
Dissertation

submitted to the

Combined Faculty of the Natural Sciences and Mathematics

of the

Ruprechts-Karls University
Heidelberg

for the degree of

Doctor of Natural Sciences

put forward by

Diplom-Informatiker Dirk Frey

Born in
Heidelberg, Germany

March 17, 2021

Design and Implementation of a
Network-Attached Accelerator to Improve Data

Movement in HPC Environments

Advisor: Prof. Dr.-Ing. Ulrich Brüning

Date of oral examination:

Abstract

In this work, the concept of a network-attached accelerator was developed. This
novel node type connects accelerator and network interface card directly via an arti-
ficial PCIe interface. By exploiting the additional functions of the EXTOLL network
card, this remote PCIe hierarchy can be integrated into any system with an EX-
TOLL network interface card via the network without requiring any modifications
to the accelerator driver. A Intel R© Xeon PhiTMwas used which can be successfully
booted by the remote PCIe hierarchy over the network and is then available as a
standalone node. In addition, the Intel R© Xeon PhiTMitself can actively communi-
cate with other Intel R© Xeon PhiTMwithout the need for a CPU. The accelerator and
network card form a single unit that can communicate directly with others via the
highly specialized EXTOLL network, forming an cluster of accelerators. Various ex-
periments demonstrate, that this combination has a higher bandwidth and a lower
latency than common systems.

Several prototype systems have been developed to evaluate the concept and reduce
the packing density by a factor of four. This is the most densely packed HPC system
to date. The enormous cooling demand could only be met by using a novel cooling
medium NovecTM 649 . An developed 2-phase cooling system can cool the 12 kW
power dissipation of the 32 network-attached accelerators with a total of 32 TFLOP
of computing power only by the power consumption of a single circulating pump. As
a result, the GreenICE system achieves an unprecedented power usage effectiveness
of 1.01.

i

Zusammenfassung

In dieser Arbeit wurde das Konzept eines Netzwerkangebundenen Beschleunigers en-
twickelt. Dieser neuartige Knotentype verbindet Beschleuniger und Netzwerkkarte
direkt per künstlicher PCIe Schnittstelle miteinander. Durch geschicktes Ausnutzen
der Zusatzfunktionen der EXTOLL Netzwerkkarte kann diese entfernte PCIe Hier-
archie über das Netzwerk in ein beliebiges System mit EXTOLL Netzwerkkarte
eingebunden werden, ohne das Anpassungen am Beschleunigertreiber notwendig
sind. Es wurde ein Intel R© Xeon PhiTMverwendet der durch die entfernte PCIe
Hierarchie über das Netzwerk erfolgreich hochgefahren werden kann und danach als
eigenständiger Knoten bereitsteht. Außerdem kann der Intel R© Xeon PhiTMselbst
aktive mit anderen Intel R© Xeon PhiTMkommunizieren ohne dass eine CPU dafür
benötigt wird. Beschleuniger und Netzwerkkarte bilden eine Einheit die über das
hochspezialisiertes EXTOLL Netzwerk direkt mit anderen kommunizieren kann und
einen Rechnerverbund aus Beschleunigern bildet. Verschiedene Experimente weisen
diesem Verbund eine höhere Bandbreite und eine geringere Latenz nach als übliche
Systeme.

Es wurden mehrere Prototypsysteme entwickelt, um das Konzept zu evaluieren
und die Packungsdichte um den Faktor vier zu reduzieren. Dies ist das bis dato
dichtgepackteste HPC System überhaupt. Die enorme Herausforderung an die
Kühlung und den Gehäuseaufbau konnte nur durch den Einsatz eines neuartigen
Kühlmediums NovecTM 649 bewältigt werden. Eine selbst entwickeltes 2-Phasen
Kühlsystem kann die 12 kW Verlustleistung der 32 Netzwerkangebundenen Beschle-
unigers mit insgesamt 32 TFLOP Rechenleistung nur durch den Stromverbrauch
einer einzigen Umwälzpumpe kühlen. Dadurch erreicht das GreenICE System eine
bisher unerreichte Energienutzungseffizienz von 1.01.

iii

Acknowledgments

First of all, I would like to thank my supervisor Prof. Ulrich Brüning, who has always
supported me during all this time and has always been an inspiration. Thanks to
his broad knowledge he was able to support me in almost all areas. I would also
like to thank all members of the Computer Architecture Group for all their support
and helpful discussions. But most of all, I would like to thank the person who
became first my wife and now the mother of my two children during the course of
this dissertation. Thank you Theresa for all the patience you have shown to support
me throughout this long journey.

v

Contents

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Challenges to reach Exascale . 4
1.3 Focus of the thesis . 6
1.4 Structure of the thesis . 9

2 Background 11
2.1 Accelerators . 12

2.1.1 General Purpose Graphic Processing Unit (GPGPU) 12
2.1.2 Many Integrated Cores . 16

2.2 Accelerator communication . 18
2.2.1 Basic Device I/O Communication 18
2.2.2 Optimized Device I/O Communication 19

2.3 PCI Express Host Interface . 21
2.3.1 Architecture . 21
2.3.2 Interrupts . 22
2.3.3 Configuration Space . 23
2.3.4 Packet format . 25

2.4 EXTOLL . 27
2.4.1 PCIe Bridge . 29
2.4.2 SMFU . 30
2.4.3 HTAX . 32
2.4.4 X-Bar . 33
2.4.5 SNQ . 34

vii

Contents

2.4.6 RMA2 . 35
2.4.7 Register File . 36

2.5 Cooling technologies . 37
2.5.1 Air . 37
2.5.2 Water . 38
2.5.3 Engineered Fluids . 40
2.5.4 Boiling . 42

3 State of the Art 43
3.1 Intra Node Communication . 44

3.1.1 NVIDIA GPUDirectTM peer-to-peer 44
3.1.2 Multi-GPU Server . 46
3.1.3 PCIe Switch Trees . 48

3.2 Inter Node Communication . 50
3.2.1 GPUDirect RDMA IB . 50
3.2.2 GPU Virtualization . 52
3.2.3 Non-Transparent Bridges . 53
3.2.4 PEACH2 . 55
3.2.5 APEnet+ . 57
3.2.6 GPU Global Address Space (GGAS) 59

3.3 Cooling . 61
3.3.1 Shoubu System B . 62
3.3.2 TSUBAME-KFC . 63
3.3.3 DataTankTM . 64

4 Network Attached Accelerators 65
4.1 State of the Art Analysis . 66

4.1.1 Accelerator Node Design . 66
4.1.2 CPU-less Communication . 66
4.1.3 Direct Network Access . 67
4.1.4 Cooling . 67
4.1.5 GPU Cluster Interconnect . 68
4.1.6 Summery of Requirements . 68

4.2 Remote PCIe bus access . 69
4.2.1 Remote PCIe packet generation 70
4.2.2 Remote PCIe enumeration process 72

viii

Contents

4.2.3 Memory size determination 74
4.3 Transparent Memory Mapping . 74
4.4 Interrupt remapping . 76
4.5 Network feature access . 78

5 Prototype implementations 79
5.1 Evaluation Platform . 80

5.1.1 Backplane . 80
5.1.2 StratixV Eval Board . 83
5.1.3 Test System . 84

5.2 Booster Node Card . 85
5.3 DEEP Booster . 86
5.4 GreenICE . 88

5.4.1 Requirements . 88
5.4.2 Mechanical Design . 90
5.4.3 Backplane design . 92
5.4.4 Pressure resistance . 93
5.4.5 Interconnect . 94
5.4.6 Power Supply . 98
5.4.7 Board Management and safety 99

5.4.7.1 Inter-Integrated Circuit (I2C) network 99
5.4.7.2 Flowmeter . 99
5.4.7.3 Sensor-board . 101
5.4.7.4 Switch Actuators . 102

5.4.8 Cooling . 102

6 Results 107
6.1 Cluster of Network Attached Accelerators 108

6.1.1 Remote PCIe Hierarchy . 108
6.1.2 Transparent Memory mapping 109
6.1.3 Dynamic assignment of accelerators 110

6.2 Liquid cooling . 111
6.2.1 GreenICE . 111
6.2.2 Higher packing density . 112
6.2.3 Increased power efficiency . 114
6.2.4 Experience with NovecTM 649 114

ix

Contents

7 Conclusion 117

Acronyms 129

x

1

Ch
ap

te
r

Introduction

1.1 Motivation . 2
1.2 Challenges to reach Exascale . 4
1.3 Focus of the thesis . 6
1.4 Structure of the thesis . 9

This chapter describes the research area of this thesis and motivates why inves-
tigation in this field is important for the scientific community. In particular, this
work aims at the High Performance Computing (HPC) community and hereinafter
describes some of the obstacles to master the so called Exascale Challenge. This
milestone in the field of computer science comprises of several parts and this chap-
ter describes why the focus is set on the power and communication component.

1

1 Introduction

1.1 Motivation

The driving force of innovation in the field of computer science has always been the
increasing demand for computational power to solve more complex problems than
before. In the early days of computers, the answer was to develop procedures to
reduce the structure size of transistors. As a result, more transistors can be placed
on the same chip size, the frequency increases, the power consumption decreases
and more chips fit on the same wafer, resulting in cheaper hardware.

Until 2010 chip development reached a saturation point, also known as ”post-
moore era” and reduction in structure sizes abandons Moore’s law [37] with a dou-
bling of transistors on a die every 18 months. Today, the time it takes to get to the
next technology node varies between two or three years. Reasons for this slow down
are challenges in the manufacturing process at very small nodes like 22nm, 14nm or
below. Another reason is the so-called ”power wall”. Due to the increasing number
of transistors per area, the power density rises above a critical point.

The only chance to still increase the performance and somehow catch up to Moores
prediction is parallelization by replicating cores on the same processor chip. Together
with new parallel programming paradigms, enabled by the new multi-core architec-
ture, increasing performance is ensured even in the ”post Moore-era”. Even with
the computational power a single machine can provide nowadays, a single machine
alone can not solve complex problems like weather forecast, chemical or physical
simulations and data analysis in a reasonable time.

Most of the time, scientific simulations contain a high amount of small independent
calculations and can therefore execute in parallel. Obviously, multiple machines can
work on small chunks of the same problem in parallel to solve the simulation faster.
In order to accomplish this, the machines are connected to each other with an
interconnection network to share results between the partitions of the simulation.
Nodes connected in this way form a cluster and dominate the list of the fastest
Supercomputers [61]. This is common practice nowadays.

The challenge is no longer to shrink the technology or increasing the number of
replicated compute units per chip. Other factors gain importance too. Due to the
permanent growth of the simulation or calculation complexity, the number of cluster
nodes required to solve a problem in a reasonable time rises as well and the overall
power consumption starts to get the limiting factor.

A study performed by DELL in 2007 [51] states, that power consumption of a data

2

1.1 Motivation

center can be categorized into three areas. One field is the power delivery from the
wall plug, through Uninterruptible Power Supplys (UPSs) to the voltage regulators
to provide the operating voltages for the hardware. This takes up to 28 % of the
overall power consumption of a data center.

Another area is the power consumption of the hardware components of a compute
node like CPUs, GPUs, Network Interface Controllers (NICs) and other external
hardware components like network switches. These components have a share of 41
% of the overall power consumption of a data center. To reach the next class of
super computers with a performance of 1 ExaFLOP/s (1018FLOP/s) the FLOP per
Watt ratio of these hardware components have to go beyond today’s clusters. One
way to increase this ratio is the use of specialized hardware that provides thousands
of low power cores providing a high energy efficiency and large-scale parallelism.

An example for this type of hardware are Graphics Processing Units (GPUs).
These accelerators are no longer restricted to pure graphic processing and support
a large subset of instructions required for scientific computation like matrix or vec-
tor calculation. Each GPU has hundreds of cores that provide a large amount of
parallel processing power. Each core has a limited instruction set and a reduces
number of specialized units compared to normal Central Processing Unit (CPU)
cores. They run at a lower frequency, but the large number of cores outperform
CPUs easily. Especially throughput-computing kernels [31] are a lot faster on GPUs
then on CPUs. GPUs are available as add-in cards typical as Peripheral Compo-
nents Interconnect - Express (PCIe) cards. Depending on the chassis used for the
compute node commonly one to three GPUs fit into a single machine. Cluster nodes
equipped with accelerators can dramatically increase the compute power of clusters
and are now common practice. Referring to the TOP500 lists [61] available during
the work on this thesis, the number for accelerator equipped clusters has increased
from 54 in June 2013 to 110 in June 2018. Conclusion of this trend is that the usage
of accelerators in future super computers will increase. How these accelerators are
used have a significant impact on the performance of super computers.

Increasing the power efficiency of the computational parts in a cluster is one way to
increase the FLOP/Watt ratio. Another one is to save power on the interconnection
network. Only recently the research takes power consumption to move data around
inside the cluster into account [50]. Data movement includes the movement of data
inside chips, like from caches to registers but also data from main memory to the
CPU for processing and to I/O devices. Transferring data from local main memory

3

1 Introduction

to a remote memory location across the cluster’s interconnection network consumes
a large amount of the overall power. The cluster interconnection network got more
attention in recent years not only because the communication between cluster nodes
is most of the time the limiting factor for the overall performance of the cluster, but
also the percentage of the overall power consumption increased over the years. As
the number of nodes for an exascale system is growing one or two magnitude higher
than todays systems, the interconnection has a large impact on the performance and
the power consumption of today’s systems.

The last category of power consumption in a data center stated by the study is the
power required by the infrastructure to cool all the aforementioned components. As
all energy used by the hardware components is dissipated as heat to the environment
it is very important to transfer this heat away. This category count fans for forced
air flow inside the nodes, fans to provide raised floor cooling for the cluster racks and
the air conditioning systems to cool down the air to typically used 18 ◦C to 21 ◦C.
The overall power consumption of 31 % for the cooling infrastructure of a cluster
system is worth to take a closer look on how energy can be saved in this area.

1.2 Challenges to reach Exascale

Nevertheless, all the benefits of accelerators in todays clusters comes with a not
negligible cost to get access to the raw performance accelerators provide. As already
mentioned, accelerators are add-in cards connected to the host interface which is
typically PCIe. The number of accelerators is on the one hand limited by the
physical space a compute node provides to house the add-in cards and on the other
hand by the number of available PCIe links coming from the CPU or the chipset.
This leads to a fixed ratio between hosts and accelerators. While the usage of
accelerators local to a compute node is very fast in regards of latency, memory and
I/O bandwidth, applications that require more accelerators than available in the
node requires explicit communication with other nodes equipped with accelerators.
This forces the application programmer to obtain and use detailed knowledge of
the cluster infrastructure and network topology to write a scientific application
exclusively for this specific cluster to achieve reasonable performance and scalability.
The application now must hide additional latencies and bandwidth limitations that
arise by the use of the interconnection network to exchange data between the nodes
that host the accelerators which may also introduce load imbalance.

4

1.2 Challenges to reach Exascale

To make things worse, accelerators are not able to efficiently source or sink network
traffic [46]. The CPU allocates a buffer in the main memory for the data transfer
from local memory to the remote node. The data to exchange is copied from the
GPU memory to the main memory first. After this copy operation is completed,
the CPU triggers the transfer by notifying the NIC which is than responsible to
read the data from the previously allocated buffer in main memory and sends the
data to the remote node. All communication is driven by the CPU which prevents
the CPU from executing workload that requires a high single thread performance.
In addition, the copy operation from GPU device memory to main memory and
copy from main memory to NIC introduces additional overhead which limits the
scalability of the application.

Also the PCIe host interface that is used twice in the above example is a limiting
factor. Compared with the GPU on-board memory bandwidth of 208 GB/s [45],
the host interface maximum bandwidth of a PCIe 3.0 x16 link is only 16 GB/s.
Datta et al. [17] show in their work, that without host interface transfers a stencil
application can achieve a speedup of 15× compared to a CPU implementation. If
the host interface transfers are taken into account, the GPU performs worse than the
CPU. This is clearly a bottleneck and any unnecessary PCIe transactions should be
avoided. One technique to avoid host-device copy operations is the use of GPUDirect
Remote Direct Memory Access (RDMA) capability [57] of modern NVIDIA GPUs
or similar techniques for other types of accelerators. The NIC is given access to
the GPUs on-board device memory and the buffer in main memory can be avoided.
Nevertheless the CPU is still involved to trigger the communication and is bound to
the task of source and sink network traffic. All this introduces significant challenges
in the design of future exascale applications that have to utilize the high degree of
parallelism.

Therefore it is not surprising that application design is one of the many challenges
to reach exascale computing. As a study of the Defense Advanced Research Projects
Agency (DARPA) [6] pointed out, not only the programming model is a challenge,
the power consumption is too. Cooling based on air is easy to implement but not
sufficient for exascale systems. New techniques to remove heat are emerging with
water flowing trough a metal plate on top of the compute boards to use water as
coolant. Water has better physical properties than air, but requires large metal
plates to cover the whole board and uses 2 or 3 times more space than the actual
board. Also the use of water in a environment with electrical components has a

5

1 Introduction

high risk for damage when a leakage occurs. Special care is required to avoid this
situation. Even if water as coolant is superior to air the use of water cooling as a
subsequent change is hard to realize. The usage of this method has to be taken into
account in the early design phase.

In order to contribute to overcoming the existing hurdles of reaching exascale, this
thesis addresses these topics:

• Dynamically assign accelerators to hosts in a n-to-m ratio
• Increasing the power efficiency with the use of accelerators
• Reducing the power consumed by cooling
• Reducing the power of the interconnection network
• Increase the packaging density
• Source and sink network traffic and avoid CPU driven communication
• Minimize the effect of the host interface on communication
• No additional software layers or driver modifications
• Increase utilization of GPUs and CPUs or other types of accelerators e.g. for

AI

1.3 Focus of the thesis

A publication of Rinke et al. [55] proposes a solution to some of the problems
described in the section above. Instead of adding accelerators to cluster nodes,
a separate cluster is build and consists of accelerators only. The connection between
accelerators and compute notes is now dynamically assigned during runtime. An
application requests the number of accelerators it needs to perform its calculation
from an Accelerator Resource Manager (ARM) which receives requests and grants
access to the requested number of accelerators if they are available. This approach
increases the utilization of accelerators and enables a finer control of the compute
resources of the cluster. Applications that doesn’t benefit from accelerators can
request compute nodes only and do not block the accelerators from being used
by other applications. The programmer no longer need detailed knowledge of the
clusters internal hardware structure and can handle any number of accelerators as
if they were locally attached to the compute node.

In the publication of Rinke et. al. the term of an accelerator only cluster is a bit
misleading as the accelerators are still connected to a standard compute node. This

6

1.3 Focus of the thesis

system for the proof of concept only host the accelerator, the ARM and the NIC. No
job can be scheduled on these nodes. The interconnection network is used for the
communication between compute nodes and accelerators. A user library intercepts
all calls to the accelerator and tunnels them trough the interconnection network to
the accelerator node. The accelerators do not directly access other nodes and require
the assistants of a daemon running on the CPU that drives the communication.

This thesis will revive the idea of the described publication and extends it to
tackle some of the challenges described in the previous section. The focus will be on
the use of the Intel Xeon Phi, since it has unique characteristics compared to other
accelerators, which make it particularly useful for the purpose of this work.

Accelerator Node Design The design of an accelerator node described in the pub-
lication is a full blown server system. It consists of a CPU that runs a daemon
to handle the send and receive requests from the cluster nodes. Local main
memory is used to buffer the received or to send data from the NIC or the
accelerator respectively. Both devices are on the same PCIe hierarchy and
need the CPU to transfer data from on device to the other. Therefore the
thesis investigates how an accelerator node that only consists of an accelerator
and a NIC can be build with a direct connection between each other.

CPU-less Communication As the accelerator is not able to source or sink network
traffic a daemon is running on the accelerator node that drives all network
communication. The daemon is responsible to allocate buffers, start and ter-
minate transfers and moves data between the NIC, main memory and the
accelerator. All these task are additional overhead and limits the application’s
scalability. This thesis will investigate how existing and novel network tech-
nologies can reduce this overhead of communication between accelerator and
NIC.

Direct Network access For every network access the control flow has to switch
from GPU to the CPU context. The CPU reads from the device and sends the
data over the interconnection network and returns to the GPU control flow.
Modern NICs support features like RDMA to access directly memory locations
of another node’s process. Other programing models like GPU Global Address
Space (GGAS) or Partitioned Global Address Space (PGAS) to access remote
locations by addresses is another interesting approach for communication be-
tween accelerators. All these concept require software assistance that intercept

7

1 Introduction

the normal operation. This thesis will investigate how these concepts can be
made available directly to the accelerator without the intervention of a CPU.

Cooling As the improved accelerator node design should be as streamlined as pos-
sible new cooling concepts can be used. As the accelerator node only consists
of an accelerator and a NIC, they can be packed close to each other. For con-
ventional cooling with air the minimum distance between the boards is defined
by the size of the heat sinks. To relax this space requirement, the possibilities
of a novel type of cooling liquid is being investigated.

Interconnect power consumption The most common connection networks are based
on a star topology with external switches. These connect the nodes with each
other. To achieve sufficient performance of the cluster system, it must consist
of a large number of nodes, which makes it spatially very widespread. With
this spatial expansion, the length of the cables and the power needed to drive
the signals increases. In addition, more switches are needed to connect the
higher number of nodes. This thesis uses a novel interconnection network
which avoids the external switches completely and reduces the cable length,
thus saving a large amount of power.

GPU cluster topologie To get a good load balance between the different acceler-
ators the latency and bandwidth has to be known. These values strongly
depends on the physical location inside the cluster and the network topology.
With the accelerators forming their own cluster, the topology, latency and
bandwidth does not change and have less impact to load balance. It also eases
the effort to the application programmer. This thesis will build such a cluster
of accelerators and evaluates how the overall performance of applications is
affected.

All these research topics described above lay their focus on hardware changes like
the use of novel network interconnects, custom designed components like Printed
Circuit Boards (PCBs) and other hardware components. This is due to the fact that
all software related topics beyond basic initialization and configuration are described
in more detail in the work of Neuwirth[39]. Nevertheless, all software modules
required to initialize and configure the hardware are presented in this thesis and
briefly described to provide a better understanding of the underlaying hardware’s
function.

8

1.4 Structure of the thesis

1.4 Structure of the thesis
The following chapter 2 on page 11 will give some background information on the
hardware components used in this thesis. To get familiar with basic aspects of
cooling the chapter concludes with a brief summary of different cooling concepts and
some important physical metrics. Chapter 3 on page 43 will show the current state
of the art of intra and inter node communication and cooling solutions established
in the industry. The work briefly described in section 1.3 on page 6 is not the only
research done in this field and the state of the art chapter will summarize some
of the other important publications that are of interest for this thesis. Chapter 4
on page 65 will analyze the state of the art and the related work on the different
interconnection and cooling solutions to derive a design that meets the requirements
described in section 1.2 on page 4. After the design is described chapter 5 on page 79
shows details of the different prototype implementations. The chapter 6 on page 107
describes the findings from the different prototype systems. Both the knowledge
gained from the accelerator nodes and the experience gained with the new cooling
liquid are presented. The chapter 7 on page 117 summarizes the thesis and shows
additional research topics that are possible in the future or which parts are open to
more intense research.

9

2

Ch
ap

te
r

Background

2.1 Accelerators . 12
2.2 Accelerator communication . 18
2.3 PCI Express Host Interface . 21
2.4 EXTOLL . 27
2.5 Cooling technologies . 37

This chapter explains fundamental hardware components used throughout this
thesis and briefly describes important features and characteristics. Accelerators
play an important role in increasing the power-efficiency and compute power of a
system. To understand why accelerators have this attributes the first section exam-
ines the General Purpose Graphic Processing Unit (GPGPU) and Many Integrated
Core (MIC) architectures. All accelerators described here use PCIe as its host in-
terface. As later parts of this thesis describe how PCIe can be used across host
boundaries a section in this chapter describes PCIe architecture in detail. The EX-
TOLL interconnection network provides incomparable features that are essential for
the implementation of the proposed Network Attached Accelerator (NAA). These
important features are described in this chapter. To build a common ground, basic
cooling concepts for electronic devices are covered at the end of this chapter and
briefly describes physical metrics for important material properties.

11

2 Background

Figure 2.1: NVIDIA Tesla K20 PCIe full-length full height card [45]

2.1 Accelerators

As accelerators are of great importance for this thesis the following sections describe
the features and different kind of accelerators that are used throughout the thesis.
Even though most of the work is about the Intel Xeon Phi, a small introduction to
GPGPUs will be given here. This is to show the differences between the architectures
and thereby highlight the advantages of the MIC architecture and the advantages
that arise for the intent to build a NAA.

2.1.1 General Purpose Graphic Processing Unit (GPGPU)

The most important kind of accelerators are General Purpose Graphic Processing
Units (GPGPUs). In the early days, GPUs were components that receives data
from the CPU, stores it in a frame buffer and converts it into a suitable image
representation for the display device like a monitor. Most operations on image
representations are memory-intensive such as texture mapping to surfaces, rendering
polygons and geometrical calculations like rotation and translation into different
coordinate systems. This involves many main memory operations from the CPU
to calculate the color information, store the result of the calculation back to main

12

2.1 Accelerators

Figure 2.2: Graphics pipeline of NVIDIAs NV40 architecture [1]

memory and then send it to the GPU to display the picture. To accelerate this
process and to relieve the CPU from this task the GPUs got specialized hardware
functions. GPUs basic data elements are vectors of two to four dimensions and
store either 3-dimensional color information (red, green and blue) or 3-dimensional
coordinates of vertices. As most of the operation on these vectors do not depend on
each other, these operations can be done in parallel with hundred of vectors as input
for the calculation. To further increase the performance of image processing fixed
pipeline stages with a fixed function are used. These units are called shaders and
each shader works on the input from the previous stage and outputs its processed
data to the next stage. Figure fig. 2.2 shows a simplified graphic pipeline.

The program or kernel for the vertex and fragment shaders are very primitive
manipulations on these vector elements such as vector addition or matrix multipli-
cation. Each shader has a lower clock frequency as compared to CPUs, but the same
operation is done on many elements in parallel on hundreds of cores per shader unit.
As most scientific computation problems are mathematical operations on vectors or
matrices this massive parallel computational power is far beyond the capabilities of
sequential CPUs. This attracts computer scientists to take advantage of GPUs to
solve complex tasks in less time and more power efficient. But these pipelines from

13

2 Background

Figure 2.3: Tesla K20 Overview [44]

the early days had limited capabilities of reading input data from memory or writing
results back to memory. The vertex shader which performs geometrical calculations
on vertices can read its input vertices from memory but only the fragment shader,
which calculates color information for pixels, is able to write back the output data to
the framebuffer. This increases the effort to map algorithms to these fixed function
pipelines together with the restriction that all scientific data have to be translated
into textures and vertices to be processed by the GPU.

To circumvent this limitations the GPUs evolved from fixed function pipelines to
nowadays GPGPUs with thousands of independent cores that can do either graphi-
cal computation on images or general purpose computations on floating point values
depending on the program the shaders execute. Figure 2.3 shows one of 15 Streaming
Multiprocessor (SMX) with its 192 scalar in-order cores of a NVIDIA K20 accelera-
tor. In addition to the cores which can perform a floating point or a scalar operation,
the SMX features 64 double precession units and 32 load/store units. Special func-
tions inside the SMX can execute transcendental instructions such as sin, cosine,
reciprocal, and square root.

GPU programing is fundamental different to conventional CPU programing and
requires knowledge to the underlying hardware to get a scalable high-performance

14

2.1 Accelerators

Figure 2.4: Comparison of CPU and GPU architecture [34]

code that uses hardware resources efficiently [8]. Figure 2.4 shows the difference in
die area usage. A CPU dedicates most of its die area to on-chip memory for one to
three level of caches whereas a GPU trades on-chip memory for a high amount of
compute cores. To further increase the number of cores, each core has less control
logic and waives complex instruction-level parallelism, branch prediction, specula-
tive and out-of-order execution in favor of smaller core sizes. Each Compute Unified
Device Architecture (CUDA) core can execute one integer or one floating-point
instruction per clock cycle. To ease the scheduling effort and dispatching of instruc-
tions, 32 threads are grouped together and form a warp which is the smallest unit
that can be scheduled. The warp is then executed on 32 cores of a SMX. Each
thread in a warp executes the same instruction in lock-step as Single Instruction
Multiple Threads (SIMT). If one thread in a warp can not execute its instruction,
because the operands are not present, the warp is suspended and another warp ready
for execution is scheduled. The biggest source of latency comes from cache misses
and in the worst case access to the global Graphical Double Data Rate 5 (GDDR5)
on-board memory. The effort to switch the context from one warp to another is
extremely low, which allows for latency hiding of memory accesses by scheduling
another warp. This implies to fully utilize the cores in a SMX much more warps
must be generated to hide latencies and sustain high throughput.

GPUs struggle with the memory wall [67] just like CPUs. It is far more expensive

15

2 Background

Figure 2.5: Intel Xeon Phi Co-Processor PCIe full-length full height card [10]

to transfer data to the CPU or GPU than computing on them. Even with the supe-
rior memory bandwidth of GPUs fetching a single value from global GPU memory
takes in the order of hundreds of clock cycles. As most of the kernels run on the
GPGPUs are memory bound, it is important to support a high host interface I/O
bandwidth between main memory and GPGPU to occupy as many CUDA cores as
possible.

2.1.2 Many Integrated Cores

Intel’s answer to the increasing interest in highly parallel accelerators was the Intel
Xeon Phi co-processor with its code name Knights Corner (KNC).

The architecture of the GPGPU described in the previous section results in the
following properties that must be taken into account in order to get the maximum
performance out of the GPGPU. One of these features is that threads are not inde-
pendent of each other, but are bundled and scheduled in packets, so-called warps.
This complicates the programming, because one always has to take care to get a full
warp and also to have enough warps to hide latencies caused by memory accesses.
This need to hide latency is another property that must be taken into account. Since
a GPGPU has more compute cores than on-die memory, it is extremely important

16

2.1 Accelerators

Figure 2.6: Intel Xeon Phi Core Architecture Overview [10]

to consider data locality and to be very careful about which memory holds the data
and instructions.

In contrast to the design explained in 2.1.1 Intel does not use light-weight special
function cores, instead the KNC uses super scalar cores that are x86 compliant.

This has the immense advantage that existing application code, cross compiled
for the KNCs architecture, can run without modifications on KNC add-in cards.
Besides the reuse of existing code, the structure of the individual super scalar cores
allows the use of significantly more on-die memory compared to a GPU. But this
advantage is compensated with a much smaller number of cores. On a KNC of the
highest performance level only 61 cores can be accommodated. Also the scheduling
of threads is simplified compared to the GPGPU and every thread can be executed
on every core. It should be noted that each core can execute 4 threads at once,
which makes a total of 244 threads on a KNC with 61 cores.

To further increase the performance, each core has a Vector Processing Unit
(VPU) with 32× 512bit vector registers as shown in fig. 2.6 for 16 single-precision
floating-point or 32bit integer and 8 double-precision floating-point or 64bit integer
operations per vector instruction. Applications that make use of vectorization can
use this 512bit vector Instruction Set Architecture (ISA), called 512-bit Advanced
Vector Extensions (AVX-512) to further benefit from the KNC’s architecture.

Both architectures have their advantages and disadvantages. Neither one is clearly
better than the other and it depends significantly on the application whether the
GPGPU or the MIC architecture provides better performance. The biggest and most
important feature which is a unique feature and of highest interest for the project

17

2 Background

NAA is the x86 compliance and the possibility to run operating systems directly
on the add-in card. This allows the KNC to be used as an independent node. One
can login via Secure Shell (SSH) into the KNC and run the application on the KNC
directly or the program on the host system can use the KNC as an offloading target.
If the application is split into sequential and parallel portions, each portion can run
on the best fitting architecture. But the best part is the availability of a common
operating system allows loading of device drivers to use the host systems hardware
from the KNCs operating system. This capability is the key to the design of the
NAA and is described in detail in the chapter 4.

2.2 Accelerator communication

Now that we have looked at the different architectures of the GPGPU and MIC,
we will now turn our attention to the communication between the CPU and the
accelerator. It is important to understand the different communication paths on
accelerators to fully understand the bottlenecks and performance limitations of ac-
celerators. Therefore, in the further course of the work, a great deal of attention
will be paid to circumventing these limitations with new approaches.

2.2.1 Basic Device I/O Communication

The accelerator exposes a set of memory regions for communication between the
CPU and the device. During initialization of the I/O devices, physical addresses of
the CPUs memory space are assigned to these regions. A driver running on operat-
ing system level has access to this physical regions by mapping the physical pages
assigned to the device into the operating system virtual kernel space. Communi-
cation with the device are now memory read or write operations to kernel virtual
addresses which are translated by the CPU’s Memory Management Unit (MMU)
into physical addresses, the CPU’s chip-set translates these addresses into I/O op-
erations of the used I/O interface. The operating system protects the access to
the device by prohibiting user applications a virtual-to-physical address mapping to
physical addresses of the device. As user application’s memory and the operating
systems memory are protected from each other, the driver of the device at the oper-
ating system provides an interface to interact with the device. User space programs
call functions from the kernel space driver which copies data from the user space

18

2.2 Accelerator communication

Figure 2.7: Logic Structure of Basic I/O

program into kernel space and then sends the copied data to the device with I/O
operations. This is the most robust kind of device communication as each memory
space (user space / kernel space) is strictly protected from each other and the direct
access to the device is limited, but this kind of communication involves at least two
memcopy operations which are known to be very slow and restricts the throughput.

2.2.2 Optimized Device I/O Communication

To improve the performance of the device communication compared to the procedure
described above, the operating system can relax the virtual-to-physical mapping
restriction and allow direct access to the devices memory regions. Memory read or
write access to user space virtual addresses are translated into physical addresses and
result in I/O operations which directly access the device. This bypasses the kernel
and increases the performance of memory and device transfers. All procedures
described in the previous section are Programmed Input/Output (PIO) operations
that are driven by the CPU. All data written or received by the accelerator is
read or written by the processor which causes a high number of unnecessary CPU
cycles and occupies the IO subsystem. With direct access to the device, Direct
Memory Access (DMA) is possible. Reserved physical memory regions in the user

19

2 Background

Figure 2.8: DMA I/O

space program are send and receive buffers for DMA transfers. Most accelerators
have DMA capabilities of one or several DMA controllers. The CPU sends DMA
descriptors with the buffer’s physical address and size to the accelerator and the
accelerator’s DMA controller reads or writes the data without CPU intervention.
This releases the CPU from the transfer task and the CPU cycles are available for
computational tasks, but the cache coherence is made more difficult by the fact that
memory values can be changed that may still be present in one of the CPU caches.

DMA also allows communication between devices without using the CPU. Instead
of using reserved physical memory regions in user space, the reserved area can also
point to the memory of another device. The memory operations then do not target
the main memory, but are directly forwarded within the I/O subsystem to the
target device. As already described, this not only saves CPU cycles but also avoids
accessing the main memory and saves bandwidth in the main memory interface.
This procedure is described in more detail in section 3.1.1 on page 44 and symbolizes
the immense importance for the project. But first the used host interface and its
peculiarities will be described in more detail.

20

2.3 PCI Express Host Interface

Root Complex
Root Port Root Port

Processor

Switch Bridge

Endpoint

Endpoint EndpointSwitch

Endpoint

Endpoint

Figure 2.9: PCIe Architecture Overview

2.3 PCI Express Host Interface

Communication with the accelerators is closely linked with transactions on the given
host interface. On most modern systems PCIe [9] is used. As we will build our own
software driven PCIe hierarchy on the remote accelerator node this sections shows
all important features and procedures important for this thesis. This section will
start with an architectural overview, shows some details about enumeration and
configuration and ends with some information about the packet protocol.

2.3.1 Architecture

The host interface PCIe is the successor of Peripheral Components Interconnect
(PCI) and Peripheral Components Interconnect - Extended (PCI-X). Its the most
common standard to connect devices between memory and processing cores. Started
as a bus interconnect, PCIe is nowadays a Point-to-Point interconnect and is orga-
nized as a tree with a single root. A link between two PCIe devices is still called
a bus but in reality its a point-to-point connection. Each bus consists of up to 16
lanes and each of them are bidirectional differential pairs with a transfer bandwidth
of 2.5 Gbit, 5 Gbit and 10 Gbit per direction. Figure 2.9 shows an example for

21

2 Background

a simple PCIe hierarchy. At the top is the Root Complex, which serves as a link
between the memory management of the processing cores (North Bridge) upstream
and the downstream I/O devices. A Root Complex has one or multiple Root Ports.
Each of these ports connect either directly to a Endpoint device or a switch. Mul-
tiple switches can be arranged hierarchically to support a tree structure to connect
more than one device per Root Port. Internally these switches act as PCIe-to-PCIe
bridges. Due to its backward compatibility also former versions of PCIe, PCI and
PCI-X can be used by bridges which translate between the different protocol ver-
sions.

Each switch has a single upstream port (Primary bus) and one or more down-
stream ports. The links between switches, Endpoints and Root Ports are called
buses and are numbered in depth-first-search. The smallest downstream bus num-
ber of a switch is called secondary bus and the highest downstream number is called
subordinate bus. Switches also specify the memory regions on the downstream site
of the switch. Addressing inside this type of interconnect is done by bus IDs or
interval routing with memory addresses. To address a device inside the PCIe hier-
archy, each device has a unique Device identifier. This identifier consist of an 8 bit
bus number, a 5 bit device number and a 3 bit function number. This allows up to
256 buses, with 32 devices per bus with 8 functions per device. The Device ID and
Bus ID are assigned during the enumeration and can change during runtime.

PCIe uses packets to transfer information between the components and are a
split transaction model which differentiates between posted or non-posted read or
write requests. Posted transactions do not have completions and terminate at the
moment they are received by the target of the transaction (completer). Non-posted
operations are confirmed with a completion which contains a return code for success
or failure. In case of a read request the completion also carries the data from the
read operation back to the requester. Unique source tags are used with each non-
posted request to keep track of all outstanding transactions and reassociate received
completions with the original request.

2.3.2 Interrupts

Interrupts are an important functionality of peripheral devices. Depending on the
device and programming model an interrupt is used to tell the driver to execute
a predefined operation like moving a received packet from the NIC to the host

22

2.3 PCI Express Host Interface

memory for further processing. Older host interface standards used hardware routed
side-band interface (interrupt lines) to signal the processor of an event that has to
be handled. This limits the number of devices to have an exclusive interrupt line
assigned to them. Most of the time more devices had to share an interrupt line which
is associated with multiple host interface accesses to determine which device caused
the interrupt. PCIe uses an in-band mechanism called Message Signaled Interrupt
(MSI) which uses the packet protocol to signal an interrupt. During the enumeration
process, each device that requests interrupt support is assigned a specific interrupt
address and a specific data string. Depending on the PCIe feature used, a device
can have 32 interrupts MSI or up to 2048 interrupts Message Signaled Interrupt
Extended (MSI-X). If a device signals an interrupt, a write operation is build with
the predefined address from the enumeration process and the payload contains the
specific string to identify which interrupt number is used. The address targets an
Advanced Programable Interrupt Controller (APIC) which can receive interrupts
from multiple devices and informs the processor about the interrupt event for further
handling.

2.3.3 Configuration Space

Each device has a 4 KB configuration space to store information about the capa-
bilities of the device, the link capabilities and information of the memory regions
assigned to the device. To be compatible with legacy PCI/PCI-X devices each de-
vice implements a 16 DW (256 Byte) configuration header starting on the lower
bound of the 4 KB PCIe configuration space. All PCIe extended capabilities are
stored in the upper 4 KB in a linked list. Access to this configuration space is done
with special configuration packets. An Endpoint implements a Type0 configuration
space header whereas all other device types (Root Complex, Bridge or Switch) im-
plement a Type1 configuration space header. The most important fields of config
space are:

• DeviceID/VendorID
These two 16 bit values are uniquely assigned to registered PCISIG members
and serve as an identifier for driver software to adjust the software to the needs
of the device.

• Command
After initialization, the device can not respond to memory requests. The device

23

2 Background

Figure 2.10: PCIe Configuration Space Header Type0 (left) and Type1 (right)[9]

driver can activate the address translation engine by writing to this register
and set the busmaster enable, memory implemented and IO implement bits
to 1.

• Base Address Register (BAR)
A Device can implement up to 6 × 32 bit memory BARs or up to 3 × 64 bit
memory BARs. The lower 4 bit of each BAR contains flags to select between
32 bit or 64 bit BAR and a flag to identify a memory region as prefetchable or
not. These BARs are used to request memory space to be mapped into kernel
or user space (Memory Mapped Input/Output (MMIO)).

• Device/Link Capability
This register describes the features the device supports. It contains the max-
imum link speed and the allowed payload size of packets. This size is split
into the payload size which determines the maximum size of a request or a
completion packet. The read request size determines the number of bytes a
single read operation can request. In both cases, if more bytes are requested
or should be transfered, the request has to be split in smaller chunks which
satisfy the requirements. The device with the smallest values determine the
payload and read request size to the whole path from requester to the final

24

2.3 PCI Express Host Interface

target. This limitation origins from the buffer management to avoid buffer
overruns.

• MSI
This register consist of an address and a data field. The address field holds
the address the interrupt packet is send to. To distinguish different interrupts
per device the data register contains a string with the least significant bits can
be altered to signal different interrupts.

• Primary,secondary subordinate
As the PCIe topology is based on a tree structure with a depth-first search
style, each switch or bridge holds a register with the bus numbers of the down-
stream devices behind the switch or bridge. The primary number contains the
upstream bus the switch or bridge is connected to. Secondary number is the
smallest bus number towards the depth-first path. Subordinate bus number
defines the highest bus number that is located behind the switch.

• Prefetch / Non-prefetch
The memory requested with BARs is distinguished into prefetchable and non
prefetchable memory and this register determines the size behind the bridge
or switch. Prefetchable memory can be cached, because its content does not
change without requests from the processor. Non-Prefetchable memory can
change between two consecutive read operations like status registers. Each
bridge and switch checks the memory addresses of a request, if it lies within
a valid range behind the bridge. If this check fails, the packet is dropped and
an error response is sent back to the requester.

2.3.4 Packet format

Transaction Layer Protocol (TLP) are the uppermost protocol layer and can be
divided in read and write transactions on physical memory and device internal con-
figuration space. TLP packets are 3 or 4 DW for 32bit and 64bit addressing. The
maximum payload length is defined as 4kB but commonly used are lengths between
128Byte and 256Byte.

This section is limited only to the configuration packet format and the completion
format, since these packets play an important role in the implementation of the NAA,

25

2 Background

LengthATAttr
E
P

T
D

T
H

RAttrRTCRTypeFmt

Byte0 Byte1 Byte2 Byte3

01234567 01234567 01234567 01234567

LastDW
BE

1stDW
BE

TagRequester ID

R
Register
Number

Ext. Reg.
Number

Reserved
Function
Number

Device
Number

Bus Number

Figure 2.11: Configuration Request Packet

LengthATAttr
E
P

T
D

T
H

RAttrRTCRTypeFmt

Byte0 Byte1 Byte2 Byte3

01234567 01234567 01234567 01234567

Tag

Completer ID

Lower Address

Byte Count
Compl.
Status

B
C
M

RRequester ID

Figure 2.12: Completion Packet

since the configurations software generates these packets to configure both the Root
Port and the accelerator.

CfgWr/CfgRd

To access the 4 KB configuration space of PCIe Endpoints, Bridges and Switches,
the Root Complex and the Root Port sends configuration packets. To identify the
source of the request the Requester ID and a source tag are used to distinguish
between different outstanding requests. To select a register of the configuration
space header the Register Number and the Extended Register Number form a double
word address.

If a configuration space request arrives at a Bridge or a Switch, the target device
is identified by the Bus, Device and Function number which form the Completer ID.
The Switch or Bridge routes the packet to the port in the direction of the addressed
device. After arrival at the targeted device, the configuration request is processed.

26

2.4 EXTOLL

PCIe
Bridge

HT3-
Core
(CAG)

HTAX
Bridge

H
TA

X

VELO

RMA

SMFURF

N
et

w
or

k
Cr

os
sb

ar

NP

NP

NP

LP

LP

LP

SerDes

SerDes

SerDes

PCIe
PHY

HT
PHY

ATU

NP

...

...

Figure 2.13: EXTOLL Module Overview

Completion Packet Format

Completions are sent for each non-posted request. A request can be answered by
one completion or multiple split completions and can have data attached or not.

Completions always use a 3 DW header and the complete packet header with
all fields is shown in 2.12. The second DW has a Byte Count field to count the
remaining bytes of the request. The three bit of Completion Status are used to
indicate if the completion completed successfully or with a specified error condition.

The Completer ID is the ID of the device generating the completion and is the
target of the request. The Requester ID and the source tag forming the Transaction
ID, which is used to uniquely identify the source of the request in the PCIe system.

In case of a request with byte access rather than a complete DW access the lower
address field specifies the offset from the DW address with the first valid byte in the
completion.

2.4 EXTOLL

As the EXTOLL interconnect is used throughout all prototype implementations its
key features and most important modules are described in the following sections.

27

2 Background

The interconnection network Extended Atomic Low Latency (EXTOLL) [42] is the
successor of the Atomic Low Latency (ATOLL) [26] interconnection network and
is the spin-off from a long-running research project at the Computer Architecture
Group (CAG) at the Institute of Computer Engineering at Heidelberg University.
The design has its focus on the needs of the high performance interconnection net-
work market segment and has several features particular designed for HPC envi-
ronments. Every component of the stack is designed to deliver the lowest latency
possible, because “Latency lags bandwidth” [49]. This starts at the application user
libraries and goes down to kernel drivers and every single hardware module. Not
only the low latency of EXTOLL is important for this thesis, the direct network
design is too. Instead of a star topology with external switches, like Ethernet or
Infiniband, EXTOLL integrates the switch functionality on-chip and provides up
to seven links to directly connect other EXTOLL cards with each other. With a
radix of seven, different interconnect topologies are possible to implement. Most of
the time a 3D-Torus is the favored topology, because it provides a small diameter
compared to other topologies and maps naturally to scientific problems on volumes
like weather-forecast or fluid dynamics.

As shown in fig. 2.13 on the previous page the design is divided in three parts, the
host interface, the functional units and the network part. The host interface mod-
ules are responsible for memory read and write access to either host main memory
(DMA) or direct access to other host devices residing on the PCIe interface. The
network submodules are responsible for routing of network packets and the transla-
tion from the internal HyperTransport On-Chip (HTOC) protocol into the network
protocol. The three functional units provide hardware accelerated capabilities for
low latency two sided communication like Message Passing Interface (MPI) send
and receive, single sided communication with zero copy for RDMA and shared dis-
tributed memory across multiple nodes. Of particular interest is the Shared Memory
Functional Unit (SMFU) which can be used to map the memory of a remote PCIe
device into the host’s local MMIO range. This unit is the key element to build a
cluster of accelerators during this thesis. The following sections describe all modules
that are important to build a cluster of accelerators in more detail.

28

2.4 EXTOLL

PCIe Bridge

HTAX
Bridge

Xilinx IP
Core
for

PCIe

V
en

d
o

r
La

ye
r

TX Translator

Backdoor

PCIe
Link

Register
File

RX Translator

Forward Logic

HTAX / HToC Interface

RFS Interface

Figure 2.14: PCIe Bridge Overview

2.4.1 PCIe Bridge

The main purpose of the PCIe Bridge is to translate between the host interface
protocol PCIe and the internal protocol of EXTOLL, which is a proprietary exten-
sion of the HyperTransport (HT) [15] host interface and is called HTOC [11]. The
bridge is divided into a RX module and a TX module as shown in fig. 2.14. The RX
translator receives PCIe packets from the host interface, translates it into HTOC
packets and send the packets to the functional units and the network. The TX
translator is responsible to translate received HTOC packets from the network or
the functional units into PCIe packets. A PCIe IP Core from Northwest Logic [41] is
used to translate the transactional protocol of PCIe into the low level physical layer
implementation and vice versa. Important is the possibility to use the IP core not
only as PCIe Endpoint but also as Root Port. This function makes it now possible
to integrate the accelerator into the PCIe hierarchy. The Vendor Layer is respon-
sible to drive the signals required by the IP Core to transfer and receive packets.
The PCIe Bridge also contains the PCIe Backdoor to send arbitrary PCIe packets
towards the PCIe host interface. The Forwarding Logic can extract arbitrary PCIe
packets from the incoming PCIe stream for debugging purposes or to handle unsup-
ported PCIe packet types. The TX submodule shown in fig. 2.15 on the next page
has a software accessible buffer (internal RAM) to store packets that should be send
to the outgoing PCIe traffic stream. The RX submodule can filter the incoming
PCIe traffic stream and extracts packets into a software readable buffer.

For this thesis, these features are of particular interest. The PCIe bridge handles
the extraction of filtered packets from the incoming PCIe traffic and handles the

29

2 Background

PCIe Backdoor

V
e

n
d

o
r

La
ye

r
d

at
a

FI
FO

pcie_cmd_full
pcie_cmd_valid

Register File

htoc_to_pcie_
backdoor_

control

internal
RAM Access

Logic

Backdoor
Finite State

Machine

send

packet_sent

htoc_to_pcie_
backdoor_data

write_enable

access_complete

select

pcie_cmd[63:0]

pcie_data[127:64]

read_data[63:0]

pcie_cmd[127:64]

pcie_data[63:0]

cm
d

 F
IF

O

pcie_data_full
pcie_data_shift_in

read_enable

write_address[5:0]

write_data[63:0]

write_enable

read_enable

read_address[5:0]

Figure 2.15: PCIe Backdoor Overview

insertion of software generated packets via the PCIe Backdoor. This mechanism
can be used to create configuration packets and configure the connected accelerator.
The PCIe Bridge TX module is also responsible to detect interrupt packets on the
outgoing PCIe traffic. As described in section 2.3.2 on page 22 all necessary informa-
tion to build an interrupt packet are stored in the PCIe MSI configuration register.
A MemWr packet with an address between 0xFD 00000000 and FD F8FF FFFF is
interpreted as an interrupt and triggers a signal to the IP Core to generate an
interrupt.

2.4.2 SMFU

The SMFU [25] is designed to span a PGAS between memory regions exported by
remote nodes. Without additional software layers load and store operation to specific
local memory addresses result in a remote memory access on the target remote node.
Simplified, this module can be the central functional unit to map the accelerator’s
on-board memory into the host’s own address space and thus an essential part of
the NAA concept. From the point of view of the CPU and the application, only
memory addresses are read and written to and the encapsulation of data in network
packets, the transfer and routing within the EXTOLL network, the unpacking and
the actual memory accesses on the remote node take place entirely in hardware.

However, in order for this mechanism to run without further intervention by the
software, the SMFU must first be configured. For this purpose, so-called intervals are
defined. An interval is described by a set of three registers, a start address, an end
address and a control register. The left side of fig. 2.17 on the next page shows the

30

2.4 EXTOLL

Extoll Network Port

Sender Receiver

EGRESS

NPMAP
(timeout and

P2NP)

TAG MAP
(Host

decoupling)

INGRESS

HTAX

TXRX

Address
calculation

Masking Interval

SMFU

Figure 2.16: SMFU2 Overview with Ingress and Egress submodule [13]

Centrifuge operation and address extraction

x 64

SMFU address calculation

Default VPID = 65

64

entries

Interval Mapper
...

0x0..FFA..0

Start_Addr End_Addr tNodeID TU valid

...

0x0..FFB..0

...

0xA 3 1

...

oAddr

- oStartAddr>= <=

& hit?

ABAB CDCD EFEF ABAB

0000 FFFF 0000 0000 Addr_mask

Marks runtime static data from RF

gAddr tNodeID

CDCDABAB EFEF ABAB

-

nNodeOffsetgAddr +

TU[1:0]

Default TU =
SMFU_TU

hit?

TU[1:0]

hit_index

hit?

VPID[9:0]

hit?

gAddr [47:0]

hit?

tNodeID

tNodeID[15:0]

Figure 2.17: SMFU2 Address Calculation in Egress Submodule [13]

31

2 Background

Figure 2.18: HTAX Module Overview [35]

interval scheme and the right side the mask based. Since only the interval scheme
is of interest, only this will be discussed in detail. The Start Addr describes the
beginning of the interval at local host system’s physical address space. Respectively
the End Addr describes the last address within the interval of the local host system’s
physical memory. The target node can be set in the control register and describes
to which remote node this local interval of memory belongs to. If all registers are
configured for an interval, each incoming packet is compared. If the address within
the packet is within an interval, this packet is sent over the network. But first an
address conversion is done. In a later chapter the way how these intervals and the
address translation are used in connection with the accelerator will be explained in
detail in section 4.3 on page 74.

2.4.3 HTAX

HyperTransport Advanced X-Bar (HTAX) [35] is a on-chip switching module that
connects modules with each other. In the EXTOLL design, the HTAX is in between
the host interface (PCIe or HT) and the functional units. It is based on a Crossbar
and each input port can sent to each output port. A base structure can be seen
in fig. 2.18. All modules connected to the HTAX have either a receive, a transmit

32

2.4 EXTOLL

interface or both. HTAX input to output routing is based on intervals. Each input
port has a set of software configurable register to mark a base and a upper limit for
the interval mapping. An other register enables/disables the interval and selects the
outport. An outport is connected either to a functional unit or the host interface.
These intervals define the target functional unit of incoming PCIe packets and also
define the host interface channel of outgoing packets from the functional units.

Within the project to be realized the NAA, this module is responsible for giving
the accelerator (KNC) the possibility to access the functional units of the EXTOLL
NIC. For this the above described intervals are set cleverly and allow the KNC to
access certain address ranges directly and to use the highly specialized functional
units. How this looks in detail, will be described in a later chapter section 4.5 on
page 78.

2.4.4 X-Bar

The Crossbar is the core unit to provide direct connection to other EXTOLL nodes.
It has eleven inports and outports. Four ports are connected to the functional units
and the remaining seven ports are for the connection to the other nodes. Seven nodes
are chosen to provide the 6 links for a 3D torus and one additional link that can
be used to connect specialized hardware components like FPGAs without breaking
up the torus topology. Each of the outgoing links has a width of 12 lanes and each
lane has a link speed of 8.4 Gbit which adds up to 100Gbit per link. The inports
support table based routing and each inport has its own exclusive routing table to
allow routing decisions per inport to support complex routings. To discover the
network or to set up a specific kind of routing the Extoll Management Program
(EMP) can be used. It makes use of the remote access to each tourmalets register
file for configuration of the routing table entries for each inport at each node of the
network.

The ability to change both the routing of a node and its configuration over the
network proves to be a great advantage for the NAA, as it eliminates the need for
a control entity within the NAA node to make the necessary configurations via a
side-band interface. This allows the NAA to be fully configured over the network
in-band.

33

2 Background

Figure 2.19: SNQ Functional Overview [30]

2.4.5 SNQ

It’s important for every I/O device to notify the driver for changes on the device.
The common approach is the use of interrupts. The current process running on the
CPU is stopped after receiving of an interrupt and an interrupt handler is executed
instead. The first task of this handler is to determine the reason for this interrupt by
reading registers on the device with I/O operation on the host interface. After values
returned to the interrupt handler the relevant actions are executed like reading a
received network packet from the device into main memory. If the handler is done,
the process that was interrupted is continued again.

Even though the above described approach is very simple it requires multiple
I/O operations on the device and increase the time the interrupt handler blocks
the CPU. To decrease the interrupt service time, the System Notification Queue
(SNQ) [30] was designed. Instead of reading the status bits of the EXTOLL card,
all information required to handle the interrupt are written to main memory before
the interrupt is generated on the host interface. The main memory read latency is
by far smaller than the latency on the host interface.

Since the accelerator of the NAA must also be able to send interrupts, this unit is
a central component. A NAA accelerator has no direct connection to a CPU which
can react on the interrupt. Therefore the interrupt information must be tunneled
over the network. How this mechanism works exactly can be found in section 4.4
on page 76.

34

2.4 EXTOLL

2.4.6 RMA2

To provide hardware accelerated single-sided RDMA functionality the Remote Mem-
ory Access (RMA) unit [43] supports DMA engines to read from and write to pinned
memory regions. In this context, a put operation sends data from a local buffer with
a pinned address to a remote memory address, whereas a get operation reads data
from a remote memory location and writes the data into the local memory. The
addresses of the buffers are either physical addresses which do not request address
translation or virtual addresses that require translation by the Adress Translation
Unit (ATU) [30]. During the initialization, also called registration of the pinned
buffer, the virtual-to-physical address translation is cached in the ATU module on-
chip to allow for a fast virtual-to-physical translation in hardware without a request
to the operation system. The CPU is only involved on the sending side by writing
a descriptor to the RMA unit with all necessary information, like local and remote
address, target node and number of bytes to send. Like a DMA engine, the RMA
unit transfers the data from the buffers autonomously without further intervention
of the CPU between the remote and the local node or vice versa. Compared to
a two-sided communication, whereas the receiving side is waiting for the data, the
receiving side of the single-side communication is not aware that the content of the
pinned buffer has changed or was accessed. The process that has initiated the put
operation is informed by notifications that e.g. all data was read from local memory
and the buffer can be reused. In the same way, the target of a get operation can
be informed, that the buffer was read and is ready for new values. All submodules
involved can generate notifications to inform the local node that the modules part
of the put or get operation has completed.

Beside the RDMA functionality of the RMA another feature is very important for
this work and is called Remote Registerfile Access (RRA). The Register File (RF)
described in section 2.4.7 on the following page holds status and control registers
and software accessible buffers for all modules and functional units of the EXTOLL
design. A flag in the RMA descriptor marks a put or get request as a RRA and the
address from the descriptor is interpreted in the Completer and Responder as an
address inside the RF. The HTAX ports forward the read or write request from the
Completer or Responder to the RF instead towards the host interface. With this
mechanism each EXTOLL card can access another EXTOLL card’s RF and retrieve
status information or reconfigure hardware modules like routing table entries in the

35

2 Background

Figure 2.20: RMA2 Submodule Overview [12]

Crossbar or access to software accessible buffers like the PCIe Backdoor. As an
accelerator node has no CPU to initialize itself all configuration modifications use
the above described RMA unit with the RRA feature for configuration purposes.

2.4.7 Register File

To reconfigure and get access to status information of the modules the RF[30] pro-
vides a software accessible interface to retrieve information and write configurations.
Each module can have its own small RF. The basic element of a RegisterFile is the
register. Each of them is 64bit wide and each register can be further divided into
individual fields of any size and position within the 64bit. Software and hardware
read and write access can be configured individually for each field. This allows for
registers that can only be written by hardware like a packet counter and only be
read by software. Registers that can only be written by software and read by hard-
ware enables configuration registers to configure a Finite State Machine (FSM) for
example.

All small RFs distributed across the modules are connected with a centralized
RF wrapper. Each register in a distributed RF has its unique address and can be
accessed like a piece of memory. Figure 2.21 on the next page shows an example of

36

2.5 Cooling technologies

Figure 2.21: Registerfile Hierarchy Overview

the distributed RFs in the PCIe Bridge with the PCIe Backdoor RF and the Vendor
Layer RF. The address of a memory packet targeting the RF is used to address
a register at a distributed RF and triggers either a write enable or a read enable
depending on the memory packet request type. This packet can either come from
the host interface or from the network via a RRA transaction from the RMA.

Especially the second source, from the network, is of particular interest for this
work. This allows for a remote configuration from anywhere inside the EXTOLL
network. Because the accelerator node design has no CPU, all initialization tasks of
the remote node have to be performed by the remote host and target the accelerator
node.

2.5 Cooling technologies

A large part of this thesis deals with cooling of electronic components. Therefore,
this section provides some background information about common topics. First,
different cooling media are contrasted. These include air, water, special fluids and
also solids such as cold plates.

2.5.1 Air

Air is without question the most common way to cool electronic devices. But unfor-
tunately, air has some properties that make it inappropriate for high density cooling
applications. In many applications where power consumption is low, air is often

37

2 Background

sufficient to keep the device in a reasonable temperature range. Natural or forced
convection is usually sufficient for this purpose. Natural convection is a process that
transports heat away from the device. The heated air has a lower density than the
surrounding cold air and rises. As a result, cooler air can follow. This effect does
not require any external energy to be set in motion, but the cooling effect is limited.
The thermal conductivity of air is very low with a value of 0.0262 W/m · K and is
more an insulator than a coolant. This means that air above the device accumu-
lates despite convection and increases the temperature of the device. To counteract
this, one can create forced convection through fans and accelerate the removal of
the warm air. This increases the cooling performance, but this effect is also made
difficult by another physical property of air. Due to the very low heat capacity, the
temperature of the air rises quickly and can therefore only absorb a small amount
of energy before the temperature rises to a level that is harmful to the device. To
compensate for this, a very large volume flow is required, which must be generated
by powerful fans. Furthermore, the air must first be cooled down by air conditioning
systems, which also consume a lot of energy. Nevertheless, air is by far the simplest
but also the most energy-hungry way to cool electronics.

2.5.2 Water

Another medium to cool electronic devices is water. Since water is known to be
conductive and consequently destroys these devices, it cannot be used directly for
cooling. Instead, water is used purely as a transport medium for thermal energy
without direct contact with the hot surface. For this purpose, metal plates through
which water flows, so-called cold plates, are used. These are mechanically adapted
exactly to the devices surface to be cooled. For a better heat transfer, there is a
heat-conducting paste between the cold plate and the component to be cooled to
ensure good heat transfer. With these cold plates, the much better properties of
water can be exploited for cooling. This includes the much higher heat capacity
of water. It can absorb four times more energy than air and has a much higher
density. However, in order to effectively transfer heat from the metal cold plate into
the water, a large number of small tubes or capillaries are required. This creates a
great deal of friction within the cold plate and powerful pumps are needed to build
up the necessary pressure and flow.

As with air cooling, water must first be brought to the correct temperature. De-

38

2.5 Cooling technologies

Airflow

Pump

Heat
exchanger

Water
reservoir

Water-cooled
cold plate

Electronic module

Figure 2.22: Cooling Flow Cold Plate

pending on the components to be cooled, the water can be cooled down to very
low temperatures in order to absorb a maximum of energy. Another method is to
release the energy of the heated water into the environment through a water-air heat
exchanger. This method is called warm water cooling, because in contrast to the
previously mentioned method, the average water temperature is higher than that
of cooled water. Warm water cooling has the immense advantage that it does not
require expensive and energy hungry cooling machines. Warm water cooling can
easily be used, for example, to support the heating system and helps to increase the
power efficiency.

With all the advantages that water brings with it, it still has a few disadvantages.
The coldplates must be matched exactly to the height profile of the equipment to
be cooled. If the arrangement of the components changes during the design process,
a new coldplate must also be made. Depending on the heat removal requirements,
relatively thick coldplates may be needed to provide sufficient water flow. This
reduces the packing density. In addition, great care must be taken to ensure that
water cannot leak from the cooling system. This can lead to short circuits and the
destruction of components. A different class of coolant tries to circumvent some of
these circumstances and are discussed in the following section.

39

2 Background

Property Air Water NovecTM 649 649 FC-72
Normal Boiling Point (◦C) -190 100 49 56

Thermal conductivity (W/m · K) 0.0262 0.597 0.059 0.057
Liquid density (kg/m3) - 1000 1610 1680
Specific heat (J/kg · K) 1000 4184 1103 1050

Latent heat (kJ/kg) - 2264 88 88
Critical heat flux (kW/m2) - 1000 200 220
Global Warming Potential - - 1 9300

Table 2.1: Physical attributes of air, water and NovecTM 649

2.5.3 Engineered Fluids

In addition to air and water, engineered fluids are widely used as coolant for high-
power and high-density electronics. These fluids are developed with specific proper-
ties that either alter these of water or air, or add new properties like non-conductivity.
Most of the engineered fluids are fluorinated hydrocarbons like perfluorcarbons
(C6F14) or fluor ketons (CF3CF2C(O)CF (CF3)2). Not all hydrocarbons are suitable
as coolant. The fluids require a dielectric constant near the value of air, non-toxicity
to use in areas with humans, non-flameable, chemical compatibility with the elec-
trical components and long term stability.

A special attention is payed to the environmental compatibility. Some fluorinated
hydrocarbons are ozone depleting or act as a greenhouse gas. An important property
in this context is the Global Warming Potential (GWP) which is a measure how
harmful 1 unit of this material is in relation to a reference gas like CO2. As shown
in table 2.1 NovecTM 649 has a GWP of 1, which makes it as harmful as CO2 whereas
FC-72 has a GWP of 9300 and makes 1 unit of FC-72 as harmful as 9300 units of
CO2.

Their most interesting property are non-conductivity and no chemical reaction
with other materials which make them perfect coolants for direct cooling. Com-
pared to water were cold plates are used on top of the heat source like a chip’s
package the whole electronic device is immersed into the fluid and covers all com-
ponents. This enables dense designs without the need of a cold plate or heat sinks.
The coolant can be used to absorb the heat of the hot surface and use convection
to transport the heat away from the surface. This can be done either by forced con-
vection with a pump that circulate the liquid along the heat sources or by ordinary
convection through displacement of heated liquid by heavier and colder liquid. The

40

2.5 Cooling technologies

described procedure is called 1-phase-cooling because the liquid remains in the same
liquid phase. Comparing the values in table 2.1 on the preceding page of water and
NovecTM 649 , we see a difference for the thermal conductivity and the specific heat
of the materials. Water has a 10× higher ability to transport heat away from a heat
source as NovecTM 649 and can absorb 4× more heat until the temperature of the
material increases. Even though water has superior physical attributes the electrical
conductivity prohibits it as a direct cooling liquid.

To compensate this drawback NovecTM 649 can be used as a coolant for 2-phase-
cooling and change its phase from liquid into a vapor phase. With this procedure
NovecTM 649 can take advantage of the latent heat during vaporization on hot
surfaces. Another important measure is the boiling point. The boiling point of
water with 100 ◦C and the resulting junction temperature on the die is to high to use
2-phase-cooling with water. With a boiling point of 49 ◦C the junction temperature
on the die is in a range of 70 ◦C to 80 ◦C depending on the thermal conductivity of
the package and thermal interface material and is sufficient for cooling of processors
and accelerator chip.

As an example, the Intel Xeon Phi has a package size of 4cm × 4cm or 16 cm2 and
has a thermal design power of 300W . This results in an heat flux of 180 kW/m2 and
is slightly below the critical heat flux of NovecTM 649 which is around 200 kW/m2

[24]. If the package is removed, the much smaller die area would exceed the critical
heat flux of NovecTM 649 . For all applications that exceed the critical heat flux for
a plain surface, boiling enhancement coatings Boiling Enhancement Coating (BEC)
can be used. These are materials with a rough surface increasing the overall surface
area and increase the critical heat flux.

Compared to 1-phase-cooling where the liquid itself transports the heat and is
cooled down at a heat exchanger, in 2-phase cooling two cooling loops exist. The
primary loop consists of the liquid that vaporizes at the hot surface and is condensed
back at a cold surface like a cooling coil. This transports the heat via the vapor
to the cooling coil and the heat is transfered out of the system with water running
through the cooling coil. The same conditions apply to the condensation on to
cold surface as for vaporization on a hot surface. The latent heat of the vapor is
absorbed on the cooling coil and therefor is a very efficient heat transfer due to the
phase change back from vapor into liquid.

41

2 Background

Figure 2.23: Boiling curve of heated liquid[59]

2.5.4 Boiling

Since a more detailed knowledge of the boiling process is necessary for the further
course of the work, the individual phases will be examined in more detail in this
section. Boiling undergoes different phases as shown in fig. 2.23. If the temperature
of the hot surface is minimal higher than the boiling temperature of the liquid, the
heat transfer will primary consist of convection through displacement of the heated
liquid (I + II). Nucleate boiling starts beyond this point when the temperature of
the hot surface increases (III). The heat flux has enough energy to change the phase
of the liquid into vapor and the energy is carried in the vapor towards the liquid’s
surface. As described above, this is the most efficient way to transport heat through
the latent heat required for the phase change. If the temperature of the hot surface
further increases (between III-IV), there is a point, called critical heat flux, at which
the nucleate boiling changes into a film boiling. A layer of vapor now covers the hot
surface and dramatically reduces the heat transfer capability between the surface
and the liquid (V). This effect increases the surface temperature and may exceed the
operating temperatures and can damage the electronic device. An operating point
chosen slightly below the critical heat flux is the most efficient way to transfer heat.
The critical heat flux is a measured in W/m2 and depends on the surface area.

42

3

Ch
ap

te
r

State of the Art

3.1 Intra Node Communication . 44
3.2 Inter Node Communication . 50
3.3 Cooling . 61

This chapter introduces some real-world implementations of the concepts de-
scribed in the previous chapter. Different intra and inter node communications are
shown with the focus on communication between accelerators. Real-world cooling
solutions are shown at the end of this chapter to demonstrate how these solutions
are used in the field. As the application of this thesis is in the HPC segment, the
Green500[28] list is used to determine candidates as examples for energy-efficient
super-computers.

43

3 State of the Art

3.1 Intra Node Communication

The TOP500 list is dominated by heterogeneous systems, that use CPUs as well as
GPGPUs for their processing power. Therefor each node of such a system consists
of a set of CPUs and a set of GPGPUs. As described in the previous chapter,
accelerators use an offloading model with tasks or kernels send to the accelerator,
complete the task and hand over the path of execution back to the processor. This
offloading requires a tremendous amount of communication between the processor
or host memory and the accelerator. This communication involves also the data
the accelerator computes upon. As the trend is towards each cluster node has not
only one but many accelerators the intra node communication between accelerators
become more and more important. Different concepts are now common practice and
the following sections describe them briefly.

3.1.1 NVIDIA GPUDirectTM peer-to-peer

GPUDirectTMP2P was first introduced and developed by NVIDIA, but is now a syn-
onym for similar concepts that take advantage of direct access to the GPUs memory
or direct access to other device’s memory. Figure 3.1 on the next page shows the
basic concept of two GPUs that can communicate with each other over the CPUs
chipset. Prior to GPUDirect P2P, accelerator-to-accelerator communication involves
memcopy operations and cause additional overhead. Each accelerator has first to
copy its data into main memory and the other accelerator has to read the data
from main memory. As the number of accelerators per cluster note increases, this
kind of unnecessary communication can cause contention on the datapath between
the accelerators and main memory. To avoid this memcopy operation, the accel-
erator exposes its complete onboard-memory to the host system instead of small
memory regions for device communication. As all devices share the same physical
host address space, an accelerator can directly access physical addresses of an other
accelerator in the same host system.

The DMA controllers of the accelerators can now be programmed with addresses
from other accelerators memory space and data transfer between the devices is
managed by the devices itself. This reduces the amount of CPU intervention during
the device communication and significantly increases the performance. Beside the
reduced transfer latency and the increased throughput, GPUDirect P2P makes co-

44

3.1 Intra Node Communication

Figure 3.1: Intra-node communication with GPUDirect Peer-to-Peer[20]

Figure 3.2: NVIDIA GPUDirect Peer-to-Peer (P2P) Communication Between GPUs
on the Same PCIe Bus[20]

45

3 State of the Art

operation between GPUs easier. Instead of the offloading model a work flow model
can be used. An accelerator can work with the data locally accessible to it and
make the calculated results available to one or more other accelerators. This can
be achieved either by writing the data directly into the device memory of another
accelerator or by making the memory address known to the other accelerator, which
can then read the data autonomously. Not only other accelerators but also the CPU
can access data in this way. Either the accelerator writes the data directly into the
main memory or the CPU reads the data directly from the device memory.

In context of NAA, the possibility to communicate without CPU intervention
and the direct communication between accelerators with GPUDirect are in sync
with the objectives of this thesis, but has the limitation to a single host system.
Also the dynamic assignment of CPUs to accelerators can’t be satisfied with this
approach. Furthermore the number of accelerators per node is limited by the number
of available PCIe lanes from the CPU or chipset. To use more accelerators than the
CPU or chipset provides, PCIe switches can be used.

3.1.2 Multi-GPU Server

At the time of this writing, 8 GPU systems are commercially available like the Tyan
FT77AB7059[62] or Supermicro 4027GR[58] systems. These dual socket hosts do
not provide enough PCIe lanes to directly connect all 8 GPUs with the processors.
Instead, PCIe switches like the PEX9700[7] can be used to connect more devices
than PCIe lanes present on the CPUs or chipsets.

As shown in Figure 3.3 on the facing page these 8 GPUs are connected via PCIe
switches to the CPUs. This leads to four different communication paths between
the accelerators. One path is between two adjacent GPUs connected to the same
PCIe switch (green arrow). To reach a non-adjacent GPU on the same CPU, the
local switch, the Root Ports of the CPU and the distant switch have to be traversed
(purple arrow). The third path is between GPUs connected to different CPUs and
communication has to traverse the InfiniBand NICs on both CPUs and the two PCIe
switches on each CPU (blue arrow).

As done in the experiment by Ellis [22] the bandwidth and latency of four different
paths is summarized in table 3.1 on the next page.

The communication between adjacent GPUs on the same switch (green arrow) has
the best performance as expected. With only a drop of 0.8 GB/s and an increase

46

3.1 Intra Node Communication

Figure 3.3: 8 GPU System Block Diagram [22]

Path Bandwidth (GB/s) Latency (us)
green 10.6 7.7
purple 9.8 7.9
blue (IB) 3.4/3.7* 9.8*
QPI 4.0 32.1

Table 3.1: Performance measurements for different PCIe communication paths

47

3 State of the Art

in latency of 0.2 µs the path over two switches and the Root Complex performs sec-
ond best (purple arrow). The reason for the decreased performance comes from the
additional switches in the path between the GPUs. Their processing time and the
routing effort between the Root Ports are responsible for the drop in bandwidth and
increase in latency. The table also highlights that a communication across an in-
terconnection network performs better than a direct connection between the CPUs
with Quick Path Interconnect (QPI)[68]. This is due to the fact that even QPI
performs worst in a socket-to-socket PCIe transfer due to buffering limitations in
the Sandy Bridge / Ivy Bridge architecture. As the authors of the experiment did
not publish results for the InfiniBand path, the values in the table are expected re-
sults in combination with a similar experiment taken from Rossetti [56]. The author
measured the communication between two GPUs over InfiniBand in an Ivy Bridge
system. The peak bandwidth of the used InfiniBand FDR HCA is 6.1 GB/s, but
only 3.4 GB/s or 3.7 GB/s with increased GPU clock was achieved. This reduced
performance comes again from the buffer issues of the Ivy Bridge architecture. Nev-
ertheless, the expected latency of 9.8 µs is way less than the 32.1 µs latency of the
QPI path. The value is expected from the InfiniBand host-to-host latency of 1.9 µs
and the latency from the switches and Root Ports from the path between two GPUs
on different PCIe switches.

For our intention to build a NAA the connection path over InfiniBand sounds
promising as it makes no difference if the GPU ”behind” the InfiniBand interconnect
is in the same host or somewhere in the network. This advantage comes at the price
of a difficult programmability. The application programmer has to pay attention
how the application is decomposed and distributed over the GPUs. Depending
on the path the latency and bandwidth difference have a tremendous impact on
how much computation is required to fully hide the transfer overhead. In addition,
remote communication over InfiniBand requires explicit handling of all the network
related overhead like buffer management.

3.1.3 PCIe Switch Trees

To support a greater number of accelerators, PCIe switches can be arranged like a
tree as shown in fig. 3.4 on the facing page. In this example 8 GPUs are connected
to each other with a 3-level binary tree whose root is the Root Complex of the CPU.
This connection scheme has the benefit of avoiding the limitations of CPU peer-to-

48

3.1 Intra Node Communication

Figure 3.4: 8 GPU System in a tree Block Diagram [36]

peer PCIe traffic as explained in the previous section. A work from Micikevicius [36]
deals with the different communication paths between GPUs connected in a tree.
Two GPUs connected to the same PCIe switch have the full PCIe bandwidth and
the lowest possible latency. All other communication paths to more distant GPUs
require the traversal of additional switches which increases the latency. In contrast to
the latency the maximum bandwidth between all GPUs is still the same for a single
simultaneous transfer between GPUs. If multiple transfers happen at the same time,
they all share the same limited bandwidth. As the bandwidth does not increase from
the leave switches towards the root, this effect becomes more significant the further
the GPU are away from each other. Distance in this regard means how many levels
of the tree have to be ascended and descended. To circumvent this limitation the
number of conflicting transfers that share the same switch and the same direction has
the be reduced. One way to avoid this conflict is to use the proposed communication
pattern from Micikevicius [36] which they call the Left-Right Approach. As shown
in the example picture on 49 the communication phase is split into two parts, the
exchange left and exchange right part. All GPUs exchange their data to the right
most neighbor and after that to the left most neighbor. With this split no transfer
uses the same direction across a switch twice and the full bandwidth is achieved for
all communications.

For the NAA the latency and bandwidth between two adjacent GPUs sounds very
interesting and the removal of the PCIe switch in between would be the best possible
starting point for the NAA development. Nevertheless, the inflexible communication

49

3 State of the Art

in two parts (left and right transfers) is a serious restriction for the applications.
The latency between the GPUs depends on their position in the tree and it is hard
to determine how much latency to hide. This restriction is also in contrast to the
goals of a NAA design.

3.2 Inter Node Communication

The first part of this chapter is about communication inside of a cluster node and
the different approaches to connect as many accelerators inside a single host. One
of the presented procedures already used an interconnection network to transfer
data between GPUs. The following sections describe other approaches to support
high bandwidth and low latency communication over a fabric to allow transfers
between GPUs in different hosts. Most of them are based on custom hardware
designs evaluated in FPGA prototypes to circumvent limitation of Commodity Off-
The-Shelf (COTS) solutions. For the sake of completeness also these solutions are
presented to argue differing approaches of academic research.

3.2.1 GPUDirect RDMA IB

Most of the scientific simulations are to large to fit into a single accelerator’s device
memory. Even a multi-gpu node’s combined memory is still not enough for the
demanding applications of the exascale era. As in the past, the cluster nodes have
connected to an interconnection network and work in parallel on smaller chunks of
the problem. Adopting this procedure is very easy for homogeneous clusters with
CPUs only, but it becomes cumbersome for GPU equipped systems in heterogeneous
clusters. Transferring data from one GPU to another GPU in a different node
requires several memcopy operations as fig. 3.5 on the next page shows. The sending
GPU copies data into main memory, the NIC of the used interconnect reads it from
main memory, transfers the data to the remote node’s main memory, the remote
node’s GPU receives the data and stores it in its device memory.

To avoid all this memcopy operations, GPUDirect from section 3.1.1 on page 44
can not only target other GPUs, instead the target can be a RDMA capable NIC like
InfiniBand. Using GPUDirect in conjunction with InfiniBand is called GPUDirect
RDMA. InfiniBand is a high-bandwidth low-latency interconnection network and
40% of all TOPP500[61] cluster systems are using this fabric. Applications create

50

3.2 Inter Node Communication

Figure 3.5: Inter-node communication without GPUDirect [20]

Figure 3.6: Inter-node communication with GPUDirect[20]

51

3 State of the Art

work requests and store them in so-called work queue pairs. They consist of a
submit queue and a corresponding completion queue. CPU sets up the submit
queue entries and the NIC creates the completion queue entries. The application
polls for completion queue entries determining if a request has been completed. GPU
cores can’t create these requests efficiently and as a result the CPU still drives all
communication. The creation and handling of work request by the CPU is negligible
as it avoids four memcopy operations. Instead of storing the data in a buffer in main
memory, the work request can be set up in such a way that it reads the data directly
from GPU device memory. On the receiving side, GPU’s device memory stores all
the received data and avoids additional unnecessary memcopy operations.

The work of Potluri et al. [52] evaluated the use of GPUDirect RDMA and
compared it with the most prominent MPI library used in HPC environments
MVAPICH2 [60]. This library uses the above described approach of buffers in host
memory and memcopy operations to move the data to their final destination in GPU
Memory. The experiments run by Potluri et al. [52] show a significant reduction in
MPI Send / MPI Recv latency by 69% for small messages and an uni-directional
bandwidth increase by a factor of two. Their modification to the existing MVA-
PICH2 library makes use of GPUDirect RDMA and avoids most memcopy opera-
tions. Also these authors stated, that reading from GPU memory requires special
care as the used Sandy Bridge CPU has architectural limitations.

In context of this thesis, the ability to communicate with remote nodes is exactly
what we need, but the still CPU driven communication and the additional software
libraries make this approach less feasible for a NAA.

3.2.2 GPU Virtualization

Most current HPC clusters consist of GPU equipped nodes. Depending on the
workload mix, utilizing all GPUs all the time is hard to achieve. GPU virtualization
can reduce the number of GPUs in the cluster while improving their utilization in
return. This in turn reduces the acquisition costs and the power consumption of
idle GPUs in the cluster. Some nodes in the cluster are GPU Server and provide
their services to non-GPU equipped nodes. Figure 3.7 on the next page shows the
general architecture of this GPU virtualization. A cluster node without a GPU calls
a standard GPU functions and the local node intercepts with a wrapper library this
calls. The library uses the network to transfer the call to GPU functions over to the

52

3.2 Inter Node Communication

Figure 3.7: General architecture of remote GPU virtualization[53]

GPU Server and the GPU driver residing on the server executes the call and sends
the result back to the requesting non-GPU node.

Reaño et al. [53] analyzed the impact of the network on this virtualization and
used the rCUDA framework [21] for the case study. The framework uses the above
described modular architecture. A communication layer on top of a Gigabit Ethernet
or InfiniBand transfer layer communicates with the CUDA runtime of the client and
server nodes. Their tests compared a native CUDA test case with a local GPU in
the node and a test case where the application uses rCUDA to talk to a remote
GPU server. The tests showed that the bandwidth reduction introduced by the
interconnection network and the additional software layers is about 9.4% compared
to the native bandwidth of a local GPU.

The usage model of multiple cluster nodes share a reduced number of GPU servers
breaks up the fix n-to-m ratio between hosts and GPUs and allows for a dynamic
resource allocation. The performance degradation of about 10% is not negligible
but acceptable as the energy consumption is reduced and the utilization increases.
The additional software layers handling all virtualization and communication waste
CPU cycles and are part of the 10% bandwidth loss. The share of software on this
loss would be interesting to know as it could show if this virtualization could be
used for the NAA

3.2.3 Non-Transparent Bridges

Another approach is to use PCIe directly as a network interconnect. This avoids
dedicated NICs and protocol conversions from the PCIe protocol to Ethernet or
Infiniband. As described in [54] PCIe was build as host interface to interconnect
processors and I/O devices. This restricts the use as a network or fabric interconnect
by design. One of this limitations is that all devices of a PCIe hierarchy have to

53

3 State of the Art

NTB Address
Space

Driver Physical
Memory

NTB Address
Space

Driver Physical
Memory

System A System B

Non-
Transparent

Bridge

Figure 3.8: NTB address translation example

use the same clock source for their operations. Another host would bring in another
clock which is asynchronous by nature and the relation between these clocks is not
specified. Due to a second CPU in the hierarchy, each of the two Root Complexes
treads the whole hierarchy as its own and makes a clean enumeration of all devices
impossible. The next problem is the two separate memory domains of the hosts with
no relation to each other. To solve these issues PCIe supports the concept of Non-
Transparent Bridges (NTBs). In contrast to a Transparent Bridge, where the CPU
can see trough the bridge and has access to all devices on the other side of the bridge
a NTB is like an Endpoint and the bridge hides all devices behind it. This bridge
type can connect two hierarchies with each other and eliminates the restrictions
described above. To translate memory requests from one side to the other, a NTB
provides scratch-pad registers, doorbell registers and an address translation service.
The scratch-pad registers can be used to transfer information between both sides.
Doorbell registers are used to trigger an interrupt on the other side to inform host
software about an event. The address translation service uses the BARs of the NTB
to define apertures from one side to the other. A mapping table stores all possible
translations as shown in fig. 3.8 and incoming requests get translated to the memory
domain of the remote side. This enables direct communication between devices on

54

3.2 Inter Node Communication

Figure 3.9: PEACH2 Architecture [27]

both hierarchies.
This approach can connect multiple host with each other, but requires a difficult

mapping of mappings. The address translation table of a NTB defines a block for
every hierarchy/host that is part of the PCIe cluster. A request to an address of
host n targets an address inside block n. All these block addresses point to the NTB
that separate the remote host from the PCIe fabric. The addresses received in the
target NTB are translated to addresses for this domain. More levels of hierarchy
requires a more complex address space division and is not straightforward.

NTB avoids protocol conversion to other interconnect formats and the usage of
work queues like InfiniBand. Memory addresses can be used to directly address any
remote PCIe device if a mapping exists. Nevertheless the lack of network features,
bandwidth limitations, small number of nodes per fabric and the difficult routing
inside the fabric make this a interesting way to interconnect devices, but is not
feasible for the needs of this thesis.

3.2.4 PEACH2

To reduce the impact of protocol conversion from PCIe to InfiniBand the work of
Hanawa et al. [27] developed an interconnect that forwards PCIe packets directly to

55

3 State of the Art

another node. The PCI Express Adaptive Communication Hub Version 2 (PEACH2)
consist of a custom Altera StratixIV Field Programmable Gate Array (FPGA) board
and implements routing and DMA functionality. Figure 3.9 on the previous page
shows an overview of the FPGA design. To connect with other nodes each board
has four PCIe Gen2 x8 links which are labeled North, West, East and South. As all
interfaces use the PCIe protocol the ports either implement an Endpoint or a Root
Port. According to the PCIe specification a Root Port-Endpoint pair is mandatory
to exchange PCIe packets. In the presented implementation all West links are Root
Ports and all East links are Endpoint. The North link is exclusively destined for
CPU, GPU connectivity and implements an Endpoint. The East/West links are
used to build a ring topology. The South link has a particular use and can be either
configured as Endpoint or Root Port to connect two ring topologies with each other
to extend the fabric.

Routing inside the network is done by address mapping of the PCIe requests. The
Most Significant Bits (MSBs) of the address are used to calculate the target’s Node
ID. To simplify the routing implementation on the FPGA the protocol only transfers
PCIe Memory Write Request (MemWr) packets as the routing-by-ID of Completion
with Data (CplD) is not supported with the address mapping routing outlined by
the authors. A so called driver supported proxy write is used to transform Memory
Read Request (MemRd) packets into write transactions. Packets that reach their
destination require a conversion from the global address space valid in the fabric to
the address space of the local host address space.

The benchmark presented in the work was executed on eight Sandy-Bridge nodes
with four NVIDIA R©-Tesla R© K20 and a PEACH2 in each node. A overview of the
node setup is shown in fig. 3.10 on the facing page. The results report a latency of
1.9 µs for CPU-CPU DMA communication and a bandwidth of 3.5 GB/s which is
95% of the theoretical peak performance. In the GPU-GPU DMA communication
benchmark the latency is 2.3 µs and the bandwidth drops down to only 0.8 GB/s.
This is again caused by the buffering issues in the Sandy-Bridge architecture for
peer-to-peer PCIe communication.

The work of Hanawa et al. [27] is very promising in forwarding PCIe packets
between the nodes to avoid protocol conversions from InfiniBand to PCIe and vice
versa. In contrast to DMA mechanics used by other approaches, this load/store
mechanic is interesting for the NAA design. This avoids explicit programming for
the given fabric interconnect used. Instead of explicit programming for MPI or

56

3.2 Inter Node Communication

Figure 3.10: PEACH2 Architecture [27]

InfiniBand the software support by a driver is required to translate read requests
into write requests (proxy writes) and for address translation from global address
space into the local host address space. The ring topology restricts the network
size to small node counts. The distance to other nodes increases linear with the
node count and increases the latency. In case of non-adjacent communication the
bandwidth between two nodes becomes a bottleneck. Like in section 3.1.3 on page 48
transfers share a common connection and each transfer receives a steady decreasing
share of the available bandwidth. To circumvent this limitation, again, a restriction
of communication direction can preserve the full bandwidth to a single transfer. But
in a ring topology this is a severe restriction as only transfers into the same direction
are allowed.

3.2.5 APEnet+

Another project from academic research is the APEnet+ card[4]. It’s again a custom
FPGA board and is part of a larger HPC initiative, the lattice QUantum chromo-
dynamics ON Gpu (QUonG) project to boost the performance of Lattice Quantum
Chromo-Dynamics (LQCD) applications. Instead of four links on the PEACH2
board, the APEnet+ card has six links to build a 3D torus network. In contrast to

57

3 State of the Art

Figure 3.11: APEnet+ card [5]

InfiniBand, which relays on external switches to interconnect nodes, the APEnet+
card has a switch build-in in the FPGA design. Basically, the APEnet+ network is
a network of switches. RDMA is supported with PUT and GET operations for zero-
copy transfer of host-to-host or GPU-to-GPU memory. A micro controller translates
virtual-to-physical addresses and manages the registered buffers for the zero-copy.

The board has a PCIe Gen2 x8 interface to the host main memory and CPU.
Each link is implemented as a single QSFP+ connector with four lanes and has
an unidirectional bandwidth of 34 Gbit/s. To avoid deadlocks in the network, a
dimension-order-routing is implemented in the internal switch logic and credit based
flow control is used in each link. A photo of the APEnet+ board is shown in fig. 3.11.

The performance of the implementation is tested with a benchmark over two
nodes. The receiving node registers a buffer in either host or GPU memory and
sends the buffer virtual address to the sender. The sender transfers its host or GPU
memory buffer to the target. Four combinations are tested: host-to-host memory,
host-to-GPU memory, GPU-to-host memory and GPU-to-GPU memory. Notewor-
thy results of the benchmarks are that a significant increase in latency and drop in
bandwidth can be observed if the transmit buffer on the sending side is located in
GPU memory. A latency comparison shows that a reference measurement of GPU-
to-GPU transfer over an InfinBand card has a three times higher latency as the
corresponding APEnet+ implementation. This is due to the fact that the APEnet+
implementation avoids two memcopy operations between GPU-to-main-memory and

58

3.2 Inter Node Communication

main-memory-to-IB. The authors argue, that the poor read performance from GPU
memory on the transmit side is the result of unoptimized read operations of the
micro controller software. This problem was solved in a subsequent paper [3]. The
rate at which read requests are sent to the GPU was increased and the latency at
which the GPU responds to the requests was reduced.

The 3D torus direct switch-less network is a very interesting approach which can
be built upon. This design reduces the number of required components and in turn
saves energy. The experiments in this work illustrate that avoidance of memcopy
operations is desirable. Another important finding from the work presented is that
poor peer-to-peer performance is not a characteristic of the GPU, but depends on
the CPU used. This can be avoided with PCIe switches put in front of the CPU
Root Complex to optimize the flow between the P2P devices.

3.2.6 GPU Global Address Space (GGAS)

The work of Oden and Froening [47] addresses another problem of accelerators.
As a slave device, accelerators can not source or sink network traffic by its own.
All other work presented so far, from either industry or academia, depend on a
certain degree on the CPU. This can include the data transfer between NIC and
accelerator, create and manage buffers in main memory, managing the network
protocol like writing a descriptor or command to the NIC or the CPU threads to
coordinate the message passing between nodes. RDMA capable NICs like InfiniBand
can hide most of this latency during the computation phase of a GPU kernel, but for
small messages the context switch between GPU and CPU control flow can cause
latency issues. To avoid the CPU involvement completely, the authors propose to
keep the COTS aspect of accelerators and enhance the NIC’s functionality instead.
With assistance of the NIC, message passing can be avoided and each thread of a
GPU can communicate with each other GPU by global addresses and therefore with
load/store operations.

As shown in fig. 3.12 on the next page the user and system view differ from other
concepts so far. Each node is still in charge of its own accelerator and is indepen-
dent from each other, but a global address space now spans over all accelerators
and build the so called GPU Global Address Space (GGAS). Each GPU memory is
mapped with a window into this global address space. Each memory location of a
GPUs inside this window can now be found with a unique global address. From the

59

3 State of the Art

Figure 3.12: System and user view of a GGAS Cluster [47]

programmers perspective, to access a remote GPU memory location, a thread has to
call a translation function and receives a pointer to the remote memory location in
response. The target’s NodeID is used as a parameter for the function and returns a
pointer that can be used as an pointer to an array. The thread can now dereference
the pointer and read or write operations are translated into network transactions
without involvement of the CPU or additional software layers. The array points
to a special address which is assigned to a memory region on the NIC. A Shared
Memory Engine (SME) developed by the authors receives accesses to these global
address pointers, encapsulates the loads or stores in network packets and delivers
this request to the remote physical address space assigned to the pointer.

Figure 3.13 on the facing page shows an example of the interaction between the
SME, physical host address space, GPU device memory and GPU virtual address
space. The incoming network packet’s target memory address is altered to target
the GPU device space, which is memory mapped into the physical address space of
the GPU’s host (yellow array). For transfers from local GPU device memory to a
remote location, the SME is mapped into the GPU virtual address spaces. Read
or writes to this virtual addresses are received by the SME BAR, encapsulates the
received packets and sends them over the network.

60

3.3 Cooling

Figure 3.13: GGAS Mappings and Data Flows [47]

The presented work is the first approach that completely avoid CPU intervention
in the data transfer and is the first time, that an accelerator can source and sink
network traffic by its own. This aspect of the work by Oden and Froening [47] form
a basis for the development of a NAA.

3.3 Cooling

The first part of this chapter discussed various approaches to intra and inter node
communication. Data movement plays a crucial role in HPC systems, but the power
consumption becomes more and more important. One way to improve the power
efficiency is reducing the amount of energy wasted by cooling the infrastructure.
Changing the coolant can significantly reduce the overall power consumption of a
HPC system. Air is still the most used coolant, but locking at the Green500[28]
list with the most power efficient computer systems, a trend towards liquid cooled
systems can be observed. Comparing the Green500 results from June 2015 to June
2018, at least two of the top 3 super computers on this biannual list using liquid
cooling and power-efficient accelerators to reach the best possible energy-efficiency.
The following sections briefly describe some of these systems and describe their

61

3 State of the Art

Figure 3.14: Shoubu System B overview [66]

benefits compared to systems cooled with air or water.

3.3.1 Shoubu System B

For several years now, the Shoubu System is the most energy-efficient supercomput-
ers in the world. The system is deployed at the Advanced Center for Computing
and Communication, RIKEN (Japan) and is now in its second expansion stage.
The first system reached about 6.6 GFlops/W whereas the latest system reaches
17.6 GFlops/W. Both systems use customized PCB designs, custom low-power
many-core accelerators and immersion cooling to increase the energy-efficiency. As
shown in fig. 3.14 different level of modularity is used. Compute modules are at-
tached to a carrier board and multiple of these boards build a brick. These bricks
are connected with custom designed Power supply units (PSUs) and build into im-
mersion tank. Multiple of these tanks are interconnected and form the final Shoubu
System.

The immersion cooling uses a 1-phase approach and a forced circulation by pumps.
The heated liquid is cooled down on heat exchangers which are settled underneath
the tanks.[64] All tanks are sealed to reduce leakage, but the boiling point of the
used liquid is high enough with nearly no vaporization.

62

3.3 Cooling

Figure 3.15: TSUBAME-KFC submerged in oil tank [40]

This system is an example for high energy and space efficiency. A similar system
Gyoukou [64] with comparable structure has a ratio of 1 PFlop/m3 which is unri-
valed with current systems. As a comparison the Summit super computer has a
0.35 PFlop/m3 ratio between compute power and required volume. Summit has a
LINPACK[19] performance of 143.5 PFlop/s as of the November 2018 TOP500 list.
The system comprises of 256 racks [48] with each rack has a volume of 1.6 m3. This
results in 143.5 PFlop/s

1.6 m3 = 0.35 PFlop/m3 and is only a third of the Shoubu System B.

3.3.2 TSUBAME-KFC

This system had its first appearance at the June 2013 Green500 list and was number
1 on this and the following list from November 2013. Even though a performance
of 4.5 GFlops/W is only one quarter of the number one from the November 2018
list, the used coolant makes this system definitely worth a closer look. Compared
to the other systems in this section, this system uses mineral oil as coolant. Mineral
oil has a high resistance to avoid shorts like the other engineered fluids, but it
has a higher viscosity than the engineered fluids. This makes natural convection
unsuitable, due to the risk of local overheating, and strong pumps are required for
a forced circulation. In contrast to the engineered fluids mineral oil is flammable,
but has a very high specific heat. Some mineral oils have such a low flash-point,
that the operator of such a system is forced to take special care for fire prevention.
This leads to either increased operating costs, due to specially trained employees or

63

3 State of the Art

Figure 3.16: ALLIED CONTROL Cooling Concept[16]

constructional fire protection, or national regulations prohibit the commissioning of
such a system. Also maintenance is more difficult. All the oil has to be removed
before components can be exchanged.

3.3.3 DataTankTM

Another example for a 2-phase immersion cooled system is the DataTankTM from
ALLIED CONTROL[2]. As shown in fig. 3.16 an example configuration could be
a 3U case with commodity and custom hardware. The commodity hardware com-
prises of standard Intel R© mainboards with Intel R© Xeon PhiTMs. To save precious
space, a custom PCIe backplane and PDU backplane are used. All components are
immersed in NovecTM 649 in a sealed environment. No pumps are required to force
a circulation of fluid like the TSUBAME-KFC system. All heat sinks and moving
parts are removed to further optimize the space saving. Cooling coils on top of
the containment condense vapor back into its liquid state. This module could be
a building block for a larger installation like the DataTankTM with up to 1.4 MW
with 6 240 kW flat racks.

64

4

Ch
ap

te
r

Network Attached
Accelerators

4.1 State of the Art Analysis . 66
4.2 Remote PCIe bus access . 69
4.3 Transparent Memory Mapping . 74
4.4 Interrupt remapping . 76
4.5 Network feature access . 78

The previous chapters laid the groundwork with basic concepts and the current
state of the art. Pros and cons of different approaches in communication between
accelerators and cooling solutions were briefly described. This chapter starts with a
more detailed analysis of the current state of the art and derives a list of requirements
the NAA has to fulfill. The rest of this chapter covers the different individual
functions to implement and the last sections describe how this design was applied
to the Intel R© Xeon PhiTM accelerator.

65

4 Network Attached Accelerators

4.1 State of the Art Analysis

All work presented in the previous chapter have their pros and cons. This section
will pick up all ideas that are beneficial to fulfill the goals of this thesis as described
in section 1.3 on page 6.

4.1.1 Accelerator Node Design

To create an accelerator node, a direct connection between the accelerator and the
NIC is necessary. The most common interface to connect these devices with a
CPU is PCI. As presented in section 3.1.2 on page 46 and section 3.1.3 on page 48
PCIe Endpoint devices can communicate with each other via a PCIe switch or
the Root Complex of the CPU. The proposed accelerator node could consist of
such a PCIe switch to allow communication between the NIC and the accelerator.
Nevertheless, this still requires a CPU to configure the PCIe hierarchy and map the
memory regions between the two devices. The accelerator node would not differ
from an ordinary host system. To circumvent this problem, one of the devices has
to incorporate the Root Port functionality of the CPU. As the accelerators for high
performance computing, nor the Ethernet or InfiniBand NIC support this feature,
the EXTOLL NIC has to be used for its build-in Root Port support. With this
feature, a node can be build that has only an EXTOLL NIC in Root Port mode and
any accelerator that uses PCIe as its host interface.

4.1.2 CPU-less Communication

As we saw in the previous chapter, accelerators and NICs are able to communi-
cate directly with each other as long as they expose their device memory to the
host physical address space. Accelerators can exchange their results with other ac-
celerators by store operations to the other accelerator’s memory addresses. If the
accelerator does not reside on the same host, the NIC is responsible to transfer the
data to the remote host. In the best case, the NIC is able to read the data directly
from the accelerator’s device memory (see section 3.1.1 on page 44) and write it to
the remote accelerator’s device memory. The NIC transfers the data without CPU
assistance, but the whole process of setting up the communication is driven by the
CPU. This involves reservation of pinned main memory regions for buffers, creating
and writing the descriptors to the NIC and triggering the transfer. The only way

66

4.1 State of the Art Analysis

to avoid the CPU in the communication process is the work presented by Oden and
Froening [47] with its GGAS approach. Fortunately, as no other NIC provides the
Root Port feature, we already use the EXTOLL NIC and can take advantage of the
GGAS. With their approach, all network communication is hidden within the NIC
and no CPU is required. Application programmers can use memory addresses to
reach other accelerators and are no longer concerned about explicit programming
the communication.

4.1.3 Direct Network Access

Depending on the accelerator, it may be inefficient [46] or even impossible to start
network communication by their own. GPUs for example have an execution model
that can not handle all the branching and polling that is necessary to drive a com-
munication efficiently. Most of the work presented so far solve this problem by
returning the execution from the GPU context back to the CPU to handle the com-
munication. To ensure, that also these types of accelerators can source and sink
network traffic without a CPU present on the accelerator node, the GGAS concept
from Oden and Froening [47] can be used. As already stated, the NIC encapsulates
load and store operations from the accelerator into network packets and sends them
over the network. In this way, the accelerator can initiate network communication
by its own without explicit programming or handing over the execution to the CPU
context. The Intel R© Xeon PhiTMis a very important exception, because the KNC
is able to handle the complex network communication efficiently due to its core ar-
chitecture. Furthermore, a standard operating system can be run on the KNC and
existing driver infrastructures can still be used. For the above two reasons alone, it
is no wonder that the work is mainly concerned with the KNC and tries to exploit
this feature.

4.1.4 Cooling

The decreased number of components on the accelerator node reduces the wasted en-
ergy by redundant and unnecessary components. This also enables a more compact
construction and more accelerators fit in the same space. However, this increases
the effort to cool all the components. Air cooling is not sufficient and the large
heat sinks waste space and depending on the used material are cost expensive. The
Shoubu System B and the DataTankTMshow an unparalleled dense packing and cool-

67

4 Network Attached Accelerators

ing efficiency that is impossible to achieve with air cooling. However, the mineral oil
cooled system Shoubu System B has a few disadvantages. Maintenance is difficult
due to oil residues and the medium must be pumped. The DataTankTMdoes not
have the problems of maintenance, but still requires a circulation pump. In order to
not only reuse the existing concepts, but also to extend them, an attempt is made
to use 2-phase cooling.

4.1.5 GPU Cluster Interconnect

The accelerators are very sensitive to workload imbalances and the communication
latency and bandwidth are a not negligible part of it. To avoid this imbalance, the
presented topologies in section 3.1.3 on page 48 or section 3.1.2 on page 46 have a
very restricted amount of communication paths. Most of the time, the communica-
tion is between adjacent accelerators to avoid over utilizing the available bandwidth,
or the transfers are limited to a single direction. In addition, the topology is a tree
and the diameter increases significantly with the depth of the tree. To circumvent
this, the EXTOLL interconnect offers a sufficient radix to build a 3D Torus, which
is known to have a small diameter in the most instances. The network bandwidth
exceeds the given host interface bandwidth and allows multiple transfers in the same
direction without over utilizing the network link. Compared to other interconnection
technologies like InfiniBand or Ethernet, the topology is not as flexible as EXTOLL.
Most of the time the topology is based on a fat tree which result in large additional
latencies to traverse several intermediate switches. This and all the other features
described so far make the EXTOLL interconnect the only choice left to fulfill the
requirements to minimize latency and balance bandwidth.

4.1.6 Summery of Requirements

From the problem statement and the analysis of the state of the art above, one can
derive a list of requirements and challenges for the design of a NAA:

• PCI Root Port functionality on the remote side

• Enumerate PCIe devices without CPU present on the remote side

• Access to the PCIe ConfigSpace of the accelerator

• Access between different memory domains

68

4.2 Remote PCIe bus access

Figure 4.1: PCIe enumeration

• Software transparent mapping of memory

• Direct access to network functions for the accelerator

• Interrupt delivery to the host from the remote side

• flexible configuration of task mapping

• Physical connection between NIC and accelerator

• Power and side-band signals supply for NIC and accelerator

4.2 Remote PCIe bus access

As specified in the design requirements of the NAA, no CPU or BIOS resides on the
NAA to handle the host interface initialization. This CPU less remote side has the
benefit of a simple structure and reduced number of power consuming components.
Figure 4.1 (a) shows a simplified PCIe hierarchy with a directly connected device
to the Root Port of a Root Complex. In this situation, the host platform BIOS or
CPU enumerates the PCIe hierarchy during power up.

Enumeration of a PCIe device in the NAA use case involves additional tasks,
because the NAA has its own independent PCIe hierarchy with its own Root Port.
Furthermore, as shown in fig. 4.1 (b), the host platform has no direct access to the
remote PCIe devices and during power up of the host system the network connection

69

4 Network Attached Accelerators

between the host system and the NAA is not established. The first step is to discover
the EXTOLL network as described in section 2.4.4 on page 33 with the EMP tool
to assign the host NIC and the remote NIC on the NAA a EXTOLL Network ID.
Even with an established network connection there is no direct way to send PCIe
config space packets as described in fig. 2.11 on page 26 from the host system to the
remote side. A workaround for this situation is the PCIe Backdoor, which sends
arbitrary PCIe packets.

4.2.1 Remote PCIe packet generation

One of the features of the EXTOLL NIC is the ability to be configured from any node
of the EXTOLL Network. Every EXTOLL node has read and write access to the
NIC’s register file, which holds all configuration settings of the NIC as well as status
information. As described in section section 2.4.1 on page 29, the PCIe backdoor
was initially designed to emulate PCIe packets in software which have no valid
counterpart in the internal EXTOLL protocol. PCIe Configuration Read Request
(CfgRd) and Configuration Write Request (CfgWr) packets are not supported by
the EXTOLL base protocol and have to be emulated by software. The Backdoor has
a buffer to store PCIe packets to send arbitrary PCIe packets towards the outgoing
PCIe stream. For the purpose of remote PCIe devices enumeration, PCIe config
space packets as described in 2.11 are written by the configuration software to this
TX buffer. Figure 4.2 shows this process in detail.

The configuration software on the host system wants to store a configuration
packet to the remote Register File which contains the Backdoor TX buffer. Software
generates multiple RMA immediate put descriptor with 64 bit payload and sends
it towards the host’s EXTOLL NIC. The descriptors are received by the RMA
unit, which translates them into RRA write operations with 64bit payload as data.
The RRA Requests are sent over the EXTOLL Network to the NAA target node
and the receiving RMA Unit writes the configuration packet into the TX buffer of
the backdoor. After the complete configspace packet is sent over the network to
the target NAA node, a write to the command register at the backdoor starts the
transfer.

As all config space packets are non-posted packets and each read or write request
is followed by a completion packet. To make the read result or the return value of
the write request accessible to configuration software, the backdoor RX module is

70

4.2 Remote PCIe bus access

H
TA

X

RMA

Register File

N
et

w
o

rk

C
ro

ss
b

ar

N
P

N
P

LP0

LP2

C
P

U

PCIe Bridge

Backdoor bufferForward buffer

BackdoorForward Logic

Host Galibier Endpoint (Node 1)

PCIe
Link

H
TA

X

RMA

N
et

w
o

rk

C
ro

ss
b

ar

N
P

N
P

LP0

LP2

Remote Galibier Endpoint (Node 2)

PCIe
Link

H
TA

X

RMA

N
et

w
o

rk

C
ro

ss
b

ar

N
P

N
P

LP0

LP2

Remote Aspin Rootport (Node 0)

PCIe
Link

P
C

Ie
 B

ac
kp

la
n

e

Register File

PCIe Bridge

Backdoor bufferForward buffer

BackdoorForward Logic

Register File

PCIe Bridge

Backdoor bufferForward buffer

BackdoorForward Logic

2

1

3

4

Figure 4.2: Remote RegisterFile write access

configured to extract all completion packets with source tag 0 from the incoming
PCIe stream. These extracted packets can be read by software from the host and is
shown in figure 4.3.

The forwarding buffer of the backdoor has a status register which indicates if a
packet is available in the RX buffer. Furthermore this register indicates how many
64bit read operations are necessary to read the complete extracted packet. First,
the configuration software on the host sends a RMA get descriptor to the host’s
EXTOLL NIC. The received descriptor is translated by the RMA unit into a RRA
read operation requesting 64 bit. The RRA Request is send over the EXTOLL
network to the NAA target node and the receiving RMA unit reads the value from
the Forwarding Buffer status register. The read value is send back to the RMA unit
of the host and written to main memory. The configuration software starts now as
many read requests as are received in the return value from the RX buffer following
the same schema as described before.

With this procedure arbitrary configuration read and write packets can be send
over to the remote PCIe bus and also the return value is accessible to configuration
software. This allows us to tunnel PCIe packets through the network to access the
independent PCIe bus of the NAA.

71

4 Network Attached Accelerators

H
TA

X

RMA

Register File

N
et

w
o

rk

C
ro

ss
b

ar

N
P

N
P

LP0

LP2

C
P

U

PCIe Bridge

Backdoor bufferForward buffer

BackdoorForward Logic

Host Galibier Endpoint (Node 1)

PCIe
Link

H
TA

X

RMA

N
et

w
o

rk

C
ro

ss
b

ar

N
P

N
P

LP0

LP2

Remote Galibier Endpoint (Node 2)

PCIe
Link

H
TA

X

RMA

N
et

w
o

rk

C
ro

ss
b

ar

N
P

N
P

LP0

LP2

Remote Aspin Rootport (Node 0)

PCIe
Link

P
C

Ie
 B

ac
kp

la
n

e

Register File

PCIe Bridge

Backdoor bufferForward buffer

BackdoorForward Logic

Register File

PCIe Bridge

Backdoor bufferForward buffer

BackdoorForward Logic

2

1

3

4

5 6

7

8

Figure 4.3: Remote RegisterFile read access

4.2.2 Remote PCIe enumeration process

As shown in fig. 4.1 on page 69 the remote PCIe bus consists of a Root Port (EX-
TOLL NIC) and a PCIe Endpoint device (i.e. Intel R© Xeon PhiTM). But before the
PCIe configspace packets can be sent to the accelerator the Root Port must first be
configured, which involves several steps.

First of all the Root Port’ bus ID has to be assigned. This is done by writing a
CfgWr packet of type 0 to the Root Port, which captures the Completer ID of the
request as its new bus id. As the name suggests the Root Port is the root of the PCIe
hierarchy and has the bus id of 0. The next step is to configure the routing-by-id
capability of the Root Port. Since the accelerator is directly connected to the Root
Port, only one bus exists on the downstream port. The Root Port is on bus 0 as
its primary bus, which is also the upstream port. Because of the depth-first-search
discovery of the PCIe hierarchy, each switch assigns a secondary bus number that
is by one larger than its primary bus number.

The subordinate bus number is the highest bus number that is present downstream
of the switch. The subordinate and secondary bus are the same, as only one device
resides on the bus of the NAA’s Root Port, the value of 1 is assigned to both of
them. After this step, the routing-by-id is configured and all packets destined for

72

4.2 Remote PCIe bus access

Root Port

Endpoint

Upstream

Bus??

Bus:Dev.Func = ??:??:?
Subordinate = ??
Secondary = ??

Bus:Dev.Func = ??:??:?

Root Port

Endpoint

Upstream

Bus??

Bus:Dev.Func = 01:00:0
Subordinate = 1
Secondary = 1

Bus:Dev.Func = ??:??:?

Root Port

Endpoint

Upstream

Bus:Dev.Func = 01:00:0
Subordinate = 1
Secondary = 1

Bus:Dev.Func = 01:00:0

Bus0

Bus??

Bus0

Bus1

Cfg0 Cfg1

Cfg0

Figure 4.4: Different steps during PCIe enumeration

the busses 0 or 1 (CfgRd/CfgWr requests, Completions) can now be delivered, while
all other bus IDs are rejected.

As the accelerator is a memory mapped device it is important to configure also the
memory regions that are behind the Root Port. These regions are divided into two
types, prefetchable and non-prefetchable memory. The prefetchable memory defines
the region that does not change during reads and can be cached or prefetched by
the host. The prefetchable memory region is configured in the Root Port, described
by a base and a limit register. The non-prefetchable memory region is for changing
content like status registers that can change between two consecutive reads and are
also defined with a base and a limit register. The non-prefetchable and prefetchable
registers are assigned with values based on the requirements of the accelerator. For
the used Intel R© Xeon PhiTMa window of 1 MB non-prefetchable memory must be
configured. The register set for control and status information of the Intel R© Xeon
PhiTMis 128 KB, but the smallest window that the PCIe register non-prefetchable
memory can display is 1 MB. According to the size of the KNC on board memory,
which can vary between 8 and 16 GB, a large window must be entered in the
prefetchable memory register.

To enable the memory forwarding engine of the Root Port the control register is
written and busmaster, memory routing and I/O routing are enabled. All memory
packets that target addresses inside the memory windows of prefetchable or non
prefetchable memory are forwarded to the downstream device while packets with
addresses outside of this region are rejected. With these steps, the NAA’s Root
Port is ready and the accelerator can be enumerated.

Like for the Root Port, the first step is to assign a bus id to the accelerator.
This time a CfgWr packet of type 1 is send from the configuration software at the
host to the EXTOLL NIC on the NAA side. Instead of addressing the Root Port’s
configuration space, a type 1 CfgWr packet is forwarded by the Root Port towards

73

4 Network Attached Accelerators

the destination bus id and the CfgWr type changes to 0, if the targeted Bus ID
is within the Secondary and Subordinate ID range. The CfgWr is then received
by the accelerator and like the Root Port the completer id is captured until a new
completer id is received.

4.2.3 Memory size determination

To determine the memory size a device requests for its operation, a set of registers at
the PCIe configuration space is used. These BARs of the accelerator device consists
of up to two 32bit registers as described in section 2.3.3 on page 23. The device
indicates the memory size by the number of hard coded zeros of the BAR. The first
task of the configuration software is to count the number of zeros that remain in
the BAR after a write of all ones. This encodes the size of the memory window
with memory size = 2(number of 0′s). The configuration software uses this value and
assigns a memory address for the device by writing the non-hard coded registers.

The next task is to map addresses from the host physical address space to the
address space of the NAA.

4.3 Transparent Memory Mapping

Up to this point we have built a system consisting of a host node with a specialized
NIC and a fully configured remote PCIe hierarchy. In this all devices (root port
and KNC as Endpoint) have received a unique bus ID, the physical address routing
is configured and the KNC on-board memory has been assigned physical addresses
by the BAR registers. Now these two physical address spaces, the host and the
accelerator address space, must be connected with each other.

One of the main goals of the NAA is a transparent memory mapping between
the host and the NAA. Transparent in this context means, that the host system
accelerator driver handles all device interactions as if the device were physically
present on the host machine. Communication with PCIe devices is done by mapping
one or more memory regions from the device into the host’s physical address space
as described in section 2.2 on page 18. In the case of accelerators these regions are
on-board device memory, control and status register. All memory operations on
these addresses are translated into I/O operation on the PCIe host interface. The
size of the devices memory mapped I/O is defined by the BAR registers as described

74

4.3 Transparent Memory Mapping

in section 4.2.3 on the facing page.
One way to solve this problem to connect these different address spaces is an

additional software layer that intercepts all I/O operations to the device’s memory
like shown in section 3.2.2 on page 52. Each operation calls a software handler that
sends the memory transaction over the network, translates between the address
space of the host system and the NAA and manages the transactions on the device’s
memory. This involves additional overhead and requires modifications of the existing
device drivers.

A more elegant and hardware supported approach is to use the Shared Memory
Functional Unit (SMFU) of the EXTOLL NIC.

The enumeration already assigned NAA physical address to the BAR registers
of the KNC. As described in section 2.4.2 the SMFU can handle distributed shared
memory. The KNC’s device memory is now shared with the host system. The SMFU
defines the mapping of a shared memory region with intervals. Each interval has a
lower and upper bound, which defines the size and the location of the shared memory
mapping. A control register enables the mapping and assigns a target node to the
interval, which is the EXTOLL NodeID of the NAA’s NIC. Each PCIe MemRd or
MemWr packet that is sent to an address inside the host node’s interval is translated
into a network packet and send over to the remote NAA. On the receiving side, the
network packet is unwrapped and the MemRd or MemWr packet is send towards the
accelerator. As host address space and NAA address space are independent of each
other the address used on the host side can result in an invalid and not assigned
address on the NAA address space.

To avoid this, the address information from the host packet is removed and re-
placed with the offset within the interval. This intermediate step enables the address
conversion within the SMFU to be carried out independently of the actual placement
of the SMFU MMIO in the host systems address space. It is only relevant at which
offset within the SMFU a read or write operation was initiated, but not its exact
physical address which significantly simplifies the implementation in hardware. In-
stead of sending a full physical address, only the offset and additionally the interval
ID is transmitted from the host system to the remote SMFU.

On the remote side for each interval ID exists an register with a base address that
is added to the host packet offset. Under normal circumstances this register would
contain the address at which the shared memory window in the remote hosts main
memory starts. In the NAA case this base address registers are configured to be the

75

4 Network Attached Accelerators

0xFFFFE0
0x1FF0DD

0x1234000
0xAAAFF0

NodeID[3]Interval[1]

00h

E0h

F0h

FFh

00h

0Fh

04h

Host

Node 3

Node 0

index0
index1
index2
index3

index0
index1
index2
index3

0xFD0110A
0xABAB555
0x34FFCAB
0xA000FFE0

00h

FFFFE0h

FFFFF0h

CPU SMFU SMFU Accelerator

MemWr
Address = 0xE4h

MemWr
Offset = 0x04h

Interval = 1
NodeID = 3

Index[1] = 0xFFFFE0h
+

Offset = 04h
Address = 0xFFFFE4h

MemWr
Address = 0xFFFFE4h

Figure 4.5: Memory Mapping for Host to Accelerator traffic

same address as the entries in the BAR registers of the KNC. This way every read
or write access that occurs within the host SMFU intervals is automatically mapped
to a physical address on the NAA side and points directly to the KNC’s on-board
memory without any further action. This combination of host interval offset and
NAA base register generates a mapping between the host physical addresses and the
NAA physical addresses which is transparent for the host’s device driver.

For the opposite direction, from accelerator to the host, the mapping works sim-
ilar. But instead of defining an interval for specific regions of the host system’s
physical address space, all memory packets coming from the KNC and target the
host memory are not translated and passed unaltered. This is done with a spe-
cial configuration of the SMFU that lets the NAA addresses unchanged during the
transfer from the NAA’s NIC to the host. This generally allows any address in the
host system to be addressed by the NAA system. However, certain areas are used
for special purposes to give the KNC access to the remote NIC functional units, but
more about this in section 4.5 on page 78.

4.4 Interrupt remapping

Another capability of PCIe devices that is not directly accessible to the host system’s
CPU are interrupts. PCIe signals interrupts not with asserting or de-asserting an

76

4.4 Interrupt remapping

EXTOLL NICAccelerator

SMFU

PCIe Configspace

MSI Config Register
Interrupt Address =

FD000000h

MemWr
Addr =

FD000000h

Network Attached Accelerator

EXTOLL NIC

PCIe Bridge SMFUAPIC

CPU

MemWr
Addr =

FD000000h

MemWr
Addr =

FFE00000h

Host

Figure 4.6: Interrupt mapping

interrupt line out-of-band like its predecessors PCI and PCI-X. Instead interrupts
are delivered as in-band PCIe packets. A posted memory write packet send to a
special address range (FEExxxxx)h is interpreted as a MSI. On the host system, an
APIC is present behind this memory range, but not on the NAA side.

The workaround here is to reuse the already registered interrupt of the host’s EX-
TOLL NIC. As all MSIs are memory write transactions, the same memory mapping
approach from remote to host side can be used. EXTOLLs internal protocol is based
on the HyperTransport host interface and therefore the address range that is recog-
nized as an interrupt inside the EXTOLL core is the FDXXXXXXh address range.
The configuration software writes this address into the MSI Config register inside
the accelerators configspace. When the KNC triggers an interrupt, this address is
used for the MemWr packet towards the host. The SMFU on the NAA side transfers
the packet without modification to the host’s EXTOLL NIC. The interrupt packet
from the accelerator is decoded in the PCIe Bridge IP Core of the host’s NIC as an
interrupt and a MSI is sent to the host’s local APIC with the address taken from the
EXTOLL NICs MSI config register. The interrupt handler registered for the NIC
is then called and takes care of informing the accelerators interrupt handler that an
interrupt was requested.

77

4 Network Attached Accelerators

4.5 Network feature access
Due to the operating system running on the KNC, it is possible to load the NIC
device drivers. Unfortunately, as the KNC is a PCIe Endpoint, the operating sys-
tem has no PCIe subsystem compiled into the kernel. This subsystem is added
by a custom kernel module , which implements a PCIe subsystem and provides all
necessary kernel functions that are needed to issue PCIe communication from the
KNC towards the NIC.

PCIe packets sent from the KNC and arriving at the Root Port of the NIC are
forwarded to the HTAX NOC. The HTAX serves as an interval router and distributes
incoming packets from the host to one of the functional units like the SMFU. The
HTAX on the NAA is configured in a way that it forwards all memory transactions
either to the host system via the network or to the functional units of the remote
NIC.

In order to be able to address a large area of host memory without shadowing to
much of it by the functional units of the NAA, the windows of the functional units
are mapped into a very high area of the physical memory of the NAA.

This relatively simple trick makes it possible that an accelerator can use use highly
specialized units for network communications without external CPU intervention.

to map to the functional units of the RMA and VELO.

78

5

Ch
ap

te
r

Prototype
implementations

5.1 Evaluation Platform . 80
5.2 Booster Node Card . 85
5.3 DEEP Booster . 86
5.4 GreenICE . 88

Different prototype implementations served as proof of concept of the NAA design.
Most of them were funded by the European Research project DEEP, which was part
of the seventh European framework program. DEEP stands for ”Dynamical Exascale
Entry Platform” and the research focus was the development of new architectures
to reach exascale. This chapter describes the different prototypes from the early
evaluation board implementation over to the DEEP production system. First, the
implementation of the NAA concept on an Altera StratixV FPGA is shown in detail
and the additional components required are explained. Then different scalings are
presented, a 2 node system, an 8 node system and finally the two production systems
from DEEP, a 384 node water cooled and a 32 node liquid cooled system.

79

5 Prototype implementations

5.1 Evaluation Platform

After establishing the theoretical background, the prototype development began in
2013 with several FPGA implementations. During this time, the EXTOLL NIC was
available as PCIe add-in cards, called Galibier, and is based on a custom PCB with
Xilinx FPGAs. On the NAA node side, an Altera StratixV evaluation board serves
as the target for the EXTOLL NIC in Root Port configuration. The accelerator was
an Intel R© Xeon PhiTM engineering sample with a reduced number of cores compared
to the later available production devices. During the prototype development, several
challenges arose. One was the porting of the EXTOLL firmware from the well known
Xilinx FPGAs to the new Altera FPGA technology. It was not clear, if the existing
Xilinx implementation can be mapped to components found in Altera FPGAs or
a major redesign of the EXTOLL firmware was necessary. Another challenge was
the new Root Port functionality, which wasn’t used in a real world application so
far. All prior experience with the Root Port and Backdoor submodule was based on
functional simulations. The last challenge was the direct connection of the EXTOLL
Root Port NIC with the accelerator and provide all the electrical and mechanical
connections.

The following sections cover how these challenges were solved and at the end of
this section the whole evaluation platform is described.

5.1.1 Backplane

The first challenge was to provide a direct physical connection between the EXTOLL
Root Port NIC and the Intel R© Xeon PhiTM accelerator. Apart from the PCIe
connectivity, also power, reset and clocking has to be provided. To solve these
problems and to reduce the number of active and powered components to a minimum
a custom hardware design was required. Commercially available products were to
expensive and didn’t fit the needs. As a solution, the PCIe Backplane was designed
as part of a student work. The initial design from 2012 is shown in fig. 5.1 on the
next page. This PCIe Backplane has two PCIe x16 slots to support PCIe add-in
cards. The PCIe lanes are crossed and all TX lanes of one slot are connected to
the corresponding RX lanes of the other slot and vice versa. This builds a direct
connection without any additional components like switches or bridges.

On the top of the backplane is a ATX 20+4 pin connector to power the board from

80

5.1 Evaluation Platform

Figure 5.1: PCIe Backplane

a common PC power supply. This power supply feed the 12V and 3.3V rails of the
PCIe connectors, which are sufficient to power the EXTOLL Root Port NIC. The
KNC requires additional power supply with PCIe power cables as the accelerator
draws up to 300 W at full load. A switch on the right side enables the power supply
by pulling the sense input to a low state. This powers up the 12V and 3.3V supply
rails.

In this first version of the backplane the PCIe reset signal is triggered by the red
push button next to the ATX connector. If the button is pushed, the active low
reset signal is pulled down to ground and resets the EXTOLL Root Port NIC PCIe
host interface and resets the accelerator.

PCIe devices operate with a common 100 MHz reference clock connected to both
devices. On a host system, clock generator chips on the mainboard provide this
clock source. This reference clock is connected to the CPU or chipset and to the
PCIe connector on the mainboard. The PCIe device doesn’t require its own clock
source, instead, it takes the clock from the PCIe connector.

The EXTOLL Root Port NIC and the KNC require their own reference clock
source as no clock is transmit over the network. Therefore the backplane has its
own clock generator chip and provides the 100 MHz to both devices after the 3.3V
power rails is stable.

As this board was the first version of a PCIe backplane, the power up and reset
procedure is not automated and is done manually. To be conform with the PCIe
specification, these requirements have to be met:

1. The 12V and 3.3V rails are powered down.

81

5 Prototype implementations

Figure 5.2: StratixV Evaluation Board

2. The active low reset signal is pulled down to ground level.

3. The 12V and 3.3V rails are powered on.

4. The 100 MHz reference clock starts running.

5. The reset remains low for at least 100ms after 12V, 3.3V and the reference
clock are stable.

As a consequence of this requirements, to proper reset the devices, the reset button
has to remain pressed down and the toggle switch is put into the ON position to
drive the 12V and 3.3V rails. Then the reset button is released shortly after that
and both devices start their operation.

This first generation of the backplane provided sufficient housing for the acceler-
ator and the StratixV evaluation board and solves the first challenge of providing
the necessary electrical and mechanical connections. The next step was to port the
existing Xilinx EXTOLL design to the new Altera FPGA.

82

5.1 Evaluation Platform

Figure 5.3: QSFP-to-HDI6 Adapter

5.1.2 StratixV Eval Board

The first prove of concepts took place on an Altera StratixV evaluation board, be-
cause the funding research project DEEP decided to use Altera FPGAs for their
better pricing. The evaluation board is a PCIe half-length full-height add-in card
(see fig. 5.2 on the facing page) and provides a widely used Quad Small Form Factor
Pluggable (QSFP) connector for Ethernet or other common interconnection proto-
cols. This connector is used to interface with other EXTOLL NICs. As all EXTOLL
NICs use Samtec HDI6 connectors an adapter board is required to bridge between
the QSFP and HDI6 connector standard. This adapter is shown in fig. 5.3. Due
to the limitations of the QSFP connector, the EXTOLL link between the EXTOLL
NIC in the host and the EXTOLL Root Port NIC on the remote side only supports
4 lanes. Each lane has a transfer rate of 4 Gbit s−1 to be compatible with the Gali-
bier card. The Altera transceivers and the QSFP support higher transfer rates, but
the achievable internal logic frequency of the Xilinx and the Altera FPGA are the
limiting factor.

All functional units of the EXTOLL core have a datapath width of 128 bit. The
highest internal frequency that met timing on both FPGAs is 100 MHz. The match-
ing transfer rate can be calculated as follows:

parallel datawidth × internal frequency

lanes
= serial datarate per lane (5.1)

128 bit × 100 MHz
4 = 3200 Mbit s−1 = 3.2 Gbit s−1 (5.2)

The 3.2 Gbit s−1 is the data rate without the 8b10b line encoding of the EXTOLL
link. After adding the encoding overhead to the serial data rate the raw data rate
of the EXTOLL link is 4 Gbit s−1.

83

5 Prototype implementations

Figure 5.4: Test System with BNC and BIC

The EXTOLL RTL design was synthesized and implemented using Quartus 12.1.
The design used for the StratixV evaluation board is a modified version of the
module overview shown in fig. 2.13 on page 27. Instead of seven EXTOLL links,
only on link is present, which reduces the number of Link Ports and Phy modules to
one. Also the Network Crossbar has only five ports instead of 11 in the Tourmalet
ASIC design. Other minor design modifications were necessary to fit the design in
the relatively small FPGA and to ease the timing closure.

With the EXTOLL Root Port NIC, the Intel R© Xeon PhiTM and the backplane,
all components are now available to build up a test system to develop the necessary
configuration software. The required steps to bring up the test system are the
configuration of the EXTOLL Root Port NIC, configure the KNC and set up the
memory mapping to boot the KNC.

5.1.3 Test System

To be as close as possible to the final system, the prototype has to consist of three
major components. The Cluster Node (CN) are server with high single-thread per-
formance for tasks that can’t be multi-threaded. Application parts that can be
parallelized run on the Booster Node (BN). The CN have their own independent
interconnection network InfiniBand. All BN use the EXTOLL network. To bridge
between the different interconnection protocols the Booster Interface (BI) has an In-
finiBand NIC and an EXTOLL NIC installed. Software running on the BI receives

84

5.2 Booster Node Card

requests from the one network and maps it to transactions on the other intercon-
nection network. These nodes serve also as configuration nodes for the NAA.

As the communication between the different interconnects was developed by other
project partners, the BI only has an EXTOLL NIC attached to it. The EXTOLL
NIC is a Galibier card with a Virtex6 FPGA and connects via a QSFP adapter
board to the StratixV evalboard described in section 5.1.2 on page 83. The Galibier
card provides a PCIe Gen2 x8 host interface and 4 EXTOLL network links. Due
to the limited amount of transceivers available on the FPGA each EXTOLL link
consists of 4 lanes instead of 12 in the ASIC implementation. On the remote side,
the evaluation board was attached to a backplane as described in section 5.1.1 on
page 80 together with an early engineering sample version of the Intel Xeon Phi.

This test system has now all required components to operate very close to the final
system and provides a adequate software development vehicle for the configuration
software. This test vehicle was used to:

• Validate the remote PCIe configuration from BIC

• Mapping of resources to ALTERA’s logic blocks

• Check the memory mapping between BIC’s MMIO space and KNCs on-board
device memory

• Develop kernel and driver modules to use the remote memory mapping

• Boot the KNC’s micro OS from remote CN

5.2 Booster Node Card

The next iteration of the BN was the integration of the Altera FPGA into a custom
PCB design. In order to keep the number of connections via backplane PCB or
cable as low as possible, there are two network nodes on one PCB. This Booster
Node Card (BNC) board will be the basic building element for the large scale im-
plementation and was designed by project partner, Eurotech. The original project
planing expected the use of EXTOLL ASICs. Due to unexpected delays during the
development of the ASIC design, the project decided to use large Altera FPGAs as
replacement for the ASIC. The challenge of this decision was now to fit a full-blown
EXTOLL ASIC design into a rather small FPGA. Each network interface contains

85

5 Prototype implementations

Figure 5.5: DEEP Booster Node Card

12 lanes and for seven interfaces 84 transceivers are needed. In addition there are
16 PCIe lanes to connect the EXTOLL NIC to the host interface. If all transceivers
are added together, a complete ASIC replacement requires 100 transceivers. Even
the largest FPGAs of that time have neither the required number of transceivers
nor the corresponding hard IP blocks to support such a configuration. Therefore,
the following restrictions had to be made.

• All EXTOLL Links have 4 instead of 12 lanes.

• The PCIe connection has 8 instead of 16 lanes.

• One Link between the FPGAs on the same BNC is implemented as LVDS
instead of serializers.

• The EXTOLL Link bandwidth is reduced to 4 Gbit s−1

The basic building block of the large scale implementation consists of a backplane
with eight slots to attach eight BNCs. To reduce the cabling effort most of the
connections between the nodes is done in the PCB on different layers.

Figure 5.6 on the next page shows the design of the backplane during the evalua-
tion phase. The final design has the bottom 4 slots replicated to an 8 slot backplane.
It provides 48V power supply which is converted to 12V on each BNC. Through holes
in the backplane are for the liquid cooling quick connects. Each BNC is cooled with
a cold plate.

5.3 DEEP Booster
In order to build not only an energy-saving cluster but also a very compact one, the
cluster was divided into different modules.

86

5.3 DEEP Booster

Figure 5.6: Eurotech Backplane

Figure 5.7: DEEP Booster [18]

87

5 Prototype implementations

The smallest of these units represents the BNC and consists of two network nodes
on one PCB. In this case, a network node is an EXTOLL NIC and a KNC. The
next bigger building block is a chassis and consists of 8 BNC boards and a backplane
connecting the boards. The boards are connected to each other by PCB connections
as well as by cables. Several chassis in turn form the actual cluster. To allow
compute nodes outside this special cluster to interact with the NAA nodes, each
chassis contains a BIC which serves as a bridge between the external network (mostly
Ethernet or InfiniBand) and the cluster internal network (in this case EXTOLL).

5.4 GreenICE

With the DEEP Booster Eurotech has built a cold plate based cluster. Only three
server racks provide space for a total of 384 booster nodes and can be cooled very
energy efficiently. However, the thickness of the cold plate alone takes up as much
space as the boards underneath. So there is still potential for savings and the
possibility to pack the booster cluster more densely. Also, the ASIC implementation
of the EXTOLL core was not ready in time to be integrated into the booster design
process. In order to evaluate the performance of the Tourmalet ASIC within the
project duration, work was done on another booster, the GreenICE system, which
will be presented in the following sections.

Initially, the ASIC was planed as a drop in replacement for the BNCs’s FPGAs
described in section 5.2 on page 85. As all schematic and design files were closed
source and the intellectual property of Eurotech, no design aid was given for an
ASIC integration. That resulted in a development from scratch and a complete
design with standard components.

5.4.1 Requirements

To get a clear picture what components are available or have to be developed, the
first phase of the prototype development was to find a set of requirements that the
prototype has to fulfill.

Use of standard components As time was one of the most limiting factors, the
prototype has to consist of components that already existed or require a minimum
of modification. The Intel Xeon Phi add-in cards in a dense form factor were used

88

5.4 GreenICE

because they had a very short lead time and are compatible with the Intel Xeon Phis
used in the DEEP Project. This allows the usage of an already known accelerator
that reuses all the knowledge of the previous prototypes. The Tourmalet ASIC PCIe
Card was chosen for the NIC of the NAA. As the design team of the ASIC had a
close relation to the chair of computer architecture, these cards were on stock and if
modifications were required the complete design documents and specifications were
available. Neither the time nor the financing allowed the design of a comparable
backplane like the backplane used in the Eurotech DEEP booster. All network
connectivity relies on the existing EXTOLL copper cabling

19 inch rack compatibility Another requirement was that the prototype must fit
into a 19 inch rack to reuse existing infrastructure components. This limits the size
of the prototype but it can be installed in every data center and allows the product
deployment outside of the DEEP project.

Modularity The prototype should contain all necessary components to be opera-
ble, which includes the power supply, the internal and external network connectivity,
the accelerators and the NICs. Not only the prototype itself should be a module
that can be replicated and act as an independent and self containing component,
also the inner components of the prototype have to be modular for easy replace-
ment of damaged components. Therefore a certain amount of NAAs build a fixed
block. Multiple of these blocks form the whole NAA cluster and external network
connections connect to other prototype modules or to CPU nodes.

Dense Design As seen on the BNC boards from Eurotech, the cold plate requires
a significant part of the overall volume of a BNC. In order to pack the prototype
even more densely, either an even narrower cold plate must be developed that has
the same heat transport properties, or it must be abandoned completely. Since it
was not possible to develop a cold plate in the short time available and the necessary
know-how was also not available, we had to use a new cooling method, the two-phase
immersion cooling.

Interconnection All connections between the NAA’s NICs has to fit into the pro-
totype to be modular and reduce the number of external connections to a minimum.
The network topology chosen has to connect all nodes inside the prototype with min-

89

5 Prototype implementations

imal distances between the nodes. A 3D torus with minimal cable lengths should
be used and map on a 2D cable connection structure. The number of external
connections and therefore the throughput between the prototype and the external
components should be high enough to avoid a bottleneck.

Board Management and safety As a high availability system that should run long
lasting simulations, the prototype requires remote management capabilities to safely
power the system up and down. The prototype should also detect critical conditions
and report them to a logfile and shut the system down to prevent damage. For this
purpose, suitable sensors must be found that harmonize with the chosen cooling
method.

5.4.2 Mechanical Design

Now that the requirements for the prototype have been defined, the following sec-
tions deal with the implementation of the previously mentioned requirements. Dif-
ferent materials could be used for the container. A metal box could be the obvious
solution, because of the material properties. Its robust, easy to process, has a good
pressure stability and no chemical reaction occurs with the liquid cooling. Never-
theless, the material’s conductivity would be a problem and requires special care on
the inside to avoid short-circuits. Under normal operation conditions all electrical
devices inside the container have their own enclosure to avoid short-circuits between
adjacent components. Also the thermal insulation of metal is too low to keep the
heat inside the box and would radiate the heat into the server room. This requires
additional air condition cooling capacity for the rack and the server room and is in
conflict with the requirements to increase the power efficiency. The chosen material
was acrylic glass for several reasons. It is transparent and allow visual inspection of
the internal components, it is strong enough to handle the pressure that occur dur-
ing the evaporation of the cooling liquid, can be glued very precisely and glued parts
are extremely strong and is easy to process with tools available in our laboratory.

The outer construction consists of a cover with the cooling coils and their corre-
sponding water inlet and outlet and a container that hold the power supplies and
the NAA nodes. The exact dimensions can be seen in figure fig. 5.9 on page 92. The
width from the left to the right side fits into a 19 inch rack and the length matches
the half depth of a common server. With the armatures for the water inlet and
outlet of the cover plate the prototype requires 12 height units. On the rear side are

90

5.4 GreenICE

Figure 5.8: Overpressure Valve

several holes for the power connections and the EXTOLL cabling to interface the
prototype from the outside EXTOLL network.

The cover has a relief valve for handling the pressure while heating the fluid form
cold 20 degrees to operational temperature of 50 degrees. It consists of a metal
spring and a metal ball inside a acrylic glass box. The opening on the bottom is
put over the hole in the cover plate and is the connection to the pressure chamber.
The opening from the side is to adjust the maximum pressure after that the valve
opens and releases the pressure. A screw controls the spring force which pushes the
ball to the opening. Another hole on the top side of the acrylic box is the pressure
outlet.

During the assembly of the cover plate and the container, additional information
were available from 3M, the manufacturer of the cooling liquid NovecTM 649 .
They discovered that based on the chemical structure of NovecTM 649 water can
diffuse from the acrylic glass into the liquid and causes a number of unintended
side effects. Water reacts with NovecTM 649 and create acids which increases the
conductivity of the liquid over time and can build conductive deposits on heavily
charged pins like ground or supply voltage pins. A workaround for this problem
was the installation of glass plates on the inside of the container. The five glass

91

5 Prototype implementations

Figure 5.9: GreenICE Prototype

plates (4 sides + 1 bottom) were glued to the acrylic glass surfaces to insulate the
NovecTM 649 from the acrylic glass and avoid the diffusion of water. A drawback is
the reduced space available for the inner construction.

5.4.3 Backplane design

To get the highest possible packaging density a new backplane was designed. A
single Dense Backplane can hold eight Tourmalet NICs and eight Intel Xeon Phi in
the dense form factor. Figure fig. 5.10 on the facing page shows the backplane with
one NAA attached to the backplane.

Sixteen PCIe connectors are on the topside of the backplane with eight standard
x16 PCIe connectors with 164 pins and eight x16 connectors with 280 pins to provide
additional 12V power pins for the Xeon Phi DFF. The connectors are mounted as
close to each other as possible which result in a distance between two adjacent boards
of only 9mm.

Beside the PCIe connectors two 12V connectors are on the bottom side of the
backplane. Each connector supplies four NAA nodes with power from two power
supplies. Two DCDC converters generate a 3.3V voltage out of the 12V input. One
DCDC converter supplies four NAA nodes. To monitor the power consumption of

92

5.4 GreenICE

Figure 5.10: Dense Backplane with KNC

the backplane, all LTMs are accessible via I2C to read out the values for voltage
and current.

All reset signals are controllable by I2C with two GPIO expanderchips. Each
chip controls 8 reset signals with its GPIOs. The command to assert the reset or
de-assert the reset is send over the I2C network to the backplane and according to
the command executes the desired action.

5.4.4 Pressure resistance

The two phase cooling used for the GreenICE prototype requires the vaporization of
the cooling liquid and the condensation of gaseous NovecTM 649 back into its liquid
physical state. Even with a global warming potential of 1 (as harmful as CO2) the
price per gallon of NovecTM 649 requires a sealed container to avoid evaporation
of NovecTM 649 into the environment to keep the operation cost low. Due to the
change of its physical state and the closed system the pressure inside the container
fluctuates. To take care of the pressure, openings must be sealed. Special care was
taken for the power connection from the outside into the container. NovecTM 649
has a high surface tension and creeps through wires. Fine stranded conductors or
conductors with a massive copper wire transport NovecTM 649 between the insula-

93

5 Prototype implementations

tion material around the conductor and the wire from the container to the outside
and evaporates. This requires special seals for all connections in and out of the con-
tainer in particular if the opening is below or at the same level as the cooling coils.
As NovecTM 649 evaporate the gaseous NovecTM 649 ascent to the cooling coils all
space below the top of the coil is filled with gas that easily leak through all openings
like wires. On solution is to put all openings above the cooling coils but this would
increase the amount of height units required for the prototype which is not desired.
The best solution found to avoid more height units and avoid leakage of NovecTM

649 is the use of massive cooper bars sealed up in a NovecTM 649 resistant adhesive
like epoxy resin.

The sum of the power consumed by the prototype is 10KW. Divided by the line
voltage of 230V this are 43.5A and a 6mm2 thick copper bar is required. Instead of
using one massive copper bar 5 smaller pins are used for the connection (3 phase,
1 neutral, 1 ground). On the inner side of the container is a 5 pin connector as a
male plug-in unit. On the other side is a epoxy resin sealed female connector that
is screwed against a sealing rubber.

Two problems arise for the pressure resistance of the covering plate. First, the
cover plate has a high surface area and due to the pressure inside the container a
huge force pushes against the cover plate. The other problem is the sealing material
between the container and the cover plate. The material has to be hard enough
for a high contact pressure to resist a partial pressure of 200mbar, soft enough to
tightly seal all over the surface and has to be NovecTM 649 resistant.

5.4.5 Interconnect

One of EXTOLL unique features is the direct interconnect with a build-in switch in
every EXTOLL NIC. This is used to connect 32 NAAs in a 3D torus with the six
EXTOLL links each NIC provides. Each card has three connectors with two links
each. Each connector corresponds to a dimension in the 3D torus. One link of the
connector is for moving up in the dimension (e.g. X+) and the other link is for
moving down in the dimension (e.g. X-).

Different 3D torus variations are possible and a 4×2×4 topology was chosen for
its even distribution of nodes over the dimensions to reduce the diameter and its
best realization inside the containment. Because of the 2D physical arrangement of
the NAAs inside the containment, the 3D network topology has to be mapped. A

94

5.4 GreenICE

00

88

11

9944

1212

55

1616 1313

2424

1717

25252020

2828

2121

2929

22

1010

33

111166

1414

77

1818 1515

2626

1919

27272222

3030

2323

3131

0

8

1

94

12

5

16 13

24

17

2520

28

21

29

2

10

3

116

14

7

18 15

26

19

2722

30

23

31

0

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

1

2

Figure 5.11: 32 Node Topology

95

5 Prototype implementations

constrain for this mapping is the use of the shortest paths possible to reduce the
occupied volume of the cables. If the cable volume is to hight, the condensation
of vaporized NovecTM 649 will be affected. In the X-Dimension, four consecutive
EXTOLL NICs form a X-Dimension ring. Three cards can be connected with very
short cables and without crossings, because they are next to each other. A cable
from the lowest to the highest EXTOLL NIC in the X-ring and spanning over two
cards closes the X-Dimension ring. This cable fits also without crossing over the
smaller ones. This allows for a very dense packing in the X-Dimension. The Z-
Dimension takes advantage of the reversed order of the opposite column of NAAs.
On the 16 nodes on the left side, the Z-Dimension connector has the Z+ direction
on the upper link of the connector and the Z- link on the lower side of the connector.
The 16 nodes on the right side have a reversed order of the Z-Dimension connector
compared to that of the left side, which is Z- on the connector’s upper link and Z+ on
the connector’s lower link. Connecting the Z+ links of the left side with the Z- links
on the right side can be realized without crossing cables, because the connectors are
next to each other. To close the four node ring in the Z-Dimension on each side the
Z+ is connected with the Z- and forms a ring with the connections that connect
both halves. The Y-Dimension has a depth of two and a single bidirectional link
is required to close the ring in this dimension. The 16 nodes on a side are divided
into two blocks of 8 nodes each. Starting in the middle of the block, both EXTOLL
cards next to each other (node4 and node5) are connected and form a 2-depth Y-
ring. The next ring spans between node3 and node6 and lies without crossing flat
over the former ring. This is repeated for the remaining nodes in the block and also
repeated on the other blocks.

As already mentioned, the space below the cooling coil is precious. EXTOLL has
prefabricated cables with lengths of 30 cm, 50 cm, 75 cm and 100 cm. Their lengths
corresponds to the distances between two servers in a rack. If two EXTOLL NICs
are hosted in an 1U server, a 30 cm cable will be used to connect both servers that
are next to each other. To connect two EXTOLL NICs in 2U servers, a 50 cm can
be used and so on. As the nodes inside the containment are closer to each other
than in a server rack, these cables are to long and waste to much volume below the
cooling coil. Further more, the effort to plug all the cables increases because the
cables cross each other.

To circumvent this situation, special cables were designed which are based on a
thin flexible 4 layer PCB.

96

5.4 GreenICE

Figure 5.12: Rigid-Flex cables

Figure 5.13: Rigid-Flex PCB Stack

97

5 Prototype implementations

Figure 5.14: Power Supplies

5.4.6 Power Supply

To adhere the modularity requirement, the power supply for all components are
integrated into the containment. This has the added benefit of a reduced number
of through-connections which avoids the already described problems for pressure
stability and fluid leak. As the time frame to deliver the prototype to the project
made a custom solution not feasible, standard PSUs were used. This choice comes
with the risk, that the chosen PSU is not compatible with the NovecTM 649 fluid.
As seen in earlier tests with 5V power supplies, this can be a serious risk as these
devices collapsed after immersion of NovecTM 649 . Some components expected air
and can not compensate the changes.

Eight Compuware[14] high efficiency PSUs were used with 1600 W each. To avoid
congestion of vaporized fluid the cases are removed. All PSUs require a firmware
patch to work without a fan. The firmware shuts down the PSU in case of a fan
failure to avoid damage by overheating. Four KNC and four Tourmalet cards are
powered by a single PSU. Each KNC has a Total Design Power (TDP) of 300 W
and each Tourmalet card has a maximum power consumption of 25 W. A bundle of
four NAA nodes has a total power consumption of 4 × (300 W + 25 W) = 1300 W
which leaves some reserve.

98

5.4 GreenICE

Power to the PSU is done with a 32 A three-phase AC current. Phase 1 and 3 are
connected to 3 PSUs and phase 2 is connected to 2 PSU in the middle of the 8 PSU.
These PSUs are pure 12 V devices. All other voltages are generated on the Dense
Backplane (DBP) with DCDC converters. The 3.3V for PCIe are generated by two
12V-to-3.3V step down converters. All I2C buses are 1.8 Volt and are generated also
by step down converters.

5.4.7 Board Management and safety

To provide server class manageability the whole prototype logs important data from
sensors and has software accessible switches to control the system operation. This
Board Management Controller (BMC) uses a cost efficient Raspberry Pi 2 B+ in-
stead of a full custom micro controller solution. The RaspberryPi provides an
I2C and Serial Peripheral Interface (SPI), several General Purpose Input/Output
(GPIO) pins, Ethernet connector for remote access and Universal Serial Bus (USB)
and High Definition Multimedia Interface (HDMI) to connect a keyboard and a
monitor. The BMC runs a common Linux distribution (raspbian based on debian)
and opens a wide range of software languages to manage the prototype. To integrate
the program with other tools to observe and manage EXTOLL Tourmalet cards, the
BMC uses scala a object oriented language based on JAVA .

5.4.7.1 I2C network

Figure 5.15 on the next page shows the complete I2C network used by the prototype.
The RaspberryPi is connected to an I2C expander [32] which drives the main I2C
lines to up to four other I2C lines.

A custom PCB board was designed as a plug-on module for the 40 pin header of
the RaspberryPi. This module as shown in fig. 5.16 on the following page converts
the 5V power supply into the 1.8V voltage required by the I2C interface and provides
4 plugs to connect additional I2C buses to the first I2C expander device.

5.4.7.2 Flowmeter

To detect heat removal shortage from the interior of hot vaporized NovecTM 649 the
water flowing through the copper pipe is monitored for inlet and outlet temperature
and velocity. To measure this values a pipe of defined length is attached to the
inlet or outlet plug. On both end of this pipe is a transducer connected as shown

99

5 Prototype implementations

node0

SPI

I2C

Raspberry Pi

MAX35103 MAX1415LTC2953

0x23 0x24

TCA6424A

0x4B

LTC4306

0x40

LTC4306

0x41

LTC4306

0x42

LTC4306

0x43

LTC4306

0x44

LTC4306

0x45

LTC4306

0x46

LTC4306

0x47

LTC4306

node1
node2
node3

node4
node5
node6
node7

I2C

0x4B

LTC4306

I2C

0x40

LTC4306

0x48

LTC4306

BP I2C Control

Sensor Board

PSU0

PSU1

PSU2

PSU3

PSU4

PSU5

PSU6

PSU6
2x LED

/
2

/
2

/
2

/
2

/
2

/
2

/
2

/
2

/
16

0x23

TCA6424A

0xAA

LTC4306

0x47

LTM4676

0x4E

LTM4676

0x88

LTC4306 Backplane2 Backplane3Backplane1
8x LED

Node
0

Node
1

Node
2

Node
3

Node
4

Node
5

Node
6

Node
7

Figure 5.15: I2C Network

Figure 5.16: I2C Management Board

100

5.4 GreenICE

Figure 5.17: Flowmeter

in fig. 5.17. They send pulses of ultrasound waves along the pipe and measure the
time difference between send off the wave and receiving of the pulse on the other
side of the pipe. Due to the flowing water, the time between send and receive of
the pulse in flow direction is shorter than a pulse in the opposite direction. The
relation between the signal propagation delay of standing and flowing water can be
calculated as the velocity of the water running through the pipe. To measure the
water’s temperature thermal sensors are placed inside the pipe.

5.4.7.3 Sensor-board

As described earlier, the NovecTM 649 liquid is very volatile and to guarantee a
safe operation the liquid’s state has to be monitored precisely. The most important
properties to monitor are the fluid level and temperature, and the pressure and
temperature of the vapor above the fluid level.

For this purpose a sensor-board was developed as part of a student workand
is shown in fig. 5.18 on the following page. A micro-controller is connected to
a temperature and pressure sensor which measures the vapor’s temperature and
pressure. To monitor the fluid level a float gauge between light barriers is used
and another temperature sensor on the lower end of the board measures the liquid

101

5 Prototype implementations

Figure 5.18: Sensor Board

temperature. The covered or un-covered light barriers generate a bit pattern and
each pattern is a particular fluid level assigned. The PIC collects all sensor data
and has a I2C interface which is periodically read out by the board management
controller.

5.4.7.4 Switch Actuators

All power-supplies can be enabled by a pin. Driving this pin low activates the power
supply and the 12V are generated. A stable power output is signaled with power
good signal. All these signals are driven by I2C GPIO devices. Writes to registers
activate or de-activate the corresponding PSU and the power state can be read from
these registers too. The GPIO device is locate on the I2C multiplexer board and
drive all 8 PSUs.

With the same mechanism the resets are asserted and de-asserted. Each backplane
as 16 distinct resets (8x Tourmalet 8x KNC) and a 16xGPIO device [33] is used per
backplane to control all resets.

5.4.8 Cooling

As already described in several places, the GreenICE prototype was used for the
first time to gain experience with the handling of immersion cooling. Therefore, this

102

5.4 GreenICE

section describes the experiences and observations made during operation.
Two of the most noticeable properties of NovecTM 649 is its high vapor pressure

together with its high surface tension. This has a major impact on the design of
the GreenICE. If these two properties are not carefully considered, uncontrolled
leakage of NovecTM 649 will occur. Especially for through holes from the inside of
the container to the outside, the high surface tension has a significant influence.
Due to the high tension, NovecTM 649 is able to wet even the finest structures, such
as fine wire braids or cable shielding. The liquid is drawn along these and escapes.
At the beginning of the prototype development, a considerable amount of NovecTM

649 escaped through an Ethernet patch cable. This cable carries the twisted wires
inside an unfilled protective sleeve and NovecTM 649 was able to find its way out of
the container.

The high vapor pressure has the consequence that considerable effort must be
made to secure the container against high pressures, which arise not only from
boiling, but also in the stationary system. The vapor pressure is a measure of the
overpressure in a closed vessel at which natural evaporation and condensation are
in balance. Below this vapor pressure, NovecTM 649 evaporates. As long as the
container is not opened, this balance is established, but with each maintenance a
certain amount of liquid escapes until the balance is re-established after closing the
container.

Everything described so far is valid for the stationary state. But also during
active operation some interesting things happen. During the heat up of the system,
NovecTM 649 vaporizes and the partial pressure of 200 mbar can not longer hold back
NovecTM 649 from leaving its gaseous state and builds a gas layer over the liquid.
As NovecTM 649 is heavier than air two zones are forming up below the cover plate
and the liquid surface. NovecTM 649 gas has a higher volume than air, NovecTM 649
compresses the air which leads to a higher pressure inside the container. This force
also prevents NovecTM 649 gas to reach the cooling coils and no condensation can
occur to close the cooling circuit. To avoid this situation, the relief valve is adjusted
in that way that the pressure inside the container is hold at 200 mbar overpressure
compared to the surrounding environment. The air inside to container is blown out
until the system reaches a point at which the vaporization and condensation at the
cooling coils maintain balance and no additional pressure occur.

The dimensioning of the cooling coil also had a surprise in store. As mentioned
above, NovecTM 649 has a high surface tension and wets rough structures very well.

103

5 Prototype implementations

Figure 5.19: Condensation at Wieland cooling coil [65]

As a result, the cooling coil, which has an extra rough surface to increase the contact
area to the gas, is constantly wetted with NovecTM 649 . As described in section 2.5.3
on page 40, the thermal conductivity of NovecTM 649 and air differ only slightly.
Therefore, the condensed NovecTM 649 that sticks to the cooling coil insulates and
reduces the heat transfer considerably. As a result, a second cooling coil had to be
installed to remove the 10KW from the system.

Even if the impression arises that you can simply immerse your electronics in
NovecTM 649 and the cooling takes care of itself, it is unfortunately not that simple.
During the operation of the KNCs without a heat sink and thus a smooth surface,
a chip temperature of over 100 degrees could be measured. At this temperature the
KNC starts to reduce its performance to avoid overheating. To avoid this, a boiling
enhancement coating was applied to all KNCs. These are small copper plates with
one rough and one smooth side. Using a thermally stable adhesive, this BEC [24, 23]
is bonded to the KNC chips. The surface on which NovecTM 649 can boil is thus
extremely increased and can realize a much better heat dissipation. After applying
the BEC, the chip temperature was reduced from 100 to 80 degrees and a reduction
in performance could no longer be observed.

104

5.4 GreenICE

Figure 5.20: NovecTM 649 boiling on KNC package with BEC

105

6

Ch
ap

te
r

Results

6.1 Cluster of Network Attached Accelerators 108
6.2 Liquid cooling . 111

In this chapter the results of the thesis are presented and it summarizes the
achievements and scientific contributions during this work. Since the work is di-
vided into two parts, the results and findings are also discussed in two separate
sections. First, it is analyzed how much of the Network Attached Accelerator could
be implemented and which intermediate steps were necessary. Some of these contain
unique approaches that did not exist in this form before. At the end of the chapter
the results of the work with liquid cooling are presented and how to create a highly
compact system by keeping the computing hardware to a minimum and using novel
cooling technologies to achieve the highest density.

107

6 Results

6.1 Cluster of Network Attached Accelerators

One aspect of the work was the design and implementation of a network attached
accelerator as a follow-up to the idea from the work of Rinke et al. [55]. While
in this work complete host systems are needed and additional software layers are
required, in the course of this work an independent and not yet existing node type
could be implemented. A prototype consisting of two NAAs and a cluster node was
described and analyzed in detail in [38]. The results show that the communication
time was improved by 32% to 47% and the bandwidth by 30%. But there were several
obstacles to be overcome, which are listed below and are in themselves amazing and
unprecedented achievements.

6.1.1 Remote PCIe Hierarchy

The main task was to reduce the number of components to a minimum in order to
be able to operate an accelerator in a stand-alone, energy and space-saving manner.
Since an accelerator does not have any communication capabilities except for its
host interface, the missing functions ”device-to-device” and ”device-to-host” com-
munication had to be provided by an additional component. This is done via the
EXTOLL NIC whose functions are linked together in a completely new way. With-
out these features the concept of the NAA would not be possible. As one of the
most important functions during this work it was possible to build up an indepen-
dent PCIe hierarchy, which exists outside the host. This hierarchy serves as a 1-to-1
communication interface for data exchange between the NIC and the accelerator
with maximum bandwidth and no other participants influencing the communica-
tion. NIC and KNC always have the full PCIe Gen3 x16 bandwidth available. The
possibility to use the EXTOLL NIC not only as a normal Endpoint within a CPU
/ BIOS controlled PCIe hierarchy, but also to build up an independent hierarchy
through the Root Port functionality makes this possible.

Besides the purely physical connection of the two components, it is also necessary
to configure the remote and independent PCIe hierarchy. Since both the BIOS
and the CPU have been removed, this must be done through a software-driven
configuration that runs on one of the hosts inside the EXTOLL network. This
emulates the configuration that takes place when a normal system is booted. Again,
the unique capability of the EXTOLL NIC is used, which allows configuration access

108

6.1 Cluster of Network Attached Accelerators

not only from one dedicated node, but from any node within the EXTOLL network.
This allows each EXTOLL node to take over the role of the ”configuration host”
and provides redundancy and fail over

Furthermore you can use the software to create any PCIe packet and inject it over
the network into the remote PCIe hierarchy. This system was originally designed to
allow in-system debugging and testing. During this work this system was used and
extended to create configuration packets that configure the Root Port of the NIC
as well as the Endpoint of the KNC.

Another very important and unique approach is to tunnel the interrupts generated
by the accelerator through the network to the host system that is currently using
the accelerator. This is done by wrapping the interrupt from the remote PCIe bus
into a network packet, sending it over the network and interpreting it as an interrupt
on the destination node. Again, two systems of the NIC are used in a completely
different way than originally intended.

It is also possible to achieve something unprecedented, namely to enable the
accelerator to communicate actively, independently and exclusively driven by the
accelerator. This is done by using the x86 architecture of the KNC to load the
device drivers of the NIC. With this, all NIC functional units are available to the
KNC for low latency two-sided communication and one-side zero-copy bulk transfers.
To the best of our knowledge this is unique and has never been achieved before.

6.1.2 Transparent Memory mapping

After all the essential functions of the PCIe hierarchy have been made available
to the KNC, another important goal was to ensure that existing drivers and other
software do not need to be adapted and continue to function, even if the accelerator
is only virtually and not physically connected to the host system. In order to access
the on-chip memory of the KNCs and to allow the drivers to communicate with this
memory in the usual way, an extensive configuration on the BI side as well as on
the BN side is required. Again, one of the functions of the EXTOLL NIC is used,
the SMFU. Actually this unit was intended to provide hardware support for shared
memory applications, but during this work a transparent connection between host
and KNC was created by tricky mapping of memory areas from the BI address space.
This transparent connection allows memory accesses on the host to be encapsulated
into network packets and sent to the remote NAA with very low latency, without any

109

6 Results

additional software layer and without wasting CPU cycles. At the remote side on the
NAA the network packets are unpacked without the need of any other component
and execute the memory access on the remote side, which would have been intended
for the local memory system. The user or the application can bypass all software
stacks and thus communicate directly with the KNCs memory only by read or write
to certain address ranges. The BI has access to all the KNC device memory that is
mapped into the BI system. In the other direction the KNC can access all memory
addresses of the BI system.

6.1.3 Dynamic assignment of accelerators

Another important goal was to break up the previous rigid allocation between CPUs
and accelerators and make it more dynamic. Until now, only a limited number of
accelerators could be installed in a host system. On the one hand, the available space
limits the number of accelerators and on the other hand the number of PCIe lanes
provided by the CPU. This condition can be relaxed by tree-like hierarchies with
the assistance of PCIe switches, but this results in other limitations like a precise
orchestration of the communication directions to achieve maximum bandwidth as
described in [36].

With the NAA approach, the independent accelerators are not connected to each
other by expanding the PCIe hierarchy, but with a specialized and powerful inter-
connect (EXTOLL). This allows the accelerators to be arranged in any network
topology, increasing bandwidth and reducing latencies.

If the cluster nodes are connected to this interconnect or indirectly via a bridge
structure between the existing cluster interconnect and the NAA interconnect, a
dynamic assignment can be achieved. Several cluster nodes can allocate one or
more accelerators and exchange data. Due to a multidimensional topology, e.g. 3D
torus, the actual position of the accelerators in the topology has less impact on the
available bandwidth and latency. In existing systems, it is necessary to pay very
close attention to where the nodes are located in the network. This effort is not
required in the NAA approach.

Another positive side effect is the increased utilization of the individual acceler-
ators, since the number of available accelerators is not limited to the number of
free host systems. If there are applications that are only executed on the CPU,
the accelerators are unused and are not available for other jobs. With the NAA

110

6.2 Liquid cooling

approach, this dependency is removed because only the number of free accelerators
is important and not the number of free hosts. Thus the number of accelerators can
be reduced, which reduces the power consumption of the system.

6.2 Liquid cooling

Now that the NAA exists as an independent node capable of operating with a very
small number of components, the desire to package these remaining components
(KNC and NIC) as densely as possible is inevitable. Since neither suitable housings
nor platforms nor cooling capabilities exist to operate the NAA, new solutions had
to be developed. This developments resulted in the GreenICE prototype.

6.2.1 GreenICE

To achieve a high packing density and to meet the demands of liquid cooling, a
new type of housing had to be developed. This had to meet the requirements for
sealing, high thermal insulation against the ambient air, maintainability, low height
and width and many other innovations had to be invented. All these requirements
are covered by the newly developed GreenICE system. Its design as a container
with a lid, in which the cooling coils are installed, allows for good maintenance.
Both the lid and the tank are made of acrylic, which has a high thermal resistance,
allows a good view of the inside of the tank, and releases little heat into the room.
Furthermore the acrylic parts like the bottom plate and the 4 side walls are glued
together and get a very high stability to withstand the pressure of 1-2 bar.

In order to be able to operate the GreenICE as a closed system, a special seal was
developed and applied between the edge of the tank and the lid. Normal sealing
materials are either too soft and do not allow a high contact pressure or react with
NovecTM 649 and therefore wear out. The in-house developed gasket is stable but
also elastic enough to withstand the high pressure and is stable against NovecTM

649 .
If the system is ”started up” from a cold state, a high pressure is generated,

which must be released in a controlled manner. If this pressure would remain in
the system, the NovecTM 649 gas would be forced under the cooling surface and
circulation would be stopped. To ensure that only as much air has to be released
from the container as necessary, a separate pressure relief valve was developed. This

111

6 Results

is adjusted in such a way that only the air portion is blown out and closes when
NovecTM 649 starts to condense on the cooling surface. This is where NovecTM 649
’s useful properties come into play, as it has a much higher density than air. This
ensures that there is only air above the cooling surface and NovecTM 649 below the
cooling surface. As the pressure rise ends when condensation begins, the system
is self-regulating. At this point the system is in a state of balance and no further
blow-off or pressure changes occurs.

In order to prevent NovecTM 649 from crawling along cable openings into the
room, all cables were made solid. The power supply was provided by a special plug
which can be plugged into solid copper pins. These pins were moulded with special
sealing material and thus sealed.

To protect the system, several sensors have been placed inside and outside and
switch off the system when a critical state is reached. On a sensor board inside the
vessel the liquid level is monitored by a light barrier and a pressure sensor is mounted
on the same board above the liquid. Temperature sensors inside and outside the
liquid can be used as further indicators. Outside the liquid there are sensors that
monitor the water flow through the cooling surface, the board management controller
(BMC), a RaspberryPi, as well as the external sensors for the BMC power supply
and a watchdog. All sensor data is analyzed, measured data is stored and in case of
a critical condition the complete system is switched off. If the power supply to the
BMC is interrupted or if the BMC hangs and the sensor data is no longer evaluated
or there is no flow through the cooling surface, the system is switched off.

The GreenICE system is through all these measures a closed and ready to use
system which contains 32 NAA nodes, consumes only 12 U rackspace of a 19 inch
rack, delivers up to 32 TFLOP computing power and has a cooling capacity of
10KW. There are also no noise sources such as fans or pumps that need to keep
the air or liquid moving. The cooling is highly efficient because it uses the phase
transition. It is a continuous process that is self-contained by condensation and
evaporation without the need for external energy.

6.2.2 Higher packing density

Over several iterations the backplane, which includes the EXTOLL NIC and the
KNC, has been further developed. From a module that built only one NAA to a
backplane that can accommodate 8 NAAs. On this Dense backplane are 16 PCIe

112

6.2 Liquid cooling

x16 connectors, 8 for the KNC and 8 for the NIC. All connectors are mounted side by
side without any gaps. The cards have only a distance of 9mm to each other. *If one
would put an air-cooled Dense form factor KNC into a slot of the Dense backplane,
the heat sink of the KNC alone would cover 3 more PCIe slots. In these 4 occupied
slots (one for the KNC, 3 covered by the heat sink) 2 complete NAAs would fit in.
This means that a total of 2 complete NAA can be installed in the space consumed
by a single air-cooled dense form factor KNC and therefore the same volume with
NAAs has 2 times more computing power than an air cooled KNC version alone.
This ratio could be further improved by reducing the distance between the PCIe
connectors. But here one is limited by the design of the connector. If this distance
could be reduced, the cooling capacity would be sufficient, because the effect of the
existing thermosiphon is then further enhanced. The rising vaporized NovecTM 649
carries cold liquid NovecTM 649 with it and moves it past the hot surface. If the
distance between the boards decreases further, this effect increases, more NovecTM

649 moves past the hot surface and can still provide enough cooling capacity.

Another contribution to the high packing density is provided by the direct inter-
connect from the EXTOLL NICs. This allows each individual node to be directly
connected to 6 further nodes. If the cabling is chosen carefully as described in the
section fig. 5.11 on page 95, the number and length of cables can be significantly
reduced. Since the existing AWG cables are too long, a special cable was developed
to meet the required length. These ”rigid-flex” cables are flexible, thin two-layer
printed circuit boards and significantly reduce the volume of cable between the coil
and the top of the board. This has reduced the height and made more space avail-
able in the rack. Another advantage is the smaller distance between the liquid
surface and the cooling coil, as the NovecTM 649 gas reaches the cooling coils faster
and condensation occurs faster. Furthermore the volume of the NovecTM 649 gas is
reduced and therefore the possible pressure build-up.

With all these individual components it was possible to achieve a 2 times higher
packing density compared to an air-cooled version. If you compare the packing
density of an NAA node with that of a water-cooled backplane version, you get a
factor of 3.4 higher packing density.

113

6 Results

6.2.3 Increased power efficiency

In addition to the increased packing density, the energy efficiency of the entire system
has also been increased. There are no moving parts like fans or pumps in the entire
GreenICE system. There are also fewer components that can wear out over time
and consume additional power. If you consider the energy saving alone through the
KNC fans that are no longer needed, you save about 20W per NAA [29] or 640W
per GreenICE. Furthermore many other components are saved per NAA node like
CPU, chipset, memory and various fans. The most important feature is that the
whole GreenICE system can be cooled with only 50W pump power.

A further contribution to energy savings was made by the Interconnect. By using
the direct interconnect of the EXTOLL network, the detour via an external switch
can be avoided, since the switch functionality is integrated in the NIC. This reduces
the cable length from several meters per connection to a few centimeters. Due to
the much shorter transmission channels, the signal is less attenuated and does not
need to be equalized with additional energy. Also the signal transmission can be
done without optical transceivers and only in copper, which leads to considerable
savings.

However, energy savings are not only achieved at the consuming end, but also in
the generation of power at the PSUs. While 8 standard PSUs were installed in the
current system, a single specially developed PSU could be installed in a subsequent
system instead. This would have a lower height, as many redundant components
can be avoided in the 8 standard PSUs. Since the standard PSUs are not designed
for use in NovecTM 649 , the self-developed PSU can be designed in such a way that
NovecTM 649 ’s cooling capabilities can be best utilized. In addition, the efficiency
would be improved by eliminating AC/DC conversion and instead using a much
more efficient DC/DC conversion. With the appropriate components, like Vicor
Chips[63] an efficiency of 98% can be achieved with a conversion from 400V to 12V.

6.2.4 Experience with NovecTM 649

In the course of the work, knowledge of NovecTM 649 was gained. Liquid cooling
allows a packing density that can never be achieved by other media such as water
or air. The fluid also has a very good Global Worming Potential of 1 and therefore
harms the environment less than other media such as mineral oil. Due to its non-
conductive properties, it can also be used to operate high performance electronics

114

6.2 Liquid cooling

without causing short circuits. Since NovecTM 649 drips and evaporates without
leaving any residues, the components are immediately accessible for maintenance
after removal from the liquid and do not have to be cleaned first. The much lower
boiling point of NovecTM 649 compared to water or mineral oil makes the fluid a
very good medium for 2-phase applications to make use of the latent energy during
phase transition. Another advantage of NovecTM 649 is that it does not pose a health
hazard. Neither the liquid nor the gases are poisonous and the physical contact with
NovecTM 649 is harmless.

However, NovecTM 649 is not an easy material and requires a lot of experience and
knowledge. In order to achieve the best possible cooling performance and to be able
to exploit the full potential, extensive tests and experiments were necessary. Since
NovecTM 649 is a very novel product, no long term experience or best practices could
be used. Therefore basic research was necessary in which some problems arose, but
for every problem a solution could be found. All this knowledge was a prerequisite
for the development and operation of the GreenICE system.

115

7

Ch
ap

te
r

Conclusion

117

7 Conclusion

Communication and energy consumption play an increasingly important role and
become limiting factors in the area of high performance computing. The present
work contributes to these two points by generating a novel node type, the NAA.
This innovative node type, which has not yet been implemented by any other, makes
it possible to improve communication and energy consumption in several ways. The
NAA successfully eliminates many redundant components and reduces the number
of active components to two devices. Thus, this new node consists only of a highly
specialized NIC with additional functions and an accelerator, in this case an Intel R©

Xeon PhiTM. Without the special functions beyond those of a normal NIC, the
whole concept of NAA is not feasible.

One of the outstanding features is the possibility to build a remote PCIe hierarchy
that is fully software configurable over the network. It is possible to create a PCIe
bus independent of the host system, which directly connects NIC and accelerator.
The enumeration is completely emulated in software and can therefore configure any
accelerator. The configuration also includes the creation of an independent physical
address space that is unrelated to the host system.

Another unique feature of the NIC is the ability to map remote physical mem-
ory into its local address space over the network. This feature allows the host-
independent physical memory space on the remote PCIe bus to be transparently
accessible to the host applications without any driver changes. As a result, all com-
munication with the accelerator is done with read and write operations on memory
addresses and no CPU driven driver stack is required for network communication.

The last function that was successfully implemented was the forwarding of inter-
rupts from the remote PCIe hierarchy to a host system via the network. Again,
thanks to the transparent memory mapping, there was no need to modify the exist-
ing applications.

During the work it was possible to combine all these functions in such a clever
way that the accelerator is available as a fully independent node, after booting the
KNC operating system over the network. This way, a CPU is only needed for a
short time during initialization. Once the node has been initialized, the CPU is no
longer necessary and can perform tasks that it can handle more efficiently. After
initialization, the accelerator can perform network communication on its own. It can
do this either by transparent memory mapping that encapsulates memory accesses
in network packets or by using the specialized communication units of the EXTOLL
NIC.

118

To the best of our knowledge, this is the first time that an accelerator can com-
municate independently without the assistance of a CPU.

Several NAA nodes can now be connected to form a cluster of accelerators. Here,
this new node type has further advantages over the previous way of connecting
accelerators with each other. The disadvantages of multiple accelerators on one PCIe
hierarchy are completely avoided, since highly efficient network communication with
higher bandwidth, lower latency and more degrees of freedom in the topology can
be used.

Since no host systems are needed anymore, the size of the cluster can be varied
arbitrarily. Since there is no fixed assignment of accelerators to a host, both systems
can be scaled arbitrarily without affecting each other. This allows an arbitrary
number of CPU systems with an arbitrary number of NAAs. Thus the utilization
of the CPUs as well as the accelerators can be increased. Furthermore a dynamic
allocation of CPU and accelerator is possible which can change during runtime. Up
to now this allocation was already fixed by the direct PCIe slots connected to the
host CPU.

The NAA was not only designed conceptually and in simulations, but was actually
realized in several prototypes of different sizes and its advantages were confirmed
by benchmarks. The many experiences from the individual prototypes with one or
more NAA nodes finally resulted in the unique GreenICE system, which has unprece-
dented properties that are only possible through the NAA concept. This system also
has a four times higher packing density, making it the most densely packed system in
the HPC field. To achieve this, a novel cooling technique based on NovecTM 649 has
been successfully applied. To be more efficient than previous systems that rely on
single-phase cooling and require energy-consuming recirculation, the GreenICE uses
two-phase cooling. This results in an amazing Power Use Efficiency (PUE) of 1.01.
An unprecedented performance. This value could only be achieved by the closed
and pressure-tight construction and the use of the thermosiphon effect. This allows
the 12 kW power inside the GreenICE to be cooled only through a single external
circulation pump for the water circuit to remove the heat. To reach this point, a
sophisticated pressure management system was developed to handle the interaction
between air and NovecTM 649 gas. Also, special seals and cable feedthroughs were
developed that are resistant to NovecTM 649 . Furthermore, a sensor network was
established to ensure safe operation.

A secondary but very important effect of the four times higher packing density is

119

7 Conclusion

the much shorter propagation distances within the cluster of accelerators. This leads
to energy savings in the communication, since the signals need less amplification to
be received at the target and also the receive logic can be operated more efficiently,
since complex signal reconstruction can be avoided. The direct connection of the
accelerators to each other can reduce the latency considerably.

All these developments resulted in a cluster of accelerators with 32 nodes and 32
TFLOP and was successfully installed and operated at Forschungszentrum Jülich
within the DEEP project.

The concept of the NAA presented in the paper is general enough to work not
only with the KNC. However, there are some components that are specific to the
KNC and therefore cannot be used for other types of accelerators. GPGPUs would
be a worthwhile target for further work on the NAA. While these accelerators do
not have the special features of the KNC as the native operating system, their
widespread use makes development rewarding. In fact, efforts have been made to
test the feasibility of the NAA approach for GPGPUs as well. Again, a remote
PCIe hierarchy between the NIC and the GPGPU, in this case a NVIDIA R©-Tesla R©

K20, could be successfully established. The same transparent memory mapping
mechanisms could be used for the GPU memory and the GPGPU driver could be
loaded without modification. However, after several tests it turned out that CUDA
programs could not be executed. The exact cause could not be determined, since
the drivers are closed source. Nevertheless, it would be worthwhile to do further
research here, since the NAA approach has so many advantages and it is interesting
to see how this can affect GPGPUs.

120

121

List of Figures

List of Figures

2.1 NVIDIA Tesla K20 PCIe full-length full height card [45] 12
2.2 Graphics pipeline of NVIDIAs NV40 architecture [1] 13
2.3 Tesla K20 Overview [44] . 14
2.4 Comparison of CPU and GPU architecture [34] 15
2.5 Intel Xeon Phi Co-Processor PCIe full-length full height card [10] . . 16
2.6 Intel Xeon Phi Core Architecture Overview [10] 17
2.7 Logic Structure of Basic I/O . 19
2.8 DMA I/O . 20
2.9 PCIe Architecture Overview . 21
2.10 PCIe Configuration Space Header Type0 (left) and Type1 (right)[9] . 24
2.11 Configuration Request Packet . 26
2.12 Completion Packet . 26
2.13 EXTOLL Module Overview . 27
2.14 PCIe Bridge Overview . 29
2.15 PCIe Backdoor Overview . 30
2.16 SMFU2 Overview with Ingress and Egress submodule [13] 31
2.17 SMFU2 Address Calculation in Egress Submodule [13] 31
2.18 HTAX Module Overview [35] . 32
2.19 SNQ Functional Overview [30] . 34
2.20 RMA2 Submodule Overview [12] . 36
2.21 Registerfile Hierarchy Overview . 37
2.22 Cooling Flow Cold Plate . 39
2.23 Boiling curve of heated liquid[59] . 42

123

List of Figures

3.1 Intra-node communication with GPUDirect Peer-to-Peer[20] 45
3.2 NVIDIA GPUDirect Peer-to-Peer (P2P) Communication Between

GPUs on the Same PCIe Bus[20] . 45
3.3 8 GPU System Block Diagram [22] 47
3.4 8 GPU System in a tree Block Diagram [36] 49
3.5 Inter-node communication without GPUDirect [20] 51
3.6 Inter-node communication with GPUDirect[20] 51
3.7 General architecture of remote GPU virtualization[53] 53
3.8 NTB address translation example . 54
3.9 PEACH2 Architecture [27] . 55
3.10 PEACH2 Architecture [27] . 57
3.11 APEnet+ card [5] . 58
3.12 System and user view of a GGAS Cluster [47] 60
3.13 GGAS Mappings and Data Flows [47] 61
3.14 Shoubu System B overview [66] . 62
3.15 TSUBAME-KFC submerged in oil tank [40] 63
3.16 ALLIED CONTROL Cooling Concept[16] 64

4.1 PCIe enumeration . 69
4.2 Remote RegisterFile write access . 71
4.3 Remote RegisterFile read access . 72
4.4 Different steps during PCIe enumeration 73
4.5 Memory Mapping for Host to Accelerator traffic 76
4.6 Interrupt mapping . 77

5.1 PCIe Backplane . 81
5.2 StratixV Evaluation Board . 82
5.3 QSFP-to-HDI6 Adapter . 83
5.4 Test System with BNC and BIC . 84
5.5 DEEP Booster Node Card . 86
5.6 Eurotech Backplane . 87
5.7 DEEP Booster [18] . 87
5.8 Overpressure Valve . 91
5.9 GreenICE Prototype . 92
5.10 Dense Backplane with KNC . 93
5.11 32 Node Topology . 95

124

List of Figures

5.12 Rigid-Flex cables . 97
5.13 Rigid-Flex PCB Stack . 97
5.14 Power Supplies . 98
5.15 I2C Network . 100
5.16 I2C Management Board . 100
5.17 Flowmeter . 101
5.18 Sensor Board . 102
5.19 Condensation at Wieland cooling coil [65] 104
5.20 NovecTM 649 boiling on KNC package with BEC 105

125

List of Tables

List of Tables

2.1 Physical attributes of air, water and NovecTM 649 40

3.1 Performance measurements for different PCIe communication paths . 47

127

Acronyms

Acronyms

APIC Advanced Programable Interrupt Controller. 23, 77

ARM Accelerator Resource Manager. 6

ATOLL Atomic Low Latency. 28

ATU Adress Translation Unit. 35

AVX-512 512-bit Advanced Vector Extensions. 17

BEC Boiling Enhancement Coating. 41, 104

BI Booster Interface. 84, 85

BMC Board Management Controller. 99

BN Booster Node. 84, 85

BNC Booster Node Card. 85, 86

CAG Computer Architecture Group. 28

CfgRd Configuration Read Request. 70

CfgWr Configuration Write Request. 70, 72

CN Cluster Node. 84

COTS Commodity Off-The-Shelf. 50, 59

CplD Completion with Data. 56

129

Acronyms

CPU Central Processing Unit. 3

CUDA Compute Unified Device Architecture. 15

DARPA Defense Advanced Research Projects Agency. 5

DBP Dense Backplane. 99

DMA Direct Memory Access. 19, 35

EMP Extoll Management Program. 33

EXTOLL Extended Atomic Low Latency. 28

FPGA Field Programmable Gate Array. 56–58, 80, 85

FSM Finite State Machine. 36

GDDR5 Graphical Double Data Rate 5. 15

GGAS GPU Global Address Space. viii, 7, 59, 67

GPGPU General Purpose Graphic Processing Unit. vii, 11, 12

GPIO General Purpose Input/Output. 99, 102

GPU Graphics Processing Unit. 3

HDMI High Definition Multimedia Interface. 99

HPC High Performance Computing. 1, 28, 52, 61

HT HyperTransport. 29

HTAX HyperTransport Advanced X-Bar. 32, 35

HTOC HyperTransport On-Chip. 28, 29

I2C Inter-Integrated Circuit. ix, 99, 100, 102, 125

ISA Instruction Set Architecture. 17

KNC Knights Corner. 16

130

Acronyms

LQCD Lattice Quantum Chromo-Dynamics. 57

MemRd Memory Read Request. 56

MemWr Memory Write Request. 56

MIC Many Integrated Core. 11

MMIO Memory Mapped Input/Output. 24, 28

MMU Memory Management Unit. 18

MPI Message Passing Interface. 28

MSB Most Significant Bit. 56

MSI Message Signaled Interrupt. 23, 77

MSI-X Message Signaled Interrupt Extended. 23

NAA Network Attached Accelerator. 11, 18, 46, 48–50, 52, 53, 56, 61, 65, 68, 69,
85, 98, 118, 119

NIC Network Interface Controller. 3

NTB Non-Transparent Bridge. 54, 55

PCB Printed Circuit Board. 8, 85, 86, 88, 96, 99

PCI Peripheral Components Interconnect. 21, 66

PCI-X Peripheral Components Interconnect - Extended. 21

PCIe Peripheral Components Interconnect - Express. 3, 21

PEACH2 PCI Express Adaptive Communication Hub Version 2. 56, 57

PGAS Partitioned Global Address Space. 7, 30

PIO Programmed Input/Output. 19

PSU Power supply unit. 62, 98, 99, 102

PUE Power Use Efficiency. 119

131

Acronyms

QPI Quick Path Interconnect. 48

QSFP Quad Small Form Factor Pluggable. 83

QUonG lattice QUantum chromo-dynamics ON Gpu. 57

RDMA Remote Direct Memory Access. 5, 28, 35, 58

RF Register File. 35–37

RMA Remote Memory Access. 35–37

RRA Remote Registerfile Access. 35–37, 70

SIMT Single Instruction Multiple Threads. 15

SME Shared Memory Engine. 60

SMFU Shared Memory Functional Unit. 28, 30

SMX Streaming Multiprocessor. 14

SNQ System Notification Queue. 34

SPI Serial Peripheral Interface. 99

SSH Secure Shell. 18

TDP Total Design Power. 98

TLP Transaction Layer Protocol. 25

UPS Uninterruptible Power Supply. 3

USB Universal Serial Bus. 99

VPU Vector Processing Unit. 17

132

Bibliography

Bibliography

[1] GPU Gems 2: Programming Techniques for High-Performance Graphics and
General-Purpose Computation. Addison-Wesley Professional, 2005. ISBN
0321335597. URL https://developer.nvidia.com/gpugems/GPUGems2/
gpugems2_frontmatter.html.

[2] Allied control to reveal 1.4 megawatt datatank container data center with pue
1.01 and 240 kw racks for 3m TM novec TM engineered fluids. ALLIED CON-
TROL, Nov 2014. URL http://www.allied-control.com/publications/
Allied_Control_Revealing_DataTank_Press_Release.pdf.

[3] R. Ammendola, M. Bernaschi, A. Biagioni, M. Bisson, M. Fatica, O. Frezza,
F. Lo Cicero, A. Lonardo, E. Mastrostefano, P. S. Paolucci, D. Rossetti, F. Sim-
ula, L. Tosoratto, and P. Vicini. Gpu peer-to-peer techniques applied to a
cluster interconnect. In 2013 IEEE International Symposium on Parallel Dis-
tributed Processing, Workshops and Phd Forum, pages 806–815, May 2013. doi:
10.1109/IPDPSW.2013.128.

[4] Roberto Ammendola, Andrea Biagioni, Ottorino Frezza, Francesca Lo Cicero,
Alessandro Lonardo, Pier Paolucci, Roberto Petronzio, Davide Rossetti, Andrea
Salamon, Gaetano Salina, Francesco Simula, Nazario Tantalo, Laura Tosoratto,
and Piero Vicini. Apenet+: a 3d toroidal network enabling petaflops scale
lattice qcd simulations on commodity clusters. 12 2010.

[5] Roberto Ammendola, Andrea Biagioni, Ottorino Frezza, F Lo Cicero, Alessan-
dro Lonardo, Pier Stanislao Paolucci, Davide Rossetti, Francesco Simula, Laura
Tosoratto, and Piero Vicini. Apenet+: a 3d torus network optimized for gpu-

133

https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_frontmatter.html
https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_frontmatter.html
http://www.allied-control.com/publications/Allied_Control_Revealing_DataTank_Press_Release.pdf
http://www.allied-control.com/publications/Allied_Control_Revealing_DataTank_Press_Release.pdf

Bibliography

based hpc systems. In Journal of Physics: Conference Series, volume 396, page
042059. IOP Publishing, 2012.

[6] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William
Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller,
et al. Exascale computing study: Technology challenges in achieving exascale
systems. Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Tech. Rep, 15, 2008.

[7] Broadcom. PEX9700 Series Switch Chips. Broadcom, May 2018.

[8] André R Brodtkorb, Trond R Hagen, and Martin L Sætra. Graphics processing
unit (gpu) programming strategies and trends in gpu computing. Journal of
Parallel and Distributed Computing, 73(1):4–13, 2013.

[9] Ravi Budruk, Don Anderson, and Tom Shanley. PCI express system architec-
ture. Addison-Wesley Professional, 2004.

[10] George Chrysos. Intel R© xeon phiTM x100 family coprocessor - the architec-
ture. November 2012. URL https://software.intel.com/en-us/articles/
intel-xeon-phi-coprocessor-codename-knights-corner.

[11] Computer Architecture Group. HyperTransport On-Chip (HTOC) Protocol
Specification. Heidelberg University, . Version: 1.6.

[12] Computer Architecture Group. RMA2 Specification. Heidelberg University, .
Revision: 2.0.4.

[13] Computer Architecture Group. SMFU2 / Excelerate Technical Documentation.
Heidelberg University, . Revision: 1.2.

[14] Compuware Technology Inc. Power Supply Specification Model: CPR-1621-
1M21, December 2011. Rev: 1.0.

[15] HyperTransport Technology Consortium et al. Hypertransport i/o link specifi-
cation. Revision, 1:111–118, 2008.

[16] ALLIED CONTROL. Allied control immersion cooling, 2019. URL http:
//www.allied-control.com/xeon-phi-immersion-cooling-concept/.

134

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://www.allied-control.com/xeon-phi-immersion-cooling-concept/
http://www.allied-control.com/xeon-phi-immersion-cooling-concept/

Bibliography

[17] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan
Carter, Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick.
Stencil computation optimization and auto-tuning on state-of-the-art multi-
core architectures. In Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, SC ’08, pages 4:1–4:12, Piscataway, NJ, USA, 2008. IEEE
Press. ISBN 978-1-4244-2835-9. URL http://dl.acm.org/citation.cfm?
id=1413370.1413375.

[18] DEEP. Deep prototypes, 2015. URL https://www.deep-projects.eu/
hardware/prototypes.html.

[19] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack bench-
mark: past, present and future. Concurrency and Computation: practice and
experience, 15(9):803–820, 2003.

[20] Dr Donald Kinghorn. P2p peer-to-peer on nvidia rtx 2080ti vs gtx
1080ti gpus, 2020. URL https://www.pugetsystems.com/labs/hpc/
P2P-peer-to-peer-on-NVIDIA-RTX-2080Ti-vs-GTX-1080Ti-GPUs-1331/.

[21] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S. Quintana-Ort́ı. rcuda:
Reducing the number of gpu-based accelerators in high performance clusters.
In 2010 International Conference on High Performance Computing Simulation,
pages 224–231, June 2010. doi: 10.1109/HPCS.2010.5547126.

[22] Scott Ellis. Exploring the pcie bus routes. URL https://intrepid.warped.
com/˜scotte/OldBlogEntries/web/index3429.html?replytocom=1848.

[23] E. C. Forrest, L. Hu, T. J. McKrell, J. Buongiorno, and Y. Ostrovsky. Pressure
effects on the pool boiling of the fluorinated ketone c2f5c(o)cf(cf3)2. In 2010
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phe-
nomena in Electronic Systems, pages 1–9, June 2010. doi: 10.1109/ITHERM.
2010.5501414.

[24] Eric C Forrest, Lin-Wen Hu, Jacopo Buongiorno, and Thomas J McKrell. Pool
boiling heat transfer performance of a dielectric fluid with low global warming
potential. Heat Transfer Engineering, 34(15):1262–1277, 2013.

[25] Holger Fröning and Heiner Litz. Efficient hardware support for the partitioned
global address space. In Parallel & Distributed Processing, Workshops and Phd

135

http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=1413370.1413375
https://www.deep-projects.eu/hardware/prototypes.html
https://www.deep-projects.eu/hardware/prototypes.html
https://www.pugetsystems.com/labs/hpc/P2P-peer-to-peer-on-NVIDIA-RTX-2080Ti-vs-GTX-1080Ti-GPUs-1331/
https://www.pugetsystems.com/labs/hpc/P2P-peer-to-peer-on-NVIDIA-RTX-2080Ti-vs-GTX-1080Ti-GPUs-1331/
https://intrepid.warped.com/~scotte/OldBlogEntries/web/index3429.html?replytocom=1848
https://intrepid.warped.com/~scotte/OldBlogEntries/web/index3429.html?replytocom=1848

Bibliography

Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1–6. IEEE,
2010.

[26] Holger Fröning, Mondrian Nüssle, David Slogsnat, Patrick R Haspel, and Ulrich
Brüning. Performance evaluation of the atoll interconnect. In Parallel and
Distributed Computing and Networks, pages 129–134. Citeseer, 2005.

[27] Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, and Mitsuhisa Sato. In-
terconnection network for tightly coupled accelerators architecture. In High-
Performance Interconnects (HOTI), 2013 IEEE 21st Annual Symposium on,
pages 79–82. IEEE, 2013.

[28] https://www.top500.org/green500/. Green500. https://www.top500.org/
green500/, January 2019. URL https://www.top500.org/. Accessed: 2019-
01-28.

[29] Intel R© Xeon PhiTM Coprocessor x100 Product Family Datasheet. Intel,
April 2015. URL https://www.intel.com/content/dam/www/public/us/en/
documents/datasheets/xeon-phi-coprocessor-datasheet.pdf. Version:
April 2015.

[30] Christian Leber. Efficient hardware for low latency applications. PhD thesis,
Universität Mannheim, 2012.

[31] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun
Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas
Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. De-
bunking the 100x gpu vs. cpu myth: An evaluation of throughput com-
puting on cpu and gpu. SIGARCH Comput. Archit. News, 38(3):451–460,
June 2010. ISSN 0163-5964. doi: 10.1145/1816038.1816021. URL http:
//doi.acm.org/10.1145/1816038.1816021.

[32] Linear Technology. LTC4306 4-Channel, 2-Wire Bus Multiplexer with Capaci-
tance Buffering, .

[33] Linear Technology. TCA6424 A Low-Voltage 24-Bit I 2 C and SMBus I/O
Expander With Interrupt Output, Reset, and Configuration Registers, .

[34] Martin Lingnau. Traversal algorithms for ray tracing – an architectural evalu-
ation. Master’s thesis, Heidelberg University, December 2017.

136

https://www.top500.org/green500/
https://www.top500.org/green500/
https://www.top500.org/
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-datasheet.pdf
http://doi.acm.org/10.1145/1816038.1816021
http://doi.acm.org/10.1145/1816038.1816021

Bibliography

[35] Heiner Litz. HyperTransport Advanced X-Bar (HTAX) Specification. Computer
Architecture Group - Heidelberg University. Version 0.14.

[36] Paulius Micikevicius. Multi-gpu programming. GPU Computing Webinars,
NVIDIA, 2011.

[37] Gordon E Moore. Cramming more components onto integrated circuits. Pro-
ceedings of the IEEE, 86(1):82–85, 1998.

[38] S. Neuwirth, D. Frey, M. Nuessle, and U. Bruening. Scalable communication
architecture for network-attached accelerators. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), pages 627–
638, 2015. doi: 10.1109/HPCA.2015.7056068.

[39] Sarah Neuwirth. Accelerating Network Communication and I/O in Scientific
High Performance Computing Environments. PhD thesis, University of Hei-
delberg, Germany, 2019. URL http://www.ub.uni-heidelberg.de/archiv/
25757.

[40] Tokyo Tech News. TSUBAME-KFC/DL supercomputer ranked No.2 in the
world in Nov. 2015 edition of the energy efficiency Green500 List. https://
www.titech.ac.jp/english/news/2015/032904.html, December 2015. URL
https://www.top500.org/. Accessed: 2019-01-30.

[41] Northwest Logic. Northwest logic, 2020. URL https://www.rambus.com/
interface-ip/controllers/pci-express-controllers/.

[42] M. Nüssle, B. Geib, H. Fröning, and U. Brüning. An fpga-based custom high
performance interconnection network. In 2009 International Conference on
Reconfigurable Computing and FPGAs, pages 113–118, Dec 2009. doi: 10.
1109/ReConFig.2009.23.

[43] M. Nussle, M. Scherer, and U. Bruning. A resource optimized remote-
memory-access architecture for low-latency communication. In 2009 Inter-
national Conference on Parallel Processing, pages 220–227, Sept 2009. doi:
10.1109/ICPP.2009.62.

[44] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler TM GK110.
NVIDIA, 2012.

137

http://www.ub.uni-heidelberg.de/archiv/25757
http://www.ub.uni-heidelberg.de/archiv/25757
https://www.titech.ac.jp/english/news/2015/032904.html
https://www.titech.ac.jp/english/news/2015/032904.html
https://www.top500.org/
https://www.rambus.com/interface-ip/controllers/pci-express-controllers/
https://www.rambus.com/interface-ip/controllers/pci-express-controllers/

Bibliography

[45] NVIDIA R© TESLA R© GPU ACCELERATORS. Nvidia, October 2013.

[46] L. Oden, H. Fröning, and F. Pfreundt. Infiniband-verbs on gpu: A case study
of controlling an infiniband network device from the gpu. In 2014 IEEE Inter-
national Parallel Distributed Processing Symposium Workshops, pages 976–983,
May 2014. doi: 10.1109/IPDPSW.2014.111.

[47] Lena Oden and Holger Froening. Ggas: Global gpu address spaces for efficient
communication in heterogeneous clusters. In Cluster Computing (CLUSTER),
2013 IEEE International Conference on, pages 1–8. IEEE, 2013.

[48] Tom Papatheodore. Summit system overview. URL https://www.youtube.
com/watch?v=_-z8ErBlBSo. Accessed: 2019-01-28.

[49] David A Patterson. Latency lags bandwidth. In ICCD, pages 3–6, 2005.

[50] A. J. Pena and S. R. Alam. Evaluation of inter- and intra-node data transfer
efficiencies between gpu devices and their impact on scalable applications. In
2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, pages 144–151, May 2013. doi: 10.1109/CCGrid.2013.15.

[51] John Pflueger and Sharon Hanson. Data center effciency in the scalable enter-
prise. DELL Power Solutions, 2007. URL http://www.dell.com/downloads/
global/power/ps1q07-20070210-CoverStory.pdf.

[52] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda. Effi-
cient inter-node mpi communication using gpudirect rdma for infiniband clus-
ters with nvidia gpus. In 2013 42nd International Conference on Parallel Pro-
cessing, pages 80–89, Oct 2013. doi: 10.1109/ICPP.2013.17.

[53] C. Reaño, R. Mayo, E. S. Quintana-Ort́ı, F. Silla, J. Duato, and A. J. Peña.
Influence of infiniband fdr on the performance of remote gpu virtualization.
In 2013 IEEE International Conference on Cluster Computing (CLUSTER),
pages 1–8, Sept 2013. doi: 10.1109/CLUSTER.2013.6702662.

[54] Jack Regula. Using non-transparent bridging in pci express systems. PLX
Technology, Inc, 1, 2004.

[55] Sebastian Rinke, Daniel Becker, Thomas Lippert, Suraj Prabhakaran, Lidia
Westphal, and Felix Wolf. A dynamic accelerator-cluster architecture. In 2012

138

https://www.youtube.com/watch?v=_-z8ErBlBSo
https://www.youtube.com/watch?v=_-z8ErBlBSo
http://www.dell.com/downloads/global/power/ps1q07-20070210-CoverStory.pdf
http://www.dell.com/downloads/global/power/ps1q07-20070210-CoverStory.pdf

Bibliography

41st International Conference on Parallel Processing Workshops, pages 357–
366. IEEE, 2012.

[56] Davide Rossetti. Benchmarking gpudirect rdma on modern server platforms,
2014.

[57] Gilad Shainer, Ali Ayoub, Pak Lui, Tong Liu, Michael Kagan, Christian R.
Trott, Greg Scantlen, and Paul S. Crozier. The development of mellanox/nvidia
gpudirect over infiniband—a new model for gpu to gpu communications. Com-
puter Science - Research and Development, 26(3):267–273, Jun 2011. ISSN
1865-2042. doi: 10.1007/s00450-011-0157-1. URL https://doi.org/10.1007/
s00450-011-0157-1.

[58] SuperMicro. SUPERSERVER 4027GR-TR/TRT USER’S MANUAL, October
2014. Revision 1.0a.

[59] SWEP. Refrigerant-handbook, 2020. URL https://www.swep.net/
refrigerant-handbook/6.-evaporators/asas9/.

[60] The Ohio State University. Mvapich: Mpi over infiniband, omni-path, ether-
net/iwarp, and roce, 2019. URL http://mvapich.cse.ohio-state.edu/.

[61] TOP500.org. Top500. https://www.top500.org/, September 2018. URL
https://www.top500.org/. Accessed: 2018-09-05.

[62] Tyan. DUAL-SOCKET 8GPGPU PLATFORM. MITAC INTERNATIONAL
CORP.

[63] Vicor. Dc-dc isolated regulated converters, 2018. URL http://www.
vicorpower.com/dc-dc/isolated-regulated.

[64] Vicor Corporation. Gyoukou supercomputer leveraging 48v factorized power.
URL https://www.youtube.com/watch?v=_-z8ErBlBSo. Accessed: 2019-01-
28.

[65] Wieland-Werke AG — Thermal Solutions. GEWA-C CONDENSER TUBES.
Version: 2018-09-10.

[66] WikiChip.org. WikiChip. https://en.wikichip.org/wiki/zettascaler,
January 2019. URL https://www.top500.org/. Accessed: 2019-01-28.

139

https://doi.org/10.1007/s00450-011-0157-1
https://doi.org/10.1007/s00450-011-0157-1
https://www.swep.net/refrigerant-handbook/6.-evaporators/asas9/
https://www.swep.net/refrigerant-handbook/6.-evaporators/asas9/
http://mvapich.cse.ohio-state.edu/
https://www.top500.org/
https://www.top500.org/
http://www.vicorpower.com/dc-dc/isolated-regulated
http://www.vicorpower.com/dc-dc/isolated-regulated
https://www.youtube.com/watch?v=_-z8ErBlBSo
https://en.wikichip.org/wiki/zettascaler
https://www.top500.org/

Bibliography

[67] Wm A Wulf and Sally A McKee. Hitting the memory wall: implications of the
obvious. ACM SIGARCH computer architecture news, 23(1):20–24, 1995.

[68] Dimitrios Ziakas, Allen Baum, Robert A. Maddox, and Robert J. Safranek.
Intel R©quickpath interconnect architectural features supporting scalable sys-
tem architectures. In Proceedings of the 2010 18th IEEE Symposium on High
Performance Interconnects, HOTI ’10, pages 1–6, Washington, DC, USA, 2010.
IEEE Computer Society. ISBN 978-0-7695-4208-9. doi: 10.1109/HOTI.2010.24.
URL https://doi.org/10.1109/HOTI.2010.24.

140

https://doi.org/10.1109/HOTI.2010.24

	Introduction
	Motivation
	Challenges to reach Exascale
	Focus of the thesis
	Structure of the thesis

	Background
	Accelerators
	Accelerator communication
	PCI Express Host Interface
	EXTOLL
	Cooling technologies

	State of the Art
	Intra Node Communication
	Inter Node Communication
	Cooling

	Network Attached Accelerators
	State of the Art Analysis
	Remote PCIe bus access
	Transparent Memory Mapping
	Interrupt remapping
	Network feature access

	Prototype implementations
	Evaluation Platform
	Booster Node Card
	DEEP Booster
	GreenICE

	Results
	Cluster of Network Attached Accelerators
	Liquid cooling

	Conclusion
	Acronyms

