
Dissertation

submitted to the

Combined Faculty of the Natural Sciences and Mathematics

of the

Ruprechts-Karls University
Heidelberg

for the degree of

Doctor of Natural Sciences

put forward by

M.Sc. Computer Engineering Tobias Markus

Born in

Lingen(Ems), Germany

March 25, 2021

Circuit Design Automation for High Speed Interconnects

in Advanced Nodes

Advisor: Prof. Dr.-Ing. Ulrich Brüning

Date of oral examination:

Abstract

Design complexity has become is a rising issue in modern Mixed-Signal SOC designs.

Especially today’s Full-Custom flow lags automation. This thesis tackles this issue in

introducing design flows and methods to create expert knowledge-based parametrizable

schematics and layouts.

In this work, a seamless language bridge between python and SKILL was developed

to interface with the commonly used design environment. The skillbridge was open-

sourced and is widely used.

For the schematic a design flow is introduced which guarantees consistency between

system-level and implementation. In sizing scripts expert knowledge can be encoded.

These scripts are technology agnostic sizing scripts with high reusability.

For layout generation, reoccurring layout patterns were identified in industrial design

projects and implemented as parametrizable elementary cells. In an initial version, these

elementary cells were implemented with a commercial tool the Cadence PCell Designer.

Based on lessons learned an own constraint-based layout generation framework was im-

plemented, the XCell framework. The XCell framework offers interfaces to describe tool

and technology agnostic generators.

With this framework, the elementary cells and many more generators were implemented

and successfully used in larger designs. In leaf cells using elementary cells a huge part

of the including shapes are generated. When these shapes were sorted by category it

was shown that in the local category which includes the DRC critical layers 80% was

generated.

With this, a significant reduction in design time with reusable layout cells was achieved.

This effect is amplified because of all elementary cells being DRC clean and DFM friendly

and thus reducing design turnaround cycles.

Zusammenfassung

Design Komplexität ist eines der aktuellsten Probleme im Design von Mixed-Signal

SOCs. Der Full-Custom Designflow ist wenig automatisiert. Diese Arbeit führt einen

Designflow und Methodiken ein, um Expertenwissen in parametrierbaren Schaltplan und

Layout Generatoren zu implementieren.

Im Rahmen dieser Arbeit wurde mit der skillbridge ein nahtloses Interface zwischen

Python und SKILL entwickelt. SKILL ist die Programmiersprache, mit welcher sich

das meist genutzte Design Environment automatisieren lässt. Die skillbridge wurde als

open-source Projekt veröffentlicht und ist mittlerweile viel genutzt.

Für die Schaltplanphase wurde ein Designflow eingeführt, welcher Konsistenz garantiert.

In Dimensionierungsskripten kann Expertenwissen codiert werden. Diese Skripte sind

Technology unabhängig und wiederverwendbar.

Für die Layoutphase wurden in einem industriellen Design Projekt sich wiederholende

Layout Blöcke identifiziert und als parametrisierende Zellen implementiert. In einer ini-

tialen Version wurden diese als sogenannte Elementarzellen mit dem kommerziellen Tool

Cadence PCell Designer implementiert. Basierend auf Resultaten wurde gelernt und ein

eigenes Constraint basierendes Layout Generator Framework implementiert das XCell

Framework. Das XCell Framework bietet ein Interface, um technologieunabhängige Gen-

eratoren zu beschreiben.

Mit diesem Framework wurden die Elementarzellen implementiert und viele weitere

Generatoren. Alle Generatoren wurden erfolgreich in umfangreichen Layouts genutzt.

In Leaf Zellen, in welchen diese Zellen benutzt wurden, wurde ein Großteil der Shapes

des Layouts generiert. Wenn diese Shapes nach Kategorie sortiert werden, kann gezeigt

werden das DRC kritische Layer zu 80% generierte Shapes enthält.

Somit ist eine signifikante Reduktion in der Designzeit mittels der wiederverwendbaren

Layoutzellen möglich. Dieser Effekt wird weiter dadurch verstärkt, dass die Elemen-

tarzellen in ein DRC sauberes und DFM freundliches Layout resultieren und so De-

signzyklen reduzieren.

Acknowledgments

This thesis would not have been possible without the feedback and support of many

people.

I would first like to thank Prof. Ulrich Brüning who made this work possible, gave

insightful feedback and advice. Many thanks to my colleagues from the Computer Ar-

chitecture Group and Extoll GmbH for the valuable discussions, patient advice, and

constructive criticism.

Also, I would like to thank my friends, family, and Anne-Maria for always being there

for me, their interest in my work, and the encouragement.

Contents

1 Introduction 1

1.1 Motivation . 3

1.1.1 Handling Complexity in Modern Mixed-Signal SOCs 4

1.1.2 Full-Custom Design in Advanced Nodes 7

1.2 Problem Domain . 12

1.2.1 Design Productivity Gap . 12

1.2.2 High Speed IO . 15

1.2.3 Derived Challenges . 17

2 State of the Art 19

2.1 Mixed-Signal Design and Simulation . 20

2.1.1 Circuit Optimisers, Expert-Based Sizing 23

2.1.2 XModel and Cadence SMG . 27

2.2 Layout Generation Tools . 28

2.2.1 Berkley Analog Generator . 28

2.2.2 Fraunhofer Intelligent IP Framework 30

2.2.3 PCell Designer . 32

2.2.4 Review Layout Generator . 36

2.3 Cadence Virtuoso . 37

2.4 Overall Conclusion . 38

3 Improving Design Efficiency in Full Custom Design 41

3.1 General Approaches . 41

3.1.1 Semi-Custom and Full-Custom blocks and border 41

3.1.2 Consistency of Views . 42

3.2 Derived Methodology . 43

3.2.1 Schematic Generation . 44

3.2.2 Layout Generation . 44

Contents

4 Advanced Node Design 47

4.1 Bulk and FDSOI . 47

4.2 Electromigration . 49

5 Full Custom Schematic Generation 55

5.1 Skillbridge . 57

5.1.1 SKILL < − > Python translation 59

5.1.2 Usage Examples . 63

5.2 Hierarchy Generation . 66

5.2.1 Reference Design . 67

5.2.2 Design Organisation . 71

5.2.3 Structure Generation . 73

5.3 Leaf Cells Generation . 78

6 Layout Generation 85

6.1 Layout Approach . 88

6.1.1 Rising Layout Challenges . 89

6.1.2 Best Practises for a DFM Driven Layout 95

6.2 PCell Designer based Implementation of Primitive Cells 97

6.2.1 Vendor Transistor Pcell . 97

6.2.2 BASIC FET . 98

6.2.3 Transistor Array and Transistor Pair PCell 100

6.3 A constraint based layout generation approach 102

6.3.1 Side-Effects . 102

6.3.2 Technology Independence . 103

6.3.3 Programmable Shapes . 104

6.4 Xcells . 107

6.4.1 Constraint based Layout Generator Framework XCell 107

6.4.2 Technology Abstraction . 111

6.4.3 Layout Generators . 117

6.5 Elementary Cells Xcell Implementation 121

6.5.1 Pre Phase Elementary Cells . 121

6.5.2 Post Phase Elementary Cells . 128

6.6 Testing and Deployment . 131

7 Results 135

7.1 Skillbridge and Schematic Automation . 135

Contents

7.2 Layout Automation . 136

7.2.1 Elementary Cells . 136

7.2.2 XCells . 139

7.2.3 Comparison to PCell Designer and BAG 141

8 Conclusion 143

8.1 Future Work . 144

8.1.1 Schematic Generation . 144

8.1.2 Layout Generation . 144

List of Abbreviation

SOC System on Chip

DRC Design Rule Check

DFM Design for Manufacturing

HPC High-Performance Computing

EM Electromigration

AMSRF Analog, Mixed-Signal and RF

SERDES Serializer Deserializer

NRE Non-Recurring Engineering

EDA Electronic Design Automation

RNM Real Number Model

HDL Hardware Description Language

AMS Analog-Mixed-Signal

LVS Layout Versus Schematic

SOI Silicon On Insulator

FDSOI Fully Depleted Silicon On Insulator

PDK Process Design Kit

CIW Command Interface Window

EMIR Electromigration/ IR drop

IPC Inter-Process Communication

Contents

DCO Digitally Controlled Oscillator

PLL Phase Lock Loop

1 Introduction

Complementary Metal Oxide Semiconductors (CMOS) have shown an unbelievable in-

crease in transistor densities. The last decades resulted in smaller technology nodes and

System on Chip (SoC) Designs with more and more transistors starting from the early

80s. It follows an exponential growth over the last decades. Moore’s Law still stays and

leads to complex designs yielding around 30 Billion Transistors. These complex designs

are FPGAs (Versal VC1902, Ultrascale VU19P) and HPC processors like the AMD Epyc

Rome seen in figure 1.2.

The demand for computing power in High-Performance Computing (HPC), AI and 5G

1970 1980 1990 2000 2010 2020

Year

104

105

106

107

108

109

1010

N
u

m
b

er
of

T
ra

n
si

st
or

s

Processors

GPUs

FPGAs

Figure 1.1: Transistor count in complex SOCs until 2020, data from [1]

1

1 Introduction

2016 2017 2018 2019 2020

Year

0.25

0.50

1.00

2.00

3.00

4.00

N
u

m
b

er
of

T
ra

n
si

st
or

s
1e10

IBM z14

POWER9Xeon Phi

i7 Broadwell-E

IBM z14

Xeon Broadwell-E5 Xbox One X SoC

Ryzen 5 1600

AMD Epyc

Tegra Xavier SoC

A10 Fusion

GC2 IPU

A10X Fusion

Kirin 960

Snapdragon 835

Centriq 2400

A11 Bionic

Snapdragon 845
Kirin 970

Snapdragon 8cx

A12X Bionic

Kirin 980

AMD Epyc Rome

GP106 Pascal

Polaris 10

GP100 Pascal

Polaris 12 ”Lexa”

GP102 Pascal
Vega 10

GV100 Volta

TU106 Turing

Vega 20TU104 Turing

TU102 Turing

TU117 Turing

TU116 Turing

Navi 10

Stratix 10 SX 2800

Ultrascale VU19P
Versal VC1902

Figure 1.2: Transistor count latest SOCs, data from [1]

resulted in the thrive of more specialized hardware. Traditionally HPC Processors were

the leader in demand for high transistor density. The most complex designs today are

not only CPUs but also GPUs and FPGAs as seen in figure 1.1 and 1.2.

2

1.1 Motivation

GPUs are widely anticipated in HPC today and accelerate many applications. In con-

trast to HPC, AI applications with artificial neural networks do not need floating-point

double precision. This resulted in more specialized accelerators like the Google TPU for

smaller floating-point formats. Until today it is not clear which architecture is best for

inference machines so reconfigurable FPGA-based accelerators became popular.

With the increase of on-chip computing power high bandwidth interfaces in- and out-

puts (IO) are needed. To achieve the needed IO bandwidth high-speed full custom

SerDes Cores are utilized. This results in the complex Mixed-Signal Designs found to-

day. Other needed high-performance full custom blocks are high density and high-speed

SRAM based buffers, caches, and other special memory structures.

This increase in complexity in Mixed-Signal Designs have to be handled by the de-

signer. Automated approaches are needed to reduce the design time of these complex

designs to finish the design in a sufficient and market-driven time frame. Furthermore,

the design and mask cost of these chips have risen meaning the design must be first time

right to be economically viable.

1.1 Motivation

From an architectural view, most functional units of SOC designs are digital units. Ad-

ditionally, there is the effect that digital circuits scale well into smaller nodes, resulting

in a larger digital domain in advanced nodes with each node iteration. The digital part is

mostly designed in the Semi-Custom flow. One of the key parts of handling quantitative

complexity in Semi-Custom Designs is structuring the design and using parameterizable

blocks to maximize the re-usability. A high-level hardware description language is used

to further accelerate the design process. This part of the Semi-Custom Design is often

referred to as the frontend flow.

The backend flow starts with the synthesis step where the high-level design is trans-

lated into a netlist and then mapped to standard cells. Furthermore, floorplanning and

clocking are set as constraints in the design. With these constraints, the design can be

automatically placed and routed.

The Semi-Custom design flow is highly automated which makes it possible to develop

digital designs with a low turnaround time between designs and design changes. The

resulting circuitry will be a little slower and bigger than a full-custom design but the

design time is reduced due to the automation.

3

1 Introduction

Most of today’s designs are complex Mixed-Signal designs. Due to the high integra-

tion both Semi-Custom and Full-Custom design challenges are highly complex.

In this work, a Mixed-Signal design is defined as a mixture of Semi-Custom and Full-

Custom blocks. Where simple IO, SRAM, and STD-Cells are seen as the Semi-Custom

core elements. This may differ from its traditional definition of a mixture of analog and

digital but is a more accurate definition in terms of this work.

Nevertheless today Semi-Custom and Full-Custom designs are still treated differently.

Traditionally in Full-Custom designs, each transistor is sized manually and many de-

grees of freedom exist to achieve the best performing circuit and dense layout. While

the Semi-Custom approach is highly automated, the Full-Custom approach lags automa-

tion. Unfortunately, the automation does not only lag in circuit design and layout but

also in terms of automatically run tests and the verification approaches.

With smaller nodes and larger designs a lot has changed while the Semi-Custom method-

ology scales, full custom elements are often the limiting factor in terms of time to market.

This is further elaborated in the following. While the Full-Custom part architecturally

often is a small part of the design it looks different in terms of design time and chip area.

This is mainly due to missing automation, reuse, and the suffering from turnaround times

and a lot of iterations to achieve the design goal.

In the following two subsections, it will be evaluated how complexity is handled today

for large Mixed-Signal designs. For this both Full-Custom and Semi-Custom parts are

examined and how complexity changed with smaller nodes in the domain of high-speed

design.

1.1.1 Handling Complexity in Modern Mixed-Signal SOCs

As mentioned all of today’s largest designs are Mixed-Signal Designs. In this chapter, a

modern example of a modern Mixed-Signal SOC is given and discussed. From this SOC

the main challenges of today’s Mixed-Signal designs will be derived. Furthermore, it can

be observed how these challenges are tackled today.

A good example to demonstrate the complexity increase and the handling of it is CPUs.

In this case, an AMD Ryzen CPU is used to grasp how complex SOCs are today. Just

4

1.1 Motivation

Figure 1.3: AMD Zen Architecture Compute Core from [2]

let us dive into one submodule of the processing die to learn how the SOC is built.

The compute die is the actual processor core which can be seen in figure 1.3. There

are some key points which can be observed.

Most of the logic is synthesized with a coarse floorplan, resulting in clouds of standard

cells. Working with a coarse floorplan and letting the Semi-Custom flow deal with the

detail placements instead of the designer results in reduced design time. With the initial

Ryzen CPU, AMD reached a frequency of around 3GHz. While this seems on par with

its competitor a more detailed floorplan may result in better performance, the floorplan

can be worked on in each processor iteration.

The regular structures are memory or special vector compute units where higher perfor-

mance or density is needed. Some examples for such units would be cache structures,

the Branch Prediction Unit (BPU), or parts of the Floating Point Unit (FPU).

In the AMD Zen architecture, the next bigger structure is the Compute Complex (CCX)

which includes four compute cores as shown in figure 1.3 and structures for the L3 Cache.

During the Ryzen development, the technology node changed with each iteration. The

core was synthesized for 14 nm GF, 12nm GF and finally 7nm TSMC which is only possi-

5

1 Introduction

ble with low turnaround cycles and technology independent descriptions of the hardware.

Initially, the CCX cores were used inside a so-called Zeppelin module. The Zeppelin chip

includes 2 CCX cores and High-Speed IO cores to offer the needed bandwidth for the

total 8 compute cores. The Zeppelin Core was initially implemented in 14 nm in the

next update in the Zen architecture the Zeppelin as a module was ditched. From Zen2

on, two CCX cores and Infinity Fabric links make up a Core Compute Die (CCD). In

this architecture iteration, the CCD was implemented with a TSMC 7nm process. In

parallel with the Zen2 architecture, an IO die (IOD) exists which incorporates all needed

High-Speed IOs. This includes eight Infinity Fabric links, 128 PCIe Gen4 links, and eight

DDR4 channels. In the Zen2 architecture, the IOD was still implemented in 14 nm GF.

Up to four Zeppelin Cores are then together on one interposer which completes a Server

CPU with 32 Compute Cores. From Zen2 on the Server and Dekstop CPUs are build

up from a variable number of CCDs and one IOD. Both interposer configurations with

the Zeppelin modules on the left for the Zen architecture and the CCD and IOD config-

uration since Zen2 on the right can be seen in figure 1.4.

For Zen3 the IOD was ported to 7nm, while the CCD now only contains one CCX

which included double the compute cores. While for the CCD the total number of cores

or the cache did not change the eight cores now share the same L3 cache.

One observation is that a lot of Full-Custom Blocks are needed. This is mostly for

parts of the design that have to reach a certain density or performance for example all

memory structures and the needed High-Speed IO. The High-Speed IO is a complex

Full-Custom part of the design. AMD decided to separate the most critical parts of

the High-Speed IO on a separate die to separate this problem from the compute cores

which consist mostly of Semi-Custom parts. With this separation, AMD can indepen-

dently scale their critical Semi-Custom circuits on the CCD and their critical IO on the

IOD. Furthermore smaller individual die sizes result in higher yields in fabrication. This

makes this solution a perfect fit for AMD.

Nevertheless, this approach comes with disadvantages as higher latencies between chiplets.

AMD reused the old IO from 14nm. It can be seen that the scaling of Full-Custom High-

Speed IO is one of the main challenges. Other Full-Custom parts as memory structures

are normally scaled well into new technologies and are not as critical.

6

1.1 Motivation

Figure 1.4: IO Changes AMD Zen (left) compared to Zen2(right) [3]

1.1.2 Full-Custom Design in Advanced Nodes

To understand why Full-Custom High-Speed design has such a big impact on design

time the main challenges and how it changed from traditional Full-Custom design is

discussed in this subsection.

There are many challenges for the full custom domain in advanced nodes. The design

process changed from originally being about reaching the best possible figure of merit

towards a focus on DFM and manufacturability. Different causes and aspects of these

changes will be discussed.

Traditionally the circuit topology was one key factor to decide and various topologies

were possible. In advanced nodes, there are many factors especially in the domain of

High-Speed circuits which limit the transistor topologies possible. Every additional de-

vice added to a high-frequency node adds a parasitic capacitance thus resulting in a

slower circuit. Additionally, the available voltage headroom further reduces the choice

of specific circuit topology. In today’s modern processes the core voltage is sub 1V (i.e.

800mV in 22nm). The voltage ultimately limits the number of transistors that can be

stacked efficiently and thus further limits possible circuit topologies.

7

1 Introduction

Furthermore, the low core voltage results in most transistors in the design not being

in strong inversion but rather in moderate inversion. The typical square law model does

not apply anymore. To handle this modern table based dimensioning techniques like the
gm
id

method [4] are used.

Since the circuit topology is often quite simple the main focus is on reaching the specified

performance metrics for each corner. This becomes increasingly difficult as the variation

increases.

One of the reasons for the increased process variation is Pelgroms Law which states

that the threshold variation increases with smaller gate area [5]. The derived formula

can be seen below where the variation of Vt of a transistor is σV T and AV T is a constant

depending on the process, is increasing with smaller gate area W ∗ L.

σ2
V T =

A2
V T

2WL
(1.1)

Besides the threshold variation interconnect parasitics have become more prominent.

The coupling capacitance of the interconnect and substrate capacitance have become

the dominating factor compared to the gate capacitance. This means the layout has a

huge effect on the High-Speed circuit behavior and has to be taken into account or mit-

igated as early as possible. Furthermore also the process variations of these parasitics

have increased. Especially in multi-patterned metals and with the needed fill shapes

variation and parasitics are additionally increased.

As a result of the increased variation, digital calibration loops are introduced. A calibra-

tion loop implemented in a Semi-Custom manner translates the variation to an abstract

timing variation for the Static Timing Analysis (STA) and since these calibration loops

do not have to run with maximum frequency the timing variation can be simply handled.

These loops automatically increase the quantitative complexity since the digital control

values and measurements have to be converted in the analog domain and vice versa.

For this often ADC, DAC, or TDC structures are needed, which are an architectural

challenge and are constructed from unit cells.

A unit cell is a layout of a cell wherewith repetition of this one block the circuitry is

build up hierarchically. Typical structures are for example an ADC or DAC, wherefrom

a single bit a complete ADC/DAC is build up. These cells are often built for abutment

to achieve denser layout results.

8

1.1 Motivation

Figure 1.5: Increase of DRC complexity, from [6]

Complexity increases in layout in terms of geometry and DRC too and thus widely

differs from traditional Full-Custom design. As for the circuit topology and sizing the

degrees of freedom for the layout are also limited. In small nodes, each process step

in fabrication becomes more complex resulting in a lot of DRC and DFM (Design for

Manufacturing) rules. The design rules for the layout designer to handle have become

more complex. To understand the implications some examples are given in the next

subsection.

Design for Manufacturing

There are a lot of layout restrictions covered by the DRC rules to reliable produce a

modern chip.

The sheer amount of DRC rules significantly increased in the last years. The increase

of the DRC rules can be seen in figure 1.5, mind the logarithmic scale. Most simple

traditional DRC rules changed into multiple rules with prerequisites and dependencies.

An example is a minimum distance between two shapes of a specific metal layer which

originally was a one-dimensional rule. In modern nodes, these rules are multi-dimensional

tables depending on the parallel run length of both shapes and the width of the individ-

9

1 Introduction

Figure 1.6: DRC Example minimum distance between two shapes

ual shape. This case is visualized in figure 1.6 where two checks need to be done. Shape

a with its width and run length and for shape b with its width and the common run

length. Depending on this the allowed minimal distance is determined.

Another example shown on the left of figure 1.7 is complex via rules. The minimal

poly pitch (distance between two poly shapes) is an important scaling factor. Addi-

tionally, it results in a smaller drain-source distance and thus results in very compact

via structures since both drain and source have to be fan out to higher metals. In this

example, the valid via distance depends on several aspects. In the figure, three configu-

rations can be seen. The left configuration is a DRC error since distance 1 is below the

minimal via distance. This seems to be a traditional rule and easy to understand and

remember. This becomes more complex in the middle configuration where the via con-

figuration alternates on each stripe. Here the distance is above the mentioned minimum

via distance. But there is an additional rule where if more than 2 neighboring vias are

below another minimal distance, the via structure is not DRC clean. If only two vias as

in the configuration are below this threshold distance 3 and the other neighbors above

distance 4, the configuration becomes DRC clean as seen in the third configuration.

These rules make it difficult for the designer to implement the layout with one round

trip. It is not possible anymore to keep all these rules in mind while drawing the layout.

For this reason, oftentimes only a subset of these rules are used by the layout designer

often resulting in larger layouts.

Furthermore, due to this, the number of round trips needed for a good layout increases

a lot resulting in longer design times since each round trip in advanced nodes needs a

layout change to fix the DRC problem which gets more time-consuming. Additionally,

in nodes with many interdependent DRC rules, it is difficult for the designer to fix one

DRC issue without introducing new issues. Additionally, this becomes the case when

10

1.1 Motivation

Figure 1.7: DRC Example via distance

several modules will be used in higher layout hierarchy levels and be connected with

other modules on the system-level where new DRC issues may arise when best practices

were not full-filled. For unit cells, a different problem exists where the individual unit

cell will never be DRC compliant but only the whole structure plus special end cells.

Which is also challenging. Another problem is the DRC checker runtime which increases

with the number of rules and number of individual shapes.

Another aspect of DRC rules is density rules. Uniform density has become an important

factor for manufacturing in the chemical mechanical polishing (CMP) step. Reasons for

this are that the traditional density rules only state an overall maximum and minimum

density requirement which is not sufficient anymore. Accordingly, the rules became more

complex. Now there are additional density rules which apply to multiple different sized

density windows which are stepped in different sized steps over the layout.

On top of that, there are rules for density gradients between these windows and maximum

and minimum accumulated densities over neighboring layers. This further complicates

the number of rules and also the number of turn arounds for the layout designer.

Since these rules are based on window sizes they are only taken into account by the DRC

when the checked layout part reaches the window size. It is often the case that these

density rules are not applied on the module level but afterward when these modules are

put together on the system level. This results in a delayed notice of a DRC problem

which further increases the turn around time since the later an error is noticed the more

difficult it becomes to fix.

11

1 Introduction

To achieve an acceptable yield in advanced nodes additional mandatory rules are defined

often called DRC plus. These rules are no hard rules but they rather check the design

and give it an overall score. If this score is below a set boundary the manufacturer will

not fabricate the chip.

Turn around cycles caused in the late layout step in the full custom design are often the

limiting factor in terms of overall design time and time to market.

1.2 Problem Domain

From the above section, two main problem topics can be observed for one design pro-

ductivity and the High-Speed full-custom domain. The design productivity has to be

increased to keep the NRE cost low despite developing complex Mixed-Signal Designs

or IP.

Additionally from our example and the observations made in terms of the design pro-

ductivity gap, it can be shown that a second crucial domain is High-Speed full-custom

design which is often one of the most complex parts and the bottleneck in terms of time

to market.

In the following, the main challenges should be emphasized. Afterward, the challenges

for this work are derived.

1.2.1 Design Productivity Gap

The design productivity gap was first mentioned in an executive summary of the ITRS

1999. Furthermore, in their 2011 summary [7] the design productivity challenge is cited

as follows:

“To avoid exponentially increasing design cost, overall productivity of de-

signed functions on chip must scale > 2x per technology generation.“

One of the reasons why this problem arises again and has become a bigger problem now

is because it was long mitigated through the popularity and rise of IP Blocks. This

resulted in an immense rise of reuse through IP. This can be seen in figure 1.8. It should

be noted that the percentage of reuse is based on the silicon area and most macroblocks

as SRAMS or IO often are area intensive.

Even with this massive usage of IP, the design productivity gap is still an issue. In a

12

1.2 Problem Domain

business report from McKinsey about the semiconductor industry [9] the design pro-

ductivity gap is described as a destructive cycle together with reduced time to market

and product performance. To escape this development trend capabilities must be risen

without endlessly increasing design teams. Large teams are costly. Additionally, it is

difficult to find additional well-educated ASIC designers on the job market since it is a

very specialized field.

In the ITRS 2011 design chapter [7] the overall challenges are described. In general,

the complexity increase is separated in two types.

Silicon complexity describes the effect of the technology and interconnects shrink to-

wards Design Technology. The derived main challenges according to ITRS are device

parasitics, signal integrity (SI), design for manufacturing (DFM), and decreased relia-

bility. Where decreased reliability includes aging effects for example electromigration.

Some forms of silicon complexity were mentioned in the above subsection 1.1.2 especially

in terms of DRC.

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Year

0

20

40

60

80

100

P
er

ce
n

t
of

IP
R

eu
se

0

50

100

150

200

250

A
vg

N
u

m
b

er
of

IP
B

lo
ck

s

Figure 1.8: Growth in the Number of IP Blocks per Design data from [8]

13

1 Introduction

System complexity refers to Moores Law and the complexity increase through doubled

transistor density. This is further amplified by lower cost and shorter time-to-market.

Notable challenges for system complexity are reuse, verification and test, reliable imple-

mentation platforms, and design process management.

Design Productivity is defined as one of the cross-cutting grand challenges. In the

chapter, detailed Design Technology Challenges the rising issues are pinpointed more.

In the Design Methodology section, it is noted that especially an automated analog de-

sign process is still an open challenge and solutions rarely exist, while in the digital path

automation can be seen as the norm.

Further analog, mixed-signal, and RF design was emphasized (chapter Analog, Mixed-

Signal and RF Specific DT Trends and Challenges in short AMSRF) as becoming a new

bottleneck. Analog synthesis methods were predicted by ITRS reports in the past to

apply for 25% of all analog content by 2013 and saturate by 2020. In the 2011 report,

it is noted that this trend did not occur. There are advances in academia but AMSRF

design is still mostly manual. In 2011 the recommendations changed:

“ As a roadmap to analog synthesis has been unsuccessfully placed on the

agenda for decades, we should simply let go of the goal of a digital domain-like

synthesis process and set more realistic goals.“

Reasons for this are the difficult constraints and trade-offs which have to be made in

AMSRF design. These tradeoffs and resulting goals are hard to automate as these often

rely on experience and knowledge of the component and interaction between all corre-

sponding components.

This does not mean that automation approaches for AMSRF are completely dropped

from the focus. The recommendations are shifted towards a more interactive design with

semi-automatic approaches.

Furthermore pushing the digital boundary and tuning, calibration through digital logic

should be preferred to minimize AMSRF blocks.

14

1.2 Problem Domain

1.2.2 High Speed IO

I/O performance has become one of the main bottlenecks of modern computing. This is

mainly due to the pin pitch of semiconductors and with it the limited number of pins. To

overcome the pin limitation SERDES (Serializer Deserializer) functions were introduced,

which have become one of the most important building blocks and core technology for

computing. Today High-Speed IOs exist for almost every high bandwidth application.

2000 2005 2010 2015 2020 2025

Year

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

L
in

e
ra

te
in

G
b

p
s

JESD204JESD204A

JESD204B

PCIe 2.0

PCIe 3.0

PCIe 4.0

PCIe 5.0

PCIe 6.0

USB 2.0

USB 3.1 Gen 1

USB 3.1 Gen 2

USB 4 Gen3

HBM

HBM2

HBM2e

HMC

1GEth

10GEth

25GEth

400GEth

SATA

SATA2

SATA3

SATA3.2

Ethernet

JESD

USB

HMC

SATA

HBM

PCIe

Figure 1.9: Defined line rates of different standards, data from [10], [11], [12], [13], [14],
[15], [16], [17], [18]

15

1 Introduction

SERDES data rates have increased in the last years with up to 128 Gbps. Some SERDES

line rates for different applications can be seen in figure 1.9. As mentioned SERDES are

used in many ASICs today in 1.9 some standards and corresponding line rates are listed.

Their applications range from storage (HMC, HBM, SATA), network (Ethernet), data

converters(JESD204), internal buses (PCIe) to universal buses (USB).

One aspect to notice is that the data rate of a SERDES is one of the most important

and distinguishable specifications. SERDES data rates are mostly driven by standards.

It can be observed that over the years and with iterations of these standards the data

rate rises.

There is an exemption for this in the plot which is JESD204 and JESD204A where the

line rate stayed the same. The reason for this iteration of the standard is that it intro-

duced support for multiple lanes [12].

For Ethernet, it should be noted that not one standard but the highest line rate used

today in the standard family was shown. Different Ethernet speeds are implemented in

several sub-standards for different applications and different line rates. The given dates

are corresponding to the introduction of the Ethernet standard family. This does not

mean that at this time the shown line rate was in use. Ethernet is a standard where the

SERDES line rates and the corresponding costs are a trade-off between the density of

connectors thus resulting in the use of many line rates depending on the application [17].

Most iterations of a standard double the data rate in their next generation. One exempt

is the maximum line rate of SATA3.2 which in its maximum mode is called SATAe.

SATAe implements a two-lane PCIe3.0 over the SATA connector hence the deviation.

It should also be noted that USB3.0 was renamed to USB3.1 Gen1 and that both are

equivalent.

It can be observed that SERDES Cores for different standards have to fulfill vastly

different specifications. This is not only the case for data rates as shown in the plot.

Depending on the application different channels have to be driven. Their main distin-

guishable difference is the channel length. This can range from an ultra-short channel

as for HBM. Here a storage ic is connected to the ASIC on the same Interposer. In

contrast, is Ethernet where depending on the sub-standard the channel becomes long.

Channels may be a backplane PCB, a copper cable, or an optical fiber.

This means there is not one SERDES Core to fit them all. Developing one SERDES

core for one purpose is often not economically viable since the NRE costs are high and

16

1.2 Problem Domain

the potential customers are limited.

One way to solve this problem is SERDES cores which support multiple rates. For

standard families, this compatibility to older generations can often be achieved by using

frequency dividers. To cover other standards frequency tunable oscillator and circuitry

are used. Multi-Gigabit Transceivers are economically great since NRE costs only apply

once while multiple standards can be covered. But this comes with area and performance

penalties. Since all circuits have to perform with the higher bandwidth and wider tuning

mechanisms are needed to cover all rates.

Another point that can be noted is that these SERDES IPs since they have become

fundamental building blocks are needed in almost all technology nodes. This also in-

cludes the most modern ones. The porting into these new technology nodes is almost

always linked with big NRE costs since especially for the full custom parts porting is a

cumbersome and mostly manual process.

1.2.3 Derived Challenges

The derived challenge from the design productivity gap is to increase design efficiency.

With the domain of High-Speed design in mind, this can be achieved in either increasing

reusability or in reducing and eliminating potential error sources early, to reduce cycles

in the development.

From the High-Speed IO domain, it can also be seen that reusability is needed but

additionally a parametrizable design making it possible to reuse schematic blocks with

different specifications. Furthermore, High-Speed IO needs often to be ported into other

technology nodes so the approaches should be technology agnostic. Another challenge

is that in High-Speed IO design performance in terms of noise, operating frequency, or

area is not a possible trade-off.

To reduce error sources each automation step should be in correlation with a continuous

top-down flow and consistent. The automation tools should be used in an interaction

with the circuit/ layout designer which means the usage should be simple to avoid errors

and to reduce the entry barrier to use the tools. Furthermore, layout and schematic

automation techniques should incorporate best practices, represent expert knowledge,

and thus further eliminating error sources for the interacting designer.

17

1 Introduction

� increase reusability

– schematic and layout generation

– no trade off of performance

– technology agnostic approaches

� reduce and eliminate error sources

– simple usage

– correct by construction

– implement best practises

– embed in a continuous top-down flow

In the next two chapters first the current State of the Art and how these tools tackle the

above-described challenges is examined. Their approaches will be evaluated and their

limitations will be shown. Afterward, the new approach of this thesis will be discussed.

18

2 State of the Art

To keep up with the rising design complexity, the design productivity must rise accord-

ingly. This chapter gives a short introduction to electronic design automation (EDA)

tools and their state of the art.

Where in the 70s rubylith operators cut out the chip design by hand (figure 2.1), in

the 80s Computer-Aided Design (CAD) was introduced to catch up with Moores Law.

These tools developed into the EDA Tools we know today which raised the level of au-

tomation further (figure 2.2). EDA vendors release new tools and features each quarter

to raise the design productivity but still cannot keep up with the rising complexity.

Design productivity has become a prominent Hot-Topic and the focus of research again.

One of the most noticeable research programs is the DARPA Silicon Compiler consisting

of two research projects (IDEA and POSH). The DARPA Silicon Compiler belongs to the

Electronics Resurgence Initiative (ERI) and is funded with 100 Million US$. The goal

of Intelligent Design of Electronic Assets (IDEA) summarized in its kick-off presentation

is: [21]:

Figure 2.1: Rubylith operators [19]
Figure 2.2: Cadence Virtuoso [20]

19

2 State of the Art

“IDEA will create a no-human-in-the-loop hardware compiler for translating

source code to layouts of System-On-Chips, System-In-Packages, and Printed

Circuit Boards in less than 24 hours.“

In this chapter, some State of the Art methodologies and tools are introduced. In the

first subsection initially, the general design flow for Mixed-Signal design is described.

The focus of this thesis for design flows will be on the full custom part. Some state of

the art tools are discussed which are meant to raise the automation in circuit sizing for

simulation and verification.

Afterward, there will be a section about different layout generation tools. Three dif-

ferent state-of-the-art tools will be described and an overview will be given. These are

the Berkley Analogue Generator, Fraunhofer Intelligent IP, and the PCell Designer from

Cadence.

Cadence Virtuoso is introduced and some key concepts of this framework since it is

widely used and it is possible to integrate own tooling.

In the last section, a short review and discussion regarding the state of the art tools

and research are given. While the ERI projects have in general a similar focus several

aspects are left out. Some of these issues will be covered by this thesis, which will be

discussed in the last section of this chapter.

2.1 Mixed-Signal Design and Simulation

While tooling is one aspect another aspect is the design flow which defines the general

approach in which way the automation tools are used. A tool can support specific design

flows or cannot fit. To understand how tools fit into a specific flow some state of the art

design flows are introduced.

In Semi-Custom design, a Top-Down flow is used. This means the design starts from its

specification, afterwards the system-level model is designed from which the implemen-

tation is started.

In Full-Custom design, a Bottom-Up approach was traditionally used. In this approach

individual blocks on transistor-level are designed and verified. Afterward, they are con-

nected to a top-level to meet the specification.

These approaches collide in Mixed-Signal design. In a large system, the top-down ap-

proach is preferred. From the system level specification, sub-blocks can be derived and

20

2.1 Mixed-Signal Design and Simulation

Figure 2.3: Different Design Flows [22]

possible errors can be found early and are not as time-consuming as later in the design

process. Designing the Full-Custom part of the chip Bottom-Up in a big Mixed-Signal

design is not suitable. Errors on the system level are caught too late and the chance is

high that the needed system specifications are not met.

The workflows recommended for Mixed-Signal design by [22] together with Cadence are

categorized as Analogue-Centric, Digital-Centric, and Concurrent Mixed-Signal Designs.

The different aspects for each approach are shown in figure 2.3. It is stated that the

flow should be chosen based on the size of the Full-Custom and Semi-Custom design

partitions from big A (big analog part) to big D (big digital part). If the design has no

or little semi-custom parts an analog-centric Bottom-Up design flow is recommended.

Accordingly, if the digital part dominates the digital-centric Top-Down flow is recom-

mended. For design where the analog and digital part is equally complex a concurrent

flow is introduced and recommended in [22].

As mentioned in chapter 1 the Semi-Custom part of complex designs is becoming larger

with each iteration. Thus according to [22] a digital-centric flow is most suitable for these

designs. An alternative approach to the digital-centric Top-Down flow was implemented

21

2 State of the Art

Figure 2.4: Digital-Centric Top-Down Designflow from [23]

with [23] and is since used at the Heidelberg University/ CAG. This flow can be seen

in figure 2.4. One of the key differences of this modified flow is that it is a very strict

Top-Down Flow.

In this flow the system-level description has to be done first. This system-level module

is structured and implemented to a structural/ functional complete model. Each leaf is

implemented in a functional Verilog description. Afterward, the analog leaf cells are im-

plemented as RNM models which implements the abstracted behavior of the full custom

block. In chapter 6 a reference design is introduced and the module and file structure of

such an approach is shown in detail.

This way an executable system-level exists as early as possible. From this structural com-

plete system-level, the digital cells are described with an HDL and developed into syn-

thesizable Verilog which uses the well-known Semi-Custom implementation flow. From

the Full-Custom structure and the leaf cells, schematics and schematic templates for the

analog implementations are generated. The structural generation of the schematics is

done with custom scripting.

A leaf cell is a functional block which is the leaf in the tree a structured design spans.

In this approach structure and function in design modules are strictly separated.

The schematic templates are only a black box where the inputs, outputs, and inout-

22

2.1 Mixed-Signal Design and Simulation

put of the analog block are given.

The transistors or passive blocks missing have to be implemented. The leaf cells derived

from the system level have to be implemented according to their resulting specification.

Since the schematics and schematic templates as black box are generated automatically

this flow guarantees a structural consistent implementation and system level. When

all full custom blocks are implemented the abstract views, physical description (.lef),

and timing information (.lib), are generated for the semi-custom flow to be used as

macroblocks. This flow is used in this thesis and especially for full-custom paths some

extensions and redesigns were implemented to automate them further. This is described

in detail in chapter 6 and 7.

2.1.1 Circuit Optimisers, Expert-Based Sizing

The generation of structural schematics is a good step towards automation but there

are still time-consuming tasks. One of them is the modeling of these RNM leaf cells

and sizing of the leaf cells. For the implementation of the leaf cells, two tasks have to

be done by the designer. Initially, a circuit topology has to be chosen. Afterward, this

chosen topology has to be seized accordingly. For circuit sizing tools exists which will be

introduced in the next paragraphs and afterward evaluated. To automate circuit sizing

two general approaches are often proposed.

Optimizer-based approaches simulate a model i.e. for the highest accuracy Spice or

FastSpice of the circuit and try to optimize given parameters to satisfy the given speci-

fications.

In ADE Assembler the Simulation Environment from Cadence optimizers are included.

To perform optimization on circuits the parameter space for the optimizer to work on

has to be defined. Furthermore, a circuit specification has to be set up to define a goal

for the optimizer to achieve.

As an example we take the CML Buffer in figure 2.5. It consists of the differential pair

(N0, N1), the passive load (R0, R1), and the current mirror (N2). Additionally, a voltage

supply is set up which depending on the corner offers 720mv, 800mV, or 880mV. Inputs

for the differential pair are pulse sources with a frequency of 10GHz and an amplitude

of 300mV. The voltage offset is V DD − 300mV . The differential output is loaded with

two small capacitors C0 and C1 with 10 fF.

23

2 State of the Art

Figure 2.5: CML Testbench as minimal Example

Since the size of the parameter space largely defines the runtime, the goal here is to

reduce the parameter space as much as possible in this example. The layout approach at

CAG is to work with a handful of standard finger widths for the transistors to achieve a

more uniform layout. More about this approach can be found in chapter 6. Furthermore,

there are also common transistor lengths for High-Speed diff pairs (minimal length) and

standard current mirrors (in this example 120nm). We use these values to reduce the

parameter space for the optimizer. The only variable parameter for the transistors is

the number of fingers and furthermore, it is defined that both transistors of the differ-

ential pair are matched. As passive load poly resistors are used with a fixed width and

a parametrizable length M0, M2 and M3 can vary from 1-25 fingers while M1 can vary

from 1-50 fingers the length of the resistor is set between 1µM to 2µM with a possible

step size of 0.1µM .

With the parameter space defined a testbench has to be set up and specifications have

to be defined. The simulation result in ADE Assembler can be manipulated with Cal-

culator/Ocean expressions from the simulation to transform simulated waveforms or

values into our desired measurement metric. ADE Assembler also offers an interface to

set specifications for the simulation results or Calculator/Ocean expressions. These are

then used by the optimizer. For this example depicted in figure 2.5 the output amplitude,

24

2.1 Mixed-Signal Design and Simulation

slew rate, and power are used as a specification which then will be used as constraints

by the optimizer. The ADE Assembler environment offers to implement different types

of specifications namely open-ended, closed-ended, a range specification, and a tolerance

specification. Closed-ended specifications are for example lesser or greater than specifi-

cations as in this example the amplitude and the slew rate. Open-ended specifications

are minimize or maximize. In our example, the power should be minimized. The value

is given there is a value that should be reached but the optimizer continually try to

improve this even when the value is met.

With this and the corner setup, everything is ready for the optimizer. Each run iteration

tries to optimize all defined specifications overall defined corners. For an optimizer run,

a stop criteria must be defined this can either be until the specification is met, for a de-

fined number of runs, or a defined runtime. For open-ended specification, the number of

runs or defined runtime criteria is more common since it gives the optimizer additional

steps to optimize these constraints. A specific number of runs or a specific run time

makes sense when either it is unknown if a result can be found or if open-ended criteria

exist. In this minimal example, it was configured to stop when the specification was

met. This can be seen in figure 2.6. The number left in the table is the run iteration.

Iteration 61 found a solution and thus the stop criteria were fulfilled. All other results

are the nearest 5 found by the optimizer.

During this minimal example, some observations and notes can be made. Bigger param-

eter spaces will increase the runtime and thus this becomes one limit for the optimizer.

For this reason, the parameter space should be limited as far as possible. To define a

reasonable parameter sweep for the individual parameters a good knowledge about the

circuit behavior has to exist. This holds also true for the definitions for the constraints

since if they are impossible to reach. If the optimizer cannot find a solution depending

on the stop criteria this results in either infinitive runs which have to be stopped by the

user or maximum runs/ runtime and no solution.

In conclusion, this is for a global optimizer approach often the problem since if the circuit

is known well an initial solution can be calculated and the global optimizer is not needed.

There exist different ADE optimizers and with an initial solution, a local optimizer or

an optimize overall corners can be run alternatively which will additionally reduce the

runtime.

25

2 State of the Art

Figure 2.6: Overview of the optimizer run best 5 results

The runtime issue of the optimizer sizing approach can be minimized. The overall

runtime can be reduced by reducing the parameter space or losing up the constraints.

Another approach is to change the underlying model on which the optimization is run.

In this minimal example, a Spice simulation is run within ADE Assembler more abstract

simulations can be run i.e. Verilog-A or SystemVerilog. These often do not map to the

transistors and thus do not help with sizing but may help to find higher-level specifica-

tions.

Another approach is expert-based generators where expert knowledge is decoded and

made executable to generate and size circuits. While this approach seems straight for-

ward there seem to be no commercial solutions helping to implement this approach.

What is needed for this approach is a sophisticated way to implement the expert knowl-

edge into a parametrizable executable and an interface to the schematic. While commer-

cial tools for this seem to not exist there are several implementations for these generator

approaches in academia.

One of them is the Expert Design Plan Language which is developed at the RBZ [24].

In [24] it is discussed that one of the main problems with traditional optimizer approaches

besides the runtime is the introduced ambiguity. It is not possible for the designer to

transparently understand the reasoning behind the optimizer’s found solution. Fur-

thermore as mentioned a detailed knowledge of the system is needed to constraint the

optimizer and reduce the parameter space. The argument in [24] is that the designer can

use his expert knowledge to describe the circuit behavior in a generic way. For this, the

Expert Design Plan was developed which consists of the EDP Language and the EDP

26

2.1 Mixed-Signal Design and Simulation

Player. The EDP language is a domain-specific language to implement design strategies

and expert knowledge. The task of the EDP Player is to replay the formalized plan with

different parameters and from them generate the schematic views.

In [24] some application examples and results with EDP for traditional analog circuits

are given.

2.1.2 XModel and Cadence SMG

Another time-consuming aspect is the modeling of the leaf cells especially in the Top-

Down flow from [23] modeling the leaf cells. This achieves several important tasks. With

these, a first quite accurate executable system exists. From this executable system level,

the leaf cells can be updated to meet the system level specifications. When these are

met the specifications for the leaf cells become clear. This approach prevents additional

turnaround for the implementation since the specification is known and accurate at this

point. For RNM or Verilog-AMS modeling some tools exist one of them is Cadence

Schematic Model Generator (SMG) another commercial tool is XModel we will discuss

both of them and if they will fit into a Top-Down design flow.

Cadence SMG provides a graphical user interface to help build a model from an ex-

isting schematic. SMG helps to keep schematic and model interfaces consistent which is

achieved by creating in and outputs for the model from the schematic. The model gener-

ation is done via the schematic editor where pre-existing model elements can be chosen

from a building blocks library. These models are either implemented as Verilog-AMS,

wreal, or SystemVerilog. To achieve a high accuracy between these generated models

and the schematic implementation simulation results can be mapped via a table model,

to the generated RNM/AMS model.

The main issue with this approach is that it is tightly fitted to an analog Bottom-Up

approach. The predefined models limit the freedom to custom fit the models for the

specific needed behavior. It is important to set a specific abstraction layer to create fast

models which accurately model the important needed metrics. Since Virtuoso Advanced

M 18.10 (2018) SMG is no longer supported and discontinued.

Another approach is given by the company Scientific Analog [25] they offer several tools

to automate and accelerate analog modeling.

Their core technology is XModel which is an extension for SystemVerilog to simulate

analog blocks in an event-driven simulator. Scientific Analog claims that their XModel

primitives achieve 10x the performance increase compared to standard SystemVerilog

27

2 State of the Art

RNM models.

Glister is a tool comparable with Cadence SMG which can generate analog models via

a graphical interface. For this similar in SMG predefined building blocks are used. In-

difference to SMG these models do not map to Verilog-AMS or a SystemVerilog RNM

model but their XModel primitives. An additional benefit brings the tool modelzen

which can automatically extract a circuit topology from a schematic netlist that fits a

model to it and finally outputs an XModel.

While the approach for XModel is interesting it has to be compared to what the actual

speedup of them for abstract RNM models as used in the leaf cells is and if it is possible

to use them in the same way. Modelzen is a great approach to create an XModel from a

circuit but in a strict Top-Down approach, this circuit does not exist yet. Nevertheless,

this could be used to create a more accurate model on which a circuit optimizer might

operate to speed up the simulation for these optimizers.

2.2 Layout Generation Tools

The actual layout of an analog design has become a very cumbersome and repetitive

task since so many additional DRC and DFM rules have to be taken into account in

advanced nodes resulting in more iterations over the layout. Due to this, the analog

layout needs increased design time. There are some approaches to automate parts of the

analog layout. In this section, a commercial approach is introduced the Cadence PCell

Designer, and an academic approach with the Berkley Analog Generator.

2.2.1 Berkley Analog Generator

The Berkley Analog Generator BAG [26] is a framework for analog and Mixed-Signal

generators. The aim for BAG is to simplify coding expert knowledge to generate

technology-independent, parametrizable schematics and layouts. The BAG framework

is implemented in python and can be run with jupyter notebook for exploration-based

development.

In figure 2.7 an overview of the general BAG Framework is given. The BAG Genera-

tor executes a specific Generator. This specific generator design executes the following

in order the schematic creation where the circuit architecture must be chosen and a

parametrizable schematic must be implemented. This is based on technology inde-

pendent primitives provides by the BAG framework. From this, an initial technology-

independent testbench is set up and stub circuits are generated. These circuits are

28

2.2 Layout Generation Tools

Figure 2.7: BAG Framework Overview [26]

implemented manually by a designer with an initial sizing until testbench criteria are

met.

This process can now be replicated by the BAG. The resulting code constructs should

also be used in the final generator.

From this, a layout exploration phase follows and the parametrized layout must be im-

plemented. For this similar to the schematic generator first, an initial layout code is

implemented. Afterward, with an iterative approach, the code is completed. Further-

more, DRC and LVS can be run automatically. Here the parasitics are available and

the schematic can be simulated again with back annotated parasitics to check if the

specifications are still met.

For all this, the BAG offers helper classes and abstract methods. Additional BAG pro-

vides interfaces to external tooling. As helper classes, a primitive device exists to help

with technology-independent characterization. Furthermore to help with common lay-

outs a helper class for variable arrays and trees exists and for a standard cell-based

layout style.

A technology-independent generator depends on the developer of the generator while

BAG offers an interface for technology-specific metrics. The developer has to use these

interfaces to create a technology-agnostic generator.

The BAG was used successfully by Berkley in a DCDC regulator and an LC Oscil-

lator in CMOS 65nm which are given in [26]. Furthermore, perpetrations have been

made to easily migrate these designs to CMOS 40nm.

29

2 State of the Art

BAG was released under the MIT license at Github but was further developed into

BAG2 [27]. The main problem with the original BAG was the circuit verification frame-

work which limited the maintenance and reusability of generators. Furthermore, the

original BAG used Synopsis PyCells which are not supported for many modern tech-

nologies.

BAG2 adds a universal AMS circuit verification framework and implements two new

layout engines which allow technology independence in a more sophisticated way. BAG2

was used to implement more complex generator examples as a SAR ADC and a SerDes

transceiver frontend. BAG2 has successfully been used in several technology nodes as

TSMC 28nm, 16nm and GF 45nm RF-SOI, 22 nm FDX, and ST 28nm FD-SOI.

The design flow of BAG2 is similar to BAG but provides additional API features for

the schematic generation i.e. manipulating pins, instances, and wires. In parallel, a

testbench can be generated with the universal verification framework which decouples

the testbench description from the specific circuit to be able to reuse and maintain more

general testbenches. For this clear interfaces are defined over which the testbench can

be described in a tool-independent manner.

For the layout generator, one of the new layout engines can be chosen. The XBase

layout engine provides abstract python classes which encapsulate common layout meth-

ods and specific primitives to separate them from the technology-independent generator.

Furthermore, XBase supports the layout styles from the original BAG.

The other new layout engine is laygo (LAYout with Gridded Objects) which is meant

to place layout elements on grids and uses relative information instead of absolute co-

ordinates. Different from XBase laygo does not use programmed primitives but rather

manual layouted ones. Process independence is given by assuming that the manual base

layouts are created with the specific grid in mind.

In figure 2.8 the result of using both laygo and XBase for time-interleaved SAR ADC

core is shown it was generated for TSMC, ST, and GF.

2.2.2 Fraunhofer Intelligent IP Framework

The Intelligent IP Framework [29] is developed at Fraunhofer Institute for Integrated

Circuits. It is another academic procedural generator approach for analog circuit design.

30

2.2 Layout Generation Tools

Figure 2.8: Different generated TISAR ADC layouts [28]

The framework is based on python and offers an object-oriented API for the user to write

generators. IIP generates all views needed in a design flow. IIP is a proprietary tool

and thus first-hand experience could not be made. The analysis in this subsection and

the review is based on publications made for IIP.

The IIP implements a Technology Abstraction Layer (TAL) to enable highly generic

generators. These generic Generators should be usable in other design projects and also

other technologies.

Another important part of IIP is the abstraction of design environments allowing the

generator to interface with different tools.

Generators are implemented as a class that inherits some methods and properties. From

inheritance, some basic methods exist which have to be implemented. With param spec()

parameters are defined. Next param check() allows considering interdependencies be-

tween parameters. Several more methods exist to prepare the values for the generator

and to draw the schematic, layout, and symbols.

In [29] the generator was successfully used to implement different current steering digi-

tal to analog converter in several technologies i.e. 180nm bulk and 28 nm FD-SOI. The

design was taped out in 28 nm.

31

2 State of the Art

Figure 2.9: Pcell internal structure master, submaster from [30]

2.2.3 PCell Designer

A different visual programming based generator approach is the PCell Designer from

Cadence.

PCells are the parametric cells inside Cadence Virtuoso which are based on the SKILL

programming language. Both PCells and SKILL are proprietary. Still, PCells have be-

come a de facto standard and are included in all PDKs.

Alternatives are offered by Synopsis with the PyCell environment for which PDK views

from some big foundries exist.

Traditionally to create a PCell SKILL can be used. A detailed introduction for this

can be found in [30]. The special SKILL method pcDefinePCell creates the PCell.

pcDefinePCell creates the so-called superMaster cell which is an instance with the de-

fault parameters of the PCell as seen in figure 2.9. The compiled SKILL code is then

attached to the superMaster cell. If an instance is created from the PCell, the environ-

ment first checks if the configuration exists if it does not exist a submaster is generated.

Instances with the same configuration will share the same submaster which is a derived

copy from the superMaster.

32

2.2 Layout Generation Tools

1 pcDef inePCel l (

2 l i s t (ddGetObj (”myLib”) ”myCell1” ” layout ”)

3 l i s t ((w 0 . 2) (l 0 . 1)) ; ; Formal parameters o f PCell

4 l e t ((cv)

5 cv=pcCellView

6 dbCreateRect (cv l i s t (”Metal1” ”drawing”) l i s t (0 : 0 w: l))

7) ; l e t

8) ; pcDef inePCel l

In the above listing, a minimal PCell example implemented in SKILL can be seen. As

the entry in line 1, the pcDefinePCell method is used. The first parameter of the method

in line 2 is the library cell name and cell view where the superMaster will be generated.

The second parameter in line 3 is a list of keyword value pairs which will become the

parameters and default values of the PCell. The last parameter beginning from line 4

to 7 is the generator code that will be executed.

pcCellView in line 5 receives the cellview on which the generator will work. In line 6

a rectangle is generated on layer Metal 1 starting at origin (0,0) with the parametrized

width and length.

The PCell can now be compiled and used.

There are several limitations for PCell code there are solely methods allowed from the

db, dd, cdf, rod, and tech subsystems and the pc Skill methods since the translators who

convert the code to a layout can only operate on these functions. These translators are

called for example during netlisting of a schematic including a PCell or for streamout

during a DRC or LVS run.

The allowed commands are primitive layout/parameter/common data format interfaces

and with this writing complex PCells in SKILL needs a lot of code to achieve a high-level

description for generators.

A high-level description for PCells is offered by the PCell designer. Here additional

more abstract methods to query and to create shapes are added. Furthermore, the

PCell Designer offers an object-oriented approach. In the PCell Designer the PCells are

programmed graphically.

In figure 2.10 the PCell Designer Environment is shown. The PCell Designer can only

be run within Virtuoso and presents itself with three main windows. The command

33

2 State of the Art

Figure 2.10: PCell Designer environment overview

window on the left where the graphical programming takes place. A layout preview

window where this code can be live visually debugged. And another layout window here

on the bottom right from which manual shapes or instances can be imported into the

command window.

A typical workflow to create a PCell with the PCell Designer can begin with some

initial manual drawn layout shapes or instances. These can be imported into the PCell

Designer command window and later be manipulated. The Parameters for the PCell are

given over an extra menu entry where different data types, alternative descriptions, and

a range for a value or a set can be given. In the main window, the generator script is

build up for this different graphical representation of commands, loops, and conditions

can be set up.

One concept which helps with efficient querying of shapes and preparing new ones is

so-called geo expressions. The idea here is to use geometric expressions which can be

nested to create a selection or shape from which can be drawn or which can be used as a

reference. An example of such a geo expression which gets the source shapes of a PCell

transistor instance over a vertical metal shape on metal 3 is shown in figure 2.11.

The geo expression first selects the needed instance I0 seen at a) afterward with the

34

2.2 Layout Generation Tools

Figure 2.11: PCell Designer example geo expression

descent command at b) all shapes inside the instance are queried. These shapes are

filtered by command c) a specific terminal in this case s for shape. All source terminal

shapes are now selected this does not only include the metal terminals but also some

active shapes. To further filter these with d) the wanted layer metal 1 is selected. In

parallel we select with e) our metal 3 stripe we want to connect to. In f) we combine

both selections with an intersecting set.

In the graphical interface methods of a PCell can be defined and it is possible to let

PCells inherit from each other. On top of the standard skill interface additional more

powerful methods are given to the user to efficiently create vias, manipulate PCell in-

stances and their parameters and draw more complex shapes.

A more elaborate example of how PCells are designed with the PCell Designer is given

in chapter 8 where one approach for layout generation is discussed in which the PCell

Designer was used. The above-shown geo expression is from one of these PCells and it

is further used to create vias over the resulting list of geo shapes.

An additional feature of the PCell designer is that it is also possible to create so-called

AppCells, which are not compiled as PCells but rather a way to graphically write SKILL

35

2 State of the Art

programs working on layout, schematic, or symbol views without creating PCells.

2.2.4 Review Layout Generator

Each layout generator discussed here has some advantages and disadvantages. While

the BAG is an open-source project all other examples are proprietary. Out of the pro-

prietary generators the Cadence PCell generator could be tested since the University of

Heidelberg is a member of the Cadence Academic Network Program. Fraunhofer IIP

was evaluated based on their publications.

While the BAG2 generator framework yields good results as shown in [28]. The main

problem of this approach is on the one hand a very complex setup where many technol-

ogy descriptions have to be created. The BAG and its layout generators and tutorials

are distributed over several GitHub projects, where several are legacy and some not

supported anymore. The general overview of the project is difficult to grasp since the

online documentation is also not up to date.

On the other hand, the primitive cells needed for the XPath layout engine are technology-

dependent and have to be set up for each technology. These primitives for example

transistor primitives can be very complex. Especially in advanced nodes, shorter tran-

sistors have a lot of additional rules on how they can be drawn. This includes additional

dummy structures, different drain-source distances for several lengths, and more. In [31]

BAG was used to automate some layout aspects of a DDR PHY Design. Here only

transistor sizes above 70 nm were implemented in a 22nm technology as primitive to

keep the complexity in check since at this size no additional rules are applied anymore.

Another aspect is the integration into a Top-Down Mixed Signal Flow where the ana-

log implementation is derived from the system-level model. While it is mentioned that

BAG will integrate well in Mixed-Signal design the approach for this is a very separated

approach. At Berkley Chisel is used as a hardware description language for digital logic

and python with the BAG for the full custom approach. Both are treated separately

and do not provide a consistent flow.

The PCell designer is a generator approach that seems to eliminate the troubles of

writing a PCell purely from primitive Skill functions and embeds well into the layout

step since their PCells can be integrated easily. A more detailed analysis of the PCell

designer and its disadvantages can be found in chapter 6 where one of the approaches

36

2.3 Cadence Virtuoso

of this work is based on PCell generated with the PCell Designer.

2.3 Cadence Virtuoso

Cadence Virtuoso is one of the major tool environments for Full-Custom design. The

Virtuoso design environment incorporates a collection of tools needed in the full cus-

tom domain. This includes schematic entry, layout editor, simulator, and more. In this

section, the basics of this environment are introduced. Later approaches of this thesis

will interface with Virtuoso so the most important concepts of this platform and some

definitions will be done here.

The Virtuoso main window which appears on start is the so-called command interpreter

window CIW. From this window, sub-tools can be started for example the already men-

tioned PCell Designer or Cadence SMG. Furthermore, the Library Manager can be shown

from which the full custom design can be managed. The CIW as the name suggests can

be used as SKILL command interpreter to run SKILL commands or load SKILL scripts

into the active environment. Nearly every subsystem offers a SKILL API and can be

scripted.

The design is managed by the Library Manager. Here different libraries are shown.

One of them is the vendor PDK library. In Virtuoso a library is a set of cells. While

cells can have several cellviews. A cell represent a design element. The cell can include

different cellviews of the same design element in the design hierarchy. Cellviews are the

different representations of a design element. This can be the layout, schematic but also

more abstract views (SystemVerilog), simulation views (maestro), and or config views

(config).

Cellviews are defined with a cell name and a cell type. The cell name can be chosen

freely, the cell type is used as information for the Virtuoso environment. Depending on

the cell type different applications are chosen for the cellview object.

CDFs are parameter templates that are shared between different cellviews. Each cel-

lview individually copies this template initially and then changes the default parameters

to unique parameters to the cellview. Besides the cell parameters, the CDFs also include

modeling information (terminal order, model, name) for different views and callbacks

function calls.

While each cellviews share the CDF view these cellviews are still completely indepen-

dent. There is no common data structure enforced the only thing they share are these

37

2 State of the Art

CDF templates. But since both views are completely separated this does not mean that

both have to have the same instances in and outputs or parameters. This may result in

potential inconsistencies between cellviews which may be discovered late in the design.

This is a potential error source that should be considered.

The most important sub-system in virtuoso is schematic entry to create schematic cel-

lview of a cell, the layout entry to create the layout cellviews, and ADE Assembler/-

Explorer. Assembler/ Explorer are simulation environments in which simulation setups

can be done, a simulator can be started and analysis can be done.

Since 2018 Virtuoso exists in two different versions IC and ICADVM where ICADVM

is the version used to work with advanced nodes. ICADVM offers features needed in

these nodes in example coloring. ICADVM and IC are otherwise compatible but differ

in licensing and additional features for advanced nodes.

2.4 Overall Conclusion

The introduced tools offer or promise further automation. The main problem is mostly

that they are often not suitable for bigger Mixed-Signal designs since they won’t fit in

a strict Top-Down flow. Either because views needed do not exist yet in the flow as for

Cadence SMG or glister where a model can be generated from the schematic but in a

Top-Down flow this model is needed first and the schematic should be derived from it.

The case is that they offer a completely separated approach from the system level, which

is the case for BAG. In these approaches system level and implementation are developed

separately and introduce an error source for potential inconsistencies.

Virtuoso is a framework for Full-Custom design that is highly modifiable and exten-

sible with SKILL. Every subsystem in the virtuoso environment can be automated. The

concept with different independent cellviews is versatile but introduces potential consis-

tency issues. The consistency between different cellviews is checked at some points for

some aspects for example inputs and outputs of symbol and schematic which is checked

at save or the connectivity engine within some versions of the layout entry where in-

stances and connections are checked live. These consistency issues have to be taken into

account when working or extending the Virtuoso framework since introduced errors may

be found late with the LVS step and result in time-consuming fixes.

38

2.4 Overall Conclusion

The above-mentioned DARPA research projects seem promising and already yielded

some results. One part of this is the OpenROAD project which can be found at [32]. It

is an open-source project targeting the goals of the DARPA IDEA program (24 hours

”no human in the loop” design). Its goal is to implement an academic reference flow for

the goals set in IDEA.

In [33] the state of the project is described after six months of runtime. During these

six months, several already existing open-source tools have been developed further and

new projects were started to achieve a first digital RTL to GDS flow. These projects

include static timing analysis, logic synthesis, floorplan, and power distribution network,

clock tree synthesis, placement, and routing. Furthermore, research was done in terms

of using machine learning to self-drive the OpenROAD flow.

In OpenRoad the main focus lies on a digital RTL to GDS flow and running it with

the help of machine learning. Full-Custom design seems only to be viewed as ab-

stracted macros thus leaving this problem field untouched. The only open-source tool in

OpenRoad for Full Custom Design is Magic which is a VLSI layout tool written in the

1980’s [34]. It seems mostly to be used to visualize steps in the digital flow.

39

3 Improving Design Efficiency in Full

Custom Design

In this chapter, the extend and goals of this work will be defined. For this first, the

problem domain of High-Speed advanced nodes design and the existing design produc-

tivity gap will be analyzed. Afterward, some general design approaches are derived

from this analysis. In the last section, the resulting goals for this work and the derived

methodology are introduced.

3.1 General Approaches

In this section, some general approaches which should be taken into considerations and

do not need special or new software implementations are noted. These points should

always be considered when designing full custom blocks or adding custom tools for design

automation. Two main topics will be discussed which are, on the one hand, semi-custom

and full-custom border and on the other hand consistency between different design views.

3.1.1 Semi-Custom and Full-Custom blocks and border

As above noted AMSRF circuitry should be minimized as much as possible. The amount

of effort of a full custom implementation is linear to its unique circuits [35]. As already

mentioned one way to reduce the unique circuits is moving as many elements as possible

in the Semi-Custom Domain.

With each new node, the digital boundary can be pushed further since the maximum

operating frequency for the STD-cells will increase as the nodes become smaller. Ad-

ditionally, the Semi-Custom flow is mostly technology independent which means these

circuits can be ported with a low effort into a new technology node.

This is especially the case for High Speed or RF circuitry where the decisions for this

boundary are often defined by the maximum operating frequency of the Semi-Custom

part. While shifting the digital boundary some side effects have to be taken into account.

41

3 Improving Design Efficiency in Full Custom Design

Semi-Custom Circuitry is noisy and has to have its digital supply. This means signals

have to cross power domains at defined interfaces. Additionally deciding to implement a

sub-block in the Semi-Custom domain instead of Full-Custom can be a design trade-off

between time-to-market and performance. In the Semi-Custom domain, not all perfor-

mance parameters can be controlled as well as in Full-Custom for example phase noise

or corresponding slew rates.

On the other hand, there are a lot of cases where a lot of functionality can be im-

plemented as Semi-Custom solutions for example calibration loops and general control

logic. These approaches introduce new analog blocks needed in the design to convert

digital signals into the analog domain or analog in the digital. These can be or include

ADC, DACs, and TDCs. While these analog circuits are added they have the advantage

that they are often build up from one unit cell and highly structured. An additional

advantage is that the integration of digital calibration and control logic enables pro-

grammability of these since configurations and measurements can be included in the

chips register file and made accessible over the software interface of the chip.

3.1.2 Consistency of Views

Design inconsistencies are one of the main issues which can introduce subtle erroneous

differences between design views that may not be caught. There are some best practices

with which these errors can be eliminated or at least made very unlikely.

In our design flow, the schematic hierarchy for Virtuoso is generated from the exe-

cutable system-level description. With this, the generated implementation hierarchy

and schematic template interfaces are consistent with the system level. This gener-

ation is only possible in one direction from system-level to implementation. Thus the

generated structural schematic and interfaces should not be modified as with these mod-

ifications inconsistencies are introduced. Rather the system level should be modified and

the implementation regenerated. In a one-way generation approach, the generated result

should always be treated as read-only.

With this approach, most inconsistencies can be avoided. Possible error sources left are

the interfaces. While the interfaces of schematic templates are generated the schematic

content is created by the designer. This can lead to misinterpretations and little errors in

example for signals where different phases are needed. To reduce interface misinterpreta-

tions or errors complete signal paths should be simulated in a Mixed-Signal Spice/Verilog

42

3.2 Derived Methodology

simulation as often as possible. In these simulations, not the complete behavior has to

be simulated its main purpose should be to check the interfaces and signal forms.

3.2 Derived Methodology

From the above-stated problem domain and the general approach, the methodology pre-

sented in this work and the goals for the automation tools are defined. The overall goal

given from the design productivity gap is to rise design efficiency.

A common problem in creating silicon IP blocks is to offer customer-specific solutions.

Such specific solutions often require modifications to the full-custom part of the design.

These changes can include reaching different performance metrics or line rates but also

could mean implementing the core for different stack-ups, different technology nodes, or

with different lifetime and or resilience constraints. These changes often trigger a chain

of modifications on the layout and schematic end.

Especially for SERDES IP with all the different specifications modifying an already

existent IP is often needed.

A goal of this work is to accelerate the design of full custom blocks and also reduce the

work which needs to be done if either a new specification must be met, the technology

node or stack-up changes.

To automate full-custom design decisions, schematics and layouts an expert-based ap-

proach is chosen where an executable expert description of the schematic and layout or

parts of the layout exists.

From the lessons learned from the ITRS report, these solutions will be used early in

the design and layout generation of real-world designs. For this, especially for the layout

generation some of the toolings were applied to industrial designs in industrial coopera-

tion to prove practicability.

The main problem in analog design which has to be tackled is the linear increase of

effort with each unique circuit. In this work, the number of unique circuits will be re-

duced by adding parametrized circuit generation for schematic and layout.

The second approach to improve design efficiency through minimizing turnaround cycles

43

3 Improving Design Efficiency in Full Custom Design

for the designers. This will be reached if these generators can be seen as correct by

construction. Thus the usage of the generators will reduce and eliminate possible error

sources. To achieve this testing methods have to be applied.

There are also as many technology-agnostic solutions needed as possible to enable port-

ing into new technology nodes or other stack-ups as effortlessly as possible.

The implemented solutions in this work are modular and thus can be separated into

the following categories:

3.2.1 Schematic Generation

The Schematic Genration focuses on the parametrized generation of leaf cells and should

complement and extend the strict Top-Down approach from [23]. For this, the schematic

leaf cell generation must be attached to the structural generation from the system level.

This ensures that all parameters are propagated and consistency is kept.

Another important aspect is the expert description itself which has to be simple and

allow an easy-to-use interface to generate schematics and size them. For sizing table-

based approaches as the gm
id

method should be supported. The global propagated and

local parameters in the system-level description have to be used as high-level specifica-

tions from which the sized circuits can be derived. The solutions implemented for this

are detailed in chapter 5.

3.2.2 Layout Generation

The goal for the Layout Generation is similar, for one reducing the number of unique

layouts which have to be implemented and on the other hand reducing potential error

sources to minimize turn arounds.

Creating an efficient executable parametrized layout generator is challenging especially

with reuse, reliability, and maintainability in mind. It was quickly observed that the leaf

cell layouts are build from a lot of repeatable layout structures. Some of these layout

structures are identified in this work and implemented as so-called elementary cells This

achieves two advantages first the problem is divided into smaller chunks which relaxes

the resulting above mentioned problem. Another beneficial aspect is that it results in

an automatic rise in code reuse and a more uniform layout. An initial implementation

44

3.2 Derived Methodology

of the elementary cells is given in chapter 6. This concept was initially implemented

with Cadence PCells. These had some major disadvantages and a technology-agnostic

approach was implemented with XCell.

The XCell approach is very interactive allowing the designer to constraint parts of the

circuit for partial layout generation. When the layout designer generates a partial layout,

this layout must be a good starting point. The layout generators should implement best

practices in terms of integration and DFM. For DFM these layouts should incorporate

the generation of dummy structures and fill structures.

In modern technology nodes especially with multi-patterning, the lower metal layers

and the doping layers often have a lot more DRC rules than the normal higher metal

layers. This makes these layers hard to use since many rules have to be taken into ac-

count. The goal for the partial layout generation should be to focus on these layers to

reduce error sources for the designer and thus decreasing iterations over the layout.

45

4 Advanced Node Design

In this chapter, an overview of the technology nodes used in this work is given. These

include a 28nm bulk node and a 22nm FDSOI node. First of all, an overview and

comparison of bulk and FDSOI are given. Afterward, an overview of electromigration

will be given which has become an increasing issue. Both topics will be introduced and

discussed here to create a common ground for topics in chapter 6.

4.1 Bulk and FDSOI

The methods introduced in this work will have to handle different technologies. To

understand the differences which have to be handled two modern commonly used tech-

nologies are here introduced. In this section, we will compare a 28nm bulk node and a

22nm FDSOI node. Especially FDSOI has some beneficial properties which can be used

and have to be understood.

In figure 4.1 both bulk and FDSOI CMOS cross-sections can be seen and compared. On

the left side, the bulk CMOS cross-section can be seen. The substrate is weakly p doped

and connected via a heavily doped P contact crating the bulk of the transistor. Two

Figure 4.1: Left: CMOS cross section bulk, right: CMOS cross section FDSOI in flip
well configuration

47

4 Advanced Node Design

heavily doped N contacts create the source and drain within the weak p substrate of the

NMOS transistor. The polysilicon gate is separated from the resulting p- channel with

a thin oxide. To create a PMOS a weakly doped N-Well is created which is connected

via a heavily doped N contact to create the bulk. Heavily doped P contacts within the

N-well create the PMOS.

Indifference on the right side an FDSOI cross-section. Here the transistor is formed on

a thin fully-depleted semiconductor on top of a buried oxide (BOX). Below the buried

oxide a second substrate exists. Here two configurations are possible in this figure a

forward body bias FBB also called flip-well configuration is shown. In this configura-

tion, an N-well is below the NMOS transistor while a P-well below the PMOS. With

this LVT (low Vth) and SLVT (super low Vth) transistors can be realised. The N-well

below the NMOS creates the back bias and the P-well below the PMOS its corresponding

back-bias. Both back-bias can be set to an individual potential. To prevent shorting the

P-well with the substrate an N+ triple well, which is connected to the N-Well potential

is used. The substrate can then be connected to its potential with a P+ contact. This

connection is not shown in the above figure.

With the buried oxide FDSOI has several advantages in terms of lower leakage and

being less error-prone to latch-ups since fewer NP transitions exist. Furthermore, the

fully depleted channel achieves higher mobility and often is a different material for the

PMOS to achieve better PMOS NMOS matching. Another advantage of no dopant in

the channel is less sensitivity to layout dependent effects as the short channel effect or the

length of diffusion effects and lower Vth variation due to random dopant fluctuations [36].

The additional back bias in FDSOI functions as a back gate effectively controlling Vth

of the transistor, with it allowing to increase the frequency of circuit blocks or decrease

leakage. Depending on the chosen configuration, flip well as shown in the above figure

or conventional well where the NMOS is above a P-well. In this configuration different

back-bias voltages can be applied according to the resulting diodes from the PN transi-

tions. This results in the in FDSOI commonly used 5 and 6 terminal transistor devices.

These devices are shown below with their symbol and the internal resulting diode con-

nections from the PN transitions shown above. In this configuration, a back-bias voltage

for the NMOS from −Vbiasn to 0 and for the PMOS back gate from 0 to Vbiasp is possible

without shorts. This allows the flip well configuration to lower Vth. The possible back-

bias voltages would be switched in the conventional well configuration allowing increased

48

4.2 Electromigration

g b

d

s

sx g b

d

s

tw

Figure 4.2: 5 and 6 terminal devices and corresponding diodes

Vth.

4.2 Electromigration

Electromigration (EM) has become a more prominent issue in smaller nodes. On the one

hand, having a stack-up with a lot of thinner metals has more routing options for the

router in Semi-Custom designs but on the other, it causes higher current densities and

higher resistances. In figure 6.5 this development can be seen. The figure is from [37]

where additionally a brief overview of the history and the challenges for EMIR are sum-

marized. Another good resource for an overview is [38] which also summarizes most

literature used in this section.

Over the last years, some aspects of EM in the nanometer-scale were discovered which

makes the relations more complex but become important for smaller shapes. One of the

challenges in EM analysis of complex designs is that it is done with an extracted design

view which only offers limited information and additional the em deck is a simplified

version of the complex physical behavior.

This section gives a broad theoretical background for EMIR on a nanometer scale. This

will be useful to fully understand some of the rules in the vendor EM rule deck and give

away on how to interpret and handle them.

Electromigration is one part of the general material migrations which describe processes

49

4 Advanced Node Design

Figure 4.3: Current density trend from [37]

where material is transported in solid bodies. The current flow in a conductor produces

forces to which the metal ions are exposed. In the figure 4.4 the forces are visualized.

Efield is the electrostatic force. Which can be ignored most of the time since it is small

compared to Fwind which is generated by the momentum transfer between electrons and

the metal lattice. If this Force exceeds the activation Energy Ea a directed diffusion

process starts and material transport takes place. From this several defects can arise

either voids which will lead to opens and higher resistances or shorts caused by whiskers.

An empirical model which can be used to determine the mean time of failure was intro-

duced by J.R. Black [39] in the 1960s as follows:

MTF =
A

j2
∗ e

Ea
kT (4.1)

Figure 4.4: Forces on metal ions from [38]

50

4.2 Electromigration

Diffusion process Activation Energy in eV

Aluminium Copper

Bulk 1.2 2.3

Grain-boundary 0.7 1.2

Surface 0.8 0.8

Table 4.1: Activation Energy in Copper and Aluminium for different processes from [38]

Where A is a material constant including volume resistivity, a factor relating to the

meantime of failure and mass transport, and many more. Ea is the activation energy as

mentioned above, k the Bolzman constant, T the temperature, and j the current density.

Later the exponent of the current density was replaced with n to model different failure

modes in different metals (copper and aluminum).

With this, a relation between lifetime and temperature is given. There are more complex

models additionally incorporating mechanical and thermal stress as in [40]. Another ad-

vantage is that their model does not rely on empirical values in contrast to Ea and A in

Blacks Equation.

From Blacks Equation can be derived that one of the main property for EM is the

activation energy Ea of a conductor. Which depends on the material and the location

of the crystal lattice. Furthermore, the interconnect surroundings not only affect the

lattice and with it Ea but also stress migration induced through mechanical stress.

For both of these aspects, effects are short-length effects and are becoming increasingly

important for Nanometer Design. On the one hand, the grain size to wire geometry ratio

and with it the Bamboo Effect and with mechanical stress canceling out electromigration

the Immortal Wire Effect.

In table 4.1 the different activation energies for different diffusion paths and mechanisms

are listed. The highest activation Energy needs bulk or volume diffusion. This mecha-

nism is usually dominated by surface diffusion. There are some techniques for aluminum

and some advanced processes for copper where the surface needs higher activation en-

ergy. At this point the grain boundary diffusion mechanism becomes prominent.

The most important aspect of the grain boundary diffusion process is the grain size.

In amorphous structures, the crystal lattice is very dense and the grain boundaries are

51

4 Advanced Node Design

so many that they are not relevant anymore. These structures can not be produced in

metal interconnects. The other extreme is a monocrystalline structure where no grain

boundaries exist. This condition is again not relevant yet since it cannot be reliably

produced. The typical condition is a polycrystalline structure where the near bamboo

and bamboo structures are polycrystalline structures with low grain density.

Bamboo Effect

The bamboo or near-bamboo effect occurs when grain boundaries are eliminated. This

becomes the case for the two equally named structures mentioned above. The elimina-

tion of these paths acts positively towards EM robustness.

These structures can be grown by processes as tempering where the interconnect is

backed at a high temperature and afterward slowly cooled as described in [41]

The main factor for the bamboo effect is the interconnect dimension especially the height

and width of the wire. In Figure 4.6 from [42] the bamboo effect can be seen. In this

work, the lifetime of different AL-0.5%Cu wires with varying line widths was observed.

In this research, the grain size for the AL lines in their process was determined with

an electron microscope. The grain sizes are between 1.2um and 7um with a median of

4u. It can be seen in the figure that at 2u the MTF reverses and the line becomes more

robust. The paper states that below 2um a bamboo structure is generated where the

grain boundaries are perpendicular to the current flow resulting in eliminating atomic

flux.

Figure 4.5: Different lattice structures from [38]

52

4.2 Electromigration

Figure 4.6: line width vs. MTF in AL-0.5%Cu [42]

The bamboo effect usually takes a role in tempered AL interconnects. This has be-

come more important since aluminum interconnects are often used for the redistribution

layer of a chip and becomes more critical since a high pin density has to be reached. In

copper the surface diffusion dominates. Nevertheless, the surface diffusion in copper can

be minimized to achieve an EM robust interconnect, and accordingly, the grain bound-

ary diffusions and the bamboo effect becomes important again. Furthermore, in [43] it

was found with specific annealing conditions and operating conditions for polycrystalline

lines a mixture of the grain boundary and surface diffusion is dominant and for bamboo

or near-bamboo structures solely surface diffusion.

Immortal Wire Effect

In 1975 I.A. Blech observed that no electromigration seems to take place in short alu-

minum interconnect stripes [44]. This is today called the blech effect where the critical

length for which this effect holds is called blech length. The reason for this phenomenon is

an equilibrium between stress migration and electromigration below the ”Blech” length.

Blech further discovered that the critical length depends on the current density and

formulated the critical product (jL)Blech. Below this critical product, no damage due

to electromigration could be observed.

53

4 Advanced Node Design

Vendor EM Rules

The rules used in a vendor PDK have to be simple since they are used for an increasing

number of shapes during the electromigration check/analysis. Due to this in the PDK

included EM rules are mapped as multiple linear functions with different offsets and

slopes depending on the width and length. This leads to non-linear jumps in the maxi-

mum allowed current density function which is difficult to explain physically. It rather

can be explained as a worst-case estimate by the vendor. Nevertheless, these estimates

and simplified rules have to be used since they are the best data available.

54

5 Full Custom Schematic Generation

The schematic generation chapter will describe the implemented contributions of this

thesis to increase the design efficiency in terms of circuit generation and sizing concern-

ing consistency between all views. The implementation for this and the corresponding

building blocks is given in the following paragraphs.

The ASIC design framework in use is the Cadence Virtuoso Framework, which is de-

scribed in chapter 2. To implement solutions independent from proprietary languages

like SKILL, a language bridge was developed. The skillbridge interface is a language

mapping between python and SKILL. The development and concept of this language

mapping will be described in this chapter.

In the Top-Down approach from [23] a hierarchy generation from the system-level de-

scription to schematic views was already in place. The Hierarchy Generation from [23]

runs Cadence Genus with a synthesis script to elaborate the system-level design. This

synthesis script is written in Tcl and creates black-boxes/-stubs from the system level

leaf cells to transform it to synthesizable Verilog for Genus. The elaborated design is

then used as input for Cadence VerilogIn [45] which can create the needed schematics

views in the oa database.

Initially the scripts from [23] were used. It was quickly noticed that a lot of information

about the elaborated design is needed to produce elaborated parameters for the leaf cell

generation to ensure consistency between model leaf cell and implementation. Because

of the third-party tools used in this script the script it was not possible to extend it.

In this thesis, an extendible version of the schematic generation was implemented to allow

leaf cell generation and sizing. The implemented classes and flow offer a simple interface

to the elaborated design. The new schematic generation will be detailed in the following.

An overview of this approach can be seen in figure 5.1. An important factor for the

generation is the connection to the system level and the elaboration and resolution of

55

5 Full Custom Schematic Generation

Figure 5.1: Flow Diagram Schematic Generation

generic parameters to a specific implementation. For this, the system-level descrip-

tion is read in and elaborated. Afterward, structural schematic views for Virtuoso and

schematic templates are generated. In the last step config files with elaborated leaf

parameters and ports are written which can be used to implement the leaf schematic

generation.

The leaf cell generation is a very interactive approach where the circuit designer can

create schematic templates which can be selected and sized with the sizing scripts. The

focus for these sizing scripts is to provide an accessible way to implement expert knowl-

edge in a technology-independent manner.

The parameters from the elaborated design and local parameters of the leaf cells are

used to write config files which are used in the circuit sizing step. These sizing scripts

will be executed to generate the leaf circuit. The leaf cell generation is detailed in this

chapter in 5.3.

The advantage of this is it allows to create parameter-dependent sizing scripts which

can be reused. For the sizing, a correspondence to the system level is ensured to keep

56

5.1 Skillbridge

parameters consistent between all views for a specific design and a specific system-level

parameter set.

To achieve a high accuracy between system-level simulation and implementation ad-

ditional feedback is needed. The RNM parameters are often used as the specification for

the leaf cell implementation. These specifications are transferred to the spice simulation

of the implemented leaf cell. With the spice simulation, the specification is measured

accurately and back annotated to the system level. Via this feedback an accurate system-

level simulation is possible which can also be run over corners.

The leaf cell generation and back annotation are semi-automatic to offer as much reusabil-

ity and usability as possible.

5.1 Skillbridge

The standard scripting language in the Cadence analog ASIC and PCB environment is

SKILL. SKILL is a proprietary programming language based on Lisp.

SKILL as a proprietary language has several disadvantages to work with. The package

ecosystem and user base of SKILL are small compared to other programming languages.

While SKILL is a general-purpose programming language the proprietary nature it re-

sults in it being mostly used in the domain-specific fields of ASIC design (Virtuoso)

and PCB design (Allegro). The use of SKILL in only these two very specific domains

results in a small user base. The small user base results in additional problems as also

fewer experts and only a single source of language documentation, application notes,

and example code. Furthermore, it is difficult to find experienced SKILL engineers or

programmers as Lisp is not a commonly used language either.

Modern development flows include continuous integration and deployment. Continu-

ous integration will run code analysis, tests, and test coverage with every commit to

the project. These cannot be realized with SKILL as it means each time a test or code

analysis is executed a license needs to be checked out. Licenses are scarce and expensive

making this approach not feasible. The goal of the skillbridge is to separate the control

code from the SKILL interpreter.

Another problem resulting from the restricted usage domain and proprietary nature

is the state of the SKILL package ecosystem which does not exist. This is further ex-

57

5 Full Custom Schematic Generation

Figure 5.2: Communication components Skillbridge [50]

aggerated with SKILL not offering a package system and the fact that sharing code in

the PCB design and ASIC domain is still rarely done. Reusable code snippets are from

cadence, which can be accessed via a support account and are given as they are. There

is also an effort from Robert Bosh Zentrum (RBZ) to introduce a package manager to

SKILL (SPAM) [46] and offer some packages. While this is a good approach it is not

widely adopted or used.

To overcome these restrictions and difficulties, a dynamic language mapping is intro-

duced. It provides the user with a more widespread language, which simplifies the

access and abstracts SKILL to this widespread language.

One of today’s most popular and widely used programming languages is python. Its

popularity has risen in the last years, popularity according to Tiobe index rank 3 [47],

according to Github projects rank 2 [48] and according to the yearly StackOverflow sur-

vey rank 4 [49]. Pythons popularity results in a huge user base and package ecosystem.

The package ecosystem is one of the main reasons python is is heavily used in vari-

ous other domains besides computer science. Prominent examples are geology, biology,

mathematics, and engineering disciplines. Especially the packages from the mathematics

domain make python a perfect fit as a scripting programming language for circuit design.

The skillbridge was developed in cooperation with former research assistant Niels Buwen

and is now maintained as an open-source project on [50]. It is an interface between

Python and SKILL that achieves a seamless language mapping. In the following para-

graphs, the skillbridge approach to communicate with Virtuoso is explained. Afterward,

all translations to offer a seamless interface are detailed.

58

5.1 Skillbridge

One main challenge which had to be solved is the communication with the SKILL in-

terpreter inside Virtuoso since there is no interface to call SKILL functions from the

outside. The basic concept to solve this issue is shown in figure 5.2. There is a

SKILL script (python server.il) running in the Virtuoso CIW which starts a python

server (python server.py) in a subprocess and establishes an inter-process communica-

tion (IPC) where the stdin and stdout from the CIW are redirected to and from the

python server. The python server opens a Unix socket for a client script to connect to.

The client skillbridge library offers all the functions to call the global SKILL meth-

ods and translate types and objects. With this, seamless integration into python is

achieved. The mapping is dynamically implemented with dunder methods. Double un-

derscore (dunder) methods are called indirectly and define specific object behavior, like

operator overloading, context management, or sequence behavior. With these methods,

skill methods can be build and send to the interpreter without the need to explicitly

map them by hand and powerful IDEs as PyCharm [51] or Jupyter Notebook [52] are

supported by implementing other useful dunder methods as dunder dir.

Besides the communication approach shown above, there is also a direct mode where the

client script communicates directly to the server without the socket communication and

solely the inter-process communication. For dynamic use cases, socket communication

is ideal while for fixed tooling the direct communication can be used.

5.1.1 SKILL < − > Python translation

To offer a seamless interface three main mappings have to be implemented. The object

mapping of SKILL objects to python objects has to be done. With this, these objects

can natively be used. Additional types have to be mapped. SKILL types have to be

converted to python and python types to SKILL. Also, the global SKILL methods and

with it, the interfaces to the Virtuoso subsystems have to be mapped.

The behavior shown below can be implemented with dunder methods which are spe-

cial methods in python to realize or manage operator overloading, sequence access, or

iterators. The most important implemented dunder methods are described below and

are shorted from the actual implementation which can be found at [50]. The array be-

havior and slices are not implemented on SKILL side. They come automatically with

the type translation described in the next paragraph.

59

5 Full Custom Schematic Generation

1 # simple SKILL object attribute access

2 # cv->cellName

3 # should be in python:

4 cv . ce l l name

5 # more complex access SKILL object member which is a list of objects

6 # (nthelem 10 cv.shapes)->bBox

7 # should be in python

8 cv . shapes [1 0] . b box

9 # additionally python slices and list comps should work

10 s h a p e s s l i c e = cv . shapes [3 : 2 0 : 2]

11 m1 shapes = [shape for shape in cv . shapes i f shape . l a y e r == "M1"]

For basic access get attr and set attr are implemented as shown below.

For get attr the attribute goes to the translator, where it is converted to the corre-

sponding SKILL attribute (line 3). Afterward, the result is decoded to the corresponding

python type and returned (line 4).

The set attr method is used to set an attribute. Again the corresponding SKILL

form is generated in line 8 and afterward, the result is converted to check if for possible

error handling.

1 def g e t a t t r (se l f , key : s t r) => Any :

2 . . .

3 r e s u l t = s e l f . send (s e l f . t r a n s l a t e . en code ge ta t t r (s e l f . v a r i ab l e , key)

)

4 return se l f . t r a n s l a t e . decode (r e s u l t)

5

6 def s e t a t t r (se l f , key : s t r , va lue : Any) => None :

7 . . .

8 r e s u l t = s e l f . send (s e l f . t r a n s l a t e . e n c od e s e t a t t r (s e l f . v a r i ab l e , key ,

va lue))

9 s e l f . t r a n s l a t e . decode (r e s u l t)

Another important dunder method implemented is dir which contains a list of all

mapped object attributes. The dir method in python calls this dunder method. It is

used in example in Jupyter Notebook for tab completion.

60

5.1 Skillbridge

1 def d i r (s e l f) => L i s t [s t r] :

2 re sponse = s e l f . send (s e l f . t r a n s l a t e . encode d i r (s e l f . v a r i a b l e))

3 a t t r i b u t e s = s e l f . t r a n s l a t e . de code d i r (re sponse)

4 return a t t r i b u t e s

In the following section, some examples of types that have to be mapped are introduced.

Each type coming as a result from SKILL has to be mapped to python and each type

given to SKILL to a SKILL type.

In terms of float, int, or string no converting has to be done. Here both languages are

compatible. Some differences are shown below.

1 # SKILL boolean {t, nil}

2 # in python

3 {true , fa l se }
4 # SKILL list ’(1 2 3 4)

5 # in python

6 [1 , 2 , 3 , 4]

7 # Sometimes SKILL uses symbols i.e. (simulator(’spectre))

8 # in python

9 ws [’simulator’] (Symbol (’spectre’))

The translation from python to SKILL and the other way around is implemented as

string conversions and manipulation. For the translation from python to SKILL, this is

done in the python skillbridge client library. For the return values, the same mechanism

is implemented on the SKILL server side. This combination of only converting types to

strings and not having to parse strings offers the best performance.

The last part of the translation is the global function mapping. In lines 1-3 the most

simple function call is shown. The difference on the Python side is, that we access the

functions over a RemoteFunctionGroup Object i.e. in line 3 ws.ge. With this approach,

we group SKILL methods by prefixes. Skill interfaces to different subsystems in virtuoso

have mostly a corresponding prefix. Additionally, it is possible to access the function

with snake-case. Snake case is more common within python projects and this will result

in a more unified and clean codebase. Furthermore again all types which are given to

the function should be translated automatically as shown in line 4-7.

61

5 Full Custom Schematic Generation

1 # SKILL method call geGetEditCellView()

2 # in python

3 ws . ge . get edit cel l view ()

4 # SKILL method with attributes

5 # dbOpenCellViewByType(lib->name , cv->name , "schematic", "", "a")

6 # in python

7 ws . db . op en c e l l v i ew by type (l i b . name , cv . name , "schematic" , "" , "a")

Again a dynamic approach was chosen where if a Remote Function object is called the

corresponding call is triggered. This method can be seen in the code snippet below

in line 4. At first, the RemoteFunction method lazy is called to decode the command

which has to be sent to via the channel.send method. The result from the function is

then translated to a python type and returned. The lazy method takes the arguments

and keyword arguments given from call the dynamically generated function name is

read out and transformed to camel case with all the information needed the call gets

encoded to valid SKILL code and the resulting command is returned.

1 . . .

2 class RemoteFunction :

3 . . .

4 def c a l l (se l f , *args : S k i l l , **kwargs : S k i l l) => S k i l l :

5 command = s e l f . l a zy (*args , **kwargs)

6 r e s u l t = s e l f . channe l . send (command)

7

8 return se l f . t r a n s l a t e . decode (r e s u l t)

9

10 def l a zy (se l f , *args : S k i l l , **kwargs : S k i l l) => Sk i l lCode :

11 name = snake to came l (s e l f . f un c t i on)

12 return se l f . t r a n s l a t e . e n c od e c a l l (name , *args , **kwargs)

13

14 def r e p r (s e l f) => s t r :

15 command = s e l f . t r a n s l a t e . encode he lp (s e l f . f un c t i on)

16 r e s u l t = s e l f . channe l . send (command)

17 return se l f . t r a n s l a t e . decode he lp (r e s u l t)

18 . . .

The most important feature of the skillbridge is this dynamic behavior. None of the Re-

moteFunction objects or RemoteFunctionsGroup objects are directly mapped to SKILL

62

5.1 Skillbridge

prefixes or methods. The dynamic mapping of these results in a future proof approach

where if SKILL interfaces are added or changed to Virtuoso they are automatically

mapped accordingly.

The mapping is implemented dynamically with a handful dunder methods. In the

below example it is explicitly written which internal dunder methods are executed

when the user accesses a global method. In line 2 the user method call is given. In

lines 4-6 the resulting actual call is shown. ws is a Workspace object which imple-

ments get attr and calls it on attribute access with the attribute key as parameter.

Workspace. get attr (key: str) returns a RemoteFunctionGroup object which imple-

ments its own get attr . This is called with the function key as the parameter and re-

turns a RemoteFunctionObject. RemoteFunctionObject finally calls the above described

call method which is triggered on call and passes the call’s parameters.

1 # how the user accesses the method (dunder methods are called indirectly)

2 ws . db . op en c e l l v i ew by type (l i b . name , cv . name , "schematic" , "" , "a")

3 # how it is actually called via the implemented dunder methods

4 ws . g e t a t t r (’db’) . g e t a t t r (’open_cell_view_by_type’) . c a l l (

5 l i b . name , cv . name , "schematic" , "" , "a"

6)

5.1.2 Usage Examples

A minimal example for a client application. The examples here can also be found in [50]:

1 from s k i l l b r i d g e import Workspace

2

3 ws = Workspace .open ()

4 ws ["load"] ("userFunctions.il")

5 c e l l v i ew = ws . ge . g e t e d i t c e l l v i e w ()

6 c e l l v i ew . b box # returns [[0, 10], [2, 8]]

In line 1 the Workspace class of the client library is imported. The workspace cor-

responds with Virtuoso’s Command Interpreter Window (CIW) and can be connected

with the server with the open command, line 3. When starting the server a specific

port can be selected. This port is also an optional parameter for open to connect to the

corresponding Virtuoso instance. This allows multiple server/ client pairs on one host.

63

5 Full Custom Schematic Generation

With the workspace either a function of a specific Virtuoso subsystem SKILL interface

can be called or a simple SKILL call.

Normal SKILL calls or user-defined functions can be accessed as shown in line 4 where

the SKILL load function is called. The function call is given in square brackets and the

arguments for the function in normal brackets, as python datatypes.

The SKILL methods of a specific Virtuoso subsystem normally have a common pre-

fix. The prefix is used in the skillbridge to subgroup all available methods. In these

examples geGetEditCellView from the ge (graphical editing interface). Which corre-

sponds to ge.get edit cellview() as seen in line 5. The grouping by prefix also allows

a better tab completion where not every method is matched but every method corre-

sponding to the prefix category.

The method returns a cellview object where attributes can be accessed as shown in

line 6. Every return value is translated to a python data type from SKILL.

A more complex application is shown in the example below where instance statistics

of a specific layout are read out and plotted in a pie chart. As in the example before the

Workspace is opened. Afterward, we get the current cellview line 5-6. A helper function

to calculate the area of an instance from its bounding box is defined bbox to area. In line

12 a list comprehension is used to create a list of cell names with the corresponding area

from all instances in the cellview cv. Afterward, with the help of Counter a dictionary

for the instances and the instance occurrences is generated. Furthermore, a dictionary

for the instances and their area is created lines 15 - 22. From lines 25 to 30 the plots are

prepared and the number of instances and their accumulated area is plotted in a pie chart.

64

5.1 Skillbridge

1 from s k i l l b r i d g e import Workspace

2 from c o l l e c t i o n s import Counter

3 from matp lo t l i b . pyplot import pie , f i gu r e , t i t l e

4

5 ws = Workspace .open ()

6 cv = ws . ge . get edit cel l view ()

7

8 def box to area (b box) :

9 return (b box [1] [0] = b box [0] [0]) * (b box [1] [1] = b box [0] [1])

10

11 # Get a tuple of instance cellname and area

12 i n s t s = [(i n s t . ce l l name , box to area (i n s t . b box)) for i n s t in cv . i n s t an c e s]

13

14 # Get a dictionary of cell_name and occurences

15 counts = Counter (name for name , in i n s t s)

16

17 # create dictionary of cell_name and area

18 areas = {}
19

20 for name , area in i n s t s :

21 areas . s e t d e f a u l t (name , 0)

22 areas [name] += area

23

24 # plot the pie chart

25 f = f i g u r e (f i g s i z e =(12 , 12))

26 sub1 = f . add subplot (121)

27 sub1 . s e t t i t l e ("Number of instances")

28 p i e (counts . va lue s () , l a b e l s = counts . keys ())

29 sub2 . s e t t i t l e ("Accumulated Area of each Cell")

30 p i e (a reas . va lue s () , l a b e l s = areas . keys ())

As shown in these examples the mapping is seamless. Natural Python constructs can

be used as shown in the examples with i.e. list comprehension or array access. The user

does not have to think about the SKILL code in the background and can concentrate

solely on programming in python.

Performance-wise a limiting factor can arise when a lot of SKILL objects have to be

accessed. In the below example the normal python for loop lines 4-6 can be slow when

the objects in cv.shapes are very large. In this case, we filter for layer ”M1” and delete

these shapes. Most of the access behavior is implemented with Python’s dunder methods

65

5 Full Custom Schematic Generation

iterating and filtering large Remote object list will result in many accesses to the CIW.

This throughput to the CIW is limited by Virtuoso and thus limits performance in these

cases.

In the skillbridge, there are several helper functions implemented to mitigate these per-

formance issues. One of these helper methods is the lazy attribute. This attribute marks

Remote objects to be evaluated later. With this, a filter can be constructed as seen in

line 15 which then will be sent with one access to the CIW and executed on SKILL side.

1 from s k i l l b r i d g e import Workspace

2 # Pythonic approach may be slow for very large lists

3 cv = ws . ge . get edit cel l view ()

4

5 for shape in cv . shapes :

6 i f shape . l a y e r == ’M1’ :

7 ws . db . d e l e t e o b j e c t (shape)

8

9 # With lazy evaluation List needing only one CIW access

10

11

12 ws = Workspace .open ()

13 cv = ws . ge . get edit cel l view ()

14

15 shapes = cv . l a zy . shapes

16 shapes . f i l t e r (l a y e r=’M1’) . f o r each (ws . db . d e l e t e o b j e c t)

If the task does not include mainly accessing SKILL objects but instead has a huge

processing part. Such an application using Python and the skillbridge will most likely

improve performance since most numerical or mathematical libraries in python use hard-

ware acceleration.

5.2 Hierarchy Generation

In this section of this thesis the hierarchy generation will be described which is needed

to convert a system-level model to a specific implementation.

Initially, a reference design will be introduced on which the implementations are done

in this chapter will be explained.

66

5.2 Hierarchy Generation

Figure 5.3: Simplified structure reference DCO design

Afterward, the general design organization will be discussed. This is an important topic

since a lot of different views exist in the design and multiple implementations could be

needed for one system level. The file structure and repository organization is important

as it is a good foundation for later reuse.

The system-level description is the input for the schematic generation. From this input,

an internal design representation will be created.

On the internal design representation, further tools can be implemented. One of them

is the generation of the structural schematics in a oa database for the Virtuoso Environ-

ment.

The implementation and object hierarchy will be discussed in detail in the following

subsections.

5.2.1 Reference Design

A Digital Controlled Oscillator (DCO) design is introduced as a reference in this chap-

ter. With this, each processing step can be explained in a simple example. The DCO is

a typical Full-Custom block in larger Mixed-Signal designs, often the only Full-Custom

block inside an All/ Mostly Digital PLL.

67

5 Full Custom Schematic Generation

The DCOs hierarchy is shown in figure 5.3. The oscillator block is the DCO core which

will model the LC tank and amplification required for oscillation. The internal oscil-

lating node connects to several capacitor banks, shown on the left. The coarse bank is

needed to tune out the process corner or to cover the needed frequency range. Finer

capacitor banks are used by the loop filter when integrated into a Phase Lock Loop

(PLL) to achieve a controlled frequency output. Additionally, cross-domain buffers are

used for the control bits of the capacitor banks to offer a separation between the digital

and the analog domain. Furthermore, an output buffer for the frequency output exists

to drive higher loads and decouple the oscillation node as well as possible. Some voltage

reference generators are needed for the output buffer and the DCO core.

The reference design’s system level is implemented in a Top-Down manner according

to [23]. The analog behavior is modeled with System Verilog as Real Number Models

(RNM).

For our RNM models, two aspects are important. The system-level must be fast to

simulate complex system-level test cases. Implementing a system-level model with only

the important parameters and a high abstraction increases simulation performance sig-

nificantly. The second important modeling approach is to model each behavior in the

corresponding leaf cell description in our case the RNM view. This is especially impor-

tant to later back annotate block-level simulations to the corresponding block.

In our DCO only two main factors are important to simulate. These are the correct

output frequency behavior and the jitter. At the system-level, the abstraction is cho-

sen in a way to only model these two important parameters. Modeling the jitter and

frequency behavior is important to verify the behavior of other blocks affected by the

DCO for example a PLL using the DCO or other modules, the output jitter of a clock

generator is one of the most significant factors impacting overall performance.

Thus the frequency generation is done in the RNM view of the DCO CORE. The os-

cillation frequency is calculated based on local parameters and the oscillation nodes.

The local parameters represent the inductance and capacitance of the LC tank for the

oscillator, while in the oscillation node the summarized capacitance of this node is rep-

resented. A capacitance change in the capacity bit should result in a frequency change

in the DCO CORE. This is modeled via a node capacitance which is implemented with

68

5.2 Hierarchy Generation

user-defined nettypes and user-defined resolution functions. These are available in Sys-

tem Verilog.

1 typede f s t r u c t {
2 l o g i c net = 1 ’bZ ;

3 real C;

4 } wire cap ;

5

6 function automatic wire cap capSum (input wire cap d r i v e r []) ;

7 b i t MULT DRIVERS FLAG = 1 ’ b0 ;

8 f o r each (d r i v e r [i]) begin

9 capSum .C += dr i v e r [i] . C

10 i f (d r i v e r [i] . net === 1 ’bZ) begin

11 capSum . net |= 1 ’ b0 ;

12 end

13 else begin

14 capSum . net = dr i v e r [i] . net ;

15 end

16 end

17 endfunction

18

19 nettype wire cap wCapSum with capSum

Both are shown in the above code listing. A custom nettype can be implemented as a

struct (line 1-4) and thus build-up from multiple values. In our example a real value for

the capacitance of the net and a logic value for the oscillating node. Additionally, an

implemented resolution function will be called when multiple nets are connected (lines

6-17). When multiple drivers exist the capacitance is summed up. The net will also

be evaluated based on the drivers where only one driver is allowed and all other drivers

have to set the net to high impedance ’Z’. The nettype definition is shown on line 19.

The behavior of these nettypes and resolution functions are also described in [23] for a

ring oscillator circuit based on delay cells.

Another important feature is the auto-coercion of port type declarations. The leaf cells

can have different views. Thus the type of the ports can vary while in the RNM view

a net might be a custom nettype as our defined wCapSum the same net in a function

view might be logic and in a more specific VerilogAMS model might be electrical. Auto-

coercing allows this type to be inherited through the hierarchy even when only wires are

defined and thus allowing the same structural design descriptions for all leaf cells. In

the event-based simulator XCellium the types wreal, SystemVerilog wreal nettypes, and

69

5 Full Custom Schematic Generation

SystemVerilog user-defined nettypes are supported for coercion. Additional information

about coercion and user-defined nettypes can be found in chapter 9 (Real Number Mod-

eling) in [53] and in [54] under 6.6.7 User-defined nettypes.

An additional local parameter is the intrinsic jitter of the dco core which additionally

manipulates the output frequency.

The oscillator is implemented as an event generator based on the inductance and capaci-

tance parameter and an additional random component, modeling the jitter and changing

the time each event is created. This results in a very fast overall model since the number

of events generated mostly influences the run time. In this approach, the generated

number of events is independent of the added jitter.

In the listing below the event generation in the DCO CORE RNM model is shown. In

the first initial block lines 1-7 some pre calculations are done. From the local param-

eters, VCO TANK L and vco tank c fixed and the capacitance component of the node

the ideal period and oscillation frequency is calculated.

1 i n i t i a l begin

2 K = $ sq r t (2) ;

3 t o t a l j i t t e r = $ sq r t (RMS INTRINSIC JITTER**2 + RMS PXF JITTER**2) /K;

4 vco c = CLKOUT P.C + vco t ank c f i x ed ;

5 i d e a l p e r i o d = 2 .0*‘M PI*$ sq r t (VCO TANK L*vco c) ;

6 i d e a l f r e q = 1.0/ i d e a l p e r i o d ;

7 end

8

9 i n i t i a l begin

10 s t a r tup de l ay = rd i s t no rma l ((20 e=12/‘TSCALE) , (20 e=12/‘TSCALE) ,100 ,0) ;

11 #(s ta r tup de l ay) ;

12 forever begin

13 dT = ((i d e a l p e r i o d /2 . 0) +

14 (t o t a l j i t t e r /1000)*$d i s t norma l (seed , 0 , 1000) /‘TSCALE ;

15 #(dT) CLKOUT P int = ˜CLKOUT P int ;

16 end

17 end

The startup delay is implemented in the following initial block. The event generation

for the oscillation is implemented within a forever loop. The oscillation node is repeat-

edly inverted with a frequency of half the period plus a random distribution which is

70

5.2 Hierarchy Generation

multiplied by our calculated jitter and scaled to the correct time scale.

Another aspect of the modeled DCO is that each capacity bit must influence the os-

cillating frequency. For all different capacitor banks, a general RNM model named

MGT MODEL CAP BIT is used. This model is shown in the listing below. De-

pending on DIN the capacitance transmitted over the wCapSum net is increased by

a parametrized switching capacitance (CAP). An offset capacitance (C OFF) is always

added which is the second parameter of this module.

1 module MGT MODEL CAP BIT #(

2 parameter real CAP = 1e=15,

3 parameter real C OFF = 0.1 e=15

4) (

5 input wire VDD,

6 input wire VSS ,

7 input wire DIN,

8 inout wCapSum INN,

9 inout wCapSum INP

10) ;

11 assign INN = wire cap ’{1 ’ bZ , C OFF + DIN* CAP} ;
12 assign INP = wire cap ’{1 ’ bZ , C OFF + DIN* CAP} ;
13 endmodule

Additionally, the MGT MODEL OSC BUF also has a parameter to model its input

capacity.

5.2.2 Design Organisation

Large Hardware Designs can be compared with large software projects where multiple

parts are separated into several repositories to increase reusability. While in this case

hardware and software projects can be compared there are some important differences.

In software development, a module has exactly one view with a single corresponding

File. In a complex Top-Down hardware design, multiple views of a module exist. For a

System Level model, the following defined views are important to know.

Definition 1. Non leaf cells should only contain a structural description of the design

and are categorized as structural view

Definition 2. Synthesizable leaf cells are categorized as digital view

71

5 Full Custom Schematic Generation

Definition 3. A leaf cell implemented as RNM is categorized as rnm view

Definition 4. A leaf cell containing a general RNM model is defined as leaf view

Definition 5. A leaf cell has a functional view which is a simplified model without any

analog signal behavior for faster simulation.

For our reference design the file structure is shown in figure 5.4. The minimal DCO is in

our case the parent directory. Each view in our design is represented as a folder. Further-

more, the file list MIN DCO.f is given. The .f file is commonly used as input for event-

based simulators or synthesis. For a design, multiple .f files can exist which allow selecting

different views of the design if available (functional, RNM, AMS). In this example, the

file structure is simplified. Normally the model files beginning with MGT MODEL* are

in a separated repository as they are often used and for high reusability separated in a

model repository for general use in many different designs. Furthermore larger designs

can contain subdesigns organized in separate repositories with their structure and .f files.

In the file tree in figure 5.5 a typical file structure of an oa database for Virtuoso

is given. Each implementation of a full-custom design part is represented by one oa

database which should reside inside its repository. The system-level files are given via

symbolic links to the repository containing the system-level description of the design. It

is important to separate both designs since the system level is independent in contrast

to the implemented technology. From the technology-independent system-level various

implementations for different technologies or stack-ups then can be derived. Technology

dependent views in the implementation are:

Definition 6. A schematic view contains the netlist information of the cell.

Definition 7. A layout view contains the layout geometry.

Additionally the implementation includes technology-dependent testbenches for each

module to test its specification. Here schematic views are used to create a test deck for

the device under test.

Definition 8. A maestro view containing technology corner, simulator setup and op-

tional informations for sweeps, post processing and specs.

Definition 9. A config view is used to define which views should be included for each

module for the simulation.

72

5.2 Hierarchy Generation

MIN DCO

structural

DCO.v

DCO COARSE BANK.v

leaf

DCO BUF.v

DCO CORE REFGEN N.v

DCO BUF REFGEN N.v

DCO COARSE BIT.v

DCO COARSE PULLDOWN.v

DCO COARSE PULLUP.v

rnm

DCO CORE.v

MGT MODEL BUF.v

MGT MODEL CAP BIT.v

MIN DCO.f

Figure 5.4: File organisation of the system-level description

5.2.3 Structure Generation

The described design with its organized file structure and different repositories is the

input for the schematic generation. In this subsection, each step needed to create the

structural schematics is described and how they are implemented. First, the design

is elaborated then the internal design representation is build up. Lastly, the actual

schematic leaf generation takes place.

Elaboration

In the elaboration step, the system-level design will be parsed. Generate constructs and

parameters will be resolved to result in a specific design for the given parameter set.

To achieve this the file list has to be read in. Each file has to be parsed with a de-

fined top module. The class to read in .f files can be seen in figure 5.6. This class will

73

5 Full Custom Schematic Generation

MIN DCO

oalibs

hw

DCO

schematic

structural

verilog.v->Model\MIN_DCO\structural\DCO.v

layout

DCO COARSE BANK

DCO BUF

...

cds.lib

tb

DCO TB

maestro

config

schematic

...

cds.lib

cds.lib

Figure 5.5: File organisation oa database

read in a .f file and supports hierarchical descriptions. The design files will be sorted

into different views based on the folder structure.

In a first approach Cadence Genus [55] was used as a synthesis tool for parsing and

elaboration. Tcl is used in Genus as a scripting interface. Via this scripting interface,

the System-Verilog design can be parsed and elaborated. At the computer architec-

ture group (CAG) a SystemVerilog parser was implemented with ANTLR in a student

work [56]. With the help of this grammar, a little tool was implemented which trans-

forms an elaborated Verilog design output by Genus to a JSON representation.

74

5.2 Hierarchy Generation

Figure 5.6: Classes implemented for the Elaboration

Performing the parsing and elaboration step with Genus has some disadvantages. Genus

is a commercial tool for the synthesis of complex designs resulting in long start-up times

and license checkouts. Additionally, two binary tools have to be called to parse, elabo-

rate, and create the JSON representation.

An alternative approach was implemented with Yosys. Yosys is a lightweight open-

source synthesis tool created by Clifford Wolf [57]. It thus does not need a license

checkout. Yosys also offers a scripting interface either with its command language or a

Tcl interface. Furthermore, Yosys offers a write json command to write the elaborated

design to a JSON file.

To run the parsing and elaboration an abstract interface class is implemented. This class

allows us to interchange different approaches in our example the specific implementa-

tions Genus or Yosys to achieve tool independence. The resulting classes can be seen

in figure 5.6. To implement a specific tool the abstract class methods run and clean

from the general Elaboration class have to be implemented. The run method executes

the Elaboration tool and writes the JSON file, while the clean method cleans up all files

generated by the Synthesis tool for example all logs or unnecessary temporary files.

In the below listing the .f file is read in and the elaboration is executed with Yosys

with the above-described object hierarchy. In lines 1 and 2 an include directory for

the elaboration is set and the files are prepared with the Ffiles class. Since synthesis

75

5 Full Custom Schematic Generation

tools cannot elaborate non-synthesizable code in the next step stubs for the leaf files are

generated. The resulting stub file only includes the black-box description of the Verilog

module and is thus treated as a black-box module for the synthesis tool. Furthermore

for the stub generation not-synthesis supported nettypes and parameter types must be

exchanged. This is done with the type changes dict in line 3. Afterward, Yosys is called

with the name of the top-level module, the list of design files, the include directory, and

the name for the output JSON file.

1 i n c l u d e d i r = "MIN_DCO/"

2 f i l e s = F f i l e s ("MIN_DCO/MIN_DCO.f")

3 type changes = {"wCapSum" : "wire" , "wreal" : "wire" , "string" : ""}
4 s t u b f i l e s = [c r e a t e s t ub (f i l e , type changes) for f i l e in f i l e s . fc rnm]

5 yosys = Yosys (

6 ’DCO’ ,

7 s t u b f i l e s + f i l e s . f c s t r u c t + f i l e s . f c l e a f ,

8 i n c l ud e d i r ,

9 ’out’

10)

11 yosys . run ()

This summarizes the two approaches to elaborate the design. The Yosys approach allows

us to work without commercial licenses.

Internal Design Representation

The goal for the internal design representation is to offer a defined interface to all at-

tributes and methods needed for schematic generation from the elaborated design.

With the top module name and the JSON configuration, the internal design hierar-

chy is build up from a Module object. The class hierarchy in use can be seen in figure

5.7.

The Module is composed of a list of ports, nets, and instances. For each of these lists

which are build up in the init method a corresponding private method exists. The

corresponding part of the read in JSON configuration dict is through these methods and

the lists are built. The classes used to compose the lists of objects inside the Module

class are:

The Net class offers three attributes, a name, the number of bits in the net, and a

76

5.2 Hierarchy Generation

Figure 5.7: Class hierarchy internal design representation

connectivity identifier. A Net object represents internal nets from an elaborated Verilog

module. The Port Class inherits these attributes and adds a direction which is an enu-

meration class offering the selections input, output, and inout. A Port has exactly one

direction and represents a port of a Verilog modules port declaration.

The Instance class corresponds to a Verilog instance declaration. The attributes of

this class are an instance name, the corresponding config dictionary from the JSON file,

and a connection dictionary that holds information on how the ports are connected in

the module. A Module holds a list of instances where the corresponding Instance is

defined. An Instance class is composed of exactly one Module. With this, the design

tree is span since these modules may again include a list of instances.

Schematic View Generation

Structural schematics can be produced with the internal design representation.

77

5 Full Custom Schematic Generation

Similar to the Elaboration class an abstract interface SchematicEntry exists to imple-

ment the generation independently from the Virtuoso SKILL interface. A skillbridge

workspace is open from the implementation VirtuosoSchematicEntry. In figure 5.8 the

class hierarchy and their methods can be seen. The SchematicEntry class offers a tool-

independent interface.

The abstract methods of the abstract class have to be implemented by the specific

implementation class in this case by VirtuosoSchematicEntry. The defined tool inde-

pendent methods are schematic manipulation commands as create view which creates

the cell view, create pins, and create instances which take elements or lists of the above-

described design description structure. The function create symbol is used to create a

symbol from a cellview and its drawn ports. conn by name takes an Instances, searches

it in the schematic, and uses the connection dictionary from the Instance object to cre-

ate the corresponding connections for the instances to create connect-by-name wires and

labels.

5.3 Leaf Cells Generation

For the leaf cell generation the flow changes to a semi-automatic incorporating the cir-

cuit designer. The reason for this is that an automatic generation approach for the

generation of the leaf cells has several disadvantages. For one decision have to be made

at the system-level which topology is chosen and which sizing script is run. This either

resulted in a lot of additional parameters for the RNM leaf cells which were only used

as hints for the generation or in an often unwanted behavior that was difficult to direct.

A semi-automatic approach does not suffer these problems and is automatically com-

Figure 5.8: SchematicEntry and Implementation

78

5.3 Leaf Cells Generation

Figure 5.9: Interaction diagram of leaf sizing

prehensible for the circuit designer. To ensure design consistency the resulting internal

design representation configuration files for each generated cellview are used. These

configuration files include the evaluated parameters and local parameters of the corre-

sponding system-level description and the evaluated ports.

To create and size a leaf cell two main tasks have to be executed. First, the schematic

topology has to be chosen and drawn. Afterward, the circuit topology has to be sized.

In figure 5.9 the interactions for this workflow and some helper classes for the user are

shown.

First, a circuit topology has to be created. For this two possible workflows for the

circuit, designer exist. The circuit designer can use the schematic entry to draw an

initial topology. This topology can later be modified in the circuit sizing step.

For often-used circuit blocks, a template schematic can be generated. The template

schematic is created in the schematic entry with default values and connections names.

In the next step, the template schematic can be translated to a SKILL script. This

79

5 Full Custom Schematic Generation

SKILL script can then be injected into other cell views via methods inside of the python

dimensioning script. These methods are included in the Leaf class.

When the topology is created or loaded a python sizing script must be written by the

user. This can be done within a jupyter notebook which can be opened besides the

schematic entry to interactively see the schematic manipulations. Jupyter notebook is a

web application that allows live coding and visualization. In the background of the ap-

plication runs a python interpreter and in a so-called notebook a collection of executable

code blocks, markdown, and outputs. This allows developing code in an explorative

way making it the best fit for circuit design. Furthermore, the markdown fields allow

to include latex equations making it possible to write jupyter notebooks which execute

code and document the reasoning for the sizing.

To simply access the internal design representation the Leaf class is used. With this

ports and parameters can be simply accessed. On Leaf object generation the JSON

configuration is read in and the parameters and ports are added as properties to the

class. These can be accessed as shown in the example below.

The dunder methods dir and getattr are implemented to allow tab completion and

access the in the config written values as object attributes.

1 # Create Leaf Object from config file

2 dco core = Leaf (c o n f i g f i l e)

3 # property access from the created config

4 dco core .VCO TANK C FIXED

5 dco core .VCO TANK L

Furthermore, the Leaf class offers the set value method to change parameters of devices

in the targeted schematic. set value can be used as follows

1 # set the parmater nf of device N0 to 20

2 dco core . s e t v a l u e ((’N0’ , ’nf’) , 20)

In the next two pages, a minimal sizing example for the DCO core can be seen. Besides

the code cells, markdown cells are used to document the process. The example is reduced

on some parts to fit on two pages.

80

5.3 Leaf Cells Generation

In []:

In []:

In []:

Maximum frequency:
=𝑓0

1

2∗𝜋∗ 𝐿𝐶√

In []:

In []:

In []:

In []:

Oscillation Condition

Amplification
Tank negative conductance:

To ensure startup a multiplier for is introduced called

In this example we will dimension

,

Amplitude and current or voltage limited
Voltage limited:

= −𝑔𝑛𝑒𝑔
+𝑔𝑚𝑛 𝑔𝑚𝑝

2

𝑔𝑛𝑒𝑔 𝛼

=𝑔𝑚𝑛 𝑔𝑚𝑝

> 𝛼 ∗ , 𝛼 ≈ 2..3𝑔𝑚𝑛 𝑔𝑡𝑎𝑛𝑘

<𝑉𝑎𝑚𝑝𝑙 𝑉𝑑𝑑

from skillbridge import Workspace
import GmId, Leaf, math

dco_core_config = '/path/to/cellview/config.json'

ws = Workspace.open()
cv = ws.ge.get_edit_cell_view()
dco = Leaf(dco_core_config, cv)

dco.set_value(('L0','l'), dco.VCO_TANK_L)

w = 10e-6
dco_parasitic_c = 200e-15
l = (dco.VCO_TANK_C_FIXED-dco_parasitic_c)/(w*unit_c)

dco.set_value(('C0', 'w'), round(w,9))
dco.set_value(('C0','l'), round(l,9))

max_freq = 1/(2*math.pi*math.sqrt(dco.VCO_TANK_C_FIXED*dco.VCO_TANK_L))

81

5 Full Custom Schematic Generation

Current limited:

In the current limited region the phase noise is worse than in voltage limited region

<𝑉𝑎𝑚𝑝𝑙
𝐼𝐵𝑖𝑎𝑠

𝑔𝑡𝑎𝑛𝑘

In []:

Voltage swing, tank conductance from tank simulation and minimal length transistors:

, , = 200𝑚𝑉𝑉𝑠𝑤 = 2𝑚𝑆𝑔𝑡𝑎𝑛𝑘 𝑙 = 20𝑛𝑚

In []:

Tail current source
Size voltage reference , 𝑛 = 5𝑓𝑟𝑒𝑓 = 100𝑢𝑖𝑟𝑒𝑓

In []:

def dco_core_get_tran_spec(Vsw, gtank):
 ibias = gtank*Vsw
 gm = 2*gtank
 return [gm, ibias]

gmid=GmId.GmId("gf22fdx")
gmid.device = "slvtnfet"
gm, ibias = dco_core_get_tran_spec(200e-3, 2e-3)
l = 20e-9
w = gmid.get_W(l, gm, ibias/2.)
nf = int(round(w/490e-9))

for device in ['N0', 'N1']:
 dco.set_value((device, 'l'), l)
 dco.set_value((device, 'nf'), nf)

gmid.device = "slvtpfet"
w = gmid.get_W(l, gm, ibias/2.)
nf = int(round(w/490e-9))

for device in ['P0', 'P1']:
 dco.set_value((device, 'l'), l)
 dco.set_value((device, 'nf'), nf)

nf_ref = 5
l_ref = 120e-9
iref= 100e-6
mult = int(ibias/iref)

gmid.set_device("slvtnfet")

dco.set_value(('N2', 'nf'), nf_ref*mult)
dco.set_value(('N2', 'l'), l_ref)

82

5.3 Leaf Cells Generation

As we have demonstrated a modern toolchain was established to implement expert

knowledge in an executable format. Furthermore, the sizing scripts can be implemented

in a technology-agnostic approach and organized in classes and packages for reuse.

83

6 Layout Generation

The main challenge for layouts in advanced nodes is producing a manufacturable, DRC

conform and robust design. Especially in modern nodes, the layout is dominated by

silicon complexity as mentioned in chapter one.

Some additional challenges arise when considering the domain of High-Speed IO. To

achieve high bandwidth IO interfaces high line rates are needed and high pin densities.

The necessary pin densities lead to area IO. This means compact designs are needed to

keep the parasitics low for the High-Speed circuitry. Furthermore, the silicon IP has to

fit between smaller pin pitches. It is not desirable to become limited by the SERDES

IP area.

In the first part of this chapter general guidelines and best practices for layout in ad-

vanced nodes are discussed. These guidelines should be encoded in this chapter imple-

mented layout generators whenever possible. In combining the best practices with the

expert knowledge the result will be a more uniform and integrative layout block.

Full layout generation is not a realistic goal that can be achieved directly. In this

work, a step-wise approach was chosen. The first step is the generation of elementary

cells which can be extended by additional generators to build full layouts which are with

additional generators extendible to full layout generation.

The core concept of this chapter and the first step towards full layout generation is the

partial layout generation of layout sub-blocks. Reoccurring primitive cells in the full

custom domain were identified and implemented as parametrizable layout blocks.

Definition 10. Elementary cells are small reoccurring design blocks in the layout con-

sisting of only a few devices. Examples for elementary cells can be transistor arrays,

transistor pairs, or passive/active loads.

Elementary cells for the layout do not necessarily describe analog functions but rather

a common interconnection approach within the context of a few devices either passives

or transistors.

85

6 Layout Generation

Transistor Array Primitive

77
35.32%

DiffPair Primitive

101
46.33%

Passive Load Primitive

23
10.55%

CMOS Primitive

16
7.80%

Data from 71 Leaf Cells from a 28nm Bulk SERDES Implementation

Figure 6.1: Determined reoccurring layout blocks

During the schematic phase, these elementary cells can already be defined. In the

schematic phase, it may be that some parameters of the elementary cells are not known

yet. In the layout phase, these parameters are added to generate the desired layout part.

The elementary cells are implemented in a versatile way to be used as building blocks

in most full custom circuitry and build up the analog building blocks.

Definition 11. Analogue building blocks are circuits build-up from elementary cells.

For example, a CML Buffer consisting of the elementary cells transistor pair, transistor

array, and passive load.

Within a chip design project of a 28nm bulk SERDES it was noticed that the layout

took too much design time and that some layout blocks are done repeatedly.

It could be determined that transistor pairs, transistor arrays, passives, and a CMOS

style layout were the most reoccurring typical small layout blocks. In figure 6.1 71 leaf

cells of the design project were analyzed and the potential elementary cells were noted.

The most common repeating layout implementation is the transistor pair (101) followed

86

by the transistor array (77). CMOS-like cells were identified 16 times and passive loads

23 times. In this analysis layout, leaf cells for fill and decap were not examined. For

the transistor array, elementary cells only obvious transistor arrays were count and often

interpreted as a single elementary cell i.e. for the main current mirror. This results in a

slightly more pessimistic estimation.

Not only the repeated layout of these blocks are problematic. Another disadvantage is

that these multiple layouts of the same element type differ from each other. On the one

hand, because a common approach only was developed in later design blocks over time.

On the other hand, since multiple layout designers implemented these blocks in slightly

different ways.

The goal in this chapter is to implement these elementary cells to reduce the 217 differ-

ent layout blocks to 4 parametrizable blocks and thus increase design efficiency, reduce

design turn around cycles and increase uniformity in the layout.

This approach will be interactive as the schematic/ layout designer will choose which cells

should be made up from the elementary cells. In figure 6.2 an example of a schematic

build-up from elementary cells can be seen. The chosen example is a delay cell of an

injection lock ring oscillator and the potential elementary cells are marked. All current

source transistors are marked for a single transistor array elementary cell. If the layout

designer wants to place each current source independently a transistor array constraint

for each can be defined. For the two differential pairs, the input stage, and the injection

stage a transistor pair elementary cell can be used. For the cross-coupled load and the

PMOS load again the transistor pair elementary cell can be used since they can be in-

terconnected with the same basic idea but then only differ from their input connections.

The generation of elementary cells was initially based on SKILL PCell which were de-

veloped with the PCell Designer. In this approach, each PCell existed as a symbol,

schematic, and layout PCell and could be placed in the schematic as elementary blocks

instead of using the native PDK transistors. This approach will be discussed in the first

section of this chapter.

With the initial PCell implementation of these elementary parametrizable layout gen-

eration cells, several issues arose. Based on the lessons learned a technology-agnostic

layout generation framework is implemented. This approach does not offer elementary

schematic blocks as the PCell approach but rather lets the circuit designer add con-

87

6 Layout Generation

VTUNEP

VDD

INJP INJNINP INN

VREFN VTUNEN VINJ

Transistor Array

Transistor Pair

Figure 6.2: Elementary cells example ILRO delay cell

straints to the schematic which mark the cell for generation in the layout step. With

this framework, elementary cells and other generators are built. In the second part of

this chapter, the implementation of these will be discussed.

6.1 Layout Approach

The increasing DRC and DFM rules and working with multiple people on a design make

common layout guidelines and best practices necessary.

It is important to establish a layout approach for everyone designer to follow. The

goal is on the one hand to simplify the layout process and on the other hand allow

simple integration of different layout blocks in its parent hierarchy.

A solution for this is a track-based layout approach. In a track-based approach for each

metal layer, a track is defined. The layout designer work on the defined tracks. Tracks

are defined per metal layer and set a direction, track width, distance to neighbor tracks,

and optional track offset on which the tracks start. With this approach, the layout be-

comes simpler and more uniform.

Two arising issues in modern nodes will be discussed in detail which are lithography,

88

6.1 Layout Approach

regular design, and electromigration. Both are discussed in context to our technologies.

For these rising issues, some analysis approaches for early evaluation are introduced.

Within this section, an estimate will be made on how to incorporate these beneficially

in the design flow.

Afterward, the chosen best practices in terms of track definitions and default device

parameters are discussed and some alternative approaches are reviewed.

6.1.1 Rising Layout Challenges

To define best practices some aspects of today’s challenges for cell level layouts have to

be introduced. From these analysis methods and best practices for general layout design

and layout generation can be derived.

Traditionally, for cell level layout it has to be checked that the layout meets its area

constraints, does not block too many layers, and still meets its specification after par-

asitic extraction. Furthermore, in advanced nodes, several other aspects like density,

regularity, and electromigration robustness have raised in importance. For these layout

aspects simple analysis often does not exist.

In the following sections, some analysis and best practices are derived. Furthermore,

for some aspects, it is discussed if the best practices can have a measured impact and

how they might be enforced.

Lithography Friendly Layout and Regularity

An increasingly complex and important topic is lithography. In this subsection, the basic

concept of the lithographic-friendly layout is introduced. An assessment of the impact

on circuits is given based on literature and our used technology PDK and the included

simulation views.

With shrinking nodes lithography has become more and more challenging since the

wavelength scaling of the light source has stagnated at 193nm. The reason for this is

the absorption edge of air which becomes significant below 185nm. Resulting from this

today’s feature sizes are a fraction of the light source wavelength. Today several other

methods are used to further decrease the resolution like multi-patterning or special lenses

89

6 Layout Generation

used in purified water.

The main problem for ASIC layout design is the impact radius. The impact radius

is the radius around a shape where this shape causes interaction between other shapes

due to the Lithography. In a modern node for a 193nm light source which corresponds

to an ArF Laser which is commonly used for nodes below 50nm the interaction ra-

dius is around 500nm, from the Introduction of [58]. This effect results in widened

Worst and Best-Case corners. This further results in more complex DRC or DFM rules

for the technology node. Lithography is one of the major contributors to chip variations.

One approach to reducing the effects of lithography is the use of lithography-friendly

patterns and with that a regular layout. Furthermore, a regular layout meeting density

rules should also be better in regards to the variation from chemical mechanical polishing

(CMP).

Strictly regular layouts have become more and more popular. An especially promi-

nent example is the Standard Cell design in advanced nodes either to improve device

characteristics i.e. leakage [59] and to reduce variability. Here the poly layer is highly

regular which means one orientation, one gate length, and one poly pitch within a device

library.

Furthermore several layout approaches for yield optimization based on regular layouts

are introduced in [60], [61] and [62].

In [60] a regular approach for Standard Cell designs is evaluated. It uses a reduced

Standard Cell Library to increase regularity on the macroscopic level and the other

hand a set of lithographic-friendly layout bricks.

In an ARM9 test design from [60] it is shown that the variation of the poly gate across

chips could be reduced by a factor of 2. This approach makes use of ”pushed” design

rules enabled through the brick-based design which additionally results in a 15% smaller

design. Unfortunately to use pushed rules strong cooperation between foundry and user

must exist.

[61] discusses the importance of regularity and defines an impact radius in which shapes

are influenced by other shapes within the radius. This impact radius becomes bigger in

smaller technologies since the gap between light source and structure is increased. Fur-

ther, the paper discusses so-called lithographic dream patterns and how to optimize the

90

6.1 Layout Approach

lithographic process to generate them with high accuracy. Afterward, layout methods

are discussed which could be used in such a lithographic process were implemented.

In [62] a via configurable transistor array (VCTA) is introduced which is highly regular

and from it, digital cells can be derived. Furthermore, the work introduces a regularity

metric and a physical synthesis tool working with the VCTA cells.

It was shown that this approach increased the initial yield of a design because of regu-

larity when comparing to a Semi-Custom or Full-Custom approach. Disadvantages are

the impacts on the area, energy, and delay. It is noted that these drawbacks might be

solved in cooperating with the foundry to allow pushed rules.

After this summary of the academic state of the art practical approaches have to be

derived. A lot of the proposed approaches are not usable when the lithographic process

cannot be modified and close cooperation with the foundry is not available. Also defin-

ing stricter rules to create a more regular layout is not constructive if these cannot be

associated with a predictable impact.

The most ideal approach would be analyzing the layout and from this creating new

tightened corner views. For this tools exist which can create contour files of a layout for

example the Cadence Litho Physical Analyzer [63]. The contour data can be combined

with the extracted layout results to create new lithographic-aware corner views.

Unfortunately, both technologies we use do not provide the needed lithographic technol-

ogy files for this workflow.

Nevertheless, there are several other ways to at least get an estimate about the yield

a layout will accomplish. For smaller technologies often a DRC plus deck exist which

mainly checks for lithography-friendly layout and gives the layout a score. A specific

score must be reached to manufacture the chip. This score is loosely associate with the

potential yield of the design. For this, the DRC plus deck must be run, which includes

pattern matching for worse lithographic patterns.

As a best practice, it can be derived that a regular layout is desirable. Unfortunately,

these best practices can not be matched to a direct impact on the design but rather to

a better DRC plus score in the end.

91

6 Layout Generation

EM Limit

Another important part of the layout validation is electromigration (EM). To validate

for electromigration a back annotated simulation is run to create the needed EM data.

Afterwards, the in the PDK included EM deck is used to check if the current limits of

the shapes are exceeded. These tests are done late in the design since a complete layout

has to exist. This section introduces an approach to get early estimates if shapes are

EM robust. The results of this can be used together with expert knowledge to get a

good estimate.

In chapter four the theoretical background for today’s non-linear EM-rules is given.

These determine the maximum allowed average current of a shape.

The maximum allowed average current of the shape can be changed by modifying the

geometry of the shape. As described in chapter four due to several effects (immortal

wire, ...) widen the shapes in every case can result in worse EM performance. This

especially is the case for shorter length shapes in our technologies this corresponds to a

length below 8µm and thus is relevant for most shapes especially in block-level layout

and the lower metal layers which tend to be shorter.

With the change of geometry parasitics of the shape change accordingly. While the

capacitance change can not reliable determined just from one the independent shape

geometry, without knowledge about neighboring shapes. In contrast, the resistance of

the shape is solely depending on the geometry and independent of neighboring shapes.

The change to higher resistance of a shape can be seen as an unwanted effect since it

will impact most circuits negatively.

In this initial approach to determine the EM robustness of a cell level layout the capac-

itance as a factor will be ignored.

Every given geometry shape should be optimized in the following way.
∆Iavgmax

∆R should

be maximized. The original area of the geometry should not be succeeded. The resulting

optimized
∆Iavgmax

∆R can on the one hand be used to debug critical shapes and to fix them.

On the other hand, it can be used as a layout metric for EM optimal shapes. In this

approach the information about the current is missing thus it does not need simulation

and will give a fast initial overview over a layout block.

The function to calculate the maximal allowed average current can be derived from

92

6.1 Layout Approach

n← 1

while Wmin ≤ w do

Wremove ← Dmin∗(n−1)
n

∆Rmax ← ∆Rmax − Wremove∗n
Woriginal

w ← b(w
n
−Wremove)∗100.0c

100.0

X0 ← dw∗(1−∆Rmax)∗100.0e
100.0

x← {X0, X0 + 0.01, X0 + 0.02, ..., w}
y ← Iavgmax (x,l,layer)∗n

Iavgmax (Woriginal,length,layer)
∗ x∗n
Woriginal

Ybest new ← max(y)

if Ybest new > Ybest then Ybest ← Ybest new end if

n← n+ 1

end while

Figure 6.3: Algorithm to determine the EM robustness of a shape

the EMIR rule deck. It is depending on Tlife which determines the meantime of failure.

The resistance change is directly proportional to the width change of the geometry. In

this approach, the length of a shape is not changed.

The algorithm 6.3 for this first tries to narrow the shape until the ∆Rmax is reached for

each step
∆Iavgmax

∆R is calculated and the maximum is saved. Afterward, the shape gets

split up into two shapes and is resized again. This is done until the defined minimal

width Wmin is reached by the split shapes.

To understand this in detail we assume the following example. A shape with a length of

2 um length and 0.62 um width is given.

The function Iavgmax(w) for a constant length of 2 um is shown in 6.4. The colored

regions are the in the rule file divided rules which result in the discontinuous function

shown.

Our original shape starts with Iavgmax(0.62µm) = 0.56. For this example we will alow

a ∆Rmax = 0.2 and a resolution of 10nm. In our algorithm first Wremove and with it

∆Rmax is calculated. At the start for n = 1 these metrics are not changed. Now the

search space to find the maximum
∆Iavgmax

∆R is calculated in this example with a resolu-

tion of 0.01nm 0.5...0.62.

In this iteration, a with of 0.52 is found to be ideal since it allows 2.09 times the current

93

6 Layout Generation

0.10 0.25 0.50 1.00 2.00

Width in µm

0.5

1.0

1.5

2.0
I a

v
g
m

a
x

in
m

A

w <= 0.132 w > 0.132 and
w <= 0.264

w > 0.264 and
w <= 0.528

w > 0.528

C4 constant legnth 2µm

Figure 6.4: Example Tech Dependent Iavgmax(w) for 2 um

with a resistance change of 16.13%. Each iteration can be seen in figure 6.5. With n = 3

the break condition is reached since the resistance change is above the constrained 20%.

An ideal geometry is found in b at n = 2 which allows 3.36 times the current with also

a resistance change of 16.13%.

Density

Density is an increasingly important metric the multiple interacting density rules in a

PDK are difficult to match. One problem is that the density rules are defined for differ-

ent layout windows. If the layout block is below this window the corresponding layout

(a) n = 1
width = 0.52

Iavgmax

Iavgmaxorig
= 2.09

∆R = 16.13%

(b) n = 2
width = 0.26

Iavgmax

Iavgmaxorig
= 3.36

∆R = 16.13%

(c) n = 3
width = 0.09

Iavgmax

Iavgmaxorig
= 1.81

∆R = 56.45%!!!

Figure 6.5: Example 2µm length, 0.62µm width EM optimization

94

6.1 Layout Approach

will not be checked for the rule. To find and check critical density parts in the layout

early custom scripting checking these is introduced. These check the most critical den-

sity rules even when the window size is not reached yet and it is possible to check the

accumulated density rules over multiple layers.

Furthermore, the density gradient as a metric is interesting since it should ideally be

constant. The DRC rules in modern nodes are only able to check density gradients

between specific density windows so a gradient plot can give a good overview early of

possible problems.

For generator and best-practice approaches, the density has to be taken into account.

Especially for the track setup, a dense power grid should also be density clean, and

layouts from potential generators should be density friendly.

6.1.2 Best Practises for a DFM Driven Layout

The main idea with DFM Driven Layout is to define a layout environment and best

practices which will result in a DRC clean and EM robust design. Furthermore, this

layout environment and rules should result in simple integration of the cell in the design

hierarchy. In the following, some approaches which will be used in layout generators are

presented and discussed.

One aspect is track-based design. Here a grid of tracks is defined for everyone tak-

ing part in layout design. This has several advantages as the resulting layout blocks will

be simply integrable in the system level and result in a more overall regular layout.

This can be further increased when introducing specific tracks for specific aspects of

the design for example a track definition for power, bias route, and HF route, and more

to give layout designers a common approach for the associated task.

The chosen tracks and design grid for this approach are based on the one hand to

achieve sufficient density and on the other hand to result in aligned Vias resulting in via

towers from the upper coarser metal grids to the lower metals. Furthermore, it is neces-

sary to check that the different track definitions as power or bias route have a common

multiplier and will not result in problems when used together.

In the below table an example track setup is shown. In this example, only the most

95

6 Layout Generation

commonly used tracks are shown with the cell track and the power track with VDD and

VSS tracks. It should be noted that each layer has a corresponding orientation which

is also defined in the track but not shown in the table. In the example, it can be seen

that the power track is separated into two tracks with different offsets and a stride of

two. This results in a layout-wide defined power grid for every layout block and every

designer increasing simplicity on the integration of layout blocks.

One of the main aspects when defining tracks is the resulting metal density when the

tracks are filled. This density must meet the PDKs minimal and maximum density rules.

The densities for VDD and VSS track per layer have to be added since they alternate.

Another challenge for the track setup is that it should result in via tower laying above

of each other especially for the power tracks. This, on the one hand, increases EM ro-

bustness and on the other hand, simplifies the connection from the power grid to layout

elements. For the cell tracks, it has to be taken into account that it is used to fan out

multiple signals at once and thus should result in compact bundles of wires. Addition-

ally, the vias on the cell track have to be able to be placed in an alternating manner and

they should always fit at least 2 vias to match DFM constraints.

Besides the track definitions, some defaults should be set for the PDK devices used. In

the Semi-Custom design for this Std-Cells in rows with standard heights are used. While

this row-based design is becoming increasingly popular in the full-custom flow for FinFet

based designs in our case we define PDK defaults to further increase a uniform design

but keep some degrees of freedom to achieve compact and robust designs. Thus for the

Layer Type Width[µm] Distance[µm] Offset Stride Density[%]

M1-M2 Cell 0.040 0.125 0 1 32
M1-C1 VDD 0.130 0.25 1 2 26
M1-C1 VSS 0.130 0.25 0 2 26
C1-C6 Cell 0.06 0.125 0 1 48
C2-C3 VDD 0.3 0.5 1 2 30
C2-C3 VSS 0.3 0.5 0 2 30
C4-C6 VDD 0.62 1 1 2 31
C4-C6 VSS 0.62 1 0 2 31
IA-IB Cell 0.36 1 0 1 36
IA-IB VDD 0.62 1 1 2 31
IA-IB VSS 0.62 1 0 2 31

Table 6.1: Example track setup for cell and power tracks

96

6.2 PCell Designer based Implementation of Primitive Cells

transistors, standard finger widths for the layout designer to use are defined. Addition-

ally, default parameters for analog and digital transistors are set up. These parameters

are set to fulfill recommended DFM options and will result in the gate contact laying on

the M1 cell tracks.

These tracks and default transistors should be used whenever possible but there are

some exceptions for example extremely dense layout parts, high current shapes, or spe-

cial sensitive analog blocks. If such a block is designed at least the resulting pin shapes

or at some point the shape structures have to end on the defined global grid, so the

block can be integrated at the system level. These defined best practices have also be

encoded in possible elementary cell layout generators.

6.2 PCell Designer based Implementation of Primitive Cells

For a first implementation for the elementary cells, the Cadence PCell Designer was

chosen. The PCell Designer allows to program PCells with higher-level functions in a

graphical way. The Pcell Designer is described in detail in the State of the Art chapter.

The first two implemented elementary cells are the transistor pair and the transistor

array. Each is explained here with its challenges and approaches for different design

problems.

The PCell Designer can be seen as a programming tool that generates skill code from its

graphical description. This graphic representation promises to offer the same concepts

as modern programming languages as in example methods, recursion and inheritance .

One design decision is to compose the PCell elementary cells hierarchically.

Initially in this section, the vendor transistors will be introduced and discussed.

The base for all these cells should be the BASIC-FET. Its function is to encapsulate the

original vendor transistor PCells and their behavior. This cell is then used to build all

other PCells from it.

Furthermore, every cell will inherit from a base cell. In this cell, the version of all PCells

is set. Afterward beginning with the BASIC-FET each PCell implementation and setup

will be described in the following subsections.

6.2.1 Vendor Transistor Pcell

The vendor PDK already comes with a transistor PCell which is used to build up more

complex configurations. Not using the vendor PCell would result in increased complexity

97

6 Layout Generation

Figure 6.6: PDK transistor with default parameters and the chosen preferred finger
widths

to build transistor-based PCells. Not only that the vendor PCell has a lot of configura-

tions that would have to be implemented, furthermore these parameters depend on each

other and trigger callback functions to update the dependent parameters. To further

complicate the matter these parameters are not always layout parameter which are up-

dated but also parameters used in the spice model or to draw layers for the DRC, LVS

or parasitic extraction.

This is the main reason to build upon this cell. Furthermore, this will also be a fu-

ture save variant since the PDK updates will automatically be applied to dependent

cells. Also, it uses already existing cells and limits the implementation effort.

The vendor PCell is very versatile since it has to be usable for every possible circuit.

The PDK transistor PCell has around fifty CDF parameters. Some only impacting the

simulation model and some impacting the layout. For example to create an abutable

transistor first a flag has to be set to allow to modify the dummy configuration. Next

poly dummies have to be disabled. For this, the parameters (Dummy config, Number of

Dummies, and Stop Dummies) have to be set. Instantiating this PCell with the correct

parameters is the goal for the BASIC-FET PCell.

6.2.2 BASIC FET

The BASIC FET is a helper cell, which is not intended for direct use. It provides the

different basic transistor structures needed by the elementary cells.

98

6.2 PCell Designer based Implementation of Primitive Cells

Figure 6.7: BASIC-FET in the configurations active, left dummy and middle dummies

In figure 6.7 the most basic configurations are shown.

On the left, the active FET with a dummy transistor and a gate connection on the left

side is shown. This configuration is used as left and as mirrored version as the right

active part of the transistor pair PCell. It also exists in a variation where the gate

connection is not drawn or drawn on both sides, which is used as a building block for

the transistor array elementary cell. The same applies to the dummy which also can be

drawn on both or only one side.

On the right, a middle configuration is shown with all transistor terminals are connected

to the dummy net. This configuration is used in transistor pair as middle dummy be-

tween the two active devices. The actual dummy terminal and connection are drawn in

the transistor pair PCell since it is dependent on some of its parameters.

(
LV T

SLV T

)
×

Core Device

1.2V EG

1.5V EG

1.8V EG

×
(
NMOS

PMOS

)
(6.1)

The three possible gate width configurations are chosen to create a more uniform design

and with this configuration, the vendor PCell created gate stripe already lies on our

defined design tracks. With the in the above section defined defaults to create more

99

6 Layout Generation

Figure 6.8: layer structure for drain and source clips

uniform layout blocks.

In figure 6.8 the layer structure of the drain and source clip for active devices are shown.

These structures allow high maximal current density. The alternative configuration is

connecting drain or source with a stripe connecting down to the corresponding M1 metal.

The advantage of the clip structures is that each element has a small equivalent length,

allowing a high average current for commonly used gate lengths, while for a strip the

length would depend on the number of the fingers of the transistor. And thus with a

greater length result in a lower Iavgmax. The upper layer of the clip structures can be

configured. When the clips are configured to connect to C5 they will lay directly on the

IA grid and can be connected to IA. I metal has 14 times the thickness of C metal and

allows reliably very high currents EM wise.

6.2.3 Transistor Array and Transistor Pair PCell

Transistor Array and Transistor Pair PCell implement the elementary cells by composing

them from the BASIC-FET PCell with passing the corresponding parameters. For each

PCell, a schematic, symbol, and layout view is created with the PCell Designer. The

PCell designer offers the functionality to create a graphical equivalent to methods that

then can be used as a custom command. Inheritance does only work for cells with the

same views meaning schematics can only inherit from schematics, symbol from symbol,

and layout from layout. This makes it difficult when multiple cells over different views

100

6.2 PCell Designer based Implementation of Primitive Cells

but share the same traits as these must be implemented manually for each cell and kept

consistent by hand.

In figure 6.9 on the right, some transistor array examples can be seen. The transistor

array PCell allows selecting one of three defined finger widths for the included transis-

tor. Furthermore, the number of fingers and the length of the transistor can be set.

Additionally, a transistor type and a VT variant can be set. Each of these parameters

is passed through to the BASIC-FET. For the transistor array rows and columns can

be set. Row and column act as a multiplier for the other parameter set transistor re-

sulting in the defined array. In the example in a single device transistor array is shown

with guardrings. In b) a 2x2 transistor array and in c) a 2x1 transistor array without

guardrings.

The Transistor Pair uses all the above introduced different modes of the BASIC-FET

with constructing a composition of left dummy, left device, middle dummies, right de-

vice, and right dummies. On the right several examples of this can be seen. As for the

TransistorArary, the transistor parameter can be set. In this implementation, the second

transistor in the pair is always mirrored and the same as the first one. Always resulting

a)
b)

c)

d)

e)

f)

g)

Figure 6.9: PCell elementary cells left: Transistor Array, right: Transistor Pair

101

6 Layout Generation

in a symmetrical pair. In d) a variant with stripes on C5 is shown. In e) a variant with

clips. In f) with clips and guardrings. In g) a transistor pair for IO transistors with

stripes is shown.

6.3 A constraint based layout generation approach

From these lessons learned from the PCell elementary cells, a new approach was de-

rived. This approach should succeed the PCell approach by keeping its advantages and

resolving the disadvantages. The main challenges as the side effects and no technology

independence will be discussed in this section. Afterward parametrized shape genera-

tion is a topic since the programmable build-up of geometries is an important topic for

a layout generator. The better usability and increased code reuse in the generators are

topics in the following implementation sections.

For each of these aspects, different proposals are discussed and will be the focus of

a resulting constraint-based layout generation approach.

6.3.1 Side-Effects

One issue which arose when using the PCells in bigger designs were side effects with

other skill code in the design. This issue did not occur during the design phase but

rather on streamout resulting in destroyed .gds files. This error only occurred in some

complex combinations between vendor PDK, PCell Designer, and custom PCells. After

some experimentation, it could be determined that in a specific execution order of the

PCells some would evaluate with errors. Before each streamout in layout or netlisting in

the schematic an evaluation takes place. The evaluation sequence from which this issue

depends is not documented and it seems that this cannot be changed. It is not possible

to further debug the problem since a lot of third-party code is involved. Additionally,

this should not be a problem since the PCell Designer Code should be completely en-

capsulated. In this error case, it is not which may hint at a bug in the PCell Designer.

Since the example to reproduce the error involves multiple large layout blocks a minimal

test case to create a support request can not be derived.

In newer versions of the PCell Designer, there is the concept of an AppCell which is

a PCell without instance. It draws the layout flat in the entry and thus it will not be

re-evaluated by the streamout or netlisting. This approach allows the user to change

some parts of the AppCell when it does not fit completely. A flat layout generation seems

102

6.3 A constraint based layout generation approach

all in all an approach with advantages but a disadvantage which has to be overcome is

that regeneration of cells and a clean up of cells is needed. It is not uncommon that

elementary cells are improved and that the user wants to regenerate already existing

layout blocks.

6.3.2 Technology Independence

The PCell Designer approach is not technology, stack-up, or node independent if any of

that changes all cells have to be reimplemented. A technology-independent description

of such cells is desired. Several approaches for technology-independent descriptions can

be found in literature. One example is [64] where a virtual design grid is established and

abstract definitions for different well contacts and P and N-type transistors are intro-

duced. When comparing the aspect of the paper with today’s technology some aspects

come short i.e. the buried contacts in FDSOI. Furthermore, today’s PDKs became more

complex with modern nodes i.e. design rules and the existence of vendor PCells. There

are several good approaches in this work that are still valid today, i.e. the virtual grid

and the well abstraction, grouping, and generation. Furthermore, it should be noted

that the goal of [64] is to describe STD-Cells in a tech-independent way rather than

arbitrary circuits. This way some aspects can be used today but many come short for a

general approach.

In the following section, it is evaluated what is needed to achieve a technology-independent

description.

In a technology, there are a lot of aspects that are specific to the technology. De-

sign rules, vendor-specific PCells with vendor-specific parameters, stack-up, and layer

naming. Not every detailed information of the technology has to be abstracted only the

parts necessary for layout generation are needed. From a general approach for layout

generation, the technology-dependent information should be derived.

When working flat on the layout to avoid side effects some other advantages come with

it. For one this approach is based on already existing instances on which constraints are

applied. This means the generator does not have to create these instances but rather set

an intention or constraint which has to be attached to the instance or instances. Working

on constrained instances introduces automatically some technology independence since

the instance can be swapped and as long layout generation works on the same parameter

set the result should be a valid layout. This indifference to the Cadence PCell approach

103

6 Layout Generation

means there are no conditional cases that have to be taken into account for different

device types i.e. LVT, SLVT or high voltage transistor types since they largely share

the same parameters and terminal names.

Layout generation independent from the instances has to work on a given layer list.

This layer list is highly technology, process and stack-up dependent. Since the layer list

is a commonly shared aspect in all cells, it is one of the most important abstractions. If

the abstraction of the layer list is done right a lot of otherwise existing dependencies can

be removed. The abstract layer list has to include in the generator needed layers. There

are a lot of helper layers for DRC and LVS not all of them are needed in a generator.

Nevertheless, it must be possible to define them if needed. The goal is to find a general

technology and stack-up independent layer list which is reduced to only the necessary

layers.

The general layer list should consist of general layer names being converter to the cor-

responding specific layer name of a target technology.

6.3.3 Programmable Shapes

An important task to accomplish is the programmatic description of layout structures.

One of the core concepts in the PCell Designer for shape construction is the geo expres-

sions, which lets the user define an expression that will result in an output polygon or

list of polygons. The geo expressions are very powerful and a lot of tasks can be accom-

plished in multiple ways. Geo expressions in the PCell Designer are set up graphically

due for this reason they become cumbersome to set up fast. An important point of the

geo expressions is that most expressions are based on querying existing shapes in the

layout. If the layout shape changes the result of the geo shape will change accordingly

resulting in parametrizable constructs.

To find a fitting solution different approaches for geometric constructions were eval-

uated. From one of these evaluations, the simple-geometry package was created. Simple

geometry is an initial implemented python package for axe-aligned geometry descriptions.

Similar to the skillbridge the simple-geometry package was released as an open-source

project on GitHub [65].

In advanced node technologies for shapes only often only vertical and horizontal shapes

are allowed. From this, the decision was made the geometry descriptions should be

104

6.3 A constraint based layout generation approach

axis-aligned as this prerequisite further simplifies most methods. A second prerequisite

for further simplify is to only allow rectangles as polygons can be build up from these

rectangles.

The simple geometry package introduces classes and types for points, rectangles, path

segments, groups, and a default canvas.

The Point class offers a way to define a 2d point in space and is build up from the x and

y properties which represent the coordinates. The Point class has an alias called Vector

to allow to document in the code the intend of the operation. For the Point/Vector class

multiple operations are implemented as element-wise division, multiplication but also a

dot product, and many more.

The rectangle class is used to define rectangles and introduced properties as x and y

coordinates but also a width and height. Furthermore, the corner handles can be read

with top left, top right, bottom left, and bottom right. Corner handles return a Point.

Besides corners and edges exist which are left, right, top and bottom. Both edges and

corners can be manipulated resulting in a modified Rect object. The Rect class further

implements useful methods as intersection returning the intersection as Rect Object or

None if there is no intersection, is inside of returning a bool or copy, translate and union.

The Segment class implements a rectangle that has a direction and can be defined with a

starting point, endpoint, and width. Segment objects and Rect objects can be translated

into each other. Furthermore, the Segment class adds the Direction property.

The Group class allows to group the geometry objects. Furthermore, the group can be

modified as in example it can be mirrored, copied, or translated.

1 from geometry import Rect , Canvas

2

3 big = Rect [100 , 100 , ’blue’]

4 smal l = Rect [5 0 , 50 , ’red’]

5 smal l . t r a n s l a t e (c en t e r=big . t op r i gh t)

6 t iny = big . i n t e r s e c t i o n (smal l) . copy (’green’)

7

8 c = Canvas (width=200 , he ight=200)

9 c . append (big)

10 c . append (smal l)

11 c . append (t iny)

The default Canvas class takes the geometry description and outputs an HTML visual-

105

6 Layout Generation

Figure 6.10: Output simple-geometry example [65]

isation.

The above-shown example is modified from [65]. Here three rectangles are defined.

The big and the small rectangles are defined directly with a Rect object. Afterward, the

small rectangle center is translated to the big rectangle top left. The tiny rectangle is

constructed from the intersection of the big and the small one.

With rodlayout [66] a canvas backend for the Virtuoso layout entry was implemented.

rodlayout uses the skillbridge to communicate with Virtuoso. Instead of giving geometry

objects colors, a layer purpose pair can be set.

The simple-geometry package allowed to intuitively describe geometry constructs. But

when used for layout generation some disadvantages were discovered. While the con-

struction of the objects worked seamlessly the interaction with already existing shapes,

groups, and instances in the layout was lacking. For the user, it was often unclear how

to manipulate which object, as there was no common method, and the simple-geometry

description behaved like a virtual copy.

Due to this in the XCell approach which will be detailed in the next section, the separa-

tion between geometry construct and canvas was removed. Instead, a defined interface

to query and draw layout objects was introduced with the Viewport. The advantages

form simple-geometry are implemented in the Box class to give a clean interface to con-

struct parametrizable interdependent constructs from queried boxes of layout objects to

the Viewports draw methods.

106

6.4 Xcells

6.4 Xcells

The implementation of this constraint-based layout generator framework is XCell. This

Framework is developed with the lessons learned in mind. It offers all needed functions

to implement layout generators and abstracts the design environment in use and the

specific technology.

In this section, at first, the core concepts and structure of the layout generator frame-

work are introduced in a top-down manner.

The technology abstraction is one of the most important features and will be discussed

in detail in a separated section.

Afterward, the implementation of generators as the elementary cells will be discussed.

Here the focus will too be on the technology-agnostic description but also code reuse

will be detailed. Furthermore, the lessons learned from the PCell elementary cells will

also be implemented in this iteration.

At least additional generators are introduced which were enabled to be implemented

with the XCell framework approach. These will offer further automation besides the

elementary cells.

6.4.1 Constraint based Layout Generator Framework XCell

With the skillbridge there is a strong foundation to build a layout generation framework

tackling all the in the before section mentioned challenges.

First, the basic concept and interaction between the user will be described. From there

the detailed implementation and its most important aspects will be discussed.

In figure 6.11 an interaction diagram on how the interaction between the project author

and specific XCells, a user and Virtuoso, and between Virtuoso and the framework takes

place. A specific XCell implementation is a constraint-based layout generator that uses

the XCell framework. Specific Xcell implementations are grouped into XCell libraries.

Definition 12. The author of these XCell libraries is defined as project author.

107

6 Layout Generation

Figure 6.11: Constraint based Layout Generator Interactions modified from [67]

The user also applies constraints to the schematic or layout elements. Different tools

offer constraint management and interfaces. In the case of Virtuoso, a custom user con-

straint interface exists [68] which will be used as one possible implementation in the

framework.

Definition 13. The user is the creator of schematics and layouts in Virtuoso.

The XCell libraries are registered to the Virtuoso constraint manager which has an in-

terface for custom constraints. The XCell implementations are registered within this

interface from the XCell framework.

A typical workflow for the user is to create a schematic with some devices and use

the provided custom constraints registered from the XCell library. Constraints from the

schematic are transported to the layout when creating the layout view.

In the layout entry, these constraints can be modified and additional constraints can

be added. Furthermore, in the layout entry, a GUI is offered to the user to trigger the

layout generation of the XCells. XCells cannot only be generated but also regenerated

and cleaned. The generated cells will be grouped after generation and all corresponding

shapes are marked with their constraint ID. This is an important function for the user to

interactively test different constraint parameters or apply updated generator code. An-

other aspect that can be modified in this menu is the execution order of the constraints

which may be interdependent and hierarchical.

108

6.4 Xcells

Figure 6.12: Class hierarchy XCell framework, extended from [67]

This constraint-based user interaction and abstraction to create technology-agnostic lay-

out generators is implemented in the XCell framework. For this, the framework offers two

main functionalities. First, it provides an infrastructure to communicate between layout

tools and generators. Secondly, it provides abstractions to implement constraint-based

parametrizable generators. In figure 6.12 the class hierarchy of the XCell framework can

be seen.

The class hierarchy shown should only serve as an overview and thus does not give at-

tribute or method details of the classes. Nevertheless, it gives a good top-down overview

of the XCell framework. In this figure different corresponding aspects are color-coded.

109

6 Layout Generation

The entry point of the XCell framework is the Manager. It offers a CLI interface to

access the Remote. Via this interface, XCells implementations can be registered and

called to generate, clean, and recreate layouts.

The Remote class offers an abstract interface to the ASIC design environment. In this

case, the Remote interface is implemented with the Virtuoso class and is composed of the

Viewport, a specific technology through the abstract Technology class and the XProject

class. In the Remote different interfaces are defined to trigger the generation, clean, and

recreate step. Furthermore, constraints can be registered and XProjects are composed.

In Virtuoso the concrete menu entries are build up and the Virtuoso-based custom con-

straints are set up. Also, some additional Track based functions are mapped. This

includes menu entries and shortcuts to switch between different tracks and to activate/

deactivate them. Furthermore generated constraints can be snapped to these tracks.

The Viewport is an abstract interface to the layout entry which is implemented with the

VirtuosoLayout class. The Viewport offers abstract methods to query and manipulate

layout objects as instances, shapes, groups, or vias.

The Technology class composed by the Remote is applied to all generate steps to execute

the layout generators on one specific implemented technology. The specific implemen-

tation classes act as the technology abstraction and definition. In this example, these

classes are BulkTech and FDSOITech. The technology abstraction class hierarchy shown

in green will be detailed in the next subsection.

The XProject class is composed of several defined XCell libraries in which the different

layout generators are organized. XProject offers some attributes and methods to offer

a simple interface to access and add additional libraries or list the XCell generators in-

cluded. The actual registration and managing of the libraries are implemented in the

XLibrary class. XCell class is an instance of XCellType. The XCell class implements the

base class of every implemented generator. Its main task is to offer the project author

a comfortable interface to write generators. For this, it passes the Viewport and the

corresponding technology to the project author. Detailed examples on how the XCell

class is used to implement generators will follow within this chapter. For one a minimal

generator example will be described to introduce and show the main concepts. After

the minimal example, the implementation of the elementary cells and some additional

generators will be detailed.

110

6.4 Xcells

An implemented XCell will almost always be composed of instances. These Instances

are modeled with the Instance class. Furthermore, the access and interoperation of in-

stances, groups, shapes, and boxes are implemented with the classes marked in violet.

The abstract class figure is either implemented by an Instance, a Terminal, a Via, a

Shape, or a Group. A Group is composed of multiple Figures. The Figure is further-

more composed of CornerHandles and EdgeHandles which adds properties to access edge

values and corner coordinates of the corresponding figure. Additionally, the Box, Shape,

and ShapeCollection classes offer an interface to create or query geometry objects. The

Stretchable or Movable class adds the according functionality to the corresponding Fig-

ure implementation. Most of the noted classes are used to modify or query existing

objects in the layout. An exception is the Box class which can be used to build up ge-

ometry which then can be drawn with the implemented Viewport. This is mostly used

when writing generators or methods to create specific parametrizable shape constructs.

Detailed examples will follow within this chapter.

XCellType is an instance of XCell and implements the base class variables. XCell

implements the behavior of these. From XCell the project author derives the layout

generators. Additionally in the implemented generators, BaseMembers and Parameters

can be composed. In the generator, this can be done as a simple class variable assign-

ment, while in the background these parameters or members are prepared for the Remote

to be added to the corresponding custom constraints.

Constraints are applied to so-called members. Members are schematic or layout in-

stances. To describe which Members are allowed for a constraint the following classes

exist.

A BaseMember of a layout generator can be Member which represents a single instance

on which the corresponding constrain can be applied, Members represent multiple al-

lowed instances and MultiMember represents multiple instances of a single instance type.

Additionally, constraints can be set on nets or shapes which are represented by the Net

and ShapeMember classes.

6.4.2 Technology Abstraction

To achieve technology-agnostic generators a technology-independent interface was im-

plemented with the class XTechnology. It implements two main ideas. First, it offers an

abstract interface with which a target technology can be mapped with a corresponding

class implementing XTechnology as seen in the example below. Secondly, XTechnology

111

6 Layout Generation

Figure 6.13: Class hierarchy XTechnology

additionally offers powerful methods to access these specifics.

In figure 6.13 the class hierarchy of XTechnology is shown. Only public methods are

noted since they are sufficient to understand the core functionality and keep the figure

clearly represented. XTechnology is an interface that has to be realized by a concrete

Technology class in our example TargetTech which inherits from XTechnology in line 1.

In the class hierarchy, XTechnology is realized by FDSOITechnology and BULKTechnol-

112

6.4 Xcells

ogy. For these XTechnology offers to map technology specifics to generics with building

up a specific composition of Devices, Layer, MetalLayer, ViaLayer, MetalCollections,

Purpose and LPP Objects.

1 class TargetTech (XTechnology) :

2 a c t i v e = ’RX’

3 poly = ’PO’

4

5 m1 = ’M1’ , f i n e t r a c k s

6 m2 = ’M2’ , f i n e t r a c k s . f l i p ()

7 m3 = ’M3’ , c o a r s e t r a c k s

8

9 l o c a l r o u t e = [m1,m2]

10 mid route = [m3]

11

12 via m2 m1 = ’V1’ , (’Vx’ , ’VxBAR’)

13 via m3 m2 = ’V2’ , (’Vx’ , ’VxBAR’)

14

15 drc m1 exclude = ’M1’ , ’exclude’

16 drc m2 exclude = ’M2’ , ’exclude’

17 l v s d i o d e = ’DIODE’ , ’lvs’

18

19 f e t =MosFet (’*fet*’ , ga te s=’g*’ , s ou r c e s=’s*’ , d ra in s=’d*’ , f i n g e r s=’nf’)

To comfortably define the mappings for each object within the composition XTechnol-

ogy will take all given class variables in its init method and build the corresponding

attributes and compositions on object creation. Depending on how the class variable

was defined a different object will be composed as example lines 2-3 will result in a layer

mapping.

1 tech = TargetTech ()

2 tech . poly

3 >> Layer (name=’RX’ , g en e r i c=’active’)

4 tech . poly . g en e r i c

5 >> ’active’

In the above listing, an object is created from our defined TargetTech, and with this, the

layer can be accessed via a class property returning the Layer object which represents a

113

6 Layout Generation

struct with its attributes generic and name. The name is the specific technology name

while generic is the generic name the layer gets mapped to. The project author works

with the generic layers or directly with the defined layer objects offered by the imple-

mented XTechnology interface.

MetalLayers are created when assigning a specific name and corresponding Tracks ob-

jects. This can be seen in lines 5-7 from our TargetTech example. The MetalLayer struct

inherits both properties from Layer and adds the track property which is of type Tracks.

The Tracks are further composed of multiple Track objects. An example of a Tracks

definition can be seen in the example below. Here two Tracks are defined one resulting

in finer tracks for lower metals and one for coarser tracks for upper metals. Since each

Tracks setup will be added to a MetalLayer the Tracks definition has a common vertical

or respectively horizontal property. Each Tracks setup consist of multiple Track defini-

tions.

In this example definition, the VDD and VSS Tracks are defined to alternate with a

stride of two and a corresponding offset. The width defines the default metal width

on these Tracks and the gap the distance between two Tracks. A horizontal or vertical

attribute can be set as shown in line 5 and 11.

1 f i n e t r a c k s = Tracks (

2 vdd=Track (width=0.2 , gap=0.25 , o f f s e t =0, s t r i d e =2)

3 vss=Track (width=0.2 , gap=0.25 , o f f s e t =1, s t r i d e =2)

4 c e l l=Track (width=0.1 , gap=0.125 , o f f s e t =0, s t r i d e =1)

5 v e r t i c a l=True

6)

7 c o a r s e t r a c k s = Tracks (

8 vdd=Track (width=0.3 , gap=1, o f f s e t =0, s t r i d e =2)

9 vss=Track (width=0.3 , gap=1, o f f s e t =1, s t r i d e =2)

10 c e l l=Track (width=0.2 , gap=0.25 , o f f s e t =0, s t r i d e =1)

11 v e r t i c a l=True

12)

MetalLayer can be accessed as shown in the following example from a MetalLayer the

corresponding track for a specific purpose can be selected and in the example, the gap

can be read. In the class hierarchy from 6.13 it can be seen that the Tracks class im-

plements the get attr method. With defined custom tracks can too be accessed via

a property, where the property name is dynamically built from the given custom track

name. With the getitem method Track behaves as a sequence implementing self[key].

114

6.4 Xcells

This behavior can be seen in the example from lines 5-10. In line 5 a simple access is

done and the 3rd track is read out which yields 0.375 since the cell track is defined with

a gap of 0.125 and a stride and offset of one. The sequence can not only be accessed

with an integer but also a slice as shown in line 8 where the tracks from 0-3 are taken.

In line 10 it is shown that also negative Track indices may be used. If a slice definition

does not result in a closed list a Track copy with the corresponding offset and stride is

returned as shown in line 12.

1 tech .m1

2 >> MetalLayer (name=’M1’ , g en e r i c=’m1’ , t r a ck s=Tracks (. . .))

3 tech .m1. t r a ck s . c e l l . gap

4 >> 0 .125

5 tech .m1. t r a ck s . c e l l [3]

6 >> 0 .375

7 tech .m1. t r a ck s . c e l l [0 : 3]

8 >> [0 . 1 2 5 , 0 . 25 , 0 . 3 7 5]

9 tech .m1. t r a ck s . c e l l [=2]

10 >> [=0 .125]

11 tech .m1. t rack . c e l l [: : 3]

12 >> Track (gap=0.125 , width=0.2 , o f f s e t =0, s t r i d e =3)

Additionally, the Track class also offers methods to derive Track copies. The methods

self.as horizontal and self.as vertical can be used to create a Track copy with the corre-

sponding orientation. self.narrow and self.widen are used to create a copy with a changed

width. self.with stride and self.with offset are used to get a copy with changed stride

or offset. The self.copy method can be used to create a copy with arbitrarily changed

parameters.

With lines 9-10 in our TargetTech class, we define a MetalCollection. A metal col-

lection is a group of MetalLayers. In most technologies, some metals can be grouped for

their uses. Often M1 is only used for local route inside and near devices. Additionally,

it has become more common that M1 and M2 are doubled patterned and thus both used

at local device level. The next metals are often used on block level and the upper met-

als for the system level interconnections between blocks. This grouping is represented

by the MetalCollections class if in TargetTech a list of metals is assigned to a value a

MetalCollection is composed and can be accessed as in the following example. Metal-

Collection behaves like a list as it implements getitem and len . Furthermore, with

115

6 Layout Generation

the verticals and horizontals property, the MetalCollection can be filtered accordingly

and returns a List of MetalLayer as seen in line 4.

1 tech . l o c a l r o u t e

2 >> Meta lCo l l e c t i on (MetalLayer (g en e r i c=’m1’ , . . .) , . . .)

3 tech . l o c a l r o u t e . h o r i z on t a l s

4 >> [MetalLayer (g en e r i c=’m2’ , . . .)]

In lines 12-13, of the TargetTech class vias are assigned with given the technology-specific

Via name and a tuple of the via types available in the technology. On object creation,

the corresponding ViaLayer objects are created which inherits from Layer and is com-

posed of 2 Layer or MetalLayer. For this, the generic name is important since from them

the layer pair is build up. With the syntax via {upper layer} {lower layer}.

1 tech . via m2 m1

2 >> ViaLayer (. . .)

3 tech [’m1’]

4 >> MetalLayer (. . .)

5 tech [tech .m1]

6 >> MetalLayer (. . .)

7 tech [tech .m2, tech .m1]

8 >> ViaLayer (. . .)

In the above listing, it is shown how to access vias in line 1 with the created property.

Additionally to the property access to layers the XTechnology class also implements

getitem . With this, all layers including MetalLayer and ViaLayer can be accessed

line 3-8. Keys may be strings of the generic layer names or the Layer object. If two

Layer objects or generic names are given the corresponding via object is returned.

In line 15-17 of TargetTech LVS and DRC layer purpose pairs are mapped these are

often needed for in example for the fill layers used in the layout entry.

In the last step, the devices are mapped. In our example, a MOSFET gets mapped

and given match strings which determine which devices will be mapped as MOSFET

and how their terminals and parameters are matched. It should be noted that the match

string may map multiple devices. This is especially useful when a technology organizes

116

6.4 Xcells

different types of the same devices in different cellviews.

Device objects are not directly used through the technology mapping but rather indirect

as defined Members in a Layout generator implemented with XCell.

On object creation, the XTechnology class runs a check if the most important tech-

nology aspects are mapped.

6.4.3 Layout Generators

With the main functions described a layout generator can be implemented. This sub-

section showcases a minimal layout generator to introduce the main concepts based on

the above-described framework.

The example below implements an XCell for a meandering resistor here called snake

resistor. For this, the SnakeRes class which represents the generator inherits from XCell.

Some variables and methods offered from the base class XCell have to be implemented.

With title and menu the subcategory of which the resulting custom constraint will be

found in the Virtuoso constraint manager and the custom constraint name will be set,

line 2-3.

With the phase variable, the generation phase is set. It is possible to build hierar-

chically dependent layout constraints especially when grouping and placing elements.

For this, the phases exist the PrePhase is a defined phase where each layout generator

is independent, line 5. PostPhase is a defined phase where dependencies between con-

straints can be organized over a menu. Constraints in the PrePhase phase are always

executed before the PostPhase constraints.

Afterward, constraints members can be defined. This determines on which device or

devices the constraint can be applied. In our example, in line 7 we define a single device

as a target which should be mapped as an LVS resistor of the type TwoPort.

117

6 Layout Generation

1 class SnakeRes (XCell) :

2 t i t l e = "Snake Resistor"

3 menu = ["Passive"]

4

5 phase = XCell . Phase . PrePos i t i on

6

7 dev i ce = Member("lvs_res" , TwoPort)

8

9 turns = Int ("Number of Turns" , min=1, max=100 , d e f au l t =10)

10 s t r i d e = Int ("Stride on the cell Track" , min=1, max=10, d e f au l t =1)

11 s e g l e n g th s = Float ("Segment length in um" , d e f au l t =0.5)

12

13 def draw (se l f , v iewport : Viewport , tech : XTechnology) => None :

14 port shape = s e l f . d ev i c e . port0 . shapes [0]

15 l a y e r = [metal for metal in tech . metals

16 i f port shape . ptr . layer name == metal . name] [0]

17

18 t rack = lay e r . t rack . c e l l . a s v e r t i c a l . w i t h s t r i d e (s e l f . s t r i d e)

19 s e l f . d ev i c e . snap (track , mode=Track . l e f t , r e f=port . shape)

20 s e l f . d ev i c e . s ave t r a ck (track , r e f=port . shape)

21

22 box = Box . union (* s e l f . d ev i c e . port0)

23 box . top += s e l f . s e g l e n g th s

24 path = viewport . path from box (layer , box)

25 top shape = path . box . top=path . box . width /2

26 bottom shape = path . box . bottom+path . box . width /2

27

28 for n , ho r i z on t a l in z ip (

29 range (s e l f . turns =1) ,

30 cy c l e ([top shape , bottom shape]) ,

31) :

32 s t a r t = (path . box . l e f t , h o r i z on t a l)

33 box = moved copy (path , (t rack . o f f s e t+track . gap* t rack . s t r i d e , 0))

34 end = (box . r i ght , h o r i z on t a l)

35 viewport . path from ends (layer , s t a r t , end , box . width)

36 path = viewport . path from box (layer , box)

The constraint parameters can be defined with the Types offered by the abstract pa-

rameter class in the background these parameters will be added to the corresponding

Virtuoso Custom Constraint.

118

6.4 Xcells

In this example, the resistor will be drawn onto the cell track of the corresponding

metal layer. Constraint parameters are a stride for the tracks, a segment length, and

the number of segments lines 9-11. For the Parameter default, min and max values can

be defined.

The draw method implements the code which is executed on generation. It provides

the technology interface as tech of type XTechnology and the viewport from type View-

port, which offers a way to access functions for the layout entry.

In lines 14-15 the port0 shape is selected from the TwoPort and assigned to port shape.

Afterward, the layer of the port shape is read out and assigned to the layer.

In lines 17-18 the TwoPort is snapped to the vertical cell track of the read-out layer.

The port0 shape will be used as the reference for the user to snap the resulting group

to the tracks. With the save track command this track is set as a reference when the

constraint finishes generation. The resulting group can now be snapped using a defined

keyboard shortcut or from the XCell menu entry.

In lines 22-26 the box of port0 from the LVS resistor on which the constraint is set

is queried. Afterward, the top edge of the Box is extended by the segment length re-

sulting in our first segment. The initial path is drawn from this Box in line 24. The

path from box method takes the Layer and Box, draws the path, and returns the proxy

object of type Shape. The top shape edge position and the bottom shape edge are deter-

mined as reference shape for the resistor connections between each segment line 25-26.

From lines 28-36 the additional segments are drawn within the for loop. In the loop, a

counter variable n is introduced and combined with a horizontal shape which alternates

between the top shape reference and the bottom shape reference. From this, a start and

endpoint are calculated to draw the horizontal connection with path from ends in line

35. Afterward, the next segment is drawn from a copied box which is moved based on

the track offset, gap, and stride.

In figure 6.14 the resulting custom constraints are applied to each LVS resistor in a

schematic. On right left side of the schematic entry and layout entry, the constraint

editor can be seen. Via the constraint editor, the constraints can be set in schematic

and layout. The created custom constraints can be found under the custom constraint

menu in the subfolder Passives asset in the SnakeRes class. The active constraint on the

schematic and layout can also be seen in this window. Snake Resistor corresponds to

our set title. When selecting the constraints the parameters can be configured. For LVS

resistor R3 this is 5 turns, a stride of 1, and a segment length of 2um. In the layout, the

119

6 Layout Generation

Figure 6.14: Example Snake Resistor custom constraint XCell

result of generating the constraints in the layout can be seen.

Some aspects can already be noted in this minimal example the approach of constraining

existing devices in this case the LVS resistor allows to inherit several of its parameters.

In this generator, the layout generation inherits the width and the layer of the LVS

resistor. Another important fact shown with this example is that other PDKs might

organize their devices differently. While in our FDSOI PDK the layer of the LVS resis-

tor is included in the CDF parameters of the vendor PCell in the used bulk PDK for

each metal layer a separate PCell for this individual layer exists. The naming scheme

in this PDK is rm1 to rm9 for the different metal resistors. This is already covered by

our layout generator since the layer is extracted from the underlying shape of the LVS

resistor and not from the CDF parameters. For this, the TwoPort has to be correctly

mapped for both technologies. The differences in the mappings are shown below as seen

the specific port names and parameters are mapped to the generic port and parameter

names.

1 ## LVS resistor mapped in the FDSOI PDK

2 l v s r e s = TwoPort (’lvsres’ , port0=’in’ , port1=’out’ , width=’w’)

3 ## LVS resistor mapped in the bulk PDK

4 l v s r e s = TwoPort (’rm*’ , port0=’PLUS’ , port1=’MINUS’ , width=’w’)

120

6.5 Elementary Cells Xcell Implementation

6.5 Elementary Cells Xcell Implementation

From the initial elementary cell implementation, several lessons learned were taken. Sev-

eral of these were limits set by the PCell Designer as code reuse and technology-agnostic

approaches. But there are other more layout-centric lessons learned.

Between the PCell elementary cell implementations and the XCell framework devel-

opment, an updated PDK was released for our FDSOI technology. In this iteration, the

EM rules were updated and allowed in certain cases multiples of the maximum allowed

current for shapes since the initial EM deck was very conservative and reworked. While

with the old PDK the clip variants of the elementary cells were the default in the new

PDK version this shifted towards the traditional stripe setup which also will result in

more compact designs.

A disadvantage of the initial elementary cell implementation was that the guardrings

could be drawn around each cell depending on the configuration. Using this feature

often resulted in larger than necessary layouts and less overall M1 and poly density since

these individual guardrings were not abutable and had a larger keepout area. In this

approach guard rings are not included in the elementary cells but rather implemented

as additional layout generators.

These lessons will be implemented in the XCell framework-based approach.

The second main focus is code reuse. The XCell implementations are not artificially

limited by a given inheritance structure or similar so all Python language concepts can

be used and thus an object-oriented approach is possible and was chosen to implement

the elementary cell generators. The implemented generators are a PassiveLoad, a Tran-

sistorPair, a Transistor Array, and a CMOS constraint. Besides these cells, an NRing,

PRing, and SubRing generator are implemented and a PostCMOS generator.

6.5.1 Pre Phase Elementary Cells

In figure 6.15 the class hierarchy of the implemented elementary cells can be seen. For

transistor generators abutting devices in a row is always needed. To comfortably allow

the user to create abutable rows of transistor devices, helper objects are introduced.

121

6 Layout Generation

Figure 6.15: Class hierarchy elementary cell generators

To describe an abutable row a RowDescriptor can be used which is a List contain-

ing elements of the type Replica, Dummy, and Instance. The Instance is typically the

defined transistor constraint member and thus the transistors the constraint targets for

layout generation.

Dummy instances mark copies of the members where a parameter will be changed. For

dummy transistors, this parameter is the fingers. Dummies will be connected to an in

the constraint defined dummy net.

The Replica class is used to mark full dummies of the instances meaning without pa-

122

6.5 Elementary Cells Xcell Implementation

rameter change but also connected to a dummy net.

The TransistorPlacerMixin is a class encapsulating all needed methods and behavior

to place and abut transistors. For this, the RowDescriptor is used.

Notable is the prepare method. The prepare method takes the RowDescriptor and cre-

ates the described replicas and dummies. Now that every instance exists the prepare

method abuts all devices with the Viewport.chain() method. This returns a Group of

the layout instances. This Group represents the generated Row and will be wrapped

in the Row object which is appended to self.rows thus with multiple calls of prepare,

multiple rows can be added. The TransistorPlacerMixin further offers a method to place

the rows and to set default transistors, which will set transistor parameters to parameter

which will fit perquisites for the generation and best practice.

Below an example of how the prepare method is used in the transistor pair on the

generator. For the transistor pair, the right transistor is mirrored line 1 afterwards the

row is prepared and then the place method from the inherited TransistorPlacerMixin is

called.

1 s e l f . r i g h t f e t . m i r r o r ho r i z on t a l ()

2

3 s e l f . prepare ([

4 Dummy(s e l f . number of le f t dummies , s e l f . l e f t f e t) ,

5 s e l f . l e f t f e t ,

6 Dummy(s e l f . middle dummies , s e l f . l e f t f e t) ,

7 s e l f . r i g h t f e t ,

8 Dummy(s e l f . number of r ight dummies , s e l f . r i g h t f e t) ,

9])

10

11 s e l f . p l ace ()

In figure 6.16 two examples are shown on the left two PMOS transistors with the Tran-

sistorPair constraint and on the right, a TransistorArray constraint set on an NMOS

transistor with the multiplier of two for both in the middle the generated intermediate

result of prepare is shown and in the end the full layout. Both target transistors have

minimal gate length and finger width of 490 nm. The constraint parameters are set as

follows, for the TransistorPair the number of dummies for left, right dummies are set to

one and the middle dummies to four. For the TransistorArray number of left dummies

123

6 Layout Generation

and the number of right dummies was chosen to be four. A more detailed description of

the TransitorPair and TransistorArray and its constraint parameters will follow.

The Row class implements a wrapper around a layout group of transistor instances.

The Row class is composed of a wrapper of the transistor instances the Fet class. Both

Row and Fet class offer some properties to simply access metal terminals. The Row

additionally offers properties to access specific transistor instances or dummies. One or

multiple Row objects are composed by the TransistorPlacerMixin from a RowDescriptor

which is given to the prepare method.

The TransistorConstruction class is the base class for the TransistorPair and Transis-

torArray generators. TransistorConstruction inherits from the TransistorPlacerMixin

and XCell. TransistorConstruction offers the base methods and properties needed to

create a fanout structure typically used in analog transistors. Additionally, Transistor-

Construction also defines common device parameters for both generators as the number

Figure 6.16: Left: TransistorPair constraint from the constrained devices to the gener-
ated layout, right TransistorArray constraint

124

6.5 Elementary Cells Xcell Implementation

of left and right dummies, the dummy connection net, gate connection modes, and gen-

eral connection modes, and more. It also defines the common phase in which these

generators are run and a common sub-menu.

The implemented common draw methods are divided into draw methods are organized

into two categories. Function and layer group which accomplish different tasks as to

draw the dummy connections or the main stripes and additionally into draw local and

draw mid. This refers to the layers in the corresponding MetalCollection defined in the

implemented technology. This was chosen to get a better overview and better maintain-

ability of the code. Especially when an issue with the generators arises potential bugs

can be identified fast.

The TransistorPair and TransistorArray generators are the most versatile elementary

cells, as they can be used for differential pair structures, passive loads, current sources

or even CMOS circuits with a high driving strength. Both generators inherit from Tran-

sistorConstruction. The only difference in both generators is how the abutted rows are

prepared. For the TransistorPair the right transistor member will automatically be mir-

rored to result in a symmetrical layout. This was shown in the above code listing. The

TransistorArray can prepare and create multiple rows as shown in figure 6.16 on the

right a 1x2 transistor array was generated. The TransistorPair constraint can be applied

to exactly two transistors. Indifference the TransistorArray can be applied to multiple

transistor instances. If the TransistorArray constraint is applied to multiple transistor

instances each instance will result in a new column. Indifference the multipliers of the

transistors result in multiple rows. Depending on the constraint transistor members it

is often the case that it will not result in a full matrix. Empty places will be filled up

with replica dummies. The generated layout will thus always be a full array.

While multiple parameters of the TransistorArray and TransistorPair are inherently used

from the constraint members, as finger width, the number of fingers, multiplier, transis-

tor type additional constraint parameters exist.

Some of the Parameters are shared through the TransistorConstruction class additionally

the TransistorPair has optionally middle dummies which may be added and when the

clip mode is chosen a clip width. The TransistorArray additionally adds a dummy ca-

pacity mode which connects the added dummies as capacitances which are especially for

big current sources useful. The TransistorArray automatically adds a dummy transistor

between each column. With the remove middle dummy option, the constraint checks

the connectivity of neighboring devices and removes the middle dummy if possible.

125

6 Layout Generation

In figure 6.17 some example configuration of TransistorPair and TransistorArray con-

straints are shown.

In the left half, multiple TransistorArray constraints were set in a) for a 490nm minimal

length NMOS transistor with a multiplier of 2 and several left and right dummies. In

b) a bigger Array is shown with 150nm length 990nm finger width 3 instance members

with a multiplier of three two and one. Resulting in multiple Replica devices filling up

the array. c) shows a TransistorArray containing a single device while in d) 2 devices

with a multiplier of 2 are shown. In d) the constraint parameter is additionally set to

not draw metal stripes onto the dummies.

On the right half, TransistorPair constraints are shown. Below e) and f) are a Transis-

torPair constraint on 490nm finger width transistors. e) without middle dummies where

the constraint checks if both pairs can be abutted and f) with multiple middle dummies.

In these examples, all TransistorPair constraints are applied on minimal length transis-

tors. The dummies are always constructed in the correct way avoiding coloring errors

as odd cycle violations. In g) a 990nm finger with variant is shown with single finger

dummies and multiple middle dummies. In h) a small TransistorPair variant is shown

where the left and right dummy are asymmetrical with 1 and 2 fingers without dummies

and stripes is shown. i) shows a 990nm finger width variant without stripes. In j) a

variant for 990nm finger width is shown with multiple left and right dummies where the

dummy connection is done over a jumper via to avoid coloring violations

a c

b

d

e

f

g

h,i

j

Figure 6.17: Left: TransistorArray examples, right TransistorPair examples

126

6.5 Elementary Cells Xcell Implementation

NAND2 members dummy members INV members

Figure 6.18: Left: Member NMOS and PMOS transistors on which the constraint is
applied, right: generated layout

Another implemented generator is implemented with the CMOS class which inherits di-

rectly from XCell and the TransistorPlacerMixin. The CMOS generator offers the user a

constraint that can be applied to the same number of NMOS and PMOS transistors. On

generation, the transistors are abutted and placed in two rows using the methods from

TransistorPlacerMixin. The generated CMOS cell will create VDD and VSS rails within

a defined height depending on track constraint parameters. An example of a fast NOR

can be seen in figure 6.18. On the left, the member transistor pre-generation is shown

the single finger devices on the left and right are dummy transistors to encapsulate the

active transistors in the middle.

Further constraint parameters offered by the CMOS generator are the connection names

that will be applied on the rails and the matching transistor connections will then be

routed to the rails. The default values are VDD and VSS. Furthermore, the connections

of the upper stripe and lower stripe interconnecting an internal CMOS net can be set.

Furthermore, a constraint parameter exists to switch if simple internal signal connec-

tions should be routed. These internal connections between NMOS and PMOS rows

are generated simply by looking for neighboring pairs and connecting them with an m2

stripe on the cell grid and matching m1 extends. This simple routing is only helpful in

simple CMOS cells as simple combinatoric blocks (NAND, NOR, AND, OR, or XOR)

but is limited for more complex blocks as in example latches or flip flop structures.

127

6 Layout Generation

The CMOS structures are generated to be abutted with other CMOS blocks resulting

in a very dense layout.

The Pre Phase generators are on their own not fully DRC or LVS clean. For the Tran-

sistorPair and TransistorArray well-taps or well-rings have to be added. In the case of

the CMOS cells not only well-taps have to be added but also in depending on the gate

length a special stop dummy structure has to have a specific distance and length. To

solve this issue the corresponding post-phase constraints are implemented.

6.5.2 Post Phase Elementary Cells

For the XCell generations, post-phase cells may be interdependent and accordingly a

dependency between these cells can be defined. In this subsection, an overview of the

implemented post cells is given and afterward, some hierarchically defined examples are

shown.

In figure 6.19 the class hierarchy of the post cells is shown. The GuardRingMixin class

offers a method to draw tap segments of a specific well type for example N-Type, P-

Type, and Sub-Type. While in a bulk technology only N-Type and P-Type are available

in a FDSOI technology all three exist and will additionally set or generate the correct

triple well and hybrid layer. This tap is created in the form of a single path segment.

The GuardRingBase class inherits from XCell and GuardRingMixin. GuardRingBase

offers all common constraint parameters for the different type-specific guard ring gener-

ators. Guardring base sets a default title and a common menu entry for the Guardring

constraints. For all guardrings constraints, the constraint members are of type Mem-

bers meaning allowing an arbitrary number of constraint members of an arbitrary type.

Shared constraint parameters are exclude-layers that can be chosen and will be applied

to the constraint area. Furthermore constraint parameter for each side exits which al-

lows selecting if and what metal layers should be generated for this side. Only when M1

has been selected the connection to the substrate is drawn below. Furthermore, each

side can offset by a defined number of cell tracks. In the default case, the Guardrings

are generated with minimal allowed distance to the constraint devices. Additional pa-

rameters are the fill parameter which determines if the area inside the guardring will be

filled. If fill is true the correct well layers are drawn, if set to false no well and doping

layers are drawn inside the constraint area.

The Boolean constraint parameters active width and active length can be set to relate

the width or length according to the active layer of the targeted constraint. This is

128

6.5 Elementary Cells Xcell Implementation

Figure 6.19: Class hierarchy post cells

especially used when minimal well-taps instead of full rings should be generated.

The GuardRingBase offers properties for reference shapes and the constraint device

box. The most important functionalities are the offered methods to draw the guardring,

draw exclusions or set the reference box.

The NRing, PRing, and SubRing inherit from GuardRingBase and implement their

title and implement their draw method which selects the type and draws additional dop-

ing layer to realize the chosen type.

In figure 6.20 an example usage of the GuardRings is shown. In this case, a differential

129

6 Layout Generation

amplifier with an active PMOS load is constraint. The PMOS load P1 and P0 are con-

straint with a TransistorPair, as the differential NMOS pair N0 and N1. N2 is constraint

as a TransistorMatrix. Both PMOS transistors are additionally constrained for a PRing.

All devices have a constraint for the NRing and the SubRing.

For this example, the difference in generation for pre and post-phases has to be un-

derstood. The pre-phase constraints in this example are the TransistorPair constraint

applied on two PMOS transistors and a TransistorArray constraint for the NMOS de-

vices below. Pre-phase constraints are treated independently on generation. The user

can either generate the constraints in different ways over the GUI. Only pre-constraints

can be generated or only post-constraints if all pre-constraints are generated. For the

clean or regenerate commands also both variants exist. In the pre-phase, the Transistor-

Pair and TransistorArray are generated. In this phase, the order of generation for each

constraint is irrelevant since they are independent.

The guard ring constraints are post-phase constraints. Post-phase constraints may be

dependent on each other and thus dependencies can be defined. These dependencies will

determine the generation order. In the shown example the constraint with the highest

priority is the PRing, afterward the NRing, and at least the SubRing. This results in

the figure shown layout, where the PRring is drawn around its PMOS members. next

Figure 6.20: Left: Example of a constraint setup for a differential amplifier including pre
and post constraints, right: generated layout from the constraints

130

6.6 Testing and Deployment

in generation order is the NRing which is drawn around its PMOS members and NMOS

members. The guardring constraint always draws its guard ring around the outer group

of its members thus drawing the NRing around the PRing and the NMOS members.

The same is true for the SubRing which is drawn last around the NRing.

The generated Rings set their vias on the cell tracks of the local metal layers. If this

distance is below the minimal allowed distance the vias are set on 2 times the cell gap.

This on the one hand leads to a more uniform layout and additionally allows the user

to abut different cells guard rings onto each other resulting in denser layouts.

The CMOSPost class implements a generator that can be applied on multiple CMOS

instances generated by the CMOS constraint. The CMOS constraint is abutable every-

thing inside of the generated constraint is DRC clean but only when the transistors are

terminated with the right poly stop dummies and with the missing well taps. These

additional layout elements are created by the CMOSPost constraint.

For this CMOSPost inherits from the GuardRingMixin and with it all methods needed

to create well taps. Additionally, the CMOSPost constraint inherits from XCell. CMO-

SPost adds a title and menu entry for the constraint. Its constraint members can either

be multiple groups of transistors on which the CMOS constraint was applied or multiple

instances in which a CMOS device was build up using the CMOS constraint.

CMOSPost implements methods to make the underlying CMOS structure DRC clean.

This is done in several steps in the implemented draw method. First, fix poly wells is

called which fixes the above and below well areas, since originally they are too short and

do not meet the in the DRC rules defined overlap. Secondly, with draw end poly the

stop poly dummies are drawn with the correct distance and width. Lastly left and right

well contacts are drawn.

In figure 6.21 an example is shown here 5 NAND instances which were abuttet are the

constraint members. The NAND instance uses the CMOS constraint in its correspond-

ing layout view. These are shown pre-generation on the left and after generation on the

right.

6.6 Testing and Deployment

One important approach for the XCell generators is it has to produce a DRC clean lay-

out as it is important that the generated XCells are reliable and do not need manual

131

6 Layout Generation

Figure 6.21: CMOSPost constraint, left: target, right: generated

modification after generation. To achieve this a test deck is introduced including multi-

ple different constraint setups to test different aspects of the generator.

In the XCell framework, it is possible to execute the generators in a coverage mode

using coverage.py [69] instead of the normal python interpreter resulting in a coverage

measurement of the executed code.

With help of the resulting coverage data, a first test deck is build to get a 100% code

coverage to ensure that every branch in the code was taken and executed. This approach

does not find all bugs but every line of the code is at least executed once. Afterward,

the test deck is extended with corner or special cases for the generator which come to

mind i.e. single finger members, large length devices.

This results in a good initially tested generator code. Overtime when bugs are found

by the layout designers the bug case is reduced to a small example and added to the

test deck. The test deck is run with each release of the XCell framework or the tested

generator library.

The XCell framework and the different generator libraries are deployed as python-pip

packages. The releases get a version and the user can work with the pip package manager

132

6.6 Testing and Deployment

to install packages or select specific versions. When a tape out takes place the current

packages can be frozen via pip. This is important as with this information the state of

the tape out can be reliably reproduced.

133

7 Results

7.1 Skillbridge and Schematic Automation

In this work, the skillbridge was developed as an interface to Virtuoso and used as a

foundation for further vendor-independent schematic and layout automation.

The skillbridge was released as an open-source project and several companies and uni-

versities started using skillbridge as a foundation to replace their skill code or to evaluate

python as the interfacing language to the ASIC design system. This can be seen from

the interactions within the skillbridge repository on the one hand issue were raised for

potential enhancements regarding different use cases from automating the simulation in-

terface to rewriting to scripts for automatic pin generation and placement in the layout.

These use cases and the resulting issues for the skillbridge are immensely helpful as they

allow to further mature the library.

This work implemented hierarchical structure generation which writes the structural

schematics was tested in large-scale designs without any issues.

The parametrized schematic leaf generation was not used in larger projects yet. For

the leaf generation, some examples were introduced and dimensioned. One problem for

the parametrized leaf generation is that the circuit designer has to implement the di-

mensioning scripts in python, which is normally done manually on paper or in another

document. Writing these scripts seems like additional work which makes it difficult to

introduce them as a normal task. On the other hands, these scripts automatically can

be used as executable documentation.

135

7 Results

7.2 Layout Automation

7.2.1 Elementary Cells

The elementary cells were used in larger projects. From one of these implementations,

the usage is analyzed in detail. For this, a little statistic about the drawn shapes in the

layout was created with the skillbridge.

For this 35 leaf cells where PCell elementary cells were used are analyzed. In these

cells, the shapes of the leaf cell are read out as shapes set by the user. Shapes are or-

ganized on the one hand by the connectivity. VDD and VSS nets are counted as power

shapes, shapes without connectivity as dummy, and all other shapes as routing shapes.

The second category is depending on the shapes layer M1 and M2 are categorized as

local layers as they are both double patterned. The C1-C6 metal layers are categorized

as middle metal layers (mid) and IA-IB as top metal layers (top). Afterward, each el-

ementary cell in the leaf cell view is read out and its master shapes are added to the

generated shape category. Additionally, the shapes of the BASIC-FET instances inside

the elementary PCell are added to the generated shapes. Shapes within the PDK devices

are not counted.

In figure 7.1 the results can be seen. The absolute accumulated shapes with their layer

category and generation/ usage category are shown. It is observed that especially for

the local layer category the amount of generated shapes compared to the user shapes is

about 80%, for the mid category 40% none for the top category and around 10% for the

other category.

While from this analysis an absolute time saving during the layout process cannot be

derived it can be said that time was saved and this saving must be large. For one this

is the case since the local route category has the most DRC rules. In manual layouts,

these shapes often lead to many reiterations which are very time-consuming.

In these results, it can further be seen that only a tiny fraction of the missing user shapes

are shapes for routing. Most shapes are part of dummy metal or the power grid.

The relation between power, dummy, and routing shapes stay the same in the higher

levels of the design hierarchy.

In figure 7.2 an example layout builds up from elementary cells can be seen. Here the

full layout of a phase interpolator is shown, consisting of a mixer, output buffer, I and

Q DAC, cross-domain buffer, and offset bits.

136

7.2 Layout Automation

local mid top other
0

5000

10000

15000

20000

generated shapes

user routing shapes

user power shapes

user dummy shapes

Shapes of 35 Leaf Cells using PCell Elementary Cells

Figure 7.1: Shape statistics over different leaf cells binned by layer group and category

In almost all leaf cells elementary cells are used. The only exception is the XDomain

buffers, which are CMOS-based. In the design, it can be seen that the mixer consists of

multiple transistor pair elementary cells, the output buffer out of one transistor pair, and

a transistor array. Both current source bits consist of a transistor pair and a transistor

array, both with 2 rows but with a different number of fingers.

Only the leaf cells with PCells were analyzed. The other cells can be sorted into the fol-

lowing categories. The design consists of three main blocks and one of the main blocks

was already designed several months in advance when the elementary cells were not

available yet resulting in multiple leaf cells which do not use elementary cells but are a

perfect fit. Also in the design, a trend can be seen to more full custom CMOS logic, and

thus several leaf cells are CMOS based. The last category is very specific analog leaf

cells, fill cells, decap, or passives.

137

7 Results

Output Buffer

IDAC

IDAC IQ

Mixer

XDomain Buffer

Figure 7.2: Phase Interpolator using PCell elementary cells

138

7.2 Layout Automation

7.2.2 XCells

With the XCells the elementary cells are simpler to use and some drawbacks regarding

DFM especially density issues based on the guard rings were eliminated. Furthermore,

the approach to separate guardrings from the elementary cells allows to simply create

well taps or rings which will be abutable which results in better integration. Further-

more, the constraint-based approach proved to be more flexible for both user and project

author in terms of member selection and usage inside the constraint generator.

Furthermore as observed while analyzing the shapes of leaf cells where PCells were not

used one of the main groups where CMOS based leaf cells. With the XCell framework,

CMOS generators are available too. As soon as the XCell generators were available

several leaf cells were implemented with them. Furthermore, also some CMOS cells were

implemented. In figure 6.18 a CMOS divider is shown which divisor can be switched

between 2 and 3. The Divider consists of several latches and NAND leaf cells.

On the left, in the figure, the originally implemented divider is shown. On the right,

the divider is implemented with the XCell CMOS generator. The NAND cell consists of

a single CMOS constraint, while the latch is build up from 2 CMOS constraints where

all devices are constraint members except the minimal cross-coupled inverters. While

in the NAND nearly every shape except the pin shapes are generated in the LATCH

the cross-coupled inverters are inserted between two CMOS constraints by hand and the

interconnect in between is done manually.

In the top-level of the divider, a CMOS post constraint is defined resulting in a DRC

clean layout. The interconnect in the top-level is done manually.

The resulting divider layout is smaller than the initial layout block. There are several

reasons for this. For one the old divider was implemented early when the technology

was new and expert knowledge did not accumulate yet. The layout could be done more

optimal by using poly cut layers correctly. The second main point in area reduction is

that the left design implements the well-contacts in each cell resulting in simply abutable

DRC clean designs but also in a larger area. In the XCell approach, all devices were

abutted without an individual well contact, and then afterward the post constraint gen-

erates the DRC clean casing and wells. This does not only save multiple well-contacts

but also the stop dummies since each cell does not have to be DRC clean. Such an

approach is also possible in manual layout but in terms of design time not feasible since

each casing has to be implemented manually. In this case, the XCell generator approach

combines the best of both worlds.

139

7 Results

Figure 7.3: Divide by 2/3 Divider, left: original layout, right: XCell CMOS constraint
based layout

Another important aspect for XCell generators is the formalization of expert knowl-

edge. As in the example, seen knowledge can be incorporated into the generator. This

has then the advantage that this knowledge is applied to every layout-block where the

constraint is used. Furthermore, the layout generators implemented with the developed

XCell framework are technology agnostic and were tested with a 22 nm FDSOI and

28nm bulk technology and thus further increase automation.

Additional to the use of the XCell generators the XCell framework was also used to

implement additional generators.

Two of these generators are the custom fill constraint and the power grid constraint.

Both generators determine obstacles in the layout and add accordingly fill or create a

power grid. For this, the power grid generator reads out the connectivity of the existing

shapes and connects to the highest VDD, VSS shapes of the in the cellview existing

instances.

Also, an inductor generator constraint was developed which similar to the snake resistor

example can be applied to an LVS resistor to create an inductor from it.

140

7.2 Layout Automation

7.2.3 Comparison to PCell Designer and BAG

When comparing the XCell framework to PCells its advantages become clear as it is

inherently technology agnostic. Furthermore, the constraint-based approach allows in-

corporating multiple factors which cannot simply be used inside a PCell for example the

circuit connectivity or existing obstacles in the layout. Furthermore, the XCell frame-

work solves all the issues and lessons learned from the PCell designer as the side effects

and code reuse. Due to this the Xcell Framework and its created generators completely

replaced the PCell Designer and the elementary cells implemented with it.

In comparison to the BAG and BAG2 mentioned in the State of the Art chapter, the

XCell framework and generators are a different approach. For one with the XCell frame-

work the goal is to constraint existing devices for layout generation this can be done

hierarchically and with inter depending constraints resulting in a good constraint design

for layout generation.

Indifference the BAG approach is to implement the complete generators which itself is

a very complex task but is further complicated since each PDK device must also be

implemented and cannot be used as given by the vendor. This especially when different

technologies are used is a big disadvantage since for each many devices have to be im-

plemented.

While the BAG framework implements complete generators directly in the XCell frame-

work complete generators would be implemented as a hierarchical layout constraint

description thus being user-friendly in constraining.

Furthermore, XCell offers well-defined interfaces and abstraction to create technology-

agnostic generators while BAG only offers little abstraction by itself.

The XCell framework and the implemented generators are simple to use, technology

agnostic and result in performant layouts which fulfill DFM requirements.

141

8 Conclusion

With the skillbridge a python < − > Skill interface was introduced which was widely

adopted and has become an active open-source project used by academia and industry.

Skillbrigde is a seamless language mapping that dynamically maps methods and types.

This means even when skill subsystems are added to virtuoso, skillbridge can access

them with its dynamic approach without any changes necessary.

With the skillbridge as foundation schematic automation and layout automation tools

were implemented.

For schematic automation, a design flow was implemented which allows creating sized cir-

cuits from the system level parameters. This automated flow guarantees consistency be-

tween system-level and implementation. Furthermore, the technology-agnostic system-

level is separated from the implementation. Classes and an internal design representation

are added to enable documenting and making expert knowledge executable. The im-

plemented sizing scripts are technology-agnostic since dependent technology values are

accessed via an interface to technology-dependent simulated result tables.

With the XCell framework, a constraint-based layout generator approach was imple-

mented which allows well-defined interfaces to be technology and tool agnostic. Further-

more, the XCell framework allows implementing expert knowledge in terms of layout.

The with the XCell framework implemented elementary cells and other generators offer

good automation and generate a significant part of the overall layout. The implemented

generators are parametrizable and very versatile increasing design efficiency by reducing

the individual layout blocks to a single constraint.

The constraint-based approach further proved to be simple to use and very flexible as

constraints can interactively be marked on the constraint members and parameters can

be set. Additionally, XCell generators allow an explorative layout approach where differ-

ent parameter sets for the generators can simple be tested with the comfortable generate,

clean, and regenerate mechanisms.

143

8 Conclusion

Another advantage of the hierarchical constraint-based approach is that some workflows

in the layout become possible as dense arrays may be finished with a post cell as seen

in the CMOS example. This leads to overall denser layouts.

8.1 Future Work

8.1.1 Schematic Generation

For the schematic generation, some glue code to ensure smooth usage has to be imple-

mented. This also includes embedding triggers and GUI elements for different generation

modes and template generation into the ASIC design environment.

Furthermore, the testbench setup should also be automated further. With this, there

might be a chance to automate iterations for dimensioning or use the initial circuit values

to set up a corner optimization without having to modify the sizing scripts to incorpo-

rating technology tables from multiple corners and thus simplifying the sizing scripts for

the designer.

8.1.2 Layout Generation

For layout generation, the XCell framework allows for multiple generators further au-

tomating the layout. One aspect is that with the hierarchical constraints complete

generators can be implemented. For this, especially constraints for placement and rout-

ing on cell level and system level have to be implemented. Furthermore as in the result

chapter was observed Decap cells could be implemented as a constraint and thus gener-

ating as much Decap as possible in a cell.

Another thing to do is to implement additional smaller nodes and see if a FinFet technol-

ogy can be mapped as a specific technology and if not implement the missing features.

In a first estimate, it should be possible. Only the local routing group gets extended by

M0 which is an additional layer often used in small FinFet nodes.

The formalizing of expert knowledge into constraint-based generators works excellent

but especially with the increase in DRC rules finding optimal solutions is increasingly

difficult. A good approach is to implement mixed approaches including expert-based

descriptions and optimizer-based approaches for solving sub-problems.

Implementing solvers accordingly and making them available to the user in a simple

144

8.1 Future Work

manner would bring benefits especially in tasks like placing or routing.

Furthermore, it was observed that one remaining time-consuming task whether to imple-

ment them within an XCell generator or manually are little geometric problems caused

by the complex DRC rules. One example is the Via Problem from the first chapter.

These small geometric problems have to be solved within the constraint of the com-

plex DRC rules. These problems are constraint solving problems. A good solution could

be implementing a 2D geometric constraint solver where the constraints are the DRC

rules and the optimization goal. For both of these, an interface has to be offered to

simply define these goals and rules as a user.

145

List of Figures

1.1 Transistor count in complex SOCs until 2020, data from [1] 1

1.2 Transistor count latest SOCs, data from [1] 2

1.3 AMD Zen Architecture Compute Core from [2] 5

1.4 IO Changes AMD Zen (left) compared to Zen2(right) [3] 7

1.5 Increase of DRC complexity, from [6] . 9

1.6 DRC Example minimum distance between two shapes 10

1.7 DRC Example via distance . 11

1.8 Growth in the Number of IP Blocks per Design data from [8] 13

1.9 Defined line rates of different standards, data from [10], [11], [12], [13],

[14], [15], [16], [17], [18] . 15

2.1 Rubylith operators [19] . 19

2.2 Cadence Virtuoso [20] . 19

2.3 Different Design Flows [22] . 21

2.4 Digital-Centric Top-Down Designflow from [23] 22

2.5 CML Testbench as minimal Example . 24

2.6 Overview of the optimizer run best 5 results 26

2.7 BAG Framework Overview [26] . 29

2.8 Different generated TISAR ADC layouts [28] 31

2.9 Pcell internal structure master, submaster from [30] 32

2.10 PCell Designer environment overview . 34

2.11 PCell Designer example geo expression . 35

4.1 Left: CMOS cross section bulk, right: CMOS cross section FDSOI in flip

well configuration . 47

4.2 5 and 6 terminal devices and corresponding diodes 49

4.3 Current density trend from [37] . 50

4.4 Forces on metal ions from [38] . 50

4.5 Different lattice structures from [38] . 52

4.6 line width vs. MTF in AL-0.5%Cu [42] . 53

147

List of Figures

5.1 Flow Diagram Schematic Generation . 56

5.2 Communication components Skillbridge [50] 58

5.3 Simplified structure reference DCO design 67

5.4 File organisation of the system-level description 73

5.5 File organisation oa database . 74

5.6 Classes implemented for the Elaboration 75

5.7 Class hierarchy internal design representation 77

5.8 SchematicEntry and Implementation . 78

5.9 Interaction diagram of leaf sizing . 79

6.1 Determined reoccurring layout blocks . 86

6.2 Elementary cells example ILRO delay cell 88

6.3 Algorithm to determine the EM robustness of a shape 93

6.4 Example Tech Dependent Iavgmax(w) for 2 um 94

6.5 Example 2µm length, 0.62µm width EM optimization 94

6.6 PDK transistor with default parameters and the chosen preferred finger

widths . 98

6.7 BASIC-FET in the configurations active, left dummy and middle dummies 99

6.8 layer structure for drain and source clips 100

6.9 PCell elementary cells left: Transistor Array, right: Transistor Pair 101

6.10 Output simple-geometry example [65] . 106

6.11 Constraint based Layout Generator Interactions modified from [67] 108

6.12 Class hierarchy XCell framework, extended from [67] 109

6.13 Class hierarchy XTechnology . 112

6.14 Example Snake Resistor custom constraint XCell 120

6.15 Class hierarchy elementary cell generators 122

6.16 Left: TransistorPair constraint from the constrained devices to the gen-

erated layout, right TransistorArray constraint 124

6.17 Left: TransistorArray examples, right TransistorPair examples 126

6.18 Left: Member NMOS and PMOS transistors on which the constraint is

applied, right: generated layout . 127

6.19 Class hierarchy post cells . 129

6.20 Left: Example of a constraint setup for a differential amplifier including

pre and post constraints, right: generated layout from the constraints . . 130

6.21 CMOSPost constraint, left: target, right: generated 132

7.1 Shape statistics over different leaf cells binned by layer group and category137

148

List of Figures

7.2 Phase Interpolator using PCell elementary cells 138

7.3 Divide by 2/3 Divider, left: original layout, right: XCell CMOS constraint

based layout . 140

149

Bibliography

[1] en.wikipedia.org, “Transistor count,” 2019. https://en.wikipedia.org/wiki/Transistor count.

[2] en.wikichip.org, “Zen - microachitectures - amd,” 2021.

https://en.wikichip.org/wiki/amd/microarchitectures/zen#Core 2.

[3] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony, “Amd chiplet architec-

ture for high-performance server and desktop products,” in Presentation 2020 IEEE

International Solid- State Circuits Conference - (ISSCC), pp. 44–45, 2020.

[4] F. Silveira, D. Flandre, and P. Jespers, “A gm/id based methodology for the design

of cmos analog circuits and its application to the synthesis of a silicon-on-insulator

micropower ota,” Solid-State Circuits, IEEE Journal of, vol. 31, pp. 1314 – 1319,

10 1996.

[5] M. J. M. Pelgrom and A. C. Duinmaijer, “Matching properties of mos transistors,”

ESSCIRC ’88: Fourteenth European Solid-State Circuits Conference, pp. 327–330,

1988.

[6] M. White, “Are you (really) ready for your next node,” 2017.

https://blogs.sw.siemens.com/calibre/2017/01/11/are-you-really-ready-for-your-

next-node/.

[7] B. Hoefflinger, “Itrs: The international technology roadmap for semiconductors,”

in Chips 2020, pp. 161–174, Springer, 2011.

[8] W. Savage, “The unintended consequences of massive ip reuse,” 2020.

https://www.chipestimate.com/The-Unintended-Consequences-of-Massive-IP-

Reuse/Silvaco/Technical-Article/2016/04/19.

[9] R. Collett and D. Pyle, “What happens when chip-design complexity outpaces

development productivity?,” 2013.

151

Bibliography

[10] I. APT Technologies, D. C. Corporation, I. Corporation, I. Corporation, M. Cor-

poration, and S. Technology, “Serial ata: High speed serialized at attachment,”

2001.

[11] S.-I. B. Members, D. C. Corporation, H. P. Corporation, HGST, I. Corporation,

M. Semiconductor, P.-S. Inc., S. Corporation, S. Technology, and W. D. Corpora-

tion, “Serial ata international organization serial ata revision 3.2,” 2013.

[12] M. Wood, D. Boppana, and I. Land, “Jesd204a for wireless base station and radar

systems,” 2010.

[13] I. Poole, “Usb standards: Usb 1, usb 2, usb 3, usb 4 - capabilities and

comparisons,” 2020. https://www.electronics-notes.com/articles/connectivity/usb-

universal-serial-bus/standards.php.

[14] A. Dhamba and A. V. Kulkarni, “Design considerations for high bandwidth

memory controller,” 2020. https://www.design-reuse.com/articles/41186/design-

considerations-for-high-bandwidth-memory-controller.html.

[15] Rambus, “The ultimate guide to hbm2e implementation and selection,” 2020.

https://www.rambus.com/blogs/hbm2e/.

[16] I. Micron Technology, “Hybrid memory cube - hmc gen2,” 2018.

[17] J. J. Maki, “Ethernet adoption: Serdes rates and form factors,” 2016.

[18] en.wikipedia.org, “Pci express,” 2020. https://en.wikipedia.org/wiki/PCI Express.

[19] computerhistory.org, “Rubylith operators,” 2020.

https://www.computerhistory.org/revolution/artifact/287/1614.

[20] cadence, “Virtuoso layout suite,” 2020. https://www.cadence.com/en US/home/tools/custom-

ic-analog-rf-design/layout-design/virtuoso-layout-suite.html.

[21] A. Olofsson, “Silicon compilers-version 2.0,” 2018.

[22] J. Chen, M. Henrie, M. Mar, and M. Nizic, Mixed-Signal Methodology Guide. Ca-

dence Design System, Incorporated, 2012.

[23] M. Mueller, Digital Centric Multi-Gigabit SerDes Design and Verification. PhD

thesis, 01 2018.

152

Bibliography

[24] M. Schweikardt, Y. Uhlmann, F. Leber, J. Scheible, and H. Habal, “A generic pro-

cedural generator for sizing of analog integrated circuits,” in 2019 15th Conference

on Ph.D Research in Microelectronics and Electronics (PRIME), pp. 17–20, 2019.

[25] scientific analog, “Scientific analog webpage,” 2021. https://www.scianalog.com/.

[26] J. Crossley, A. Puggelli, H. . Le, B. Yang, R. Nancollas, K. Jung, L. Kong,

N. Narevsky, Y. Lu, N. Sutardja, E. J. An, A. L. Sangiovanni-Vincentelli, and

E. Alon, “Bag: A designer-oriented integrated framework for the development

of ams circuit generators,” in 2013 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 74–81, 2013.

[27] ucb art, “Bag framework,” 2020. https://github.com/ucb-art/BAG framework.

[28] E. Chang, J. Han, W. Bae, Z. Wang, N. Narevsky, B. NikoliC, and E. Alon,

“Bag2: A process-portable framework for generator-based ams circuit design,” in

2018 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8, 2018.

[29] B. Prautsch, U. Eichler, S. Rao, B. Zeugmann, A. Puppala, T. Reich, and J. Lienig,

“Iip framework: A tool for reuse-centric analog circuit design,” in 2016 13th Inter-

national Conference on Synthesis, Modeling, Analysis and Simulation Methods and

Applications to Circuit Design (SMACD), pp. 1–4, 2016.

[30] cadence, “Introduction to skill pcell programming,” 2020.

[31] O. Broschart, “Automated design and implementation of a ddr4/lpddr4 receiver,”

2019.

[32] “jupyter webpage.” https://jupyter.org/. Accessed: 2020-11-29.

[33] T. Ajayi, D. Blaauw, T. Chan, C. Cheng, V. A. Chhabria, D. K. Choo, M. Coltella,

R. Dreslinski, M. Fogaça, S. Hashemi, A. Ibrahim, A. B. Kahng, M. Kim,

J. Li, Z. Liang, U. Mallappa, P. Penzes, G. Pradipta, S. Reda, A. Rovinski,

K. Samadi, S. Sapatnekar, L. Saul, C. Sechen, V. Srinivas, W. Swartz, D. Sylvester,

D. Urquhart, L. Wang, M. Woo, and B. Xu, “Openroad: Toward a self-driving,

open-source digital layout implementation tool chain,” 2019.

[34] “magic vlsi layout tool webpage.” http://opencircuitdesign.com/magic/. Accessed:

2020-11-29.

[35] S. Maurya, A Structured Design Methodology for High Performance VLSI Arrays.

Arizona State University, 2012.

153

Bibliography

[36] S. A. Vitale, P. W. Wyatt, N. Checka, J. Kedzierski, and C. L. Keast, “Fdsoi process

technology for subthreshold-operation ultralow-power electronics,” Proceedings of

the IEEE, vol. 98, no. 2, pp. 333–342, 2010.

[37] H. Cedric and S. Selberherr, “Electromigration in submicron interconnect features

of integrated circuits,” Materials Science and Engineering:R:Reports, pp. 53–86, 05

2013.

[38] J. Lienig and M. Thiele, Fundamentals of Electromigration-Aware Integrated Circuit

Design. Springer Publishing Company, Incorperated, 1st ed., 2018.

[39] J. R. Black, “Electromigration failure modes in aluminum metallization for semi-

conductor devices,” Proceedings of the IEEE, vol. 57, no. 9, pp. 1587–1594, 1969.

[40] W. Li and C. M. Tan, “Black’s equation for today’s ulsi interconnect electromi-

gration reliability — a revisit,” in 2011 IEEE International Conference of Electron

Devices and Solid-State Circuits, pp. 1–2, 2011.

[41] H. H. Hoang, “Effects of annealing temperature on electromigration performance

of multilayer metallization systems,” in 26th Annual Proceedings Reliability Physics

Symposium 1988, pp. 173–178, 1988.

[42] S. Vaidya, T. Sheng, and A. Sinha, “Linewidth dependence of electromigration in

evaporated al-0.5% cu,” Applied Physics Letters, vol. 36, no. 6, pp. 464–466, 1980.

[43] C. S. Hu, R. Rosenberg, and K. Y. Lee, “Electromigration path in cu thin-film

lines,” 1999.

[44] I. A. Blech, “Electromigration in thin aluminum films on titanium nitride,” Journal

of Applied Physics, vol. 47, no. 4, pp. 1203–1208, 1976.

[45] cadence, “Verilogin quick reference to basics and most referred solutions,” 2020.

[46] rbzentrum, “Spam,” 2020. https://github.com/rbzentrum/SPAM.

[47] “Tiobe index for january 2021.” https://www.tiobe.com/tiobe-index/. Accessed:

2021-01-21.

[48] “Githut 2.0.” https://madnight.github.io/githut/#/pull requests/2020/4. Ac-

cessed: 2021-01-21.

154

Bibliography

[49] “Most popular technologies stackoverflow survey 2020.”

https://insights.stackoverflow.com/survey/2020#most-popular-technologies.

Accessed: 2021-01-21.

[50] unihd cag, “skillbridge,” 2020. https://github.com/unihd-cag/skillbridge.

[51] “pycharm webpage.” https://www.jetbrains.com/de-de/pycharm/. Accessed: 2021-

03-05.

[52] “theopenroadproject webpage.” https://theopenroadproject.org/. Accessed: 2021-

03-05.

[53] cadence, “Spectre ams designer and xcelium simulator mixed-signal user guide

20.09,” 2020.

[54] “Ieee standard for systemverilog–unified hardware design, specification, and verifica-

tion language,” IEEE Std 1800-2012 (Revision of IEEE Std 1800-2009), pp. 1–1315,

2013.

[55] cadence, “Genus synthesis solution,” 2021. https://www.cadence.com/ko KR/home/tools/digital-

design-and-signoff/synthesis/genus-synthesis-solution.html.

[56] J. Nagel, “Parsing and handling directives in a system-verilog intellij plugin,” 2017.

[57] “yosys webpage.” http://www.clifford.at/yosys/. Accessed: 2021-03-05.

[58] M. Orshansky, S. Nassif, and D. Boning, “Design for manufacturability and statis-

tical design: A constructive approach,” Design for Manufacturability and Statistical

Design: A Constructive Approach, pp. 1–316, 01 2008.

[59] A. R. Subramaniam, R. Singhal, Chi-Chao Wang, and Yu Cao, “Design rule opti-

mization of regular layout for leakage reduction in nanoscale design,” in 2008 Asia

and South Pacific Design Automation Conference, pp. 474–479, March 2008.

[60] T. Jhaveri, L. Pileggi, V. Rovner, and A. J. Strojwas, “Maximization of layout

printability/manufacturability by extreme layout regularity,” in Design and Process

Integration for Microelectronic Manufacturing IV (A. K. K. Wong and V. K. Singh,

eds.), vol. 6156, pp. 67 – 81, International Society for Optics and Photonics, SPIE,

2006.

[61] W. Maly, Y. Lin, and M. Marek-Sadowska, “Opc-free and minimally irregular ic

design style,” in 2007 44th ACM/IEEE Design Automation Conference, pp. 954–

957, June 2007.

155

Bibliography

[62] M. Pons Solé, “Layout regularity for design and manufacturability,” 2012.

[63] “Overview litho physical analyzer.” https://www.cadence.com/en US/home/tools/digital-

design-and-signoff/silicon-signoff/litho-physical-analyzer.html. Accessed: 2021-02-

23.

[64] N. Bergmann, “Generalised cmos - a technology independent cmos ic design style,”

in 22nd ACM/IEEE Design Automation Conference, pp. 273–278, June 1985.

[65] unihd cag, “simple-geometry,” 2020. https://github.com/unihd-cag/simple-

geometry.

[66] unihd cag, “rodlayout,” 2020. https://github.com/unihd-cag/rodlayout.

[67] T. Markus and N. Buwen, “Partial layout generation with python,” 2020. Internal

design document.

[68] cadence, “Virtuoso unified custom constraints user guide icadvm20.1,” 2021.

[69] nedbat, “coveragepy,” 2021. https://github.com/nedbat/coveragepy.

156

