
Dissertation

submitted to the

Combined Faculty of Natural Sciences and Mathematics
of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Annika Tebben

born in Cloppenburg, Germany

Oral examination: 22.10.2021





Rydberg Electromagnetically Induced
Transparency

—

A vanishing linear response, resonances,
and a stationary Rydberg polariton

Referees: Prof. Dr. Matthias Weidemüller
apl. Prof. Dr. Jörg Evers





Abstract Rydberg electromagnetically induced transparency (Rydberg EIT) en-
ables extremely strong optical nonlinearities, opening the possibility for photon-
photon interactions and exotic states of light. Subjects of this thesis are the
development and the experimental test of semiclassical models for Rydberg EIT
systems on two-photon resonance. Beyond that, this thesis opens the route to-
wards enhanced photon-photon interactions in terms of an increased interaction
time. Three major results are achieved: (i) In the semiclassical regime, we ex-
tend existing models and reveal that a two-body, two-photon resonance leads to
an enhanced nonlinear optical response. (ii) We develop an experimental method
to rigorously test semiclassical models of Rydberg EIT. For this purpose, we go
beyond previous experimental investigations and measure transmission spectra on
two-photon resonance, where the linear response of the system vanishes. We iden-
tify qualitative differences between a measured absorption feature and predictions
provided by a mean-field model, a Monte-Carlo rate equation simulation, and a
theory based on a pairwise treatment of atomic interactions. (iii) In the quantum
regime, we propose and analyze a novel scheme to endow a stationary light polari-
ton with a Rydberg character, resulting in a stationary Rydberg polariton. Our
scheme offers the prospect for polariton interactions with increased interaction
time, and thus might find application in the creation of exotic states of light.

Zusammenfassung Elektromagnetisch induzierte Transparenz mit Rydbergato-
men (Rydberg EIT) ermöglicht extrem starke optische Nichtlinearitäten, welche
die Möglichkeit für Photonen-Photonen Wechselwirkungen und exotische Zustände
von Licht eröffnen. Themen der vorliegenden Arbeit sind die Entwicklung und die
experimentelle Überprüfung von semiklassischen Modellen für Rydberg EIT Sys-
teme auf Zwei-Photonen-Resonanz. Darüber hinaus ebnet diese Arbeit den Weg
für verstärkte Photonen-Photonen Wechselwirkungen mittels einer verlängerten
Wechselwirkungszeit. Drei wesentliche Ergebnisse werden erzielt: (i) Im semiklas-
sischen Regime erweitern wir bestehende Modelle und zeigen, dass eine Zwei-
Körper, Zwei-Photonen-Resonanz zu einer verstärkten nichtlinearen optische Ant-
wort führt. (ii) Wir entwickeln eine experimentelle Methode für die rigorose Über-
prüfung semiklassischer Modelle der Rydberg EIT. Hierfür gehen wir über vorhe-
rige experimentelle Studien hinaus und messen Transmissionsspektren auf Zwei-
Photonen-Resonanz, wo die lineare Antwort des Systems verschwindet. Wir identi-
fizieren qualitative Abweichungen zwischen gemessenen Absorptionseigenschaften
und Vorhersagen von einer Molekularfeldtheorie, einer Monte-Carlo Ratenglei-
chungssimulation und einer Theorie, die auf einer paarweisen Behandlung von
atomaren Wechselwirkungen beruht. (iii) Im quantenmechanischen Regime schla-
gen wir ein neues Schema vor, mit welchem ein stationäres Licht-Polariton mit
einem Rydberg-Charakter ausgestattet wird, und analysieren dieses. Als Ergebnis
erhalten wir ein stationäres Rydberg-Polariton. Unser Schema bietet die Aus-
sicht auf Polaritonen-Wechselwirkungen mit einer verlängerten Wechselwirkungs-
zeit und könnte daher Anwendung in der Erzeugung von exotischen Zuständen
von Licht finden.
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tner, G. Zürn and M. Weidemüller, Phys. Rev. A 103, 063710 (2021)

• A stationary Rydberg polariton
A. Tebben, C. Hainaut, A. Salzinger, T. Franz, S. Geier, G. Zürn and M.
Weidemüller, arXiv: 2108.00657 (2021)

The author furthermore contributed to the following manuscripts:

• Floquet Hamiltonian Engineering of an Isolated Many-Body Spin
System
S. Geier, N. Thaicharoen, C. Hainaut, T. Franz, A. Salzinger, A. Tebben,
D. Grimshandl, G. Zürn and M. Weidemüller, arXiv:2105.01597 (2021)

• Glassy quantum dynamics of disordered Ising spins
P. Schultzen, T. Franz, S. Geier, A. Salzinger, A. Tebben, C. Hainaut, G.
Zürn, M. Weidemüller and M. Gärttner, arXiv:2104.00349 (2021)
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CHAPTER1
Introduction

Light is of fundamental importance for our everyday life, and understanding as
well as controlling light laid the base for groundbreaking scientific advances. As
a prominent example, the laser [1, 2], a coherent source of light, has become in-
dispensable for our daily communication as well as for medical and industrial ap-
plications. Moreover, it has revolutionized the field of atomic physics by enabling
sophisticated techniques for optical cooling and trapping of atoms [3]. Today we
perceive light not only as an electromagnetic wave described by Maxwell’s equa-
tions, but at the same time as to be composed of quantum mechanical particles
called photons. Despite the linearity of Maxwell’s equations in free space, which
implies the superposition principle, the question arose whether one could make
photons interact [4]. Being a question of fundamental interest by itself, its affir-
mation opens up entirely new perspectives: for example, exotic states of light, such
as photon crystals and fluids [4–6], and all-optical quantum information processing
[7–10] become in reach. Therefore, it is not surprising that in the last decades a
lot of scientific work has been devoted to achieve photon-photon interactions [4].

By now it is well established that effective photon-photon interactions can be
mediated by matter [4]. This possibility arises as the superposition principle
is not valid in media that feature a nonlinear optical response to the applied
electromagnetic field. If the nonlinearity is sufficiently strong such that the optical
response to a single photon is different to that of a pair of photons, effective photon-
photon interactions emerge [4]. However, the optical nonlinearity of conventional
media is typically very weak due to the small probability of atom-photon scattering
[4]. Therefore, it manifests itself only in combination with strong light fields
provided by high-intensity lasers. In this case effects such as self-trapping of light
[11] and second-order [12] as well as high harmonic generation [13, 14] have been
observed.

Strong optical nonlinearities can be generated via strong light-matter coupling
induced, for example, by mode confinement in cavities coupled to atoms [15, 16]
or quantum dots [17, 18]. Yet another possibility is to transfer strong atomic
interactions provided by Rydberg atoms onto light under conditions of electro-
magnetically induced transparency (EIT) [19, 20], an approach called Rydberg

1



EIT [21–24].

Within this approach EIT provides an exceptionally coherent form of light-
matter coupling. Here, an atomic medium is rendered transparent for a probe
field in the presence of a second, strong control field since the system settles into
a non-decaying dark-state. The lossless propagation of the probe field under EIT
conditions has first been demonstrated in an atomic vapor [20] and can be exploited
for enhanced frequency conversion [19]. However, not only the dissipative, but
also the dispersive properties of the medium are changed under EIT conditions.
As a consequence, light can be slowed down remarkably to group velocities as
low as 17 m/s [25]. It even becomes possible to completely stop light inside the
medium as an atomic [26–30] or as a stationary photonic excitation [31–45]. On
the single-photon level, EIT is associated with the formation of a quasi-particle
called dark-state polariton [26, 30]. As it is composed of a photonic excitation and
an atomic coherence, the polariton inherits kinetic properties from its light part
and dispersion from its matter part.

Strong atomic interactions inherent to Rydberg EIT are introduced by coupling
to a highly excited, so-called Rydberg state. These Rydberg atoms [46–49] feature
strong and long-range interparticle interactions due to their large polarizability.
The high controllability of these interactions makes Rydberg atoms an ideal plat-
form for applications in quantum simulations and technologies [50–52] as well as
in information processing [53]. Moreover, a very important consequence of the
interactions between Rydberg atoms is the occurrence of the Rydberg blockade
effect [54–56]. As a consequence of an interaction-induced level shift, this effect
prevents the simultaneous excitation of two atoms into the Rydberg state, if the
atoms are closer to each other than a certain distance called the blockade radius.

The Rydberg blockade effect is the key for enabling exceptionally strong optical
nonlinearities in Rydberg EIT systems [23, 24]. While one photon experiences EIT
transparency, EIT conditions for a second photon are destroyed if it propagates
along the first one with a distance smaller than the blockade radius. As a con-
sequence of this nonlinear response, the second photon can experience a drastic
attenuation and phase shift [24, 57]. Moreover, due to the long-range character
of Rydberg interactions, the associated nonlinearity is highly nonlocal [58, 59].
Rydberg EIT can also be understood in the picture of the EIT dark-state po-
lariton introduced before. Due to their Rydberg component the polaritons, now
called Rydberg polaritons [24], inherit the ability to interact with each other while
propagating through the atomic medium.

The field of Rydberg EIT has rapidly evolved in the last two decades: In the
semiclassical regime, the strong nonlinear attenuation of a classical probe field has
been observed [23, 60–65] and applications such as interaction enhanced imaging
of Rydberg impurities [66, 67] and microwave electric field sensing [68, 69] have
been put forward. In the quantum regime, where the correlation of the light
field is strongly affected by the nonlinear response of the Rydberg EIT medium,
strong photon-photon interactions, ranging from attractive to repulsive, have been
demonstrated [24, 57, 59, 70–73]. Moreover, exotic states of light such as bound
states of photons have been observed [57, 71, 72], and precursors of photonic
quantum technologies such as all-optical switches [74], transistors [9, 75, 76] and
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photonic gates [8, 10] have been demonstrated.
Despite its great success, the field of Rydberg EIT faces two major challenges:

First, developing theoretical models is complicated due to correlations emerging
from strong interactions in the system. Second, limitations on the achievable in-
teraction strength hinder the efficiency of quantum optics applications of Rydberg
EIT. As we address both challenges in this thesis, we will comment on them briefly
in the following.

Concerning the first challenge, the semiclassical regime is seemingly simpler to
describe than the quantum regime as photon-photon correlations can be discarded
[77]. Nevertheless, atomic correlations emerging in a strongly interacting Rydberg
gas complicate the development of theoretical models significantly. Exact or nu-
merical calculations are restricted to a small number of atoms [23, 78, 79] as atomic
interactions strongly couple the underlying equations of motion. Therefore, ap-
proximate models for the nonlinear response of the Rydberg EIT medium have
been elaborated, e.g. based on a mean-field assumption [60, 64, 65, 80], Monte-
Carlo rate equation simulations [78, 81–83] or low intensity expansions [58, 84].
These models have been shown to explain several aspects of measured Rydberg
EIT transmission spectra when the control field is on resonance [23, 60, 62, 64, 65].
However, the occurrence of certain features, including an asymmetry and shift of
the spectrum, has been discussed [62, 64]. Therefore, inevitable the two questions

How to model the strongly interacting and thus strongly correlated light-matter
system under Rydberg EIT conditions?

and

How to experimentally test these models?

emerge.
The second challenge of a limited interaction strength arises although the Ry-

dberg EIT nonlinearity outperforms the one of conventional media by orders of
magnitude [61]. This is rooted in the fact that both the attenuation and phase
shift which a photon can experience over the length of a Rydberg blockade radius
are experimentally limited [24, 57, 85, 86]. Approaches to enhance photon-photon
interactions in Rydberg EIT settings beyond current schemes included to increase
the interaction strength per photon by transferring Rydberg EIT into a cavity
setting [87–91], or to increase the interaction time [59, 92–95]. Therefore, also the
question

How to enhance photon-photon interactions?

is at the heart of current research.
In this thesis we investigate the phenomenon of Rydberg EIT in the semiclassical

and quantum regime. Thereby, we address these three questions in the following
manner: First, in the semiclassical regime, we develop an intuitive picture that
explains an enhanced nonlinear response of the Rydberg EIT medium as resulting
from a two-body, two-photon resonance [96]. Second, we develop a method to test
this theoretical prediction and other existing models by measuring EIT transmis-
sion spectra in the presence of Rydberg interactions. Our approach goes beyond
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previous experimental investigations by exploring Rydberg EIT on two-photon
resonance, where the linear response of the medium vanishes [97]. Third, in the
quantum regime, we propose and analyze a novel scheme that equips a station-
ary light polariton with a Rydberg character [98]. Due to its stationary nature,
the resulting stationary Rydberg polariton holds prospects for enabling enhanced
photon-photon interactions due to an increased interaction time.

This thesis is structured as follows:
In Chapter 2 an introduction to light propagation through an atomic medium

from a semiclassical and a quantum mechanical point of view is provided. In the
semiclassical regime, the concept of EIT is explained and introduced as a method
to control the dissipative and dispersive properties of the medium. Moreover, the
emergence of slow and stationary light is discussed. In the quantum regime, the
EIT dark-state polariton and the associated slow- and stationary light polaritons
are introduced.

In Chapter 3 the benefits of both EIT and Rydberg physics are combined to
arrive at a strong nonlinear optical response of the atomic medium. First, a brief
overview on the main characteristics of Rydberg atoms is given. Afterwards, Ryd-
berg EIT is introduced from a semiclassical and quantum mechanical perspective.
Finally, we develop our intuitive picture that allows us to considerably deepen
our understanding of the enhanced nonlinear optical response of the Rydberg EIT
medium in the semiclassical regime.

In Chapter 4 we experimentally explore Rydberg EIT with classical light fields
and compare our findings to theoretical predictions. In particular, we present mea-
surements of EIT transmission spectra with the control beam on resonance and –
following our new approach – on two-photon resonance. We compare our experi-
mental results with the predictions of three different theories. Finally, we discuss
possible routes towards a better understanding of the observed nonlinear effects
from a theoretical and experimental point of view. This chapter is supported by
several appendices, covering experimental as well as theoretical details.

In Chapter 5 we introduce and analyze our scheme for a stationary Rydberg
polariton. In order to learn about how interactions influence our scheme, we
investigate the system in the presence of a Rydberg impurity. Finally, we consider
an experimental realization of the stationary Rydberg polariton and comment on
possible applications of our scheme.

In Chapter 6 we conclude on the presented work in the context of the three
questions raised above.
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CHAPTER2
Basic concepts: From slow to

stationary light

Light propagates unaffected through vacuum with the speed of light. However,
light-matter interfaces allow to change the propagation of light on a fundamental
level, e.g. by absorption and refraction [4]. Moreover, tuning the material prop-
erties of light-matter interfaces even enables to actively control the propagation
of light. It has been found, that under conditions of electromagnetically induced
transparency (EIT) the dissipative and dispersive response of an atomic gas can
be strongly altered [19, 20, 99]. With this technique controlling the speed of light
inside a medium becomes possible. As a consequence, the group velocity of a light
pulse can be remarkably slowed down to 17 m/s [25], leading to the phenomenon
of slow light [25, 99, 100].

A light pulse can even be brought to a complete stop inside the medium when
laser parameters are dynamically varied. Thereby, the photonic excitation is com-
pletely transferred into an atomic excitation [26, 30]. Being able to retrieve the
light field after a variable storage time has been demonstrated experimentally
with classical light fields [27, 28] and single photons [29]. This lays the ground
for quantum memory devices based on stored light [29, 30, 101]. While in this
scheme light is stored in the medium as a pure atomic excitation, preserving the
photonic character of the light field during the storage process has been enabled
by the novel concept of stationary light [31–37].

Controlling the propagation of light by adjusting the optical response of an
atomic medium is the precursor for nonlinear optics with Rydberg atoms as ad-
dressed within this thesis. Therefore, in this chapter, we discuss the basic concepts
of light propagation inside an atomic medium and elaborate how slow and sta-
tionary light phenomena emerge. In Sec. 2.1 we approach this topic from a semi-
classical perspective and introduce the susceptibility as a measure for the optical
response of an atomic gas. We provide the explicit form of the susceptibility for a
driven three-level system as obtained from the optical Bloch equations. Moreover,
we introduce the effect of EIT as a method to control the dissipative and disper-
sive properties of the medium, e.g. for the generation of slow and stationary light.
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We proceed in Sec. 2.2 with a quantum mechanical view of light propagation in
an atomic medium. Here, EIT is associated with the emergence of quasi-particles
called dark-state polaritons [26]. They can be slowed down and stopped inside the
medium as an atomic excitation. Finally, we introduce the concept of stationary
light polaritons, where the photonic component is preserved at zero group velocity
[37].

2.1 Semiclassical description of light propagation

In this section we present a semiclassical description of light propagation through
an atomic medium under EIT conditions. For this purpose, we first introduce the
susceptibility as a measure for the optical response of a system in Sec. 2.1.1, and
provide the susceptibility of a three-level system, which can be derived from the
optical Bloch equations, in Sec. 2.1.2. Afterwards, we explain in Sec. 2.1.3 the
phenomenon of EIT from a semiclassical perspective and highlight some details
and implications, such as spectral properties and the creation of slow and station-
ary light. These concepts are relevant for the discussion in subsequent chapters of
this thesis.

2.1.1 Wave equation and optical response of an atomic gas

The propagation of a classical, scalar light field E(r, t) through an atomic medium
is described by the wave equation [102][

1

c2

∂2

∂t2
−∇2

]
E(r, t) = − 1

ε0c2

∂2

∂t2
P (r, t) (2.1)

for a dielectric, isotropic medium. Here, c is the speed of light, ε0 is the vacuum
permittivity and P (r, t) is the polarization of the atomic medium induced by the
light field. The susceptibility χ relates the polarization to the applied field and
fully determines the optical response of the atomic medium. In the simplest case of
a linear medium, where the polarization P (r, t) = ε0χE(r, t) [102] is proportional
to the applied light field, one obtains from Eq. (2.1) in paraxial approximation
[102] and in one dimension the propagation equation [58, 103]

∂

∂z
E0 =

ikp
2
χE0 (2.2)

for a stationary light field with amplitude E0 and wavevector kp. From Eq. (2.2), it
is apparent that the imaginary part of the susceptibility gives rise to a reduction
of the field amplitude, while the real part leads to a phase shift [102]. As a
consequence, the measurable transmission of the light field, defined by the ratio
of incident I0 ∝ |E0|2 and transmitted intensity I, can be calculated as [103, 104]

T =
I

I0
= e−kpIm(χ)L = e−OD . (2.3)

Here, we have assumed for simplicity an atomic medium with a constant density
over a propagation length L. Moreover, the optical depth OD of the medium has
been defined.
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Figure 2.1: Level schemes for two- and three-level atoms. A two-level system
(left) composed of a ground |g〉 and excited state |e〉 with decay rate Γe

interacts with a laser field with Rabi frequency Ωp and detuning ∆p. Adding
another laser field with Rabi frequency Ωc and detuning ∆c completes a
ladder-type three-level system (right) with an upper state |r〉. Within this
thesis the upper state is assumed to be long-lived with decay rate Γr � Γe.
Level schemes taken and adapted with permission from ref. [96].

The preceding discussion shows that the susceptibility completely describes the
propagation of a light field through an atomic medium. Moreover, it becomes ap-
parent that this quantity needs to be derived from optical and atomic properties of
the system under consideration. In the following, we discuss that the susceptibility
is immediately connected to the quantum state of the atomic system, represented
by the density matrix ρ̂.

As a simple example, we consider an atomic cloud composed of two-level atoms
and exposed to the radiation of a monochromatic light field. The latter couples
a ground state |g〉 to an excited state |e〉 that decays with rate Γe, as depicted
in Fig. 2.1. The macroscopic polarization is related to the dipole moment d̂ of
the atoms via P = ρ0〈d̂〉 = ρ0Tr[ρ̂d̂] [103] with ρ0 being the atomic density. As a
result, one obtains the susceptibility [103–105]

χ2lvl =
ρ0〈d̂〉
ε0E0

= −2ρ0|dge|2

~ε0
ρeg
Ωp

= −χ0
Γe
Ωp
ρeg , (2.4)

where ~ denotes the reduced Planck constant. The susceptibility is determined
by the dipole matrix element dge of the ground to excited state transition, the
corresponding density matrix element ρeg and the Rabi frequency

Ωp = −degE0/~ (2.5)

of the light field. In order to obtain the third equality of Eq. (2.4), χ0 = σ0ρ0/kp
has been introduced with the atomic absorption cross section σ0 = 3λ2

p/2π. Here,
λp = 2π/kp is the wavelength of the light field. Furthermore, we have used the
relation [104, 105]

Γe =
|dge|2k3

p

3ε0π~
(2.6)

for the spontaneous decay rate. From Eq. (2.4) we see, that the optical response
of the atomic medium is directly connected to the density matrix element ρeg of
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the atomic transition, which is coupled by the light field. However, calculating
ρeg and therefore the optical response of the system is not always as simple and
becomes particularly demanding in the presence of atomic interactions as discussed
in Chap. 3.

2.1.2 Optical Bloch equations for a driven three-level system

Of particular importance for this thesis is the three-level scheme in ladder config-
uration shown in Fig. 2.1. Here, two light fields, the so-called probe and control
fields, couple the transitions between a ground state |g〉, an intermediate state |e〉
and an upper state |r〉. In the following, we provide a brief description of the
system in order to arrive at the susceptibility for the driven three-level system.
Thereby, we summarize the discussion presented in ref. [103].

In the dipole approximation [105], atom-light interactions are described by the
Hamiltonian ĤL = −d̂E. Together with the single-atom Hamiltonian Ĥ0 the
Hamiltonian

Ĥ = Ĥ0 + ĤL (2.7)

of the coupled atom-light system in the rotating wave approximation has the form
[103, 105]

Ĥ =
~
2

 0 Ωp 0
Ωp −2∆p Ωc

0 Ωc −2(∆p + ∆c)

 (2.8)

in matrix notation and in the basis of the bare atomic states. Here, the coupling
is determined by the probe and control field Rabi frequencies Ωp and Ωc, which
are detuned from the bare atomic levels by ∆p and ∆c, respectively.

The von Neumann equation [105]

∂tρ̂ = − i
~

[
Ĥ, ρ̂

]
(2.9)

describes the coherent time evolution of the system with density matrix ρ̂. How-
ever, typically the system also possesses an incoherent evolution originating from
spontaneous population decay and dephasing of the atomic coherences [103, 104,
106]. In our case, spontaneous decay concerns the intermediate and upper states
with decay rates Γe and Γr, respectively. In turn, dephasing of the atomic co-
herences can, for example, result from laser phase noise, and is characterized by
dephasing rates γge, γer and γgr for the three atomic coherences, respectively [107].
Both effects, spontaneous population decay and dephasing of the coherences, can
be introduced into the von Neumann equation, Eq. (2.9), in terms of so-called
Lindblad operators [108, 109]. For a detailed discussion of these effects and for
the corresponding expressions of the Lindblad operators, the reader is referred to
e.g. refs. [103, 107–109].

From Eq. (2.9) including such Lindblad operators, the time dynamics of the
density matrix elements ραβ = 〈α| ρ̂ |β〉 with α, β ∈ {g, e, r} is obtained in form of
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the single-body optical Bloch equations (OBE) [62, 81, 110]

∂tρgg = −ΩpIm[ρge] + Γeρee , (2.10a)

∂tρee = ΩpIm[ρge]− ΩcIm[ρer]− Γeρee + Γrρrr , (2.10b)

∂tρrr = ΩcIm[ρer]− Γrρrr , (2.10c)

∂tρge = −Γgeρge/2 + iΩcρgr/2 + iΩp(ρgg − ρee)/2 , (2.10d)

∂tρgr = −Γgrρgr/2− i(Ωpρer − Ωcρge)/2 , (2.10e)

∂tρer = −Γerρer/2− iΩpρgr/2− iΩc(ρrr − ρee)/2 . (2.10f)

Here, the combined rates

Γge = Γe + γge + 2i∆p , (2.11a)

Γer = Γe + Γr + γer + 2i∆c , (2.11b)

Γgr = Γr + γgr + 2i(∆p + ∆c) . (2.11c)

have been defined. In order to simplify the subsequent discussion, we also intro-
duce the single-photon detuning ∆ = ∆p and the two-photon detuning δ = ∆p+∆c

for the three-level system.
Finally, in steady-state and in the limit Ωp � Ωc, the susceptibility of the

three-level system [103, 110]

χ3lvl = χ0

iΓeΓ
∗
gr

Γ∗geΓ
∗
gr + Ω2

c

(2.12)

can be obtained from the OBE and Eq. (2.4).

2.1.3 Electromagnetically induced transparency

If the upper state |r〉 of the three-level system depicted in Fig. 2.1 is meta-stable,
the susceptibility of the three-level system, Eq. (2.12), gives rise to an effect called
electromagnetically induced transparency (EIT) [19, 20]. In the presence of a
strong coupling field, the atomic medium is rendered transparent on two-photon
resonance for a weak1 probe field. This phenomenon is a consequence of destruc-
tive interference between different excitation pathways [99]. The effect of EIT was
first proposed by Harris et al. [19] and shortly afterwards experimentally demon-
strated by Boller et al. [20]. Since then many applications of EIT have been
identified including enhanced frequency conversion [19]. For a detailed review on
EIT we refer the reader to ref. [99] and only summarize the main aspects relevant
for this thesis in the present section.

EIT dark state
The occurrence of EIT is connected to the presence of a dark state [99]

|DEIT〉 =
1√

Ω2
c + Ω2

p

[Ωc |g〉 − Ωp |r〉] (2.13)

1 Here, we consider Ωp < Ωc. Changing to the opposite situation leads to a sizable population
in the Rydberg state. This regime has been investigated, for example, in the context of
coherent population trapping [84].
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Figure 2.2: EIT susceptibility. Imaginary (a) and real (b) part of the three-level
susceptibility χ3lvl, Eq. (2.12), as a function of the probe beam detuning ∆p

for different Rabi frequencies Ωc of the control beam and different dephasing
rates γgr, as indicated in the legend. The red dashed line connects points
where Im(χ3lvl) = 0, which results from a vanishing two-photon detuning
δ = ∆p + ∆c = 0 in the absence of dephasing (γgr = 0). The susceptibility
in the absence of the control beam, corresponding to the one of a two-level
system, is shown as a blue dashed line for comparison in (a) and (b). In
both plots we have chosen Ωp/Γe = 0.02 and Γr = γge = γer = 0, and
∆c/Γe = {0,−0.75,−1.5} in (a) from left to right and ∆c = 0 in (b).

that can be obtained by diagonalizing the Hamiltonian of the three-level system,
Eq. (2.8), for δ = 0. Remarkably, the dark state does not contain the intermediate
state. As a consequence, an atom in this state does not scatter the probe field,
hence the name dark state [99]. On two-photon resonance, all atoms settle into
this dark state, which leads to the EIT transparency for the probe beam.

In Sec. 4.3.3 we discuss in more detail how this dark state can be populated
adiabatically by using an appropriate pulse sequence of the applied fields [99]. We
prepare Ωp � Ωc for the experiments presented in Chap. 4, meaning that the dark
state only possesses a small admixture of the upper state |r〉 and thus is mostly
ground-state like.

Spectral properties of the EIT susceptibility

Fig. 2.2(a) shows the imaginary part of the three-level susceptibility as a function
of the probe and control field detuning ∆p and ∆c, respectively. In the absence of
the control field (blue dashed line), the susceptibility reproduces the one of a two-
level system and displays strong absorption on resonance. However, the presence
of the control field (black line) leads to Im(χ3lvl) = 0 on two-photon resonance
δ = ∆p + ∆c = 0 (indicated by the red dashed line), meaning that the probe field
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is fully transmitted. The associated transparency window [99]

∆ωtr =
δEIT√

OD
(2.14)

is determined by the EIT linewidth [99]

δEIT =
Ω2
c

|Γe + i∆p|
(2.15)

and the optical depth OD of the atomic medium. Assuming Γr = 0, effects of EIT
such as the transparency remain visible as long as [99]

|Ωc|
γgr(Γe + γge)

� 1 (2.16)

holds. For this reason, it is especially important to preserve the coherence between
the two meta-stable states, which could e.g. be diminished by phase fluctuations
of the laser fields [99]. If for example γgr 6= 0, as shown by the orange dotted line
in Fig. 2.2, residual absorption of the probe field arises. Eq. (2.16) also implies,
that if the dephasing γgr is sufficiently small [99], EIT can be observed in atomic
gases prone to a collisional broadening [111] or in solids [112].

2.1.4 Slow light

A transparency for the probe beam could also be realized by a large probe de-
tuning. However, the effect of EIT is special in the sense that it does not only
strongly alter the dissipative properties of the atomic medium, but also allows to
tune the refraction experienced by the probe field [99]. As a consequence, light
can be remarkably slowed down and a group velocity as low as 17 m/s for so called
slow light has been observed [25].

In order to understand the origin of slow light in EIT settings, we recall that the
refractive properties of the medium are related to the real part of the susceptibility
via the refractive index n =

√
1 + Re(χ3lvl) [102]. In Fig. 2.2(b) we show the real

part of the three-level susceptibility as a function of the probe field detuning.
While in the absence of the control field (two-level situation, blue dashed line)
the slope close to resonance is negative and thus leads to anomalous dispersion,
the three-level system (black solid line) shows a steep positive slope, indicating
normal dispersion [99]. Most importantly, the slope around zero detuning can be
increased by decreasing the control field Rabi frequency as indicated in Fig. 2.2(b)
by the orange dotted line.

The group velocity associated to the refractive index n reads [25, 99, 104]

vg =
c

n(ωp) + ωp
dn
dωp

=
1

1 + ngr
, (2.17)

where the second equality holds for a linear medium on two-photon resonance.
Here, [99]

ngr = ρ0σ0c
Γe

Ω2
c + γgr(Γe + γge)

(2.18)
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is the group index and σ0 the atomic cross section. It follows that the dispersive
properties of EIT allow to remarkably reduce the group velocity inside an atomic
medium, e.g. for small Rabi frequencies Ωc. The probe pulse gets delayed by a
time τd = ODΓe/Ω

2
c [99] when traversing the medium, hence the name slow light.

However, Eq. (2.17) also implies that the minimal group velocity is limited by the
dephasing present in the system [99].

The transparency for the probe pulse is only maintained if its spectral width
fits into the EIT transparency window, Eq. (2.14), as otherwise higher spectral
components are absorbed [99]. This has severe consequences for the minimally
achievable group velocity for a control field that is constant in time: While the
spectral width of the probe pulse is not affected for a time-independent group ve-
locity, the EIT transparency width decreases with the Rabi frequency Ωc according
to Eq. (2.15). For very small Rabi frequencies Ωc, the pulse spectral width exceeds
the EIT transparency window, such that the probe pulse gets absorbed. There-
fore, it is not possible to bring light to a complete stop inside an atomic medium
with a static control field [99]. However, if the group velocity is reduced in time
the spectral width of the probe pulse decreases. Therefore, the ratio of probe
pulse to EIT width stays constant when dynamically reducing Ωc, and thus the
group velocity, to zero [30]. As a result, light can be brought to a complete stop
inside the atomic medium if γgr = 0. Stopping a classical light pulse was first
achieved by Liu et al. [27] in a cold atomic gas as well as in an atomic vapor by
Phillips et al. [28]. We complete this section by noting that a spatial reduction of
the group velocity, e.g. at the entrance of the medium, is accompanied by a pulse
compression given by the ratio vg/c [99].

2.1.5 Stationary light

In contrast to slow and stored light discussed in the previous section, a slight
adaption of the conventional EIT systems enables to store a light field inside an
atomic medium, while preserving its photonic character. This so-called stationary
light is realized by coupling two counter-propagating probe field modes, for which
EIT conditions involving the same spin-wave coherence are fulfilled individually
[31–33, 37].

Consider for example the Λ-coupling scheme [32, 42], shown on the left of
Fig. 2.3. Here, two counter-propagating control fields with Rabi frequencies Ωc±
couple an excited state |e〉 to a meta-stable state |d〉. They form an intensity grat-
ing that modulates the EIT condition periodically for a probe field, which couples
the ground state |g〉 to the excited state |e〉. Under phase matching conditions
and on four-photon resonance, right- and left-moving probe field modes interfere.
Moreover, if Ωc+ = Ωc−, they form a stationary wave pattern. As a result, the
probe field can reside in the medium with zero group velocity [32, 42].

After the theoretical prediction of stationary light [31, 32] it was first exper-
imentally observed with the described Λ level scheme in a hot atomic vapor by
Bajcsy et al. [32]. There the stationary field was generated by first storing a
probe field inside an atomic medium as an atomic excitation and afterwards re-
trieving it by turning on the counter-propagating control fields simultaneously.
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Figure 2.3: Level schemes for stationary light. Λ (left) and dual-V (right) level
scheme support the formation of stationary light as a consequence of inter-
fering left- and right-moving probe fields. Arrows indicate the propagation
direction of the fields. For a detailed description and the notation see the
main text.

At the same time, it was shown, that under continuous-wave conditions, i.e. if
the counter-propagating control beams continuously illuminate the medium, an
incident probe beam gets reflected with a high probability, such that the medium
behaves like a mirror [32].

The described realization of stationary light with the Λ level scheme has the
drawback that multiple absorption and re-emission processes in counter-propaga-
ting fields can occur [37]. For example, a right-moving probe photon might be
scattered into the left-moving control field, leading to a ground- to meta-stable
state coherence at a higher momentum [37–41]. While these higher order spatial
modes decay quickly in hot vapors due to atomic motion induced dephasing, they
prevent the formation of stationary light in cold atom experiments [37, 38]. De-
tuning from the excited state, such that higher spatial modes become negligible,
has solved this problem for the Λ level scheme, and enabled the first experimental
observation of stationary light in cold atomic ensembles [35, 43].

The dual-V level scheme [34, 37], depicted on the right in Fig. 2.3, also sup-
ports stationary light for control fields of equal strength. Here, higher order spatial
modes are completely prohibited [34]. The reason is that the two pairs of probe
and control fields couple the spin-wave coherence between the states |g〉 and |d〉 via
two disjunct intermediate states |e±〉. The complete absence of higher order spa-
tial modes makes this scheme particularly useful for the realization of stationary
light in cold atomic ensembles [34]. Furthermore, with a proper choice of atomic
hyperfine sublevels, the difference between the frequencies of the probe and control
fields can be small. This simplifies phase matching in an experimental realization
of this scheme. We present a more quantitative discussion of stationary light
with this level scheme in Sec. 2.2.3. For this purpose, we have already included
equal single- and two-photon detuning ∆ and δ̄ for the two pairs of co-propagating
beams, respectively, in the level scheme shown in Fig. 2.3.

2.1 Semiclassical description of light propagation 13



2.2 Quantum mechanical description of light propagation

In contrast to the semiclassical case, where the probe field is well described by
a Rabi frequency, in the quantum regime photon-photon and photon-atom cor-
relations have to be taken into account [77]. In the following, we review the
propagation of a quantized probe field Ê(r, t) through an atomic medium. First,
we introduce in Sec. 2.2.1 a quantum mechanical description for atom-light in-
teractions in three-level and dual-V atomic level schemes. We proceed by linking
the phenomena of EIT and slow light to the formation of a dark-state and slow-
light polariton in Sec. 2.2.2. Finally, we introduce in Sec. 2.2.3 stationary light
polaritons, which are the counterpart of stationary light in the quantum regime.

2.2.1 Maxwell-Bloch equations

Assuming a weak quantized probe field Ê(r, t), the atoms mainly populate the
ground state. This permits to introduce bosonic operators P̂ (r, t) and Ŝ(r, t) for
the collective polarization and spin-wave coherences, respectively [26, 30, 77, 113].
As in the semiclassical description, the propagation of the probe field is determined
by the polarization coherence.

In the case of the three-level system depicted in Fig. 2.1 and within the paraxial
approximation, the dynamics of the quantized probe field and the coherences are
described2 by the Maxwell-Bloch equations [77, 115, 116]

∂tÊ(r, t) =

(
ic
∇2
⊥

2kp
− c∂z

)
Ê(r, t)− ig

√
ρ(r)P̂ (r, t) , (2.19a)

∂tP̂ (r, t) =− ig
√
ρ(r)Ê(r, t)− iΩ(r)Ŝ(r, t)− ΓpP̂ (r, t) , (2.19b)

∂tŜ(r, t) =− iΩ(r)P̂ (r, t)− ΓsŜ(r, t) . (2.19c)

Here, g is the single-atom coupling strength, kp is the wavevector of the probe
field and ρ(r) denotes the atomic density. Moreover, we have introduced Γp =
Γe/2− i∆, Γs = Γr/2− iδ and Ω = Ωc/2 for convenience.

In steady-state one can solve Eqs. (2.19b) and (2.19c) for the expectation value
of the polarization coherence P̂ (r, t). Relating it to the optical response of the
atomic medium yields the same three-level susceptibility, Eq. (2.12), as derived in
Sec. 2.1.2 in the semiclassical description [96].

Likewise, the Maxwell-Bloch equations for the dual-V scheme shown in Fig. 2.3
read [34, 44, 117]

∂tÊ±(r, t) =

(
ic
∇2
⊥

2k±
∓ c∂z

)
Ê±(r, t)− ig

√
ρ(r)P̂±(r, t) , (2.20a)

∂tP̂±(r, t) = −ig
√
ρ(r)Ê±(r, t)− iΩD̂(r, t)− ΓpP̂±(r, t) , (2.20b)

∂tD̂(r, t) = −i
[
Ω+P̂+(r, t) + Ω−P̂−(r, t)

]
− iδ̄D̂(r, t) (2.20c)

and describe the propagation of the two probe fields with wavenumber k±, for
which the respective quantities are labeled by the indices + and −. Both fields

2 A detailed derivation of these equations can for example be found in refs. [77, 114].
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couple with equal strength to the intermediate states |e±〉, where P̂±(r, t) denotes
the corresponding polarization coherence. We assume that the intermediate states
decay with the same rate Γe. The coherence between the ground state |g〉 and the
meta-stable state |d〉 is described by the operator D̂(r, t). Moreover, for simplicity
we have assumed equal single- and two-photon detuning ∆ and δ̄ for the two pairs
of co-propagating beams.

For one-dimensional systems, where the fields propagate along the z direction
and the transversal dependence of the field can be neglected, the Maxwell-Bloch
equations can be cast into the matrix form [34, 114]

i∂tΥ = HeffΥ , (2.21)

where the column vector Υ ∈ {Υ3lvl,Υdual-V} Hereby, Υ3lvl =
(
Ê , Ŝ, P̂

)T
and

Υdual-V =
(
Ê+, Ê−, D̂, P̂+, P̂−

)T
. The coefficient matrixHeff ∈ {Heff,3lvl,Heff,dual-v}

can be readily obtained from Eqs. (2.19) and Eqs. (2.20), respectively.

2.2.2 Dark-state and slow-light polaritons

In Sec. 2.1.3 we have discussed that EIT is connected to the formation of a
dark state. Analogously on finds in the quantum regime a quasi-particle called
dark-state polariton (DSP) [26] from a momentum space formulation of Heff,3lvl,
Eq. (2.21), for negligible photon dispersion [117]. Hereby, the dark-state polari-
ton is the eigenstate with zero eigenvalue. Explicitly, the form of the DSP reads
[26, 117]

Ψ̂DSP =
1√

Ω2 +G2

[
ΩÊ −GŜ

]
, (2.22)

where we have used the abbreviation G = g
√
ρ0 with ρ0 being the constant atomic

density. The DSP is composed of a photonic excitation and an atomic coher-
ence. It inherits dynamics from the photonic component and, as we discuss in the
subsequent chapter, may inherit interactions from its atomic component [77]. In
contrast to the other two eigenstates ofHeff,3lvl, which are commonly called bright-
state polaritons (BSP) [30], the DSP does not contain the polarization coherence.
For this reason, it does not decay [30].

Fig. 2.4 shows the dispersion relation ω(k) for the dark-state and bright-state
polaritons as a function of the photon momentum k. This quantity can be obtained
by diagonalizing Heff,3lvl, given in Eq. (2.21), numerically in momentum space. In
addition, an approximate expression for the dispersion relation ωDSP(k) for the
DSP at small photon momenta can be calculated using either perturbation theory
or the Lagrange-multiplier formalism3 [114]. One obtains [26, 117]

ωDSP(k) ≈ c
[

Ω2

Ω2 +G2

]
k +O(k2) , (2.23)

3 I thank J. Otterbach for helpful discussions and an example calculation illustrating this
method.
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Figure 2.4: Dispersion relation of the three-level system. Dispersion ω(k) as a
function of the photon momentum k. Three branches, belonging to one
dark-state (black) and two bright-state polaritons (gray), are visible. The
dispersion relation of the dark-state polariton exhibits a linear slope around
zero, which is well approximated by Eq. (2.23), as indicated by the red dashed
line. Parameters are G = Ω = Γe = 1 and ∆ = δ = Γr = 0. Parameters and
scaling of the axes are chosen as in ref. [114].

which shows linear dispersion with group velocity vg = dωDSP(k)/dk. In the
adiabatic limit, where the BSPs are not populated, and on two-photon resonance,
the DSP follows in one dimension the simple equation of motion [26]

[∂t + vg∂z] Ψ̂DSP = 0 . (2.24)

It describes a form-stable propagation with group velocity vg. For G � Ω the
group velocity is remarkably reduced and the polariton is commonly called a slow-
light polariton [118]. Adiabatically reducing the Rabi frequency of the control field
to zero, ultimately allows to fully transfer the polariton to a collective spin-wave
excitation. Thereby, the polariton is completely stopped inside the medium [30].
Full conversion to an atomic coherence is only possible in the absence of dephasing,
as discussed in Sec. 2.1.4. Moreover, the spectral width of the probe pulse has to
fit into the EIT transparency window and the control field needs to be switched
sufficiently slow to avoid coupling to the BSPs [30, 99, 114]. Both conditions can
be realized in atomic media with large optical depth OD [30, 99, 114].

Storing single photons inside an atomic medium as a spin-wave coherence opens
the route for quantum memory devices [30], as it been experimentally demon-
strated by Eisaman et al. [29] and Chanelière et al. [101].

2.2.3 Stationary light polaritons

As discussed in Sec. 2.1.5, stationary light is supported in the dual-V level scheme
if the control fields have equal strength4 (Ωc+ = Ωc− = Ω). Similar to slow
light, stationary light is linked to the formation of a so-called stationary light
polariton (SLP) [31, 34, 44, 117]. Its form can be obtained from a momentum

4 We note that refs. [34, 114] define Ω2 = Ω2
c+ + Ω2

c−. Thus, for a comparison with these
references in the case of Ωc+ = Ωc−, Ω in our equations based on ref. [117] needs to be
replaced by Ω/

√
2.
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Figure 2.5: Dispersion relation of the dual-V level system. Dispersion ω(k) as
a function of the photon momentum k. Five branches, belonging to the
stationary light polariton (black) and four bright-state polaritons (gray),
are visible. The dispersion of the stationary light polariton is quadratic
around zero and is well approximated by the expression given in Eq. (2.26),
as indicated by the red dashed line. Parameters are G = Ω = −∆ = 1 and
δ = Γe = 0. Parameters and scaling of the axes are chosen similar as in
ref. [114].

space formulation of Heff,dual-v for negligible photon dispersion and reads [34, 117]

Ψ̂SLP =
1√

G2 + 2Ω2

[
Ω
(
Ê+ + Ê−

)
−GD̂

]
. (2.25)

The SLP is accompanied by four bright-state polaritons and displays a quadratic
dispersion at small momenta, as shown in Fig. 2.5. Again, an approximate ex-
pression [34, 117]

ωSLP(k) ≈ −2ic2Γp
G2

[
Ω2

G2 + 2Ω2

]
k2 +O(k3) (2.26)

can be derived in the adiabatic limit and using the Lagrange-multiplier method.
As a consequence of the quadratic dispersion relation at small k, stationary light
polaritons follow the equation of motion [34][

∂t +
i~

2meff
∂2
z

]
Ψ̂SLP = 0 . (2.27)

If |∆| � Γe/2, the stationary light polariton behaves like a particle with effective
mass meff = ~[d2ω(k)/dk2]−1, whose dynamics is governed by the Schrödinger-
like equation, Eq. (2.27) [44, 114]. In the opposite case (|∆| � Γe/2), it shows
diffusive behavior [42, 114, 119]. We want to note that Ωc+ 6= Ωc− leads to a
finite group velocity proportional to (Ω2

c+ − Ω2
c−). As a consequence, the SLP

co-propagates with the control field of higher strength [32]. Stationary light in
the quantum regime has been experimentally observed with Rubidium atoms in a
magneto-optical trap [36] and in a hollow-core fiber [120].
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CHAPTER3
A two-body, two-photon

resonance in Rydberg EIT

Parts of this chapter are based on the following publication5, from which parts of
the text have been taken verbatim:

Blockade-induced resonant enhancement of the optical nonlinear-
ity in a Rydberg medium
A. Tebben, C. Hainaut, V. Walther, Y.-C. Zhang, G. Zürn, T. Pohl and
M. Weidemüller, Phys. Rev. A 100, 063812 (2019)

In the previous Chap. 2 we have assumed that the induced polarization of the
medium is proportional to the applied field, which implies a linear optical re-
sponse of the system. However, at large field strengths the polarization depends
nonlinearly on the applied field and higher order susceptibilities arise [122, 123].
As a result, nonlinear processes such as high harmonic generation [13, 14] and
an intensity-dependent refractive index emerge [122]. Only due to the develop-
ment of high intensity lasers these effects have become experimentally accessible
[4, 12, 122, 123]. The reason is that these lasers can provide the required strong
electric field that make the nonlinear terms to the leading order contributions in
the optical response.

However, aiming at optical nonlinearities on the single-photon level, it is not
the electric field, but the higher order susceptibilities themselves that need to
be enhanced with respect to the linear response of the medium. Combining the
coherent light-matter coupling induced by EIT with strong interactions between
Rydberg atoms proved to be a promising solution for achieving strong nonlineari-
ties [4, 23, 61, 63, 77, 85]. While the linear response of the medium is canceled on
two-photon resonance under EIT conditions, atomic interactions induce a strong
third-order nonlinearity to the system that exceeds the one of conventional media
by orders of magnitude [61, 63, 85]. Moreover, effective photon-photon interactions
[24, 57, 59, 70–73, 115, 124] arise with possible applications in the field of quantum

5 The foundation of this work has been laid in my Master thesis [121].
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information processing [7–10] and in the generation of non-classical states of light
[4–6].

In the introduction of this thesis we have raised the question of how to model
this strongly interacting Rydberg EIT system. Various semiclassical models ex-
ists [23, 58, 64, 65, 78, 80, 82, 124, 125]. In some of them the dynamics of the
intermediate state is adiabatically eliminated. This approximation is well justified
for a large detuning to the intermediate state. However, when the intermediate
state is explicitly taken into account interesting effects can be revealed [96]. For
example, an enhancement of the atomic pair potential, collective effects leading to
an enhanced Rydberg excited fraction, and a preservation of coherence as a con-
sequence of suppressed photon scattering have been predicted in the semiclassical
regime [79, 126, 127].

In this chapter we investigate Rydberg EIT on two-photon resonance without
an adiabatic elimination of the intermediate state dynamics. Extending previ-
ous theoretical investigations [58, 121, 126], we find that an enhancement of the
nonlinear response of the Rydberg EIT medium emerges as a consequence of a
resonance effect [96].

This chapter is structured as follows: We start in Sec. 3.1 with an overview of
basic properties of Rydberg atoms and their interactions. In Sec. 3.2 we review
the basic concept of Rydberg EIT from a semiclassical and, for completeness,
from a quantum mechanical perspective. While in the semiclassical regime the
interaction-induced optical nonlinearity is best described by a third-order sus-
ceptibility, in the quantum regime effective photon-photon interactions can be
understood based on interacting polaritons [77, 85]. Based on this theoretical
background, we develop in Sec. 3.3 an intuitive picture for the enhanced nonlinear
response of the Rydberg EIT medium in the semiclassical regime [96]. We present
a model that allows to derive an analytic expression for the associated nonlinear
susceptibility [121]. Moreover, we explain with the help of our intuitive picture
the spatial shape of the enhanced susceptibility, and investigate its scaling with
relevant system parameters [96]. Finally, we summarize and discuss our results in
Sec. 3.4.

3.1 Rydberg atoms

Due to their extraordinary properties, as for example a huge polarizability, Ry-
dberg atoms offer a versatile platform for quantum simulations and technologies
[50–52], information processing [53], and nonlinear optics [52, 63, 77, 85] as dis-
cussed in this chapter. For an in-depth and comprehensive review of Rydberg
atoms the reader is referred to the literature, e.g. refs. [46–49]. In this section
we only briefly summarize the main aspects relevant for this thesis. First, we
introduce the basic properties of Rydberg atoms in Sec. 3.1.1, ranging from the
characteristic scaling of their properties with the quantum number n to strong
interactions between Rydberg atoms. Afterwards, we put in Sec. 3.1.2 the focus
on different existing theoretical models that include Rydberg interactions. They
become important for the investigation of nonlinear optics with Rydberg atoms
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in the remainder of the present and in subsequent chapters.

3.1.1 Basic properties

Rydberg atoms are atoms where one or more valence electrons are excited to a
high principal quantum number n. For alkali Rydberg atoms with one valence
electron, such as Rubidium (Rb) which is considered in this thesis, the binding
energy [103, 128]

En,l,j = −hc RRb
(n∗)2

(3.1)

for the state |n, l, j〉 is hydrogen-like with the distinction that the quantum number
n needs to be replaced by the effective quantum number (n∗) = n − δn,l,j . Here,
the quantum defect δn,j,l takes into account core-penetration of the electron for
low angular momentum states [46]. Furthermore, RRb is the Rydberg constant for
Rubidium atoms, h is the Planck constant and c denotes the speed of light.

Small binding energies for large quantum numbers in combination with the
large distance between the atomic core and the outer electron result in a large
polarizability of Rydberg atoms scaling as (n∗)7 [46]. As a consequence, Rydberg
atoms are strongly affected by external electric fields. For this reason, a precise
control of stray electric fields is required in experimental setups [129]. However,
at the same time the sensitivity to external fields permits to detect Rydberg
excitations via field ionization [46]. The radiative lifetime of Rydberg atoms scales
as (n∗)3 for low angular momentum states [46], as the overlap with the ground
state is small. This results in radiative lifetimes6 in the order of 100µs, which is
much longer than typical experimental timescales7. Therefore, Rydberg states are
considered to be meta-stable.

Rydberg-Rydberg interactions for |nS〉 states

Rydberg atoms possess strong interactions that result in a classical picture from
the interaction between induced dipole moments [48]. For a quantum mechanical
description of Rydberg interactions, we closely follow the discussion in refs. [48,
103, 104]. We consider the interaction between two Rydberg atoms separated by
a distance larger than the LeRoy radius [131]. In this case their interaction can
be described by the dipole-dipole interaction [47, 103]

V̂dd(R) =
d̂1 · d̂2

R3
− 3(d̂1 ·R)(d̂2 ·R)

R5
. (3.2)

Here, d̂1,2 are the dipole operators acting on the two atoms, respectively, and R
is the vector connecting the two atomic cores with inter-nuclear distance R.

6 Rydberg atom properties used within this thesis are calculated with the Alkali Rydberg
Calculator (ARC) [130].

7 Black-body induced decay to nearby Rydberg states reduce the effective lifetimes. For the
Rydberg state |48S〉 considered in this thesis, the radiative lifetime of about 113µs is reduced
to an effective lifetime of about 57µs. However, this is still large compared to typical
experimental time scales ranging from 5 to 15µs.
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In this thesis we work with 87Rb atoms excited to the Rydberg state |48S〉.
Hence, we consider both atoms to be excited to a Rydberg state |nS〉. Moreover,
we neglect the angular dependence of the interaction in the following, which is a
good approximation for Rydberg atoms in |nS〉 states [132, 133].

By using perturbation theory, it is possible to calculate the energy shift of the
pair-state |nS, nS〉 resulting from the dipole coupling [48]. For parity reasons,
the first-order energy correction vanishes. For the second-order contribution, in
principle, a plethora of other coupled pair-states would need to be considered.
Nevertheless, as the energy correction scales with the inverse of the energy dif-
ference ∆E of the pair-states, we only take into account the energetically closest
pair-state |nP, n′P 〉 in a simplified two-atom model [48, 103, 104].

For non-degenerate pair-states, i.e. for ∆E � V0 = 〈nS, nS| V̂dd(R) |nP, n′P 〉
[103] as it is the case for large atomic separations, this results in a second-order
energy shift [48, 104, 134]

EvdW(R) = ~C6/R
6 , (3.3)

where the interaction coefficient C6 ∝ (d1d2)2/∆E. The dipole matrix elements
d1,2 and the energy difference between adjacent n states scale as (n∗)2 and (n∗)−3,
respectively [46]. Therefore, the coefficient C6 exhibits a strong dependence on the
effective quantum number scaling as (n∗)11. Moreover, the interaction coefficient
determines the sign of the resulting van der Waals interactions. In our case the
|48S〉 states possess strong repulsive interactions [103, 104].

For small inter-nuclear distances R or for degeneracy with ∆E = 0, correspond-
ing to a so-called Förster resonance [54], the energy shift can be obtained by
diagonalizing the Hamiltonian [48, 103]

Ĥpair =

(
0 V0

V0 ∆E

)
(3.4)

of the reduced system, given in the basis of the two-pair states |nS, nS〉 and
|nP, n′P 〉. A Taylor expansion of the eigenenergies of the Hamiltonian Ĥpair for
∆E � V0 yields the van der Waals type energy shift scaling as 1/R6 discussed
above [104]. However, an expansion for ∆E � V0 results in an energy shift of
Edd(R) = ~C3/R

3 [48, 103, 104, 134]. As the coefficient C3 ∝ d1d2, the resulting
dipole-dipole interactions scale as (n∗)4. The two regimes of van der Waals and
dipole-dipole interactions can be separated in terms of the so-called van der Waals
radius RvdW = (~c3/∆E)1/3 [48, 103].

For the sake of completeness, we note that dipole-dipole interactions also arise
for two Rydberg atoms in states of opposite parity as the first-order energy correc-
tion does not vanish [48]. Moreover, dipole-dipole interactions become important
if the atoms are exposed to a static electric field, since permanent dipole moments
are induced [48, 104].

Rydberg blockade effect

Rydberg-Rydberg interactions have a profound consequence on the Rydberg ex-
citation dynamics. Fig. 3.1 displays the pair-state energies of two atoms either
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Figure 3.1: Rydberg blockade effect. Energies of relevant pair-states as a function
of the inter-particle distance R. Green (orange) spheres illustrate atoms
in the ground (Rydberg) state. For small separations, the doubly excited
Rydberg state |rr〉 is shifted due to Rydberg-Rydberg interactions. As a
consequence, excitation of this state is prohibited for inter-particle distances
smaller than Rb. B is the Rydberg excitation bandwidth. Figure adapted
from refs. [104, 121], with kind permission of M. Gärttner.

being in the ground state |g〉 or excited to a Rydberg state |r〉 as a function of the
inter-particle distance R. As a consequence of Rydberg-Rydberg interactions, the
doubly excited Rydberg state |rr〉 experiences an energy shift, which is EvdW(R)
for van der Waals interactions. For very small inter-particles distances the state
|rr〉 is shifted out of resonance for the excitation laser. Therefore, the simultane-
ous excitation of two Rydberg atoms is prohibited for R < Rb. Here, the so-called
blockade radius Rb is determined by the Rydberg excitation bandwidth B via the
equation ∆EvdW(Rb) = ~B. This Rydberg blockade effect [54–56] is the key to a
strong nonlinear optical response of an atomic gas, as explained in Sec. 3.2.

3.1.2 Theoretical models for Rydberg-Rydberg interactions

In Sec. 2.1 we have discussed that the optical response of an atomic gas is directly
related to the atomic coherence ρeg, which can be derived from the single-body
OBE, Eq. (2.10). However, Rydberg-Rydberg interactions introduce strong atom-
atom correlations, such that a single-body treatment is no longer sufficient to
capture the complete dynamics of the system [104]. Instead, the full many-body
optical Bloch equations need to be solved for the atomic coherence ρeg. Due to the

interaction terms, the corresponding equations for the density matrix elements ρ
(i)
αβ

with α, β ∈ {g, e, r} of the i-th atom now contain two-body correlators ρ
(i,j)
αβ,α′β′

[62, 84]. These quantities themselves depend on three-body correlators and so
forth . This hierarchy of equations requires to solve the full N-body dynamics.
Since this is computationally demanding, exact and numerical solutions of the
many-body optical Bloch equations are typically restricted to a few atoms [23, 78,
79]. Suitable truncation methods have been found to approximate the many-body
dynamics. In the following, we collect the most important ones for this thesis.
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The simplest truncation completely neglects atom-atom correlations in a so-

called mean-field approach, that is ρ
(i,j)
αβ,α′β′ ≈ ρ

(i)
αβρ

(j)
α′β′ [56, 84, 135, 136]. This

approximation is justified as long as the distance between Rydberg excitations
is large. Applying this approach to the many-body OBE, Rydberg-Rydberg in-
teractions are solely included as level shifts of the Rydberg state. Going beyond
this crude approximation, higher-order correlations can be taken into account by
means of a cluster expansion [84]. With this approach two-atom correlations are
treated exactly and three-body effects are approximately included.

Another approach to solve the many-body OBE is based on the assumption that
coherences decay fast compared to populations. As a consequence, this allows to

obtain equations of the form ∂tρ
(i)
αα = −aααρ(i)

αα +
∑

j 6=i aαβρ
(j)
ββ [62, 81, 82] for the

populations only. Atomic interactions can straightforwardly be included in this

model as an effective detuning ∆
(i)
c,eff = ∆

(i)
c −

∑
j 6=i Vijρ

(j)
rr [81], and the resulting

rate equations can be solved in a Monte-Carlo approach. This model includes
many-body correlations approximately.

3.2 Rydberg EIT

If the state |r〉 of the three-level ladder system depicted in Fig. 2.1 is a Rydberg
state, Rydberg-Rydberg interactions strongly affect the propagation of a light field
under EIT conditions. Moreover, as explained in the following, they render the
medium highly nonlinear as a consequence of the Rydberg blockade effect [21–
24]. Due to the long-range character of the Rydberg-Rydberg interactions, the
resulting optical nonlinearity of the Rydberg EIT medium is not only very strong,
but also highly nonlocal [77].

A strong nonlinear optical response on the single-photon level ultimately allows
for effective photon-photon interactions [24, 115, 124]. This makes the field of
Rydberg EIT promising for applications for example in optical information pro-
cessing [7–10]. Of particular importance in this regard is the question how strong
the light field is affected within one blockade radius, i.e. in terms of attenua-
tion and phase shift. A measure for this is the optical depth per blockade radius
[77, 115]

ODb = OD
Rb
L

=
2g2ρRb
cΓe

, (3.5)

where L is the length of the atomic medium and Rb is the blockade radius for van
der Waals type interactions V (R) = C6/R

6 defined via [77, 115]

V (Rb) = δEIT . (3.6)

Here, δEIT is the EIT linewidth, Eq. (2.14).
For ODb � 1, the effect of the nonlinearity on the light field is weak and the

coherent nature of the light field remains unchanged. Therefore, it can be treated
classically [77]. This domain defines the semiclassical regime of Rydberg EIT,
where the Rydberg EIT nonlinearity is best described in terms of a nonlinear
susceptibility, as illustrated in Fig. 3.2(a). However, for ODb > 1 the light field
experiences a substantial attenuation and phase shift on the single-photon level,
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Figure 3.2: Rydberg EIT nonlinearity. Simplified illustration of Rydberg nonlinear
optics (a) in the semiclassical regime (ODb � 1) and (b) in the quantum
regime (ODb > 1). Green (orange) circles depict atoms in the ground-
(Rydberg) state and dashed circles the blockade radius. Red objects in (b)
illustrate two interacting polaritons.

when traversing the distance of one blockade radius. As a consequence, the pho-
ton statistics changes, giving rise to the quantum regime of Rydberg EIT [77].
Here, effective interactions between polaritons emerge, as schematically shown in
Fig. 3.2(b). A detailed discussion on Rydberg EIT can be found, for example, in
refs. [77, 85]. In the following, we briefly convey the general idea of Rydberg EIT
and give a short overview over some relevant theoretical models in the semiclassical
and quantum regime in Sec. 3.2.1 and Sec. 3.2.2, respectively.

3.2.1 Semiclassical regime: Nonlinear susceptibility

In Sec. 2.1.3 we have explained in the semiclassical regime the phenomenon of EIT
based on the occurrence of a dark-state. However, if |r〉 is a Rydberg state, the
dark-state contains a Rydberg component and Rydberg-Rydberg interactions have
to be taken into account. In this case the atoms can no longer independently settle
into the dark-state [77]. Instead, within one blockade volume only one Rydberg
excitation is allowed, which destroys the EIT condition for all other atoms in
that volume. Hence8, these blockaded atoms can effectively be modeled as two-
level atoms, and thus scatter the incoming probe light according to the two-level
susceptibility χ2lvl, as schematically illustrated in Fig. 3.2(a). This is in sharp
contrast to the EIT transparency, which the probe beam experiences in the non-
interacting case. The more Rydberg atoms are excited and the more ground state
atoms are within one blockade volume, the larger is the number of blockaded
atoms. As a consequence, the optical response of the medium is increasingly
dominated by the two-level response of the blockaded atoms [77]. At the same

8 We note that this picture oversimplifies the system, as the level-shift induced by Rydberg
interactions is considered to be infinite inside the blockade volume and zero outside. For
an appropriate model this hard cut-off has to be relaxed and interaction-induced level shifts
beyond the distance of a blockade radius need to be considered. This is for example pursued
in refs. [64, 82].
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time, the fraction of Rydberg excitations scales approximately as ρ0Ω2
p/Ω

2
c [58, 82,

125]. This means that the optical response of the medium depends on the intensity
of the probe field, such that an optical nonlinearity arises [58, 77, 82]. Moreover,
as the Rydberg blockade radius is typically on the order of a few micrometer, the
nonlinear response of the Rydberg EIT medium is also nonlocal [58, 59].

The modified optical response of the medium results in a nonlinear propagation
of the probe beam. The most prominent observable consequence is the blockade-
induced nonlinear absorption of the probe beam on resonance [23, 58, 60, 62, 64,
65, 77, 85]. This feature led for example to a novel method of imaging Rydberg
impurities [67]. But also in the dispersive regime, where the probe beam detuning
is large compared to the decay rate of the intermediate state, interesting effects
such as the formation of ring structures have been predicted [58].

In the semiclassical regime, theoretical models face the challenge to account
for atom-atom correlations in a strongly interacting Rydberg gas. Numerically
solving the coupled equations for the many-body systems becomes demanding for
a large number of atoms [23, 78, 79]. However, there exists several approximate
theories for deriving the nonlinear susceptibility. One of them connects to the
intuitive picture explained above. Here, the susceptibility χ of the medium can
be related to the fraction fbl of blockaded atoms and follows the universal relation
[82]

Imχ

Imχ2lvl
=

fbl
1 + fbl

(3.7)

on two-photon resonance. This relation is supported by theoretical [82, 125] and
experimental [62] investigations, but was also predicted to break down when col-
lective effects in the many-body system become important [79]. Another approx-
imate model connects a superatom description of the atomic medium with the
two-photon correlation function inside the blockaded volume [124]. This model
was able to explain measured EIT transmission spectra in the presence of Ryd-
berg interactions as presented in ref. [23].

Moreover, also the mean-field and rate equation models introduced in the con-
text of Rydberg-Rydberg interactions in Sec. 3.1.2 can be extended to incorporate
the probe beam propagation in terms of a nonlinear susceptibility [64, 65, 78, 80].
In the following chapter, we comment on the details and the range of validity of
two specific implementations of these models [64, 78]. Moreover, we compare them
to experimental investigations of nonlinear absorption in Rydberg EIT spectra.

In Sec. 3.3 we present yet another model for the nonlinear susceptibility in the
semiclassical regime [96, 121]. This one is based on a low intensity expansion in
the probe field [58] and includes atomic interactions exactly up to second order.
In contrast to previous studies, we explicitly include the dynamics of the inter-
mediate state and find a resonantly enhanced nonlinear response of the Rydberg
EIT medium as a consequence of a two-body, two-photon resonance [96, 121].

3.2.2 Quantum regime: Interactions between polaritons

In the quantum regime, the notion of dark-state polaritons, introduced in Sec. 2.2.2,
provides a simple picture for the nonlinearity emerging from Rydberg interaction:
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The Rydberg blockade effect prevents the formation of two polaritons at dis-
tances smaller than the blockade radius [24]. As polaritons comprise a photonic
excitation, this results in effective photon-photon interactions [24, 57, 59, 70–
73, 115, 124], as illustrated in Fig. 3.2(b).

Depending on the single-photon detuning, the polaritons either scatter of each
other or acquire a phase shift [115]. On the one hand, the first effect can, for exam-
ple, be exploited for producing non-classical states of light, such as anti-bunched
light [24, 137] as well as two- and three-photon bound states [57, 71, 72]. Appli-
cations in this regime range from single-photon sources [137–139] and absorbers
[140], to all-optical switches [74] and transistors [75, 76]. Moreover, microwave
control of photon storage and interactions [141, 142] have been demonstrated.
Going towards the many-body regime of interacting photons, Rydberg EIT at
higher input photon rates [143] has been explored. On the other hand, the second
effect of photons acquiring a phase shift, has been demonstrated to enable π-phase
shifts needed for photonic gate applications [8, 10].

In the quantum regime, theoretical models face the challenge that strong atomic
interactions not only induce atomic correlations, but also photon-photon and
atom-photon correlations [77]. Models for systems restricted to a few photons
[24, 57, 115] and to one dimension [6, 71, 118, 143–148] have been put forward
successfully. For example, one approach considers the wavefunction of two pho-
tons at a distance R [24, 57, 115]. In one dimension and in the dissipative regime,
in turns out that the corresponding two-photon amplitude is governed by the
effective potential [24, 77]

V(R) =
ODb

1− 2i(R/Rb)6
, (3.8)

whose range is given by the blockade radius Rb. Moreover, it crucially scales with
the optical depth per blockade radius ODb.

Understanding the emerging photon-photon interactions in terms of Rydberg
polaritons [26, 30] does not only provide an intuitive picture for Rydberg EIT,
but also allows to advance theoretical models towards the many-body regime [149].
Other theoretical models in the many-body regime include a low-energy scattering
theory [144], an effective field-theory [71, 145] and an input-output formalism [150].

Despite the difficulty in describing the Rydberg EIT system in the quantum
regime, proposals for photon subtraction [151], a coherent polariton switch [117],
novel types of photon interactions involving a spin or polariton exchange [152, 153],
and the crystallization of photons [6, 149] provide fascinating prospects for the field
of Rydberg EIT.

3.3 Blockade-induced enhancement of the nonlinear
response

In three level systems, an adiabatic elimination of the intermediates states is a
common approach to simplify the description of the system [58, 154]. Nevertheless,
interesting atomic properties have been proposed if the detuning is smaller or
comparable to the Rabi frequency of the control beam [79, 126, 127].
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In my Master thesis [121] we have omitted an adiabatic elimination of the in-
termediate state and explicitly considered its dynamics in a ladder-type Rydberg
EIT system, as depicted in Fig. 2.1. There, an enhanced nonlinear response has
been found that emerges if the Rabi frequency of the control field equals the single-
photon detuning. In the present section, we now develop an intuitive picture of the
enhanced nonlinearity and find that it is a two-body, two-photon resonance which
leads to the enhancement of the nonlinear response [96]. Moreover, we extend the
parameter regime of the previous study [121], and analyze the spatial shape of the
nonlinear susceptibility with the help of our intuitive picture.

In the following, we first introduce our intuitive picture in Sec. 3.3.1. After-
wards, we summarize in Sec. 3.3.2 the derivation of an analytic expression for the
nonlinear susceptibility [121]. We present the emergence of the enhanced non-
linearity and analyze its spatial shape [96]. We comment on the scaling of the
nonlinearity with important laser parameters and show that the resonance affects
the propagation of the probe field [96, 121].

3.3.1 Intuitive picture in the dressed pair-state basis9

The enhanced nonlinear response of a Rydberg EIT medium, can be intuitively
understood by examining the effect of atomic interactions on the energy levels in
a pair-state model. In the following, we introduce this intuitive picture.

We consider an atomic cloud that is traversed by two counter-propagating probe
and control fields, as illustrated in Fig. 3.3(a). The resulting Rydberg EIT system
in ladder configuration has been discussed in Sec. 3.2, and the level scheme is
shown in Fig. 2.1. The probe and control fields have Rabi frequencies ω and Ω,
respectively10. Moreover, we consider van der Waals interactions V (R) between
the atoms, which depend on the inter-atomic separation R.

For two interacting atoms, Fig. 3.3(b) shows the corresponding level scheme
in the pair-state basis [126]. Starting with both atoms in the ground state |gg〉
either one or both atoms are excited to the intermediate state |e〉 or to the Ryd-
berg state |r〉. Therefore, the level scheme can be subdivided into a singly- and
doubly-excited subspace given by the states {|ge〉+ , |gr〉+} and {|ee〉 , |er〉+ , |rr〉},
respectively. Here, |ij〉+ = (|ij〉+ |ji〉)/

√
2 with i, j ∈ {g, e, r} denotes the respec-

9 Adapted from Tebben et al. [96].
10 In contrast to the discussion in Sec. 2.1, we introduce the frequencies ω = Ωp/2 and Ω = Ωc/2

for convenience. With these quantities the single-atom Hamiltonian on two-photon resonance
(δ = 0) in the basis of the single-atom states reads

Ĥ = ~

0 ω 0
ω −∆ Ω
0 Ω 0

 .
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Figure 3.3: Illustration of the Rydberg EIT system and pair-state basis. (a)
Counter-propagating probe and control beams result in EIT conditions for
a strongly interacting Rydberg gas composed of three-level atoms (green
spheres). (b) Level scheme of two interacting Rydberg atoms in the pair-state
basis. It is subdivided into a singly- (doubly-) excited subspace indicated
by the green (purple) shaded areas. Red (blue) arrows indicate transitions
coupled by the probe (control) field. Resonant couplings are assumed for
simplicity. For a detailed description and the notation see the main text.
Figure (a) taken and adapted with permission from ref. [96]. Figure (b)
adapted from ref. [126] with kind permission of T. Pohl. Copyrighted by the
American Physical Society.

tive symmetric pair state [126]. The corresponding Hamiltonian [126]

Ĥ =



0
√

2ω 0 0 0 0√
2ω −∆ Ω

√
2ω 0 0

0 Ω 0 0 ω 0

0
√

2ω 0 −2∆
√

2Ω 0

0 0 ω
√

2Ω −∆
√

2Ω

0 0 0 0
√

2Ω V (R)

 (3.9)

includes interactions between the two atoms as an effective level shift of the doubly-
excited Rydberg state |rr〉. In the absence of interactions (V (R)→ 0) the system
displays a linear EIT response to the probe field.

In order to learn about how interactions affect the two-body system, we inves-
tigate the spectrum of the Hamiltonian, Eq. (3.9), in the following. While transi-
tions between the subspaces involve a probe photon, states within a subspace are
coupled by the control field. As we assume Ω � ω, we simplify the system by
diagonalizing the singly- and doubly-excited subsystems individually [126], which
results in eigenstates {|α〉+ , |α〉−} and {|β〉− , |β〉+ , |β〉0}, respectively.

Fig. 3.4 shows the energy level diagram of the dressed states. For strong inter-
actions (V (R) � Ω) the eigenstate |β0〉 ≈ |rr〉. Due to interactions this state is
shifted far away in energy from the other eigenstates and thus can be neglected.
On single-photon resonance (∆ = 0) the remaining dressed eigenstates are equally
distributed in energy around E/~ = ωp and E/~ = 2ωp, where hωp is the energy of
one probe photon. However, for ∆ = −Ω the eigenstate |β−〉 is resonantly coupled
to the ground state |gg〉. As |β−〉 contains a sizable fraction of the intermediate
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Figure 3.4: Resonance in the dressed pair-state picture. Energy level diagram of
the laser-dressed pair-states for ∆ = 0 (left) and ∆ = −Ω (right), respec-
tively. For ∆ = ±Ω the eigenstate β± is resonantly coupled to the ground
state |gg〉 by two probe photons (indicated by the red arrows). Figure taken
and adapted with permission from [96].
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Figure 3.5: Dependence of the dressed-state energies and the resonance po-
sition on the atomic interaction strength. (a) Energy ∆E of the
dressed levels |β−〉 (solid line), |β+〉 (dashed line) and |β0〉 (dashed-dotted
line) against the ratio |Ω/∆| for positive (green) and negative values (black)
of ∆, respectively. The situation ∆E = 0 corresponds to the two-photon
resonance with the ground state, which is met for infinite (R → 0, left)
and finite (right) interactions for different values of |Ω/∆|. (b) Resonance
position |Ω/∆|res against the inter-atomic distance R for positive (green)
and negative (black) single-photon detunings. Figure and caption taken and
adapted with permission from [96].
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state, this leads to strong absorption of the probe field. Likewise, for ∆ = +Ω
the state |β+〉 moves into resonance and the same reasoning applies. It is this
two-photon, two-body resonance that results in an enhanced nonlinear response
of the atomic gas in the subsequently derived semiclassical model. This reso-
nance has also been studied in the context of an enhanced atomic pair potential
[79, 126, 127].

For finite interactions, the doubly excited Rydberg state |rr〉 can no longer
be assumed to be decoupled from the remaining level scheme, and does affect the
energy spectrum significantly. Fig. 3.5(a) shows the energy spectrum of the doubly
excited subspace as a function of |Ω/∆| and with respect to the ground state energy
E|gg〉 = 0. As shown in the left graph, for infinite interactions V (R→ 0) the state
|β±〉 is on the two-photon resonance for |Ω/∆|, where ∆E/~ = 0, as discussed
before. However, for finite interactions all eigenstates are reduced in energy and
the state |β0〉 appears in the spectrum. The right graph in Fig. 3.5(a) displays one
example for V (R = 2.64µm) and ∆ < 0. As a consequence, the resonance appears
at lower (higher) values of |Ω/∆| for negative (positive) single-photon detunings.
Fig. 3.5(b) shows this dependence of the resonance position on the interaction
strength explicitly for positive and negative single-photon detunings.

3.3.2 Enhanced nonlinear susceptibility11

In this section, we first summarize the derivation of an analytical expression for the
nonlinear, nonlocal susceptibility that allows us to study the optical response for
various interaction strengths, non-flat probe fields and nonconstant atomic density
distributions. Details of the derivation can be found in refs. [96, 121]. Afterwards,
we use the previously presented intuitive picture to explain the spatially-dependent
refraction and absorption features of the nonlinear, nonlocal susceptibility. Finally,
we discuss the scaling of the susceptibility with relevant laser parameters and its
observable signature in the transmission spectrum of the probe field.

Perturbative solution of the Maxwell-Bloch equations

The derivation of the nonlinear susceptibility is based on the bosonic Maxwell-
Bloch equations, Eq. (2.19), that we have introduced in Sec. 2.2.1. They accurately
describe the non-interacting many-body system under weak-driving conditions.
Accounting for atomic interaction and taking the expectation value for the probe
field, the Maxwell-Bloch equations for the Rydberg-EIT system can be obtained
and read [77, 121]

∂tE(r) =

(
ic
∇2
⊥

2kp
− c∂z

)
E(r)− ig

√
ρ(r)P̂ (r) , (3.10)

∂tP̂ (r) =− ig
√
ρ(r)E(r)− iΩ(r)Ŝ(r)− ΓpP̂ (r) , (3.11)

∂tŜ(r) =− iΩ(r)P̂ (r)− ΓsŜ(r)− i
∫

dr′V (r− r′)Ŝ†(r′)Ŝ(r′)Ŝ(r) , (3.12)

11 Taken verbatim from Tebben et al. [96] with some adaptions for the ease of readability.
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where we have dropped the time-dependence of the field and operators for conve-
nience.

Eqs. (3.10)-(3.12) have been solved in the semiclassical regime for ∆ or Γe � Ω
[58, 77], where the intermediate state dynamics can be eliminated. In these works,
it has been shown, that the Rydberg EIT system exhibits a strong nonlinear and
nonlocal response to the driving field. Motivated by this, we recast, in steady
state, Eq. (3.10) into [121]

i∂zE(r) = −
∇2
⊥

2kp
E(r) + χ(1)(r)E(r) +

∫
dr′χ(3)(r− r′)|E(r′)|2E(r) , (3.13)

where the linear χ(1)(r) and nonlinear susceptibility χ(3)(r−r′) are directly related
to the polarization coherence via

〈P̂ (r)〉 =
c

g
√
ρ(r)

[
χ(1)(r)E(r) +

∫
dr′χ(3)(r− r′)|E(r′)|2E(r)

]
. (3.14)

In Eq. (3.13), the two complex susceptibilities χ(1)(r) and χ(3)(r) act as an effective
light potential responsible for refraction and absorption on the linear and nonlinear
level, respectively.

For ω � Ω, we solve the Maxwell-Bloch equations by obtaining the expectation
value of the polarization coherence with a perturbative expansion in the probe
field. In zeroth order the probe field vanishes, such that all atoms remain in the
ground state. Moreover, the second and all higher even orders vanish due to the
centrosymmetry of the atomic gas. The first order provides the linear susceptibility
[121]

χ(1)(r) = −ig2 Γs
c(Ω2 + ΓsΓp)

ρ(r) . (3.15)

It recovers the well-known effect of EIT in the absence of atomic interactions and
leads, for Γs = 0, to a full transmission of the probe field on two-photon resonance
(δ = 0).

Solving the third-order equations is more involved due to the appearance of cor-
relations between Rydberg spin-wave excitations 〈Ŝ†(r′)Ŝ(r′)Ŝ(r)〉. Ultimately,
this leads to an infinite hierarchy of equations for the many-body system, which
needs to be truncated appropriately. Here, the weak-probe assumption in combi-
nation with the blockade effect provides a natural way of truncating the hierarchy
as it limits the density of Rydberg excitations in the system [77]. Therefore, the
probability of finding two Rydberg excitations within a blockaded volume is small,
and becomes negligible for three or more excitations. In this case, we can discard
three-body interactions, and correlations of this and higher orders are fully sup-
pressed [77]. This assumption does not only allow us to truncate the hierarchy
of equations, but also implies that two-body atomic correlations are taken into
account exactly.

After some calculations, which are presented in refs. [96, 121], we arrive at the
third-order susceptibility [121]

χ(3)(r− r′) =
Ω4g4ρ(r′)ρ(r)

c|a|2a
2(Γs + Γp)V (r− r′)

2a(Γs + Γp) + i(a+ Γ2
p)V (r− r′)

, (3.16)

32 Chapter 3 A two-body, two-photon resonance in Rydberg EIT



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

- 0.05

0.05

0.00

- 0.05
0.10
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

- 0.5

0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

- 0.5

- 1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-

0.0

- 0.1

0.1

0

-- 0.005

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

- 0.25
- 0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

- 0.25
- 0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

- 0.05

0.05

0.00

- 0.05
0.10

Figure 3.6: Spatial shape of the nonlinear susceptibility. Real (purple upper
line) and imaginary part (blue lower line) of the nonlinear susceptibility
χ(3)(R) against the interparticle distance R for various ratios Ω/∆ (left col-
umn: ∆ > 0, right column: ∆ < 0). The susceptibility is scaled with
a factor of 4g4ρ2

0/(cΩ
2Γe). Plotted with Ω = 2.5Γe and |48S1/2〉 as the

Rydberg state of 87Rb atoms for a constant atomic density distribution
with ρ0 = 2× 1011 cm−3. The blockade radii Rb are {3.6, 2.9, 2.4}µm for
|Ω/∆| = {0.3, 1.0, 5}, respectively. Figure and caption taken and adapted
with permission from [96].

where a = Ω2 + ΓsΓp. Having obtained a result for the first- and third-order
susceptibility, we arrive at a closed Eq. (3.13) for the propagation of the probe
field through the highly nonlinear and nonlocal Rydberg EIT medium.

Spatial shape of the nonlinear susceptibility

After having obtained an analytic expression for the nonlinear, nonlocal suscep-
tibility in Eq. (3.16), we are in a position to investigate its spatially dependent
absorption and refraction features, given by its imaginary and real part, respec-
tively.

Fig. 3.6 displays typical shapes of the nonlinear susceptibility χ(3)(R) as a
function of the interatomic distance R for a constant atomic density distribu-
tion ρ(r) = ρ0. For large values of R, the real and imaginary parts tend to zero for
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all ratios Ω/∆, reflecting the trivial non-interacting regime. In the case of R→ 0,
the real and imaginary parts are constant for a large range of atomic distances

R with plateau values χ
(3)
0,Re and χ

(3)
0,Im, respectively. For Ω = |∆| the latter gets

maximal, meaning that the system displays the strongest nonlinear absorption.

For intermediate atomic distances R, the shapes of the real and imaginary parts
strongly depend on the ratio Ω/∆ and can display additional features. First, we
examine the case for a positive single-photon detuning (∆ > 0, left column). For
Ω/∆ < 1, both the imaginary and real parts of the nonlinear susceptibility feature
a soft-core shape. However, for Ω = ∆ the real part shows a strong maximum and
for Ω > ∆ it features a sign-change where the imaginary part gets minimal at a
finite distance. For ∆ < 0 (right column in Fig. 3.6) the situation is reversed, such
that the minimum of the imaginary part at a finite distance appears for Ω < |∆|.
Moreover, it is more pronounced than for ∆ > 0.

The observed position of the additional features is a direct consequence of the
van der Waals interactions and can be understood in terms of the energies of the
dressed eigenstates in our intuitive picture. Examining Fig. 3.5(b), we see that
for ∆ > 0 (green) the resonance condition is only met for absolute values of the
ratio Ω/∆ being larger than 1, while for ∆ < 0 (black) the opposite holds. This
is exactly the reason, why we observe a minimum of the imaginary part of the
nonlinear susceptibility for ratios Ω/∆ larger (smaller) than 1 for positive (nega-
tive) single-photon detunings in Fig. 3.6. As a result, the ratio Ω/∆ allows spatial
shaping of the absorption and refraction properties of the nonlinear susceptibility.

Scaling of the resonance

We now discuss the scaling properties of the resonance by looking at the suscep-
tibility for R→ 0. Assuming Γr = 0 and ρ(r) = ρ0 for simplicity we obtain

χ
(3)
0,Re =

2g4ρ2
0

cΩ2

∆
(
γ̄2
e + ∆2 − Ω2

)
γ̄4
e + (∆2 − Ω2)2 + 2γ̄2

e (∆2 + Ω2)

≈ g4ρ2
0

2c∆3
, for Ω = |∆|, γ̄e � |∆| (3.17)

for the real part and

χ
(3)
0,Im =

−2g4ρ2
0

cΩ2

γ̄e
(
γ̄2
e + ∆2 + Ω2

)
γ̄4
e + (∆2 − Ω2)2 + 2γ̄2

e (∆2 + Ω2)

≈ −g
4ρ2

0

cγ̄e∆2
, for Ω = |∆|, γ̄e � |∆| (3.18)

for the imaginary part, where γ̄e = Γe/2 has been introduced for convenience.
Here, the second line in Eqs. (3.17) and (3.18) gives the value at the resonance
condition Ω = |∆| in the nonadiabatic limit.

Fig. 3.7(a) displays the real and imaginary parts of χ
(3)
0 as a function of the

ratio Ω/∆. Here, the imaginary part is resonantly enhanced for Ω = |∆|, in
agreement with the discussion of our intuitive picture in the pair-state basis in
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Figure 3.7: Enhancement of the nonlinear susceptibility. Real (purple, upper)

and imaginary (blue, lower) parts of the nonlinear susceptibility χ
(3)
0 for

strong interactions (V (R) � Ω) against the ratio Ω/∆. At the resonance
position (Ω = |∆|) the real part features a sign change, while the imaginary
part is resonantly enhanced. Plotted using 87Rb atoms with |48S1/2〉 as the
Rydberg state and Ω = 2.5Γe. Figure and caption taken and adapted with
permission from [96].

Sec. 3.3.1. The real part exhibits a sign change with a negative (positive) slope
around Ω/∆ = ±1.

At the resonance condition Ω = |∆|, the imaginary part interestingly depends
on the intermediate state decay rate, while the real part does not. This allows us
to increase the imaginary part independently by choosing an atomic species with
a long-lived intermediate state.

Signature of the resonance in the probe transmission

In this section, we investigate whether the two-body, two-photon resonance is
experimentally accessible. For this purpose, we solve the propagation Eq. (3.13).
Numerically, this can be done in a straightforward manner by exploiting a split-
step Fourier propagation scheme [155, 156], as shown in my Master thesis [121]
and in App. B.1.

However, for a better understanding, we derive an analytic solution of the propa-
gation Eq. (3.13) under the assumption of a flat input field. Neglecting diffraction,
this results in an effective one-dimensional equation [121]

∂zI(z) = a1I(z) + a2I2(z) (3.19)

for the probe field intensity I(z) = |E(z)|2, with [121]

a1 = 2Im
{
χ(1)

}
, (3.20)

a2 = 2

∫
dr′Im

{
χ(3)(r− r′)

}
. (3.21)

Eq. (3.19) holds if the probe field intensity is approximately constant over the
range of the nonlinear susceptibility (Fig. 3.6). This so-called local approximation
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Figure 3.8: Probe beam transmission in the presence of an enhanced nonlin-
ear susceptibility. Transmission T = I(L)/I0 of the probe field after
propagating a distance L as a function of the single-photon detuning ∆ for
ω/Ω = 0.008, 0.02, 0.04, 0.06, 0.08 (black to blue, from top to bottom), re-
spectively. In the nonlinear regime with high ω, two transmission minima for
∆ ≈ ±Ω appear as a consequence of the two-body, two-photon resonance.
Plotted for {Ω, δ, ρ0, L} = {2Γe, 0, 1× 1011 cm−3, 400µm} using Eq. (3.22).
Figure and caption taken and adapted with permission from [96].

allows us to reduce the convolution integral in Eq. (3.13) to an integration solely
over the susceptibility in Eq. (3.21). In addition, we assume in the simplest case
a constant atomic density distribution. In this case only V (r − r′) is left to be
position dependent.

A solution of Eq. (3.19) can be obtained readily and reads [121]

I(z) =
a1I0e

a1z

a1 + a2I0 − a2I0ea1z

≈ I0e
a1z +

a2

a1
ea1z(ea1z − 1)I2

0 +O(I3
0 ) , (3.22)

where the second line is an expansion for a small initial probe field intensity
I0 = I(0). The first order describes an exponential reduction of the intensity,
while the second contains the nonlinear absorption. Eq. (3.22) provides a leading-
order nonlinear description of the probe field’s propagation in the limit of a flat
input field and a constant intensity distribution of the control field.

Fig. 3.8 shows a transmission spectrum of the probe field as a function of the
single-photon detuning. In the non-interacting regime (small ω), the transmission
equals 1 for all values of the single-photon detuning ∆, due to the EIT effect
on two-photon resonance, where δ = 0. Increasing the Rabi frequency of the
probe field gradually, the interacting, nonlinear regime is reached. Here, two
transmission minima occur as a consequence of the enhanced susceptibility at
∆ ≈ ±Ω.

The overall shift of the spectrum towards negative values of ∆ is a result of
an integration over the nonlinear susceptibility in Eq. (3.21), as the shape of its
imaginary part exhibits a minimum at a finite distance for a positive (negative)
ratio Ω/∆ above (below) 1, as shown in Fig. 3.6.

The distinct absorption features in the transmission spectrum allow us to access
the resonance effect experimentally. The parameters in Fig. 3.8 indicate that
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the two-body, two-photon resonance is experimentally accessible. However, for a
realistic experimental situation a Gaussian atomic density distribution should be
considered. This geometry is straightforward included in our theory [96, 121] and
the resonance is still observable.

3.4 Summary and discussion

In this chapter we have studied the nonlinear optical response of an interacting
Rydberg EIT medium from a theoretical perspective. Hereby, we have focused
on the regime on two-photon resonance, where the ground state is resonantly
coupled to the Rydberg state in a three-level scheme. Moreover, we have explicitly
considered the dynamics of the intermediate state in our investigation. This allows
us to study the nonadiabatic regime of Rydberg EIT, in which the single-photon
detuning ∆ is smaller than or comparable to the Rabi frequency Ω of the control
field. It is in this regime, where an enhancement of the nonlinear response of
a Rydberg EIT medium has been predicted for ∆ = Ω [121]. The semiclassical
model, which describes this effect, has been summarized in the present section as
it constitutes the starting point for our subsequent investigations. It provides an
analytic expression for the associated third-order susceptibility and is applicable
for various atomic density distributions and probe field geometries [121].

Here, we have extended this previous study [121] and significantly deepened
the understanding of the enhancement. In particular, we have developed an in-
tuitive picture for the enhanced nonlinear response that is based on laser-dressed
interacting pair-states [96]. Analyzing the energy spectrum of this system, we
have revealed that the enhancement results from a Rydberg blockade induced
two-body, two-photon resonance. Moreover, in comparison to the previous study
[121], we have extended the parameter regime to negative single-photon detun-
ings. We have found that the resonance feature in the optical response emerges
on both sides of the spectrum for |∆| = Ω. Furthermore, we have shown that the
spatial shape of the nonlinear response can be adjusting by the ratio Ω/∆ [96].
Emerging features, such as soft-core shapes and local resonances, can be explained
with the help of our intuitive model. Finally, we have shown that the transmission
spectrum of the probe field displays an enhanced absorption around ∆ = ±Ω. We
have explained a shift of the spectrum towards negative single photon detunings
with the particular spatial shape of the nonlinear susceptibility [96].

The presented semiclassical model as well as the developed intuitive picture
both assume low intensities of the probe field. Thus, they are only applicable if
the Rabi frequency of the probe field is much smaller than the one of the control
field. Moreover, the semiclassical model takes pair-wise interactions exactly into
account, but neglects higher order correlations. In view of the results presented in
the following chapter, it would be interesting to extend the theory to higher orders
in the atomic correlations [97]. Here, the developed intuitive picture could aid in
obtaining a first intuition by extending it to more than two atoms. Moreover,
the derivation of the analytic formula for the nonlinear response of the medium, is
based on the assumption that the control field is spatially constant [121]. However,
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in experiments the available power for the control beam and thus also its maximal
possible waist is typically limited. For a comparison to experimental results, it
would thus be beneficial to find a possibility for including the geometry of the
control field into the model in a future study.

In the nonadiabatic regime of Rydberg EIT with classical light fields, other
effects have also been related to the two-body resonance described above. This
includes an enhancement of the atomic pair potential, collective effects that lead
to an enhanced Rydberg excited fraction, and a preservation of coherence as a
consequence of suppressed photon scattering [79, 126, 127]. However, while these
studies have focused12 on atomic properties, our investigation provides a comple-
mentary approach by studying optical properties of the interacting Rydberg EIT
medium as resulting from the resonance.

Finally, we want to note that also in the quantum regime of Rydberg EIT
resonances have been discussed that relate to particular choices of the single-
photon detuning and the Rabi frequency of the control beam. In this regard, we
want to emphasize that the resonance, which we have covered in this chapter,
differs from a so-called Raman resonance, which has been mentioned in ref. [115].
This Raman resonance is a one-body effect that emerges if the interaction-induced
level shift plus the two-photon detuning equals −Ω2

c/∆. Depending on the sign of
the van der Waals coefficient C6, it manifests itself either for positive or negative
single-photon detunings ∆ only. An observed asymmetry in the dispersive part of
the optical response with respect to ∆ has been associated to this Raman resonance
[8, 57]. In contrast, the resonance discussed in this chapter is a two-body effect
and appears for both sides of the spectrum.

Still, also in the quantum regime a resonance feature has been proposed that
connects to our two-body, two-photon resonance [77, 144]. Here, the possibility for
repulsive photon-photon interactions has been shown to emerge as a consequence
of a sign-change of the effective scattering potential for two polaritons at |∆| = Ω
[144]. Our investigation complements this finding by examining this resonance
effect from a semiclassical point of view [96].

In the following chapter, we compare the prediction provided by our semiclas-
sical theory [96, 121] to measured transmission spectra of the probe beam on
two-photon resonance.

12 We remark that refs. [126, 127] solely addressed atomic properties, while ref. [79] briefly
mentioned a connection of their work to the universal relation in Rydberg EIT systems.
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CHAPTER4
Nonlinear absorption on

two-photon resonance

Parts of this chapter are based on the following publication, from which parts of
the text have been taken verbatim:

Nonlinear absorption in interacting Rydberg electromagnetically-
induced-transparency spectra on two-photon resonance
A. Tebben, C. Hainaut, A. Salzinger, S. Geier, T. Franz, T. Pohl, M. Gärt-
tner, G. Zürn and M. Weidemüller, Phys. Rev. A 103, 063710 (2021)

As described in the previous chapter, Rydberg interactions render an atomic
medium under EIT conditions strongly nonlinear and thus greatly affect the prop-
agation of a classical light field. Spectral transmission properties of Rydberg EIT
have so far been investigated with either the probe or the control beam on res-
onance [62, 64, 65, 84, 97]. Thereby, experimentally observed nonlinear effects
included a reduction of the transmission on resonance as well as shifts and asym-
metries of the spectrum. Different models have been proposed to explain these
effects [58, 60, 64, 65, 78, 80, 82, 83, 96, 124]. While the reduction of the trans-
mission is inherent in all these models, the occurrence of shifts and asymmetries
is discussed [97]. This underlines the importance to find new experimental ap-
proaches for rigorously testing different theoretical models.

In the present chapter, we study features of Rydberg EIT transmission spectra
[97]. We go beyond previous approaches by probing the spectrum not only along
one detuning axis, but also by performing measurements where the applied fields
are on two-photon resonance [97], as illustrated in Fig. 4.1. Staying on two-
photon resonance, preserves EIT conditions and eliminates the linear response
of the medium, as discussed in Sec. 2.1.3. Therefore, we can probe nonlinear
absorption, resulting from interactions in the Rydberg EIT system, in the absence
of linear EIT effects. As a consequence, our measurements constitute a rigorous
method for testing existing models of Rydberg EIT in the semiclassical regime
[97].
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Figure 4.1: Full spectral response of a linear EIT medium. The imaginary part
of the single-body optical response |Im(χ(1))| (color-coded and z-axis of the
plot) of an atomic medium under EIT conditions is conventionally probed
by changing the detuning ∆p of the probe beam (green dashed line). How-
ever, staying on two-photon resonance δ = ∆p + ∆c = 0 by simultaneously
changing the detuning ∆c of the control beam (red line), eliminates the lin-
ear response of the system. Figure taken and adapted with permission from
[97].

This chapter is structured as follows: First, we introduce in Sec. 4.1 our exper-
imental setup for Rydberg EIT experiments. It features state-of-the-art experi-
mental techniques for obtaining strong atomic interactions while maintaining the
coherence needed for EIT experiments. In Sec. 4.2 we study the dependence of
dissipative and dispersive effects in EIT systems on the experimental geometry.
This turns out to be particularly important for the case that pure dissipative ef-
fects are to be measured. We then present a careful characterization of the EIT
system in the non-interacting regime in Sec. 4.3. Having laid the foundation for
Rydberg EIT experiments, we present in Sec. 4.4 measurements of EIT transmis-
sion spectra in the presence of interactions. Here, we probe the spectrum with the
control beam on resonance, and – following our new approach – on two-photon
resonance. We compare in Sec. 4.5 our measurements [97] with the predictions
based on a mean-field model [60, 64, 65, 80], a Monte-Carlo rate equation simu-
lation [78, 81–83], and a low-intensity expansion [58, 96]. Finally, we summarize
and discuss our results in Sec. 4.6.

4.1 Experimental realization of a Rydberg EIT medium

Investigating the nonlinear response of an atomic medium, which arises as a con-
sequence of atomic interactions under EIT conditions, demands high atomic den-
sities, high coherence properties of the system and strong atomic interactions.
Therefore, an experimental setting featuring the following characteristics is re-
quired:

(i) Cold and dense atomic cloud: Atomic motion can lead to a Doppler
broadened linewidth as well as dephasing, e.g. mediated by atomic colli-
sions [157]. In order to avoid these effects, we require a temperature of the
atomic cloud for which the Doppler shift and the collision rate are small
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compared to the decay rate of the intermediate state.
The nonlinear response of the atomic medium scales quadratically with the
peak atomic density, as shown in Sec. 3.3. Hence, high atomic densities are
favorable. At the same time, the possibility for tuning the density without
changing the geometry of the atomic cloud, turned out to be very valu-
able for a straightforward comparison of measured transmission spectra and
theoretical predictions [121].

(ii) Well-defined three-level system: Isolation of a well-defined three-level
system is a prerequisite for EIT experiments. Otherwise coupling or decay
to levels outside the three-level systems can lead to unwanted multi-level
systems. Therefore, preparation of a single hyperfine substate of the ground-
state manifold is necessary.

(iii) Rydberg EIT and detection methods: In order to enable strong and
long-range atomic interactions we choose the energetically highest level in a
ladder-type EIT system to be a Rydberg state. This has several implications
and results in the following two requirements: First, the ground- to Rydberg
state coherence needs to be maintained [99]. This requires a Rydberg exci-
tation scheme with a small linewidth. Second, Rydberg atoms feature large
polarizabilities and are therefore susceptible for strong DC-Stark shifts, as
described in Sec. 3.1. For example, the |48S〉 state used in this thesis pos-
sesses a polarizability of ∼ 40 MHz/(V/cm)2 [158]. This means that already
for an electric field of about 0.8 V/cm, the DC-Stark shift exceeds 100Γr
[103, 129]. Here, Γr/2π = 17.5 kHz is the lifetime of the Rydberg state given
by the natural linewidth and black-body decay. Therefore, a precise control
of electric fields is required.
Moreover, suitable detection methods are needed, which in the ideal case
allow for simultaneous probing of optical as well as atomic properties of the
medium.

In order to fulfill all these requirements, we use the experimental setup and se-
quence schematically shown in Fig. 4.2. First, we prepare a cold and dense atomic
sample with a combination of different cooling stages in two magneto-optical traps
(MOT), and subsequent confinement in an optical dipole trap. Details about all
three traps and the preparation of our atom cloud can be found in Sec. 4.1.1. Af-
terwards, we prepare the atoms in a single sublevel of the ground-state manifold
with a combination of optical pumping [159] and Landau Zener transfers [160] be-
tween hyperfine sublevels. The latter allows us to tune the atomic density, while
preserving the shape of the atomic cloud. These two techniques are described in
Sec. 4.1.2. Finally, we exploit a two-photon Rydberg excitation scheme with a
small linewidth and compensate stray electric fields using specially designed elec-
trodes [129]. Moreover, we use a combination of a transmission measurement and
field ionization for the simultaneous detection of optical and atomic properties of
the system. These techniques are described in Sec 4.1.3 and all together lay the
foundation for our Rydberg EIT measurements.
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Figure 4.2: Schematic experimental setup and sequence. A cold and dense atomic
sample is created using a combination of a 2D- and 3D-magneto-optical
trap (MOT) and a dipole trap. Subsequent preparation of the atoms in a
single hyperfine ground state by optical pumping and Landau Zener transfers
provides the starting point for Rydberg EIT measurements. Vertical bars
indicated, when the respective fields are turned on, while the lower row
indicates the timing of the sequence. For details of the setup and sequence see
the main text. Schematic illustrations of the setup adapted with permission
from [121].

4.1.1 Preparation of a cold and dense atomic cloud

Our experimental setup, which is capable of obtaining an atomic cloud with
temperatures as low as a few tenths of µK and peak atomic densities of up to
2× 1011 cm−3, relies on highly developed cooling and trapping techniques, well-
known in ultra-cold atom experiments [3, 161]. In particular, we make use of a
3D-MOT, loaded from a 2D-MOT [129, 162], and subsequent transfer and ther-
malization of the atomic cloud into an optical dipole trap. While the first two traps
allow for efficient trapping and cooling of Rubidium atoms, the dipole trap ensures
a tight confinement geometry and deterministic high peak-atomic densities.

The 2D- and 3D-MOT used in our experiment have been implemented, described
and characterized in detail in previous work [103, 106, 129, 133, 163, 164] and
recently in ref. [121]. The optical dipole trap has been redesigned and characterized
in the course of my Master thesis [121]. In the following, the key aspects of these
traps and the corresponding experimental sequence for the creation of a cold and
dense atomic cloud are summarized. Thereby, we closely follow the discussion in
refs. [103, 106, 121, 133, 163].

2D-MOT

For an efficient loading of the 3D-MOT, a high flux of atoms with a mean velocity
below the capture velocity of the 3D-MOT is required, which is typically in the
order of 10 m/s [161, 163]. However, the mean velocity of atoms in a Rubidium
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vapor provided by dispensers or a Rubidium oven is typically in the range of a
few hundreds of m/s [161]. For this reason, it necessary to slow down the atoms.
One option to decelerate the atoms is a so-called Zeeman slower, where the atoms
are subject to a laser beam in the presence of a magnetic field gradient [3, 161].
However, this method does not provide cooling in transverse direction and puts
strong constraints on the experimental geometry [163]. A 2D-MOT [129, 162] as a
cold atom source allows to overcome these limitations. In our setup, a Rubidium
background vapor is emitted by a dispenser and loaded into a 2D-MOT. Here,
the atoms are cooled in two dimensions. An additional laser beam in the third
dimension supports the atom beam to leave the 2D-MOT glass cell through a
differential pumping stage. Separation of the glass cell from the main experimental
chamber and careful alignment of the atom beam on the differential pumping stage
ensures that mainly 87Rb atoms enter the main experimental chamber. Moreover,
for good optical access the glass cell is connected to a view port of the main
experimental chamber off-axis [129], as indicated in Fig. 4.2.

3D-MOT

Our 3D-MOT utilizes a combination of six laser beams for cooling the atoms in
all three dimensions, as schematically illustrated in Fig 4.2. Cooling beams couple
the |5S1/2, F = 2〉 to |5P3/2, F = 3〉 transition with a detuning of ∆cooler ≈ 3Γe, as
indicated in Fig. 4.3. Additional so-called repumping beams, which are resonant
to the |5S1/2, F = 1〉 to |5P3/2, F = 2〉 transition, close the cooling cycle. Magnetic
field coils in anti-Helmholtz configuration are located below and above the main
experimental chamber [133]. The position of zero magnetic field can be fine-tuned
with the help of additional pairs of magnetic field coils, so-called compensation
coils. They are attached to the chamber viewports on all three axes. The pair of
compensation coils in x-direction is furthermore used to apply a magnetic offset
field of 30 G during the EIT sequence described subsequently. A micro-controller
based interlock system prevents the coils from overheating.

After loading the 3D-MOT from the 2D-MOT (see Fig. 4.2), we apply a com-
pressed MOT phase [165] and a dark-MOT phase [166]. These sequences allow us
to increase the peak atomic density, and to reduce the temperature and size of the
atomic cloud for optimal loading into the dipole trap. The timing and ramps of
these two phases are optimized for an efficient loading into the optical dipole trap
[121]. At the end of the MOT sequence the atoms populate the hyperfine state
|5S1/2, F = 1〉 [129].

Optical dipole trap

In order to achieve a tight confinement of the atomic cloud and high atomic
densities, we load the atoms into an optical dipole trap. Such traps rely on a
light-induced shift of the ground state to trap neutral atoms, where the resulting
trapping potential is proportional to the laser intensity [168]. For a red detuned
trapping beam, the atoms are confined in the region with highest intensity. In
principle, one tightly focused laser beam is sufficient for the creation of an optical
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Figure 4.3: Schematic level scheme for cooling and ground-state preparation
of 87Rb atoms. Shown are the relevant hyperfine levels of 87Rb. Transi-
tions driven by external fields are indicated by arrows. So-called cooler and
repumper beams (green) are used for the creation of a 3D-MOT. Optical
pump and repump beams (orange) provide the basis for an optical pumping
stage, while a microwave field (yellow) is used for Landau-Zener passages.
See main the text for details of the techniques and ref. [167] for details of
the Rubidium level scheme.

dipole potential. However, the confinement in axial direction in such a potential
is rather small due to the smaller intensity gradient. In order to achieve larger
axial confinement, we use a so-called crossed optical dipole trap [169, 170]. In
this configuration, the dipole trap beam is retro-reflected into the chamber and
crosses the atomic cloud a second time under an angle of approximately 9° [121].
The dipole trap has an angle of 45° with respect to the main propagation axis x
through the experimental chamber, as indicated in Fig. 4.2.

The waist of the laser beam was optimized for a compromise between a trap
size and trap depth that allow for an efficient loading from the 3D-MOT, and
the maximally possible size in propagation direction of the EIT laser beams [121].
The latter is needed to achieve a strong optical response of the system. For an
efficient loading of the dipole trap, the dipole trap beam is already turned on at the
beginning of the experimental sequence. After the MOT lasers and the magnetic
field gradient are turned off, we allow for a time of 300 ms for thermalization, as
schematically shown in Fig 4.2. With this experimental sequence we obtain an
atomic cloud with 1/e2-waists of approximately 40× 40× 300µm3 [97].

4.1.2 Ground-state preparation

After having obtained a cold and dense atomic cloud, the next requirement for
Rydberg EIT experiments is the preparation of the atoms in a ground state, as
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defined by a single hyperfine level of the ground-state manifold. For this purpose,
we use a combination of optical pumping [159] and two Landau-Zener transfers
[160] to efficiently populate the ground state |5S1/2, F = 2,mF = 2〉, as also re-
ported in a Master thesis of our group [171]. The details of these techniques are
presented in the following.

Optical pumping

After loading the dipole trap, the atoms populate all mF states of the hyperfine
manifold |5S1/2, F = 1〉. In order to transfer the atoms to the targeted ground-
state level, we use two right-circular polarized laser beams that propagate along
the x-axis of the experimental chamber (see Fig. 4.2 for the coordinate system) in
the presence of a 2 G magnetic field. The first laser beam (optical repump beam,
see Fig. 4.3) with a power of 200µW addresses the atoms and transfers them to
the |5P3/2, F = 2〉 manifold. From there the atoms can either decay back into the
initial state or to the intended |5S1/2, F = 2〉 manifold. The second laser beam
(optical pumping beam) couples the |5S1/2, F = 2〉 to |5P3/2, F = 2〉 transition
with a power of ∼ 2.1µW and a detuning of about −7 MHz with respect to the
clock-transition. After a time of 6 ms, most of the atoms have cycled to the
targeted ground state |5S1/2, F = 2,mF = 2〉, which is a dark state for the optical
pumping scheme in our setup.

Landau-Zener passages

We remove residual atoms in mF sublevels other than the targeted ground-state
level in the following way: First, we transfer the atoms to the |5S1/2, F = 1,mF = 1〉
state. Afterwards, we remove residual atoms in the |5S1/2, F = 2〉 manifold by ap-
plication of a resonant laser pulse. Finally, the other atoms are transferred back
into the desired ground-state level. With this procedure we end up with 95% of
the atoms being in the ground state |5S1/2, F = 2,mF = 2〉.

The atom transfer is achieved by utilizing a so-called Landau-Zener passage
[160]. This technique enables a coherent transfer of atoms between two states |1〉
and |2〉, as illustrated schematically in the inset of Fig. 4.4. For this purpose,
the detuning ∆(t) between the two states is varied linearly in time. In this way,
the desired state is reached via an adiabatic transfer that involves the instanta-
neous eigenstates of the two-level system. In our case a microwave field couples
the ground state |5S1/2, F = 2,mF = 2〉 to the state |5S1/2, F = 1,mF = 1〉, as
depicted in Fig. 4.3. The microwave field is produced by a 6.8 GHz microwave
generator [171] and emitted by a small antenna inside the vacuum chamber, as
indicated in Fig. 4.2. Ramping its frequency ωmw from a value far below to a
value far above the resonance frequency of the transition in the presence of a 2 G
magnetic field, realizes the state transfer. The probability of a successful transfer
between the two states

PLZ = 1− exp

(
− Ω2

mw

∆ωmw/tmw

)
(4.1)
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Figure 4.4: Atomic density tuning using a Landau-Zener transfer. Measured
scaled peak atomic density ρ0/ρ0,max against the duration tmw of the mi-
crowave pulse. The density ρ0,max is achieved after a full Landau-Zener
transfer at large tmw. Error bars indicate shot-to-shot fluctuations of the
atomic density of ±8%. The red dashed line is a fit of the Landau-Zener
formula, Eq. (4.1), to the data. From the fit we extract a microwave Rabi
frequency Ωmw/2π of (5.3± 0.6) kHz. The inset illustrates schematically the
Landau-Zener transfer between two quantum states |1〉 and |2〉, where solid
(dashed) lines depict the eigenstates (bar states) of the two-level system.
∆(t) is the time-dependent detuning between the two states.

is determined by the Rabi frequency Ωmw of the microwave and the total change
∆ωmw of the microwave frequency [160, 172]. In our case ∆ωmw/2π = 320 kHz
[171]. Furthermore, tmw denotes the duration of the microwave pulse. The depen-
dence on tmw allows us to tune the atomic density. For this purpose, we vary the
duration of the microwave pulse in the first of the two Landau-Zener passages,
which we use for removing residual atoms in other than the desired ground state.
A measurement of the peak atomic density ρ0 as a function of the microwave
duration tmw is depicted in Fig. 4.4. In contrast to other methods of tuning the
atomic density, e.g. by a free ballistic expansion of the cloud, this procedure has
the advantage that the geometry of the atomic cloud remains unchanged.

4.1.3 Rydberg EIT and detection methods

After having prepared the atoms in a single ground-state sublevel, the EIT se-
quence and a subsequent combined detection of optical and atomic properties of
the system follow, as indicated in Fig. 4.2. The three-level EIT scheme in ladder
configuration, with the energetically highest level being a Rydberg state, as well as
the detection methods, given by transmission and field-ionization measurements,
have been implemented and characterized in previous works [103, 106, 121, 129,
133, 173, 174]. Closely following these works, the main aspects of the level scheme
and of the detection methods are summarized in the following.

Rydberg EIT level system

Starting with the atoms in the ground state |g〉 = |5S1/2, F = 2,mF = 2〉, we real-
ize a Rydberg EIT system with an intermediate state |e〉 = |5P3/2, F = 3,mF = 3〉,
and a metastable Rydberg state |r〉 = |48S1/2,mj = 1/2〉, as shown in Fig. 4.5(a).
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Figure 4.5: Level scheme for Rydberg EIT and detection methods. (a) Three-
level scheme for Rydberg EIT with 87Rb atoms coupled by probe and control
beams with Rabi frequencies Ωp and Ωc, respectively. See the main text for
a detailed description. (b) Typical image of the EIT transmission T of
the probe beam measured with the technique of absorption imaging. (c)
Example for an ion trace after field ionization. Shown is the measured MCP
voltage against the arrival time t of the ions on the MCP. Voltage peaks
below a certain threshold (red dashed line), which are marked with a cross,
are ion counts. Layout of the figure as in ref. [133].

The intermediate state is short-lived with population decay rate Γe/2π = 6.07 MHz
[167]. The Rydberg state has a population decay rate Γr/2π = 17.5 kHz given by
natural and black-body decay. A probe beam with wavelength λp = 780 nm and
Rabi frequency Ωp couples the ground state |g〉 to the intermediate state |e〉. A
control beam with a wavelength λc = 480 nm and Rabi frequency Ωc couples
the intermediate state |e〉 to Rydberg state |r〉. These laser beams are counter-
propagating along the x-axis of the experimental chamber, which makes Doppler
shifts negligible. Moreover, they cross the atomic cloud under an angle of 45°, as
shown in Fig. 4.2. While the control beam is focused onto the atom cloud and
has a 1/e2-waist of 20 to 32µm, the probe beam has a collimated beam waist of
3 mm. In Sec. 4.2 we present a modification of this setup to a geometry, where
the probe beam has a smaller waist than the control beam.

In order to ensure the isolation of a well-defined three-level system, the probe
(control) beam is right-(left-) circular polarized with respect to an applied mag-
netic offset field of 30 G, which points along the x-axis. Moreover, the probe
and control beams are frequency stabilized using the Pound-Drever-Hall looking
technique [175] with a high finesse Fabry-Pérot cavity. The cavity has been imple-
mented and characterized in [176]. Using direct-digital-synthesis (DDS) sources,
the detuning of both lasers can be adjusted independently over a range of several
hundreds of MHz. The maximally achievable detuning is limited by half of the
free-spectral range of the cavity, which is 1.5 GHz in our setup [121].

The EIT sequence typically involves a probe beam exposure time of 5-15µs.
For the probe intensities used here, the exposure time is small enough to avoid
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an avalanche creation of Rydberg ions [121, 177]. In addition, the control beam is
switched on 2µs before the probe beam to ensure a preparation of the EIT dark
state [99] (see also Sec. 4.3). After the EIT sequence, the system is probed with
the help of the detection methods that are described in the following.

Transmission measurement

With the purpose of measuring EIT transmission spectra, we use an Andor iXon
Ultra 897 EM-CCD camera to record the probe light that is transmitted through
the atomic cloud, as indicated in Fig. 4.2. A 4f -imaging system with a resolution
of 5µm results in an effective pixel size that corresponds to 2.1µm in the imaging
plane at the atom position [173]. The transmission T (y, z) of the probe field is
defined as [121]

T (y, z) =
nc,abs(y, z)− nc,bg(y, z)

nc,ref(y, z)− nc,bg(y, z)
. (4.2)

Here, the so-called absorption image nc,abs(y, z) in the presence of the atoms, the
reference image nc,ref(y, z) without atoms, and the background image nc,bg(y, z)
without atoms and without the probe beam are given by the number of counts
nc(y, z) on the CCD camera sensor. For each transmission measurement, these
images are taken within one experimental cycle. An example transmission image
under EIT conditions is shown in Fig. 4.5(b).

Besides the probe beam transmission, we can also infer the geometry of the
atomic cloud and the Rabi frequency of the probe beam from the measured images,
as explained in the following. The optical depth OD(y, z) of the medium can be
obtained from the transmission T (y, z), Eq. (4.2), as [121]

OD(y, z) = − ln [T (y, z)] = σabs,0

∫ ∞
−∞

ρ(x, y, z) dx . (4.3)

Here, σabs,0 = 2.907× 10−9 cm2 is the resonant cross section for the 87Rb D2 line
(5S1/2 → 5P3/2) [167] in the weak probe limit (Ωp � Γe), and ρ(x, y, z) denotes
the atomic density. The second equality follows from Lambert-Beers law under
the assumption that the probe beam intensity is much smaller than the saturation
intensity of the transition. By assuming that the atomic density distribution
is Gaussian in all spatial dimensions, atomic properties such as the peak optical
depth, the peak atomic density ρ0 = ρ(0, 0, 0), and the size of the atomic cloud can
be inferred from the OD image by fitting a 2D Gaussian function. We determine
that the cigar-shaped atomic cloud has 1/e2-waists of about 40 × 40 × 400µm3

[97]. Moreover, with a time-of-flight measurement we record a temperature of the
atomic cloud of approximately 100µK [97].

Finally, the Rabi frequency of the probe beam can be directly determined from
the reference image nc,ref in each experimental cycle. The intensity in each pixel
[121]

Ipx(y, z) =
hc/λpnc,ref(y, z)

qtexpA2
px

(4.4)

is given by the pixel area Apx, the exposure time texp and the photon detection
efficiency q. As outlined App. A.1, we have measured q to be 0.47 ± 0.02. Using
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Eq. (2.5), the Rabi frequency can be calculated from Eq. (4.4) for each pixel. In
the following sections we have always determined the probe Rabi frequency in this
way.

Field ionization for Rydberg atom detection

Besides the measurement of the probe beam transmission, our setup also features
a simultaneous detection of Rydberg excitations present in the medium. Atoms
in the Rydberg state are ionized by application of a strong electric field [46, 129].
Afterwards, the resulting ions guided with the help of specially designed ring
electrodes [129] onto a micro-channel plate (MCP), as indicated in Fig. 4.2. An
example of a time-dependent ion trace, measured with an oscilloscope with 1 GHz
temporal resolution, is shown in Fig. 4.5(c). The efficiency of our ion detection
can be determined by using depletion imaging [178] and is approximately 0.10
ions per Rydberg excitation [179]. Moreover, we measure 0.743± 0.096 ion counts
in the absence of the control beam, where no Rydberg excitations and thus no
ions can be created [97]. This gives a lower bound for the number of detectable
Rydberg excitations.

In addition to field ionization, the ring electrodes also serve for the compensation
of stray electric fields. For this purpose, the ion signal is recorded as a function
of the applied electrode voltage and of the control Rabi frequency for each axes
of the experimental chamber. Symmetrization of these so-called DC-Stark maps
yields the electrode voltages for which residual electric fields are minimized at the
atom position [174].

4.2 Minimizing dispersive effects in EIT transmission
spectra

The transmission of a probe beam through a Rydberg EIT medium is affected
by dissipative and dispersive effects induced by the atomic cloud. Both effects
strongly depend on the particular geometry of the experimental system. For ex-
ample, Han et al. [180] pointed out that the EIT region can act as a gradient
index lens in a geometry, where the control beam is focused onto the atomic cloud
within a uniform probe beam. As a consequence, dispersive effects dominate the
spatial structure of recorded transmission images.

The experimental setup that has been used in previous studies of our group
consisted of a probe beam with a collimated 1/e2-beam waist of 3 mm, which
illuminates the atomic cloud uniformly. Moreover, a control beam with a 1/e2-
beam waist between 20−32µm is focused into the atomic cloud. Therefore, lensing
effects as the one mentioned above are expected. However, we seek to investigate
the dissipative part of the nonlinear susceptibility and thus aim at canceling the
dispersive one. This would enable an unambiguous observation of pure nonlinear
absorptive effects in Rydberg EIT. In this section we describe the realization of an
experimental setup that minimizes dispersion. Here, a probe beam that is focused
onto the atomic cloud with a waist smaller than the one of the control beam is
utilized.
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For this purpose, we first review in Sec. 4.2.1 the spatial structure of EIT trans-
mission images that have been recorded with the experimental setup previously
used in our group. Following the work of ref. [180], we study the role of the
dissipative and dispersive part of the susceptibility of the atomic medium and
compare our measurements to a numerical simulation of the probe beam propaga-
tion. This discussion emphasizes the need for a different experimental geometry.
In Sec. 4.2.2, we provide some relevant details on the implementation of a focused
probe beam in our setup, which has a waist smaller than the one of the control
beam. A detailed characterization of the implemented probe beam can be found
in App. A.2. Finally, we present in Sec. 4.2.3 that the new experimental geometry
leads to an EIT transmission measurement, which displays minimized dispersive
effects. This experimental geometry serves as a starting point for the investigation
of nonlinear absorption in the subsequent sections.

4.2.1 Effect of dissipation and dispersion on EIT transmission

As explained in Sec. 2.1 the optical response of a medium is determined by its
susceptibility. While the imaginary part of the susceptibility χ is immediately
connected to dissipation, the real part is linked to dispersive effects [102]. The
latter are characterized by a refractive index n. For weakly absorbing media this
quantity can be approximated as [102]

n ≈
√

1 + Re[χ] . (4.5)

If the susceptibility is position-dependent, absorption and the refractive index also
become spatially dependent and strongly vary according to the geometry of the
experimental setup. As a consequence, the atomic medium may act as a gradient
index lens due to the geometry of the laser beams [180]. In the following, we show
that the experimental setup so far used in our group leads to strong lensing effects.

We emphasize that these effects, including especially the structure of transmis-
sion images and spectral features of the probe beam transmission, have already
been investigated in detail in ref. [180]. Here, we discuss the results of ref. [180]
in the context of our experimental situation for two purposes: First, we want to
emphasize the need for a new experimental geometry that minimizes dispersive
effects, as introduced in the subsequent Sec. 4.2.2. Second, we want to convey an
understanding of lensing effects in order to motivate the particular choice we have
made for the new experimental geometry.

We begin by presenting a transmission measurement, where a collimated probe
beam illuminates the atomic cloud uniformly, while the control beam is focused
onto the atoms, as schematically shown in Fig. 4.6(a). The transmission spectrum,
evaluated in the center of the control beam displays, typical Autler-Townes minima
shown in Fig. 4.6(b). Moreover, an asymmetry in the spectrum, and a transmission
larger than unity around a probe beam detuning ∆p/2π of −2 MHz are apparent.
From the position of the minimum at positive13 detunings we extract a Rabi

13 We have found with the numerical simulations presented subsequently, that the minimum
position at positive detunings does not change in the presence of lensing effects for the
considered situation.
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Figure 4.6: Spatial structure of EIT transmission images. (a) Experimental ge-
ometry (not to scale) for an EIT transmission measurement of a collimated
probe beam (red, 3 mm 1/e2-waist) in the presence of a focused control beam
(blue, 20 − 32µm 1/e2-waist) on resonance (∆c = 0). (b) Measured trans-
mission T in the center of the control beam as a function of the probe beam
detuning ∆p (black points). Vertical dashed lines indicate ∆p = Ωc/2 with
Ωc/2π = (16.0± 0.1) MHz. (c) Spatial structure of the measured transmis-
sion images for different probe beam detunings ∆p/2π as given above the
panels (upper row). The result of a numerical simulation, as explained in
the main text, is shown as a blue solid line in (b) and in the lower row of
(c). Other parameters are the Rabi frequencies Ωc/2π = (16.0± 0.1) MHz
and Ωp/2π = (0.59± 0.01) MHz of the control and probe beam, respectively,
and a peak atomic density of (0.007± 0.001)µm−3. Figure (a) adapted with
permission from [97].

frequency of 2π × (16.0± 0.1) MHz for the control beam. Here, the error results
from the uncertainty in the estimation of the minimum position.

The 2D transmission images recorded with the CCD camera feature a com-
plex spatial structure, which are shown as a function of the detuning ∆p of the
probe beam in the upper row of Fig. 4.6(c)14. On resonance a large, almost flat-
top transparency region is visible. In contrast, for ±Ωc/4 = ±4 MHz a ring-like
structure arises, where absorption is enhanced. The radius of the ring is larger
for positive than for negative detunings. Around the transmission minima at
±Ωc/2 = ±8 MHz the ring structure vanishes. Again, the structure is larger for

14 A transmission image of the whole atomic cloud is for example shown in Fig. 4.5(b). Here, we
restrict the region-of-interested to the region, where the control beam traverses the atomic
cloud.
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Figure 4.7: Cross sections of the spatially dependent linear susceptibility. (a)
Calculated imaginary part of the linear susceptibility Im(χ(1)) as a function
of position y transversal to the propagation direction of the laser beams (see
Fig. 4.2 for the coordinate system) for different probe beam detunings ∆p.

Red dotted lines indicate the position where Ω̃c(y)/2 = ±∆p. Curves for
−4 and −8 MHz detuning fall on top of the respective curves for positive
detunings. (b) Difference of the real part of the susceptibility ∆Re(χ(1)) =

Re(χ(1)) − Re(χ
(1)
Ωc=0) as a function of position y for different probe beam

detunings. Here, Re(χ
(1)
Ωc=0) is the susceptibility in the absence of the control

beam corresponding to the one of a two-level system. Parameters are the
same as for the measurement presented in Fig. 4.6.

positive detunings.

Relation of the transmission images to the spatially dependent susceptibility

In order to get a deeper insight into the complex spatial structure of the EIT
transmission images, we plot in Fig. 4.7 the position-dependent real- and imaginary
part of the linear susceptibility, Eq. (2.12). Due to the Gaussian beam profile of
the laser, we assume that the Rabi frequency of the control beam varies15 as
Ω̃c(y) = Ωc exp(−y2/w2

c ) transversal to the propagation direction. Here, wc is the
1/e2-waist and Ωc the peak Rabi frequency of the control beam. In general, the
susceptibility varies within the limits of a three-level EIT system, as present in the
center of the control beam, to the one of a two-level system, as obtained outside
the control beam area with Ω̃c(y) = 0.

The imaginary part of the susceptibility, displayed in Fig. 4.7(a), is zero for a
resonant probe beam for a large spatial range. Outside of the area of the control
beam, the susceptibility levels off to the one of a two-level system. While two
local maxima are apparent for an intermediate probe beam detuning of ±4 MHz,
only a single one is visible for a detuning of ±8 MHz. The imaginary part of
the susceptibility can be related to the absorption of the probe beam. For zero
detuning, the vanishing imaginary part of the susceptibility results in the observed
flat-top region of full transmission [180], as shown in Fig. 4.6(c). Moreover, the

15 The Rayleigh range of our control beam is about 3 mm. This is large compared to the extent
of the atomic cloud in propagation direction. Thus, the size of the beam in transversal
direction is approximately constant over the length of the atom cloud. Therefore, the control
beam can be described by assuming a constant phase and beam size in propagation direction.
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local maxima shown in Fig. 4.7(a) for a probe beam detuning of ±4 MHz are the
origin for the observed enhanced absorption. Due to the rotational symmetric
structure of the control beam, the absorption feature becomes ring-like in the
transmission images. The position of this enhanced absorption, indicated by red
dashed lines in Fig. 4.7(a), corresponds to “local” Autler-Townes resonances within
the control beam where Ω̃c(y)/2 = ±∆p [180]. With increasing detuning, the
radius of the ring becomes smaller. Around the Autler-Townes minima at a probe
beam detuning of ±8 MHz the ring collapses into a single absorption peak.

The gradient of the real part of the susceptibility defines the resulting refrac-
tive index gradient [180]. In our experimental setup, the steepest change of the
susceptibility is determined by the spatially dependent control beam. Again, the
susceptibility levels off to the one of a two-level system outside the control beam,
where Ω̃c(y) = 0. In order to highlight the spatial change of the susceptibility, we
subtract the real part of the susceptibility of the full three-level system Re(χ(1))

by Re(χ
(1)
Ωc=0), corresponding to the one in the absence of the control beam. The

spatial dependence of the difference ∆Re(χ(1)) of these susceptibilities is shown
in Fig. 4.7(b). For a resonant probe beam, the real part vanishes for all positions,
meaning that no dispersive effects are expected. However, if the detuning of the
probe beam is non-zero, a complex structure of the spatially dependent suscep-
tibility is apparent. For ∆p/2π = +4 MHz, the difference ∆Re(χ(1)) is larger
than zero in the central part of the control beam. According to Eq. (4.5), this
leads to a refractive index that is larger in the inner part of the beam [121]. For
positive detunings this results in a defocusing effect [180]. For a negative probe
detuning of −4 MHz, the opposite is the case reversed leading to a focusing ef-
fect [180]. As a consequence, the absorption ring in Fig. 4.6(c) is not symmetric
around zero detuning, but is slightly larger for a positive detuning [180]. Also, the
observed transmission above unity for a probe beam detuning of about −2 MHz in
Fig. 4.6(b) can be understood as a consequence of this focusing effect. The spatial
dependence of the real part of the susceptibility for ∆p/2π = ±8 MHz shows a
more complex structure, but a similar lensing effect depending on the slope of the
real part emerges. Here, it leads on the negative detuning side to an increased
probe beam intensity in the center of the control beam [180]. As a consequence,
absorption in Fig. 4.6(b) is overestimated. The situation is again reversed for the
positive detuning, which explains the asymmetry of the transmission spectrum.

Determination of the control beam waist from the transmission images

As explained before, the ring-like structures in the transmission images result from
“local” Autler-Townes resonance [180], where the radius of the ring depends on
the geometry of the control beam. Knowing the peak Rabi frequency of the control
beam, it is therefore possible to extract the waist of the control beam from these
images. In the absence of dispersion, the radii of the rings should be equal for
positive and negative detunings. However, the previously described lensing effect
results in an asymmetry of the ring radii as a function of the probe beam detuning.
In order to determine the waist of the control beam, we therefore extract the radius
of the absorption rings for detunings 1.5 MHz ≤ |∆p|/2π ≤ 6 MHz and take the
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mean value for each pair of positive and negative detunings at values of ±∆p.
Using the Rabi frequency of the control beam as estimated from the positions of
the Autler-Townes minima, we obtain a waist16 of (20.0± 0.5)µm.

Comparison of recorded transmission images and numerical simulations

In order to investigate the combined effect of dissipation and dispersion on EIT
transmission images from a theoretical perspective, we numerically simulate the
probe beam propagation17. Details of the simulation can be found in App. B.
We want to note, that a simulation of the full setup, including the atomic cloud
and the subsequent imaging system, is complicated by the vastly different length
scales present in our experimental setup. For example, while the waists of probe
and control beams are of the order of tenths of micrometer, the CCD camera is lo-
cated at a distance of about 760 mm [173] from the atoms. In order to circumvent
this issue, the simulations presented in this section are based on the two following
assumptions: First, we assume that the imaging system exhibits negligible opti-
cal aberrations. This allows us to discard the imaging system and evaluate the
transmission images of the probe beam directly in the object plane, which is in
the center of the cloud. Moreover, since the optical depth of the atomic medium
is low, we assume that absorption depends linearly on the atomic density. In this
way, it is possible to obtain the level of transmission after a complete propagation
through the atomic cloud, by doubling the experimentally applied atomic density
in the simulation. We further explain this approach, in App. B.

We use the experimental parameters, the three-dimensional geometry of the
atomic cloud, and a waist of the control beam of wc = 21µm as an input for the
simulation. From the simulation we obtain the transmission spectrum and images
shown in Fig. 4.6(b) and (c), respectively. Our numerical simulation results show
a reasonable agreement with the main features of the measured spectrum and
transmission images. In order to obtain a better agreement with the measurement,
a dephasing γgr/2π = 1 MHz was chosen for the simulation. In our measurement
we cannot completely ascertain the absence of interactions, which could explain
the need for this rather high dephasing rate. In particular, such a dephasing
decreases the transmission where it exceeds unity in the spectrum. Moreover, this
dephasing does not influence the radii of the absorption rings. However, most
importantly it reduces the size of the transmission feature in the image at zero
probe beam detuning. Our numerical simulations have shown that the size of the
transmission feature at a detuning of ∆p = 0 actually strongly depends on the
dephasing rate γgr. Therefore, in the complete absence of atomic interactions, the
size of the transmission feature at zero detuning would give a very sensible probe
for the dephasing rate γgr.

16 This estimation is inconsistent with the expected waist of the control beam due to the
measured beam intensity, which is approximately 32µm. However, this inconsistency does
not affect the main measurements of this chapter presented in Sec. 4.4, as we always infer
the Rabi frequency of the control beam unambiguously from a measurement of the Autler-
Townes splitting.

17 We note that numerical simulations of transmission spectra in the presence of lensing effects
are also presented and discussed in ref. [180].
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Finally, we note that the measured transmission images for ±4 MHz show a
slight asymmetry in the intensity distribution within the ring structure. This could
hint towards possible aberrations of our imaging system. As these are not taken
into account in the simulation, they might be the cause of remaining deviations
between the measurement and simulation results.

Summary

As a summary, dissipative and dispersive effects in EIT strongly depend on the
geometry of the experiment [180]. So far, our group has used a geometry where
the control beam is embedded in a uniform probe beam. However, in this case
absorption ring structures manifest themselves in the transmission images, and
lensing effects obscure an unambiguous measurement of EIT transmission spec-
tra [180]. We have observed these lensing effects, as presented in this section.
However, aiming at investigating nonlinear absorption in Rydberg EIT, dispersive
effects should be minimized. Therefore, we have inverted the geometry by imple-
menting a probe beam with a waist smaller than the one of the control beam, as
outlined in the following sections.

4.2.2 Implementation of a probe beam with a waist smaller than the
control beam

In the limit Ωp � Ωc, the EIT susceptibility, Eq. (2.12), is independent of the Rabi
frequency Ωp of the probe beam. Especially, this is also true for the real part of the
susceptibility, which determines dispersive effects. Therefore, spatial variations of
the probe beam within a uniform control beam do not cause a gradient in the
index of refraction, and thus no lensing effects. Nevertheless, the maximal waist
of the control beam is limited by the requirement of a high Rabi frequency Ωc as
needed for our subsequent measurements. In order to minimize dispersive effects,
the probe beam should thus be focused onto the atoms with a waist smaller than
the waist of the control beam.

We have implemented such a geometry into the experimental setup. The focused
probe beam is provided by the same laser as the collimated probe beam. It passes
a separate AOM in double-pass configuration for fast switching and reaches the
experimental optics table via a polarization maintaining fiber. A 50 mm achro-
matic lens collimates the beam to a 1/e2-waist of approximately 3.8 mm. Two
lenses of focal length f = 150 mm focus the beam onto the atoms, resulting in
a waist of about 15µm at the position of the atoms. The optical setup and an
image of the beam are shown in Fig. 4.8.

The two lenses used for focusing the probe beam are not used in the conventional
way of a telescope. Instead, the distances between the two lenses as well as between
the last lens and the position of the atoms are larger than 2f and f , respectively.
This is a consequence of the restricted space on the experimental optics table.
The focused probe beam has to traverse the vacuum chamber on the same axis
as the collimated probe beam in order to be counter-propagating to the control
beam and for reaching the CCD camera. In addition, a high numerical aperture
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Figure 4.8: Optical setup and image of the focused probe beam. The optical
setup (not to scale) of the focused probe beam (left, red line) mainly consists
of two lenses with focal length +150 mm. An additional lens with focal length
+100 mm in the collimated probe beam path (light orange) compensates the
focusing lens for the focused probe beam. A polarizing beam splitter (PBS)
is used to combine the two beam paths, while λ/2 and λ/4 waveplates ensure
a right-circular polarization. The path of the dipole trap beam is indicated in
gray. An image of the focused probe beam measured with the CCD camera
is shown on the right. From a 2D Gaussian fit of the image we obtain
Gaussian 1/e2-waists of (15.6± 0.1)µm and (14.1± 0.1)µm in y- and z-
direction respectively. The fit is indicated by orange lines in the 1D-cuts of
the image, which are taken along the center of the beam. Schematic drawing
on the left with permission taken and adapted from ref. [121].

is needed for a small spot size in the focal plane. This is achieved if the lens
that focuses the beam onto the atoms has the minimal working distance possible.
Without affecting the collimated probe beam path and due to spatial constraints
on the optics table, a lens with a focal length of 1000 mm would be needed for this
purpose. Such a setup was tested, but proved to be too unstable. Therefore, we
decided to put the last focusing lens into the beam path, where the focused and the
collimated probe beam already overlap, as indicated schematically in Fig. 4.8. The
closest position of this lens to the vacuum chamber is restricted by the dipole trap
beam, indicated as a gray line in the drawing. Aiming at a waist of about 15µm
at the position of the atoms, we have chosen the pair of lenses mentioned above
as the optimal solution. Finally, we have implemented an additional +100 mm
lens into the collimated probe beam path, in order to compensate for the focusing
+150 mm lens. This ensures the collimation of the beam, but decreases its size by
a factor of 1.5 to a waist of ∼ 2 mm.

A detailed characterization of the probe beam in terms of the beam profile and
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its positional stability can be found in App. A.2. We have observed that short-
and long-term drifts of the center position are below 3µm and thus insignificant
for the subsequent measurements. Moreover, a small ring structure around the
beam is faintly visible in Fig. 4.8. At higher ratios of Ωp/Ωc spurious Rydberg
excitations (see ref. [143] and App. C) might be created in the ring structure. After
excitation transport [67, 181, 182] they could affect the probe beam transmission
in the center of the beam. Therefore, we have analyzed the ring structure in
detail, as presented in App. A.2, and find that the ring structure does not affect
measurements at small ratios Ωp/Ωc.

As the probe beam is tightly focused onto the atoms, the beam power needs to
be as low as 0.5 nW to obtain Rabi frequencies as low as 2π×0.5 MHz. Therefore,
we use natural density filters with an optical density of about 7 to attenuate the
beam. Moreover, we use a home-build AOM driver for switching the beam. With
a rise time of about 50 ns it provides an almost squared pulse shape.

4.2.3 Transmission measurement with minimized dispersion

Next, we characterize dissipative and dispersive effects in our new experimental
geometry that is shown schematically in Fig. 4.9(a). For this purpose, we measure
on the one hand the transmission T of the probe beam in the center of the control
beam. On the other hand, we extract the waist of the probe beam from the
transmission images by using a two-dimensional Gaussian fit. As we are interested
in changes of the beam waist due to dispersive effects, we calculate its relative
change with respect to the measured beam waist wp,0 in the absence of the atoms.
The resulting transmission T and relative beam waist ∆wp as a function of the
probe beam detuning are displayed in Fig. 4.9(b).

The transmission spectrum shows the expected Autler-Townes minima and does
not exhibit an asymmetry or a transmission above unity. The relative beam waist
∆wp shows an almost symmetric structure around zero detuning with two zero-
crossings for the waist in y- and z-direction, respectively. Moreover, |∆wp| . 0.14
is apparent.

We compare in Fig. 4.9 the experimental results with a numerical simulation
of the probe beam propagation through the atomic cloud and a reduced imaging
system (see App. B for details). We want to emphasize that this simulation is
based on fewer assumptions than the one for the collimated beam presented in
Sec. 4.2.1.

First, we simulate a dispersion free geometry18, meaning in particular a control
beam waist wc → ∞. We find that the simulated transmission spectrum agrees
with the measured data, as can be seen from the gray dashed line in Fig. 4.9(b).
Moreover, the relative difference of the beam waist ∆wp turns out to be zero for

18 Since the susceptibility depends on the atomic density, dispersive effects may also arise from a
gradient due to the geometry of the atomic cloud. In order to avoid this, we choose an atomic
density distribution, which is constant in transversal and Gaussian in propagation direction.
This geometry is only used for the dispersion free simulation. For all other simulations, we
consider a three-dimensional atomic cloud as in the experiment. We note that dispersive
effects due to the geometry of the atomic cloud are much smaller than dispersion arising
from the geometry of the control beam.
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Figure 4.9: Transmission and dispersion measurement utilizing the focused
probe beam. (a) Schematic illustration of the new experimental geometry,
where the probe beam has a smaller waist than the control beam (not to
scale). (b) Measured transmission T of the probe beam (black points, upper
graph) and relative difference of the beam waist ∆wp = [wp(∆p)−wp,0]/wp,0

in y- (orange squares, lower graph) and z- (blue points, lower graph) di-
rection as a function of the probe beam detuning ∆p. The orange solid
lines are the result of a numerical simulation with a waist of the control
beam of wc = 20µm (the orange shaded area accounts for a variation
of the beam waist of ±2µm). The red dashed line depicts the result for
wc = 32µm. Gray dashed lines indicate the result for a dispersion free
geometry (see the main text for details). Other parameters are the Rabi
frequencies Ωc/2π = (21.4± 0.2) MHz and Ωp/2π = (0.93± 0.02) MHz of
the control and probe beam, respectively, and a peak atomic density of
(0.022± 0.001)µm−3. Figure (a) taken with permission from [97].

all probe beam detunings. This is expected as the control beam Rabi frequency
is position independent, such that no dispersive effects and thus no change of
the probe beam waist are possible. However, no change in the beam waist, as
predicted from this simulation, does not agree with the measurement results for
the relative beam waist ∆wp, as presented in Fig. 4.9(b). Instead, for a blue
beam waist of 20µm, both the simulated transmission spectrum and the simulated
relative change ∆wp of the beam waist agree well with the data. This shows in
combination with the result for an infinitely large control beam, that a small
dispersive effect is still apparent for the implemented geometry. Nevertheless,
even though the beam waist is affected by dispersion, the experimentally and
numerically obtained transmission spectra do not show the typical features of a
dispersion dominated spectrum. In particular, they do not exhibit a transmission
above 1 or an asymmetry. Moreover, the two simulated transmission spectra
for an infinite and a finite waist agree with each other. Therefore, we conclude
that dispersive effects are clearly minimized compared to the geometry as used
previously in our group (see Sec. 4.2.1), and that dispersion has a negligible effect
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on the transmission spectrum for the parameters of this measurement.
Since the EIT susceptibility, Eq. (2.12), scales linearly with the atomic density,

we expect dispersive effects to become more pronounced at higher atomic densities.
Nevertheless, using the same simulation as above, but now with a density19 of
0.16µm−3, we have found that the transmission spectra for an infinite and finite
waist of the control beam still agree with each other. Moreover, the measured
spectrum at high density and at a small ratio Ωp/Ωc of the Rabi frequencies
(see Fig. 4.14), displays no asymmetry or a transmission larger than 1. Both
aspects again underline, that dispersive effects even at higher atomic densities are
minimized.

On two-photon resonance, the linear response of the atomic medium, and thus
also linear dispersion resulting from the geometry of the Gaussian beams vanish
in the ideal case. Still, dispersion from the nonlinear part of the susceptibility
might arise. We find experimentally20 that the relative change in the beam waist
|∆wp| ≤ 0.11. Based on the findings presented above, this could indicate that
dispersive effects do not affect the transmission measurement significantly.

Finally, we want to note that varying the control beam waist in the simulation
by ±2µm, shown as shaded orange area in Fig. 4.9(b), gives very similar results.
This means that this measurement is not a very precise method to determine
the waist of the control beam. However, the result for a beam waist of 32µm
(red dashed line), which we would expect21 from an intensity measurement of the
control beam and the observed Autler-Townes splitting, is clearly distinguishable
due to the measured structure around zero probe beam detuning.

All the experiments presented in the following have been carried out with the
geometry introduced in this section. In particular, they have been performed with
a probe beam with a waist smaller than the one of the control beam. The colli-
mated probe beam is only used for determining the size, peak optical depth, and
temperature of the atomic cloud in the absence of the control beam, as explained
in the previous section.

4.3 Characterization of the EIT system in the
non-interacting limit

Now, we proceed with a characterization of our experimental system in the non-
interacting EIT limit. In this regime Rydberg-Rydberg interactions are negligible
due to low atomic densities or small ratios Ωp/Ωc of the Rabi frequencies. De-
phasing present in the system can diminish the coherence needed for EIT [99].

19 This is the atomic density used in the measurements presented in Chap. 4. For comparability,
we also adapted the other parameters in the simulation to match those given in Fig. 4.16.

20 In the subsequent sections of this chapter, we find that the experimentally observed dis-
sipative effects are not captured by the theoretical models, which we use for comparison.
Therefore, we lack a suitable model for the nonlinear susceptibility, on which we could base
a simulation.

21 This inconsistency has also been observed in the measurements with the collimated probe
beam. However, it does not affect the subsequent measurements as we always infer the Rabi
frequency of the control beam unambiguously from Autler-Townes measurements.
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Therefore, we first measure in Secs. 4.3.1 and 4.3.2 the dephasing rates γge and
γgr of the two- and three-level system, respectively. Afterwards, we comment in
Sec. 4.3.3 on the adiabatic preparation of the EIT-dark state. We proceed with
the characterization of our EIT system by measuring an Autler-Townes spectrum
in the non-interacting regime, as presented in Sec. 4.3.4. Finally, we summarize
the main characteristics of our EIT system in Sec. 4.3.5.

4.3.1 Dephasing in the two-level system

In the following, we consider the two-level system, composed of the ground state
|g〉 and the intermediate state |e〉, as shown in Fig. 4.5(a). The dephasing rate γge
can be determined from a measurement of the spectral response of this two-level
system. In general, the spectral response of a two-level system is determined by
the natural lifetime of the involved states [157]. In our case the ground state does
not decay. Thus, the natural linewidth of the transitions is given by the population
decay rate Γe of the intermediate state. However, certain mechanisms can lead to
a broadening or even a slight reduction of the power broadened linewidth. In the
following, we list the most common ones in cold atom experiments:

(i) power broadening: Driving the two-level system with a laser intensity
that is comparable to or larger than the saturation intensity of the transition
results in broadening of the Lorentzian lineshape [109].

(ii) homogeneous broadening due to decoherence: Mechanisms such as
laser frequency fluctuations or rescattering of photons can lead to deco-
herence, which effectively increases the dephasing rate γge of the two-level
system [106, 107, 183].

(iii) collisional broadening: At high atomic densities or temperatures, colli-
sions can disturb the phase of the coherent evolution of the two-level system.
As a stochastic process this result in a Lorentzian spectrum [105, 157]. The
width is given by the collision frequency Γcoll = v/λfree and directly adds
to the natural linewidth. Here, v is the velocity of the atoms and λfree the
mean-free-path.

(iv) Doppler broadening: For atoms moving with a certain velocity, the laser
frequency is Doppler shifted. Since the velocity distribution of the atoms
follows a Boltzmann distribution given by the temperature of the atomic
cloud, this leads to a Gaussian line profile [157]. It needs to be convoluted
with the natural Lorentzian line shape in order to obtain the combined
spectral line profile.

(v) propagation effects: During the propagation through the atomic cloud,
absorption reduces the intensity of the laser beam. Therefore, atoms at the
end of the medium are exposed to a lower intensity. Saturation effects that
can cause a broadening are thus weaker in this region. As a consequence, the
linewidth gets reduced compared to the expected power broadened linewidth.
This propagation effect gets stronger for larger beam intensities and larger
optical depths of the atomic cloud.
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Figure 4.10: Numerically calculated linewidth and peak OD of the two-level
system. (a) Linewidth Γ2lvl,num as a function of the peak atomic density
ρ0 for different probe Rabi frequencies Ωp and for γge/2π = 1 MHz. Dashed
lines indicate the expected linewidth Γ2lvl calculated with Eq. (4.6) with-
out propagation trough the medium. (b) Peak optical depth ODpeak as
a function of ρ0 for the same dephasing as in (a). The dashed black line
indicates the expectation from the geometry of the cloud, calculated with
Eq. (4.3).

By relating the measured linewidth to the contributions listed above, it is possi-
ble to extract the dephasing rate γge from a measurement of the spectral response
of the system. The effects (i) and (ii) can be captured by an analytic formula for
the linewidth

Γ2lvl =

√
(Γe + γge)(γ2

ge + Γeγge + 2Ω2
p)

Γe
(4.6)

of the two-level system as resulting from the density matrix element ρee of the
single-body optical Bloch equations, Eqs. (2.10). As strong optical nonlinearities
require high atomic densities or large probe beam intensities, power broadening
(i) needs to be considered in our system. Moreover, homogeneous broadening
effects (ii) directly enter the dephasing rate γge and thus will be determined in a
measurement of the spectral response of the two-level system.

The collision frequency is about 130 kHz and the Doppler shift for Rubidium
atoms is approximately 200 kHz for typical experimental parameters, i.e. an
atomic density of 0.16µm−3 and a temperature of 100µK (see Sec. 4.1.3) [97].
As both are small compared to the natural linewidth of the intermediate state,
collisional broadening (iii) and Doppler shifts (iv) can be neglected.

The propagation effect (v) depends non-trivially on possible dephasing mecha-
nisms present in the system. Thus, it is difficult to modify Eq. (4.6) in order to
accommodate for these effects. However, the propagation effect can be accounted
for by numerically propagating the probe beam through the atomic cloud based
on the Maxwell-Bloch equations. As an illustration, Fig. 4.10(a) shows the de-
pendence of the numerically calculated linewidth Γ2lvl,num as a function of the
peak atomic density ρ0 for different Rabi frequencies Ωp of the probe beam and
for γge/2 = 1 MHz. In the limit of large densities, the linewidth tends towards
Γe+γge for all values of Ωp. In the dilute regime at low atomic densities, Γ2lvl,num

approaches the value obtained from Eq. (4.6) without propagation through the
atomic cloud (horizontal dashed lines). At the same time, the numerically ob-

4.3 Characterization of the EIT system in the non-interacting limit 61



tained peak optical depth OD, shown in Fig. 4.10(b), is smaller than the expec-
tation based on the geometry of the cloud, Eq. (4.3), shown as a black dashed
line. Both aspects highlight the importance of considering the propagation effect
at high atomic densities and high Rabi frequencies of the probe beam.

Determination of the dephasing rate from measurements of the optical

depth22

In the discussion presented above we have established an understanding of possible
effects that determine the two-level linewidth. Moreover, we have pointed out that
at high atomic densities and high Rabi frequencies of the probe beam a numerical
calculation of the linewidth is needed in order to account for a reduction of the
probe beam intensity over the length of the medium.

Equipped with this knowledge, we now proceed by determining the dephasing
rate γge from a linewidth measurement. For this purpose, we measure the optical
depth OD of the atomic cloud as a function of the probe beam detuning ∆p

in the absence of the control beam (Ωc = 0) [97]. For comparability with our
measurements in the interacting regime, presented in the following Sec. 4.4, we
choose a rather high Rabi frequency Ωp/2π = 1.7 MHz.

In the low-density regime, shown in Fig. 4.11(a), we extract a linewidth of
2π×(6.8± 0.3) MHz and a peak optical depth OD of 1.06± 0.06 using a Lorentzian
fit to the data. Here, the error is the weighted error from the fit. In the high-
density regime, as depicted in Fig. 4.11(b), we exclude data points with an OD
greater than 1.8 from the fitting routine and obtain a rather large linewidth of
2π × (7.9± 0.5) MHz with a peak OD of 3.8± 0.2. From the fit results and
the independently measured geometry of the atomic cloud, we extract numeri-
cally the corresponding dephasing rates γge/2π = (0.5± 0.3) MHz and γge/2π =
(1.7± 0.5) MHz for the low- and high- density measurements, respectively. The
result is shown by blue solid lines in Fig. 4.11.

A density-dependent dephasing mechanism that could cause such a broadening
is rescattering of photons. Due to the large extent of the atomic cloud transversal
to the propagation direction, the transverse optical depth is large and allows for
multiple rescattering of the photons [184, 185]. This could be an explanation for
the observed dephasing at high densities.

The dephasing present in our system at high atomic densities prohibits to ex-
tract the atomic density by using the peak optical depth and the geometry of
the cloud from absorption images as explained in Sec. 4.1.3. For the theoretical
curves presented in the following, we linearly extrapolate the dephasing rates de-
termined in the measurement presented in this section, based on the independently
measured peak optical depth for the EIT spectra.

Moreover, for an estimation of the atomic density, in these measurements we
fit the subsequent data of the Autler-Townes measurement in the non-interacting
regime, see Sec. 4.4.1, with the peak atomic density as the only free fitting param-
eter. Its uncertainty results from shot-to-shot fluctuations of ±8%, a statistical
error of ±2% given by the uncertainty of the deduced dephasing rate γge, and a

22 Taken verbatim from Tebben et al. [96] with some adaptions for the ease of readability.
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Figure 4.11: Measured linewidth of the two-level system. Optical depth OD as
a function of the probe beam detuning ∆p in the absence of the control
beam (Ωc = 0) and for peak atomic densities of (a) ρ0 ≈ 0.02µm−3 and (b)
ρ0 ≈ 0.2µm−3, respectively. The result obtained from numerically solving
the Maxwell-Bloch equations, Eq. (2.10), is shown as a solid line with the
shaded area indicating the uncertainty in the determined dephasing rate
γge. Figure and caption taken with permission from [97].

systematic overestimation of the propagation length resulting in an error of +4%
for the atomic density. The uncertainty in the density is displayed by a shaded
area around the theoretical curves in the plots of Sec. 4.5.

4.3.2 Dephasing in the three-level system

Next, we characterize the dephasing rates of the ground- to Rydberg-state coher-
ence γgr and the intermediate- to Rydberg-state coherence γgr for the three-level
system shown in Fig. 4.5(a). Possible sources for these dephasings are, for instance,
the finite linewidth of the involved lasers, power broadening or motion-induced de-
phasing [78]. As we typically drive the three-level system with Ωc > Γe, dephasing
on the intermediate- to Rydberg-state coherence can be neglected and is set to
γer = 0 in all subsequent discussions. In the following, we explain how to extract
the dephasing rate γgr from the linewidth of the two-photon transition between
the ground and the Rydberg state [46, 186, 187].

In the previous section we have discussed, that γge can be determined from the
two-level spectral response. Here, the probe beam transmission serves as a probe
for the ground- to intermediate-state coherence. In contrast, the dephasing rate
γgr can be characterized by measuring the linewidth of the two-photon transition
between the ground and the Rydberg state with a large single-photon detuning
∆ � Γe,Ωp,c to the intermediate state, as pursued in ref. [188]. Thereby, a large
detuning ∆ ensures that the fast decay of the intermediate state is effectively
eliminated from the atom dynamics. The resulting effective two-level system un-
dergoes Rabi oscillations with a two-photon Rabi frequency Ωeff = ΩpΩc/(2∆)
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Figure 4.12: Spectrum of the two-photon transition. Measured ion counts against
the two-photon detuning δ (black points) for an intermediate state de-
tuning of 97 MHz (data taken from ref. [188], with kind permission of C.
Brandl). We show by the solid orange line the numerical solution of the
time-dependent optical Bloch equations, Eqs. (2.10), for a three-level sys-
tem with a dephasing rate γgr/2π = 33 kHz. The shaded area represents a
variation of the dephasing rate by ±10 kHz. For comparison, the numerical
results for 0 kHz (lower gray dashed line) and 100 kHz (upper gray dashed
line) are shown.

[189]. Based on an ion measurement, as explained in Sec. 4.1.3, the Rydberg pop-
ulation is determined and serves as an observable in such a measurement [187].

Fig. 4.12 presents a measurement of the ion counts on the MCP detector, being
proportional to the number of Rydberg excitations in the medium, against the two-
photon detuning δ. The data is recorded for a large detuning ∆ to the intermediate
state of 97 MHz and an excitation time of 20µs. We fit a Lorentzian function to the
data and obtain a linewidth of 2π×(159± 7) kHz. In order to relate this linewidth
to the dephasing rate γgr, we simulate numerically the time-dependent, single-
body optical Bloch equations, Eqs. (2.10). Thereby, the Rabi frequencies Ωp/2π =
(2.36± 0.05) MHz and Ωc/2π = (5.7± 0.1) MHz of the probe and control23 beam,
respectively, as well as the decay rate of the Rydberg state Γr/2π = 17.5 kHz are
used as an input. We find that a dephasing of γgr/2π = (33± 4) kHz is necessary
to obtain the fitted linewidth. The result is shown as the orange line in Fig. 4.12.

The measured dephasing rate gives an upper bound for the linewidths of the
two lasers for an integration time of 20µs. As subsequent measurements have
been performed with excitations times of 5-15µs and phase noise of the laser
increases with increasing excitation time, this also gives an upper bound for the
dephasing present in the subsequent measurements. In the following theoretical
investigations this dephasing has been taken into account. However, we expect
that it does not have a great impact on the theoretical predictions, as it is much
smaller than the decay rate of the intermediate state and the dephasing rate γge
determined in the previous section.

23 Due to the inconsistency in the determination of the control beam waist (see Sec. 4.2) the
dephasing rate γgr has a large systematic error and could be of up to factor of two larger.
Nevertheless, 2γgr is still small compared to all other frequencies in the system.
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4.3.3 Adiabatic preparation of the EIT dark state

EIT relies on the preparation of a dark state that does not decay due to coupling
to the intermediate state, as explained in Sec. 2.1.3. The most common way of
preparing the atoms in the dark state is to use stimulated Raman adiabatic pas-
sage (STIRAP) [190–192]. Here, a counter-intuitive pulse sequence, where the
control beam is switched on before the probe beam, is used to transfer the atoms
adiabatically into the EIT dark state. Thereby, one needs to ensure that the
instantaneous dark state |a0(t)〉 does not couple to any of the other two instan-
taneous eigenstates |a±(t)〉 of the system [99]. This is fulfilled if the coupling is
much smaller than the energy ω±(t) of the eigenstates [99]∣∣∣∣〈 d

dt
a0(t)|a±(t)

〉∣∣∣∣� |ω±(t)| . (4.7)

On single-photon resonance this condition reduces to [99]√
Ω′p

2(t) + Ω′c
2(t)� |θ̇(t)| , (4.8)

where tan θ = Ω′p(t)/Ω
′
c(t).

In our case we assume a linear rise of the probe Rabi frequency Ω′p(t) = at, where
a = Ωp/tAOM is given by the AOM rise time tAOM of about 50 ns and the targeted
maximal probe Rabi frequency Ωp. Furthermore, as we turn on the control beam
2µs before the probe beam, we have Ω′c(t) = Ωc. Inserting both quantities into
Eq. (4.8) leads for Ωp � Ωc to the condition Ω2

c/a � 1 during the ramp of the
probe beam Rabi frequency. For typical Rabi frequencies Ωc/2π = 20 MHz and
Ωp/2π = 1 MHz used in our experiment, we find Ω2

c/a ≈ 126, which is much larger
than one. Therefore, the adiabaticity criterion holds and we expect an adiabatic
preparation of the EIT dark state.

4.3.4 Autler-Townes spectrum in the non-interacting regime

As a final step for the characterization of our EIT system in the non-interacting
regime, we present in Fig. 4.13(a) the transmission T of the focused probe beam
against the detuning ∆p of the probe beam. The measured transmission spectrum
exhibits a transmission of almost unity around resonance, indicating the largely
coherent dynamics of the well-prepared three-level system. Moreover, the spec-
trum shows no asymmetry that could hint towards significant dispersive effects.

In experiments with Rydberg atoms, care has to be taken to avoid the creation
of ions or spurious Rydberg excitations, as these could lead to additional absorp-
tion. A measurement of the ion counts on the MCP after completing the EIT se-
quence gives an indication if there are Rydberg excitations present in the medium.
Fig. 4.13(b) displays the result of such a measurement, which has been obtained si-
multaneously to transmission measurement presented in Fig. 4.13(a). We observe
that the number of ion counts fluctuates around the value of 0.743± 0.096. This
number of ion counts has been measured in the absence of the control beam and
is depicted by the gray dashed line in Fig. 4.13(b). Our measurement indicates
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Figure 4.13: Autler-Townes spectrum at a low atomic density. (a) Measured
transmission T and (b) ion counts as a function of the probe beam detuning
∆p for ∆c = 0 and for a peak atomic density of (0.022± 0.001)µm−3. The
blue solid line in (a) shows the solution of the single-body optical Bloch
equations, Eq. (2.10), where the shaded area accounts for the uncertainty
in the atomic density. The gray dashed line in (b) marks the mean number
of ions detected in the absence of the control beam, where the shaded area
indicates one standard deviation.

that the number of Rydberg excitations in the medium is not significant for the
presented transmission measurement. At higher atomic densities and larger ratios
Ωp/Ωc of the Rabi frequencies, as used in the subsequent measurements, we have
observed a larger number of spurious Rydberg excitations. Therefore, we provide
in App. C a detailed discussion about spurious Rydberg excitations in the context
of the following measurements.

4.3.5 Summary of the main characteristics of our EIT system

We base our subsequent investigation of nonlinear effects in Rydberg EIT on the
following main characteristics of our EIT system:

• isolation of a three-level system: With the experimental setup and se-
quence described in Sec. 4.1, we obtain in an optical dipole trap a 87Rb
atom cloud that is cigar-shaped with 1/e2-waists of approximately 40×40×
400µm3. The cloud has a temperature of about 100µK and peak atomic den-
sities up to 2× 1011 cm−3 are achievable [97]. Moreover, we ensure that ap-
proximately 95% of the atoms are in the ground state |5S1/2, F = 2,mF = 2〉
(Sec. 4.1.2). Using a magnetic field of 30 G provides a level splitting that
is large enough to isolate a three-level system involving the Rydberg state
|48S1/2,mj = 1/2〉.

• minimized dispersive effects: Implementation of a probe beam with a
waist smaller than the control beam minimizes dispersive effects in EIT
transmission spectra, as shown in Sec. 4.2.3.

• characterized dephasing rates: As discussed in Sec. 4.3.1, a density-
dependent mechanism broadens the linewidth of the two-level system, which
is driven by the probe beam. For the atomic densities used in subsequent
measurements, the dephasing rate amounts to γge/2π = (1.4± 0.5) MHz
[97]. Moreover, we argue that γer = 0 for strong driving Ωc � Ωp, and

66 Chapter 4 Nonlinear absorption on two-photon resonance



estimate 2π × (33± 4) kHz to be an upper limit for the dephasing rate γgr
(Sec. 4.3.2).

• adiabatic preparation of the EIT dark state: With an appropriate
pulse sequence we ensure an adiabatic preparation of the EIT dark state
(Sec. 4.3.3).

4.4 Nonlinear absorption in the presence of interactions24

In this section, we report on investigations of the spectral response of the atomic
medium in the presence of Rydberg interactions. First, we benchmark in Sec. 4.4.1
our Rydberg EIT system against existing measurements [23, 62, 64, 65]. For this
purpose, we record the probe beam transmission as a function of the probe beam
detuning ∆p while staying on resonance with the control laser (∆c = 0). This mea-
surement follows the green dashed line depicted in Fig. 4.1. Afterwards, we present
in Sec. 4.4.2 measurements on two-photon resonance by experimentally following
the red line in Fig. 4.1. Here, a new approach for investigating Rydberg EIT
is pursued, as the linear response of the medium vanishes in the non-interacting
limit.

4.4.1 Autler-Townes spectrum with Rydberg interactions

In the non-interacting regime, meaning when the Rabi frequency of the probe beam
is small, we vary the probe beam detuning ∆p with the control beam on resonance
(∆c = 0). In this situation, we recover the known Autler-Townes spectrum, as
shown by the black data points in Fig. 4.14. A transmission of nearly 1 at zero
detuning and a symmetric spectrum supports negligible dephasing γgr on the
Rydberg coherence and therefore a largely coherent dynamics of the three-level
system.

In the interacting regime at a higher Rabi frequency of the probe beam (red
squares in Fig. 4.14), the transmission at zero detuning is reduced. Moreover,
we observe a small shift of the left minimum and an asymmetry of the spec-
trum. Increasing the Rabi frequency of the probe beam even further (purple
down-triangles) enhances these effects, while at the largest ratio of Ωp/Ωc = 0.25
of the two Rabi frequency (blue up-triangles) the characteristic Autler-Townes
minima vanish completely.

In the first experimental demonstration of nonlinearities in a Rydberg EIT
medium, no shift and no asymmetry of the EIT spectrum were measured [23].
A shift or an asymmetry of the spectrum could result from a mean-field shift in-
duced by Rydberg excitations and ions in the medium. Therefore, the absence of
these features has been explicitly attributed to the absence of Rydberg excitations
or ions. Consequently, their measurements have been interpreted as resulting from
a sole cooperative nonlinearity.

However, subsequent publications, even of the same group, showed measure-
ments that exhibited both a shift and an asymmetry in the EIT as well as the

24 Taken verbatim from Tebben et al. [96] and adapted.
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Figure 4.14: Measured Autler-Townes spectra. Transmission T of the probe beam
against the probe beam detuning ∆p for ratios Ωp/Ωc of the Rabi frequen-
cies of 0.03 (black points), 0.12 (red squares), 0.18 (purple down-triangles)
and 0.24 (blue up-triangles). Here, we use ∆c = 0, a fitted peak atomic
density of 0.16µm−3, and a probe pulse duration of 15µs. Gray arrows in
the lower panel indicate the position of the Autler-Townes minima in the
non-interacting regime (black curve). Figure and caption with permission
adapted from [97].

Autler-Townes regime [62, 64, 65]. In one of them [62], the absence of the asym-
metry in earlier measurements has been interpreted as the result of increased
absorption due to interaction-induced motion in the time of one experimental cy-
cle. In a simple picture this can be understood as follows: In the absence of atomic
motion, a Rydberg pair excitation resonance for positive detuning of the probe
beam reduces the population in the intermediate state. As a consequence, ab-
sorption is reduced and results in an asymmetry of the Autler-Townes spectrum.
However, atomic motion due to repulsive interactions moves the atoms apart from
each other. Thereby, interaction-induced level shifts are reduced, leading to a
shift out of the Rydberg pair excitation resonance. As a result, the asymmetry of
the spectrum is averaged out, leading to the conclusion that has been drawn in
ref. [62].

Although, we cannot fully exclude motional dephasing originating from interac-
tion-induced repulsion of the atoms in our system, we still observe the asymmetry
in contrast to the argument given in ref. [62]. This discussion already shows that
some experimentally observed features of Rydberg EIT spectra, with the control
beam on resonance, remain to be explained.

4.4.2 Measurements on two-photon resonance

In order to investigate the effect of interactions on the transmission spectrum in a
different approach, we perform measurements on two-photon resonance where the
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Figure 4.15: Measurements on two-photon resonance. Measured transmission T
of the probe beam on two-photon resonance δ = 0 for different ratios Ωp/Ωc.
The gray dashed line indicates the measured transmission in the absence
of the control beam at ∆ = 0. Here, Ωc/2π = 28 MHz for the yellow curve
and 24 MHz for all other curves. The probe pulse duration is 5µs for all
measurements. Figure and caption taken with permission from [97].

linear response of the medium vanishes in the non-interacting limit (red line in
Fig. 4.1). Precisely, we change the single-photon detuning ∆ while staying on two-
photon resonance (δ = 0), and record the probe beam transmission as presented
in Fig. 4.15.

At low Rabi frequencies Ωp, the probability to be in the Rydberg state is small,
such that this regime can be considered as non-interacting. Here, nonlinear effects
induced by Rydberg interactions are negligible. In this regime, the measured
transmission is consistent with unity for all single-photon detunings, as shown by
the yellow squares in Fig. 4.15. This is expected as on two-photon resonance the
linear response of the atomic medium vanishes and EIT conditions are fulfilled.

Gradually increasing the probe Rabi frequency increases the fraction of atoms
in the Rydberg state, such that interaction effects influence the dynamics. In this
interacting regime, already for a ratio of Ωp/Ωc ≈ 0.05, depicted by the black
circles in Fig. 4.15, a dip in the transmission to about T = 0.76 appears on
the negative detuning side. However, this dip is absent on the positive detuning
side. For the experimental parameters of this measurement, we can exclude the
possibility that this absorption feature results from the influence of stationary
Rydberg excitations or ions in the medium. In order to support this statement,
we present a measurement of Rydberg excitations after the EIT sequence and an
estimation of an upper limit for the resulting absorption from these in App. C.

Increasing the probe Rabi frequency further (red down triangles in Fig. 4.15) in-
creases the strength of the absorption dip, but does not change its position. More-
over, the feature is getting broader, but remains clearly visible until Ωp/Ωc ≈ 0.12.
For the largest ratio Ωp/Ωc ≈ 0.18 of the two Rabi frequencies (purple up trian-
gles), strong absorption continues to persists predominantly on the negative detun-
ing side, but is shifted towards the single-photon resonance and with a broadening.
Therefore, the observed absorption feature turns out to be very sensitive to Ωp,
which is characteristic for a nonlinear phenomenon.
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4.5 Comparison with theoretical models25

We now aim at a comparison of our measurements with existing theoretical models.
Our measurements have been performed in a regime, where the optical depth per
blockade radius ODb � 1, such that the probe field can be treated classically. As a
consequence, photon-photon and atom-photon correlations can be neglected [77].
However, interactions between atoms induce atom-atom correlations. On the one
hand, these correlations enable strong nonlinear effects and therefore make the
system potentially useful for quantum optics applications. On the other hand,
they make a theoretical treatment of the Rydberg EIT medium challenging.

As discussed in Sec. 3.1.2, there exists several approaches to include Rydberg
interactions into theoretical models. In the following, we compare our measure-
ments with the predictions based on a mean-field model [64], a Monte-Carlo rate
equation model [78], and the low intensity expansion [96, 121] that we introduced
in detail in Sec. 3.3. For this purpose, we first provide an overview of the theoret-
ical models and their range of validity in Sec. 4.5.1. Afterwards, we present the
comparison with our measured Autler-Townes spectra and our measurements on
two-photon resonance in Sec. 4.5.2 and Sec. 4.5.3, respectively.

4.5.1 Theoretical models and their range of validity

Mean-field model

Among other implementations of the mean-field model, we choose to compare our
experimental results with an ansatz followed in ref. [64]. We make this choice
as experimental parameters in ref. [64], such as the ratio Ωp/Ωc and the atomic
density, are similar to our measurements. In ref. [64], the transmission of the
probe field is obtained from the one-dimensional Maxwell Bloch equation, where
the optical response of the medium enters as a model susceptibility χ̄ = αχB+(1−
α)χE [64]. This model susceptibility is based on the solution for the susceptibility
χ3lvl of the single-atom master equation for a non-interacting three-level system
and includes interactions in terms of level shifts. The two different parts χB and
χE of the model susceptibility are weighted according to the fraction α of all
blockaded atoms excluding Rydberg atoms [64].

Thereby, χB describes the optical response of blockaded atoms. It is given
by a spatial integration of χ3lvl(∆

′
c = ∆c + C6/r

6) over the radius r inside the
blockade radius. Here, interactions induce a level shift to the Rydberg state such
that χB equals the two-level susceptibility for strong interactions. In addition,
χE = χ3lvl(∆

′
c = ∆c − ∆R, γgr =

√
θR) accounts for interactions of unblockaded

atoms with Rydberg excitations at a distance larger than the blockade radius.
For this purpose, an average shift ∆R and its variance θR are introduced, where
the latter leads to a dephasing γgr of the Rydberg coherence [64]. In this model
∆R and θR are based on a local density approximation and an approximation for
the Rydberg excited fraction, which is derived from a semi-analytical model using
superatoms [125].

25 Taken verbatim from Tebben et al. [96] and adapted.
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Monte-Carlo rate equation (MCRE) model

In this approach, the single-atom master equation without interactions is cast into
a set of rate equations by adiabatically eliminating the coherences [81–83]. Interac-

tions are included as effective level shifts ∆
(i)
int =

∑
j 6=iC6/r

6
ij for the Rydberg level

of the i-th atom with distance rij to atom j. Using a Monte-Carlo simulation, the
many-body problem is solved by propagating the global ground state to the global
steady state. In the Monte-Carlo rate equation (MCRE) model the propagation of
the probe field can be included [78]. This is done by taking into account the local

probe Rabi frequency Ω
(i)
p , which atom i experiences, for the calculation of the

steady state of atom i in each Monte-Carlo step. For this purpose, the probe field
with local Rabi frequency is propagated through the cloud of randomly positioned
atoms according to the one-dimensional Maxwell-Bloch equation until atom i is
reached. Thereby in each propagation step, the local attenuation, which is in-
duced by the individual atoms that are passed, is subsequently accounted for. As
a result, not only global atomic observables, but also the probe beam transmission
can be simulated with this approach.

Low-intensity theory

This semiclassical model has been described in detail in Sec. 3.3. In essence,
this model is based on a low-intensity expansion [58, 96] of the Maxwell-Bloch
equations for the driven atomic system. Here, Rydberg interactions evoke atomic
correlations. Assuming that the Rydberg population per blockade radius is small,
these correlations can be truncated after the second order. As a result, an analytic
solution for the linear and nonlinear susceptibility can be derived, which takes
two-body correlations exactly into account [96]. The transmission of the probe
beam is then calculated analytically by applying a local density approximation
and assuming spatially constant probe and control beams.

Range of validity of the three models

For a comparison of the range of validity of these theoretical models, the strength
of the applied fields, the atomic density, and the interaction strength are considered
in the following.

The mean-field model includes Rydberg interactions solely as an interaction-
induced energy shift based on the assumption that inter-atomic correlations can
be completely neglected. This assumption requires that the mean distance be-
tween Rydberg excitations is larger than the blockade radius. This is the case, for
example, if Ωp/Ωc � 1 or if the interaction strength is small. A simple mean-field
model failed to explain observations in coherent population trapping experiments
as soon as excitation blockade becomes relevant [84]. Depending on the experi-
mental parameters, this might already be the case for low atomic densities. The
mean-field model considered here agreed well with an interaction-induced shift
and dephasing observed in interacting EIT transmission spectra for densities in
the order of 0.1µm−3 [64].
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The MCRE model also includes Rydberg interactions as effective energy shifts,
but does not rely on assumptions for calculating the average shift experienced by
one atom. Instead, it naturally includes the mean-field shift in a self-consistent
manner and calculates the steady-state of the N -body density matrix. While
still requiring Ωp/Ωc � 1 or Ωp/Ωc � 1 for atomic coherences to vanish [125],
these two aspects increase its range of validity to a large range of atomic densities
and yields correct results also for densities as high as 0.18µm−3 [62, 82]. For
Ωp/Ωc � 1, the rate equation model was shown to agree well with the result of
a master equation calculation of four fully blockaded atoms independent of the
driving strength Ωc/Γe [125]. As a result, the MCRE model was able to explain
certain aspects of interacting EIT spectra and the density dependence of nonlinear
absorption [62, 78].

The low-intensity theory is based on a perturbative expansion in the probe field
and therefore requires Ωp/Ωc � 1. Its applicability in terms of atomic densi-
ties and interaction strengths is combined in the requirement that the Rydberg
population per blockade volume needs to be much smaller than 1 [77, 96, 121].
The low-intensity theory predicts the existence of an enhanced nonlinear optical
response for ∆ ∼ ±Ωc/2 as a consequence of a two-body, two-photon resonance in
the non-adiabatic regime [96]. However, it so far has not been compared to exper-
iments in this regime yet. In the regime of large probe beam detunings, where the
intermediate state can be adiabatically eliminated, the low-intensity theory has
successfully been compared to absorption measurements showing the quadratic
dependence on the Rabi frequency of the probe beam at moderate densities [58].

Consideration of the experimental geometry within the three models

For a comparison with our experimental results, we exploit the three models26

[64, 78, 96] with a transversely constant intensity of the probe beam and a con-
stant intensity of the control beam in all spatial dimensions. All three models
account for the 45° angle between the propagation direction of the lasers and the
main axis of the atomic cloud, as depicted in Fig. 4.2. Moreover, they include
the Gaussian density distribution in the propagation direction. In the MCRE
model, the Gaussian density distribution in the transversal direction is consid-
ered27. However, it is assumed to be constant for the other two models, such that
they are reduced to a one-dimensional situation. This approximation is justified
since the probe beam waist is small compared to the cloud dimension in transver-
sal direction. We have checked that in the absence of interactions all three models
coincide with each other.

26 M. Gärttner has provided the code for the MCRE model, which I have adapted, e.g. in
terms of the experimental geometry and output quantities. The adapted code has been used
for the simulations presented in the following. Scripts for the other two models have been
written by myself based on refs. [64, 96].

27 We have restricted the transversal plane to a region of 8× 8µm2. For the results presented
in Fig. 4.17, we have tested that doubling this area gives within the errorbars the same result
for ∆/2π ≥ −17 MHz.
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4.5.2 Comparison with Autler-Townes measurements

First, we compare the predictions of the theoretical models presented in Sec. 4.5.1
with our Autler-Townes measurement. The Rydberg population per blockade
volume of the interacting Autler-Townes measurement is 0.16 on resonance and
increases off-resonance even further. Since it cannot be considered much smaller
than 1, we omit a comparison of the low-intensity theory with the Autler-Townes
measurement in the following. For the measurements with the two smallest Rabi
frequency ratios, as presented in the upper panel of Fig. 4.14, the requirement
Ωp/Ωc � 1 holds. Moreover, the atomic density is in a regime where a comparison
with the other two models is possible. In the following, we thus use these two
measurements for a comparison with the predictions based on the mean-field model
und MCRE simulation.

As an input for the mean-field model and the MCRE simulation, we use for both
a dephasing rate γge/2π = (1.4± 0.5) MHz of the excited-state coherence. Hereby,
we account for density-dependent dephasing present in the system (see Sec. 4.3.1
for details). Dephasing due to laser noise was independently determined in a
measurement of the two-photon linewidth and found to be γgr = (33± 4) kHz,
as detailed in Sec. 4.3.2. Furthermore, we determine the peak atomic density
with a fit to the Autler-Townes spectrum in the non-interacting regime and find
(0.16± 0.02)µm−3 with a systematic error of +4% (see Sec. 4.3.1). With these
quantities as an input, the resulting transmission spectra obtained from the mean-
field model and the MCRE simulation are shown as blue solid and orange-dashed
lines in Fig. 4.16, respectively. The shaded area around both curves takes the
uncertainty in the atomic density into account.

In the non-interacting regime, the mean-field model and the result of the MCRE
simulation agree well with the measured transmission spectrum in Fig. 4.16(a).
Slight deviations around the Autler-Townes minima are apparent, which can orig-
inate from a small fluctuation of the control beam power and a possible small
misalignment of the counter-propagating beams. These effects are not included in
the theoretical models.

In the interacting regime, shown in Fig. 4.16(b), a reduction of the transmis-
sion around ∆p = 0 and an asymmetry in the spectrum are predicted by the
two models. Moreover, both theories predict a shift of the resonance position to
∆p/2π ≈ 3 MHz. The deviation of the transmission obtained with the two theories
around single-photon resonance can be explained by the different implementation
of the interaction-induced level shift and its variance in the two models (see App. D
for details).

Compared to the experimental results, the asymmetry predicted by the two
models agrees well with the measured one, as can be seen in Fig. 4.16(b). On
resonance at ∆p = 0, we observe a lower transmission as the one obtained from
the two theories. Including an effective dephasing rate γgr in the models could
resolve this deviation. Such a dephasing could originate from the interaction with
spurious Rydberg excitations, which might be present in the medium for this
measurement as discussed in App. C. However, while both models predict a shift
of the resonance position, we do not observe this large shift in the experiment.
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Figure 4.16: Comparison of Autler-Townes spectra presented in Fig. 4.14(a)
with theoretical models. The measured probe beam transmission T
against the probe detuning ∆p is shown (black points) for (a) Ωp/Ωc = 0.03
and (b) Ωp/Ωc = 0.12. Here, ∆c = 0, and the probe pulse duration is
15µs. The transmission spectra calculated with a mean-field model (blue
solid line) and a MCRE simulation (orange dashed line) are depicted for a
fitted peak atomic density of 0.16µm−3. Shaded areas take into account
the uncertainty in the atomic density. For both theoretical curves, Ωc/2π =
15 MHz and γge/2π = 1.4 MHz. Gray arrows in (b) indicate the position of
the minima of the curve in (a). Figure and caption taken with permission
from [97].

The attenuation of the transmission on resonance is a consequence of Rydberg
blockade-induced absorption and an experimentally and theoretically approved
feature of interacting Rydberg EIT systems [77]. However, the absence or pres-
ence of a shift and an asymmetry in the spectrum are debated in the literature
[62, 64]. In theories that rely on a mean-field shift of the Rydberg level, such as
the considered mean-field and MCRE models, the asymmetry and shift are a con-
sequence of an anti-blockade effect. This effect permits for a coupling to Rydberg
pair states for a positive detuning of the probe field. As a consequence, absorption
is reduced and the resonance position is shifted [62]. This shift also emerges in
the solution of the master equation for a few atoms [78], but does not appear in a
theory based on superatoms [124]. As discussed in Sec. 4.4.1 the asymmetry and
shift might be reduced in setups, where interaction-induced atomic motion moves
atoms out of the facilitation resonance [62].

4.5.3 Comparison with a measurement on two-photon resonance

In the following, we compare the predictions of the theoretical models with our
measurements on two-photon resonance. For these measurements, the atomic
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Figure 4.17: Comparison of a measurement on two-photon resonance pre-
sented in Fig. 4.15(a) with theoretical models. Measured trans-
mission T as a function of the single-photon detuning ∆ for a ratio
Ωp/Ωc = 0.05 of the Rabi frequencies (black points). Results of the mean-
field model (blue solid line), the MCRE simulation (orange dashed line),
and the low-intensity theory (green dashed-dotted line) are shown. Here,
the peak atomic density is 0.16µm−3 and γge/2π = 1.4 MHz. Shaded areas
take into account the uncertainty in the atomic density. Figure and caption
taken with permission from [97].

density is in a regime where all three models should be applicable. Moreover, the
Rydberg population per blockade volume is below 0.05 for the yellow and black
curves in Fig. 4.15 for all detunings. However, it exceeds this threshold for the
other two curves. This means that at least for the yellow and black curves, for
which Ωp/Ωc � 1, the requirements for all three models are fulfilled.

In the non-interacting regime on two-photon resonance (δ = 0), the transmission
is nearly 1 for all single-photon detunings ∆, as shown by the yellow squares in
Fig. 4.15(a). This shows that experimental imperfections, which would lead to
single-particle dephasing (e.g. an imperfect initial state preparation or remnant
DC electric fields), are negligible. In all three theoretical models a transmission of
1 is expected. This is due to the fact that on two-photon resonance the population
in the Rydberg state and thus interaction-induced shifts tend to zero for small Ωp

or small atomic densities. In combination with χ3lvl(δ = 0) = 0 for negligible
single-particle dephasing, this results in a vanishing linear response. All three
models reproduce this behavior correctly.

For the interacting regime, Fig. 4.17 shows a comparison of the measured trans-
mission spectrum for Ωp/Ωc = 0.05, presented in Fig. 4.15, with the predictions
provided by the three different models. For all three models, the independently
measured Rabi frequencies are used as an input. The peak atomic density is
estimated similarly to the Autler-Townes measurement and possesses the same
uncertainty. Moreover, the dephasings γge and γgr are the same as for the Autler-
Townes measurements. Apparently all three models fail to describe the results of
our measurement.

As shown in Fig. 4.17, only qualitatively one absorption dip on the negative
detuning side is predicted by the mean-field and MCRE models. However, its
position deviates from the measured one by about 6 MHz. Moreover, it cannot be
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superimposed with the measured absorption dip by changing parameters, such as
the atomic density or dephasing rates, within an acceptable range with respect
to the experimental parameters. The stronger absorption predicted by the mean-
field model compared to the MCRE simulation stems from the inclusion of the
variance θR of the interaction-induced shift in the mean-field model. The effect of
this variance is more important as compared to the Autler-Townes case, presented
in Fig. 4.16, since the fraction α of all blockaded atoms excluding Rydberg atoms
is smaller. This variance is not explicitly included in the MCRE simulation (see
App. D for details).

The low-intensity theory predicts two transmission minima as a consequence of
a two-body two-photon resonance [96]. However, even though the assumptions for
this model are met, neither the level of the observed transmission nor the position
of enhanced absorption are captured by this model, as shown in Fig. 4.17. Most
strikingly, while the theory predicts two absorption features, only one has been
measured. Therefore, also this model does not explain our measurement results.

4.6 Summary and discussion

In this chapter we have studied the spectral properties of Rydberg EIT in the
semiclassical regime. For this purpose, we have first introduced our experimental
apparatus, which is capable of simultaneously detecting atomic and optical prop-
erties of the Rydberg EIT medium. In particular, the transmission of the probe
beam can be measured via absorption imaging, and residual Rydberg excitations
in the medium can be detected via electric field ionization. Aiming at the ob-
servation of genuine dissipative effects, we have minimized dispersive effects that
originate from spatial variations of the control beam [180]. For this purpose, we
have implemented an experimental geometry where the waist of the control beam
is larger than the one of the probe beam. Moreover, we have carefully prepared
and characterized the EIT three-level system in the non-interacting regime, e.g.
in terms of dephasing rates.

Based on this preparatory work, we have first probed the spectral response of
the medium in the conventional way, meaning with the control laser on resonance.
This yields a so-called Autler-Townes spectrum [97]. The observed nonlinear
features in the Autler-Townes spectrum in the interacting regime are compara-
ble to previous measurements and theoretical models [23, 62, 64, 65]. Although
the reduction of the transmission on resonance is apparent in all these measure-
ments including ours, the occurrence of a shift and asymmetry is under discussion
[62, 64, 97].

Afterwards, we have proceeded by investigating the transmission of the probe
beam on two-photon resonance, while changing the single-photon detuning [97].
Since on two-photon resonance purely nonlinear effects persist, theoretical mod-
els are more rigorously tested with our measurements in this regime [97]. We
have observed a broad absorption feature that appears for negative single-photon
detunings. We have compared our experimental results with the prediction of
models that include Rydberg interactions via an energy shift of the Rydberg level
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[64, 78], or treat interactions pairwise [96, 121]. However, neither of them is able to
capture the observed transmission spectrum [97]. This underlines the importance
of our measurements to serve as a benchmark for future improved descriptions of
Rydberg EIT.

In the following, we discuss our results and some possible routes towards a
better understanding of our observations on two-photon resonance from both a
theoretical and an experimental point of view.

4.6.1 Theoretical models and possible improvements

Of central importance for the description of Rydberg EIT systems in the semiclas-
sical regime is the incorporation of atomic correlations in theoretical models. The-
ories that completely neglect correlations in a mean-field approach [60, 64, 65, 80],
take many-body correlations approximately into account as in the Monte-Carlo
rate equation (MCRE) model [78, 81–83], or only consider two-body correlations
in a low-intensity expansion [58, 96, 121], all seem to fall short in capturing the
nonlinear effects observed in our measurements [97].

Atomic correlations would be included accurately in an exact description of
the many-body dynamics. However, this would require to solve the many-body
optical Bloch equations for N atoms, which would comprise a set of 32N coupled
differential equations. This has been achieved for five atoms in ref. [78], but
becomes computationally demanding for a larger number of atoms. An equivalent
description in terms of a Monte-Carlo wave function approach [193] can yield
steady-state solutions for a larger system size, as the number of variables scales
with 3N . For example, Rydberg excitation dynamics have been investigated for
ten atoms with this method [79]. But a system size of N ∼ 105 as used in our
experiments is far too large to obtain an exact solution for the full many-body
system [97].

However, Pritchard et al. have shown that the solution of the optical Bloch
equations for N = Nb interacting atoms provides reasonable agreement with their
experimental results [23]. Here, Nb is the average number of blockaded atoms,
which equals 3 in their case. For a typical atomic density of 0.16µm−3 and a
blockade radius of about 2.4µm, the number of blockaded atoms Nb ∼ 9 in our
system. With appropriate computational effort, it might be possible to obtain the
steady-state solution for a system of nine atoms, using the Monte-Carlo wave func-
tion approach. The probe beam transmission could then be calculated from the
ground to excited state coherence. Certainly, it would be interesting to compare
the result of such a simulation to our measurements. Nevertheless, the propa-
gation of the probe beam is not included consistently in such an approach, as
compared for example to the MCRE simulation. Also, interaction effects beyond
the blockade volume would be neglected. Therefore, there might still be deviations
between measurement and simulation results.

Besides seeking an exact solution of the many-body dynamics, advancing exist-
ing approximate models is another approach to explain our findings [97]. There-
fore, we discuss possible improvements of the MCRE model and the low-intensity
expansion in the following. In ref. [83] the MCRE model has been extended to
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account for two-body correlations exactly, yielding the so-called “hybrid” model.
The idea is to treat neighboring atoms with a distance smaller than a critical
length as pairs. For those the two-body rate equations are solved exactly in each
Monte-Carlo step [83]. We have considered to adapt this model by implementing
the probe beam propagation similar as in ref. [78]. This means that the two-body
dynamics of the atom, which is considered in one propagation step, and its near-
est neighboring atom is solved exactly to determine the probe beam attenuation.
However, at high atomic densities as applied in our experiments, each atom is on
average paired with more than one atom. This prevents an unambiguous choice of
pairs [97]. Therefore, treating larger atomic clusters is required in future theoret-
ical studies [97]. However, we want to note that the computational time needed
to find the steady-state solution of a cluster increases with the cluster size. As an
average over many trajectories is required for the convergence of the steady-state
in the MCRE simulation [78, 83], treating extended atomic clusters is expected to
be computationally demanding.

Our theory [96, 121] is based on a low-intensity expansion. It exactly takes into
account the two-body quantum dynamics, as explained in Sec. 3.3, but completely
neglects mean-field shifts of surrounding Rydberg atoms. In a simple approach
to include these mean-field shifts, we have combined the low-intensity expansion
model, which provides an analytic solution for the third-order susceptibility [96],
with the first order susceptibility of the mean-field model [64]. However, this
approach did not lead to a better agreement with the measured data. A rigorous
inclusion of higher-order correlations, by extending the expansion to the third or
even a higher order via a systematic cluster expansion and a ladder approximation
[97], could be pursued in future studies.

4.6.2 Experimental considerations and further investigations

The observation of genuine nonlinear effects in Rydberg EIT with classical light
fields is greatly complicated and affected by the presence of stationary Rydberg
excitations [143]. This is because these excitations can lead to spurious absorption
or even an avalanche creation of ions [177], which obscures absorption stemming
from nonlinear effects. We have observed that the parameter window where these
Rydberg excitations, so-called Rydberg pollutants [143], are suppressed is very
small, e.g. in terms of the Rabi frequency of the probe beam (App. C). We
emphasize that only in this parameter regime an unambiguous observation of
Rydberg EIT effects is possible. At the same time, the precise origin of these
pollutants remains vague (see App. C and refs. [97, 143, 194]). Therefore, we can
fully support the statement of ref. [143] that further experimental investigations
of Rydberg EIT would vastly benefit from a concise study of the creation process
and a possible suppression of Rydberg pollutants. For example, state-selective
field ionization [174, 195] could be used to determine the state in which these
Rydberg pollutants are excited. This method exploits electric field ramps in order
to control the ionization and therefore the arrival time of excitations in different
Rydberg states on the ion detector. Subsequent suppression of these excitations
could greatly increase the parameter regime for genuine Rydberg EIT experiments.
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Besides the presence of stationary Rydberg excitations, atomic motion is an
obstacle for cold atom experiments that needs to be considered. The effect of
Doppler broadening is negligible in our setup as the net momentum is small in
case that the probe and control beams are counter-propagating. Nevertheless,
we cannot fully exclude the possibility that atomic motion, induced by repulsive
van der Waals interactions [62], affects our measurements. We have briefly dis-
cussed an intuitive picture of how interaction-induced atomic motion could affect
an Autler-Townes spectrum in the interacting regime (see Sec. 4.4.1 and ref. [62]).
Nevertheless, its applicability is questionable as it is not a priory clear how mo-
tional and spin degree of freedoms are coupled due to Rydberg interactions. Due
to the same reasoning, it is also difficult to find an intuition of how atomic motion
could affect our measurements on two-photon resonance. On a single-body level,
motion-induced dephasing could either depend on the atomic or the Rydberg ex-
citation density [78]. For both cases we tested that including such a dephasing
into the mean-field model does not improve the agreement with our measurements
on two-photon resonance. Therefore, from an experimental perspective, it would
be interesting to investigate if the observed absorption feature changes with the
excitation time. From a theoretical point of view, the exploration of motional
effects beyond a single-body dephasing would be very beneficial.

The main experimental result of this chapter is the observation of an absorption
feature in the transmission spectrum of the probe beam on two-photon resonance
[97]. As this regime has so far not been explored yet, our observation is inter-
esting by itself. However, due to spurious Rydberg excitations in the medium,
our measurements only cover a small parameter regime. In order to thoroughly
characterize this absorption feature, it would be beneficial to map out its depen-
dence on experimental parameters, such as the Rabi frequencies of the probe and
control beam, as well as the atomic density. In this way the scaling of the absorp-
tion feature with these parameters could be measured and compared to theoretical
models.

Finally, reducing the number of blockaded atoms in an experimental setting,
might simplify the comparison with theoretical models as discussed above. There-
fore, finding a parameter regime where this number is reduced, while at the same
time the absorption feature is still observable without any spurious Rydberg ex-
citations in the medium, is an interesting task for future investigations.
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CHAPTER5
A stationary Rydberg polariton

Parts of this chapter are based on the following manuscript, from which parts of
the text have been taken verbatim:

A stationary Rydberg polariton
A. Tebben, C. Hainaut, A. Salzinger, T. Franz, S. Geier, G. Zürn and M.
Weidemüller, arXiv: 2108.00657 (2021)

In the introduction of this thesis we have asked the question how to enhance
photon-photon interactions. Consider the situation of two photons propagating
along each other as polaritons in a Rydberg EIT medium of optical depth OD. In
the dissipative regime, the probability for these two photons to blockade each other
scales as 1 − e−ODb/

√
OD [24, 85], while in the dispersive regime the associated

phase shift is proportional to ODb [57, 85]. Thus, increasing the optical depth per
blockade radius ODb enhances photon-photon interactions. However, the optical
depth per blockade radius is experimentally limited, for example, due to atom-
electron collisions emerging at high atomic density or high principle quantum
number [85]. The highest reported values of recent experiments amount to ODb ∼
6. [10, 86, 140]. One possibility to circumvent this limitation given by the optical
depth per blockade radius is to place the atomic medium into a cavity [87–91, 196].
In this way the photons pass the medium several times, which effectively enhances
the single-atom coupling strength and thus increases the effect of interactions [4].

Instead of increasing the interaction strength, photon-photon interactions could
also be enhanced by an increased interaction time [59, 92, 93]. In the case of two
co-propagating photons, the available interaction time is limited by the time they
spent in the medium as propagating polaritons [85, 197]. Reducing the velocity
of the polaritons is possible, as discussed in Chap. 2. However, this immediately
also reduces their photonic character [26, 30]. In the ultimate limit of a vanishing
group velocity, the photons are fully converted into stored spin waves leaving only
interacting atomic excitations behind. Enhanced interactions due to the storage
process [59, 93], and the interaction between a spin wave and a stationary light
pulse [92] have been demonstrated. However, both situations miss true photonic
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interactions as the rely on storing the photons as a spin wave in the medium.
An alternative approach to increase the photon-photon interaction time is to en-

able interactions between stationary light polaritons (SLP). These quasi-particles
[31, 34, 44, 117] maintain a non-vanishing photonic component at zero group ve-
locity. In the following, we pursue this approach by adding a Rydberg character
to a SLP. A first proposal in this regard has been based on a diamond level scheme
[94, 95], where the uppermost state is a high-lying Rydberg state. This scheme
has the drawback that the wavelengths of the probe and control fields are vastly
different. As a consequence, phase matching conditions might be complicated to
fulfill in an experimental realization [37, 94, 95]. However, this is a particularly
important requirement since a phase mismatch can lead to a decay of the SPLs
[92], and thus ultimately to a limited interaction time [98].

Another level scheme, which supports a stationary light polariton, is the dual-V
scheme [34, 44]. As discussed in Sec. 2.2.3, this scheme relaxes the requirement for
phase matching considerably. In a recent proposal, this system has been equipped
with a Rydberg component by coupling a Rydberg state to one of the intermediate
states [117]. This approach does not enable interactions between SLPs, but rather
allows for a sophisticated and coherent switch between slow- and stationary light
polaritons based on Rydberg interactions [117].

In this chapter, we propose a novel scheme for coupling a Rydberg state to
a stationary light polariton based on the dual-V scheme [98]. It is not a priori
clear that such a coupling preserves the stationary nature of the underlying SLP.
Therefore, based on the discussion in ref. [34], we explicitly verify in Sec. 5.1 that
our system supports a stationary photonic excitation with a quadratic dispersion
relation, which we call a stationary Rydberg polariton. In order to explore the
influence of interactions originating from the Rydberg character on our scheme,
we investigate the effect of a Rydberg impurity on the system in Sec. 5.2. We then
consider an experimental realization of stationary Rydberg polaritons in Sec. 5.3.
Finally, in Sec. 5.4 we summarize and discuss our results28.

5.1 Coupling a stationary light polariton to a Rydberg
state29

We consider a dual-V scheme realization of a SLP [34, 44], as schematically de-
picted in Fig. 5.1(a). Here, two counter-propagating classical control fields with
equal Rabi frequency Ω induce stationary light conditions for two quantized probe
modes Ê±, as discussed in Sec. 2.1.5. The underlying atomic level scheme is shown
in Fig. 5.1(b) and is composed of a ground-state |g〉, a metastable state |d〉, and
two intermediate states |e±〉 that decay with rate γ. We couple the metastable
state |d〉 to a Rydberg state |r〉 using a classical Rydberg coupling field with Rabi
frequency Ωs.

The equations of motion for the probe field amplitudes and for the continuous

28 This paragraph on the structure of this chapter is partially taken verbatim from Tebben
et al. [98].

29 Taken verbatim from Tebben et al. [98] with minor adaptions for the ease of readability.
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Figure 5.1: System and level scheme for the creation of a stationary Rydberg
polariton. (a) Schematic illustration of the applied fields for the creation
of a stationary Rydberg polariton. (b) Our suggested level scheme for a sta-
tionary Rydberg polariton based on a dual-V level scheme. In the presence
of a Rydberg impurity, the Rydberg state experiences an energy shift ~V .
For details see the main text. Figure and caption taken and adapted with
permission from [98].

bosonic field operators D̂, Ŝ and P̂± of the coherences [26, 30] in the system read
in analogy to refs. [34, 44, 117]

∂tÊ± = ∓c∂zÊ± − iGP̂± , (5.1)

∂tP̂± = −iGÊ± − iΩD̂ − γ̄P̂± , (5.2)

∂tD̂ = −iΩ(P̂+ + P̂−)− iΩsŜ − iδ̄D̂ , (5.3)

∂tŜ = −iΩsD̂ − i(∆s + δ̄)Ŝ . (5.4)

Here, we have used the short notation Ô(z, t) = Ô for all operators. Furthermore,
we have introduced the two-photon detuning δ̄, which is considered to be the same
for the two ground- to metastable state transitions, and the detuning ∆s of the
Rydberg coupling field. G = g

√
ρ with the single-atom coupling strength g and

one-dimensional atomic density ρ, γ̄ = γ/2 and c is the speed of light. One can
cast the equations of motion, Eqs. (5.1)-(5.4), into the form

i∂tΥ = HeffΥ (5.5)

with the column vector Υ =
(
Ê+, Ê−, D̂, Ŝ, P̂+, P̂−

)T
. The coefficient matrix Heff

can be readily obtained from Eqs. (5.1)-(5.4).

In the following, we assume a resonant coupling to the Rydberg state (∆s = 0).
We observe that diagonalizing the subsystem {D̂, Ŝ} yields two eigenstates with
eigenenergies −~δ̄ ± ~Ωs, respectively. Under the condition δ̄ = ±Ωs one of them
is on two-photon resonance with the ground state, while the other one is shifted in
energy by |2~Ωs|. Due to the resulting similarity with the dual-V scheme without
the Rydberg state, which has been studied in detail in ref. [34], we expect that
the system can support a stationary polariton similar to the SLP in the dual-V
scheme.

In order to confirm this expectation, we follow the ideas of ref. [34] and investi-
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gate Heff in momentum space. Considering the case30 δ̄ = Ωs, we diagonalize Heff

and find a unique dark-state of the form

Ψ̂ =
1

N

[
Ω
(
Ê+ + Ê−

)
−G

(
D̂ + Ŝ

)]
, (5.6)

with N =
[
G2 + 2Ω2

]1/2
. It has exactly the same form as the stationary light

polariton in the dual-V scheme [34] with the replacement D̂ → D̂ + Ŝ.
In order to obtain the dispersion relation associated to this dark state, we follow

the calculation in ref. [34]. For small photon momenta and up to second order, we
obtain the dispersion relation

ω(k) ≈ − ic2γ̄Ω2

G2(G2 + Ω2)
k2 . (5.7)

In the inset of Fig. 5.2(a) we compare this result with a numeric calculation (black
solid line) and find good agreement. We emphasize that with the replacement
Ω→ Ω/

√
2 Eq. (5.7) is identical to the dispersion relation that has been found for

the dual-V scheme without a Rydberg component [34]. The associated effective
mass of the stationary polariton can be obtained from Eq. (5.7). Interestingly, it
can be controlled with a particular choice of Ω, but does not depend on Ωs. From
the above discussion we conclude that our proposed scheme supports a stationary
light polariton with a strong Rydberg component, which we call a stationary
Rydberg polariton.

A stationary photonic excitation is characterized by no contribution from the
intermediate states, equal contributions of the two probe field modes, and a
quadratic dispersion relation. We want to underline that these characteristics can
be used to investigate under which conditions the stationary Rydberg polariton is
supported in the medium.

In the previous discussion we have focused on the particular situation where
δ̄ = Ωs. In Fig. 5.2(a), we also show the dispersion relation of the same eigenstate
of Heff for δ̄ = 0. Also in this case, it displays a quadratic behavior for small
photon momenta. Nevertheless, the state possesses a non-zero probability to be
in one of the intermediate states, as shown in Fig. 5.2(b). Thus, the conditions
for a stationary Rydberg polariton in the medium are not satisfied. Indeed, we
find that this is also true for all other ratios δ̄/Ωs 6= 1, as shown in Fig. 5.2(b).
Thus, already a small deviation from the condition δ̄ = Ωs, where one of the
eigenstates of the subsystem {D̂, Ŝ} is resonantly coupled, breaks the condition
for the stationary Rydberg polariton. This observation is in accordance with the
requirement to obey the EIT resonance.

Finally, we want to point out that in our level scheme the Rydberg state can also
be coupled under Rydberg dressing conditions [154, 198–200], meaning |∆s| � Ωs

and δ̄ = 0. In this case, the dark-state has the form

Ψ̂′ =
1

N ′

[
Ω
(
Ê+ + Ê−

)
−G

(
D̂ +

Ωs

∆s
Ŝ

)]
(5.8)

30 The case δ̄ = −Ωs can be treated analogously and also leads to one stationary Rydberg
polariton in the system.
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Figure 5.2: Analysis of the level scheme for a stationary Rydberg polariton.
(a) Imaginary part of the dispersion relation Im [ω(k)] /γ̄ as a function of
the photon momentum k scaled by the absorption length labs = cγ̄/G2 [117].
The inset shows an enlargement of the plot for small photon momenta to-
gether with the approximate dispersion relation (gray dashed line) given
by Eq. (5.7). (b) Probability |P+|2 + |P−|2 to be in one of the intermedi-
ate states as a function of δ̄/Ωs for k = 0. Parameters for both plots are
Ωs/γ = Ω/γ = G/γ = 1. Figure and caption taken with permission from
[98].

with normalization N ′ =
[
G2(1 + Ω2

s/|∆s|2) + 2Ω2
]1/2

. Using the same analysis
as above, we can show that also under Rydberg dressing conditions our scheme
supports a stationary Rydberg polariton. Here, we obtain the same dispersion
relation as for the genuine ground-state dual-V SLP [34, 117]. In contrast to
the scheme above, the Rydberg component of the polariton is inherently small as
Ωs/|∆s| � 1 and can be tuned by this ratio.

In order to simplify the following discussion, we focus on the case of a resonant
coupling to the Rydberg state. However, an analogous analysis can be performed
under Rydberg dressing conditions.

5.2 Influence of a Rydberg impurity on the scheme

We now investigate how the interaction with a Rydberg impurity affects the sys-
tem. In the simplest case, the interaction with the impurity can be modeled as
a level shift ~V of the Rydberg level. This shift can be taken into account by
adding the term iV Ŝ into Eq. (5.4) [117]. In the previous section we have found
that only for |δ̄| = Ωs, the conditions for a stationary Rydberg polariton are met.
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Therefore, based on this simple picture, we expect that the conditions for the
stationary Rydberg polariton are altered or even not fulfilled in the presence of
the impurity.

In the following, we consider a specific situation where a Rydberg impurity
is positioned at z0 = L/2 in a medium of length L. This Rydberg impurity is
assumed to be decoupled from the applied fields and interacts with the state |r〉
via van der Waals interactions VvdW = V (z − z0) = C6/(z − z0)6. Furthermore,
we assume that the probe field is incident from the left onto the medium under
continuous wave (cw) conditions. This allows us to treat the equation of motion,
Eq. (5.5), in the stationary limit. It is known that if the conditions for a stationary
Rydberg polariton in the medium are met, the probe field gets reflected from the
medium with a certain probability [32, 151]. However, in the presence of the
Rydberg impurity, we expect a finite probability to populate the intermediate
states and thus partial absorption of the probe field. Therefore, the transmission
and reflection properties of the medium can serve as a probe for the presence of
an impurity in the medium31.

In order to calculate these quantities, we first derive the propagation equations
for the probe fields in the presence of the Rydberg impurity in Sec. 5.2.1. After-
wards, we investigate the transmission and reflection properties of the medium as
a function of the interaction strength and relevant field parameters in Sec. 5.2.2.

5.2.1 Propagation equation for the probe fields32

In order to derive the propagation equation for the two probe fields Ê± for the
situation described above, we start with the equations of motion, Eqs. (5.1) -
(5.4). We account for the Rydberg impurity by extending these equations with
a term that includes the interaction-induced shift VvdW. Moreover, we define the
one-body wave function [24]

|ψ〉 = E+Ê†+ |0〉+ E−Ê†− |0〉+ P+P̂
†
+ |0〉+ P−P̂

†
− |0〉+DD̂† |0〉+ SŜ† |0〉 (5.9)

inside the medium in the short-hand notation used above. Here, E± = 〈0| Ê± |ψ〉
are the probe field amplitudes with similar definitions for the other fields. Follow-
ing the derivation in ref. [117] we can rewrite the equations of motion, Eqs. (5.1)-
(5.4), in steady state as

0 = ∓c∂zE± − iGP± , (5.10)

0 = −iGE± − iΩD − γ̄P± , (5.11)

0 = −iΩ(P+ + P−)− iΩsS − iδ̄D , (5.12)

0 = −iΩsD − i(∆s + δ̄ − VvdW)S . (5.13)

The last three equations, Eqs. (5.11)-(5.13) can be solved for the amplitudes P±
of the polarization coherences. In this way, we can recast Eq. (5.10) in the form

31 The two preceding paragraphs are taken verbatim from Tebben et al. [98] with minor adap-
tions for the ease of readability.

32 Adapted from Tebben et al. [98].
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of a propagation equation [98]

i∂zE(z) = M(z)E(z) (5.14)

with E(z) = {E+(z), E−(z)} and the propagation matrix [98]

M(z) =

(
χ++(z) χ+−(z)
−χ+−(z) −χ++(z)

)
. (5.15)

Here, we have defined the susceptibilities [98]

χ++(z) =
−iG2

cγ̄

(VvdW − δr)(γ̄δ̄ − iΩ2) + γ̄Ω2
s

(VvdW − δr)(γ̄δ̄ − 2iΩ2) + γ̄Ω2
s

, (5.16)

χ+−(z) =
G2

cγ̄

(VvdW − δr)Ω2

(VvdW − δr)(γ̄δ̄ − 2iΩ2) + γ̄Ω2
s

, (5.17)

where δr = δ̄ + ∆s. In the absence of the Rydberg coupling field Ωs = 0 and on
two-photon resonance δ̄ = 0, the propagation matrix reduces to

MSLP(z) =

(
χ0 −χ0

χ0 −χ0

)
(5.18)

with χ0 = χ++(z) = −χ+−(z) = −iG2/(2cγ̄). Here, the balanced coupling be-
tween the counter-propagating probe field modes leads to the ordinary dual-V SLP
[34, 117]. In the presence of the Rydberg impurity, the susceptibilities describe
effective potentials for and the coupling between the two probe field modes [98].

5.2.2 Transmission and reflection properties in the presence of a
Rydberg impurity

In this section we investigate the transmission and reflection properties of the
medium hosting a Rydberg impurity. We first, derive and examine the solution
of the propagation equation, Eq. (5.14). Afterwards, we discuss the resulting
transmission and reflection probabilities as a function of the interaction strength
and relevant field parameters.

Solution of the propagation equation

The propagation equation for the probe fields, Eq. (5.14), in the presence of the
Rydberg impurity has the formal solution

E(z) = exp

[∫ z

0
−iM(z′)dz′

](
C1

C2

)
, (5.19)

where C1,2 are integration constants and z0 is the position of the stored Rydberg
excitation. We assume that the probe field is incident from the left onto the
medium. Thus, using the boundary conditions [98]

E+(z = 0) = E0 , (5.20)

E−(z = L) = 0 , (5.21)

5.2 Influence of a Rydberg impurity on the scheme 87



0

0

0.5

1

- 0.05
0

0.05

Figure 5.3: Solution of the propagation equation for the probe fields. In the
upper graph, the two probe field amplitudes |E±|/E0 are plotted as a function
of position in a medium of length L in the absence (dashed lines) and presence
(solid lines) of a Rydberg excitation at position z0. The lower graph shows
the quantity a(z) as explained in the main text. The gray shaded area
highlights the spatial region, where the solutions for the probe fields modes
are affected by the Rydberg impurity. Parameters are δ̄ = −Ωs = γ, Ω/Ωs =
0.5, ∆s = 0 and C6/2π = 138.9 GHzµm6 of the 87Rb 60S Rydberg state in
a medium with an optical depth of 3.

where L is the medium length, yields the integration constants

(
C1

C2

)
=

 E0

− (1−m) E0m+−

(1−m)m++ + (1 +m)
(
m2

++ +m2
+−
)1/2

 (5.22)

with

m++ = −i
∫ L

0
χ++(z′)dz′ , (5.23)

m+− = −i
∫ L

0
χ+−(z′)dz′ , (5.24)

m = exp
[
2
(
m2

++ +m2
+−
)1/2]

. (5.25)

Fig. 5.3 shows exemplarily the solution of the propagation Eq. (5.19) for the
two probe field amplitudes E±(z) in the absence (dashed lines) and presence (solid
lines) of the Rydberg impurity. Hereby, we assume a resonant coupling to the
Rydberg state and |δ̄| = Ωs. In the absence of the impurity, stationary light
conditions imply that the right-moving field E+(z) gets depopulated to the benefit
of the left-moving field E−(z). In the continuous wave limit, this means that the
two amplitudes are linear functions of z with respect to the imposed boundary
conditions, Eqs. (5.20) and (5.21), as shown in the upper graph of Fig. 5.3. The
sum of transmission T and reflection R coefficients defined as [98, 117]

T =
|E+(z = L)|
|E0|

and R =
|E−(z = 0)|
|E0|

(5.26)
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equals unity, reflecting energy conservation. We note that a longer propagation
length L or a larger atomic density ρ0 result in a larger reflection coefficient, as
the left-moving field gets increasingly populated. Consequently, the slopes of the
linear curves in the upper graph of Fig. 5.3 are determined by the optical depth
of the medium.

In the presence of the Rydberg impurity, a deviation of the field amplitudes
from the previous situation is apparent and T + R no longer equals unity. In
order to quantify the emerging losses and the difference compared to the situation
without the impurity, we define and plot the quantity

a(z) =
∂z|E+(z)|
|E0|

+
∂z|E−(L− z)|

|E0|
(5.27)

in the lower panel of Fig. 5.3. In the absence of the impurity this quantity equals
zero, as shown by the gray dashed line. In the presence of the impurity (solid
gray line), it vanishes in the regions far apart from the impurity. However, a(z)
is strongly altered in the vicinity of the excitation. The total absorption induced
by the Rydberg impurity is given by the absorption coefficient

A = 1− T −R =

∣∣∣∣∫ L

0
dz′a(z′)

∣∣∣∣ , (5.28)

which could be observed experimentally.

Dependence of transmission properties on the interaction and coupling

strengths33

Next, we investigate how the transmission, reflection, and absorption coefficients
change, when interactions are gradually increased. For this purpose, we vary the
quantum number n of the Rydberg state in which the Rydberg impurity resides.
The result is shown in Fig. 5.4(a). For increasing interaction strength, absorption
of the probe field increases at the cost of both transmission and reflection proba-
bilities. This is due to the fact that stronger interactions imply a larger level shift.
As a consequence, the probability to populate the intermediate states and thus
absorption of the probe field is increased.

In Fig. 5.4(b) we explore for n = 60 how the amount of interaction-induced
absorption depends on system parameters such as the Rabi frequency of the control
field and the Rydberg coupling strength. For vanishing ratios Ω/Ωs = 0, the
system reduces to a two-level system with transmission and absorption coefficients
given by the optical depth of the medium. For ratios Ω/Ωs � 1, absorption goes
to zero, while the transmission and reflection coefficients approach the values
of the corresponding non-interacting system under stationary Rydberg polariton
conditions. This is due to the fact that the EIT linewidth Ω/γ is large compared to
the interaction strength, such that the system becomes insensitive to interactions.
For small ratios Ω/Ωs the situation is reversed. Here, the EIT linewidth is small
such the system is very sensitive to interactions and displays strong absorption

33 Taken verbatim from Tebben et al. [98] with minor adaptions for the ease of readability.
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Figure 5.4: Transmission properties in the presence of a Rydberg impurity.
Transmission T , reflection R, and absorption A of the probe field as a func-
tion of (a) the Rydberg quantum number n and (b) the ratio Ω/Ωs for
n = 60 for the parameters as indicated in the figure. Other parameters are
δ̄/Ωs = 1, ∆s = 0, L = 40µm and an optical depth of 3. Moreover, we
consider coupling and interaction strengths for 87Rb atoms as discussed in
Sec. 5.3. Horizontal dotted lines show the expected reflection, transmission
and absorption probabilities (from top to bottom) in the absence of the im-
purity, respectively. Figure and caption taken and adapted with permission
from [98].

.

of the probe field. Finally, for a given ratio Ω/Ωs we observe that the effect of
an interaction-induced energy shift is increased for smaller ratios of Ωs/γ. This
is a consequence of an increased atomic part of the polariton and thus a larger
probability to populate the Rydberg state.

5.3 Considerations for an experimental implementation

In this section we discuss considerations for an experimental implementation of
stationary Rydberg polaritons. First, we present suitable levels in 87Rb atoms for
the realization of the scheme presented in Fig. 5.1. Afterwards, we discuss possible
experimental sequences for creating the polaritons. Finally, we briefly comment
on the lifetime of the polaritons as it sets a limitation on the available interaction
time between the stationary Rydberg polaritons.

Level scheme for 87Rb atoms34

The level scheme presented in Fig. 5.1(b) can for example be realized in a gas of
87Rb atoms, similar to ref. [117]. Here, the two ground states

|g〉 = |5S1/2, F = 1,mF = 0〉 (5.29)

|d〉 = |5S1/2, F = 2,mF = 0〉 (5.30)

as well as the intermediate states |e±〉 = |5P3/2, F = 1,mF = ±1〉, with decay rate
γ/2π ∼ 6 MHz, are suitable. The circular polarizations of the probe field and the
counter-propagating control fields, have to be chosen accordingly. The coupling to

34 Taken verbatim from Tebben et al. [98] with minor adaptions for the ease of readability.
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Figure 5.5: Sequences for the creation of stationary Rydberg polaritons. Sta-
tionary Rydberg polaritons can either be created from (a) a stored spin
wave, termed as ”stopped light” in the figure, or (b) directly from propa-
gating slow-light polaritons. In both schemes, the Rydberg character of the
polaritons is imposed by turning on the Rydberg coupling laser with Rabi
frequency Ωs. Framed bars indicate applied pulses while light shaded areas
illustrate probe field modes present in the medium. For details see the main
text.

.

a Rydberg state |r〉 = |nS1/2, J = 1/2,mJ = 1/2〉 is possible with the help of a far
detuned, two-photon transition, e.g. via an intermediate state in the 5P3/2, F = 3
hyperfine manifold. Coupling strengths used for the control and Rydberg coupling
fields in Fig. 5.4, especially for small ratios of Ωs/γ, are experimentally accessible.

Experimental sequence

In Sec. 5.2 we have discussed that a Rydberg impurity in the medium leads to a
sizable absorption of the involved probe field [98]. An experimental realization of
such a scenario involves two steps: First, Rydberg excitations need to be excited
in the medium, e.g. via an off-resonant two-photon excitation. Second, the two
control field pulses and the probe field pulse have to be turned on at the same
time. Transmission and reflection of the probe field could then be recorded and
would provide information on the absence and presence of Rydberg impurities in
the medium. This procedure could offer a complementary approach [98] to the
method of interaction enhanced imaging [67].

Detached from this impurity scenario and the previous discussion in the steady-
state limit, we now consider how stationary Rydberg polaritons could be created
inside the medium. This involves time-dependent control and Rydberg coupling
fields. After creation of the polaritons inside the medium, interactions between
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the polaritons themselves could be studied.
Experimental sequences for this purpose can build on known sequences for the

creation of stationary light polaritons. There, two different sequences have been
used so far: Historically, in the first experimental demonstration of stationary
light the idea to retrieve a stored spin wave not only with one control field, but
with two counter-propagating control fields was used [32]. While the first scenario
gives rise to slow light, the second creates stationary light. Therefore, the first
possible sequence starts by letting photons propagate into the medium as slow-light
polaritons, where they are stored as a spin wave (stopped light), as illustrated in
Fig. 5.5(a). Subsequent retrieval of the spin wave by turning on both control fields
simultaneously allows to generate stationary light polaritons. After a variable hold
time they can be released from the medium by turning off one of the control fields.
This sequence is most frequently used in stationary light experiments [32, 35, 36,
43, 92, 201–203].

The second possible sequence creates stationary light polaritons directly from
propagating slow-light polaritons [202], as schematically depicted in Fig. 5.5(b).
Here, a probe field pulse of finite duration is sent into the medium in the presence
of the co-propagating control field. When turning on the second control field,
the slow-light polaritons are converted into stationary polaritons. Again, the sta-
tionary light polaritons can be released from the medium as slow-light polaritons
by turning off one of the control fields. Both sequences could be extended by a
Rydberg coupling pulse during the stationary light phase for creating stationary
Rydberg polaritons, as indicated in Fig. 5.5.

Lifetime of the polariton

For stationary light polaritons it is known that a limited optical depth of the
medium leads to diffusion and thus to an effective lifetime of the SLP [42, 92, 114,
119]. Resulting from the propagation equation of the stationary light polariton
one obtains the diffusion constant D = vglabs [42, 119] (see also Sec. 2.2.3), where
vg = 2cΩ2/(G2 + 2Ω2). Moreover, labs = cγ̄/G2 = L/OD denotes the absorption
length of the medium with optical depth OD and length L. As the considered
stationary Rydberg polariton obeys formally the same dispersion relation as the
SLP [98], this diffusive process is expected to be likewise present for the stationary
Rydberg polariton and thus limits the available interaction time. The most obvi-
ous approach to reduce diffusion and thus to extend the lifetime of the polariton
is to increase the optical depth OD. The optical depth does not only depend on
the atomic density, but also on the coupling strength of the probe field transitions
and the decay rate of the intermediate states. Therefore, a proper choice of the
atomic species, i.e. with a short intermediate state lifetime such as available in
Strontium atoms, and of the atomic states, i.e. with a large coupling strength
of the probe transition, is beneficial. Nevertheless, the available optical depth is
typically limited35 in experimental setups. Therefore, we briefly discuss a possible

35 A rather large optical depth can be obtained in atomic clouds confined in a MOT due to the
long propagation distance. This is the reason, why previous experimental investigations of
stationary light have mainly been performed in such a setting [35, 36, 43, 92, 202, 203].
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approach [42, 119] to extend the lifetime of the polaritons under the condition of a
limited optical depth. In this regard, we recall that the polaritons first propagate
as slow-light polaritons into the medium before they are converted to stationary
light polaritons, as discussed in the previous section.

In order to keep the diffusion constant small for a finite OD, vg could be re-
duced. As outlined in Sec. 2.1.4 this reduction can be achieved by a smaller Rabi
frequency of the control field. However, then the EIT transparency window, which
is proportional to Ω2, is also reduced. As the initial width of the probe pulse needs
to fit into the transparency window in order to avoid absorption, a reduction of the
Rabi frequency Ω immediately leads to strong constraints on the spectral width of
the probe pulse. This predicament can be relaxed by using different Rabi frequen-
cies of the control field for the slow-light and stationary-light phases, respectively,
as it has been used in refs. [42, 119]. Fig. 5.5(a) schematically illustrates this idea.
Starting with a large value of Ω results in a large transparency window for the
slow-light polaritons, while a smaller Rabi frequency reduces the diffusion process
for the stationary light polariton. Nevertheless, a smaller value of Ω also reduces
the photonic component of the stationary Rydberg polariton, which is evident
from Eq. (5.6). Therefore, a trade-off for the Rabi frequency Ω of the control
fields needs to be found. Investigating the parameter space in this regard and
developing other ideas for increasing the lifetime of the polariton would certainly
be beneficial for future experimental investigations.

5.4 Summary and discussion

In this chapter we have proposed a novel scheme for coupling a Rydberg state
to a stationary light polariton [98]. A dual-V level scheme for stationary light
polaritons constitutes the basis for our proposal [34, 44] for the following two rea-
sons: First, it supports stationary photonic excitations in cold atom experiments
[34, 37] as compared, for example, to a Λ-level scheme (see Sec. 2.1.5). Second, it
simplifies phase matching in an experimental realization. This is important as a
phase mismatch could lead to a decay of the polariton [92] and therefore limit the
available interaction time [98]. Our scheme involves to couple the second ground
state of the dual-V scheme to a Rydberg state. Depending on the particular choice
of the strengths and detunings of the involved light fields, this coupling can either
be realized under Rydberg dressing conditions or with a resonant coupling to the
Rydberg state [98]. As both coupling schemes can be analyzed in a similar man-
ner, we have focused on the case of a resonant coupling to the Rydberg state in
the present chapter.

The stationary nature of the polariton in the dual-V scheme might not be main-
tained once a Rydberg state is added to the system. Indeed, we have found that
our scheme only supports a stationary excitation if the detuning of the control field
compensates the light shift induced by the Rydberg coupling field [98]. Under this
condition we have shown that the polariton possesses a quadratic dispersion rela-
tion and a form, which both directly relate to that of the underlying dual-V SLP
[34]. Therefore, our proposed scheme supports what we call a stationary Rydberg
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polariton [98].

In order to investigate the influence of interactions in this scheme, we have
considered the effect of a Rydberg impurity on the system [98]. Already for small
interaction-induced level shifts, we have found imperfect conditions for the creation
of the stationary Rydberg polariton. Here, we have investigated how experimental
observables, such as the transmission of the probe field, are affected by the presence
of the impurity. For this purpose, we have derived the propagation equation for
the two counter-propagating probe field modes. By solving this equation, we
have shown that the presence of the impurity results in an observable change
of the transmission, reflection and absorption properties of the probe field [98].
This effect could be exploited for probing the presence of a Rydberg impurity in
the medium [98], which could provide a complementary approach to interaction
enhanced imaging [67].

Finally, we have considered an experimental realization of the stationary Ryd-
berg polariton. Here, we have suggested a possible level scheme in Rubidium atoms
together with experimental sequences for the creation of the polariton. Moreover,
we have discussed the lifetime of the polariton.

Our investigation has been driven by the quest for enhanced photon-photon
interactions. On the one hand, increasing the interaction strength between po-
laritons is one approach towards this goal. On the other hand, the polaritons
could be realized as stationary excitations in the atomic medium. In this way, the
interaction time could be increased compared to the propagating case and thus
lead to enhanced photon-photon interactions. It was this idea that has motivated
us to develop a novel scheme to enable interactions between stationary light po-
laritons. Nevertheless, our studies on the stationary Rydberg polariton only mark
the starting point for further investigations.

First, the possible extension of the interaction time compared to the propagating
case needs to be quantified. We have provided first qualitative thoughts in this
direction. Here, the effective lifetime of the stationary Rydberg polariton could
be obtained by solving the time-dependent equations of motion numerically [42].

Second, we have studied the effect of interactions on our scheme only in their
simplest manifestation, meaning in terms of a level shift originating from the
interaction with a Rydberg impurity [98]. Extending our work to interactions
between stationary Rydberg polaritons themselves, would open the possibility
for investigating systems of interacting polaritons with an increased interaction
time [98]. We suspect that two stationary Rydberg polaritons with a resonant
coupling to the Rydberg state would yield interactions in the order of the Rydberg
coupling strength Ωs [98]. On the contrary, under Rydberg dressing conditions,
we expect the interactions to scale as Ω4

s/∆
3
s, in accordance with the scaling found

for Rydberg-dressed ground state atoms [154, 198]. Here, ∆s is the detuning of
the light field that provides the coupling to the Rydberg state. Since Rydberg
dressing requires Ωs/∆s � 1, these interactions between the polaritons would be
perturbative to the system [98].

Both experimentally and theoretically it might be interesting to first study
the perturbative regime in order to develop an understanding of the interactions
between the stationary Rydberg polaritons. Afterwards, one could proceed by
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exploring the system under a resonant coupling to the Rydberg state. A theoret-
ical model for the interaction between two stationary Rydberg polaritons could
build on existing theories that consider the interaction between two propagating
polaritons, as e.g. presented in refs. [6, 24, 115].

Finally, we want to discuss three possible applications of our scheme. Recently,
the thermalization of Rydberg polaritons in two dimensions has been observed
experimentally in the weakly interacting regime [197]. Here, Rydberg interac-
tions allowed for thermalizing collisions between the polaritons. However, a Bose-
Einstein condensate (BEC) was not achieved, as the Rydberg polaritons were still
traveling with a reduced group velocity through the atomic medium. As a con-
sequence, thermalization was only possible in the two dimensions transversal to
the propagation direction of the involved fields [197]. As suggested by the authors
of that work, using Rydberg polaritons that are stationary in the medium would
allow for the creation of a polariton BEC in three dimensions. Our scheme could
provide such a possibility. A condensate of stationary Rydberg polaritons would
differ from previously observed photon BECs [204, 205] in dimensionality. More-
over, collisions induced by a Kerr-type nonlinearity have been proposed to enable
a BEC of stationary light polaritons [44]. For the case of stationary Rydberg po-
laritons, the collisions would be caused by Rydberg interactions, as also discussed
in ref. [197].

Stationary Rydberg polaritons as proposed here, could also be utilized to in-
vestigate correlated photon dynamics in two dimensions. Here, a two-dimensional
medium would accommodate many polaritons in the transversal plane with respect
to the propagation direction of the probe field. Slow-light polaritons propagating
into the medium could subsequently be converted into stationary light polaritons
with the procedures discussed in Sec. 5.3. Interactions could then be imposed with
the help of our scheme, whereby the emergence of spatial correlations is expected.
The system could be probed after a variable interaction time, which is limited by
the lifetime of the stationary Rydberg polariton in the medium. Afterwards, the
photons could be retrieved as slow-light polaritons. In such a system a signature
of interactions between the polaritons could be observed in the emergence of a
blockade effect in the transverse direction.

Finally, the crystallization of single photons has been proposed in a system of
propagating Rydberg polaritons [6]. Here, true long-range order could be achieved
by either applying an external lattice potential for the polaritons or based on a
storage technique. Furthermore, the authors of that work suggested that utilizing
stationary light polaritons could enable long-range order without an external po-
tential. Therefore, it would be interesting to apply a similar analysis as the one in
ref. [6] to our scheme and explore if stationary Rydberg polaritons could exhibit
crystalline order.
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CHAPTER6
Conclusion

Central to the field of Rydberg EIT, we have raised three questions in the intro-
duction of this thesis: (i) How to model the strongly interacting and thus strongly
correlated light-matter system under Rydberg EIT conditions?, (ii) How to experi-
mentally test these models? and (iii) How to enhance photon-photon interactions?
This thesis provides first answers to these questions, which we summarize in the
following.

Regarding the first question (i) it is of particular importance which assumptions
are made in order to reduce the complexity of the driven many-body system
under Rydberg EIT conditions. On the one hand, this concerns the treatment of
interaction-induced correlations in the system. On the other hand, assumptions,
such as an adiabatic elimination of the intermediate state in a three-level system
[58, 154], typically restrict the parameter space in which the resulting model is
applicable.

In this thesis, we have investigated the nonlinear optical response of a Rydberg
EIT medium on two-photon resonance. Thereby, we have considered atomic corre-
lations exactly up to the second order and have dropped an adiabatic elimination
of the intermediate state. As a result, we have demonstrated that an enhanced
nonlinear response of a Rydberg gas under EIT conditions emerges from a two-
body, two-photon resonance [96]. Indeed, this resonance is only revealed if the
dynamics of the intermediate state is explicitly taken into account. Associated to
the resonantly enhanced response is a nonlinear susceptibility that can be tuned
by experimental parameters, such as the Rabi frequency of the control field and
the atomic density [96]. We have developed an intuitive picture that explains
the resonance based on laser-dressed atomic pair-states, and that is capable of
explaining spatial features of the nonlinear susceptibility [96].

The intuitive picture and the resonance feature immediately relate to other
resonance effects that have been predicted for atomic properties of the Rydberg
EIT medium in the semiclassical regime [79, 126, 127]. Interestingly, also on the
single-photon level, a similar resonance effect has been reported [144]. Our work
complements this finding in the quantum regime with a semiclassical analysis of
the resonance effect [96].

97



We have found an answer to the second question (ii) by discovering a novel and
rigorous way to experimentally test theoretical models in the semiclassical regime
[97]. For this purpose, we have extended the experimental study of Rydberg EIT
with classical light fields into the regime on two-photon resonance. Here, the
linear response of the Rydberg EIT medium vanishes in the non-interacting case,
allowing us to probe only nonlinear effects [97]. In particular, we have compared
our experimental results with the predictions based on a mean-field model [60, 64,
65, 80], a Monte-Carlo rate equation (MCRE) model [78, 81–83], and our theory
based on a pairwise treatment of interactions [96, 121]. Our measurements with
the control beam on resonance are comparable to previous experimental studies
[23, 62, 64, 65]. However, following our new approach, we have observed qualitative
discrepancies between theoretical predictions and a measured absorption feature
on two-photon resonance [97]. Therefore, the development of improved models
beyond those mentioned above and complementary measurements are required
to obtain a complete understanding of the driven many-body dynamics under
Rydberg EIT conditions [97].

This brings us back to the question of how to model the Rydberg EIT system.
Considering the assumptions entering into the different theories, it is of central
importance how atomic correlation are included in these models. In particular,
neglecting them, only taking them into account approximately, or treating them
exactly on a pairwise basis seems not to be sufficient for describing our experi-
mental results. Therefore, improved theories that include atomic correlations up
to a higher order would be very beneficial [97]. For example, our low-intensity
theory, which models the two-body, two-photon resonance, could be extended to
larger atomic clusters.

Further experimental investigations will complement these theoretical efforts.
Here, we emphasize that our work constitutes the first experimental investigation
of Rydberg EIT with classical light fields on two-photon resonance. Therefore,
it will be an interesting task for future studies to thoroughly characterize the
observed absorption feature. Moreover, measurements on two-photon resonance
will certainly serve as a benchmark for improved theories, which underlines the
importance of our new method to test semiclassical models of Rydberg EIT.

Objective of the last question (iii) is the enhancement of photon-photon inter-
actions. In Rydberg EIT systems these interactions are enabled by interacting
Rydberg polaritons. One limitation for the interaction between two Rydberg po-
laritons is the available interaction time, which is given by the time the polaritons
travel along each other through the Rydberg EIT medium [85, 197]. We have
addressed this point with the idea of introducing interactions between stationary
photonic excitations. In this regard, we have proposed a novel scheme that endows
a stationary light polariton with a Rydberg character, leading to what we call a
stationary Rydberg polariton [98].

We have analyzed this scheme in detail in the non-interacting regime. Here,
we have identified two different parameter regimes that permit the creation of a
stationary Rydberg polariton. While one regime exploits Rydberg dressing con-
ditions, the other one involves a resonant coupling to the Rydberg state [98].
Furthermore, we have studied the effect of interactions on our scheme. We have
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found that in the presence of a Rydberg impurity the involved probe field gets
strongly absorbed.

It remains an interesting task for future investigations to extend our study to
the interaction between stationary Rydberg polaritons themselves, and to quantify
to which extend the interaction time between the stationary Rydberg polaritons
could be increased compared to the propagating case. Finally, our scheme might
find applications for the creation of exotic states of light, such as a photonic Bose-
Einstein condensate [197] and crystalline states of light [6].

In summary, this thesis has theoretically and experimentally extended the field
of Rydberg EIT with classical light fields on two-photon resonance. Here, the lin-
ear response of the atomic medium vanishes and resonance effects emerge. More-
over, a novel scheme for a stationary Rydberg polariton has been proposed. This
opens the perspective for realizing interactions between stationary photonic excita-
tions. Exploring the field of Rydberg EIT in these two directions will provide new
insights into the nonlinear optical response of a strongly interacting many-body
system. Furthermore, it will deepen our understanding on what we encounter in
our everyday life and what has fascinated mankind ever since – light.
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APPENDIXA
Experimental details

This appendix complements the experimental investigations reported in Chap. 4.
A determination of the detection and quantum efficiency as well as of the gain
of the CCD camera are presented in App. A.1. A characterization of the focused
probe beam in terms of its beam profile and positional stability follows in App. A.2.

A.1 Detection efficiency of the CCD camera

We use an Andor iXon Ultra 897 EM-CCD camera [206] for transmission measure-
ments, and for the determination of the Rabi frequency of the probe beam [121]
as outlined in Sec. 4.1.3. For this purpose, knowledge of the detection efficiency
q of the CCD camera is necessary. It relates [102] the measured mean number of
counts 〈nc〉 per pixel to the mean number of incident photons 〈nph〉 via

〈nc〉 = q〈nph〉 = ηg〈nph〉 . (A.1)

The detection efficiency is composed of the quantum efficiency η and the gain
g = 〈nc〉/〈ne〉 of the CCD camera. Here, 〈ne〉 is the mean number of generated
electrons. In order to determine the detection efficiency q, we illuminate the
CCD camera with a focused laser beam for an exposure time of texp = 5µs,
and measure the mean number of total counts on the CCD camera. For this
purpose, we use a beam with a power of P = (97± 4) nW, a waist of 15µm, and
a frequency of ν = c/780 nm. Using Eq. (A.1) with 〈nph〉 = P/(hν)texp, we obtain
q = 0.47± 0.02. Here, the error results from the uncertainty in the measured
beam power.

In the following, for completeness, we determine36 the gain g by measuring a
photon transfer curve [207]. Based on this quantity and on Eq. (A.1), the quantum
efficiency η of the CCD camera can be calculated.

The detection of photons on a CCD camera is prone to several noise sources.
Typical sources for noise include read noise, shot-noise, which follows a Poisson

36 Ref. [207] provides a very detailed review of how to characterize CCD cameras with uniform
illumination. The procedures described therein could be used for a precise and complete
characterization of the CCD camera.
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Figure A.1: Gain determination. Variance var(nc) of the camera counts against the
mean counts 〈nc〉. A simultaneous fit of Eq. (A.3) to the data (solid lines)
allows us to extract the gain setting of our CCD camera as outlined in the
main text. The gray dashed line has a slope of one and indicates the shot
noise dominated regime.

distribution, intensity noise, which is proportional to the beam intensity, and fixed
pattern noise (see for instance refs. [102, 121, 208] for details on the different noise
sources)37. A photon transfer curve relates the measured signal to its variance.
For the measured electron signal this yields

var(ne) = r2 + σ2
shot + a2〈ne〉2 , (A.2)

where r is the read noise in electrons and σ2
shot = 〈ne〉 the shot noise. The last term

proportional to 〈ne〉2 combines noise sources such as intensity and fixed pattern
noise. The variance of the electron signal can be related to the variance of counts
var(nc) = g2var(ne) on the CCD camera. As a result,

var(nc) = g2r2 + g〈nc〉+ a2〈nc〉2 (A.3)

follows from Eq. (A.2)38.
Fig. A.1 shows a measurement of the variance var(nc) against the mean number

of counts 〈nc〉 evaluated for five individual pixels in the center of the focused
probe beam. For each data point, 100 images have been taken and averaged.
The data point on the very left is obtained from images without the probe beam.
Therefore, it provides the offset g2r2 = 13.73± 0.06. For convenience, we plotted
this data point at 〈nc〉 = 1. At a low number of counts the variance sill fluctuates.
This could have been avoided by taking more averages. For intermediate 〈nc〉, the
curves follow a slope of unity (indicated by the gray dashed line in Fig. A.1), which
marks the shot noise dominated region. For high 〈nc〉, noise sources quadratic in
the mean number of counts dominate.

We fit Eq. (A.3) simultaneously to all curves. Hereby, we fix g2r2 to the mea-
sured values stated above, impose g to be the same for all curves, but leave a as
an individual fit parameter for each curve. The resulting best fitting curves are

37 In the following, we assume that other noise sources, such as the analog-to-digital conversion
of the signal, are negligible.

38 Eq. (A.2) and (A.3) are adapted from ref. [207–209] in order to obtain the simplified model
presented in this section.
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shown as solid lines in Fig. A.1. We obtain a gain of g = 0.75± 0.05 and val-
ues for a that vary between (0.75± 0.07)× 10−2 and (2.24± 0.03)× 10−2. The
result for the term proportional to 〈nc〉2 is comparable to the intensity noise of
(0.96± 0.02)× 10−2, obtained from the images. Moreover, using the extracted
gain g, we calculate a read noise in electrons of r = 4.9± 0.3. This value is in
agreement with the specifications of the camera supplier, which amounts to 5.3
electrons at a readout rate of 1 MHz [206]. Finally, from the gain g and the detec-
tion efficiency q, the quantum efficiency η of the CCD camera can be calculated
using Eq.(A.1), yielding 0.62± 0.06. This value is in agreement with the specified
value of about 70% [206].

A.2 Characterization of the focused probe beam

In Sec. 4.2.2 we presented the implementation of a focused probe beam into the
experimental setup in order to ensure a geometry where dispersion is minimized.
In terms of the beam profile, a ring structure is apparent around the beam. In
this appendix, we characterize this ring structure in App. A.2.1. Thereby, we
confirm that the measurement on two-photon resonance at a ratio Ωp/Ωc ≈ 0.05
of the Rabi frequencies, presented in Fig. 4.15, is not affected by its presence.
Furthermore, we examine the positional stability of the focused probe beam in
App. A.2.2.

A.2.1 Beam profile

In Fig. 4.8 (a) faint ring structure around the focused probe beam is apparent,
which becomes more visible for higher intensities of the probe beam. Possible
origins of the ring might be aberrations of the optical setup or a non-paraxial
propagation of the beam [210, 211]. Experimentally we were not able to suppress
this structure, e.g. by using lenses of different materials, focal lengths and diam-
eters, or by exchanging other optical components such as the fiber out-coupler.

On the one hand, the ring could possibly affect the transmission determined
from the intensity in the center of the probe beam if dispersive effects focus it in-
wards. On the other hand, atoms illuminated by the ring could induce a nonlinear
behavior if the intensity in the ring is too high. In the following, we therefore char-
acterize the ring structure in detail against the background of a possible influence
on our measurements of nonlinear absorption in Rydberg EIT.

First, we determine the radius of the ring and investigate whether it is prone
to any dispersive effects. For this purpose, we consider the Autler-Townes mea-
surements presented in Fig. 4.14. We have confirmed that the measurements on
two-photon resonance possess the same features. In Fig. A.2 the radial profile of
the Rabi frequency of the probe beam is shown in the absence and presence of
atoms for ∆p = 0. The profile is determined from the counts on the CCD cam-
era using Eqs. (4.4) and (2.5). At a distance d of about 28µm a local maximum
indicates the ring. We extract the radius of the ring with a polynomial fit to the
radial profile. The results for the exemplary shown profiles are depicted in the
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Figure A.2: Radial profile of the Rabi frequency Ωp and radius of the ring. (a)
Radial profile of the Rabi frequency Ωp of the probe beam in the absence
(blue) and presence (orange) of the atoms. The inset shows an enlargement
to illustrate the radius of the ring (marked with black triangles) and the size
of one pixel, as indicated by the gray shaded area. (b) Radius of the ring
rring against the probe beam detuning ∆p for different peak Rabi frequency
ratios Ωp/Ωc in the absence (top) and presence (bottom) of atoms. Circled
data points belong to the profiles shown in (a) and the gray dashed lines
indicate effective pixel boundaries.

inset of Fig. A.2(a) as black triangles. Illustrating the effective pixel size in the
imaging plane (gray shaded area), shows that the two radii are almost the same.

We extract the ring radius for different peak Rabi frequency ratios Ωp/Ωc as
a function of the probe beam detuning ∆p. Fig. A.2(b) displays the result in
the absence and presence of the atoms. Without the atoms, the radius of the
ring is as expected insensitive to the detuning of the probe beam. Moreover, it
does not change when increasing the intensity of the probe beam. Averaging over
all data points gives a mean ring radius of (28.46± 0.02)µm. In the presence of
the atoms, the situation does not change significantly. Almost all extracted ring
radii fluctuate around the mean radius and lie within one pixel. Consequently, we
conclude that no dispersive effects are present, which focus the ring inwards. Thus,
the intensity in the center of the beam is not influenced by the ring structure.

Next, we estimate whether atoms that are illuminated by the ring could undergo
nonlinear dynamics. For this purpose, we compare the Rabi frequency of the probe
beam to the one of the control beam at the ring position. We extract both Rabi
frequencies from the transmission images as explained in Sec. 4.1.3. Fig. A.3 shows
that the ratio Ω̃p/Ω̃c of the two Rabi frequencies at the ring position against the
ratio Ωp/Ωc in the beam center. Shown are the results for the Autler-Townes (blue
points) and two-photon resonance (orange squares) measurements, presented in
Sec. 4.4. As expected the ratio Ω̃p/Ω̃c of the Rabi frequencies at the ring position
increases linearly with the peak Rabi frequency ratio Ωp/Ωc. The green dashed
line has a slope of one. For ratios below this line, we expect similar dynamics in
the ring structure compared to the dynamics in the beam center. In particular,
this means that e.g. the creation of spurious Rydberg excitations (see App. C) is
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Figure A.3: Ratio Ω̃p/Ω̃c of the Rabi frequencies at the ring position. Plotted
against the ratio Ωp/Ωc of the peak Rabi frequencies in the center of the
probe beam. Blue points correspond to the Autler-Townes measurements
presented in Fig. 4.14, while orange squares relate to the measurements on
two-photon resonance of Fig. 4.15. Fully colored (opaque) data is calculated
based on a control beam waist of 32.5µm (20µm). Gray dashed lines are
guides for the eye, and the green dotted line has a slope of one.

not enhanced in the region of the ring. Most importantly this argument holds for
the measurement on two-photon resonance with the lowest probe Rabi frequency,
for which we observed enhanced absorption, since Ω̃p/Ω̃c ≤ Ωp/Ωc.

For higher ratios Ωp/Ωc and depending on the size of the control beam, the
ratio Ω̃p/Ω̃c of the Rabi frequencies at the ring position might exceed the ratio in
the center of the beam. In these cases, the nonlinear behavior or the creation of
spurious Rydberg excitations might be enhanced compared to the beam center. As
we already excluded dispersive effects involving the ring structure, an enhanced
nonlinear absorption in the ring does not influence the transmission measured
in the center of the probe beam. Moreover, the distance between the ring and
the beam center is too large for direct interactions between Rydberg excitations
in these two regions. However, spurious Rydberg excitations could affect the
measured transmission in the center of the probe beam if they undergo excitation
transport dynamics [67, 181, 182] towards the probe beam center. This might
especially be the case for high intensities of the probe beam where the density of
photons in the medium and thus also the number of polaritons as possible hopping
partners is high. Here, the time needed to reach the center of the probe beam might
be smaller than the excitation time. However, for quantitative estimations, e.g.
of the hopping frequencies, knowledge of the distribution of the spurious Rydberg
excitations is missing. We address the topic of spurious Rydberg excitation and
their possible sources in more detail in App. C.

In summary, we conclude that the main measurement for Ωp/Ωc ≈ 0.05 on two-
photon resonance is not affected by the presence of the ring structure. However,
for high intensities of the probe beam, spurious Rydberg excitations might be
created in the region of the ring. Further investigations would be need to clarify if
they could undergo excitation transport towards the beam center and thus affect
a transmission measurement at high ratios Ωp/Ωc of the Rabi frequencies.
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Figure A.4: Long- and short-term stability of the focused probe beam. (a)
Position of the beam on the CCD camera as a function of time t. The
position is given relative to the overall mean of all measurement points in
z- and y-direction, respectively. (for the coordinate system see Fig. 4.2).
Circles indicate the running mean of the data shown in the background.
(b) Histogram of the distance d between the beam centers on two different
images, which are taken with a delay of about 70µs. The gray dashed line
indicates the effective pixel size. (c) Calculated transmission T of the probe
beam in the absence of the atomic cloud against the number of averaged
images. For details see the main text.

A.2.2 Positional stability

We measure the long- and short-term stability of the focused probe beam by
taking every 2 s two images of the beam with a delay time of about 70µs over a
period of about three hours. The first time corresponds to the cycling time of our
experiment. The second is the delay between the absorption and reference images
needed for the determination of the probe beam transmission (see. Sec. 4.1.3). The
third time corresponds to a typical time needed to acquire a sufficient amount of
data for averaging. No atoms were present in this measurement.

For evaluating the long-term stability of the beam, we extract the beam position
in z- and y-direction on the reference image and subtract the overall mean over
all measurements in both directions, respectively. The result as a function of the
time t is shown in Fig. A.4(a). We find that the beam position drifts by no more
than ±1.5µm in about 3 hours.

For an analysis of the short-term stability, we obtain the beam position from
the absorption and reference image and calculate the distance d of the two beam
centers for each pair of images. It is important that the two beam centers overlap
since the ratio of the two images determines the probe beam transmission. The
resulting histogram is shown in Fig. A.4(b) and indicates some fluctuation of the
beam centers. However, there is a 96% probability to find the two beam centers
in the same effective pixel, the size of which is indicated as a gray dashed line in
Fig. A.4(b). Therefore, the beam position is sufficiently stable on the timescale

106 Appendix A Experimental details



over which the absorption and reference beam are recorded.
In order to investigate if the fluctuations in the beam position between the two

images affect our analysis of the transmission T of the probe beam, we calculate T
from the individual absorption and reference images and average them afterwards.
The transmission should equal unity in the absence of atoms. Fig. A.4(c) shows the
obtained transmission against the averages taken. We find that the fluctuations
of the beam centers between the absorption and reference image average out for
more than 10 averages. This is small compared to the number of averages we
typically take in order to obtain a sufficient signal-to-noise ratio. We conclude
that the long- and short-term stability of the focused probe beam is sufficient for
the measurements presented in Chap. 4.
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APPENDIXB
Numerical simulation of the

probe beam propagation

For the purpose of investigating dispersive effects in Sec. 4.2, the propagation equa-
tion, Eq. (3.13), of the probe field needs to be solved numerically. The split-step
Fourier method [155, 156, 212] is a reliable and widely used tool for such a task. It
relies on separating diffraction from refraction while numerically propagating the
probe beam through the system. Specifically, the probe field is first discretized in
position in the input plane and afterwards step by step refracted in Fourier space
and diffracted in position space until the final plane is reached. A challenge for
the discretization of the system is to take care of vastly different length scales.
In our experimental setup this includes for example the waists of the probe and
control beams compared to the extent of the imaging system with a distance of
about 760 mm [173] from the atoms to the CCD camera. In fact, it would require
to change the simulation grid size several times during the propagation process to
account e.g. for the size of the imaging system while having a control beam waist,
and thus the structure of interest, on the µm scale.

Here, we simplify the simulation in two aspects: First, we reduce the overall
imaging system to a single 4f -setup. This allows us to simulate the transmission
images of the focused probe beam, as presented in Sec. 4.2.3. Second, we show that
the propagation through the atomic cloud and a subsequent imaging system can
be approximated by the propagation until the center of the cloud if the atomic
density is doubled. This is possible since absorption is approximately a linear
function of the atomic density for a medium of low optical depth, as used in
the experiment under consideration. With this approximation we are able to
compare our measurement results for the collimated probe beam with simulated
transmission images, as presented in Sec. 4.2.1.

In the following, we first describe the applied numerical methods for the beam
propagation in App. B.1. Afterwards, we introduce in App. B.2 the reduced imag-
ing setup, which we exploit in Sec. 4.2.3 for simulating the transmission images of
the focused probe beam after propagating through the atomic cloud. Finally, we
argue in App. B.3 that for our purposes the full propagation through the system
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can be simplified in good approximation by a propagation only until the center
of the atomic cloud, if of the atomic density is simultaneously adjusted. This
approximation has been used for the simulations in Sec. 4.2.1.

B.1 Numerical methods

The propagation of the probe beam inside the atomic cloud is determined by the
linear susceptibility of the medium, leading to absorption and dispersion. On the
contrary, outside the atomic cloud the probe beam propagates through free space.
Therefore, we separate the propagation of the beam into two parts39: First, we
propagate the beam through the atomic cloud using the split-step Fourier method.
Afterwards, a propagation through the imaging system follows. Here, we utilize
large propagation steps in free space and multiply the field with phase factors for
the lenses contained in the imaging system. In the following, we give some details
about the used numerical methods.

Split-step Fourier method

The split-step Fourier method is based on splitting diffraction, which contains
spatial derivatives in transversal direction, from refraction, given by an external
potential [155, 156, 212]. Here, we make use of the so-called symmetric Strang
splitting [155]. It reduces the error made in the splitting process itself, which arises
due to the non-commutativity of the operators for the diffractive and refractive
part. Moreover, the diffractive part is most easily accounted for in Fourier space
[156]. Applying this to the propagation equation, Eq. (3.13) of the probe field
E(r⊥, z) yields the propagation formula [121]

E(r⊥, z + ∆z) = F−1
[
F
[
e−i

1
2
χ(1)(r)∆zE(r⊥, z)

]
e−i(k

2
x+k2y)/(2kp)∆z

]
e−i

1
2
χ(1)(r)∆z .

(B.1)
Here, χ(1)(r) is the linear susceptibility and determines the refractive part. kp is
the wave vector of the probe beam, kx,y are the coordinates in Fourier space and
∆z denotes the step size in propagation direction. More details on the split-step
Fourier method and its implementation can be found in my Master thesis [121].

Free space propagation and lens phase factor

For the propagation in free space, χ(1)(r) = 0. Therefore, the split-step Fourier
method reduces to a multiplication of

hfree = exp

[
−i∆z

k2
x + k2

y

2kp

]
(B.2)

39 The split-step Fourier method in its basic form was implemented in Python during my Master
thesis [121]. In the course of this dissertation, the code was improved and transferred to
Matlab in order to increase the calculation speed. Moreover, the code was extended by the
propagation through the imaging system as explained in this appendix.
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with the probe field in Fourier space such that

E(r⊥, z + ∆z) = F−1 [hfreeF [E(r⊥, z)]] . (B.3)

Since the Nyquist theorem for sampling the quadratic phase factor in Eqs. (B.1)
and (B.2) needs to be obeyed, the split-step Fourier method and the propagation in
free space are only applicable in the near field, meaning until a critical propagation
distance zcrit = Ndx2/λp [213, 214]. Here, N denotes the number of points in the
grid with a resolution dx, and λp is the wavelength of the probe beam.

Finally, a lens imprints a phase on the probe field, which within the paraxial
and thin-lens approximation reads [102, 215]

Hlens = exp

[
−i kp

2f
(x2 + y2)

]
. (B.4)

It is multiplied with the field in real space. Here, f is the focal length of the lens.

B.2 Optical setup for the simulation

In the following, we describe a reduced imaging setup for the simulations involving
the focused probe beam. Thereby, we have two purposes in mind: First, we want
to compare the prediction of such a simulation with our experimental results
presented in Sec. 4.2.3. Second, we want to exploit this scheme in App. B.3 for
justifying the approximation made for the simulations involving the collimated
probe beam.

The imaging system of our experimental setup consists of a 4f -system with
lenses of focal length 145 mm and a magnifying telescope composed of two lenses
with focal lengths 10 mm and 80 mm [173]. It images the object plane in the center
of the atomic cloud onto the CCD camera in the imaging plane. Here, we aim
at comparing the observed structure of transmission images in Sec. 4.2 on a very
fundamental level with a numerical simulation. In particular, this means that we
want to compare structures originating from dispersion, and not from aberrations
or other imperfections of the imaging system. Therefore, we can reduce the system
to a single 4f -system in our simulations for the focused probe beam, as schemati-
cally shown in Fig. B.1. This is particularly advantageous since a reduced system
size circumvents the problem of changing the grid size several times. Indeed, we
find that changing the grid size ones is sufficient in our case for obeying the sam-
pling requirement discussed in the previous section. For a comparison with the
experimental results, the probe beam images obtained numerically only need to
be scaled in size accordingly.

The particular geometry of the whole system and its discretization have to
meet the following conditions: First, the critical propagation distance needs to be
obeyed. This constrains the grid size, the resolution as well as the focal length.
Second, we aim in App. B.3 at comparing the structure of the transmission images,
obtained by numerically propagating the probe beam through the atomic cloud
and the imaging system, with the ones obtained by propagating only through half
of the cloud with the atomic density doubled. The second situation constitutes the
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Figure B.1: Schematic illustration of the optical setup for the numerical sim-
ulation of the probe beam propagation. First, the probe beam (red)
is propagated through the atomic cloud (green ellipsoid) over a distance of
zatoms = 200µm on a transversal grid of 200× 200µm2 using the split-step
Fourier method (SSFM). After increasing the grid to a size of 800×800µm2

with the same resolution, the beam is propagated to the imaging plane
through a 4f -imaging system with focal length f = +200µm using a prop-
agation in free space and phase factors for the lenses (light blue objects).
For details see the main text. The drawing is not to scale.

case of a perfect image, as the structure in the object plane is directly considered.
Therefore, the imaging system should have a reasonably good resolution, given by
a large numerical aperture40 NA = sin θ ≈ Ndx/(2f) [102].

For the propagation through the atomic cloud we chose a transversal grid of
200 × 200µm2 with a resolution of dx = 0.78µm, meaning N = 28. In this case
zcrit ≈ 200µm. As the effective Gaussian width of the atomic cloud in propagation
direction is σeff ≈ 28µm, we use 7σeff ≈ zcrit as the propagation distance through
the cloud, as indicated in Fig. B.1.

For the propagation through the imaging system, we keep the same resolution,
but enlarge the size of the grid to 800×800µm2 with N = 210. As a consequence,
zcrit is increased to approximately 800µm. This distance can accommodate a 4f -
setup with focal length41 f = 200µm. The resulting numerical aperture of NA = 2
is large enough to compare the imaged transmission profile with the one obtained
when only propagating until the center of the atomic cloud.

Based on the previous discussion, the simulation results for the focused probe
beam presented in Fig. 4.9(b) are obtained as follows and as indicated in Fig. B.1:
First, we use the split-step Fourier method to propagate the probe beam numer-
ically through the atomic cloud over a distance of zatoms = 200µm. Thereby,

40 As we do not restrict the lens in size, the numerical aperture is defined by half the grid size
in transversal direction.

41 Using a focal length of 100µm gives with a relative error below 10−5 the same simulation
results.
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we use the grid as described above and a step size in propagation direction of
0.39µm. Afterwards, we pad the grid with zeros to obtain a size of 800× 800µm2

and propagate the probe beam in one step over a distance of f − zatoms/2 to the
first lens. After multiplication with the lens phase factor, Eq. (B.4) another prop-
agation step with distance 2f follows. The imaging system is completed with the
multiplication of the second lens phase factor and a propagation step of length f
to the imaging plane. We have confirmed that in the absence of the atomic cloud
a 1:1 image of the focused probe beam is correctly obtained with our simulation.

B.3 Simplification of the simulation

As outlined in the introduction of this appendix, we approximate in Sec. 4.2.1 the
propagation of the collimated probe beam in the following way: We double the
experimentally applied atomic density and evaluate the transmission images in
the center of the atomic cloud. In this section, we argue that this approximation
is justified for the specific case of our experimental system. First, we test the
approximation using the reduced imaging setup for the focused probe beam, which
has been described in the previous section. Afterwards, we compare the structure
of simulated transmission images for the collimated probe beam with and without
doubling the atomic density.

For the first case, we consider the following situations:

(i) A propagation of the focused probe beam through the combined system
of the atomic cloud with the experimental parameters of Fig. 4.9 and the
reduced imaging system introduced in Sec. B.2.

(ii) A propagation stopped in the center of the atomic cloud but with the atomic
density increased by a factor of two compared to the experimental parame-
ters.

(iii) The same situation as in (ii) but with an infinitely large control beam waist
and an atomic density distribution that is constant in transversal, and Gaus-
sian in propagation direction.

The aim is to show that situations (i) and (ii) give approximately the same sim-
ulation results. For this purpose, we simulate the transmission evaluated in the
center of the control beam, and the relative change of the probe beam waist, which
is prone to dispersion. For both situations we consider the experimental geometry
of the atomic cloud, which follows a Gaussian distribution in all three dimensions.
Situation (iii) is effectively a dispersion free realization of situation (ii) and gives
additional insights for the discussion.

Fig. B.2 shows the simulated transmission T of the probe beam, and the change
in the beam waist ∆wp for the three situations as a function of the probe beam
detuning ∆p. For the transmission, depicted in Fig. B.2(a), all three situations
give very similar results. A slight asymmetry of the Autler-Townes spectrum is
apparent when propagating only until the center of the atomic cloud with twice
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Figure B.2: Results of the numerical simulation for the propagation of the
focused probe beam. Numerically obtained (a) transmission T and (b)
relative difference ∆wp of the beam waist with respect to the waist in the
absence of the atoms as a function of the probe beam detuning ∆p. The
numerical results for the situations (i)-(iii), as introduced in the main text,
are shown as blue solid, dashed orange and green dashed lines, respectively.
Simulation parameters are the same as for Fig. 4.9.

the atomic density. This asymmetry is not apparent when imaging the probe
beam with the telescope (i) or when the control beam waist is infinitely large (iii).

For the simulated probe beam waists shown in Fig. B.2(b) the situation is
analogous. While the curve is symmetric for the situation (i) a small asymmetry
is apparent for (ii). For an infinitely large control beam waist in situation (iii),
the system is effectively dispersion free, and thus the probe beam waist remains
unchanged as a function of the probe beam detuning.

That the situations (i) and (ii) give similar results for the change in the beam
waist does not come at a great surprise, as the telescope produces an image of
the probe beam structure in the center of the cloud. In the absence of dispersion,
as in situation (iii), an increase of the atomic density by a factor of two mimics
the omitted absorption in the second half of the cloud, since absorption of the
atomic medium is approximately a linear function of the density. Therefore, it is
also expected to obtain a similar result for the probe beam transmission for the
situations (i) and (iii). Only dispersive effects, which depend on the atomic den-
sity, are slightly exaggerated when doubling the atomic density. They artificially
add an asymmetry to the transmission and beam waist spectra for the situation
(ii). However, these discrepancies are small compared to the overall shape of the
spectra, which we want to simulate.

The above discussion suggests, that in good approximation situations (i) and
(ii) give similar results for the transmission of the probe beam and the change in
waist due to dispersion.

Being able to replace the propagation through the full system of atomic cloud
and imaging telescope by a propagation until the center of the cloud with twice
the experimentally used density, becomes particularly advantageous when aiming
at simulating the propagation of the collimated probe beam in Sec. 4.2.1. In
order to confirm that this replacement preserves the structure of the transmission
images for the collimated probe beam, we show in Fig. B.3 numerically obtained
transmission images at a probe beam detuning of ∆p/2π = 4 MHz and cross
sections thereof. Both situations, i.e. when propagating the probe beam until
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Figure B.3: Results of the numerical simulation for the propagation of the
collimated probe beam. Numerically obtained (a) transmission images
and (b) cross section thereof through the image center for a propagation
until the center of the atomic cloud with the experimental atomic density
[left image in (a) and blue solid line in (b)], and with twice the density [right
image in (a) and orange solid line in (b)]. The red dashed line is the orange
one scaled as described in the main text. The black circles in (a) have the
same radius of 20.3µm, which is also indicated in (b) by the black dashed
lines. Other simulation parameters are the same as for Fig. 4.6.

the center of the atomic cloud with the experimental value for the atomic density
(den) and with the density doubled (2den), are shown. The transmission images
in Fig. B.3(a) exhibit the same structure and only the level of transmission is
different. This can also be seen in Fig. B.3(b), which displays cross-sections of
the images. Therefore, we find that doubling the atomic density does not result
in a significant change of the image structure. In order to make this point even
clearer, we rescale one of the curves. For this purpose, the cross section T2den is
multiplied by a factor [max(Tden)−min(Tden)]/[max(T2den)−min(T2den)] and with
an additional offset of min(Tden) results in the red dashed line in Fig. B.3. Indeed,
this scaled curve agrees well with the cross section Tden. This in combination with
the results obtained with the focused probe beam suggests that the approximation
made in Sec. 4.2.1 for the numerical investigation of the transmission images of
the collimated probe beam is reasonable. We emphasize that this only holds for
our particular situation, which consists of a medium of low optical depth and of
Gaussian beams.
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APPENDIXC
Rydberg pollutants

Parts of this appendix are based on the following publication, from which parts of
the text have been taken verbatim:

Nonlinear absorption in interacting Rydberg electromagnetically-
induced-transparency spectra on two-photon resonance
A. Tebben, C. Hainaut, A. Salzinger, S. Geier, T. Franz, T. Pohl, M. Gärt-
tner, G. Zürn and M. Weidemüller, Phys. Rev. A 103, 063710 (2021)

In Rydberg EIT experiments care has to be taken to not create stationary Ryd-
berg excitations in the medium as they could lead to absorption that conceals the
nonlinear absorption effects stemming from Rydberg EIT nonlinearities. Being
created at high Rabi frequencies of the probe beam these excitations have been
termed “Rydberg pollutants” [143]. They have been observed in photon propa-
gation experiments with large input rates [143] and in investigations of radiation
trapping at large optical depth [216].

We have also observed stationary Rydberg excitations in our experiment at
large Rabi frequencies of the probe beam. Therefore, this appendix serves two
purposes: First, we show in App. C.1 that the measured features on two-photon
resonance for a ratio of Ωp/Ωc = 0.05 of the Rabi frequencies cannot be explained
by the presence of Rydberg pollutants. Second, we discuss in App. C.2 possible
creation mechanisms for Rydberg pollutants in our experiment. This can serve as
a starting point for further investigations and successive elimination of Rydberg
pollutants in Rydberg EIT experiments.

C.1 Rydberg excitation measurement on two-photon
resonance42

For the measurement on two-photon resonance presented in Fig. 4.15 we have si-
multaneously recorded the ion counts on the MCP, as shown in Fig. C.1. Thereby,

42 Taken verbatim from Tebben et al. [96] with minor adaptions for the ease of readability.
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Figure C.1: Rydberg excitation measurement on two-photon resonance. Mea-
surements of ion counts as a function of the single-photon detuning ∆ on
two-photon resonance δ = 0 for different ratios Ωp/Ωc. The ions have been
detected simultaneously with the measurement of Fig. 4.15. Figure and
caption taken with permission from [98].

the detection efficiency is about 0.10 ions per Rydberg atom [179]. For the ratio of
Ωp/Ωc = 0.05, where the nonlinear absorption in the transmission measurements
appears, the number of detected ions is about 1 for all detunings, as shown by the
black circles in Fig. C.1. When increasing the ratio of the two Rabi frequencies
further, the ion count increases to about 4 counts, but stays approximately con-
stant over the whole range of single photon detunings. For the highest measured
ratio, the number of detected ions increases significantly with a maximum around
zero single-photon detuning.

In the case of a coherent evolution in the EIT system we would expect to
detect no ions after the EIT sequence. The reason is that photons entering the
medium are adiabatically converted into polaritons, which are transformed back
into photons when leaving the medium. Therefore, we attribute the observed ions
at high ratios of the two Rabi frequencies to stationary Rydberg excitations in
the medium. As these excitations do not get depumped by the control beam into
the decaying intermediate state, it is to be presumed that these are excitations in
other than the Rydberg state |48S1/2,mj = 1/2〉.

For the measurement on two-photon resonance43 at a ratio Ωp/Ωc ≈ 0.05, we
measure approximately one ion count at the position of the transmission dip at
∆min = −8 MHz. According to the detection efficiency, this sets an upper bound
of 10 on the number of Rydberg excitations NRyd in the medium.

We now consider a worst-case scenario in order to estimate the maximal influ-
ence of these excitations on the probe beam propagation. For this purpose, we
assume that all these excitations are located in the integrated region of 4×4 pixels,
where the probe beam transmission is evaluated. Furthermore, we can assume in
an upper bound estimation that these excitations are atoms in the nearby Ryd-

43 Regarding the measurement of the interacting Autler-Townes spectrum presented in
Fig. 4.14: The atomic density and the ratio of the two Rabi frequencies of that measure-
ment connect to the red curve in Fig. C.1. Therefore, the ion measurement suggests the
presence of a large number of Rydberg excitations that could lead to the observed slightly
lower transmission around resonance.
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berg state |48P 〉. This state process strong dipolar interactions with the Rydberg
state |48S〉 with a coefficient c3 of about 1.7 GHzµm3.

We estimate the resulting absorption from theses excitations as follows: Each
Rydberg excitation renders the medium absorptive in a spherical volume given by
the blockade radius Rb, which is approximately 3.1µm at ∆min. Assuming that
all excitations are placed in a chain behind each other, the resulting optical depth
ODRyd = ODoff2RbNRyd/L can be calculated from the propagation distance L
through the whole atomic cloud, the peak atomic density ρ0, which is given in the
caption of Fig. 4.15, and the off-resonant optical depth ODoff = σoffρ0L of two-
level atoms. Here, the off-resonant cross section σoff = aσ0 is the resonant cross
section σ0 multiplied by a factor a = 0.126. It takes into account the Lorentzian
lineshape of the two-level absorption with decay rate Γe. In the last step, we have
to account for the fact that the transversal size ARyd = πR2

b of one blockaded
volume is smaller than the evaluated pixel area A = (4 × 2.1µm)2 on the CCD
camera. Therefore, we use the scale s = ARyd/A to finally obtain the transmission
TRyd = (1−s)+s exp(−ODRyd) ≈ 0.87 in the presence of ten Rydberg excitations.

Overall, this estimation in a worst-case scenario results in an upper bound
of 13% for the probe beam absorption solely due to these Rydberg excitations.
Therefore, for the ratio of Ωp/Ωc = 0.05, unwanted Rydberg excitations cannot
explain the observed strong absorption feature of about 76%.

C.2 Possible creation mechanisms of Rydberg pollutants

In this section, we discuss various mechanisms that could lead to the creation of
Rydberg pollutants, and check their plausibility for our measurements on two-
photon resonance. In general, we can exclude that Rydberg pollutants are exci-
tations in the state |r〉 = |48S1/2,mj = 1/2〉. The reason is that these excitations
are coupled to the control beam. As a consequence, they get depumped at the
end of the EIT sequence before the cloud is ionized for Rydberg ion detection on
the MCP.

Rydberg pollutants in Rydberg states other than the state |r〉 could, for exam-
ple, populate the energetically close states |47P 〉, |48P 〉 and |49P 〉. Excitations in
these states most dominantly affect the probe beam propagation as they possess
strong dipolar interactions with the state |48S〉. Concerning the creation pro-
cess itself, we suppose that the number of pollutants created is connected to the
number of photons, respectively polaritons, inside the medium.

In the following, we consider two different situations for estimating the number
of Rydberg pollutants in the medium. Both connect to the measurements on two-
photon resonance presented in Sec. 4.15. In fact, we consider the two situations
with the ratios Ωp/Ωc = 0.05 (low intensity of the probe beam) and 0.18 (high
intensity of the probe beam) of the Rabi frequencies both on single-photon res-
onance44. For estimating the number of Rydberg pollutants in the medium, one

44 We note that off single-photon resonance the group velocity of the photons is considerably
increased. The reason is that the atomic cross section is replaced by the much smaller off-
resonant cross section in Eq. (2.17) for the group velocity. As a consequence, we expect even
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needs to know

• the mean number of photons 〈nph〉 traversing the medium during the exci-
tation time of texc = 5µs,

• the time τm that it takes for the photons to propagate through the atomic
cloud, and the time τbl in which the photons propagate through the distance
of one blockade radius,

• the mean number of photons that are inside the medium at the same time.
Assuming, that each photon gets converted into a polariton, this equals
the mean number of polaritons 〈nDSP〉 inside the medium in a steady-state
situation.

We obtain the mean number of photons 〈nph〉 in the probe beam from its images
measured with the CCD camera in the absence of the atoms. This yields approx-
imately 6560 and 55.150 photons in the low- and high-intensity case, respectively.
The propagation times τm and τbl can be calculated from the group velocity vg
given in Eq. (2.17). Hereby, we assume that the atomic cloud has a Gaussian-
shaped density distribution along the propagation axis with a peak atomic density
ρ0 = 0.16µm−3 and a width of

√
2σz =

√
2× 22µm. The factor

√
2 accounts for

the 45° angle between the main axis of the cloud and the propagation direction of
the probe beam (see Fig. 4.2 for an illustration). With this geometry of the atomic
cloud and with a blockade radius of 2.4µm, which is given by the parameters of
the measurement, we obtain τm ∼ 6.1 ns and τbl ∼ 0.2 ns. Finally, in a steady-
state situation we estimate the number of polaritons that are inside the medium
at the same time by using the equation 〈nDSP〉 = 〈nph〉τm/texc. This yields about
8 and 68 polaritons for the low- and high- intensity case, respectively.

Based on these preparatory estimations, we now discuss four possible mecha-
nisms for the creation of Rydberg pollutants.

(i) Population in a different Zeeman sublevel

Within our three-level scheme in ladder configuration the control beam couples the
intermediate state to the Rydberg state |48S1/2,mj = 1/2〉. In principle, also the
other Zeeman sublevel (mj = −1/2) could get populated [217] if, for example, the
polarization of the control beam was wrong or if the splitting between the levels
was too small. However, we apply a magnetic offset field of 30 G, which leads
to a splitting of the two Zeeman sublevels by ∆−1/2 = 84 MHz. In combination
with a careful preparation of the ground state as well as appropriate laser beam
polarizations, as described in Sec. 4.1.2 and Sec. 4.1.3, we isolate the desired the
three-level system.

In a worst-case scenario, we estimate from a polarization measurement that
5% of the power of the control beam could lead to a coupling to the other

less photons/polaritons to reside inside the medium at the same time in the off-resonant case
compared to the situation on resonance. This also reduces the number of possible pollutants
in the medium. For an estimation of an upper bound for the number of pollutants, we
consider the resonant case in the following.
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Zeeman sublevel with mj = −1/2. This corresponds to a Rabi frequency of
Ωc,−1/2/2π =

√
0.05× 24 MHz ≈ 5.4 MHz and would yield a negligible population

[179] of Ω2
c,−1/2/(Ω

2
c,−1/2 + ∆2

−1/2) < 0.4% in the other Zeeman sublevel.

(ii) Black-body decay

The state |48S〉 decays to surrounding Rydberg P-states with a black-body decay
rate of τbb = 117.8µs [130]. As discussed above, we expect about 8 (68) polaritons
to be in the medium in steady-state in the low- (high-) intensity case, respectively.
Due to their Rydberg component these polaritons could potentially decay. We ob-
tain the average number of excitations in the P-sates resulting from black-body
decay with the equation 〈nDSP〉texc/τbb, yielding 0.3 and 2.9 excitations, respec-
tively. These numbers are much smaller than the observed number of Rydberg
excitations in the medium, as presented in Fig. C.1. As a consequence, black-body
decay to other Rydberg states is not the dominant mechanism for the formation
of Rydberg pollutants.

(iii) Pair-state resonances at the entrance of the medium

Mirgorodskiy [194] has discussed another mechanism that could lead to the cre-
ation of Rydberg pollutants: When the first photon enters the medium it prop-
agates as a polariton with a reduced group velocity. Therefore, it blockades the
entrance of the medium for the time τbl. If a second photon arrives during this time
a pair-state involving the |48S〉 state might be resonantly excited. This process
depends on whether there exists a pair-state resonance for the particular distance
between the photon and the polariton. Furthermore, this process is independent
of the probe beam detuning [194].

In Fig. C.1 we see that the number of ion counts is approximately independent
of the detuning for the two smallest ratios Ωp/Ωc of the two Rabi frequencies.
However, a strong dependence on the detuning ∆ for the highest ratio has been
measured. This observation contradicts, at least in the regime of high probe in-
tensities, the mechanism of creating Rydberg pollutants via pair-state resonances.
Nevertheless, we would like to give an order of magnitude estimation of how many
Rydberg pollutants could be produced with this process.

The probability p2phot of two-photons to arrive at the medium simultaneously
within τbl is given by p2phot = Rinτbl exp(−Rinτbl) [194] due to Poisson statistics.
Here, Rin is the incoming photon rate. We evaluate this probability for an area
corresponding to a pixel in the image of the probe beam. Thus, Rin = 〈nph〉px/texc

is given by the mean number 〈nph〉px of photons per pixel. In the beam center
we obtain a probability of 0.2% and 2% for the low- and high-intensity case,
respectively. We multiply the probability calculated in each pixel with the number
of photons detected in each pixel. Summing over all pixel, gives about 4 and 468
occurrences where two photons are simultaneously at the entrance of the medium
for the two cases, respectively. However, not each occurrence necessarily results
in the excitation of a pair-state and thus a Rydberg pollutant [194]. Instead,
the excitation probability should also depend on the dipole coupling strength
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of the pair resonance [194]. Including this dependence in the above calculation
would yield a better estimate for the number of created Rydberg pollutants. For
example, this could be done via a Monte Carlo sampling. Such a simulation could
on the one hand take into account the Poisson statistics of photons arriving at
the entrance of the medium, and on the other hand the probability to excite a
pair-state [194]. Nevertheless, our estimation yields upper bounds for the amount
of pollutants created in the two considered cases. They are within an order of
magnitude comparable to our measurement (see Fig. C.1). Still, the discrepancy
concerning the dependence of this creation mechanism on the detuning of the
probe beam remains.

(iv) Radiation trapping and subsequent excitation transfer

Bienias et al. [143] have explained an initial creation of Rydberg excitations with
radiation trapping [184, 216] of scattered probe photons due to a large transverse
optical depth. Moreover, they suggested that anti-blockade excitation or state-
changing collisions transfer the excitations to a Rydberg state different from the
one used for EIT [143]. This would explain why the Rydberg pollutants are not
coupled to the control beam and thus why they have been found to remain in the
atomic medium after the EIT sequence.

For an estimation of the expected amount of Rydberg pollutants from these pro-
cesses, we first consider the rate Rscat of scattered photons within the excitation
time. This rate is given by the percentage pabs of absorbed light, which can be
inferred from the transmission measurement shown in Fig. 4.15. In the low- and
high-intensity situation we find that maximally 24% and 60% of the incoming light
is absorbed, respectively. In an upper bound estimation, we assume that these
photons are not scattered in all spatial dimensions, but only in a single direction
transverse to the propagation axis. This allows us to exploit the same estimation
as for the idea of exciting pair-resonances at the entrance of the medium. Replac-
ing Rin with Rscat = pabsRin we obtain from an analogous calculation 0.26 and
170 Rydberg pollutants for the low- and high-intensity case, respectively. These
numbers are far too small in order to explain the detected number of pollutants.

The presented estimation completely ignores the spatial distribution of scat-
tered photons and thus overestimates the number of pollutants created from pair-
resonances. On the contrary, it falls short in accounting for multiple scattering
events in the medium, which would enhance the effective time a photon/polariton
spends in the medium [143, 216]. This in turn could lead to a larger probability
for e.g. state-changing collisions and thus potentially to an increased number of
Rydberg pollutants.

In order to consider multiple scattering events, we can estimate how many
photons/polaritons are in the medium at the same time in a steady state situa-
tion including multiple scattering events. From this estimation a mean distance
between the photons/polaritons can be obtained and compared to the blockade
radius. This comparison could give some insight on whether state-changing col-
lisions or anti-blockade excitation could contribute to the production of Rydberg
pollutants. For such an analysis, knowledge of the transversal optical depth is re-
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quired as it provides an approximation of how many times photons are scattered
before they leave the medium [143]. When scattered probe photons escape the
region of the control beam, they cannot be excited to the Rydberg state anymore.
Therefore, we estimate ODtrans = σ0ρ0wc ≈ 1.4 in our situation, where σ0 is the
atomic cross section. ρ0 denotes the peak atomic density and wc is the waist of
the control beam. Furthermore, we assume that the lifetime of scattered photons
is given approximately by τscat ≈ ODtrans/Γe in accordance with refs. [184, 216].
It follows that there are (1− pabs)〈nph〉τm/texc photons in the medium, which are
not scattered, and pabs〈nph〉τscat/texc photons, which are scattered multiple times.
The sum of both gives the total number of photons that are in the medium si-
multaneously. Here, pabs is again the percentage of absorbed photons. Finally,
we assume a rod like geometry for the overlap region of the control beam and
atomic cloud. This geometry in combination with the number of photons, which
are scattered multiple times, yields mean distances of about 7.6µm and 2.8µm
between the photons/polaritons in the low- and high-intensity situation, respec-
tively. Comparing this to a blockade radius of about 2.4µm in becomes clear that
rescattering of photons and subsequent excitation transfer to other Rydberg states
could affect the number of Rydberg pollutants for high, but presumably not for
low intensities of the probe beam.

Summary of the different creation mechanisms of Rydberg pollutants

Rydberg pollutants are stationary excitations in the medium, which do not couple
to the control beam, but at the same time strongly interact with atoms populating
the Rydberg state used for EIT experiments. We discussed (i) the population of a
different Zeeman sublevel, (ii) black-body decay, (iii) pair-state resonances excited
at the beginning of the medium, as well as (iv) radiation trapping in combination
with excitation transfer as possible mechanisms for the creation of Rydberg pol-
lutants. We find that only the mechanisms (iii) and (iv) yield within an order of
magnitude an estimated number of Rydberg pollutants, which is comparable with
our measurement. However, from the model (iii) we would expect no dependence
of the amount of Rydberg pollutants on the probe detuning. This strongly contra-
dicts our measurement at high intensities of the probe beam. One could envision
that both mechanisms (iii) and (iv) occur in our system and that they together
constitute the source of the Rydberg pollutants, which we observe.

It has been discussed that Rydberg atoms are predominantly excited at the
beginning of the medium where the probe intensity is highest [78]. As such, an
accumulation of excitations at the entrance of the medium could increase the
probability for pair-resonances and state-changing collisions. Nevertheless, we
conclude that the precise origin of these Rydberg pollutants and a corresponding
quantitative model remain to be found. Further experimental investigations, as
discussed in Sec. 4.6, would be needed to shed light on this aspect.
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APPENDIXD
Comparison between

mean-field and MCRE model

This appendix is based on the publication

Nonlinear absorption in interacting Rydberg electromagnetically-
induced-transparency spectra on two-photon resonance
A. Tebben, C. Hainaut, A. Salzinger, S. Geier, T. Franz, T. Pohl, M. Gärt-
tner, G. Zürn and M. Weidemüller, Phys. Rev. A 103, 063710 (2021)

from which the following text has been taken verbatim with minor adaptions for
the ease of readability.

In the spectra on two-photon resonance, presented in Sec. 4.5, a stronger absorp-
tion is predicted by the mean-field model than by the result of the Monte-Carlo
rate equation model, as shown in Fig. 4.17. In the following, we explain that this
results from the assumption of how the interaction-induced level shift is included
in the two models.

On one hand, in the MCRE model the total interaction-induced level shift ∆
(i)
int

experienced by an atom i is determined by the sum
∑

j 6=i ∆ij =
∑

j 6=iC6/r
6
ij

over all shifts induced by the surrounding Rydberg atoms [78]. As the MCRE
simulation is seeded with a distribution of atoms according to the geometry of
the experiment, the inter-atomic distances rij vary. This immediately leads to a
certain variation of the level shifts ∆ij .

On the other hand, the considered mean-field model is based on the non-
interacting single-body susceptibility and includes an interaction-induced level
shift therein [64]. This means that nothing like an atomic distribution, and there-
fore no variance of the level shift is considered a priori. For distances smaller
than the blockade radius, the level shift is completely determined by an integra-
tion over the radius r and the resulting susceptibility χB inside the blockade radius
is therefore unambiguously defined. However, for the susceptibility χE outside the
blockaded sphere assumptions about the average level shift ∆R and its variance θR
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have to be made. Han et al. [64] calculate both based on a mean-field assumption
as well as on an assumption for the Rydberg excitation fraction. Explicitly, the
formula for the variance reads [64]

θR ≈
∫ ∞
Rb

fRρ0
C2

6

r12
4πr2dr =

4πC2
6fRρ0

9R9
b

, (D.1)

where fR = f0
1−f0+f0ρ0VB

[64] is the Rydberg excitation fraction in the interacting
regime, and f0 the one in the non-interacting regime. Here, VB is the spherical
volume spanned by one blockade radius RB. The variance is then included as
an effective dephasing γgr =

√
θR of the Rydberg coherence in the single-body

susceptibility [64]. Finally, the Rydberg excitation fraction determines the weight
between the two parts of the overall model susceptibility χ̄ = αχB + (1−α)χE , as
α ∝ fR [64]. This implies, that the more one enters the blockaded regime (large
α), the less weight is put on the assumption made for the variance of the level-shift
entering χE .

For the Autler-Townes measurement in the interacting regime, presented in
Fig. 4.16, α is larger than 0.6 around the Autler-Townes transmission minima.
Hence, the contribution of χB and χE are quite similar, such that the relative
importance of including a variance of the level shift is small. As a result, the mean-
field and MCRE models give similar predictions for the transmission spectrum.
Only around resonance, where α is about 0.2, deviations between the two models
start to appear.

For the measurement on two-photon resonance α < 0.12 for all single-photon
detunings ∆ and is especially only about 0.025 at ∆/2π = −2 MHz, as shown
in Fig. D.1(c). At the same the effective dephasing on the Rydberg coherence√
θR/2π is as large as 5 MHz, putting a great deal of weight on the assumptions

made in the mean-field model.

In order to show, that the transmission curve on two-photon resonance predicted
by the mean-field model is dominated by the variance θR, we show in Fig. D.1(a)
the Autler-Townes transmission spectra for three different detunings ∆c/2π =
{9, 0,−9} MHz. These spectra correspond to the points marked on the curves
on two-photon resonance depicted in Fig. D.1(b). The mean-field model with
(without, θR = 0) the variance θR is shown in blue (purple) and the result of the
MCRE simulation is shown in orange for comparison.

For positive single-photon detunings ∆ > 0, where α is larger, the mean-field
model and the MCRE model almost agree for the Autler-Townes spectrum with
∆c/2π = −9 MHz. Setting θR = 0 makes them almost identical. For zero and
negative single-photon detunings, α is smaller and a deviation between the mean-
field model and the MCRE model is apparent. Completely excluding the variance
of the interaction-induced level shift (θR = 0) makes the result of the two models
similar, but seems to underestimate the absorption compared to the MCRE model.
This highlights the importance of including a spatial variation of the level shift in
an appropriate manner.

Overall, the considered mean-field model is dominated by the variance θR of
the average interaction-induced level shift, whenever α is small. This is the case
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Figure D.1: Comparison of the mean-field model [for θR 6= 0 (blue solid lines)
and θR = 0 (purple solid lines)] and the MCRE simulation (or-
ange dashed lines) for the parameters of Fig. 4.17. (a) Autler-
Townes transmission spectra as a function of the probe beam detuning ∆p

for different control beam detunings ∆c/2π = {9, 0,−9} MHz. (b) Trans-
mission T against the single-photon detuning ∆ on two-photon resonance
(∆c = −∆p), as in Fig. 4.17. Black points depict the measured spectrum
and the result of the two theoretical models are shown. Colored circles
indicate the transmission values of the corresponding Autler-Townes spec-
trum in (a). (c) Plot of α of the mean-field model against the single-photon
detuning ∆. For all theoretical curves the parameters are the same as in
Fig. 4.17. For a discussion of the curves see the main text. Figure and
caption with permission taken from [97].

when the fraction of blockaded atoms excluding Rydberg excitations is small. In
this regime, in which our two-photon measurement mainly have been performed,
deviations between the mean-field model and the MCRE simulation become ap-
parent.
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with a single-photon pulse, Sci. Adv. 2, e1600036 (2016).

[9] H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mir-
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[62] S. Sevinçli, C. Ates, T. Pohl, H. Schempp, C. S. Hofmann, G. Günter,
T. Amthor, M. Weidemüller, J. D. Pritchard, D. Maxwell, A. Gauguet,
K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Quantum interference
in interacting three-level Rydberg gases: coherent population trapping and
electromagnetically induced transparency, J. Phys. B 44, 184018 (2011).

[63] J. D. Pritchard, K. J. Weatherill, and C. S. Adams, Nonlinear optics using
cold Rydberg atom, in Annu. Rev. Cold At. Mol. (2013) pp. 301–350.

[64] J. Han, T. Vogt, and W. Li, Spectral shift and dephasing of electromagneti-
cally induced transparency in an interacting Rydberg gas, Phys. Rev. A 94,
043806 (2016).

[65] B. J. DeSalvo, J. A. Aman, C. Gaul, T. Pohl, S. Yoshida, J. Burgdörfer,
K. R. A. Hazzard, F. B. Dunning, and T. C. Killian, Rydberg-blockade effects
in Autler-Townes spectra of ultracold strontium, Phys. Rev. A 93, 022709
(2016).

[66] G. Günter, M. Robert-de Saint-Vincent, H. Schempp, C. S. Hofmann,
S. Whitlock, and M. Weidemüller, Interaction Enhanced Imaging of Individ-
ual Rydberg Atoms in Dense Gases, Phys. Rev. Lett. 108, 013002 (2012).

[67] G. Günter, H. Schempp, M. Robert-de Saint-Vincent, V. Gavryusev,
S. Helmrich, C. S. Hofmann, S. Whitlock, and M. Weidemüller, Observing
the Dynamics of Dipole-Mediated Energy Transport by Interaction-Enhanced
Imaging, Science 342, 954 (2013).

[68] J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P.
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Symmetry-protected collisions between strongly interacting photons, Nature
542, 206 (2017).

[71] Q.-Y. Liang, A. V. Venkatramani, S. H. Cantu, T. L. Nicholson, M. J.
Gullans, A. V. Gorshkov, J. D. Thompson, C. Chin, M. D. Lukin, and
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Lukin, and V. Vuletić, Repulsive photons in a quantum nonlinear medium,
Nat. Phys. 16, 921 (2020).

[74] S. Baur, D. Tiarks, G. Rempe, and S. Dürr, Single-Photon Switch Based on
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Transistor Using a Förster Resonance, Phys. Rev. Lett. 113, 053602 (2014).

[77] C. Murray and T. Pohl, Chapter Seven - Quantum and Nonlinear Optics in
Strongly Interacting Atomic Ensembles, in Adv. At. Mol. Opt. Phys., Vol. 65,
edited by E. Arimondo, C. C. Lin, and S. F. Yelin (Academic Press, 2016)
pp. 321–372.
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Barredo, Guillaume Bornet, Löıc Henriet, Thierry Lahaye, Pascal
Scholl, Adrien Signoles, Florian Wallner and Hannah Williams for
collaborating with us on the topic of Hamiltonian engineering. Furthermore, I
would like to thank the GiRyd community for a vivid exchange of knowledge on
Rydberg physics and for the familiar atmosphere during all encounters.

... all members of the QD and Ultracold groups for sharing ideas and
experimental techniques, and for the great atmosphere in the institute.
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terstützung und für unsere wunderbare gemeinsame Zeit.

149


	1 Introduction
	2 Basic concepts: From slow to stationary light
	2.1 Semiclassical description of light propagation
	2.1.1 Wave equation and optical response of an atomic gas
	2.1.2 Optical Bloch equations for a driven three-level system
	2.1.3 Electromagnetically induced transparency
	2.1.4 Slow light
	2.1.5 Stationary light

	2.2 Quantum mechanical description of light propagation
	2.2.1 Maxwell-Bloch equations
	2.2.2 Dark-state and slow-light polaritons
	2.2.3 Stationary light polaritons


	3 A two-body, two-photon resonance in Rydberg EIT
	3.1 Rydberg atoms
	3.1.1 Basic properties
	3.1.2 Theoretical models for Rydberg-Rydberg interactions

	3.2 Rydberg EIT
	3.2.1 Semiclassical regime: Nonlinear susceptibility
	3.2.2 Quantum regime: Interactions between polaritons

	3.3 Blockade-induced enhancement of the nonlinear response
	3.3.1 Intuitive picture in the dressed pair-state basis
	3.3.2 Enhanced nonlinear susceptibility

	3.4 Summary and discussion

	4 Nonlinear absorption on two-photon resonance
	4.1 Experimental realization of a Rydberg EIT medium
	4.1.1 Preparation of a cold and dense atomic cloud
	4.1.2 Ground-state preparation
	4.1.3 Rydberg EIT and detection methods

	4.2 Minimizing dispersive effects in EIT transmission spectra
	4.2.1 Effect of dissipation and dispersion on EIT transmission
	4.2.2 Implementation of a probe beam with a waist smaller than the control beam
	4.2.3 Transmission measurement with minimized dispersion

	4.3 Characterization of the EIT system in the non-interacting limit
	4.3.1 Dephasing in the two-level system
	4.3.2 Dephasing in the three-level system
	4.3.3 Adiabatic preparation of the EIT dark state
	4.3.4 Autler-Townes spectrum in the non-interacting regime
	4.3.5 Summary of the main characteristics of our EIT system

	4.4 Nonlinear absorption in the presence of interactions
	4.4.1 Autler-Townes spectrum with Rydberg interactions
	4.4.2 Measurements on two-photon resonance

	4.5 Comparison with theoretical models
	4.5.1 Theoretical models and their range of validity
	4.5.2 Comparison with Autler-Townes measurements
	4.5.3 Comparison with a measurement on two-photon resonance

	4.6 Summary and discussion
	4.6.1 Theoretical models and possible improvements
	4.6.2 Experimental considerations and further investigations


	5 A stationary Rydberg polariton
	5.1 Coupling a stationary light polariton to a Rydberg state
	5.2 Influence of a Rydberg impurity on the scheme
	5.2.1 Propagation equation for the probe fields
	5.2.2 Transmission and reflection properties in the presence of a Rydberg impurity

	5.3 Considerations for an experimental implementation
	5.4 Summary and discussion

	6 Conclusion
	A Experimental details
	A.1 Detection efficiency of the CCD camera
	A.2 Characterization of the focused probe beam
	A.2.1 Beam profile
	A.2.2 Positional stability


	B Numerical simulation of the probe beam propagation
	B.1 Numerical methods
	B.2 Optical setup for the simulation
	B.3 Simplification of the simulation

	C Rydberg pollutants
	C.1 Rydberg excitation measurement on two-photon resonance
	C.2 Possible creation mechanisms of Rydberg pollutants

	D Comparison between mean-field and MCRE model
	List of figures
	  Bibliography
	  Acknowledgements

