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S U M M A RY

Ovarian cancer (OC) is a heterogeneous disease and can be delineated into five
major histological subtypes. In 2018, the disease caused 184,799 deaths worldwide,
where the majority of them were due to high-grade serous carcinoma (HGSC). HGSC
accounts for 70% of OCs and have a common late-stage diagnosis. Patients usually
show initial favorable response to chemotherapy but later on subject to disease relapse
and development of acquired resistance.

Understanding the disease biology is important for its early detection and effective
treatment. The pathogenesis of HGSC had remained obscure until the identification of
its tubal origin. Studies on precursor lesions had gained insights into very early events;
however, the carcinogenesis process remained largely underexplored. Meanwhile,
molecular subtyping became more important due to the success of targeted therapy
using poly(ADP-ribose) polymerase (PARP) inhibitors. However, current clinical trials
use different assays and a consensus approach for patient stratification is lacking.

In this thesis, whole genome sequencing (WGS) was used to profile tumor-normal
sample pairs from ovarian cancer patients, and a subset of them had samples collected
from different anatomical sites. This multi-sample cohort (HIPO59) is suitable for
addressing questions about molecular stratification and tumor pathogenesis.

Unifying contemporary DNA-based classifications, more evidences were provided
here and consolidated a concept of HGSC dichotomy. Our data suggested that the
previously proposed genomic subgroups in HGSC (H-HRD and H-FBI) are character-
ized by different extent and onset timing of homologous recombination repair (HRR)
defect as well as CCNE1 pathway activation. Specifically, HRR deficiency is a common
feature and acquired early in H-HRD cases, whereas H-FBI tumors often have CCNE1

pathway activation as an early event. Mechanistic details supporting this observation
were revealed by several layers of evidences. Among them, the subgroups also showed
differences in surrogate biomarkers for PARP inhibitor response. The HGSC dichotomy
reflects meaningful biology of the disease, provides a new perspective of interpreting
known biomarkers, and holds the potential for better describing the patient subset that
are more likely to benefit from PARP inhibitor treatment.

To get insight into tumor evolution in real-world time, the evolutionary trajectory
was computationally reconstructed for each tumor. This highlights an early bifurcation
of carcinogenesis pathways in the HGSC dichotomy, despite a common scenario of
very early TP53 mutation and an eventual chromosomal instability (CIN) phenotype
seen in both subgroups. Furthermore, the reconstructed sample phylogeny trees inform
about potential early and late driving events for tumors from all individuals. This can
facilitate personalized oncology by providing clinical implications in cascade testing,
therapeutic planning and disease monitoring.
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Besides, our data raised additional questions worthwhile further investigations. First
of all, heredity was found as an influential factor in all histotypes. Contributing factors
other than BRCA mutations underlined the link between hereditary DNA repair-
deficiency syndromes and ovarian cancer predisposition. Secondly, a variable degree of
intra-patient heterogeneity (IPH) was observed in pre-treatment samples of OC and
the IPH can potentially stratify patients into distinct prognostic groups. As the method
summarizing IPH here supports a wide range of high-throughput profiling platforms,
developing a standardized assay suitable for a larger cohort can help evaluate its clinical
utility.

Overall, these findings corroborate the concept of HGSC dichotomy by providing
mechanistic underpinnings from the aspect of tumor evolution. This integrative view-
point allows for re-interpreting contemporary knowledge about HGSC, and will help
scientists formulate questions about subtype-specific pathogenesis and vulnerabilities.
Furthermore, both the dichotomy and IPH status allow for molecular stratification
with potential clinical implications. Altogether, the findings in this thesis provide novel
opportunities for discovering solid understanding about the biology of HGSC, as well
as facilitating personalized oncology in ovarian cancer treatment.
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Z U S A M M E N FA S S U N G

Das Ovarialkarzinom (OC) ist eine heterogene Erkrankung und lässt sich in fünf
große histologische Subtypen einteilen. Im Jahr 2018 führte die Erkrankung weltweit
zu 184.799 Todesfällen, von denen die meisten auf ein hochgradiges seröses Karzinom
(HGSC) zurückzuführen waren. HGSC machen 70% der OCs aus und werden häufig
im Spätstadium diagnostiziert. Die Patienten sprechen in der Regel zunächst gut auf
Chemotherapie an, erleiden aber später einen Krankheitsrückfall und entwickeln eine
Therapieresistenz.

Die Biologie hinter OC zu verstehen ist wichtig für die Früherkennung und eine effek-
tive Behandlung. Die Pathogenese des HGSC war bis zur Entdeckung ihres tubulären
Ursprungs ungeklärt. Studien an Vorläuferläsionen lieferten zwar Einblicke in sehr
frühe Mutationsereignisse, der Prozess der Karzinogenese blieb jedoch weitgehend
unerforscht. Inzwischen hat die molekulare Subtypisierung durch den Erfolg der
zielgerichteten Therapie mit Poly(ADP-Ribose)-Polymerase (PARP)-Inhibitoren an Be-
deutung gewonnen. In aktuellen klinischen Studien werden jedoch unterschiedliche
Assays verwendet und es fehlt ein einheitlicher Ansatz zur Patientenstratifizierung.

In dieser Arbeit wurde Gesamt-Genom-Sequenzierung (WGS) verwendet, um Proben
von Ovarialkarzinom-Patientinnen zu analysieren. Bei einem Teil der Patientinnen
wurden Proben von verschiedenen Stellen im Tumor entnommen. Diese Multi-Proben-
Kohorte (HIPO59) ist gut dafür geeignet, die molekulare Stratifizierung der Patientinnen
zu verbessern und Einblicke in die Tumorpathogenese zu gewinnen.

Durch die Vereinheitlichung aktueller DNA-basierter Klassifizierungen wurden hier
weitere Beweise für die HGSC-Dichotomie geliefert und das Konzept somit gefestigt.
Unsere Daten deuten darauf hin, dass die zuvor vorgeschlagenen genomischen Unter-
gruppen bei HGSC (H-HRD und H-FBI) durch ein unterschiedliches Ausmaß und einen
unterschiedlichen Zeitpunkt des Einsetzens eines Defekts in der homologen Rekombi-
nationsreparatur (HRR) sowie der Aktivierung des CCNE1-Signalwegs gekennzeichnet
sind. Insbesondere ist der HRR-Defekt ein häufiges Merkmal und wird in H-HRD-
Fällen früh erworben, während bei H-FBI-Tumoren die CCNE1-Signalweg-Aktivierung
häufig als frühes Ereignis auftritt. Mechanistische Details, die diese Beobachtung un-
terstützen, wurden durch mehrere Anhaltspunkte herausgearbeitet. So zeigten die
Untergruppen auch Unterschiede bei den Surrogat-Biomarkern für das Ansprechen auf
PARP-Inhibitoren. Die HGSC-Dichotomie ist sehr aussagekräftig für die Entstehung der
Erkrankung, bietet eine neue Perspektive für die Interpretation bekannter Biomarker
und gibt Einsichten in Patientgruppen mit wahrscheinlich gutem Ansprechen auf eine
PARP-Inhibitor-Behandlung.

Um einen Einblick in die Tumorevolution zu erhalten, wurde die Evolutionskurve für
jeden Tumor rechnerisch rekonstruiert. Dies zeigt eine frühe Bifurkation der Karzino-
genese in der HGSC-Dichotomie, trotz gemeinsamer früher TP53-Mutationen und
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späterer chromosomaler Instabilität (CIN) in beiden Untergruppen. Darüber hinaus
liefert der rekonstruierte Proben-Phylogenie-Baum Informationen über potenzielle
weitere frühe und späte treibende Ereignisse für alle Tumoren. Dies kann die personal-
isierte Onkologie unterstützen, indem es klinische Implikationen für Kaskadentests,
Therapieplanung und Krankheitsüberwachung liefert.

Außerdem warfen die Daten zusätzliche Fragen auf, die weitere Untersuchungen
erfordern. Zunächst einmal wurde genetische Vererbung als einflussreicher Faktor
in allen Histotypen gefunden. Neben BRCA-Mutationen verdeutlichten auch andere
Einflussfaktoren den Zusammenhang zwischen erblichen DNA-Reparaturdefekten
und einer Prädisposition für Eierstockkrebs. Zweitens wurde ein variabler Grad an
Intra-Patienten-Heterogenität (IPH) in unbehandelten OC-Proben beobachtet, was
möglicherweise der Stratifizierung von Patientinnen in verschiedene prognostische
Gruppen dienen kann. Da die hier zusammengefasste IPH-Methode eine breite Palette
von Hochdurchsatz-Analyseverfahren unterstützt, kann die Entwicklung eines standar-
disierten Assays für eine größere Kohorte helfen, den klinischen Nutzen von IPH zu
bewerten.

Insgesamt bestätigen diese Ergebnisse das Konzept der HGSC-Dichotomie, indem
sie mechanistische Einblicke aus der Perspektive der Tumorevolution liefern. Diese
integrative Sichtweise ermöglicht eine Neuinterpretation des gegenwärtigen Wissens
über HGSC und wird Wissenschaftlern dabei helfen, Fragen zur subtypspezifischen
Pathogenese und Vulnerabilität zu formulieren. Darüber hinaus ermöglichen sowohl
die Dichotomie als auch der IPH-Status eine molekulare Stratifizierung mit poten-
ziellen klinischen Implikationen. Alles in allem bieten die Ergebnisse dieser Arbeit
neue Möglichkeiten, um ein solides Verständnis über die Biologie von HGSC zu er-
langen sowie die personalisierte Onkologie bei der Behandlung von Eierstockkrebs zu
verbessern.
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1
T U M O R D E V E L O P M E N T

1.1 hallmarks of cancer

Tumor follows a multistep development, through which it acquires biological capa-
bilities to become malignant and achieve dissemination. Hallmark capabilities of tumor
was proposed by Hanahan & Weinberg in 2000[1] and updated in 2011[2]. The current
eight hallmark of cancer serve as the organizing principle of tumor and are briefly
summarized below.

Sustaining proliferative signaling

Mitogenic signaling is usually induced by growth factors acting on cells through
ligand-receptor binding, and facilitated by different intracellular transducers regulat-
ing cell cycle, cell growth, cell survival and energy metabolism. Cancer cells sustain
proliferative signaling in several ways, including autocrine proliferative stimulation,
stimulating surrounding normal cells which in turn provide them with growth factor
supply, increasing sensitivity to ligand, altering molecular components to achieve con-
stitutive activation, or disruption of negative-feedback mechanisms and counteracting
responses like senescence and apoptosis.

Evading growth suppressors

RB and TP53 are two canonical suppressors that limit cell growth and proliferation.
RB integrates extracellular and intracellular signals and decides whether or not to
proceed through cell cycle, its absence therefore permits persistent cell proliferation.
TP53, on the other hand, integrates intracellular signals about genomic damage and cell
stresses and decides either to halt the progression to cell cycle, or to trigger apoptosis
in case of overwhelming or irreparable damage. Despite their importance, functional
redundancy of these genes exists in the biological network. Therefore, in animal models
lacking a functional RB gene or TP53 gene, neoplasia were observed only later in
life. Two other proliferation-suppressive mechanisms include contact-mediated growth
inhibition and TGF-beta signaling, where the former is compromised in cancers and
the latter is redirected to activate epithelial-to-mesenchymal transition (EMT) program.

Resisting cell death

Apoptosis is a process of programmed cell death. In response to extrinsic or intrinsic
signals, mediating proteases are activated and initiate downstream proteolysis cascades,
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which eventually lead to cell death. The intrinsic apoptotic program, in particular,
is considered a natural barrier to carcinogenesis and its dysfunction is implicated
in many cancers. For example, TP53 integrate internal signals of DNA breaks and
chromosomal abnormalities and is key to the induction of apoptosis through the route
of DNA-damage sensing. Therefore, loss of TP53 tumor suppressor function is often
observed in cancer. However, this is not the only way to achieve this hallmark and
multiple other apoptosis-avoiding mechanisms have been observed.

Enabling replicative immortality

Two intrinsic mechanisms are known to prevent normal cells from unlimited repli-
cation. The first mechanism, senescence, is when cells enter a nonproliferative while
viable state. On the other hand, the second mechanism, crisis, can lead to apoptosis.
To obtain unlimited replicative potential, cells have to overcome these two barriers.
In tumor cells, the mechanism to obtain this immortality is mainly through activat-
ing its telomere protection mechanism, which can be achieved through telomerase
re-activation or alternative lengthening mechanisms.

Inducing angiogenesis

Angiogenesis is neovasculature supporting tumor cells with required nutrients and
oxygen supply. In normal processes, new vasculature is developed during embryoge-
nesis, or in adult stage it can be transiently activated upon wound healing or female
reproductive cycling. In contrast, this process is constantly activated in tumor cells by
disrupting angiogenic regulators, with two known examples being the induction of
VEGF-A and inhibition of TSP-1. More intriguingly, early acquisition of this hallmark
has been widely observed.

Activating invasion and metastasis

Outgrowth of tumor cells requires ability to invade adjacent tissues and become a
malignancy, as well as to disseminate and enable distant metastases. Along the process
they acquired morphological changes, and molecularly it is best described by the loss
of E-cadherin. It is a key molecule for maintaining cell-to-cell contacts and its tumor
suppressor role is supported by its common disruption in cancer. With dedicated studies
into the invasion-metastasis cascade process, more positive and negative regulators are
found to be involved in gaining the capability for invasion and metastasis.

Reprogramming of energy metabolism

Due to the drastic change from the normal state, tumor cells have to adjust their
energy metabolisms accordingly. A phenomenon termed "aerobic glycolysis" has been
observed, where cancer cells can reprogram their energy metabolism and become largely
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relying on glycolysis even in anaerobic condition. Concordant molecular changes ob-
served include upregulating glucose transporter like GLUT1 which increases glucose
import into the cell. This change also has been associated with oncogene (e.g. RAS,
MYC) activation, tumor suppressor gene (e.g. TP53) inactivation and hypoxic con-
ditions in tumors. Notably, within the tumor, scientists had observed two symbiotic
subpopulations where one of them had this metabolic switch and provide lactate as the
energy source of the other subpopulation. Nonetheless, this observation has not been
generalized yet and there are still many unresolved issues surrounding this emerging
hallmark of cancer.

Evading immune destruction

The theory of immune surveillance proposed that the immune system has been
constantly monitoring cells in the body and eradicate the formation and progression
of tumor cells. In this sense, acquiring capability to avoid this detection system would
be another hallmark for cancer cells to survive. There has been increasing evidences
from genetically engineered mice and clinical epidemiology suggesting the role of
immune system as a barrier to tumor development. Nonetheless, the immunoevasion
as a emerging hallmark still remain to be firmly established.
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1.2 dna damage repair defect and cancer

It emerged from the studies of hereditary cancer predisposition syndromes that
DNA damage response (DDR) might be playing a role in cancer development. The rare
syndromes are mostly due to highly penetrant variants and 5-10% of all cancers are
developed in patients with such syndromes[3]. Despite the small hereditary cancer
burden, the advanced understanding of their genetic basis had shed light on the
development of sporadic tumors.

The following two sections describe how the link between DDR-deficiency and
carcinogenesis got recognized, and how often this defect is acquired in common
sporadic cancers.

1.2.1 Cancer predisposition syndromes

Cancer predisposition syndrome describes the situation when a person is born with
specific genetic allele that increases the carrier’s risk of developing cancer. These genetic
alleles are usually rare in the population and associated with compromised function
in key genes. As cancer is considered an age-related disease where it develops by
gradually accrual of key genetic changes along lifetime, it may therefore develop earlier
in individuals born with such risk alleles.

Seminal observation on the association between DDR and cancer predisposition can
be traced back to a study in 1969 conducted on a rare genetic disorder[4]. Xeroderma
pigmentosum (XP) is a autosomal recessive disease, where patients are conferred a 1,000-
fold increase in the risk of developing skin cancer[5]. Causal mutations were found in
genes functioning in the nucleotide excision repair (NER) pathway, which is responsible
for the repair of ultraviolet (UV) light-induced DNA damage. The dysfunction of NER
pathway therefore leads to an elevated susceptibility to skin cancer.

More studies further strengthened the bond between DNA repair pathways and
carcinogenesis. Fanconi anaemia (FA) happens when pathogenic variants occurred in
22 DDR-related genes and made cells incapable of repairing DNA inter-strand cross-
links (ICLs)[6, 7]. On the other hand, the genetic basis of Bloom syndrome was found
to be the loss-of-function mutations in BLM[8], a gene encoding helicase involved in
homologous recombination repair (HRR) pathway[9] and thus the defect compromises
DNA double-strand break (DSB) repair. Likewise, other DNA helicases are implicated
in other hereditary syndromes. Mutations in WRN, for example, is the causative factor
of Werner syndrome[10]. And when RECQL4 is affected, it lead to three other clinical
syndromes, namely Rhmund-Thomson, RAPADILINO and Baller-Gerold syndromes[11].
More such syndromes associated with causal link to DDR genes include Li-Fraumeni
syndrome (TP53 gene), Hereditary Breast and Ovarian Cancer syndrome (HBOC syndrome)
(BRCA1 or BRCA2 genes), Ataxia-Telanlectasia (ATM gene), Cowden Syndrome (PTEN
gene), Nijmegen breakage syndrome (NBN gene), to name but a few.

Patients with cancer predisposition syndromes can develop a wide spectrum of
neoplasms and inversely, hereditary cancers are linked to different sets of rare syn-
dromes. Colorectal cancer, for example, is associated with several high-risk syndromes
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involving defects in different DNA repair machineries. Lynch syndrome, characterized
by microsatellite instability (MSI), results from dysfunction in DNA mismatch repair
genes[12–15] and has a clinical presentation of nonpolyposis. Notably, the MSI feature
renders these tumors more immunogenic and therefore these patients respond well
to immunotherapy. Alternatively, alterations in MYH[16], a base-excision repair (BER)
gene, had been found to be the cause of MUTYH-associated polyposis (MAP). Similarly, a
subset of familial breast, ovarian, prostate and pancreatic cancers may also arise from
inherited defect in HRR pathway[17].

In terms of ovarian cancer, the associated genetic factors will be discussed in Sec-
tion 3.2 and associated hereditary syndromes include HBOC syndrome, Lynch Syndrome
and MAP[18].

1.2.2 DNA damage repair deficiency in sporadic cancers

A re-analysis of TCGA data focused on 9 DDR pathways across 33 cancer types[19].
Researchers looked at somatic disruptions in 276 DDR genes due to three alteration
mechanisms, including mutation/indel, copy number loss and epigenetic silencing.

Direct repair (DR) and HRR were the most frequently altered DDR pathways across
all tumors. Among the 28 associations showing enrichment of pathway gene alterations
in different cancer types, NHEJ and HRR were enriched for alterations within ovarian
cancer. Notably, these pathway disruptions have distinct prognostic implications in
different cancer types. HRR disruption, for example, is associated with better outcome
in ovarian cancer but worse outcome in several other cancers.

In terms of alteration mechanisms, there was observed disproportionality of mutation
and deletion in HRR pathway, while DR pathway was mainly altered by epigenetic
silencing. Interestingly, some genes are more prone to specific alteration mechanisms.
For example, ALKBH3 and MGMT were affected predominantly by silencing. On the
other hand, mutations accompanied by loss of heterozygosity (LOH) was observed in
one third of DDR genes, including TP53, BRCA1, BRCA2, PTEN and PER1.

In summary, the authors showed that somatic disruptions in DDR gene were ubiqui-
tous within major cancer types. Two third of the 33 cancer types showed enrichment of
alterations in at least one of the 9 DDR pathways. These alterations results from three
disruption mechanisms and have different implications depend on cancer types.





2
M O L E C U L A R F O O T P R I N T S O F B I O L O G I C A L P R O C E S S E S

In human cells, DNA damage repair mechanisms have evolved into a comprehensive
and redundant system to counteract constant genotoxic insult arising from intrinsic or
environmental sources, this maintains normal cellular functions and ensures faithful
transmission of genetic information to daughter cells. When the balance is not main-
tained, DNA damage left unrepaired may be passed on to the daughter cells and appear
as somatic aberrations when compared to the germline genome. As some endogenous
or exogenous mutational processes and repair mechanisms tend to alter or repair DNA
in specific context leading to unique alteration types, somatic mutations detected in
the tumor genome would exhibit specific pattern reflective of ongoing or historical
biological processes.

These genomic scars can take on forms of single base substitutions, indels, rear-
rangements or copy number alterations. Therefore, one can theoretically describe these
unique footprints using a set of features consisting of these aberrations, together with
their accessory characteristics. Given the collection of genomic scars observed in numer-
ous tumor genomes, which is a superimposition of patterns from different processes
in different cancer types, computational approaches[20] were applied to discover mu-
tational signatures, described by defined features, where each of them characterizes
footprints of specific combination of mutational processes and/or repair mechanism
defects.

The following sections provide an overview of the discovery of footprints, identified
mutational signatures and their implications in underlying biological processes.

2.1 mutator phenotype

In theory, if one would have known all the causes of aberrations, it is possible to
computationally infer all underlying processes. However, it is oftentimes not the case.
Historically, scientists had observed large numbers of mutations present in cancers. In
1974, a hypothesis was proposed[21] stating that cancers expresses a mutator phenotype
and accumulates mutations at a rate higher than nonmalignant cells. The origins and
consequences of mutator phenotype only started to get appreciated after the invent of
next generation sequencing[22].

As technology allows for detecting aberrations of more forms, other mutator phe-
notypes such as with excess duplication events[23] and their potential origins were
gradually revealed.
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2.2 single base substitution signature

From the catalogue of somatic mutations detected in 7,042 tumors, scientists were
able to identify 21 Single Base Substitution Signatures (SBS Signatures)[24], each of them
characterized by a combination of SBSs arising in specific localized trinucleotide con-
texts. Some of the signatures were found associated with age, mutagenic exposures,
DNA maintenance defect or other mutational processes, while many remained of
cryptic origin.

Abnormalities in DNA maintenance, for instance, are reflected by different SBS Signa-
tures depending on which of the repair axis being disrupted. Signature 3 is suggestive
of defective HRR as it was strongly associated with BRCA1 and BRCA2 mutations
within two cancer types (breast and pancreatic cancer). Despite that this signature has
a rather equal representation of all features, it was further found associated with indels
with microhomology at the breakpoints, a feature being utilized by NHEJ mechanisms
for rejoining DSBs. On the other hand, defective MMR was suggested to be responsible
for four SBS Signatures, namely Signature 6, 15, 20 and 26. These signatures were
associated with substantial numbers of substitutions and small indels at nucleotide
repeats.

The major component of Signature 1 is CpG>TpG transitions, based on which the
underlying mutational process is linked to spontaneous deamination of 5-methyl-
cytosine to thymine at CpG sites. As Signature 1 positively correlated with age in
most cancer types, it was hypothesized that these mutations have been acquired at a
relatively constant rate throughout life, and that this endogenous mutational process
operates in a clock-like manner. In this sense, its footprint will proportionally reflect the
chronological age of an individual. In a follow-up study, Alexandrov et al. confirmed
that both Signature 1 and Signature 5 showed clock-like properties, the authors further
hypothesized that Signature 1 mutation rate can act as a molecular clock reflecting the
number of mitoses a cell had experienced.

Lastly, Signature 2 and Signature 13 were attributed to abnormal activity of members
of the APOBEC family of cytidine deaminases. Signature 8 was of unknown origin and
showed strong transcriptional strand bias; however it was observed to be associated
with absence of BRCA1 and BRCA2 function in breast cancer[26]. Signature 9 was
proposed to be due to an error-prone polymerase eta, which is involved in AID-induced
somatic hypermutation as well as DNA repair by translesion synthesis. More biological
processes underlying other signatures can be found in the original publication.

2.3 indel signatures

In the most recent study, Alexandrov et al. identified 17 Indel Signatures (ID Signatures)
based on small insertions and deletions in 4,645 whole-genome and 19,184 whole exome
sequences. They also expanded the SBS Signature set to 49 SBS Signatures.

Among other clock-wise signatures, ID1 is characterized with insertions of thymine
and likely generated during DNA replication of long mononucleotides due to slippage
of the nascent strand.
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Abnormalities in DNA maintenance can again be traced for defects in HRR or
mismatch repair (MMR). ID6 and ID8 are both related to defect in HRR, and are
both characterized by deletions of size >= 5-bp. They differ in the size of microhomol-
ogy at the junction, where ID6 is associated with longer stretches of microhomology
and ID8 is more with no or 1-bp microhomology. Both of them were suggested to be
characteristic of NHEJ mechanisms. Furthermore, ID6 correlate with Signature 3, an
SBS Signature reflecting defect in HRR, whereas ID8 did not show strong correlation.

Additionally, when ID1 and ID2 appear in large amount, they were usually ac-
companied by new SBS Signature 6, 14, 15, 20, 21, 26 and/or 44, reflecting defect in
MMR. These MMR defect-associated ID Signatures would sometimes accompanied by
polymerase proofreading deficiency for POLE or POLD1 (new SBS Signature 14 and
20).

2.4 rearrangement signatures

Mutational signature analysis can be extended to structural variations (SVs). It was
first investigated in 2016 in a breast cancer study, where researchers extracted six
Rearrangement Signatures from 560 whole-genome sequences[26]. SVs were classified
into 32 features first by regional clustering property, then by types including tandem
duplications (TDs), deletions (DELs), inversions (INVs), interchromosomal translocations
(TRXs), lastly by the size of the rearrangement event (1-10 kb, 10-100kb, 100-1000kb, 1-10

Mb, or >10 Mb).
There were three Rearrangement Signatures associated with HRR defect, namely

RS1, RS3 and RS5. RS1 represents large TD mutator phenotype and was of unknown
origin. RS3 correspond to small TD mutator phenotype and is likely due to inactivation
of BRCA1. RS5 is characterized by short DELs and associated with either BRCA1 or
BRCA2 inactivations.
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2.5 copy number-based genomic signature

It had been reported that tumors with homologous recombination deficiency (HRD)
would be sensitive to drugs inducing DNA cross-links such as cisplatin. These tumors
might rely on error-prone repair processes for repairing DSBs and survive, resulting
in various genomic abnormalities and leading to genome instability. Three types of
genomic signatures, which measure genome-wide count of abnormal chromosomal
regions, had been proposed to indicate the degree of DSB repair incompetence, and to
predict sensitivity to platinum-based treatments.

Telomeric Allelic Imbalance (TAI)

Using error-prone repair processes for repairing DNA DSBs results in genomic abnor-
malities including high level of allelic imbalance (AI). A study looked for associations
between platinum-based treatment response and different genome-wide summary
measures of AI, and found that number of regions with telomeric allelic imbalance (TAI)
being predictive of cisplatin sensitivity in breast cancer cell lines[28]. Number of TAI
(N_tAI), defined as number of subchromosomal regions with AI extending to the
telomere, were further found to predict pathologic response to preoperative treatment
in TNBC, and correlate with better initial response in the TCGA ovarian cancer cohort.
In summary, this study showed that TAI is a marker of platinum sensitivity and sug-
gestive of impaired DNA repair, and proposed that N_tAI being a useful biomarker for
identifying patients with wild-type BRCA1/2 but likely benefit from platinum-based
therapies.

Loss of Heterozygosity (LOH)

Given that LOH is an irreversible event, scientists hypothesized that LOH-based
score would provide a more stable record compared to copy number alterations. The
hypothesis was examined in three ovarian cancer cohorts and a panel of ovarian, breast,
colon and pancreatic cancer cell lines[29]. Scientists first characterize inactivation of
BRCA1, BRCA2 and RAD51C, and then compare the LOH-based scores in samples
with and without HRR deficiency.

HRR-deficient tumors were defined by samples with germline or somatic BRCA1

or BRCA2 mutations, promoter methylation or low transcript expression of BRCA1,
and exhibited homozygosity at the affected gene due to LOH. Three LOH-based
scores measuring LOH of different sizes were tested for association with the HRD
status. Number of short LOH regions (<15Mb) was not associated with HRD in all
three cohorts, whereas whole-chromosome LOH was more abundant in HR-proficient
tumors in two cohorts. The intermediate sized LOH (>15Mb but less than a whole
chromosome), later on referred to as the HRD score, was significantly more abundant
in tumors deficient in BRCA1 or BRCA2 function in all three cohorts. Similar association
observed in cell line panels further showed that the this biomarker is not restricted to
EOCs.
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Lastly, the authors also found that promoter methylation of RAD51C, as well as
PTEN-deficient tumors both lead to an elevated HRD score.

Large-scale State Transitions (LST)

In search of surrogate genomic markers for BRCA1-inactivation, researchers examined
the copy number profiles of 65 basal-like breast carcinomas (BLCs) using SNP arrays,
and found two features strongly predictive of BRCA1 inactivation[30], including near-
diploidy and higher number of large-scale state transitions (LSTs).

In the beginning, it was observed that 79% (19/24) of near-diploid tumors had BRCA1-
inactivation either through germline mutation or epigenetic silencing. Subsequently, the
authors profiled the frequency of copy number segment of different sizes and found
that there existed two types of segments with the prominent cutoff at 3 Mb in segment
size. They then defined a state transition of size S Mb being a chromosomal break
between adjacent segments of at least S Mb. After filtering and smoothing small-scale
segments (less than 3 Mb), the number of remaining large-scale state transition can
split near-tetraploid BLCs into 2 stable groups, with the most significant difference
observed when S=10 Mb. As a result, number of LSTs of size 10 Mb was suggested a
good proxy for large-scale genome instability.

The final classifier relies on a two-step decision rule. Tumors are first segregated into
near-diploid or near-tetraploid tumors and then classified into LST_High and LST_Low
subgroups by ploidy-specific LST cutoffs (15 LSTs for near-diploid tumors and 20 LSTs
for near-tetraploid tumors). This classifier achieved 100% sensitivity and 90% specificity
(97% accuracy) for classifying BRCA1 or BRCA2 inactivated tumors.
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O VA R I A N C A N C E R

Ovarian neoplasms can be separated into three main types according to the probable
tissue of origin. Of these, surface epithelial-stromal tumors account for 60%, followed
by germ-cell tumors (30%) and sex cord stromal tumors (8%). On the other hand, based
on the degree of atypia, tumors can be classified as benign, borderline (intermediate)
or malignant (carcinoma). Approximately 75%-80% of the tumors are benign, whereas
around 30% of the epithelial type are malignant. Therefore, the epithelial ovarian
cancers (EOCs) account for the vast majority (80%-85%) of ovarian malignancies[31].

This chapter starts with an overview of ovarian cancer (OC). Section 3.1 introduces the
global burden of the disease, different histological subtypes along with their occurrence
and survival statistics, as well as factors associated with increasing or decreasing
risk of developing the disease. The second and third sections focus on EOC, where
Section 3.2 covers its heritability and genetic factors and Section 3.3 describes the
current carcinogenesis model. Lastly, Chapter 4 put special emphasis on high-grade
serous carcinoma (HGSC) and go through current understandings about this major
subtype of EOC.

3.1 epidemiology

3.1.1 Incidence and mortality

Ovarian cancer is the eighth most common malignancy worldwide for women in 2018,
according to a WHO report on Global cancer statistics[32]. OC was newly diagnosed in
295,414 cases and caused 184,799 deaths, it also accounts for 3.3% of prevalent cancer
cases in women within five years. Over the years, the incidence and mortality rate
are declining in the U.S.[33, 34], potentially influenced by the change in of hormonal
therapy prescriptions[35]; however, the temporal trend varies by country[36].

Incidence and mortality rate are also heterogeneous across the globe[34, 37] and
some potential associating factors were proposed[38]. Such variations can be observed
in different geographical regions as well as in different country development status. As
summarized in Figure 3.1, OC were more frequent and caused more deaths in highly
developed countries, or in European region. Specifically, the highest incidence rate was
observed in the Central and Eastern Europe and affects 11.9 per 100,000 women per
year, followed by in Northern Europe (9.2) and in North America (8.4), as compared to
the worldwide rate of 6.6, which is translated to a 0.72% cumulative risk of developing
OC before age 75 years.

In Europe, OC is the second most common and most lethal gynaecological malig-
nancy, representing 5.2% of cancer-related morbidity. A woman’s risk of developing
OC before age 75 is 1 in 93, and her chance of dying of the disease before age 75 is 1 in
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Figure 3.1: Incidence and mortality rate of ovarian cancer in 2018[32]. Age-standardised rate
(ASR) stands for the number of persons affected per 100,000 women per year. The calculation
was stratified by (A) geographical regions or by (B) four tiers of Human Development
Index (HDI), with respective to the reference World population model.

166. However, a more precise estimation of the lifetime risk in Europe would require
inclusion of a wider age range, as the life expectancy of women in Europe was 80.8
year in 2016[39].

3.1.2 Histological classification

Epithelial ovarian cancer can be delineated into five distinct histological subtypes,
which comprise high-grade serous carcinoma (HGSC, 70%), endometrioid carcinoma
(EC, 10%), clear-cell carcinoma (CCC, 5%-10%), low-grade serous carcinoma (LGSC,
<5%) and mucinous carcinomas (MC, 3%)[40]. The classification is partially based
on their morphologic resemblance to epitheliums of different origins. Among them,
HGSC and LGSC have features resembling the epithelium of fallopian tube, and are
distinguished by degree of nuclear atypia and mitosis rate[41]. Despite the communality
of cell differentiation, they are different diseases. In fact, all of these subtypes vary in
etiology, pathogenesis, molecular compositions, risk factors, clinical features, treatment
response and prognosis. The fact that they are inherently different from each other
makes ovarian cancer a group of heterogeneous malignancies instead of a single entity.

3.1.3 Prognosis

Ovarian cancer is more lethal than many other cancer types, as indicated by its
relatively lower survival rate among other cancers[42]. Statistics from the U.S. registry
(2006-2012) suggested a five-year relative survival rate of 46.2% for OC[43], meaning
that the likelihood for OC patients to survive five years after diagnosis is 46.2% of that
for the general population. In addition, the mortality-to-incidence ratio of OC is higher
than that of all cancers combined (0.59 versus 0.55) and only behind Liver, Lung and
Stomach when compared to the ten most common cancers[32].
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Within OC, survival rate varies greatly based on histological subtype and stage.
Except for these factors, individual’s prognosis is also influenced by age, performance
status, residual disease volume and BRCA status[44]. The heterogeneity in survival rate
is illustrated in Figure 3.2, based on statistics of 28,118 EOC patients diagnosed between
2004 and 2014 in the U.S.[45]. In summary, the low survival rate is largely driven by
late stage diagnoses, as over 60% of the OC patients were diagnosed at an advanced
stage. Above all, the most common subtype HGSC accounts for more than 80% of
advanced-stage EOCs and therefore represents most of the ovarian cancer mortality.

Figure 3.2: Subtype-specific statistics. (A) Overall survival stratified by subtype and disease
stage. (B) Distribution of stage at diagnosis for different subtypes. In contrast to a Localized
stage where malignancy is limited to the organ of origin, a Regional stage indicates that
cancer has spread to nearby structures or lymph nodes, while a Distant stage indicates a
spread to distant parts of the body, such as the liver or lungs.

Since the mid-1970s, cancer survival has increased for most common cancers in
the U.S.[46] and similarly in Europe[47, 48]. Table 3.1 shows that, in contrast to the
considerable survival improvements in other common cancers like prostate, colorectal
and breast cancer, there has been only modest and below average increase for ovarian
cancer survival over the past few decades. Therefore, the poor survival over time awaits
more efforts on early-stage cancer detection and effective therapy.

3.1.4 Risk factors and preventive factors

Early detection of cancer would increase the chances for successful treatment. This
can be made possible by organized screening programme and high-risk group iden-
tification. Despite the lack of effective screening strategy, established risk factors can
help identify at-risk population so as to apply risk-reducing managements before the
disease manifests.

The disease most prevalently presents in the sixth decade of life and affects predomi-
nantly perimenopausal and postmenopausal women[45]. In women with hereditary
risks, the disease can occur 10 years earlier[49]. In principle, having a first-degree
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Cancer Site Survival change
in the US (1975-2012)

5-year relative survival
in the US (2006-2012),
age-adjusted

prostate 67.8% to 99.3% 98.90%

colorectal 49.8% to 66.2% 65.10%

female breast 74.8% to 90.8% 89.70%

ovary 36% to 46.4% 46.20%

all sites 50.3% to 66.4% 66.90%

Table 3.1: Five-year relative survival and its trend in the U.S.[43, 46].

affected relative confers an increased risk of OC by three-fold[50]. The relative risk
declines with both the age of the at-risk person[50] and the age of onset in their rela-
tives[51]. On the other hand, the risk increases with the number of relatives affected[52].

In summary, older age, personal history of breast cancer, having a family history of
ovarian and/or breast cancer are the main risk factors of developing OC. In line with
the familial risk, some cancer predisposition syndromes carry with them increased
risks of OC. These include HBOC syndrome, Lynch syndrome, Peutz-Jegher syndrome and
some other rare syndromes[53].

In addition, hormone replacement therapy, nulliparity, and benign gynaecological
conditions(endometriosis, polycystic ovarian syndrome and pelvic inflammatory dis-
ease) also lead to an elevated OC risk[54]. Other factors that confers modest risk include
increased height, weight and BMI. Protective factors, on the other hand, include oral
contraceptive use, increasing parity, lactation and tubal ligation[44]. Notably, different
histologic types may have different risk factors[55].

3.2 hereditary ovarian cancer

3.2.1 Clinical manifestation

Hereditary ovarian cancer (HOC) is characterized by familial aggregation of cancer
cases. There are three clinical manifestations[56]: (a) site-specific ovarian cancer, where
only ovarian cancers are seen in excess; (b) HBOC syndrome, where both ovarian and
breast cancers are observed; and (c) Lynch syndrome type II, where ovarian, colorectal
or endometrial cancers aggregate in the family. Among them, the first two categories
account for the majority of the hereditary cases[57]. In addition, category (a) is suggested
to be a variant manifestation of category (b) as the only attributable genetic factor found
was a HBOC susceptibility gene BRCA1[58, 59].
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3.2.2 Genetic factors

HOCs account for 5% to 15% of ovarian cancers and are mainly identified by family
history[60] and/or mutation carriers of high-risk susceptibility genes[61, 62]. Although
family history has been a confirmed risk factor, family studies cannot exclude the con-
tribution of nongenetic factors shared within families. Twin studies, instead, were able
to distinguish heritable factor from environmental factor and suggested a significant
heritability (39%) for ovarian cancer[63].

Since the first association between BRCA1 and HOCs identified in 1991[64], genetic
predisposition to HOC had been, in the first two decades, attributed mainly to muta-
tions in high-penetrance genes for HBOC syndrome (BRCA1, BRCA2) and Lynch syndrome
(mainly MLH1, MSH2). Mutations in these genes are inherited in an autosomal domi-
nant manner with incomplete penetrance regarding these rare disorders. For the past 10

years, more moderate or low penetrance genes for OC are getting appreciated. Table 3.2
listed genes conferring to an increased risk for OC and the strength of associations.

In summary, a reasonable estimate was made and suggested that the main attributable
genetic factors are BRCA1 (55%) and BRCA2 (25%) in the context of the HBOC syn-
drome, followed by the Lynch syndrome genes (15%) and eventually additional moderate
penetrance genes accounted for the rest 5%[79].

3.2.2.1 BRCA1 and BRCA2

It has been almost 30 years since BRCA1 and BRCA2 first shown to be linked to
breast cancer[80, 81] and later on cloned[82, 83]. Both BRCA1 and BRCA2 have tumor
suppressor function due to their long appreciated roles in DNA damage repair, and
their loss-of-function may lead to genome instability and chromosomal rearrangements.

Following the detection of DNA damage, BRCA1 and BRCA2 are recruited to the
damage sites where they share a common role of repairing DNA DSB via the HRR

pathway. The process requires their coordinated interaction with other repair proteins
and the nucleotide molecules using different protein domains. Localized in the nucleus,
the main role of BRCA2 in HRR is to mediate the recruitment of RAD51 through a
binding motif composed of BRC repeats. Other domains in BRCA2 allow its binding
to PALB2 as well as single-strand DNA. On the contrary, BRCA1 has a broader role
upstream to BRCA2. It is involved in three protein supercomplexes and its association
with diverse binding partners enables a multi-functional role in mediating cell cycle
checkpoint activation and acting in HRR, NHEJ[84], as well as in other repair pathways.

In mouse models, homozygous knockout of either gene is embryonically lethal[85,
86]. In human, germline biallelic inactivation has been observed only in BRCA2, which
results in a subgroup of Fanconi anemia[87]. The inherited aberrations in heterozygous
state predisposes carriers to a broad spectrum of diseases, including breast cancer,
ovarian cancer, pancreatic cancer, stomach cancer, prostate cancer and, to less extent,
some other cancer types[88, 89].

Germline pathogenic variants reported so far are mostly small indels or mutations
that lead to protein truncation[57], e.g. frameshift indels or nonsense mutations. Their
loci are dispersed across the gene bodies and hotspot mutations are uncommon. Apart
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Table 3.2: Ovarian Cancer Susceptibility Genes. Carrier frequency (CF) is estimated with 1.5×
allele f requency. Odds ratio (OR) is sometimes calculated instead of relative risk. Lifetime risk
is by age 70 years unless specified.
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from small-scale mutations, germline large rearrangements were also observed whereas
with a lower frequency[90].

BRCA1- or BRCA2-associated ovarian cancers are in general similar to sporadic forms
of the diseases, while with some specific features observed. First of all, they tend to
present as high grade tumors and of serous subtype, although endometrioid and clear
cell carcinoma were also observed[91, 92]. On the other hand, they are unlikely to be
borderline or mucinous tumors[92]. Secondly, mutation carriers tend to be diagnosed
at a younger age compared with sporadic cases, especially when mutations happened
in BRCA1[91, 93]. Lastly, survival advantage was shown in carriers over noncarriers,
including higher response rate to primary therapy, longer recurrence-free interval and
longer overall survival[91, 93, 94].

3.2.3 Recommendations for testing and management

In HGSC, germline testing for BRCA1 and BRCA2 was reported to have an alto-
gether 23% detection rate[61]. Given the high diagnostic yield, it was recommended
that women affected with high-grade EOCs should be offered genetic testing and
receive genetic counseling[95]. High-risk individuals are offered chemoprophylaxis and
prophylactic surgeries like risk-reducing salpingo-oophorectomy[96] to reduce their
ovarian cancer risk.

3.3 carcinogenesis model

A typical genetic model for tumor progression describes the genetic and epigenetic
changes from normal tissue to benign neoplasm and eventually to carcinoma. Unlike
the Fearon-Vogelstein model[97] proposed in 1990 for colorectal carcinogenesis, the
carcinogenesis model for ovarian cancer was proposed late and is not yet fully clear for
the time being.

In a study investigating genetic alterations in 108 sporadic serous ovarian neoplasms,
Singer et al. [98] observed that KRAS mutations exist in around 50% of borderline
tumors, non-invasive lesions and a variant of invasive carcinomas of the serous type,
and that an increase in the degree of chromosomal allelic imbalance exist when com-
paring borderline tumors to noninvasive and invasive carcinomas. Such morphological
continuum did not extend to conventional invasive serous carcinomas (mostly high-
grade tumors) which are usually with wild-type KRAS and high allelic imbalance even
in early-stage primary tumors. These observations suggested that serous borderline
tumors and conventional serous carcinomas are unrelated and they therefore propose a
preliminary concept of dualistic pathogenesis model for serous ovarian carcinomas.

Later in 2004, the authors consolidated contemporary evidences and proposed a
dualistic model[99] to describe the tumorigenesis of epithelial ovarian tumors. In
this model, Shih & Kurman proposed two tumor progression pathways based on
morphological observations and molecular features.

Type I tumors follow a stepwise development and arise from borderline tumors.
They are usually low-grade and cover a wide range of subtypes including LGSC,
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MC, EC, CCC and malignant Brenner tumors. Frequent molecular changes observed
in these tumors are BRAF and KRAS mutations for serous tumors, CTNNB1, PTEN
mutations and MSI for endometrioid tumors and KRAS mutations for mucinous tumors.
Parenthetically, this above-mentioned invasive carcinomas variant, initially named
micropapillary serous carcinoma (MPSC) in 2002, was then considered synonymous
with LGSC.

On the other hand, Type II tumors are those without identifiable precursor lesions and
followed a seemingly de novo development. These tumors are high-grade neoplasms
and include HGSC, malignant mixed mesodermal tumor (MMMT), and undifferentiated
carcinoma. Frequent molecular changes observed in Type II tumors are limited, except
for frequent TP53 mutations in HGSC and MMMT.

After more than a decade, this dualistic model of EOC carcinogenesis was revised in
2016[100]. Besides further subgrouping of Type I and Type II tumors based on their
histotypes or molecular subtypes, the major revision lied in the change in Type II tumor
pathogenesis. Originally suspected a de novo development, accumulating evidences
suggest that Type II carcinomas develop from intraepithelial carcinomas in the fallopian
tube and involve the ovary later on. In addition, more molecular findings were added
to delineate the genetic composition of these two types. The revised carcinogenesis of
type II carcinomas, especially the HGSC subtype, will be discussed in more details in
Chapter 4.



4
H I G H - G R A D E S E R O U S C A R C I N O M A ( H G S C )

Epithelial ovarian cancer (EOC) is a collective term for five major histotypes which
are gradually recognized as different diseases[40]. This section focuses on the major
histotype, the HGSC, and covers the current understanding about its clinical features,
pathogenesis, molecular landscape, clinically relevant biomarkers and patient stratifica-
tion.

4.1 clinical features and therapy

HGSC accounts for 70% of EOCs and caused most deaths since they are usually
presented as a late stage and disseminated disease. Late stage presentation of HGSC has
a 5-year relative survival rate of 32.1%, by contrast with 84% for early-stage disease. The
difficulty in early-stage cancer detection lies in the lack of effective screening strategy
as well as the lack of early and specific symptoms of the disease[101].

Despite the fact that 80% of patients seems to have favorable response to the initial
platinum-based treatment, the majority of them suffered from relapse and developed
resistance[102], and eventually succumb to their disease. This scenario has not sub-
stantially changed since platinum-based therapy was introduced in the late 1970s and
became the standard of care for all OCs[103].

In 2014, Poly(ADP-Ribose) Polymerase (PARP) inhibitors was approved as the first
histotype-specific treatment for molecularly stratified patients. Clinical trials demon-
strated that this targeted therapy brought significant improvement in survival outcome
of patients with BRCA-deficient tumors. Later on its efficacy was shown to extended to
patients with HRD phenotype or showing chemosensitivity[104–106].

4.2 pathogenesis

4.2.1 Origination

Ovarian carcinoma was long believed to have a mesothelial origin and arise from
ovarian surface epithelium (OSE). Fathalla proposed an incessant ovulation hypothesis
in 1971 and postulated that the development from OSE to epithelial neoplasms is
influenced by the repetitive ovulation cycle[107]. The hypothesis posits that during
cyclic rupture and repair trauma, aberration accumulated in the OSE or its cortical
inclusion cysts. The accrual of DNA damage and constant exposure to follicular fluid
lead to their Mullerian metaplasia from which they acquire differentiation resembling
EOC subtypes and also lead to their neoplastic transformation. This hypothesis con-
forms with epidemiologic evidence that the number of lifetime ovulations is positively
correlated with ovarian cancer risk. However, studies in the subsequent three decades

23
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failed to find a convincing precursor of HGSCs in the OSE. These tumors were then
hypothesized in the dualistic model[99] to originate from de novo development.

The discovery of (pre)neoplastic lesions in the fallopian tube had lead to a paradigm
shift from mesothelial origin to tubal origin of HGSCs[100, 108]. First reported in
2001, Piek et al. examined fallopian tubes removed by prophylactic surgery from high-
risk women and found frequent hyperplastic or dysplastic lesions in overtly normal
fallopian tube epithelium (FTE). In one case carrying germline BRCA1 mutation, the
dysplastic cells already exhibit p53 accumulation and lost of wild-type allele of BRCA1

gene[109]. Meanwhile, other studies performed pathologic assessment on prophylactic
surgical tissues from BRCA mutation carriers and found in around 2.5% of the cases the
existence of occult carcinomas in the ovaries and/or fallopian tubes[110–113]. Among
them, some appear to originate in the fallopian tube. Based on these observations
Piek et al. proposed a hypothesis in 2003 that most (hereditary) HGSCs originate from
fallopian tube instead of from OSE[114].

4.2.2 Tumor progression model

These occult, microscopic tubal intraepithelial carcinoma (TIC) often located at the
fimbriated end and are stained positive for Ki-67 and p53[115, 116]. With complete ex-
aminations on endosalpinx involvement in pelvic carcinomas, Dr. Crum’s group found
that TICs occurred in approximately half of ovarian carcinomas and are concomitant
with pelvic carcinomas of other origins as well[117]. Mutational analysis further showed
that TICs contain identical TP53 mutation with concurrent ovarian carcinomas[117–119],
showing a clonal relationship between TICs and HGSCs. These observations suggest
that a primary tumor arise in the fallopian tube and spread to the ovary in later stage.

Furthermore, Dr. Crum and colleagues also observed in non-neoplastic mucosa of
fallopian tubes some cells with strong p53 immunostaining, designated "p53 signature",
that might serve as precursor of HGSCs[118]. Their occurrence predominantly located in
the fimbriae but not in cortical inclusion cysts[120]. They are featured with secretory cell
type, often show evidence of DNA damage and frequently with TP53 mutations. These
cells present more frequently in fallopian tubes with TICs; however the occurrence
frequency in BRCA mutation carriers and normal-risk women are not significantly
differnet[118, 120, 121].

To note, p53 signature only represents cells with p53 overexpression but not those
with p53 null-type expression. Therefore, the precursor definition was expanded to early
serous proliferations (ESPs) representing aberrant p53-expressing cells with different
levels of atypia, spanning a spectrum from morphologically normal cells to proliferative
lesions. Recently ESPs were shown to serve as an alternative precursor to HGSCs. In
a study of 32 HGSCs cases without STIC, ESPs can be found in 40% of the cases and
75% of ESPs have clonal relationship with concurrent HGSCs[122]. With these findings
Dr. Crum and colleagues proposed a precursor escape hypothesis as an alternative to
explain the onset of HGSCs without co-existing STICs[123].

Not entirely excluding a mesothelial origin, the theory of tubal origin has received a
widespread acceptance[124] and suggests that many of the HGSCs arise from distal



4.3 molecular compositions 25

fimbriated end of the fallopian tubes. Multiple precursor types in the fimbria, including
STICs and ESPs, can lead to HGSCs in the ovary. Although the exact carcinogenic
sequence of how these precursors evolve remains to be further elucidated, compelling
evidences collectively suggest a step-wise development of HGSC where p53 signature
being the earliest lesion and developed into ESP or STIC, which ultimately transformed
into pelvic HGSC[122].

4.3 molecular compositions

The different histotypes of EOC have distinct molecular characteristics. In low-
grade serous carcinoma (LGSC), activating mutations of the RAS-MAPK pathway were
frequently observed, such as mutations in KRAS (19%-55%) and BRAF (0%-33%)[125].
In the mucinous carcinoma (MC), mutation frequency of KRAS was 40%-50% and HER2

amplification was found in ~19% of the patients[126]. For tumors classified as low-grade
endometrioid carcinoma (EC), mutations were frequently observed in CTNNB1 (53%),
PIK3CA (40%), KRAS (33%), ARID1A (30%), PTEN (17%), PPP2R1A (17%) and PTEN
(17%) genes[127]. While in clear-cell carcinoma (CCC), oncogenic mutations are found in
ARID1A (50%), PIK3CA (39%), PP2R1A (15%), KRAS (14%) and PTEN (5%) genes[128].
Unlike these other subtypes that are more associated with recurrent mutations and
have relatively lower SCNA burden, HGSCs are characterized by few driver mutations
and widespread copy number alterations[129].

There has been extensive interest characterizing the molecular landscape of HGSC and
exploring the association between molecular events and clinically relevant questions,
such as diagnosis, prognosis and treatment resistance. In this section the molecular
findings in major large-scale studies are reviewed.

4.3.1 Landmark genomic studies

4.3.1.1 TCGA-OV

TCGA consortium was the first to conduct a large-scale study aiming at revealing
pathophysiology and clinically relevant abnormalities in HGSC genomes. In the TCGA-
OV cohort published in 2011[130], 489 pre-treatment samples were comprehensively
profiled on five omic platforms, including whole exome, whole transcriptome, miRNA,
methylation and genome-wide copy number, in order to uncover genetic regulation at
different levels.

They reported ubiquitous TP53 somatic mutations in 96% of the tumors and addi-
tional eight recurrently mutated genes at frequencies around 2%-6%, including BRCA1,
BRCA2, NF1, RB1, CDK12, FAT3, CSMD3 and GABRA6. BRCA1/2 aberrations can
result from germline or somatic genetic changes or epigenetic mechanism, collectively
they affect 30% of the cohort.

On the contrary, there were 113 recurrent focal gains or losses across the cohort. The
most common and highly amplified regions are those containing MYC, MECOM and
CCNE1, which were found in 34%, 27% and 23% of the cohort, separately. Notable
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focal deletions were found in regions where PTEN, RB1 and NF1 are located, while
each with a frequency less than 15%.

Molecular subtypes were uncovered based on either mRNA, miRNA or methylation
profiles. Besides, the authors also derived transcriptional signature predictive of survival
and further identified BRCA1/2 and CCNE1 as prognostic biomarkers. In terms of
pathway activation, it was proposed that HRD exhibits in ~50% of the cohort and that
NOTCH and FOXM1 signalling being involved in pathophysiology of HGSC.

4.3.1.2 ICGC-AU-OV

As part of the ICGC consortium, the Australian group led by Dr. David Bowtell
published the AOCS cohort in 2015[131]. This is the first large-scale study to characterize
HGSC using whole genome sequencing (WGS) platform, as well as to include post-
treatment samples to gain insight into acquired resistance mechanisms.

The cohort comprised 114 tumors from 92 patients. In line with observations in
TCGA, there were prevalent TP53 mutations and additional driver genes at frequencies
between 3%-6%. Moreover, researchers found that inactivation frequencies of some tu-
mor suppressors can be increased when other regulation mechanisms were considered.
For example, inactivation through gene breakage events was observed in RB1 (17.5%),
NF1 (20%) as well as RAD51B and PTEN.

The authors further tested for events associated with treatment response by dividing
patients into three response groups, namely resistant, refractory and chemosensitive
groups. Consistent with previous findings, they showed that cases with germline or
somatic BRCA1/2 mutations had favourable response, and that CCNE1 amplification
is common in primary resistant and refractory diseases.

In light of this, they were able to stratify patients into three groups based on the
molecular events. HRR-deficient patients, defined as those harboring HRD-related gene
aberrations, had better overall survival and account for half of the cohort. On the other
hand, patients with CCNE1 amplification, or patients with neither events, had similarly
worse overall survival.

Lastly, this study shed light on different mechanisms leading to acquired resistance.
When comparing primary and resistant samples from the same patient, they observed
five molecular events associated with resistance. These include reversion of germline
BRCA1 or BRCA2 mutations, loss of BRCA1 promoter methylation, desmoplasia leading
to alteration in molecular subtype, and recurrent promoter fusion of the drug efflux
pump MDR1 with expression up-regulation.

4.3.1.3 OV133

There had not been a systematic overview of histotype-specific genomic landscape un-
til Dr. Sohrab Shah’s group published the OV133 cohort (see Section 6.1.4) in 2017[132],
where they showed that stratifying patients by genomic features may recapitulate
major histotypes. The 20 genomic features include mutational signatures and quantita-
tive measures of genetic alterations, with more details described in Section 4.5.2 and
Section 8.5.2.
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The ability of these features to surrogate diverse DNA repair deficiencies potentiate
this stratification model to reveal the etiology underneath each subgroup. In EC, MMR
signature showed that MSI exhibited in 28% of the cases. In CCOC, 26% of the cases
were grouped according to APOBEC deamination signature, and 40% to age-related
signature. Lastly, HGSC was divided into two subgroups - H-HRD and H-FBI, where
the former being featured with HRD signature and the latter being enriched in foldback
inversions signifying breakage-fusion-break process.

4.3.2 DNA damage repair defect

There is a long research history characterizing ovarian cancers with inherited HRR

defects, mainly due to the well appreciated ovarian cancer susceptibility genes BRCA1

and BRCA2. Moreover, other rare inherited mutations in DDR genes were found with
moderate penetrance. Their prevalence, penetrance and accountability with respect to
ovarian cancer are discussed in Table 3.2.

In sporadic OCs, disruption in BRCA1 and BRCA2 can arise from other mechanisms
like somatic aberration and promoter hypermethylation[133]. Overall, around 30%-40%
of samples had BRCA1/2 loss from either germline or somatic mutation or methylation
events[130, 131]. It is noteworthy that these different mechanisms occurred in a mutually
exclusive manner among patients. Furthermore, disruption in other DDR genes were
also observed in somatic setting.

In the TCGA study, researchers further looked at somatic alterations potentially
inactivating the HRR axis, including EMSY amplification, PTEN focal deletion, RAD51C
hypermethylation, as well as mutations in EMSY, PTEN, ATM, ATR and Fanconi anemia
genes. Overall, researchers found approximately 50% of the cohort exhibiting genomic
alterations that might lead to HRD.

In the ICGC study, the group also found 51% of the cohort harboring HRD. These
include BRCA1/2 inactivation via the three abovementioned mechanisms, PTEN dele-
tion, somatic mutations in RAD51C as well as germline truncating variants in BRIP1,
CHEK2 and RAD51C.

Taken together, around half of the HGSC tumors are featured with defects in HRR
system. Among these, BRCA1/2 inactivation account for 63% and 43%, respectively, in
TCGA and ICGC study. In fact, other subtypes of EOC were reported to be associated
with distinct DDR defects[132].

4.3.2.1 TP53 Pathway

The tumor suppressor gene TP53 is the most frequently altered gene in human
cancers. It encodes p53 protein, a multifunctional transcription factor that, in response
to diverse cellular stresses, controls cell cycle progression, induces apoptosis, senescence,
DNA repair or diverts metabolism. It was first noticed in 1991 that overexpression
of p53 protein exist in half of EOCs[134]. On the other hand, null mutations in TP53

leading to complete absence of p53 protein were also found abundant in OCs[135].
These two immunophenotype robustly reflect the existence of TP53 mutations[136].
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Using sequencing approach, researchers were able to comprehensively address its
prevalence and concluded that an invariable presence of p53 inactivation exists in
HGSCs[137], either in the form of TP53 mutation or copy number gains in MDM2 or
MDM4. In a follow-up study of TCGA, pathologists revisited the 4% of the cohort
originally reported as lack of TP53 mutations and found that these cases had likely
been misdiagnosed, thereby confirming TP53 mutations being present in virtually all
HGSC cases in TCGA cohort[138].

4.3.2.2 RB1 Pathway

RB1 codes for Rb, the first described tumor suppressor protein, and its allele loss in
OC was noticed in 1991[139]. Although RB1 itself is not a frequent target of mutation
events in OC, Rb pathway inactivation was found to be a frequent event. This results
in, among others, loss of cell cycle control at G1/S transition. Abnormalities in the Rb
pathway include abnormal protein expression of p16, CDK4, cyclin D1 and phosphory-
lated Rb, altogether they were observed in 60.9% of EOCs[140]. Similarly, in the TCGA
study this pathway was altered in 67% of the cases and mostly due to copy number
change or transcriptional deregulation. Specifically, these include mRNA expression
down-regulated in CDKN2A (30%) and up-regulated in CCND2 (15%), amplification of
CCNE1 (20%) and CCND1 (4%), as well as deletion (8%) or mutation (3%) in RB1[130].

4.3.2.3 RAS-PI3K Pathway

PI3K pathway integrates upstream signals from growth factors or tyrosine kinase
receptors and control survival or metabolic processes through different downstream
signaling. Depend on its target, AKT can regulate apoptosis through p53, promote
cell cycle progression through CCND1, or influence angiogenesis through mTOR, to
name but a few[141]. In the TCGA study, aberrations in RAS/PI3K pathway members
collectively affect 45% of the cohort and are predominantly through copy number
changes, namely amplification of PIK3CA(17%), AKT1(3%), AKT2(6%) and KRAS(11%),
as well as deletion of PTEN(7%) and NF1(8%). Mutations in these genes were also
observed while with a frequency less than 1%, except for NF1 (4%)[130].

4.4 genomic footprints and biomarkers

There has been extensive interest in identifying prognostic biomarkers in ovarian can-
cer[142]. The scope ranged from local changes in specific genes at the DNA, epigenetic,
mRNA, and immunohistochemistry-based protein expression level, to global changes
like genomic footprints and transcriptomic signatures. Some of these associations had
been reproduced in different cohorts, such as local changes in BRCA1, BRCA2 and
CCNE1 genes, or global changes in genomic scars (see Chapter 2) and transcriptomic
molecular subtypes[143]. Nonetheless, only very limited biomarkers are readily utilized
in the clinic. Beyond these, with a better resolution of DNA changes provided by WGS

technique, scientists set out to explore more genomic footprints and discover more
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genomic phenotypes. This section gives an overview of known DNA-based biomarkers,
as well as novel genomic phenotypes observed in ovarian cancer.

4.4.1 Known biomarkers

4.4.1.1 BRCA1 and BRCA2

Inactivation of BRCA1 or BRCA2 has been a long established biomarker for better
prognosis. Their loss of function lead to DNA repair defect and predict sensitivity to
drugs exploiting cellular toxicity of DNA ICL, such as platinum-based chemotherapy.

The survival advantage for germline BRCA genes mutation carriers (see Sec-
tion 3.2.2.1) was noted as early as in 1996[94]. Later studies confirmed this observation
and further found that BRCA2 carrier status implicates even better outcome[144–146].
Furthermore, TCGA study showed that the survival depends on inactivation mecha-
nisms, where cases with germline or somatic mutations in BRCA1/2 had better overall
survival as compared to BRCA1/2 wild-type cases; however, cases with epigenetically
silenced BRCA1 had survival similar to wild-type tumors[130].

In general, BRCA1/2 mutation status has been used for identifying high-risk mutation
carriers, predicting better prognosis. In addition, it also serves as a predictive biomarker
for better response to targeted therapy using PARP inhibitors[147].

4.4.1.2 CCNE1

The prognostic implications in CCNE1 was first identified in a cohort of 139 EOC
patients treated on GOG Protocol 111[148]. The study showed that cyclin E, encoded by
CCNE1, was an independent poor prognostic marker for overall survival and associated
with CCNE1 amplification.

Later studies confirmed that CCNE1 amplification is consistently associated with
primary chemoresistance[131, 149], refractory disease[131], disease-free survival[150] as
well as overall survival[130, 150]. However, the prognostic effect of cyclin E expression
was not always observed[150–152].

In a recent study, the Bowtell laboratory compared high cyclin E expression samples
with and without CCNE1 amplification, and found that they have different pathological
and biological characteristics[153]. They also found that the latter cases had better
outcomes than the former ones, which possibly explains the discrepancy observed in
previous studies. In summary, although not yet being used in clinical trials, CCNE1

amplification has been robustly shown a biomarker for worse prognosis.

4.4.1.3 Homologous Recombination Deficiency (HRD)

Based on the concept of synthetic lethality, the key determinant of sensitivity to PARP
inhibitor treatment is HRD. The majority of PARP inhibitor clinical trials in ovarian
cancer select patients based on the presence of germline BRCA mutations and/or prior
platinum-sensitivity. Evidence from these trials suggests that some patients without
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germline BRCA mutations can also benefit from the treatment[104–106] and that the
therapeutic effect is more widely applicable to HRD phenotype.

Given HRD being the pivotal therapeutic target for PARP inhibitor, different surrogate
markers had been proposed for this phenotype. They were developed on the basis
of somatic mutations, genomic scars, transcriptional profiles, protein expression or
functional assays[154]. Among them, genomic scar assays providing measures of
genome instability are already commercially available, including "myChoice HRD"
from Myriad Genetics and "FoundationFocus CDxBRCA LOH assay" from Foundation
Medicine. The former gives a HRD score based on the combination of TAI, LOH and
LST (see Section 2.5) and classifies tumors with score >= 42 as HRD-positive. The
latter is based on the idea that fraction of genome with LOH (FLOH) is associated with
chemoresistance[155] and the assay uses a genomic fraction of >= 16% as a threshold
for HRD-positivity. Both assays are in use in clinical trials[105, 156] as companion
diagnostic tests.

4.4.1.4 Emerging prognostic biomarkers

In the OV133 cohort (see Section 4.3.1.3), Wang et al. showed that there was prognosis
difference between the two genomic subgroups of HGSC - H-FBI and H-HRD (see
Section 4.5.2). They further found that foldback inversion (FBI) events are enriched in
H-FBI tumors. More importantly, FBIs accompanied with high-level amplifications, ab-
breviated to FBI-HLAMPs, showed prognostic value transcending both BRCA1/BRCA2

mutation and known transcriptomic molecular subtypes. It serves as a biomarker for
worse prognosis in the OV133 cohort, and also validated in TCGA-OV and ICGC-AU-
OV cohort.

4.4.2 Tandem Duplicator Phenotype (TDP)

After the phenomena of excess duplication events observed in breast cancer in 2009

[23], a similar mutator phenotype received attention in HGSC[102]. Ng et al. from Dr.
James Brenton’s group performed WGS on four cell lines derived from two HGSC cases,
one with and one without HRD phenotype, and observed distinct patterns of structural
variants between them. The HRD case, harboring a germline BRCA2 mutation, showed
small deletions (~ 12kb) and interchromosomal translocations. On the other hand,
the non-HRD case, with confirmed MMR competency, had excess TDs featured in
insertions (~350kb) frequently associated with copy-number gain. Shortly afterwards,
this phenotype was confirmed in another WGS study. With a total of 8 HGSC cases,
Dr. David Bowtell’s group observed prevalent small deletions (~3.2kb) in 3 germline
BRCA1/2 mutated cases, as well as excess TDs (~410kb) in 4 other cases[157].

Based on SNP array-derived copy number profile, Ng et al. further defined a TD-like
feature that enabled them to assess the abundance of TDs from SNP array. It was
estimated that 12.8% of the TCGA-OV cohort showed Tandem Duplicator Phenotype
(TDP) and that the TDP subgroup is mutually exclusive with the subgroup harboring
BRCA1/2 somatic mutations.
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4.4.3 TD-plus phenotype

In 2016, Popova et al.[158] found that the highly altered genomes in TCGA-OV cohort
are best characterized by interstitial gains of 2-7 Mb in size, and that this pattern is
associated with CDK12 inactivation. They defined it as CDK12 TD-plus phenotype
and reported the frequencies of its occurrence to be 3%-4% in TCGA-OV cohort, 1.7%
in TCGA prostate cancer cohort and 4.2% in in-house OC cohort. Additional WGS data
revealed overwhelming TDs being the source of the frequent mega-sized gains feature.

The authors then hypothesized that frequent TDs are associated with two different
tandem duplicator phenotypes: one with TDs smaller than 1 Mb in size resembling
the TD-like feature as previously described[102], and the other being CDK12 TD-plus
phenotype with TDs of up to 10 Mb.

Although inactivation of CDK12 was reported to be associated with HRD[159] and
render cells with hypersensitivity to DNA-damaging agents and to PARP inhibitors[160],
the authors did not observe an elevated HRD score in these CDK12-inactivated cases,
nor did they find favorable overall survival among them. This phenotype is mutu-
ally exclusive with germline/somatic BRCA1/2 mutation and with BRCA1 promoter
methylation.

In summary, the CDK12 TD-plus phenotype serves as a unique genomic footprint of
CDK12-inactivated tumors, with the biologial mechanism responsible for formation of
these TDs remained unclear.

4.5 patient stratification

Cancer is a heterogeneous disease and there exhibits inter-patient heterogeneity.
Grouping patients into more homogeneous subpopulations can provide more per-
sonalized outcome prediction and treatment planning. Ovarian cancer is recognized
as a nonspecific term for histologically distinct diseases involving the ovary[40, 103].
In the major histotype HGSC, an active area of research is the molecular subtype
discovery based on omics data, and in particular with transcriptome. TCGA-OV study
comprehensively uncovered the subgroup structure of HGSC and derived de novo
subtypes from different layers of molecular data. These include four mRNA subtypes,
three miRNA subtypes and four methylation subtypes. The mRNA subtypes largely
overlap with previously proposed transcriptomic molecular subtypes[143]; however
association with clinical outcome was not reproduced[130].

For expression subtypes, the main limitations for their clinical utility have been the
needs for a classification system robustly yielding clinically relevant subtypes and a way
of unambiguously assigning single patients to subtype[161]. Recent studies partially
addressed these needs by deploying expression-based subtypes with clinical grade
classification assays[162, 163]. Therefore, they are getting used by targeted clinical trials
for molecular subtype stratification. Nonetheless, some of the expression subtypes can
be influenced by the microenvironment composition[164, 165], and individual specimen
can express multiple subtype signatures[166, 167]. For the same patient, established
molecular subtype can change spatially between anatomic locations[162, 165] and also
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temporally along the treatment course[168]. Therefore, how transcriptomic subtypes can
inform treatment decision still awaits more characterization of this dynamic behavior.

DNA-based stratification were initially based on biomarkers like CCNE1 or BRCA
genes, as well as HRR gene inactivation. Nonetheless, the major studies evaluated
HRR integrity using different procedures[130, 131] and there has not been a consensus
approach in terms of which genes to include and which alteration mechanisms to look at.
As WGS technique provides comprehensive information about DNA alterations, more
DNA-based subtyping had been proposed in recent years. Two prominent DNA-based
classification are introduced in this section, where TDP subgroup[169] possibly informs
biological mechanisms and Shah-2017 subgroup[132] is with potential prognostic
relevance.

4.5.1 TDP subgroup classification

Initially, tumors with TDP are identified mainly based on the frequency of TD-like
events observed in SNP array-based copy-number profile. Dr. Edison Liu’s group was
the first to characterize TDPs in WGS studies at large scale.

Menghi et al.[170] developed a TDP scoring metric to systematically quantify this
genomic configuration in a cohort of 277 WGS samples representing 11 cancer types.
Based on the analyses across two platforms (both SNP array and WGS), they found
that TDP tumors were enriched in TNBC, OV, UCEC and HCC. The development of
TDP may require TP53 loss-of-function mutation, reduction of BRCA1 activity, and
overexpression of DNA replication and cell cycle genes. They showed that TDP score
served as a feature of BRCA1 loss, since it negatively correlates with BRCA1 expression
in BRCA and OV. More importantly, TDP score was directly associated with enhanced
sensitivity to cisplatin in TNBC both in vitro and in vivo. It was then hypothesized as a
predictive marker of platinum-based drug sensitivity independent of tumor type.

As accumulating evidences suggest that rearrangements of different sizes result from
different mechanisms, Menghi et al.[169] later on extended their methodology and
looked into this qualitative feature of TDs. Specifically, to estimate major peaks within
sample-wise TD span size distribution. In short, subsequent to separating tumors by
TDP score as done previously[170], the new methodology classified TDP tumors into
TDP subgroups based on the their major peak compositions.

Among the 2,720 WGS samples collected from TCGA and additional 30 studies, the
authors identified 13.8% of the pan-cancer cohort showing TDP. Furthermore, 95% of
the major peaks found across the cohort fall within 3 predefined size intervals. These
different size classes of TDs correspond to distinct mechanisms of DNA instability,
described as follow. TDPs with class 1 TDs are featured with TP53 loss-of-function
events and BRCA1 deficiency and is comprised of tumors with very small TDs (~10kb).
TDPs with class 2 TDs have the characteristic of CCNE1 pathway activation and
correspond to intermediate (~200kb) size group. TDPs with class 3 TDs, mainly enriched
in CDK12 disruption, are distinguished by their larger span size (~2Mb). Noteworthily,
a tumor may bear features from more than one size groups when multiple major peaks
were identified. The three most common combination of mixed groups are group 1/2
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Figure 4.1: Genomic stratifica-
tion recapitulate EOC histo-
types. Items with grey back-
ground represent EOC and its
major subtypes, while items
with dashed border represent
genomic subtypes. This dia-
gram is reproduced from Fig-
ure 5 of the original publica-
tion[132].

mix, group 2/3 mix and group 1/3 mix. This method for classifying TDP provides
therapeutic implications by reflecting the plausible underlying mechanisms and was
recently patented.

4.5.2 Shah-2017

In 2017, Dr. Shah’s group proposed a model capable of stratifying EOC histotypes
based on genomic features[132]. As summarized in Figure 4.1, the model further
divides major histotypes into seven subgroups based on different etiology described in
Section 4.3.1.3.

The authors started with extracting genomic features from WGS data. The selected
features are reflective of different biological processes and consist of six mutational
signatures from COSMICv2 SBS Signatures, fraction of four small variant types, fraction
of seven rearrangement types, three features summarizing copy number changes, and
one feature reflecting degree of breakpoint homology in rearrangements. The patient
stratification is then based on the unsupervised clustering of these 20 genomic features,
which is described in detail in Table 4.1.
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Category Feature Description

Signature S.APOBEC Signature 13 - APOBEC

Signature S.POLE Signature 10 - POLE

Signature S.AGE Signature 1 - AGE

Signature S.BC Signature 8

Signature S.MMR Signature 6 - MMR

Signature S.HRD Signature 3 - HRD

Variant Nonsynonymous Proportion of non-synonymous coding mutations

Variant Splicesite Proportion of splice site mutations

Variant Stop.Lost/Gained Proportion of stop lost or stop gained mutations

Variant Frameshift Proportion of frameshifting indels

SV Foldback.Inversion Proportion of foldback inversions

SV Inversion Proportion of inversions

SV Tandem.Duplication Proportion of tandem duplications

SV Deletion
Rearrangement

Proportion of deletions

SV Balanced
Rearrangement

Proportion of balanced rearrangements

SV Unbalanced
Rearrangement

Proportion of unbalanced rearrangements

SV
Property

Homology>=5bp Proportion of rearrangements with
microhomology of >= 5bp

CNA CN.Amplification Proportion of genome showing copy number
high-level amplification (copy number > ploidy +
2)

CNA CN.Loss Proportion of genome showing copy number loss
(homozygous deletion or deletion LOH)

CNA CN.LOH Proportion of genome harbouring dominant LOH
events

Table 4.1: Description of genomic features used for patient stratification. This table is reproduced
from Figure S3 of the original publication[132].
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Ovarian cancer is usually diagnosed at late stage, together with little changes in
the standard of care, survival rate of this disease had not improved much for few
decades[103]. Understanding the biology of the disease is the key to its prevention,
early detection, diagnosis and effective targeted treatment. To unlock the mystery of the
disease and to identify biomarkers for treatment response, large-scale genomic studies
were conducted on the major and most lethal histotype HGSC. The first aim of the thesis
is to provide an overview of ovarian cancer at the molecular level, which can help to
identify key pathways in the disease and understand how cancer cells achieved the
hallmarks of cancer. To provide this overview, two analyses were performed:

1. characterize ovarian cancer and contrast it with other major cancer types;

2. perform cohort analysis on in-house data, and compare the result to the findings
from public cohorts.

Hereditary factor is known to have significant contribution to HGSCs, where a subset of
patients harbor germline inactivation in BRCA1 or BRCA2. These inherited defects ren-
der the tumors HRD phenotype and serve as a robust biomarker for treatment response.
In particular, confirming carrier status of the patients can trigger cascade genetic testing
and potentially prevent cancer incidence in their families. Current knowledge about
HGSC suggests that half of the patients harbor somatic gene inactivation in BRCA
genes or other genes in the HRR pathway. ICGC-AU-OV study further found a better
prognosis in these patients. As such, there has been a tremendous interest in identifying
patients with HRR gene disruption in germline or somatic settings. Therefore, the sec-
ond aim of the thesis is to identify tumors harboring inherited or acquired variants
that potentially lead to DNA damage response (DDR) defect without gene selection
bias. Two analyses addressing this question are:

1. identify clinically relevant germline variants in DDR genes with the help of human
geneticist;

2. identify variants most likely to induce gene inactivation in these genes and present
them in a germline and somatic mutational landscape.

Recent advances in targeted therapy using PARP inhibitors opened up opportunities
for further extending patient survival in those showing chemosensitivity or with HRD
phenotype. The development of molecularly targeted clinical trials fostered the demand
for patient stratification; however, different assays are adopted in clinical trials and
there has not been a consensus in identifying patients likely respond to PARP inhibitors.
In this sense, the next aim of the thesis is to evaluate HRD phenotype in tumors, so
as to identify patients probably having chemosensitivity or potentially responding to
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PARP inhibitors. In addition to the abovementioned landscape that identified potential
causes of DDR defect, the following analyses further investigate this issue from different
perspectives:

1. profile surrogate markers used in PARP inhibitor clinical trials, such as LOH score
and HRD score;

2. incorporate two prominent DNA-based classifications, where Shah-2017 classi-
fication[132] serves as a promising biomarkers for chemosensitivity, and TDP

subgroup[169] possibly reflects BRCA genes inactivation;

3. calculate activities of mutational processes reflective of HRD based on its DNA
footprints in different alterations, including mutations, indels and structural
variations.

On the other hand, the overall limited improvement in disease management is fun-
damentally due to unclear etiology and carcinogenesis model. Understanding the
disease biology from the perspective of tumor evolution therefore holds the promise of
providing new insights in advancing clinical care. In other cancer types, multi-sample
design helps to identify truncal, thereby early, molecular events shared between related
samples, which cannot be revealed by single sample. In this regard, another aim of
the thesis is to study intra-patient heterogeneity (IPH) with the multi-sample cohort,
as well as to identify truncal events in the samples. Relevant analyses in this regard
includes:

1. reconstruct sample phylogeny trees and identify truncal and branch molecular
events;

2. quantify intra-patient heterogeneity (IPH) and explore its prognostic implication.

In terms of carcinogenesis model, an important breakthrough was the identification of
precursor lesions in the fallopian tube. As the tubal origin theory began to receive wider
acceptance in recent years, pathological studies started to unveil early events in these
lesions. Despite this, the common late diagnosis precludes the acquisition of early-stage
tumors and the carcinogenesis process remained poorly characterized. Therefore the
last aim of the thesis is to provides a glimpse of tumor evolution in real-world time.
This will require the following analyses:

1. use variant timing technique to stratify small variants into tumor epochs;

2. combine multi-sample design and variant timing technique to refine tumor epochs
and provide tumor evolutionary trajectory with finer time resolution;

3. calculate real-world time estimates for three major events in the sample phylogeny
tree, including whole genome duplication (WGD), most recent common ancestor
(MRCA) of the patient (MRCA-PID) and of each sample (MRCA-SAMPLE);

4. temporal dissect the abovementioned mutational processes activities along the
evolutionary trajectory.
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6.1 public data sets

6.1.1 TCGA pan-cancer cohort

The Cancer Genome Atlas (TCGA) program used multiple omics platforms to charac-
terize tumors from a broad spectrum of cancer types. The data was processed through
standardized bioinformatics pipelines and the results are shared with the public as
well as visualized on web platforms with the effort of dedicated Genome Data Analysis
Centers (GDACs). In particular, the BROAD GDAC Firehose provide Level 3 data, which
includes aggregated, normalized, and segmented data.

The TCGA Pan-Cancer cohort consists of the 12 major cancer types published in
2013[171]. Level 3 data (run date 20160128) are retrieved from Firehose and serves as
the basis of downstream analyses involved in Section 9.1. Specifically, mutation and
indel callsets are derived from whole exome sequencing and used for mutation and
indel burden statistics, copy number (CN) profile derived from SNP arrays are used for
chromosomal instability (CIN) score calculation. The sample size of each disease cohort
varies by assay type, and Table 6.1 provides an overview of these cohorts.

Study Name Abbreviation Mutation Indel CN

Bladder Cancer BLCA 130 129 411

Breast Cancer BRCA 992 939 1096

Colon Cancer COAD 154 140 453

Glioblastoma GBM 290 277 590

Head and Neck Cancer HNSC 279 274 524

Kidney Clear Cell Carcinoma KIRC 428 378 529

Acute Myeloid Leukemia LAML 192 150 197

Lung Adenocarcinoma LUAD 230 228 518

Lung Squamous Cell Carcinoma LUSC 177 163 501

Ovarian Cancer OV 316 260 601

Rectal Cancer READ 69 55 166

Endometrioid Cancer UCEC 248 247 541

Table 6.1: Overview of TCGA Pan-Cancer cohort.

In addition, cohort analysis results were retrieved for visualization. Level 3 data in-
cludes GISTIC[172] result, where the recurrence of copy number changes are calculated
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and recurrent genomic regions, or peaks, are defined here as those with q-value <= 0.25.
On the other hand, information of significantly mutated genes (SMGs) derived from
MutSigCV[173] analysis is based on a previous publication from TCGA network[174].
SMGs are defined here as significantly mutated genes with q-value <= 0.1 in the
MutSigCV result.

6.1.2 TCGA-OV

TCGA-OV[130] is by far the largest cohort that profiled exonic mutations and indels
in 316 ovarian cancer genomes, all with HGSC histotype. This callset is retrieved
from Firehose as described above and contains 20,170 somatic variants. Germline
frequencies of BRCA1 and BRCA2 were further retrieved from the literature description.
In the original report, cohort analyses were done to identify recurrently mutated
genes and recurrent copy number alterations (CNAs). These results are obtained from
supplementary data of the publication and are used in Section 9.2.1.1 and Section 9.2.3
for side-by-side comparison with HIPO59 results.

In its supplementary table 2.3b, MutSig result suggested 9 significantly mutated
genes (FDR<0.15), namely TP53, BRCA1, BRCA2, NF1, RB1, CDK12, FAT3, CSMD3 and
GABRA6. On the other hand, GISTIC (version 2.0) identified recurrent CNAs in terms
of broad events (supplementary table 5.1) and focal events (supplementary table 5.2).

The recurrent focal events, including 63 amplifications and 50 deletions, are pro-
vided with their genomic locations in hg18 coordinate. In addition, putative targets
are proposed in 43 of these focal events. These 43 driver genes define a gene set
Prior_Target_TCGA that will be used when nominating putative targets in HIPO59

GISTIC result in Section 8.4.2.

6.1.3 ICGC-AU-OV

The International Cancer Genome Consortium (ICGC) coordinates large-scale cancer
genome studies across the globe where TCGA also takes part in. It covers more than 50

different cancer types and aims for at least 500 samples per cancer type. Next to the
TCGA-OV study, the second largest ovarian cancer study is the Australian cohort in
ICGC, denoted here as ICGC-AU-OV[131]. In this cohort, 114 samples from 92 HGSC
patients were profiled with WGS platform.

Somatic mutations and indels are retrieved from ICGC Data Portal[175] release
28. Among them, only variants in non-redundant primary tumors from 82 patients
are considered in this study. This yields a callset containing 549,757 somatic variants.
Germline frequencies of BRCA1 and BRCA2 were further retrieved from the literature
description.

In the original report, IntoGen[176] analysis was done to identify recurrently mutated
genes and the result suggested that TP53, RABGGTB, RB1, NF1, BRCA1, BRCA2,
DNAH1 and FLNA played driver roles (FDR<0.05).
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6.1.4 OV133

The OV133[132] consists of 133 ovarian tumors of various histotypes, including 59

HGSC, 35 CCC, 29 EC and 10 adult granulosa cell tumors. It is the third largest HGSC
cohort and was also profiled with WGS platform. Throughout the thesis, OV133 will
be referred to as the subset of 59 HGSC samples instead of the entire cohort, if not
specified.

Although the callset of OV133 is not publicly available, the aberration status in 17

genes of interest can be retrieved from supplementary table 5 of the original report.
These include somatic functional variants in BRCA1, BRCA2, RB1, POLE, RPL22,
PIK3R1, PPP2R1A, KMT2B, NF1, FOXL2, CTNNB1, KRAS, PER3, PTEN, ARID1A,
PIK3CA and TP53, germline functional variants in BRCA1 and BRCA2, as well as
methylation status of BRCA1.

According to the literature, functional variants include mutations and indels with
functional consequence falling into 4 SnpEff[177] categories, namely non-synonymous
coding mutations (NON_SYNONYMOUS_CODING), stop-gained/loss mutations
(STOP_GAINED, STOP_LOST), splice-site mutations (SPLICE_SITE_ACCEPTOR,
SPLICE_SITE_DONOR) and frameshifts (FRAME_SHIFT).

6.2 in-house data - hipo59

This dataset comes from a research project HIPO59 under DKFZ Heidelberg Center
for Personalized Oncology (DKFZ-HIPO) program. The project aims to characterize
the spatial and temporal tumor heterogeneity of ovarian cancer, especially the HGSC
histotype. To investigate spatial heterogeneity, multiple specimens were sampled in tu-
mor tissues removed from different anatomical sites before treatment. High-throughput
assays were then used to profile these specimens at different omic layers, including
genomic information from WGS, transcriptome from RNA sequencing and methylome
from methylation arrays.

The sample statistics of HIPO59 cohort is shown in Figure 6.1. In total, there are 74

samples from 42 OC patients. Among them, 55 samples were from 33 HGSC patients.
The spatial heterogeneity of OC can be addressed with a subset of the cohort comprising
16 patients having multiple samples.

Most of the samples are profiled with three platforms, except for the one taken from
interval debulking surgery of patient H059-ASG5U9 and was without transcriptome
profiling.

The data was profiled in 2018 and the clinical information and survival status were
collected and followed-up by medical doctors until January 2020. As a summary,
Figure 6.2 shows the survival status of the cohort until the last follow-up.
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Figure 6.1: Sample statistics in
HIPO59 cohort.

Figure 6.2: Survival status of patients in HIPO59 cohort.
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6.3 genes of interest

Cancer Gene Census (CGC)

There has been many oncogenes and tumor suppressor genes for which alterations
in either germline or somatic settings are causally implicated in cancer. The COSMIC
curation team collects published evidence and catalogues these genes into a high-
confidence list of genes, the Cancer Gene Census (CGC). The CGC release 90[178]
documented 723 cancer-associated genes. The 717 of them having genomic coordinate
information were included in the gene list Prior_Target_CGC. Among them, 243

genes had documented role as oncogene (OG), 243 genes played as tumor suppressor
gene (TSG), and another 72 genes serve as either OG and TSG depending on context.

Familial cancer genes

The FamilialCancerGenes is a list of 152 familial cancer related genes comes along
with the Clinical Workflow (see Section 7.2).

DNA damage response genes

As described in Section 1.2.2, a previous study looked at alterations in DDR pathways
within TCGA cohorts[19]. The authors defined 276 genes that play roles in coordinating
responses to DNA damage. These genes are involved in nine major repair pathways
as shown in Table 6.2 and comprise the gene list PanCanDDR. Within each pathway,
a subset of genes were specifically listed. They represent those observed in HIPO59

cohort and qualified for further pathogenicity review (see Section 8.6.1) in this pathway.
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Repair pathway Number Genes qualified for geneticist review

Direct Repair 4 -

Fanconi Anemia 41 BARD1, BLM, BRCA1, BRCA2, BRIP1, ERCC4,
FANCA, FANCB, FANCC, FANCE, FANCG,
FANCM, PALB2, RAD51C, SLX4

Homology-
dependent
recombination

88 BARD1, BLM, BRCA1, BRCA2, BRIP1, FANCM,
NBN, PALB2, POLD1, RAD50, RAD51C, RAD51D,
RECQL4, SLX4, WRN

Mismatch Repair 24 MLH3, PMS1, PMS2, POLD1

Non-
homologous End
Joining

23 FAM175A, NBN, RAD50

Nucleotide
Excision Repair

51 ERCC2, ERCC4, MMS19, POLD1, POLE

Translesion
Synthesis

20 -

Nucleotide pools 5 -

Others 65 ATM, ATR, ATRX, PTEN, SLX4, TP53

Table 6.2: DNA Damage Response genes involved in 9 repair pathways. This table describes the
constitution of PanCanDDR, with the size of each DDR pathway specified. The last column
listed genes qualified for pathogenicity review based on criteria in Section 8.6.1.
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Next generation sequencing generates primary data as sequencing reads, which
went through a series of standardized analyses including alignment, variant calling
and a variety of annotation and filtering steps, and finally produce variant callsets of
different alterations. These analyses were wrapped up as workflows, which takes in
sequencing data as .fastq files or .bam files, and generate variant callsets as output.
The in-house HIPO59 project was processed by Omics IT and Data Management Core
Facility (ODCF) using a collection of DKFZ in-house workflows.

7.1 basic workflows

To start with, the AlignmentAndQC Workflow (version 1.2.73-1) takes in .fastq file, use
BWA-MEM[179] for alignment and generates .bam file.

Single-nucleotide variants and small insertion/deletionss (indels) are processed
by SNVCalling Workflow (version: 1.2.166-1) and IndelCalling Workflow (version:
1.2.177), respectively. In brief, the former uses samtools[180] and bcftools[181], and the
latter uses Platypus[182] for variant calling. More details about these workflows can be
found in the publication[183]. To note, as built-in module in both workflows impose
a basic filter based on the location and the predicted consequence of a variant, the
small variant call set, if not specified, contain only functional variants that potentially
changed the translated peptide sequences. Together, these two workflows generated
germline functional mutations and indels, which is referred to as Initial call set. From
the Initial call set, the somatic fraction is referred to as SomFxn call set, which include
somatic functional mutations and indels. As described below, the ClinicalWorkflow

then take the germline fraction as input and further exclude variants that are less likely
to be harmful.

Two other workflows, as part of DKFZ in-house workflows, were used to process
HIPO59 data. The first workflow SophiaWorkflow (version 1.2.16) uses Sophia[184] to
generate SV callset. The second workflow ACEseqWorkflow (version 1.2.8-4) uses ACEseq
to generate copy number profiles[185].

7.2 clinical workflow

Most of the consequence of germline functional variants are tolerable and collectively
create the diversity in human population, only a small subset of them are pathogenic
and can cause disease. It is generally accepted that the more common a variant is found
in the population, the less likely it can cause severe diseases. Therefore, a second filter
applied here is the germline filtering module in the ClinicalWorkflow (version 1.1).
This module consider only variants with Variant Allele Frequency greater or equal to 0.3,
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and remove those found to be common in different normal control cohorts. Specifically,
variants meeting following criteria were removed: (1) found in 1000 genome and with
allele frequency greater than 0.1, (2) found in dbSNP database with tag "COMMON=1",
(3) found in ExAC collection with AC_HOM tag greater than 3 or AC_HET tag greater
or equal to 40, and (4) found in DKFZ local normal control cohort with greater than 50

ACs.
Implemented by Dr. Barbara Hutter, the ClinicalWorkflow starts from the germline

fraction of the Initial call set, and generates results in the GermFxn call set. To note,
an optional filter within the germline filtering module was to restrict variants to those
pertinent to FamilialCancerGenes genes, which is not applied during the HIPO59

germline analysis.
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8.1 tcga pan-cancer genome instability measures

Given the TCGA Level 3 data (see Section 6.1.1), three summarizing measures were
used to quantify the extent of genome instability in each individual tumor. Following
the previous work of Alexandrov et al.[24], mutation and indel prevalence of each tumor
are defined as the number of somatic variants per mega base pairs. This is estimated
with the number of somatic variants detected in protein-coding regions and assuming
an average of 30Mb of the exome being effectively captured and sufficiently sequenced.

The weighted genome integrity index (wGII) describes the percentage of the genome
being altered in a tumor sample. It takes values between 0 and 100 and was calculated
following the original concept proposed in the literature[186]. Based on the copy
number profile derived from SNP array, the ploidy of a tumor is first calculated as
the weighted mean of copy number across all genomic segments. Subsequently, copy
number segments are classified as gain, loss or neutral according to their copy number
change relative to the ploidy of the sample, where a difference greater than 0.7 copy is
considered changed. The integrity of a chromosome is described by the fraction of its
genomic materials being classified as altered (either gain or loss). The altered fraction
is determined separately for each of the 22 autosomal chromosomes and the average
fraction across 22 autosomes determines the wGII score of the tumor.

8.2 recurrent mutations and indels

In cohort analysis utilizing mutations and indels, the aim is to find out which genes
are more likely to be subject to positive selection as compared to the background
mutation rate. However, the mutation frequency at different genomic location is het-
erogeneous instead of being constant across the genome. The regional variation is
correlated with factors like sequence context, DNA replication timing and transcrip-
tional activity. As a result, the relative frequency of mutation and indels would not
approximate positive selection during tumorigenesis unless these factors were taken
into considerations.

8.2.1 Cohort analysis using MutSigCV

MutSigCV (Mutation Significance with Covariates)[173] models the local background
mutation rate by considering patient-specific rate and region-specific rate, as well as
taking into account the replication timing, transcription activity, gene length and gene
sequence composition. To apply this algorithm to our cohort, MutSigCV (version 1.41)
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was obtained from Broad Institute Cancer Genome Analysis website[187] and applied
to mutations and indels found in 33 representative samples.

The MutSigCV result from HIPO59 cohort (n=33) is then compared to the MutSig
result dereived from the TCGA-OV cohort (n=316)[130] (see Section 6.1.2)

8.2.2 Reported significantly mutated genes profiled across cohorts

The aim of this section is to profile the frequencies of known driver genes in different
ovarian cancer cohorts. Specifically, 12 recurrently mutated genes reported in the TCGA-
OV[130] and ICGC-AU-OV[131] were to be profiled in four selected cohorts, namely
TCGA-OV (n=316), ICGC-AU-OV (n=82), OV133 (n=59)[132] and HIPO59 (n=33). The
collection of driver gene information and callsets of public cohorts are described in
Section 6.1.

To start with, variants in callsets are classified int four categories listed in Table 8.1.
Given multiple variants can occur in the same gene in one sample, the variant with
highest priority is used to describe how this gene is mutated in the patient. The fraction
of the cohort affected by variants of different categories can then be determined for
each driver gene.

Category Definition Priority

germline functional any nonsynonymous, stop-gained/loss,
splice-site or frameshift germline variants

1

somatic functional any nonsynonymous, stop-gained/loss,
splice-site or frameshift somatic variants

2

somatic silent (exonic) any synonymous variant 3

somatic silent any intronic variant 4

Table 8.1: Variant classification and priority of categories.

Nonetheless, owing to the different experimental platforms and data accessibility,
some variant categories were not assayed or not released in most cohorts except for
HIPO59 cohort, which offered comprehensive information in all categories. Table 8.2
summarised the available information in each cohort.

8.3 gene breakage events in genes of interest

Except for inactivating mutations and indels, gene function can also be impaired
by copy number alteration-associated events (CNA-associated events), where an in-
terruption of the gene body inactivates the affected allele. The majority of them are
accompanied by SVs, while a handful of them are with unknown origin. With the high
resolution of WGS technique, it is possible to characterize such SVs with single base
pair precision and see whether they might induce gene breakage.
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Category TCGA ICGC HIPO59 OV1333

germline functional BRCA1,
BRCA2

BRCA1,
BRCA2

O BRCA1, BRCA2

somatic functional O O O TP53, NF1, RB1,
BRCA1, BRCA2

somatic silent (exonic) O O O X

somatic silent X O O X

Table 8.2: Data accessibility in four cohorts. Symbol "O" means the data is available for all
genes in the cohort; while "X" means the other way around. When accessible information is
restricted to limited number of genes, gene name of the available ones are specified.

As SV does not account for all copy number change in the genome, CNA-associated
events of unknown origin are also included to enable more comprehensive characteri-
zation.

8.4 recurrent somatic copy number alterations

The genomic copy number profile of a cancer genome, or the macroscopic karyotype,
is a result of the accumulation of somatic copy number alterations (SCNAs). To under-
stand which of the genomic regions underwent frequent alteration across a cohort, a
common approach is to evaluate the frequency and amplitude of observed copy number
changes and identify regions that are altered above the background rate.

Depending on its length, SCNA can be an arm-level broad event or a focal event
that is with relatively small range. It has been observed that the abundance of SCNAs
of these different types are different, where broad events are more frequent and focal
events occur at a frequency negatively correlated to its length[188]. Therefore, the
background rate of these two types of events should be modeled separately.

8.4.1 Cohort analysis using GISTIC

GISTIC (Genomic Identification of Significant Targets in Cancer)[172] identifies re-
current copy number changes in a cohort using a three-step procedure. At first, it
decomposes the observed copy number profile into underlying SCNA events and sepa-
rates them into broad (arm-level) and focal events by length. Having SCNAs assigned
to each region, the algorithm then score a region by the probability of the SCNA’s
occurring by chance, where the probability was estimated based on the background
rates of matching SCNA types across the cohort. Lastly, within each significant region
identified, a probabilistic method was used to define a peak region that has user-defined
level of confidence of containing the true driver event, in our case a 90% of confidence.
In the end, the program reports significant Regions and its subregions (Peaks) most
likely contain true targets.
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To apply this algorithm to HIPO59 cohort, GISTIC (v2.0.23) was used to analyze the
copy number profiles of 33 representative samples. Parameters chosen are listed in
Table 8.3.

GISTIC Parameter HIPO59 Run Setting

do_gene_gistic TRUE

broad_len_cutoff 0.5

conf_level 0.9

arm_peeloff TRUE

gene_collapse_method extreme

ziggs.max_segs_per_sample 3500

Table 8.3: GISTIC Run Parameters.

In summary, GISITC identifies genomic regions that are altered above background
rate and assigns a q-value to each region. According to the size of the region, they can
be either broad events (arm-level) or focal events. For each focal event, the program
further identify the corresponding peak region that most likely covers the true target.

8.4.2 Target nomination in recurrent regions

Once the recurrent focal events are identified, the next step is to find out why they are
preferentially selected during tumor development. One of the approach is to identify
genes sitting in each Regions or Peaks and nominate the most likely target gene that is
subject to selective constraints.

To do so, additional prior knowledge is incorporated. First of all, a set of 43 genes
previously nominated as putative targets in recurrent focal CNAs in the TCGA-OV
study were used. These genes, designated ‘Prior_Target_TCGA‘ (see Section 6.1.2),
are with the first priority. Secondly, known cancer-associated genes from the Cancer
Gene Census[178] are set with second priority. This ‘Prior_Target_CGC‘ gene set (see
Section 6.3) is composed of 717 oncogenes and tumor suppressor genes.

In summary, each recurrent region will initially be annotated with overlapping genes.
When there are more than one gene locate in the region, a minimal set of putative target
genes, if any, will be prioritized based on this nomination process.

8.5 patient stratification

8.5.1 TDP subgroup

8.5.1.1 Method overview

To implement the TDP subgroup stratification described in Section 4.5.1, Menghi et al.
adopted a three-step classification scheme for classifying tumors into TDP subgroups.
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To start with, the TDP score proposed in [170] was used to identify TDP-positive tumors.
This metric accounts for both TD number and their distribution across the genome,
therefore able to distinguish clustered TDs and stochastically scattered TDs. Tumors
with positive score would have higher propensity for TD formation and thus classified
as TDP tumors. Subsequently, sample-wise TD span size distributions are profiled, with
their major peaks enumerated. These peaks were then mapped to one of the five peak
classes of predetermined size intervals. In the end, each sample is assigned to a TDP
subgroup according to the peak class composition in its TD span size distribution.

8.5.1.2 Implementation

The three-step classification scheme is implemented in this study with details de-
scribed below.

First of all, the original formula (8.1) was expanded by specifying how to derive
Expi. Assuming a uniform rate of generating TD throughout the genome, the expected
number of TDs found in one chromosome is dependent on its length chri. Let TDtotal
stands for the total number of tandem duplications found in this sample, this can be
expressed as (8.2).

TDP Score = −∑i |Obsi − Expi|
TDtotal

+ k (8.1)

Expi = TDtotal ×
chri

genome length
(8.2)

The calculation of TDP score of a given sample thus becomes (8.3), where Obsi is the
number of TDs found in chromosome i and k is a constant 0.71 defined in the original
paper. Samples with TDP score greater than 0 are classified as TDP-positive tumors,
while those smaller than 0 as TDP-negative tumors.

TDP Score = −
∑i

∣∣∣Obsi − TDtotal × chri
genome length

∣∣∣
TDtotal

+ k (8.3)

Secondly, the density distribution of TD span size was profiled for TDP-positive
tumors, with peaks quantified by their position (span size) and abundance (density).
There might be more than one peak found in the density distribution. Given the first
major peak being the largest one, additional major peaks are kept if their density <=
25% of the largest peak density.

Lastly, major peaks found in each sample were mapped to five peak classes predefined
based on size interval, namely class 0 (<1.6kb), class 1 (1.64-51kb, median 11kb),
class 2 (51-622kb, median 231kb), class 3 (622kb-6.2Mb, median 1.7Mb) and class 4
(>6.2Mb). One then can eventually assign the TDP-positive tumors to one of the TDP
subgroups according to its class composition.
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8.5.2 Shah-2017

Given the 20 genomic features used for Shah-2017 subgroup discovery (see Table 4.1),
the procedure described below shows how these features were derived from the HIPO59

cohort and implemented as Table 8.4.
First of all, the contribution of COSMICv2 Signatures were calculated using the

R package YAPSA (version 1.0.0)[189]. The effect of mutations and indels on corre-
sponding genes were annotated with ANNOVAR[190]. These small variants were
then selected based on ANNOVAR annotations that best match the original feature
descriptions.

The rearrangements were based on SV callset from Sophia[184]. A pre-processing
step was done to exclude any SVs with span size smaller than 30 bp, or any deletions
with span size smaller than 1000 bp. Subsequently, all SVs were classified based on
their rearrangement type and span size. The re-classification follows a sequential order
of foldback inversions, inversions, tandem duplications, deletions and with the rest
assigned to unbalanced rearrangements. To note, two of the rearrangement features
were not implemented due to insufficient information from the SV callset.

Lastly, copy number profiles underwent a pre-processing step to exclude segments
shorter than 5000 bp before deriving CNA-related features.

Following these steps, 18 genomic features were summarized in 55 HGSC samples
from 33 HGSC patients. The patient stratification was then a simple implementation
of hierarchical clustering with samples split into two clusters. This was done with
R package pheatmap (version 1.0.12)[191], using "ward.D" clustering methods and
"manhattan" distance for the clustering.

8.6 germline variant analysis

Among all germline variants found in a person’s genome, most of them are not
pathogenic and shared with other people in the population. Their pathogenicity and
implication for ovarian cancer risk can only be ascertained after a manual review
process carried out by human geneticists.

In order to make the manual review feasible, it is important to exclude as many non-
harmful variants as possible. This reduction was facilitated by the Clinical Workflow
and described in Section 7.2. Therefore, downstream analyses in this section were based
on the GermFxn call set derived from the Clinical Workflow.

8.6.1 Clinical implication of the germline variants

The GermFxn call set consists of rare and protein-changing germline variants. How-
ever, their pathogenicity determination rely on the evaluation by human geneticists.
Due to the large amount of variants found in the GermFxn call set, only a subset of
manageable amount went through geneticist review process. This subset consists of
variants that are implicated in familial cancer and also have a role in the DDR process,
as shown in Table 6.2. Specifically, the selection is based on the intersection of two
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Category Feature Implementation

Signature S.APOBEC Signature 13 (AC13)

Signature S.POLE Signature 10 (AC10)

Signature S.AGE Signature 1 (AC1)

Signature S.BC Signature 8 (AC8)

Signature S.MMR Signature 6 (AC6)

Signature S.HRD Signature 3 (AC3)

Variant Nonsynonymous nonsynonymous SNV (a single nucleotide
change that cause an amino acid change)

Variant Splicesite splicing (variant is within 2-bp of a splicing
junction)

Variant Stop.Lost/Gained stopgain, stoploss (a nonsynonymous SNV,
frameshift insertion/deletion, nonframeshift
insertion/deletion or block substitution that lead
to the immediate creation/elimination of stop
codon at the variant site)

Variant Frameshift frameshift insertion, frameshift deletion (an
insertion/deletion of one or more nucleotides that
cause frameshift changes in protein coding
sequence)

SV Foldback.Inversion unbalanced inversion (INV) with size < 30Kb

SV Inversion inversion (INV) with size < 1Mb

SV Tandem.Duplication duplication (DUP) with size < 1Mb

SV Deletion
Rearrangement

deletion (DEL) with size < 1Mb

SV Balanced
Rearrangement

NA

SV Unbalanced
Rearrangement

the rest of all unclassified SVs

SV
Property

Homology>=5bp NA

CNA CN.Amplification Total copy number (TCN) > ploidy + 2

CNA CN.Loss Homozygous deletion, hemizygous deletion

CNA CN.LOH One of the allele specific copy number being 0

Table 8.4: Implementation of Shah-2017 genomic stratification. This table described how the
20 genomic features in Table 4.1 were implemented in HIPO59 cohort. Text highlighted in
bold are terms used in the softwares that derived the results, namely, YAPSA for signature
analysis, ANNOVAR for variant annotation, Sophia for SV discovery, and ACEseq for copy
number profiling.
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gene lists, namely FamilialCancerGenes and PanCanDDR, plus four additional genes
(ARID1A, POLH, STK11, EPCAM) and exclude TP53.

Exceptions made in the selection rule are due to the following reasons. Causative
genes of rare syndromes conferring predisposition to ovarian cancer, if not DDR genes,
are additionally included. They are STK11 for Peutz-Jegher syndrome and EPCAM for
Lynch Syndrome. POLH is a DDR gene functioning in both HRR and TLS subcategories.
Although it is not implicated in familial cancer, it was included because of a somatic
variant occurred in a patient with exceptionally high tumor mutation burden. TP53

fulfills the selection criteria however no germline variants were observed, whereas its
somatic variants are already known to be important for ovarian cancer and therefore
excluded. Lastly, somatic ARID1A mutations are known to be a characteristic of some
ovarian cancers.

Dr. med. Laura Gieldon, as a human geneticist in the Technische Universität Dresden,
reviewed the germline variants based on ACMG-criteria[192]. The variants are classified
into 6 categories: Pathogenic; Likely pathogenic; variant of unknown significance (VUS);
Likely benign; Benign; gene of unknown significance (GUS). Usually the pathogenic
and likely pathogenic germline variants are reported to the patients and predictive
testing are subsequently offered to their family members. VUS are only reported in
some selected cases depend on the context.

Beside germline variants, somatic variants selected by the same criteria were also sent
for pathogenicity determination using the same ACMG-criteria. Of note, the criteria
was not designed for somatic variants assessment and therefore the evaluation result is
not meant for treatment response decision.

8.6.2 Functional enrichment of germline variants

Genes do not function alone, they usually cooperate with each other to carry out a
specific biological process. Given a group of genes of interest, functional enrichment
is a way of knowing the functional roles these gene might collectively perform. This
analysis can therefore help give a better understanding of whether germline variants
are preferentially perturbed in DDR pathway and if so, which DDR axis were affected.

To start with, a total of ten gene lists were prepared to be tested. These are DDR in
general (PanCanDDR), and its nine sub-categories as previously defined in Section 6.3.
Next, genes are classified into a contingency table in two ways, namely whether it
harbors any variants in the GermFxn call set, and whether it participate in the pathway
of interest. A one-sided Fisher’s exact test was then used to test whether there is
a positive association between occurrence of germline variants and the DDR or its
sub-categories. Associations with p-value smaller than 0.05 were considered significant.

This analysis was done on the entire HIPO59 cohort and repeated on a subset of the
cohort considering HGSC subtype alone. The resulting p-values are compared between
the two scenarios to see the effect in ovarian cancer in general compared to HGSC
subtype alone.
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Variant Classification ANNOVAR Annotation

deleterious frameshift insertion, frameshift deletion, stopgain,
stoploss

unknown nonsynonymous SNV, nonframeshift deletion,
nonframeshift insertion, unknown and splicing

Table 8.5: Variant classification based on ANNOVAR annotation.

8.7 germline and somatic landscape

Sporadic tumors may share similar abnormalities with hereditary cancers. For exam-
ple, loss-of-function of BRCA1 can result from germline variant, somatic aberration or
promoter hypermethylation[130]. This implies that carcinogenesis can be a common
consequence of targeting same function using different mechanisms.

This section aims to integrate variants identified in both germline and somatic settings
and focus on genes functioning in pre-defined pathway. Specifically, GermFxn and
SomFxn call set derived from the Clinical Workflow were used and the downstream
analyses consider only the 275 genes in the DDR pathway.

Furthermore, as some samples may be derived from same patient, sample-wise call
sets are summarized into patient-wise call sets. When taking the intersection of sample-
wise SomFxn call sets, it is equivalent to finding so-called truncal events. Instead, when
taking the union of sample-wise SomFxn call sets, both truncal and branch events
remains in the patient-wise SomFxn call sets.

8.7.1 Variant classification

Variants in the call sets are classified into three groups (deleterious, unknown and
benign) using a two-step procedure based on functional consequence and geneticist
review result.

The initial classification was based on functional consequences of the variant pre-
dicted by ANNOVAR. As listed in Table 8.5, all protein-truncating variants are classified
as "deleterious" while other protein-changing variants are assigned "unknown".

Subsequently, the classification was refined according to geneticist review result.
Variants assessed as (likely) benign are re-classified as "benign" and those assigned
with (likely) pathogenic are re-classified as "deleterious". Note that this re-classification
only applied to the 49 germline variants and 25 somatic variants sent to human
geneticist for review, as described in Section 8.6.1. As a result, only a subset of variants
in the deleterious group are deemed (likely) pathogenic, with the rest being evaluated
as GUS/VUS or not short-listed for evaluation.

Regarding the DDR pathway member genes, all germline protein-truncating variants
are (likely) pathogenic except for three stopgain SNVs (affecting FANCM, MLH3

and RAD1) and two INDELs (locating in APEX1 and RFC2). Two additional protein-
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changing variants were re-classified as deleterious, including one splicing event in
FANCC and one nonframeshift deletion in RAD51C.

On the other hand, out of the 11 somatic protein-truncating variants in the pathway,
only 7 are assessed as (likely) pathogenic, including 2 SNVs (affecting BRCA2 and
PTEN) and 8 INDELs (locating in ATM, BRCA1, BLM, POLH and PTEN). An additional
somatic missense variant locating in PTEN (NM_000314.6, c.509G>T, p.Ser170Ile) is
re-classified as deleterious and would have been missed without geneticist evaluation.

8.7.2 Germline and somatic landscape of DNA damage response (DDR) pathways

The germline landscape is based on GermFxn call set and the Germline Variant
Number is the size of this set. On the other hand, the somatic landscape is based on the
patient-wise SomFxn call set containing only truncal events. Nonetheless, the Somatic
Variant Number stands for the size of the patient-wise SomFxn call sets containing both
truncal and branch events.

The variant call sets were collapsed to pathway-level and specifically looking at DDR
pathway and its nine sub-categories described in Table 6.2. Mutual exclusivity and
enrichment test are derived from one-sided Fisher’s exact tests.

8.7.3 Aberrations potentially contributing to DDR defect

The germline landscape is based on GermFxn call set and the somatic landscape
is, different from in the previous section, based on the patient-wise SomFxn call set
containing both truncal and branch events. Variants were classified into deleterious,
unknown and benign as described in Section 8.7.1.

Bi-allelic inactivation, where functioning (wild-type) allele is considered not retained
in tumor cells, can be achieved by either LOH or multiple hits targeting different alleles.
Therefore, genes harboring these two events were considered candidates for bi-allelic
inactivation.

Multiple-hits occur in a gene when more than one germline or somatic variant were
identified in the same sample. LOH event, on the other hand, requires two criteria
that take into consideration the local allele-specific copy number estimates for the
chromosomal segment where the variant resides.

The first criteria is that the variant locate at a segment exhibiting LOH, which means
the minor allele copy number equals zero. The second criteria is that the variant copy
number (multiplicity) should be close to major allele copy number of the segment, with
the difference between them being less than one copy. With these two criteria fulfilled,
the variant is likely to locate at segment with LOH and belongs to the retained allele.

8.8 genomic footprints analysis

Instead of developing de novo signatures, this section takes known signatures and
infer their activities in the HIPO59 cohort. These analyses, conducted by established
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Aberration Type Signature Source Signature Set Software

Mutations COSMICv2[195] AC1-AC30 YAPSA(v1.0.0)[189]

Indels COSMICv3(ID)[196] ID1-ID18 YAPSA(v1.14.0)[197]

Structural variants Br.Rs[26] Br.RS1-Br.RS6 SigIT(v1.0.1)[194]

Table 8.6: Signature analyses based on footprints in mutations, indels and structural variants.

softwares, follow similar principles. They start with collecting a catalog of signatures
from previous studies. Each signature is a vector of a fixed number of features with their
weights and can be think of as the contribution of a biological process to a pre-defined
set of footprints. Next, in each sample the observed abundance of each footprint is
quantified. It is achieved by first enumerating genome-wide somatic aberrations in
the sample, and then classify them into different feature categories based on footprint
definitions. As the observed footprint is a collective consequence of many biological
processes, the observed feature profile is an aggregation of different signatures with
different activity level. A mathematical decomposition can then break down the ob-
served profile into a set of known signatures with different weights that best describe
the observation. Eventually, the signature weights are interpreted as the activity level
of each process in a sample.

Three sets of signatures, each looking at footprints of different aberration types, are
analyzed with two softwares (either YAPSA[193] or SigIT[194]). Table 8.6 describes
the signatures and the softwares used for analyzing mutations, indels and structural
variants.

To note, when performing COSMICv2 signature analyses with YAPSA(v1.0.0), a
two-stage approach was adopted. In the first stage, the decomposition was based on all
signatures and the contribution of all signatures were obtained. This gave an idea of
which signatures were more active in the sample. A threshold of 6% (0.06) contribution
to the observed footprints was used to identify active signatures in each sample. In the
second stage, the same decomposition was repeated while using only active signatures
and the final contribution of these active signatures were determined. Therefore, in
each sample there would be a different set of inactive signatures with contribution set
to 0.

On the other hand, the two-stage approach was also used when performing COS-
MICv3 signature analysis with YAPSA(v1.14.0). However, this time a cohort-wise
signature-specific threshold was used as suggested in the tutorial. The set of threshold
used (cutoffPCAWG_ID_WGS_Pid_df, optimal cost factor 3) contains optimal cutoff
derived from training data.

When there were multiple samples from the same patient, it was observed that not
all samples would have identical active signature set. In this case, a signature is said to
be active in the patient when it is active in at lease one of the samples.
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8.9 tumor heterogeneity

8.9.1 Quantifying heterogeneity between tumor samples

Different tumors, despite derived from the same patient, can have different genomic
constitutions. Their differences are oftentimes described by visualizing or enumerating
shared or private mutations and indels. In this section a quantitative measure was used
to summarise such differences. This measure can be further generalized to describe
differences in terms of structural variants or copy number profiles.

Take small variants as an example. Somatic mutations and indels detected in two
different samples are compared using a venn diagram, where each circle represent
the callset from one sample. Shared variants are shown as the intersection, while
private variants account for the non-overlapping fraction. Figure 8.1 visualized such
comparisons for each of the 16 HGSC multiple sample sets in HIPO59. It is observed
that 7 patients had majority of the variants shared between different samples. For each
pair of samples, a Jaccard Index can be used to quantify their similarity using the
concept of venn diagram. It is calculated as dividing the intersection (number of shared
events) by the union (number of all events) and takes values between 0 and 1. As we are
interested in the heterogeneity, a Heterogeneity Index is defined as 1− Jaccard Index.
Therefore, the smaller the Heterogeneity Index, the more similar the two samples are, a
score of 0 means the two callsets are identical.

When comparing small variants, events are defined as the genomic locations of
variants and events sharing the same genomic position are considered shared. When
it comes to structural variants, one pair of breakpoint positions caused by one SV is
considered as one event, a shared event then represent another pair of same breakpoints
being found in the other sample. In terms of copy number profiles, a segment, having
two alleles, is considered as two events and only alleles with the same allele-specific
copy numbers between two tumors are considered shared. Eventually, each pair of
sample comparison within a multiple sample set would yield three heterogeneity
scores, one being heterogeneity index based on mutation and indels (HET_MutIndel), one
being heterogeneity index based on structural variations (HET_SV) and another being
heterogeneity index based on copy number profiles (HET_CNA).

8.9.2 Stratify patients with heterogeneity score

For each pair of related samples, three Heterogeneity Indexes (HET_MutIndel, HET_SV,
HET_CNA) were calculated. Based on these three indexes, a k-means clustering algorithm
was used to classify all comparisons into three clusters. Specifically, the ‘kmeans‘
function R package ‘stats‘ was used to perform the clustering, with all parameters set
as default except for setting fixed seed and specifying desired cluster number to be 3.
In the end, each patient is assigned a heterogeneity group based on the majority vote
of the cluster membership of its within patient comparisons.



8.9 tumor heterogeneity 59

Figure 8.1: Comparison of small variant callsets detected in multiple samples of the same
patient. The comparison between related samples from 16 HGSC patients are visualized with
venn diagrams.
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8.9.3 Phylogenetic analysis of small variants

Given multiple samples from an individual patient, the phylogenetic reconstruction is
done based on their somatic functional mutations and indels. These small variants were
converted into binary calls for the analysis. To find the most parsimonious tree, Dollo
parsimony method and the “branch and bound” exhaustive search were implemented
using the Dolpenny program in the PHYLIP (Phylogeny Inference Package) software
version 3.6[198].

The resulting phylogenetic tree was rooted at an ancestral state 0, meaning the
germline genomic sequence. Each branch length was proportional to the number of
small variants acquired.

8.10 timing of driving events in tumor evolution

Driving events were timed using the supplementary code[199] released along with
the PCAWG Heterogeneity study[200], herein referred to as Gerstung’s tutorial. It
describes the process of identifying tumors with WGD, as well as determining the timing
of small variants, CN gains, WGD and MRCA. Following this tutorial, MutationTime
algorithm was applied to 71 samples in HIPO59 that yielded successful result. The code
can be found in the Compact disc along with the thesis (Code Directory).

8.10.1 Whole genome duplication (WGD) classification

Section 7.2 and section 9 in Gerstung’s tutorial described the WGD identification and
the assessment of timing concordance.

By profiling the ploidy and homozygosity fraction of the genome, Figure 8.2 shows
that tumors could be classified into WGD-positive and WGD-negative tumors in a
two-dimensional space.

In addition, the timing of CN gains were examined to assess whether they arose
from a single event. The co-occurrence of gains allowed further classification of these
tumors into three patterns, namely synchronous, asynchronous and uninformative. In
synchronous tumors, more than 75% of the timed CN gains are co-occurring, whereas
tumors with lower percentage were classified as asynchronous. The uninformative
cases were those having too wide (>0.5) confidence intervals of time estimates, or with
only two or less chromosomes timed.

8.10.2 Timing of small variants and copy number gains

Gerstung et al. developed the MutationTime method for inferring whether small
variants occurred early or late, as well as to estimate the timing of CN gains. The
fundamental concept of this method is illustrated in Figure 1a of the original publication.

In brief, when a CN gain occurred, it doubles the mutant allele copy number of
pre-existing (early) somatic variants on the duplicated region. Whereas mutations
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Figure 8.2: Whole genome du-
plication identification. In the
two-dimensional space, frac-
tion of genome with minor al-
lele copy number equals to zero
(finalHom) is profiled in the
x-axis and the tumor ploidy
(finalPloidy) profiled in the y-
axis. Tumors were segregated
into WGD-positive (red) and
WGD-negative (black) tumors.

acquired late (after the CN gain), or mutations on the non-duplicated region, would
remain single copy. Therefore, the method first classify variants into different categories,
and then use the relative amount of duplicated mutations to non-duplicated mutations
to provide the information of the timing of the CN gain.

8.10.2.1 The concept of mutation time coordinate

The inferred time estimate is in mutation time coordinate, which spans from zero
mutation to the number of somatic mutations detected in the tumor. As illustrated in
Figure 8.3, it is a quantification of tumor development process using the number of
accumulated mutations from age zero (zygote) to the patient’s age at diagnosis. As
the tumor mutation burden is different between samples, mutation time is usually
expressed as a percentage of all detected mutations. Therefore, when a CN gain is
said to had happened at 50% in the mutation time, it means that by the time the gain
happened, the number of somatic clonal mutations accumulated in the tumor amount
to 50% of that observed at diagnosis.

8.10.2.2 Timing of small variants

To implement this idea, the authors first defined four categories of variants based on
their clonality and co-amplification status, as described in Table 8.7. These categories
correspond to different epochs of tumor evolution and are illustrated in mutation
time coordinate in Figure 8.4, where clonal (unspecified) represents general clonal
mutations before MRCA, clonal (early) stands for variants occurring before WGD,
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Figure 8.3: Mapping between chronological clock (upper coordinate) to molecular clock (lower
coordinate). To start with, it is assumed that at diagnosis (patient age of T2) there were N
somatic mutations detected in the tumor sample. At patient age 0 and mutation time 0%,
the genome composition was at zygote state, where no somatic mutations were acquired yet.
Patient age of T2, on the other hand, corresponds to mutation time 100%, meaning that all N
mutations already developed in the tumor genome. Given that patient age of T1 corresponds
to mutation time 50%, at patient age of T1 there were N/2 (50% of N) mutations accumulated
in the tumor.

Figure 8.4: Timing of somatic variants in tumor evolution. The upper panel depicts the evolution
of a WGD-negative tumor, where clonal variants cannot be further stratified. The lower panel
shows the evolution of a WGD-positive tumor, where some clonal variants can be further
classified into early or late depend on their relative timing to WGD occurrence.

clonal (late) are clonal variants acquired after WGD and subclonal variants being those
appear after MRCA of the sample.

Subsequently, the timing of a CN gain was determined based on its associated clonal
mutations in different categories, yielding an estimate in the mutation time coordinate.

8.10.2.3 Timing of CN gains

Following the fundamental idea, it is expected that when CN gain occurred early,
there would be little co-amplified clonal mutations; whereas if the CN gain happened
late, many duplicated mutations would be observed.

Given the categorized mutations in Table 8.7, Gerstung et al. calculated the time
estimate of a CN gain as follows. In a duplicated genomic region, assuming that there
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Categories Definition

early clonal two mutant copies

late clonal one mutant copy, no retained allele

(unspecified) clonal one mutant copy, either on duplicated or retained allele

subclonal less than one mutant copy

Table 8.7: Somatic variants are stratified into four timing categories based on mutation copy
number and local allele-specific copy number profile.

were n_1 mutations with single copy and n_2 mutations with two copies observed, the
timing of the gain depends on its local allele-specific copy number configuration:

CN 2 + 1 : T = 3n2/(2n2 + n1)

CN 2 + 2 : T = 2n2/(2n2 + n1)

CN 2 + 0 : T = 2n2/(2n2 + n1)

in which CN CM + Cm refers to major (CM) and minor (Cm) copy number of the
segment.

8.10.3 Chronological timing of major events

Given the experimental setting of HIPO59, three events of particular interest are whole
genome duplication (WGD), most recent common ancestor in the sample (MRCA-SAMPLE)
and most recent common ancestor between samples (MRCA-PID). This section aims to
identify their timing in chronological coordinate. To do so, one first has to identify their
timing in mutation time and then do a mapping between the two coordinate systems.

8.10.3.1 Mapping between two timing coordinates

In Figure 8.3, the two coordinates are consistent in determining relative order of
event timing; however there is not a linear relationship for direct transformation. This is
mainly due to the time-dependent activity of different mutational processes operating
in the tumor, which collectively lead to a heterogeneous mutation rate at different
chronological time during tumor development.

One widely accepted approach is to construct the mutation time coordinate using only
mutations generated by mutational process that is known to develop proportionally
with chronological time, a so-called clock-like process. COSMICvs SBS Signature 1

is one such example[25] and it predominantly generates CpG>TpG mutations in the
tumor genome. Nonetheless, despite the clock-like nature, Gerstung et al. showed in
tutorial section 10.2 that an acceleration of CpG>TpG mutation accumulation was
observed when comparing relapse samples and primary samples. Specifically, a 3.5 to
8 times acceleration was observed in 9 relapse ovarian cancer samples. In Gerstung’s
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tutorial, this rate acceleration is modeled by assuming that starting from mutation time
T (%) the mutation rate increased by A times.

As a summary, mutation time built with CpG>TpG mutations can be mapped
to chronological time when mutation rate acceleration is taken into consideration.
Two parameters needed for the mapping are time of acceleration (T) and degree of
acceleration (A).

8.10.3.2 Timing of WGD and MRCA in real-world time

Starting from WGD, a catastrophic event that happened at a single time-point and
affected multiple CN gains simultaneously, its mutation time was inferred according to
Gerstung’s tutorial section 10.5. In short, it is a joint estimate of time-point where most
CN gains co-occurred in WGD-positive tumors.

The timing of MRCA-SAMPLE, defined as the stage where all clonal mutations emerged,
is described in Gerstung’s tutorial section 10.4. The authors used the relative branch
length of clonal mutations and subclonal mutations to anchor MRCA time-point in
mutation time. To control for other factors affecting branch length, both clonal and
subclonal branches were adjusted for their power to detect mutations as well as the
subclonal phylogeny topology.

Lastly, MRCA-PID, defined as the time-point where all shared mutations between all
samples were accumulated, can be estimated by its timing relative to MRCA-SAMPLE.
Specifically, the relative timing can be anchored by the fraction of clonal CpG>TpG
mutations shared by all samples over clonal CpG>TpG mutations detected in one
sample.

After obtaining the mutation time of these major events, the mapping was done by
modeling the mutation generation with two parameters T and A used in the tutorial.
Parameter A assumes an acceleration of 7.5 times in the mutation rate, and parameter
T profiled the starting point of acceleration across a time period Tmin and Tmax:

Tmax = 100% mutation time

Tmin = max(50% mutation time, 15 years be f ore diagnosis), when age is known

Tmin = 80% mutation time, when age is unknown

The final chronological time estimate of an event is taken as the median of estimates
derived from all parameter combinations. To note, two patients (H059-9BFZJ8, H059-
MRAP5C) are without age information and therefore the chronological time were not
estimated. For interval debulking samples, they were assumed to be taken at the same
time with other tumors as the surgery date is unknown.

8.10.4 Re-define tumor epochs with finer time granularity

In the PCAWG Heterogeneity study[200], four tumor epochs were defined as de-
scribed in Figure 8.4 and Table 8.7. These time strata are constructed based on single
samplegiven the timepoint of WGD or the MRCA of the sample (MRCA-SAMPLE). In HIPO59,
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Figure 8.5: Given the multi-
sample experimental design,
tumor epochs for four scenar-
ios are defined in each row. At
the bottom it shows the chrono-
logical order of major events in
tumor evolution stratifying the
different epochs.

a multi-sample cohort, we were able to reconstruct snapshot at an additional time-
point, which is the MRCA of the patient (MRCA-PID). This enabled tumor epochs to be
re-defined with finer time granularity. The new tumor epochs are shown in Figure 8.5,
where four possible scenarios are described for samples being either single sample
(Single) or multiple samples (Multi) from the same patient, and either with or without
WGD. When compared to the previous definition in Figure 8.4, the “Single” scenario
would correspond to the previous “nWGD” case, likely the “Single(WGD)” scenario cor-
responds to the previous “WGD” case. In summary, there will be two to four timepoints
reconstructed computationally depending on whether multiple samples are available
and whether WGD was observed.

8.10.4.1 Timing of small variants in new tumor epochs

According to MutationTime result, variants were originally classified into four tumor
epochs shown in Figure 8.4. Whereas multi-sample cohorts provides the opportunity to
reconstruct the MRCA-PID timepoint during tumor evolution. Therefore, small variants
identified in multi-sample sets can now re-classified according to Figure 8.5.

In the “Multi” scenario, clonal variants that are observed in all samples from the
same patients were re-classified as clonal (truncal), while clonal variants not shared by
all samples are re-classified as clonal (branch).

In the “Multi (WGD)” scenario, clonal [early] variants are now renamed as truncal
(before WGD). For clonal [late] variants, those being shared among all samples from
the same patient are now classified as truncal (after WGD), whereas those not shared
by all samples are re-classified as branch (clonal). Notably, in this scenario, there can
be two different models depend on whether WGD occurred before or after MRCA-PID. As
will be mentioned in Section 13.3, most tumors follows the model where WGD happen
before MRCA-PID, therefore the other model is not discussed in particular.
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O V E RV I E W O F O VA R I A N C A N C E R

9.1 ovarian cancer compared with other cancer types

Ovarian cancer (OC) has been reported to have extensive genome instability and
highly rearranged genome, in contrast with its lack of recurrent mutations except for the
ubiquitous TP53 aberrations. These global characteristics have not been systematically
discussed in the context of other cancer types despite the extensive effort in describing
this disease.

The TCGA program profiled tumors across a broad range of diseases and provides
great materials for examining similarities and differences between different tumor
types. In this section, three global genomic measures are compared across 12 cancer
types in order to see how OC is different from other cancers. These measures, namely
mutation prevalence, indel prevalence and weighted genome integrity index (wGII), were
derived by procedures described in Section 8.1. The abbreviation of all cancer types are
used throughout this section, and their full study names can be found in Table 6.1.

9.1.1 Low frequency of significantly mutated genes is a distinct feature of ovarian cancer

The somatic mutation prevalence, measured by number of mutations per mega
base pairs (Mbp), represents the overall rate at which mutation occurs on the genome
regardless of its functional consequence. Likewise, the somatic indel prevalence can be
calculated in a similar manner. Based on the mutation and indel callsets of the TCGA
Pan-Cancer cohort, these rates are estimated and visualized in Figure 9.1.

Figure 9.1: Comparison of somatic variant prevalence across TCGA Pan-Cancer cohort. The
two global measures being compared are (A) mutation prevalence and (B) indel prevalence,
arranged in logarithmic vertical axis. The sample size for each disease type is labeled at the
top of the figure.
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It appears that ovarian cancer exhibited lower mutation and indel rate when com-
pared to the other cancer types. A consistent trend was observed in previous reports
despite that the spectrum of disease type investigated were different. In the first two
studies that comprehensively compared mutation burden across cancers, Lawrence
et al.[173] and Alexandrov et al.[24] showed that ovarian cancer genomes were ranked
in the middle among all cancer types.

Given the median to low mutability in ovarian cancer as compared to other cancer
types, the next question that followed was how the mutated gene recurrence landscape
look like, which to some extent reflects how selection pressure acted on the genomes.

To start with, significantly mutated genes (SMGs) in each cancer type were enumer-
ated (see Section 6.1.1) and their frequencies in each disease were estimated based on
somatic functional mutations or indels. The frequencies of the top-5 SMGs are shown
in Table 9.1.

In addition to independent contribution of individual genes, their cumulative contri-
bution would reflect how these genes collectively account for the disease of interest.
By sequentially including SMGs one at a time according to decreasing frequency, their
collective contribution would increase until all SMGs are included. Noteworthily, in
some disease cohorts the frequency of TP53 is too large to have the influence of other
SMGs reflected in the cumulative contribution. For example, TP53 aberrations occurred
in 72% of the head and neck cancers (HNSC), 79.2% of the lung squamous carcinomas
(LUSC) and 87.3% of the ovarian cancer (OV) cases. Therefore, TP53 was excluded
when calculating cumulative contribution for all diseases.

The cumulative contribution of SMGs in TCGA Pan-Cancer Cohort is shown in
Figure 9.2. In ovarian cancer, the most prevalent SMG TP53 was not considered and the
second most prevalent SMG NF1 affected 4.43% of the cohort. When the third SMG
RB1 was included, an additional 2.53% of the cohort was affected, followed by CDK12

(2.85%), NRAS (0.63%) and all other SMGs (0.63%).

Figure 9.2: Cumulative contri-
bution of SMGs identified by
MutSigCV in the TCGA Pan-
Cancer cohort. TP53 is ex-
cluded when calculating the
cumulative contribution, and
tumor types with TP53 preva-
lence >70% are marked with
symbol *.

The result showed that, somatic functional variants in SMGs (excluding TP53) col-
lectively affected 12% of the ovarian cancer cohort, as opposed to 61.7% to 98.8% in
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Cohort Number of
SMGs

Frequencies of Top-5 SMGs (%)

BLCA 48 TP53 (49.2), ARID1A (26.1), KDM6A (23.9), PIK3CA (20),
EP300 (16.1)

BRCA 26 PIK3CA (32.4), TP53 (30.8), CDH1 (11.2), GATA3 (9.8),
MAP3K1 (7.2)

COAD 23 APC (69.5), TP53 (48), KRAS (38.3), FBXW7 (18.8),
PIK3CA (16.9)

GBM 14 PTEN (31), TP53 (28.6), EGFR (26.6), PIK3R1 (11.4),
PIK3CA (11)

HNSC 32 TP53 (72.4), FAT1 (22.9), CDKN2A (22.2), PIK3CA (20.8),
NOTCH1 (18.6)

KIRC 12 VHL (47.1), PBRM1 (29.1), SETD2 (9.6), BAP1 (8.2),
KDM5C (5.7)

LAML 71 FLT3 (28.4), NPM1 (27.4), DNMT3A (25.9), IDH2 (10.2),
IDH1 (9.6)

LUAD 26 TP53 (45.2), KRAS (32.6), COL11A1 (17.4), KEAP1 (17.4),
STK11 (17.4)

LUSC 23 TP53 (79.2), NFE2L2 (15.2), PIK3CA (15.2), CDKN2A
(14.6), KEAP1 (12.4)

OV 8 TP53 (87.3), NF1 (4.4), CDK12 (2.8), RB1 (2.8), TOP2A
(1.9)

READ 11 APC (84.1), TP53 (65.2), KRAS (55.1), FBXW7 (13),
SMAD4 (11.6)

UCEC 301 PTEN (64.9), PIK3CA (53.2), ARID1A (33.5), PIK3R1

(33.5), CTNNB1 (29.8)

Table 9.1: Top five significantly mutated genes identified by MutSigCV in TCGA Pan-Cancer
cohort.
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other cancers. This large discrepancy can not be explained by the mutability of ovarian
cancer genomes, which ranked median to low as compared to other cancers.

9.1.2 High level of chromosomal instability (CIN) and recurrent copy number changes

The wGII score is used to measure the CIN in a sample. As described in Section 8.1,
it is derived from copy number profile and takes values between 0 to 100. The score
distributions of all cancer types are shown in Figure 9.3. Ovarian cancer showed the
highest level of aneuploidy and with a median score of 22.77, meaning that on average
22.77% of the genomic materials in an autosomal chromosome is subject to copy number
alterations. The median wGII for other disease cohorts ranged from 0.29% to 9.7%.

Figure 9.3: Comparison of chro-
mosomal instability across the
TCGA Pan-Cancer cohort.

Having shown the high CIN in ovarian cancer, it is interesting to see whether the
copy number alterations occurred in a random manner or showed some preferences.
The question can be addressed by GISTIC[172] analysis result of the 12 cancer types
(see Section 6.1.1), where significantly recurrent somatic copy number alterations in
each cohort were identified separately.

The frequencies of individual recurrent peak in corresponding disease cohort were
enumerated in Table B.1. Furthermore, the cumulative contribution of the recurrent
peaks to a disease cohort, calculated in a similar manner as did for SMGs, was visualized
in Figure 9.4.

As a result, 94.8% of the ovarian samples harbored at least one recurrent peak,
compared to 10.2% to 85.4% in other cancer types. The independent contribution of the
top 3 recurrent peaks in ovarian cancer were 8q24.21 (49.9%), 3q26.2 (44.6%) and 19q12

(26.9%). These regions are where MYC, MECOM, CCNE1 located, separately.
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Figure 9.4: Cumulative contri-
bution of significantly recur-
rent somatic copy number alter-
ations identified by GISTIC in
the TCGA Pan-Cancer cohort.

9.2 individual type of somatic alterations in hipo59

To identify positively selected somatic events during tumorigenesis, one can perform
cohort analysis that aggregate events from different patients and identify those that
happen more often than expected.

Cohort analysis can be done with different alteration types. In Section 9.2.1.1, Mut-
SigCV was used to look for genes recurrently targeted by mutations and indels, whereas
Section 9.2.3 showed how GISTIC helped identify recurrent somatic copy number alter-
ations.

As HIPO59 is a multi-sample cohort, where multiple samples are derived from the
same patient, there exists intrinsic similarities between related samples. However, the
different sampling number per patient would lead to their uneven influence on the
cohort analysis result. To minimize this effect, only one representative sample from
each HGSC patient were included when conducting MuSigCV and GISTIC analyses.
The representative sample of each patient were chosen based on highest purity and are
listed in Section B.2.

9.2.1 Recurrent mutations and indels

9.2.1.1 TP53 is the only significantly mutated gene in HIPO59

Among the 341,047 somatic mutations and indels found in the 33 representative
samples genome-wide, MutSigCV included 152,419 events for its analysis. The result
indicated that TP53 (FDR=4.19e-11) was the only gene that achieved significant recur-
rence threshold (FDR<0.15); while the rest of the genes had FDR being 1. The top 10

genes found by MutSigCV are shown in Table B.2.
On the other hand, the TCGA-OV study[130] reported nine SMGs using a threshold

of FDR<0.15 in their MutSig analysis. Putting the two cohorts together, Figure 9.5
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shows the significance level of these SMGs in TCGA-OV (n=316) as compared to that
in HIPO59 (n=33) cohort, as well as the affected population size in HIPO59.

Figure 9.5: Reported significantly
mutated genes and their signifi-
cance in HIPO59 and in TCGA-
OV. The x-axis shows the Mut-
SigCV significance of the gene
in HIPO59 cohort, while the y-
axis shows the MutSig signifi-
cance of it in the TCGA study.
The size of each data point rep-
resents the number of patients
affected in HIPO59 cohort.

The result suggests that TP53 is the only significantly mutated gene identified in
HIPO59, and that some previously reported SMGs did affect a subset of this cohort
while the effect is not discernible with the given cohort size.

9.2.1.2 Reported significantly mutated genes profiled across cohorts

In this section, mutations and indels from three public cohorts were incorporated to
provide a mutational landscape of reported SMGs in HGSC. Four variant categories
previously defined in Table 8.1 are used to describe gene perturbations in each patient.
Due to data access restrictions, some of these categories may not be available in the
public cohorts (see Table 8.2).

Figure 9.6 provides an overview of 12 reported SMGs in 4 major HGSC cohorts,
where the frequencies of mutations and indels affecting each SMG were profiled. Genes
are ordered by their decreasing contribution to all cohorts. Among them, CSMD3, FAT3

and GABRA6 were reported only in TCGA-OV[130] and on the other hand, DNAH1,
FLNA and RABGGTB were reported only in ICGC-AU-OV[131].

In the original report, FAT3 and GABRA6 were suspected to be of lower importance
since they showed very low or no expression in tumor and normal samples in the
microarray data. By profiling the expression of these genes in RNAseq-based cohorts,
Figure 9.7 shows that CSMD3 was also lowly expressed in both tumor (HIPO59 cohort)
and normal ovary tissues (GTEx cohort[201]). Furthermore, in a pan-cancer analysis
conducted by MutSigCV developers[173], CSMD3 was considered a potentially spurious
cancer-associated gene due to its very long intron (>1Mb). The size of CSMD3 and
other reported SMGs can be found in Figure B.1.
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Figure 9.6: Reported significantly mutated genes and their frequency in HIPO59 and three
major HGSC cohorts.

Figure 9.7: Reported significantly mutated genes and their mRNA expression in normal ovary
tissues (GTEx) as well as in tumor samples (HIPO59).
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9.2.2 Gene breakage events in reported significantly mutated genes

The WGS technique allowed researchers in the ICGC study to look into gene breakage
as a result of SVs[131]. Focus on 5 SMGs, namely TP53, BRCA1, BRCA2, RB1 and NF1,
they found that the inclusion of such events raised the gene inactivation frequency from
6% (mutations only) to 20% for NF1 and 17.5% for RB1. In addition, this mechanism
also affected PTEN and RAD51B, where the latter plays a role in the HRR pathway.

To examine such disruption mechanism in HIPO59, SVs were profiled and the exact
breakpoint positions were identified in 14 genes of interest, including PTEN, RAD51B
and the 12 reported SMGs examined in Section 9.2.1.2.

9.2.2.1 NF1 is preferably hit by gene breakage events

A total of 424 SVs were found that involve the 14 genes of interest. Around 43%
(184 out of 424) of them do not have any of its breakpoints coincide with copy number
changes. The remaining 57% are named here as CNA-associated SVs, as when one
compares the copy number state between both sides of the breakpoint position, there
would be at least one of the two SV breakpoints presenting copy number differences.

In addition to CNA-associated SVs, gene breakage can also arise from any copy
number changes within the gene body, in spite of the lack of associated SVs identified.
Taken together, Figure 9.8 shows the number of CNA-associated events in each gene.
The genes are ordered by decreasing gene length, as shown in Figure 9.9(left). The
events are further stratified by how they involve the gene of interest. An “Intra-gene”
event is associated with copy number change within the gene body, therefore likely
breaks one of the gene alleles. On the other hand, the “Span” events are associated with
copy number alterations covering the entire gene and may cause copy number dosage
change of the gene without any breakage introduced.

It is expected that the larger the gene is, the more likely it is involved by these
events overall, and the higher fraction of them being intra-genic events. As expected,
Figure 9.8(left) shows a trend of decreasing event count in smaller genes, while NF1 and
RABGGTB being more often hit. When looking at relative fraction of the two disruption
types, Figure 9.8(right) further reveals that NF1 and RB1 are more often affected by
gene breakage events than by gene dosage changing events.

9.2.2.2 Gene breakage as an alternative mechanism for gene inactivation

The next question is to estimate the percentage of the cohort harboring gene breakage
events. Collected from all HGSC samples, a total of 136 SVs were found to have any
of its breakpoints locate within genes of interest. These SVs were assigned to three
categories considering whether it originated from a germline or somatic event, and
whether it is CNA-associated. An additional fourth category describes a copy number
change in the gene body without any associated SV identified. The definition and
priority of the four categories are listed in Table 9.2.

Figure 9.9 shows the fraction of HGSC patients in HIPO59 harboring at least one
event in one of their samples. When a patient is found with multiple events targeting
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Figure 9.8: Copy number alteration-associated events involving genes of interest. An “intra-
gene” event has at least one breakpoint locating within gene body, while a “span” event
involves the affected gene as a whole without interrupting the gene body.

Category Origin Copy Number Change Priority

somatic SV (with CNA) somatic SVs associated with CNA
inside gene body

1

somatic CNA (no SV) somatic CNA within gene body, no
associated SVs

2

germline SV (w/o CNA) germline SVs associated with CNA
outside gene body
SVs not associated with CNA

3

somatic SV (w/o CNA) somatic SVs associated with CNA
outside gene body
SVs not associated with CNA

4

Table 9.2: Four categories of gene breakage events and their priorities. These events can result
from structural variants or copy number changes.
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the same gene, the event with the highest priority was chosen. The CNA-associated
events, including categories "somatic CNA (no SV)" and "somatic SV (with CNA)",
indicate breakage of a gene in one of its alleles. They account for 15% of the cohort for
RAD51B, 15% for NF1, 9% for CSMD3, 6% for CDK12, 6% for RB1 and 3% for BRCA1.

Figure 9.9: Frequency of potential gene breakage due to SVs or other CNA-associated events.

There were in total 49 non-redundant gene breakage events for 33 HGSC patients.
Notably, these events are largely exclusive from the occurrence of mutations and indels.
When compared to the 68 non-redundant mutation and indels for patients, only 5

co-occurrences were observed. As shown in Figure 9.10, three of them are in CSMD3,
one in GABRA6 and one in RAD51B.

9.2.3 Recurrent copy number changes

9.2.3.1 Prevalent chromosome arm-level loss observed in HGSC

The GISTIC broad event analysis identified recurrent arm-level events across the
HIPO59 cohort. As shown in Figure 9.11(A), 28 (61%) of 46 chromosome arms subjected
to significantly recurrent alterations (q-value<0.25), and 19 (68%) of them affected more
than half of the cohort. Of these, there were notably many more losses than gains, with
observed 9 recurrently gained arms and 19 recurrently lost arms.

The result largely agrees with the GISTIC broad event result of TCGA-OV data
shown in Figure 9.11(B), where 36 significantly recurrent alterations (q-value<0.25)
were identified. The 21 events found in common are amplifications of 1q, 3q, 8q, 12p,
20q, as well as deletions of 4q, 5q, 6q, 8p, 9p, 9q, 11p, 13p, 15q, 16p, 16q, 17p, 17q, 18p,
19p and 22q.
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Figure 9.10: Gene inactivation frequencies estimated by integrating mutations, indels and
potential gene breakage events for HGSC patients in HIPO59. Note that gene breakage events
are represented by taller rectangles; while mutation and indel events are represented by
shorter rectangles. Among the four types of potential gene breakage events, "somatic CNA
(no SV)" and "somatic SV (with CNA)" likely induced gene breakage; while "somatic SV (w/o
CNA)" and "germline SV (w/o CNA)" are candidate events whose consequences need to be
further confirmed.
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Figure 9.11: Recurrently altered chromosome arms in HIPO59 and TCGA-OV cohorts. For each
chromosome arm, the frequency of it being gained or lost in the cohort is shown in the y-axis,
where positive value signifies the frequency for gains and negative value for loss. Once the
arm-level event is significant (q-value<0.25), the frequency bar is filled with either red(gain)
or blue(loss).
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9.2.3.2 Focal copy number alterations in HIPO59

In addition to arm-level events, GISTIC also reported recurrent focal SCNAs across
the HIPO59 cohort. As shown in Figure 9.12, there were in total 21 amplifications
and 32 deletions that achieved significance threshold (q-value<0.25), suggesting that
alterations in these genomic regions are enriched by selective pressures.

Figure 9.12: Recurrent focal SCNAs in the HIPO59 cohort. The left panel contains deletions and
the right panel contains amplifications. These copy number events, each represented by a
stretches of DNA, dispersed across the vertical axis from chromosome 1(top) to chromosome
X(bottom). The horizontal axis profiled the significance of each event in the scale of log10(q-
value), with larger peaks signifying more significant events. Peaks higher than the dashed
lines denoted events with q-value less than 0.25. These significant peaks are colored with
blue and red, separately, for deletions and amplifications.

For each of the 53 recurrent focal SCNAs identified, GISTIC reports its significance
and the genomic coordinates of Regions and Peaks as described in Section 8.4.1. The
genomic regions range in size from around 100kb to 50Mb, and cover a median of
14 genes (range from 0 to 275 genes). The number of genes overlapping each CNA is
displayed in Figure 9.13.

Following the target nomination procedure in Section 8.4.2, each CNA was annotated
with a minimal set of putative gene targets. In short, they are either previously suggested
driver genes in the TCGA-OV study(‘Prior_Target_TCGA‘), or being known as cancer-
associated genes according to the CGC gene list(‘Prior_Target_CGC‘)[178]. Table 9.3
summarizes the 27 recurrent focal SCNAs that contain nominated driver genes. These
genes are highlighted differently according to their location within the CNA.

Seven of them confirmed previous findings, including the three most prevalent gains
(MYC, MECOM, CCNE1) in TCGA. Nonetheless, in HIPO59 these three genes are in
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Figure 9.13: The size and affected
gene number for each recur-
rent focal SCNA identified in
HIPO59.

significant regions (Region) while outside the region most likely containing true targets
(Peak), likewise observed for AURKAIP1. On the other hand, amplification of MCL1,
deletion of NF1 and CDKN2A are previously proposed driving events and also sit in
the subregion of Peak having the greatest amplitude and prevalence across 33 samples
in HIPO59.

These driving events can affect major pathways discussed in Section 4.3. NF1 con-
strains Ras activity and plays as a negative regulator in RAS/PI3K pathway. In the
RB1 Pathway, CCNE1 product leads to Rb inactivation and promote the progression
through G1/S checkpoint. Conversely, CDKN2A product inhibit CDK4/6 products and
therefore positively regulate this pathway. There are many other pathways implicated
in ovarian cancer but not specifically discussed in Section 4.3. MCL1 encodes a member
of the Bcl-2 family and has an anti-apoptotic function. Protein product of AURKAIP1

may function as a negative regulator of Aurora kinase A, a protein aiding cytokinesis
process and often overexpressed in ovarian cancer[202].

In the 20 other recurrent focal SCNAs, some of the cancer-associated targets seems
to be functionally relevant. DDR pathway, particularly genes functioning in the HRR

axis (BRCA2 and WRN) were found recurrently deleted. Again, negative regulators
of oncogenic pathways were found in focal deletions. In terms of RAS-PI3K pathway,
the regulatory subunit of PI3K was encoded by PIK3R1, which was nominated in
the 5q13.1 focal deletion. PIK3R1 not only resides in the Peak but also locates at the
subregion with strongest selection signal. Regarding the RB1 pathway, CCNE1 product
abundance can be controlled by ubiquitin-mediated degradation, and FBXW7 codes
for one of the E3 ligases that enable this process. Lastly, components of SWI/SNF
chromatin remodeling complex, including ARID1A and ARID1B, have been known
linked to EOCs and were also identified in focal deletions 1p36.11 and 6q25.3, separately.
Altogether, these findings show good agreement with current active areas of ovarian
cancer research.
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Type Peak Peak
Size
(kb)

q-
value

Region
Size
(kb)

Genes
in Re-
gion

Priority
Source

Nominated Genes

Amp 19q11 25 7.2e-06 10420 38 TCGA (CCNE1)

Amp 8q24.3 169 2.6e-04 29618 177 TCGA (DEPTOR, MYC)

Amp 3q26.32 57 4.1e-04 19506 90 TCGA (MECOM)

Amp 1q21.3 4275 2.8e-03 4725 95 TCGA MCL1

Amp 20q13.33 10 4.7e-03 1695 52 CGC (PTK6)

Amp 1p32.3 2537 7.2e-02 2537 24 CGC CDKN2C, EPS15

Amp 15q26.1 707 7.5e-02 730 15 CGC CRTC3, IDH2

Amp 7q36.1 78 1.2e-01 83 1 CGC KMT2C

Del 19p13.3 520 1.7e-10 7660 223 CGC (FSTL3, GNA11, MAP2K2,
MLLT1, SH3GL1, STK11, TCF3,
VAV1)

Del 7p22.3 500 8.7e-06 16293 95 CGC (CARD11, ETV1, PMS2, RAC1)

Del 8p23.1 25510 1.8e-05 25510 177 CGC LEPROTL1, NRG1, PCM1,
WRN

Del 5q13.1 1898 2.9e-05 39849 178 CGC PIK3R1, (IL6ST, MAP3K1,
RAD17)

Del 8p23.3 1055 4.7e-05 2690 12 CGC (ARHGEF10)

Del 1p36.32 3137 2.0e-03 12109 167 TCGA (AURKAIP1)

Del 3p12.3 1833 4.4e-03 1833 3 CGC ROBO2

Del 1p36.11 18066 2.0e-02 18066 275 CGC ARHGEF10L, ARID1A, CASP9,
ID3, MDS2, MTOR, PAX7,
PRDM2, SDHB, SPEN

Del 4q31.3 45496 3.2e-02 45496 162 CGC CASP3, DUX4, FAT1, FBXW7

Del 16q24.2 1082 3.4e-02 1846 31 CGC (CBFA2T3)

Del 11q25 8147 3.5e-02 8147 33 CGC FLI1, KCNJ5

Del 6q25.3 26605 3.7e-02 26605 124 CGC ARID1B, ESR1, EZR, FGFR1OP,
LATS1, MLLT4, QKI

Del 13q12.3 1939 4.3e-02 1939 12 CGC BRCA2

Del 17p11.2 413 4.4e-02 812 12 CGC FLCN

Del 17q11.2 408 4.8e-02 408 7 TCGA NF1

Del 12q24.31 3031 9.0e-02 3031 14 CGC NCOR2

Del 1q41 14875 1.3e-01 14875 93 CGC ELK4, SLC45A3

Del 6p25.3 6000 2.0e-01 6000 35 CGC IRF4

Del 9p21.3 589 2.4e-01 589 6 TCGA CDKN2A

Table 9.3: Recurrent focal peaks annotated with putative target genes. Genes in bold are those
within the subregion of Peak having the greatest amplitude and frequency across the cohort.
Genes in bracket are those within Region but outside the Peak. When the Priority Source is
“TCGA”, it means the nominated genes are based on Prior_Target_TCGA and “CGC” stands
for those from Prior_Target_CGC.
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9.2.3.3 Robust focal copy number alterations across cohorts

This section compares recurrent focal SCNAs in HIPO59 with those found in the
TCGA-OV study (see Section 6.1.2). As an overview, in HIPO59 there were 6 (11.3%) of
53 focal SCNAs identified in gene desert, and TCGA-OV contained 11 (9.7%) of 113

entries with no overlapping genes. In gene-containing focal SCNAs, an overlap between
24 HIPO59 entries and 27 TCGA entries was observed.

Interested in focal SCNAs harboring potential driver genes, putative target genes were
nominated in TCGA entries following the same procedure in Section 8.4.2. Subsequently,
the genomic regions of CNAs from HIPO59 and from TCGA were compared in order
to identify overlapping subregion between each pair. Each subregion was annotated
with the q-values in both cohorts. In the case when a CNA does not overlap with any
CNAs in the other cohort, q-value was assigned 1 for the other cohort.

Figure 9.14 shows the 103 subregions containing nominated genes in either cohorts.
Among them, 76 subregions were found with significant q-values only in TCGA (72) or
HIPO59 (4). These private subregions appear as data points lying on the x-axis and the
y-axis. Subregions private to HIPO59 usually contain the entire focal SCNA, such as
1q41 deletion, 1p32.3 amplification, 17p11.2 deletion; while sometimes partially cover
the focal SCNA, like the subregion containing PCM1 in 8p23.1 deletion. In summary,
20 (74.1%) of 27 recurrent focal SCNAs that contain nominated driver genes were also
found recurrent in the TCGA study.

Figure 9.14: Recurrent focal SCNAs compared between HIPO59 and TCGA-OV cohort. The
comparison is shown (A) as an overview or (B) zooming in on less significant regions. For each
pair of CNA, x-axis and y-axis show the significance levels of its element CNAs from TCGA
and HIPO59, respectively. Subregions associated with recurrent focal SCNAs in HIPO59 are
labeled with corresponding name in HIPO59 as well as the putative targets in this region.
The color of each subregion is based on the nomination priority. When colored in red, the
putative targets are nominated based on ‘Prior_Target_TCGA‘, while black color represents a
nomination based on ‘Prior_Target_CGC‘.
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10.1 tandem duplicator phenotype

This section implements the three-step classification proposed by Dr. Liu’s group. It
starts with calculating TDP score proposed in their publication in 2016[170], followed
by assigning samples to TDP subgroup based on their publication in 2018[169].

10.1.1 A reliable TDP score implementation

To validate the in-house TDP score calculation described in Section 8.5.1, a re-analysis
was done on a subset of the cohort used in the 2018 study. Specifically, the re-processing
focus on 92 samples in the ICGC-AU-OV cohort (see Section 6.1.3), where the SV callset
was downloaded from ICGC Data Portal[175] release 28. In-house scores were then
compared with the original scores obtained from Table S3 of the publication[169].

First of all, Figure 10.1(A) shows that the number of TDs per sample is similar
(Pearson Correlation Coefficient, R>0.99) between what derived from the SV callset
and what recorded in Table S3, suggesting the consistency of the SV callset. Secondly,
Figure 10.1(B) shows that in-house TDP scores had almost perfect correlation (R>0.99)
with the TDP score reported in Table S3, suggesting the reliable implementation in
Section 8.5.1.

Next, the TDP scores distribution in three WGS cohorts were compared. These
include HIPO59 (n=53, HGSC only) and two ovarian cancer cohorts used in the 2018

study[169], namely, COSMIC_v27 (n=92, ICGC-AU-OV) and Roel_Verhaak_lab (n=49)
cohort. Figure 10.2(A) profiled the in-house scores for HIPO59 and the published scores
for two other cohorts, and shows that the three distributions differ in their distribution
as well as modal values.

As discrepancy in BRCA1 mutation rates was also observed, the distributions might
be skewed toward higher scores in different degrees. Therefore, the same scores were
profiled again in Figure 10.2(B) while restricted to BRCA1 wild type samples. The
HIPO59 cohort was further restricted to the representative samples of each patient (see
Section B.2) to exclude bias from multi-sample setting. It shows that the BRCA1 wild
type subset of three cohorts then showed distributions with more similar modal values
closed to 0, the threshold for defining TDP-positive tumors.

10.1.2 Subgroup assignment of TDP-positive tumors

In HIPO59, 38 (72%) of 53 samples with HGSC histotype are TDP-positive tumors.
They are then assigned to TDP subgroups according to Section 8.5.1. The full list of TDP
assignment for each HGSC sample can be found in the Compact disc along with the
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Figure 10.1: The validation was done by comparing (A) the number of TDs and (B) the TDP
score between those derived from SV callset and those reported in Table S3 of the 2018 study.

Figure 10.2: TDP score distribution among 3 cohorts. Given the published scores for public
cohorts and in-house score for HIPO59 cohort, the distributions from three cohorts are shown
(A) for all samples and (B) for BRCA1 wild type and representative samples. The vertical
dashed line (at score=0) indicate the threshold for TDP-positive tumors classification.
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Patient TDP Subgroup

H059-1LUEUK,H059-F9BQHA Non TDP

H059-NV4KXQ Non TDP,TDP group 1/4mix

H059-0EJ9, H059-41N6F7 Non TDP,TDP group 2

H059-N8J8 TDP group 1

H059-6GM3, H059-QQBCPM TDP group 1,TDP group 1/2mix

H059-8Y1SE7 TDP group 1,TDP group 1/3mix

H059-3DCX, H059-5DFS,
H059-ESPXYL, H059-YKP3

TDP group 2

H059-28C2CC TDP group 2/3/4mix,TDP group 3/4mix

H059-DQNU TDP group 2/3mix

Table 10.1: TDP subgroup heterogeneity in multiple samples from the same patient. Patients
with heterogeneous subgroup assignment in corresponding samples are highlighted with
bold font.

thesis (HIPO59_Subtype_TDP.txt). When further restricted to representative samples
of each patient (see Section B.2), the subgroup assignment for HIPO59 is summarized
and compared to two public cohorts in Figure 10.3.

In summary, 24 (72.7%) of 33 HGSC patients had at least one TDP-positive sample.
By assuming a specific class of TDs being active in a patient when its activation found
in any of the samples from the patient, both most prevalent class 1 and class 2 were
active in 14 (42.4%) patients, and less frequent class 0, class 3 and class 4 were active in
1, 4, and 5 patients, separately.

To validate the correspondence of known molecular features with each class, alter-
ations in BRCA1 and CDK12 were examined. Seven (50%) of 14 patients with active
class 1 TDs had either somatic or germline mutations or indels in BRCA1 and had all
their samples showing activation of class 1 TDs. This correspondence was not observed
for the two patients (H059-3DCX, H059-DGCF) harboring potential gene breakage
events in BRCA1. On the other hand, none of the 6 patients harboring small variants or
potential gene breakage events in CDK12 showed active class 3 TDs.

Notably, when there are multiple samples available from the same patient, they
don’t always show the same subgroup. Table 10.1 listed HGSC patients in HIPO59

and the subgroups found in their corresponding samples. In summary, 7 (47%) of 15

HGSC patients that are with more than one sample showed heterogeneous subgroup
phenotype. Among them, 3 patients are found with both TDP-positive and TDP-
negative tumors. Interestingly, 5 (71%) of 7 patients have heterogeneous subgroups
that differ only by activation of class 2 TDs, suggesting that class 2 TDs show greater
variability in different samples from the same patient compared to other classes of TDs.
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Figure 10.3: TDP subgroup composition in 3 cohorts. Given the published subgroups for public
cohorts and in-house assignment for HIPO59 cohort, the subgroup composition of patients in
three cohorts are shown for (A) COSMIC_v27 (ICGC), (B) Roel_Verhaak_lab and (C) HIPO59

(HGSC representative samples only). Rare subgroups like “2/3/4mix” or “0/2mix” are put
together as “other groups”.
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10.2 shah-2017

Section 4.5.2 described how Wang et al. applied unsupervised clustering to their
discovery cohort (OV133) and found two subgroups within HGSC histotype. This result
is reproducible using the information in Table S5 of the original publication[132].

To see whether the same subgroup structure exists in the HIPO59 cohort, this method
is implemented in Section 8.5.2. However, due to the different experimental design
and processing pipeline, adjustment was made to the original method during the
implementation. This section focus on validation of the adjusted method and the
stratification of HIPO59 cohort.

10.2.1 Adjusted methodology gives same conclusion in the discovery cohort OV133

There are three major differences in the adjusted methodology. The validation is
done by applying adjusted method on OV133 cohort, and see how they might affect
the stratification result.

First of all, the entire OV133 cohort encompasses four different major histotypes
(see Section 6.1.4), while the majority of HIPO59 cohort are HGSCs (see Section 6.2).
Therefore, one cannot rule out the possibility that normalization across a heterogeneous
cohort being an influential step to achieve the reported stratification. To address this
question, a re-analysis was done on the OV133 cohort while restricting the clustering
to only samples of HGSC histotype and originally classified as either H-HRD or H-
FBI. The new stratification is shown in Figure B.2, where five samples were classified
differently from the original method.

It might seem that the adjusted method yielded misclassified cases. However, survival
analysis based on new cluster subgroups suggested the opposite. Figure B.3 compared
the survival differences based on two methodologies, the adjusted method unexpectedly
identified new subgroups with stronger prognostic value. The result showed that it is
reasonable to conduct the cluster discovery based on HGSC subtype only, as in the case
of HIPO59.

The second difference lies in the feature set collection. There are twenty genomic
features used in the original method. Almost all of them would be possible to be
extracted accordingly in the HIPO59 cohort, except for the “Microhomology between
SV junctions” and “Balanced Rearrangement” features, due to the different structural
variation caller used. Therefore, a re-analysis was done on the HGSC subset of OV133

cohort using only 18 genomic features. In the end there was only one sample classified
differently from the original method and the prognostic value of the new subgroup
was unchanged.

Lastly, although Table 8.4 implement each feature in a way best match the description
in the publication, the feature extraction process is not exactly the same as the authors
did to the OV133 cohort. To examine whether these features are compatible, the
distributions of these features in the two cohorts were compared. A quantile-quantile
plot visualized the comparison for each feature in Figure B.4. There seems to be slightly
more foldback inversions and frameshift indels identified in OV133 cohort, other
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Figure 10.4: Stratify the HIPO59 cohort based on 18 genomic features.

feature distributions either look similar or show differences potentially due to different
mutational processes in two cohorts.

Having confirmed that the adjusted method, hereafter referred to as Shah18, would
not yield markedly difference in stratifying patients in OV133 cohort, this adjusted
method was then applied to HIPO59 cohort.

10.2.2 Shah18 revealed inherent subgroups in HIPO59 cohort

Based on the 18 selected features extracted according to Section 8.5.2, two clear
subgroups emerged in a hierarchical clustering of HGSC samples in HIPO59, as shown
in Figure 10.4. Out of the 33 patients, 13 of them were classified as H-FBI group, while
the other 20 patients in the H-HRD group. Noteworthily, unlike the heterogeneity seen
in other stratification methods, all samples from the same patient were consistently
classified into the same subgroup.

To warrant the generalizability of this approach to HIPO59, we would like to see
whether the genomic subgroups in two independent cohorts reflect the same inherent
structure of HGSC. A dimension reduction method was utilized to address this question.
Based on the original 18 genomic features, principal component analysis (PCA) was
used to construct new features, the principal components (PCs), where the order of new
PCs represent the decreasing degree of their ability to capture the variance in the data.

Figure 10.5 shows that the first PC in both cohorts are both capable of capturing the
subgroup information. On top of that, the cosine similarity between the two first PCs
was 0.58, showing a high similarity in their compositions.

In summary, the results show that two inherent genomic subgroups of HGSC can be
readily revealed by the Shah18 method. More importantly, different samples derived
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Figure 10.5: PCA of the 18 genomic features in OV133 and HIPO59 cohort, both are restricted
to HGSC samples only.

from the same patient exhibit a consistent genomic subgroup. In HIPO59, 13 (39.3%) of
33 patients are with H-FBI subgroup. The prevalence is close to what was observed in
the OV133 cohort, where 24 (41%) of 59 patients belongs to H-FBI subgroup.
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The pivotal role of BRCA cancer susceptibility genes in HGSC has been established
after years of studies. Their major impact come with their function in the DNA double-
strand break repair via homologous recombination repair (HRR) pathway. When subject
to loss-of-function mutations in BRCA genes, tumor cells show BRCAness features and
harbor homologous recombination defect (HRD) footprints in their genomes.

In TCGA study the researchers concluded that half of the cohort harbor HRD through
either germline BRCA1/2 mutations, hypermethylation of BRCA1 promoter or somatic
mutations in selected HRR genes[130], suggesting a genetic heterogeneity under the
HRD phenotype. It is therefore important to explore whether other HRR genes are
affected in our cohort and what are the consequences.

The three objectives in this chapter are, in the first place, to identify patients that
carry inherited pathogenic variants in BRCA genes; secondly, to examine the integrity
of DDR axis in both germline and somatic setting; and lastly, to interrogate genomic
footprints of DDR defect in a subtype-specific manner.

11.1 germline pathogenic variants occur in not only brca genes

It has been repeated reported that a subset of ovarian cancer patients are BRCA
mutation carriers. These are high penetrance genes leading to hereditary cancers, with
details described in Section 3.2.2.1. Carrier status is important not only to patient
themselves but also to their family members who might share the same predisposing
variants. In addition to BRCA1 and BRCA2, a handful of other genes are found to
predispose their carriers, while with moderate penetrance, to ovarian cancer. Therefore,
we seek help from human geneticists to determine the clinical relevance of observed
germline variants.

Focused on 36 genes, a collection of 74 unique variants, including 49 germline variants
and 25 somatic variants, were described in Section B.5 and sent to human geneticist
for review. In principle, these variants represent a prioritized subset that arise from
genes functioning in DDR pathway and simultaneously implicated in familial cancers,
with the selection procedure described in Section 8.6.1. Determined by the geneticist,
the pathogenicity of germline variants are shown in Figure 11.1. Among them, around
24.5% (12 out of 49) are confirmed (likely) pathogenic, 8.2% (4 out of 49) classified as
(likely) benign and the rest 67.3% (33 out of 49) being either GUS or VUS.

There are eight patients harboring rare BRCA1 variants and seven of them are
confirmed carriers. The only BRCA2 variant is with unknown significance. An addition
of seven patients were identified carriers of other DDR genes that would have usually
gone unnoticed. When stratified by histotypes, 30% (10 out of 33) of the HGSC and 44%
(4 out of 9) of other subtypes carry pathogenic germline variants in DDR pathways.

93



94 dna damage response defect in ovarian cancer

Figure 11.1: Germline variants pathogenicity. Germline variants reviewed by human geneticists
and classified in accordance with the ACMG-criteria[192]. Genes harboring (likely) pathogenic
variants are colored in red, and those harboring (likely) benign variants are colored in grey,
while the rest are with unknown significance (VUS or GUS) and colored in green. The
columns represent patients in the HIPO59 cohort and are divided into HGSC subtype or
all OTHER subtypes. The rows correspond to genes and stratified by their function in HRR
axis, other DDR sub-categories, or selected due to Ohter reasons.

These include BRCA1, RAD51C, ATM, NBN, ERCC2 and FANCG in HGSC patients
and BRCA1, ATM, FANCC and BLM in patients with other histotypes. According to
the geneticist’s comment, BRCA1 and RAD51C are ovarian cancer predisposing genes
associated with an increased risk of 60-69% and 10% respectively. On the other hand,
carriers of ATM and NBN are predisposed to HBOC syndrome and also conferred with
increased breast cancer risk of 27% and 23% respectively; whereas ERCC2 and FANCC
are HBOC candidate genes. The last two genes are associated with autosomal recessive
diseases, specifically they are FANCG for Fanconi Anemia and BLM for Bloom Syndrome.

The classification of germline variants can be summarised with a rule that most
missense variants are classified as VUS, while the rest tend to be classified as (likely)
pathogenic. The only five exceptions include four germline missense variants in BRCA1,
ERCC2, FANCB, ATRX being classified as (likely) benign and one germline frameshift
insertion in EPCAM classified as VUS. According to geneticist’s comment, mutations in
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Associated Disease Evidence Gene (Variant Count) HIPO59

Ovarian Cancer,
HBOC

predisposition BRCA2, RAD51C,
RAD51D, BRIP1(3)

6 VUS

HBOC predisposition PALB2, ATM(4), NBN 6 VUS

HBOC candidate RAD50, BARD1,
FAM175A, ERCC2, SLX4

5 GUS

colon cancer predisposition POLE, POLD1(2) 3 VUS

colon cancer candidate MLH3(2) 2 GUS

other hereditary
diseases

ATRX, CDH1, FANCA,
FANCE, STK11, WRN(3)

8 VUS

Table 11.1: VUS or GUS in disease-associating genes, summarized from geneticist’s comments.

the last exons of EPCAM can lead to epigenetic silencing of MSH2, which causes Lynch
Syndrome. However, the variant observed here is intronic and therefore with unknown
significance.

Many of the variants, albeit with unknown significance, occurred in additional genes
implicated in ovarian cancer, colon cancer, HBOC as well as other hereditary diseases.
Table 11.1 provides an overview of these VUSs. The four VUS or GUS not listed
below are one from EPCAM, one from MMS19, and two from FANCM. According to
geneticist’s comment, MMS19 is without established association with diseases, while
FANCM’s association with Fanconi Anemia is under debate[203].

In summary, an overall of 33% (14 out of 42) of the HIPO59 cohort are carriers of
disease-predisposing genes. Among them, 57.1% (8 out of 14) carry high or moderate
penetrance genes for ovarian cancer, 28.6% (4 out of 14) carry pathogenic variants in
HBOC predisposition or candidate genes, while 14.3% (2 out of 14) are carriers of other
hereditary diseases.

11.2 rare germline variants are enriched in ddr pathways

In the previous section, hereditary factor was shown to contribute to a significant
proportion of the HIPO59 cohort. Variants involved ranged from VUS to high penetrance
and the affected functions possibly span the spectrum of different DDR sub-pathways.
Nonetheless, we have not yet excluded the possibility that this significant contribution
is due to gene selection bias.

The GermFxn call set, comprising 9,056 germline variants in 5,796 genes, was derived
from the ClinicalWorkflow as described in Section 7.2. It consists of germline variants
that are rare in the population, as well as bearing a potential of changing the expression
or the structure of its protein product. The number of rare variants found in each
patient ranges from 177 to 331, with a median number of 209. The objective of this
section is therefore to perform functional enrichment analysis and see whether these
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Figure 11.2: Functional enrichment analysis of germline variants. The p-value of ten gene sets in
two scenarios (HIPO59 or HGSC) are shown in (A), where gene sets being significant in either
scenario are labeled with its name. In (B) a Venn Diagram shows the degree of membership
redundancy between significant pathways. A detailed look at the redundancy is shown in (C),
where genes are arranged in column and pathways in the rows. The color encoded a gene’s
membership of the pathways as well as whether germline variants were observed in HIPO59.
Specifically, light grey stands for non-members, dark grey stands for members of the pathway
without germline variants observed, red stands for pathway members with germline variant
observed.

variants preferentially arise from DDR pathway or its nine sub-categories. More details
about the analysis is described in Section 8.6.2.

In this analysis, ten gene sets are tested in two scenarios: one using the entire GermFxn
call set from HIPO59 and the other using the subset found only in HGSC patients. The
p-value of one-sided Fisher’s exact test in the two scenarios were listed in Table B.3, and
visualized in Figure 11.2(A). In either scenario the germline variants are significantly
associated with four gene sets, including the overall DNA Damage Response pathway
(DDR, p-value=0.00022) and its three subpathways, namely, Homology-dependent re-
combination repair (HRR, p-value=0.00223), Fanconi Anemia pathway (p-value=0.0251)
and Non-homologous End Joining pathway (NHEJ, p-value=0.0383). The “Others”
sub-category (p-value=0.0162) was enriched only when considering the entire cohort.

Of note, there are redundancies in the definition of these gene sets due to repair path-
way cross-talks and multi-functional genes. The Venn Diagram in Figure 11.2(B) shows
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the member overlap in three significant subpathways. When looking at the gene level,
Figure 11.2(C) further showed that some germline variants from multi-functional genes
simultaneously contribute to different sub-categories and might therefore contribute to
their associations.

Using an unbiased approach, this section showed that there is indeed more germline
variants arising from DNA damage response pathway, especially from its sub-categories
related to DNA double-strand break repair.

11.3 germline and somatic landscape of ddr pathways

In addition to the aforementioned germline pathogenic variants associated with DDR

defect, the objective of this section is to see how often such defect occurs in the somatic
setting. Assuming driving events would already exist in tumor founder clone, only
truncal somatic events are considered here, with details described in Section 8.7.2.

Figure 11.3 summarizes DDR pathway disruptions due to truncal mutations and
indels in each patient. The upper panel displays, in each of the nine DDR sub-categories,
number of genes harboring germline variations; while the lower panel displays, in the
DDR pathway as well as in its HRR sub-category, number of genes targeted by somatic
events. Of note, recurrent driver genes like TP53 and BRCA genes function in different
DDR sub-categories (as described in Table 6.2), therefore, their status are specifically
annotated at the top of each panel.

In germline setting, rare variants were observed in 1 to 10 DDR pathway member
genes, with a median number of 4 genes. This number does not correlate with the total
number of germline variants found in each patient (R=0.2, p-value=0.2). As described
in the previous section, 33% (14 out of 42) of the patients harbor germline pathogenic
variants and half (7 out of 14) of them locate in BRCA1. There was no evidence of a
higher rare germline variant burden in patients carrying germline pathogenic variant
(Welch t-test, p-value=0.79).

On the other hand, truncal somatic events occurred in 1 to 9 DDR genes, with a
median of 2 genes. This number correlates with the Somatic Variant Number found in
all related samples (R=0.53, p-value=0.0076). Deleterious variants, classified according
to Section 8.7.1, were found in 38% (16 out of 42) of the HIPO59 cohort, where 69% (11

out of 16) of the cases were attributed to BRCA1 (1 patient), BRCA2 (2 patients) and
TP53 (8 patients). There was no evidence of a higher somatic variant burden in patients
carrying somatic deleterious variant (Welch t-test, p-value=0.57).

When stratified for histotype and genomic subtype, germline pathogenic or truncal
somatic deleterious events in DDR pathway gens occur in 80% (16 out of 20) of the
HGSC H-HRD subgroup, 46% (6 out of 13) of the HGSC H-FBI subgroup and 66.7% (6
out of 9) of the OTHER subgroup comprising all other histotypes (see Table B.4). When
focusing on HGSC histotype, a tendency of enrichment in H-HRD subgroup (OR=4.43,
p-value=0.051) was observed.

Mutual exclusivity was also observed in the occurrence of germline pathogenic events
and truncal somatic deleterious events (OR=0.174, p-value=0.0253). Moreover, when
stratified into genomic subgroups, the mutual exclusivity pattern exists only in the
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Figure 11.3: DNA damage response disruptions in germline (upper panel) and in somatic
(lower panel) settings. Patients are arranged in columns and stratified into three groups,
namely the two HGSC genomic subgroups (H-FBI and H-HRD) and all other ovarian cancer
histotypes (OTHER). Rows represent pathways and are separated into two panels. Each
panel consists of annotations (variant number, driver status) and a matrix displaying number
of pathway member genes affected. Whenever a germline pathogenic variant or a truncal
somatic deleterious variant exists in any of the pathway member genes, the corresponding
matrix cell is labeled with symbol *. Color encoding for the matrices and annotations can be
found in the left and right column of the legend, separately.

H-HRD subgroup (OR=0.083, p-value=0.0249) but not in the H-FBI subgroup (OR=0,
p-value=0.462).

Collectively, the result suggested that 66.7% (28 out of 42) of the HIPO59 cohort
harbor potential driving events in DDR pathway genes, either in the form of germline
pathogenic variant and/or truncal somatic deleterious variant. When restricted to
HGSC subtype, these events tend to enrich in H-HRD subgroup. Moreover, they occur
in a mutually exclusive manner, especially in the H-HRD subgroup.

11.4 aberrations potentially contributing to ddr defect

In order to provide a comprehensive landscape at the gene level, the DDR pathway
is decomposed into its 276 member genes in this section. Out of the 128 member
genes that contain germline or somatic variants, Figure 11.4 shows the 42 genes
having either deleterious or potential bi-allelic events in any of the samples. Deleterious
events, classified according to Section 8.7.1, encompass pathogenic or protein-truncating
mutations and indels. Bi-allelic inactivation, on the other hand, potentially results from
genes targeted with multiple-hits or LOH.

First of all, potential driving events described in the previous section (see Figure 11.3
and Table B.4) were examined for bi-allelic inactivation.

Driving events in known driver genes, including TP53, BRCA1 and BRCA2, were
found in 18 patients and mostly accompanied by LOH. BRCA1 variants were oftentimes
observed as germline pathogenic variants and affected 8 patients. Somatic truncal
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Figure 11.4: Germline-somatic landscape of DDR pathway genes. Patients are arranged in
columns and stratified into three groups, while genes in row are grouped by their function
into either HRR axis or other DDR pathways. Different colors represent different predicted
functional consequences, where red stands for pathogenic or transcript-truncating events,
yellow for protein-changing events and grey for benign variants assessed by geneticists.
Different symbols stand for variants being either germline event (2), multiple variants
occurring in the same gene ( ) or accompanied by loss of heterozygosity(×).
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deleterious variants were detected in TP53 in 8 patients and BRCA2 in 2 patients.
Of these variants, only two were observed without LOH and one of the samples
(H059-9BFZJ8) potentially had too low purity (13%) to discern copy number changes.

Some of these 18 patients have additional potential driving events co-existing. These
include germline pathogenic variants in ATM, FANCG, BLM and truncal somatic
deleterious variant in SPO11, BLM. These variants were mostly without LOH except
for BLM in patient H059-TM8F. It was targeted with multiple hits, but only the somatic
variant of BLM being accompanied by LOH.

Regarding patients without such events in known drivers, other potential driving
events were observed. Three patients in the H-FBI subgroup had disruptions in ERCC2,
DDB1 and NBN genes but without LOH. Four patients in the H-HRD subgroup
harbored events in DDB1, POLH, RAD51C and ATM, where all but DDB1 lost their
wild type alleles. Additional driving events were also observed in three patients with
all OTHER histotypes. Among them, two patients had events in ATM and FANCC and
without LOH; however ATM occurred in another sample (H059-VDKDQX, tumor6)
with very low purity (20%). Notably, the third patient harbors two deleterious variants
in PTEN that likely target different alleles. Overall, among patients without known
driving events, potential driving events were accompanied by LOH more often in
patients from the H-HRD subgroup.

Secondly, variants other than potential driving events were also profiled in Figure 11.4.
Among HGSC patients, truncal somatic variants were observed in TP53 in 93.9% (31

out of 33) of the cases and only one low purity sample(H059-9BFZJ8, tumor5) showed
no evidence of wild type allele lost. Other variants in known drivers include a BRCA1

germline benign variant (with LOH) and a BRCA2 germline VUS variant (without
LOH).

Recurrent LOH events also occurred in genes other than known drivers. In total,
there were seven additional genes that contain more than one germline or somatic
variants accompanied by LOH. These are ATM(1/9, denoting the finding where out of
9 patients harboring germline or somatic event in any of related samples, one of them
was accompanied with LOH), BRIP1(3/4), PARP4(1/3), RAD51C(2/2), WEE1(2/2),
WRN(1/3) and XRCC3(1/3).

Similar to BRCA1 that can be disrupted in either germline or somatic setting in
different patients, such pattern also apply to other disease-predisposing genes. Among
genes described in Table 11.1 , this phenomena was also observed in ATM, BARD1,
BLM, BRCA2, BRIP1, NBN, POLD1 and SLX4.

Collectively, potential driving events in known driver genes tend to be recurrent
and biallelically inactivated. In other genes, such events were more often with LOH
in patients without known driving events and belong to the H-HRD subgroup. Other
variants of unknown significance were also observed with recurrent LOH or targeted
in both germline and somatic setting and are therefore worth further investigation.
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Figure 11.5: Mutational signature analysis in HIPO59, where the absolute exposure is shown
in (A) and the relative contribution shown in (B). Samples are ordered by subgroups and
sample name.

11.5 genomic footprints of ddr defect

When DDR system is not functioning properly, the genetic information of parental
cells can be transmitted to daughter cells with lower fidelity. Genomic footprints
resulting from unrepaired or wrongly repaired DNA damage can present in various
forms, ranging from small mutations, indels to different structural variants.

This section uses these downstream evidences to infer the underlying mutational
processes operating in the tumor cells. In most of the subsections, the activity of all
known signatures are considered, except for Section 11.5.1 and Section 11.5.2 which
focus on active signatures identified in each sample.

11.5.1 Single Base substitution signature

The activities of 30 known mutational signatures from COSMICv2[195] are profiled
in Figure 11.5. Among the 12 signatures being active in at least one sample in HIPO59

cohort, the three contributed the most to the cohort are listed in Table 11.2, and the full
list can be found in Table B.5.

The three active signatures contributed the most are AC3, AC8 and AC1 (see Ta-
ble 11.2). AC3, a footprint of HRD, was active in most of the tumors except for
H059-PH6WVA. AC8 is a signature of unknown process and also observed in the
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Signature Patient Average
Fraction

Signature Description

AC3 41 47.4 defect DNA DSB homologous
recombination repair

AC8 40 19.3 unknown

AC1 30 24 spontaneous deamination

Table 11.2: Top three active mutational signatures in HIPO59. The third column summarizes
average fraction of each signature among patients with active signatures (second column).

majority of the cohort. AC1, a clock-wise signature, is active in 71% of all patients.
Notably, AC1 is active in all H-FBI subgroup, but only 45% of H-HRD cohort.

There were also biologically meaningful signatures occurring in a small subset of
samples. The three patients with hypermutator phenotype can be explained by either
MMR defect signature (AC26), APOBEC signatures (AC2 and AC13) or Polymerase eta
signature (AC9). Specifically, H059-F9BQHA had active AC9 and AC26, H059-H9Q5W6

had AC13, whereas in H059-YYNAEG, both AC2 and AC13 were observed.
On the other hand, some patients without hypermutator phenotype also harbor

footprint from the aforementioned four signatures. These are H059-PH6WVA (AC2,
AC9), H059-ESPXYL (AC13), H059-5DFS (AC9), and H059-TM8F (AC9).

Notably, H059-ESPXYL harbors a germline stopgain variant in BRCA2. This variant
was excluded by ClinicalWorkflow due to its commonality in the population, and was
also evaluated as benign by geneticist. Although its pathogenicity is under debate and
association with breast cancer was reported[204], there were not much of AC3 footprint
observed in this patient.

11.5.2 Indel signature

The activities of 18 known indel signatures from COSMICv3[196] are profiled in
Figure 11.6. There were 9 active signatures identified in HIPO59 cohort, the four
contributed the most to the cohort are listed in Table 11.3, and the full list can be found
in Table B.5.

The four active signatures contributed the most are ID6, ID12, ID1 and ID8 (see
Table 11.3), where ID6 and ID8 are again related to DSB repair defect. Among the three
patients showing excess burden of mutations, only H059-F9BQHA, the one with active
AC26 (MMR defect), showed also excess of indels and high activities of ID1 and ID2

signatures.

11.5.3 Rearrangement signature

The activities of 6 rearrangement signatures from previous breast cancer study[26]
are profiled in Figure 11.7. The four signatures contributed the most to the cohort are
listed in Table 11.4, and the full list can be found in Table B.5.
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Figure 11.6: Indel signature analysis in HIPO59, where the absolute contribution is shown in
(A) and the relative contribution shown in (B). Samples are ordered by subgroups and sample
name.

Signature Patient Average
Fraction

Description

ID6 35 39.98 DSB repair by NHEJ; defective HRR

ID12 35 30.6 unknown

ID1 40 14.12 Replication slippage, sometimes
defective DNA MMR

ID8 31 15.7 DSB repair by NHEJ

Table 11.3: Top active indel signatures in HIPO59. The third column summarizes average
fraction of each signature among patients with active signatures (second column).
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Figure 11.7: Rearrangement signature analysis in HIPO59, where the absolute contribution is
shown in (A) and the relative contribution shown in (B). Samples are ordered by subgroups
and sample name.
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Signature Average Fraction Patient

Br.RS2 42 33.8

Br.RS5 41 32.2

Br.RS3 18 29.1

Br.RS1 27 18.6

Table 11.4: Top active rearrangement signatures in HIPO59. The third column summarizes
average fraction of each signature among patients with active signatures (second column).

The four active signatures contributed the most to the cohort are RS2 (34%), RS5

(31%), RS3 (14%), RS1 (12%), where RS1, RS3 and RS5 are associated with defects in HR
as described in the breast cancer study. In HIPO59 cohort, RS2 and RS5 were observed
to be active in majority of the patients, while RS3 and RS1 were active in only a subset
of the cohort.

11.5.4 Comparing signature activities between samples and subgroups

When comparing samples in pair-wise manner, it is shown in a later section (see
Section 12.1) that samples are only similar when derived from the same patient. This
holds true when comparing mutations, indels, structural variants and copy number
changes. It is therefore interesting to investigate the similarity of signature activities
between different samples. To perform these comparisons, the normalized exposure
were used and in terms of mutational signatures, the normalized exposures from all 30

signatures (stage I result in Section 8.8) were used.
For all possible pairs of samples, the Pearson correlation coefficients were calculated

between pairs of signature activities, and the distribution of pairwise correlations
between related and unrelated samples are profiled in Figure 11.8. In consistent with
observations in the later section (see Figure 12.3(A)), signature activity profiles usually
showed high correlation between related samples. However, unlike those observed in
mutation and indels (see Figure 12.1), structural variants (see Figure B.6) and copy
number profiles (see Figure B.7), there were sometimes similar signature activity profiles
observed between unrelated samples (see Figure B.5).

Next, activities of all signatures from three types of signature sets are compared
between HGSC genomic subgroups. Figure 11.9 shows only those with significant
differences using Welch t-test with bonferroni correction (see Table B.6 for test result).
Interestingly, in all three types of signature sets, signatures related to DSB repair
defect were all significantly higher in H-HRD subgroup, including AC3 in mutational
signatures, ID6 and ID8 in indel signatures, as well as RS3 and RS5 in rearrangement
signatures.
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Figure 11.8: From each pair of
samples, a Pearson correlation
coefficient was calculated us-
ing their signature activities.
The distribution of correlation
scores between related samples
(red) and between unrelated
samples (yellow) are profiled
separately.

11.5.5 Homologous recombination deficiency score

Another genomic footprint, HRD score, is summarized from copy number profiles.
It has been routinely used in clinical trials to identify patients that might respond
better for PARP inhibitor treatment in different cancer types. Therefore, it is of clinical
relevance to know how the scores behaves in two HGSC genomic subgroups.

At first, the correlation between different component scores were compared. Fig-
ure 11.10(A) shows that LOH and LST had high correlation (R=0.69) between each other,
and they both correlate well with the composite HRD score (R>0.85). On the other
hand, TAI score showed low correlation with other component scores (LOH, LST) nor
with the HRD score.

Next, the four scores were compared between HGSC genomic subgroups using
Welch t-test. Figure 11.10(B) shows that both component scores (LOH, LST) and com-
posite HRD score are significantly higher in H-HRD group, while LST score is not
discriminative between the two groups. The test result can be found in Table B.7.

Furthermore, to quantify the ability of the four scores to discriminate two genomic
subgroups, their receiver operating characteristic (ROC) curves were calculated using R
package ‘ROCit‘ and visualized in Figure 11.11. The four curves with area under the
ROC curve (AUC) ordered from high to low are HRD score (0.8954), LOH (0.8799), LST
(0.8783) and lastly TAI (0.5564).
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Figure 11.9: Significant differences in signature activities between HGSC genomic subgroups.
Samples are divided into group 1 (17 H-FBI tumors). A Welch t-test was performed for each
of all 54 signatures from three types of signature sets, and all the p-values were adjusted for
bonferroni correction. The test result can be found in Table B.6 and only those with p.adj <
0.05 are shown in the figure.
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Figure 11.10: The mutual correlation between HRD score (total) and its three component
scores (LOH, TAI and LST) are calculated in (A), where the upper panel shows the pair-wise
Pearson correlation coefficient and the lower panel shows the p-value. These scores were also
compared between two HGSC subtypes using Welch t-test. Comparisons with significant
p-value (<0.05) are marked with stars.

Figure 11.11: Discriminative
power of HRD score and its
three component scores for
separating genomic subgroups.



12
T U M O R H E T E R O G E N E I T Y

HIPO59 is a multi-sample cohort (see Section 6.2) and there are 23 patients with
multiple sites sampled. In this section, quantitative measures are used to compare
genomes between tumor pairs. Jaccard Index, as described in Section 8.9.1, can be
used to measure their similarity. It takes values between 0 to 1, with a larger value
representing a higher degree of similarity. Inversely, Heterogeneity Index, defined
as 1− Jaccard Index, tells the opposite. The following sections use these measures to
look at similarities between tumors in Section 12.1 and stratify patients in Section 12.2.
Given the patient stratification, tumor phylogeny for each patient are visualized in
Section 12.3 and their implication in patient survival was investigated in Section 12.4.

12.1 quantifying similarity between tumor samples

In HIPO59 there are 23 patients with multiple samples. A pair-wise comparison
between all these samples were done based on somatic functional mutations and indels,
where a Jaccard Index measures the similarity between two callsets from the sample
pair. Figure 12.1(A) visualize the result of all comparisons in a heatmap. On the other
hand, Figure 12.1(B) shows only the scores for related samples from the same patient.

Using the same approach, sample similarity can also be measured based on structural
variants (see Figure B.6) and copy number profiles (see Figure B.7). The three quantified
heterogeneity measures for each sample can be found in the Compact disc along with
the thesis (Tumor_Heterogeneity_SAMPLE.txt).

In principle the three measures show similar tendency while with different dynamic
ranges. Two pairs of comparisons are visualized in Figure 12.2 as examples. Subfigures
A, C, E compares two similar samples (tumor7 and tumor5) from patient H059-DQNU,
while Subfigures B, D, F contrasts two very different samples (tumor7 and tumor5)
from patient H059-6GM3. For mutations and indels, their variant allele frequency (VAF)
in two samples are compared. In Figure 12.2(A) most variants lie close to the diagonal,
meaning their VAFs are similar. In contrast, many variants lying on the x-axis or y-axis
in Figure 12.2(B) shows that they are private to either samples. Structural variants are
compared in circos plot in Figure 12.2(C,D), where each SV is visualized by one line
connecting two genomic locations. Copy number profiles are compared by showing
the log2 value of copy number ratio between two samples. Segments lying at baseline
0 means the two samples have same allele specific copy number at this segment.
Altogether it shows that the Jaccard Index reflect true heterogeneity between samples.

109
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Figure 12.1: Pair-wise sample comparisons based on small variants. In (A) similarity between
all sample pairs are shown, where samples arranged in columns and rows are in the same
order. Each cell is one Jaccard Index of corresponding sample pair. (B) shows the degree of
sample similarity in each patient, where a data point represent one score between a pair of
related samples from this patient. All comparisons from the same patient are connected with
a line to visualize the range of similarity score.
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Figure 12.2: Examples showing two sample pairs with high (A,C,E) and low (B,D,F) similarity.
Small variants have their VAFs compared in (A) and (B), with similar variants locating at
the diagonal. Structural variants are compared in (C) and (D), where shared SV events are
colored in grey and private ones colored in orange. In (E) and (F) the allele-specific copy
number (ASCN) profiles are compared. The major allele and minor allele are colored in orange
and blue, separately.
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Figure 12.3: From each pair of sample comparisons, three heterogeneity indexes were indepen-
dently derived from small variants, structural variants and copy number alterations. The
distribution of three scores are compared in (A) and their mutual relationships profiled in
(B,C,D). Based on these scores, each comparison is further clustered into high, medium and
low heterogeneity groups encoded by blue, orange and green color, separately.

12.2 stratify patients with heterogeneity score

Three Heterogeneity Indexes, derived from Jaccard Index, were calculated for each
sample pair and their different dynamic ranges were shown in Figure 12.3(A). These
within patient comparisons were each visualized as a data point in Figure 12.3(B,C,D),
where the relationship between three scores were profiled. The scatter plots show that
these scores were mutually correlated. After having the comparisons classified into
three clusters according to Section 8.9.2, the cluster membership was further encoded
by different colors in the scatter plots.

The three clusters are named High, Medium and Low heterogeneity groups. Table 12.1
shows the number of sample pairs assigned to each group, as well as the final group
assignment of each patient. This result can also be found in the Compact disc along
with the thesis (Tumor_Heterogeneity_PID.txt). In the end, there are 4 patients in the
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group with high heterogeneity, 6 in the Medium group and 11 in the Low group.
Notably, 4 (67%) of 6 patients in the Medium group are with non-HGSC histotype.

In addition, for the 7 patients having more than two samples, most of the pair-wise
comparisons were consistently assigned to the same heterogeneity group. The only
exception was found in H059-ASG5U9, where her 3 pre-treatment samples showed
medium heterogeneity, while the interval debulking sample were more similar to one
of the pre-treatment sample.

12.3 phylogenetic tree of tumor samples

A phylogenetic tree embeds the evolutionary relationships among different samples
from the same patient. Constructed from small variants, Figure 12.4 displays such trees
for 15 HGSC patients underwent heterogeneity stratification, with heterogeneity group
encoded by different colors in the subplot titles.

At the top of a tree shows a green root node representing the germline genome
of the patient. Each tree starts with the germline genome and end with leaf nodes
representing different tumors sampled for sequencing. While traversing the tree from
the root node (germline) to a leaf node (tumor), the altitude difference encodes the
number of small variants accumulated during tumor transformation. Notably, in every
tree there is one orange node named Most Recent Common Ancestor (MRCA), which
is a proposed ancestor of observed tumors. It is assumed that the MRCA once existed
at some time point during tumor development and gave rise to different tumors.

As the altitude from germline node to MRCA node encodes the shared small variants
between all samples, this distance would reflect the heterogeneity status between
samples. As expected, patients in High heterogeneity group have MRCA node closer to
the root node, implying an earlier divergence of different tumors; whereas patients in
Low heterogeneity group likely had their MRCA emerged later in the tumor phylogeny.
This suggests a correspondence between the heterogeneity grouping and the phylogeny
topology.

12.4 potential clinical implication of heterogeneity status

To investigate the prognosis value of the heterogeneity grouping, the survival status
was compared between HGSC patients in Low heterogeneity group (n=10) versus
patients in High or Medium heterogeneity groups (n=5). Figure 12.5 suggests a trend
that patients with lower heterogeneity between samples tend to have unfavorable
outcomes.
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Patient Histotype High Medium Low Patient Group

H059-0EJ9 HGSC 1 0 0 High

H059-41N6F7 HGSC 1 0 0 High

H059-6GM3 HGSC 3 0 0 High

H059-3DCX HGSC 0 3 0 Medium

H059-NV4KXQ HGSC 0 1 0 Medium

H059-1LUEUK HGSC 0 0 1 Low

H059-28C2CC HGSC 0 0 1 Low

H059-5DFS HGSC 0 0 1 Low

H059-8Y1SE7 HGSC 0 0 3 Low

H059-DQNU HGSC 0 0 3 Low

H059-ESPXYL HGSC 0 0 1 Low

H059-F9BQHA HGSC 0 0 3 Low

H059-N8J8 HGSC 0 0 1 Low

H059-QQBCPM HGSC 0 0 1 Low

H059-YKP3 HGSC 0 0 1 Low

H059-LABYUN OTHER 1 0 0 High

H059-ASG5U9 OTHER 0 5 1 Medium

H059-D096 OTHER 0 1 0 Medium

H059-N4GQ OTHER 0 1 0 Medium

H059-RHVSYD OTHER 0 1 0 Medium

H059-TM8F OTHER 0 0 3 Low

Table 12.1: Heterogeneity group assignment for multi-sample patients. The three columns
Cluster1, Cluster2 and Cluster3 list the number of sample-pairs classified into each cluster.
Each patient is then assigned a heterogeneity group according to the voting of these sample-
pair assignments, where the three clusters encode for High (Cluster 1), Medium (Cluster 2)
and Low (Cluster 3) heterogeneity groups.
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Figure 12.4: Tumor phylogenetic tree for HGSC patients. In each tree the nodes represent a
specific genomic composition, where green node indicates the germline genome, orange
node stands for a conceptual MRCA and leaf nodes represent observed samples. The number
labeled at each branch described the number of small variant changes that are different
between the two connected tree nodes. Heterogeneity group assignment of each patient is
encoded by the color of patient label.
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Figure 12.5: Prognostic value of heterogeneity grouping. HGSC patients are grouped in to High
(high and medium heterogeneity groups, n=5) and Low (low heterogeneity group, n=10)
groups. The Kaplan-Meier (K-M) plot on the left compares the progression-free survival (PFS)
between two groups, where High and Low groups are encoded with blue and red colors
separately. The K-M plot on the right, on the other hand, compares overall survival (OS)
between the groups.



13
T U M O R E V O L U T I O N

Each tumor is sampled at one time point in the tumor developmental process. Given
the single snapshot, scientists have been trying to computationally dissect the temporal
order of observed molecular events. In this section, computational methods capable of
inferring the relative time order of major molecular events were used to estimate when
these events happened during tumor evolution. The multi-sample design of HIPO59

further offer finer time granularity when dissecting the process.
Starting with identifying WGD occurrence in Section 13.1, the subsequent subsections

estimated the timing of small variants (Section 13.2), and the timing of WGD and
MRCAs (Section 13.3). A reconstruction of tumor evolution trajectory for each patient
then place these events in order in Section 13.4. Lastly, the temporal change in the
activities of mutational processes were revealed in Section 13.5.

13.1 whole genome duplication

Identifying WGD status in individual samples

The occurrence of WGD in individual tumor can be identified and classified according
to Section 8.10.1. Figure 13.1 shows that WGD occurred in 35 (49%) of 71 samples in
the HIPO59 cohort. When looking at the timing of copy number gains, 30 (86%) of 35

WGD-positive tumors had most of the gains occured at concordant timing. Notably, as
opposed to H-HRD subgroup where WGD occurred in 36% (13 out of 36) of the cases,
all 17 H-FBI tumors showed WGD.

Measures associated with WGD status

Next, the association between WGD status and copy-number associated measures
were examined. For the 23 patients with multiple samples, Figure 13.2(A) shows that
the median of all within patient heterogeneity index (HET_CNA) was associated with WGD
status (with or without WGD) and independent of Histotype (HGSC or OTHER).

As to the association with CIN, Figure 13.2(B) profiles the wGII scores of 42 patients,
taking the median if multiple samples were available, and showed that wGII score had
a histotype-dependent association with WGD status. In non-HGSC (OTHER) histotypes,
WGD is associated with higher level of CIN. However, in HGSCs the CIN level was
already high in WGD-negative (nWGD) cases and therefore not distinguishable from
WGD-positive cases.

Given that heterogeneity suggested a trend of better prognosis (see Figure 12.5), WGD
status might also bear clinical implications as it associated with one of the heterogeneity
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Figure 13.1: Whole genome duplication in HIPO59. WGD status stratified by timing concordance
in (A) and by Shah-2017 genomic subgroups in (B). A sample can have ploidy status of either
WGD (WGD) or near-diploid (ND). There were three categories of timing concordance, being
synchronous (sync), asynchronous (async) and uninformative.

Figure 13.2: Association between WGD and CNA-based measures are shown for (A) hetero-
geneity index (HET_CNA) and (B) chromosomal instability (wGII score). In the upper panel, the
scores were first stratified by WGD-positive (WGD) and WGD-negative (nWGD) and then by
histotype (HGSC, OTHER), finally by HGSC genomic subgroup (H-FBI, H-HRD). Statistical
tests on the associations were done with R function ‘aov‘, with the formula and results listed
in the lower panel.
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Figure 13.3: Prognostic value of WGD status. HGSC patients were grouped in to WGD (n=20)
and nWGD (n=12) groups. The K-M plot on the left compares the PFS between two groups,
where nWGD and WGD groups are encoded with blue and red colors separately. The K-M
plot on the right, on the other hand, compares OS between the groups.

index. As expected, WGD status suggested a similar, but weaker trend for better OS in
Figure 13.3.

13.2 timing of small variants

After excluding potential germline variants in the SomFxn call set, 615,741 mutations
and 83,047 indels were analyzed with MutationTime algorithm. Given a conceptualized
tumor evolution process in Figure 8.4, the algorithm categorizes small variants into
four timing categories corresponding to four epochs during evolution (early clonal, late
clonal, unspecified clonal and subclonal).

13.2.1 Overview of variant timing in individual samples

Figure 13.4 profiles the timing class composition for small variants detected in each
of 71 samples in HIPO59.

When comparing the composition in mutations to that in indels, Welch t-test with
bonferroni correction suggested that the three clonal categories showed similar fraction
among all patients. However, there were significantly more indels classified as subclonal
or NA as compared to mutations (see Figure B.8).

In general, there were no significant difference in the composition between subgroups.
Instead, Figure B.8(C) used a Welch t-test with bonferroni correction and showed that in
WGD-positive tumors, higher fraction of timing classes “clonal [early]” (p.adj=8.28e-7)
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and “clonal [late]” (p.adj=1.09e-13) were observed when compared to WGD-negative
tumors. This observation was as expected as more of the clonal variants were able to be
timed in WGD-positive tumors.

13.2.2 Timing of variants in cancer-associated genes

Instead of aggregating variants by sample, one can also aggregate variants by gene.
Following Gerstung’s tutorial[199] section 4, Figure 13.5 profiled the timing class
composition of functional variants in cancer-associated genes defined in Cancer Gene
Census (CGC)[178] (see Section 6.3). Among the 717 genes in CGC, only 26 genes
mutated in more than three samples are profiled.

The most recurrently mutated gene, TP53, were always clonal and emerged in the
“clonal [early]” epoch in 61% of the time. Somatic variants in BRCA2 were classified as
“clonal [NA]” for patient H059-E3Z5MP and “clonal [early]” for patient H059-H9Q5W6.
The only somatic variant in BRCA1 was detected in H059-M3SDDT and classified as
“clonal [NA]”.

13.2.3 Role of DDR genes, OGs and TSGs in different tumor epochs

To investigate whether DDR genes, TSG and OG would play role in different tumor
developmental stages, timed variants were further segregated into non-overlapping
gene sets. The three gene sets of interest are DDR_PanCan (275 DDR-related genes
excluding TP53, see Section 6.3), TSG (200 TSGs excluding overlaps with DDR_PanCan,
see Section 6.3) and OG (242 OGs excluding overlaps with DDR_PanCan, see Section 6.3).

Excluding TP53 variants, there were 2,025 small variants in the three gene sets being
timed, and 264 of them are deleterious variants. Note that these somatic variants
are collected from all HGSC patients except for H059-41N6F7, who later on found
having a different order of tumor epochs. Figure 13.6 showed the temporal trend
of the deleterious variant proportions for three gene sets. In the lower panel, an
interesting trend was observed for H-HRD cases. Column OG displayed that proportion
of deleterious variants in oncogenes slowly increased as tumor evolved. This trend is
concordant with that of all timed variants (in column "All"). However, DDR_PanCan and
TSG deleterious variants are more likely to be found in early stages in tumor evolution,
which is opposite to the overall trend in column "All".

13.3 timing of major events

To infer the chronological time when major events occurred, their timing in mutation
time coordinate should be inferred first and then map it to chronological time coordinate
as described in Section 8.10.3.1. Notably, a faithful mapping requires the mutation rate
being modeled correctly.
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Figure 13.4: Mutations (A) and indels (B) were classified into four timing categories represent-
ing different tumor epochs. Samples are ordered by subgroups, including HGSC genomic
subgroup (H-FBI, H-HRD) and histotype (OTHER). The fraction of mutations in three cate-
gories are further stratified in (C). Each boxplot compares whether WGD-positive (WGD) and
WGD-negative (nWGD) tumors have different abundance in mutations of certain category,
with data points colored according to subgroups.
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Figure 13.5: Timing of functional variants (mutations and indels) in cancer-associated genes. The
x-axis is labeled with the name of the gene and the number of samples harboring functional
variants in that gene.

Figure 13.6: Potentially different roles of DDR-related genes, TSGs and OGs during tumorigenesis.
Proportions of deleterious variants were profiled temporally and stratified into columns by
gene sets (DDR-related genes, TSGs, OGs and all variants) as well as into rows by HGSC
genomic subgroup (H-FBI and H-HRD). The frequency bars are colored by tumor epochs,
with the lighter portion representing the fraction of deleterious variants and labeled with the
number of deleterious variants.
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Figure 13.7: The correlation between age at diagnosis and CpG>TpG mutations, the main
footprint of COSMICv2 Signature 1, is shown in (A). The CpG>TpG mutation rate (B) and
age of diagnosis (C) were compared between HGSC genomic subgroups (H-FBI and H-HRD).
Note that patient H059-4PVFGF, shown as the blue data point outside the dashed lines in (A),
was identified as an age outlier and excluded in all three analyses. The outlier identification
used a threshold of median± 2×Median Absolute Deviation, where the lower (44 years) and
upper (85 years) threshold were shown as dashed lines.

13.3.1 Examine assumptions for molecular clock

CpG>TpG mutation number was known to scale proportionally with chronological
time[25] and considered a better molecular clock. This assumption was examined in
Figure 13.7, which profiles the relationship between mutation and age in HIPO59

HGSC patients excluding one outlier being a patient (H059-4PVFGF) diagnosed at
exceptionally young age (25 years).

In Figure 13.7(A), the CpG>TpG mutation burden showed correlation with age
at diagnosis (R=0.31, p-value=0.028). A linear regression analysis was done and the
fitted line shown in grey. The Pearson correlation coefficient increased to 0.45 (p-
value=0.00092) when the outlier was included. Furthermore, the mutation rate remained
invariable between two HGSC subgroups (see Figure 13.7(B)) and also not dependent
of age (R=-0.12, p-value=0.42). Nonetheless, the CpG>TpG mutation burden did not
show significant difference between two subgroups (Welch t-test p-value=0.71) despite
a significantly different age distribution observed in Figure 13.7(C).
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13.3.2 Timing of WGD, MRCA-PID and MRCA-SAMPLE

The timing of three major events were calculated according to Section 8.10.3. The
mutation time and chronological time are shown in pairs in Figure 13.8 for WGD (A,B),
MRCA-PID (C,D) and MRCA-SAMPLE (E,F). In (B,D,F), the chronological time is expressed in
latency (years before diagnosis), therefore the baseline time=0 correspond to patient’s
age of diagnosis. The boxplot on the right gives an overview of the latency of the
event in all HIPO59 samples, with the median correspond to the rectangles next to
the boxplot at tick “7.5x”. As the mapping between two time coordinates assumed a
mutation rate acceleration of A times, these rectangles ticks correspond to the median
latency of the cohort given different parameters of A (1x, 2.5x, 5x, 7.5x, 10x, 15x and
20x).

In ovarian cancer, WGD seems to happen rather early in the mutation time (A) and dates
back to 2.3 to 65.4 years before diagnosis (B), with a median of 34.6 years. MRCA-SAMPLE,
on the other hand, mostly emerge at the end of mutation time (E) and can be traced
back 0 to 3.5 years before diagnosis (F). MRCA-PID occurred either very early or very late
(C) and the latency ranged from 0.2 to 33.5 years (D). The chronological time estimates
of these three major events in each sample can be found in the Compact disc along
with the thesis (HIPO59_Tumor_Evolution.txt).

As shown in Section 12.3, the more heterogeneity observed between samples from the
same patient, the earlier the divergence in the sample phylogeny tree. When interpreted
in chronological time, it implies that MRCA-PID is traced back earlier in life. Three
patients in High heterogeneity group had MRCA-PID estimated at 11.97, 16.13 and 31.05

years separately. One patient from Median heterogeneity group had MRCA-PID at 2.69

years. In Low heterogeneity group there were 10 patients with MRCA-PID ranged from
0.45 to 4.28 years, with a median of 1.02 years.

Furthermore, as the timing of WGD and MRCA-PID were estimated separately in each
sample, one can compare the event timing between different samples from the same
patient. In Figure B.9, 6 out of 7 patient had WGD timing estimates close to each other
and likely being the same event consistently estimated. MRCA-PID estimation from 15

sample sets are shown in Figure B.10, where 9 sample sets had all samples overlapping
each other in their 80% CIs. Two sample sets showed a deviated estimate in only the
interval debulking sample, which is reasonable as the time lapse between diagnosis
and interval debulking surgery was not considered in the model.

Lastly, the median latency of the three events are arranged in time sequence for each
patient in Figure 13.9. Only patients with multiple samples as well as with evidence
of WGD would have these events connected by segments in the figure. It is observed
that the majority of the cases follow a tumor evolution model where MRCA-PID appear
after WGD. The only exception happened in patient H059-41N6F7, where WGD might have
occurred after MRCA-PID.
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Figure 13.8: The mutation time (A,C,E) and chronological time (B,D,F) were estimated in pairs
for WGD (A,B), MRCA-PID (C,D) and MRCA-SAMPLE (E,F). The y-axis in a mutation time plot shows
the fraction of the HIPO59 cohort and the frequency bars were colored from green (early)
to purple (late). In chronological plots, each data point represents the latency (with 80%
CI) of the event in one sample and colored by subgroups (H-HRD: orange; H-FBI: blue;
OTHER: grey). The rectangles on the right show the median time of the cohort when different
mutation acceleration rate were used in the model.
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Figure 13.9: Occurrence of WGD,
MRCA-PID and MRCA-SAMPLE in
time sequence for each patient.
Each dot represent the median
timing of an event in one pa-
tient, and the lines connect
three events observed in the
same patient.

13.4 tumor evolution in individual patients

As described in Section 8.10.4, the multi-sample design of HIPO59 cohort allows
us to look at tumor developmental trajectory with finer time granularity. Based on
the results in Section 13.2, Section 8.10.4.1 re-classified small variants into two to four
tumor epochs depending on which of the four scenarios in Figure 8.5 a sample belongs
to. The objection of this section is to integrate the timing of major events, re-classified
small variants and sample phylogeny tree in order to reconstruct the tumor evolution
in individual patients.

13.4.1 Potential cancer-associated variants in refined tumor epochs

Given re-classified small variants, this section focus on those that are likely associated
with tumorigenesis. These include all TP53 variants, deleterious or LOH variants in
42 DDR-related genes profiled in Figure 11.4, as well as deleterious variants in 717

cancer-associated genes in CGC[178] (see Section 6.3). The emergence of these variants
in refined tumor epochs are described in Figure 13.10 for WGD-negative cases and
in Figure 13.11 for WGD-positive tumors. Note that data from two patients were not
shown here, where H059-41N6F7 might had an unusual temporal order of WGD and
MRCA-PID, and for H059-LABYUN there were no relevant variants identified in the low
purity tumors (<0.2 for both samples).
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Figure 13.10: The emergence of DDR- and cancer-associated variants in tumor evolutionary
trajectory are profiled for patients without WGD occurrence (Scenario "Single" and "Multi" in
Figure 8.5). Patient IDs are colored according to subgroups. Genes marked with symbol * are
DDR-associated variants that are not deleterious but accompanied by LOH.
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Figure 13.11: The emergence of DDR- and cancer-associated variants in tumor evolutionary
trajectory are profiled for patients with WGD occurrence (Scenario "Single(WGD)" and
"Multi(WGD)" in Figure 8.5). Patient IDs are colored according to subgroups. Genes marked
with symbol * are DDR-associated variants that are not deleterious but accompanied by LOH.
TP53 marked with " are not neither deleterious nor accompanied by LOH.
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Figure 13.12: Two examples of tumor evolutionary trees for individual patients.
Reconstructed sample phylogeny trees integrating timing of major events and small
variants. The two examples shown are patient H059-NV4KXQ (A) and H059-3ZK0 (B).

13.4.2 Reconstructed tumor evolutionary process in individual patients

The refined timing of small variants, together with the timing of major events (see
Figure 13.9), can then be integrated into the tumor phylogeny in Figure 12.4 and
profiled for each patient. Two examples shown in Figure 13.12 are sample phylogeny
trees for patient H059-NV4KXQ and H059-3ZK0.

In patient H059-NV4KXQ, the MRCA of two samples emerged 1 to 3 years before
diagnosis. The samples shared rare germline missense variants in POLI and DCLRE1B,
both exhibited LOH. Another shared rare germline deleterious variant in RAD51C was
observed with wild type allele lost in tumor7 but not in tumor05. There were also
shared somatic missense variants in TP53 and RAD17. In terms of TP53, wild type
allele lost was observed in both samples. As to RAD17, a second somatic hit occurred
in tumor7 led to lost of wild type allele; while in tumor05 the wild type allele was
possibly retained.

In patient H059-3ZK0, WGD was estimated to had occurred 12.4 years before diagnosis.
One rare germline missense variant were detected in a DDR-related gene LIG3 and
was accompanied by LOH. In the somatic setting, a missense variant in TP53 occurred
before WGD and also had the wild type allele lost. In another cancer-associated gene
PAX8, a deleterious variants emerged subclonally.
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Figure 13.13: Roles of DDR-related genes, TSGs and OGs during tumorigenesis in new tumor
epochs. Proportions of deleterious variants were profiled temporally and stratified into
columns by gene sets (DDR-related genes, TSGs, OGs and all variants) as well as into rows
by HGSC genomic subgroup (H-FBI and H-HRD). The frequency bars are colored by refined
tumor epochs, with the lighter portion representing the fraction of deleterious variants and
labeled with the number of deleterious variants.

13.4.3 Role of DDR genes, OGs and TSGs in refined tumor epochs

With the new timing classification, 2,988 small variants from the three gene sets were
timed and 407 of them are deleterious variants. This amounts to a 47.6% increase of
variant number compared to the previous timing scheme in Section 13.2.3. The temporal
trend of deleterious variant fraction in new tumor epochs is shown in Figure 13.13.
As compared to the previous timing scheme (see Figure 13.6), a similar trend is again
observed for H-HRD cases, where deleterious variants in DDR_PanCan and TSG were
more likely to be found in the early stages in tumor evolution. On the other hand,
deleterious variants in OG more likely emerge in the later stage of tumorigenesis,
consistent with the overall trend in "All".

13.5 temporal change in mutational process activities during tumor

evolution

Figure 11.9 previously showed that, at the time of diagnosis, samples from the two
HGSC genomic subgroups exhibited different level of genomic footprints for AC1 and
AC3. This section aims to dissect the mutational process activities in different tumor
epochs. This is done by performing mutational signature analysis separately for variants
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in different tumor epochs. In the beginning, mutational process activities were profiled
in the original four-epochs identified in Section 13.2. Later on, the activities were
profiled with finer time granularity using re-classified small variants (see Section 13.4),
which was enabled by the multi-sample experimental design of HIPO59.

Given the chronological time of major events estimated in Section 13.3, the absolute
exposure of mutational signatures (Figure 11.5) can be converted into signature rate
(SNVs/yr), an estimate of the number of mutations contributed by a specific signature
per year. This signature rate is profiled in Figure 13.14 for WGD-positive samples. The
left panel shows again that when HGSC is stratified by genomic subgroup, H-FBI had
higher AC1 and lower AC3 compared to H-HRD.

The right panel then estimates the signature rate in three tumor epochs, which
shows the temporal change of signature rate from early clonal, late clonal to subclonal
epochs. Both AC1 and AC3 rate increase along with tumor evolution as modeled
(see Section 8.10.3.1), notably H-FBI has greater rate increase in AC1 whereas H-HRD
showed greater rate increase in AC3. When comparing the two subgroups within each
epoch using Welch t-test, significant difference was observed for AC1 in late clonal
(p-value=0.0081) and subclonal (p-value=0.031) epochs, and for AC3 in early clonal
(p-value=3.4e-6) and subclonal (p-value=0.014) epochs. To note, despite a borderline
significance in late clonal epoch (p-value=0.077), AC3 showed large difference in the
median rate in H-FBI (14.5 SNVs/yr) and H-HRD (65.6 SNVs/yr). As a reference, AC1

is significantly different in late clonal epoch, with a median rate of 11.8 SNVs/yr in
H-FBI and 7.35 SNVs/yr in H-HRD.

Next, we would like to know whether AC3 signature rate had different temporal
changes between H-FBI and H-HRD subgroup. Having observed the difference in AC1

rates acceleration along tumor development, a direct comparison of temporal change
in AC3 rate may not be adequate due to their baseline rate differences. To address
this question, a normalized new measure is used instead. Specifically, Figure 13.15

looks at relative ratio of AC3 rate to AC1 rate in each epoch, which approximates the
relative activity of AC3 to AC1 across tumor development. As the multi-sample design
allows for refined tumor epochs (see Section 8.10.4), there will be two to four timepoints
reconstructed depend on which of the four scenarios a sample belongs to in Figure 8.5.

As a result, temporal change of relative rate are profiled in Figure 13.15(A) for
HIPO59 samples using different scenarios when possible. For example, WGD-positive
cases in multi-sample set would have its tumor evolution reconstructed with both
"Multi" and "WGD_Multi" scenarios. On the other hand, in Figure 13.15(B) the median
of relative rate are taken from multi-sample sets to represent each unique patient, with
a single line connecting different timepoints from the same patient. Taken together, it
shows that AC3 activity in H-HRD tumors tend to arise earlier and to a greater extent
than in H-FBI tumors. Furthermore, it also demonstrates the power of multi-sample
design to reconstruct tumor evolution with better time resolution.



132 tumor evolution

Figure 13.14: Mutation rate of mutational signature AC1 and AC3 are stratified by HGSC
genomic subgroups (left panel) and further by tumor epochs (right panel).
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Figure 13.15: Temporal change of mutational signature 3 activity along tumor evolution. For
each of the four scenarios (rows), the relative rate (AC3/AC1) are profiled in y-axis for each
sample in (A) and for each patient in (B). For visualization purpose, relative rate above 20 are
set as 20.
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D I S C U S S I O N

This thesis started with characterizing the germline and somatic alteration landscapes
of ovarian cancer. Based on HIPO59 cohort, the germline variants in DDRs, somatic
variants in SMGs, gene breakage events in SMGs, and focal SCNAs were profiled and
compared with public cohorts. Within the HGSC histotype, inter-patient comparisons
further revealed intrinsic differences between Shah-2017 genomic subgroups[132]. Sup-
porting evidences showed differences in several layers, including gene alterations in
HRR pathway, DNA footprints reflective of HRR deficiency, as well as temporal activity
change in HRR during tumor development. These collectively suggest the existence of
intrinsic subgroups characterized by different extent and onset timing of HRR defect.

On the other hand, IPH was investigated using spatially separated tumors collected
from the same patient. It was shown that IPH status can be consistently estimated by
different types of somatic alterations. Moreover, a higher level of IPH may be suggestive
of better prognosis. Lastly, for each of the individual patient, an evolutionary tree of
all related samples was reconstructed, where potential driving events in DDR genes
or cancer-associated genes were marked on different tree branches corresponding
to different tumor epochs. In addition, major events like WGD, MRCA of the patient
(MRCA-PID) and MRCA of the sample (MRCA-SAMPLE) were also incorporated in the tree, with
their chronological time of emergence estimated. These findings conform with current
knowledge about ovarian cancer, and additionally provides novel and interesting insight
into the sub-classification and clinical management of HGSC.

14.1 germline and somatic alteration landscapes of ovarian cancer

14.1.1 The majority of ovarian cancers are fueled by CIN

Compared to other solid malignant neoplasms, HGSCs were found to have similar
tumor mutational burden to other cancer types while few SMGs with mostly low
prevalences, together with high level of aneuploidy shaped by recurrent focal SCNAs
with high prevalences. In the TCGA-OV cohort, all SMGs, excluding the ubiquitous
TP53 mutations, collectively affected only 12% of all patients; whereas recurrent focal
SCNAs were found in 94.8% of the samples. Noteworthily, SMGs reported by large
HGSC cohorts are more often tumor suppressors and as shown in the ICGC-AU-OV
study, their inactivation frequencies can increase to three-fold when SVs were taken
into consideration[131].

These observations were recapitulated in the HGSC subset of the HIPO59 cohort.
TP53 was the only SMG identified and was affected in most patients. Among all
reported SMGs, inclusion of gene breakage events led to more than two-fold increase
in inactivation frequencies for NF1 (from 6% to 21%), RB1 (from 0% to 6%) and CDK12
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(from 3% to 9%). Notably, NF1 seems to be more often affected by SVs that result in gene
breakages than those result in gene dosage change. In terms of focal SCNAs, recurrent
peaks identified in HIPO59 had high concordance with those found in TCGA-OV. In
HIPO59, 75% of significantly recurrent arm-level gains or losses, as well as 87% of
subregions containing nominated genes were also found significant in the TCGA cohort.
Taken together, with HIPO59 it was able to recover 1 out of 9 SMGs, as well as 27 out
of 102 gene-containing recurrent focal SCNAs identified in TCGA-OV study[130]. The
shortage comes from an insufficient power given the smaller sample size of HIPO59

(n=33) compared to TCGA-OV (n=316) cohort, as well as the low prevalence of SMGs
which imposed further stringency in detecting recurrent mutations and indels.

From the perspective of functional convergence, a study integrated germline trunca-
tion variants and somatic mutations in the TCGA-OV cohort at pathway and network
level, and found the most prominent set of altered genes lie around the DDR path-
way[205]. In contrast, RB1 pathway, RAS-PI3K pathway and MAPK pathway were more
often targeted by CNAs or gene breakage events induced by SVs[130, 131, 205]. Given
the fact that DDR defect can be a source of CIN, it is reasonable to hypothesize that
the mutagenic events in the early stage are more likely small variants and worked on
DDR pathway, which lead to CIN and fueled the cells to achieve additional hallmarks
of cancer.

In particular, copy number deletions seem to be a prominent feature as more recurrent
losses than gains were observed in HGSC. In HIPO59, the number of chromosome
arm-level recurrent losses were three times higher than that of gains. When it comes
to focal SCNAs, there were also 1.5 times more recurrent losses observed. Using the
driver gene nomination procedure (see Section 8.4.2), novel targets for deletions can
be identified despite HIPO59 being an underpowered study. These include deletion of
BRCA2 and WRN in the HRR pathway, deletion of PIK3R1 in the RAS-PI3K pathway,
and deletion of FBXW7 in RB1 pathway, deletion in SWI/SNF chromatin remodeling
complex components ARID1A and ARID1B, as well as genes in 14 other peaks in
Table 9.3.

Together, mutations and indels are known to more often target TP53 and the DDR
pathway, we further highlight the non-negligible contribution of other alteration mecha-
nisms acting on more tumor suppressor genes, as well as a crucial role of chromosomal
instability in shaping the development of HGSCs.

14.1.2 Germline variants in DDR genes and predisposition to ovarian cancer

Hereditary ovarian cancer is predominantly attributed to germline pathogenic vari-
ants in BRCA1 and BRCA2 genes, hence the long established role of HRR defects in
the genetic predisposition for OC. Despite the fact that hereditary cases accounts for
only a small subset[60], there is a significant heritability (39%) estimated for OC[63].
As more moderate to low penetrance genes are being identified (see Table 3.2), all
of them play roles in repairing DNA damage. Although contemporary studies have
limited power to uncover the full spectrum of genetic associations, especially since
OC is a heterogeneous disease[40], they suggest a strong connection between DDR
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and ovarian cancer predisposition. Furthermore, sporadic OCs overall show complex
karyotypic abnormalities. Insights from other cancer predisposition syndromes suggest
a link between this CIN phenotype and germline defect in DDR genes. Therefore, in this
thesis two approaches were taken to explore potential hereditary cancer predisposition
as a result of DDR defect.

The first approach revealed that in the HIPO59 cohort, there is an excess burden
of germline rare variants in the DDR pathway. When breaking it down into different
subpathways, HRR, FA and NHEJ stood out as preferentially involved. This aligns
well with two previous studies re-analyzing the TCGA-OV cohort, including the above-
mentioned one looking at pathway convergence of germline and somatic variants[205],
as well as the other that examined DDR pathway defect resulting from three somatic
alteration mechanisms. In the latter study, the authors found that small variants, CNAs
and epigenetic silencing were enriched in NHEJ and HRR axes[19]. These observations
collectively suggest that there might be more low penetrance variants leading to
suboptimal function that compromised the DDR system, thereby confer predisposition
to ovarian cancer, and that among nine DDR sub-categories, HRR, FA and NHEJ axes
are of particular importance to OC development. Given that DDR defect is mainly
acquired by, while not restricted to, both germline and somatic small variants, it is
tempting to speculate that it plays a role in the early stage of tumorigenesis.

The second approach aimed to identify the accountable hereditary factor, if any,
for each individual patient. As the prevalence and disease penetrance of a variant
vary by its genomic location in a gene[206], the pathogenicity of germline variants
were determined by human geneticists instead of by in silico prediction. The results
showed that one-third of HIPO59 patients harbor germline pathogenic variants in DDR
pathway, and many of the disrupted genes have not been causally associated with OC.
Similar phenomena were observed in the TCGA-OV cohort. In addition to showing that
germline rare truncations enriched in BRCA1, BRCA2 and PALB2 as expected, scientists
further noticed other germline truncation variants in NF1, MAP3K4, CDKN2B and
MLL3[205]. Noteworthily, findings in HIPO59 highlights two other important aspects
in ovarian cancer predisposition.

First of all, heredity is also an influential factor in other histotypes, as we found 30% of
HGSC and 44% of other histotypes harbors germline pathogenic variants. The majority
of these cases have a defect in the HRR pathway, including 8 out of 10 HGSC patients
and 2 out of 4 OTHER histotype cases. Among these 10 cases with HRR defect, 7 of them
have the variants in BRCA1, with its manifestation not restricted to HGSC histotype.
To add, the frequency of non-HGSC histotype in BRCA-associated tumors observed in
HIPO59 (1 out of 7) is similar to the 14% previously reported[207]. On the other hand,
the four cases with defect in non-HRR axes can show low chromosomal instability.
Specifically, H059-4PVFGF (HGSC) and H059-VDKDQX (OTHER) show low wGII score
of 13.4% and 0.2%, respectively. Although the other two cases had higher wGII score
(both > 60%), their CIN phenotype can be attributed to other factors, including somatic
BRCA1 mutation in H059-M3SDDT (HGSC) and WGD in H059-DSGWDE (OTHER).

Secondly, although only 2 out of 8 affected genes (BRCA1 and RAD51C) have
been shown to be causally associated with OC, the rest are associated with cancer
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predisposition syndromes. Four of them are either confirmed (ATM and NBN) or
candidate (ERCC2 and FANCC) predisposition genes to HBOC syndrome, and the other
two genes (FANCG and BLM) cause the autosomal recessive diseases Fanconi Anemia
and Bloom Syndrome, respectively. This observation highlights the potential importance
of DNA repair syndromes in ovarian cancer predisposition, which can trigger cascade
testing, or can have impact in cancer surveillance in patients with these syndromes.

This cohort is well-suited for investigating germline predisposition in individual
patients. With the aid of tumor-normal WGS, it helps us more confidently determine the
germline and somatic status of variants, and also unveils unexplored inherited factors
without gene selection bias. In-house ClinicalWorkflow further performs rare suscep-
tibility variant discovery by considering their frequencies in non-cancer populations.
Despite the comprehensive assay, limitation lies in the interpretation of the genome
and pathogenicity can be unambiguously evaluated only in a very small fraction of the
genome. As such, human geneticist evaluated 67.3% of the germline variants as either
GUS or VUS. Furthermore, the evaluation is a manual process and only a manageable
amount of prioritized variants were sent for review. We note that some germline non-
missense variants in DDR pathway were not evaluated, these include 19 variants in 17

genes (APEX1, APTX, BRCC3, MDC1, MSH3, NUDT18, POLG, POLM, RAD1, RAD51B,
RAD9A, RFC2, RFC4, RNF4, SOX4, WDR48 and XRCC5).

Nevertheless, our results revealed novel clinically relevant germline pathogenic
variants other than in BRCA genes. This information can be beneficial for patients
and their families, which would have gone otherwise unnoticed given their lack of
established association with OC. The observed excess of rare germline variants in
DDR pathways further support the hypothesis that BRCA genes may not be the only
contributing factors. Together with the 29 common susceptibility alleles reported as
of 2017[208], there might be a polygenic effect of germline variants, where many
low penetrance variants collectively exert an non-negligible effect on ovarian cancer
predisposition.

14.2 unveiling the dichotomy in high-grade serous ovarian carci-
noma

14.2.1 Reproducibility and robustness of HGSC subtypes

There has been an extensive interest in discovering HGSC molecular subtypes, es-
pecially based on transcriptome data. Although clinical grade classification assays
had been developed for expression-based subtyping[162, 163], it has been observed
that the subtyping is influenced by tumor microenvironment[164, 165] and also varies
spatially[162, 165] and temporally[168]. Therefore, its utility as a robust subtyping tool
is subject to limitations owing to this dynamic behavior. In this thesis two prominent
classifications were applied to the HIPO59 cohort, where TDP subgroup[169] possi-
bly informs biological mechanisms and Shah-2017 subgroup[132] is with potential
prognostic relevance.
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The Shah-2017 method[132] used 20 genomic surrogates as readout for DNA repair
mechanisms, based on an assumption that these features might inform class discovery.
With this approach, the authors classified four histotypes in OV133 cohort into 7 clusters.
This revealed two genomic subgroups within HGSC histotype, H-HRD and H-FBI.
Among the 20 features used, those discriminative between different clusters can be
found in Table S8 in the original publication[132]. The classification of HGSC was
implemented in the thesis as an adjusted method Shah18, which yielded consistent
result when applied to 94% of HGSCs belonging to H-FBI (41%) and H-HRD (53%)
clusters. It is important to note some potential consequences of the simplification made
in Shah18.

First of all, like the remaining 6% of the OV133 HGSCs residing in other clusters, one
would expect two HGSC cases in HIPO59 intrinsically more similar to other clusters
while not detected by Shah18 method. Their existence can be revealed by looking at
the cluster-discriminating features. For example, H059-F9BQHA had higher "S.MMR"
and "Frameshift" features and probably belongs to the "E-MSI" cluster. Some samples
showing high "S.APOBEC" feature would have been classified into "C-APOBEC" cluster.
In fact, implementing the cross-histotype 7-cluster system would be a non-trivial task.
An unsupervised approach directly pooling the entire OV133 and entire HIPO59 cohort
would not yield the original 7 clusters. Instead, a more supervised and sophisticated
approach should be designed for routinely implementing the 7-cluster classification, if
needed. In reality, even with well-established subtypes, from its discovery to a robust
single-patient tool can be another field of research, therefore the compromise made in
Shah18.

Secondly, there were 11 discriminative features between H-HRD and H-FBI, and
one of them ("BalancedRearrangement") was not included in Shah18. To examine the
importance of these 20 features to the 2-cluster stratification, a PCA was done on
the 94% of OV133 HGSCs belonging to either H-HRD or H-FBI (data not shown).
It was observed that PC1 explained 21.6% of the variance, and the contribution of
"BalancedRearrangement" to PC1 ranked 7th among all input features and accounted
for 7.1% of PC1. As a comparison, when another PCA was performed on the same
patients with two features eliminated as did in Shah18 (data not shown), PC1 explained
a similar fraction (22.6%) of the variance. Indeed, Section 10.2.1 also showed that the
two missing input features did not have large impact on the classification result.

Lastly, prognostic differences between H-HRD and H-FBI were not observed in
HIPO59. This can be due to the simplification from 7-cluster to 2-cluster classification,
where samples belonging to other clusters were not excluded in the survival analysis.
This might be especially impactful on the analysis of a small cohort.

Up to this point, it was shown that despite losing some discriminative input infor-
mation, Shah18 was able to capture most of the inter-patient variability and reproduce
HGSC subgrouping. This helped us cluster HIPO59 HGSC patients into two genomic
subgroups, corresponding to the H-HRD and H-FBI reported in the literature. As to
the minority of cases that should have gone into other clusters, they can be partially
identified by discriminative features.
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Mounting evidences show that TDs of different sizes are associated with specific
biological mechanisms[23, 102, 157, 158]. Based on these characteristics, the TDP
classification stratify TDs into five size classes (class 0: <1.6kb, class 1: 1.64-51kb, class 2:
51-622kb, class 3: 622kb-6.2Mb, class 4: >6.2Mb) to assess their corresponding features
in each patient. In this thesis the algorithm was implemented and almost perfectly
reproduced the result in the original publication.

However, when applied to the HIPO59 cohort, the distribution of active TD classes
was a bit different from that in public cohorts (see Figure 10.3). In particular, 82.9% of
major peaks found in HIPO59 representative samples fell in class 1, class 2 and class 3

categories, this is considerably less than the reported 95% in the original publication.
The discrepancy is mainly due to the increased frequency of class 4 TDs in HIPO59.
The mechanism associated with class 4 TDs was not known due to its rarity in the
public cohort, nor can we conclude whether this is due to different SV callers unless we
have re-processed their raw data.

When comparing the three major TD classes and corresponding gene inactivations
(see Figure 9.10), BRCA1-mutated tumors account for half of the patients having class 1

TD activation. However, this does not include H059-DGCF, the patient with BRCA1 gene
breakage event. With a manual check, the breakage was induced by copy number event,
however there are possibly still two intact alleles retained and potentially maintained
its normal function.

On the other hand, all tumors with potential CDK12 disruption did not show class
3 TD activation. This applies to even the case (H059-YKP3) having a rare germline
missense variant accompanied by LOH in CDK12 (p.R379H). After manual inspection,
one of these patients (H059-ESPXYL) seems to have a class 3 peak, while this can not be
easily resolved due to its overlap with a neighboring class 2 peak. Upon checking their
relationship with class 4 TD, one-sided Fisher’s exact test suggests a lack of evidence of
association (p-value=0.6) despite two of these patients (H059-H9Q5W6, H059-YYNAEG)
showed class 4 TD activation. To this point, it is not yet clear which tumor had genuine
insufficiency in CDK12 function, therefore a further confirmation on CDK12 functional
status would help to resolve its association with different TDP subgroups.

In terms of subtyping variation in related samples, Shah-2017 seems invariant to
anatomical position as all related samples from the same patient were classified into
the same subgroup. This invariance was also observed in the multi-sample cohort
published by Dr. Shah’s group[165]. On the other hand, TDP subgroup assignment
can be different for related samples from the same patient. Interestingly, 71% of the
inconsistent subgroup are due to activation of class 2 TDs, which potentially suggest
its role in the later stage of tumor development in these cases.

Together, the two DNA-based classification systems were robustly reproduced in
HIPO59, where Shah-2017 identified genomic heterogeneity and TDP subgroup revealed
distinct mechanisms in histologically homogeneous histotype.
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14.2.2 New evidences corroborating intrinsic subtypes of HGSC

Shah-2017 classification[132] segregated HGSCs into two genomic subgroups. H-HRD
is associated with BRCA-linked tumors and shows footprints of HRR deficiency; on
the other hand, H-FBI is enriched for foldback inversions and over-represented with
CCNE1 focal amplification. In the supplementary data the authors provided more
subgroup-specific features. GISTIC analysis (Table S10 in [132]) showed also recurrent
focal copy number deletion in PTEN for H-FBI; whereas frequent gains in MECOM,
MYC, CCND1 and recurrent deletions in RB1 occurred in H-HRD. Structural variations
affecting NF1 happened more often in H-HRD whereas RAD51B was disrupted more
often in H-FBI. Lastly, the mutation load is higher in H-HRD, however gene alterations
in BROCA gene panel (Table S9 in [132]) showed no association with either group.
This thesis attempted to further fill gaps in the understanding of genomic subtype-
specific features, including DDR defect landscape, comprehensive mutational processes
footprints, as well as more mechanistic details.

First of all, driving events potentially causing DDR defect were found enriched
in H-HRD when compared to H-FBI, and some known predisposing genes tend to
associate with specific subtype. The enrichment analysis included germline pathogenic
variants and truncal somatic deleterious variants, following the assumption that small
variants may be the main cause of the DDR defect in the early stage of tumorigenesis.
Moreover, a mutual exclusivity between germline and somatic deleterious events was
observed in H-HRD but not in H-FBI. Although we do see 75% of driving events in
H-HRD coming from the well-known TP53, BRCA1 and BRCA2 genes, evidences of
biallelic inactivation provided more confidence that the less known drivers are true.
In H-HRD, the four cases with less known drivers were H059-ESPXYL (DDB1), H059-
P8MX2J (ATM), H059-NV4KXQ (RAD51C) and H059-F9BQHA (POLH). Except for
DDB1, all other three cases had lost the wild type allele of the driver gene in at least
one of the samples. In terms of H-FBI, 50% of the driving events came from TP53, and
the rest three cases had wild type allele retained, including H059-MRAP5C (NBN),
H059-4PVFGF (ERCC2) and H059-FD17WF (DDB1).

When taking all variants into considerations, interesting subgroup-specific connec-
tions popped up for some ovarian cancer predisposing genes. It was noticed that three
patients with BRIP1 variants and one patient with PALB2 variant (all with wild type
lost) were exclusive to H-FBI subgroup, and two patients with RAD51C variants (wild
type lost observed in all three samples from H059-F9BQHA, as well as tumor7 from
H059-NV4KXQ) were restricted to H-HRD subgroup. Although the case number is
too small to make a conclusion, the only BRIP1 somatic variant found in OV133 was
documented in supplementary data (Table S9 in [132]) to had occurred in a H-FBI case.

Secondly, more comprehensive DDR footprints confirmed HRR deficiency as a
common feature of H-HRD cases. In the Shah-2017 class discovery, the authors reported
11 discriminative features for H-HRD and H-FBI (Table S8 in [132]). These features,
described below with those of higher importance highlighted, include higher S.AGE,
S.MMR, S.POLE, Foldback.Inversion and Inversion in H-FBI, as well as elevated
S.BC, S.HRD, S.APOBEC, BalancedRearrangement, Nonsynonymous, CN.Loss in H-
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HRD. Among them, the only feature reflecting HRD footprint is S.HRD, the SBS
Signature 3. This suggested that S.HRD had significantly different activities in the two
subgroups; however it is not distinguishing enough to separate the subgroups.

In this thesis multiple levels of genomic footprints were analyzed, all of them found
more genomic scars from HRR deficiency in H-HRD cases compared to H-FBI cases.
Indel signatures showed higher abundance of NHEJ footprint (ID6 and ID8) in H-
HRD, suggesting an active alternative repair mechanism when HRR is incompetent.
Rearrangement signatures also showed higher RS3 (BRCA1 inactivation) and RS5

(BRCA1 or BRCA2 inactivation) in H-HRD. More importantly, CNA-based genomic
signature showed higher LOH score and HRD score in H-HRD. This analysis also
pointed out that TAI score may be a non-discriminative feature between two genomic
subgroups, therefore probably not an important component in the composite HRD
score. When TAI score was excluded from HRD score, the AUC was observed to
increase from 0.8954 to 0.8995. The result further suggests that an assay combining
only LOH and LST score may outperform the current two clinically used genomic scar
assays, which focus on LOH score alone or on composite HRD score.

Collectively, these data support that HRR deficiency is a common feature of H-HRD
cases by demonstrating its footprints appeared in mutations, indels, structure variations
and copy number profiles. More importantly, the result connected genomic subgroups
to existing surrogate biomarkers for PARP inhibitor response used in the clinical trials.
Together with the chemosensitivity observed in H-HRD group in OV133 cohort, it
might be possible that genomic subgroup can itself serve as a robust biomarker for
predicting chemosensitivity as well as PARP inhibitor treatment response. Among
the various readout for HRD, the thesis had shown extensive evidences in the DNA
footprints; however, additional functional assays or in vivo models will be helpful in
dissecting more details and confirm its clinical relevance.

Thirdly, in both OV133 cohort and HIPO59 cohort, S.HRD was observed in both
genomic subgroups despite with a lower fraction in H-FBI. This prompt the question
whether targeting HRD would be effective in the H-FBI subgroup. As DNA footprint is
reflective of ongoing and historical mutational process, in the thesis this question was
addressed by reconstructing the temporal changes in mutational process activities. The
result showed that the process generating S.HRD had in general higher relative activity
(compared to SBS Signature 1) in H-HRD and its footprint was already observed in the
truncal part of the sample phylogeny tree, suggesting an early onset in the evolutionary
process and likely a driving role in these tumors. On the other hand, this process
had a lower relative activity in H-FBI tumors and its onset was found more obvious
only in the branch or subclonal part of the sample phylogeny tree, suggesting a later
onset in tumor evolution. This delineated the mechanistic difference of HRD in the two
subgroups despite its footprint found in both. In H-FBI, this process is probably a late
or subclonal event thus not serving as the driving force, also less likely is it essential
for all tumor cells.

This hypothesis goes along with the observation that PARP inhibitor generates benefit
in patients with BRCA genes inactivation or with high LOH score[106] compared to
the rest that are without. However, this does not explain another subset of platinum-
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sensitive patients reported to benefit from PARP inhibitor[105] that are with lower HRD
score. If this implies a subset of H-FBI tumors actually showing chemosensitivity and
somehow respond to PARP inhibitor, it would be very interesting to deep-sequence
their tumors and find out their associated features as well as what made them sensitive
to the treatment. However, it could also be that these were actually H-HRD tumors that
were not properly detected by the HRD score assay. Overall, the mechanistic difference
of HRD revealed here provided an opportunity to better answer and formulate these
questions.

Fourthly, in the above-mentioned TDP classification, three classes of TDs inform
different biological mechanisms. Putting the two classifications together, class 2 TDs
were further examined since they were reported to be associated with CCNE1 pathway
activation. For patients with H-FBI tumors, there were 9 (69%) out of 13 cases exhibiting
major TD peak in class 2, despite that 3 of them were TDP-negative. Notably, class 2

TD peaks were consistently observed across different deposits of all three multi-sample
patients, which probably signifies a truncal activation. There were two more FBI tumors
possibly showing similar feature, one TDP-negative case (H059-FD17WF) seems to have
a class 2 peak after manual inspection, and another TDP-negative case (H059-Y22QC3)
had major peak identified in class 3 while falls very close to the boundary to class 2.
In contrast, 8 (40%) out of 20 patients with H-HRD tumors had major peak in class 2.
Four of them were with multiple samples and showed inconsistent class 2 TDs across
different samples, indicative of a branch event.

When it comes to class 1 TDs, 16 (80%) out of 20 H-HRD patients had major TD peak
in class 1, even if 4 of them were TDP-negative. Among them, 7 out of 8 multi-sample
patients showed consistent peak in class 1. By contrast, only 3 (23%) out of 13 H-FBI
cases had class 1 peak and one of them is possibly false positive after manual inspection.

Together, the TDP subgroup classification suggested that H-HRD tumors mostly show
feature of BRCA1 deficiency and it is likely an early and truncal event. Some of them
may have CCNE1 pathway activation but it is more likely a late and branch event. In
contrast, H-FBI tumors often have the characteristic of CCNE1 pathway activation and
possibly as an early and truncal event in these tumors. This is supported by previous
observation that CCNE1 dysregulation can be detected already in STIC lesions, and in
preclinical models CCNE1 expression imparted malignant features to p53-compromised
untransformed cells[209].

Lastly, our data show that WGD existed in all H-FBI tumors, whereas only 7 (35%)
out of 20 H-HRD patients showed WGD. Also, H-HRD patients showed younger
age at diagnosis, which aligns with the fact that S.AGE (SBS Signature 1) being a
discriminative feature for the two subgroups, as well as the reported younger age in
BRCA mutation carriers[91, 93].

Together, these findings are consistent with the picture of a dichotomy in HGSC
histotype, and further provided more mechanistic underpinnings of these two genomic
subgroups.
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14.2.3 A new perspective to interpret biomarkers and previous knowledge

Given the evidences so far, it is tempting to speculate that two mutually exclusive
subgroups constitute the majority of HGSCs, where BRCA-associated tumors and
CCNE1-amplified tumors are two representatives of them. Researchers initially iden-
tified subgroups by HRR gene alterations or by CCNE1 amplification status[130, 131],
and later on by genomic surrogates[132]. In the end these are just different ways of
uncovering the same intrinsic subtypes.

Since the TCGA study observed the mutual exclusivity between CCNE1-amplified
tumors and BRCA-associated tumors[130], more studies had confirmed this obser-
vation[131] and tried to explain this phenomenon. Some of these studies provide
important clues for the dichotomy described here. In 2013, the Bowtell laboratory
performed a dependency screen analysis on CCNE1-amplified cell lines to explore
the vulnerabilities in these cells. The authors identified BRCA1 and other DDR genes,
among others, to be essential for the survival of these cell lines[210]. Later in 2014,
Dr. Ronny Drapkin’s group [209] further showed that CCNE1-overexpressing cells
upregulate some HRR component to deal with DNA replication stress. These findings
possibly suggested that DDR genes in H-FBI tumors play essential an role in replication
fork protection, therefore tumor cells harboring both defect would be less viable and
have been depleted during tumorigenesis, which results in the dichotomy observed.
Nonetheless, further investigation into the mechanisms leading to the death of these
cells would likely provide more insight in targeting the H-FBI tumors.

Due to the specific features associated with subtypes, it is also important to discuss
prognostic biomarkers in the context of the inherent structure, so as to reduce confound-
ing effects. If it was the genomic subgroup that harbors true prognostic implications,
then it seems reasonable to have found CCNE1 amplification as a poor prognostic
biomarker and BRCA mutations as a better prognostic biomarker, as well as finding
genomic scars reflective of subgroup-specific process being biomarker for better prog-
nosis. Whereas if it was the BRCA status that harbors true prognostic information,
it also makes sense that CCNE1 amplification and genomic subgroup both shown
prognostic implication. This confounding effect was notable when the TCGA-OV study
reported no survival disadvantage for CCNE1-amplified patients when restricted to
BRCA genes wild type cases[130]. The authors further re-evaluate previous studies[149,
150] and proposed that previously reported survival difference for CCNE1 can possibly
be explained by better survival of BRCA-associated cases (Fig. S8.15 in [130]). In the
end, a multivariable model including all these factors would be able to properly address
this question and identify which of these variables harbored true prognostic relevance.

Similarly, some of previously found associations can also be explained by this
dichotomy. For example, amplification or transcription of 8q24 (containing MYC) were
found associated with tumors with HRD or germline BRCA1 mutations[130, 131, 211],
which is consistent with MYC amplification being one of subgroup-specific feature in
H-HRD. Also, our finding of ubiquitous WGD in H-FBI is in line with a previous report
suggesting polyploidy as a specific feature for CCNE1-amplified tumors[212].
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In summary, the dichotomy provides a new perspective to interpret contemporary
knowledge about HGSC, and a re-interpretation of this information helps scientists to
formulate further experiments addressing questions about subtype-specific pathogene-
sis mechanisms or targeting strategies. These hopefully ultimately lead to more solid
understanding about the biology of HGSC.

14.3 tumor heterogeneity and its prognostic implication

In Chapter 12, pre-treatment IPH in ovarian cancer was studied, it was also demon-
strated that the proposed quantitative measures can potentially stratify patients into
subgroups with different survival outcome. Before we start, it is important to note that
it was inter-tumor heterogeneity investigated here, which does not fully correspond to
the frequently discussed intra-tumor heterogeneity. As a tumor bulk does not always
consist of a single tumor clone, the heterogeneity measured here are between two tumor
samples, or precisely, between two tumor ecosystems.

Specifically, the analysis started with proposing a general method to quantify IPH
based on somatic alterations. Three derived measures are based on either small variants
(HET_MutIndel), structural variations (HET_SV) or copy number profiles (HET_CNA), and all
of them gave consistent estimations of sample heterogeneity. These three measures
can further stratify patients into three groups (High, Medium, Low) by the degree of
heterogeneity. When restricted to HGSCs, patients in higher IPH group showed a trend
toward better overall survival.

To note, when repeating the analysis, I found the heterogeneity group assignment
changed due to the random seeding step in the k-means clustering, which can ultimately
affect the prognostic association. This instability in classifier can be due to the small
sample size (n=15), but in the case of high discriminative input features it would not
be obvious. When looking into the input measures, the classifier was observed to have
mainly relied on information from small variants and structural variations. This is likely
due to the fact that HET_MutIndel and HET_SV both followed a trimodal distribution,
indicating an inherent structure of three subgroups. Instead, HET_CNA showed a bimodal
distribution and is therefore not able to distinguish the three subgroups well. In this
sense, an alternative measure better capturing the inherent three subgroups, if it exists,
may be helpful in improving the classifier stability.

The relationship between heterogeneity and survival observed here might seem
counterintuitive to the common belief that higher intra-tumor heterogeneity is more
likely associated with worse outcome. Nonetheless, they are related yet different
concepts. In fact, our observation might go along with a previous finding by Dr. James
Brenton’s group. In 2015, the group conducted a study on a cohort of 135 samples
derived from 14 patients, where Schwarz et al. quantified inter-tumor heterogeneity
using solely a copy number-based measure. The authors further proposed a Clonal
Expansion index (CE index), and found that patients with higher CE index showed
worse survival [213]. Given that CE index reflects spatial clustering of samples in the
mutational landscape, a higher CE index would suggest the existence of a group of
genetically similar samples observed in the patient, which correspond to the concept of
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low heterogeneity group in our classification. Therefore, the low heterogeneity group
identified in HIPO59 may be indicative of tumors with higher clonal expansion potential
and thus led to a trend of worse prognosis.

In summary, a variable degree of heterogeneity was observed in pre-treatment sam-
ples of OC, which agrees with a previous finding that further suggested this high
genomic diversity arose early as it already existed in fallopian tube lesion[214]. A gen-
eral method of summarizing IPH was proposed here, and the fact that it gave consistent
measurements across three different types of alterations (small variants, CNAs and SVs)
supports its compatibility with a wider variety of high-throughput profiling platforms.
The observed relationship of heterogeneity and prognosis further suggests its capability
of capturing the clonal expansion phenomena in patient. Nonetheless, a readily utility
in the clinic requires further validation of the concept in a larger cohort, and a stan-
dardized protocol ensuring proper sampling of locations and robust sequencing assays.
Another interesting observation in our study was that most non-HGSCs constitute the
medium heterogeneity group and the majority of low heterogeneity group were from
HGSCs. However, whether this association is related to intrinsic histotype differences is
not conclusive at the moment.

14.4 tumor evolution in ovarian cancer

14.4.1 Inferring tumor evolution at the time of diagnosis

An understanding of tumor progression requires knowledge of temporal acquisition
of alterations. A conventional approach toward answering this question is to study
samples acquired at different tumor developmental stages. Nonetheless, precursor
or dysplastic lesions are sometimes not clinically identifiable or difficult to obtain,
especially in the case of ovarian carcinoma where its asymptomatic nature precludes
collection of early-stage disease tissues. Despite that prophylactic surgery allowed for
acquisition of precursor lesions in the fallopian tube, a special protocol (SEE-FIM) is
required to increase the scant chance of discovering such lesions in high-risk individuals.
In this thesis, an alternative approach was taken to study the carcinogenesis sequence.

Given samples taken at the time of diagnosis, computational methods were used to
reconstruct the tumor evolutionary trajectory in each patient. Specifically, the multi-
sample design allows for sample phylogeny tree construction and MRCA-PID identifi-
cation based on somatic variants found in all related samples. Small variants were
assigned to either the trunk or the branch part of the tree, given its relative position
to the MRCA-PID. Additionally, variant timing technique helps stratify small variants
into different tumor epochs. When integrated, small variants could be segregated into
(at most) four refined tumor epochs based on their emergence relative to three major
events, namely WGD, MRCA-PID and MRCA-SAMPLE. These refined tumor epochs can then
correspond to the branches in the tree. Lastly, the real-world time when the three major
events emerged was estimated by modeling the mutation accumulation process during
tumor development. This information was put together in the sample phylogeny tree,
with potential driving events in DDR gene and deleterious variants in cancer-associated
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genes further marked on the tree branches. As a result, the tree provide information of
potential early and late driving events for tumors in each individual, and also gives an
idea of when the major events had occurred.

14.4.2 Major events in the tumor evolution

In the majority of the patients, tumors followed the order of a very early acquisition
of WGD (a median latency of 34.6 years), a variable latency of MRCA-PID ranging from
0.2 to 33.5 years, and eventually a relatively shorter latency (a median of 0.4 year)
of MRCA-SAMPLE. The observation that WGD usually occurred very early in ovarian
cancer had been noted in the recent work of Gerstung et al.. In the PCAWG cohort,
they estimated that OCs had a median latency of 14.1 years for WGD, as well as a similar
median latency of 0.27 year for MRCA-SAMPLE. This can be put together with another
study comparing fallopian tube lesions, ovarian cancers and metastases in 2017. The
authors estimated that the average time between STICs and ovarian cancer in 9 patients
was 6.5 years, and the time between ovarian cancer and metastases was on average 2

years[215]. Although the estimated timepoints were not exactly the same, there seems
to be a bit discrepancy in the time scale. In fact, this is not surprising and one need
to understand the variability in the time estimates in order to avoid over-interpreting
these estimates.

It is important to note that the real-world time estimation is based on the mapping
between the chronological clock to the molecular clock. This transformation relies on an
important assumption that CpG>TpG mutations are a readout of a clock-like mutational
process. Although a correlation between these mutations and age at diagnosis was
confirmed in our cohort, the strength of the correlation is rather weak. This can be on
one hand due to other active mutational processes also generating CpG>TpG mutations,
and on the other due to a heterogeneous rate at which mutations were accumulated over
time. Following the approach of Gerstung et al., the CpG>TpG mutation accumulation
was modeled here by two phases of linear increase, where in the later phase an
accelerated rate was adopted. The choice of parameters used in the model affects the
ultimate real-world time estimate, and therefore result in the discrepancies. In the case
of the work from Labidi-Galy et al., the authors took a different approach and modeled
the mutation accumulation with a constant mutation rate.

Moreover, in the chronological clock, an accurate age at sample acquisition is also
important for a correct inference. Nonetheless, all interval debulking samples were
assumed acquired at the time of diagnosis, which obviously would yield slightly biased
estimates. In the end, complete clinical information and a concordant modeling process
using reasonable parameters would give comparable and meaningful result of time
estimates. In any case, these previous work and our work provide a glimpse of tumor
evolution in real-world time, which offer important information that can be linked
to observations in the clinic and also provide implications for early detection and
therapeutic planning of the disease.
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14.4.3 Nominating driving events in each patient

The importance of germline and somatic alterations is usually assessed based on their
predicted functional consequences or documented role in the literature. In fact, many
missense variants, albeit VUS, can still be functionally important. This is exemplified
by the TP53 variants detected in HIPO59, where we found 28 (77.8%) of 36 variants
predicted non-deleterious. For tumor suppressor genes, biallelic inactivation provides
further evidence on their essentiality in tumorigenesis. Take the re-analysis of TCGA-
OV cohort as an example, researchers defined LOH by increased variant allele frequency,
and found that germline truncation variants accompanied by LOH occurred in 100% of
BRCA1 cases and 76% in BRCA2 cases[205].

In this thesis, biallelic inactivation status was more sophisticatedly determined by
integrating germline and somatic small variants, as well as copy number status. In
HIPO59, biallelic inactivation in known drivers was confirmed in 34 (94.4%) out of 36

patients with TP53 somatic variants, 6 (75%) out of 8 patients with BRCA1 variants,
and 2 (66.7%) out of 3 patients with BRCA2 variants.

In non-HGSC cases, biallelic inactivation information led to the identification of two
promising events not previously associated with ovarian cancer. In H059-TM8F, two
somatic hits in PTEN was observed. The two variants probably targeted different alleles,
given that the missense one is expressed in RNAseq and the other variant is a stop-gain
variant. If they would have been on the same allele, this transcript would likely would
go nonsense-mediated decay and not being detected or expressed. Interestingly, the
ClinVar database documented that the stopgain variant (rs121909219) is found in several
Cowden syndrome patients as germline variants, and also as somatic variants in other
solid tumors or neoplasms of the large intestine, lung, breast, ovary and brain. This
again emphasized the importance of paired tumor-normal sequencing, as the same
germline pathogenic variant can be sometimes acquired in the somatic setting. The
second patient, H059-N4GQ, was targeted multiple times in the BLM gene, with a first
hit with germline pathogenic variant followed by a second hit with somatic deleterious
variant. They are likely to be on different alleles according to the incompatible variant
allele frequencies observed in tumor (>0.65 for the somatic variant, and <0.1 for the
germline variant). It is possible that BLM underwent second somatic hits in early tumor
development, while later on the allele with somatic hit took over by an copy number
LOH event.

Despite the success in some cases, biallelic inactivation status can be difficult to
determine in some other cases with low tumor purity or with inaccurate inference of
local copy number. Two of three cases (H059-9BFZJ8, H059-UGNMF3) with TP53 or
BRCA1 variants not accompanied by LOH had relatively low purity (<=15%). Moreover,
somatic alterations leading to gene inactivation can be of any forms, including but not
restricted to copy number deletion and small variants. This is exemplified by reported
germline large deletions in BRCA1 in 3 TCGA-OV cases[205], as well as reported
epigenetic silencing of BRCA1, FANCF and RAD51C[130, 216, 217]. To address this
question, we note below that two additional facts, including an observable footprint and



14.4 tumor evolution in ovarian cancer 151

the timing when the variant was acquired, are both important for helping us further
confirm or rule out potential driver events in DDR genes.

In terms of footprints, its utility is first illustrated by using SBS Signature 3, class 1

TD activity to interrogate functional loss of BRCA genes. This helped confirm the driver
role of BRCA1 in three cases showing high SBS Signature 3 and active class 1 TDs,
including two HGSCs (H059-9BFZJ8 and H059-M3SDDT) with deleterious variants
whereas lacking evidence for biallelic inactivation, as well as one non-HGSC case
(H059-ASG5U9) with germline pathogenic variant accompanied with LOH. On the
other hand, lower SBS Signature 3, TDP negativity or lack of major peak in class 1

can help preclude the driver role of BRCA1 in one non-HGSC case (H059-D096) with
germline benign variant accompanied by LOH, as well as two HGSC cases (H059-DGCF,
H059-3DCX) with potential gene breakage events. Similarly, a lower SBS Signature
3 helped exclude the driver role of BRCA2 in one HGSC case (H059-4PVFGF) with
germline unknown variant and retained the wild type allele. Notably, footprints are
imprinted by both historical and on-going processes, it does not discriminate an early
or late onset unless dissected as done in the thesis.

In terms of variant acquisition timing, one can first confirm its validity by checking the
timing of somatic variants in known driver genes. Not surprisingly, most of them were
found in the earliest tumor epoch (see Figure 8.5) in each corresponding patient. These
include two BRCA2 somatic variants found in "Clonal" and "Clonal (before WGD)"
epochs, one BRCA1 somatic variant found in "Clonal (before WGD)" epoch, and 32

(88.9%) out of 36 TP53 somatic variants identified in either "Clonal", "Clonal (truncal)",
"Clonal (before WGD)" or "Truncal (before WGD)" epochs. In the four exceptions
(H059-9BFZJ8, H059-FD17WF, H059-UGNMF3, H059-Y22QC3), TP53 variants were
identified in "Clonal (after WGD)" epoch. This largely goes well with the pathological
observations that p53 signature is the earliest precursor lesion for HGSC. It is also
important to note that, a variant seemingly being a branch event can be possibly a
truncal event. This can be on one hand due to the low purity thereby low detection
power in some of the samples, and on the other due to a lost of the variant during
tumor development as a result of later copy number deletion events in the branch.

With this in mind, when we go back to the two previously mentioned patients with
biallelic inactivation in PTEN and BLM, their somatic variants were found all in the
earliest tumor epoch (see Figure 8.5), where BLM was found in "Truncal (before WGD)"
and both PTEN variants were found in "Clonal (truncal)". More genes with supported
early driving role can be found in Figure 13.10 and Figure 13.11. For example, the only
case with somatic variant in BRIP1 also had the variant found in "Clonal (before WGD)"
epoch. Among the three patients harboring NF1 somatic variants, two HGSC cases
were restricted to H-HRD and biallelically inactivated, and the variants were found in
the earliest tumor epochs ("Clonal" and "Clonal (truncal)"). The third one occurred in a
non-HGSC case and found as a branch event in "Clonal (branch)" epoch.

The last case discussed here perfectly illustrates the importance of looking at both
footprints and variant timing, as well as the benefit brought by multi-sample design.
Among the three hypermutators, H059-F9BQHA harbors somatic pathogenic frameshift
insertion in POLH (p.C16fs). Despite wild type lost was observed in only one of the
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three related samples, all samples showed footprint in the corresponding SBS Signature
9 (Polymerase eta signature). Both evidences confirmed that genome instability induced
by compromised POLH was probably the source of excess mutations found in this
patient. Intriguingly, footprints reflecting MMR defect were also observed in these
samples, including AC26, ID1 and ID2 signatures. A somatic missense variant in PMS2

(p.L323R) was found to be likely accompanied by LOH (after manually correcting
the copy number) and probably responsible for these signatures. When integrating
the variant timing information, it was surprising to find that, although both somatic
variants were found in the truncal part of the tree, the one in PMS2 might had occurred
earlier and before WGD, while the one in POLH occurred later and after WGD. These
suggest that genome instability induced by MMR defect was not only the source of
excess burden of indels in this patient, but probably also an earlier driving force.
However, whether the earlier MMR defect caused the later insertion in POLH is not
known. Notably, although both variants were acquired in the somatic setting, both
POLH and PMS2 are associated with cancer predisposition syndromes. Specifically,
POLH has been associated with autosomal recessive disease Xeroderma pigmentosum
variant (XPV)[218], and PMS2 has been associated with Lynch Syndrome[219], a hereditary
syndrome associated with ovarian cancer[53].

It is therefore interesting to further digest the role of variants acquired early in
other patients, and to incorporate more footprints reflective of corresponding defects.
Moreover, the observation that monoallelic inactivation in POLH and BRCA1 were
sufficient to generate footprints, if were true, further leads to the speculation that
biallelic inactivation may not be required for some genes to promote tumorigenesis. In
that case, the information of haplosufficiency for individual genes would be helpful for
refining the process nominating drivers in individual patient.

14.4.4 Filling in details in the current knowledge about HGSC tumor evolution

In HGSC, DDR-related genes were identified as the main target for small variants
either at germline or somatic setting[205]. Our data added the notion that the earliest
events, the germline variants, were enriched in three DDR subpathways in ovarian
cancer regardless of histotype. When further considering the HGSC dichotomy, early
driving events in DDR were observed most frequently in H-HRD (80%), followed by
non-HGSCs (66.7%) and least prevalent in H-FBI (46%). Together they show that DDR
defect widely existed already before MRCA-PID, especially for the H-HRD subgroup.

Refined tumor epochs can arrange small variants along the tumor evolutionary
trajectory with finer time resolution and can increase the number of timed small
variants by 47.6%. Our data suggested that TP53 is a ubiquitous and early event,
supporting the notion of earliest precursor being p53 signature. Nonetheless, additional
driving force is required for them to progress to malignancies, as germline TP53

mutation carriers are not significantly predisposed to ovarian cancer risk.
Candidates in the earliest tumor epoch (before WGD) suggested that, in H-HRD

subgroup, known drivers BRCA1 and BRCA2, as well as some DDR genes, may serve
as the additional driving force due to their very early emergence. A temporal trend
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of deleterious variant abundance highlighted this phenomena in H-HRD by showing
that DDR genes were most often disrupted in the earliest epoch compared to later
timepoints (see Figure 13.13). These events are followed by WGD, which is itself another
early event in ovarian cancer and associated with higher IPH and higher level of CIN,
especially for non-HGSCs (see Figure 13.2). In the temporal trend of H-HRD, TSGs also
seemed to be early targets, where variants most abundantly shown in the second epoch
(shared clonal) compared to other epochs. Later on, more pathways are targeted via
copy number changes which facilitate the selection process favoring cells achieving
hallmarks of cancer.

It is therefore reasonable to hypothesize that in H-HRD subgroup, DNA repair defect
and TP53 dysfunction are acquired mainly by germline or somatic small variants and
play roles in the initial stage of tumorigenesis. The succeeding WGD is also an early
event that can occur decades before diagnosis. TSG disruption occurrs afterwards but
before MRCA-PID, whose emergence spans a variable range of time and depends on
each individual. Also subsequent to WGD is CIN, which facilitates diversification of
tumors and fuels tumor evolution by continuously providing substrates for selection
process. On the other hand, what we know about H-FBI is comparably rather limited.
Nonetheless they also share the scenario of very early TP53 mutation and WGD, and a
later widespread CIN.

To note, it is not yet known whether DDR defect has to precede TP53 mutation, and
further pathological studies on precursor lesions will be more suitable for answering
this question. It is also unknown whether CIN follows TSG disruption or they are
independent events, a further anchoring of copy number events in the phylogeny tree
can provide more hints in this aspect. In terms of H-FBI, looking into other early events
outside DDR genes or cancer-associated genes, as well as including copy number events,
may provide additional insights into their pathogenesis.

At the moment, there has been intense interest in including copy number events in
the timing scheme; however it is not yet readily applicable due to some limitations.
Although molecular time estimate for copy number gains are available, they showed
very wide confidence intervals due to the shorter copy number segments generated
by high level of CIN. Therefore, more sophisticated methods are required to properly
incorporate CNAs into the evolutionary trajectory.

Up to this point, one can posit that genomic subgroups may inform early bifurcation
of carcinogenesis pathways as the two subgroups only shared the initial TP53 ubiquity
and the eventual CIN phenotype. It was also proposed copy number change can
lead to expression subtypes specification[220], indicating their emergence as a late
diversification event. Together this further contrasts the utility of genomic subgroup
and expression subtypes, where the former may inform earlier driving events that are
usually more effectively treatable when targeted.





15
C O N C L U S I O N S A N D O U T L O O K

This thesis started with providing an overview of ovarian cancer at the molecular
level. Chapter 9 used public data (TCGA-OV) to compare the disease with other cancer
types, and later on combined them with the result of in-house data (HIPO59) for
highlighting key disrupted targets in different pathways.

A question of the utmost interest in ovarian cancer treatment is to identify patients
potentially having chemosensitivity or responding to PARP inhibitors. In this sense,
Chapter 10 and Chapter 11 put a particular focus on evaluating prognostic biomarkers
and assessing HRD phenotype in HIPO59 patients. Specifically, prognostic biomarkers
including BRCA genes inactivation, CCNE1 amplification status, LOH score, HRD score
and Shah-2017 genomic subgroup (H-HRD and H-FBI) were evaluated. Moreover,
additional evidences for HRD were examined and cover TDP subgroup, defects in the
DDR pathway, as well as its consequent genomic scars in terms of mutations, indels and
structural variations.

Given current knowledge of two mutually exclusive groups existing in HGSC, I further
hypothesized that this concept may be extended to become a HGSC dichotomy. The
abovementioned evidences, when put together, support this view by showing their
differences in the extent and onset timing of HRD as well as CCNE1 pathway activation.
Specifically, HRD is a common feature acquired early in H-HRD cases; while in H-FBI
tumors, CCNE1 pathway activation is often an early event. More importantly, the fact
that they showed differences in surrogate biomarkers for PARP inhibitor response is
suggestive of its clinical relevance.

However, it is of note that a minor subset of cases might stand outside this dichotomy.
For example, tumors featured with MMR, APOBEC or CDK12 inactivation can constitute
this rare subset, which is not well-represented in HIPO59 due to its small sample size
(n=33). In addition, the view of dichotomy does not preclude a finer substructure given
the heterogeneity of the disease.

The multi-sample design of HIPO59 provides an opportunity to study tumor hetero-
geneity and tumor evolution in silico. By proposing a general method for summarizing
IPH, Chapter 12 demonstrated a variable degree of IPH in the pre-treatment OC samples.
This variability was especially obvious for HGSCs. More intriguingly, a higher degree of
IPH in a HGSC patient suggested a trend toward better prognosis. As the IPH measure
proposed here can be concordantly summarized from either small variants, CNAs or SVs,
it is possible to design an optimal protocol to study this phenomena in a larger cohort.

Combining phylogeny analysis and variant timing technique, Chapter 13 arranged
small variants into four tumor epochs along the tumor evolutionary trajectory, and
attached them to the reconstructed sample phylogeny tree. For individual patient, this
informs about potential early and late driving events, the emergence of major events, as
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well as the evolutionary relationship of their related samples. Collectively, they provide
a glimpse of ovarian cancer carcinogenesis in real-world time.

Although HGSCs are known to have ubiquitously early TP53 mutation and CIN

phenotype at diagnosis, temporally dissected events further suggested an early bifur-
cation of carcinogenesis pathways in the HGSC dichotomy. Specifically, some H-HRD
cases were observed to have acquired TP53 dysfunction and DDR defects from either
germline or before they acquired WGD, which is with a median latency of 21.7 years.
Subsequent defects in TSG accrued before the emergence of MRCA between related
samples (MRCA-PID), whose latency spans a wide range from 0.4 year to 30 years, and
eventually present a common CIN phenotype at diagnosis. On the other hand, H-FBI
also acquired TP53 aberrations in the first epoch, they all developed WGD (median
latency 33.5 years) and eventually present CIN at the time of diagnosis. Nonetheless,
little evidences about an early DDR defect was observed. The same was suggested
in the temporal dissection of DNA footprints, where an early and stronger onset of
DDR defect was observed in H-HRD, while a later and weaker onset was observed in
H-FBI. Together with the abovementioned trend showing an early and truncal CCNE1

activation in H-FBI but not in H-HRD, they suggest that the common CIN phenotype
might not be achieved by the same mechanism.

therapeutic implications

The findings in the thesis are, albeit preliminary, important from some therapeutic
aspects.

First of all, the carcinogenesis pathway and footprints revealed in H-HRD strongly
suggest a ubiquitous HRD in this group, regardless of their BRCA gene status. In this
sense, the HGSC dichotomy can be used for molecularly stratifying patients in clinical
trials, where their potential of informing PARP inhibitor treatment response can be
better determined.

Secondly, given the link between hereditary defects in DDR pathway, it is worthwhile
considering expanding the genetic testing to a broader panel covering more hereditary
DNA repair-deficiency syndromes. This information can benefit their family members
and reduce cancer incidence in their families.

Thirdly, tumors related to hereditary or acquired DDR defect can show vulnerabilities
pertinent to the corresponding cancer predisposition syndrome. For example, FA patients
are very sensitive to ICL-inducing agents, which provides the rationale for the use of
platinum-based chemotherapies. On the other hand, Lynch Syndrome patients are with
MMR deficiency and may benefit from immunotherapy.

Fourthly, the prognostic implication of IPH status, if holds true, can serve as a
measure for interrogating clonal expansion potential of the observed tumors. With the
summarizing measure proposed in the thesis, it is possible to develop a standardized
protocol for evaluation in a larger cohort.

Lastly, the early and late events identified in each patient can facilitate the practice
of personalized oncology. For example, germline variants can trigger cascade testing,
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early driving events are informative of therapeutic choices, and truncal variants are
good targets for developing disease monitoring assays during treatment course.

future directions

The preliminary evidences shown here also provide important insights for future
researches.

First of all, the concept of HGSC dichotomy is compatible with contemporary findings
about HGSC and provides a novel viewpoint for re-interpreting them. This prompts
the need for future research designs to take this factor into considerations. It can also
arouse more interest in revealing more subtype-specific features, and eventually lead to
better understanding about subtype-specific pathogenesis and vulnerabilities.

Secondly, developing clinical grade assays would be the next step to evaluate the
relevance and utility of IPH status and genomic subgroups in clinical trials. A stan-
dardized assay can also facilitate comparisons between future studies and enable an
integration into routine practice.

Last but not the least, it is also important to better characterize the minor subset
outside the HGSC dichotomy, and a finer substructure under this dichotomy is also
worthwhile further dissection.

Overall, by maximizing the knowledge learned from HIPO59 patients, I hope it
would help to bring more hopes to other patients, improve the well-being of them and
their families, and meanwhile advance the understanding about ovarian cancer.
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S O F T WA R E S , C O D E S A N D S U P P L E M E N TA L F I L E S

softwares and workflows

The majority of the analyses performed were performed in the R Environment (see
Appendix A). Analyses using other softwares are listed below:

• DKFZ workflow - AlignmentAndQC Workflow version 1.2.73-1, SNVCalling
Workflow version 1.2.166-1, ClinicalWorkflow version 1.1, IndelCalling Workflow
version 1.2.177, SophiaWorkflow version 1.2.16, ACEseqWorkflow version 1.2.8-4

• GISTIC version 2.0

• MutSigCV version 1.41

• PHYLIP (Phylogeny Inference Package) software version 3.6

r environment and packages

• R version 3.5.3 (2019-03-11), x86_64-pc-linux-gnu

• Running under: Ubuntu 16.04.6 LTS

• R packages: bigmemory 4.5.33, Biobase 2.42.0, BiocGenerics 0.28.0,
BiocParallel 1.16.0, Biostrings 2.50.0, circlize 0.4.5, ComplexHeatmap 2.5.3,
data.table 1.13.6, DelayedArray 0.8.0, dplyr 1.0.0, factoextra 1.0.5, forcats 0.3.0,
futile.logger 1.4.3, gdata 2.18.0, GenomeInfoDb 1.18.0, GenomicRanges 1.34.0,
ggplot2 3.3.2, ggpubr 0.4.0.999, gt 0.2.1, hrbrthemes 0.8.0, igraph 1.2.4,
IRanges 2.16.0, maftools 1.8.10, matrixStats 0.54.0, pheatmap 1.0.12, png 0.1-7,
purrr 0.3.2, RColorBrewer 1.1-2, readr 1.3.1, ROCit 2.1.1, Rsamtools 1.34.0,
rstatix 0.6.0, S4Vectors 0.20.1, stringr 1.4.0, SummarizedExperiment 1.12.0,
tibble 3.0.3, tidyr 1.1.2, tidyverse 1.2.1, VariantAnnotation 1.28.1,
VennDiagram 1.6.20, XVector 0.22.0, YAPSA 1.8.0

supplemental files

Results pertinent to the analyses can be found in the Compact disc along with the
thesis and are listed below:

• Geneticist review result.xlsx: geneticist review result

• HIPO59_Subtype_TDP.txt: TDP assignment for each HGSC sample, see
Section 10.1.2
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• HIPO59_Tumor_Evolution.txt: , see Section 13.3

• Tumor_Heterogeneity_PID.txt: heterogeneity scores (HET_MutIndel, HET_SV, HET_CNA)
and heterogeneity group (High, Median, Low) of each patient, see Chapter 12

• Tumor_Heterogeneity_SAMPLE.txt: heterogeneity scores (HET_MutIndel, HET_SV,
HET_CNA) and heterogeneity group (High, Median, Low) of each sample, see
Chapter 12

• Related code used for the analyses are included in the Code directory and are
described here:

– PCAWG-final.R: the variant timing in this thesis follows the procedures in
this code from Gerstung’s tutorial, see Section 8.10

– Script_Methods.r: key codes for reproducing main Specific Tasks in Chap-
ter 8.



B
S U P P L E M E N TA RY D ATA

b.1 enumerate recurrent gistic peaks

Cohort Number of
Recurrent
Peaks

Contribution of Top-5 Recurrent Peaks (%)

BLCA 37 8q22.3amp (24), 1q23.3amp (19.4), 6p22.3amp (16.9),
5p15.33amp (15.7), 8q24.21amp (15.2)

BRCA 28 8q24.21amp (31), 1q21.3amp (27), 1q44amp (26.5),
11q13.3amp (18.4), 8p11.23amp (17.9)

COAD 22 20q13.12amp (43.5), 20q12amp (41.5), 20q11.21amp
(40.1), 13q12.13amp (26.2), 13q22.1amp (25.1)

GBM 24 7p11.2amp (54.2), 7q11.21amp (21.3), 7q21.2amp (19.9),
7q31.2amp (19.8), 12q14.1amp (15.1)

HNSC 27 11q13.3amp (26.6), 3q26.33amp (24.5), 8q24.21amp (17),
5p15.33amp (11.3), 8q11.21amp (10.9)

KIRC 8 5q35.1amp (5.1), 7q31.2amp (3.2), 3q26.32amp (1.3),
1q32.1amp (1.1), 8q24.22amp (0.9)

LAML 4 11q23.3amp (5.8), 21q22.2amp (4.2), 1p33amp (1),
20q11.21amp (0.5)

LUAD 28 5p15.33amp (21.9), 8q24.21amp (17.2), 1q21.3amp (16.3),
5p13.1amp (16.3), 14q13.3amp (14.9)

LUSC 29 3q26.33amp (53.7), 5p15.33amp (27.5), 5p12amp (24),
8p11.23amp (20.4), 8q24.21amp (16.2)

OV 31 8q24.21amp (49.9), 3q26.2amp (44.6), 19q12amp (26.9),
20q13.33amp (24.5), 12p12.1amp (22.1)

READ 20 20q11.23amp (54.5), 20q11.21amp (53.9), 20q13.33amp
(53.9), 13q12.13amp (38.2), 13q12.2amp (36.4)

UCEC 48 1q22amp (21.9), 1q21.3amp (20.6), 8q24.21amp (16.9),
1q42.3amp (16.9), 8q24.21amp (16.1)

Table B.1: Top five recurrent focal SCNAs identified by GISTIC in TCGA Pan-Cancer cohort.
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b.2 representative samples

H059-0EJ9 (tumor6), H059-1LUEUK (tumor0), H059-28C2CC (tumor00), H059-3DCX
(tumor72), H059-3ZK0 (tumor5), H059-41N6F7 (tumor5), H059-4PVFGF (tumor71),
H059-5DFS (tumor1), H059-6GM3 (tumor6), H059-8Y1SE7 (tumor7), H059-9BFZJ8 (tu-
mor5), H059-CFDW82 (tumor6), H059-DGCF (tumor7), H059-DQNU (tumor07), H059-
E3Z5MP (tumor7), H059-ESPXYL (tumor8), H059-F9BQHA (tumor4), H059-FD17WF
(tumor2), H059-H9Q5W6 (tumor5), H059-M3SDDT (tumor8), H059-MRAP5C (tumor4),
H059-N8J8 (tumor32), H059-NV4KXQ (tumor7), H059-P8MX2J (metastasis4), H059-
QQBCPM (tumor8), H059-QTH8 (tumor-interval-debulking-surgery5), H059-RWF1GY
(tumor7), H059-U4U5X5 (tumor7), H059-U6DA (tumor6), H059-UGNMF3 (tumor7),
H059-Y22QC3 (tumor7), H059-YKP3 (tumor71), H059-YYNAEG (tumor0)

b.3 hipo59 mutsigcv result

Gene N_nonsilent,
N_silent,
N_noncoding

n_nonsilent,
n_silent,
n_noncoding

p q

TP53 101937,28149,0 31,0,0 2.22e-15 4.19e-11

PABPC3 145035,42867,0 2,0,0 3.20e-03 1

ELSPBP1 56694,12210,0 2,0,0 3.24e-03 1

KIAA0391 139029,36795,0 4,0,0 1.10e-02 1

TMEM132C 254232,78309,0 2,0,0 1.17e-02 1

STH 29799,8910,0 2,0,0 1.49e-02 1

DACH1 164505,50028,0 2,0,0 1.51e-02 1

DLG3 218229,60159,0 3,0,0 1.54e-02 1

WSCD2 133518,37356,0 2,0,0 1.59e-02 1

Table B.2: Top 10 recurrently mutated genes identified by MutSigCV in HIPO59 cohort.
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b.4 gene structure of reported significantly mutated genes

Figure B.1: Gene size of re-
ported significantly mutated
genes (SMGs).

b.5 germline pathogenic variants are found in not only brca genes

Small variants were sent for pathogenicity review and the result from geneticist can
be found in the Compact disc along with the thesis (Geneticist review result.xlsx). The
file contains 49 germline variants and 25 somatic variants selected according to (see
Section 8.6.1). Note that a somatic variant in PMS1 was not evaluated due to historical
workflow version change.
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b.6 rare germline variants are enriched in ddr pathways

Gene Set Set Size p-value
(HIPO59)

p-value
(HGSC)

DDR 276 0.00022 0.000163

Homology-dependent recombination 88 0.00223 0.00123

Others 65 0.0162 0.0715

Fanconi Anemia 41 0.0251 0.0205

Non-homologous End Joining 23 0.0383 0.0287

Base Excision Repair 47 0.157 0.125

Translesion Synthesis 20 0.184 0.0782

Nucleotide pools 5 0.440 0.741

Mismatch Repair 24 0.548 0.335

Nucleotide Excision Repair 51 0.617 0.434

Table B.3: DDR pathway enrichment analysis. One-sided Fisher’s exact test was performed on
rare germline variants from the entire cohort (HIPO59) or from HGSC patients (HGSC).
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b.7 germline and somatic landscape of ddr pathways

Table B.4: Potential driving events in DDR pathways. DDR pathway gens with germline
pathogenic or truncal somatic deleterious events were considered as potential driving events.
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b.8 validate the adjusted shah-2017 methodology

Figure B.2: Stratify the HGSC subset of OV133 cohort based on 20 genomic features.
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Figure B.3: Prognostic value of genomic subgroups based on 20 genomic features. Subgroups
derived from original method are compared in (A). The original method was adjusted to
using only HGSC samples for cluster discovery. New subgroups results from the adjusted
method are compared in (B).
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Figure B.4: Quantile-quantile plot for the distribution of each of the 18 genomic features in
OV133 and HIPO59 cohort.
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b.9 signature analysis

Signature Patient Average Fraction Signature Description

AC3 41 47.4 defect DNA DSB homologous recombination
repair

AC8 40 19.3 unknown

AC1 30 24 spontaneous deamination

AC5 19 23 unknown

AC16 25 14.7 unknown

AC12 4 10.7 unknown

AC9 4 10.1 POL eta and SHM

AC13 3 11.8 APOBEC

AC26 1 21 defect DNA MMR

AC2 2 7.47 APOBEC

AC18 1 10 unknown

AC19 1 9.45 unknown

ID6 35 39.98 DSB repair by NHEJ; defective HRR

ID12 35 30.6 unknown

ID1 40 14.12 Replication slippage, sometimes defective
DNA MMR

ID8 31 15.7 DSB repair by NHEJ

ID9 21 15.74 unknown

ID2 42 7.43 Replication slippage, sometimes defective
DNA MMR

ID5 15 19.32 unknown

ID3 6 11.71 Tobacco smoking

ID4 1 24.11 unknown

Br.RS2 42 33.8

Br.RS5 41 32.2

Br.RS3 18 29.1

Br.RS1 27 18.6

Br.RS4 15 15.8

Br.RS6 12 13.8

Table B.5: Active signatures in mutational, indel and rearrangement signature analysis. The
third column summarizes average fraction of each signature among patients with active
signatures (second column). In each aberration type, the signatures are ordered by their
contribution to the entire cohort.
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b.10 genomic footprints of ddr defect

Figure B.5: Pair-wise sample comparison based on mutational signatures, indel signatures
and rearrangement signatures. In (A) similarity between all sample pairs are shown, where
samples arranged in columns and rows are in the same order. Each cell is one Pearson
correlation coefficient of corresponding sample pair. (B) shows the degree of sample similarity
in each patient, where a data point represent one score between a pair of related samples from
this patient. All comparisons from the same patient are connected with a line to visualize the
range of similarity score.
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signature statistic df p p.adj

AC1 9.4 25.36 9.71E-10 4.37E-08

AC3 -7.16 49.34 3.59E-09 1.62E-07

AC4 -3.59 35 1.00E-03 4.50E-02

AC5 4.17 26.42 2.90E-04 1.31E-02

AC6 -5.32 47.21 2.84E-06 1.28E-04

AC25 -4.92 35.29 1.99E-05 8.95E-04

ID6 -6.26 45.45 1.22E-07 5.49E-06

ID8 -4.51 44.75 4.65E-05 2.09E-03

ID9 3.83 23.46 8.38E-04 3.77E-02

ID12 6.45 28.17 5.33E-07 2.40E-05

Br.RS3 -4.54 39.21 5.23E-05 2.35E-03

Br.RS5 -3.98 37.84 3.02E-04 1.36E-02

Table B.6: Testing difference in signature activities between HGSC genomic subgroups. Samples
are divided into group 1 (17 H-FBI tumors) and group 2 (36 H-HRD tumors), and a Welch
t-test was performed for each of all 54 signatures from three types of signature sets. The
significance level (column p) was adjusted for bonferroni correction (column p.adj) and only
those with p.adj < 0.05 are shown in the table.

score statistic df p p.adj

LOH -3.69 29.00 9.31E-04 3.72E-03

LST -5.69 25.29 6.11E-06 2.44E-05

TAI -0.65 27.03 5.21E-01 1.00E2

total -4.73 26.94 6.41E-05 2.56E-04

Table B.7: Testing difference in HRD score and its three component scores between HGSC
genomic subgroups. For each patient, the median score from multiple related samples are
used. Patients are divided into group 1 (13 H-FBI patients) and group 2 (20 H-HRD patients),
and Welch t-test was performed between subgroups. The significance level (column p) was
adjusted for bonferroni correction (column p.adj).



174 supplementary data

b.11 tumor heterogeneity

Figure B.6: Pair-wise sample comparisons based on structural variants.
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Figure B.7: Pair-wise sample comparisons based on copy number profiles.
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b.12 tumor evolution

Figure B.8: Sample-wise timing class compositions in mutations and indels are profiled in (A).
Each data point represent one fraction of a specific timing class observed in one sample and
is colored according to timing classes. Welch t-test with bonferroni correction was used for
identifying the difference within all timing classes. Significant p-value after adjustment was
observed in clonal [early] (p.adj=3.55e-2), clonal [NA] (p.adj=1.45e-3), subclonal (p.adj=4.43e-
10) and NA (p.adj=8.20e-17). The most significant composition differences between mutation
and indel lie in two categories and are shown in (B).
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Figure B.9: Chronological time of WGD in multi-sample sets. Each estimate is shown with 80%
CI.
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Figure B.10: Timing of MRCA-PID in multi-sample sets. Each estimate is shown with 80% CI.
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