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Abstract

Background: Feature extraction and signature identification are two critical steps to

understand diverse biological processes. Signatures are defined as groups of molecular

features that are sufficient to identify certain genotype or phenotype. In particular, Non-

negative Matrix Factorization (NMF) has been used to identify signatures in complex

genomic datasets. However, running a basic NMF analysis is a challenging task with a

steep learning curve and long computing time; furthermore, the usability of these algo-

rithms is lessened by limited resources to interpret the results obtained from them. This

creates a pressing need for the development of tools that mitigate such obstacles.

Results: In this study we developmented ButchR and ShinyButchR, a fast and user-

friendly toolkit to decompose datasets (slicing genomics) and learn signatures using NMF.

The package can be freely installed from GitHub at https://github.com/wurst-theke/

ButchRr. We used ButchR to identify a new regulatory subtype in neuroblastoma, which

showed mesenchymal charanteristics and was phenotypically associated to multipotent

Schwann cell precursors. Additionally, we created a new workflow to infer regulatory

relationships between genes and their cis-regulatory elements for individual cells, followed

by inference of regulatory-signatures.

Conclusions: ButchR/ShinyButchR is an useful toolkit for analyzing multiple types of

data, and inferring signatures that are able to capture relevant biological information.

This toolkit is a new valuable resource to the scientific community, and it can be used

to understand complex biological processes.
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Zusammenfassung

Hintergrund: “Feature extraction” und “signature identification” sind zwei essenzielle

Schritte zum Verständnis diverser biologischer Prozesse. Signaturen werden als Grup-

pen von molekularen Merkmalen definiert, die ausreichen, um einen bestimmten Genotyp

oder Phänotyp zu identifizieren. Insbesondere wurde die “Non-negative Matrix Factoriza-

tion” (NMF) verwendet, um Signaturen in komplexen genomischen Datensätzen zu iden-

tifizieren. Die Durchfuehrung einer einfachen NMF-Analyse ist jedoch eine anspruchsvolle

Aufgabe mit einer steilen Lernkurve und langer Rechenzeit; außerdem wird die Verwend-

barkeit dieser Algorithmen durch begrenzte Ressourcen zur Interpretation der daraus

erhaltenen Ergebnisse verringert. Daraus entsteht ein Bedarf für die Entwicklung von

Tools, welche diese Hindernisse umgehen.

Ergebnisse: In dieser Studie haben wir ButchR und ShinyButchR entwickelt, ein

schnelles und nutzerfreundliches Toolkit zum Zerlegen von Datensätzen (“Slicing Ge-

nomics”) und zum Lernen von Signaturen mit NMF. Das Paket kann frei von GitHub

unter https://github.com/wurst-theke/ButchRr installiert werden. Wir verwende-

ten ButchR, um einen neuen regulatorischen Subtyp im Neuroblastom zu identifizieren,

der mesenchymale Eigenschaften aufwies und phänotypisch mit multipotenten Schwann-

Zellvorläufern assoziiert war. Darüber hinaus haben wir einen neuen Workflow er-

stellt, um regulatorische Beziehungen zwischen Genen und ihren cis-regulatorischen El-

ementen für einzelne Zellen abzuleiten, gefolgt von der Inferenz von regulatorischen Sig-

naturen.

iii

https://github.com/wurst-theke/ButchRr


Schlussfolgerungen: ButchR/ShinyButchR ist ein nützliches Toolkit für die Anal-

yse verschiedener Datentypen und die Ableitung von Signaturen, die in der Lage sind,

relevante biologische Informationen zu erfassen. Dieses Toolkit ist eine neue wertvolle

Ressource für die Wissenschaftsgemeinde und kann zum Verständnis komplexer biologis-

cher Prozesse verwendet werden.
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Chapter 1

Scope

1.1 Background

In the biological and clinical context, feature extraction and signature identification are

two critical steps to understand diverse biological processes. Signatures are defined as

groups of molecular features that are sufficient to identify certain genotype or phenotype.

For instance, they have been used for the molecular diagnostic and classification of can-

cer, infectious diseases and genetic disorders (Fernandes and Zhang 2014), identification

and characterization of pathogens (Slezak, Hart, and Jaing 2019), understanding the ex-

pression changes across tissues in autoimmune diseases (Szymczak et al. 2021), and to

identify cell states in single-cell transcriptome data (Butler et al. 2018; Wolf, Angerer,

and Theis 2018), among others.

In particular, the family of Non-negative Matrix Factorization (NMF) algorithms has

been used in multiple opportunities to identify signatures and extract features in complex

high-throughput genomic datasets (Brunet et al. 2004; Ludmil B. Alexandrov et al. 2013;

Pal et al. 2014). In contrast to other methods used for these tasks (Pfeil et al. 2020;

Butler et al. 2018; Stuart et al. 2019; Wolf, Angerer, and Theis 2018; Dumitrascu

et al. 2019), NMF does not rely on the comparison of conditions or clusters to identify
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signatures. Therefore, NMF is able to find sub-clusters or sub-types that were not initially

identified during the study design. NMF works by decomposing an input matrix X into

a signature matrix W and an exposure matrix H. This results in the reduction of

the original data dimensionality to a small set of informative signatures. The NMF

signatures can be further interrogated to extract the most relevant features associated

with a biological condition. The exposure of individual samples or single cells to such

signatures can be used to visualize the data structure, or as input to create an embedding

with algorithms as tSNE (Van Der Maaten and Hinton 2008) or UMAP (Diaz-Papkovich

et al. 2019).

Moreover, most current methods for signature identification are particularly tailored to

only one data type, usually somatic mutations or gene expression. Hence, recovering

signatures based on different sources of data like regulatory landscapes and interactions

would be more difficult with the available methods. Therefore, more general tools and

methods like NMF that can integrate and handle different types of data are currently

needed. However, running a basic NMF analysis requires the installation of multiple tools

and dependencies, along with a steep learning curve and computing time; furthermore,

the usability of these algorithms is lessened by limited resources to interpret the results

obtained from them. This creates a pressing need for the development of tools that

mitigate such obstacles.

The inference of NMF-based signatures may be the key to understand complex biological

processes like the regulatory differences seen in the pediatric tumor neuroblastoma, in

which evidence of two regulatory states in neuroblastoma cell lines has been determined

by changes in the epigenome of the cells (Van Groningen et al. 2017; Boeva et al.

2017). In addition, NMF-based signatures may be helpful to identify the regulatory

links between transcription factors and cis-regulatory elements that drive the regulatory

differences seen across different cell states.
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1.2 Aims

The main objective of this thesis was to provide insights into the inference of molecular

signatures from high-throughput genomic data using NMF. This was evaluated in the

context of enhancer and regulatory signatures. In order to investigate these topics, the

following specific aims were addressed in this study:

1. To develop a toolbox that provides a complete NMF-based analysis workflow for

inferring molecular signatures.

2. To develop an application for the interactive exploration of NMF results.

3. To evaluate the regulatory variability seen in neuroblastomas by recovering en-

hancer signatures.

4. To model regulatory interactions and to infer regulatory signatures.

1.3 Major findings and relevance

The extraction and interpretation of signatures from high-throughput genomic data have

been challenging tasks during the last decades. In this study, we addressed these prob-

lems by creating new tools and using NMF-recovered signatures. Additionally, one of

the central goals of this work was to contribute to the spirit of open and reproducible

research. Therefore, all the code and analyses shown here are publicly available and fully

reproducible. The major products and findings of this study are:

1. Development and optimization of ButchR, a fast and user-friendly R package to de-

compose datasets (slicing genomics) and learn signatures using NMF. The package

can be freely installed from GitHub at https://github.com/wurst-theke/ButchR

or used from a Docker image, available at https://hub.docker.com/r/hdsu/

butchr.

2. Development of ShinyButchR, an interactive Shiny application that uses ButchR
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to execute an NMF-based analysis from start to end. ShinyButchR is publicly

available at https://hdsu-bioquant.shinyapps.io/shinyButchR/ and can also

be used locally from the Docker image, available at https://hub.docker.com/r/

hdsu/shinybutchr.

3. Development of a new method to project any bulk or single-cell transcriptomic data

onto a reference single-cell atlas, using ButchR.

4. Identification of four different regulatory subtypes in neuroblastoma (MYCN-amplified,

mesenchymal, MYCN non-amplified high-risk, and MYCN non-amplified low-risk)

using super enhancer-derived-signatures; which resulted in a newly described mes-

enchymal neuroblastoma subtype.

5. The discovered mesenchymal neuroblastoma subtype was phenotypically associated

with multipotent Schwann cell precursors.

6. Creation of a new workflow to infer regulatory relationships between genes and

their cis-regulatory elements for individual cells, followed by inference of regulatory

signatures. This method works with datasets generated from technologies, in which

chromatin accessibility and gene expression data are co-profiled from every single

cell.

7. Creation of a new workflow to model gene regulatory networks based on the con-

struction and quantification of cell state-specific regulons and inference of regulon-

guided signatures. This method uses scRNAseq and scATAC-seq data from con-

textually similar datasets (i.e., same conditions, and same organism).

8. Regulatory signatures were able to capture the intra- and inter-tumor regulatory

variability from two lung patient-derived xenografts, identifying groups of tran-

scription factors that define different cell states.

9. Identification of cells from the inner cell mass in blastocyst of pre-implantation

human embryos, using regulatory signatures.
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10. Three interactive applications to explore the results presented in this thesis:

• NB-SE-viz: explore the regulatory subtypes in neuroblastoma, https://nbseB087.

dkfz.de.

• NB-dev-viz: explore the developmental programs in neuroblastoma, https:

//adrenal.kitz-heidelberg.de/developmental_programs_NB_viz/.

• MapMyCorona: contribution to the world effort to fight the current pandemic,

https://hdsu-bioquant.shinyapps.io/mapmycorona/.

We presented in this study ButchR, a new toolkit to infer signatures and extract relevant

features associated with genotypes and phenotypes using NMF. We demonstrated how

ButchR is useful for analyzing multiple types of data, and how its signatures are able

to capture relevant biological information. The accompanying app ShinyButchR can be

effectively used to perform a complete ButchR-based analysis in an interactive fashion.

This toolkit is a new valuable resource to the scientific community, and it can be used

to understand complex biological processes.

Butcher and ShinyButchR were published in “ShinyButchR: interactive NMF-based de-

composition workflow of genome-scale datasets. Biology Methods and Protocols” (Quin-

tero et al. 2020). The findings related to the study of the epigenomic subtypes in

neuroblastoma were published in “Super enhancers define regulatory subtypes and cell

identity in neuroblastoma. Nature Cancer” (Gartlgruber et al. 2021), and the identi-

fication of regulatory signatures by integration of multi-omics data were published in

“Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nature

Communications” (Liu et al. 2019).

1.4 Outline of the thesis

The main focus of this thesis is the inference of molecular signatures using NMF, its usage

to understand regulatory differences in neuroblastoma and to create gene regulatory

networks that explain different cell states. To thoroughly discuss each of these topics
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this document is organized into an introductory chapter and five main parts:

• Introduction: in the introductory chapter, the concepts of molecular signatures,

signature inference, and dimension reduction are showcased in detail. These con-

cepts are the foundation of this thesis.

• Part I. Tool Development: the first part describes in detail the ButchR/ShinyButchR

toolkit, showing how it can be used to infer signatures from different types of data,

and the different visualization options included to understand the NMF results.

This part also explains the extent of the community-building goals that motivated

the development of ShinyButchR.

• Part II. NMF to Reveal Regulatory Subtypes in Neuroblastoma: the

second part delves into the study of the regulatory subtypes in neuroblastoma.

Showing how NMF-recovered signatures helped to identify the mesenchymal neu-

roblastoma subtype, and how ButchR allows the integration of bulk and single-cell

data to determine the possible cell of origin of this subtype.

• Part III. Tracing Identity Defined by Transcription Factor Activity: the

third part describes two new workflows used to infer regulatory interactions and

signatures that reflect regulatory differences across cell states.

• Part IV. Data Accessibility and Reproducibility: the extent of the com-

mitment of this project to open and reproducible research is shown in part IV.

Describing how interactive applications and robust pipelines were specially made

for the publications associated with this project.

• Part V. Discussion and Conclusion: the final part of this thesis presents a

summary of the most relevant findings, and discusses the relevance of the entire

work in light of the current state of the computational biology field, along with

perspectives for future studies.
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Chapter 2

Introduction

2.1 Molecular signatures

Molecular signatures are groups of biomolecular features (e.g., DNA sequences, genes,

open chromatin sites, and CpG islands) that can be used to infer phenotypic or genotypic

identity (Sung et al. 2012). The explosion of new high-throughput technologies opened

the door to measure biomolecules at a scale not foreseen just 30 years ago (Lenoir and

Giannella 2006). One of the consequences of such technologies was the possibility of

inferring signatures by finding associations between molecular features and one particular

condition (Golub et al. 1999; Fernandes and Zhang 2014; Slezak, Hart, and Jaing 2019;

Sotiriou and Pusztai 2009). A signature can be represented in different ways, depending

on the strategy used to infer it. For instance, when the strategy is only able to find

on/off associations, then the signature would consist of a list of associated features (e.g.,

a list of transcription factors associated with different organs, Figure 2.1a), whereas if

the strategy is able to distinguish the strength of the association, the signature consists

of a collection of weighted features (e.g., transcription factors weighted by association to

different organs, Figure 2.1b).
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2.1.1 Usage of molecular signatures

The usage of molecular signatures extends to multiple fields. Perhaps the most known ap-

plication has been the identification of tumor types in cancer and personalized medicine

research (Sotiriou and Piccart 2007; Fröhlich et al. 2018; Olivier et al. 2019). In par-

ticular, the pan-cancer analysis of whole genomes (PCAWG) consortium identified point

mutations from whole-genome sequencing of 4,645 and whole-exome sequencing data of

19,184 tumor samples to infer 67 mutational signatures (Ludmil B. Alexandrov et al.

2020). Expression signatures are also used in the classification of breast (Sotiriou and

Pusztai 2009; Lal et al. 2017), lung (Seijo et al. 2019), and kidney cancer (Graham et al.

2018), among others. Besides cancer research, one of the most common usages of molec-

ular signatures nowadays is the identification of cell types in single-cell transcriptomic

data, in which gene signatures (also known as “marker genes”) are used to evaluate if in-

dividual cells belong to a certain cell state (Kolodziejczyk et al. 2015; Stegle, Teichmann,

and Marioni 2015).

Automatically testing large numbers of potential drugs or the combinatorial effect of

multiple compounds for activity against biological targets (high-throughput screenings,

HTS) has been a well-established strategy for drug discovery by pharmaceutical compa-

nies (Wildey et al. 2017; Mayr and Bojanic 2009). The first level of information that

can be extracted from such studies are signatures of drug effects, that generally explain

changes in gene expression in response to treatment. One of the goals for personalized

medicine is to identify signatures that can be used to predict drug sensitivity, meaning

that a predictive model will return the most appropriate treatment for every patient

(Nevins and Potti 2007).

In general, there are two classic approaches to use signatures for the evaluation of the

association between a sample or individual cell to one genotype or phenotype. In the first

case, known signatures are used to evaluate the association using a statistical test or deep

learning model (Figure 2.2a). Gene set enrichment analysis (GSEA) or similar tests are

often used to estimate the association (Subramanian et al. 2005; Hänzelmann, Castelo,

9
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and Guinney 2013), or alternatively the collection of known signatures can be used as a

training set for machine learning methods like CIBERSORT (Newman et al. 2015). In

the second case, the signatures are learned de novo from the data, and samples or cells are

linked to one signature. The identity of each signature is then determined by finding the

association to known biological and clinical variables, or by extracting the most important

features of the signature (e.g., marker genes) and contrasting them to other signatures

or available literature (Figure 2.2b). For instance, some of the widely known single-cell

transcriptomics analysis packages like Seurat (Butler et al. 2018), Scanpy (Wolf, Angerer,

and Theis 2018), and Monocle (X. Qiu et al. 2017), use variations of this strategy to

identify cell types and annotate clusters of cells.

The programming language and statistical software R (R Core Team 2020) is the perfect

analysis platform for molecular signatures, as it counts with a vast collection of packages

included in the Bioconductor repository (Huber et al. 2015) for the analysis of biological

data. For instance, signatureSearch is an R package for searching a query gene expression

signature against a database of signatures, which included algorithms to work with mul-

tiple types of expression signatures allowing to perform functional enrichment analysis

and the reconstruction of drug-target networks (Duan et al. 2020). Other packages like

SigsPack (Schumann et al. 2019) and YAPSA (Hübschmann et al. 2020) can be used

to find the exposure of individual tumor samples to a catalog of mutational signatures,

these packages also allow to determine the confidence intervals of the estimated exposures

providing a precise determination of genomic lesions in cancer patients. In particular,

YAPSA has been a valuable tool for the analysis of rare tumors by identifying target

regions for alternative treatments in cancer patients in which standard therapy options

were not sufficient (Horak et al. 2017). Other packages like SigCheck (Stark and Norden

2020) are useful to validate molecular signatures by evaluating the performance of one

signature against random signatures of the same length, other known signatures, or by

performing permutations in the associated data or metadata.
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2.1.2 Signature collections and databases

Multiple initiatives have compiled databases for different types of molecular signatures.

These resources include signatures from gene expression data, metabolome, and proteome

signatures, among others. Such databases are one of the main reasons why the usage

of signatures has extended through all fields in genomics, as they provide collections of

validated signatures that can be readily used from downstream analyses. The molecular

signatures database (MSigDB) is perhaps the most complete database of gene signatures

nowadays (Liberzon et al. 2011). This database contains molecular signatures obtained

from different types of data and approaches, i.e., some of the signatures are inferred by

manual curation and others only using computational tools, and they can be derived

based on the genomic location of the genes, pathway information like Reactome (Jassal

et al. 2020), regulatory links between cis-regulatory elements and gene promoters, ex-

pression data, and gene ontology (GO) terms (Carbon et al. 2021). The current version

of the MSigDB (v7.2) database contains more than 30,000 signatures; however, in some

instances, there is redundancy and inconsistency between these signatures. Addressing

this problem, Liberzon et al. (2015) introduced a new set of “hallmark signatures” in the

database that summarizes redundant information and is curated by experts.

There are also signature databases that compile data exclusively from one type of biomolec-

ular feature. Databases like the GOLM metabolome database (Kopka et al. 2005) and

the Human Metabolome Database (HMDB) (Wishart et al. 2007), compile signatures

solely based on metabolite data that were quantified under different tissues and pertur-

bation studies. These types of databases are helpful in drug discovery studies as they

recover signatures that are related to changes in the metabolome in response to a drug.

Additionally, the HMDB also contains links between metabolites and proteins associated

with them. Other databases like InterPro (Blum et al. 2021) and ProTargetMiner (Saei

et al. 2019) are compiling signatures based on proteome data. In particular, InterPro

contains signatures that can be used by the software InterProScan (Jones et al. 2014)

as predictive models for protein classification and domain identification. On the other
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hand, ProTargetMiner is a database targeted to help in drug discovery studies in cancer,

built from proteomes of cancer cell lines treated by different compounds.

Since the emergence of all the new technologies for profiling gene expression and chro-

matin accessibility from single cells, cell type identification is a recurrent problem during

the analysis of such types of data. Aiming to help in this process, databases of marker

genes in different tissues and cell types have been released. For instance, the PanglaoDB

contains gene signatures (marker genes) for more than 170 cell types in mouse and hu-

man, encompassing 29 different tissues (Franzén, Gan, and Björkegren 2019), most of

these signatures are available for both species, streamlining the process of converting

between homologous genes. The CellMarker database (Z. Zhang et al. 2019) also aimed

to provide marker genes for human and mouse cell types; it was created by the manual

curation of more than 100,000 publications, and it contains signatures for 467 human cell

types and 389 mouse cell types. There are also databases like SCDevDB (Z. Wang, Feng,

and Li 2019) that focus on compiling signatures from developmental pathways identified

by finding differentially expressed genes.

Taken together, all these databases provide a wide arrange of pre-computed molecular

signatures that can be used in studies in which there is no need of inferring new signatures,

or can also be used to validate or identify the phenotypic characteristics of newly inferred

signatures.

2.2 Signature inference and feature extraction

Multiple methods have been proposed for the inference of molecular signatures, ranging

from data-driven approaches (Bergstrom et al. 2019; Haradhvala et al. 2018; Pfeil et al.

2020; F. Li et al. 2013) to manual curation of scientific publications (Liberzon et al. 2015;

Burge et al. 2012). While many methods have the potential to be used in different types

of omics data, the majority of the packages and toolkits only focus on one type of data

(Sung et al. 2012). Due to the extensive availability of transcriptomic data from bulk
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samples and single cells, the identification of gene signatures is by far the most studied

field in signature inference in genomics (Fröhlich et al. 2018). Therefore, most of the

methods for signature inference are based on the identification of differentially expressed

genes by comparing between two conditions (i.e., usually case-control studies). This

strategy has been used to identify expression signatures that can be used as predictors

of good or poor prognosis in breast (Vijver et al. 2002), lung (Lu et al. 2006), colon

(Salazar et al. 2011), and gastric cancer (Cho et al. 2011) among many others. An

inherent problem of this type of approach is that they rely on the comparison of two

conditions; therefore, it will be more difficult to identify signatures that define subtypes

or subclusters in the data.

Due to the current increase and accessibility of single-cell profiling techniques, one of the

most relevant uses for the identification of gene expression signatures is the annotation

and determination of cell-type identity. Analysis packages such as Seurat (Butler et

al. 2018), Scanpy (Wolf, Angerer, and Theis 2018), and Monocle (X. Qiu et al. 2017)

determine marker genes that characterize a cell state by extending the classic approach

of differentially expressed genes identification. In this case, the single cells are clustered

into groups of cells that share similar transcriptomic profiles, and the marker genes are

identified by reducing the problem to a comparison of two conditions, i.e., comparing the

expression profiles of the cells in one cluster to all the other cells. Whereas this approach

has become the standard to identify marker genes in well-defined clusters of cells, it will

be challenging to extract signatures that explain continuous processes as differentiation,

in which the cells do not form well-defined clusters but rather move along a trajectory

(Trapnell 2015; Bendall et al. 2014; Moignard et al. 2015; Buettner et al. 2015).

Besides finding signatures de novo (i.e., using only the dataset under consideration),

semi-supervised and supervised methods can also be used to guide the identification

of relevant features in different clusters of samples. Packages as SCINA (Z. Zhang et

al. 2019) can be used to determine phenotypic identity using a training set of known

signatures for previously identified classes, this package infers new sub-classes and the
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corresponding genes associated with them (gene signatures) by using an alternate opti-

mization of the probability estimation for cell type assignment (i.e., E step) and gene

expression distribution (i.e., M step). Biosigner (Rinaudo et al. 2016) is another pack-

age that uses a training set of known signatures for signature discovery. The workflow

implemented in this package consists of three main steps: 1) bootstrap resampling of

the dataset restricted to the set of features included in the known signatures to build a

classifier for two classes, 2) feature ranking for every resampled subset, and 3) selection

of significant features. These three steps are iteratively repeated until all candidate fea-

tures are significant, this final set of features will constitute the new signature. Other

packages as MarkerPen (Y. Qiu et al. 2020) are aimed to find marker genes of different

cell types by refining lists of previously published markers. This is done by comparing

bulk transcriptomic profiles to the list of potential marker genes and adding or removing

markers based on penalized principal component analysis.

2.3 Difficulty of finding signatures

The inference of new molecular signatures has been a challenging task since the onset of

high-throughput profiling technologies. Some of the factors that have contributed to a

large extent towards this difficulty are the inconsistency of the metadata associated with

publicly available datasets, and the heterogeneity in the strategies for processing raw

files for such data. Although databases like the NCBI Gene Expression Omnibus (GEO)

(Barrett et al. 2013) or the EBI BioStudies (Sarkans et al. 2018) have become the stan-

dard to share high-throughput data produced from biological studies, there is not a global

consensus in the scientific community on how to record categorical annotations derived

from patient data or experimental conditions. Thus, inferring molecular signatures from

previously published data still involves a long manual process of data curation, which

can be more complex when datasets from multiple studies are going to be integrated.

However, authors like L. Wang, Wang, and Chang (2016) carried out an innovative study

to infer gene expression signatures from public data deposited on GEO by splitting the
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workload in microtasks assigned to 70 participants of an online course. Every participant

was in charge of manually identifying relevant datasets associated with drug, disease, and

gene perturbation studies, followed by curation of the associated metadata, and identify-

ing gene signatures by performing a differential gene expression analysis contrasting two

conditions using the tool GEO2Enrichr (Gundersen et al. 2015). Studies like these open

new venues for inferring molecular signatures by showing how crowdsourcing projects

can help with this difficult problem. Nonetheless, in the last years, other projects like

recount3 (Collado-Torres et al. 2017), UCSC Xena (Goldman et al. 2020), and UCSC

Toil (Vivian et al. 2017) have focused on re-processing publicly available datasets to

eliminate the computational batch effect originated by the usage of different tools across

multiple studies. Therefore, using data from these resources will allow a consistent and

robust integration across studies and will reduce the complexity of gene expression sig-

nature inference. Furthermore, the creation of single-cell gene expression and chromatin

accessibility atlases for different species will help to remove these difficulties, as all the

data and accompanying annotation will be processed and annotated in a systematic way.

Examples of such atlases are the recently published human atlases of fetal gene expression

(Cao et al. 2020) and chromatin accessibility (Domcke et al. 2020).

By definition, all high-throughput techniques are designed to measure large numbers

of biomolecular features in one sample, and despite all the challenges created by in-

consistent data processing and metadata annotation, perhaps the biggest difficulty for

signature inference has always been the extraction of meaningful information from such

high dimensional data (Mramor et al. 2005; Mirza et al. 2019).

Even when considering data originated from one single study, in which there are no

computational batch effects or annotation inconsistencies, the challenges that arise from

the so-called curse of dimensionality will always be present. This expression was coined

by Richard Bellmann referring to the exponential increase in volume as a consequence

of adding extra dimensions to a feature space (Bellman 1966; Keogh and Mueen 2017).

Specifically, the curse of dimensionality in life-sciences originates when the number of
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measured features greatly exceeds the number of samples, which cause overfitting the

model; when the number of features is so large that only a few of them show significant

differences across groups of samples or cells as a consequence of redundancy between

features; or when the number of measured features is so large that effectively renders

classical analysis methods unusable (L. Wang, Wang, and Chang 2016).

2.4 Dimensionality reduction for signature inference

In order to mitigate the curse of dimensionality, several methods (e.g., principal com-

ponent analysis, factor analysis, non-negative matrix factorization, among others) have

been proposed that are able to reduce the data volume to a smaller set of meta-features

(Fodor 2002; S. Huang, Chaudhary, and Garmire 2017). In the context of signature

inference, dimensionality reduction can be used to identify signatures that explain the

essential information of the data, i.e., to extract the signal from the noise. Furthermore,

the evaluation of the feature contribution towards each of the meta-features provides a

measurement of its relevance to explain certain biological processes (Townes et al. 2019;

Bartenhagen et al. 2010).

Most of the dimensional reduction methods used for signature identification belong to the

family of unsupervised learning methods (Wong, Li, and Zhang 2016; C. Xu and Jackson

2019). The value of these methods in the life sciences, and in particular in genomics is

that they do not require a pre-defined problem structure, i.e., the training set does not

have a response vector (Duda, Hart, and Stork 2001; Fodor 2002). This means that in

the initial stage of a research project, when no clear origin of the biological variability

can be determined or when interrogating data originated from complex populations, it is

possible to use these methods to transform the original measurements of biomolecules into

less complex and more meaningful signatures (Libbrecht and Noble 2015). In general,

the objective of using dimension reduction methods for signature inference is to search

for structures and patterns in the original data X by a transformation of the original
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variables, resulting in a simpler representation X̃ of the data (X̃ = ϕ(X)) (Duda, Hart,

and Stork 2001).

Furthermore, in many cases, the generation of omics labeled data is not possible or it

is cost-prohibitive. For instance, in single-cell transcriptomics assays, it is possible to

use Fluorescence-Activated Cell Sorting (FACS) to enrich one sample for specific cell

types based on the presence of pre-selected cell surface markers, effectively generating

pre-labeled scRNA-seq data (Baron et al. 2019; Attaf et al. 2020). But on the other

hand, it would be nearly impossible to account for surface markers for all possible cell

types present in one sample.

A detailed description of some of the most relevant dimension reduction methods that

have been used for signature inference and feature extraction is shown in the following

sections.

2.4.1 Principal component analysis

Principal Component Analysis (PCA) is the most known algorithm for dimension reduc-

tion. Originally invented by Pearson (1901) and later by Hotelling (1933), it has been

rediscovered in multiple fields, highlighting its importance and intuitive derivation (Jol-

life and Cadima 2016). The objective of PCA (Figure 2.3, equation (2.1)) is to find

a linear variable transformation to reduce the dimension of the original data X ∈ Rm×n

without losing information to produce a new matrix z ∈ Rm×d. Thus, the number of

features in the new matrix z will be less than the number of features in the original data

matrix X (d << n) (Duda, Hart, and Stork 2001).

z = ϕ(X) = X · V T

where: X ∈ Rm×n; z ∈ Rm×d; and d << n
(2.1)

In order to transform the original data matrix X, PCA derives an optimal projection

matrix V . Different algorithms have been found to derive the PCA projection matrix,
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Principal Component Analysis (PCA)
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Figure 2.3: Schematic representation of the Principal Component Analysis

(PCA) reduction. An optimal projection matrix V T is found to transform

the data matrix X into a matrix z of reduced dimension.

most of these algorithms are deterministic, meaning that there is an optimal unique

solution for every matrix X (Hastie 2017). One of the most widely used strategies to

derive V is to compute the eigenvectors and the corresponding eigenvalues of the scatter

matrix X ·XT (Duda, Hart, and Stork 2001). This is usually done using singular value

decomposition (SVD) because of its numerical stability in comparison to eigendecompo-

sition (Nakatsukasa and Higham 2013). An overview of the PCA algorithm can be seen

in Algorithm 1.

The result of the PCA dimension reduction selects the coordinate system where the data

shows the most variance, i.e., the variance of the new features in z is maximized, and the

principal components are sorted in decreasing order of the fraction of variance explained

(Hastie 2017). An additional important property of PCA is that new features are pairwise

uncorrelated, meaning that if different but overlapping biological states are present in

the data, PCA may not be the most optimal dimension reduction strategy.

PCA is generally used as a pre-processing step in many other algorithms and workflows.

For instance, a common practice to visualize clusters of cells from single-cell transcrip-

tome or chromatin accessibility profiles is to use the UMAP (Diaz-Papkovich et al. 2019)
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or tSNE (Van Der Maaten and Hinton 2008) algorithms on the transformed matrix

z.

Algorithm 1: Principal component analysis
Input : X : Data matrix X ∈ Rm×n

d : Desired number of dimension d < n

Output: X̃ : Data matrix X̃ ∈ Rm×d

1 Center X, i.e., for each column in X substract the column mean

2 Compute scatter matrix S = X ·XT

3 Compute eingen decomposition S = V · Λ · V T

4 Sort the eigenvalues in Λ from largest to smallest such that λ1 ≥ λ2 ≥ . . . ≥ λn

5 Sort the eigenvectors in V following the order of the sorted eigenvalues

6 Compute the new features x̃i,j = Xi · V T
j where V T

j = eigenvectors for j = 1 . . . d

7 Return the transformed data matrix X̃

Regarding the inference of molecular signatures, PCA has been used in many different

settings. To exemplify, GO_PCA (Wagner 2015) combines PCA with gene ontology

enrichment analysis to identify sets of genes that show similar expression patterns, and

that have closely related biological functions. This is done by performing PCA and

testing every principal component for an association of functionally related genes. PCA

was also used in combination with a deep neural network classifier to perform feature

extraction for protein structure prediction (Melo, Cavalcanti, and Guimarães 2003). In a

similar approximation, Kavitha et al. (2018) coupled PCA to the classification algorithm

SVM-Recursive Feature Elimination (SVM-RFE) (Guyon et al. 2002) to recover gene

signatures for acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).

Furthermore, Berglund, Welsh, and Eschrich (2017) proposed a series of procedures to

assess the validity of gene signature scores inferred using PCA, these procedures are based

on the comparison of the principal components (PCs) of a gene signature against a set of

PCs from randomized gene signatures (i.e., in this instance a signature score is obtained

by performing PCA including only the signature genes and using PC1 as the signature
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score). In particular, the signature coherence is measured by comparing the amount of

variance explained in PC1, the robustness compares the ratio of variance explained in

PC1 and PC2, and the uniqueness compares the correlation value of the PC1 of the gene

signature to the PC1 obtained by including all genes.

2.4.2 Independent component analysis

Independent component analysis (ICA) was initially proposed to solve the cocktail party

problem or unmixing problem, in which the idea is to recover the individual voice record-

ings from a group of speakers in the same room (Hastie 2017). This idea has been

extended to multiple fields including genomics, in which the most natural application is

to recover meaningful signatures from a high dimensional dataset (in this instance the sig-

natures are analogous to the speakers, and the biomolecular features to the microphones

in the room used to record the voice of the speakers) (Sompairac et al. 2019).

Independent Component Analysis (ICA)
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Figure 2.4: Schematic representation of the Independent Component Anal-

ysis (ICA) reduction. To apply ICA the matrix X has to be whitened before-

hand. ICA decomposes X into the matrix X̃ with statistically independent

columns and the orthogonal matrix A.
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ICA is similar to PCA, in the sense that the objective is to find a linear variable trans-

formation ϕ(X) for the original data X ∈ Rm×n to determine a matrix X̃ ∈ Rm×k of

reduced dimension (Figure 2.4). In the case of ICA, this transformation is done to find

factors that are as mutually independent as possible, which means that the matrix A

in equation (2.2) is orthogonal. One of the advantages of ICA over PCA is that the

decomposed factors are easier to interpret as they have the same importance, and are not

sorted by degree of variance explained (Hastie 2017; Duda, Hart, and Stork 2001).

X = ϕ(X) = X̃ ·A+ ε

where: X ∈ Rm×n; X̃ ∈ Rm×k; A ∈ Rk×n; and k << n

Which is equivalent to:

X̃ = X ·W + ε

where: W is the pseudo-inverse of A;W = (ATA)−1AT

(2.2)

Different algorithms have been proposed to solve the ICA problem, and perhaps the most

used implementation is FastICA from Hyvärinen and Oja (2000), depicted in Algorithm

2. The ICA problem is not convex, meaning that there is no global minimum, and the

final results will depend on the initialization of the column vectors of the unmixing matrix

W .

ICA has been used to infer molecular signatures from multiple types of genomic data and

following different strategies. For instance, ICA can be used to maximize the indepen-

dence of metagenes (i.e., gene signatures) (Kairov et al. 2017; S. I. Lee and Batzoglou

2003; Biton et al. 2014) or metasamples (i.e., sample signatures) (Meng et al. 2016).

The first case corresponds to applying ICA as depicted in Figure 2.4, in which the data

matrix X contains the samples in the rows, and the biomolecular features in the columns,

while the second case corresponds to applying ICA to a transposed data matrix X (i.e.,

features in the rows, and samples in the columns). Due to its property for un-mixing

factors, ICA is a popular choice for the deconvolution of bulk omics samples into individ-

ual cell types. In this context, the R package DeconICA (Czerwinska 2018) implements

FastICA to estimate cell type proportions from bulk RNA-seq samples.

22



Algorithm 2: Independent component analysis
Input : X : Data matrix X ∈ Rm×n

k : Desired number of factors k < n

Output: X̃ : Independent components matrix X̃ ∈ Rm×k

W : Un-mixing matrix W ∈ Rk×n

1 Center X, i.e., for each column in X substract the column mean

2 Whitening of the matrix X by projecting the data onto the k principal components

3 for d← 1 to k do

4 initialize Wd randomly

5 while Wd changes do

6 Optimize the columns of W via Newton iterations

7 w+ = 1
NX

T
i g(X ·Wd)− 1

NW
T
d g
′(X ·Wd)

8 w+ = w+ −
∑d−1

j=1(w+ ·Wj)Wj Orthogonalization

9 w+ = w+

||w+|| Normalization

10 end

11 end

12 Compute X̃ = X ·W

13 Return the matrix X̃ and W

One of the crucial steps in the analysis of single-cell RNA-seq data is to reduce the

dimension of the original data matrix. By default, popular analysis toolkits as Seurat

(Butler et al. 2018), and Monocle (X. Qiu et al. 2017) use PCA for such task. However,

as the independent factors learned by ICA could be more informative in some cases, the

option to reduce the data dimensionality using ICA is also implemented.

2.4.3 Non-negative matrix factorization

Non-negative matrix factorization (NMF) (Seung and Lee 1999) is another method of the

big family of unsupervised dimensionality reduction algorithms. The goal of the NMF
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Figure 2.5: Schematic representation of the NMF decomposition. A non-

negative input matrix is decomposed into a signature matrix W and an ex-

posure matrix H. The non-negative constrain in X results in parts based

representation of the data (additive factors).

(Figure 2.5, equation (2.3)) is to decompose a data matrix X ∈ Rn×m into a signature

matrix W ∈ Rn×k and an exposure matrix H ∈ Rm×k, such as X ≈WH, where k is the

total number of factors (i.e., signatures). In contrast to PCA and ICA, NMF imposes a

non-negative constrain in the input data matrix X, resulting in enhanced interpretability

of the decomposed factors as their combination is additive.

X = W ·H + ε

where: X ∈ Rn×m; W ∈ Rn×k; H ∈ Rk×m; and k << m

With objective function:

W,H = arg min
W,H

||X −WH||2F

(2.3)

NMF is by itself a big family of algorithms. Although many different approaches have

been proposed in the last decade to solve the NMF decomposition, most of these ap-

proximations are similar to the original multiplicative update rules initially proposed by

Seung and Lee (1999) (Algorithm 3). As well as ICA, the solution of the NMF ob-

jective function is not convex. Thus, the results will vary depending on the strategy or

method used to initialize the matrices W and H.
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Algorithm 3: Non-negative matrix factorization
Input : X : Data matrix X ∈ Rn×m

k : Factorization rank (desired number of factors) k < n

Output: W : Signature matrix W ∈ Rn×k

H : Exposure matrix H ∈ Rk×m

1 initialize W and H randomly

2 for i← 1 to T or until convergence do

3 Update H:

4 hnum = W T ·X

5 hden = W T ·W ·H

6 H = H ∗ hnum
hden

elementwise multiplication and division

7 Update W :

8 wnum = X ·HT

9 wden = W ·H ·HT

10 W = W ∗ wnum
wden

elementwise multiplication and division

11 end

12 Return the signature matrix W and the exposure matrix H

Originally proposed for image analysis (Seung and Lee 1999), NMF has been extended

to multiple fields. For instance, NMF can be used to: create a recommender system for

customer preferences in online sales platforms or movie streaming services (Sheng Zhang

et al. 2006; W. Song and Li 2019; T. Li et al. 2006; Shi 2020), identify email subcollec-

tions or text mining (M. W. Berry and Browne 2005), and for signal denoising (Wilson et

al. 2008). Moreover, in the life sciences NMF is a particularly useful tool because many

biological processes are shaped by non-negative contributions (Brunet et al. 2004), e.g.,

measurement of mRNA transcript levels, transcription factor activation, and protein ac-

tivity, among others. NMF has been used in different settings for the analysis of genomic

data, including de novo identification of mutational signatures (Ludmil B. Alexandrov et
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al. 2013; Pal et al. 2014), cell-type classification (Shao and Höfer 2017), and metagene

extraction (Brunet et al. 2004; Moffitt et al. 2015; Y. E. Li et al. 2017).

Algorithm 4: Graph regularized NMF with sparse coding
Input : X : Data matrix X ∈ Rn×m

G : Square matrix G ∈ Rm×m representing a graph

k : Factorization rank (desired number of factors) k < n

Output: W : Signature matrix W ∈ Rn×k

H : Exposure matrix H ∈ Rk×m

1 initialize W and H randomly

2 if G is empty then

3 Compute and adjacency graph G between the columns of X

4 end

5 Di,j =
∑

j Gi,j

6 for t← 1 to T or until convergence do

7 Update H:

8 hnum = 2(W TX + λGH)− α

9 hden = 2(HW TW + λDH)

10 H = H ∗ hnum
hden

elementwise multiplication and division

11 Update W :

12 wnum = X ·HT

13 wden = W ·H ·HT

14 W = W ∗ wnum
wden

elementwise multiplication and division

15 W = W∑
i Wi.j

16 end

17 Return the signature matrix W and the exposure matrix H

Among all the NMF algorithms, the Graph Regularized Non-negative Matrix Factoriza-

tion with Sparse Coding (GRNMF_SC) and all its related variations are of particular

interest for the analysis of biological data. The GRNMF_SC algorithm (Algorithm 4)
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can be used to incorporate previous knowledge of the relationship between the columns of

the input matrix X, which can be exploited in those cases where the association between

samples is already available from the metadata. Furthermore, if previous knowledge of

the interaction between the biomolecular features is already available, the GRNMF_SC

decomposition can be performed in the transposed matrix X, i.e., transposing the ma-

trix X depicted in Figure 2.5 to obtain a matrix with samples in the rows and features

in the columns. The previous knowledge is given to GRNMF_SC as a square matrix

G ∈ Rm×m representing a graph between columns of the input matrix X, the values in

G correspond to the weight of the edges connecting nodes in the graph. GRNMF_SC

can also be used as a regular unsupervised method by computing an adjacency graph

between the columns of X. Variations of this algorithm have been already used to: pre-

dict the association of aberrant microRNAs with diseases (Gao et al. 2020; Xiao et al.

2018), cluster cancer samples, and extract relevant genes by combining multiple sources

of gene expression information (Yu et al. 2019; C. Y. Wang et al. 2019), and to pre-

dict interactions between long non-coding RNAs and microRNAs (M. N. Wang et al.

2020).

Some R packages have native NMF implementations that can be applied to decompose

multiple types of data. In particular, NMF (Gaujoux and Seoighe 2010) uses the multi-

plicative rules shown in (Algorithm 3), and NNLM proposes an NMF algorithm using

sequential coordinate-wise descent (X. Lin and Boutros 2020). Other packages are de-

signed to work with only one type of genomic data. For instance, SigProfiler (Bergstrom

et al. 2019) and SignatureAnalyzer (Haradhvala et al. 2018) use NMF to derive mu-

tational signatures from somatic mutations; scPNMF uses NMF to extract consensus

features from single-cell data (D. Song et al. 2021). However, none of these packages

implements more than one NMF algorithm, and usually the biological significance of

the NMF signatures has to be assessed using other statistical packages. Furthermore,

despite its enhanced interpretability, the usage of NMF to infer molecular signatures re-

quires fine-tuning the optimal factorization rank, which results in long computing times

for large data matrices.
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2.4.4 Uniform manifold approximation and projection

A drawback of linear dimensionality reduction methods, such as PCA, ICA, and NMF

is the difficulty to visualize clusters and preserve the global structure from complex

datasets by inferring two or three factors, as a consequence of non-linear interactions

among the measured variables. In contrast, non-linear dimensionality methods like t-

Distributed Stochastic Neighbor Embedding (t-SNE) (Van Der Maaten and Hinton 2008)

and Uniform Manifold Approximation and Projection (UMAP) (Diaz-Papkovich et al.

2019) have been specifically tailored to visualize clusters and data structures in as few

as possible dimensions. However, the computational cost of these algorithms is too high

for big datasets (e.g., scTNA-seq and scATAC-seq), and it is not feasible to use them

directly on the original data. To circumvent this limitation, a common practice is to

perform one first round of linear dimensionality reduction using PCA followed by t-SNE

or UMAP.

The goal of algorithms such as UMAP, t-SNE, and kernel PCA is to apply a non-linear

coordinate transform on the data, by first mapping the data non-linearly into an aug-

mented feature space. In particular, the UMAP algorithm (Algorithm 5) consists of

two main steps, projecting the data onto a high-dimensional graph representation, and

then optimizing it into a low-dimensional graph which preserves the global structure of

the data. The initial high-dimensional graph also known as the “fuzzy simplicial com-

plex” represents the likelihood that two points are connected by weighting the edges of

the graph. The construction of this graph starts by extending a radius from each data

point and connecting two points whenever their radii overlap. The graph is called “fuzzy”

because UMAP decreases the likelihood of a connection as the radius increases.

Despite it has been said that UMAP is better than t-SNE and other dimensional reduction

algorithms in preserving the global structure of the data (Diaz-Papkovich et al. 2019),

the hyperparameters of the algorithm allow a trade-off between preserving local or global

structure. For instance, a low number of neighbors k considered for the construction

of the “fuzzy simplicial complex” will push the algorithm towards clusters with a lower
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granularity, while losing the definition of the global structure. Likewise, a large number of

neighbors will produce well-defined global clusters, at the expense of losing the resolution

of the local structure.

Algorithm 5: UMAP
Input : X : Data matrix X ∈ Rm×n

k : the neighborhood size to use for local metric approximation

d : Dimension of the target reduced space (desired number of factors) d < n

min-dist : an algorithmic parameter controlling the layout

n-epochs :controlling the amount of optimization work to perform

Output: Y : Reduced dimension matrix Y ∈ Rm×d

1 Construct weighted graph:

2 for x ∈ X do

3 fs-set[x] = LocalFuzzySimplicialSet(X,x, k)

4 end

5 top-rep[x] =
⋃

x∈X fs-set[x]

6 Optimize graph layout:

7 Y = SpectralEmbedding(top-rep, d)

8 Y = OptimizeEmbedding(top-rep, Y,min-dist, n-epochs)

9 Return the reduced dimension matrix Y

2.5 Signature inference by data integration

Gene expression data was originally thought to be sufficient to unravel the complex

mechanisms that underlie the regulation of gene expression in the cell. However, it has

become clear that epigenomic changes play a crucial role (Heintzman and Ren 2009).

For instance, chromatin conformation changes are necessary for the recruitment of tran-

scription factors to the gene promoter in order to start transcription (Spitz and Furlong

2012). Furthermore, it has been found that distal regulatory elements (i.e., non-coding
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sites in the genome that are not in close proximity to the gene promoter) are highly spe-

cific across different cell types in comparison to the gene promoter (Corces et al. 2018;

Yao, Berman, and Farnham 2015). Thus, explaining the interplay between gene expres-

sion and the epigenome is the key to understanding the distinct patterns of regulation

that give rise to different cell types, and diseases (Corces et al. 2018). To exemplify,

the integration of bulk gene expression (i.e., RNA-seq) and chromatin accessibility (i.e.,

ATAC-seq) data has been used to identify gene signatures in human α- and β-cells (A. M.

Ackermann et al. 2016), identify active transcription factors and target genes in infantile

hemangiomas (X. Li et al. 2020), and to explain the hematopoietic development and

leukemia evolution in humans (Corces et al. 2016).

Less than one decade ago was not possible to quantify gene expression at the single-cell

resolution. However, it is now becoming a common practice in many studies. Further-

more, it is also currently possible to measure more than one type of biomolecular feature

in the same single cell (i.e., multi-omics data). In this regard, technologies like scCAT-

seq (Liu et al. 2019) and SHARE-seq (Ma et al. 2020) allow the simultaneous profiling

of gene expression and chromatin accessibility, or like scNMT-seq that provides simulta-

neous measurements of gene expression, DNA methylation, and chromatin accessibility

(Clark et al. 2018). All these technologies expanded the limits of the potential knowledge

extracted from single-cell studies to a new level. With such data, it is feasible to create

models that explain the coordinated regulation between gene expression and chromatin

changes (Danese et al. 2019; Stuart et al. 2019).

2.5.1 Strategies to integrate multi-omics datasets

The integration of either bulk or single-cell multi-omics data can be performed by finding

a set of meta-features that are partially explained by multiple data types (S. Huang,

Chaudhary, and Garmire 2017). Therefore, these meta-features can be used to identify

signatures and patterns of regulation that capture more information than only using one

type of data. Originally designed for the analysis of only one dataset at the same time,
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many dimensionality reduction methods (e.g., PCA, ICA, factor analysis, NMF) have

been adapted to integrate multiple data types, to learn a common set of meta-features

across data modalities (Cantini et al. 2021; S. Huang, Chaudhary, and Garmire 2017;

Meng et al. 2016). For instance, Joint and Individual Variation Explained (JIVE) (Lock

et al. 2013) builds upon PCA, Multi-Omics Factor Analysis (MOFA) (Argelaguet et

al. 2018, 2020) and Multi-Study Factor Analysis (MSFA) (De Vito et al. 2019) are

extensions of factor analysis, and Joint NMF (Shihua Zhang et al. 2012) and Integrative

NMF (Yang and Michailidis 2015) are variations of the original NMF algorithm. In

general, these methods work by using different “views” (i.e., data modalities like gene

expression, DNA methylation, and chromatin accessibility) of the data instances (i.e.,

samples or single cells), and combining them into factors that are partially explained

from different features.

The meta-features shared across data modalities and identified using integrative ap-

proaches can be of two different natures. In the first place, in experiments in which

two or more biomolecular features were measured for all the samples or cells under

consideration, the meta-features represent groups of samples or cells that have similar

biological properties. On the other hand, in studies where the same type of genomic

data was measured in different experiments (e.g., scRNA-seq data from different pa-

tients), the meta-features represent groups of biomolecular features (e.g., genes, genomic

regions).

2.5.2 Joint non-negative matrix factorization

Among the multi-omics dimensional reduction methods, variations of the NMF algo-

rithms are of particular interest for signature inference because of the additive relation-

ship between the decomposed factors. This property is helpful to understand the amount

of information that every genomic layer is contributing towards one factor. The first ap-

proach to extend NMF for the analysis of multi-omics data was proposed by Shihua Zhang

et al. (2012) with the Joint NMF (jNMF) algorithm (Figure 2.6, equation (2.4)),
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which has been the building stone for many other improvements and variations of multi-

omics NMF algorithms, such as integrative NMF (Yang and Michailidis 2015; Chalise

and Fridley 2017), coupled NMF (Duren et al. 2018), and orthogonality-regularized NMF

(Strazar et al. 2016).

The goal of jNMF is to decompose n data matrices [X1, X2 . . . Xn] (each matrix represent-

ing one genomic modality) into n signature matrices [W1,W2 . . .Wn] and one exposure

matrixH (equation (2.4)). The relative contribution of every feature to the decomposed

signatures is encoded in the corresponding matrix Wi, while every row of the matrix H

corresponds to one signature.
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Figure 2.6: Schematic representation of the joint NMF (jNMF) algorithm.

(a) Two or more non-negative input matrices are decomposed into view-

specific signature matrices Wi, and a exposure matrix H. (b) Input data

matrices Xn must share all the features defined in the columns.
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min
n∑
i

||Xi −WiH||2F

where:

[X1, X2 . . . Xn] : List of n data matrices Xi ∈ Rdi×m

d1, d2 . . . dn : number of rows of each data matrix Xi

m : number of shared columns for matrices X1, X2 . . . Xn

(2.4)

Algorithm 6: Join non-negative matrix factorization
Input : X1, X2 . . . Xn : List of n data matrices Xi ∈ Rdi×m

d1, d2 . . . dn : number of rows of each data matrix Xi

m : number of columns of matrices X1, X2 . . . Xn

k : Factorization rank (desired number of factors) k < m

Output: W1,W2 . . .Wn : List of n signature matrices Wi ∈ Rdi×k

H : Exposure matrix H ∈ Rk×m

1 initialize W1,W2 . . .Wn and H randomly

2 for t← 1 to T or until convergence do

3 Update H:

4 hnum =
∑

iW
T
i ·Xi

5 hden = (
∑

iW
T
i ·Wi) ·H

6 H = H ∗ hnum
hden

elementwise multiplication and division

7 Update W1,W2 . . .Wn:

8 for i← 1 to n do

9 wnum = Xi ·HT

10 wden = Wi ·H ·HT

11 Wi = Wi ∗ wnum
wden

elementwise multiplication and division

12 end

13 end

14 Return the signature matrices [W1,W2 . . .Wn] and the exposure matrix H
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As shown in Figure 2.6a the columns of the input data matrices have to be shared across

all data modalities. This means that jNMF is able to integrate multi-omics experiment

datasets for which different biomolecular features were measured for the same sample

or cell. Thus, the number of measured features for each data type can be different

across views, and only the columns have to be shared. On the other hand, jNMF can

also be used for the integration of multi-experiment data, i.e., datasets comprised of a

collection of matrices quantifying the same features across different experimental settings.

In those cases, the input matrices have to be transposed, resulting in matrices where the

data instances (i.e., samples or cells) are in the rows, and the columns are the shared

biomolecular features across all experiments (Figure 2.6b). Independently of the type

of integrative analysis, the jNMF algorithm always takes as input a list of matrices with

shared columns across them (n views), returning one signature matrix for every view and

one shared matrix H (Algorithm 6).
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2.5.3 Integrative non-negative matrix factorization

One of the disadvantages of jNMF is that this algorithm is only able to capture the

homogeneous effect (i.e., the effect that is shared across all data modalities). Thus, the

signatures inferred with jNMF are not able to distinguish the effect that comes from only

one data modality (i.e., specific or heterogeneous effect). The iNMF algorithm proposed

by Yang and Michailidis (2015), aims to decompose n data matrices [X1, X2 . . . Xn] into n

signature matrices [W1,W2 . . .Wn], n view specific exposure matrices [Hv1, Hv2 . . . Hvn],

and one shared exposure matrix H (Figure 2.7, equation (2.5)).

min
n∑
i

||Xi −Wi(H +Hvi)||2F + λ
n∑
i

||WiHvi||2F

where:

[X1, X2 . . . Xn] : List of n data matrices Xi ∈ Rdi×m

d1, d2 . . . dn : number of rows of each data matrix Xi

m : number of shared columns for matrices X1, X2 . . . Xn

(2.5)

Although the iNMF algorithm (Algorithm 7) is capable of capturing the heterogeneous

effect on the matrices Hvi, it comes at the price of increasing execution times. Further-

more, the hyperparameter λ has to be tuned to control the amount of heterogeneous

effect that is captured in these matrices.

The R package LIGER implements iNMF to integrate multiple scRNA-seq datasets

(Welch et al. 2019), using a multi-experiment data integration approach (Figure 2.7b).

LIGER is designed to work with single-cell transcriptomic data, and the integration is

performed by using the set of common genes across multiple datasets. This algorithm

has become more popular in the last years, as it has been shown to be among the

top-performing methods for single-cell data integration (Cantini et al. 2021; Forcato,

Romano, and Bicciato 2021).
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Figure 2.7: Schematic representation of the integrative NMF (iNMF) al-

gorithm. (a) Two or more non-negative input matrices are decomposed into

view-specific signature matrices Wi, a shared exposure matrix Hs, and view-

specific exposure matrices Hvn. (b) Input data matrices Xn must share all

the features defined in the columns.
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Algorithm 7: Integrative non-negative matrix factorization
Input : X1, X2 . . . Xn : List of n data matrices Xi ∈ Rdi×m

d1, d2 . . . dn : number of rows of each data matrix Xi

m : number of columns of matrices X1, X2 . . . Xn

k : Factorization rank (desired number of factors) k < m

Output: W1,W2 . . .Wn : List of n signature matrices Wi ∈ Rdi×k

H : Shared exposure matrix H ∈ Rk×m

Hv1, Hv2 . . . Hvn : List of n view specific exposure matrices Hi ∈ Rk×m

1 initialize W1,W2 . . .Wn and H randomly

2 for t← 1 to T or until convergence do

3 Update H:

4 hnum =
∑

iW
T
i Xi

5 hden =
∑

i(W
T
i Wi) · (H +Hvi)

6 H = H ∗ hnum
hden

elementwise multiplication and division

7 Update W1,W2 . . .Wn:

8 for i← 1 to n do

9 Hc = H +Hvi

10 wnum = Xi ·HT
c

11 wden = Wi · (HcH
T
c + λHviH

T
vi

)

12 Wi = Wi ∗ wnum
wden

elementwise multiplication and division

13 end

14 Update Hv1, Hv2 . . . Hvn:

15 for i← 1 to n do

16 hnum =
∑

iW
T
i Xi

17 hden = (W T
i Wi) · (H + λHvi)

18 Hvi = Hvi ∗ hnum
hden

elementwise multiplication and division

19 end

20 end

21 Return [W1,W2 . . .Wn], H, [Hv1, Hv2 . . . Hvn]
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2.6 Perspectives for signature inference using NMF

Among the dimensionality reduction methods, NMF is a promising candidate to derive

molecular signatures. However, applying NMF algorithms to big datasets is a challeng-

ing task due to the long computing times. Similar to ICA, factor analysis, and other

unsupervised methods for dimension reduction, the optimal number of factors (i.e., fac-

torization rank) has to be manually selected, which usually leads to underestimation or

overestimation of the real signature number present in the data.

As detailed in the Scope of this thesis, the main objective of this work was to provide

insights into using NMF as a tool for the inference of molecular signatures.
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Part I. Tool Development
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Community building and open research are becoming the central pillars of modern re-

search. Creating collaborative networks and sharing resources help the scientific com-

munity to progress and also to speed up research projects that otherwise would take

decades to accomplish. From the software and method development point of view, open

research has been essential to share and improve complex algorithms that build the base

of nowadays bioinformatics and computational biology.

In particular, the complete family of Non-negative Matrix Factorization (NMF) algo-

rithms has been used in multiple opportunities to better understand complex datasets in

the life sciences, by decomposing matrices into signatures (i.e., the most essential parts

of the data). Nevertheless, the usability of these algorithms is lessened by limited re-

sources to interpret the results obtained from them. Therefore, here (Part I) we describe

ButchR, a new R package implementing multiple NMF algorithms, and a collection of vi-

sualization tools to understand the most essential features of a high-throughput genomic

dataset (chapter: “ButchR: NMF suit to slice genome-scale datasets”). Being community

building and resource sharing a key to bring tools as ButchR to everyone’s hands we also

present here ShinyButchR a free to use interactive application that implements the main

features from ButchR (chapter: “ShinyButchR: Interactive analysis and exploration of

NMF results”). To extend the usage of ButchR to complex multi-omics datasets, we

also detail i2NMF a new ButchR-based workflow that tackles the inference of common

and individual signatures across omics (chapter: “i2NMF: An integrative approach to

discover dataset-specific effects”).
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Chapter 3

ButchR: NMF suit to slice

genome-scale datasets

Disclosure: The results presented in this chapter have been published in Quintero et al.

(2020) and reproduced here with the permission of Oxford University Press, license num-

ber 5011370897521.

Non-negative Matrix Factorization (NMF) has been widely used for the analysis of ge-

nomic data to perform feature extraction and signature identification due to the inter-

pretability of the decomposed signatures (Brunet et al. 2004; Ludmil B. Alexandrov et

al. 2013; Pal et al. 2014). However, running a basic NMF analysis requires the installa-

tion of multiple tools and dependencies, along with a steep learning curve and computing

time. To mitigate such obstacles, we developed ButchR and ShinyButchR (Quintero et

al. 2020), a novel NMF suit that provides a complete NMF-based analysis workflow,

allowing the user to perform matrix decomposition using NMF, feature extraction, inter-

active visualization, relevant signature identification, and association to biological and

clinical variables.

The aim of ButchR and ShinyButchR is to provide a fast and scalable NMF framework,

which enables the user to decompose an input matrix X into a signature matrix W and
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an exposure matrix H (Figure 2.5). This results in a low-dimensional representation of

the input dataset, identifying signatures/factors which help to understand the underlying

biological processes and potential differences occurring between different samples.

3.1 ButchR

Several R packages (R Core Team 2020) have implemented NMF algorithms (Gaujoux

and Seoighe 2010; X. Lin and Boutros 2020). Nevertheless, extracting relevant biological

and clinical information from genome-scale datasets may be challenging given the size

of the typical datasets. In particular, feature extraction (e.g., relevant genes, genomic

regions) and signature identification (e.g., patterns of gene expression that can be associ-

ated with biological processes) are two of the most important tasks during data analysis.

Thus, ready-to-use and biological-oriented software is of great importance to allow fast

data exploration and analysis.

ButchR is an R package to
slice bulk and single-cell
omics derived matrices

into meaningful signatures
using NMF.

The core of the package is
build on Tensorflow to

allow usage of GPUs, and
decrease execution times.

Docker container
available:

ButchR 1.0
RStudio 1.3

TensorFlow 2.2.0

Fu
nc

tio
na

lit
y

Selection of optimal
factorization rank

Inspection of signature stability

Retrieval of sample exposure to
the decomposed signatures

Extraction of features defining
the decomposed signatures

Figure 3.1: Schematic representation of the R package ButchR framework.

ButchR is implemented as an R package, providing solvers for algorithms of the NMF

family, functions for downstream analysis, a rational method to determine the optimal

factorization rank, and a novel feature selection strategy. All the NMF algorithms in-

cluded in ButchR are implemented on TensorFlow (Abadi et al. 2016), which allows its

highly efficient execution under multiple systems (e.g., CPU, GPU, and TPUs systems).

42



To retrieve the decomposition results, ButchR uses the Reticulate framework (Allaire et

al. 2017), connecting Python and R in a seamless way (Figure 3.1).

In comparison to the classic implementations of the NMF algorithms, in ButchR we

use a novel way to evaluate the convergence of the matrix decomposition. Instead of

using the Frobenius norm of the residuals from the original matrix with the product of

matricesW and H (||X−WH||2Fro) as the objective function, we evaluate the stability of

decomposition. In this approach, at the end of every iteration (i.e., after the matrices W

and H have been updated) each sample/cell is assigned to the signature to which it shows

the highest exposure. If the assignment does not change for a total of n iterations, the

decomposition stops and returns both matrices W and H. By evaluating the stability of

the decomposition, and not the quality o the reconstruction, we ensure that the signatures

learned by the NMF are indeed representing the commonalities between samples/cells

because every signature will always contain a set of representative samples/cells that will

show high a degree of exposure.

To decompose a single matrix, we implemented the NMF algorithm firstly described by

Seung and Lee (1999) (Figure 2.5, Algorithm 3) as well as the Graph Regularized Non-

negative Matrix Factorization with Sparse Coding (C. Lin and Pang 2015) (Algorithm

4). Furthermore, ButchR is also designed to decompose multiple matrices at the same

time and learn a shared set of signatures. In order to achieve this, we implemented

the joint NMF algorithm (Shihua Zhang et al. 2012) (Figure 2.6, Algorithm 6) and

the integrative NMF algorithm (Yang and Michailidis 2015) (Figure 2.7, Algorithm

7).

Due to the stochastic nature of the NMF algorithms, they will produce different results

with every execution. In order to find an optimal solution, ButchR performs the complete

decomposition over a set of different random initializations of the matrices H andW and

returns the best decomposition at the end.

We made ButchR freely available to install and use at https://github.com/wurst-theke/

ButchR under the GPLv3 license. Additionally, we also created a Docker image con-
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taining ButchR and all its dependencies, alongside test datasets, to help users in run-

ning and testing ButchR under any system. The Docker image is available at https:

//hub.docker.com/r/hdsu/butchr.

3.2 Proof of concept: Extracting signatures of the human

hematopoietic system

Although NMF has been applied to high-throughput genomic data, it is of high impor-

tance to prove that the implemented algorithms work properly and that the visualizations

created by the package produce meaningful and insightful results. For this purpose, here

we show a proof of concept analysis, using the well-described RNA-seq dataset of dif-

ferent labeled cell types from the human hematopoietic system (Corces et al. 2016)

(see “Appendix A: Data description” for a description of all data used in this work).

We used this dataset to extract signatures and perform feature extraction. From the

beginning, we expected to recover signatures for each major cell type group, namely

hematopoietic stem cells (HSC) and multipotent progenitors (MPP); committed progen-

itors cells such as Lymphoid-primed multipotent (LMPP), common myeloid progenitors

(CMP), lymphoid progenitors (CLP), granulocyte-monocyte progenitors (GMP), and

megakaryocyte-erythrocyte progenitor (MEP); and differentiated cells, as shown in Fig-

ure 3.2a.

3.2.1 Optimal factorization rank and signature stability

As the NMF algorithm uses the factorization rank k (i.e., number of signatures) as a

hyperparameter, it is in the hands of the user to select a valid or optimal factorization

rank before the decomposition by default. This number is usually equivalent to the num-

ber of classes (e.g., cell types, cancer subtypes, treatments). However, it may also be

challenging to determine this number in datasets where no previous information about

the data stratification is known. Furthermore, selecting the factorization rank based on
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previous knowledge could lead to a loss of information, as a consequence of underestimat-

ing k due to unknown or rare classes present in the data. Therefore, we addressed this

challenge by allowing the user to select a range of factorization ranks before running the

decomposition, and guide the selection of the optimal factorization rank k by producing

a diagnostic plot of the NMF results across all selected ranks (Figure 3.2b). In this

plot, the following six metrics are shown for every initializing condition:

1. Frobenius error: measures the quality of one decomposition, i.e., how close it is

to the original matrix X (Wu et al. 2016).

FrobError(W,H) = ‖X −WH‖2F (3.1)

2. Coefficient of variation: measures the quality and stability of several decompo-

sitions for one factorization rank, i.e., how consistent are the NMF decompositions

after different initialization (Wu et al. 2016).

µFrob =
1

B

B∑
b

FrobError(Wb, Hb)

CoefVar([W1, H1] . . . [WB, HB]) =

√
1
B

∑B
b (FrobError(Wb, Hb)− µFrob)2

µFrob

(3.2)

3. Mean Amari distance: measures the instability of several decompositions for

one factorization rank (Wu et al. 2016).

d(Wb,Wb+1) =
1

2K

2K −
K∑
j=1

max
1≤k≤K

Ckj −
K∑
k=1

max
1≤j≤K

Ckj


meanAmari(W1 . . .WB) =

1

B

(
B−1∑
b

d(Wb,Wb+1)

)

where:

K : factorization rank

B : number of decomposed matrices for rank K

C : cross-correlation matrix between Wb and Wb+1

(3.3)

4. Sum of silhouette width: the silhouette coefficient is a measure of how similar
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one data instance is to other instances of a data cluster (Rousseeuw 1987). In

the NMF context, it measures the consistency of the NMF signatures over several

decompositions for one factorization rank. In ButchR it is calculated by: (i) con-

catenating all matrices W ∈ Rn×k decomposed for one factorization rank k into a

matrix A ∈ Rn×kB, (ii) computing the cosine distance matrix D from matrix A,

(iii) clustering the rows of matrix D (i.e., NMF signatures) into k clusters, using

“around medoids” a robust version of K-means, and (iv) computing the silhouette

scores for all signatures (Algorithm 8). In particular the “sum of silhouette width”

is the result of adding together all the silhouette scores.

5. Mean silhouette width: this metric summarizes the consistency of the NMF

decomposition, by estimating the average of the silhouette scores (Algorithm 8)

calculated for all the NMF signatures decomposed for one factorization rank.

Algorithm 8: Silhouette width calculation for NMF signatures
Input : W1 . . .WB : Decomposed matrices W ∈ Rn×k for B initializations

k : Factorization rank

Output: s : Silhouette scores vector s ∈ RkB

1 Concatenate matrices W1 . . .WB

2 A = W1 ⊕W2 ⊕ . . .⊕WB

3 Compute cosine distance matrix and cluster with partitioning around medoids:

4 D = CosineDistance(A)

5 C = PartitioningAroundMedoids(D, k)

6 Compute silhouette scores:

7 for i← 1 to kB do

8 ai = 1
|Ci|−1

∑
j∈Ci,i 6=j d(i, j), mean intra-cluster distance

9 bi = min l 6= i 1
|Cl|
∑

j∈Cl
d(i, j), mean nearest-cluster distance

10 si = bi−ai
max(ai,bi)

11 end

12 Return silhouette scores vector s ∈ RkB

46



6. Cophenetic coefficient: this metric is an index of the dispersion of the NMF

signatures for one factorization rank (Brunet et al. 2004). It is computed as the

Pearson correlation of the cosine distance matrix D and the cophenetic distance

matrix C. Both matrices D and C are estimated from a matrix A, which is com-

puted by concatenating all matrices W decomposed for one factorization rank k

(Algorithm 9).

Algorithm 9: Cophenetic coefficient for NMF signatures
Input : W1 . . .WB : Decomposed matrices W ∈ Rn×k for B initializations

k : Factorization rank

Output: c : Cophenetic coefficient

1 Concatenate matrices W1 . . .WB

2 A = W1 ⊕W2 ⊕ . . .⊕WB

3 Compute cosine and cophenetic distance matrices:

4 D = CosineDistance(A)

5 C = CopheneticDistance(HierarchicalClustering(D))

6 Compute cophenetic coefficient:

7 c = PearsonCorrelation(D,C)

The optimal factorization rank k is determined by minimizing the Frobenius error, the

coefficient of variation, and the mean Amari distance (Wu et al. 2016), while the cophe-

netic correlation coefficient, and sum and mean silhouette width should be maximized

(Brunet et al. 2004). In the dataset from Corces et al. (2016), we found k = 8 to be

optimal.

Another advantage of running the NMF decomposition across a wide range of factoriza-

tion ranks is that it allows the inspection of the robustness and stability of the signatures.

In ButchR, we implemented a riverplot or Sankey diagram (Weiner 2017) to represent the

changes in a signature across multiple factorization ranks in an intuitive visualization. A
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robust signature can be identified in a riverplot as a ribbon of constant width crossing

multiple nodes (see “Appendix B: How to read a riverplot” for a detailed explanation of

the riverplot visualization).

In our study case, the riverplot visualization revealed a separation of stem and progenitor

cells from differentiated cell types, forming two clear branches of signatures that persist

across all factorization ranks (Figure 3.2c).

3.2.2 Sample exposure and cluster analysis

For every factorization rank, a matrix H can be retrieved. Nevertheless, it is better to

use the matrix H corresponding to the optimal factorization rank. The exposure values

from the matrix H can be used to soft cluster samples and understand state transitions

or progressive regulatory changes. In addition, if a sample or cell is involved in multiple

biological processes, this can be observed as relatively high exposure to two or more

signatures. One of the most informative ways for finding the meaning of the signatures

contained in the matrix H is by visualizing the exposure values in a heatmap. ButchR

provides helper functions to extract the matrix H and create a heatmap using packages

like ComplexHeatmap (Gu, Eils, and Schlesner 2016).

The visual inspection of the matrix H for the Corces et al. (2016) data, helped to

confirm that the decomposition result generated by ButchR were in line to want we

originally expected (Figure 3.3a), i.e., the identification of a signature for each major

cell group. Moreover, the continuous exposure scores from the matrix H also revealed

more information about the undergoing biological processes happening in these data,

by identifying one signature with high exposure for the undifferentiated populations

(hematopoietic stem cells and multipotent progenitors) and a progressive decrease in the

exposure for populations with increasing differentiation (Figure 3.3a).
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Figure 3.2: Example of a ButchR analysis (a) based on RNA-seq data of

12 blood cell populations and 45 samples (Corces et al., 2016). (b) NMF

decomposition quality metrics plot. (c) Signature stability and hierarchy as-

sessment by a riverplot representation of the extracted signatures at different

factorization ranks. The nodes represent the signatures, the edge strength

encodes cosine similarity between signatures linked by the edges. Figure

modified from Quintero et al. (2020) with permission of Oxford University

Press.

UMAP (Diaz-Papkovich et al. 2019) and tSNE (Van Der Maaten and Hinton 2008)

are two algorithms extensively used to visualize high-dimensional data. However, one

obstacle to using these algorithms with a large number of features is the long execution

time. Thus, one of the most commonly used procedures is to perform feature selection or
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Figure 3.3: Sample exposure to the human hematopoietic system NMF

signatures (a) Heatmap representation of the exposure matrix H showing

the associated annotation features. (b) Cluster identification by running

UMAP on the matrix H. Figure modified from Quintero et al. (2020) with

permission of Oxford University Press.

dimensionality reduction (e.g., using PCA and selecting the top 50 principal components)

before tSNE or UMAP. In ButchR, the reduced-dimensional representation of the original

data (i.e., matrix H) can be used as input for UMAP or tSNE.

The UMAP visualization recreated from the matrix H, showed us an expected separation

of undifferentiated populations from more differentiated cell types in the Corces et al.

(2016) data, and also a distinct stratification of the differentiated cell types into sub-

clusters (Figure 3.3b).

3.2.3 Biological annotation enrichment for NMF signatures

Despite of the visual clues provided by displaying known biological and clinical annotation

on the matrix H heatmap, we developed another visualization to identify if a signature

is enriched or depleted for a particular annotation variable.

In this visualization, a recovery curve is built for every category of a known categorical

annotation for one signature in the matrix H. The curve is built (i) by ranking the

50



samples from high to low exposure score to make the x-axis of the curve, then (ii) by

iterating over all ranked samples one step is increased in the y-axis if the sample is

annotated for the variable under consideration. Next, the significance of the association

is evaluated by computing the area under the curve (AUC) and estimating a p-value

after shuffling n times the sample labels to measure the mean and standard deviation of

the null distribution of AUC values.

A recovery curve follows a diagonal line for variables with no or low association, a curve

with a steep increase for associated variables, and a curve with a steep drop for variables

depleted in the evaluated signature. For this test case, we found that most of the cell

types showed a significant association with one or two signatures (Figure 3.4).
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Figure 3.4: Recovery plot analysis to identify enrichment of known blood

cell populations to the human hematopoietic system NMF signatures, a sig-

nificant enrichment relationship is shown in a bold line. Figure modified from

Quintero et al. (2020) with permission of Oxford University Press.

3.2.4 Feature extraction and gene set enrichment analysis

Besides soft clustering and identification of signatures with significant enrichment of know

biological or clinical variables, NMF can also be used to perform feature extraction and to

build groups of features that show a high contribution to the signature definition. This is

a remarkable strength when applied to high-throughput genomic data because it can be
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used to assign genomic features to each signature, and rank their contribution. From this

perspective, we integrated a complete set of functions into ButchR to identify the variable

degree of contribution of a feature to every signature, and a further classification as a

signature specific feature or a multi-signature feature (Figure 3.5). This classification

is based on performing a k-means clustering over every row of the matrix W with 2

clusters, effectively identifying those groups of features that show a higher contribution

to the signature definition.
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Figure 3.5: Extraction of features associated to the human hematopoietic

system NMF signatures. The UpSet plot shows the number of genes that are

classified as “Signature specific features” (i.e., features that mainly contribute

towards only one signature) and features that are associated to more than

one signature. Figure modified from Quintero et al. (2020) with permission

of Oxford University Press.

To corroborate that the signature specific features (i.e., signature specific genes) extracted

with ButchR, showed a high contribution to only one signature, we extracted and in-

spected the top 10% specific features from the signatures learned for the Corces et al.

(2016) data, revealing groups of genes that highly support only one signature compared

to the others (Figure 3.6a).
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Figure 3.6: Enrichment of features associated to human hematopoietic

system NMF signatures. (a) Feature exposure to the matrix W of the top

10% Signature specific features. The exposure values are normalized row by

row. (b) Gene set enrichment analysis using the same set of genes displayed

in (b). −log10 of the corrected p-values are shown for representative gene set

collections. Figure modified from Quintero et al. (2020) with permission of

Oxford University Press.

The groups of signature-specific features can be further interrogated to understand the

biological processes or phenotype captured by a single signature. Therefore, we performed

a gene set enrichment analysis on the set of extracted features using the complete set

of molecular signatures collection database (MSigDB, Subramanian et al. 2005) as a

reference (Figure 3.6b). This provided an additional layer of validation to the array of

signatures learned by ButchR, reflected as positive enrichment of gene sets that define

the cell types associated with the NMF signatures. For instance:

• The HSC/MPP signature was enriched for gene sets upregulated in stem cells (Lim

et al. 2010; Jaatinen et al. 2006).
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• The LMPP/CMP/GMP/MEP signature captured gene sets upregulated in com-

mitted progenitor cells (Eppert et al. 2011).

• The CLP signature was enriched for gene sets up-regulated at early stages of pro-

genitor T lymphocyte maturation (M. S. Lee et al. 2004) and in progenitor cells of

B lymphocyte lineage (Haddad et al. 2004).

3.3 Chapter summary

The extraction of signatures from high-throughput data in genomics and molecular biol-

ogy has been a challenging task during the last decades. We developed ButchR, a fast and

user-friendly R package to decompose and learn signatures from an input non-negative

matrix. ButchR also includes multiple feature extraction and visualization functions

to understand and recognize the biological processes captured by the NMF signatures.

The package can be installed from GitHub (https://github.com/wurst-theke/ButchR)

and the provided Docker image (https://hub.docker.com/r/hdsu/butchr) allows the

integration of the NMF based analysis into any existing workflow.
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Chapter 4

ShinyButchR: Interactive analysis

and exploration of NMF results

Disclosure: The results presented in this chapter have been published in Quintero et al.

(2020) and reproduced here with the permission of Oxford University Press, license num-

ber 5011370897521.

Understanding and extracting information from the NMF results is non-trivial without

appropriate representation tools. Therefore, we developed ButchR aiming to provide the

community with an accessible and easy-to-use package, that represents the NMF results

using a wide range of intuitive visualizations. Nevertheless, we also acknowledge the

fact that not everyone in the scientific community is familiar with the R programming

language, which may create a barrier to use ButchR. Therefore, we created ShinyButchR

alongside with ButchR, an interactive R/Shiny application (Chang et al. 2020) to execute

and explore NMF analysis in real-time. This app removes the hurdle of installing and

learning to use all the software dependencies and allows any user to complete a matrix

decomposition analysis from start to end inside the app itself. Additionally, aiming

towards collaborative working and open research, ShinyButchR offers free computing

resources available to anyone interested in using the app.
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4.1 ShinyButchR

ShinyButchR is an interactive web application that can be used on any device. A fully op-

erating version of the app is publicly hosted at https://hdsu-bioquant.shinyapps.io/

shinyButchR/. Following the same approach, we took with ButchR, the complete Shiny-

ButchR source code is freely available in GitHub at https://github.com/hdsu-bioquant/

shinyButchR. Furthermore, we also made available a Docker image of the app in order

to help any user interested in serving the app in a local server, which can be found on

https://hub.docker.com/r/hdsu/shinybutchr.

The app was built with an intuitive user interface, consisting of two main screens (Figure

4.1a):

• Setup screen: consists of the interface to upload a non-negative matrix and to mod-

ify the parameters to run NMF using ButchR.

• Results screen: consists of a wide range of interactive visualizations produced from

the ButchR results.

We included the RNA-seq dataset of sorted blood cell populations from Corces et al.

(2016) inside the app as a demo dataset, which can be loaded by clicking on the “Demo”

button on the setup screen. Thus, the NMF decomposition results shown in “ButchR:

NMF suit to slice genome-scale datasets” can be fully reproduced using only Shiny-

ButchR.

The complete NMF workflow implemented in ShinyButchR consists of the steps depicted

in Figure 4.1b. A complete guide of how to use the app is explained in detail in the

“Appendix C: ShinyButchR tutorial.”
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Figure 4.1: Schematic representation of a ShinyButchR NMF-based work-

flow. (a) Main screens of ShinyButchR user interface. The panel on the left

shows the “Setup screen” of the app, where the user can upload a dataset and

the associated annotation table, as well as tuning the parameters to run the

matrix decomposition. The panel on the right shows the “Results screen,”

where the user is able to explore the results interactively, e.g., selection of

the optimal factorization rank, clustering analysis, association to known bi-

ological and clinical factors, and signature stability assessment. (b) Steps

performed in the ShinyButchR workflow, the setup steps (i.e., steps 1 to 6)

are shown in red, the results exploration steps (i.e., steps 7 to 12) are shown

in blue, and the final save results step (i.e., step 13) is shown in green. Figure

modified from Quintero et al. (2020) with permission of Oxford University

Press.
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4.2 Chapter summary

Not everyone in the scientific community is familiar with the R programming language,

which creates a barrier to the widespread usage of ButchR. With this in mind, we devel-

oped ShinyButchR, an interactive application to execute an NMF-based workflow from

start to end. The results obtained with ShinyButchR can be imported into R to perform

feature extraction and other downstream analyses.

The app is publicly available (https://hdsu-bioquant.shinyapps.io/shinyButchR/),

and the provided Docker image (https://hub.docker.com/r/hdsu/shinybutchr) al-

lows the execution and deployment in local servers.
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Chapter 5

i2NMF: An integrative approach to

discover dataset-specific effects

One of the main limitations of the iNMF algorithm is the assumption that exposure

matrices HS and Hvn share the same signature matrix Wn (Figure 2.7). Thus, the

heterogeneous and homogeneous effects are explained by the same number of signatures.

This limitation is more evident when the integration analysis is performed on a multi-view

dataset containing a big amount of heterogeneous effect (view-specific effect).

In this chapter, we present Integrative Iterative Non-negative Matrix Factorization (i2NMF),

a computational method to dissect cell type associated signatures from multi-omics data

sets. i2NMF uses multidimensional measurements for the same sample or cell to define

cell type-specific features. In this setting, i2NMF will create an integrative space using

the sample/cells as common features between all matrices. In this space, the NMF signa-

tures are explained at the same type by multiple types of data (i.e., the multidimensional

measurements).

On the other hand, i2NMF can also be used in datasets from different conditions or

different species, where the measured features show an overlap between datasets. In this

context, the common features (e.g., genes) between datasets will be used to create the
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integrative space. In this space, the NMF signatures are explained at the same time by

samples/cells from all original input matrices.

The final aim of i2NMF is to explain the heterogeneous and homogeneous effect between

two or more datasets using an independent set of signatures, i.e., the set of signatures

explaining the homogeneous effect will be different from the signatures explaining the

heterogeneous effect.

5.1 Iterative integrative NMF

i2NMF is a workflow implemented on the package ButchR (Figure 5.1), consisting of

two different stages:

• Stage 1: Recovering the shared effect across datasets.

• Stage 2: Identification of view-specific signatures.

The input for i2NMF is two or more non-negative matrices, with a common set of features

across columns, e.g., gene or sample IDs.

In the first stage, the shared effect across the set of input matrices is decomposed using

iNMF (Figure 5.1, Stage 1), solving the equation (5.1). The shared effect is recovered

in the exposure matrix Hs and is explained by the signature matrices Wsn. Small values

in the regularization term λ will guide the decomposition to capture more shared effects

(Yang and Michailidis 2015).

min
Ws≥0,Hs≥0,Hv≥0

N∑
n=1

||Xn −Wsn(Hs +Hvn)||2F + λ
∑
||WsnHvn ||2F (5.1)

In the second stage, i2NMF decomposes the residual effect (equation (5.2)) which was

not explained by the shared decomposition.

Xrn = |Xn −WsnHs| (5.2)
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Figure 5.1: Schematic representation of the iterative integrative NMF

(i2NMF) algorithm. i2NMF learns signatures that explain the shared ef-

fect between multiple matrices and also the specific effect derived from every

input matrix. In order to explain the shared effect, in a first stage two or more

non-negative input matrices are decomposed into signature matricesWsn and

shared exposure matrix Hs. On a second stage, to explain the residual ef-

fect, i.e., the view-specific effect, the residual matrix Xrn is decomposed into

signature matrices Wrn and exposure matrices Hrn. This effectively means

that the set of signatures explaining the homogeneous effect will be different

from the signatures explaining the heterogeneous effect
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The aim of the second stage is to recover view-specific signatures by performing a de-

composition on the residual matrix Xrn using NMF (Figure 5.1, Stage 2), resulting in

a matrix Hrn and a matrix Wrn for every input matrix Xn (equation (5.3)). The most

important property of these matrices is that the signatures can be different in number

and not shared across views, recovering in this way view-specific signatures.

For each residual matrix Xrn

min
Wrn≥0,Hrn≥0

||Xrn −WrnHrn||2F
(5.3)

5.2 Proof of concept: Recovering cell-specific signatures be-

tween substantia nigra of human and mouse

Using a substantia nigra (SN) single-cell RNA-seq human dataset comprised of 40,453

cells (Welch et al. 2019) and a mouse dataset comprised of 51,912 cells (Saunders et al.

2018), we show here how the i2NMF workflow implemented in ButchR can be used to

integrate cross-species datasets and also retrieve view-specific signatures (Figure 5.2a).

5.2.1 Integration of cross-species single-cell data

After finding the set of homologous common genes between both datasets, we built

the input matrices Xmouse and Xhuman, where the cells are in the rows and the set of

homologous common genes define the columns. Then, we performed the first stage of

the i2NMF workflow, integrating both input matrices Xmouse and Xhuman across their

columns (i.e., common genes), resulting in two signature matricesWsmouse andWshuman,

and a unique shared exposure matrix Hs.

Butcher provides functions to extract, normalize, and combine the resulting signature

matrices, in order to build a concatenated matrix WS , including cells from both datasets
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Figure 5.2: Example of an i2NMF analysis (a) based on substantia ni-

gra scRNA-seq data of 40,453 human cells (Welch et al., 2019) and 51,912

mouse cells (Saunders et al., 2018). (b) UMAP visualization of the join Wsn

matrices decomposed in the first stage of i2NMF.

in the rows and the common signatures in the columns.

A UMAP visualization of the matrix WS revealed that stage 1 of i2NMF was able to

integrate both datasets across species (Figure 5.2b, left panel) and resolve cell-type-

specific clusters (Figure 5.2b, right panel).

5.2.2 Identification of cross-species shared signatures

To identify whether the shared signatures recovered in the matrix WS show association

to selected cell types, we performed a recovery curve analysis for every signature, and

extracted the enrichment Z-score using ButchR. Inspecting the enrichment Z-scores of

every signature, revealed that all the shared signatures were highly enriched for only one

cell type (Figure 5.3a).

On the other hand, to identify if the shared signatures recovered in the matrix Hs have

biological significance, we performed a gene set enrichment analysis on the common set of

genes between both datasets against the complete set of molecular signatures collection

database (MSigDB, Subramanian et al. 2005), ranking the genes by their corresponding
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Figure 5.3: Identification of shared signatures between substantia nigra

of human and mouse. (a) Cell type enrichment analysis (Z-score of the

recovery curve analysis estimated from the join Wsn matrices are shown)

and (b) gene set enrichment analysis (−log10 of the corrected p-values are

shown for representative gene set collections, GSEA analysis done on the Hs

matrix) of the shared decomposed signatures in the first stage of i2NMF.

exposure scores in the signatures extracted from matrix Hs. After inspection of the

enriched terms for every signature, we identified that the most enriched gene sets showed

a clear correspondence to the cell types enriched in the matrixWS (Figure 5.3b).

5.2.3 Recovering species-specific signatures

Finally, we performed the second stage of the i2NMF workflow to identify species-specific

signatures. In order to this, we calculated the residual effect matrices Xrmouse and

Xrhuman and run an NMF decomposition in them, resulting in two sets of matrices

explaining the species-specific effect, [Wrmouse, Hrmouse] with 41 identified signatures,

and [Wrhuman, Hrhuman] with 21 identified signatures.

As the mouse dataset contained several polydendrocyte subtypes that were not described

in the human dataset, we focused only on the signatures enriched for this cell type

to identify mouse substantia nigra-specific signatures. After performing UMAP on the
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matrixWrmouse, we found that the mouse-specific signatures were able to recover clusters

corresponding to polydendrocyte subtypes (Figure 5.4a) and that the marker genes

associated with the polydendrocyte subtypes showed high exposure scores to only one of

the signatures enriched for polydendrocytes (Figure 5.4b).
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Figure 5.4: Identification of substantia nigra mouse-specific signatures in

the second stage of i2NMF. (a) UMAP visualization of the Wr.mouse matrix

exposure scores in mouse polydendrocytes. (b) Hr.mouse matrix exposure of

marker genes associated with the subtypes in (a).

These results confirmed that the view-specific signatures recovered from i2NMF are mean-

ingful, and they can be used to understand the dataset-specific granularity. In particular,

the matrices Wr found by decomposing the residual effect matrices Xn can be used as

input for tSNE and UMAP to resolve sub-clusters of samples/cells that were clustered

together in the first stage of i2NMF. Additionally, the matrices Hr proved to be a reliable

source to mine features explaining the variability associated with only one dataset.
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5.3 Chapter summary

Disentangling the heterogeneous (view-specific) effect from the homogeneous (shared)

effect in a multi-omics dataset is a challenging and time-consuming task. The i2NMF

workflow implemented in ButchR tries to overcome some of the iNMF pitfalls by recover-

ing true view-specific signatures. The i2NMF can be useful in cases where it is important

to understand the differences between datasets and not only the commonalities.
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Part II. NMF to Reveal Regulatory

Subtypes in Neuroblastoma
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After building and testing ButchR as a robust package to decompose datasets into the

signatures that define them, we dived deep into using all the implemented features to

solve a relevant scientific question, and also to determine and enable new functions that

would make ButchR more flexible to interpret diverse types of questions.

The results presented here (Part II) are the product of a collaborative effort to under-

stand how super-enhancers help to define regulatory subtypes in neuroblastoma (Gartl-

gruber et al. 2021). We show how ButchR was used to define signatures related to

tumor identity and that these signatures were preserved across multiple tumor cohorts

(chapter: “Neuroblastoma regulatory subtypes defined by super-enhancers”). We also ex-

plain the possible origin and genomic characteristics of a newly described neuroblastoma

subtype, and at the same time how we increased the functionality of ButchR by adding

a new NMF-based workflow that allows the projection of transcriptomic data of any

nature (i.e., microarrays, bulk RNA-seq, scRNA-seq) onto a single cell reference atlas.

(chapter: “Projection of transcriptomic neuroblastoma data onto a single-cell reference

atlas”).
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Chapter 6

Neuroblastoma regulatory subtypes

defined by super-enhancers

Disclosure: The results presented in this chapter have been published in Gartlgruber et

al. (2021) and reproduced here with the permission of Springer Nature.

6.1 The molecular basis of neuroblastoma

Neuroblastoma (NB) is a pediatric tumor of the peripheral sympathetic nervous system

(PSNS) derived from the neural crest. Multiple neural crest-derived precursors (e.g.,

neuroblasts, chromaffin cells, and Schwann cell precursors [SCPs]) are involved during

the normal PSNS development to form the adrenal medulla and the sympathetic trunk

(Furlan et al. 2017). It has been described that NB can originate from these sites after

malignant expansion of a homogeneous population of undifferentiated neuroblasts and

a few normal Schwann cells (Shimada et al. 1984; Matthay et al. 2016). However, the

exact cellular origin remains to be determined.

69



6.1.1 Genetic predisposition

It was originally conceived that NB could be explained by a two-hit model, i.e., the first

hit represents a hereditary mutation (germline mutation) and the second hit a mutation

acquired after conception (somatic mutation) (Knudson and Strong 1972). Nevertheless,

only 1-2% of neuroblastomas have been related to a hereditary component. The main

genetic predisposition causes of “familial NB” are germline gain of function mutations

in ALK (Mossé et al. 2008) and loss of function mutations in PHOX2B (Trochet et al.

2004).

6.1.2 Genetic alterations

Despite its unclear cellular origins, diverse genetic alterations have been described and

characterized in NB. For instance:

• MYCN amplification: MYCN is a member of the transcription factor family

MYC encoding the master regulator N-MYC, which controls the expression of

several target genes, including genes that promote cell cycle progression such as

CDK4, CHK1, ID2, and SKP2, as well as genes that promote cell differentiation

such as CDKL5 (M. Huang and Weiss 2013). Nearly half of all high-risk NB tumors

are associated with amplification of MYCN (at the 2p24 amplicon), and poor

prognosis (Bosse and Maris 2016). Additionally, transgenic mice overexpressing

MYCN, developed NB 3-6 months after birth, supporting the key role of this gene

in NB tumor progression (Weiss et al. 1997).

• ALK mutation: despite its association to familial NB, somatic mutations of ALK

have also been found in 14% of all high-risk neuroblastomas (Bresler et al. 2014).

ALK is located on 2p as well as MYCN, which can lead to co-amplification of both

genes. A mouse model overexpressing ALK alone, led to the development of NB;

while the simultaneous overexpression of ALK and MYCN resulted in an earlier

onset and increased lethality (T. Berry et al. 2012).
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• 1p deletion and 17q gain: the loss of the short arm of chromosome 1 (1p) (At-

tiyeh et al. 2005) and the gain of up to five copies of the long arm of chromosome

17 (17q) (Bown et al. 1999) have been linked to high-risk neuroblastomas. More-

over, both events are also associated with MYCN amplification and poor prognosis

(Matthay et al. 2016).

• TERT enhancer hijacking: the structural rearrangements that lead to placing

an ectopic enhancer in proximity to a proto-oncogene are known as “enhancer hi-

jacking.” In NB cases, 25% of the patients have TERT promoter rearrangements,

which leads to enhancer hijacking (Matthay et al. 2016). These rearrangements

target the downstream and upstream regions of TERT and cause the positioning

of groups of transcriptional active enhancers in these regions, inducing an increase

in TERT expression. Besides, TERT is also a target of N-MYC and is involved in

chromatin remodeling (Valentijn et al. 2015; Peifer et al. 2015).

6.1.3 Regulatory programs in neuroblastoma cell lines driven by super-

enhancers

The concept of large groups of transcriptional enhancers, associated with genes that

define cell identity was originally proposed by Whyte et al. (2013), calling them super-

enhancers (SEs). In comparison to conventional enhancers, these groups of enhancers

have an increased size, density of binding regions for transcription factors, and ability to

activate gene expression. After their initial conception, Hnisz et al. (2013) studied the

role of SEs in cancer and how key cancer driver genes generate formations of SEs at their

genomic location.

The identification of active SEs starts by defining regions associated with active normal

enhancers, followed by stitching together enhancers that are within 12.5 Kb of each

other, and finally selecting stitched regions that show high regulatory activity (Hnisz et

al. 2013; Whyte et al. 2013).
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Different histone modifications are helpful to recognize the state of an enhancer or chro-

matin region (Bannister and Kouzarides 2011). For instance, enrichment of monomethy-

lation of lysine 4 on histone H3 (H3K4me3) is an indicator of transcription start sites

(TSS) (Schneider et al. 2004). Enrichment of monomethylation of lysine 4 on histone H3

(H3K4me1) is typically associated with gene enhancers (Hon, Hawkins, and Ren 2009),

and the combination of enrichment of H3K4me1 with trimethylation of lysine 27 on hi-

stone H3 (H3K27me3) is a mark of closed or poised enhancers (Heinz et al. 2015). On

the other hand, a combination of enrichment of H3K4me1 and acetylation of lysine 27

on histone H3 (H3K27ac) is a typical indicator of an active enhancer (Heinz et al. 2015).

Therefore, a common strategy to find active enhancer regions is to use H3K27ac Chro-

matin Immunoprecipitation Sequencing (ChIP-seq) profiles and identify genomic regions

enriched with this histone mark (Hnisz et al. 2013). Tools such as macs2 are helpful to

accomplish this task, producing a list of “peaks” that represent regions with differential

enrichment of H3K27ac signal compared to a background signal (Y. Zhang et al. 2008).

Once active enhancers are identified, these are stitched together and classified as SEs

using dedicated tools, such as Rank Ordering of Super-Enhancers (ROSE) (Hnisz et al.

2013).

SEs have been reported as key regulators in NB. For instance, genome-wide association

studies (GWAS) revealed the association between NB susceptibility and the LMO1 gene

locus; in particular, the single nucleotide polymorphism (SNPs) rs2168101 G>T located

at the first intron of LMO1 resides within an SE region. The G-allele enables binding

and positive regulation of LMO1 by GATA3, leading to an oncogenic addiction of NB

tumor cells to LMO1 (Oldridge et al. 2015). Furthermore, several of the structural

rearrangements that lead to TERT enhancer hijacking are related to the translocation

of active SEs regions (Peifer et al. 2015).

More recently, Van Groningen et al. (2017) and Boeva et al. (2017) described the exis-

tence of two predominant cell identities in NB cell lines regulated by SEs. Van Groningen

et al. (2017) found that 8 out of 33 NB cell lines showed high gene expression scores
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for a signature inferred from mesenchymal (MES) cells in an undifferentiated state, com-

prised of known MES markers such as FN1, VIM, and SNAI2. On the other hand, the

remaining 25 NB cell lines had high gene expression scores for a signature of adrenergic

(ADRN) markers such as GATA2, GATA3, DBH, and PHOX2A. Therefore, these find-

ings showed that there are at least two different cell identities in NB, namely MES-type

and ADRN-type. Furthermore, it was also found that the SE landscapes were differ-

ent between the cell lines associated with the MES-type and the ADRN-type, with a

clear association to the MES and ADRN gene signatures, including a tight regulation

of key MES and ADRN transcription factors. Interestingly, inducing the expression of

the MES transcription factor PRRX1 on the ADRN cell line SK-N-BE(2)-C produced

repression of PHOX2B and DBH (two ADRN markers) while inducing the expression of

the MES marker SNAI2. Furthermore, after 12 days of induced PRRX1 expression, the

SE landscape of the SK-N-BE(2)-C cells shifted from an ADRN-type pattern towards

a MES-type pattern, indicating that the MES-type and ADRN-type cells can intercon-

vert by alterations in their regulatory landscape (Van Groningen et al. 2017; Boeva

et al. 2017). Despite all these findings, it remains unclear how the ADRN-type and

MES-type cell identities play a role in the development, progression, and relapse of NB

tumors.

After understanding that the signatures learned by ButchR can be used to get insights

into the biological variability and processes captured in high-throughput genomic datasets

(see “ButchR: NMF suit to slice genome-scale datasets”), we hypothesized that the NMF

decomposition would be a useful tool to explore the regulatory differences observed in

NB. Therefore, in order to reconstruct the heterogeneous SE landscape observed in NB.

We used ChIP-seq profiles for the histone mark H3K27ac from a diverse cohort of 60

neuroblastomas. A third of the cohort was comprised of MYCN amplified tumors, 25

out of the 60 samples were low-risk samples (stages 1-3, and 4s) and 35 were classified

as high-risk samples (stage 4), and 11 samples were taken from relapse neuroblastomas

(Figure 6.1a). Chromatin interaction data from bulk HiChIP profiles of the MES cell

line SK-N-AS and the ADRN cell line CLB-GA were also used to elucidate the target
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genes of SEs loci (Figure 6.1b). Additionally, H3K27ac ChIP-seq profiles for 25 NB cell

lines and 579 bulk transcriptomic profiles were used to further understand the regulatory

diversity in NB (all the experimental data was generated by Dr. Moritz Gartlgruber

and Dr. Daniel Dreidax under the supervision of PD Dr. Frank Westermann in the

Neuroblastoma Genomics department at the DKFZ).
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Figure 6.1: A neuroblastoma H3K27ac ChIP-seq cohort. (a) Characteris-

tics of the NB tumor ChIP-seq cohort (n=60), MYCN status (MYCN; Amp

= amplified), INSS stage (Stage), age at diagnosis (Age), and relapsed tu-

mor. (b) Multiple layers of regulatory information like ATAC-seq, H3K27ac

ChIP-seq profiles, super-enhancers, and chromatin interactions (HiChIP) in-

tegrated into this study are shown exemplarily for the MAML3 locus, which

is regulated by one of the top NB SEs. This regulation of MAML3 is shown in

SK-N-AS (top, purple), CLB-GA (middle, green), and the entire NB tumor

ChIP-seq cohort (bottom, turquoise). The consensus SEs (black horizontal

bars) from the whole cohort are depicted at the bottom. Predicted SE tar-

get genes are given beside the SE bars. Orange arrows indicate genes and

orientation. Figure taken from Gartlgruber et al. (2021) with permission of

Springer Nature.
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6.2 Neuroblastoma super-enhancer signatures define epige-

netic subtypes

As stated by Van Groningen et al. (2017) and Boeva et al. (2017), the alteration of

the transcriptional state and lineage identity in NB is partially explained by underlying

networks of SE associated with transcription factors. Thus, we identified SE regions in

NB using genome-wide profiles of the enhancer mark H3K27ac across 60 neuroblastomas

(NB ChIP-seq cohort), covering the different clinical and molecular subtypes (Figure

6.1a, Gartlgruber et al. 2021).

A total of 1,973 SE consensus regions and their target genes (Figure 6.1b) were found

in the cohort of 60 NB tumors using the following strategy:

1. Call H3K27ac peaks for every NB sample: using a custom pipeline im-

plemented in Snakemake, reads were trimmed using the Trimgalore tool (https:

//github.com/FelixKrueger/TrimGalore) and aligned using Bowtie2 (Langmead

and Salzberg 2012) with standard parameters. Peaks were called using the -callpeak

mode in MACS2 (Y. Zhang et al. 2008).

2. Filter peaks associated with TSS regions: to mitigate the effect of SEs as-

sociated with TSS regions, we filtered the H3K27ac peaks that were closer than

5Kb to a set of 40,512 consensus H3K4me3 peaks (found from a subset of tumor

samples for which this mark was available).

3. Call SEs for every NB sample: SEs were identified by passing the filtered

list of H3K27ac peaks to the ROSE (Hnisz et al. 2013) pipeline with standard

parameters.

4. Find SE consensus regions: considering the union of SEs from all tumor samples

we removed those that showed no overlap with another SE of the set. Then, we

merged the shared SEs regions, resulting in a list of 1,973 consensus SEs.

5. Assigning target genes to SEs: for reliable assignments of target genes to SEs,

a hierarchical strategy was followed:
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• The highest-ranking criterion was the presence of physical interactions (FDR

< 0.05) between the SE and a gene promoter in HiChIP chromatin interaction

data from NB cells CLB-GA and SK-N-AS (Figure 6.1b).

• In the absence of HiChIP interaction evidence, publicly available Hi-C in-

teraction data (GEO accession GSE63525) were used to make the SE-gene

assignment.

• In the absence of Hi-C interaction evidence, a window of 1 MB around every SE

was screened for genes with a significant correlation between RNA expression

and SE H3K27ac signal, the gene with the strongest correlation was assigned

as a target gene. A significant correlation was set to Spearman correlation

greater than 0.1.

• In the absence of significant expression-H3K27ac correlation, the closest gene

was assigned to the SE.

We extracted the SE H3K27ac signal for every tumor in the ChIP-seq cohort and used

ButchR to extract signatures associated with epigenetic differences in NB, deriving a ma-

trix HSE . A total of four distinct signatures were identified, in which three of them cor-

responded to known NB subtypes (i.e., MYCN-amplified [MYCN], MYCN non-amplified

high-risk [MNA-HR], and MYCN non-amplified low-risk [MNA-LR]) as can be seen in

Figure 6.2.

To understand the nature of the fourth signature (Figure 6.2 second row), we hy-

pothesized that mesenchymal features could be driving the behavior of a fraction of NB

tumors similarly to what was seen in NB cell lines (Boeva et al. 2017; Van Groningen

et al. 2017). We extracted features from the matrix W , and performed a gene set en-

richment analysis of the signature-associated SE target genes against gene sets related

to cell migration and epithelial-mesenchymal transition, computing a one-sided Fisher’s

exact test (Figure 6.2 left panel). A strong enrichment was found in this signature

compared to the MYCN, MNA-HR, and MNA-LR signatures, suggesting that it defines

a new NB subtype that exhibits mesenchymal characteristics.
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Figure 6.2: NMF analysis of the super-enhancer H3K27ac signal in NB

tumors. Heatmap representation of the exposure matrix HSE . The sig-

natures (rows) are annotated as MYCN: MYCN-amplified; MNA-LR/-HR:

MYCN-non-amplified low-risk/high-risk and MES: mesenchymal. Enrich-

ment analyses of the signature-specific SE target genes among representative

cell migration and epithelial-mesenchymal transition (EMT) terms are given

on the right as jitterplots. P-values are computed using a one-sided Fisher’s

exact test. Figure taken from Gartlgruber et al. (2021) with permission of

Springer Nature.

6.3 The mesenchymal subtype is also found in neuroblas-

toma cell lines

We also applied NMF on the total H3K27ac signal over the consensus SE regions from a

complementary dataset comprised of 23 NB and two neural crest-derived cell lines (Gartl-

gruber et al. 2021). Three signatures were found: MYCN, MNA-HR, and remarkably, a

third signature associated with mesenchymal processes and EMT (Figure 6.3a).

In order to evaluate the robustness of the MES signature, we used ButchR to decompose
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Figure 6.3: NMF analysis of the SE H3K27ac signal in cell lines (n=25).

(a) Heatmap representation of the exposure matrix HSE−Cells. The signa-

tures (rows) are annotated as MYCN: MYCN-amplified; MNA: MYCN-non-

amplified and MES: mesenchymal. Enrichment analyses of the signature-

specific SE target genes among representative cell migration and EMT terms

were done as in Figure 6.1b. (b) UMAP-based clustering of the NB tu-

mor and cell line samples based on the H3K27ac signal over NB SEs regions.

Samples are colored according to the MES activity. Samples with high MES

activity (inside the grey circle) are labeled in the inset plot. Figure taken

from Gartlgruber et al. (2021) with permission of Springer Nature.

a matrix Hcombined from tumors and cell lines at the same time. From the resulting

matrix, we found a clear MES signature and subsequently assigned a combined MES ac-

tivity score for tumors and cell lines. A UMAP visualization generated from the matrix

Hcombined showed that those tumors and cell lines with high exposure to the MES sig-

nature formed a common cluster, demonstrating the distinctiveness of the mesenchymal

phenotype (Figure 6.3b). In addition, the signature stability was assessed using the

riverplot visualization (Figure 6.4). We found that the MES signature had high stability

across multiple factorization ranks in both tumors (k > 2) and cell lines (k ≥ 2).
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Figure 6.4: River-plot representation of the stability of the signatures ex-

tracted from the H3K27ac SE signal in (a) tumors and (b) cell lines. The

vertical axis represents the different factorization ranks (which is equal to

the number of signatures extracted, k = [2..6]) and the ribbons indicate the

similarity of the signatures defined for different factorization ranks. For in-

stance, in cell lines, the MES signature (top-most ribbon) is stable for all

factorization ranks. In tumors, the MES signature appears for factorization

ranks k > 2. Figure taken from Gartlgruber et al. (2021) with permission of

Springer Nature.

6.4 Neuroblastoma transcriptomic signatures

We also defined SE-directed transcriptomic signatures using the expression of the SE-

target genes from 579 NB tumors (RNA-seq cohort, Figure 6.5a, Gartlgruber et al.

2021). The decomposed exposure matrix HSE−Exp resulted in four signatures, cor-

responding to those derived from the matrix HSE , and the corresponding MES sig-

nature showed a strong association with mesenchymal features (Figure 6.5a, right

panel).

We further tested the association between the epigenetic signatures extracted from the

matrix HSE−Exp and known clinical parameters, using the following strategy for every

signature (e.g., MES signature from matrix HSE−Exp) and every clinical annotation (e.g.,

relapse patients):

1. Extract signature (activity) scores of all samples.
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Figure 6.5: NMF analysis of NB tumors (n=579) based on the expres-

sion of the SE target genes. (a) Heatmap representation of the exposure

matrix HSE−Exp. Enrichment analyses of signature specific genes among

representative cell migration and EMT terms were done as in Figure 6.1b.

(b) Association of known clinical and molecular variables in neuroblastoma

to signature activity taken from (a). Figure taken from Gartlgruber et al.

(2021) with permission of Springer Nature.

2. Compare the activity scores of the set of patients annotated with the clinical anno-

tation under evaluation against the activity scores of the rest of the patients. This

was done using a one-sided Wilcoxon signed-rank test.

3. A significant association was assigned for p-values < 0.05.

«Tumors with high exposure to the MYCN signature were significantly associated with

unfavorable clinical features and high-risk disease, while the MNA-LR signature was

significantly associated with low-risk disease and favorable clinical features. Samples

with high MYCN or MES signature scores were strongly associated with relapsed disease

in the RNA-seq cohort (Figure 6.5b), suggesting that a substantial number of relapsed

NBs exhibit MES properties» Fragment modified from Gartlgruber et al. (2021) with the

permission of Springer Nature.
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Figure 6.6: (a) NMF analysis based on the expression of the SE target

genes in NB tumors from the NRC dataset (n=283 tumor samples, n=972

target genes) and (b) from the TARGET dataset (n=162 tumor samples,

n=1428 target genes). Figure taken from Gartlgruber et al. (2021) with

permission of Springer Nature.
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6.5 The neuroblastoma transcriptomic signatures are found

over multiple cohorts

Aiming to validate our findings in different cohorts, we used two independent NB gene

expression datasets:

• NRC: Neuroblastoma Research Consortium (NRC), 162 samples (Rajbhandari et

al. 2018).

• TARGET: Therapeutically Applicable Research to Generate Effective Treatments,

283 samples (Pugh et al. 2013).

We extracted the expression of the SE-target genes (i.e., target-genes found in our NB

ChIP-seq cohort) from the TARGET and NRC cohorts, and used ButchR to identify

SE-directed transcriptomic signatures (Figure 6.6).

To understand if the NRC and TARGET signatures showed correspondence to the sig-

natures found in our RNA-seq cohort (Figure 6.5), we compared the gene weights

(exposures) from the matrix WSE−Exp (extracted from the NMF of our NB RNA-seq

cohort) to the gene weights from the matrix WNRC (Figure 6.7) and matrix WTARGET

(Figure 6.8). We were able to resolve the same subtypes identified with our SE-directed

transcriptomic signatures and found high similarity among the signatures between the

different datasets.

Remarkably, the evidence of a MES signature in both NRC and TARGET cohorts sup-

ports the existence of neuroblastoma subtype with mesenchymal characteristics.
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Figure 6.7: Scatter plots indicating the correlation of the signature specific

gene activity between NB tumor and NRC dataset (n=972 target genes).

Each dot represents a gene and the x/y coordinates represent the contri-

bution (or weight) of the gene to the corresponding signature. Pearson’s

correlation values are indicated. Figure taken from Gartlgruber et al. (2021)

with permission of Springer Nature.
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Figure 6.8: Scatter plots indicating the correlation of the signature spe-

cific gene activity between NB tumor and TARGET dataset (n=1428 target

genes). Each dot represents a gene and the x/y coordinates represent the

contribution (or weight) of the gene to the corresponding signature. Pear-

son’s correlation values are indicated. Figure taken from Gartlgruber et al.

(2021) with permission of Springer Nature.
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6.6 Chapter summary

Neuroblastoma is a neuroendocrine tumor derived from the neural crest. Using transcrip-

tional and epigenetic profiles of cell lines derived from neuroblastoma, Van Groningen et

al. (2017) and Boeva et al. (2017) described the existence of two predominant cell identi-

ties (mesenchymal-type and adrenergic-type). However, the effect of the cell identity on

the development, progression, and relapse of neuroblastoma tumors was unclear.

Here, using genome-wide H3K27ac profiles across 60 neuroblastomas, covering the dif-

ferent clinical and molecular subtypes. We used ButchR to identify four major super-

enhancer-driven neuroblastoma epigenetic signatures. Three of these signatures recapit-

ulated known clinical groups, namely MYCN-amplified, MYCN non-amplified high-risk,

and MYCN non-amplified low-risk. The fourth signature showed a clear association to

cell migration and epithelial-mesenchymal transition, suggesting that it defines a new

neuroblastoma subtype exhibiting mesenchymal characteristics.
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Chapter 7

Projection of transcriptomic

neuroblastoma data onto a

single-cell reference atlas

Disclosure: The results presented in this chapter have been partially published in Gartl-

gruber et al. (2021) and reproduced here with the permission of Springer Nature.

Neuroblastoma like other embryonal tumors originate from deregulated developmental

programs at prenatal stages (Janoueix-Lerosey et al. 2008; Mossé et al. 2008; Schwab

et al. 2003; Pugh et al. 2013). Identification of the specific cell(s) of origin for these

tumors and their subtypes is fundamental towards understanding their development,

progression, and relapse mechanisms. Neuroblastoma is thought to originate from the

sympathoadrenal compartment during development. However, the exact cellular origins

are unknown (Ross, Spengler, and Biedler 1983).

In order to determine the possible cell of origin of the new neuroblastoma MES subtype

(see “Neuroblastoma regulatory subtypes defined by super-enhancers”), we developed a

new ButchR-NMF-based workflow to map any contextually similar bulk or single-cell
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transcriptomic data onto a reference single-cell data. In this chapter, we show how this

new workflow was used to map neuroblastoma transcriptomic data onto two reference

atlases (i.e., scRNA-seq data from mouse and human developing adrenal gland).
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Figure 7.1: Schematic representation of the strategy to project new high-

throughput transcriptomic data onto a single-cell reference atlas. Stage 1.

The reference atlas is decomposed into the matrix Watlas and the matrix

Hatlas using NMF. An embedding of the reference atlas is build using the

matrix Hatlas. Stage 2. The query data Xquery is transformed to the lower-

dimensional space Hquery using LCD and matrix Watlas. Then, the matrix

Hquery is projected onto the atlas embedding. These steps result in overlap-

ping reference and query samples in the same latent space.
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7.1 Projecting data onto an existing embedding using NMF

Single-cell transcriptomic analysis has shown outstanding potential towards understand-

ing cell fate and diversity (Trapnell 2015; Gulati et al. 2020; Sagar and Grün 2020;

Tam and Ho 2020). These rich datasets have been widely exploited for cross-inference

analysis and integration between different species (Shafer 2019; Ding et al. 2019), con-

ditions (Butler et al. 2018; Stuart and Satija 2019) or data modalities (Ma et al. 2020;

Chappell, Russell, and Voet 2018; Colomé-Tatché and Theis 2018; Liu et al. 2019).

However, integrative analysis between bulk and single-cell transcriptomic data remains

a challenge.

We developed a workflow implemented using ButchR to project any type of high-throughput

transcriptomic data (i.e., bulk and single-cell transcriptomic data) onto a single-cell refer-

ence atlas (Figure 7.1). This workflow is divided into two different stages, construction

of a reference embedding and projection of a query onto the reference:

7.1.1 Stage 1. Construction of a reference embedding

For the first stage, ButchR is used to decompose an expression matrix from a single-cell

reference atlas into a matrix Watlas and a matrix Hatlas. In this case, the rows of the

matrix correspond to genes, and the columns are the single-cells of the atlas.

The reduced-dimensional representation Hatlas of the original expression matrix is used

to fit a UMAP model UMAPatlas and plot the embedding. The matrix Watlas is saved

to be used in the second stage (Figure 7.1 top panel).

7.1.2 Stage 2. Projection of a query onto the reference embedding

On the second stage, a query transcriptomic data (either bulk or single-cell transcriptomic

data) is projected onto the reference embedding, this is broken down in the following steps

(Figure 7.1 lower panel):
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1. Transform the query data Xquery to the same lower-dimensional space

Hatlas of the reference: using the function linear combination decomposition

(LCD) from the R package YAPSA (Hübschmann et al. 2020), the exposure

values of each query sample/cell Hjquery are found by solving the non-negative

least-squares minimization problem min||WatlasHjquery − Xjquery|| with the LSEI

algorithm (Lawson and Hanson 1995) implemented in the R package lsei. This

effectively transforms the query data into the space Hquery which is shared with

Hatlas.

2. Project Hquery onto the atlas embedding: using the UMAP model UMAPatlas

the position of the query samples/cells on the reference embedding are predicted

from the matrix Hquery.

3. Filter low-quality projections: correlate every query data point to its nearest

reference neighbors (i.e, Spearman correlation of the transcriptomic profiles). The

projection quality is refined by removing lowly correlating query data points.

4. Transfer labels from reference atlas to query: labels from the reference atlas

are transferred to every query data point by a majority vote rule of its nearest

reference neighbors.

7.2 Projection of neuroblastoma transcriptomic data onto

a mouse adrenal medulla reference atlas

The publicly available single-cell transcriptomic data of 384 cells, where Furlan et al.

(2017) described the cellular composition and dynamics of the developing adrenal medulla

in mice (E12.5), has become a staple to understand the development of the adrenal

medulla, suprarenal ganglia sympathoblasts, and the onset of neuroblastoma. According

to Furlan et al. (2017), the developing adrenal medulla in mice is composed of Schwann

cell precursors (SCPs), early and late chromaffin cells, and a connecting Bridge popula-

tion (Figure 7.2a).
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In particular, the origin of the neuroblastoma MES subtype described in “Neuroblastoma

regulatory subtypes defined by super-enhancers” (Figure 6.5a) could be explained by

identifying similar regulatory landscapes with its cellular origin. Therefore, we explored

this shared identity by projecting transcriptomic neuroblastoma data onto the reference

atlas made from the developing adrenal medulla in mice.
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Figure 7.2: Projection of the NB RNA-seq cohort onto a mouse adrenal

medulla atlas. (a) UMAP visualization of mouse adrenal medulla cells at

E12.5. Colors indicate the inferred cell type based on marker genes. (b)

Projection of NB tumor transcriptomic profiles (n=573) (purple dots) onto

the landscape shown in (a) defined by the mouse adrenal medulla cells (or-

ange dots). Figure modified from Gartlgruber et al. (2021) with permission

of Springer Nature.

7.2.1 The mesenchymal subtype resembles Schwann cell precursors

We projected our cohort of bulk transcriptomic data from 579 NB tumors onto the

developing mouse adrenal medulla atlas embedding (Figure 7.2b). In order to map the

human genes to their corresponding mouse ortholog, we used the homologous master list

from the Mouse Genome Informatics Web Site (MGI, Bult et al. 2019).

The labels from the mouse atlas were transferred to the NB tumors, seeking to determine
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the identity of the bulk samples based on the nearest mouse-cell neighbors (Figure

7.3a). The majority of the samples from the NB bulk RNA-seq cohort mapped to early

chromaffin cells with smaller proportions mapping to cycling cells and SCPs (Figure

7.3a inset plot). Remarkably, the MES subtype showed a distinct overlap with SCPs,

suggesting a high degree of phenotypic similarity (Figure 7.3b).
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Figure 7.3: Tracing the cellular origin of the MES subtype - mouse atlas.

(a) Projection of NB tumor transcriptomic profiles (n=573) (colored dots)

onto the landscape shown in Figure 7.2a defined by the mouse adrenal

medulla cells (grey dots). The tumor samples are colored according to Fig-

ure 7.2a and the quantification of the most frequent neighboring single cells

is shown in the inset barplot. (b) The same tumor samples are colored by

the MES signature activity score shown in Figure 6.5a. Figure taken from

Gartlgruber et al. (2021) with permission of Springer Nature.

7.2.2 Expression of MES signature genes in cells of the developing

adrenal gland

We further tested the association between the MES subtype with SCPs using the com-

prehensive single-cell atlas of mouse organogenesis (Cao et al. 2019) covering multiple

developmental stages E9.5–E13.5. We quantified the mean expression of genes from
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the MES signature in single-cells of the potential progenitor cell types for the adrenal

gland, and sympathetic ganglia development (Figure 7.4). Interestingly, we observed

that among the groups of potential progenitors, only SCPs showed a high expression of

genes from the MES signature across multiple developmental times. Confirming a clear

association between SCPs and the MES subtype
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Figure 7.4: Mean expression of the mesenchymal gene signature in four se-

lected single-cell populations from the mouse organogenesis (MOCA) dataset,

indicating that the Schwann cell precursors have the highest mean mesenchy-

mal expression across all developmental time points. Figure taken from Gartl-

gruber et al. (2021) with permission of Springer Nature.

7.2.3 Neuroblastoma mesenchymal cell lines resemble Schwann cell

precursors

To deeply understand the relationship of the neuroblastoma mesenchymal phenotype to

the Schwann cell precursors population, we projected data from three neuroblastoma
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cell lines (i.e., KELLY, SK-N-AS, and SK-N-SH) at single-cell resolution onto the de-

veloping adrenal medulla mouse atlas. KELLY is a homogeneous cell line derived from

neuroblastoma that possesses a genomic amplification of the N-myc gene, resulting in an

elevated expression of the mRNA and protein products (Schwab et al. 1983). On the

other hand, SK-N-AS was originally described as a mesenchymal-like cell line ( S-type,

expressing VIM); however, Boeva et al. (2017) reported heterogeneity of the cell identity

for this cell line. SK-N-SH is also a heterogeneous cell line model containing noradrener-

gic (N-type, expressing neuronal markers), mesenchymal-like (S-type, expressing VIM),

and intermediate cell types (I type) (Biedler, Helson, and Spengler 1973; Ciccarone et

al. 1989).

Upon projecting the KELLY cells (n=636) onto the developing adrenal medulla mouse

atlas, we observed that almost all cells mapped to cycling cells (Figure 7.5a,b top

panel). On the other hand, the majority of SK-N-AS (n=603) and SK-N-SH (1,176) cells

mapped to either SCPs or cycling cells (Figure 7.5a,b middle and lower panel).

Furthermore, to confirm that the similarities between neuroblastoma cells mapping to

SCPs are related to the MES signature defined from NB tumors (Figure 6.5a), we

quantified the mean expression of genes from the MES signature in the single-cells of

neuroblastoma cell lines (Figure 7.5c). We found that the fraction of SK-N-AS and

SK-N-SH cells mapping to SCPs exhibited the highest mean expression of MES sig-

nature genes. Taking together, these results confirmed that neuroblastoma cells with

mesenchymal characteristics share similar identities with SCPs.
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Figure 7.5: (a) Projection of single-cells from the KELLY, SK-N-AS, and

SK-N-SH cell lines (colored dots) onto the landscape shown in Figure 7.2a
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neighbors from the mouse adrenal cells. (c)Mean expression of the MES gene

signature in the single cells of the indicated cell line by cell type, showing

a higher mesenchymal activity for the cells associated with SCPs. Figure

modified from Gartlgruber et al. (2021) with permission of Springer Nature.
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7.3 Projection of neuroblastoma transcriptomic data onto

a human adrenal medulla reference atlas

Although the projections to the reference atlas made from the developing adrenal medulla

in mice helped us to understand that the MES subtype shares similar regulatory land-

scapes with the SCPs, we sought to confirm that our findings were not an artifact of

the intrinsic differences between human and mouse development. Therefore, we used the

recently published single-cell human adrenal medulla dataset by Jansky et al. (2021), to

build an atlas and to project neuroblastoma transcriptomic data onto it. For this, we

96



used a total of 6,249 single-cells from 14 human adrenal glands spanning the 7, 11, 14,

and 17 post-conception weeks (pcw) (Figure 7.6).

7.3.1 The mesenchymal subtype resembles human Schwann cell pre-

cursors

We projected our cohort of bulk transcriptomic data from 579 NB tumors onto the

human adrenal medulla atlas embedding (Figure 7.7a) and transferred the labels to

determine the identity of the bulk samples (Figure 7.7b). Similar to what we found

with the projections to the mouse adrenal medulla atlas, the MES subtype showed a

distinct overlap with SCPs, confirming a high degree of phenotypic similarity in humans

as well (Figure 7.7c).
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Figure 7.7: Tracing the cellular origin of the MES subtype - human atlas.

(a) Projection of NB tumor transcriptomic profiles (n=573) (colored dots)

onto the landscape shown in Figure 7.6a defined by the human adrenal

medulla cells (grey dots). The tumor samples are colored according to Fig-

ure 7.7a. (b) Quantification of the most frequent neighboring single cells.

(c) The same tumor samples are colored by the MES signature activity score

shown in Figure 6.5a.
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7.3.2 Single cells from tumors with mesenchymal characteristics map

to Schwann cell precursors

We further hypothesized that single cells from neuroblastoma tumors with high exposure

to the MES signature may be projected close to the SCPs population. As the tumor

composition could be affected by the tumor identity, we used data of two tumors (i.e.,

NSP050-PT01 and NSP052-PT01) from the original bulk RNA-seq cohort that showed

different exposures to the NMF signatures corresponding to the neuroblastoma epigenetic

subtypes (Figure 7.8a).

We projected single-cell transcriptomic data for the tumors NSP050-PT01 and NSP052-

PT01 onto the human developing adrenal medulla atlas and observed that the proportion

of cells mapping to the SCPs population was higher for the tumor NSP050-PT01 than

for NSP052-PT01 (Figure 7.8b). Considering that tumor NSP050-PT01 showed higher

exposure to the MES signature than tumor NSP052-PT01, suggests that the larger pro-

portion of cells mapping to the SCPs in neuroblastoma tumors could be related to the

mesenchymal properties of the tumor.

7.4 Chapter summary

Identification of the specific cell(s) of origin for embryonal tumors like neuroblastoma and

their subtypes is fundamental towards understanding their development, progression, and

relapse mechanisms. We developed a new NMF-based workflow (implemented in ButchR)

to map any contextually similar bulk or single-cell transcriptomic data onto a reference

single-cell data, aiming to determine the possible cell of origin of the neuroblastoma

MES subtype identified with ButchR (see “Neuroblastoma regulatory subtypes defined

by super-enhancers”).

We applied our method to map transcriptomes of neuroblastoma data onto single-cell

transcriptomic profiles from developing mouse and human adrenal glands. The phe-
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Figure 7.8: Projection of single cells from neuroblastoma tumors onto a

human adrenal medulla atlas. (a) Relative exposure to the epigenetic sig-

natures defined in Figure 6.5a of the tumors NSP050-PT01 and NSP052-

PT01. (b) Projection of single cells from tumor NSP050-PT01 (c) and

tumor NSP052-PT01 onto the landscape shown in Figure 7.6a defined by

the human adrenal medulla cells (grey dots). Every cell is colored according

to Figure 7.7a, quantification of the most frequent neighboring is shown in

the inset plot.

notypic similarities of neuroblastomas entities with distinct cellular types from normal

differentiation stages, including SCPs to early neuroblast/chromaffin cells, revealed neu-

roblastoma cellular heterogeneity. In particular, the MES subtype shared similar regu-

latory landscapes with multipotent Schwann cell precursors, pointing towards a strong

phenotypic and molecular similarity between these two cell types.
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Part III. Tracing Identity Defined

by Transcription Factor Activity
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So far, we have used ButchR to decompose matrices that were built in a traditional way.

For instance, we used gene expression matrices resulting from the measurement of mRNA

levels for all genes (chapter: “ButchR: NMF suit to slice genome-scale datasets”), matrices

containing epigenomic measurements like the signal of histone marks, or gene expression

matrices from curated set genes (chapter: “Neuroblastoma regulatory subtypes defined

by super-enhancers”).

While these approaches proved to be successful for understanding mechanistic processes

for groups of biological entities (i.e., cells or bulk tumor samples), explaining more com-

plex processes would require the construction of initial matrices using alternative strate-

gies. For instance, explaining the regulation of gene expression by the simultaneous

action of cis-regulatory elements.

Here (Part III), we devised two new methods for building matrices that can be decom-

posed in regulatory signatures using ButchR. In the first case, binary matrices explaining

the on/off status of regulatory links between genome elements were built by using data

generated from state of the art methods, in which it is possible to co-profile chromatin

accessibility and gene expression from the same single cell (chapter: “Understanding gene

expression regulation with scCAT-seq”). In the second case, we generated matrices that

served as a proxy of TF activity by using cell-state specific regulons (chapter: “Deconvo-

lution of regulon-guided signatures”). Some of the results presented here are product of

an international collaboration to reveal regulatory heterogeneity by combining single-cell

multi-omics layers (Liu et al. 2019).
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Chapter 8

Understanding gene expression

regulation with scCAT-seq

Disclosure: The results presented in this chapter have been partially published in Liu et

al. (2019) and reproduced here with the permission of Springer Nature.

The developmental destination of a cell (cell fate) and the transcriptional output of

the gene regulatory networks (cell state), defined by modules formed of transcription

factors and their target genes (regulon) are tightly coupled to the interplay between the

epigenetic and transcriptomic landscapes of the cell (Spitz and Furlong 2012; Shema,

Bernstein, and Buenrostro 2019; Moris, Pina, and Arias 2016). Therefore, measuring

the epigenomic and transcriptomic characteristics of single cells is a key element towards

understanding the patterns of regulatory relationships between these two elements.

Until recently, it was not possible to study the direct relationship between the transcrip-

tome and the chromatin accessibility in the same single cell. However, this limitation

has been overcome by recent advances in single-cell technologies; in particular, techniques

like scCAT-seq (Liu et al. 2019) and SHARE-seq (Ma et al. 2020) provide measures of

mRNA expression (scRNA-seq) and chromatin accessibility (scATAC-seq) from the same

single cell.
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In this chapter, we present a new methodology to infer regulatory relationships between

genes and their cis-regulatory elements (CREs), followed by the identification of regula-

tory signatures that can help to define the cell state using ButchR. To this end, we used

three scCAT-seq datasets generated by Liu et al. (2019), in which simultaneous profiling

of scRNA-seq and scATAC-seq was done for cells of three cell lines, two patient-derived

xenografts (PDX) tissues, and pre-implantation human embryos (Figure 8.1). Every

dataset consists of a gene expression matrix, a set of peaks found from the scATAC-seq

data, and a matrix of peak counts.

a

n = 42

n = 74

n = 90

Three different cell
lines:

HCT116

HeLa-S3

K562

scCAT-seq data: gene
expression and chromatin
accessibility for every cell

Liu et al., 2019

Chromatin
accessibility

Gene
expression

1 2 3 4 5 n

…

…

…

…

Moderately differentiated
squamous cell carcinoma

Large-cell lung
carcinoma

PDX2

PDX1

n = 167

n = 176

b
Two lung cancer patient-
derived xenografts (PDX):

c

Morula Blastocyst

72 Cells

Pre-implantation
human embryo:

Figure 8.1: Schematic representation of used scCAT-seq datasets. scCAT-

seq provides an accurate genome-wide measure of both chromatin accessibil-

ity and gene expression for every single cell. Here, we used three datasets

generated by Liu et al. (2019); (a) three cell lines; (b) two lung patient-

derived xenografts (PDX) tissues; (c) and pre-implantation human embryos.

Figure modified from Liu et al. (2019) with permission of Springer Nature.

8.1 Prediction of regulatory relationships using scCAT-seq

Gene expression regulation is mediated by the simultaneous action of multiple CREs

(Lenhard, Sandelin, and Carninci 2012; Spitz and Furlong 2012), making them a key in-

termediate component in Gene regulatory networks (GRNs) (Davidson 2010). Therefore,
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to thoroughly describe and predict cell states, it is necessary to understand the complex

interplay between TFs and the CREs that act on their target genes, as well as how these

regulatory relationships affect gene expression. Therefore, we used scCAT-seq data from

three cell lines (K562, HeLa-S3, and HCT116) (Liu et al. 2019) (Figure 8.1a) to pre-

dict regulatory relationships between TF and CREs, taking advantage of the availability

of the two omics layers (i.e., gene expression and chromatin accessibility) across single

cells.

8.1.1 Three strategies to predict regulatory relationships

It has been shown that the correlation of the accessibility between cis-regulatory ele-

ments provides an effective approach to define regulatory links (Buenrostro et al. 2015).

However, with the additional layer of information provided from scCAT-seq (i.e., gene

expression), it is also possible to devise further strategies that effectively integrate the

two omics layers to predict regulatory relationships.

We used the following three strategies to define regulatory relationships between TFs

cis-regulatory elements and a target gene in the cell lines dataset:

Strategy 1:

This strategy is based on correlation of promoter and distal peaks signal, it uses only

scATAC-seq data (Figure 8.2 Strategy 1):

1. For every gene promoter, find the list of nearby accessible regions (i.e., peaks located

in the window 1 Mb upstream-downstream of the promoter).

2. Estimate the Spearman correlation between the signal of peaks located at gene

promoters and every nearby peak.

3. Assign a regulatory link when the Spearman correlation was above 0.25.
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Figure 8.2: Inferring regulatory relationships between CREs and genes by

scCAT-seq. Overview of three strategies for inferring regulatory relation-

ships. Strategy 1: based on correlation of promoter and distal peaks signal.

Strategy 2: based on correlation of gene expression and distal peaks signal.

Strategy 3: based on TF activity, accessibility of CREs, and effect on gene

expression. See the text for a detailed explanation. Figure modified from Liu

et al. (2019) with permission of Springer Nature.
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Strategy 2:

The second strategy is based on the correlation of gene expression and distal peaks signal,

it uses scRNA-seq and scATAC-seq data (Figure 8.2 Strategy 2):

1. For every gene, find the list of nearby accessible regions (i.e., peaks located in the

window 1 Mb upstream-downstream of the gene promoter).

2. Estimate the Spearman correlation between the gene expression and the signal of

every nearby peak.

3. Assign a regulatory link when the Spearman correlation was above 0.25.

Strategy 3:

The third strategy is based on TF activity, accessibility of CREs, and effect on gene

expression, it uses scRNA-seq and scATAC-seq data (Figure 8.2 Strategy 3):

1. Identification of active TFs for every cell by pySCENIC (Van de Sande

et al. 2020):

• Starting from the gene expression matrix, define regulons based on the co-

expression of TFs and their target genes across cells.

• Quantify the regulon enrichment in each cell by measuring the area under the

recovery curve (AUC) of the genes that define each regulon.

• Classify individual TFs as active or inactive in each cell based on the bimodal

distribution of the AUC scores of the corresponding regulon.

2. Identification of gene-associated active and accessible regions in every

cell:

• For every gene find the list of nearby accessible regions (i.e., peaks located in

the window 1 Mb upstream-downstream of the gene promoter).

• Match the binding motifs of active TFs to the list of nearby accessible regions

using the R package Biostrings.

• For every cell, classify the accessible regions as active, when at least one motif

matched with at least 95% of the highest possible score for the given motif
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Position Weight Matrix (PWM).

3. Assignment of regulatory relationships:

• For every active and accessible region that was found in at least 10% of the

cells, classify the cells in two groups (i.e., cells with and cells without the

active and accessible region).

• Perform a Wilcoxon rank-sum test between the two groups, comparing the

expression of the gene associated with the active and accessible region.

• Assign a regulatory relationship between the gene and the active and accessible

region if the presence of the region was associated with a significant change

in the gene expression (Wilcoxon test p-value < 0.05).

• Note: by using this strategy, it is possible to recover more than one regulatory

relationship for every gene. This is a reflection of the underlying complexity

of GRNs.

One of the disadvantages of using strategies based on correlations like Strategy 1 and

Strategy 2 is that the dictionary of inferred regulatory relationship will be defined across

all cells and not in a cell-wise specific manner. On the other hand, our proposed Strategy

3 will be able to infer regulatory relationships for every cell under consideration, allowing

the comparison of the regulatory landscape across individual cells.

After applying these three strategies to the cell lines dataset, we found that the largest

number of regulatory relationships was identified using Strategy 3 (62,769), compared to

Strategy 1 (46,813) and Strategy 2 (21,219) (Figure 8.3a). We observed that only about

a third of the regulatory links predicted using exclusively chromatin accessibility data

(Strategy 1 ), were shared with the regulatory links that effectively combined both omic

layers available from the scCAT-seq cell lines dataset. Suggesting that the dynamics of

the epigenomic and transcriptomic regulation in GRNs can not be fully explained using

only chromatin accessibility data (Figure 8.3a).
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(middle), and HCT116 (right) single cells. Figure modified from Liu et al.

(2019) with permission of Springer Nature.

8.1.2 Validation of the prediction of regulatory relationships

In order to validate the accuracy of the regulatory relationships predicted using the

proposed strategies, we counted the number of regulatory relationships that were also re-

covered using chromatin interaction analysis by paired-end tag sequencing (ChIA-PET)

(G. Li et al. 2010). We overlapped publicly available interaction profiles for the evalu-

ated cell lines (i.e., K562, HeLa-S3, and HCT116) (Teng et al. 2015) to our predicted
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regulatory links (Figure 8.3b), and found that for all three cell lines, the proportion of

links validated by ChIA-PET interactions were higher when using the multi-omics-based

methods (Strategy 2 and Strategy 3 ) in comparison to using only scATAC-seq (Strategy

1 ). Suggesting that the interaction between CREs and gene expression could be a better

model to understand GRNs than models based only on the interaction between CREs at

different genomic locations.

Regarding Strategy 2 and Strategy 3, we selected the latter to perform the rest of our

analyses based on the largest number of validated regulatory relationships, and that with

this strategy it is possible to predict regulatory links for every single cell.

8.1.3 Using ButchR to find regulatory signatures

With the potential to define regulatory relationships for every single cell (i.e., using

Strategy 3 ), we further hypothesized that the hidden patterns of common regulatory

pathways used by groups of cells that share similar cell states could be revealed by

finding regulatory signatures using ButchR.

We generated a binary matrix Xreg for the cell lines dataset, where columns represent

single cells and every row is one regulatory relationship identified between an accessible

site and one gene. Values of 1 indicate the presence of the regulatory link in the indicated

cell. Using ButchR, we then decomposed the matrixXreg into the matricesWreg andHreg

with an optimal factorization rank k = 3. A closer inspection of the matrix Hreg (Figure

8.4a), revealed that each of the recovered signatures showed a high correspondence to

only one of the cell lines under consideration.

To understand the regulatory links explaining every signature and whether they showed

any relation to the biology of the associated cell line, we extracted signature associated

features (i.e., regulatory relationships that show high contribution towards the definition

of the signature under consideration) from the matrixWreg using ButchR, and visualized

the genomic distribution of a few representative examples across the three cell lines
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Figure 8.4: NMF analysis of the regulatory relationships inferred for the

scCAT-seq cell lines dataset. (a) Heatmap representation of the exposure

matrix Hreg decomposed for the K562, HeLa-S3, and HCT116 cell lines.

Values represent the exposure of every cell to the regulatory signatures. (b)

Regulatory relationships for the indicated genes in each cell line. Each panel

contains three tracks: the top track shows the regulatory relationship be-

tween one peak and the gene (linking them with an arch), where the height

and color of the arch show the proportion of cells that share the regulatory

relationships; the middle track shows the genomic location of the gene and

the associated peaks, where the color of the gene shows the mean expression

in each cell line; the bottom track shows the accessible states (on and off)

for each peak in every single cell. Figure taken from Liu et al. (2019) with

permission of Springer Nature.
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(Figure 8.4b). For instance, we found a higher number of regulatory relationships to

the known oncogene SAMSN1 in K562 cells compared to the other cell lines. As SAMSN1

is preferentially expressed in multiple myeloma, and K562 is a myelogenous leukemia cell

line, this suggests that our workflow is able to recover regulatory signatures associated

with the cell phenotype.

We found similar results for the HeLa-S3 and HCT116 cell lines. To exemplify, a large

number of regulatory links were found to be associated with the gene NPR3 in HeLa-S3

cells, which correlates to a high expression of this gene in HeLa cells (https://www.

proteinatlas.org/ENSG00000113389-NPR3/cell, Uhlen et al. 2017); similarly, a large

number of links were identified to the ESRP1 gene in HCT116 (https://maayanlab.

cloud/Harmonizome/gene_set/HCT116/BioGPS+Cell+Line+Gene+Expression+Profiles,

Rouillard et al. 2016)

Taken together, the results of the prediction of regulatory relationships using Strategy

3 and its subsequent decomposition in regulatory signatures for the K562, HeLa-S3,

and HCT116 cell lines showed us that this workflow is an effective alternative to under-

stand the regulation of CREs and gene expression, and how regulatory relationships cell

states.

8.2 Unveiling tumor regulatory heterogeneity

We further tested whether the proposed workflow was able to recover regulatory signa-

tures related to tumor identity. To this end, we inferred regulatory relationships for the

single cells of the scCAT-seq PDX tissues dataset (Figure 8.1b). This dataset includes

176 cells from a moderately differentiated squamous cell carcinoma (PDX1) and 167 cells

from a large-cell lung carcinoma (PDX2).
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Figure 8.5: NMF analysis of the regulatory relationships of PDX tissues.

(a) Heatmap representation of the exposure matrix Hreg decomposed from

single cells of two PDX tissues. Values represent the exposure of every cell

to the regulatory signatures. (b) Regulatory relationships for TRIM29 and

VIM-AS1 in PDX1 and PDX2, tracks are built as in Figure 8.4b. Figure

modified from Liu et al. (2019) with permission of Springer Nature.

8.2.1 Tumor regulatory signatures

We used ButchR to decompose the regulatory relationships binary matrix into regulatory

signatures. In this case, the optimal factorization rank was k = 3. The resulting matrix

Hreg was sufficient to separate PDX1 from PDX2 (Figure 8.5a). Interestingly, PDX

Signature 3 was highly correlated only to PDX1 cells, whereas PDX Signature 2 only

to PDX2 cells. On the other hand, only a fraction of the PDX2 cells showed a varying
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degree of exposure to PDX Signature 1, hinting at the presence of different cell states in

this tumor.

Given the clear regulatory differences between PDX1 and PDX2 revealed by the de-

composed regulatory signatures, we extracted regulatory relationships that showed high

contribution towards the definition of PDX Signature 2 and PDX Signature 3, to find

regulatory modules that drive these differences. We found TRIM29 to be among the top

regulated genes in PDX1. This gene product has been reported to mediate metastasis in

lung squamous cell carcinoma via regulation of the autophagic degradation of E-cadherin

(W. Xu et al. 2020), which corresponds to the original PDX1 tumor type (i.e., moder-

ately differentiated squamous cell carcinoma). On the other hand, VIM-AS1 was found

to be one of the top regulated genes in PDX2. VIM-AS1 is a long noncoding RNA that

promotes colorectal (Rezanejad bardaji, Asadi, and Yaghoobi 2018) and prostate cancer

(Z. Zhang et al. 2019) progression inducing EMT. Therefore, the clear upregulation in

PDX2 for the VIM-AS1 regulatory module makes it a candidate to evaluate if it may

also be involved in lung cancer progression.

8.2.2 Intra-tumor variability

We further investigated the possible intra-tumor heterogeneity present in PDX2, evi-

denced by a varying degree of exposure to the PDX Signature 1. To understand if the

variability in the regulatory landscape was an artifact of the selection of factorization

rank in the NMF (i.e., k = 3), we generated a riverplot visualization for factorization

ranks 2 to 6 (Figure 8.6a). We found that PDX Signature 1 was originated only from

a PDX2-specific signature at k = 2 and that the signature was stable even until k = 6.

Thus, this proves that PDX Signature 1 is not an artifact and it is indeed capturing

intra-tumor differences from PDX2.

We reasoned that the group of regulatory relationships specific for PDX Signature 1 and

PDX Signature 2 could help to identify genes that were driving the regulatory variabil-

ity in PDX2 cells. ButchR was used to extract signature-specific features from these
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Figure 8.6: Intra-tumor variability in PDX2. (a) Riverplot from the NMF

decomposition of the regulatory relationships binary matrix for PDX tissues,

showing the stability of the signatures defining intra-tumor and inter-tumor

variability. (b) Gene set enrichment analysis of genes associated with PDX

Signature 1 and PDX Signature 2. Figure taken from Liu et al. (2019) with

permission of Springer Nature.

regulatory signatures. We found the genes linked to these regulatory relationships, effec-

tively building two groups of genes associated with each of the interrogated signatures.

Then, we performed gene set enrichment analysis using these groups of genes (Figure

8.6a) and found that PDX Signature 1 was highly enriched for gene sets associated with

metastasis, poor survival, and cancer proliferation. Whereas PDX Signature 2 showed

enrichment for gene set related to good survival in lung cancer, these findings pointed us

to hypothesize that a fraction of the PDX2 cells (i.e., the cells with high exposure to PDX

Signature 1 ) might come from a population that was starting a metastatic process.

In sum, the application of the proposed workflow to infer regulatory signatures from

the scCAT-seq PDX tissues dataset, showed us that it is possible to recover signatures

explaining inter-tumor and intra-tumor variability, making it a viable methodology to

understand tumor development, progression, and subtype identification.
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8.3 Understanding early development regulation in human

After evaluating the potential of our workflow to learn regulatory signatures that recapit-

ulate the action of CREs regulating gene expression, we explored how well the regulatory

signatures were able to characterize single-cell identities in a continuous developmental

process. Therefore, we applied our workflow to the scCAT-seq pre-implantation human

embryos dataset (Figure 8.1c), which comprised of 29 single cells from the morula stage

and 43 from the blastocyst stage.

8.3.1 Regulatory differences in human morula and blastocyst

We inferred regulatory relationships for every single cell in the human embryos dataset

and used ButchR to decompose regulatory signatures (Figure 8.7a), finding a total of

two regulatory signatures (k = 2), one corresponding to cells in the morula stage (Morula

Signature) and the other to blastocyst stage cells (Blastocyst Signature).

Then, we extracted the regulatory relationships that showed more contribution towards

the definition of the Morula Signature and Blastocyst Signature. We found pluripotency

markers such as NANOG (Figure 8.7b left panel) for the Morula Signature and tro-

phectoderm markers as GATA3 (Figure 8.7b right panel) for the Blastocyst Signature,

confirming that the regulatory signatures were able to disentangle the regulatory patterns

that arise in a continuous developmental process.

8.3.2 Identification of inner cell mass cells with i2NMF

The blastocyst stage consists of the inner cell mass (ICM) and trophectoderm cells.

During blastocyst development, a fraction of the ICM cells segregates into pluripotent

epiblast (Shahbazi and Zernicka-Goetz 2018). Remarkably, there were three blastocysts

among the cells that showed high exposure to the Morula Signature (Figure 8.7a),

revealing pluripotency characteristics in these three single cells, and suggesting that they
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Figure 8.7: NMF analysis of the regulatory relationships of human pre-

implantation embryos. (a) Heatmap representation of the exposure matrix

Hreg decomposed from single cells of human pre-implantation embryos. Val-

ues represent the exposure of every cell to the regulatory signatures. (b)

Regulatory relationships for NANOG and GATA3 in morula and blastocyst

cells. Tracks are built as in Figure 8.4b. Figure taken from Liu et al. (2019)

with permission of Springer Nature.

could be part of the ICM cells (hereafter referred as ICM-like cells).

As the ICM-like cells shared characteristics with theMorula Signature and Blastocyst Sig-

nature, but not defining a specific signature for them, we hypothesized that the specificity

of these cells might be related to the heterogeneous effect explained by the chromatin

accessibility or the gene expression layers. Therefore, we used i2NMF (see “i2NMF: An

integrative approach to discover dataset-specific effects”) to disentangle the homogeneous

and the heterogeneous effects in the morula, blastocyst, and ICM-like cells (Figure 8.8).

In this case, we used the gene matrix expression and the matrix of peak counts and in-

tegrated both datasets across the single cells.

We recovered two signatures in the exposure matrix HS (i.e., shared effect between
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from human pre-implantation embryos. Heatmap representation of the ex-

posure matrix HS (i.e., shared effect between both omics layers) and the

ATAC-seq Signature 3 from the matrix HrATAC (i.e., the specific signature

from the residual effect of the scATAC-seq ).

both omics layers), corresponding to morula and blastocyst cells. The ICM-like cells

showed mixed exposure to both of these signatures, indicating that the features that

uniquely define these cells may come from only one omic layer (i.e., defined either by

gene expression or chromatin accessibility). After performing the second stage of i2NMF,

we were able to find one signature (i.e., ATAC-seq Signature 3 ) explained only from the

scATAC-seq data that was highly specific for two of the ICM-like cells (Figure 8.8).

Using ButchR, we extracted the ATAC-seq Signature 3 specific regions and looked at the

regulatory relationships (n=372) that linked these regions to ICM markers (i.e., KLF17,

NANOG, and OCT4. Figure 8.9a), revealing a set of regulatory relationships that

showed a unique pattern of activation in the ICM-like cells.

In order to understand if the differences driven by chromatin changes were also detectable

at the gene expression layer, we inspected the expression of KLF17, NANOG, and OCT4
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in the ICM-like cells that showed a unique pattern of chromatin accessibility regulation,

and compared it to the morula, and blastocyst cells (Figure 8.9b). It had been pre-

viously described that KLF17, NANOG, and OCT4 are expressed in all cells part of

the ICM (Shahbazi and Zernicka-Goetz 2018). Remarkably, we found higher relative

expression levels of these genes in the evaluated ICM-like cells, pointing that the specific

features that define the ICM-like cells from the chromatin accessibility layer are regulat-

ing a restricted group of genes, which make them exhibit pluripotency traits.

Taken together, these results confirmed that combining i2NMF with our proposed work-

flow to infer regulatory signatures, captured specific regulatory traits in morula and

blastocyst cells, as well as pointing towards the identification of rare cells with ICM-like

properties.
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Figure 8.9: Identification of inner cell mass cells. (a) Regulatory relation-

ships involving links to the ATAC-seq Signature 3 specific regions (Figure

8.8). (b) Relative expression of the genes KLF17, NANOG, and OCT4 in

Morula, Blastocyst, and ICM cells.

8.4 Chapter summary

Cell fate and cell state are tightly coupled to the dynamics of the regulatory links between

the epigenetic and transcriptomic landscapes of the cell (Spitz and Furlong 2012; Shema,

Bernstein, and Buenrostro 2019; Moris, Pina, and Arias 2016). Here, we established a

119



new workflow to infer regulatory relationships between genes and their cis-regulatory

elements for individual cells, followed by the identification of regulatory signatures us-

ing ButchR. This workflow uses data where simultaneous measurements of chromatin

accessibility and gene expression are available for the same single cell. We used three

scCAT-seq datasets generated by Liu et al. (2019), where scRNA-seq and scATAC-seq

data were retrieved for every cell.

The inference of regulatory relationships at a single cell granularity consists of three main

steps: (i) identification of active TFs for every cell, (ii) identification of active accessible

regions in the nearby region of gene promoters, and (iii) significance evaluation of the

activation of one accessible region in the gene expression of an associated gene.

The regulatory relationships found with the proposed workflow were validated using

publicly available ChIA-PET interaction profiles. We also found that the regulatory

signatures were able to explain intra- and inter-tumor variability. Furthermore, we paired

i2NMF with the prediction of regulatory relationships to explain regulatory differences

in cells from human pre-implantation embryos. Taking together, these findings provide

new insights into the control of gene regulatory networks, and an effective workflow to

understand the regulation of CREs and gene expression.
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Chapter 9

Deconvolution of regulon-guided

signatures

Regulons are the building blocks of GRNs. They are defined by a module of genes

cis-regulated by one TF (Van de Sande et al. 2020). It has been shown that regulon

composition for the same TF can be different between tissues (i.e., the connections in

GRNs show high tissue specificity) and that TF expression is not sufficient to regulate

gene expression (Sonawane et al. 2017). Therefore, regulon activity cannot be measured

by considering the TF expression alone. Nevertheless, identifying regulons and quanti-

fying their activity are key components to explain the output of a GRN in an individual

cell (cell state) (Moris, Pina, and Arias 2016).

Although we showed the potential of our proposed workflow to infer regulatory signatures

where chromatin accessibility and gene expression are available for every single cell, the

instances where both omic-layers are available are limited at the moment. Therefore, it

is also important to consider new methods that help to explain the regulatory differences

between cells without using data generated from techniques as scCAT-seq and SHARE-

seq.

In this chapter, we propose how using regulon-guided signatures (i.e., signatures decom-
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Schematic representation of the mouse tissues included in gene expression

and chromatin accessibility atlases. (b) UMAP embedding representation of

the 56,265 cells included in the gene expression atlas (c) UMAP embedding

representation of the 44,563 cells included in the chromatin accessibility atlas.

posed by ButchR from a regulon activity matrix) can be a helpful approach to explain

cell state differences between single cells. We also show a new method to infer cell-state-

specific regulons using a combination of scRNA-seq and scATAC-seq from different cells.

To this end, we used publicly available adult mouse single-cell data from the tissues de-

122



picted in Figure 9.1a, including a gene expression atlas with 56,265 cells (Han et al.

2018) (Figure 9.1b) and a chromatin accessibility atlas with 44,563 cells (Cusanovich

et al. 2018) (Figure 9.1c).

9.1 Regulon activity quantification from scRNA-seq data

SCENIC (Aibar et al. 2017; Van de Sande et al. 2020) is one of the most widely used

methods to reconstruct regulons and quantify their activity based on the expression level

of single cells. The most important feature implemented for the first time in SCENIC was

the possibility of quantifying regulon activity for every single cell, in contrast to methods

based on correlations, in which the activity of a TF is predicted across all cells.

The regulon activity quantification strategy implemented in SCENIC consist of the fol-

lowing three steps:

1. Co-expression modules identification: starting from a scRNA-seq data count

matrix, SCENIC uses GRNBoost2 (Moerman et al. 2019) to infer co-expression

modules by performing a random forest nonlinear regression for every possible TF

target gene.

2. Regulon construction: all the non-cis-regulatory connections are pruned from

the coexpression modules using cisTarget, which finds enriched TF motifs near

every putative target gene by scoring cis-regulatory modules. This effectively pro-

duces a regulatory module consisting of one TF and all its cis-regulated target

genes (Janky et al. 2014; Herrmann et al. 2012; Imrichová et al. 2015).

3. Regulon activity quantification: every regulon is quantified in every cell by

AUCell, which estimates an enrichment score of the genes that constitute the reg-

ulatory module.

We hypothesized that decomposing regulon activity matrices with ButchR will provide

the possibility of recovering signatures that recapitulate regulation in single cells, e.g.,

to distinguish different patterns of regulation across cells sharing similar states or fates.
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Therefore, we predicted regulon activities using SCENIC for all the 56,265 cells included

in the adult mouse single-cell gene expression atlas (Han et al. 2018), and a total of

304 active regulons were found across the cells. Then, we decomposed regulon-guided

signatures from the regulon activity quantification using ButchR. The optimal number

of signatures was k = 11 and 10 of them showed a high correspondence to only one

of the original tissues. This showed the specificity of the signatures found from the

decomposition of regulon activity in single cells (Figure 9.2).
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Figure 9.2: NMF matrix H of pySCENIC regulon activity scores. Signa-

tures were learned using the regulon activity quantification by SCENIC. The

optimal factorization rank was k = 11.
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9.2 Cell state-specific regulon activity quantification inte-

grating scRNA-seq and sc-ATAC-seq data

Despite the accuracy of the signatures found from the SCENIC regulon activity quan-

tification, we hypothesized that the pruning of coexpression modules step in SCENIC

(step 2) is not the closest representation of the heterogeneous regulon composition seen

across different tissues (i.e., the same TF can be acting on a different set of target genes

depending on the tissue). In the pruning step, SCENIC finds one set of regulons for

all the cells under interrogation, depending on a whole-genome ranking database of the

motifs that are linked to known TFs (https://resources.aertslab.org/cistarget/).

Therefore, these databases are built for the whole organism without the option of includ-

ing associated chromatin accessibility information which could show variation across cells

with different cell states. Taking this into account, we propose that defining regulons

reflecting the different cell states found in a heterogeneous collection of single cells, will

be a closer representation of the underlying GRNs.

We formulated the following workflow to quantify regulon activity by using cell state-

specific regulons (cssRegulons) (Figure 9.3):

1. Coexpression modules identification: starting from a scRNA-seq data count

matrix, infer co-expression modules using GRNBoost2 (same as SCENIC step 1).

2. Position of TF-associated motifs identification:

• Starting from a contextually similar scATAC-seq data (i.e., the scRNA-seq

and scATAC-seq dataset should be from similar tissues or experimental con-

ditions), the cluster identity in these cells is defined from the scRNA-seq data,

using a cell state annotation (e.g., cell type, tissue, or cluster group). This is

done by aligning both datasets, using the ArchR package (Granja et al. 2021)

implementation of the FindTransferAnchors function from the Seurat package

(Butler et al. 2018).

• Call peaks using MACS2 for every cluster of cells in the scATAC-seq data
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(every cluster corresponds to one of the cell state definitions in the scRNAseq

data).

• Annotate the peak sets by finding the location of TF-associated motifs using

the addMotifAnnotations function from the ArchR package.

3. Cell state-specific regulon construction: every list of motifs locations (every

list is associated with one cell state) is used to identify cis-regulatory connections

in the coexpression modules. Resulting in a collection of regulons (cssRegulons)

for every cell state defined in the scRNA-seq data (i.e., for a given TF the resulting

regulon composition can differ across cell states).

4. Cell state-specific regulon activity quantification: every cssRegulon activity

is quantified in every cell by AUCell.

After predicting cssRegulon activities for all 56,265 cells included in the mouse gene

expression atlas by using the proposed workflow, we found 669 active regulons across the

cells. We decomposed cssRegulon-guided signatures using ButchR. Similar to what was

found for the decomposition using the regulon activity quantification by SCENIC, the

optimal number of signatures was k = 11, which also showed a high correspondence to

only one of the original tissues (Figure 9.4). This proved that the cssRegulon-guided

signatures are also able to show specificity while capturing information for more than

twice the amount regulons captured by SCENIC at the same time (304 in SENIC and

669 from cssRegulons).

9.3 Validation of cssRegulon-guided signature specific reg-

ulons

In order to validate that the larger number of cssRegulons was not due to capturing false

positives, we extracted those cssRegulons that showed high specificity towards only one

signature associated with a tissue, we estimated then the mean expression of the regulon

TF across cells of every tissue. For instance, we found 25 cssRegulons highly associated
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ulons. Signatures were learned using the cell state-specific regulons activity

quantification scores. The optimal factorization rank was k = 11.

with the liver signature and the expression of all these regulon TFs was higher in the

liver cells than in other tissues (Figure 9.5a). This confirmed that the cssRegulons are

in fact capturing tissue-specific regulatory patterns.

We also studied the expression of the cssRegulons TFs that were not captured by SCENIC.

Interestingly, the expression of those TFs was restricted to a small fraction of cells for

the associated tissue. To exemplify, 8 out of the 25 cssRegulons highly associated with

the liver were not captured by SCENIC, and the expression of these regulon TFs was

restricted to a maximum of 4% of the liver cells (Figure 9.5b). Remarkably, after com-

paring the expression of these TFs across all the cell types found in liver, we found them

to be highly expressed only in a few cell types (Figure 9.6). Thus, this strongly suggests

that the cssRegulons are able to find regulatory modules that are active in smaller cell

sub-populations.
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9.4 Comparison of regulon composition

ButchR is able to classify each regulon as differentially active for every signature, de-

pending on the regulon contribution to every signature. As we were able to identify one

signature associated with every tissue from the mouse gene expression atlas, we explored

how the cssRegulons composition could vary across tissues. Therefore, we computed the

Jaccard similarity of all cssRegulons that were active in 6 or more of the evaluated tissues

(Figure 9.7a), revealing that cssRegulons controlled by the same TF are more similar to

each other than to cssRegulons from the same tissue. Nevertheless, there is also variabil-

ity in cssRegulons controlled by the same TF, proving that using the proposed approach

is actually capturing regulatory differences across multiple cell states.
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We further tested how similar are cssRegulons differentially active in only one tissue

(specific regulons). Therefore, in this case, the comparison included only cssRegulons

that were associated with different TFs (i.e., the list of TFs associated with the regulon

does not contain duplicates). We expected that specific regulons from the same tissue

were controlling a similar group of target genes. While this was true for many regulons,

we also saw that there were subclusters of regulons more similar between tissue(s) than

within them, reflecting common regulatory pathways across tissues controlled by different

TFs (Figure 9.7b).

Taken together, the construction of cssRegulons are indeed reflecting the different regula-

tory links that can be found across different cell types. Moreover, the cssRegulon-guided

signatures decomposed by ButchR allow the identification of regulatory patterns that

are shared across multiple cell states or that are highly associated with only one of the

cell states under consideration.

9.5 Chapter summary

Gene regulatory networks are composed of multiple layers of regulation, a general ab-

straction of these networks is to group modules of one TF and all its target genes, into a

functional unit called regulon. The identification of regulons and quantification of their

activity are key components to understand the regulatory differences that translate into

defining the fate and state of a cell.

Here, we established a new approach to infer regulon-guided signatures by quantifying

and decomposing the activity levels of cell state-specific regulons. This approach uses

data from contextually similar scRNA-seq and scATAC-seq datasets. We start by (i) iden-

tifying co-expression modules, followed by (ii) identifying the position of TF-associated

motifs, (iii) the construction of cell state-specific regulons, (iv) the quantification of reg-

ulon activity, and (v) decomposition of the activity levels using ButchR.

We found that this strategy is able to identify patterns of regulation that are related to

132



a broad cluster of cells and also to regulons that are active in only a selected number of

cellular subtypes. Furthermore, we were able to classify regulons into active and inactive

for every learned signature by decomposing the regulon activity scores with ButchR.

Taking together, these findings suggest that cell state-specific regulons are an accurate

reflection of the complex mechanism of regulation found in GRNs.
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Part IV. Data Accessibility and

Reproducibility
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So far, we have shown how ButchR proved to be a reliable tool as we use it in differ-

ent settings and found its utility to understand complex biological processes. We also

proposed many extensions and workflows that can be carried out using ButchR, some of

them are an integral part of the package (e.g., i2NMF and projection of transcriptomic

data onto a reference atlas) and others have to be executed before using the package to

decompose meaningful signatures (e.g., prediction of regulatory relationships and quan-

tification of regulon activity). Nevertheless, being open science one of the backbones of

this thesis, all the analyses shown so far have been fully documented and are open to

anyone.

In this final part (Part IV), we show how we fully committed to open and reproducible re-

search, going from creating pipelines dedicated to reproducing complete research projects

(chapter: “About reproducibility”), to create interactive visualization tools that bring our

results to everyone in the community and also encourage collaboration and sharing re-

sources (chapter: “About data sharing and visualization”).
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Chapter 10

About reproducibility

As data analyses become more complex, involving multiple datasets and combining re-

sults from dozens of tools, the need for transparent and fully reproducible research is of

pressing need. We committed to making fully available and reproducible the complete

analysis derived from this study. Thus, comprehensive code repositories and pipelines

have been released for all the main parts of this project.

10.1 ButchR and ShinyButchR

Starting with the development of ButchR was a complex, task, involving the integration

of different programming languages and testing diverse types of data. Continuous inte-

gration (CI) is a software development practice to merge and test small code changes in

a frequent manner, aiming to create healthier software. We integrated CI into ButchR

using the hosted service Travis CI (https://travis-ci.org/github/hdsu-bioquant/

ButchR) in order to build and test the source code of ButchR hosted on GitHub. The

potential of CI is tightly linked to the developers’ efforts to create unit tests for the

most essential parts of the code. For ButchR, we created a complete array of unit tests

with the R package testthat (Wickham 2011), including tests for all the functions and
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visualization tools included in the package.

Keeping track of the coverage of the unit tests over the complete code is not an easy

task. To this end, we also integrated the code coverage tool Codecov into ButchR

(https://app.codecov.io/gh/hdsu-bioquant/ButchR). So far, every time that a new

change is made into ButchR, 97% of the code is tested in order to know everything

is working properly. All of this helped to make ButchR a reliable package and made

public the complete development process. Therefore, any user that wants to recover the

test and code coverage reports for the last build of the package can find the links in the

Travis CI and Codecov badges in the ButchR GitHub repository (https://github.com/

wurst-theke/ButchR).

Additionally, as was mentioned before in chapters 3 and 4, we created Docker images for

ButchR and ShinyButchR, which will help anyone who wants to reproduce the analyses

done with these tools by allowing its use without installing any software dependencies

(besides Docker). Besides, any of the matrix decompositions shown in this work can be

repeated using the live version of ShinyButchR (https://hdsu-bioquant.shinyapps.

io/shinyButchR/).

10.2 Regulatory subtypes in neuroblastoma pipeline

Part of the collaborative effort published in Gartlgruber et al. (2021), involved compiling

and analyzing multiple sources and types of data. Keeping track of the analyses done

in a project of such extension can become a daunting task without the correct man-

agement tools. Thus, in order to structure and organize the different analysis steps, a

comprehensive Snakemake-based (Köster and Rahmann 2012) has been made available

at https://github.com/hdsu-bioquant/project_NB_SE. This pipeline can be used to

reproduce all the results reported in the chapter “Neuroblastoma regulatory subtypes

defined by super-enhancers” and part of the results in the chapter “Projection of tran-

scriptomic neuroblastoma data onto a single-cell reference atlas.”
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10.3 Understanding regulatory heterogeneity with scCAT-

seq pipeline

Coordination of international collaborations such as the work presented by us in Liu et

al. (2019), requires extensive documentation of all the analysis steps. This is extremely

important, not only for other researchers interested in the work but also to complete a

successful collaboration. We created a Snakemake pipeline fully documented that can use

any human data that were sequenced using multi-omics techniques such as scCAT-seq

and SHARE-seq to predict regulatory relationships. This pipeline is hosted in GitHub

(https://github.com/hdsu-bioquant/scCAT), and can also be used to reproduce the

prediction of regulatory signatures as explained in the chapter “Understanding gene ex-

pression regulation with scCAT-seq.”

10.4 Chapter summary

With the increasing complexity of data analysis in all the fields of life sciences, providing

the community with the proper tools to reproduce and validate our findings is of the

utmost importance. Here, we describe the approaches we took into account to ensure

that all of our analyses were fully reproducible. For instance, ButchR and ShinyButchR

were implemented with continuous integration, ensuring their robustness, and also the

provided Docker repositories can be used to reproduce the matrix decompositions shown

through all this work.

Regarding the reproducibility of the analyses shown in the chapter: “Neuroblastoma reg-

ulatory subtypes defined by super-enhancers” and chapter: “Understanding gene expres-

sion regulation with scCAT-seq,” we have created two Snakemake pipelines to recreate

any step of the analysis workflow.
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Chapter 11

About data sharing and

visualization

Although there is growing pressure coming from other researchers and journals to share

data and the files that support a publication, there are still limited initiatives to make

these data more friendly and easy to use for other researchers that were not involved

in the original design of the experimental setting. Websites like https://descartes.

brotmanbaty.org/ from The Brotman Baty Institute, https://www.internationalgenome.

org/ from the 1000 Genomes Project (Birney and Soranzo 2015), https://www.gtexportal.

org/ from The GTEx Project or https://www.humancellatlas.org/ from the Human

Cell Atlas (Rozenblatt-Rosen et al. 2017) are aiming to breach this gap, compiling a

wide arrange of resources in an easy to understand way. In the spirit of creating such

kinds of resources, we created interactive applications to support our findings.
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Figure 11.1: The NB-SE-viz Shiny app is composed of three interactive

screens with the main menu providing access buttons to them (1-3). (a) The

SE H3K27ac signal screen allows the visualization of the H3K27ac signal of

the SE regions (4), providing controls to show the mean tumor signal (5) or

the signal for every sample (6). (b) The NMF signatures screen contains an

interactive heatmap of the HSE and HSE−Exp matrices. (c) The Download

data screen provides access to all the pre-processed data used in the main

analysis.

11.1 Interactive visualization of neuroblastoma super-enhancers

data

We created a visualization tool to explore data from neuroblastoma epigenetic subtypes

(NB-SE-viz) (Figure 11.1) by compiling the results published in Gartlgruber et al.

(2021). NB-SE-viz is a Shiny app that allows the exploration of the epigenomic tracks in
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an interactive genome viewer, provides an interactive visualization of the neuroblastoma

NMF signatures, and includes all the processed data for downloading. NB-SE-viz is

available at https://nbseB087.dkfz.de.

1

2

3

Interactive visualization of
gene expression in adrenal
gland and adrenal medulla

Gene expression in the developing human adrenal gland
UMAP screen

Projection NB scRNA-seq to
adrenal medulla screen

Download data screen

Interactive projection of NB
sc-RNAseq data to the
adrenal medulla atlas

Download pre-process data
to reproduce analysis

a

b c

Figure 11.2: The NB-dev-viz Shiny app is composed of three interactive

screens with the main menu providing access buttons to them (1-3). (a)

The “Gene expression in the developing human adrenal gland ” screen allows

to visualize all the cells included in the atlas in a UMAP embedding and

colored them according to its relative expression for a selected gene. (b)

The “Projection of NB scRNA-seq to adrenal medulla” screen contains an in-

teractive tool to project single-cell transcriptomic data from neuroblastomas

onto the atlas. (c) The “Download data” screen provides access to all the

pre-processed data of the atlas.
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11.2 Developmental programs in childhood neuroblastoma

data visualizer

To support the first single-cell developing human adrenal gland transcriptomic atlas in the

world (Jansky, et al. 2021. Developmental programs in childhood neuroblastoma. Nature

Genetics), we developed the interactive Shiny app NB-dev-viz (Figure 11.2). Besides

of providing a portal to visualize the gene expression in cells from the adrenal gland, we

also included tools to share and create a global database of single-cell transcriptomic data

from neuroblastomas. The app is available at https://adrenal.kitz-heidelberg.de/

developmental_programs_NB_viz/.

The main screen in the app allows to interactively select one gene and visualize its ex-

pression in a UMAP embedding of all the cells included in the atlas (Figure 11.3). This

window shows all the different cell types found for the adrenal gland, adrenal medulla,

and adrenal medulla at the 8th post-conception week, which makes it easier to find if a

selected gene is only expressed at a certain cell state.

Aiming to build a larger collaborative community of researchers fighting against neurob-

lastoma, we added a second screen that contains tools to understand the tumor compo-

sition of neuroblastomas for which scRNA-seq data is available, and also a database of

neuroblastoma tumor for which scRNA-seq data is available. After loading a new dataset,

the app project the neuroblastoma single cells onto a diffusion map of the adrenal medulla

cells. Any group of researchers that want to share their own data can upload it into the

app and provide a contact email.
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Gene selection

a

b

Figure 11.3: Interactive visualization of gene expression in the human

adrenal gland. The “Gene expression in the developing human adrenal gland ”

screen contains different elements to enhance and change the visualization.

(a) The default option is to show the expression of a gene as the normalized

counts across all the cells (1). The option “Visualize expression as kernel

density” can be turned on to show the expression as a kernel density com-

puted for every gene, allowing to found genes expressed in smaller groups of

cells (2). (b) The controller shown in (3) provides a list of all the genes

included in the atlas and to select one to show its expression, the currently

selected gene is highlighted in the notification window (4).
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No dataset loaded

Projection NB scRNA-seq to
adrenal medulla screen
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3
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Figure 11.4: Projection of NB scRNA-seq data onto a human adrenal

medulla atlas. The “Projection of NB scRNA-seq to adrenal medulla” screen

provides a complete engine to understand the tumor composition of neu-

roblastomas for which scRNA-seq data is available. (a) Without any data

loaded, the app shows a controller to upload a new dataset not included in

the app (1), a notification window displays that no data is loaded (2), a list

of datasets that are available in the app database (3), and a diffusion map

of adrenal medullary cells (4). (b) A dataset included in the app can be

loaded from the list in (5); after loading a dataset, the notification window

(6) shows how many cells are included in the dataset and also a token as-

signed to uniquely identify this dataset. The cells from a loaded dataset are

projected onto the diffusion maps (7).
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11.3 MapMyCorona

The current SARS-CoV-2 pandemic has shown an impressive speed of spreading through-

out the world. One of the main challenges is to understand how the viral sequence is

evolving day by day. There are now multiple strains that are active at the same time,

and keeping track of the population dynamics is not an easy task.

In order to address these challenges, we joined in the world effort to fight COVID-19 by

developing a Shiny app (MapMyCorona) to display in an easy way, the sequence similarity

and alterations between a query sequence and a central database of viral SARS-CoV-2

sequences on a world map.

MapMyCorona is publicly hosted at https://hdsu-bioquant.shinyapps.io/mapmycorona/.

MapMyCorona is an intuitive app, which allows easy exploration of the BLAST results

with only a few preparation steps (Figure 11.5):

• Step 1: Upload a query sequence to the server. The sequence can be uploaded

from a fasta file or directly pasting it into the provided text box.

• Step 2: Select if the query sequence is a nucleotide or protein sequence.

• Step 3: The “BLAST options” menu includes multiple parameters to fine-tune the

BLAST search.

• Step 4: After uploading the query sequence, click on the “Submit” button to

perform the BLAST search against the central database of viral SARS-CoV-2 se-

quences.

• Step 5: Once the BLAST search is finished, the app displays the hits in a world

map, and also shows the number of hits by month.

• Step 6: The hits can be filtered to include only sequences from the desired date

range.

• Step 7: Total number of hits against the central database.

• Step 8: Total number of hits after filtering.

• Step 9: Additionally, MapMyCorona also provides an interactive table to visualize
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all the hits. The data can be downloaded as a csv file.

Welcome screen

1
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5 6 7 8 9

MapMyCorona

BLAST hits by geographic location BLAST results table
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b c

Figure 11.5: The MapMyCorona Shiny app is composed of three main

screens, the (a) welcome, (b) BLAST hits by geographic location, and (b)

BLAST results table screens. It allows to upload a query sequence (1-2),

perform a BLAST against a central database (3-4), visualize and filter the

results in a world map (5-8), and download a table with all the resulting

hits (9).
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11.4 Chapter summary

Encouraging toward transparent and reproducible scientific studies, it is nowadays a re-

quirement from almost every journal to share and provide access to the data used to

support the findings in a particular study. Going beyond of just sharing the raw data,

we developed interactive applications to explore and understand our findings in a deeper

way. We created an application to explore the regulatory subtypes in neuroblastoma

(https://nbseB087.dkfz.de), another app to understand the developmental programs

in neuroblastoma (https://adrenal.kitz-heidelberg.de/developmental_programs_

NB_viz/); and also joining into the world effort to fight the current pandemic, we devel-

oped MapMyCorona, a tool to display sequence similarity and alterations of a given se-

quence on a world map (https://hdsu-bioquant.shinyapps.io/mapmycorona/).
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Chapter 12

Overall discussion and conclusion

This work was focused on developing a flexible and user-friendly toolkit to perform Non-

negative Matrix Factorization (NMF) on any type of genomic data, and also on how

it can be used to answer relevant questions as identification of tumor subtypes and

deconvolution of regulatory signatures. NMF is an ever-increasing family of algorithms

(M. W. Berry et al. 2007), that decomposes an initial matrix into two matrices of lower

dimension W and H. Its main use has been in image analysis to recognize the main

parts that constitute an image, as well as in recommendation systems (like movie or

product recommendations) to infer scores on a sparse matrix (Benzi et al. 2016; Luo et

al. 2014). In genomics and computational biology, NMF has been shown to work in many

instances, e.g., to infer mutational signatures (Ludmil B. Alexandrov et al. 2020) and

identify cellular subtypes (Shao and Höfer 2017). Despite this, obtaining and interpreting

NMF results is not an easy task, because the current software packages and libraries with

NMF implementations lack rich visualization tools that help the users to understand and

select the optimal parameters for the matrix decomposition. Furthermore, NMF are

highly demanding computational algorithms in time and resources. Therefore this work

provides a robust NMF-based package called ButchR that implements fast NMF solvers

while including diverse innovative visualizations and even an interactive tool. In addition,

ButchR is able to use any type of genomics data to find the most important features that
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define it.

12.1 Of ButchR and its development

During the development of ButchR, one of the most important decisions was to select

R or Python to deploy our package. Currently, R is a widely used platform for the

analysis of biological data, and besides its core central repository (Comprehensive R

Archive Network CRAN) (R Core Team 2020), it is also supported by the Bioconductor

(Huber et al. 2015), an open-source software project compiling a collection of packages

and tools for the analysis of high-throughput data. On the other hand, Python has

better integration of the open-source machine learning platform TensorFlow (Abadi et

al. 2016) at its disposal, which was one of the most critical factors to deploy the NMF

solvers based on matrix operations. Considering this, and also in the light of the most

recent developments in the analysis of single-cell sequencing data, to which packages like

Seurat (Butler et al. 2018) and ArchR (Granja et al. 2021) are becoming the standard for

the analysis of such data, we decided to use R as the platform for ButchR. Nevertheless,

to exploit the Python/TensorFlow framework, all the matrix decomposition algorithms

implemented in ButchR use TensorFlow and connect to the R session using the package

Reticulate (Allaire et al. 2017). Furthermore, R is also advantageous as it contains a vast

amount of packages designed for the analysis of bulk high-throughput data, one resource

that is currently absent in Python.

We also acknowledge the fact that growing Python-based initiatives like Scanpy (Wolf,

Angerer, and Theis 2018) and EpiScanpy (Danese et al. 2019) have the potential to

become the default analysis platform in the future due to the fast processing times and

the popularity of Python among data scientist. Thus, although ButchR is an R package,

its core is solely based on Python/TensorFlow, giving us the opportunity to deploy the

complete ButchR suite as a Python package in the future.

In order to identify the biological processes captured by the NMF signatures, ButchR
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includes multiple feature extraction and visualization functions. Starting from any non-

negative matrix, ButchR is able to complete an entire NMF-based analysis returning

rich visualizations. The package can be freely installed from GitHub (https://github.

com/wurst-theke/ButchR) and we also made available a Docker image (https://hub.

docker.com/r/hdsu/butchr) including the package, auxiliary libraries, and test datasets

to allow the immediate usage of ButchR without installing any dependency.

12.2 NMF limitations

Despite all their advantages (e.g., enhanced interpretability of the data structure, de-

composed signatures can be used for feature extraction, applicability to different types

of data, among others), NMF algorithms have some intrinsic limitations. For instance,

opposite to methods based on singular vector decomposition (Meyer 2000), there is not a

global optimal solution for the NMF algorithms as they all converge to a local minimum

(M. W. Berry et al. 2007). Therefore, there is no guarantee that one solution is the

optimal factorization for a given matrix. Following one common practice, we overcame

this problem in ButchR by comparing the local minima from multiple random initial-

izations and returning the results of the best local minimum found. The number of

random initializations ninit is one of the hyperparameters in the ButchR functions (e.g.,

for exploratory analyses ninit = 5 is sufficient to recover a good factorization). However,

this is also related to another disadvantage of the NMF, which is the long computing

time, even without accounting for multiple random initializations. To speed up all the

NMF algorithms included in ButchR, we implemented the matrix decomposition steps

in Tensorflow, which allows ButchR to parallelize every step and have better memory

management, in addition to the possibility of using GPUs and TPUs to accelerate even

further all the matrix operations.

Another hyperparameter in the NMF is the optimal factorization rank k (i.e., number

of signatures, factors, or basis vectors). The majority of the current packages expect
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the user to know beforehand this number (Welch et al. 2019; D. Song et al. 2021;

Gaujoux and Seoighe 2010), but it might be difficult to determine if no prior information

about the expected number of classes is known or if unknown classes are present. The R

package NNLM (X. Lin and Boutros 2020) implemented a method to select an optimal

k based on the mean square errors of the reconstruction of missing values from the

input matrix; however, this approach relies on the identification of missing values, which

is not a trivial task (e.g., identification of true zeroes and missing values). Therefore,

we used a different approach with ButchR, where the user can select and perform the

decomposition over a wide range of factorization ranks, and one of the implemented

functions will automatically recommend an optimal k based on the minimization of the

Frobenius error, the coefficient of variation and the mean Amari distance (Wu et al.

2016), and the maximization of the cophenetic correlation coefficient (Brunet et al. 2004).

We also included options to manually select and optimal k, and the users are guided in

their selection by a visualization of the factorization metrics.

Assessing the importance of one signature decomposed with NMF may be difficult if the

metadata associated with the original data is not extensive enough. In such cases, it might

not be possible to find a direct link between an increase in the exposure to the signature

and the presence of certain annotation. This limiting factor in the interpretability of

the NMF could hinder the conclusions driven from it by disregarding signatures with

no clear metadata association as irrelevant. To address this problem, we included a

riverplot visualization (“Appendix B: How to read a riverplot”) that provides a visual

guide of signature importance by showing how stable and pure it is even if different

factorization ranks are selected. At its core, NMF is a parts-based representation of the

data, which means that every learned signature represents one essential part of the data.

Therefore, the riverplot visualization is a visual guide to recognize the main parts that

constitute the original dataset.
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12.3 Other packages with NMF implementations

As mentioned before, there are currently multiple R packages with NMF implemen-

tations. For instance, the package NMF was the first R package implementing NMF

(Gaujoux and Seoighe 2010), LIGER implements iNMF to integrate multiple scRNA-seq

datasets (Welch et al. 2019), scPNMF uses NMF to extract features from single-cell

data (D. Song et al. 2021), and NNLM proposes an NMF algorithm using sequential

coordinate-wise descent (X. Lin and Boutros 2020), among others. However, these pack-

ages are built to use only one algorithm, while ButchR is a toolkit meant to use a complete

array of NMF algorithms that can be easily expanded in the future. Furthermore, many

packages are now being designed to be used only with single-cell data in mind. A clear

design decision from the start of ButchR development was to keep it as versatile and

flexible as possible, not only aiming to provide an analysis platform for one type of data,

but rather a universal NMF toolkit that can be easily adapted to all types of biological

datasets.

Furthermore, none of the packages mentioned before take into account the assessment of

signature stability across factorization ranks, which is one of the strengths of ButchR.

As we have shown, the identification of relevant signatures can be guided using the

visualizations generated with ButchR.

12.4 Why interactive applications

Effective data visualization is fundamental in any exploratory data analysis by guid-

ing researchers into understanding the structure and patterns of any given dataset (Su-

darikov, Tyakht, and Alexeev 2017; Moon et al. 2019; B. Lee et al. 2020). In par-

ticular, one of the most useful ways of representing data is by interactive visualiza-

tions. Although many computational tools are coming out every week, there are just

a few examples that are using interactive visualizations to represent complex datasets
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(Ovchinnikova and Anders 2020; Butler et al. 2018; Cao et al. 2019). Since the begin-

ning of this project, we made multiple visualization tools trying to create an intuitive

and easy-to-use tool, as well as to share resources and help in building a collaborative

community. To this end, we developed ShinyButchR, an interactive Shiny application

that uses ButchR to execute an NMF-based analysis from start to end. All the vi-

sualizations generated by ShinyButchR are fully interactive, allowing easy exploration

of the matrix decomposition results. Furthermore, the results obtained from the app

can be exported as plain text files to be used in any software, or as RDS files to per-

form more downstream analyses using R. ShinyButchR is publicly available and free to

use at https://hdsu-bioquant.shinyapps.io/shinyButchR/, and as well as ButchR,

a Docker image is available (https://hub.docker.com/r/hdsu/shinybutchr) which al-

lows the execution of the app in any system. The description of ButchR and ShinyButchR

was published in Quintero et al. (2020). Besides reaching broader audiences by lowering

the technical proficiency levels to perform an NMF-based analysis, ShinyButchR is an

initiative to inspire the whole scientific community into sharing resources and promoting

open research.

Furthermore, ShinyButchR brings the opportunity to perform and reproduce all the

analyses shown in this work (with a certain error rate as a consequence of the randomness

in the initialization of the matrices H and W ), using the processed data linked to each

of the publications.

12.5 Using ButchR for signature identification

In the biological and clinical context, feature extraction and signature identification are

two critical steps to understand diverse biological processes. In particular, a signature

is defined as a group of features that are sufficient to identify a certain genotype or

phenotype. For instance, genomic signatures are strings of DNA and RNA sequences

used to determine the identity of a certain genotype (Fernandes and Zhang 2014; Slezak,
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Hart, and Jaing 2019), expression signatures link a phenotype to a certain pattern of

gene expression (Szymczak et al. 2021; Rahman et al. 2020; Sotiriou and Pusztai 2009).

In the context of single-cell data, signatures are groups of genes that help to identify

cell states. At its core, the main goal we had with the development of ButchR was to

capture meaningful signatures in the form of a lower-dimensional representation of the

original data. Following this goal, we used the publicly available data of labeled cell

types from the human hematopoietic system (Corces et al. 2016) to show how signatures

learned with ButchR were able to extract the biological differences and undergoing de-

velopmental processes seen in the hematopoietic system. This system, and in particular

the dataset from Corces et al. (2016) has been thoroughly described, which made it a

perfect proof of concept study to prove the utility of the package. The results of such

proof of concept were positive, proving that ButchR was useful for answering complex

biological questions.

Besides ButchR, other tools and workflows have been developed for signature identifica-

tion and analysis. To exemplify:

• SigProfiler (Bergstrom et al. 2019) and SignatureAnalyzer (Haradhvala et al. 2018)

are two tools that create mutational signatures from somatic mutations. Similar to

ButchR, SigProfiler and SignatureAnalyzer also use NMF to decompose an input

matrix (in this case a matrix of somatic mutations across multiple tumor samples)

into signatures. SignatureAnalyzer implements a special Bayesian variant of the

NMF described by (Tan and Févotte 2013). Both of these tools have been used

by the pan-cancer analysis of whole genomes (PCAWG) consortium to recover 67

consensus signatures from whole-genome sequencing data of 4.645 and whole-exome

sequencing data of 19,184 tumor samples (Ludmil B. Alexandrov et al. 2020). Since

then, these signatures have been used in numerous studies (Campbell et al. 2020;

Gerstung et al. 2020; Moore et al. 2020; Calabrese et al. 2020), showing the utility

of signatures decomposed with NMF to explain the characteristic mutations of

different types of cancer. SigProfiler and SignatureAnalyzer are highly customized
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to recover mutational signatures, and in contrast with ButchR, it is not possible

to use them to recover other types of signatures like gene expression or chromatin

accessibility signatures.

• YAPSA (yet another package for signature analysis) (Hübschmann et al. 2020) is an

R package originally designed for the analysis of mutational signatures. Although

YAPSA is not able to find signatures de novo, it can find the exposure of any given

sample to an existent set of signatures. As the framework in YAPSA is flexible

to be also used in other types of signatures, in ButchR we leveraged YAPSA’s

functionality to find the exposure matrix H for a query dataset from a set of

known signatures.

• Hydra (Pfeil et al. 2020) is a tool to identify tumor subtypes using multimodal

gene expression signatures. This tool uses a Dirichlet process mixture model to

find genes whose expression is a mixture of two or more Gaussian distributions,

and then it clusters those genes using a multivariate mixture model, allowing the

signatures to be identified by characterizing each cluster. As ButchR, this method

is able to find signatures in cancer samples without including matched normal tissue

samples. However, in cases where the samples are not forming separate clusters,

but rather a continuum (e.g., in developmental processes), this method will not be

able to recover signatures that explain such continuous processes. On the other

hand, the NMF signatures learned with ButchR are always expressed as a range of

exposures.

• Single-cell analysis toolkits like Seurat (Butler et al. 2018; Stuart et al. 2019) and

Scanpy (Wolf, Angerer, and Theis 2018) find marker genes (i.e., signatures) for

clusters of cells in order to identify cell types or cell states. These tools work by

reducing the dimension of the original dataset using PCA, followed by clustering

and identification of marker genes by comparing the expression of one cluster to the

rest. One advantage of this is that it is not necessary to know the number of clusters

beforehand, although this strategy will work better in a dataset with well-defined
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clusters. In contrast, ButchR can also be used to find signatures associated with

cell states, but it is not necessary to compare clusters of cells. Instead, signature

associated genes (i.e., marker genes) can be extracted from the matrix W .

• scGeneFit (Dumitrascu et al. 2019) is a recently published method to find markers

in single-cell clusters. This method uses an innovative strategy to incorporate a

previously generated hierarchical partition of labels. Therefore, if previous infor-

mation is known, this method can use the natural graph structure of cell states’

similarities to guide the marker discovery (or build a hierarchy by clustering the

cells). However, similarly to the strategies followed in Seurat and Scanpy, this

method works better in the presence of distinct clusters.

In general, most current methods for signature identification are specially tailored to only

one data type. The advantage of this is that all the subroutines and functions can be

more specific, providing more pre-processing workflows and options, relevant only for the

data type in question. On the other hand, more flexible toolkits like ButchR are easier

to integrate at any point of an analysis workflow. For instance, we used ButchR to find

regulatory and regulon-guided signatures, finding the most relevant TFs for a given cell

state.

In the particular case of mutational signature identification, NMF has been extensively

used. However, most of the methods rely on contrasting two conditions or one cluster

against others for signatures based on gene expression. This makes it difficult to identify

signatures of transitional stages, whereas NMF-based methods can produce signatures

with a gradient of exposures.
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12.6 Using ButchR to discover a new neuroblastoma sub-

type

We used ButchR to investigate the epigenomic landscape of Neuroblastoma, a neu-

roendocrine tumor derived from the neural crest. Two different cell identities (i.e.,

mesenchymal-type and adrenergic-type) have been described in neuroblastoma cell lines

(Van Groningen et al. 2017; Boeva et al. 2017). However, the effect of cell identity

on the progression and relapse of neuroblastoma tumors is still unknown. Therefore,

our main motivation to study the epigenomic landscape in neuroblastoma was to find

whether these two cell identities were also present in human tumors and cell lines and

how these were regulated.

Starting from genome-wide profiles for the histone mark H3K27ac across 60 neuroblas-

tomas, covering different clinical and molecular neuroblastoma subtypes, we were able to

identify four super-enhancer-driven epigenetic signatures that were also recovered from

three different bulk RNA-seq cohorts. In contrast to what was described by Van Gronin-

gen et al. (2017) and Boeva et al. (2017), our signatures were able to dissect the

adrenergic-type into three regulatory subtypes, namely MYCN-amplified, MYCN non-

amplified high-risk, and MYCN non-amplified low-risk. To support the definition of

these three signatures, we found that they showed a clear association to known clinical

outcomes. On the other hand, in line with the findings in neuroblastoma cell lines, our

fourth signature defined a newly described subtype that is associated with cell migration

and epithelial-mesenchymal transition (mesenchymal subtype).

In contrast to a classical definition of a tumor subtype (Galon et al. 2012; Tsang and

Tse 2020; S. Ackermann et al. 2018), the signatures recovered with the NMF provide

a measurement of the exposure of every tumor to a given subtype. This is one of the

greatest advantages of using a soft-clustering method like NMF because the signatures do

not necessarily represent on/off status. The concept of exposure to a signature helps to

understand continuous processes as cell differentiation and in this particular case tumor
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development, as interestingly several neuroblastoma tumors showed a high exposure score

to multiple NMF signatures. Suggesting that the intratumor heterogeneity seen in some

neuroblastomas (Pugh et al. 2013; S. Ackermann et al. 2018; Schramm et al. 2015)

could be partially explained by the presence of tumor cells exhibiting characteristics of

different epigenetic subtypes.

It has been shown that neuroblastoma tumors can be infiltrated by normal Schwann cell

precursors (SCPs) (Ambros et al. 1996; Shimada et al. 1999). Thus, it can be argued

that the clear association of the NMF mesenchymal signature to the SCPs is just a re-

flection of capturing the multipotent traits of normal SCPs (Jessen and Mirsky 2019)

that infiltrated the tumors included in our cohort. However, neuroblastomas infiltrated

by SCPs are found more often in cases with favorable outcomes than in cases with unfa-

vorable outcomes. As the mesenchymal signature showed enrichment of relapse samples,

indicates that the group of tumors with higher exposures to the mesenchymal signatures

are actually related to unfavorable outcomes. This suggests that the identification of the

mesenchymal signature is not related to the infiltration of SCPs.

To understand the possible cell of origin of the neuroblastoma mesenchymal subtype, we

developed a new method for ButchR to project any bulk or single-cell transcriptomic

data onto a reference single-cell atlas. This method consists of computing NMF signa-

tures from the scRNA-seq data of the reference atlas, followed by finding the exposure

of all query data samples/cells to the atlas signatures, this effectively bring the query

samples/cells to the same space of the atlas. Using this method, we projected bulk

RNA-seq data from a neuroblastoma cohort of 579 tumor samples onto an atlas of de-

veloping adrenal gland for mouse, and also onto an atlas of developing human adrenal

gland. We found that the mesenchymal subtype shared similar regulatory landscapes

with multipotent Schwann cell precursors. These findings were also validated by pro-

jecting scRNA-seq data for three neuroblastoma cell lines, supporting our results for

the mesenchymal cell lines SK-N-AS and SK-N-SH. The description of the epigenomic

subtypes in neuroblastoma was published in Gartlgruber et al. (2021).
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12.7 Projection of transcriptomic data onto a single-cell ref-

erence atlas

One of the main research focus since the emergence of single-cell transcriptomics has

been the development of methods that allow the projection or integration of new data

onto an existent reference atlas. Besides our proposed workflow to compute the exposure

of individual samples or cells to the NMF signatures learned from a single-cell reference

atlas (effectively bringing them into the same reference space), other methods have been

published that seek to accomplish similar goals. For instance:

• scmap (Kiselev, Yiu, and Hemberg 2018) finds clusters in the reference atlas and

then projects new cells onto it by an exhaustive search of the similarity between

every cell and the centroid of the clusters. One limitation of this method is that it

can only map every cell to the cluster, but not to points in the hyperplane that lay

between clusters. In contrast, the ButchR-based method uses linear combination

decomposition (LCD) to estimate the matrix Hquery (exposure of new samples to

the atlas signatures) from the exposure values of the matrix WAtlas (atlas signa-

tures), which allows the identification of states that do not perfectly align with one

of the clusters in the atlas.

• ProjecTILs (Andreatta et al. 2020) computes the PCA rotation matrix from a

reference atlas, and then uses it to transform the gene expression of a query dataset

into PCA loadings that will be in the same reference space with the atlas; however,

this method requires a previous integration step to align both datasets using Seurat

(Butler et al. 2018). On the other hand, our proposed workflow does not require

the previous alignment step, the only requirement is to normalize the columns of

the input matrix.

• scArches (Lotfollahi et al. 2020) uses a transfer learning approach based on con-

ditional variational autoencoders or conditional generative adversarial networks.

After training a model from the atlas, scArches uses the query data to fine-tune
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the model and integrate both datasets into a new space. In comparison to scArches,

our workflow does not change the space (signatures) of the reference atlas but in-

stead finds the position of the new cells into it. In cases in which the main goal is

to understand the position of new cells in the atlas distribution without changing

it, we consider that our approach will be more adequate.

As it can be seen, there are several methods useful for projecting single-cell data onto a

reference atlas. However, the biggest strength of our workflow is that it was conceived

to project any type of transcriptomic data onto the single-cell reference. Therefore, we

are not limited to use other single-cell datasets as queries, as the workflow can also work

with bulk RNA-seq and microarray data. This flexibility was deciding to investigate the

cell of origin of the neuroblastoma mesenchymal subtype.

12.8 Decomposition of regulatory signatures

The reconstruction of gene regulatory networks (GRNs) is one the most studied field

nowadays (Chai et al. 2014; Fiers et al. 2018; Thompson, Regev, and Roy 2015; Moris,

Pina, and Arias 2016). Deciphering the interactions between active transcription factors

(TFs) and the cis-regulatory elements (CREs) of their target genes is one of the keys

to explaining different cell states and differentiation processes (Moris, Pina, and Arias

2016; Spitz and Furlong 2012). Therefore, techniques like scCAT-seq (Liu et al. 2019),

SNARE-seq (Chen, Lake, and Zhang 2019), Paired-seq (Zhu et al. 2019), and SHARE-seq

(Ma et al. 2020) that co-profile expression and chromatin accessibility in individual cells

are crucial to model GRNs at a single-cell resolution. We established a new workflow

to use such data to infer regulatory relationships between genes and their CREs for

individual cells, and coupled with ButchR to infer regulatory signatures. We validated

the regulatory relationships predicted from data of three cell lines (K562, HeLa-S3, and

HCT116) using publicly available ChIA-PET interaction profiles, finding that a large

fraction of the predicted regulatory links were also present in the interaction profiles.
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Furthermore, we extracted regulatory signatures from data of two lung patient-derived

xenografts, these signatures were able to capture the intra- and inter-tumor variability

between both tissues, resulting in a clear regulatory difference and groups of TFs that

acted only in one group of the cells. This method was also applied to data from human

pre-implantation embryos, finding one signature associated with cells from the morula

stage, and another signature associated with blastocyst cells. The regulatory differences

found in three cells from the blastocyst stage pointed us to identify these cells as part of

the inner cell mass. This method was implemented for the study published in Liu et al.

(2019).

Our approach (Liu et al. 2019) to model GRNs using data generated from techniques

such as SNARE-seq, Paired-seq, and SHARE-seq is opposite from the current approaches.

For instance, in the recent publication for SHARE-seq, Ma et al. (2020) showed a new

method to determine groups of peaks regulating one gene (in what they called domains of

regulatory chromatin), that is based on correlating peak signal and gene expression across

all the cells, and standardizing using the mean and standard deviation estimated from a

background model using chromVAR. Although we did not account for the correction of

the background model, we found that using correlation-based models will recover fewer

true regulatory interactions than our strategy to predict regulatory links for every single

cell (Figure 8.3).

Due to the sparse nature of single-cell data where open regions and expressed genes

are not detected by technical variation (i.e., dropouts), aiming to find all the true reg-

ulatory relationships present in a cell is not technically feasible with the current tech-

nologies. Accordingly, finding common regulatory patterns (i.e., regulatory signatures)

among groups of cells using NMF helps to mitigate the effect of this technical variation

(Figure 8.4a).

One interesting concept that we did not explore with scCAT-seq was the occurrence of

cell states that are defined only from changes in the chromatin accessibility landscape,

which define poised or primed cells that can undergo a differentiation process in the
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future (Ma et al. 2020; Lara-Astiaso et al. 2014; Bernstein et al. 2006; Rada-Iglesias et

al. 2011). From our definition of regulatory relationships, this can be explored in futures

studies by comparing the exposure of chromatin accessibility signatures to regulatory

signatures in individual cells.

Our findings showed that the creation of one new feature space that model GRNs at

the single-cell level (i.e., predicted regulatory relationships for every cell) helped to find

common patterns of regulation between cells, and understand the variation of regulation

in different models (e.g., cell lines, tumors, and pre-implantation human embryos).

12.9 Combining scRNA-seq and scATAC-seq to define regulon-

guided signatures

As most of the single-cell studies are generating scRNA-seq data nowadays, many tools

have been developed to reconstruct GRNs using only such datasets (Holland et al. 2020;

Fiers et al. 2018) However, more studies are starting to produce data to measure the

epigenome of single-cells using techniques such as scATAC-seq (Buenrostro et al. 2015).

SCENIC is a tool to quantify the activity modules formed by one TF and its target

genes (Aibar et al. 2017; Van de Sande et al. 2020), such modules are called regulons,

and they constitute the building blocks of GRNs. Despite using only scRNA-seq data

to infer regulons, we showed that using ButchR to find regulon-guided signatures allows

the recovery of regulatory differences at the tissue level in adult mice. On the other

hand, SCENIC relies on a database of binding sites for TF motifs to construct the regu-

lons, which does not take the variation in chromatin accessibility that can be seen across

different cell states. Therefore, we created a new approach to model GRNs leveraging

contextually similar scRNA-seq and scATAC-seq data (i.e., same conditions and same

organism). With this approach, we were able to infer and quantify regulons that are

related to specific cell states. This method consists of the identification of coexpression

modules, the determination of the position of TF associated motifs, construction and
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quantification of cell state-specific regulons, followed by recovering regulon-guided sig-

natures using ButchR. We applied this workflow using publicly available data for nine

tissues of adult mice and found that it can recover patterns of regulation shared across

all the cells from the same tissue, but also it can recover TFs that are active in only a

few cellular subtypes. Taking together, this finding showed that the usage of these two

new workflows provided new insights into the regulation of gene expression and are a

valid strategy to model gene regulatory networks. we created a new method to construct

regulons leveraging contextually similar scRNA-seq and scATAC-seq data. With this

approach, we were able to create regulons that are related to cell state.

A recent benchmark study (Holland et al. 2020) demonstrated how SCENIC consistently

recovers less TFs than other tools such as DoRothEA and metaVIPER. By using the

cell state-specific regulons, we were able to consistently recover more than twice the

number of TFs that SCENIC does, showing how some TFs are only active in small cell

populations. Supporting this, we found groups of TFs that were associated with only a

few types of cells in a particular tissue, when analyzing the signatures recovered using

the quantification of the state-specific regulons.

12.10 Limitations of ButchR

From the beginning of the project, ButchR was conceived to be used with any type of

genomic data. However, this also comes with compromises, such as pre-processing steps

(e.g., data normalization and filtering low-quality features) are expected to be done

before using ButchR. In addition, special objects returned by different packages need to

be converted to a regular matrix. Keeping this in mind, we have also included multiple

vignettes to guide on how to do these steps.

Although ButchR has implementations for different NMF algorithms to decompose single

or multiple matrices, other NMF algorithms can be more suitable to use under specific

circumstances. However, the source code of ButchR is highly modular, and new NMF
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solvers can be added easily in the future.

12.11 Final remarks

Finally, one of the central pillars of this thesis was to conduct open and reproducible re-

search. Keeping this spirit in mind, all the analyses shown in this work have been made

available in different GitHub repositories (linked in their respective publications), the

source code of ButchR and ShinyButchR is also available. Furthermore, we also devel-

oped three interactive applications that help to understand our findings and allow other

researchers to easily obtain the data used in this work. NB-SE-viz can be used to ex-

plore the regulatory subtypes in neuroblastoma (https://nbseB087.dkfz.de), NB-dev-

viz is an explorer of the developmental programs in neuroblastoma (https://adrenal.

kitz-heidelberg.de/developmental_programs_NB_viz/), and MapMyCorona is our

contribution to the world effort to fight the current pandemic, which displays the se-

quence similarity and alterations of one sequence against a database on a world map

(https://hdsu-bioquant.shinyapps.io/mapmycorona/).

The findings of this study allowed us to publish one original paper describing ButchR

and ShinyButchR, two original papers describing new biological insights supported by

signatures found using ButchR, and to present our results in oral and poster presenta-

tions.

We presented in this study ButchR, a new toolkit to infer signatures and extract relevant

features associated with genotypes and phenotypes using NMF. We demonstrated how

ButchR is useful for analyzing multiple types of data, and how its signatures are able

to capture relevant biological information. The accompanying app ShinyButchR can be

effectively used to perform a complete ButchR-based analysis in an interactive fashion.

This toolkit is a new valuable resource to the scientific community, and it can be used

to understand complex biological processes.
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Appendix A: Data description

Through the development of this thesis, diverse datasets were used to perform the analy-

ses shown in this work. This appendix compiles all the sources of the data used in every

chapter.
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Table S1: Datasets produced by other groups in collaborative projects

Dataset description Data type Chapter Reference

H3K27ac NB cohort 60 tumors bulk ChIP-seq Neuroblastoma Gartlgruber et al. (2021)

H3K27ac NB 25 cell lines bulk ChIP-seq Neuroblastoma Gartlgruber et al. (2021)

NB cohort 579 tumor samples bulk RNA-seq Neuroblastoma Gartlgruber et al. (2021)

SK-N-AS, CLB-GA, and KELLY bulk ATAC-seq Neuroblastoma Gartlgruber et al. (2021)

Chromatin interaction SK-N-AS bulk HiChIP Neuroblastoma Gartlgruber et al. (2021)

Chromatin interaction CLB-GA bulk HiChIP Neuroblastoma Gartlgruber et al. (2021)

Human adrenal medulla 6,249 cells scRNA-seq Neuroblastoma Jansky et al. (2021)

Two NB tumors 1,812+1,742 cells scRNA-seq Neuroblastoma Jansky et al. (2021)

K562 74 cells scCAT-seq scCAT-seq G. Li et al. (2010)

HeLa-S3 42 cells scCAT-seq scCAT-seq G. Li et al. (2010)

HCT116 90 cells scCAT-seq scCAT-seq G. Li et al. (2010)

Two lung PDX tissues 157+176 cells scCAT-seq scCAT-seq G. Li et al. (2010)

Human morula/blastocyst 72 cells scCAT-seq scCAT-seq G. Li et al. (2010)
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Table S2: Publicly available datasets used in this work

Dataset description Data type Chapter Reference

Human hematopoietic system 45 samples bulk RNA-seq ButchR Corces et al. (2016)

Molecular signatures collection MSigDB Signatures ButchR Subramanian et al. (2005)

Mouse substantia nigra 51,912 cells scRNA-seq i2NMF Saunders et al. (2018)

Human substantia nigra 40,453 cells scRNA-seq i2NMF Welch et al. (2019)

NRC NB cohort 162 samples bulk RNA-seq Neuroblastoma Rajbhandari et al. (2018)

TARGET NB cohort 283 samples bulk RNA-seq Neuroblastoma Pugh et al. (2013)

3D-Genome structure 8 human cell types in situ Hi-C Neuroblastoma Rao et al. (2014)

Mouse organogenesis cell atlas (MOCA) scRNA-seq Neuroblastoma Cao et al. (2019)

Mouse adrenal medulla 384 cells scRNA-seq Neuroblastoma Furlan et al. (2017)

MGI human-mouse homologous master list Annotation Neuroblastoma Bult et al. (2019)

Interaction data K562, HeLa-S3, HCT116 ChIA-PET scCAT-seq G. Li et al. (2010)

Mouse scRNA-seq atlas 56,265 cells scRNA-seq Regulons Han et al. (2018)

Mouse scATAC-seq atlas 44,563 cells scATAC-seq Regulons Cusanovich et al. (2018)
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Appendix B: How to read a

riverplot

The riverplot or Sankey diagram is a powerful representation to depict the flow rate of one

group of values to another. In terms of the NMF, the riverplot is a helpful visualization

of the degree of similarity between signatures at consecutive factorization ranks. We have

included a new method in ButchR to produce a riverplot of the matrix decomposition

results, this visualization is made using the R package riverplot (Weiner 2017).

The riverplot is a tree-like representation where nodes represent the NMF signatures, it

can also be interpreted as an acyclic directed graph arranged in rows. The rows of the

NMF riverplot are always sorted from the minimum factorization rank to the maximum

factorization rank originally used to run the matrix decomposition (Figure S1a). Every

row of the riverplot contains a number of nodes equal to the equivalent factorization rank

k (e.g., the row corresponding to k=3 will contain three nodes representing the signatures

learned with k=3) (Figure S1b).
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Figure S1: How to read a river plot? Paired with ButchR, the riverplot or

Sankey diagram visualization is a powerful tool to understand the stability of

the learned signatures, as well as identifying the flux of information between

them. (a) The riverplot is organized as an acyclic directed graph arranged

in rows. The rows are sorted in ascending order of factorization rank. (b)

Every row of the riverplot is composed by nodes representing the signatures

for the indicated factorization ran, i.e., the signatures derived from a same

factorization rank are lay side by side, occupying one row of the graph. (c)

The similarity between two signatures at consecutive factorization ranks is

encoded in the width of the edge connecting them. (d) Stable signatures will

appear as a ribbon of constant width across factorization ranks.
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The relative similarity between signatures can be computed using the matrices H or the

matrices W extracted from all factorization ranks. In the case of a riverplot built from

the matrices W , the similarity between one signature ski and all signatures in the next

factorization rank k + 1 is estimated in the following way:

1. Extract the exposure values eki of the signature ski from column i of the matrixWk.

2. Fit the exposure values of matrix Wk+1 to eki using non-negative least squares

(nnls).

3. Extract the coefficient values of the nnls solution which represent the relative sim-

ilarity between signature ski and all signatures in the next factorization rank sk+1j

(j ∈ Z : k ∈ [1, k + 1]).

This procedure is repeated for all signatures ski (i ∈ Z : i ∈ [1, k]) across every factoriza-

tion rank k ∈ Z : k ∈ [kmin, kmax].

The estimated similarities are encoded in the width on the edge that connects two sig-

natures in the riverplot (Figure S1c). A signature is stable if the widths of the edges

remain constant across factorization ranks forming a ribbon (Figure S1d). In terms of

the flux of information this means that there is no influx from several signatures to define

the signature, and also the outflux of information from the signature is low, remaining

constant even if different factorization ranks are selected.
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Appendix C: ShinyButchR

tutorial

In this appendix, we show the steps to use ShinyButchR, and how to produce interactive

visualizations of the NMF results.

Disclosure: The results presented in this chapter have been published in Quintero et al.

(2020) and reproduced here with the permission of Oxford University Press, license num-

ber 5011370897521.

Data loading and NMF parameter selection

In order to use ShinyButchR, the data need to be uploaded into the app, and the NMF

parameters have to be set according to the user’s needs. The following steps describe

how to complete these requirements, and also provide some clues on how to set the NMF

parameters to obtain a good decomposition:

Step 1. Load setup screen:

Click on the [Data and annotation upload] tab, lo load the [Setup screen] (Figure 4.1a).

It contains the [Matrix upload] and [Annotation upload] boxes, to upload new data; the

[NMF params] box to tune the NMF parameters, and the [Start NMF] box to begin the

analysis.
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Step 2. Upload a non-negative matrix in an RDS or a CSV file:

Click on the [Browse. . . ] button of the [Matrix upload] box to browse files in your local

system and upload an RDS or CSV file containing a non-negative matrix. The file limit

is 30 MB (corresponding to a numeric matrix of approximately 600 columns and 5000

features), but it can be changed with the local distribution of the app.

Step 3. Upload annotation as a CSV table or an RDS file containing an R

data frame:

To perform the signature association analysis and produce a more informative heatmap

of the matrix H, a file with associated biological/clinical information can be uploaded

as well. Click on the [Browse. . . ] button of the [Annotation upload] box to browse files

in your local system and upload an RDS or CSV file containing an annotation table, the

first column of this table should match the sample/cell identification names stored in the

column names of the uploaded matrix.

Step 4. Selection of factorization rank range:

Select the range of the factorization ranks used to decompose the input Matrix by chang-

ing the values of the input boxes [Minimum factorization rank] and [“Maximum factor-

ization rank]. The minimum number of ranks allowed is 2 and the maximum should be

less than the total number of samples/cells (i.e., the number of columns in the input

matrix).

Step 5. Selection of factorization method and number of iterations:

Click on the [Select factorization method] option from the [NMF params] box to select

the algorithm desired to run the matrix decomposition. The options available in Shiny-

ButchR are NMF (Seung and Lee 1999) and GRNMF-SC (C. Lin and Pang 2015).

The number of random initialization to use can be set in the [Number of initializations]

parameter box, as well as the convergence threshold in the [Convergence threshold] box.

We suggest using at least 2 random initialization and a convergence threshold of 40 to
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obtain more stable results.

Step 6. Run matrix decomposition using NMF:

The NMF decomposition can be executed after uploading the data and selecting the

desired parameters. Click on the [Submit] button inside the [Start NMF] box. A waiting

screen will appear while the decomposition is performed, the total computation time

depends on the size of the input matrix and the NMF parameters. For instance, decom-

posing a matrix with 22,000 genes and 45 samples with a range of factorization ranks

from 5 to 8, and 10 random initializations will take about one minute.

Interactive exploration of NMF results

After the matrix decomposition is completed, the results can be explored using the wide

arrange of interactive visualizations included in ShinyButchR. The following steps de-

scribe how to browse and export the results for a downstream analysis:

Step 7. Load output results visualization screen:

The [Results screen] (Figure 4.1a) is the main screen to explore the matrix decom-

position results. All the visualizations provided by ShinyButchR can be found on this

screen. Depending on the availability of a valid annotation table, the resulting figures

will be more informative and help the user to identify the biological nature of the NMF

signatures.

Step 8. Selection of optimal factorization rank k:

The decomposition diagnostic plot provides a guide to select the optimal factorization

rank. This plot will contain informative statistics for each factorization rank and can be

found in the [Optimal factorization rank] box.
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Figure S2: ShinyButchR interactive H matrix visualization. (1) For every

factorization rank a heatmap can be generated, (2) the column names of the

original input matrix can be displayed, (3) the signatures can be clustered

by similarity between them, (4) as well as the samples/cells, (5-6) if a valid

annotation file was uploaded into the app the selected annotation tracks can

be displayed.

Step 9. Visualization of the matrix H heatmap:

For every factorization rank, ShinyButchR provides a heatmap visualization of the ex-

posure values from the matrix H, using the R package ComplexHeatmap (Gu, Eils, and

Schlesner 2016). The rows of this matrix are the signatures learned from the input ma-

trix and can be used to soft cluster the samples/cells. The visualization results can be

enhanced by uploading a table with biological and clinical metadata associated with the

samples/cells of the input matrix. The heatmap representation is available in the [H

Matrix Heatmap] box (Figure S2).
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Step 10. Uniform manifold approximation and projection (UMAP) visualiza-

tion based on the matrix H:

The [H matrix UMAP] box shows the UMAP embedding (Diaz-Papkovich et al. 2019)

built from the selected factorization rank. Similarly, as with the Matrix H heatmap, the

UMAP embedding can be enhanced by using metadata associated with the samples/cells

of the input matrix. In this case, the color can be changed based on the selected variable

(Figure S3).

Step 11. Visualization of recovery plots:

As described in “ButchR: NMF suit to slice genome-scale datasets,” the association of

the NMF signatures with biological and clinical variables can be measured and visualized

using a recovery curve. This visualization found in the [Recovery plots] box, is a powerful

tool to assign an identity to the recovered signatures. A recovery curve can be constructed

for every categorical annotation variable included in the annotation file (Figure S4).

1

2

Figure S3: ShinyButchR exposure UMAP embedding. (1) For every fac-

torization rank a UMAP embedding can be constructed, (2) and colored

according to one selected annotation variable.
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Step 12. Visualization of signature stability with a Riverplot:

The last visualization included in ShinyButchR is a riverplot depicting the similarity

between linked signatures (see “Appendix B: How to read a riverplot” for a detailed

explanation of the riverplot visualization). The riverplot plot can be found in the [NMF

riverplot] box. It provides a visual inspection of the stability of the signatures learned

using NMF. Two sliders are included to change the cutoff of the displayed similarities,

and the range of factorization ranks to include in the visualization (Figure S5).

Step 13. Export results and post-processing:

ShinyButchR also includes the functionality to save and export the results of the work-

flow, either as a CSV file or a native R RDS file. Click on the [Save results] tab, lo load

the [Save results screen], and save the results of the current experiment.

1

2

Figure S4: ShinyButchR recovery plots. A recovery curve is displayed (1)

for every signature and (2) every class of a selected categorical annotation

variable.

184



a

b

1

2

Figure S5: ShinyButchR interactive riverplot. (a) A riverplot is con-

structed (1) using the range of factorization ranks selected in the "Select

river plot range" slider, (2) and low similarities can be removed from the

visualization using the "cutoff of displayed similarities" slider. (b) Only the

most stable connections will be displayed if a large similarity cutoff is se-

lected, or (c) all minor connections will be included in the visualization if a

low large similarity cutoff is selected.
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