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ABSTRACT 
Genetic variations can have positive, negative, or neutral impacts on protein 

interactions, thus making it essential to understand them to obtain a mechanistic 

picture of biological functions and diseases. In this thesis, I studied how genetic 

changes affect the functions of the largest, most diverse family of cell-surface 

molecules involved in signal transduction: G-protein coupled receptors (GPCRs). 

GPCRs comprise over 2% of genes in the human genome and are the leading 

pharmaceutical drug target. 

 

Analysis of one of the most comprehensive datasets quantifying GPCR/G-protein 

binding affinities revealed that GPCR couplings and sequence similarity are 

uncorrelated and that there were no clear, simple sequence changes responsible for 

determining which G-protein binds to a particular GPCR. While GPCRs within the 

same group can couple to different G-proteins, GPCRs of different groups can still 

couple to the same G-proteins. We used this new dataset and various protein 

bioinformatics tools to identify broad sequence features that are associated with 

specific G-protein binding events. Several of these were at or near the known 

GPCR/G-protein interface, but many others were not, suggesting a complex 

relationship between sequence and specificity. 

 

We then applied an interpretable machine learning algorithm on the sequence- and 

structure-based GPCR features to develop a system and associated webserver 

(PRECOG) to predict and visualize GPCR/G-protein interactions. We leveraged the 

machine learning-guided framework to predict uncharacterized GPCRs and 

successfully developed the first GNA12-coupled designer receptor. Application of this 

framework to recently available binding data revealed the determinants of β-arrestin 

specificity in GPCRs. 

 

Collectively, this machine learning-guided framework can be extended to other binding 

data to uncover sites and sequence regions that are physically or allosterically 

involved in determining subtype specificity. This will not only improve our 

understanding of protein interactions but also help us devise better chemogenetic tools 

and take smarter therapeutic decisions in the context of human health. 
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ZUSAMMENFASSUNG 
Genetische Varianten können positive, negative oder neutrale Auswirkungen auf 

Proteininteraktionen haben. Daher ist es wichtig, sie zu verstehen, um ein 

mechanistisches Bild von biologischen Funktionen und Krankheiten zu erhalten. In 

dieser Arbeit habe ich untersucht, wie genetische Veränderungen die Funktionen der 

größten und vielfältigsten Familie von Zelloberflächenmolekülen beeinflussen, die an 

der Signaltransduktion beteiligt sind: G-Protein-gekoppelte Rezeptoren (GPCRs). 

GPCRs umfassen über 2 % der Gene im menschlichen Genom und sind das führende 

pharmazeutische Wirkstoffziel. 

 

Die Analyse eines der umfangreichsten Datensätze zur Quantifizierung von GPCR/G-

Protein-Bindungsaffinitäten ergab, dass GPCR-Kopplungen und Sequenzähnlichkeit 

unkorreliert sind und dass es keine klaren, einfachen Sequenzänderungen gibt, die 

dafür verantwortlich sind, welches G-Protein an einen bestimmten GPCR bindet. 

Während GPCRs innerhalb der gleichen Gruppe an unterschiedliche G-Proteine 

koppeln, können GPCRs verschiedener Gruppen immer noch an die gleichen G-

Proteine koppeln. Wir haben diesen neuen Datensatz und verschiedene Protein-

Bioinformatik-Werkzeuge verwendet, um breite Sequenzmerkmale zu identifizieren, 

die mit spezifischen G-Protein-Bindungsereignissen verbunden sind. Einige davon 

befanden sich an oder in der Nähe der bekannten GPCR/G-Protein-Schnittstelle, viele 

andere jedoch nicht, was auf eine komplexe Beziehung zwischen Sequenz und 

Spezifität schließen lässt. 

 

Anschließend wendeten wir einen interpretierbaren maschinellen Lernalgorithmus auf 

die sequenz- und strukturbasierten GPCR-Merkmale an, um ein System und einen 

zugehörigen Webserver (PRECOG) zur Vorhersage sowie zur Visualisierung von 

GPCR/G-Protein-Interaktionen zu entwickeln. Wir nutzten das auf maschinellem 

Lernen basierende Framework, um uncharakterisierte GPCRs vorherzusagen und 

entwickelten erfolgreich den ersten GNA12-gekoppelten Designer-Rezeptor. Die 

Anwendung dieses Frameworks auf kürzlich verfügbare Bindungsdaten offenbarte die 

Determinanten der β-Arrestin-Spezifität in GPCRs. 
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Insgesamt kann dieses auf maschinellem Lernen basierende Framework auf andere 

Bindungsdaten erweitert werden, um Stellen und Sequenzregionen aufzudecken, die 

physikalisch oder allosterisch an der Bestimmung der Subtyp-Spezifität beteiligt sind. 

Dies wird nicht nur unser Verständnis von Proteininteraktionen verbessern, sondern 

uns auch helfen, bessere chemogenetische Werkzeuge zu entwickeln und 

intelligentere therapeutische Entscheidungen im Kontext der menschlichen 

Gesundheit zu treffen. 
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Chapter I: Introduction 
 
Protein interactions are crucial to biological processes. Proteins interact with each 

other in various conformation states to build molecular machines that steer a myriad 

of cellular functions including membrane transport, signal transduction, metabolism, 

intracellular communication, cell growth, and apoptosis. Protein sequence largely 

determines function and structure, and changes to this sequence can have a variety 

of impacts. Certain variations, seen when comparing homologous proteins, are known 

to determine functional specificity (Casari et al., 1995). Other variations can have 

positive, negative, or neutral impacts on proteins and the systems they are involved 

in. For instance, the binding of HIV (human immunodeficiency virus) to CCR5 

(chemokine receptor 5) triggers Acquired Immunodeficiency Syndrome (AIDS), a 

notorious disease that can impair the immune system of a healthy individual. However, 

certain CCR5 mutations can decrease infectivity by altering its structure or level of 

expression (Blanpain et al., 1999). Other variations, like in that of TP53 (tumor 

suppressor 53), emphatically contribute to the onset of life-threatening diseases like 

cancer (Ribeiro et al., 2001; Stacey et al., 2011). Some variations have almost no 

impact on an individual like a neutral mutation (changes amino acid sequence but 

almost no change in its function) or a silent mutation (does not even alter the amino 

acid sequence). Still elsewhere, artificially introduced variations are used to design 

proteins for biomedical applications (Bedbrook et al., 2019; Roth, 2016). 

 

To explore such puzzling, and at the same time, fascinating variations in protein 

families is not only important to unravel their functional specificities but also to 

understand implications in the context of cellular pathways and human health. Here, 

we explore the largest family of cell-surface molecules responsible for signal 

transduction: G-protein coupled receptors (GPCRs). Even though GPCRs share a 

common structure of seven helices, they display variable specificities to their primary 

transducers: G-proteins. In this thesis, with the help of the most extensive dataset of 

GPCR/G-protein binding affinities, we have developed a machine learning-guided 

framework to extract the residues within GPCRs that determine their functional 

specificities. 
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1.1 G-PROTEIN COUPLED RECEPTORS 

GPCRs share a common architecture: a single polypeptide of seven helices 

embedded in the cell membrane. Hence, they are also referred to as seven-

transmembrane receptors. GPCRs perform a battery of functions in our body, 

including cell proliferation, survival, and motility. Specific external signals (like biogenic 

amines, light energy, lipids, sugars, proteins, and peptides) induce conformational 

changes in GPCRs that enable interactions, primarily with heterotrimeric G-proteins, 

G-protein -coupled receptor kinases (GRKs), and arrestins. 

 

A combination of sequence and functional similarities has led to the current 

classification of 800 Human GPCRs into 6 classes (A-F) in GtoPdb (the IUPHAR/BPS 

Guide to PHARMACOLOGY) (Harding et al., 2018): a) Class A (rhodopsin-like), b) 

Class B (secretin receptor family), c) Class C (metabotropic glutamate), d) Class D 

(fungal mating pheromone receptors), e) Class E (cyclic AMP receptors), and f) Class 

F (frizzled/smoothened). Vertebrates lack classes D and E. With its 719 members in 

human accounting for almost 89% of the GPCRs, Class A is the largest subfamily. 

More than half of class A GPCRs encode olfactory receptors (390 out of 719 or 54%), 

while those remaining are either known to be activated by endogenous compounds or 

are classified as orphan receptors. Interestingly, even though there is little detectable 

sequence similarity between GPCR classes, they all share the common seven-helical 

architecture and transduce the external signal through a similar mechanism. 

 
1.2 STRUCTURE AND TOPOLOGY OF A GPCR 

GPCRs are integral membrane proteins. They vary considerably in sequence, but all 

share key common features. These are an extracellular N-terminus, seven 

transmembrane helices (TM) woven in and around the membrane and comprising 

alternating intracellular and extracellular loops (ICLs and ECLs), and a cytosolic C-

terminus. Several residues of the hydrophobic TM helices are inter-connected and 

form functionally important motifs such as the E/DRY in TM3, WxP in TM6, and NPxxY 

(Palczewski et al., 2000; Rosenbaum et al., 2009) in TM7 (TMn correspond to the nth 

transmembrane helix). Among all the helices, the TM3 helix forms the most contacts, 

wherein every residue is connected to either another TM helix, ligand, or G-

protein/arrestin (Venkatakrishnan et al., 2013). 
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While class A GPCRs contain only a single, globular, transmembrane domain, other 

classes have additional extracellular domains that typically participate in ligand 

binding, conjointly with the TM helices (Dann et al., 2001; Grace et al., 2004; Liu et al., 

2004; Rondard et al., 2006). Compared to class A, the N-terminus of classes B, C, 

and F are larger, have characteristic domains, and often contain disulfide bonds 

(Nørskov-Lauritsen et al., 2015; Perlman et al., 1995). In contrast to the extracellular 

partners of GPCRs, which range over thousands of ligands, intracellular partners are 

limited to a few key effectors: G-proteins, GRKs, and arrestins. As a result, the 

intracellular (IC) transmembrane region of GPCRs is structurally much more 

conserved compared to its solvent-exposed extracellular (EC) transmembrane region 

(Venkatakrishnan et al., 2014). 

 

In GPCRs, the extracellular loops (ECLs) play a significant role in regulating the 

binding of ligands. While ECL1 and ECL3 are usually short and unstructured, ECL2 is 

longer, adopts several conformations in different GPCRs, and is often anchored to the 

extracellular end of the TM3 helix via disulfide bridges (Wheatley et al., 2012). The 

three intracellular loops (ICLs), on the other hand, mediate interactions with the 

cytosolic partners of GPCRs. The ICL3 shows the greatest variation in length, ranging 

from 5 residues in CXCR4 (C-X-C chemokine receptor type 4) up to over 150 residues 

in muscarinic acetylcholine receptors (mAChRs). The N-terminus, ICL3, and C-

terminus have been predicted to lack a pre-defined structure (i.e. Intrinsically 

Disordered Regions or IDRs) (Venkatakrishnan et al., 2014). However, upon 

interaction with an effector protein, these regions likely undergo a disorder-to-order 

transition. For example, the fully phosphorylated C-terminus (an otherwise IDR) of 

AVPR2 (V2 vasopressin receptor) transitions to β-sheet to activate β-arrestin-1 

(Shukla et al., 2013). 

 

The known features of GPCRs discussed above suggest the need for an integrated 

approach that captures structured and disordered regions of GPCRs to determine 

receptor specificity towards its cytosolic partners. 
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1.3 GPCR RESIDUE NUMBERING 

In this thesis, I have used the two most common GPCR residue numbering systems: 

Pfam 7TM (El-Gebali et al., 2019) and Ballesteros-Weinstein (BW) (Ballesteros and 

Weinstein, 1995). According to the Pfam 7TM numbering system, a residue in a 

receptor is assigned the equivalent position in the consensus of the Pfam 7tm_1 

domain. While the first character indicates the prevalent amino acid, the rest of the 

characters indicate the position in the consensus sequence of the domain. For 

example, Y268 is the name assigned to positions 678 and 288 in TSHR and GPR55, 

respectively. In the Ballesteros-Weinstein (BW) numbering system, residues are 

assigned two numbers separated by a period. The number before the period indicates 

the TM helix (between 1 and 7) under consideration and the number after the period 

indicates the position relative (upstream or downstream) to the most conserved 

residue (defined as 50) in the TM helix. For example, the position Y268 mentioned 

above corresponds to 7.53 in the BW numbering system. Here 7 refers to the seventh 

TM helix and 53 indicates that the residue is three positions after the most conserved 

residue (5.50). 

 

1.4 CYTOSOLIC PARTNERS OF A GPCR 

The three major cytosolic partners of GPCRs are heterotrimeric G-proteins, GRKs, 

and arrestins. The heterotrimeric G-proteins (also referred to as large G-proteins) are 

membrane-associated molecular switches that comprise alpha (Gα), beta (Gβ), and 

gamma (Gγ) subunits. Unlike monomeric G-proteins (also referred to as small G-

proteins), heterotrimeric G-proteins bind directly to GPCRs. The Gα subunit 

moderates its switch function by binding to guanine triphosphate (GTP) (switched on) 

or guanine diphosphate (GDP) (off). Ligand binding induces a conformational change 

in GPCRs, which then act as a GEF (guanine nucleotide exchange factor) to substitute 

GDP by GTP in the Gα subunit. This leads to the separation of the Gα subunit and the 

Gβγ subunits, activating several downstream signaling pathways (Figure 1.1). 

Based on sequence and functional similarity, the 16 Gα subunits can be grouped into 

four subfamilies: Gs, Gi/Go, G12/G13, and Gq/G11 (Figure 1.1). The Gα structure 

consists of two domains: a) a GTP-binding domain (G-domain), and b) a helical 

domain that buries the GTP within the core of the protein. The helix 5 of the G-domain 
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has been reported to play a key role in determining GPCR/G-protein coupling (Conklin 

et al., 1993; Inoue et al., 2012). In this study, we have used subfamily symbols (Gs, 

Gi/Go, G12/G13, and Gq/G11) to indicate the G-protein subfamily, and gene symbols 

to indicate particular G-proteins. 

Two Gα subunits are responsible for regulating cyclic AMP (cAMP): Gαs and Gαi/o. 

The Gs pathway is involved in the stimulation of adenylate cyclase, an enzyme that 

converts ATP to cAMP, which is a classical second messenger molecule. cAMP is 

primarily involved in the activation of protein kinase A (PKA) and cyclic-nucleotide-

gated ion channels. cAMP binds to inactive PKA, dissociating it into regulatory (cAMP-

bound) and activated catalytic subunits. The active catalytic subunits enter the nucleus 

to phosphorylate substrates that convert glycogen to glucose (Huang and Krebs, 1977; 

Proud et al., 1977) and stimulate transcription (Qian et al., 2017; Tremblay and Viger, 

2003). In near direct contrast to Gs, the Gi/Go pathway is generally responsible for the 

inhibition of adenylate cyclase, thus suppression of the cAMP signaling.  

The Gq/G11 pathway stimulates phospholipase C-β (PLC-β), which cleaves 

membrane-bound phosphatidylinositol 4,5-biphosphate (PIP2) into diacylglycerol 

(DAG) and inositol (1,4,5) triphosphate (IP3). While DAG is bound to the plasma 

membrane, IP3 is released into the cytosol and acts as the second messenger 

molecule, and binds to IP3-gated calcium channels (also called IP3 receptors) in the 

endoplasmic reticulum to release sequestered Ca+2, which along with DAG activates 

protein kinase C (PKC). Besides, Ca+2 allosterically activates calmodulins, which are 

responsible for the activation of several enzymes involved in metabolism (Nishizawa 

et al., 1988), memory (Lledo et al., 1995), and smooth muscle contraction (Tansey et 

al., 1994).  

The G12/G13 pathway primarily activates RhoA (Ras homolog family member A) 

(Hiley et al., 2006; Katoh et al., 1998), which is a regulatory factor in several cellular 

functions, most often related to the regulation of the cytoskeleton. These include the 

immune response (Girkontaite et al., 2001), angiogenesis (Offermanns et al., 1997), 

embryonic development (Ruppel et al., 2005), apoptosis (Althoefer et al., 1997), and 

platelet activation (Moers et al., 2003). 

Following G-protein activation, GRKs phosphorylate the intracellular regions of 

liganded GPCRs and recruit arrestins, which occlude G-protein binding sites and lead 
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to receptor desensitization. Among the seven GRKs (Figure 1.1), four (GRKs 1,7,2,3) 

have been so far reported to phosphorylate only activated GPCRs (Gurevich and 

Gurevich, 2019) while the remainder were shown also to phosphorylate inactive 

GPCRs (Baameur et al., 2010; Li et al., 2015; Rankin et al., 2006; Tran et al., 2004). 

GRKs are also known to phosphorylate non-GPCR substrates such as tyrosine kinase 

receptors (Wu et al., 2006; Zheng et al., 2012) and regulate Gq-signaling independent 

of its kinase activity (Tesmer et al., 2005; Usui et al., 2005). 

Humans express four arrestin subtypes (1-4) (Figure 1.1), all of which share a similar 

structure consisting of N- and C- terminal domains that both adopt all-beta, 

immunoglobulin-like structure, but perform different sub-functions. While arrestins 1 

and 4 are found in photoreceptor cells, the non-visual subtypes 2 and 3 (also called β-

arrestin-1 and β-arrestin-2, respectively) are ubiquitous. Besides turning off G-protein-

dependent signaling, arrestins are additionally involved in G-protein-independent 

pathways such as β-arrestin-mediated signaling. GPCRs can activate arrestins via 

three modes i.e. a) the receptor C-terminus (the tail conformation) (Latorraca et al., 

2018), b) the transmembrane core (core conformation) (Eichel et al., 2018; Latorraca 

et al., 2018); or, c) fully-engaged (Huang et al., 2020; Lee et al., 2020; Staus et al., 

2020; Yin et al., 2019). While the tail conformation can effectively mediate receptor 

endocytosis and ERK signaling, and simultaneously engage with G-proteins (Nguyen 

et al., 2019), the core conformation promotes the sustained activation of arrestins 

following dissociation from the receptor and transduce ERK signaling from clathrin-

coated endocytic structures (CCS) (Eichel et al., 2018). However, to hamper G-protein 

signaling, a fully engaged GPCR/arrestin complex is required (Cahill et al., 2017; 

Kumari et al., 2017). 
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Figure 1.1: Schema of GPCR signaling. GPCRs and their cytosolic interactors. 

 

1.5 GPCR ACTIVATION 

Upon activation by an external stimulus, GPCRs undergo conformational changes that 

involve twisting, extension, and displacement of transmembrane helices and 

rearrangement of the interconnected residues (Latorraca et al., 2017) (Figure 1.2).  

 

Previous studies (Manglik et al., 2015; Nygaard et al., 2013; Yohannan et al., 2004) 

have shown that a GPCR can assume several conformations, implicating various 

downstream signaling mechanisms. The first GPCR/G-protein crystal structure was of 

activated monomeric β2AR (β2-adrenergic receptor) bound to a heterotrimeric Gαs 

(GNAS) (Rasmussen et al., 2011). The largest conformational change observed, when 
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comparing inactive and active β2AR structures is on the intracellular side, where G-

proteins interact via TM helices 5 and 6. The cytosolic end of TM6 rotates counter-

clockwise (when viewed from the extracellular side) and moves outward by nearly 14Å 

accompanied by a smaller outward movement and an extension of the cytoplasmic 

side of TM5 by 7 residues and inward movement of TM7. 

 

The GPCR/G-protein 3D complexes solved in subsequent studies revealed the 

motions of several residues within the transmembrane helices that transfer “cues” from 

the extracellular ligand-binding pocket to the cytosolic G-protein binding interfaces of 

GPCRs. For example, the conserved triad core Ile (BW: 3.40), Pro (BW: 5.50), and 

Phe (BW: 6.44) is reported to undergo structural rearrangement (moving away of Ile 

(3.40), separating Pro (5.50), and Phe (6.44)) upon activation of β2AR (Huang et al., 

2015). In addition, the outward displacement of TM6 creates a crevice on the 

receptor’s intracellular side, which engages with G-proteins. At the G-protein end, 

there is a rotation as well inward displacement of α5-helix of GNAS by 6 Å into the 

transmembrane core of the receptor. 
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Figure 1.2: GPCR activation. A) Ligand binding induces a conformational change in GPCR, leading 

to the recruitment of G-protein. B) Superimposition of active β2AR (PDB ID: 3SN6) onto inactive β2AR 

(PDB ID: 2RH1). C) TM5 and TM6 show the largest conformational change. 

 

A similar mechanism of activation is observed between inactive and GNAI1-bound 

µOR (µ-opioid receptor) (Koehl et al., 2018). Although most TM helices align well 
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between GNAS-bound β2AR (orange) and GNAI1-bound µOR (green), the outward 

displacement of the TM6 in β2AR more pronounced (by 9 Å) than that of the µOR 

(Figure 1.3), a trend observed in other Gs-bound vs. Gi-bound receptors (García-

Nafría et al., 2018a; Kang et al., 2018). Besides, the α5-helix of GNAI1-bound to µOR 

(green) is rotated ~21° (displacement of 5 Å; towards TM7) relative to the α5-helix of 

GNAS bound to β2AR (Koehl et al., 2018). The C-terminal residues of the α5-helix are 

bulkier in GNAS than in GNAI1, forming a larger crevice for the Gs-specific receptors. 

 

Although not observed in currently known β2AR-Gs and µOR-Gi complexes, helix 8 in 

the receptor C-terminus is involved in Gq specificity (Qin et al., 2011). 

 

 
Figure 1.3: Comparison of β2AR-Gs and µOR-Gi structures. Superimposition of Gs-stabilized β2AR 

(PDB ID: 3SN6) onto Gi-stabilized µOR (PDB ID: 6DDE). Note that the TM6 displacement is greater in 

β2AR. 

 

While the recent GPCR/G-protein 3D complexes have revealed novel insights into 

GPCR activation, the determinants that regulate the G-protein specificity in GPCRs 

remain elusive (Koehl et al., 2018). It is the contribution not just the features at the 

interface but also throughout the TM helices that participate in the allosteric 

communication to determine the G-protein selectivity (Flock et al., 2017; Wichard et 

al., 2011). 
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1.6 COMPUTATIONAL APPROACHES TO PREDICT GPCR/G-PROTEIN 
COUPLINGS 

Several computational techniques have been developed to predict G-protein 

selectivity in GPCRs. The earliest techniques involved the use of sequence 

comparison methods such as BLAST (Altschul et al., 1990) and ClustalW (Thompson 

et al., 1994). However, these approaches lack two major aspects: a) sequences with 

low similarity can couple to the same G-protein, and b) sequences with high similarity 

can couple to different G-proteins. Later, a combination of membrane topology 

prediction and a pattern discovery approach in the ICLs of GPCRs (Möller et al., 2001) 

was used to identify unique patterns in groups of GPCR sequences, wherein each 

group is comprised of receptors known to couple to a G-protein subfamily. In another 

method (Cao et al., 2003), the authors used a naïve Bayes model to train a dataset 

comprising ICLs and C-terminus of GPCRs to predict their G-protein selectivity.  

 

Other approaches used the HMM profiles (hidden Markov Model) (Eddy, 1998). In one 

of these studies (Sreekumar et al., 2004), the authors built the HMM profile of GPCR 

sequences, where each sequence is a concatenation of the predicted ICLs and the C-

terminus of the receptor. Elsewhere, PRED-COUPLE (Sgourakis et al., 2005a), the 

authors identified a library of 25 best HMM profiles, extracted from the blocks of 

multiple sequence alignment (MSA) with low-entropy regions, that could discriminate 

for G-protein-specificity in GPCRs. In this study, only the sequence region in MSA that 

corresponded to the ICLs and trimmed transmembrane regions (up to 7 residues in 

the cell membrane) was used. The improved version, PRED-COUPLE2 (Sgourakis et 

al., 2005b), was trained using artificial neural networks, and the method was also 

extended to predict couplings with the G12/G13 subfamily, which was missing in 

previous approaches. 

 

Undeniably, these studies have paved the way for use of bioinformatics techniques 

that can extract subtle patterns from the sequence data. However, these tools were 

primarily limited to only three subfamilies of G-proteins (Gi/Go, Gs, and Gq/G11) and 

were not designed to predict promiscuous couplings of GPCRs. Though PRED-

COUPLE2 was successful at dealing with these drawbacks, like the previous 

approaches, its training data lacked a true negative set (i.e. a set of GPCR/G-protein 
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pairs known not to couple). Moreover, these tools are trained only to predict at the 

level of G-protein subfamilies rather than individual Gα subunits. This is critical in 

understanding differential G-protein couplings of GPCR isoforms (Marti-Solano et al., 

2020) and members within a GPCR subfamily (Inoue et al., 2019). For example, 

according to the GtoPdb database, the β-adrenoreceptors couple to the Gs subfamily, 

while the α-adrenoreceptors couple to the Gi/Go subfamily (Altosaar et al., 2019). 

 

Large databases such as GtoPdb and GPCRdb (G-protein coupled receptor database) 

(Isberg et al., 2016) have curated data for GPCRs. However, they too lack the true 

negative sets and Gα subunit level annotations. 

 

Reliable prediction of GPCR/G-protein couplings remains important today. Not only 

are there more than 50 receptors in the GtoPdb database that lack coupling 

information, but it is becoming increasingly necessary to assess the impact of GPCR 

mutations on G-protein/β-arrestin selectivity to understand diseases.  Genetic variants 

in GPCRs are the leading cause of several human diseases such as those related to 

bone development (Luo et al., 2019), Alzheimer's (Kumar et al., 2015), 

hypo/hyperthyroidism (Parma et al., 1997; de Roux et al., 1996), extreme obesity 

(Kimple et al., 2014), nephrogenic diabetes insipidus (Rosenthal et al., 1992), fertility 

disorders (Stoy and Gurevich, 2015) and the emperor of all maladies1 – cancer 

(reviewed in Dorsam and Gutkind, 2007). 

 

1.7 SPECIFICITY DETERMINING POSITIONS (SDP) 

Multiple sequence alignments (MSAs) can be investigated to understand the evolution 

of protein families. Alignments can be used to infer functional properties of specific 

amino acids or positions. A long-standing view is that the positions conserved across 

the entire protein family participate in the functions common to all the members of it.  

For instance, in the context of GPCRs, the E/DRY and NPxxY motifs are conserved 

across all the GPCRs and known to play a role receptor function (Palczewski et al., 

2000; Rosenbaum et al., 2009). On the other hand, the positions that are conserved 

within a subset of sequences in the MSA, participate in functions specific to the given 

                                                           
1The term was coined by Dr. Siddhartha Mukherjee in his book The Emperor of all maladies: A Biograhpy of 
Cancer (Scribner, 2010). 
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subtype (enzyme specificity) and are often referred to as Specificity Determinant 

Positions (SDPs) (Rausell et al., 2010). Several methods have been developed to 

identify functional residues within a protein subfamily and define the functional 

properties of the subtype. 
 

One of the first methods to extract SDPs was a multivariate-based analysis, 

SequenceSpace (Casari et al., 1995). It uses principal component analysis (PCA) on 

aligned sequences, represented as vectors in a multi-dimensional space, to identify 

functional residues. The subtype information can either be predicted by 

SequenceSpace or provided by the user. The first three principal axes (with the largest 

eigenvalues) of the PCA determine the positions that are conserved across the whole 

superfamily while the combination of any two brings out the subtype specificity. 

SequenceSpace was successful at identifying experimentally known functional 

residues in the Ras-Rab-Rho superfamily, SH2 domains, and cyclins. A more recent 

approach, S3det (Rausell et al., 2010), uses multiple correspondence analysis (MCA), 

to link groups of proteins (subtype) to groups of residues (SDPs) in space. 

 

rvET (Real value evolutionary trace) (Mihalek et al., 2004), a successor of ET 

(Lichtarge et al., 1996), is another technique that combines both evolutionary analyses 

(derived from phylogenetic trees) and entropic information to identify functional sites 

in proteins of known structure. It has been applied to several protein families such as 

SH2 and SH3 modular signaling domains (Lichtarge et al., 1996), the DNA binding 

domain of the nuclear hormone receptors (Lichtarge et al., 1996), specificity 

determinants in psychoactive bioamine receptors (Rodriguez et al., 2010) and to 

design receptors (Shenoy et al., 2006). 

 

Unlike other methods that predict the subtype, PROUST (Hannenhalli and Russell, 

2000) relies on an MSA that is already classified based on subtypes. This method 

constructs an HMM profile for every subtype and computes cumulative relative entropy 

for all the positions. The positions with Z-score > 3.0 in a given subtype are selected 

as functionally important for the given subtype. Besides, identifying functional residues 

that are either experimentally or structurally known, PROUST could highlight positions 

that do not lie at the interactor binding pocket, as shown for nucleotidyl cyclases, 

kinases, and cyclins. 
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Other SDP detection methods include SDPsite (Kalinina et al., 2009), which maps 

SDPs, obtained from mutual information, CPs (conserved positions), defined using 

Sander-Schneider conservation measure onto a structure of one of the proteins of the 

subtype to extract the best cluster of functional residues. kPax (Marttinen et al., 2006) 

simultaneously detects subtypes and associated SDPs using a Bayesian model-based 

approach. CEO (Combinatorial Entropy Optimization) (Reva et al., 2007) performs 

hierarchical clustering of possible subtypes to select the optimum one and then 

identifies SDPs using residue entropy. Statistical Coupling Analysis (SCA) (Lockless 

and Ranganathan, 1999) applied spectral decomposition to a weighted correlation 

matrix, obtained by combining correlation information with sequence conservation. 

 

In this thesis, I built on these previous approaches and present a statistically-

associated protocol (Chapter II), guided by machine learning (Chapter III), that exploits 

the HMM profiles to highlight positions and regions in an MSA that participate in 

determining the G-protein selectivity of GPCRs. The method is loosely based on that 

described in Hannenhalli & Russell, 2000. 

 

1.8 OUTLINE OF THE REPORT 

To capture and comprehend the signatures of G-protein coupling specificity in GPCRs, 

we analyzed and exploited one of the most extensive datasets (Inoue et al., 2019) of 

GPCR/G-protein couplings, created by our collaborator Dr. Asuka Inoue and his group 

(Tohoku University, Japan). It comprises binding affinities of a well-studied set of 144 

class A and 4 class B GPCRs with 11 heterotrimeric G-proteins experimentally derived 

using the TGFα shedding assay technique (Inoue et al., 2012). 

 

Chapter II presents an overview of the most extensive dataset capturing GPCR/G-

protein binding affinities. We describe a novel, statistically-associated protocol to 

extract sequence-based determinants of G-protein coupling specificity from GPCRs. 

We highlight the positions in the seven-transmembrane domain of a GPCR that 

delineate subtle features of G-protein selectivity and also assess the influence of 

length and amino acid composition of ICL3 and the C-terminus. 

 

Chapter III describes a novel, machine-learning guided framework to GPCR couplings 
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that relies on the statistically-associated protocol (Chapter II) and structure-based 

features of receptors. We interpret the predicted models to create a feature weight 

matrix that outlines the quantitative relevance of each feature. Lastly, we present the 

PRECOG web-server to predict the G-protein coupling specificity of any class A GPCR 

but also permits the user to design receptors with particular signaling properties. 

 

In the first part of Chapter IV, I use PRECOG to a) predict the couplings of 

uncharacterized GPCRs, b) predict the impact of mutations on GPCR couplings, and 

c) develop and experimentally validate the first designer receptor that exclusively 

couples to GNA12 (Inoue et al., 2019). I then demonstrate the reusability of the 

PRECOG framework on a recently available dataset of GPCR – G-proteins/β-arrestins 

and explain the differences between the determinants of G-protein and β-arrestin 

specificity. 

 

Chapter V summarizes the main results of Chapters II-IV and the practical implications 

and the outlook of the proposed machine-learning guided framework for future 

endeavors. 
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Chapter II: Determinants of G-protein coupling 
specificity in GPCRs 
 
2.1 ABSTRACT 

Upon activation, GPCRs undergo a reorganization of helices to effectively engage with 

their primary transducers: G-proteins. Despite several structures and databases 

available to date, the determinants of GPCR/G-protein coupling specificity remain 

elusive. Here, we investigate the most comprehensive dataset of quantified GPCR/G-

protein binding affinities derived from a robust assay (TGFα shedding) to reveal the 

complex patterns of the receptor couplings. This dataset enabled us to develop a 

statistically-associated protocol to extract sequence-based determinants of G-proteins 

coupling specificity, encompassing both transmembrane and extra-membrane regions 

of the GPCRs. The proposed protocol lays the foundation for a framework that can be 

applied to any binding data to unravel the positions that determine the subtype 

specificity. 

  

2.2 INTRODUCTION 

The last decade has benefitted from the determination of several 3D complexes of 

GPCR/G-protein (Carpenter et al., 2016; Draper-Joyce et al., 2018; García-Nafría et 

al., 2018b; Koehl et al., 2018) and structural bioinformatics efforts (Flock et al., 2017; 

Venkatakrishnan et al., 2013, 2016) that have shed light on GPCR activation. The 

structural analysis of these complexes has given further insights into subtle but key 

differences between Gs- and Gi/Go-stabilized receptors. For example, the distribution 

of residues, as well the extent of displacement of TM6 of Gs and Gi/Go-coupled 

receptors can be used to stratify receptors based on their G-protein coupling 

preferences (Draper-Joyce et al., 2018; Kang et al., 2018) (see section 1.4 in Chapter 

I). Furthermore, recent studies have investigated the role of intrinsically disordered 

regions in the intra/extra-cellular loops and the N/C-termini in interactions with partner 

proteins (Hilger et al., 2018; Wheatley et al., 2012), by undergoing a disorder-to-order 

transition (Shukla et al., 2013; Venkatakrishnan et al., 2014). However, despite these 
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advances, and decades of research, the exact determinants of G-protein coupling 

specificity in receptors are still largely unknown (Flock et al., 2017; Koehl et al., 2018). 

 

On the contrary, for the primary transducers of GPCRs, G-proteins, the C-terminus of 

the α5 helix in the Gα subunit has long been known to be a major determinant of GPCR 

specificity (Flock et al., 2017). The patterns of amino acids in G-proteins are 

recognized by GPCRs, analogous to the lock (G-proteins) and key (receptor) 

mechanism (Flock et al., 2017). The master keys (promiscuous receptors) can open 

multiple locks, while the specific keys (non-promiscuous receptors) can open just one. 

Studies have narrowed down the last 4-5 C-terminal residues of the α5 helix in the Gα 

subunits to be the determinants of GPCR coupling specificity across all G-proteins 

(Conklin et al., 1993; Inoue et al., 2012). This has led to the comprehensive screening 

of hundreds of receptors with G-proteins by altering only the last 4-6 amino acids of 

Gα subunits (Hsu and Luo, 2007; Kawano et al., 2016; Wang et al., 2009).  

 

While these assay techniques have expanded our knowledge of GPCR/G-protein 

couplings, they suffer from major disadvantages.  First, most cover only one G-protein 

subfamily. For example, the guanine nucleotide-binding assay for Gi/Go, cAMP 

assays for Gs (Thomsen et al., 2005). Second, they target G-proteins at the subfamily 

level, lacking the Gα subunit specificity (Inoue et al., 2012). Third, the coverage of G-

proteins is heterogeneous. For instance, not all G12/G13-coupled receptors can be 

activated using these techniques, leaving them poorly characterized (Inoue et al., 

2012); for example, they have the fewest coupling details in GPCR databases 

(GtoPdb/GPCRdb). The significance of the G12/G13 subfamily is evident from its 

implications in cardiovascular (Suzuki et al., 2009; Worzfeld et al., 2008) and metabolic 

diseases (Yang et al., 2020b), and its receptors in the breast (Kitayama et al., 2004), 

ovarian (Lee et al., 2006), and colon (Shida et al., 2003) cancers. 

 

The Transforming Growth Factor-α (TGFα) shedding assay (Inoue et al., 2012) was 

used to screen and develop a dataset comprising 144 class A and 4 class B GPCRs 

(Inoue et al., 2019), including the poorly characterized G12/G13-receptors, against 11 

chimeric G-proteins. We made use of a previously defined approach to extract 

specificity-determining positions from the dataset (Hannenhalli and Russell, 2000). We 
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interrogated the dataset to develop a statistically associated protocol that revealed 

sequence-based determinants of G-protein coupling specificity in GPCRs. 

 

2.3 MATERIALS AND METHODS 

2.3.1 Optimal binding affinity value 
The data derived from the TGFα shedding assay, hereafter referred to as the coupling 

dataset, comprises binding affinities of GPCRs (144 class A and 4 class B) against 11 

chimeric G-protein constructs (Inoue et al., 2019). These binding affinities are 

expressed in terms of LogRAi values, the (base 10) logarithmically transformed values 

of relative intrinsic activity (RAi), which range from -2 (no binding) to 0 (maximum 

response) (Table S1A). For detailed methods, please refer to the original article (Inoue 

et al., 2019). Given the small size of class B receptors, we considered only class A 

receptors for this analysis. We compared the coupling dataset with known coupling 

evidence from GtoPdb (Harding et al., 2018). While the coupling dataset is spread over 

a range of continuous values between -2 and 0, GtoPdb provides coupling evidence 

for each receptor based on published studies. For a fair comparison, we sought to 

binarize the LogRAi values of the coupling dataset as well the coupling evidence from 

GtoPdb. 

 

A GPCR/G-protein pair was defined to be true positive if it had at least three citations 

in GtoPdb; true negatives were those with no citations. We then performed a Receiver 

Operating Characteristic (ROC) curve analysis of the receptors that overlap between 

the coupling dataset and GtoPdb at varying thresholds of LogRAi to calculate the true- 

(TPR) and false-positive rates (FPR) (Table S1B). We obtained the LogRAi value of -

1.0 as the optimal threshold, where the TPR was maximum while the FPR was 

minimum with an Area Under the Curve (AUC) of 0.7. The above procedure was 

repeated by considering only primary couplings reported in GtoPdb and still obtained 

the same optimal threshold (LogRAi = -1.0) with an AUC of 0.78. We thus binarized 

all the binding affinities of the coupling dataset using this threshold. A pair was a true-

coupling if LogRAi ≤ -1.0 and false otherwise (Table S1A). 
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2.3.2 LogRAi profile vs sequence identity 
To determine if there is a correlation between LogRAi profile (binding affinities) and 

sequence identity, we performed a pairwise BLAST (Altschul et al., 1990) of each 

receptor in the coupling dataset against the remainder as database. Next, we drew 

scatter plots to compare the LogRAi profile (binding affinities) of each receptor with its 

most similar match by calculating their Euclidean distances. 

   

2.3.3 Sequence-based determinants of coupling specificity 
Inspired from a previously defined approach to extract determinants of coupling 

specificity, we built an MSA of the class A GPCR sequences by running the command-

line tool - hmmalign - of the HMMER3 package (v3.1b2) (Eddy, 1998) using the hidden 

Markov models (HMM) of 7 transmembrane receptors (rhodopsin family) from Pfam 

7tm_1 (Pfam accession: PF00001; 2016 release). For every chimeric G-protein, we 

subdivided the MSA into coupled (LogRAi ≥ –1.0) and not-coupled (LogRAi < -1.0). 

Lastly, the HMM profile of each sub-alignment was constructed using the hmmbuild 

tool of the HMMER3 package. 

 

2.3.3.1 7TM1 positional features 
We defined two types of positional features for each G-protein coupling group. The 

alignment positions that belong to the first type are present in both coupled and not-

coupled HMM profiles of the given G-protein coupling group. We performed the 

Wilcoxon signed-rank test to compare the amino acid distribution (bit-score of each 

amino acid) of every position in both coupled and not-coupled HMM profiles of 

receptors and defined significant positions as those with p-value ≤ 0.05 (Table S1E).  

 

We also explicitly considered insertions and deletions in one alignment relative to the 

other (coupled or not-coupled). Positions present only in the sub-alignment of coupled 

receptors were considered as insertions while those in sub-alignment of not-coupled 

receptors were considered as deletions. Each position was assigned its corresponding 

Pfam 7tm_1 position and BW numbering. The most conserved position within each 

helix was defined according to GPCRdb (Isberg et al., 2016) (Table S1D). 
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2.3.3.2 Extra-membrane features 
The ICL3 and C-terminus are known to play a role in determining the G-protein 

coupling specificity of GPCRs (Flock et al., 2015; Koehl et al., 2018; Rasmussen et 

al., 2011). These regions are either not well aligned in the Pfam/HMMER driven 

alignments owing to genuine heterogeneity of the local sequences, or completely 

absent from them in the case of much of the C-terminus. However, as they are well 

established to play key roles in determining coupling specificity, we decided instead to 

consider the length and amino acid compositions of the ICL3 and C-terminus as 

potential features determining G-protein specificity. We used the nonparametric 

Wilcoxon rank-sums test to provide a p-value and defined significant features as those 

having a p-value ≤ 0.05 (Table S1F). For positions lying in extra-membrane regions 

(i.e. where no BW numbering is possible), we quote only the Pfam 7tm_1 position. 

 

2.3.4 GPCR/G-protein interfaces 
We extracted domain (Pfam) to chain (PDB) mappings of all 3D complexes in the 

SIFTS database (Structure Integration with Function, taxonomy, and sequence) 

(Velankar et al., 2013). We considered only the complexes with Pfam accessions 

PF00001 (7-transmembrane receptor) for GPCRs and PF00503 for G-protein alpha 

subunits. A residue of the GPCR chain was considered to belong to the interface if at 

least one of its atoms was ≤ 6.5 Å from at least one atom of any residue in the G-

protein chain. 

 

All the interfaces were mapped from their GPCR chains to their corresponding 

canonical UniProt sequences by performing a pairwise alignment of the two 

sequences using the command-line tool - blastp - of the BLAST package (Altschul et 

al., 1990). Every interface residue was assigned its corresponding Pfam 7tm_1 

position and BW numbering (Table S1D). A residue was considered adjacent to the 

interface if the distance between at least one pair of atoms of the residue and the 

interface was ≤ 5 Å. 

 

The structural analysis was performed using the Biopython library (Cock et al., 2009), 

and all statistical tests and Euclidean distance calculations in this section were 

performed using the SciPy library (Virtanen et al., 2020) with scripts written in Python 
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2.4 RESULTS 

2.4.1 Overview of the coupling data-set 
The dataset derived from the TGFα shedding assay provides binding affinities of 148 

GPCRs (144 class A and 4 class B) against 11 chimeric G-proteins (Figure 2.1). The 

receptors in the dataset display a wide range of G-protein coupling profiles (Figure 

2.1). Out of these 144 receptors, 11 that couple to at least one G-protein in the coupling 

dataset, have neither primary nor secondary couplings reported in GtoPdb (Table 

S1C). These include the protease-activated receptors, involved in the inflammatory 

response (Heuberger and Schuepbach, 2019), diet-induced obesity and metabolism 

(Badeanlou et al., 2011), and the purinergic receptors (P2RY10 and P2RY12), which 

contribute to platelet aggregation, apoptosis, neurogenerative diseases and gliomas 

(Burnstock, 2013; Burnstock et al., 2010). 
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Figure 2.1: Binding affinities of 148 GPCRs with 11 chimeric G-proteins in the coupling dataset. 
Binding affinities were measured in terms of LogRAi values. Cell colours vary from red (minimum 

response; LogRAi = -2) to green (maximum response; LogRAi = 0). Row labels are colored according 

to the GPCR subfamily. 

 

2.4.2 LogRAi profile vs. Sequence similarity 
We compared the LogRAi values of each receptor with the most similar match 

(sequence-wise) in the coupling dataset (see Methods). While we observed receptors 

with low sequence similarity with similar LogRAi profiles, we also noticed receptors of 

the same subfamily with very different LogRAi profiles. For example, MTNR1A 

(melatonin receptor type 1A) shares a low sequence similarity (~27%) with NPFFR2 

(neuropeptide FF receptor 2) but similar LogRAi profiles (Euclidean distance = 0.27; 

Figure 2.2), though both belong to different GPCR sub-families. In contrast, PTH1R 

and PTH2R (members of the parathyroid hormone receptor family) show over 50% 

sequence similarity but very contrasting LogRAi profiles (Euclidean distance = 3.22; 

Figure 2.7B). 

 

 

Figure 2.2: Scatter plot of LogRAi profile vs. sequence identity of receptors in the coupling 
dataset. Comparison of LogRAi profiles (calculated in Euclidean distance) with sequence identity (in 
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percentage). The color of bubbles corresponds to their respective GPCR subfamily. The grey-colored 

bubble with an edge color of black refers to MTNR1A (melatonin receptor type 1A) and NPFFR2 

(neuropeptide FF receptor 2) that share low sequence identity (~27%) but similar LogRAi profiles. 

 

2.4.3 Comparison with GtoPdb 
We compared the coupling preferences of the receptors in the coupling dataset with 

that of their known coupling evidence in GtoPdb. While the coupling dataset is a 

continuous range of LogRAi values, GtoPdb contains only binary true positives of 

known G-protein sub-families for a given receptor. We thus binarized the LogRAi 

values with the optimal cut-off -1.0, obtained from the ROC curve analysis (Figure 2.3; 

Table S1A; see Methods).  

 

 
Figure 2.3: ROC curves of LogRAi values in the coupling dataset vs. coupling values known 
from GtoPdb. Analysis performed by considering all couplings is shown in yellow, while the one 

performed by considering only primary couplings is shown in red. 
 

The number of receptors that couple to a given G-protein varies across G-proteins. 

GNAI1 (Gi/o subfamily) couples to the most receptors (119) and GNA15 (Gq/G11 

subfamily) to the fewest (Figure 2.4).  
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Figure 2.4: Number of receptors coupling to each G-protein in the coupling dataset. LogRAi = -

1.0 was used as the optimal cut-off (see Methods). 
 

Nearly half of the GPCR couplings (176 out of 366 or 48%) reported in the coupling 

dataset were not known in GtoPdb (Figures 2.5B-D) and cover all the G-protein 

subfamilies. The majority of the new couplings are G12/G13-coupled receptors (55 out 

of 176 or 31%), expected as these have to date been least studied. Of all the G12/G13 

couplings, the coupling dataset accounts for 76% while GtoPdb accounts for 2% of 

them. Gs-coupled, Gi/Go-coupled, and Gq/G11-coupled receptors show an overlap of 

35%, 58%, and 62%, respectively, between the coupling dataset and GtoPdb. 
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Figure 2.5: Comparison of GPCR couplings in the coupling dataset with GtoPdb. (A, center) In 

the center, Venn diagram of number receptors coupled to each G-protein subfamily in the TGFα 

shedding assay dataset. (B-E) Bar plots of receptors coupled to four G-protein subfamilies in the 

coupling dataset and GtoPdb. 
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2.4.4 Variable promiscuity of the receptors 
We defined a GPCR to be promiscuous if it coupled to a minimum of one member 

each from at least two different G-protein sub-families. While G12/G13-coupled 

receptors are most promiscuous, Gi/Go-coupled receptors are most specific (Figures 

2.5A, 2.6), later corroborated by an independent study (Avet et al., 2020). 

 

A total of 40 receptors coupled to all G-protein subfamilies (Figure 2.5). Many 

receptors show coupling preference to a specific G-protein subfamily, such as the 

melatonin, and opioid receptors to Gi/Go subfamily; the adrenoreceptors and 

prostanoid receptors to the Gs subfamily (Figure 2.7A). At the other extreme, there 

are several receptors, such as P2Y (purinergic), lysophospholipid, and endothelin, that 

couple to more than one G-protein subfamily. Overall in the coupling dataset, 

G12/G13-coupled receptors are most promiscuous while Gi/Go-coupled receptors are 

most specific (Figure 2.6). 

 

 
Figure 2.6: Promiscuity of the receptors in the coupling dataset. The bars represent the promiscuity 

of the receptors (ranging 1 to 4) that couple to the corresponding G-protein subfamily. While 1 means 

the receptors are specific to the given G-protein subfamily, 4 means the receptors couple to all the G-

protein subfamilies. 

 
Interestingly, there were several receptors showing specificity towards specific 

members of a G-protein subfamily. For instance, GPR55 (G-protein-coupled receptor 

55) is a putative cannabinoid receptor (Lauckner et al., 2008) that couples to GNA13, 
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but shows no coupling specificity towards GNA12 (Figure 2.7A), though both the Gα 

subunits are members of the G12/G13 subfamily. Likewise, NMBR (neuromedin-B 

receptor), which plays role in the contraction of smooth muscle (Kilgore et al., 1993), 

neuronal responses (Mishra et al., 2012), and cell growth regulation (Matusiak et al., 

2005), couples to GNAQ and GNA14, but has only a weak binding affinity towards 

GNA15, though all the three Gα subunits belong to the Gq/G11 subfamily (Figure 

2.7A). Although the precise meaning of these sub-subfamily specificities is not clear, 

these results highlight the utility of this approach to elucidating the finer functional 

details of GPCR/G-protein coupling. 

 
Similarly, the dataset also contains several examples of differential coupling 

specificities of receptors within the same family, a well-known characteristic of GPCRs 

(Shinoura et al., 2002; Williams et al., 1998). For instance, the dopamine receptors, 

which are involved in several neurological processes such as cognition, spatial 

working memory, pleasure, learning, and motor function (Girault and Greengard, 

2004), are classified into two sub-types: D1 and D2. While DRD1 and DRD5 (D1-type) 

show higher binding specificity towards the Gs family, DRD2, DRD3, and DRD4 (D2-

type) couples preferentially to the Gi/Go subfamily (Figure 2.7B). Similarly, while 

HRH2 of the histamine receptor family couples to the Gs subfamily, HRH1, HRH3, and 

HRH4 prefer Gi/Go. 
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Figure 2.7: Variable LogRAi profiles in GPCR families in the coupling dataset. (A) Heatmap of 

differential couplings in GPCR families. The color intensity of a cell is the fraction of receptors in the 

corresponding GPCR family that couple to the given G-protein subfamily. The number of receptors in 

the family is shown in parenthesis. (B) LogRAi values of prostanoid receptors (upper panel), dopamine 

receptors (middle panel), and parathyroid hormone receptors (lower panel). 

 
2.4.5 G-protein specificity determining features 
We performed statistical tests to identify determinants of coupling specificity in the 

7TM domain (Figure 2.8; Table S1E) and in the extra-membrane region (Table S1F) 

of GPCRs that is most strongly associated with binding to each of the 11 chimeric G-

proteins. 

 
Figure 2.8: Illustrative example of a Pfam 7tm_1 position for the GNAI3 coupling group. (A) MSA 

of Gi/Go- coupled/not-coupled receptors, highlighting Pfam 7tm_1 position: I167 (BW: 5.67) in cyan. (B) 

Amino acid distribution at the highlighted position. (C) The highlighted position is annotated as the 

determinant of coupling specificity (if statistically significant) and shown on structure (PDB ID: 3SN6). 

 

The determinants of coupling specificity are more abundant in the TM helices of Gs-, 

Gi/Go- and Gq/G11- coupled receptors. A surprising finding was the much greater 

contribution from the ICL3 towards the G12/G13 specificity in the receptors (Figure 

2.9). 
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Figure 2.9: Distribution of determinants of coupling-specificity in the receptors. (A) Across G-

protein subfamilies. (B) Across the topology. 

 

Of the 51 identified positional features (determinants of coupling specificity), only 13 

(23%) lie directly at the G-protein binding sites on the cytosolic side of the ICL3 and 

TM helices 5 and 6, including those that are absent from Gs-coupled receptors, but 

present in Gi/Go-coupled receptors (Pfam 7tm_1 positions corresponding to ICL3: 

174, 191-194) (Table S1E; Figure 2.10). Another 21% of the positions lie adjacent to 

the G-protein binding sites (see Methods) and thus likely participate in the activation 

mechanism (Table S1E). The remainder of positions lies either in the extracellular 

pockets (ligand binding sites) or within the TM helices, thus might play a role in 

allosteric communication during activation (Figure 2.10B). 
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The determinants of coupling specificity show a wide range of selectivity to G-protein 

coupling groups. Only position N244 (BW: 7.29) in the receptor is the determinant of 

coupling specificity in all the G-protein subfamilies (Figure 2.10A). Other positions (e.g. 

T193 and K194 in ICL3) only contribute to selectivity to a single (Gi/Go) G-protein 

subfamily (Figure 2.10A). 

 

Specificity determining positions vary even for members of the same G-protein 

subfamily. For example, position L6 (BW: 1.54) is selective for GNA12 but not GNA13, 

whereas I160 (BW: 5.54) is selective to GNA13 but not GNA12 (Figure 2.10A). We 

also identified determinants of coupling specificity that are insertions in one subfamily 

of G-proteins while deletions in others. For example, position G1 (BW: 1.49) of the 

7TM1 domain is an insertion in GNAI1- and GNAI3- coupled receptors, but a deletion 

in Gs-coupled receptors (Figure 2.10A). It is noteworthy that 3 out of 4 deletions are 

determinants of coupling specificity to the Gs subfamily while most of the insertions 

are determinants of Gi/Go coupling specificity (Figure 2.10A). 
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Figure 2.10: Determinants of G-protein coupling specificity in the 7TM1 domain of the receptors. 
(A) Bubble matrix of the positional features. (B-E) Structures showing the positional features (Pfam 

7tm_1 positions with BW numbering in parenthesis) in receptors specific to each G-protein subfamily. 

Significant positions are shown in orange (when the amino acid distribution is different in coupled and 

not-coupled receptors); red (when the position is found as a deletion); green (when the position is found 

as an insertion). 

 

The statistical analysis of the extra-membrane region (Table S1F) reveals that, 

besides length, nearly every amino acid property group in ICL3 and C-terminus helps 

in determining the coupling specificity of G12/G13- and Gq/G11-coupled receptors 

(Figure 2.11). The specificity of Gi/Go-bound receptors is least influenced by ICL3/C-

terminus (Figure 2.11). 

  

 
Figure 2.11: Determinants of coupling specificity in the extra-membrane region of the receptors. 
Length and amino acid composition (y-axis) of ICL3 and C-terminus of GPCRs that were found to be 

statistically significant (p-value ≤ 0.05) for a G-protein coupling group (x-axis) are shown as bubbles. 

 

2.5 DISCUSSION 

The coupling dataset is the largest and most extensive resource of GPCR/G-protein 

binding affinities to date. It is the first dataset that provides binding affinity at the level 

of individual G-protein subunits rather than their sub-families. It captures coupling 
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information of receptors that have been poorly characterized in GtoPdb (such as 

purinergic and protease-activated receptors), and the subtle but key differences in 

preferential couplings of GPCRs towards the members of the same G-protein 

subfamily (e.g. prostanoid receptors and dopamine receptors). The coupling dataset 

contains many receptors that bind to the poorly characterized G12/G13 subfamily, 

greatly expanding the knowledge of this coupling type. Some of the newly identified 

G12/G13-coupled receptors (e.g., CNR1, FFAR1, GHSR, GPR35, HRH2, HTR2C) 

have been implicated in type 2 diabetes, heart failure and hypoxia, inflammation, 

growth hormone deficiency, obesity (Addy et al., 2008; Divorty et al., 2015; Pantel et 

al., 2006) and are already targets for agonists approved as therapeutics (Hauser et 

al., 2017), suggesting possibilities for drug repurposing. Another distinctive attribute of 

the G12/G13-coupled receptors captured by the coupling dataset is their high 

promiscuity: G12/G13-coupled receptors are the most promiscuous, the Gi/Go- are 

the most specific, a remarkable feature also observed in a recent study (Avet et al., 

2020). 

 

Given its merits, a critical issue with this experimental dataset is the use of chimeric 

Gα subunits, which differ only in the last six amino acids of its C-terminus while the 

rest of the backbone is the same across all the G-proteins. Though recent structural 

studies have demonstrated the involvement of the Gα backbone in its interaction with 

the receptors (Carpenter et al., 2016; Draper-Joyce et al., 2018; García-Nafría et al., 

2018b; Kang et al., 2018; Koehl et al., 2018),  the bulk of evidence continues to support 

the notion that determinants of coupling specificity in G-proteins lie largely in the C-

terminal α5 helix (García-Nafría et al., 2018b). Perhaps the biggest support for this 

comes from the fact that the coupling dataset agrees very well with known couplings 

(Figure 2.3). Inarguably, however, the new availability of a GPCR/G-protein coupling 

dataset that encompasses the native Gα sequences is sure to provide a more 

complete picture of the determinants of coupling specificity. 

 

Although the determinants of GPCR selectivity in G-proteins have been identified, the 

determinants of G-protein selectivity in GPCRs are yet to be fully known (Flock et al., 

2017). The protocol we presented here provides an approach to identify the residues 

that enable/disable coupling to a given G-protein. We find these determinants to be 

present throughout the hydrophobic regions of the 7TM bundle as well as in ICL3 and 
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C-terminus, which is partly corroborated by other studies (Carpenter et al., 2016; Flock 

et al., 2017; García-Nafría et al., 2018b; Kang et al., 2018; Koehl et al., 2018). This 

indicates that such positions play a role in allosteric regulation to control and stabilize 

several intermediate GPCR/G-protein 3D complexes by linking the ligand and G-

protein binding sites, a mechanism demonstrated using contact network analysis by 

Dr. Francesco Raimondi in the paper associated with this thesis (Inoue et al., 2019), 

and in previous studies (Angelova et al., 2011; Venkatakrishnan et al., 2013, 2016). 

 

The Gs-coupled receptors are predominated by deletions over insertions and the 

reverse is true for Gi/Go (Figure 2.9A). This can be attributed to the bulkier C-terminal 

side-chains in Gs compared to Gi/Go, which partly explains why Gi/Go-bound 

receptors, with narrower crevices, are normally unable to couple to Gs proteins 

(García-Nafría et al., 2018b; Kang et al., 2018). Many of the determinants we identified 

are specific – and different – for members of the same G-protein subfamily. This might 

explain why some GPCRs show diverse couplings to G-proteins that would previously 

have been the same. Our observation that the length and amino acid composition of 

the C-terminus contributes towards the Gq/G11 specificity also agrees with the 

findings of a previous study (Qin et al., 2011). 

 

This chapter presents a systematic, statistically-associated protocol that can be 

applied to any binding assay dataset to unravel the underlying sequence-based 

features that regulate the molecular mechanisms of the given interacting proteins. 

Such a protocol can be (i) complemented with machine learning techniques (Chapter 

III) to predict several unknown interactions, study variants, or develop engineered 

proteins (Chapter IV), and (ii) developed into a framework that can be applied to other 

transducers of GPCRs (β-arrestins or GRKs) or any other binding data where 

specificity is unknown (Chapter IV). 
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Chapter III: PRECOG (PREdicting COupling 
probabilities of G-protein coupled receptors) 
 
3.1 ABSTRACT 

Machine learning (ML) algorithms are extensively applied to answer many biological 

questions. Here, we combine the method described in the previous chapter with 

statistically-associated structural information obtained from 3D complexes to develop 

a machine learning-guided framework that can predict GPCR couplings. Users can 

access the PRECOG webserver to (a) predict coupling probabilities of class A GPCRs; 

(b) visualize receptor sequence and structural features responsible for the coupling, 

and (c) rationally design a receptor. PRECOG can be freely accessed by academic 

users at precog.russelllab.org. The adaptability of the framework lends itself to the 

application on other binding data where the subtype information is unknown. 

 
3.2 INTRODUCTION 

Machine learning (ML) techniques have been beneficial at solving several biological 

problems such as prediction of post-translational modifications (PTMs) (Horn et al., 

2014), detection of signal peptide cleavage sites (Almagro Armenteros et al., 2019), 

engineering proteins (Bedbrook et al., 2019), predicting protein tertiary structures 

(Senior et al., 2020) and antibiotic discovery (Stokes et al., 2020). ML-based 

algorithms consider raw features obtained from large, often sparsely annotated data 

sets, such as binding affinities or a collection of images or genomes, to uncover and 

exploit intricate patterns buried deep inside them to develop probabilistic models that 

predict the outcomes on independent datasets. 

ML methods have also been applied to predict couplings of GPCRs with G-protein 

subfamilies using sequence-based features (Cao et al., 2003; Möller et al., 2001; 

Sgourakis et al., 2005a, 2005b; Yabuki et al., 2005) (see section 1.5 in Chapter I). 

PRED-COUPLE2 (Sgourakis et al., 2005b) is a publicly available web server that 

predicts GPCR/G-protein coupling specificity. It suffers from two major drawbacks. 

First, its predictions are limited to G-protein subfamilies and not G-protein specific. As 

http://precog.russelllab.org/
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seen in the coupling dataset (see section 2.4.4 of Chapter II) and databases of known 

couplings, receptors display varied binding affinities even to the members of the same 

G-protein subfamily, implying the need to develop a predictor that can capture GPCR 

couplings at the level of Gα subunits. PRED-COUPLE2’s other drawback is that it uses 

a black-box model, artificial neural networks. Although this outperforms previous 

predictors, it does not provide mechanistic insights by way of feature relevance. The 

requirement for an interpretable machine learning model is essential to understand the 

role played by each feature in determining the outcome (Azodi et al., 2020). This is 

especially useful in the context of designing receptors such as Designer Receptors 

Exclusively Activated by Designer Drugs (DREADDs) (Wess et al., 2013). 

 
Protein structure provides insights into function. Though structural information was 

largely absent for the earlier coupling predictors, multiple structures of GPCR/G-

protein 3D complexes have been solved in the last decade (Carpenter et al., 2016; 

García-Nafría et al., 2018b; Kang et al., 2018; Koehl et al., 2018; Rasmussen et al., 

2011), providing a rich source of interaction information, that could potentially be 

exploited by techniques that assess how sequence changes influence interaction 

interface structures (Aloy and Russell, 2002; Schymkowitz et al., 2005; Yang et al., 

2020a). 

 
Here, we combine the procedure described in Chapter II and statistically significant 

features derived from structural interfaces to develop an ML-based predictor of 

GPCR/G-protein couplings (PRECOG). The PRECOG webserver significantly 

outperforms the previous methods on an unseen, independent dataset derived from 

GtoPdb (Harding et al., 2018). For a given class A GPCR, PRECOG (a) displays the 

determinants of coupling specificity for a given G-protein on the receptor sequence as 

well as structure (known or homologous); (b) predicts the impact of mutations on G-

protein specificity, and; (c) suggests point mutations to aid in designing artificial 

GPCRs (DREADDs) with selective couplings. PRECOG is freely available for 

academic users at precog.russelllab.org. Lastly, the ML-guided framework holds 

promise for future use on other protein-protein interaction data to determine subtype 

specificity using the binding data. 
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3.3 MATERIALS AND METHODS 

3.3.1 Dataset 
The data from the TGFα shedding assay, hereafter referred to as the coupling dataset, 

quantifies binding affinities (in terms of LogRAi values) of 144 class A GPCR 

sequences with 11 chimeric G-proteins (see section 2.4.1 in Chapter II). We performed 

a ROC curve analysis to obtain the optimal LogRAi cutoff of -1.0 to binarize the binding 

affinities of the receptors to G-proteins into coupled (LogRAi value ≥ -1.0) or not-

coupled (LogRAi value < -1.0) (see section 2.3.1 in Chapter II). 

 

3.3.2 Feature generation 
An ML algorithm takes a feature vector as input. The vector encodes the descriptors 

of the given problem statement. For GPCR/G-protein coupling, we used statistical 

tests to identify the sequence and structure-based features in receptors as descriptors. 

The sequence-based features (7TM1 position and extra-membrane) were retrieved as 

described before (see section 2.3.3 in Chapter II). We obtained the structure-based 

features using InterPreTS (Interaction prediction through tertiary prediction) (Aloy and 

Russell, 2002, 2003). For a given pair of putative interactors aligned to their respective 

homologs, InterPreTS evaluates the fitness (in terms of Z-scores) of any possible 

interacting pair on a given 3D complex by using the learned parameters of amino-acid 

pair contacts across protein interfaces (empirical potentials). 

 

We used Pfam accessions PF00001 for GPCRs and PF00503 for G-protein alpha 

subunit to search for GPCR/G-protein 3D complexes in the SIFTS database (Velankar 

et al., 2013) (Table 3.1). For each of the six complexes retrieved, we aligned the 144 

class A GPCRs to the GPCR chain and the 11 chimeric Gα subunits to the G-protein 

chain in the given complex structure using ClustalW (Thompson et al., 1994). The 

FASTA sequence of chimeric Gα subunits was constructed using only the 6 amino 

acids of the native Gα subunit while the remainder was replaced with that of GNAQ. 

Next, all the pairs of alignments were assessed using InterPreTS, and for every 

complex, a Z-score was returned for each pair of receptors and chimeric Gα subunit. 

Finally, we compared the Z-score distribution (Wilcoxon rank-sums test) of coupled 

receptors with that of not-coupled receptors for every Gα subunit in a complex. For a 
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given G-protein coupling group, only the complexes having a p-value ≤ 0.05 were 

selected as a suitable template to model the interaction. 

 

PDB ID 
GPCR G-protein 

Gene symbols UniProt 
Accession Chain Gene symbols UniProt 

Accession Chain 

6DDE Oprm1 P42866 R GNAI1 P63096 A 

6D9H 
CHRM4 P08173 R 

GNAI2 P04899 A 
ADORA1 P30542 R 

6GDG ADORA2A P29274 A GNAS P63092 D 

3SN6 ADRB2 P07550 R GNAS P04896 A 

6CMO RHO P08100 R GNAI1 P63096 A 

6G79 HTR1B P28222 S GNAO1 P09471 A 

 
Table 3.1: Known GPCR/G-protein 3D complexes (release Jan 2019). All the 3D complexes were 

extracted from the SIFTS database (release Jan 2019) using their PDB chain to Pfam mappings. 

 

3.3.3 Machine learning 
Logistic regression is an interpretable machine learning technique previously applied 

to other protein interaction problems (Dhole et al., 2014; Dou et al., 2012). We used 

the Logit/Log-reg classifier (logistic regression classifier) provided by the Scikit-learn 

library (Pedregosa et al., 2011). A logistic regression model is defined as: 

𝑔𝑔(𝑥𝑥) = � 𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖 

where x1, x2, x3 ..., xn represent the input features, w1, w2, w3, ..., wn represent the 

regression coefficients (also called feature weights), and n represents the number of 

features. Thus, the probability of input class A GPCR to couple to G-protein can be 

modeled in terms of logistic function as: 

𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑔𝑔(𝑥𝑥) 

Regularization is a commonly used technique to prevent overfitting of machine 

learning models. Logistic regression controls overfitting using a regularization 

parameter called Lambda (λ), which is proportional to the penalty of finding an 

overfitting model. To avoid overfitting, Log-reg implements regularization in two forms: 
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L1 (adds product of λ and the sum of regression coefficients to the loss function) and 

L2 (adds product of λ and the sum of the squares of the regression coefficients to the 

loss function). In this study, we used the L2 form, which minimizes the following cost 

function: 

min (
1
2

 𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 � log �𝑒𝑒�−𝑦𝑦𝑖𝑖�𝑋𝑋𝑖𝑖
𝑇𝑇𝑤𝑤+𝑐𝑐�� + 1�

𝑛𝑛

𝑖𝑖=1

) 

where c ∈ R ∧ n is the intercept, C is the inverse of λ and n is the number of iterations. 

The lib-linear method was used as the optimization algorithm since it was shown to 

work well on small datasets (Fan et al., 2008) such as ours. The weights obtained 

through logistic regression after the training process can be used to study the 

importance of features (Dhole et al., 2014; Dou et al., 2012). We exploited this property 

of the algorithm to understand the contribution of features to every G-protein coupling 

group. 

 

3.3.4 Training and test sets 
For a given G-protein coupling group, a vector of three types of features (a) 7TM1 

positional, (b) extra-membrane, and (c) structural features was constructed for each 

of the 144 class A GPCRs. First, every statistically significant 7TM1 positional feature 

in the input sequence encoded two bit-scores into the vector, one each from coupled 

and not-coupled HMM profiles of the given G-protein coupling group (see section 2.3.3 

in Chapter II). If a position was an insertion or deletion (i.e. present in only one of the 

coupled or not-coupled HMMs), the single bit-score obtained from the respective HMM 

profile was encoded into the vector. If a given 7TM1 position had no amino acid 

present, the highest bit-score (considering both the HMM models) was encoded into 

the vector. Second, for a given G-protein coupling group, the extra-membrane features 

(statistically significant length and amino acid composition of the ICL3 and C-terminus) 

of GPCRs were encoded into the vector. Third, Z-scores of statistically significant 

complexes for every coupling group were obtained from InterPreTS (default 

parameters; 100 random permutations) and encoded into the vector. This way a 

training matrix was created for every G-protein coupling group. 

 

Feature scaling of the training matrix aids in converging the algorithm faster and 

computing the feature relevance (Dou et al., 2012). All the features in the training 
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matrices were scaled in the range of 0 to 1 using the MinMaxScaler function of the 

Scikit-learn library (Pedregosa et al., 2011). The binarized coupling information (1: 

coupled and 0: not-coupled) for a given G-protein coupling group was added as the 

last column to every training matrix. Thus, the training set comprises 11 training 

matrices, one for each G-protein coupling group. 

 
To compare the performance of our predictor with that of PRED-COUPLE2 (Sgourakis 

et al., 2005b), a publicly available web-server of GPCR/G-protein couplings, we 

retrieved 86 class A GPCRs that were neither included in the coupling dataset nor in 

that of PRED-COUPLE2. For this independent test set, 11 test matrices (one for each 

G-protein coupling group) were created, each containing 86 vectors encoding the 

features described above for the corresponding G-protein coupling group. Every test 

matrix was transformed using the feature-scaling parameters obtained from the 

corresponding training matrix of the given G-protein coupling group. 
 
3.3.5 Cross-validation and metrics 
We then performed a grid search using stratified 5-fold cross-validation (5-fold-CV) 

(available from the Scikit-learn library) to obtain the optimal value of C (inverse of λ). 

Given the imbalanced nature of the dataset, we set the class_weight parameter to 

balanced, which automatically adjusts the weights of the classes (in this case, coupled 

and not-coupled receptors) inversely proportional to their frequencies in the training 

matrix. Next, we randomly divided every training matrix into 5 equal stratified subsets, 

preserving the class ratio between the number of coupled and not-coupled receptors. 

During each fold, we treated one of the subsets as the validation set while the 

remaining four as the training set. We chose Area Under the Curve (AUC) as the metric 

to select the best model (hyperparameters) for every G-protein coupling group. To 

ensure that any random division of the training matrix will give similar results (minimum 

variance) during the cross-validation process, we repeated the experiment ten times. 

The performance of our predictor was assessed using standard metrics (Table S2A): 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑤𝑤𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑒𝑒𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑀𝑀 (𝑀𝑀𝐶𝐶𝐶𝐶) =
𝑀𝑀𝑡𝑡 × 𝑀𝑀𝑐𝑐 − 𝑓𝑓𝑡𝑡 × 𝑓𝑓𝑐𝑐

�(𝑀𝑀𝑡𝑡 + 𝑓𝑓𝑡𝑡)(𝑀𝑀𝑡𝑡 + 𝑓𝑓𝑐𝑐)(𝑀𝑀𝑐𝑐 + 𝑓𝑓𝑡𝑡)(𝑀𝑀𝑐𝑐 + 𝑓𝑓𝑐𝑐)
 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑐𝑐𝑀𝑀𝑐𝑐𝐴𝐴 (𝐴𝐴𝐶𝐶𝐶𝐶) =
𝑀𝑀𝑡𝑡 + 𝑀𝑀𝑐𝑐

𝑀𝑀𝑡𝑡 + 𝑓𝑓𝑡𝑡 + 𝑀𝑀𝑐𝑐 + 𝑓𝑓𝑐𝑐
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𝑃𝑃𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐 (𝑃𝑃𝑃𝑃𝑃𝑃) =
𝑀𝑀𝑡𝑡

𝑀𝑀𝑡𝑡 + 𝑓𝑓𝑡𝑡
 

𝑃𝑃𝑒𝑒𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐 (𝑃𝑃𝑃𝑃𝐶𝐶) =
𝑀𝑀𝑡𝑡

𝑀𝑀𝑡𝑡 + 𝑓𝑓𝑐𝑐
 

𝑆𝑆𝑡𝑡𝑒𝑒𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑀𝑀𝐴𝐴 (𝑆𝑆𝑃𝑃𝑃𝑃) =
𝑀𝑀𝑐𝑐

𝑀𝑀𝑐𝑐 + 𝑓𝑓𝑡𝑡
 

𝐹𝐹1 − 𝑚𝑚𝑒𝑒𝑀𝑀𝑒𝑒𝐴𝐴𝑐𝑐𝑒𝑒 (𝐹𝐹1𝑀𝑀) =
𝑀𝑀𝑡𝑡

𝑀𝑀𝑡𝑡 + 1
2 (𝑓𝑓𝑡𝑡 + 𝑓𝑓𝑐𝑐)

 

 

3.3.6 Randomization test 
We performed a randomization test (Salzberg, 1997), which has previously been used 

to assess overfitting (Murakami and Mizuguchi, 2010). For every G-protein coupling 

group, we randomly shuffled the original classes of the training matrix while preserving 

the class ratio between the number of coupled and not-coupled receptors. Next, we 

performed the cross-validation (see the previous section) on the randomized dataset 

to make 11 predictive models. The performance of the models created using the 

randomized dataset was assessed using the same metrics as described in the last 

section. 

 
3.3.7 Workflow 
To make predictions, the predictor performs steps shown in Figure 3.1A. First, the 

input GPCR sequence is aligned to the Pfam 7tm_1 HMM profile using the hmmalign 

tool of the HMMER package (v3.1b2) (Eddy, 1998). Using the alignment results, the 

determinants of coupling specificity corresponding to all the G-proteins are mapped to 

the input sequence and extracted. Second, InterPreTS is run in parallel to calculate 

the Z-scores for every input GPCR using each of the six best 3D complexes. As an 

input to InterPreTS, the PDB file of the 3D complex into consideration and MSA of the 

input receptor(s) along with that of the chimeric G-proteins are provided. 

 

For a given G-protein, a vector consisting of corresponding sequence-based features 

(7TM1 positions and extra-membrane) and structure-based features (Z-score derived 

from InterPreTS), is constructed and its probability is calculated using its 

corresponding model. If mutations are given, then for each the concerned position of 
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the receptor sequence is changed before the feature matrix is constructed for a given 

G-protein. 
 
3.3.8 Webserver 
We developed the PRECOG web server by using the Flask web framework (Flask, 

2018). The internal pipeline to execute the workflow was implemented using Python.  

To view positions of coupling specificity, the input sequence is aligned to all the 3D 

structures of class A GPCRs using BLAST (Altschul et al., 1990). The 3D structures 

were obtained from the PDB chain to Pfam domain mappings provided in the SIFTS 

database (Velankar et al., 2013). At the front end, we used several JavaScript libraries 

along with neXtProt sequence viewer (Gaudet et al., 2017) to view input sequence(s) 

and JSmol (Hanson et al., 2013) to view 3D protein structure. 
 
3.4 RESULTS 

3.4.1 3D complex information 
In the last five years, the number of available GPCR/G-protein 3D complexes has gone 

from 1 to 6 (Carpenter et al., 2016; Draper-Joyce et al., 2018; García-Nafría et al., 

2018b; Kang et al., 2018; Koehl et al., 2018; Rasmussen et al., 2011). Thus, we sought 

to use InterPreTS to investigate if these complex structures can be used as templates 

to model GPCR/G-protein couplings (Aloy and Russell, 2002, 2003) (see Methods). 

As expected three complexes (PDB IDs: 3SN6, 6GDG, and 6G79) are most suitable 

for modeling the Gα subunits in the coupling dataset that match those in the complexes 

(i.e. GNAS, GNAL, and GNAI1, respectively). Intriguingly, two additional GPCR-Gi/Go 

complexes (PDB IDs: 6CMO and 6DDE) are also good for modeling GPCR-G12/G13 

couplings (Table 3.2). 

 

PDB ID/G-protein 
GNAS GNAS GNAI1 GNAI1 GNAI2 GNAO1 

3SN6 6GDG 6CMO 6DDE 6D9H 6G79 

GNAI3 0,3024 0,2689 0,3346 0,8 0,5459 0,0869 

GNAI1 0,1097 0,1777 0,2532 0,7891 0,6439 0,0211 

GNAZ 0,761 0,4352 0,67 0,7671 0,4938 0,5142 

GNAO1 0,2898 0,5427 0,2355 0,692 0,7901 0,1435 
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GNA12 0,5974 0,1736 0,0138 0,2057 0,0654 0,4283 

GNA13 0,4886 0,5341 0,0023 0,0232 0,0685 0,343 

GNAQ 0,1088 0,8756 0,7527 0,8346 0,7802 0,3253 

GNA14 0,3056 0,9542 0,9804 0,3544 0,9837 0,0871 

GNA15 0,7908 0,3556 0,0831 0,6289 0,8608 0,8187 

GNAS 0,0108 0,0416 0,5957 0,2185 0,32 0,8861 

GNAL 0,0125 0,1298 0,5147 0,2586 0,3726 0,5344 

 
Table 3.2: Statistical associations of GPCR/G-protein 3D complex. Statistical significance of 

InterPreTS scores derived from GPCR/G-protein 3D complexes (columns) and the TGFα shedding 

assay couplings (rows) (scores with p-values ≤ 0.05 are highlighted in green). 

 
3.4.2 Machine learning-based predictor 
PRECOG was trained on one of the most quantified datasets of GPCR/G-protein 

couplings (Chapter II; Figure 3.1A, B). We created two versions of the tool: one trained 

only with sequence-based features, and another trained with both sequence and 

structure-based features. PRECOG returns G-protein coupling specificities in terms of 

probabilities, where a probability greater than 0.5 indicates coupling. The 

performances of both versions of PRECOG were compared to PRED-COUPLE2 

(Sgourakis et al., 2005b) on an independent test set comprising 86 class A GPCRs 

reported in GtoPdb (Figure 3.1C) (see Methods) but absent from the datasets used to 

train both methods. For both, only the four G-protein subfamilies are considered when 

evaluating the predictions (since PRED-COUPLE2 only predicts these). Grouped 

PRECOG prediction for subfamilies was considered to be positive if at least one 

member was predicted to couple a given receptor. Due to the lack of a true negative 

set, we used recall (or sensitivity) as the metric to compare the performances of the 

two predictors (Figure 3.1C). PRECOG (both versions) significantly outperformed 

PRED-COUPLE2 on the test-set, demonstrating the relevance of the coupling dataset 

(Table S2B). However, the addition of structural information only marginally improved 

the performance of the Gs subfamily models whereas remain unaffected for the other 

G-protein subfamilies (Figure 3.1C). Moreover, considering both versions, PRECOG 

performed poorest for the Gs subfamily (Figure 3.1C). 
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We also performed a randomization test to assess overfitting by shuffling the last 

column that represents the coupling labels (coupling or not) and then repeated the 

training and cross-validation procedure (see Methods). The performance of the 

predictive models developed using the randomized dataset was worse than PRECOG, 

implying that our strategy is unbiased to the training data (Table S2C). 

 

 
 
Figure 3.1: Workflow and performance of PRECOG. (A) From all the GPCR sequences in the 

coupling dataset, sequence- and structure-based features are extracted and used by the logistic 

regression algorithm to perform the training and cross-validation procedures for every G-protein 
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coupling group. The resulting predictive models are used to predict couplings of 86 unseen GPCRs that 

are absent from the training set of both PRECOG and PRED-COUPLE2 but present in GtoPdb. (B) 

Performance of PRECOG during the cross-validation and testing process. (C) Recall/Sensitivity of 

PRECOG over the 86 unseen GPCRs in the test set for the G-protein subfamily. 

 
3.4.3 Importance of feature relevance 
Logistic regression can be used to evaluate feature relevance (Dhole et al., 2014; Dou 

et al., 2012). In this study, we used the regression coefficients (also called feature 

weights) (see Methods) computed from the trained models of each G-protein coupling 

group to construct a feature weight matrix (Figure 3.2). For a given G-protein coupling 

group, the higher the absolute value of the feature weight, the higher the relevance of 

the feature. The coefficients can be either positive or negative (Figure 3.2). The feature 

weight matrix can be used to understand feature contribution either across or within 

G-protein subfamilies. 

 

On comparing across the G-protein subfamilies, the same feature might be a 

determinant of coupling specificity to more than one G-protein but its feature weight 

might not have the same sign for all the G-proteins. For example, a 7TM1 position 

feature, E243 (BW: 7.28), is an insertion to Gi/Go, G12/G13, and Gq/G11 subfamilies 

(Figure 3.2) but the sign of its feature weight differs. The feature weights are negative 

for the Gi/Go subfamily, implying that a receptor with an amino acid of low feature 

value (i.e. bit-score in this case) is more probable to couple to the G/Go subfamily than 

a receptor with a higher feature value. The reverse is true for the G12/G13 and Gq/G11 

subfamilies (positive feature weight; colored green in Figure 3.2). Note that the bit-

score of a receptor for the concerned position is obtained from the HMM profiles of 

coupled/not-coupled GPCRs in a given G-protein coupling group. Another feature of 

similar nature is the length of ICL3. While a high feature value (i.e. length in this case) 

favors coupling to GNA13 (positive feature weight; colored green in Figure 3.2), the 

reverse is true for GNAQ (negative feature weight; colored red in Figure 3.2).  

 

On comparing within a coupling group, the features might have opposing weights. For 

example, two 7TM1 positional features, S191 and E192, have opposing effects 

(negative and positive feature weights, respectively) on probabilities of coupling to 

GNAI1. In other words, a receptor with an amino acid of low feature value (i.e. bit-
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score in this case) at S191 is more probable to couple to the subfamily than a receptor 

with a higher feature value. However, the reverse is true for E192. 

 

Therefore, the feature weights obtained from the trained models of G-protein coupling 

groups can be exploited to (i) unravel the underlying relevance of each feature specific 

to recognizing a particular G-protein; (ii) assess the impact of variants/mutations in 

GPCRs, and; (iii) design receptors that selectively coupled to one or more G-protein 

subfamilies (eg: DREADDs). 
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Figure 3.2: Feature weight matrix of PRECOG. The figure is taken from Singh et al., 2019. A heatmap 

showing contribution of statistically associated sequence-based features (x-axis) of GPCRs to at least 

one G-protein coupling group (y-axis). Cells are colored based on the coefficients (also called feature 

weights) of the given feature in the best-performing model of the corresponding interacting group (red-

green scale corresponding to negative and positive weights, respectively). Color intensities of cells 

indicate the absolute value of the coefficients. If a significant 7TM domain position is present in both 
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coupled and not-coupled HMMs, its coefficients are shown within the same cell on left (coupled) and 

right (not-coupled). 

 
3.4.4 Web-server 
To aid the visualization of the determinants of G-protein coupling specificity in GPCRs, 

we deployed several open-source tools (see Methods) to develop the PRECOG web 

server. The web server consists of an input page, where the user enters GPCR 

sequence(s) in various formats and chooses parameters. After inputs have been 

processed, an output page shows a detailed summary of predictions in a tabular 

format along with panels to view the sequence and structures of the input or its 

homologs. 

 
Input page 
The input page provides the user with two options (Figure 3.3). The first is simply to 

make predictions of coupling for one or more GPCRs (sequence human sequence 

specified by UniProt identifiers, accessions, or gene symbols). Users can predict 

coupling probabilities of the input GPCR (wild type or mutated) to each of the 11 G-

proteins from the coupling dataset. The user can also choose to display selected 

mutations by modifying the minimum probability difference threshold (wild type minus 

variant). 

The other option is to design a new GPCR. Here the server will suggest the 

variants/mutations that are likely to alter input GPCR’s coupling probabilities to one or 

more user-selected G-protein subfamilies. The user can select the desired G-protein 

subfamily (subfamilies) with help from the checkboxes provided. There are also 

controls to display selected variants/mutations by defining the values of P(coupling), 

the probability difference threshold (as above) for coupling with at least one selected 

G-protein, and of P(uncoupling), the same but for G-proteins other than that selected 

(for selectivity). The output page will display rows that satisfy either or both conditions. 
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Figure 3.3: Input page of PRECOG. (A) Home page (http://precog.russelllab.org/). Available Options: 

(B) Make predictions and (C) Design a GPCR. 

 

The user has the option of running either version of PRECOG (with or without 

InterPreTS) for both options (predicting coupling or GPCR design). The input can be 

UniProt accessions, gene symbols, mutations, and/or the whole sequences (FASTA 

formatted). Examples covering all the possible input formats are provided on the main 

page, which automatically fills the input boxes when selected. 
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Output page 
The output page displays all the sequence-based features that are statistically 

associated with a given coupling. It has three panels (Figure 3.4). The Results panel 

shows the predicted coupling probabilities of the given input (both Wild type and/or 

mutations) with 11 G-proteins by PRECOG and the information known from 

GtoPdb and the TGFα shedding assay are displayed in a tabular format (Results 

panel). Each G-protein is assigned a fixed color based on their subfamily (Gi/Go: cyan; 

G12/G13: green; Gq/G11: yellow and; Gs: pink) and the same in uniform on the entire 

page. The predicted (by PRECOG) and known couplings (from GtoPdb and the TGFα 

shedding assay) are colored green and red if they are coupled and not coupled, 

respectively. Several checkboxes are provided at the top of the panel to narrow down 

the rows. The entire panel can be downloaded by the user as a file in TSV (tab-

separated values) format. 

 

The Sequence panel shows sequence-based determinants of coupling-specificity, and 

the mutations (if provided) for a selected GPCR/G-protein coupling pair (by default, 

the pair with the highest probability is shown). The user can further click on each of 

the determinants (sequence-based features) to open a bar plot that displays the 

distribution of amino acids at the given position, or if it is an insertion/deletion. This 

panel also supports regular expression (RegEx) searches. 

 

The Structure panel shows determinants of coupling-specificity for wild type and 

mutants for each input GPCR (shown in the Sequence panel) mapped onto a three-

dimensional structure. If the user clicks on a position (mutation or determinants of 

coupling-specificity) in the sequence panel, the most sequence-similar structure to the 

given GPCR is chosen and displayed. The user also has the option of choosing a 

different structure from the dropdown menu PDB ID in the panel. The values in the 

parenthesis represent the percentage of sequence identity of the input GPCR with the 

structure. GPCR/G-protein 3D complexes are highlighted with coral color in the 

dropdown menu. The user also has the option to toggle between determinants of 

coupling-specificity of more than one G-protein subfamily using the checkboxes in the 

panel. 
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Figure 3.4: Output page of PRECOG. (A) Results panel: For any input receptor, three rows are 

displayed- P(WT), IUPHAR (GtoPdb), and LogRAi. P(WT) indicates predicted coupling probabilities 

(values ≥ 0.5 are highlighted in green, otherwise in red), IUPHAR indicates known coupling values from 

GtoPdb (PC: Primary Couplings; SC: Secondary Couplings). LogRAi indicates binding affinities values 

known from the TGFα shedding assay (a LogRAi value ≥ –1.0 indicates coupling, otherwise not-

coupling). (B) Sequence panel: Statistically-associated residues of a selected input sequence that are 

determinants of its coupling specificity with a given G-protein are highlighted. On clicking these residues, 

a bar plot with the distribution of amino acids at the given position in coupling vs non-coupling receptors 

is displayed. The ICL3 and/or C-terminus of the input sequence is highlighted if its length is significant 

for prediction. The amino acids in these stretches are underscored if their occurrence is significant for 

prediction. The users can click on the significant 7TM1 residues to view a bar plot with the distribution 

of amino acids at the given position in coupled vs not-coupled receptors and to view it on a 3D structure 

(or the corresponding position of the 3D structure of the closest homology). (C) Structure panel: 3D 

B

A

C
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structure of the input sequence (or of the closest homolog) is displayed and the significant 7TM1 

positions are highlighted. 
 

We tested the compatibility of PRECOG on different browsers (Table 3.3). 

 

OS Version Chrome Firefox Safari 
Linux Ubuntu 16.04 not tested Quantum 64.0 n/a 
Linux CentOS 7.2.1511 not tested ESR 52.6.0 n/a 

Windows 10 v71 not tested n/a 
macOS Mojave 10.14.2 v71 v64.0 12.0 

 
Table 3.3: Browser compatibility of PRECOG. 
 
3.5 DISCUSSION 

In this chapter, we present PRECOG, a machine learning-guided predictor trained on 

one of the most extensive GPCR/G-protein binding datasets, that can predict 

GPCR/G-protein selectivity, using sequence information only (Figure 3.5). The 

PRECOG web server has several advantages over the previous methods. It 

significantly outperforms the previous predictors as mentioned above and predicts 

coupling probabilities at the resolution of Gα subunits rather than the G-protein 

subfamilies. This approach is unique in that it provides easy visualization of the 

positions of G-protein coupling specificity on GPCR sequences and structures (known 

or homologous). Moreover, PRECOG is the only approach that can predict the effects 

of variants, which is particularly useful in the design GPCRs with desired coupling 

properties (DREADDs). PRECOG is freely available to academic users at 

precog.russelllab.org. 

 

Integration of features derived from structural information only marginally improved the 

performance of PRECOG for the Gs subfamily while it remains unaffected for the 

remainder of G-protein subfamilies. Currently, the GPCR/G-protein 3D complexes are 

only available for Gi/Go and Gs subfamilies. Inclusion of GPCRs in 3D complex with 

Gq/G11 and G12/G13 subfamilies in the future will likely improve the performance of 

these subfamilies. PRECOG performed poorest in predicting Gs-coupled receptors. 

This can partly be attributed to a poor overlap between the coupling dataset and 
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GtoPdb (see Figure 2.5C in Chapter II). Another reason may be lack of features that 

are very specific to Gs-coupled receptors such as the dynamics of TM helices, 

especially TM6, which have been observed to undergo a distinctive outward 

displacement in the Gs-stabilized receptors in contrast to other complexes (Carpenter 

et al., 2016; Kang et al., 2018; Koehl et al., 2018; Rasmussen et al., 2011). 

  

Interestingly, two GPCR-Gi/Go complexes (PDB IDs: 6CMO and 6DDE) are also good 

templates for modeling GPCR-G12/G13 couplings (Table 3.1), indicating a similar 

interaction topology between the two subfamilies. Additionally, in the coupling dataset, 

the G12/G13-coupled receptors majorly couple to the Gi/Go subfamily (see Figure 

2.5A in Chapter II). This suggests that GPCR-Gi/Go complexes can also be used to 

model GPCR-G12/G13 interactions. 

 

The machine learning-guided framework described here is adaptable in two significant 

ways. First, it can be extended to uncover specificity determining positions in other 

protein families where binding information is available, but sub-type specificity 

information is unknown or incomplete. Second, it provides the possibility to include 

disordered regions of the sequence that can influence the specificity but cannot be 

otherwise captured by MSA and are very often not seen in protein structures. Finally, 

the framework will enable the development of web servers to interrogate predictions 

and their associated mechanistic insights.  
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Figure 3.5: Overview of PRECOG webserver. The figure is taken from Singh et al., 2019. (A) 

Quantification of GPCR/G-protein binding affinities. (B) Extraction of sequence and structure-based 

features in GPCRs that recognize their G-protein selectivity, and development of ML-based predictor. 

(C) Prediction of uncharacterized GPCRs and design of artificial receptors with the aid of sequence and 

structure visualization tools. 
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Chapter IV: Applications of PRECOG and the 
machine-learning guided framework 

 
4.1 ABSTRACT 

GPCRs are of immense pharmaceutical interest. This is because they are primary 

points where external stimuli contact virtually every human cell, and tinkering with 

them with small molecules can alter a multitude of processes that can potentially treat 

a host of conditions. This crucial role as gatekeepers of cell signaling also provides 

interesting possibilities to design tools to perturb biological systems by way of synthetic 

biology (protein design). In this chapter, we apply PRECOG and the framework to 

three subjects. First, we study and predict coupling probabilities of several poorly 

characterized GPCRs (e.g. P2RY8 implicated in cancer) and disease mutations in 

GPCRs. We then use PRECOG to design GPCR hybrid molecules to produce a new 

chemogenetic tool capable of specifically activating GNA12 (and Rho signaling). 

Finally, we apply the entire machine learning framework to a new dataset on G-protein 

and β-arrestin interactions to predict specificity determinants of this important regulator 

of GPCR signaling. 

 

4.2 INTRODUCTION 

GPCR signaling controls a myriad of cellular pathways. Mutations in GPCRs are 

implicated in several diseases such as nephrogenic diabetes insipidus, cardiovascular 

and mental disorders, hyperthyroidism, fertility disorders, AIDS, and cancer (Insel et 

al., 2007). These aberrations can alter both the ligand binding or the coupling 

properties of receptors. Interestingly, mutations can also be introduced in GPCRs to 

develop chemo-genetic tools such as the Designer Receptors Exclusively Activated 

by Designer Drugs (DREADDs) that can hijack GPCR/G-protein couplings by allowing 

the use of synthetic ligands to control specific couplings in a controlled manner 

(Alexander et al., 2009; Armbruster et al., 2007; Farrell et al., 2013) 

DREADDs were developed by screening several variants of muscarinic receptors that 

exhibit minimal constitutive activity and low native ligand (acetylcholine) affinity in vitro 
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and in vivo (Armbruster et al., 2007). They display high ligand affinity and specificity 

to synthetic ligands such as clozapine-N-oxide (CNO), which is an otherwise 

pharmacologically inert drug. The three most commonly used DREADDs are hM3D 

(activates Gq/G11 signaling) (Alexander et al., 2009), hM4D (activates Gi/Go 

signaling) (Armbruster et al., 2007; Stachniak et al., 2014), and rM3D (activates Gs 

signaling) (Farrell et al., 2013). However, a G12/13-coupled DREADD is still 

unavailable making it an attractive target to test the potential GPCR design tools in 

PRECOG. 

The phosphorylation of the C-terminus of GPCRs by GPCR kinases (GRKs) recruits 

arrestins to the receptor. Arrestins, particularly β-arrestin-1 and β-arrestin-2 compete 

with G-proteins for receptor binding through steric hindrance and act as a rheostat of 

G-protein initiated signaling (Gutkind and Kostenis, 2018). Recent structures have 

revealed GPCR ‘megaplex’ that can simultaneously activate both G-protein and β-

arrestin during receptor internalization (Nguyen et al., 2019). However, the exact 

determinants of β-arrestin specificity for GPCRs are still unknown. 

An important utility of PRECOG is the application of its machine learning-guided 

framework to identify regions within the MSA of large protein families (such as GPCRs) 

that illuminate specificity to another interacting group of molecules (for example G-

proteins or β-arrestins in the case of GPCRs) and to use these determinants to predict 

the specificity of uncharacterized members of the protein family. To test the general 

applicability of this framework, we applied it to the recently published data from the 

ebBRET assay (Avet et al., 2020), comprising binding affinities of 85 class A GPCRs 

with that of 12 G-proteins and β-arrestins1/2 (in the presence/absence of GRK2).  

This chapter thus describes the application of PRECOG and its framework to predict 

coupling probabilities of uncharacterized GPCRs, to predict the effect of GPCR 

mutations on G-protein selectivity, to design the first GNA12-coupled DREADD, and 

to interrogate a different interaction dataset (the β-arrestin data). 
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4.3 MATERIALS AND METHODS 

4.3.1 Prediction of uncharacterized and mutant receptors 
To obtain a list of uncharacterized GPCRs, we considered all the class A GPCRs in 

GtoPdb (Harding et al., 2018) and selected those lacking primary and/or secondary 

coupling information (61 receptors). We then predicted the coupling probability of each 

of them using the Make predictions option of PRECOG (see section 3.4.4 of Chapter 

III). To analyze the results at the G-protein subfamily level, we grouped the predicted 

probabilities of G-proteins in each subfamily. A receptor was considered to couple to 

a given G-protein subfamily if it was predicted by PRECOG to couple to at least one 

member of the subfamily (P ≥ 0.5, where P is the probability of G-protein coupling 

specificity predicted by PRECOG). 

Next, we used PRECOG to predict the coupling profile of mutant GPCRs obtained 

from annotated disease-causing mutations in UniProt (Bateman et al., 2017). We 

assumed a mutation to affect GPCR coupling with any G-protein if the absolute 

difference between the predicted coupling probabilities of mutation and the wild type 

is at least 0.1 (i.e. absolute value of PMUT – PWT, where P is the probability of G-protein 

coupling-specificity predicted by PRECOG). 

 

4.3.2 Prediction of GNA12-coupled DREADD chimeric sequences 
The lack of a GPCR-G12/G13 complex as well as a DREADD to investigate the 

G12/G13 signaling impelled us to generate chimeric sequences that exhibit coupling 

specificity towards the G12/G13 subfamily. We started with the previously developed 

hM3D DREADD that couples to Gq/G11 (Armbruster et al., 2007). The work in 

previous chapters suggests that the ICL3 and C-terminus play a prominent role in 

determining the specificity of G12/G13 receptors (see Figure 2.11 of Chapter II). We 

thus constructed chimeras by swapping in ICL3 alone or combined with a swap of the 

C-terminus segments from other GPCRs in the coupling dataset. 

Next, we aligned the sequences of hM3D, and all the receptors in the coupling dataset 

to the Pfam 7tm_1 HMM model using the hmmalign tool of the HMMER package 

(v3.1b2) (Eddy, 1998). We defined ICL3 as the regions between positions 173 and 

205 in the Pfam alignment and the C-terminus as those after position 268. We then 
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constructed the corresponding 296 sequences with their ICL3 alone or in combination 

with the C-terminus swapped with those of hM3D. 

We used the Design a GPCR option of PRECOG (see Section 3.4.4 of Chapter III) to 

predict the coupling probabilities of each construct with that of the G12/13 subfamily 

(GNA12 and GNA13). The constructs were subsequently ranked according to their 

relative coupling probability (i.e., ΔP = PDREADD_MUT - PDREADD, where P refers to 

coupling probability predicted by PRECOG). The top 10 scoring chimeric sequences 

(from a total of 13 GPCRs) were then selected for experimental validation. 

The validation experiments were performed by Dr. Asuka Inoue and his group (Tohoku 

University, Japan), and have been published elsewhere (Inoue et al., 2019). Briefly, 

Dr. Inoue’s group performed the TGFα shedding and Nano-BiT-G assays to determine 

GNA12 and GNA13 activation. Flow cytometry was used to test the cell surface 

expression of the constructs. 

 

4.3.3 Development of ebBRET assay-based predictor 
The dataset from the ebBRET assay (Avet et al., 2020) comprises binding affinities of 

100 G-protein coupled receptors (GPCRs) including 85, 10, and 5 class A, B, and C 

receptors, respectively, with 11 G-proteins and 2 β-arrestins (Table S3C). The binding 

affinities are measured in terms of Emax values, which refers to the maximum value of 

ligand-induced response achieved. We considered only the 85 Class A GPCRs for the 

development of the predictor. As described before (see Section 3.3.2 of Chapter III), 

we extracted the sequence- and structure-based determinants of G-protein/β-arrestin 

specificity in the 85 class A GPCRs. Briefly, we created an MSA with 84 class A 

receptors validated in the ebBRET assay. Next, we subdivided the MSA based on G-

protein/β-arrestin interaction preference. For a given interacting group (G-proteins/β-

arrestins), if a pair of receptor-interactor scored Emax > 0, the receptor was considered 

to interact with the corresponding group; if the pair scored Emax = 0, it was considered 

not interact. To obtain the structure-based features, we calculated the statistical 

association of each interacting group with their corresponding structures using 

InterPreTS (Aloy and Russell, 2002, 2003) as described before (see section 3.3.2 in 

Chapter III). 



` 

61 
 

The statistically associated (p-value ≤ 0.05) sequence- and structure-level features 

were extracted to train the Logistic-regression model (see section 3.3.3 in Chapter III) 

for each interaction group. All the 7TM1 positional features were assigned their 

corresponding Pfam 7tm_1 position and BW numbering. The most conserved position 

within each helix was defined according to GPCRdb (Isberg et al., 2016). For positions 

lying in extra-membrane regions (i.e. where no BW numbering is possible), we quote 

only the Pfam 7tm_1 position. 

We created an independent test-set of 140 class A GPCRs that are characterized in 

GtoPdb (Harding et al., 2018) but absent in the data from the ebBRET assay. In the 

case of β-arrestins, we used the STRING (combined score > 600) (Szklarczyk et al., 

2019), HIPPIE (Alanis-Lobato et al., 2017), and IMEx (Orchard et al., 2012) databases 

to collect 57 unique class A GPCRs that interact with β-arrestins 1 or 2. 23 of these 

receptors were absent in the data from the ebBRET assay, and thus, used as an 

independent set to test the performance of the predictor. The performance of the 

ebBRET assay-based predictor during cross-validation and testing was evaluated 

using the metrics described before (see section 3.3.5 in Chapter III). To compare the 

performance of the ebBRET assay-based predictor with that of the coupling dataset-

based predictor (PRECOG), we created an independent test-set of 71 GPCRs 

obtained from GtoPdb but are absent in both datasets. 

To obtain the GPCR- G-protein/β-arrestin interfaces, we followed the procedure 

described before (see section 2.3.4 in Chapter II). For the GPCR/β-arrestin interfaces, 

we considered all the PDB complexes (Berman et al., 2000) that contained the Pfam 

accessions PF00001 (7-transmembrane receptors) for GPCRs and PF00339 

(Arrestin, N-terminal domain) or PF02752 (Arrestin, C-terminal domain) for arrestins 

using the Pfam to PDB chain mappings from the SIFTS database (Velankar et al., 

2013). A total of 31 complexes of GPCR/G-protein and 4 complexes of GPCR/β-

arrestin were obtained (Table 4.1). We defined interfaces on the GPCR chains as the 

residues with at least one atom-atom distance ≤ 6.5Å from at least one atom in a 

residue from the G-protein chain in the same complex. 
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  GPCR G-protein 

 PDB ID Gene symbol UniProt 
Accession Chain Gene 

symbol 
UniProt 

Accession Chain 

G
-p

ro
te

in
s 

6LFM CXCR2 P25025 R GNAI1 P63096 A 

6LFO CXCR2 P25025 R GNAI1 P63096 A 

7BZ2 ADRB2 P07550 R GNAS P63092 A 

6DDF Oprm1 P42866 R GNAI1 P63096 A 

6DDE Oprm1 P42866 R GNAI1 P63096 A 

6D9H 
CHRM4 P08173 R 

GNAI2 P04899 A 
ADORA1 P30542 R 

6OS9 NTSR1 P30989 R GNAI1 P63096 A 

6GDG ADORA2A P29274 A GNAS P63092 D 

6VMS DRD2 P14416 R Gnai1 P10824 A 

6OY9 RHO P02699 R GNAT1 P04695 A 

7JJO ADRB1 P07700 R GNAS P04896 A 

6LI3 GPR52 Q9Y2T5 R GNAS P63092 A 

3SN6 ADRB2 P07550 R GNAS P04896 A 

6N4B CNR1 P21554 R GNAI1 P63096 A 

7D7M PTGER4 P35408 A GNAS P63092 D 

6QNO RHO P02699 R GNAI1 P63096 A 

6OSA NTSR1 P30989 R GNAI1 P63096 A 

6PT0 CNR2 P34972 R GNAI1 P63096 A 

6NI3 ADRB2 P07550 R GNAS P63092 A 

7CFM GPBAR1 Q8TDU6 R GNAS P63092 A 

6WWZ CCR6 P51684 R GNAO1 P09471 A 

7CFN GPBAR1 Q8TDU6 R GNAS P63092 A 

6OMM FPR2 P25090 R GNAI1 P63096 A 

6KPF CNR2 P34972 R GNAI1 P63096 A 

6KPG CNR1 P21554 R GNAI1 P63096 A 

6K41 
ADRA2B P18089 R 

GNAO1 P09471 A 
ADRA2A Q28838 R 

6K42 ADRA2A P08913 R GNAI1 P63097 A 
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ADRA2B P18089 R 

6CMO RHO P08100 R GNAI1 P63096 A 

6OIK CHRM2 P08172 R GNAO1 P09471 A 

6G79 HTR1B P28222 S GNAO1 P09471 A 

6OYA RHO P02699 R GNAT1 P04695 A 

β-
ar

re
st

in
s 

6U1N 
CHRM2 P08172 R 

Arrb1 P29066 C 
AVPR2 P30518 R 

6TKO ADRB1 P07700 A ARRB1 P49407 B 

6PWC NTSR1 P30989 R ARRB1 P49407 A 

6UP7 NTSR1 P30989 R ARRB1 P49407 B 

 
Table 4.1: Known GPCR- G-protein/β-arrestin 3D complexes (release Jul 2020). All the 3D 

complexes were extracted from the SIFTS database (release Jul 2020) using Pfam to PDB chain 

mappings. 

 

All statistical tests were performed using the SciPy library (Virtanen et al., 2020) with 

scripts written in python. 

 

4.4 RESULTS 

4.4.1 Prediction of couplings of uncharacterized and mutant GPCRs 
We used PRECOG to predict coupling probabilities of uncharacterized receptors. Of 

the 61 class A GPCRs that lack coupling information in both the coupling dataset as 

well as in GtoPdb, PRECOG predicted 65%, 88%, 76%, and 72% to couple Gs, Gi/Go, 

and G12/G13 and Gq/G11 subfamilies, respectively (Figure 4.2A; Table S3A). The 

predicted receptors included oncogenic receptors such as P2RY8, which has been 

frequently mutated in lymphomas and displays mutual exclusivity with GNA13 (López 

et al., 2019; Muppidi et al., 2014; O’Hayre et al., 2016). PRECOG predicts P2RY8 to 

be a GNA13-coupled receptor (Figure 4.1). 
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Figure 4.1: Predictions of P2RY8 by PRECOG. The figure is taken from (Singh et al., 2019). The 

output page of PRECOG predicting coupling of P2Y purinoreceptor 8 (P2RY8) with GNA13 is shown. 

 

We also used PRECOG to predict the effect of GPCR mutations on G-protein 

selectivity (Table S3B). Of the 360 mutations across 60 class A GPCRs, we found 89 

(~25%) to be a determinant of coupling specificity. 26 of the 89 mutations (29%) affect 

couplings with one or more G-proteins with Gi/Go being the most affected G-protein 

subfamily (Figure 4.2B, Table S3B; see Methods). For example, mutations in Gs-

coupled AVPR2 (vasopressin receptor 2) are responsible for nephrogenic diabetes 

insipidus, an X-linked recessive disease characterized by excessive urine production 

and thirst (reviewed in Spanakis et al., 2008) due to decreased cAMP response in 

kidney cells. PRECOG predicted one of these disease-causing mutations (p. 

Ala163Ser) (Rocha et al., 1999) to couple to GNAI3, which is responsible for inhibition 

of the cAMP-dependent pathway (Table S3B). 
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Figure 4.2: Predicted vs experimental couplings of GPCRs and predicted effect of GPCR 
mutations on their couplings. (A) Bar plot showing the fraction of known/uncharacterized receptor 

couplings (x-axis) with G-protein subfamilies (y-axis). (B) Bar plot showing the fraction of receptor 

couplings (y-axis) affected with the G-protein subfamilies (x-axis) because of mutations. 

 

4.4.2 Development of the first GNA12-coupled DREADD 
Several studies have highlighted the advantage of using DREADDs, especially to gain 

control over GPCR signaling (Farrell et al., 2013; Hu et al., 2016; Roth, 2016; Wess et 

al., 2013). The lack of GPCR-G12/G13 complex and poor characterization of the 

G12/G13 subfamily prompted us to engineer a DREADD that selectively couples to it 

(Inoue et al., 2012). We chose the hM3D DREADD that is experimentally known to 

couple to Gq/G11 and Gi/Go subfamilies (Armbruster et al., 2007), as correctly 

predicted by PRECOG (Figure 4.3). 
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Figure 4.3: Coupling-specificity of the hM3D DREADD. (A) Experimental validation of hM3D using 

the TGFα shedding assay as well the generation of this panel was done by the group of Dr. Asuka 

Inoue (Tohoku University, Japan) (Log RAi ≥ -1.0: coupled, otherwise not-coupled) (see Chapter II). (B) 

Prediction of hM3D coupling probability by PRECOG. 

 

ICL3 followed by C-terminus contribute the most towards determining the coupling 

probabilities of receptors with that of the G12/G13 subfamily (see Figure 2.9A of 

Chapter II). Thus, we sought to generate chimeric sequences of hM3D by swapping 

its ICL3 with or without the swap of the C-terminus with that of the GPCRs used in the 

coupling dataset (see Methods). Swapping of hM3D regions has been previously 

shown to generate Gs-coupled DREADD, known as hM3D-Gs, which involved 

substituting ICL2 and ICL3 of the Gq/G11-coupled hM3D with those of Gs-coupled 

β1AR (Guettier et al., 2009). We predicted the coupling probability of each chimeric 

sequence with the G12/G13 subfamily using PRECOG (Figure 4.4) and selected the 

13-potential chimeric GPCRs for experimental validation (see Methods). 
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Figure 4.4: Scatter plot of predicted coupling probabilities of DREADDs with GNA12 by 
PRECOG. The figure and legend are taken from Inoue et al., 2019. The smaller plot (bottom left) 

displays the relative coupling probabilities (PDREADD – PhM3D) of chimeric sequences obtained by 

substituting the stretches of hM3D by the ICL3 alone (y-axis) or in combination with the C-terminus (x-

axis) of the G12/G13-coupled receptors in the TGFα shedding assay are shown. The larger plot displays 

the top 25 chimeric sequences obtained from both the design, including the ones derived from GPR183 

and GPR132 (indicated with green bubbles). The size (radius) of the bubble is proportional to the length 

of ICL3. 

 

Dr. Asuka Inoue and his group (Tohoku University, Japan) screened the G12-coupling 

activity of the best-scoring chimeric sequences using TGFα shedding and Nano-BiT 

assays (Figure 4.5). The detailed results of the validation experiment were published 

elsewhere (Inoue et al., 2019). Briefly, the TGFα shedding assay confirmed that 

among the 26 constructs tested, chimeras with the GPR183- and GPR132- derived 

ICL3 substitutions, henceforth referred to as hM3D-GPR183/ICL3 and hM3D-

GPR132/ICL3, respectively, showed significant coupling towards GNA12 (p-value 

≤0.05) (Figure 4.5). As expected, Ach (Acetylcholine), the native ligand of muscarinic 

receptors, induced no GNA12 signaling in any of the tested constructs while treatment 
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with the synthetic ligand, clozapine-N-oxide (CNO), led to the activation of the G12-

coupling constructs. 

 

An additional NanoBiT experiment (Inoue et al., 2019), performed by the same 

collaborators to test activation of GNA12 and GNAO1, identified two additional 

constructs, hM3D-P2RY10/ICL3 and hM3D-NMBR/ICL3, that coupled to GNA12 but 

not to GNAO1. A construct generated by substituting LTB4R2-derived ICL3 

substitution (hM3D-LTB4R2/ICL3) induced both GNA12 and GNAO1 coupling with a 

higher dissociation signal for the latter. Another NanoBiT-G13 experiment showed that 

neither of the constructs induces G13 signaling. Neither of the constructs with the 

substitution of both ICL3 and C-terminus exhibited any coupling specificity towards 

GNA12 because of their low surface expression (Figure 4.5). 
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Figure 4.5: Design and validation of GNA12-coupled receptors. The image was taken from Inoue 

A et al., 2019. (A) Outline of the two types of designs used to construct hM3D-derived chimeric 

sequences. Based on PRECOG’s predictions (without InterPreTS), the top 25 chimeric sequences 
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(corresponding to 13 GPCRs) were selected from each type of design. 26 chimeric sequences were 

constructed for these 13 GPCRs. (B) The TGFα shedding assay response of chimeric sequences was 

measured to assess GNA12 (G12) signaling. (C) The NanoBiT-G-protein dissociation assay response 

of chimeric sequences was measured to assess GNA12 (G12) and GNAO1 (Go) activation. (D) The 

surface expression of the 26 hM3D-derived chimeric sequences was measured using flow cytometry. 

The newly designed G12/G13 DREADDs are outlined in red. (E) The NanoBiT-G13 protein dissociation 

assay response of chimeric sequences was measured to assess GNA13 (G13) activation. (F) The 

NanoBiT-G protein dissociation assay response of the two newly constructed G12/G13-coupled 

DREADDs (hM3D-GPR183/ICL3 and hM3D-GPR132/ICL3) as well as of the previously established 

DREADDs (Gq/G11-coupled hM3D, Gi/Go-coupled hM4D, and Gs-coupled hM3D) was used to assess 

G-protein activation. Bubbles and error bars represent mean and standard deviation, respectively. 

Experimental validation of using the TGFα shedding assay as well the generation of this figure was 

done by the group of Dr. Asuka Inoue (Tohoku University, Japan). For detailed legend, please refer to 

the original article (Inoue et al., 2019). 

 
4.4.3 Application of the framework on the ebBRET Assay 
The comparison of the datasets from the ebBRET and TGFα shedding assays reveals 

an overlap of 71 receptors (Figure 4.6). The order of decreasing agreement of receptor 

couplings to G-protein subfamilies between the two datasets is Gi/Go > Gq/G11 > 

G12/G13 > Gs (Figure 4.6B). For more details, please refer to the original article (Avet 

et al., 2020) on the data from the ebBRET assay. 
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Figure 4.6: Comparison between the datasets from the ebBRET and TGFα shedding assays. (A) 

Venn diagrams depicting the number of GPCRs coupled to each G-protein subfamily (Emax>0). (B) Venn 

diagrams depicting receptor couplings to the two datasets. 

 

We applied the PRECOG framework to obtain the determinants of G-protein/β-arrestin 

specificity in receptors of the data from the ebBRET assay (Tables S3D, S3E). We 

identified 53 positional features (or determinants of interaction specificity) in the 7TM1 

domain of the receptors that are statistically associated with each of the 12 G-proteins 

(49 positions) and 2 β-arrestins (in presence or absence of GRK2) (25 positions) 

(Figure 4.7D; Table S3D). There is an intersection of 21 (of 53) positional features 

between the two interacting groups (Figure 4.7E; Table S3D). Intriguingly, like 

observed in the case of the data from the TGFα shedding assay (see section 2.4.5 in 

Chapter II), only 16 of 53 (or 30%) positional features lie on the known GPCR/G-

protein interfaces (14 of 49 or 28%) or GPCR/β-arrestin interfaces (7 of 14 or 28%) 

(see Methods; Table S3D). 

 

As observed in the TGFα shedding assay, ebBRET assay-derived determinants of 

both G-proteins (Figures 4.7A, B) and β-arrestins (Figures 4.7A, B, 4.7D) are also 

distributed throughout the TM helices and extracellular as well cytosolic regions of 
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receptors. Regarding β-arrestins in the data from the ebBRET assay, positional 

features followed by C-terminus were observed to contribute the most towards 

determining their specificity in receptors (Figures 4.7A, B). 

 

Next, we compared the determinants of G-protein coupling specificity extracted from 

the datasets from the ebBRET and the TGFα shedding assays. A significant number 

of positional features (34 of 49 or 69%) determining G-protein specificity in the data 

from the ebBRET assay were found to overlap with those obtained from the TGFα 

shedding assay (Figure 4.7E). Though the distribution of determinants at the level of 

G-protein subfamilies is very similar in the two datasets (Figure 4.7A), we observed 

certain differences. First, the structure-based determinants (obtained from InterPreTS; 

see Methods) extracted from the data from the ebBRET assay contribute more 

towards the specificity of Gs and Gi/Go subfamilies than those derived from the data 

from the TGFα shedding assay (Figure 4.7A). Second, while positional features 

(sequence-based features in the 7TM1 domain) extracted from the data from the 

ebBRET assay provide a major share in determining G12/G13-specific couplings in 

GPCRs, the ICL3 influences G12/G13 specificity greater in the determinants derived 

from the data from the TGFα shedding assay (Figures 4.7A, B, C). 

 

Among the determinants derived from both the datasets, TM3, TM5, and TM6 (Figure 

4.7D) are the major contributors of G-protein and β-arrestins specificities. 
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Figure 4.7: Comparison of determinants of G-protein/β-arrestin specificity obtained from the two 
datasets. (A) Contribution of G-protein/β-arrestin specificity in receptors in the two datasets. (B) Bar-
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plots showing contribution of TM helices, ICL3, and C-terminus as determinants of interaction specificity 

for individual interacting groups in the data from the ebBRET assay. (C) Bar-plots showing contribution 

of TM helices, ICL3, and C-terminus as determinants of interaction specificity for individual interacting 

groups in the dataset derived from TGFα shedding assay. (D) Scatter plot showing the contribution of 

TM helices as a determinant of specificity of interacting groups in the two datasets. (E) Venn diagrams 

depicting the overlap of determinants (positional features) of coupling specificity in the datasets derived 

from the ebBRET (for G-proteins and β-arrestins) and the TGFα shedding assays (G-proteins). 

 

We then applied the logistic regression algorithm to train and develop the ebBRET 

assay-based predictor and compared its performance with that of the TGFα shedding 

assay-based predictor (i.e. PRECOG) (Figure 4.8B; Tables S3F, G). In terms of 

individual G-protein coupling groups, the performance of the ebBRET assay-based 

predictor is better than PRECOG for GNAQ, GNA15, GNA13, GNAZ, and GNAI1-

specificities with the reverse being the case for the others (Figure 4.8B; Table S3H). 

The inclusion of structure-based features does not significantly improve the 

performance of the ebBRET assay-based predictor (Figure 4.8C; Tables S3F, G). 

However, the major addition of the ebBRET assay-based predictor (first ever) is the 

prediction of β-arrestin specificity. 
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Figure 4.8: Performance of the ebBRET assay-based predictor. (A) Recall/Sensitivity of the 

ebBRET assay-based predictor and (B) the TGFα shedding assay-based predictor (PRECOG) on their 

test sets. (C) Comparison of performance (recall/sensitivity) of the ebBRET assay-based predictors 

(with or without InterPreTS) at the level of G-protein subfamily. (D) Determinants of β-arrestin-1/2 

specificity mapped onto a structure (PDB ID: 6UP7) (Positions with a difference in amino acid 

distribution between the interacting and non-interacting receptors are shown in yellow, residues with 

insertions are shown in green, and residues with deletions are shown in red). 

 

We computed the feature weights from the trained models of each interacting group 

to construct a feature weight matrix (Figure 4.9), which has been previously used to 
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study feature relevance (Dhole et al., 2014; Dou et al., 2012). The colors of the cells 

in the matrix can aid to deduce the directionality of the effect of changes in it (see 

section 3.4.2 in Chapter III). For example, the length of the C-terminus, an extra-

membrane feature with positive feature weights (green-colored cell highlighted by a 

dotted circle in Figure 4.9), is computed to affect GNA12-coupled receptors. In other 

words, an increase in its length will favor coupling to GNA12. 

 
Figure 4.9: Feature weight matrix of the ebBRET-based predictor. A heatmap showing contribution 

of statistically associated sequence-based features (x-axis) in GPCRs to at least one interacting group 

(y-axis). Cells are colored based on the coefficients (also called feature weights) of the given feature in 

the best-performing model of the corresponding interacting group (red-green scale corresponding to 

negative and positive weights, respectively). Color intensities of cells indicate the absolute value of the 
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coefficients. If a significant 7TM domain position is present in both coupled and not-coupled HMMs, its 

coefficients are shown within the same cell on left (coupled) and right (not-coupled). The cell highlighted 

with a dotted circle is discussed in section 4.4.3. 
 
4.5 DISCUSSION 

PRECOG and the application of its framework show strong potential. We 

demonstrated the first application of PRECOG: to predict couplings of several 

uncharacterized receptors such as P2RY8 that has been reported to have an 

oncogenic potential (López et al., 2019; Muppidi et al., 2014; O’Hayre et al., 2016). 

We then described the second application in identifying variants that could alter G-

protein specificity. The third application of PRECOG involved the design of artificial 

GPCRs (DREADDs) that hold much promise in studying cell functions. Unlike TM 

helices in receptors of other G-protein subfamilies, ICL3 of receptors contributes 

towards the G12/G13-coupling specificity (Figure 4.7A). We exploited this property to 

successfully develop the first GNA12-specific DREADDs: hM3D-GPR183/ICL3 and 

hM3D-GPR132/ICL3. 

A key application of PRECOG lies in the employability of its framework on other 

binding assay datasets. We applied the framework on recently available data from the 

ebBRET assay to train and develop predictors of G-protein and importantly, β-arrestin, 

specificity. As observed with the coupling dataset, only 30% of the positional features 

lie on the interfaces while the rest are distributed across the TM helices and extra-

membrane region, corroborating the known role of allosteric mechanisms (Angelova 

et al., 2011; Flock et al., 2017; Venkatakrishnan et al., 2013, 2016; Wichard et al., 

2011). Another key observation was the major contribution of TM helices 5 and 6 as 

determinants of specificity, which has also been described in previous studies (García-

Nafría et al., 2018b; Kang et al., 2018; Koehl et al., 2018). For β-arrestins, the 

determinants of specificity (such as TM6, ICL3, and C-terminus) extracted here have 

also been previously reported to play a role in GPCR- β-arrestin interactions (Ranjan 

et al., 2017; Shukla et al., 2013). A significant overlap of sequence-based 

determinants of coupling specificity in β-arrestin and G-protein groups is logical as β-

arrestins mediate steric hindrance of G-proteins, leading to receptor desensitization 

(Shukla et al., 2011). It is known that phosphorylation of GPCRs in the C-terminus 

(Sente et al., 2018) and ICL3 (Kumari et al., 2017) is essential for the recruitment of 
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β-arrestin. Thus, features that encode phosphosite information can be included to 

obtain a wider view of GPCR- β-arrestin couplings and to further improve the 

performance of the predictor. 

The data from the ebBRET assay complements the data from the TGFα shedding 

assay for specific G-proteins as they are better covered by the former and hence show 

better sensitivity than PRECOG (Figure 4.8A). This can be useful in the development 

of a GNA13-specific receptor, which is still unavailable. At the level of the subfamily, 

the performances of all groups are fairly the same. However, it is noteworthy that the 

performance of the Gs subfamily is lower than the other subfamilies in both predictors. 

As described before (see section 3.5 in Chapter III), this can be due to the lack of 

features that cover the dynamics of the Gs subfamily in the training matrices, such as 

the outward movement of the TM6 helix, which is more pronounced in the Gs subfamily 

than in the Gi/Go subfamily (Kang et al., 2018; Koehl et al., 2018). The inclusion of 

ICL/ECLs and the N-terminus as features could also improve the performance of Gs-

specificity. 

A significant overlap of determinants of G-protein coupling specificity derived from the 

two datasets (69% of determinants derived from the ebBRET assay and 66% of 

determinants derived from the TGFα shedding assay intersect) highlights the strength 

of the PRECOG framework, which can be employed on binding datasets of large 

protein families (such as GPCRs) and to perform a systematic analysis to extract and 

analyze signatures of molecular mechanisms from their MSA. 
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Chapter V: General conclusions and discussion 
 
Proteins undergo different conformational states to interact with each other, leading to 

disruption and the creation of several (typically non-covalent) interactions between 

residues. Aberrations in any of these residues can lead to dysregulation of 

physiological mechanisms, most of which are implicated in human diseases. 

Additionally, unraveling such residues is beneficial in protein engineering to unravel 

associated downstream signaling pathways. In this study, we have developed a 

method to extract statistically-associated positions and sequence regions within 

GPCRs that determine coupling-specificity towards the heterotrimeric G-proteins 

(Chapter 2). We then implemented a machine learning approach to learn the sequence 

and structure-based features to develop a predictor of G-protein coupling specificity: 

PRECOG (Chapter III). Finally, we demonstrated the applications of this machine 

learning-guided framework to predict couplings of uncharacterized and mutated 

GPCRs, to design the first G12-coupled receptors, and to use the PRECOG 

framework to a different class of interactions between GPCRs and β-arrestins. 

  

5.1 MAIN RESULTS 

5.1.1 Determinants of G-protein coupling specificity in GPCRs (Chapter II) 
We identified statistically-associated sequence-based features that include both the 

positions across the 7TM1 domain and the intrinsically disordered ICL3 and C-

terminus for each G-protein group. Intriguingly only 23% of the identified 7TM1 

positions lie on the GPCR/G-protein interfaces with most being spread across the 

transmembrane helices, supporting the notion that GPCR activation is a complex 

interplay of residues involving allosteric communication between ligand and G-protein 

binding pockets (Huang et al., 2015; Koehl et al., 2018). Of the seven helices, we 

found the TM6 helix, which has been shown to undergo an outward movement in 

activated GPCR structures (García-Nafría et al., 2018b; Koehl et al., 2018; Lin et al., 

2020; Nojima et al., 2020; Rasmussen et al., 2011), contributes the most positional 

features. The length and charge distribution of the extra-membrane regions - the ICL3 

and C-terminus - also play a role in determining G-protein specificity, especially for the 

G12/G13 subfamily. Structural comparison of GPCR/G-protein 3D complexes 
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revealed a pronounced outward movement of the TM6 helix in Gs-coupled vs Gi/Go-

coupled receptors, which can be attributed to bulkier side chains of C-terminus of the 

α5 in GNAS. The amino acid deletion in the TM5-ICL3-TM6 regions, that we found 

statistically associated with Gs-coupled receptors, might be instrumental in creating a 

large crevice to accommodate bulky side chains of GNAS. 

 

5.1.2 A machine learning-guided framework (Chapter III) 
In addition to sequence-based descriptors, we derived a set of structure-based 

properties by identifying GPCR/G-protein 3D complexes better suited to model the 

interactions for every G-protein coupling group using InterPreTS (Aloy and Russell, 

2002, 2003), that evaluated the fit of all the given receptor-G-protein pairs onto these 

complexes. We then applied an interpretable, logistic regression algorithm to learn 

from the sequence- and structure-based features and to develop predictive models 

(called PRECOG) of GPCR/G-protein couplings. The PRECOG web-server is a first 

predictor of GPCR coupling that predicts at the level of individual G-protein rather than 

the subfamily. For a given receptor sequence or its UniProt identifier, the PRECOG 

web server can quickly predict the interacting G-protein(s),  assess the impact of 

mutations, and design receptors that show coupling to a specific receptor. 

 

5.1.3 Applications of the ML-guided framework (Chapter IV) 
Amongst other uncharacterized mutated GPCRs, PRECOG readily predicted the 

uncharacterized purinergic receptor P2RY8, a protein with oncogenic potential, to 

couple GNA13, which is in line with growing evidence (López et al., 2019; Muppidi et 

al., 2014; O’Hayre et al., 2016). The predictive models of PRECOG were successful 

at developing the first GNA12-coupled designer receptors: hM3D-GPR183/ICL3 and 

hM3D-GPR132/ICL3. Finally, we demonstrated the versatility of the PRECOG 

framework on new binding data to unravel the determinants of β-arrestin specificity in 

GPCRs. As observed for G-proteins, the β-arrestin specificity determining positions in 

receptors also lie at the intracellular binding interface as well as throughout the 

hydrophobic regions of the 7TM1 domain and extra-membrane regions. Further, a 

significant overlap of G-protein specificity positions obtained from the two binding 

datasets highlights the reusability of the PRECOG framework. 
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5.2 PRACTICAL IMPLICATIONS 

5.2.1 An adaptable framework 
The framework lends itself to binding data of other protein-protein interactions that lack 

the sub-type specificity information. Unlike most SDP methods (see section 1.6 of 

Chapter I) that consider only positions within an MSA, our framework offers flexibility 

to also include the statistically significant disordered regions of proteins (that can often 

not be meaningfully aligned) by assessing their length and charge distributions (for 

example the ICL3 and C-terminus of GPCRs in the current study). Other physical 

properties of a protein such as hydrophobicity and predicted backbone-dynamics or 

secondary structure or post-translational modifications information can also be added 

as additional descriptors. Finally, the framework also provides the flexibility of 

employing other interpretable machine learning algorithms (for example support vector 

machines or random forests) depending on the nature, size, and quality of data. 

 

5.2.2 ML-guided protein designing 
The significant strength of the framework comes from the use of logistic regression, 

an interpretable machine-learning algorithm, that generates data-driven predictors 

based on input information. These predictors assess the contribution of features 

towards determining the subtype and this property can be exploited to engineer 

proteins, as we demonstrated with the development of the first G12-coupled receptors. 

This significantly reduces the immense cost and time required to screen hundreds or 

thousands of sequences. ML-guided protein engineering has recently shown 

promising results. For example, Gaussian process models were used to design 

minimally-invasive channelrhodopsins of high light sensitivity (Bedbrook et al., 2019) 

and to engineer cytochrome P450s with increased thermostability (Romero et al., 

2013). In another study, a Boltzmann machine-learning-based method was applied to 

develop an artificial protein that mimics chorismate mutase, an enzyme essential to 

the biosynthesis of aromatic amino acids (Russ et al., 2020). As we continue to map 

sequence to function relationships using various experimental assays, machine-

learning guided frameworks, such as the one presented here, will be beneficial tools 

to design as well develop artificial proteins. 
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5.3 OUTLOOK 

5.3.1 Expanding the feature set 
Over 1000 ligands bind on the extracellular sites of the receptor, which in turn recruit 

one of the 16 human G-proteins and/or one of the four β-arrestins that bind to 

intracellular pockets of the receptor. While our framework is effective at mining 

subtype-specific positions in receptors, a much more comprehensive feature set that 

encompasses other properties of not just GPCRs but also their extracellular and 

cytosolic partners can provide a complete picture. 

 

Descriptors such as SMILES strings (Weininger, 1988) or PubChem fingerprints (Kim 

et al., 2021) can be used to include the structural and chemical nature of ligands. 

Though such inclusion may not be possible in the current scope as each receptor was 

tested by only one agonist in the data from the TGFα shedding assay, this information 

can be supplemented by other publicly available datasets such as of PRESTO-Tango 

(Kroeze et al., 2015) that have screened hundreds of compounds against GPCRs. 

 

The fifth helix of the Gα subunit, particularly the last 6 amino acids, is involved in the 

interaction with GPCRs (Carpenter et al., 2016). A recent bioinformatics study 

identified additional patterns of amino acids in the G-proteins that determine GPCR 

selectivity (Flock et al., 2017). Thus, a vector encoding the G-protein properties can 

be appended into the feature set to enhance predictions. 

 

The inclusion of other extra-membrane regions of the receptors such as the ICL1 

(García-Nafría et al., 2018b; Nojima et al., 2020), ICL2 (García-Nafría et al., 2018b; 

Kang et al., 2018; Koehl et al., 2018; Nojima et al., 2020), and ECL2 (Lin et al., 2020) 

that have been shown to participate in cytosolic interactions, might provide 

supplementary subtype information. Upon the availability of more data in the future, 

other receptor features such as conformational dynamics, which captures the variable 

outward movement receptors (Koehl et al., 2018), can further fine-tune the G-protein 

specificity predictions. 
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5.3.2 Include contextual information 
A GPCR can express more than one isoform, and each of them can have different 

downstream outcomes (Kendall and Senogles, 2011; Smith et al., 2017). While in the 

current framework, PRECOG can be used to predict the G-protein/β-arrestin 

specificity of each of these isoforms, it is the different combinations of these isoforms 

co-expressed in tissues that dictate the signaling outcome (Marti-Solano et al., 2020). 

Thus, an advanced framework would involve the calculation of co-expression scores 

of receptor isoforms and G-proteins in tissues and combine them with sequence 

and/or structural-based predictors such as PRECOG using statistical or cognitive 

models (Lee and Danileiko, 2014) to estimate the overall probability of the given 

coupling in a tissue. 

 

5.3.3 Building regression models 
In the current study, we have built a classification model of each coupling group by 

binarizing the LogRAi values into 1 (high binding affinity) or 0 (low binding affinity) (see 

section 2.3.1 in Chapter II). While the current classification model (logistic regression) 

predicts the coupling probability of any given GPCR/G-protein pair, these probabilities 

do not reflect the LogRAi value of the interaction. Thus, an improved framework would 

involve the building of regression models that will make predictions that resemble the 

actual target values (LogRAi values). The availability of bigger and more detailed 

datasets will enable such a predictor. 

 

5.4 EPILOGUE 

In this study, we present a powerful, machine-learning guided framework that uses 

GPCR binding data to extract statistically associated sequence and structural features 

to develop predictive models of G-protein subtype specificity. We apply the framework 

to predict the couplings of uncharacterized receptors, assess the impact of mutations, 

and design two novel G12-specific receptors. Collectively, the application of this 

framework to other binding data, as we showed with β-arrestins, can uncover novel 

allosteric sites involved in subtype activation; improve our understanding of human 

diseases; help us devise better chemogenetic tools and diagnostic techniques, and 

ultimately make smarter therapeutic decisions. 
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