz]

C
om

b.
Lo

gi
c

A
re

a
[µ

m
2]

Fig. 5.15: Standard cell area of the combinational logic over target clock frequency for
64-bit operand adders including a carry input.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

1

2

3

4

Target Clock Frequency [GHz]

C
om

b.
Lo

gi
c

Po
w

er
D

en
sit

y
[W

/m
m

2]

Carry-Lookahead
Brent & Kung
Kogge & Stone
Sklansky
“+”-Adder

Fig. 5.16: Power density of the combinational logic over target clock frequency for 64-bit
operand adders including a carry input.

179

5.4. SYNTHESIS

Multipliers

The three multiplier trees presented in section 5.1 and a multiplier implemented with
the “*”-operator of SystemVerilog have been synthesized. Up to 1 GHz, all structured
variants behave rather similar. Beyond that, the Dadda tree is the optimal solution, which
could be expected because it uses the least amount of standard cells and is basically an
optimized version of the other trees. The “*”-multiplier uses roughly one fourth less area
compared to the other multipliers. The gate report reveals that among full-adders a large
number of multiplexers and OAI22 complex-gates (two two-input OR gates connected
with a NAND gate) are used. This indicates that booth recoding is used, a technique
to lower the amount of partial products, which has not been covered in this thesis but
can explain the reduced area. However, the gate report of the fastest variant shows a
much broader mix of gates, indicating no particular structure. In summary, the custom
structures are once again not worth the engineering overhead – in fact, they perform
worse. One advantage of fixed structures, which had less weight with the adders, is
that the synthesis of the SystemVerilog operators takes considerably more time. This
chapter only analyzed the tree structures with full- and half-adders, but as Dadda [111]
explained, the usage of larger counter cells can decrease the number of stages. However,
implementing these with existing standard cells does not result in a speed advantage.
This is only possible through standard cells explicitly designed for this use case. The most
common larger counter appearing in literature is the 4:2-compressor, a (5,3)-counter with
both carries having the same weight. It is available in some standard cells libraries but
not in the one used for the results presented in this section. It remains for future work
to analyze if synthesis tools can make proper usage of it, or if a custom tree comprised of
such cells could actually outperform their results.

180

5.4. SYNTHESIS

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

5

10

15

20

25

30

35

Target Clock Frequency [GHz]

C
om

bi
na

tio
na

lL
og

ic
Po

w
er

[m
W

]
Dadda
Wallace
MaxReduce
“*”-Multiplier

Fig. 5.17: Power consumption of the combinational logic over target clock frequency for
64-bit operand multipliers.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Target Clock Frequency [GHz]

C
om

b.
Lo

gi
c

A
re

a
[µ

m
2]

Dadda
Wallace
MaxReduce
“*”-Multiplier

Fig. 5.18: Standard cell area of the combinational logic over target clock frequency for
64-bit operand multipliers.

181

5.4. SYNTHESIS

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.5

1

1.5

2

2.5

Target Clock Frequency [GHz]

C
om

b.
Lo

gi
c

Po
w

er
D

en
sit

y
[W

/m
m

2]

Dadda
Wallace
MaxReduce
“*”-Multiplier

Fig. 5.19: Power density of the combinational logic over target clock frequency for 64-bit
operand multipliers.

5.4.3 Conclusion

Literature on FMA unit design usually presents an architecture similar to Fig. 4.5, e.g.
in [100]. By doing so, the advantage of “sneaking in” a third operand after the partial
products have been compressed by a carry-save tree, with only a single full-adder delay,
is highlighted. This led Kaiser [7] to implement such a tree to follow the design proposed
in literature. However, as the results in this section have shown, the effort spent on
designing customized arithmetic logic is not increasing performance, nor is it decreasing
power or area compared to state-of-the-art synthesis tools. However, a small advantage
of structured code is that the synthesis algorithms are more likely to hit the timing
if it is possible. With the “+” and “*” operators the timing is sometimes missed by
just a few picoseconds after the final optimization, even when higher target frequencies
are definitely possible – which may be due to the fact that the final optimization step
has limited capabilities in what it can do. This starts to occur also for the structural
code but only when getting close to the maximum frequency. It may be possible to
circumvent this by using a higher degree of physical awareness in the front-end tool.
Another advantage of structural code is a reduced runtime, especially for multipliers and
higher target frequencies. A test has revealed that a simple “a*b+c” with 64-bit operands
achieves almost the same speed as an “a*b”, which shows that the manual effort of a
3:2-compressor row is not necessary.

182

5.4. SYNTHESIS

A look at open-source projects, e.g. in the RISC-V context, reveals that these projects
do not implement custom arithmetic. However, it is not documented if this is due to
coding efficiency reasons, i.e. time constraints, or because an analysis comparable to this
work has been done. An example would be the “fpnew” of the PULP Platform, which
includes an FMA unit that uses the SystemVerilog operators for multiplication of the
significands and addition of the third operand [92]. Western Digital Corp.’s 32-bit RISC-V
SweRV cores do not support floating-point instructions, but the integer multiplier is also
implemented with a “*”-operator.

Fig. 4.8 has shown the power consumption of the FMA unit, which included sequential
cells. At 1 GHz, the power of only the combinational logic is 85% of this value, i.e.
36 mW. From additional analysis done in this work, it has been found that the multiplier
tree plus the subsequent adder are only making up for around one fourth of this power.
This highlights that the large amount of shifting necessary to align the mantissas of the
operands in floating-point formats has a significant contribution to the overall power
consumption.

The design of arithmetic units comprises many more interesting aspects. For example,
it can be shown that the average length of the longest carry propagation is log2(n) [119]
(carry-completion), or that the CPA following a carry-save tree can be optimized with
respect to the different path delay of each bit [125]. And there are many more functions
within an execution unit of a processor. While this is beyond the scope of the present work,
future work may investigate if it is worth to implement these functions in a customized
fashion – although the results of this chapter suggest that this will not be the case.

183

6

C
h

a
p

t
e

r

Conclusion

In order to keep the performance of HPC systems increasing, it is crucial to augment the
I/O-bandwidth and power efficiency of each node. Both aspects were addressed in this
thesis – in the form of on-chip inductors and arithmetic circuits.

6.1 Summary

High-speed I/O is usually realized using SerDes technology to circumvent the pin limitation
of chips and packages. The transmitted serial data contains frequencies in the multi-
gigahertz range, which demands treating the channel as a transmission line, and hence
also on-chip signal termination is required. However, this is a goal conflicting with ESD
protection, which is commonly realized using diodes. Their parasitic capacitance increases
the signal reflection back into the channel, but at the same time, they need to be large
enough to deflect high discharge currents during an ESD event. This thesis systematically
examined possible circuits using on-chip inductors to improve impedance matching. The
effects of series-resistance and the capacitance of the pad were analyzed. It was found
that the environment of the pad has a very strong impact on its capacitance: Not only is
the pad capacitance in the same order of magnitude as the ESD diode capacitance, it will
also cause signal skew if the structures below the P- and N-pad are not designed similarly.
Hence as a major result, the necessity to carefully revisit the power grid and metal
fill below the pad for future designs was demonstrated. The first layer below the pad
should not contain power grid at all but only manually created metal fill for an accurate
treatment of its contribution to the overall capacitance, and to avoid post-layout changes
through the automatic fill tool. Furthermore, the power grid beneath the fill should be
reduced as much as possible to still allow the necessary power delivery. Fortunately, the

185

6.1. SUMMARY

first two layers below the pad are shielding it from further structures on lower metal
layers, so the designs below are not significantly impacted in their degrees of freedom.

Today, inductors are rarely found in PDKs and if they are, their intended use cases are
oscillators and wireless applications, leading to very large area footprints. Thus unlike
for PDK devices, there is neither a model nor layout generation available for use during
circuit design and optimization if custom inductors are required. Literature on ESD
compensation typically only presents the performance of one particular inductor design,
not how the results – especially the layout – were devised. In fact, the process seems
to be heavily experience-based with trial-and-error being the only – time-consuming –
way to find a layout matching the schematic design. In order to accelerate this iterative
process, it is necessary to automate the layout procedure. With this goal in mind, this
thesis evaluated different techniques to create parameterized cells, namely SKILL PCells,
PyCells, and XCells. SKILL PCells turned out to be feasible and were used for the most
part throughout this work as they are perfectly integrated into the Cadence Virtuoso
environment. PyCells were also evaluated, but difficulties with technology file formats
ruled them out. And last but not least, XCells were considered, which were developed
at the Computer Architecture Group at Heidelberg University. They are based on a
Python to SKILL translation and are applied to PDK devices via the constraint editor
in Virtuoso. Although they are promising, they were only briefly evaluated in this work.

Another contribution made by this work is a detailed overview of analytical inductance
calculation. As a starting point, the inductance of the straight round wire was considered,
and a new expression for its internal inductance was derived, which was shown to actually
depend on the wire radius – unlike the much simpler expression found throughout
literature. Furthermore, the mean distance approximation derived from the Neumann
integral was explained, and various inductance formulas from literature based on this
method were compared to the previously derived exact formula for the straight round wire.
The section concluded with the result that the Neumann formula becomes inaccurate for
very short wires. Unfortunately, no satisfactory explanation for this could be found in
the context of this work.

This work identified lumped circuit models as being superior to segmented circuit
models, due to their simplicity. If high accuracy is required, S-parameters can be used
to outperform the latter, and for circuit design and optimization lumped models are
necessary. Using a two-terminal inductor as example, the influence of oxide and substrate,
skin effect, metal fill, and process corners was studied. It was demonstrated that skin
effect and metal fill have a lower effect on inductance than on resistance. Nevertheless,
metal fill for inductors should be included into the PCells and not left for the automatic
fill tool in order to properly include it into simulations. Mohan [40] applied the mean
distance method to derive an expression for the series inductance of planar spiral inductors.

186

6.1. SUMMARY

However, this formula is only valid at DC and can not be applied blindly for today’s
multi-gigahertz designs, without the verification through field solvers.

On these grounds, layout extraction and different field solvers were analyzed throughout
the course of this work. In order to accelerate feedback on the performance of a new
inductor layout, the entire design flow was automated – from entering an inductor’s
geometry parameters to writing an S-parameter file with the simulation results. This
utilized Cadence Quantus QRC for layout extraction and Cadence EMX as a field solver.
A portion of this part of the thesis was presented at CDNLive 2018 [16]. Layout extraction
proved to be unreliable at higher frequencies and was thus not further evaluated. However,
EMX is accurate and also very fast. Although, layout extraction still has the major
advantage that the technology file is always available, while for field solvers stack-up files
are not comprehensively supplied. If they are provided, a plethora of different formats
requires the correct field solver to utilize them. In the context of this thesis, a stack-up
file was manually created to simulate T-coils on a stack-up without support for ADS,
which was tedious, time-consuming, and presents a potential source of errors. Therefore,
a major conclusion of this thesis is that the field solver should be chosen in accordance to
the stack-up descriptions available in the PDK, if possible. Again, similar to the PyCells,
the technology file format jungle causes significant problems highlighting the dire need of
more standardization.

Moreover, this thesis presented a method to close the design gap of custom on-chip
inductors from schematic to layout by making use of an MCMC fitting technique to map
S-parameters to lumped models. In conjunction with the aforementioned results, namely
the analytic inductance formulas and the automated simulation flow, a model function
for T-coils that maps geometry to lumped model parameters could be created. With
this, the optimal layout for a given inductor can be calculated with reasonable accuracy.
While the model is only accurate for one type of T-coils and this 22nm technology, the
way it was created can be transferred to other structures, even to ones that are not
inductors. For example, the pad capacitance in chapter 2 was extracted using the same
fitting technique. By creating such a model instead of relying solely on formulas from
literature, the designer ensures no assumptions and approximations that could lead to an
erroneous design have been missed. And compared to the trial-and-error approach relying
only on simulations, the presented methodology is less time-consuming and identifies the
optimal layout in a straightforward way.

The RISC-V ISA has spawned many processor developments throughout industry
and universities in the recent years. The CAG at Heidelberg University also started to
develop a RISC-V-based processor core. However, in order to enter the realm of HPC,
fast arithmetic circuits are needed. Therefore, Kaiser [7] developed an FMA unit for

187

6.2. OUTLOOK

IEEE 754 floating-point numbers at the CAG. This work analyzed the design in regard to
PPA, and complemented the verification of Kaiser with a driver and checker module that
employs the TestFloat tool developed by Hauser [76], [77]. Kaiser followed the design
principle advertised in literature that suggests building a multiplier tree and adding
the third operand with a 3:2-compressor row. The synthesis results revealed that many
critical paths are located within this tree, thus a more detailed analysis was conducted
in this work to research potential gains through custom gate-level arithmetic circuits.

Therefore, this work contributes a comprehensive overview on circuits for multiplication
and addition. These structures were implemented on the gate-level and preserved in the
synthesis flow to accurately analyze them with the metrics of PPA. However, the results
clearly show that the abstract descriptions via “*” and “+” do result in more efficient
and faster designs. Their synthesis needs a longer runtime but produces much more
optimized results because it can simultaneously consider all available gate types. Even
the delay-optimized addition of a third operand, which is typically done manually with
a 3:2-compressor row, is implemented efficiently by the synthesis tools. Hence, it can
be concluded that the effort spend on custom arithmetic circuits is better invested on
higher level design challenges.

6.2 Outlook

As with almost any research ever performed, open questions remain and call for further
investigations. Hence, this thesis concludes by listing two starting points for interesting
future work.

The latest iteration of the SerDes’ termination design presented in section 3.6 has
not yet been optimized via a fitted model as developed in section 3.5, instead more or
less a trial-and-error approach was used. As already pointed out before, a monolithic
design including the structures on the upper metal layers, i.e. the pads, T-coils, power
grid, and metal fill should allow for a much cleaner optimization of the whole structure.
Therefore, a lumped model should be designed for it, and fitted to the S-parameters
in order to analyze whether all relevant effects are considered and to obtain a simple
model for simulation. In case a fast field solver is available, also a brute-force sweep over
a large number of layouts could be conducted. In any case, a PCell description of the
whole layout would be beneficial. This should be done with XCells as they provide many
comfort functions and integrate easily with other Python code.

Regarding the FMA unit, it would be interesting to research the potential performance
gains with the full-blown physical retime flow. Although the multiplier tree constructed

188

6.2. OUTLOOK

by Kaiser was not preserved during the synthesis process so far, it may be beneficial
for the tools if it is replaced with an abstract operator. The same analysis has yet
to be done for the Posit FMA unit developed by Melzer [85] at the CAG, in order
to obtain an actual comparison of the hardware resources for both number formats.
Though, it is to be expected that they will be comparable due to their similar internal
data paths. Further research could be conducted on an efficient implementation of the
Posit accumulator register (Quire), whose integration into a processor pipeline poses an
architectural challenge due to its large size.

189

List of Abbreviations

ADS Advanced Design System

AFE Analog Front-End

ALU Arithmetic Logic Unit

AMD Arithmetic Mean Distance

AMSD Arithmetic Mean Square Distance

ANSI American National Standards Institute

BB Body Bias

BEOL Back End of Line

BER Bit Error Rate

BIC Bayesian Information Criterion

BOOM Berkeley Out-of-Order Machine

CAG Computer Architecture Group

CDM Charged Device Model

CDR Clock Data Recovery

CLA Ccarry-Lookahead Adder

CML Current Mode Logic

CMOS Complementary Metal-Oxide-Semiconductor

CPA Carry-Propagating Adder

CPU Central Processing Unit

CRA Carry-Ripple Adder

191

CSA Carry-Save Addition

CSL Carry-Select Adder

CTLE Continuous-Time Linear Equalizer

CTS Clock Tree Synthesis

DFE Decision Feedback Equalizer

DFM Design for Manufacturing

DIMM Dual Inline Memory Module

DRAM Dynamic Random Access Memory

DRC Design Rule Check

DUT Device Under Test

DUV Design Under Verification

EDA Electronic Design Automation

ESD Electrostatic Discharge

ESDA Electrostatic Discharge Association

FBB Forward Body Bias

FCLGA Flip-Chip Land Grid Array

FCO Fundamental Carry Operator

FDSOI Fully-Depleted Silicon-On-Insulator

FF Flip-Flop

FFE Feed-Forward Equalizer

FICDM Field-Induced Charged Device Model

FIR Finite Impulse Response

FLI Function Level Interface

FMA Fused Multiply-Add

FPU Floating-Point Unit

192

GMD Geometric Mean Distance

GPU Graphics Processing Unit

GTL Gate Transfer Level

HBM Human Body Model

HDL Hardware Description Language

HPC High Performance Computing

IEC International Electrotechnical Commission

IIR Infinite Impulse Response

IP Intellectual Property

ISA Instruction Set Architecture

ISI Intersymbol Interference

JEDEC JEDEC Solid State Technology Association

LFSR Linear-Feedback Shift Register

LSB Least Significant Bit

LVS Layout Versus Schematic

MAC Media Access Layer

MCMC Markov-Chain Monte-Carlo

MM Machine Model

MSB Most Significant Bit

PCB Printed Circuit Board

PCIe Peripheral Component Interconnect Express

PCS Physical Coding Sublayer

PDF Probability Density Function

PDK Process Design Kit

PIPE PHY Interface for PCI Express Architectures

193

PLL Phase-Locked Loop

PMA Physical Media Attachment Layer

PPA Power-Performance-Area

PPrA Parallel Prefix Adder

PRBS Pseudorandom Binary Sequence

RF Radio-Frequency

RISC Reduced Instruction Set Computer

SBR Single-Bit Response

SFF Scan Flip-Flop

SMT Simultaneous Multithreading

SNR Signal-to-Noise Ratio

SOC System-on-Chip

SOCV Statistical On-Chip Variation

SSTL Stub Series Terminated Logic

TDR Time-Domain Reflectometer

TLP Transmission Line Pulse

TPU Tensor Processing Unit

UC Berkeley University of California, Berkeley

UI Unit Interval

UVM Universal Verification Methodology

VFTLP Very Fast Transmission Line Pulse

194

List of Figures

1.1 Socket pin count of x86 desktop and server CPUs, starting with the Intel
4004 in a dual in-line package (DIP) with 16 pins, and up to 4094 pins of
a current AMD Threadripper sTRX4 socket. Data taken from [1]. 2

2.1 Example of a single-bit response. Graphic constructed based on [19]. . . . 10
2.2 Simplified transmission system with TX (left), channel and RX (right).

Note that Vrx and Vch,out are not the same voltage, even if it is drawn
here due to simplicity. Vch,out comes from the channel and has therefore a
source impedance of Z0, which acts in series. 11

2.3 Compliance masks for differential return loss SDD11, including package. . . 12
2.4 Simplified SerDes architecture overview with the serial interface on the

left and the parallel interface on the right (based on [17]). 13
2.5 Block-diagram of a 4-tap FIR filter. 14
2.6 Active CTLE with source degeneration. 15
2.7 3-tap full-rate direct DFE architecture. Φf is the full-rate clock. 16
2.8 Human Body Model discharge circuit according to JS-001-2010. 19
2.9 Simplified HBM current waveform according to JS-001-2010 for a 2 kV

discharge. The rise time usually lies between 2 ns and 10 ns and is probably
caused by the finite switching speed of the relay – but is not present in the
equivalent circuit. Peak current (1.2 A to 1.48 A) and decay time (130 ns
to 170 ns) are defined by the resistor, capacitor, and pre-charge voltage. . 20

2.10 Typical Charged Device Model equivalent circuit [25]. 21
2.11 Simplified CDM current waveform according to the circuit in Fig. 2.10,

similar to S5.3.1-2009, for a 500 V discharge. 21
2.12 Machine Model equivalent circuit according to S5.2-2009. 22
2.13 Simplified MM current waveform according to S5.2-2009 for a 400 V dis-

charge with the specified peak current within 7.0 A ± 10%. The period of
the first pulse is specified to be between 66 ns and 90 ns. 22

2.14 Possible ESD failure of an on-chip inductor. 24

195

2.15 ESD protection circuit for designs with two power domains, which can
deflect any discharge polarity between any two pins. 25

2.16 RC- or frequency-triggered power clamp. 26
2.17 Attempt to classify on-chip inductor-based circuits for ESD compensation. 29
2.18 Distributed compensation scheme with parasitic ESD device capacitance

split into n parts. 30
2.19 Two-stage LC ladder network. 31
2.20 Reflection of the two-stage ladder network for CL = 300 fF. 33
2.21 Transfer function of the two-stage ladder network for CL = 300 fF. 33
2.22 A two-stage ladder network applied to a 28nm SerDes design. The black

circles are the bumps which are connected to LP1 via the thick, grainy,
yellow, ‘L’-shaped traces. 34

2.23 Possible inductor positions for an inductive peaking network. 35
2.24 Center tap splits coil (left) in two coupled parts (center), which are

represented by a three inductor equivalent circuit (right). 35
2.25 Termination network using a T-coil. 36
2.26 T-coil converted to star topology. 37
2.27 Magnitude of T-coil network transfer functions for CL = 300 fF. 38
2.28 Group delay of T-coil network transfer functions for CL = 300 fF. 39
2.29 T-coil with parasitic resistance and bridging capacitance. 41
2.30 Reflection of resistive T-coil for CL = 300 fF. 42
2.31 Termination circuit using a T-coil, including the pad capacitance CP . . . 42
2.32 Reflection of the asymmetric and symmetric T-coil networks, compared to

the two-stage ladder and uncompensated network. Each is plotted for a
pad capacitance of 10%, 20%, and 30% of CL = 300 fF. 45

2.33 Eight variants of possible layouts below the octagonal pad shape. 46

3.1 Micrographs of inductors used for LC-oscillators in a 28nm (a) and a
22nm (b) PLL design. The inductor on the left has an outer diameter
of 169.2 µm, while the one on the right has 100 µm. The displayed size
ratio of both inductors is identical to the actual size ratio. The PLLs were
designed at the CAG and Extoll GmbH though not in the context of this
work. 49

3.2 Tapped T-coil. 50
3.3 Interleaved T-coil. 51
3.4 Stacked T-coil. 51
3.5 The IDE PyCell Studio 2017.06 can be used to develop and debug PyCell

code. The InductorSpiralSquare from Lst. 3.1 is shown here. 56

196

3.6 Stacked T-coil layout generated with the SKILL PCell code (n = 2.5 turns;
fill shapes are not shown). The layer order from top to bottom is blue,
purple, green, and vias are black. 59

3.7 Illustration of the magnetic flux density calculation for a finite straight
cylindrical wire. 64

3.8 The relative magnetic flux density along the z-axis. 65
3.9 The relative magnetic flux density along the r-axis. 66
3.10 Errors of mean distance formulas for the self-inductance of a straight wire

with circular cross-section (l > R). 74
3.11 Errors of mean distance formulas for the self-inductance of a straight wire

with circular cross-section (l < R). 74
3.12 π-model of an inductor segment i used in [58]. 76
3.13 Layout of the 2-terminal square spiral inductor analyzed in this section

(n = 2.5 turns; fill shapes are not shown; the purple layer is on top of the
green layer; vias are black). 77

3.14 The lumped π-model of a spiral inductor as found in literature. Parameters
are the series inductance Ls, series resistance Rs, inter winding capacitance
Cs, oxide capacitance Cox, and the substrate properties Csi and Rsi. . . . 78

3.15 Steps taken by Mohan [40] to derive the current sheet approximation. The
red arrows denote the current direction. 80

3.16 Ratio of external and internal inductance of a straight round wire as
calculated in Eq. 3.26 for a uniform current. 83

3.17 Skin depth and resistance increase for a round copper wire with a radius of
1.4 µm. This is representative of a typical wire used for on-chip inductors
in advanced nodes. 84

3.18 Influence of metal fill. 87
3.19 Influence of process corners, including metal fill. 89
3.20 Block diagram of the automated extraction flow. A command line with

geometry parameters is translated into S-parameters. 92
3.21 Block diagram of the automated EMX-based flow. 97
3.22 EMX “full-wave” vs. “quasi-static”. 98
3.23 Lumped circuit model for the stacked T-coil used by Mohan [40]. 100
3.24 Projection of a T-coil (created with Keysight ADS 2012). 101
3.25 3D-view of a T-coil (created with Keysight ADS 2012). 102
3.26 Example corner plot of parameters (Θ, σ). Shown are the marginalized

posterior PDFs for each model parameter as a histogram, along with the
16th, 50th (median), and 84th percentile. 106

197

3.27 S-parameters of the (60 µm, 1.6 µm, 1.3 µm, 7.0) T-coil and fitted lumped
circuit model (dashed). The real parts are blue and the imaginary parts red.108

3.28 Cumulative distribution of the relative error for L1,Mohan + L2,Mohan. . . . 111
3.29 Cumulative distribution of the relative error for L3,Mohan. 111
3.30 Cumulative distribution of the relative error for L1 + L2. 115
3.31 Cumulative distribution of the relative error for L3. 115
3.32 Corner plot for the “GMD & t & c” model. 116
3.33 Cumulative distribution of the relative error for CB. 117
3.34 Cumulative distribution of the relative error for R1, R2, and R3. 119
3.35 Comparison of the different descriptions of the “synthesized” T-coil (53.1 µm,

5.1 µm, 1.2 µm, 2.5). 120
3.36 A different perspective on the quality of the T-coil model. 121
3.37 Simplified schematic of the RX termination and ESD protection (w/o

power clamp). 122
3.38 Simplified layout of the RX termination and ESD protection (AFE power

grid is not shown). 124
3.39 Micrographs of all four termination test structures. The RX AFE was

replaced with a metal capacitor and the remaining RX was replaced with
metal fill. 126

3.40 Full impedance profiles. The expected value of RT is given in brackets. . . 128
3.41 Aligned impedance profiles to compare the on-chip termination. The

expected value of RT is given in brackets. 128

4.1 32-bit IEEE 754 binary floating-point number representation. 130
4.2 32-bit posit floating-point number representation (es = 3). Note that the

regime field can grow to the right. 132
4.3 5-bit posits with es = 1 visualized on the projective reals. Taken from [81].133
4.4 5-bit unum type II defined with x1, x2, and x3, visualized on the projective

reals. Based on [80]. 134
4.5 FMA unit architecture, including three pipeline stages (dashed lines) [15]. 138
4.6 UVM monitor using the Intel Intrinsics and the SoftFloat reference model [15].140
4.7 FMA unit synthesis results. 144
4.8 Power over target frequency for different corner setups. 145
4.9 Power of the 2.3 GHz implementation over operation frequency. 145
4.10 Power/Area over target frequency for different corner setups. 147

5.1 12-bit Wallace tree: 102 full-adders, 34 half-adders. 152
5.2 12-bit MaxReduce tree: 100 full-adders, 48 half-adders. 155
5.3 12-bit Dadda tree: 99 full-adders, 11 half-adders. 156

198

5.4 Combined number of full- and half-adders for different trees. 157
5.5 Taxonomy of Parallel Prefix Adders with n = 16. The three dimensions

are logic levels log2(n) + l, fan-out 2f + 1, and horizontal wire tracks 2t

with l, f, t ∈ {0, . . . , log2(n)− 1}. Picture taken from [116]. 162
5.6 Propagate and generate calculation cell (blue), prefix cells (red, yellow,

green), and sum cell (gray). 164
5.7 8-bit Parallel Prefix Adder with carry input, expressed in the cells from

Fig. 5.6. 165
5.8 10-bit Brent & Kung prefix graph. 166
5.9 10-bit Kogge & Stone prefix graph. 167
5.10 10-bit Sklansky prefix graph. 168
5.11 10-bit carry-lookahead prefix graph (separate cin). 170
5.12 Runtime comparison of JasperGold engines for an 11-bit Wallace multiplier.171
5.13 Runtime for different multipliers with JasperGold’s G2 engine. 172
5.14 Power consumption of the combinational logic over target clock frequency

for 64-bit operand adders including a carry input. 178
5.15 Standard cell area of the combinational logic over target clock frequency

for 64-bit operand adders including a carry input. 179
5.16 Power density of the combinational logic over target clock frequency for

64-bit operand adders including a carry input. 179
5.17 Power consumption of the combinational logic over target clock frequency

for 64-bit operand multipliers. 181
5.18 Standard cell area of the combinational logic over target clock frequency

for 64-bit operand multipliers. 181
5.19 Power density of the combinational logic over target clock frequency for

64-bit operand multipliers. 182

199

List of Tables

2.1 Possible ESD scenarios in a single power domain and their discharge path.
This assumes a positive ESD voltage at the first pin. Swapping the pins
results in the corresponding negative voltage discharge path. 27

2.2 The size of the pad capacitance defines four different regimes for the
two-stage ladder network. 44

3.1 Numerical values from Monte Carlo integration with 1010 random point
pairs in a circle with R = 1. The third column shows the error relative to
the known exact values and suggests that at least six digits can be trusted.
The last column contains the rounded values. 72

3.2 Coefficients for the current sheet self-inductance formula given in Eq. 3.56 [40]. 79
3.3 Fitted parameters for the inductance model. 114
3.4 Fitted parameters for the bridge capacitance models. Note the unit of d,

w, s, and davg is µm, while CB is in fF, so the units of a0 and b0 follow
from this but are different depending on the model. 117

3.5 Fitted parameters for the resistance models. 118

4.1 IEEE 754 binary floating-point formats [78]. 131
4.2 RISC-V floating-point instructions supported by the FMA design. 138
4.3 Comparison of our synthesis results with [109]. 146

5.1 Partial products and summands. 150
5.2 Scaling of component count for Wallace and Dadda multipliers [112]. . . . 157
5.3 Placing the Ccarry-Lookahead Adder in the taxonomy suggested by Harris.169

201

List of Listings

3.1 PyCell code for a square spiral inductor. 55
3.2 Registering InductorSquareSpiral as a PCell to generate it via cngenlib. 56
3.3 Function to define a SKILL PCell. 58

4.1 TestFloat driver and checker module. 142

203

References

[1] Wikipedia. (2020). CPU socket, [Online]. Available: https://en.wikipedia.org/
wiki/CPU_socket (visited on 01/16/2021).

[2] Intel. (2020). Intel i9-10900K, [Online]. Available: https://ark.intel.com/
content/www/de/de/ark/products/199332/intel-core-i9-10900k-processor-
20m-cache-up-to-5-30-ghz.html (visited on 01/16/2021).

[3] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony, “AMD Chiplet Ar-
chitecture for High-Performance Server and Desktop Products”, in 2020 IEEE
International Solid- State Circuits Conference - (ISSCC), 2020, pp. 44–45. doi:
10.1109/ISSCC19947.2020.9063103.

[4] A. S. Waterman, “Design of the RISC-V Instruction Set Architecture”, PhD
thesis, EECS Department, University of California, Berkeley, Jan. 2016. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-
1.html.

[5] A. Shilov. (Dec. 2018). Western Digital Reveals SweRV RISC-V Core, Cache
Coherency over Ethernet Initiative, [Online]. Available: https://www.anandtech.
com / show / 13678 / western - digital - reveals - swerv - risc - v - core - and -
omnixtend-coherency-tech (visited on 01/18/2021).

[6] Western Digital Corp. (2021). EH1 SweRV RISC-V CoreTM 1.8 from Western
Digital, [Online]. Available: https://github.com/chipsalliance/Cores-SweRV
(visited on 01/18/2021).

[7] F. Y. Kaiser, “Design and Verification of a RISC-V Conform, Double-Precision
Fused Multiply-Add Unit”, Master’s thesis, Heidelberg University, 2018.

[8] S. Galal and B. Razavi, “Broadband ESD protection circuits in CMOS technology”,
IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2334–2340, Dec. 2003,
issn: 0018-9200. doi: 10.1109/JSSC.2003.818568.

[9] M. Kossel, C. Menolfi, J. Weiss, P. Buchmann, G. von Bueren, L. Rodoni, T.
Morf, T. Toifl, and M. Schmatz, “A T-Coil-Enhanced 8.5 Gb/s High-Swing SST
Transmitter in 65 nm Bulk CMOS With −16 dB Return Loss Over 10 GHz

205

https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/CPU_socket
https://ark.intel.com/content/www/de/de/ark/products/199332/intel-core-i9-10900k-processor-20m-cache-up-to-5-30-ghz.html
https://ark.intel.com/content/www/de/de/ark/products/199332/intel-core-i9-10900k-processor-20m-cache-up-to-5-30-ghz.html
https://ark.intel.com/content/www/de/de/ark/products/199332/intel-core-i9-10900k-processor-20m-cache-up-to-5-30-ghz.html
https://doi.org/10.1109/ISSCC19947.2020.9063103
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
https://www.anandtech.com/show/13678/western-digital-reveals-swerv-risc-v-core-and-omnixtend-coherency-tech
https://www.anandtech.com/show/13678/western-digital-reveals-swerv-risc-v-core-and-omnixtend-coherency-tech
https://www.anandtech.com/show/13678/western-digital-reveals-swerv-risc-v-core-and-omnixtend-coherency-tech
https://github.com/chipsalliance/Cores-SweRV
https://doi.org/10.1109/JSSC.2003.818568

Bandwidth”, IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2905–2920,
2008. doi: 10.1109/JSSC.2008.2006230.

[10] J. Kim, A. Balankutty, R. K. Dokania, A. Elshazly, H. S. Kim, S. Kundu, D.
Shi, S. Weaver, K. Yu, and F. O’Mahony, “A 112 Gb/s PAM-4 56 Gb/s NRZ
Reconfigurable Transmitter With Three-Tap FFE in 10-nm FinFET”, IEEE
Journal of Solid-State Circuits, vol. 54, no. 1, pp. 29–42, 2019. doi: 10.1109/
JSSC.2018.2874040.

[11] A. Ruehli, “Inductance Calculations in a Complex Integrated Circuit Environ-
ment”, IBM Journal of Research and Development, vol. 9, pp. 470–481, Oct. 1972.
doi: 10.1147/rd.165.0470.

[12] U. Brüning et al., Skalierbare Energieeffiziente Prozessoren für Intelligente An-
wendungen – RISC-V für IoT bis HPC, Jul. 2019.

[13] T. Bühler, “Pipeline Control, Scoreboard and Commit Strategy of a RISC-V
Microprocessor”, Master’s thesis, Heidelberg University, 2021.

[14] J. Philipp, “Development of an Instruction Fetch Unit with Branch Prediction for
a RISC-V Processor”, Master’s thesis, Heidelberg University, 2021.

[15] F. Kaiser, S. Kosnac, and U. Brüning, “Development of a RISC-V-Conform Fused
Multiply-Add Floating-Point Unit”, Supercomputing Frontiers and Innovations,
vol. 6, no. 2, 2019, issn: 2313-8734. [Online]. Available: https://superfri.org/
superfri/article/view/274.

[16] S. Kosnac and U. Brüning, “Design Flow Automation for On-Chip Inductors”, May
2018. [Online]. Available: https://www.cadence.com/en_US/home/cdnlive/
emea-2018/proceedings.html.

[17] M. R. Müller, “Digital Centric Multi-Gigabit SerDes Design and Verification”,
PhD thesis, Heidelberg University, 2018. doi: https://doi.org/10.11588/
heidok.00023972.

[18] M. Thürmer, “Modelling and performance analysis of multigigabit serial intercon-
nects using real number based analog verification methods”, PhD thesis, Heidelberg
University, 2018. doi: 10.11588/heidok.00023838.

[19] F. Yuan, A. AL-Taee, A. Ye, and S. Sadr, “Design techniques for decision feed-
back equalisation of multi-giga-bit-per-second serial data links: A state-of-the-art
review”, Circuits, Devices & Systems, IET, vol. 8, pp. 118–130, Mar. 2014. doi:
10.1049/iet-cds.2013.0159.

206

https://doi.org/10.1109/JSSC.2008.2006230
https://doi.org/10.1109/JSSC.2018.2874040
https://doi.org/10.1109/JSSC.2018.2874040
https://doi.org/10.1147/rd.165.0470
https://superfri.org/superfri/article/view/274
https://superfri.org/superfri/article/view/274
https://www.cadence.com/en_US/home/cdnlive/emea-2018/proceedings.html
https://www.cadence.com/en_US/home/cdnlive/emea-2018/proceedings.html
https://doi.org/https://doi.org/10.11588/heidok.00023972
https://doi.org/https://doi.org/10.11588/heidok.00023972
https://doi.org/10.11588/heidok.00023838
https://doi.org/10.1049/iet-cds.2013.0159

[20] S. A. C. M. Schatral, “Design of Multi-Gigabit Network Interconnect Elements
and Protocols for a Data Acquisition System in Radiation Environments”, PhD
thesis, Heidelberg University, 2018. doi: https://doi.org/10.11588/heidok.
00024533.

[21] S. Kosnac, “Design-Aspects of a Decision Feedback Equalizer in a 28 nm Technol-
ogy”, Master’s thesis, Heidelberg University, 2016.

[22] P. Moller, “Electric Fish”, BioScience, vol. 41, no. 11, pp. 794–796, Dec. 1991,
issn: 0006-3568. doi: 10.2307/1311732. eprint: https://academic.oup.com/
bioscience/article-pdf/41/11/794/816768/41-11-794.pdf. [Online].
Available: https://doi.org/10.2307/1311732.

[23] (Aug. 2018). Socket TR4 (sTR4) - Packages - AMD, [Online]. Available: https:
//en.wikichip.org/wiki/amd/packages/socket_tr4 (visited on 04/06/2020).

[24] (2010). Fundamentals of Electrostatic Discharge – Part Six – ESD Standards,
[Online]. Available: https://www.esda.org/esd-overview/esd-fundamentals/
part-6-esd-standards/ (visited on 04/07/2020).

[25] J. S. Mamaradlo. (Jul. 2016). Simple Yet Effective ESD Testing Methods for Higher
Reliability, [Online]. Available: https://www.electronicdesign.com/blogs/
guest-blogger/article/21802829/simple-yet-effective-esd-testing-
methods-for-higher-reliability (visited on 04/03/2020).

[26] 22FDX® ESD Reference Guide.

[27] A. Righter and B. Carn, “A Look at the New ANSI/ESDA/JEDEC JS-002 CDM
Test Standard”, Analog Dialogue, vol. 51, no. 4, Oct. 2017.

[28] S. H. Voldman, ESD: RF Technology and Circuits. John Wiley & Sons Ltd, 2006.

[29] ——, ESD: Failure Mechanisms and Models. John Wiley & Sons Ltd, 2009.

[30] ——, ESD: Physics and Devices. John Wiley & Sons Ltd, 2004.

[31] ——, ESD: Design and Synthesis. John Wiley & Sons Ltd, 2011.

[32] Seungyoung Ahn, Seungyong Baek, Junho Lee, and Joungho Kim, “Compensation
of ESD and device input capacitance by using embedded inductor on PCB
substrate for 3 Gbps SerDes applications”, in 2004 International Symposium on
Electromagnetic Compatibility (IEEE Cat. No.04CH37559), vol. 2, 2004, 499–504
vol.2. doi: 10.1109/ISEMC.2004.1349847.

[33] W. Soldner, M. Kim, M. Streibl, H. Gossner, T. H. Lee, and D. Schmitt-Landsiedel,
“A 10GHz Broadband Amplifier with Bootstrapped 2kV ESD Protection”, in 2007
IEEE International Solid-State Circuits Conference. Digest of Technical Papers,
2007, pp. 550–551. doi: 10.1109/ISSCC.2007.373538.

207

https://doi.org/https://doi.org/10.11588/heidok.00024533
https://doi.org/https://doi.org/10.11588/heidok.00024533
https://doi.org/10.2307/1311732
https://academic.oup.com/bioscience/article-pdf/41/11/794/816768/41-11-794.pdf
https://academic.oup.com/bioscience/article-pdf/41/11/794/816768/41-11-794.pdf
https://doi.org/10.2307/1311732
https://en.wikichip.org/wiki/amd/packages/socket_tr4
https://en.wikichip.org/wiki/amd/packages/socket_tr4
https://www.esda.org/esd-overview/esd-fundamentals/part-6-esd-standards/
https://www.esda.org/esd-overview/esd-fundamentals/part-6-esd-standards/
https://www.electronicdesign.com/blogs/guest-blogger/article/21802829/simple-yet-effective-esd-testing-methods-for-higher-reliability
https://www.electronicdesign.com/blogs/guest-blogger/article/21802829/simple-yet-effective-esd-testing-methods-for-higher-reliability
https://www.electronicdesign.com/blogs/guest-blogger/article/21802829/simple-yet-effective-esd-testing-methods-for-higher-reliability
https://doi.org/10.1109/ISEMC.2004.1349847
https://doi.org/10.1109/ISSCC.2007.373538

[34] B. Kleveland, T. J. Maloney, I. Morgan, L. Madden, T. H. Lee, and S. S. Wong,
“Distributed ESD protection for high-speed integrated circuits”, IEEE Electron
Device Letters, vol. 21, no. 8, pp. 390–392, Aug. 2000, issn: 1558-0563. doi:
10.1109/55.852960.

[35] D. M. Pozar, Microwave Engineering. John Wiley & Sons, 2009.

[36] S. Kim, K. Shinae, J. Goeun, K.-W. Kwon, and J.-H. Chun, “Design of a Reliable
Broadband I/O Employing T-coil”, JSTS:Journal of Semiconductor Technology
and Science, vol. 9, Dec. 2009. doi: 10.5573/JSTS.2009.9.4.198.

[37] S. C. D. Roy, “Comments on “Analysis of the Bridged T-coil Circuit Using
the Extra-Element Theorem”, IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 54, no. 8, pp. 673–674, Aug. 2007, issn: 1549-7747. doi:
10.1109/TCSII.2007.899834.

[38] J. Paramesh and D. J. Allstot, “Analysis of the Bridged T-Coil Circuit Using the
Extra-Element Theorem”, IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 53, no. 12, pp. 1408–1412, 2006. doi: 10.1109/TCSII.2006.885971.

[39] T. Markus, “Circuit Design Automation for High Speed Interconnects in Advanced
Nodes”, PhD thesis, Heidelberg University, 2021.

[40] S. S. Mohan, “The Design, Modeling and Optimization of On-chip Inductor and
Transformer Circuits”, PhD thesis, Stanford University, 1999.

[41] S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, “Simple accurate
expressions for planar spiral inductances”, IEEE Journal of Solid-State Circuits,
vol. 34, no. 10, pp. 1419–1424, Oct. 1999, issn: 1558-173X. doi: 10.1109/4.
792620.

[42] M. Tiner. (2018). What is Open about Si2 OpenAccess?, [Online]. Available:
https://si2.org/2018/04/13/what-is-open-about-openaccess/ (visited on
09/11/2020).

[43] M. Guiney and E. Leavitt, “An Introduction to OpenAccess: An Open Source Data
Model and API for IC Design”, in Proceedings of the 2006 Asia and South Pacific
Design Automation Conference, ser. ASP-DAC ’06, Yokohama, Japan: IEEE Press,
2006, pp. 434–436, isbn: 0780394518. doi: 10.1145/1118299.1118405. [Online].
Available: https://doi.org/10.1145/1118299.1118405.

[44] S. Alassi and B. Winter, “PyCells for an Open Semiconductor Industry”, CoRR,
vol. abs/1607.00859, 2016. arXiv: 1607.00859. [Online]. Available: http://arxiv.
org/abs/1607.00859.

[45] Synopsys, Python API Reference Manual. Jun. 2017.

[46] ——, Santana™ Technology File Reference Manual. Jun. 2017.

208

https://doi.org/10.1109/55.852960
https://doi.org/10.5573/JSTS.2009.9.4.198
https://doi.org/10.1109/TCSII.2007.899834
https://doi.org/10.1109/TCSII.2006.885971
https://doi.org/10.1109/4.792620
https://doi.org/10.1109/4.792620
https://si2.org/2018/04/13/what-is-open-about-openaccess/
https://doi.org/10.1145/1118299.1118405
https://doi.org/10.1145/1118299.1118405
https://arxiv.org/abs/1607.00859
http://arxiv.org/abs/1607.00859
http://arxiv.org/abs/1607.00859

[47] T. Markus and N. Buwen. (). Python-Skill Bridge, [Online]. Available: https:
//github.com/unihd-cag/skillbridge (visited on 09/22/2020).

[48] J. C. Maxwell, A Treatise on Electricity and Magnetism, ser. A Treatise on
Electricity and Magnetism. Clarendon Press, 1873, vol. 1. [Online]. Available:
https://books.google.de/books?id=1lwPVLBLj1oC.

[49] L. Chua, “Memristor - The Missing Circuit Element”, IEEE Transactions on
Circuit Theory, vol. 18, no. 5, pp. 507–519, Sep. 1971, issn: 2374-9555. doi:
10.1109/TCT.1971.1083337.

[50] E. B. Rosa, “The Self and Mutual Inductances of Linear Conductors”, in, ser. Bul-
letin of the Bureau of Standards. U.S. Department of Commerce and Labor,
Bureau of Standards, 1908, vol. 4, pp. 301–344.

[51] R. Weaver, Geometric Mean Distance - Its Derivation and Application in Induc-
tance Calculations, Mar. 2016. [Online]. Available: http://electronbunker.ca/
DLpublic/GMD.pdf.

[52] C. Hoer and C. Love, “Exact Inductance Equations for Rectangular Conductors
With Applications to More Complicated Geometries”, Journal of Research of the
National Bureau of Standards – C. Engineering and Instrumentation, pp. 127–137,
1965.

[53] J. C. Maxwell, A Treatise on Electricity and Magnetism, ser. A Treatise on
Electricity and Magnetism. Clarendon Press, 1873, vol. 2. [Online]. Available:
https://books.google.de/books?id=OcS4BEiMNwoC.

[54] B. Burgstaller and F. Pillichshammer, “The Average Distance Between Two
Points”, Bulletin of the Australian Mathematical Society, vol. 80, no. 3, pp. 353–
359, 2009. doi: 10.1017/S0004972709000707.

[55] H. A. Aebischer and B. Aebischer, “Improved Formulae for the Inductance of
Straight Wires”, Advanced Electromagnetics, vol. 3, Sep. 2014. doi: 10.7716/aem.
v3i1.254.

[56] H. M. Greenhouse, “Design of Planar Rectangular Microelectronic Inductors”,
IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, no. 2, pp. 101–109,
1974. doi: 10.1109/TPHP.1974.1134841.

[57] J. C. Maxwell, “On the Geometrical Mean Distance of Two Figures on a Plane”,
Transactions of the Royal Society of Edinburgh, vol. 26, no. 4, pp. 729–733, 1872.
doi: 10.1017/S008045680002559X.

[58] J. R. Long and M. A. Copeland, “The modeling, characterization, and design of
monolithic inductors for silicon RF IC’s”, IEEE Journal of Solid-State Circuits,
vol. 32, no. 3, pp. 357–369, 1997. doi: 10.1109/4.557634.

209

https://github.com/unihd-cag/skillbridge
https://github.com/unihd-cag/skillbridge
https://books.google.de/books?id=1lwPVLBLj1oC
https://doi.org/10.1109/TCT.1971.1083337
http://electronbunker.ca/DLpublic/GMD.pdf
http://electronbunker.ca/DLpublic/GMD.pdf
https://books.google.de/books?id=OcS4BEiMNwoC
https://doi.org/10.1017/S0004972709000707
https://doi.org/10.7716/aem.v3i1.254
https://doi.org/10.7716/aem.v3i1.254
https://doi.org/10.1109/TPHP.1974.1134841
https://doi.org/10.1017/S008045680002559X
https://doi.org/10.1109/4.557634

[59] C. P. Yue, C. Ryu, J. Lau, T. H. Lee, and S. S. Wong, “A physical model for
planar spiral inductors on silicon”, in International Electron Devices Meeting.
Technical Digest, 1996, pp. 155–158. doi: 10.1109/IEDM.1996.553144.

[60] C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon”,
IEEE Transactions on Electron Devices, vol. 47, no. 3, pp. 560–568, 2000. doi:
10.1109/16.824729.

[61] L. Nan, K. Mouthaan, Y. Xiong, J. Shi, S. C. Rustagi, and B. Ooi, “Experimental
Characterization of the Effect of Metal Dummy Fills on Spiral Inductors”, in 2007
IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2007, pp. 307–310.
doi: 10.1109/RFIC.2007.380889.

[62] V. N. Rao Vanukuru, “Impact of Floating Dummy Fill On Q Characteristics
of Spiral Inductors”, in 2018 IEEE MTT-S International Microwave and RF
Conference (IMaRC), 2018. doi: 10.1109/IMaRC.2018.8877365.

[63] G. S. Smith, “A simple derivation for the skin effect in a round wire”, European
Journal of Physics, vol. 35, no. 2, p. 025 002, Jan. 2014. doi: 10.1088/0143-
0807/35/2/025002. [Online]. Available: https://doi.org/10.1088%2F0143-
0807%2F35%2F2%2F025002.

[64] D. Gerling, “Approximate analytical calculation of the skin effect in rectangular
wires”, in 2009 International Conference on Electrical Machines and Systems,
2009, pp. 1–6. doi: 10.1109/ICEMS.2009.5382786.

[65] P. McLellan. (Jul. 2020). Clarity, Sigrity, EMX, and AWR: So Many EM Solvers to
Choose From…, [Online]. Available: https://community.cadence.com/cadence_
blogs_8/b/breakfast-bytes/posts/em-solvers (visited on 03/12/2021).

[66] ——, (Feb. 2020). Designing Radios: Integrand, [Online]. Available: https://
community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/
integrand (visited on 03/12/2021).

[67] Integrand Software Inc., Foundry relationships. [Online]. Available: https://
integrandsoftware.com/foundries.php (visited on 03/13/2021).

[68] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J.
Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python”, Nature Methods,
vol. 17, pp. 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

210

https://doi.org/10.1109/IEDM.1996.553144
https://doi.org/10.1109/16.824729
https://doi.org/10.1109/RFIC.2007.380889
https://doi.org/10.1109/IMaRC.2018.8877365
https://doi.org/10.1088/0143-0807/35/2/025002
https://doi.org/10.1088/0143-0807/35/2/025002
https://doi.org/10.1088%2F0143-0807%2F35%2F2%2F025002
https://doi.org/10.1088%2F0143-0807%2F35%2F2%2F025002
https://doi.org/10.1109/ICEMS.2009.5382786
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/em-solvers
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/em-solvers
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/integrand
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/integrand
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/integrand
https://integrandsoftware.com/foundries.php
https://integrandsoftware.com/foundries.php
https://doi.org/10.1038/s41592-019-0686-2

[69] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
“Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys.,
vol. 21, no. 6, pp. 1087–1092, Jun. 1953. doi: 10.1063/1.1699114.

[70] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their
applications”, Biometrika, vol. 57, no. 1, pp. 97–109, Apr. 1970, issn: 0006-
3444. doi: 10.1093/biomet/57.1.97. eprint: https://academic.oup.com/
biomet/article-pdf/57/1/97/23940249/57-1-97.pdf. [Online]. Available:
https://doi.org/10.1093/biomet/57.1.97.

[71] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC
Hammer”, Publications of the Astronomical Society of the Pacific, vol. 125, no. 925,
p. 306, Mar. 2013. doi: 10.1086/670067. arXiv: 1202.3665 [astro-ph.IM].

[72] J. Goodman and J. Weare, “Ensemble samplers with affine invariance”, Commun.
Appl. Math. Comput. Sci., vol. 5, no. 1, pp. 65–80, 2010. doi: 10.2140/camcos.
2010.5.65. [Online]. Available: https://doi.org/10.2140/camcos.2010.5.65.

[73] D. Foreman-Mackey, “corner.py: Scatterplot matrices in Python”, The Journal of
Open Source Software, vol. 1, no. 2, p. 24, Jun. 2016. doi: 10.21105/joss.00024.
[Online]. Available: https://doi.org/10.21105/joss.00024.

[74] H. Meuer, E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. (2018). Top 500
list, [Online]. Available: https://www.top500.org/lists/2018/11/ (visited on
06/21/2019).

[75] J. Dongarra, J. Bunch, C. Moler, and G. Stewart. (1979). LINPACK, [Online].
Available: http://www.netlib.org/linpack/ (visited on 11/14/2019).

[76] J. Hauser. (2018). Berkeley TestFloat, [Online]. Available: http://www.jhauser.
us/arithmetic/TestFloat.html (visited on 02/16/2021).

[77] J. Hauser et al. (2014). Berkeley TestFloat Release 3e, [Online]. Available: https:
//github.com/ucb-bar/berkeley-testfloat-3 (visited on 02/16/2021).

[78] “IEEE Standard for Floating-Point Arithmetic”, IEEE Std 754-2019 (Revision of
IEEE 754-2008), 2019. doi: 10.1109/IEEESTD.2019.8766229.

[79] R. Morris, “Tapered Floating Point: A New Floating-Point Representation”,
IEEE Transactions on Computers, vol. C-20, no. 12, pp. 1578–1579, 1971. doi:
10.1109/T-C.1971.223174.

[80] J. L. Gustafson and I. Yonemoto, “Beating Floating Point at its Own Game: Posit
Arithmetic”, Supercomputing Frontiers and Innovations, vol. 4, no. 2, 2017, issn:
2313-8734. [Online]. Available: https://superfri.org/superfri/article/
view/137.

211

https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1086/670067
https://arxiv.org/abs/1202.3665
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.21105/joss.00024
https://doi.org/10.21105/joss.00024
https://www.top500.org/lists/2018/11/
http://www.netlib.org/linpack/
http://www.jhauser.us/arithmetic/TestFloat.html
http://www.jhauser.us/arithmetic/TestFloat.html
https://github.com/ucb-bar/berkeley-testfloat-3
https://github.com/ucb-bar/berkeley-testfloat-3
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/T-C.1971.223174
https://superfri.org/superfri/article/view/137
https://superfri.org/superfri/article/view/137

[81] J. L. Gustafson, Posit Arithmetic. Oct. 2017. [Online]. Available: https://
posithub.org/docs/Posits4.nb.

[82] ——, The End of Error: Unum Computing. Feb. 2015, isbn: 1482239868. doi:
10.1201/9781315161532.

[83] F. Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits: the good, the bad
and the ugly”, Mar. 2019, pp. 1–10. doi: 10.1145/3316279.3316285.

[84] P. W. Group, Posit Standard Documentation Release 3.2-draft. Jun. 2018. [Online].
Available: https://posithub.org/docs/posit_standard.pdf.

[85] C. Melzer, “Design and Verification of a Parameterizable Posit Unit with Fused
Multiply-Add and Quire Support”, Master’s thesis, Heidelberg University, 2020.

[86] P. Kharya. (May 2020). TensorFloat-32 in the A100 GPU Accelerates AI Training,
HPC up to 20x, [Online]. Available: https://blogs.nvidia.com/blog/2020/
05/14/tensorfloat-32-precision-format/ (visited on 02/14/2021).

[87] S. Wang and P. Kanwar. (Aug. 2019). TensorFloat-32 in the A100 GPU Accelerates
AI Training, HPC up to 20x, [Online]. Available: https://cloud.google.com/
blog/products/ai-machine-learning/bfloat16-the-secret-to-high-
performance-on-cloud-tpus (visited on 02/14/2021).

[88] S. Hutchins and E. Swartzlander, “A Bfloat16 Fused Multiplier-Adder”, in 2020
11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication
Conference (UEMCON), 2020, pp. 0052–0055. doi: 10.1109/UEMCON51285.2020.
9298120.

[89] SiFive. (2021). HiFive, [Online]. Available: https://www.sifive.com/boards
(visited on 02/14/2021).

[90] “IEEE Standard for Floating-Point Arithmetic”, IEEE Std 754-2008, 2008. doi:
10.1109/IEEESTD.2008.4610935.

[91] M. Gautschi et al. (2017). PULP-Platform - FPU, [Online]. Available: https:
//github.com/pulp-platform/fpu (visited on 06/21/2019).

[92] S. Mach et al. (2021). PULP-Platform - FPU, [Online]. Available: https://
github.com/pulp-platform/fpnew (visited on 02/15/2021).

[93] J. Hauser. (2019). Berkeley HardFloat, [Online]. Available: http://www.jhauser.
us/arithmetic/HardFloat.html (visited on 02/16/2021).

[94] J. Hauser et al. (2012). Berkeley Hardware Floating-Point Units, [Online]. Available:
https://github.com/ucb-bar/berkeley-hardfloat (visited on 02/16/2021).

212

https://posithub.org/docs/Posits4.nb
https://posithub.org/docs/Posits4.nb
https://doi.org/10.1201/9781315161532
https://doi.org/10.1145/3316279.3316285
https://posithub.org/docs/posit_standard.pdf
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://doi.org/10.1109/UEMCON51285.2020.9298120
https://doi.org/10.1109/UEMCON51285.2020.9298120
https://www.sifive.com/boards
https://doi.org/10.1109/IEEESTD.2008.4610935
https://github.com/pulp-platform/fpu
https://github.com/pulp-platform/fpu
https://github.com/pulp-platform/fpnew
https://github.com/pulp-platform/fpnew
http://www.jhauser.us/arithmetic/HardFloat.html
http://www.jhauser.us/arithmetic/HardFloat.html
https://github.com/ucb-bar/berkeley-hardfloat

[95] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H.
Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim,
J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A.
Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The
Rocket Chip Generator”, EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, Apr. 2016. [Online]. Available: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[96] C. Celio, D. A. Patterson, and K. Asanović, “The Berkeley Out-of-Order Ma-
chine (BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V
Processor”, EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2015-167, Jun. 2015. [Online]. Available: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2015/EECS-2015-167.html.

[97] C. Celio, P.-F. Chiu, B. Nikolic, D. Patterson, and K. Asanović. (2017). BOOM v2
an open-source out-of-order RISC-V core, [Online]. Available: https://content.
riscv.org/wp-content/uploads/2017/12/Wed0936-BOOM-v2-An-Open-
Source-Out-of-Order-RISC-V-Core-Celio.pdf (visited on 06/21/2019).

[98] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,
and K. Asanović, “Chisel: Constructing hardware in a Scala embedded language”,
in The 49th Annual Design Automation Conference 2012, DAC 2012, 3-7 June
2012, San Francisco, California, USA, 2012, pp. 1212–1221. doi: 10.1145/
2228360.2228584.

[99] L. Henger, “Design and Verification of a RISC-V Conform, Double-Precision
Division and Square Root Unit”, Master’s thesis, Heidelberg University, 2020.

[100] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G.
Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-Point Arith-
metic, 1st. Birkhäuser Basel, 2012, isbn: 978-0-8176-4705-6. doi: 10.1007/978-0-
8176-4705-6.

[101] E. M. Clarke, “The Birth of Model Checking”, in 25 Years of Model Checking: His-
tory, Achievements, Perspectives, Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 1–26, isbn: 978-3-540-69850-0. doi: 10.1007/978-3-540-69850-0_1.
[Online]. Available: https://doi.org/10.1007/97835406985001.

[102] J. Harrison, “Formal Verification of IA-64 Division Algorithms”, in Theorem
Proving in Higher Order Logics, Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 233–251, isbn: 978-3-540-44659-0. doi: 10.1007/354044659115.

213

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://content.riscv.org/wp-content/uploads/2017/12/Wed0936-BOOM-v2-An-Open-Source-Out-of-Order-RISC-V-Core-Celio.pdf
https://content.riscv.org/wp-content/uploads/2017/12/Wed0936-BOOM-v2-An-Open-Source-Out-of-Order-RISC-V-Core-Celio.pdf
https://content.riscv.org/wp-content/uploads/2017/12/Wed0936-BOOM-v2-An-Open-Source-Out-of-Order-RISC-V-Core-Celio.pdf
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1007/978-0-8176-4705-6
https://doi.org/10.1007/978-0-8176-4705-6
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/97835406985001
https://doi.org/10.1007/354044659115

[103] E. M. Clarke, S. M. German, and X. Zhao, “Verifying the SRT division algorithm
using theorem proving techniques”, in Computer Aided Verification, Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1996, pp. 111–122, isbn: 978-3-540-68599-9.
doi: 10.1007/354061474562.

[104] S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and W. J. Paul, “Putting it all
together – Formal verification of the VAMP”, International Journal on Software
Tools for Technology Transfer, vol. 8, no. 4, pp. 411–430, 2006, issn: 1433-2787.
doi: 10.1007/s1000900602046. [Online]. Available: https://doi.org/10.1007/
s10009-006-0204-6.

[105] M. Aharoni, S. Asaf, L. Fournier, A. Koifman, and R. Nagel, “FPgen - a test
generation framework for datapath floating-point verification”, in Eighth IEEE
International High-Level Design Validation and Test Workshop 2003, 12-14 Novem-
ber 2003, San Francisco, California, USA, 2003, pp. 17–22. doi: 10.1109/HLDVT.
2003.1252469.

[106] Intel C++ Intrinsics Reference, 2007. [Online]. Available: http://www.info.univ-
angers.fr/pub/richer/ens/l3info/ao/intel_intrinsics.pdf (visited on
06/21/2019).

[107] J. Hauser. (2018). Berkeley SoftFloat, [Online]. Available: http://www.jhauser.
us/arithmetic/SoftFloat.html (visited on 02/16/2021).

[108] J. Hauser et al. (2014). Berkeley SoftFloat Release 3e, [Online]. Available: https:
//github.com/ucb-bar/berkeley-softfloat-3 (visited on 02/16/2021).

[109] S. Galal and M. Horowitz, “Energy-Efficient Floating-Point Unit Design”, IEEE
Transactions on Computers, vol. 60, no. 7, pp. 913–922, 2011, issn: 0018-9340.
doi: 10.1109/TC.2010.121.

[110] C. S. Wallace, “A Suggestion for a Fast Multiplier”, IEEE Transactions on
Electronic Computers, vol. EC-13, no. 1, pp. 14–17, 1964. doi: 10.1109/PGEC.
1964.263830.

[111] L. Dadda, “Some schemes for parallel multipliers”, Alta Frequenza, no. 34, pp. 349–
356, 1965.

[112] W. Townsend, E. Jr, and J. Abraham, “A comparison of Dadda and Wallace
multiplier delays”, Proceedings of SPIE - The International Society for Optical
Engineering, vol. 5205, Dec. 2003. doi: 10.1117/12.507012.

[113] Hardware algorithms for arithmetic modules. [Online]. Available: http://www.
aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html (visited on 07/02/2020).

[114] T. W. Lynch, “Binary Adders”, Master’s thesis, University of Texas at Austin,
1996.

214

https://doi.org/10.1007/354061474562
https://doi.org/10.1007/s1000900602046
https://doi.org/10.1007/s10009-006-0204-6
https://doi.org/10.1007/s10009-006-0204-6
https://doi.org/10.1109/HLDVT.2003.1252469
https://doi.org/10.1109/HLDVT.2003.1252469
http://www.info.univ-angers.fr/pub/richer/ens/l3info/ao/intel_intrinsics.pdf
http://www.info.univ-angers.fr/pub/richer/ens/l3info/ao/intel_intrinsics.pdf
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html
https://github.com/ucb-bar/berkeley-softfloat-3
https://github.com/ucb-bar/berkeley-softfloat-3
https://doi.org/10.1109/TC.2010.121
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1117/12.507012
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

[115] J. Sklansky, “Conditional-Sum Addition Logic”, IRE Transactions on Electronic
Computers, vol. EC-9, no. 2, pp. 226–231, 1960.

[116] D. Harris, “A Taxonomy of Parallel Prefix Networks”, in The Thrity-Seventh
Asilomar Conference on Signals, Systems Computers, 2003, vol. 2, 2003, pp. 2213–
2217.

[117] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders”, IEEE
Transactions on Computers, vol. C-31, no. 3, pp. 260–264, 1982.

[118] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient Solution
of a General Class of Recurrence Equations”, IEEE Transactions on Computers,
vol. C-22, no. 8, pp. 786–793, 1973.

[119] O. L. MacSorley, “High-Speed Arithmetic in Binary Computers”, Proceedings of
the IRE, vol. 49, no. 1, pp. 67–91, 1961.

[120] T. Rhyne, “Limitations on Carry Lookahead Networks”, IEEE Transactions on
Computers, vol. C-33, no. 4, pp. 373–374, 1984. doi: 10.1109/TC.1984.1676445.

[121] H. W. Lang. (2018). Carry-Lookahead-Addierer, [Online]. Available: https://
www.inf.hs-flensburg.de/lang/algorithmen/arithmetik/cla.htm (visited
on 06/25/2020).

[122] YosysHQ. (2021). SymbiYosys (sby) Documentation, [Online]. Available: https:
//symbiyosys.readthedocs.io/en/latest/ (visited on 02/22/2021).

[123] L.-R. Zheng and H. Tenhunen, “Wires as Interconnects”, in. Jan. 2005, pp. 25–54.
doi: 10.1007/1-4020-7836-6_2.

[124] R. Goering. (Nov. 2013). Signoff Summit: An Update on OCV, AOCV, SOCV,
and Statistical Timing, [Online]. Available: https://community.cadence.com/
cadence_blogs_8/b/ii/posts/signoff-summit-an-update-on-ocv-aocv-
socv-and-statistical-timing (visited on 02/26/2021).

[125] Y. Choi, “Parallel Prefix Adder Design”, PhD thesis, University of Texas at Austin,
2004.

215

https://doi.org/10.1109/TC.1984.1676445
https://www.inf.hs-flensburg.de/lang/algorithmen/arithmetik/cla.htm
https://www.inf.hs-flensburg.de/lang/algorithmen/arithmetik/cla.htm
https://symbiyosys.readthedocs.io/en/latest/
https://symbiyosys.readthedocs.io/en/latest/
https://doi.org/10.1007/1-4020-7836-6_2
https://community.cadence.com/cadence_blogs_8/b/ii/posts/signoff-summit-an-update-on-ocv-aocv-socv-and-statistical-timing
https://community.cadence.com/cadence_blogs_8/b/ii/posts/signoff-summit-an-update-on-ocv-aocv-socv-and-statistical-timing
https://community.cadence.com/cadence_blogs_8/b/ii/posts/signoff-summit-an-update-on-ocv-aocv-socv-and-statistical-timing

	Introduction
	Motivation
	Contributions
	Outline

	High-Speed Serial Communication
	SerDes Architecture
	Channels
	Termination
	Components

	Electrostatic Discharge
	ESD Testing Models
	ESD Failures
	ESD Protection Circuits

	ESD Device Compensation
	Distributed ESD Protection
	Lumped ESD Protection – The T-Coil
	Parasitic Series Resistance
	The Pad Capacitance

	On-Chip Inductors
	Inductor Layout
	Inductor Types
	Layout Generation
	PyCells
	SKILL PCells
	XCells

	Inductance
	Self-Inductance
	Mutual Inductance
	Geometric and Arithmetic Mean Distances

	Modeling of Inductors
	Segmented Circuit Models
	Lumped Circuit Models
	Skin and Proximity Effect
	Metal Fill
	Process Corners

	Simulation of Inductors
	Layout Extraction
	Field Solvers

	Synthesis of Inductors
	Lumped T-Coil Model
	Parameter Estimation
	Analytic T-Coil Model
	Inductor Synthesis
	Conclusion

	Test Structures
	Layout
	Measurements

	Floating-Point Arithmetic
	Number Formats
	IEEE 754
	Posits
	Machine Learning

	Fused Multiply-Add
	Introduction
	FMA Unit Design
	FMA Unit Verification
	FMA Unit Back-End
	Conclusion

	Hardware Arithmetic
	Multipliers
	Wallace Tree
	Dadda Tree
	Comparison

	Adders
	Carry-Select Adder
	Parallel Prefix Adders
	Carry-Lookahead Adder

	Verification
	Synthesis
	Methodology
	Results
	Conclusion

	Conclusion
	Summary
	Outlook

	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	References

