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Abstract

Two problems of u�u�-symmetric quantum field theory are discussed: In the first part,
the u�-dimensional quantum field theory with the self-interaction u�2(u�u�)u� is analyzed.
Techniques introduced previously in a first-order study of the perturbative nonlinearity
expansion in u�, [1], are generalized for the application at higher orders and used to deter-
mine the expansion coefficients of the ground-state energy density, the u�-point Green’s
functions, and the effective mass of the theory. The perturbative renormalization of
the two-dimensional model is discussed to second order in the nonlinearity expansion
and the behavior is contrasted with that in a coupling-constant expansion through a
multiple-scale analysis. In the second part, the 3 + 1 dimensional Nambu–Jona-Lasinio
model is modified by u�u�-symmetric and anti-u�u�-symmetric non-Hermitian bilinears
to analyze the role of u�u� symmetry in fermionic quantum field theory. The generated
masses of the fermion as well as the scalar and pseudoscalar mesons are obtained. The
study is supplemented by an analysis of the fermion mass in the similarly modified 1+1
dimensional chiral Gross-Neveu model.

Abstract

Diese Arbeit diskutiert zwei Probleme der u�u�-symmetrischen Quantenfeldtheorie: Der
erste Teil beschreibt die Analyse der bosonischen Quantenfeldtheorie mit der Wech-
selwirkung u�2(u�u�)u� in u� Dimensionen durch eine Störungsentwicklung in dem Nicht-
linearitätsparameter u�. Diese in [1] etablierte Methodik wird für die Analyse über
die erste Ordnung hinaus verallgemeinert und zur Berechnung der Grundzustands-
energiedichte, der u�-Punkt Greenschen Funktionen und der effektiven Masse genutzt.
Darüber hinaus wird die perturbative Renormierung in zwei Dimensionen zu zweiter
Ordnung in der u�-Entwicklung beschrieben und mit der Störungsentwicklung in der
Kopplungskonstanten verglichen. Der zweite Teil beschreibt die Erweiterung des
3 + 1 dimensionalen Nambu–Jona-Lasinio Modells durch nicht-hermitesche Bilinear-
terme, sowohl u�u�-symmetrische als auch nicht-u�u�-symmetrische, um den Einfluss
der u�u� Symmetrie in fermionischen Quantenfeldtheorien zu analysieren. Die gene-
rierten Massen der Fermionen, sowie der skalaren und pseudoskalaren Mesonen, werden
bestimmt. Diese Studie wird durch die Berechnung der Fermionenmasse in dem ver-
gleichbaren 1 + 1 dimensionalen chiralen Gross-Neveu Modell ergänzt.
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General Introduction

The Hermiticity of physical observables is one of the Dirac–von Neumann axioms
of quantum physics. Applied to the Hamiltonian, it ensures the spectral reality
and thus the probability-conserving time evolution of a model. But while Her-
miticity is certainly a sufficient assumption to guarantee these properties, it is not
a necessary requirement for the existence of real eigenvalues. This observation lies
at the center of 𝒫𝒯-symmetric theories.

𝒫𝒯 theory is the study of systems that are symmetric under combined parity
reflection 𝒫 and time reversal 𝒯:

𝒫 ∶ 𝑥 → −𝑥, 𝒯 ∶ 𝑡 → −𝑡 and 𝑖 → −𝑖.

Since time reversal is an antilinear operation, it also acts as complex conjugation.
In a 𝒫𝒯-symmetric system, that is when the Hamiltonian commutes with the

symmetry operator [𝐻, 𝒫𝒯] = 0, in which all eigenstates of the Hamiltonian are
also eigenstates of the 𝒫𝒯 operator, all eigenvalues are real: Under multiplication
with 𝒫𝒯, and making use of the commutation relation with 𝐻, the eigenvalue
equation 𝐻𝜓 = 𝐸𝜓 takes the form 𝐸𝜓 = 𝐸∗𝜓. Generally, 𝒫𝒯 symmetry is
said to be realized in an unbroken phase when a spectrum of real eigenvalues is
obtained. Notably, the existence of such a phase is independent of the Hermiticity
of the model, opening up a large class of non-Hermitian systems to be considered
as physical models.

On the other hand, due to the antilinearity of the time-reversal operator 𝒯,
the eigenstates 𝜓 of the Hamiltonian are not necessarily all eigenstates of the
𝒫𝒯 operator as well. This commonly results in complex eigenvalues appearing
in conjugate pairs. 𝒫𝒯 symmetry is then said to be realized in a broken regime.
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2 General Introduction

The existence of broken and unbroken symmetry regions, as well as the transition
between these phases, distinguishes non-Hermitian 𝒫𝒯-symmetric systems intrin-
sically from regular Hermitian models and has led to the active study of a wide
variety of 𝒫𝒯 theories.

Experimental applications of 𝒫𝒯-symmetric models range from classical me-
chanical examples, such as driven coupled pendula [2], over a by now large num-
ber of implementations in optical [3–7], acoustical [8–10], and microwave systems
[11,12], to electronics [13,14], superconductivity [15,16], and atomic physics [17].
Besides the development of the mathematical foundations of 𝒫𝒯 theory, an even
wider variety of systems is the subject of theoretical discussions: An overview
over these topics can be found for example in [18, 19] or the proceedings of the
conference series on “Pseudo-Hermitian Hamiltonians in Quantum Physics” [20].

This thesis discusses two problems in 𝒫𝒯-symmetric quantum field theory:
The first part presents an analysis of the 𝐷-dimensional theory with the self-
interaction 𝜙2(𝑖𝜙)u�. It builds upon a previous study, [1], in which new techniques
were introduced, that allowed the discussion of this system through a perturbative
expansion in the nonlinearity parameter 𝜀. Here, these techniques are generalized
for the analysis beyond first order and the general coefficient structure of the
ground-state energy density, the 𝑝-point Green’s functions, and the effective mass
of the model is derived. Through the resummation of certain contributions to
all orders in 𝜀, the relation to a coupling-constant expansion is established. In
two dimensions the renormalization of the theory becomes necessary; it is per-
formed perturbatively to second order in the nonlinearity expansion. The result-
ing behavior is contrasted with that in the coupling-constant expansion through
a multiple-scale analysis.

In the second part of the thesis, the role of 𝒫𝒯 symmetry in fermionic field
theories is investigated through the analysis of non-Hermitian extensions of the
Nambu–Jona-Lasinio (NJL) model in 3 + 1 dimensions. The system is modified
through the addition of 𝒫𝒯-symmetric and anti-𝒫𝒯-symmetric bilinears. Their
effect on the generation of an effective fermion mass, as well as the masses of
scalar and pseudoscalar mesons in the theory, is investigated. The results are
supplemented by a discussion of analogous extensions of the 1 + 1 dimensional
chiral Gross-Neveu (GN) model.



Part I

𝒫𝒯 Symmetry in Bosonic Systems:
Towards Renormalization of the 𝐷-Dimensional

𝜙2(𝑖𝜙)𝜀 Quantum Field Theory





Chapter 1

Introduction to 𝒫𝒯 Symmetry in Bosonic Field Theories

The first model that was studied for its symmetry under combined parity reflection
𝒫 and time reversal 𝒯 is the quantum-mechanical system with Hamiltonian

𝐻 = 𝑝2 + 𝑥2(𝑖𝑥)u�, 𝜀 ∈ ℝ. (1.1)

It describes a deformation of the linear harmonic-oscillator theory through the
contribution (𝑖𝑥)u�, so that the nonlinearity of the system is measured by the pa-
rameter 𝜀. This deformation not only breaks the linearity of the underlying free
theory; it also breaks the symmetry of 𝐻 under Hermitian conjugation. Sur-
prisingly, a numerical (and asymptotic) investigation of this non-Hermitian, but
𝒫𝒯-symmetric, system by Bender and Boettcher [21] showed that its spectrum
is real, discrete, and positive for all values 𝜀 ≥ 0, a result that was later proven
analytically [22]. The intricate structure of this spectrum is shown in Figure 1.1.
The real positive eigenvalues for 𝜀 ≥ 0 grow with increasing value of 𝜀 and indi-
cate a region of unbroken 𝒫𝒯 symmetry. The lower boundary of this region at
𝜀 = 0 is the harmonic oscillator with the well-known spectrum 𝐸u� = 2𝑛 + 1. The
region 𝜀 < 0 is a phase of broken 𝒫𝒯 symmetry: for −1 < 𝜀 < 0 a finite number
of the lowest energy eigenvalues remains real, but the remaining infinite num-
ber of eigenvalues become complex and form conjugate pairs. The ground-state
energy 𝐸0 remains real, but diverges as 𝜀 approaches −1 from above. For 𝜀 ≤ −1
no real eigenvalues remain; the spectrum becomes entirely complex. Variants of
the quantum-mechanical system (1.1) continue to be studied and many peculiar
properties beyond its region of spectral reality are still being found [23].
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6 Chapter 1. Introduction to u�u� Symmetry in Bosonic Field Theories
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Figure 1.1: Energy spectrum of the Hamiltonian (1.1) as a function of the nonlinearity
parameter u�. For u� ≥ 0 all eigenvalues are real and positive. For −1 < u� < 0 a finite
number of the lowest eigenvalues remain real, while all remaining eigenvalues become
complex. Below u� = −1 no real eigenvalues exist. Adapted from [21].

The structure of (1.1) as a nonlinearity deformation of the harmonic oscillator
can be traced to a series of works [24–26] of Bender et al. prior to establishing
𝒫𝒯 theory, in which they proposed an unconventional perturbation approach to
scalar quantum field theory. This approach relied on a perturbation expansion
in an artificial parameter, such as a measure of nonlinearity in a model, and not
in a natural expansion parameter, such as a physical coupling constant. It has
the advantage of tending to avoid or at least soften the divergent behavior that is
often associated with coupling-constant expansions. Moreover, expanding in an
artificial parameter preserves term-by-term the analytic dependence on physical
parameters, where an expansion in a physical parameter may warp it. In [24, 25]
they applied this approach to the field theory with Lagrangian density

ℒ(𝛿) = 1
2(∇𝜙)2 + 1

2𝑔𝜙2(𝜙2)u� (1.2)

to investigate models such as the 𝜙4 theory, which is obtained when 𝛿 = 1.
Notably, the system (1.2) remains Hermitian under the nonlinearity deformation
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through the parameter 𝛿, because here a quadratic term 𝜙2 is exponentiated.
In addition, this quadratic structure ensures that the exponentiated quantity is
positive, avoiding complex-valued contributions for noninteger values of 𝛿; the sys-
tem based on (1.2) was purposefully constructed so as to avoid spurious complex
spectral solutions.

Then a decisive observation was made by Bessis and Zinn-Justin [27] when
studying the quantum-mechanical Hamiltonian 𝐻 = 𝑝2 + 𝑖𝑥3 (corresponding to
(1.1) at 𝜀 = 1) as an analogue of conformal 𝜙3 field theory arising in the study of
the Yang-Lee edge singularity. Based on numerical investigations they conjectured
that this system, although non-Hermitian, might have a real, positive spectrum.
This led Bender and Boettcher to investigate the quantum-mechanical system
(1.1), in which the nonlinearity deformation occurs through the imaginary linear
factor 𝑖𝑥, instead of a quadratic term that was present in (1.2), and finding 𝒫𝒯
symmetry to be the cause of the spectral reality. Other early studies of non-
Hermitian systems that were found to have real spectra have since been pointed
out, [28–34], but these studies remained largely disconnected until their behavior
was brought into the context of 𝒫𝒯 theory. While this impresses the importance
of what has come to be known as the Bender-Boettcher Hamiltonian (1.1) for the
development of 𝒫𝒯 theory, it also shows the foundations that this development
has had in quantum field theory.

First steps towards 𝒫𝒯-symmetric quantum field theory have been made in the
formulation of 𝒫𝒯-symmetric quantum-mechanical systems as one-dimensional
field theories. Early investigations addressed the scalar theories with a selfinter-
action term of the form 𝑖𝜙3 or −𝜙4. The former arises in the study of the Yang-Lee
edge singularity [28] and Reggeon field theory [29,30], and an application of this in
the Johnson-Baker-Willey program for constructing finite massless electrodynam-
ics has been analyzed in [35]. The latter has been studied by Symanzik [36], who
pointed out the asymptotic freedom of a −𝜙4 theory (see also [37]). Beyond these
examples, 𝒫𝒯 theory was found to be a powerful tool to study non-Hermitian sys-
tems that arise in the process of renormalizing initially Hermitian quantum field
theories. It was demonstrated in various cases that ghost states of a renormalized
theory, which appear to violate unitarity, disappear when the 𝒫𝒯 inner product
is used and these theories are actually unitary. Examples of this are studies of the
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Lee-model [38], Pauli-Villar ghosts in the Pais-Uhlenbeck model [39], as well as
the vacuum-instability of the Higgs field in the standard model and of dynamical
gravity breaking through gravitino condensates [40]. Further questions addressed
through 𝒫𝒯-symmetry considerations include the behavior of the double-scaling
limit in quantum field theory [41] and that of complex Hamiltonians in timelike
Liouville field theory [42].

While these studies have brought attention to remarkable properties of one-
dimensional field-theory analogues of quantum-mechanical systems and certain
zero-dimensional models, general techniques for higher-dimensional quantum field
theories were not explored until 2018: In [1] Bender, Hassanpour, Klevansky,
and Sarkar began the analysis of a 𝒫𝒯 quantum field theory in 𝐷-dimensional
Euclidean space-time that is based on the Bender-Boettcher model (1.1). They
studied the system with Lagrangian density

ℒ(𝜀) = 1
2(∇𝜙)2 + 1

2𝜙2(𝑖𝜙)u�, (1.3)

in which 𝜀 ∈ ℝ measures the degree of nonlinearity and 𝜙 is a real pseudoscalar
field, which transforms under parity as

𝒫 𝜙(𝑡, 𝑥) 𝒫−1 = −𝜙(𝑡, −𝑥). (1.4)

Thus, the Lagrangian density (1.3) is not Hermitian, but preserves 𝒫𝒯 symmetry.
Their approach is based on the unconventional nonlinearity expansion that was
introduced for the Hermitian field theory (1.2), inheriting many of its advantages.
In a conventional coupling-constant expansion the diagrammatic methods estab-
lished for the evaluation of functional integrals are only applicable when 𝜀 (or 𝛿)
is an integer, and even then they might need to be supplemented by nonpertur-
bative contributions [18]. In the nonlinearity expansion, on the other hand, this
restriction on 𝜀 (or 𝛿) is not present and diagrammatic methods are applicable
when the expansion coefficients are brought into the form of a polynomial in the
field 𝜙. The difficulty lies in the logarithmic structure that the interaction terms
take in the nonlinearity expansion:

ℒ(𝛿) = 1
2(∇𝜙)2 + 1

2𝑔𝜙2[1 +
∞

∑
u�=1

𝛿u�

𝑛!
lnu�(𝜙2)] (1.5)
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and

ℒ(𝜀) = 1
2(∇𝜙)2 + 1

2𝜙2[1 +
∞

∑
u�=1

𝜀u�

𝑛!
lnu�(𝑖𝜙)], (1.6)

associated with (1.2) and (1.3) respectively. While the real logarithmic terms of
the Hermitian system in (1.5) were discussed by introducing a polynomial aux-
iliary Lagrangian density in [24, 25], new techniques were introduced in [1] to
address the complex logarithmic terms in (1.6), which arise in the expansion of
the 𝒫𝒯-symmetric system. These techniques were then used to calculate the per-
turbative contributions of the ground-state energy density, the Green’s functions,
and the effective mass to first order in 𝜀.

The general calculations in [1] were restricted to 0 ≤ 𝐷 < 2 dimensional
space-time, where the model does not require renormalization. In two dimensions
and beyond, however, this becomes necessary. A program for the perturbative
renormalization of the theory in two dimensions, based on the nonlinearity ex-
pansion in 𝜀, was proposed. The zero-dimensional and one-dimensional theories
remain important cases for the confirmation of the calculations in [1], because
the functional integrals become directly evaluable in the zero-dimensional sys-
tem, and in one space-time dimension the results can be confirmed through the
Rayleigh-Schrödinger perturbation theory of quantum mechanics.

In this first part of the thesis, the study begun in [1] is continued, generalizing
the expansion techniques for the analysis beyond first order and working towards
the proposed perturbative renormalization of the system. Instead of the model
(1.3), the system with Lagrangian density

ℒ(𝜀) = 1
2(∇𝜙)2 + 1

2𝜇2𝜙2 + 1
2𝑔𝜇2

0𝜙2(𝑖𝜇1−u�/2
0 𝜙)u� (1.7)

is analyzed in 𝐷-dimensional Euclidean space-time. As before, the field 𝜙 is a
real pseudoscalar field, 𝜙(−𝑥) = −𝜙(𝑥), of dimensionality [mass]u�/2−1, so that
the model preserves 𝒫𝒯 symmetry. Contrary to (1.3) the Lagrangian density
now includes the dimensional parameters of the unrenormalized mass 𝜇, a fixed
parameter 𝜇0 with the dimension [mass]1, and a dimensionless unrenormalized
coupling strength 𝑔. The parameter 𝜇 will ultimately act as a mass counter-
term for the purpose of renormalization. In addition, a linear counterterm 𝑣(𝜀)𝜙
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is introduced into (1.7) when the renormalization is carried out. However, the
Green’s functions of the model that includes this term can be expressed in terms
of the Green’s functions for (1.7), so that, for simplicity, this linear counterterm
is omitted until the perturbative renormalization is discussed.

This study is structured as follows:
In Chapter 2 the techniques that were introduced in [1] to address the complex

logarithmic structure in the nonlinearity expansion of the model are generalized
for the calculation of perturbation coefficients beyond first order. The derivation
of a general coefficient structure in terms of only known functions is presented on
the example of the normalized partition function 𝒵(𝜀) of the theory. From this,
closed-form solutions for the expansion coefficients are obtained to second order
in the nonlinearity parameter 𝜀. In addition, a second type of “leading-order”
approximation, which takes into account terms to all orders in 𝜀, is discussed,
establishing a formal relation to a conventional coupling-constant expansion even
at noninteger values of 𝜀.

In Chapter 3 the coefficients of the partition function are used to approximate
the ground-state energy density ℰ(𝜀). The behavior of the expansion coefficients
of ℰ(𝜀) is illustrated in the region of 0 ≤ 𝐷 < 4 space-time dimensions. Results are
confirmed in the zero-dimensional and one-dimensional models using either direct
integration or Rayleigh-Schrödinger perturbation theory. Through a numerical
evaluation of the third-order coefficient in both of these cases the quality of the
approximations is examined.

In Chapter 4 the generalized expansion techniques are applied to the calcula-
tion of the 𝑝-point Green’s functions. The general coefficient structure is derived
and the coefficients of both approximation schemes are evaluated algebraically to
second order. As special cases, the coefficients of the one-point and two-point
Green’s functions are discussed and the perturbation expansion of the effective
mass is obtained from the two-point Green’s function.

In Chapter 5 the asymptotic behavior of the 𝑝-point Green’s function coeffi-
cients in the nonlinearity expansion is examined in the limit of two-dimensional
space-time. It is shown that the divergent behavior of the one-point Green’s func-
tion can be removed through the introduction of a linear counterterm 𝑣(𝜀)𝜙 into
the Lagrangian density without breaking 𝒫𝒯 symmetry. The effective mass of
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the model is found to diverge logarithmically in the 𝜀 expansion. This divergence
is absorbed perturbatively into the mass counterterm 𝜇 included in the model.
Higher-order Green’s functions are found to vanish order-by-order in 𝜀, result-
ing in an apparent freedom of the theory in two-dimensional space-time. This
behavior is examined through the lens of the second approximation scheme, in
which particular contributions to all orders in 𝜀 are resummed. The apparent
freedom of the model to any finite order in the nonlinearity parameter 𝜀 is found
to break down beyond all orders, demonstrating that the construction of a more
sophisticated renormalization approach is necessary.

Concluding remarks are given in Chapter 6.
Central results derived in this part of the thesis have been presented in [43,44],

focusing on the renormalization program for two space-time dimensions. This
program is not completed, but significant progress has been made in this study.



Chapter 2

The Logarithmic-Expansion Method

Expanding the non-Hermitian 𝒫𝒯-symmetric Lagrangian density (1.7),

ℒ(𝜀) = 1
2(∇𝜙)2 + 1

2𝜇2𝜙2 + 1
2𝑔𝜇2

0𝜙2(𝑖𝜇1−u�/2
0 𝜙)u�, (2.1)

which describes a quantum-field-theoretic analogue of the Bender-Boettcher Hamil-
tonian (1.1) in 𝐷-dimensional Euclidean space-time, in the nonlinearity parameter
𝜀 reveals a complex logarithmic self-interaction structure:

ℒ(𝜀) = ℒ0 + 1
2𝑔𝜇2

0

∞
∑
u�=1

𝜀u�

𝑛!
𝜙2 lnu�(𝑖𝜇1−u�/2

0 𝜙), (2.2)

where the Lagrangian density ℒ0 of the theory at 𝜀 = 0 (harmonic oscillator) is

ℒ0 = 1
2(∇𝜙)2 + 1

2(𝑚𝜇0)2𝜙2 (2.3)

with 𝑚2 = 𝑔+𝜇2/𝜇2
0 denoting a dimensionless mass-like parameter. The Feynman-

rules for the analysis of a field theory with such interaction terms are not obvious.
In [1] new techniques were introduced, which address the complex logarithmic

interaction that arises at first order in 𝜀. The focus of this chapter is the gen-
eralization of these techniques to resolve the interaction terms arising at higher
orders in the 𝜀 expansion. These generalizations are introduced in Section 2.1 on
the basis of a perturbative analysis of the normalized partition function 𝒵(𝜀). A
general expression for the partition-function coefficients in terms of known func-
tions only is derived. In Section 2.2 this general expression is then evaluated to an

12
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analytic closed-form solution for the first-order 𝜀-expansion coefficient. A second
type of approximation is introduced based on the summation of contributions
with a similar structure to that of the first-order coefficient to all orders in 𝜀;
it is related to the conventional coupling-constant expansion. In Section 2.3 the
analytic closed-form solution for the second-order 𝜀-expansion coefficient and the
approximation based on the resummation of structurally similar contributions to
all orders in 𝜀 are discussed.

2.1 The Partition Function

The central difficulty in the perturbative study of the normalized partition func-
tion

𝒵(𝜀) = 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ(u�), (2.4)

with
𝑍(0) = ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 (2.5)

being the full partition function of the model with Lagrangian density (2.3), is the
logarithmic interaction structure of the Lagrangian density ℒ(𝜀) in (2.2). Bender
et al. [1] presented a way to recast the complex logarithmic self-interaction at
order 𝑂(𝜀), so that only powers of the field 𝜙 occur in the functional integral.
It can then be evaluated using standard diagrammatic techniques, leading to
an expression containing only known functions. In general, higher-order self-
interaction terms can be taken into account following the same approach: In a
first step, the dependence of the partition-function coefficients 𝒵u� in an expansion
in 𝜀,

𝒵(𝜀) =
∞

∑
u�=0

𝒵u� 𝜀u�, (2.6)

on the complex logarithmic self-interaction terms of ℒ(𝜀) is determined. The
complex logarithms are then replaced by real logarithms in a 𝒫𝒯-symmetric way,
and recast into an expression containing only powers of the field 𝜙. The functional
integral can then be evaluated in terms of known functions.

To calculate the series expansion (2.6) of the normalized partition function,
the exponential factor containing the Lagrangian density ℒ(𝜀) in the form (2.2)
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is rewritten using the defining relation of the exponential partial Bell polynomials
Bu�,u�, see [45],

exp(𝑢
∞

∑
u�=1

𝑡u�

𝑛!
𝑥u�) = 1 +

∞
∑
u�=1

𝑡u�

𝑛!

u�
∑
u�=1

𝑢u� Bu�,u�(𝑥1, … , 𝑥u�+1−u�). (2.7)

The normalized partition function then takes the form

𝒵(𝜀) = 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 exp[−1

2𝑔𝜇2
0

∞
∑
u�=1

𝜀u�

𝑛!
∫𝑑u�𝑥 𝜙2 lnu�(𝑖𝜇1−u�/2

0 𝜙)]

= 1 +
∞

∑
u�=1

𝜀u�

𝑛! 𝑍(0)
∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0

u�
∑
u�=1

(−1
2𝑔𝜇2

0)u� Bu�,u�(𝐼1, … , 𝐼u�+1−u�),

(2.8)

in which the arguments of the partial Bell polynomials

𝐼u� = ∫𝑑u�𝑥 𝜙2(𝑥) logu�[𝑖𝜇1−u�/2
0 𝜙(𝑥)] (2.9)

are space-time integrals that contain the complex logarithmic interaction terms
of the Lagrangian density. The polynomials Bu�,u� have the explicit form [45]

Bu�,u�(𝑥1, … , 𝑥u�+1−u�) = 𝑛!⅀
u�

u�+1−u�

∏
u�=1

1
𝑐u�!

(𝑥u�
𝑠!

)
u�u�

, (2.10)

where the summation ⅀u� runs over all integers 𝑐1, … , 𝑐u�+1−u� ≥ 0, such that:

u�+1−u�

∑
u�=1

𝑠 𝑐u� = 𝑐1 + 2 𝑐2 + ⋯ + (𝑛 + 1 − 𝑘) 𝑐u�+1−u� = 𝑛, (2.11)

u�+1−u�

∑
u�=1

𝑐u� = 𝑐1 + 𝑐2 + ⋯ + 𝑐u�+1−u� = 𝑘. (2.12)

The coefficients 𝒵u� of the partition function (2.6) can thus be identified to be

𝒵u� = 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0

u�
∑
u�=1

(−1
2𝑔𝜇2

0)u�⅀
u�

u�+1−u�

∏
u�=1

1
𝑐u�!

(𝐼u�
𝑠!

)
u�u�

. (2.13)
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To third order in 𝜀, they are given explicitly as

𝜀0 ∶ 𝒵0 = 1, (2.14)

𝜀1 ∶ 𝒵1 = 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 [−1

2𝑔𝜇2
0𝐼1 ], (2.15)

𝜀2 ∶ 𝒵2 = 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 [ 1

8𝑔2𝜇4
0𝐼2

1 − 1
4𝑔𝜇2

0𝐼2 ], (2.16)

𝜀3 ∶ 𝒵3 = 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 [− 1

48𝑔3𝜇6
0𝐼3

1 + 1
8𝑔2𝜇4

0𝐼1𝐼2 − 1
12𝑔𝜇2

0𝐼3 ]. (2.17)

Note that in the expression (2.13) each term in the summation over the index
𝑘 contains a product of 𝑘 different space-time integrals, collecting the powers 𝑐u� of
the integrals 𝐼u� according to (2.12). Since these integrals are independent of one
another, the field 𝜙(𝑥) is evaluated at 𝑘 distinct space-time points, say 𝑥1, … , 𝑥u�,
in these contributions to the partition-function coefficient 𝒵u�. To distinguish the
𝑘 distinct space-time integrals more clearly, a 𝑘-dimensional multi-index notation
can be used: By introducing the multi-indices

𝛼 = (1, 2, … , 𝑘) and 𝛽 = ( 1, … , 1⏟
u�1 copies

, 2, … , 2⏟
u�2 copies

, … , (𝑛 + 1 − 𝑘), … , (𝑛 + 1 − 𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
u�u�+1−u� copies

),

(2.18)
the product over the space-time integrals 𝐼u� becomes

u�+1−u�

∏
u�=1

𝐼 u�u�u� = ∫𝑑u�𝑥u� 𝜙2(𝑥u�) logu�[ 𝑖𝜇1−u�/2
0 𝜙(𝑥u�) ]. (2.19)

The partition-function coefficient 𝒵u� in (2.13) can thus be written as

𝒵u� =
u�

∑
u�=1

(−1
2𝑔𝜇2

0)u�⅀
u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥u�

× 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 𝜙2(𝑥u�) lnu�[ 𝑖𝜇1−u�/2

0 𝜙(𝑥u�) ].
(2.20)

In this form, the dependence on the complex logarithms containing the field 𝜙
is made explicit. The functional integral can now, in principle, be evaluated by
reducing this logarithmic dependence to an expression containing only powers of
the field 𝜙, which then allows for the use of standard diagrammatic methods.
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Following the approach of [1], the complex logarithm is separated into its real
and imaginary parts:

ln(𝑖𝜇1−u�/2
0 𝜙) = 1

2[ 𝑖𝜋 sgn(𝜇1−u�/2
0 𝜙) + ln(𝜇2−u�

0 𝜙2) ], (2.21)

in which the logarithmic contribution is now a real-valued function. While the
real part of (2.21) is even in the pseudoscalar field 𝜙, the imaginary part is an
odd function, so that this replacement retains 𝒫𝒯 symmetry. Powers of the
complex logarithm can be replaced in the same way, and the exponentiation can
be expanded according to the binomial theorem or, in the case of the multi-index
expression (2.20), the multi-binomial theorem:

lnu�[𝑖𝜇1−u�/2
0 𝜙(𝑥u�)] = 1

2u�

u�

∑
u�u�=0

( u�
u�u�

)(𝑖𝜋 sgn[𝜇1−u�/2
0 𝜙(𝑥u�)])

u�u�

× (ln[𝜇2−u�
0 𝜙2(𝑥u�)])

u�−u�u�
,

(2.22)

where the factors of 1
2 from (2.21) were collected according to (2.11). The partition-

function coefficient (2.20) can thus be expressed in terms of real logarithms as

𝒵u� = 1
2u�

u�
∑
u�=1

(−1
2𝑔𝜇2

0)u�⅀
u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥u�

u�

∑
u�u�=0

( u�
u�u�

)(𝑖𝜋)u�u�

× 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 𝜙2(𝑥u�) sgnu�u�[𝜇1−u�/2

0 𝜙(𝑥u�)] lnu�−u�u�[𝜇2−u�
0 𝜙2(𝑥u�)].

(2.23)

A procedure for rewriting linear occurrences of the sign function and the real
logarithm in terms of only powers of the field 𝜙 was established in [1]. To replace
powers of these functions, the following generalizations of these techniques can be
applied: Powers of the sign function can be rewritten using an integral identity
involving the sine function, which in turn can be expanded into a series that
involves only powers of the field itself

sgnu�(𝜑) = ∫
∞

0
𝑑𝑡 2 sin(𝑡𝜑u�)

𝜋 𝑡
= ∫

∞

0
𝑑𝑡

∞
∑
u�=0

2 (−𝑡2)u�

𝜋 (2𝜔 + 1)!
𝜑(2u�+1)u�, (2.24)

where 𝜑 = 𝜇1−u�/2
0 𝜙 and the variable of integration 𝑡 is dimensionless, ensuring

the dimensional consistency of the identity. For powers of the real logarithm the
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following generalization of the replica trick, see for example [46], is used

lnu�(𝜑2) = lim
u�→0

( u�
u�u� )

u�
𝜑2u� . (2.25)

Note that the number 𝑁 of replicas is considered generally to be an integer.
The term 𝜑2u� can thus be identified as a 2𝑁 -point vertex in a diagrammatic
approach to the functional integral, as remarked in [1]. However, the identity
(2.25) requires 𝑁 to vanish continuously. This remains an unresolved issue of
the replica trick in general, but in cases where exact results are available, its
application has been shown to yield robust results. Various confirmations of
special-case results obtained with the use of (2.25) are presented throughout the
following discussions, indicating the robustness of its application in this study.

With (2.24) and (2.25) the partition-function coefficient 𝒵u� in (2.23) becomes:

𝒵u� = 1
2u�

u�
∑
u�=1

(−1
2𝑔𝜇2

0)u�⅀
u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥u�

u�

∑
u�u�=0

( u�
u�u�

)(𝑖𝜋)u�u�

× ∫
∞

0
𝑑𝑡u�

∞
∑

u�u�=0

2 (−𝑡2
u�)u�u�

𝜋 (2𝜔u� + 1)!
lim

u�u�→0
( u�

u�u�u�
)

u�−u�u�
(𝜇1−u�/2

0 )2u�u�+(2u�u�+1)u�u�

× 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 [𝜙(𝑥u�)]2(u�u�+1)+(2u�u�+1)u�u� ,

(2.26)

where the functional integral now contains only powers of the field 𝜙.

Standard diagrammatic techniques can now be used to evaluate the functional
integral in terms of the free propagator Δu�u�0

(𝑥) of the theory with Lagrangian
density ℒ0 given in (2.3). In general, the free propagator Δu�(𝑥) obeys the 𝐷-
dimensional Euclidean Klein-Gordon equation

(−∇2 + 𝜆2) Δu�(𝑥) = 𝛿(u�)(𝑥) (2.27)

and thus takes the form

Δu�(𝑥) = (2𝜋)−u�/2 𝜆u�/2−1 |𝑥|1−u�/2 K1−u�/2(𝜆|𝑥|) (2.28)

containing the associated Bessel function Ku� , [47], see Appendix A. It is normal-
ized so that

∫𝑑u�𝑥 Δu�(𝑥) = 𝜆−2 (2.29)
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and the corresponding selfloop propagator obtained at vanishing argument is

Δu�(0) = 𝜆u�−2 (4𝜋)−u�/2 Γ(1 − u�
2 ). (2.30)

Note that while Δu�(0) is finite in 0 ≤ 𝐷 < 2 space-time dimensions, it diverges as
𝐷 approaches 2 from below due to the Γ function. Specifically, denoting 𝛿 = 2−𝐷,
the selfloop propagator behaves asymptotically like

Δu�(0) ∼ 1
2𝜋𝛿

, as 𝛿 → 0. (2.31)

This divergent behavior is ultimately reflected in the Green’s functions and ne-
cessitates the renormalization of the theory in two dimensions.

The diagrammatic methods used in the evaluation of the functional integral in
(2.26) are well established and can be found in most textbooks that discuss quan-
tum field theory, e.g. [48]. They are somewhat cumbersome in their application
here, because the vertices at the 𝑘 space-time points 𝑥1 to 𝑥u� have distinct vari-
able numbers of ends, depending on the parameters 𝑁u�, 𝑚u�, and 𝜔u�. A detailed
calculation of the general functional integral

1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 𝜙u�1(𝑧1) … 𝜙u�u�(𝑧u�) (2.32)

at 𝑘 different space-time points 𝑧1, … , 𝑧u� with varying powers 𝑛1, … , 𝑛u� of the
field can be found in Appendix B, in which the solution for the specific functional
integral in (2.26) is demonstrated as well:

1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 [𝜙(𝑥u�)]2(u�u�+1)+(2u�u�+1)u�u�

= (
2Δu�u�0

(0)
√

u� )
u�

[2Δu�u�0
(0)]u�u�+u�u�(u�u�+ 1

2 )
∞

⅀
u�

u�
∏

u�,u�=1,
u�<u�

1
𝑙u�u�!

[
2Δu�u�0

(u�u� − u�u�)
Δu�u�0

(0) ]
u�u�u�

×
Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2)] Γ[𝑁u� + 3
2 + 𝑚u�(𝜔u� + 1

2)]
Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2) − 1
2𝐿u�]

(1 + eu�u�(u�u�−u�u�)

2
).

(2.33)

Here the summation ⅀u� runs over all integers 𝑙u�u� ∈ [0, ∞] with 𝑖, 𝑗 ∈ [1, 𝑘] ∶ 𝑖 < 𝑗
and the numbers 𝐿u� with 𝑟 ∈ [1.𝑘] are defined as:

𝐿u� =
u�−1
∑
u�=1

𝑙u�u� +
u�

∑
u�=u�+1

𝑙u�u�. (2.34)
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Figure 2.1: The space-time points u�u� and u�u� are connected by u�u�u� propagators Δ(u�u� −
u�u�). A total of u�u� propagators connect u�u� to any other space-time point. The possible
formation of selfloops at each vertex is suppressed in this visualization.

In a diagrammatic sense, the variables 𝑙u�u� represent the number of propagators
Δu�u�0

(𝑥u� − 𝑥u�), connecting the space-time point 𝑥u� with 𝑥u�. The indices are
restricted to 𝑖 < 𝑗 to avoid double-counting. The numbers 𝐿u�, defined in (2.34),
then denote the total number of propagators that connect a chosen space-time
point 𝑥u� to any other space-time point 𝑥u� or 𝑥u�, excluding the number of selfloops
(that is 𝑖, 𝑗 ≠ 𝑟). A schematic visualization, in which the occurrence of selfloops
is suppressed, is shown in Figure 2.1. The factors involving the exponentials
eu�u�(u�u�−u�u�) in (2.33) are a (reduced) result of the requirement that all ends of a
vertex at the space-time point 𝑥u� need to either be connected to another vertex,
or another end at the same vertex, forming selfloops. A detailed discussion of the
combinatoric arguments involved can be found in Appendix B.

The partition-function coefficient (2.26) can thus be written as

𝒵u� = 1
2u�

u�
∑
u�=1

(−
u�u�2

0Δu�u�0
(0)

√
u� )

u�
⅀

u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥u�

u�

∑
u�u�=0

( u�
u�u�

)(𝑖𝜋)u�u�

× lim
u�u�→0

( u�
u�u�u�

)
u�−u�u�

[2𝜇2−u�
0 Δu�u�0

(0)]u�u�
∞

⅀
u�

u�
∏

u�,u�=1,
u�<u�

1
𝑙u�u�!

[
2Δu�u�0

(u�u� − u�u�)
Δu�u�0

(0) ]
u�u�u�

× (1 + eu�u�(u�u�−u�u�)

2
) ∫

∞

0
𝑑𝑡u�

∞
∑

u�u�=0

2 (−𝑡2
u�)u�u�

𝜋 (2𝜔u� + 1)!
[2𝜇2−u�

0 Δu�u�0
(0)]u�u�(u�u�+ 1

2 )

×
Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2)] Γ[𝑁u� + 3
2 + 𝑚u�(𝜔u� + 1

2)]
Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2) − 1
2𝐿u�]

(2.35)

in terms of known functions only. This describes the general structure for all
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expansion coefficients of the normalized partition function 𝒵(𝜀) in all space-time
dimensions 𝐷. Such a result has not been presented before. In [25] the nonlin-
earity expansion of the similar (but Hermitian) model (1.2) has been analyzed
by introducing a polynomial auxiliary Lagrangian density, but a general form of
those polynomials was not discussed 1.

Evaluating (2.35), especially the summation ⅀u� over the numbers of free prop-
agators connecting different space-time points, is very intricate. The increasing
complexity at high orders 𝑛 is related, in particular, to the increase of the val-
ues 𝑘 that have to be taken into account. Already for terms containing three or
more space-time points, that is 𝑘 ≥ 3, the summation becomes intractable, but
numerical evaluation remains a possible approach for these terms as long as the
space-time dimension 𝐷 is fixed.

The following sections of this chapter detail the derivation of closed-form so-
lutions for the coefficients 𝒵1 and 𝒵2. In a diagrammatic sense, the contributions
with 𝑘 = 1 and 𝑘 = 2 occuring therein correspond to graphs with only a single
vertex or two vertices respectively. In these cases the summation over possible
connections and selfloops can be accounted for. Furthermore, the contributions to
(2.35) with 𝑘 = 1 and 𝑘 = 2 can, in fact, be evaluated independently of the order
𝑛 of the coefficient, so that a summation of these terms to all orders in 𝜀 becomes
possible. This presents an alternative to the 𝜀 expansion of 𝒵(𝜀), that diagram-
matically describes approximations based on an expansion in graph complexity,
i.e. in the number of vertices considered. The single-vertex and two-vertex ap-
proximations to 𝒵(𝜀) are presented in the following sections in addition to the
evaluation of the 𝜀-expansion coefficients 𝒵1 and 𝒵2.

Before discussing these cases, however, some general simplifications to (2.35)
can be made: The summations over 𝜔u� and integrations over 𝑡u� in (2.35) can be
performed using the following identity, which is derived in Appendix C:

∫
∞

0
𝑑𝑡

∞
∑
u�=0

2 (−𝑡2)u�

𝜋 (2𝜔 + 1)!
Γ[𝑎 + 𝑚(𝜔 + 1

2)] Γ[𝑏 + 𝑚(𝜔 + 1
2)]

Γ[𝑐 + 𝑚(𝜔 + 1
2)]

𝑥u�(u�+ 1
2 ) = Γ(𝑎) Γ(𝑏)

Γ(𝑐)
.

(2.36)

1 A study of a Hermitian model using similar techniques to those presented in this thesis has
appeared recently on the arXiv [49], presenting an explicit calculation of first- and second-order
coefficients. Nevertheless, a general form such as (2.35) is not derived.



Chapter 2. The Logarithmic-Expansion Method 21

The partition-function coefficient 𝒵u� in (2.35) thus reduces to

𝒵u� = 1
2u�

u�
∑
u�=1

(−
u�u�2

0Δu�u�0
(0)

√
u� )

u�
⅀

u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥u�

u�

∑
u�u�=0

( u�
u�u�

)(𝑖𝜋)u�u�

× lim
u�u�→0

( u�
u�u�u�

)
u�−u�u�

[2𝜇2−u�
0 Δu�u�0

(0)]u�u�
∞

⅀
u�

u�
∏

u�,u�=1,
u�<u�

1
𝑙u�u�!

[
2Δu�u�0

(u�u� − u�u�)
Δu�u�0

(0) ]
u�u�u�

×
Γ(𝑁u� + 2) Γ(𝑁u� + 3

2)
Γ(𝑁u� + 2 − 1

2𝐿u�)
(1 + eu�u�(u�u�−u�u�)

2
).

(2.37)

Moreover, since the partition function 𝒵(𝜀) is a dimensionless quantity, its
coefficients 𝒵u� should only depend on the dimensionless parameters 𝑔 and 𝑚, not
on 𝜇0. To confirm this, note that the general free theory propagator given in
(2.28) behaves as follows when scaling the parameter 𝜆:

Δu�u�(𝑥/𝑎) = 𝑎u�−2Δu�(𝑥) or Δu�(𝑎𝑥) = 𝑎2−u�Δu�u�(𝑥), (2.38)

and in particular
Δu�(0) = 𝑎2−u�Δu�u�(0). (2.39)

Thus, by rescaling the space-time variables 𝑥u� in (2.37) according to

𝑥u� → 𝑥′
u� = 𝜇0𝑥u�, 𝑑u�𝑥u� → 𝑑u�𝑥′

u� = 𝜇u�
0 𝑑u�𝑥u�, ∀𝑗 ∈ [1, 𝑘] (2.40)

and using (2.38) and (2.39), the partition-function coefficient can be written as:

𝒵u� = 1
2u�

u�
∑
u�=1

(−u�Δu�(0)√
u� )

u�
⅀

u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥′
u�

u�

∑
u�u�=0

( u�
u�u�

)(𝑖𝜋)u�u�

× lim
u�u�→0

( u�
u�u�u�

)
u�−u�u�

[2Δu�(0)]u�u�
∞

⅀
u�

u�
∏

u�,u�=1,
u�<u�

1
𝑙u�u�!

[
2Δu�(u�′

u� − u�′
u�)

Δu�(0) ]
u�u�u�

×
Γ(𝑁u� + 2) Γ(𝑁u� + 3

2)
Γ(𝑁u� + 2 − 1

2𝐿u�)
(1 + eu�u�(u�u�−u�u�)

2
).

(2.41)

Notice that the variables 𝑥′
u�, determined by (2.40), are of dimension [mass]0,

so that the propagators Δu�(𝑥′) are dimensionless functions. Thus (2.41) shows
explicitly that the coefficients 𝒵u�, and hence 𝑍(𝜀), are dimensionless quantities.
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2.2 𝒵1 and the Single-Vertex Approximation

In the following, the general structure (2.41) of the partition-function coefficient
𝒵u� is evaluated for 𝑛 = 1 and a closed-form solution is obtained. Moreover, it
is shown that the simplifications, which allow the reduction of 𝒵1 to an analytic
form, can be applied to the single-vertex contribution (𝑘 = 1) in any coefficient
𝒵u�. These contributions are evaluated and summed to all orders 𝑛 in 𝜀 as an
alternative way of approximating the partition function 𝒵(𝜀).

For 𝑛 = 1 the summation over the index 𝑘 in (2.41) contains the term with
𝑘 = 1 only. This implies that the multi-indices defined in (2.18) become 𝛼 = (1)
and, utilizing the conditions (2.11) and (2.12), 𝛽 = (1). Thus 𝑥u� describes only
a single space-time point 𝑥1, implying that all propagators form selfloops and
that all numbers 𝑙u�u� of free propagators connecting different space-time points 𝑥u�

and 𝑥u� vanish. A schematic visualization is shown in Figure 2.2. In addition, the
factor in (2.41), that contains an exponential function, reduces to the requirement
that 𝑚1 has to be even. Thus, the general expression (2.41) becomes:

𝒵1 = − u�Δu�(0)
2

√
u� ∫𝑑u�𝑥′

1

1
∑

u�1=0
even

(𝑖𝜋)u�1 lim
u�1→0

( u�
u�u�1

)
1−u�1

[2Δu�(0)]u�1 Γ(𝑁1 + 3
2)

= − u� u� Δu�(0)
2

√
u� lim

u�1→0
[2Δu�(0)]u�1 Γ(𝑁1 + 3

2) (ln[2Δu�(0)] + 𝜓(𝑁1 + 3
2))

= − 1
4𝑔 𝑉 Δu�(0) (ln[2Δu�(0)] + 𝜓(3

2)), (2.42)

where V = ∫𝑑u�𝑥′ denotes the volume of space-time and 𝜓(𝑥) = Γ′(𝑥)/Γ(𝑥) is
the digamma function.

Similarly, the contributions with 𝑘 = 1 in the partition-function coefficient
𝒵u� in (2.41) can be evaluated for unspecified values 𝑛 ≥ 1. Since 𝑘 = 1 im-
plies generally that 𝛼 = (1), these terms describe, in a diagrammatic sense, those
contributions that contain only a single vertex - that at the space-time point 𝑥1.
Schematically, all such terms retain the diagrammatic structure shown in Fig-
ure 2.2. For 𝑘 = 1 and an unspecified value 𝑛, the conditions (2.11) and (2.12)
imply that 𝛽 = (𝑛). All other arguments hold as above, especially the requirement
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Figure 2.2: Diagrammatic visualization of the first-order u�-expansion coefficient u�1.
All propagators form selfloops at the only space-time point u�1.

that 𝑚1 be even. The 𝑘 = 1 contribution to 𝒵u� can thus be written as

𝒵u�∣
u�=1

= − u� u� Δu�(0)
2u� u�!

√
u� lim

u�1→0

u�
∑

u�1=0
even

( u�
u�1

)(𝑖𝜋)u�1( u�
u�u�1

)
u�−u�1

× [2Δu�(0)]u�1 Γ(𝑁1 + 3
2)

= − u� u� Δu�(0)
2u� u�!

√
u� lim

u�1→0

u�
∑

u�1=0
( u�

u�1
){( u�

u�u�1
)

u�1
cos(𝜋𝑁1)}

× {( u�
u�u�1

)
u�−u�1

[2Δu�(0)]u�1 Γ(𝑁1 + 3
2)}.

(2.43)

Using the general Leibniz rule [50] the summation can be evaluated, yielding:

𝒵u�∣
u�=1

= −u� u� Δu�(0)
2u� u�!

√
u� lim

u�1→0
( u�

u�u�1
)

u�
[2Δu�(0)]u�1 cos(𝜋𝑁1) Γ(𝑁1 + 3

2). (2.44)

The evaluation for any specified value of 𝑛 is straightforward. Furthermore, in
the form (2.44) the summation of all such contributions over values 𝑛 ≥ 1, that
is to all orders in 𝜀, becomes apparent:

𝒵(𝜀)∣
u�=1

=
∞

∑
u�=1

𝒵u�∣
u�=1

𝜀u� = −u� u� Δu�(0)√
u�

∞
∑
u�=1

(𝜀/2)u�

𝑛!
lim

u�1→0
( u�

u�u�1
)

u�
𝑓(𝑁1), (2.45)

where 𝑓(𝑁1) = [2Δu�(0)]u�1 cos(𝜋𝑁1) Γ(𝑁1 + 3
2). After completing this summa-

tion with a 𝑛 = 0 term, 𝑓(0), it is recognized as the Taylor series of 𝑓(𝜀/2) around
0, and can thus be evaluated to the form

𝒵(𝜀)∣
u�=1

= 1
2𝑔𝑉 Δu�(0) − 1

2
√

u� 𝑔𝑉 cos(u�u�
2 ) Γ(u�+3

2 ) [2Δu�(0)]1+u�/2. (2.46)
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Notice that this approximation shows an explicit linear dependence on the cou-
pling constant 𝑔. In fact, in the general coefficient structure (2.41) the coupling
constant enters explicitly as 𝑔u�, i.e. exponentiated by the number of vertices con-
sidered in the respective contributions to 𝒵u�. The summation of the contributions
with a fixed value of 𝑘 over all nonlinearity expansion coefficients 𝒵u� therefore,
in a way, corresponds to a 𝑘th order coupling-constant approximation. But 𝑔
enters also implicitly through the dimensionless mass parameter 𝑚2 = 𝑔 +𝜇2/𝜇2

0.
Nevertheless, the coupling-constant expansion picture is suitable: By rewriting
the Lagrangian density (2.1) in the form

ℒ(𝜀) = 1
2(∇𝜙)2 + 1

2(𝑚𝜇0)2𝜙2 + 1
2𝑔𝜇2

0𝜙2 [(𝑖𝜇1−u�/2
0 𝜙)u� − 1] (2.47)

one recognizes the 𝑘-vertex approximation 𝒵(𝜀)|u� as the 𝑘th-order expansion of a
model with interaction term 1

2𝐺𝜇2
0𝜙2[(𝑖𝜇1−u�/2

0 𝜙)u� − 1] in the coupling constant
𝐺 at the value 𝐺 = 𝑔. With this caveat in mind, the 𝑘-vertex approximations
can be identified as coupling-constant approximations that are obtained from the
nonlinearity expansion.

Relating the artificial nonlinearity expansion in 𝜀 to a natural coupling-constant
expansion is of interest, because the functional integrals arising in a coupling-
constant expansion for an interaction term of the form (2.47) are not evaluable for
general values of 𝜀 by means of standard diagrammatic methods. The nonlinearity
expansion thus not only allows one to address theories that have self-interactions
with non-integer exponents of the field, but makes sense of the coupling-constant
approximation in such theories as well.

On the other hand, for integer values of 𝜀, a coupling-constant expansion of
(2.47) can be evaluated directly and its first-order result can be compared to the
general approximation coefficient 𝒵(𝜀)|u�=1. The calculation is straightforward and
agrees with the result in (2.46), which serves as a confirmation of the behavior for
the 𝑘 = 1 contributions to the general partition-function coefficients 𝒵u� in (2.41).
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2.3 𝒵2 and the Two-Vertex Approximation

In order to determine the partition-function coefficient 𝒵2 from (2.41), two
contributions need to be considered: A single-vertex term when 𝑘 = 1, which
is determined by the expression (2.44) found in the last section, and a two-vertex
term, when 𝑘 = 2.

Evaluating the single-vertex contribution (2.44) for 𝑛 = 2 yields the result:

𝒵2∣
u�=1

= −u� u� Δu�(0)
16 [(ln[2Δu�(0)] + 𝜓(3

2))
2

+ 𝜓(1)(3
2) − 𝜋2], (2.48)

where 𝜓(1)(𝑥) = (𝑑/𝑑𝑥) 𝜓(𝑥) is the polygamma function of first order.

For the remaining 𝑘 = 2 term in (2.41) with 𝑛 = 2, the multi-index 𝛼 = (1, 2)
implies that this contribution contains two vertices at the space-time points 𝑥1

and 𝑥2. This is shown schematically in Figure 2.3. The space-time points are in
general connected by 𝑙12 free propagators Δu�(𝑥1 − 𝑥2). Contrary to the single-
vertex terms, the summation⅀u� in (2.41) does contribute as a summation over this
single variable 𝑙12 here, and 𝐿1 = 𝑙12 = 𝐿2 according to (2.34). The multi-index
𝛽 = (1, 1) is specified by the conditions (2.11) and (2.12). Thus, for 𝑛 = 𝑘 = 2
the general expression (2.41) becomes:

𝒵2∣
u�=2

= u�2Δ2
u�(0)

8u� ∫𝑑u�𝑥′
1𝑑u�𝑥′

2

1
∑

u�1=0

1
∑

u�2=0
(𝑖𝜋)u�1+u�2

× lim
u�1,u�2→0

( u�
u�u�1

)
1−u�1

( u�
u�u�2

)
1−u�2

[2Δu�(0)]u�1+u�2

×
∞

∑
u�12=0

1
𝑙12!

[2Δu�(u�′
1 − u�′

2)
Δu�(0) ]

u�12
(1 + eu�u�(u�1−u�12)

2
)(1 + eu�u�(u�2−u�12)

2
)

×
Γ(𝑁1 + 2) Γ(𝑁1 + 3

2)
Γ(𝑁1 + 2 − 1

2 𝑙12)
Γ(𝑁2 + 2) Γ(𝑁2 + 3

2)
Γ(𝑁2 + 2 − 1

2 𝑙12)
.

(2.49)

The factors containing the exponential functions eu�u�(u�1−u�12) and eu�u�(u�2−u�12) imply
that this expression splits into two parts: one in which 𝑙12 is summed over only
even numbers, and for which 𝑚1 = 𝑚2 = 0, and another with odd values of 𝑙12, in
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Figure 2.3: Diagrammatic visualization of the two-vertex contribution u�2|u�=2 in the
second-order u�-expansion coefficient u�2.

which 𝑚1 = 𝑚2 = 1. Rescaling 𝑙12 → 2𝑙 and 𝑙12 → 2𝑙 + 1 in these contributions
respectively, (2.49) takes the form

𝒵2∣
u�=2

= u�2Δ2
u�(0)

8u� ∫𝑑u�𝑥′
1𝑑u�𝑥′

2 lim
u�1,u�2→0

({( u�
u�u�1

)( u�
u�u�2

)[2Δu�(0)]u�1+u�2

×
∞

∑
u�=0

1
(2𝑙)!

[2Δu�(u�′
1 − u�′

2)
Δu�(0) ]

2u� Γ(𝑁1 + 2)Γ(𝑁1 + 3
2)

Γ(𝑁1 + 2 − 𝑙)
Γ(𝑁2 + 2)Γ(𝑁2 + 3

2)
Γ(𝑁2 + 2 − 𝑙)

}

− 𝜋2 [2Δu�(0)]u�1+u�2 Γ(𝑁1 + 2) Γ(𝑁2 + 2) 2Δu�(u�′
1−u�′

2)
Δu�(0)

×
∞

∑
u�=0

1
(2𝑙 + 1)!

[2Δu�(u�′
1 − u�′

2)
Δu�(0) ]

2u� Γ(𝑁1 + 3
2)

Γ(𝑁1 + 3
2 − 𝑙)

Γ(𝑁2 + 3
2)

Γ(𝑁2 + 3
2 − 𝑙)

).

(2.50)

Rewriting the fractions of Γ functions with the use of Euler’s reflection formula [50]
according to

Γ(𝑥 + 1)
Γ(𝑥 + 1 − 𝑙)

= (−1)u� Γ(−𝑥 + 𝑙)
Γ(−𝑥)

, (2.51)

and rewriting

(2𝑙)! = 22u�𝑙!
Γ(1

2 + 𝑙)
Γ(1

2)
and (2𝑙 + 1)! = 22u�𝑙!

Γ(3
2 + 𝑙)

Γ(3
2)

, (2.52)

the summations over 𝑙 in (2.50) can be identified as Gaussian hypergeometric
functions [51]

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) =
∞

∑
u�=0

𝑧u�

𝑙!
Γ(𝑎 + 𝑙)

Γ(𝑎)
Γ(𝑏 + 𝑙)

Γ(𝑏)
Γ(𝑐)

Γ(𝑐 + 𝑙)
. (2.53)
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The expression (2.50) then reads:

𝒵2∣
u�=2

= u�2Δ2
u�(0)

8u� ∫𝑑u�𝑥′
1𝑑u�𝑥′

2 lim
u�1,u�2→0

× ({( u�
u�u�1

)( u�
u�u�2

)[2Δu�(0)]u�1+u�2 Γ(𝑁1 + 3
2) Γ(𝑁2 + 3

2)

× 2𝐹1[ − (𝑁1 + 1), −(𝑁2 + 1); 1
2 ; (Δu�(u�′

1−u�′
2)

Δu�(0) )2]}

− 𝜋2[2Δu�(0)]u�1+u�2 Γ(𝑁1 + 2) Γ(𝑁2 + 2) 2Δu�(u�′
1−u�′

2)
Δu�(0)

× 2𝐹1[ − (𝑁1 + 1
2), −(𝑁2 + 1

2); 3
2 ; (Δu�(u�′

1−u�′
2)

Δu�(0) )2]).

(2.54)

Shifting the integration variable 𝑥′
1 → 𝑥′ + 𝑥′

2 and using the explicit expressions

2𝐹1(−1
2 , −1

2 ; 3
2 ; 𝑧2) = (2𝑧2 + 1) sin−1(𝑧)

4𝑧
+ 3

4
√

1 − 𝑧2, (2.55)

2𝐹1(−1, −1; 1
2 ; 𝑧2) = 2𝑧2 + 1, (2.56)

and the derivatives

lim
u�→0

( u�
u�u� ) 2𝐹1[−(𝑁 + 1), −1; 1

2 ; 𝑧2] = 2𝑧2, (2.57)

lim
u�→0

( u�
u�u� ) 2𝐹1[−1, −(𝑁 + 1); 1

2 ; 𝑧2] = 2𝑧2, (2.58)

as well as

lim
u�1,u�2→0

( u�
u�u�1

)( u�
u�u�2

) 2𝐹1[−(𝑁1 + 1), −(𝑁2 + 1); 1
2 ; 𝑧2]

= 2𝑧2 + 2
3𝑧4

3𝐹2(1, 1, 1; 15
2 , 3; 𝑧2)

= 12𝑧
√

1 − 𝑧2 sin−1(𝑧) + (4𝑧2 + 2)[sin−1(𝑧)]2 − 12𝑧2,

(2.59)

results in the expression

𝒵2∣
u�=2

= u�2 u� 2 Δ2
u�(0)

32 (ln[2Δu�(0)] + 𝜓(3
2))

2

+ u�2 u� Δ2
u�(0)

16 {(ln[2Δu�(0)] + 𝜓(3
2))

2
+ 2(ln[2Δu�(0)] + 𝜓(3

2)) − 6}

× ∫𝑑u�𝑥′ [Δu�(u�′)
Δu�(0) ]

2

+ u�2 u� Δ2
u�(0)

16 ∫𝑑u�𝑥′ {3Δu�(u�′)
Δu�(0) √1 − [Δu�(u�′)

Δu�(0) ]2 (2 sin−1[Δu�(u�′)
Δu�(0) ] − 𝜋)

+ (2[Δu�(u�′)
Δu�(0) ]2 + 1) sin−1[Δu�(u�′)

Δu�(0) ](sin−1[Δu�(u�′)
Δu�(0) ] − 𝜋)}.

(2.60)
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The integral over the square of the propagator (2.28)

∫𝑑u�𝑥′ [Δu�(u�′)
Δu�(0) ]

2
=

(1 − u�
2 )

Δu�(0)
𝑚−2 (2.61)

can be evaluated using the identity ∫∞
0

𝑑𝑡 𝑡 K2
u�(𝑡) = 1

2Γ(1 − 𝜈)Γ(1 + 𝜈) of the
associated Bessel function Ku� , see [51]. The space-time integration in the last
term of (2.60), however, is quite intricate, but can be evaluated numerically for
given dimension 𝐷. Together with the 𝒵2|u�=1 contribution (2.48) the second-
order partition-function coefficient 𝒵2 of the 𝜀 expansion of 𝒵(𝜀) thus has the
form:

𝒵2 = u�2 u� 2 Δ2
u�(0)

32 (ln[2Δu�(0)] + 𝜓(3
2))

2

+ u�2 u� u�−2Δu�(0)
16 (1 − u�

2 ) {(ln[2Δu�(0)] + 𝜓(3
2))

2

+ 2(ln[2Δu�(0)] + 𝜓(3
2)) − 6}

+ u�2 u� Δ2
u�(0)

16 ∫𝑑u�𝑥′ {3Δu�(u�′)
Δu�(0) √1 − [Δu�(u�′)

Δu�(0) ]2 (2 sin−1[Δu�(u�′)
Δu�(0) ] − 𝜋)

+ (2[Δu�(u�′)
Δu�(0) ]2 + 1) sin−1[Δu�(u�′)

Δu�(0) ](sin−1[Δu�(u�′)
Δu�(0) ] − 𝜋)}

− u� u� Δu�(0)
16 [(ln[2Δu�(0)] + 𝜓(3

2))
2

+ 𝜓(1)(3
2) − 𝜋2].

(2.62)

Similar to the vertex approximation 𝒵(𝜀)|u�=1 presented in Section 2.2, which
took into account the single-vertex contributions arising at all orders in 𝜀, a sum-
mation of all two-vertex contributions is possible as well. The first step towards
such an approximation is the calculation of the 𝑘 = 2 contribution in the partition-
function coefficient 𝒵u� in (2.41) for a general value 𝑛 ≥ 2. Schematically, all such
contributions retain the diagrammatic structure shown in Figure 2.3. The evalua-
tion proceeds as for 𝑛 = 2 above: 𝛼 = (1, 2) and the summation ⅀u� contributes as
a summation over the single variable 𝑙12, where 𝐿1 = 𝑙12 = 𝐿2 according to (2.34).
Again, the factors containing the exponential functions eu�u�(u�1−u�12) and eu�u�(u�2−u�12)

imply that the expression splits into two parts: one in which 𝑙12 is summed over
even values, for which the summations over 𝑚1 and 𝑚2 are restricted to even val-
ues, and another with only odd values of 𝑙12, for which 𝑚1 and 𝑚2 are required
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to be odd as well. Thus the 𝑘 = 2 contribution to 𝒵u� in (2.41) becomes

𝒵u�∣
u�=2

= u�2 u� Δ2
u�(0)

2u�u� ⅀
u�

u�−1
∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥′ lim
u�1,u�2→0

× {
∞

∑
u�12=0
even

1
𝑙12!

[2Δu�(u�′)
Δu�(0) ]

u�12
𝜎even +

∞
∑

u�12=0
odd

1
𝑙12!

[2Δu�(u�′)
Δu�(0) ]

u�12
𝜎odd},

(2.63)

where, with the for now unspecified multi-index 𝛽 = (𝛽1, 𝛽2),

𝜎even/odd =
u�1

∑
u�1=0

even/odd

( u�1
u�1

)(𝑖𝜋)u�1( u�
u�u�1

)
u�1−u�1

[2Δu�(0)]u�1 Γ(𝑁1 + 2) Γ(𝑁1 + 3
2)

Γ(𝑁1 + 2 − 1
2 𝑙12)

×
u�2

∑
u�2=0

even/odd

( u�2
u�2

)(𝑖𝜋)u�2( u�
u�u�2

)
u�2−u�2

[2Δu�(0)]u�2 Γ(𝑁2 + 2) Γ(𝑁2 + 3
2)

Γ(𝑁2 + 2 − 1
2 𝑙12)

.

(2.64)
The summations in 𝜎even/odd can be evaluated as versions of the general Leibniz
rule [50]:

u�

∑
u�=0
even

( u�
u�)(𝑖𝜋)u� ( u�

u�u� )
u�−u�

𝑓(𝑁)

=
u�

∑
u�=0

( u�
u�)[( u�

u�u� )
u�

cos(𝜋𝑁)][( u�
u�u� )

u�−u�
𝑓(𝑁)]

= ( u�
u�u� )

u�
cos(𝜋𝑁) 𝑓(𝑁),

(2.65)

and similarly

u�

∑
u�=0
odd

( u�
u�)(𝑖𝜋)u�( u�

u�u� )
u�−u�

𝑓(𝑁) = ( u�
u�u� )

u�
𝑖 sin(𝜋𝑁) 𝑓(𝑁). (2.66)

Then (2.64) becomes either

𝜎even = ( u�
u�u�1

)
u�1

( u�
u�u�2

)
u�2

[2Δu�(0)]u�1+u�2 cos(𝜋𝑁1) cos(𝜋𝑁2)

×
Γ(𝑁1 + 2) Γ(𝑁1 + 3

2)
Γ(𝑁1 + 2 − 1

2 𝑙12)
Γ(𝑁2 + 2) Γ(𝑁2 + 3

2)
Γ(𝑁2 + 2 − 1

2 𝑙12)

(2.67)
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or

𝜎odd = − ( u�
u�u�1

)
u�1

( u�
u�u�2

)
u�2

[2Δu�(0)]u�1+u�2 sin(𝜋𝑁1) sin(𝜋𝑁2)

×
Γ(𝑁1 + 2) Γ(𝑁1 + 3

2)
Γ(𝑁1 + 2 − 1

2 𝑙12)
Γ(𝑁2 + 2) Γ(𝑁2 + 3

2)
Γ(𝑁2 + 2 − 1

2 𝑙12)
.

(2.68)

And thus the coefficient contributions 𝒵u�|u�=2 in (2.63) are found to be

𝒵u�∣
u�=2

= u�2 u� Δ2
u�(0)

2u�u� ⅀
u�

u�−1
∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥′ lim
u�1,u�2→0

( u�
u�u�1

)
u�1

( u�
u�u�2

)
u�2

× {[2Δu�(0)]u�1+u�2 cos(𝜋𝑁1) cos(𝜋𝑁2)

×
∞

∑
u�12=0
even

1
𝑙12!

[2Δu�(u�′)
Δu�(0) ]

u�12 Γ(𝑁1 + 2) Γ(𝑁1 + 3
2)

Γ(𝑁1 + 2 − 1
2 𝑙12)

Γ(𝑁2 + 2) Γ(𝑁2 + 3
2)

Γ(𝑁2 + 2 − 1
2 𝑙12)

− [2Δu�(0)]u�1+u�2 sin(𝜋𝑁1) sin(𝜋𝑁2)

×
∞

∑
u�12=0
odd

1
𝑙12!

[2Δu�(u�′)
Δu�(0) ]

u�12 Γ(𝑁1 + 2) Γ(𝑁1 + 3
2)

Γ(𝑁1 + 2 − 1
2 𝑙12)

Γ(𝑁2 + 2) Γ(𝑁2 + 3
2)

Γ(𝑁2 + 2 − 1
2 𝑙12)

}.

(2.69)

Before evaluating the summations over 𝑙12, consider the summation ⅀u� and the
multi-index 𝛽. The conditions (2.11) and (2.12) here have the form

𝑐1 + 2 𝑐2 + ⋯ + (𝑛 − 1) 𝑐u�−1 = 𝑛, (2.70)

𝑐1 + 𝑐2 + ⋯ + 𝑐u�−1 = 2. (2.71)

In general, all but two numbers 𝑐u� and 𝑐u�−u� with 𝑗 ∈ [1, 𝑛 − 1] will vanish, and
these two have the value 𝑐u� = 𝑐u�−u� = 1 to satisfy the conditions (2.70) and (2.71).
A special case can occur for even values of 𝑛, in which only the coefficient 𝑐u�/2 = 2
does not vanish. The conditions (2.70) and (2.71) thus result in the multi-index
𝛽 = (𝑗, 𝑛 − 𝑗), which includes the special case when 𝑗 = 𝑛/2. This allows one to
rewrite the summation

⅀
u�

u�−1
∏
u�=1

1
𝑐u�! (𝑠! )u�u�

[( u�
u�u�1

)
u�1

𝑔(𝑁1)][( u�
u�u�2

)
u�2

ℎ(𝑁2)]

= 1
2𝑛!

u�−1
∑
u�=1

(u�
u� )[( u�

u�u�1
)

u�
𝑔(𝑁1)][( u�

u�u�2
)

u�−u�
ℎ(𝑁2)]

(2.72)
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over generic functions 𝑔 and ℎ, and by completing this sum with a 𝑗 = 0 and
𝑗 = 𝑛 term, evaluate it as the general Leibniz rule [50]:

1
2𝑛!

u�−1
∑
u�=1

(u�
u� )[( u�

u�u�1
)

u�
𝑔(𝑁1)][( u�

u�u�2
)

u�−u�
ℎ(𝑁2)]

= [( u�
u�u� )

u� 𝑔(𝑁)ℎ(𝑁)
2𝑛!

] − 𝑔(𝑁1)
2𝑛!

[( u�
u�u�2

)
u�
ℎ(𝑁2)] − ℎ(𝑁2)

2𝑛!
[( u�

u�u�1
)

u�
𝑔(𝑁1)].

(2.73)

With this, the derivatives in the coefficient (2.69) can be rewritten, yielding the
expression

𝒵u�∣
u�=2

= u�2 u� Δ2
u�(0)

2u�+1u�! u� ∫𝑑u�𝑥′ lim
u�→0

( u�
u�u� )

u�
[2Δu�(0)]2u�

× {cos2(𝜋𝑁)
∞

∑
u�12=0
even

1
𝑙12!

[2Δu�(u�′)
Δu�(0) ]

u�12
[

Γ(𝑁 + 2) Γ(𝑁 + 3
2)

Γ(𝑁 + 2 − 1
2 𝑙12)

]
2

− sin2(𝜋𝑁)
∞

∑
u�12=0
odd

1
𝑙12!

[2Δu�(u�′)
Δu�(0) ]

u�12
[

Γ(𝑁 + 2) Γ(𝑁 + 3
2)

Γ(𝑁 + 2 − 1
2 𝑙12)

]
2
}

− u�2 u� Δ2
u�(0)

2u�u�! u� ∫𝑑u�𝑥′ lim
u�→0

( u�
u�u� )

u�
[2Δu�(0)]u� cos(𝜋𝑁)

×
∞

∑
u�12=0
even

1
𝑙12!

[2Δu�(u�′)
Δu�(0) ]

u�12 Γ(𝑁 + 2) Γ(𝑁 + 3
2)

Γ(𝑁 + 2 − 1
2 𝑙12)

Γ(2) Γ(3
2)

Γ(2 − 1
2 𝑙12)

.

(2.74)

The summations over even or odd values of 𝑙12 can now be performed in the same
way as for 𝑛 = 2 above, see the discussion of equation (2.50), leading to the result

𝒵u�∣
u�=2

= u�2 u� Δ2
u�(0)

2u�+1 u�! u� ∫𝑑u�𝑥′ lim
u�→0

( u�
u�u� )

u�
[2Δu�(0)]2u�{− sin2(𝜋𝑁) Γ(𝑁 + 2)2

× 2Δu�(u�′)
Δu�(0) 2𝐹1[ − (𝑁 + 1

2), −(𝑁 + 1
2); 3

2 ; (Δu�(u�′)
Δu�(0) )2]

+ cos2(𝜋𝑁) Γ(𝑁 + 3
2)2

2𝐹1[ − (𝑁 + 1), −(𝑁 + 1); 1
2 ; (Δu�(u�′)

Δu�(0) )2]}

− u�2 u� Δ2
u�(0)

2u� u�! u� ∫𝑑u�𝑥′ lim
u�→0

( u�
u�u� )

u�
[2Δu�(0)]u� cos(𝜋𝑁) Γ(3

2) Γ(𝑁 + 3
2)

× 2𝐹1[ − (𝑁 + 1), −1; 1
2 ; (Δu�(u�′)

Δu�(0) )2].
(2.75)
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In this form the two-vertex contributions to 𝒵u� can be summed to all orders 𝑛 in
𝜀 as follows:

𝒵(𝜀)∣
u�=2

=
∞

∑
u�=2

𝒵u�∣
u�=2

𝜀u� = u�2 u� Δ2
u�(0)

2u�

∞
∑
u�=2

(𝜀/2)u�

𝑛!
lim

u�→0
( u�

u�u� )
u�
𝑓(𝑁), (2.76)

where

𝑓(𝑁) = ∫𝑑u�𝑥′ {[2Δu�(0)]2u� cos2(𝜋𝑁) Γ(𝑁 + 3
2)2

× 2𝐹1[ − (𝑁 + 1), −(𝑁 + 1); 1
2 ; (Δu�(u�′)

Δu�(0) )2]

− [2Δu�(0)]2u� sin2(𝜋𝑁) Γ(𝑁 + 2)2 2Δu�(u�′)
Δu�(0)

× 2𝐹1[ − (𝑁 + 1
2), −(𝑁 + 1

2); 3
2 ; (Δu�(u�′)

Δu�(0) )2]

−
√

𝜋 [2Δu�(0)]u� cos(𝜋𝑁) Γ(𝑁 + 3
2)

× 2𝐹1[ − (𝑁 + 1), −1; 1
2 ; (Δu�(u�′)

Δu�(0) )2]}.

(2.77)

The summation (2.76) is recognizable as the Taylor series of 𝑓(𝜀/2) around 0
without the 𝑛 = 0 and 𝑛 = 1 terms. Therefore, completing the summation
results in the two-vertex approximation of the partition function:

𝒵(𝜀)∣
u�=2

= u�2 u� Δ2
u�(0)

2u� {𝑓(𝜀/2) − 𝑓(0) − 1
2𝜀 lim

u�→0
( u�

u�u� )𝑓(𝑁)}. (2.78)

The first derivative of 𝑓(𝑁) can be performed using the derivative (2.57) of the
Gaussian hypergeometric function and is found to vanish in the limit 𝑁 → 0.
Thus the two-vertex approximation of the partition function 𝒵(𝜀) reads:

𝒵(𝜀)∣
u�=2

= u�2 u� 2 Δ2
u�(0)

8 + u�2 u� u�−2Δu�(0)
4 (1 − u�

2 ) + u�2 u� Δ2
u�(0)

2u� ∫𝑑u�𝑥′

× {[2Δu�(0)]u� cos2(u�u�
2 )Γ(u�+3

2 )2
2𝐹1[ − u�+2

2 , −u�+2
2 ; 1

2 ; (Δu�(u�′)
Δu�(0) )2]

− [2Δu�(0)]u� sin2(u�u�
2 )Γ(u�+4

2 )2 2Δu�(u�′)
Δu�(0) 2𝐹1[ − u�+1

2 , −u�+1
2 ; 3

2 ; (Δu�(u�′)
Δu�(0) )2]

−
√

𝜋 [2Δu�(0)]u�/2 cos(u�u�
2 )Γ(u�+3

2 ) 2𝐹1[ − u�+2
2 , −1; 1

2 ; (Δu�(u�′)
Δu�(0) )2]}.

(2.79)
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Notice that this approximation is explicitly quadratic in the coupling constant 𝑔
and can be identified as a second-order coupling-constant approximation in the
sense discussed in Section 2.2. For integer values of 𝜀 such an expansion can be
evaluated using standard diagrammatic methods, confirming the result (2.79) in
those cases.

Overall, the study of the normalized partition function in this chapter has
demonstrated how the nonlinearity-expansion techniques of [1] can be generalized
beyond the application at first order, resulting in the general structure of the
partition-function coefficients 𝒵u�. For the first-order and second-order coefficients
𝒵1 and 𝒵2, this general structure was reduced to closed-form solutions and a
second type of approximation, based on the summation of single-vertex and two-
vertex terms to all orders in 𝜀, was presented, relating the 𝜀 expansion of 𝒵(𝜀) to
a coupling-constant expansion picture.

Before applying the generalized expansion techniques to the study of the
Green’s functions, the results of the partition-function analysis are used to de-
termine the behavior of the ground-state energy density in the following chapter,
illustrating the numerical analysis that is required for the evaluation of the non-
linearity expansion beyond second order as well.



Chapter 3

The Ground-State Energy Density

The reality of the energy spectrum is one of the most surprising features of the non-
Hermitian quantum-mechanical system with the Bender-Boettcher Hamiltonian
(1.1). It is this curious feature in which the concept of 𝒫𝒯 symmetry originated
[21]. In this chapter the behavior of the 𝜀 expansion for the ground-state energy
density ℰ(𝜀) of the 𝐷-dimensional model is investigated through its relation to
the expansion coefficients of the normalized partition function 𝒵(𝜀).

In Section 3.1 closed-form solutions for the first- and second-order coefficients
ℰ1 and ℰ2 are determined based on the results for the coefficients 𝒵1 and 𝒵2. The
coefficient ℰ1 is shown to agree with the result obtained by Bender et al. in [1]
and their analysis is improved upon with the calculation of ℰ2. Furthermore, an
approximation of ℰ(𝜀) based on the single-vertex and two-vertex contributions
𝒵(𝜀)|u�=1 and 𝒵(𝜀)|u�=2 is obtained.

In Section 3.2 and Section 3.3 the evaluation of ℰ1 and ℰ2 in 𝐷 = 0 and
𝐷 = 1 space-time dimensions is shown to coincide with the results obtained
either through direct integration of the functional integral, in the case of the zero-
dimensional theory, or Rayleigh-Schrödinger perturbation theory for the quantum-
mechanical case.

An additional test of the general partition-function coefficient structure 𝒵u�

is the occurrence of volumetric divergences, which are expected to cancel in the
ground-state energy density. This behavior is argued to be generally the case in
Section 3.4 based on the structure of 𝒵u� obtained in the previous chapter. The
cancellation of volumetrically divergent contributions also allows for numerical

34
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evaluations of the energy density by considering only the volume-independent
contributions. In Section 3.5 this is demonstrated for the coefficient ℰ3 in 𝐷 =
0 and 𝐷 = 1 dimensions. The Padé approximants based on the third-order
calculation are determined and compared to the exact results to assess the quality
of the approximation.

3.1 Expansion in 𝐷 Dimensions

The ground-state energy density ℰ(𝜀) is related to the normalized partition func-
tion 𝒵(𝜀) through

ℰ(𝜀) = − 1
𝑉

ln[𝑍(0) 𝒵(𝜀)], (3.1)

where 𝑉 denotes the 𝐷-dimensional space-time volume and 𝑍(0) the partition
function (2.5) of the free theory. The coefficients ℰu� of an expansion in the
nonlinearity parameter 𝜀,

ℰ(𝜀) =
∞

∑
u�=0

ℰu� 𝜀u�, (3.2)

can thus be expressed in terms of the expansion coefficients 𝒵u� of the normalized
partition function, whose structure (2.41) was analyzed in the previous chapter:

ℰu� = 1
𝑛!

( u�
u�u�)

u�
ℰ(𝜀)∣

u�=0
= − 1

𝑉 𝑛!
( u�

u�u�)
u�

ln[𝑍(0) 𝒵(𝜀)]∣
u�=0

. (3.3)

The logarithmic derivatives are calculated using Faa‘ di Bruno’s formula [45] in
terms of the partial Bell polynomials (2.10), finding that

ℰu� = 1
𝑉 𝑛!

u�
∑
u�=1

(𝑘 − 1)! (−1)u� Bu�,u�[1! 𝒵1, … , (𝑛 + 1 − 𝑘)! 𝒵u�+1−u�] (3.4)

for 𝑛 ≥ 1 and ℰ0 = − ln[𝑍(0)]/𝑉 . To third order in 𝜀 the energy-density coeffi-
cients are explicitly given in terms of the partition-function coefficients as

ℰ1 = − 1
u� 𝒵1, ℰ2 = − 1

u� (𝒵2 − 1
2𝒵2

1 ), ℰ3 = − 1
u� (𝒵3 − 𝒵1𝒵2 + 1

3𝒵3
1). (3.5)
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Figure 3.1: Behavior of the first-order and second-order energy-density coefficients
ℰ1 and ℰ2 in 0 ≤ u� < 4 dimensions. The black dots denote the zero-dimensional
and quantum-mechanical theories, which are evaluated algebraically in Section 3.2 and
Section 3.3.

Using the results (2.42) and (2.62) for the partition-function coefficients 𝒵1

and 𝒵2 obtained in Chapter 2, the first-order and second-order energy-density
coefficients are found to be

ℰ1 = 1
4𝑔 Δu�(0) (ln[2Δu�(0)] + 𝜓(3

2)), (3.6)

in agreement with the result of [1], and

ℰ2 = u�2 u�−2Δu�(0)
16 (u�

2 − 1){(ln[2Δu�(0)] + 𝜓(3
2))

2
+ 2(ln[2Δu�(0)] + 𝜓(3

2))− 6}

− u�2 Δ2
u�(0)

16 ∫𝑑u�𝑥′ {3Δu�(u�′)
Δu�(0) √1 − [Δu�(u�′)

Δu�(0) ]2 (2 sin−1[Δu�(u�′)
Δu�(0) ] − 𝜋)

+ (2[Δu�(u�′)
Δu�(0) ]2 + 1) sin−1[Δu�(u�′)

Δu�(0) ](sin−1[Δu�(u�′)
Δu�(0) ] − 𝜋)}

+ u� Δu�(0)
16 [(ln[2Δu�(0)] + 𝜓(3

2))
2

+ 𝜓(1)(3
2) − 𝜋2]. (3.7)

In Figure 3.1 the behavior of these coefficients is shown as a function of the
space-time dimension in the range 0 ≤ 𝐷 < 4 for 𝑔 = 𝑚 = 1, which corresponds to
the model without dimensional parameters studied in [1]. The first-order energy-
density coefficient shown in Figure 3.1a has a positive minimum near 𝐷 = 1.3.
Note that both energy coefficients diverge at 𝐷 = 2, demonstrating that renor-
malization techniques are required in this case. Moreover, they both evaluate to
finite complex values in the region 2 < 𝐷 < 4, and diverge again when approach-



Chapter 3. The Ground-State Energy Density 37

ing 𝐷 = 4. The transition from real values in 0 ≤ 𝐷 < 2 dimensions to complex
values for 2 < 𝐷 < 4 is caused by the proportionality of the selfloop propagator
Δu�(0) to Γ(1− u�

2 ), cf. (2.30), which changes sign from being a positive real func-
tion in the region 0 ≤ 𝐷 < 2, to being a negative real function for 2 < 𝐷 < 4.
As a result the term ln[2Δu�(0)] becomes a complex function in 2 < 𝐷 < 4 di-
mensions, and so do the ground-state energy-density coefficients ℰ1 and ℰ2. This
behavior appears to suggest that - at least order-by-order in the nonlinearity ex-
pansion - the reality of the ground-state energy density, which is so remarkable in
the quantum-mechanical Bender-Boettcher model, is not generally preserved for
all dimensions in the 𝐷-dimensional quantum-field-theoretical system.

In analogy to the expansion in terms of the coefficients 𝒵1 and 𝒵2, the ground-
state energy density ℰ(𝜀) can also be calculated based on the single-vertex and
two-vertex approximations 𝒵(𝜀)|u�=1 and 𝒵(𝜀)|u�=2 of the normalized partition
function. As argued in Section 2.2, when treating 𝑚 and 𝑔 as independent param-
eters these approximations correspond to first-order and second-order coupling-
constant expansion contributions. Therefore, the relation between the correspond-
ing energy-density contributions and the partition-function contributions has the
same form as for the 𝜀-expansion coefficients, namely:

ℰ(𝜀)∣
u�=1

= − 1
u� 𝒵(𝜀)∣

u�=1
, ℰ(𝜀)∣

u�=2
= − 1

u� [𝒵(𝜀)∣
u�=2

− 1
2𝒵(𝜀)∣2

u�=1
]. (3.8)

Using the results (2.46) and (2.79) for 𝒵(𝜀)|u�=1 and 𝒵(𝜀)|u�=2 respectively,
these contributions are explicitly given as

ℰ(𝜀)∣
u�=1

= 1
2

√
u� 𝑔 cos(u�u�

2 ) Γ(u�+3
2 ) [2Δu�(0)]1+u�/2 − 1

2𝑔 Δu�(0), (3.9)

ℰ(𝜀)∣
u�=2

= u�2 u�−2Δu�(0)
4 (u�

2 − 1) − u�2 Δ2
u�(0)

2u� ∫𝑑u�𝑥′

× {[2Δu�(0)]u� cos2(u�u�
2 )Γ(u�+3

2 )2 (2𝐹1[ − u�+2
2 , −u�+2

2 ; 1
2 ; (Δu�(u�′)

Δu�(0) )2] − 1)

− [2Δu�(0)]u� sin2(u�u�
2 )Γ(u�+4

2 )2 2Δu�(u�′)
Δu�(0) 2𝐹1[ − u�+1

2 , −u�+1
2 ; 3

2 ; (Δu�(u�′)
Δu�(0) )2]

−
√

𝜋 [2Δu�(0)]u�/2 cos(u�u�
2 )Γ(u�+3

2 ) (2𝐹1[ − u�+2
2 , −1; 1

2 ; (Δu�(u�′)
Δu�(0) )2] − 1)}.

(3.10)
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(a)

(b)

(c)

Figure 3.2: Behavior of the single-vertex approximation of the ground-state energy
density as a function of the dimension u� and the nonlinearity parameter u�. For 0 ≤
u� < 2 the coefficient ℰ(u�)|u�=1 is real, shown in Figure 3.2a; the red lines denote the zero-
dimensional and quantum-mechanical theories. For 2 < u� < 4 the coefficient becomes
complex; the real and imaginary parts are displayed in Figure 3.2b and Figure 3.2c
respectively.
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Notice that, since the Gaussian hypergeometric function (2.53) has an expansion
of the form 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) = 1+ 𝑂(𝑧), all terms in the curly brackets are functions
of at least order 𝑂(Δu�(𝑥′)) in the propagator, so that the space-time integration
in ℰ(𝜀)|u�=2 does not lead to a volumetric divergence.

The behavior of ℰ(𝜀)|u�=1 and ℰ(𝜀)|u�=2 is visualized in Figure 3.2 and Figure 3.3
respectively as a function of the space-time dimension 𝐷 and the nonlinearity
parameter 𝜀. Similar to the 𝜀-expansion coefficients, both contributions are real
functions for 0 ≤ 𝐷 < 2, which diverge in the limit of two dimensions, see
Figure 3.2a and Figure 3.3a. The red lines in these figures denote the behavior in
𝐷 = 0 and 𝐷 = 1 dimensions, which is determined algebraically in the following
Section 3.2 and Section 3.3. For 2 ≤ 𝐷 < 4 dimensions ℰ(𝜀)|u�=1 and ℰ(𝜀)|u�=2 are
generally complex functions, the real and imaginary parts of which are visualized
in Figure 3.2b and Figure 3.2c, and Figure 3.3b and Figure 3.3c respectively. This
behavior originates in raising the selfloop propagator Δu�(0) to powers involving
the generally noninteger parameter 𝜀 in (3.9) and (3.10).

Observe, however, that the single-vertex and two-vertex contributions ℰ(𝜀)|u�=1

and ℰ(𝜀)|u�=2 remain real functions for integer values of the nonlinearity parameter
𝜀. This can not be observed in the 𝜀 expansion because of its perturbative nature
in the nonlinearity parameter. The spectral reality at integer values of 𝜀 can be
understood from the structure of the Lagrangian density (2.1) in the partition
function (2.4): For integer values of 𝜀 the term (𝑖𝜙)u� is either purely real or
purely imaginary. In the functional integral in 𝒵(𝜀) only terms that are even in
the field 𝜙 contribute, so that for integer 𝜀 the partition function is real. While
this results in real-valued energy-density coefficients, cf. the relations (3.8), it
has to be remarked, that the full ground-state energy density ℰ(𝜀) may still be
complex, due to its logarithmic relation (3.1) to the full partition function, which
could be a negative.

In addition to the divergences in 𝐷 = 2 and 𝐷 = 4 dimensions, Figure 3.3b and
Figure 3.3c illustrate that the two-vertex contribution ℰ(𝜀)|u�=2 has a complicated
divergence structure in the region 2 < 𝐷 < 4. This demonstrates that renormal-
ization techniques are not only required for 𝐷 = 2 and 𝐷 = 4 but in-between as
well. It also affects the apparent complexity of ℰ(𝜀) in these dimensions which
has to be reexamined in the renormalized system for conclusive statements.
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(a)

(b)

(c)

Figure 3.3: Behavior of the two-vertex approximation of the ground-state energy density
as a function of the dimension u� and the nonlinearity parameter u�. For 0 ≤ u� < 2
the coefficient ℰ(u�)|u�=2 is real, shown in Figure 3.3a; the red lines denote the zero-
dimensional and quantum-mechanical theories. For 2 < u� < 4 the coefficient becomes
complex; the real and imaginary parts are displayed in Figure 3.3b and Figure 3.3c
respectively.
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3.2 𝐷 = 0 Dimensions

In the special case of zero-dimensional space-time, the theory describes a valuable
toy-model that is exactly solvable. In particular, since space-time is a single point
the functional integral simplifies to an ordinary integration over the (real) field
and the free propagator has the form Δu�(𝑥) ≡ Δu�(0) = 𝑚−2. Moreover, the
volume of zero-dimensional space-time is 𝑉 = 1. For simplicity the theory is
analyzed for 𝑔 = 𝑚 = 1 in the following; in this case the model corresponds to
that without dimensional parameters, which was studied in [1].

For 𝐷 = 0 the expressions (3.6) and (3.7) for the 𝜀-expansion coefficients of
the ground-state energy density become

ℰ0∣
u�=0

= − ln(
√

2𝜋) ≈ −0.918938, (3.11)

ℰ1∣
u�=0

= 1
4(2 − 𝛾 − ln 2) ≈ 0.182409, (3.12)

ℰ2∣
u�=0

= 1
64(8𝛾 − 8 + 𝜋2 + 8 ln 2) ≈ 0.188007. (3.13)

The first-order result reproduces that obtained in [1]. In Appendix D the normal-
ized partition function is calculated directly by evaluating the functional integral
as an ordinary integration over the field. In particular, the values of the coeffi-
cients 𝒵1 and 𝒵2 are evaluated in this calculation, confirming the results (2.42)
and (2.62) in 𝐷 = 0 dimensions and thus also the ground-state energy coefficients
(3.12) and (3.13). In addition, the exact partition function 𝒵(𝜀) and the related
ground-state energy density ℰ(𝜀) are found to be

𝒵(𝜀)∣
u�=0

= 21/(u�+2)
√

2u� (1 + u�/2)
Γ( 1

u�+2) cos(−u�
2

u�
u�+2) (3.14)

and
ℰ(𝜀)∣

u�=0
= − ln[ 21/(u�+2)

1 + u�/2 Γ( 1
u�+2) cos(−u�

2
u�

u�+2)]. (3.15)

The single- and two-vertex approximations ℰ(𝜀)|u�=1 and ℰ(𝜀)|u�=2 in (3.9) and
(3.10) simplify to

ℰ(𝜀)∣u�=1
u�=0

= 2u�/2 cos(u�u�
2 ) Γ(u�+3

2 ) 1√
u� − 1

2 , (3.16)
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and

ℰ(𝜀)∣u�=2
u�=0

= − 1
2𝜋

{2u� cos2(u�u�
2 ) [

√
𝜋Γ(𝜀 + 5

2) − Γ(u�+3
2 )2] − 2u� sin2(u�u�

2 )
√

𝜋 Γ(𝜀 + 5
2)

− 2u�/2 cos(u�u�
2 )

√
𝜋 (𝜀 + 2)Γ(u�+3

2 )} − 1
4 ,

(3.17)
using in the latter that [51]

2𝐹1(𝑎, 𝑏; 𝑐; 1) = Γ(𝑐) Γ(𝑐 − 𝑎 − 𝑏)
Γ(𝑐 − 𝑎) Γ(𝑐 − 𝑏)

. (3.18)

3.3 𝐷 = 1 Dimension

The theory in one-dimensional space-time describes the field-theoretic equivalent
of the quantum-mechanical system (1.1). While an exact evaluation of the ground-
state energy density is only possible numerically, the 𝜀-expansion coefficients ℰ1

and ℰ2 can be calculated following Rayleigh-Schrödinger perturbation theory.
This was used in [1] to confirm the first-order behavior.

In one-dimensional space-time the free propagator (2.28) has the form Δu�(𝑥) =
1

2u� e−u�|u�| and the selfloop amplitude becomes Δu�(0) = 1
2u� . Again, the theory

is analyzed for 𝑔 = 𝑚 = 1 in the following for simplicity; here the model corre-
sponds to that without dimensional parameters, which was studied in [1]. With
these expressions the 𝐷-dimensional solutions for ℰ1 and ℰ2 in (3.6) and (3.7) can
be evaluated, yielding

ℰ1∣
u�=1

= 1
8(2 − 𝛾 − 2 ln 2) ≈ 0.004561, (3.19)

ℰ2∣
u�=1

= 1
32[𝜓(3

2) − 1 − u�2

4 ln 2 − 1
2𝜓(3

2)2 − 7
8𝜁(3)] ≈ 0.116445. (3.20)

The result for ℰ1 confirms that obtained in [1]. In Appendix E these ground-state
energy-density coefficients are evaluated using Rayleigh-Schrödinger perturbation
theory, confirming the results in (3.19) and (3.20). This indirectly verifies the
correct behavior of the partition-function coefficients as well.
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The single-vertex and two-vertex approximations ℰ(𝜀)|u�=1 and ℰ(𝜀)|u�=2 in
(3.9) and (3.10) simplify to

ℰ(𝜀)∣u�=1
u�=1

= cos(u�u�
2 ) Γ(u�+3

2 ) 1
2

√
u� − 1

4 (3.21)

and

ℰ(𝜀)∣u�=2
u�=1

= − 1
16 − 1

8u�{2 cos2(u�u�
2 ) Γ(u�+3

2 )2(u�+2
2 )2

4𝐹3[1, 1, −u�
2 , −u�

2 ; 3
2 , 2, 2; 1]

− 4 sin2(u�u�
2 ) Γ(u�+4

2 )2
3𝐹2[1

2 , −u�+1
2 , −u�+1

2 ; 3
2 , 3

2 ; 1]

−
√

𝜋 cos(u�u�
2 ) Γ(u�+3

2 )(𝜀 + 2)}.
(3.22)

3.4 Volumetric Divergences

The ground-state energy density ℰ(𝜀) does in general not depend on the volume of
space-time 𝑉, even though the appearance of volumetric divergences is a general
property of the partition-function coefficients 𝒵u�. The discussion of the energy-
density coefficients ℰ2 and ℰ(𝜀)|u�=2 in one-dimensional space-time, presented in
the previous section, serves as a good example: These coefficients are related to the
partition-function coefficients up to second order in the respective approximation
scheme by (3.5) and (3.8). In particular, the square of the first-order coefficient
𝒵1, see (2.42), or 𝒵(𝜀)|u�=1, see (2.46), which dependent linearly on the space-time
volume, enters. But this exactly cancels the contributions of the second-order
partition-function coefficients that depend quadratically on 𝑉. Thus, overall, the
coefficients become volume-independent, as seen in the results of ℰ2 in (3.20) and
ℰ(𝜀)|u�=2 in (3.22).

This cancellation of volumetric divergences confirms that the partition-function
coefficients 𝒵u� behave correctly and understanding it is necessary for numerical
evaluations when no closed-form solutions are available. In the following, the
dependence of the general partition-function coefficients (2.41) on the space-time
volume 𝑉 is analyzed and it is shown that these divergences cancel exactly in the
coefficients ℰu�.

The ground-state energy density ℰ(𝜀) is related to the partition function 𝒵(𝜀)
through the relation (3.1). This relation is a version of the exponential formula [52]
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(or the polymer expansion [53]): In the diagrammatic sense, the energy density
contains only the fully connected contributions of the partition function. In par-
ticular, this is the case order-by-order in 𝜀, so that ℰu� contains only the fully
connected contributions of 𝒵u�:

ℰu� = − 1
u� 𝒵u�∣

connected
. (3.23)

Arguing that the connected contributions depend linearly on the volume 𝑉 then
implies that ℰ(𝜀) (and its coefficients ℰu�) are independent of the volume.

In the general structure (2.41) of the coefficients 𝒵u� the only space-time de-
pendence can arise from powers of the free propagators Δu�(𝑥u� − 𝑥u�) connecting
different space-time points. Any dependence on Δu�(0) describes selfloops and
does therefore not depend on the space-time variables; they do not affect the
volumetric divergences. The space-time dependence of the coefficients 𝒵u� can
therefore be argued on the basis of the space-time integrals

∫𝑑u�𝑥u�

u�
∏

u�,u�=1
u�<u�

Δu�(𝑥u� − 𝑥u�)u�u�u� = ∫𝑑u�𝑥1 … ∫𝑑u�𝑥u�

u�
∏

u�,u�=1
u�<u�

Δu�(𝑥u� − 𝑥u�)u�u�u� , (3.24)

where 𝑘 ∈ [1, 𝑛] and in general all 𝑙u�u� ∈ [0, ∞]. Redefining all integration variables
by 𝑥u� → ∑u�

u�=u� 𝑥u� renders the free propagators independent of the space-time
variable 𝑥u�, resulting in the expression

∫𝑑u�𝑥1 … ∫𝑑u�𝑥u�−1

u�
∏

u�,u�=1
u�<u�

Δu�(
u�−1

∑
u�=u�

𝑥u�)
u�u�u�

∫𝑑u�𝑥u�⏟
u�

, (3.25)

in which a factor of the space-time volume 𝑉 is apparent. Therefore, all contri-
butions to the coefficient 𝒵u� have at least a linear volumetric divergence.

So far, no assumption on the structure of the graph representing the product
of free propagators in (3.24), that is on the values of the numbers 𝑙u�u�, was made. If
the graph representing (3.24) consists of two disconnected parts, then the space-
time points 𝑥1 to 𝑥u� can be relabeled and grouped into two sets, containing the
points with indices in 𝑆1 = [1, 𝑘1] and 𝑆2 = [𝑘1 + 1, 𝑘], so that all 𝑙u�u� with 𝑖 ∈ 𝑆1

and 𝑗 ∈ 𝑆2 vanish. The product over the propagators in (3.24) then factorizes
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into the form

[∫𝑑u�𝑥1 … 𝑑u�𝑥u�1

u�1

∏
u�,u�=1
u�<u�

Δu�(𝑥u� − 𝑥u�)u�u�u�][∫𝑑u�𝑥u�1+1 … 𝑑u�𝑥u�

u�
∏

u�,u�=u�1+1
u�<u�

Δu�(𝑥u� − 𝑥u�)u�u�u�]

(3.26)

and the previous redefinition of integration variables can be applied for both parts
individually. Therefore, an overall at least quadratic dependence on the volume
𝑉 arises.

This argument applies generally, so that (3.24) is proportional to the volume
𝑉 raised to the power of at least the number of disconnected parts in the graph it
represents. If (3.24) represents a fully disconnected graph, that is a graph with 𝑘
disconnected parts, it consequently is proportional to at least 𝑉 u�. But in this case
all 𝑙u�u� = 0, so that (3.24) is, in fact, exactly proportional to 𝑉 u�. This, in turn,
implies that (3.24) is proportional to the volume 𝑉 raised to the power of exactly
the number of disconnected parts in the graph it represents. In particular, a
fully connected graph gives rise to a linear dependence on the space-time volume.
Thus, the connected contributions of all 𝒵u�, and 𝒵(𝜀) accordingly, are linearly
dependent on 𝑉, such that the ground-state energy density ℰ(𝜀), and all ℰu�, are
independent of the space-time volume.

3.5 The Third-Order Coefficient ℰ3

For energy-density coefficients beyond second order in the nonlinearity expansion
the evaluation of the general partition-function coefficient in (2.41) and conse-
quently the energy-density coefficient in (3.4) becomes unwieldy. However, these
coefficients can be calculated numerically. As argued in Section 3.4, the occur-
rence of volumetric divergences can be circumvented by considering only those
contributions to (2.41) that correspond to connected graphs. To illustrate this,
the third-order ground-state energy-density coefficient ℰ3 is in this section deter-
mined numerically from (2.41) for 𝐷 = 0 and 𝐷 = 1 dimensional space-time and
𝑔 = 𝑚 = 1. In these cases, the exact third-order solution can be accessed through
direct evaluation (zero-dimensional theory) or Rayleigh-Schrödinger perturbation
theory (one-dimensional theory) for comparison.
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The difficulty of evaluating the connected part of the partition-function co-
efficient (2.41) lies in the summation ⅀u� over the numbers 𝑙u�u� of propagators
Δu�(𝑥u� − 𝑥u�) connecting the space-time points 𝑥u� and 𝑥u�. By limiting the max-
imum number of intermediate propagators 𝑙u�u�, and studying the behavior of the
result as a function of this maximum, a good approximation can be found. For
the results that are presented in the following, the upper limits of the summa-
tion ⅀u� were increased successively up to 20. The resulting approximation of
the energy coefficient based on these partial sums displays an oscillatory behavior
with a growing amplitude in both 𝐷 = 0 and 𝐷 = 1 dimension. An approxi-
mate solution for the energy coefficient ℰ3 can be found using Shanks and Euler
transforms [50, 54] to extrapolate these results:

ℰ3∣
u�=0

≈ −0.234883 and ℰ3∣
u�=1

≈ −0.077953. (3.27)

For the zero-dimensional theory, the energy-density coefficients ℰu� can be
determined exactly to any order through the partition-function coefficients, whose
evaluation is described in Appendix D. The exact result for the third-order coeffi-
cient is

ℰ3∣
u�=0

≈ −0.235768, (3.28)

which confirms the quality of the approximate solution in (3.27).

For the one-dimensional case, the coefficients of the ground-state energy
density can be determined using Rayleigh-Schrödinger perturbation theory, see
Appendix E. The third-order coefficient ℰ3 found in this way is

ℰ3∣
u�=1

≈ −0.077952, (3.29)

confirming the quality of the approximate solution in (3.27) as well.

Having found the coefficients up to third order in the 𝜀 expansion of the
ground-state energy density ℰ(𝜀) in 𝐷 = 0 and 𝐷 = 1 dimensions, one can
calculate the corresponding Padé approximants [54] for different values of 𝜀 to
improve upon the approximation of ℰ(𝜀). The closed-form solution for ℰ(𝜀) in
𝐷 = 0 dimensional space-time, see (3.15), offers a reference point to judge the
quality of these Padé approximants in comparison to the exact result. For the
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M=0 M=1 M=2 M=3
L=0 -0.918938 -0.766740 -0.637049 -0.720208

L=1 -0.736529 -6.864121 -0.683985

L=2 -0.548523 -0.652946

L=3 -0.783406

(a) u� = 0, u� = 1

M=0 M=1 M=2 M=3
L=0 -0.918938 -0.657794 -0.387252 -0.883171

L=1 -0.554119 -1.262664 -0.507806

L=2 0.197903 -0.339175

L=3 -1.681161

(b) u� = 0, u� = 2

Table 3.1: [u�/u�] Padé approximants for u�, u� ≤ 3 resulting from the energy-density
coefficients ℰu� up to third order and for u� = 1 and u� = 2 in u� = 0.

one-dimensional theory such a reference can be determined through the numerical
solution to the eigenvalue equation based on the Hamiltonian (1.1).

In Table 3.1 and Table 3.2 the Padé results of the zero-dimensional and one-
dimensional theory at 𝜀 = 1 and 𝜀 = 2, corresponding to interactions of the form
𝑖𝜙3 and −𝜙4, are shown. The exact result (3.15) for 𝐷 = 0 evaluates to

ℰ(𝜀 = 1)∣
u�=0

≈ −0.667163, (3.30)

ℰ(𝜀 = 2)∣
u�=0

≈ −0.421588. (3.31)

In 𝐷 = 1 space-time dimension the exact ground-state energy densitiy at 𝜀 = 1
and 𝜀 = 2 is found numerically to be

ℰ(𝜀 = 1)∣
u�=1

≈ 0.578134, (3.32)

ℰ(𝜀 = 2)∣
u�=1

≈ 0.738575. (3.33)
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M=0 M=1 M=2 M=3
L=0 0.5 0.504603 0.659568 0.544528

L=1 0.504561 0.499814 0.586198

L=2 0.621006 0.574311

L=3 0.543052

(a) u� = 1, u� = 1

M=0 M=1 M=2 M=3
L=0 0.5 0.509292 9.895253 0.375440

L=1 0.509122 0.499817 0.847741

L=2 0.974901 0.708268

L=3 0.351275

(b) u� = 1, u� = 2

Table 3.2: [u�/u�] Padé approximants for u�, u� ≤ 3 resulting from the energy-density
coefficients ℰu� up to third order for u� = 1 and u� = 2 in u� = 1, corresponding to
quantum-mechanical theories with interactions of the form u�u�3 and −u�4.

The [2/1] and [1/2] Padé approximants in the first sub-diagonal and super-
diagonal of all tables give reasonable upper and lower bounds bracketing the
exact results. Moreover, considering the approximants with 𝐿 + 𝑀 ≤ 2, resulting
from at most the second-order 𝜀-expansion coefficients, shows that a good approx-
imation for the ground-state energy density ℰ(𝜀) is only reached after including
the third-order coefficients.

Overall, it was demonstrated in this chapter how to approximate the ground-
state energy density in the nonlinearity expansion and in the vertex-approximation
scheme based on the general coefficient structure (2.41) of the normalized partition
function. Closed-form solutions of the first-order and second-order coefficients in
both approximation schemes were derived and their behavior was discussed for 0 ≤
𝐷 < 4 space-time dimensions: While these coefficients are real-valued functions
in the region 0 ≤ 𝐷 < 2 they become generally complex in 2 < 𝐷 < 4 dimensions,
suggesting a possible departure from the remarkable spectral reality found in the
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quantum-mechanical Bender-Boettcher model (1.1) - at least to finite order in the
expansions. However, the vertex-approximation coefficients, in which terms to all
orders in 𝜀 are resummed, display the noteworthy feature of remaining real for
integer values of the nonlinearity parameter even in 2 < 𝐷 < 4 dimensions. This
may reflect an underlying property of the ground-state energy density ℰ(𝜀) that
emerges beyond all orders in 𝜀. Moreover, using the numerically evaluated third-
order 𝜀-expansion coefficient ℰ3, the quality of an approximation based on the
Padé approximants of the nonlinearity expansion to third order was demonstrated
by comparison to the exact results in the zero-dimensional and one-dimensional
model.

In addition, the appearance of non-volumetric divergences in the ground-state
energy-density coefficients, found in two dimensions and beyond, indicate that
renormalization techniques are required. It is in particular necessary to reex-
amine the reality of the ground-state energy density in these dimensions after
renormalization. The perturbative renormalization of the two-dimensional model
is investigated in Chapter 5 after the discussion of the Green’s functions in the
following.



Chapter 4

The Green’s Functions

Similar to the quantum-mechanical Bender-Boettcher model, the quantum-field-
theoretic analogue (1.7) describes a family of systems that are characterized by
the nonlinearity parameter 𝜀 and by their 𝒫𝒯 symmetry, which is reflected in the
complex nature of the interaction term (𝑖𝜙)u�. By generalizing the techniques pro-
posed in [1], it was demonstrated in Chapter 2 for the partition function how the
unusual complex logarithmic self-interaction structure that arises when expand-
ing this theory in the nonlinearity parameter can be addressed. These techniques
apply equally to the analysis of the Green’s functions.

In Section 4.1 the general 𝜀-expansion structure of the connected 𝑝-point
Green’s function is determined in terms of known functions only, particularly
the propagator (2.28) of the free theory (𝜀 = 0) with Lagrangian density (2.3).

The evaluation of this coefficient structure is demonstrated on the examples
of the first-order and second-order coefficients in Section 4.2 and Section 4.3:
Closed-form solutions for these 𝜀-expansion coefficients are obtained and, like
for the partition function, a second approximation, based on the summation of
structurally similar contributions to all orders in 𝜀, is analyzed. The results for
the one-point and two-point Green’s functions are presented.

In Section 4.4 the effective mass of the 𝐷-dimensional theory is determined
from the expansion of the two-point Green’s function to second order.

50
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4.1 The General Coefficient Structure

The 𝑝-point Green’s function is defined as

𝐺u�(𝜀; 𝑦1, … , 𝑦u�) = 1
u�(0)u�(u�) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ(u�) 𝜙(𝑦1) … 𝜙(𝑦u�), (4.1)

where 𝒵(𝜀) is the normalized partition function given in (2.4), and 𝑍(0) is the
full partition function of the free theory, that is at 𝜀 = 0, see (2.5). Expanding
(4.1) into a series of the form

𝐺u�(𝜀; 𝑦1, … , 𝑦u�) =
∞

∑
u�=0

𝐺u�,u�(𝑦1, … , 𝑦u�) 𝜀u� (4.2)

in the nonlinearity parameter 𝜀 requires not only the expansion of the functional
integral, but also that one takes into account the 𝜀 expansion of 𝒵(𝜀) in the
denominator. This expansion of 𝒵(𝜀), as described in Chapter 2, contains ex-
clusively contributions that are represented diagrammatically by graphs on only
internal points 𝑥u�, that is space-time points, which are integrated over. Such
graphs are commonly referred to as vacuum bubbles. The functional integral in
(4.1), however, contains in addition the external points 𝑦1 to 𝑦u�, which are not in-
tegrated over. It is a well-established feature of the 𝑝-point Green’s function (4.1)
that the vacuum bubbles in the denominator exactly cancel the vacuum-bubble
contributions of the remaining functional integral, see for example [48]. That is
to say, only contributions that are represented by graphs in which every part is
connected to at least one external point remain. This does not exclude graphs
with disconnected parts, as long as each part contains an external point. One
may write

𝐺u�(𝜀; 𝑦1, … , 𝑦u�) = 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ(u�) 𝜙(𝑦1) … 𝜙(𝑦u�) ∣

non-vacuum
(4.3)

to emphasize the structural similarity to the normalized partition function (2.4).
Note that, because diagrammatically every disconnected part contributing to

the expression (4.3) contains an external point, over which space-time is not
integrated, 𝐺u�(𝜀; 𝑦1, … , 𝑦u�) does not contain any volumetric divergences. The
rescaling argument presented in Section 3.4, which showed that every discon-
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nected part of a vacuum-bubble graph contributes an overall factor 𝑉, does not
apply here, because (at least) one of the space-time points to be considered is
an external point. Nevertheless, the general generating-function relation does ap-
ply: (4.3) contains various contributions represented by graphs with disconnected
(non-vacuum) parts, which can be generated from only the fully connected con-
tributions. It thus suffices to study the connected 𝑝-point Green’s function:

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�) = 1

u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ(u�) 𝜙(𝑦1) … 𝜙(𝑦u�) ∣
connected

. (4.4)

Expanding the connected Green’s functions in the nonlinearity parameter 𝜀
now proceeds in the same way as the expansion of the normalized partition func-
tion 𝒵(𝜀) in Chapter 2. The complex logarithmic interaction terms of the ex-
panded Lagrangian density ℒ(𝜀) are expressed in only powers of the field 𝜙,
yielding in analogy to (2.26) the expansion coefficient:

𝐺u�
u�,u�(𝑦1, … , 𝑦u�) =

1
2u�

u�
∑
u�=1

(−u�u�2
0

2 )
u�
⅀

u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥u�

u�

∑
u�u�=0

( u�
u�u�

)(𝑖𝜋)u�u�

× ∫
∞

0
𝑑𝑡u�

∞
∑

u�u�=0

2 (−𝑡2
u�)u�u�

𝜋 (2𝜔u� + 1)!
lim

u�u�→0
( u�

u�u�u�
)

u�−u�u�
(𝜇1−u�/2

0 )2u�u�+(2u�u�+1)u�u�

× 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 𝜙(𝑦1) … 𝜙(𝑦u�) [𝜙(𝑥u�)]2(u�u�+1)+(2u�u�+1)u�u� ∣

connected
,

(4.5)

where the summation ⅀u� takes place over all integers 𝑐1, … , 𝑐u�+1−u� ≥ 0 such that
the conditions (2.11) and (2.12) are satisfied.

Before evaluating the general functional integral in (4.5), consider the special
case of the coefficients at 𝑛 = 0, which correspond to (4.4) at 𝜀 = 0:

𝐺u�
u�,0(𝑦1, … , 𝑦u�) = 1

u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 𝜙(𝑦1) … 𝜙(𝑦u�) ∣
connected

. (4.6)

For odd values of 𝑝 the integral is an odd function of the field 𝜙 and therefore
vanishes. Moreover, since the field 𝜙 occurs only linearly at the space-time points
𝑦1 to 𝑦u�, these points are diagrammatically connected pairwise by the propagator
Δu�u�0

of the free theory. That is, even when 𝑝 is even, (4.6) is represented by a
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fully connected graph only for 𝑝 = 2, where it corresponds to a single propagator
connecting 𝑦1 and 𝑦2. Therefore,

𝐺u�
u�,0(𝑦1, … , 𝑦u�) =

⎧{
⎨{⎩

Δu�u�0
(𝑦1 − 𝑦2), for 𝑝 = 2,

0, for 𝑝 ≠ 2.
(4.7)

In general, the functional integral in (4.5) is evaluated in terms of only known
functions in the same way as in the partition function, see (2.33). A detailed
calculation of the general integral

1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 𝜙u�1(𝑧1) … 𝜙u�u�(𝑧u�) (4.8)

can be found in Appendix B. There, the special case of the functional integral
arising in (4.5) is evaluated as well:

1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 𝜙(𝑦1) … 𝜙(𝑦u�) [𝜙(𝑥u�)]2(u�u�+1)+(2u�u�+1)u�u� =

[1
2Δu�u�0

(0)]u�/2 (
2Δu�u�0

(0)
√

u� )
u�
[2Δu�u�0

(0)]u�u�+u�u�(u�u�+ 1
2 )

∞

⅀
u�

u�+u�

∏
u�,u�=1,

u�<u�

1
𝑙u�u�!

× [
2Δu�u�0

(u�u� − u�u�)
Δu�u�0

(0) ]
u�u�u� Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2)] Γ[𝑁u� + 3
2 + 𝑚u�(𝜔u� + 1

2)]
Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2) − 1
2𝐿u�]

× (1 + eu�u�(u�u�−u�u�)

2
) {

u�

∏
u�=1

1
Γ(3

2 − 1
2𝐿u�+u�)

(1 + eu�u�(1−u�u�+u�)

2
)},

(4.9)

where the summation ⅀u� runs over all integers 𝑙u�u� ∈ [0, ∞] with 𝑖, 𝑗 ∈ [1, 𝑘 + 𝑝] ∶
𝑖 < 𝑗 and the numbers 𝐿u� with 𝑟 ∈ [1, 𝑘 + 𝑝] are defined as in (2.34). The space-
time points 𝑧1 to 𝑧u�+u� combine the internal points 𝑥u� and the external points 𝑦1

to 𝑦u�; 𝑧u� = 𝑥u� ∀𝑖 ∈ [1, 𝑘] and the additional space-time points 𝑦1 to 𝑦u� are denoted
as 𝑧u�+1 to 𝑧u�+u�.

Notice that since the field 𝜙 occurs linearly at the external space-time points,
in a diagrammatic representation only exactly one propagator can connect these
points to other space-time points. In (4.9) one finds this behavior in the term
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within curly brackets: The factor containing the exponential function requires
that an odd number of propagators are connected to each external point, and the
Γ function in the denominator implies that this contribution vanishes for all odd
numbers except the value one.

With the functional integral (4.9) the 𝜀-expansion coefficients (4.5) of the
connected 𝑝-point Green’s function can be written as

𝐺u�
u�,u�(𝑦1, … , 𝑦u�) =

1
2u� [

Δu�u�0
(0)

2 ]
u�/2 u�

∑
u�=1

(−
u�u�2

0Δu�u�0
(0)

√
u� )

u�
⅀

u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥u�

u�

∑
u�u�=0

( u�
u�u�

)

× (𝑖𝜋)u�u� lim
u�u�→0

( u�
u�u�u�

)
u�−u�u�

[2𝜇2−u�
0 Δu�u�0

(0)]u�u�
∞

⅀
u�

u�+u�

∏
u�,u�=1,

u�<u�

1
𝑙u�u�!

[
2Δu�u�0

(u�u� − u�u�)
Δu�u�0

(0) ]
u�u�u�

× ∫
∞

0
𝑑𝑡u�

∞
∑

u�u�=0

2 (−𝑡2
u�)u�u�

𝜋 (2𝜔u� + 1)!
Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2)] Γ[𝑁u� + 3
2 + 𝑚u�(𝜔u� + 1

2)]
Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2) − 1
2𝐿u�]

× [2𝜇2−u�
0 Δu�u�0

(0)]u�u�(u�u�+ 1
2 ) (1 + eu�u�(u�u�−u�u�)

2
) {

u�

∏
u�=1

( 1 + eu�u�(1−u�u�+u�)

2Γ(3
2 − 1

2𝐿u�+u�)
)}∣

connected

(4.10)

in terms of known functions only. As for the partition-function coefficients (2.35)
in Chapter 2, some simplifications can be made: The summations over 𝜔u� and in-
tegrations over 𝑡u� can be performed according to the identity (2.36), see Appendix
C, yielding

𝐺u�
u�,u�(𝑦1, … , 𝑦u�) =

1
2u� [

Δu�u�0
(0)

2 ]
u�/2 u�

∑
u�=1

(−
u�u�2

0Δu�u�0
(0)

√
u� )

u�
⅀

u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥u�

u�

∑
u�u�=0

( u�
u�u�

)

× (𝑖𝜋)u�u� lim
u�u�→0

( u�
u�u�u�

)
u�−u�u�

[2𝜇2−u�
0 Δu�u�0

(0)]u�u�
∞

⅀
u�

u�+u�

∏
u�,u�=1,

u�<u�

1
𝑙u�u�!

[
2Δu�u�0

(u�u� − u�u�)
Δu�u�0

(0) ]
u�u�u�

×
Γ(𝑁u� + 2) Γ(𝑁u� + 3

2)
Γ(𝑁u� + 2 − 1

2𝐿u�)
(1 + eu�u�(u�u�−u�u�)

2
) {

u�

∏
u�=1

( 1 + eu�u�(1−u�u�+u�)

2Γ(3
2 − 1

2𝐿u�+u�)
)}∣

connected
.

(4.11)
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Furthermore, the dependence on the dimensional parameter 𝜇0 can be simplified
by denoting

𝑧u� = 𝑧′
u�/𝜇0, ∀𝑗 ∈ [1, 𝑘 + 𝑝]. (4.12)

For 𝑧′
1 = 𝜇0𝑥1 to 𝑧′

u� = 𝜇0𝑥u�, this is the same rescaling of internal space-time
points as in the calculation of the partition function, see (2.40). The additional
variables 𝑧′

u�+1 = 𝜇0𝑦1 to 𝑧′
u�+u� = 𝜇0𝑦u� denote dimensionless versions of the exter-

nal space-time points. By utilizing the scaling behavior (2.38) and (2.39) of the
general propagator Δu�, the propagators in (4.11) can then be rewritten as

Δu�u�0
(𝑧) = Δu�u�0

(𝑧′/𝜇0) = 𝜇u�−2
0 Δu�(𝑧′), (4.13)

where now Δu�(𝑧′) is again a function of dimension [mass]0 and the dependence
on the dimensional parameter 𝜇0 is factored out explicitly. Taking care to rescale
the space-time integrals as well, the expression (4.11) becomes

𝐺u�
u�,u�(𝑦1, … , 𝑦u�) =

1
2u� [u�u�−2

0 Δu�(0)
2 ]

u�/2 u�
∑
u�=1

(−u�Δu�(0)√
u� )

u�
⅀

u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥′
u�

u�

∑
u�u�=0

( u�
u�u�

)

× (𝑖𝜋)u�u� lim
u�u�→0

( u�
u�u�u�

)
u�−u�u�

[2Δu�(0)]u�u�
∞

⅀
u�

u�+u�

∏
u�,u�=1,

u�<u�

1
𝑙u�u�!

[
2Δu�(u�′

u� − u�′
u�)

Δu�(0) ]
u�u�u�

×
Γ(𝑁u� + 2) Γ(𝑁u� + 3

2)
Γ(𝑁u� + 2 − 1

2𝐿u�)
(1 + eu�u�(u�u�−u�u�)

2
) {

u�

∏
u�=1

( 1 + eu�u�(1−u�u�+u�)

2Γ(3
2 − 1

2𝐿u�+u�)
)}∣

connected
.

(4.14)

This describes the coefficients of the connected Green’s function in terms of
known functions only, paralleling the result (2.41) for the partition-function co-
efficients. Similar to the coefficients 𝒵u�, the main difficulty lies in the evaluation
of the summation ⅀u� over the numbers 𝑙u�u� of propagators connecting space-time
points 𝑧u� to 𝑧u�. Unlike in the case of the partition function, this difficulty in-
creases not only with the number 𝑘 of internal space-time points which need to be
considered, but also with 𝑝, the number of external space-time points in the coeffi-
cients 𝐺u�

u�,u�(𝑦1, ..., 𝑦u�). The chances of calculating closed-form solutions for these
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Figure 4.1: Schematic visualization of the connections between external (red) and in-
ternal (black) space-time points in the functional integral of the Green’s functions.

coefficients in the same way as for the partition function seem bleak, as it would
require a maximum of 𝑘 + 𝑝 ≤ 2 space-time points, internal and external. But
each external point can only be connected to one different space-time point, as
described by the factor in curly brackets, which requires that 𝐿u�+u� = 1 ∀𝑟 ∈ [1, 𝑝].
Moreover, to describe a fully connected graph, pairwise connections among the
external points are excluded, such that the only remaining possibilities are to
connect every external space-time point to exactly one of the internal space-time
points. This still allows for multiple possible ways to form these connections when
the number of internal points 𝑘 is larger than one.

A schematic visualization is given in Figure 4.1: Each external point 𝑦u�, with
𝑖 ∈ [1, 𝑝], has to be connected through a single propagator to one of the internal
points 𝑥1 to 𝑥u� to form a fully connected graph. The internal space-time points 𝑥1

to 𝑥u� are fully connected among each other, indicated through the grey obround
shape. Shown is the example of a connection from 𝑦u� to 𝑥2 as a solid red line, while
the options of connecting 𝑦u� to another point are illustrated as dotted red lines.
The combinations of these possible options from all 𝑝 external points result in fully
connected graphs and all of these possible graphs have to be taken into account.
While specifying the possible connections explicitly can be tedious, it retains the
possibility to calculate closed-form solutions for the first-order and second-order
coefficients 𝐺u�

u�,1(𝑦1, … , 𝑦u�) and 𝐺u�
u�,2(𝑦1, … , 𝑦u�) using the same techniques that

were utilized in the calculation of the partition-function coefficients; they are
evaluated in the following Section 4.2 and Section 4.3.

For coefficients beyond second order, and in particular the contributions to
(4.14) with 𝑘 ≥ 3 internal points, the summation over the numbers 𝑙u�u� becomes
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very intricate. Their calculation relies on the numerical evaluation, similar to the
third-order energy-density coefficient ℰ3 discussed in Section 3.5. The connect-
edness of the graphs considered in such numerical calculations can be taken into
account using, for example, the algebraic connectivity (Fiedler value) [55]. How-
ever, these calculations require that the dimension 𝐷 of space-time is specified.

Observe as well, that the coefficients 𝐺u�
u�,u�(𝑦1, … , 𝑦u�) in (4.14) depend on a di-

mensional parameter only in the form of the overall factor of 𝜇(u�/2−1)u�
0 , which is in-

dependent of the order 𝑛 of the coefficient in the 𝜀 expansion. The 𝑝-point Green’s
function 𝐺u�

u�(𝜀; 𝑦1, … , 𝑦u�) thus has the dimension [mass](u�/2−1)u�. This is in agree-
ment with the expectation that one can obtain by considering 𝐺u�

u�(𝜀; 𝑦1, … , 𝑦u�) as
the (normalized) expectation value

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�) =

⟨Ω| 𝑇 𝜙(𝑦1) … 𝜙(𝑦u�) |Ω⟩
⟨Ω|Ω⟩

∣
connected

(4.15)

of 𝑝 fields, which are each of dimension [mass]u�/2−1; here |Ω⟩ denotes the ground-
state of the interacting theory and 𝑇 denotes the time-ordering symbol [48].

4.2 The First-Order Coefficient and the Single-Vertex
Approximation

In the following, the first-order 𝜀-expansion coefficient 𝐺u�
u�,1(𝑦1, … , 𝑦u�) of the con-

nected 𝑝-point Green’s function is determined from the general coefficient struc-
ture in (4.14). This general result is then evaluated specifically for the one-point
and two-point Green’s functions 𝐺u�

1(𝜀; 𝑦1) and 𝐺u�
2(𝜀; 𝑦1, 𝑦2). Both the general

and the specific solutions are confirmed to agree with those previously obtained
in [1]. In addition, the single-vertex approximation 𝐺u�

u�(𝜀; 𝑦1, … , 𝑦u�)|u�=1 of the
𝑝-point Green’s function is calculated; that is the 𝑘 = 1 contribution is evaluated
for every coefficient 𝐺u�

u�,u�(𝑦1, … , 𝑦u�) in (4.14) and these contributions are then
summed to all orders 𝑛 in 𝜀. Again, the general result is evaluated specifically for
the one-point and two-point Green’s functions.

At first order in 𝜀, that is for 𝑛 = 1, the general coefficient structure in (4.14)
consists of only a single contribution with 𝑘 = 1. Similar to the calculation of
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Figure 4.2: Diagrammatic visualization of the first-order u�-expansion coefficient
u�u�

u�,1(u�1, … , u�u�) of the u�-point Green’s function. All external points u�1 to u�u� are con-
nected to the single internal point u�1 by a single propagator each, indicated as red lines.
Adapted from [43].

the partition-function coefficient 𝒵1 in Section 2.2, the multi-indices defined by
(2.18) become 𝛼 = (1) and 𝛽 = (1), utilizing the conditions (2.11) and (2.12).
Thus 𝑥u� describes only a single internal space-time point 𝑥1. Contrary to the
partition-function calculation, the external space-time points 𝑦1 to 𝑦u� have to
be taken into account as well. As pointed out in the discussion of the general
coefficients (4.14), the external points are connected by only a single propagator
to other space-time points. Any connection between two external points separates
that pair from the remaining space-time points, especially from 𝑥1, so that the
only possible fully connected contribution consists of all external points being
connected to 𝑥1; a schematic visualization of this is shown in Figure 4.2. In
particular, this specifies the values of all numbers 𝑙u�u� of propagators connecting
the various space-time points, namely 𝑙1u� = 1 ∀𝑗 ∈ [2, 𝑝 +1] and all others vanish,
that is 𝑙u�u� = 0 ∀𝑖 ∈ [2, 𝑝]. Accordingly, 𝐿1 = 𝑝, signifying that a total of 𝑝
propagators connect 𝑥1 to the external space-time points. With this, the general
coefficient structure (4.14) simplifies to

𝐺u�
u�,1(𝑦1, … , 𝑦u�) = − u�Δu�(0)

2
√

u� [u�u�−2
0 Δu�(0)

2 ]
u�/2

∫𝑑u�𝑥′
1

1
∑

u�1=0
(𝑖𝜋)u�1

× lim
u�1→0

( u�
u�u�1

)
1−u�1

[2Δu�(0)]u�1

u�

∏
u�=1

[2Δu�(u�′
1 − u�′

u�)
Δu�(0) ]

×
Γ(𝑁1 + 2) Γ(𝑁1 + 3

2)
Γ(𝑁1 + 2 − u�

2)
(1 + eu�u�(u�1−u�)

2
).

(4.16)
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For odd values of 𝑝 the factor involving the exponential eu�u�(u�1−u�) implies that 𝑚1

has to be odd as well, that is 𝑚1 = 1. In this case, (4.16) becomes

𝐺u�
u�,1(𝑦1, … , 𝑦u�) = −u�u�u�Δu�(0)

4Γ(2 − u�
2 )

[ 2u�u�−2
0

Δu�(0)]
u�/2

∫𝑑u�𝑥′
1

u�

∏
u�=1

Δu�(𝑥′
1 − 𝑦′

u�). (4.17)

Conversely, for even values of 𝑝 the factor involving the exponential eu�u�(u�1−u�)

implies that 𝑚1 has to be even, that is 𝑚1 = 0. In this case, (4.16) reduces to

𝐺u�
u�,1(𝑦1, … , 𝑦u�) = − u�Δu�(0)

4Γ(2 − u�
2 )

[ 2𝜇u�−2
0

Δu�(0)
]

u�/2
∫𝑑u�𝑥′

1

u�

∏
u�=1

Δu�(𝑥′
1 − 𝑦′

u�)

× (ln[2Δu�(0)] + 𝜓(3
2) + 𝜓(2) − 𝜓(2 − u�

2)).
(4.18)

As special cases of the expressions (4.17) and (4.18) for the first-order 𝜀-
expansion coefficients of the 𝑝-point Green’s function consider 𝑝 = 0, 𝑝 = 1
and 𝑝 = 2: In the case that 𝑝 = 0, no external points are included and the
expression (4.18) for the coefficient 𝐺u�

0,1 takes the form:

𝐺u�
0,1 = 𝒵u�

1 = 𝒵1 = −1
4𝑔 𝑉 Δu�(0) (ln[2Δu�(0)] + 𝜓(3

2)). (4.19)

This denotes the connected part of the partition-function coefficient 𝒵u�
1, but since

𝒵1 is represented by an inherently connected graph, it is, in fact, equivalent to
𝒵1 as given in (2.42).

For 𝑝 = 1 one finds the first-order 𝜀-expansion coefficient of the one-point
Green’s function from (4.17) to be

𝐺u�
1,1(𝑦1) = −𝑖𝑔𝑚−2𝜇u�/2−1

0 √1
2𝜋Δu�(0), (4.20)

using the normalization (2.29) of the propagator; ∫𝑑u�𝑥′ Δu�(𝑥′) = 𝑚−2. This
agrees with the result in [1] for the theory without dimensional parameters when
choosing 𝑔 = 𝑚 = 1 and 𝜇0 = 1. In Figure 4.3 the behavior of (4.20) is shown as a
function of the space-time dimension 𝐷 for 𝑔 = 𝑚 = 1 and 𝜇0 = 1 in the range 0 ≤
𝐷 < 4. Notice in particular the divergence of the coefficient at 𝐷 = 2, confirming
that renormalization techniques are required. For 𝐷 = 0 and 𝐷 = 1 the result for
𝐺u�

1,1 can also be determined through direct integration and Rayleigh-Schrödinger
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1 2 3 4

-2

-1

0

1

2

Figure 4.3: Behavior of the first-order u�-expansion coefficient u�u�
1,1 of the one-point

Green’s function in 0 ≤ u� < 4 dimensions. The red dots denote the zero-dimensional
and quantum-mechanical theories.

perturbation theory, yielding the values 𝐺u�
1,1|u�=0 = −√𝜋/2 𝑖 ≈ −1.253314 𝑖 and

𝐺u�
1,1|u�=1 = −1

2
√

𝜋 𝑖 ≈ −0.886227 𝑖, which are visualized in Figure 4.3 as red dots
and confirm the result (4.20) in these cases. Moreover, the coefficient changes from
imaginary values in the region 0 ≤ 𝐷 < 2 to real values when 2 < 𝐷 < 4 due
to the behavior of the selfloop propagator, and diverges again when approaching
𝐷 = 4.

At 𝑝 = 2 the first-order coefficient of the two-point Green’s function is

𝐺u�
2,1(𝑦1, 𝑦2) = 𝑔 𝜇u�−2

0 𝐾1 ∫𝑑u�𝑥′
1 Δu�(𝑥′

1 − 𝑦′
1)Δu�(𝑥′

1 − 𝑦′
2) (4.21)

based on (4.18), with the constant dimensionless term

𝐾1 = − 1
2(ln[2Δu�(0)] + 𝜓(3

2) + 1). (4.22)

Here recall that 𝑦′
1 = 𝜇0𝑦1 and 𝑦′

2 = 𝜇0𝑦2 are dimensionless versions of the
external space-time variables. Again, the result agrees with that in [1] for the
theory without dimensional parameters.

In order to bring the general expressions (4.17) and (4.18) for the first-order
Green’s function coefficient 𝐺u�

u�,1(𝑦1, … , 𝑦u�) into the form of the general result
presented in [1], the function Γ(2 − 𝑝/2) in the denominator of (4.17) and (4.18)
has to be rewritten. For odd values of 𝑝, that is for the expression (4.17), this
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can be done using Euler’s reflection formula [50], so that:

𝑖𝜋
Γ(2 − u�

2)
= 𝑖 Γ(u�

2 − 1) sin[𝜋(u�
2 − 1)] = (−𝑖)u� Γ(u�

2 − 1). (4.23)

With this (4.17) becomes

𝐺u�
u�,1(𝑦1, … , 𝑦u�) = − 1

2(−𝑖)u�𝑔 𝜇(u�/2−1)u�
0 Γ(u�

2 − 1)[1
2Δu�(0)]1−u�/2

× ∫𝑑u�𝑥′
1

u�

∏
u�=1

Δu�(𝑥′
1 − 𝑦′

u�).
(4.24)

This is the result of [1], here including dimensional parameters. In [1] it was also
found that this result for odd values of 𝑝 remains valid for even values of 𝑝 ≥ 4 as
well. This can be seen from the expression (4.18) as follows: For even values of
𝑝 ≥ 4 the function Γ(2 − 𝑝/2) in the denominator becomes singular and the only
term in which this singularity is canceled is 𝜓(2) − 𝜓(2 − u�

2). One can rewrite

𝜓(2) − 𝜓(2 − u�
2)

Γ(2 − u�
2)

= lim
u�→0

( u�
u�u� ) Γ(𝑁 + 2)

Γ(𝑁 + 2 − u�
2)

= lim
u�→0

( u�
u�u� )[(𝑁 + 1) 𝑁 (𝑁 − 1) … (𝑁 + 2 − u�

2)]

= lim
u�→0

( u�
u�u� )[(1) 𝑁 (−1) … (2 − u�

2)]

= (−1)u�/2−2 (u�
2 − 2)! = (−𝑖)u� Γ(u�

2 − 1),

(4.25)

when 𝑝 ≥ 4. With this (4.18) takes the form of (4.24) as well, reflecting the
behavior described in [1]. Notice, however, that (4.24) is neither valid for 𝑝 = 2,
nor for 𝑝 = 0, while (4.17) and (4.18) do describe the behavior of the first-order
𝜀-expansion coefficients of the general 𝑝-point Green’s function in these cases.

Beyond the evaluation of the general Green’s function coefficients (4.14) at first
order (𝑛 = 1), the calculation of the 𝑘 = 1 contribution to these coefficients can
be performed at any order 𝑛 in a very similar way. This approach was previously
introduced in Section 2.2 for the partition-function coefficients 𝒵u�. Here the only
conceptual difference is that the connections of the external space-time points
have to be specified before continuing with the evaluation, as established for
𝑛 = 1 above. After that, the remaining calculation parallels the discussion of the
single-vertex approximation of the partition-function coefficient in Section 2.2.
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For 𝑘 = 1 and an unspecified value 𝑛, the conditions (2.11) and (2.12) specify
that in the summation ⅀u� only 𝑐u� = 1, while 𝑐1 = ⋯ = 𝑐u�−1 = 0. This implies
that 𝛼 = (1) and 𝛽 = (𝑛). These terms generally describe, in a diagrammatic
sense, those contributions that contain only a single internal point 𝑥1. In the
same way as for 𝑛 = 1, the only possible fully connected contribution therefore
consists of all external points being connected to 𝑥1, which is schematically shown
in Figure 4.2. Again, this determines the values of all numbers 𝑙u�u� of propagators
connecting the various space-time points, namely 𝑙1u� = 1 ∀𝑗 ∈ [2, 𝑝 + 1] and
𝑙u�u� = 0 ∀𝑖 ∈ [2, 𝑝], so that in particular 𝐿1 = 𝑝, signifying that 𝑝 propagators
connect 𝑥1 to the external space-time points. The general coefficient structure
(4.14) then becomes

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=1
= − u�Δu�(0)

2u� u�!
√

u� [u�u�−2
0 Δu�(0)

2 ]
u�/2

∫𝑑u�𝑥′
1

u�
∑

u�1=0
( u�

u�1
)(𝑖𝜋)u�1

× lim
u�1→0

( u�
u�u�1

)
u�−u�1

[2Δu�(0)]u�1

u�

∏
u�=1

[2Δu�(u�′
1 − u�′

u�)
Δu�(0) ]

×
Γ(𝑁1 + 2) Γ(𝑁1 + 3

2)
Γ(𝑁1 + 2 − u�

2)
(1 + eu�u�(u�1−u�)

2
).

(4.26)

The factor involving the exponential eu�u�(u�1−u�) implies that for odd values of 𝑝 the
summation over 𝑚1 contains only the odd values of 𝑚1, while for even values of
𝑝 it contains only the even values of 𝑚1. But these summations can be evaluated
as special cases of the Leibniz rule [50] in the same way as discussed in the
calculation of the partition-function coefficients, see (2.65) and (2.66), resulting
in the expression

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=1
= − u�Δu�(0)

2u� u�!
√

u� [ 2u�u�−2
0

Δu�(0)]
u�/2

∫𝑑u�𝑥′
1

u�

∏
u�=1

Δu�(𝑥′
1 − 𝑦′

u�)

× lim
u�1→0

( u�
u�u�1

)
u�
[2Δu�(0)]u�1 Γ(𝑁1 + 2) Γ(𝑁1 + 3

2)
Γ(𝑁1 + 2 − u�

2)

×
⎧{
⎨{⎩

cos(𝜋𝑁1), for 𝑝 even,

𝑖 sin(𝜋𝑁1), for 𝑝 odd.

(4.27)
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Similar to the partition-function coefficients 𝒵u�|u�=1 in (2.44), the evaluation for
any specified value of 𝑛 is straightforward.

Moreover, the expression (4.27) can be summed over all values 𝑛 ≥ 1, that is
to all orders in 𝜀, as

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�)∣

u�=1
=

∞
∑
u�=1

𝜀u� 𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=1

= − u� Δu�(0)√
u� [ 2u�u�−2

0
Δu�(0)]

u�/2 ∞
∑
u�=1

(𝜀/2)u�

𝑛!
lim

u�1→0
( u�

u�u�1
)

u�
𝑓(𝑁1)

× ∫𝑑u�𝑥′
1

u�

∏
u�=1

Δu�(𝑥′
1 − 𝑦′

u�),

(4.28)
where

𝑓(𝑁1) = [2Δu�(0)]u�1 Γ(𝑁1 + 2) Γ(𝑁1 + 3
2)

Γ(𝑁1 + 2 − u�
2)

⎧{
⎨{⎩

cos(𝜋𝑁1), for 𝑝 even,

𝑖 sin(𝜋𝑁1), for 𝑝 odd.
(4.29)

Completing the summation in (4.28) with a 𝑛 = 0 term, 𝑓(0), it is recognized as
the Taylor series of 𝑓(𝜀/2) around 0, and can thus be evaluated to the form

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�)∣

u�=1
= − u� u�

2
√

u�[ 2u�u�−2
0

Δu�(0)]
u�/2

[2Δu�(0)]1+u�/2 sin(u�u�
2 )

×
Γ(u�

2 + 2) Γ(u�
2 + 3

2)
Γ(u�

2 + 2 − u�
2)

∫𝑑u�𝑥′
1

u�

∏
u�=1

Δu�(𝑥′
1 − 𝑦′

u�)
(4.30)

for odd values of 𝑝, and

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�)∣

u�=1
= − u�

2
√

u�[ 2u�u�−2
0

Δu�(0)]
u�/2

∫𝑑u�𝑥′
1

u�

∏
u�=1

Δu�(𝑥′
1 − 𝑦′

u�)

×([2Δu�(0)]1+u�/2 cos(u�u�
2 )

Γ(u�
2 + 2) Γ(u�

2 + 3
2)

Γ(u�
2 + 2 − u�

2)
−

√
𝜋Δu�(0)

Γ(2 − u�
2)

)

(4.31)

for even values of 𝑝. These describe the single-vertex approximation of the con-
nected 𝑝-point Green’s function.
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(a)

(b)

(c)

Figure 4.4: Behavior of the single-vertex approximation of the one-point Green’s func-
tion as a function of the dimension u� and the nonlinearity parameter u�. For 0 ≤ u� < 2
the coefficient u�u�

1(u�; u�1)|u�=1 is imaginary, shown in Figure 4.4a; the red lines denote
the zero-dimensional and quantum-mechanical theories. For 2 < u� < 4 the coeffi-
cient becomes complex; the imaginary and real parts are displayed in Figure 4.4b and
Figure 4.4c respectively.
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For 𝑝 = 0 the expression (4.31) reduces to the single-vertex approximation
𝒵(𝜀)|u�=1 of the normalized partition function obtained previously in (2.46). The
approximation of the one-point Green’s function is obtained from (4.30) to be:

𝐺u�
1(𝜀; 𝑦1)∣

u�=1
= −𝑖𝑔𝑚−2𝜇u�/2−1

0
√2Δu�(0)

u� [2Δu�(0)]u�/2 sin(u�u�
2 ) Γ[ u�

2 + 2], (4.32)

using the normalization (2.29) of the propagator. The behavior of 𝐺u�
1(𝜀; 𝑦1)|u�=1 is

visualized in Figure 4.4 as a function of the space-time dimension 𝐷 and the non-
linearity parameter 𝜀. Similar to the first-order 𝜀-expansion coefficient 𝐺u�

1,1(𝑦1)
in (4.20), the single-vertex approximation is an imaginary function for 0 ≤ 𝐷 < 2,
that diverges in the limit of two dimensions, see Figure 4.4a. The red lines indi-
cate the behavior at 𝐷 = 0 and 𝐷 = 1. For 2 < 𝐷 < 4 dimensions, 𝐺u�

1(𝜀; 𝑦1)|u�=1

is generally a complex function due to the negative selfloop propagator (2.30). Its
imaginary and real parts are visualized in Figure 4.4b and Figure 4.4c respectively.
In the limit of four-dimensional space-time, 𝐺u�

1(𝜀; 𝑦1)|u�=1 diverges again.

Observe that, while 𝐺u�
1(𝜀; 𝑦1)|u�=1 is generally a complex function in 2 < 𝐷 < 4

dimensions, its real part vanishes for odd values of 𝜀, resulting in an imaginary so-
lution resembling the behavior in 0 ≤ 𝐷 < 2 dimensions. These cases correspond
to an odd imaginary self-interaction term in the Lagrangian density ℒ(𝜀), see
(2.1), so that this imaginary nature of the one-point Green’s function coefficients
is expected. Due to the perturbative expansion in 𝜀, this feature is not apparent
in the nonlinearity expansion, but it reemerges here in the vertex approximation
where terms to all orders in 𝜀 are taken into account.

Furthermore, because of the sine function in (4.32), the single-vertex approx-
imation vanishes for even values of 𝜀 in all dimensions. For an even nonlinearity
parameter the self-interaction term in the Lagrangian density is even as well, so
that the expectation value of the field 𝜙 - and thus the one-point Green’s function
- is expected to vanish. Again, this feature is not apparent in the nonlinearity
expansion but reemerges in the single-vertex approximation.

For the two-point Green’s function, (4.31) reduces to

𝐺u�
2(𝜀; 𝑦1, 𝑦2)∣

u�=1
= 𝑔 𝜇u�−2

0 𝜅1(𝜀) ∫𝑑u�𝑥′ Δu�(𝑥′ − 𝑦′
1)Δu�(𝑥′ − 𝑦′

2), (4.33)
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with

𝜅1(𝜀) = 1 − u� + 2√
u� [2Δu�(0)]u�/2 cos(u�u�

2 ) Γ[u�+3
2 ]. (4.34)

Note that 𝜅1(0), and thus 𝐺u�
2(0; 𝑦1, 𝑦2)|u�=1, vanishes as expected from the coupling-

constant expansion interpretation of the vertex approximation established in (2.47).
In addition, (4.34) is a real-valued function in all space-time dimensions for integer
values of 𝜀: For even values the (possibly negative) selfloop propagator is raised to
an integer power while for odd values the possibly imaginary contribution vanishes
due to the cosine function.

4.3 The Second-Order Coefficient and the Two-Vertex
Approximation

To evaluate the general 𝜀-expansion coefficient (4.14) of the 𝑝-point Green’s func-
tion at second order in the nonlinearity parameter, that is for 𝑛 = 2, two contri-
butions need to be considered: A single-vertex term when 𝑘 = 1, and a two-vertex
term, when 𝑘 = 2. The single-vertex term is determined by the expression (4.27)
obtained in Section 4.2, and takes the form

𝐺u�
u�,2(𝑦1, … , 𝑦u�)∣

u�=1
= − u� Δu�(0)

16 Γ(2 − u�
2 ) [ 2u�u�−2

0
Δu�(0)]

u�/2
∫𝑑u�𝑥′

1

u�

∏
u�=1

Δu�(𝑥′
1 − 𝑦′

u�)

× {(ln[2Δu�(0)] + 𝜓(3
2) + 𝜓(2) − 𝜓(2 − u�

2))
2

+ 𝜓(1)(3
2) + 𝜓(1)(2) − 𝜓(1)(2 − u�

2) − 𝜋2}
(4.35)

for even values of 𝑝, and

𝐺u�
u�,2(𝑦1, … , 𝑦u�)∣

u�=1
= − u� u� u� Δu�(0)

8 Γ(2 − u�
2 ) [ 2u�u�−2

0
Δu�(0)]

u�/2
∫𝑑u�𝑥′

1

u�

∏
u�=1

Δu�(𝑥′
1 − 𝑦′

u�)

× (ln[2Δu�(0)] + 𝜓(3
2) + 𝜓(2) − 𝜓(2 − u�

2))
(4.36)

for odd values of 𝑝.
The calculation of the two-vertex term, on the other hand, is somewhat more

involved: Similar to the single-vertex contribution, the external points are con-
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(a) (b)

(c) (d)

Figure 4.5: Diagrammatic visualization of connected graphs in the two-vertex contri-
bution u�u�

u�,2(u�1, … , u�u�)|u�=2 for the case u� = 2. Adapted from [43].

nected by only a single propagator to other space-time points and any connection
between two external points separates that connected pair from the remaining
space-time points. The only possible fully connected contributions therefore con-
sist of all external points being connected to either 𝑥1 or 𝑥2 and those internal
points being connected to one another. Contrary to the single-vertex case, there
is more than one way of connecting the external points 𝑦1, … , 𝑦u� to the internal
points 𝑥1 and 𝑥2. A schematic visualization for two external points is shown
in Figure 4.5. Furthermore, the summation over the number 𝑙12 of propagators
connecting the two internal points 𝑥1 and 𝑥2 has to be evaluated. An example
of this summation was calculated in Chapter 2 for the two-vertex contribution of
the partition-function coefficients 𝒵u� and the techniques employed therein can be
generalized for the summation here.

Due to the length and complexity of the calculation, the result for the general
two-vertex contribution 𝐺u�

u�,u�(𝑦1, … , 𝑦u�)|u�=2 of the 𝑛th-order Green’s function co-
efficient is directly given in the following. A detailed calculation can be found
in Appendix F. The general result is then evaluated for 𝑛 = 2 and combined
with the single-vertex contribution (4.35) or (4.36) to determine the second-order
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𝜀-expansion coefficient 𝐺u�
u�,2(𝑦1, … , 𝑦u�) of the 𝑝-point Green’s function. Then, the

result for the general two-vertex contribution is summed to all order in 𝜀, that
is over 𝑛, to find the two-vertex approximation 𝐺u�

u�(𝜀; 𝑦1, … , 𝑦u�)|u�=2 of the full
Green’s function.

The general two-vertex contribution 𝐺u�
u�,u�(𝑦1, … , 𝑦u�)|u�=2 of the 𝑛th-order

Green’s function coefficient has the form

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=2
=

u�2Δ2
u�(0)

2u�+1u�! u� [ 2u�u�−2
0

Δu�(0)]
u�/2

∫𝑑u�𝑥′
1𝑑u�𝑥′

2 lim
u�→0

( u�
u�u� )

u�

× {
u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)} [cos2(𝜋𝑁) 𝐿even(𝑁, 𝑁) − sin2(𝜋𝑁) 𝐿odd(𝑁, 𝑁)

− cos(𝜋𝑁) 𝐿even(𝑁, 0) − cos(𝜋𝑁) 𝐿even(0, 𝑁)]

+
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)} [cos2(𝜋𝑁) 𝐿odd(𝑁, 𝑁) − sin2(𝜋𝑁) 𝐿even(𝑁, 𝑁)

− cos(𝜋𝑁) 𝐿odd(𝑁, 0) − cos(𝜋𝑁) 𝐿odd(0, 𝑁)]}

(4.37)

for even values of 𝑝, and

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=2
=

u�2Δ2
u�(0)

2u�+1u�! u� [ 2u�u�−2
0

Δu�(0)]
u�/2

∫𝑑u�𝑥′
1𝑑u�𝑥′

2 lim
u�→0

( u�
u�u� )

u� u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)}

× [2𝑖 sin(𝜋𝑁) cos(𝜋𝑁) 𝐿even(𝑁, 𝑁) + 2𝑖 sin(𝜋𝑁) cos(𝜋𝑁) 𝐿odd(𝑁, 𝑁)

− 2𝑖 sin(𝜋𝑁) 𝐿even(𝑁, 0) − 2𝑖 sin(𝜋𝑁) 𝐿odd(0, 𝑁)]

(4.38)

for odd values of 𝑝. Here the factor {ΣΠΔ(𝑝, 𝑞)} denotes the possible ways in
which 𝑞 of the external points 𝑦1 to 𝑦u� can be connected to the internal point 𝑥1,
while 𝑝 − 𝑞 points are connected to 𝑥2,

{ΣΠΔ(𝑝, 𝑞)} = 1
𝑞! (𝑝 − 𝑞)!

∑
u�

[
u�

∏
u�=1

Δu�(𝑥′
1 − 𝑦′

u�(u�))][
u�

∏
u�=u�+1

Δu�(𝑥′
2 − 𝑦′

u�(u�))],

(4.39)
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given in terms of the summation ∑u� over all permutations of the external points
𝑦1 to 𝑦u�. The dependence of (4.39) on the space-time variables is suppressed
in the arguments of {ΣΠΔ(𝑝, 𝑞)} for brevity. The functions 𝐿even(𝑁1, 𝑁2) and
𝐿odd(𝑁1, 𝑁2) are given as:

𝐿even(𝑁1, 𝑁2) =

[2Δu�(0)]u�1+u�2 Γ(𝑁1 + 2) Γ(𝑁1 + 3
2)

Γ(𝑁1 + 2 − u�
2)

Γ(𝑁2 + 2) Γ(𝑁2 + 3
2)

Γ(𝑁2 + 2 − u�−u�
2 )

× {−1 + 2𝐹1[ − (𝑁1 + 1 − u�
2), −(𝑁2 + 1 − u�−u�

2 ); 1
2 ; (Δu�(u�′

1−u�′
2)

Δu�(0) )2]}

(4.40)

and

𝐿odd(𝑁1, 𝑁2) =

2Δu�(u�′
1 − u�′

2)
Δu�(0) [2Δu�(0)]u�1+u�2 Γ(𝑁1 + 2) Γ(𝑁1 + 3

2)
Γ(𝑁1 + 3

2 − u�
2)

Γ(𝑁2 + 2) Γ(𝑁2 + 3
2)

Γ(𝑁2 + 3
2 − u�−u�

2 )

× 2𝐹1[ − (𝑁1 + 1
2 − u�

2), −(𝑁2 + 1
2 − u�−u�

2 ); 3
2 ; (Δu�(u�′

1−u�′
2)

Δu�(0) )2];

(4.41)

the dependence on the space-time variables, as well as the values 𝑝 and 𝑞, is
suppressed in the arguments of 𝐿even(𝑁1, 𝑁2) and 𝐿odd(𝑁1, 𝑁2) for brevity.

In the case of the second-order 𝜀-expansion coefficient, that is for 𝑛 = 2, the
expressions (4.37) and (4.38) reduce to the form

𝐺u�
u�,2(𝑦1, … , 𝑦u�)∣

u�=2
=

u�2Δ2
u�(0)

8u� [ 2u�u�−2
0

Δu�(0)]
u�/2

∫𝑑u�𝑥′
1𝑑u�𝑥′

2

× {
u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)}[ lim
u�1,u�2→0

u�
u�u�1

u�
u�u�2

𝐿even(𝑁1, 𝑁2) − 𝜋2 𝐿odd(0, 0)]

+
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)}[ lim
u�1,u�2→0

u�
u�u�1

u�
u�u�2

𝐿odd(𝑁1, 𝑁2) − 𝜋2 𝐿even(0, 0)]}

(4.42)
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for even values of 𝑝, and

𝐺u�
u�,2(𝑦1, … , 𝑦u�)∣

u�=2
= 1

4𝑖 𝑔2Δ2
u�(0)[ 2u�u�−2

0
Δu�(0)]

u�/2
∫𝑑u�𝑥′

1𝑑u�𝑥′
2

u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)}

× lim
u�→0

[ u�
u�u� 𝐿even(0, 𝑁) + u�

u�u� 𝐿odd(𝑁, 0)]
(4.43)

for odd values of 𝑝. Together with the results (4.35) and (4.36) for the single-
vertex contribution, this determines the general second-order 𝜀-expansion coeffi-
cient 𝐺u�

u�,2(𝑦1, … , 𝑦u�) of the 𝑝-point Green’s function as

𝐺u�
u�,2(𝑦1, … , 𝑦u�) = 𝐺u�

u�,2(𝑦1, … , 𝑦u�)∣
u�=1

+ 𝐺u�
u�,2(𝑦1, … , 𝑦u�)∣

u�=2
. (4.44)

Special cases include the following: For 𝑝 = 0 the expression (4.44) reduces
to the connected part of the second-order coefficient of the normalized partition
function previously obtained in (2.62). Contrary to the first-order coefficient
𝒵u�

1 = 𝒵1, the connected part 𝒵u�
2 is not identical to the full coefficient 𝒵2. However,

as established in Chapter 3, it is identical to −𝑉 ℰ2 and the result (3.7) presented
there indeed agrees with that obtained from (4.44) at 𝑝 = 0.

For 𝑝 = 1, one finds the second-order 𝜀-expansion coefficient of the one-point
Green’s function to be

𝐺u�
1,2(𝑦1) = − 1

2𝑖𝑔𝑚−2𝜇u�/2−1
0 √1

2Δu�(0)𝜋 (ln[2Δu�(0)] + 𝜓(2))

+ 1
4𝑖𝑔2𝑚−4𝜇u�/2−1

0 √1
2Δu�(0)𝜋 {(ln[2Δu�(0)] + 𝜓(3

2))(3 − u�
2 )

+ (𝐷 − 2) + 2Δu�(0) 𝑚2 ∫𝑑u�𝑥′ (1 + Δu�(u�′)
Δu�(0) )2 ln[1 + Δu�(u�′)

Δu�(0) ]},

(4.45)

using the normalization (2.29) of the propagator, the integral (2.61) over its
square, and the derivatives of the hypergeometric functions

lim
u�→0

( u�
u�u� ) 2𝐹1[−1

2 , −(𝑁 + 1); 1
2 ; 𝑧2] =

(1 + 𝑧)2 ln(1 + 𝑧) + (1 − 𝑧)2 ln(1 − 𝑧) − 2𝑧2
(4.46)
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Figure 4.6: Behavior of the second-order u�-expansion coefficient u�u�
1,2 of the one-point

Green’s function in 0 ≤ u� < 4 dimensions. The red dots denote the zero-dimensional
and quantum-mechanical theories (4.48) and (4.49).

and

lim
u�→0

( u�
u�u� ) 2𝐹1[−𝑁, −1

2 ; 3
2 ; 𝑧2] =

(2𝑧)−1[(1 + 𝑧)2 ln(1 + 𝑧) − (1 − 𝑧)2 ln(1 − 𝑧) − 2𝑧].
(4.47)

In Figure 4.6 the behavior of 𝐺u�
1,2(𝑦1) is visualized as a function of the space-time

dimension in the region 0 ≤ 𝐷 < 4 for 𝑔 = 𝑚 = 1 and 𝜇0 = 1. Notice in
particular the divergence of the coefficient at 𝐷 = 2 and 𝐷 = 4. For 𝐷 = 0 and
𝐷 = 1 the result for 𝐺u�

1,2(𝑦1) can also be determined through direct integration
or Rayleigh-Schrödinger perturbation theory, yielding the values

𝐺u�
1,2|u�=0 = 𝑖√𝜋/8 [−2 + 𝛾 + 9

2 ln 2 + 3
2𝜓(3

2)] ≈ 1.097347 𝑖, (4.48)

𝐺u�
1,2|u�=1 = 𝑖

√
𝜋 [ 1

48𝜋2 − 13
16 + 1

4𝛾 + ln 2 + 5
16𝜓(3

2)] ≈ 0.428882 𝑖, (4.49)

which are visualized in Figure 4.6 as red dots and confirm the result (4.45) in
these cases. Moreover, the coefficient changes from imaginary values in the region
0 ≤ 𝐷 < 2 to complex values when 2 < 𝐷 < 4, similar to the first-order coefficient
𝐺u�

1,1(𝑦1) in (4.20).
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For 𝑝 = 2, one finds the second-order coefficient of the two-point Green’s
function to be

𝐺u�
2,2(𝑦1, 𝑦2) = 𝜇u�−2

0 (𝑔𝐾2 + 𝑔2𝐾3) ∫𝑑u�𝑥′ Δu�(𝑥′ − 𝑦′
1)Δu�(𝑥′ − 𝑦′

2)

+ 𝑔2𝜇u�−2
0 ∫𝑑u�𝑥′

1𝑑u�𝑥′
2 Δ(𝑥′

1 − 𝑦′
1)Δ(𝑥′

2 − 𝑦′
2) 𝑓(𝑥′

1 − 𝑥′
2),

(4.50)

in terms of the dimensionless constants

𝐾2 = −1
8{(ln[2Δu�(0)] + 𝜓(3

2) + 1)
2

+ 𝜓(1)(3
2) − 𝜋2 − 1} (4.51)

and

𝐾3 = 1
4Δu�(0) ∫𝑑u�𝑥′{Δu�(u�′)

Δu�(0)
√1 − [Δu�(u�′)

Δu�(0) ]
2
(2 sin−1[Δ(u�′)

Δ(0) ] − 𝜋)

+ sin−1[Δu�(u�′)
Δu�(0) ](sin−1[Δu�(u�′)

Δu�(0) ] − 𝜋)

+ [Δu�(u�′)
Δu�(0) ]

2
(log[2Δu�(0)] + 𝜓(3

2) − 2)},

(4.52)

and the function

𝑓(𝑥) =
1
2Δu�(𝑥){sin−1[Δu�(u�)

Δu�(0) ](sin−1[Δu�(u�)
Δu�(0) ]− 𝜋) + 1

2(ln[2Δu�(0)] + 𝜓(3
2) + 1)

2
− 2}

+ Δu�(0){sin−1[Δu�(u�)
Δu�(0) ]√1 − [Δu�(u�)

Δu�(0) ]
2

+ +1
2𝜋(1 − √1 − [Δu�(u�)

Δu�(0) ]
2
)}.

(4.53)

In addition to the evaluation of the second-order 𝜀-expansion coefficient, the
general two-vertex contributions in (4.37) and (4.38) can be summed to all orders
𝑛 ≥ 2 in 𝜀. Much like for the summation of the two-vertex contribution of the
partition-function coefficients in Section 2.3, the sum

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�)∣

u�=2
=

∞
∑
u�=2

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=2
𝜀u�

= u�2 Δ2
u�(0)

2u� [ 2u�u�−2
0

Δu�(0)]
u�/2 ∞

∑
u�=2

(𝜀/2)u�

𝑛!
lim

u�→0
( u�

u�u� )
u�
𝑤(𝑁),

(4.54)
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with

𝑤(𝑁) = ∫𝑑u�𝑥′
1𝑑u�𝑥′

2 {
u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)} [cos2(𝜋𝑁) 𝐿even(𝑁, 𝑁)

− sin2(𝜋𝑁) 𝐿odd(𝑁, 𝑁) − cos(𝜋𝑁) 𝐿even(𝑁, 0) − cos(𝜋𝑁) 𝐿even(0, 𝑁)]

+
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)} [cos2(𝜋𝑁) 𝐿odd(𝑁, 𝑁) − sin2(𝜋𝑁) 𝐿even(𝑁, 𝑁)

− cos(𝜋𝑁) 𝐿odd(𝑁, 0) − cos(𝜋𝑁) 𝐿odd(0, 𝑁)]}

(4.55)

for even values of 𝑝, and

𝑤(𝑁) = ∫𝑑u�𝑥′
1𝑑u�𝑥′

2

u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)}[2𝑖 sin(𝜋𝑁) cos(𝜋𝑁) 𝐿even(𝑁, 𝑁)

+ 2𝑖 sin(𝜋𝑁) cos(𝜋𝑁) 𝐿odd(𝑁, 𝑁) − 2𝑖 sin(𝜋𝑁) 𝐿even(𝑁, 0)

− 2𝑖 sin(𝜋𝑁) 𝐿odd(0, 𝑁)]

(4.56)

for odd values of 𝑝, can be recognized as the Taylor series of 𝑤(𝜀/2) around 0
without the 𝑛 = 0 and 𝑛 = 1 terms. The functions {ΣΠΔ(𝑝, 𝑞)}, 𝐿even(𝑁1, 𝑁2),
and 𝐿odd(𝑁1, 𝑁2) in 𝑤(𝑁) are given in (4.39), (4.40), and (4.41) respectively; their
dependence on the space-time variables is suppressed for brevity. Completing the
summation then results in the two-vertex approximation of the 𝑝-point Green’s
function:

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�)∣

u�=2
=

u�2 Δ2
u�(0)

2u� [ 2u�u�−2
0

Δu�(0)]
u�/2

{𝑤(𝜀/2) − 𝑤(0) − 1
2𝜀 lim

u�→0
( u�

u�u� )𝑤(𝑁)}.
(4.57)

The first derivative of 𝑤(𝑁) is found overall to vanish in the limit 𝑁 → 0.
In the special case that 𝑝 = 0, the expression (4.57) reduces to the connected

part of 𝒵(𝜀)|u�=2 in (2.79), which corresponds to the two-vertex approximation of
the energy density −𝑉 ℰ(𝜀)|u�=2 in (3.10).
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(a)

(b)

(c)

Figure 4.7: Behavior of the two-vertex approximation of the one-point Green’s function
as a function of the dimension u� and the nonlinearity parameter u�. For 0 ≤ u� < 2
the coefficient u�u�

1(u�; u�1)|u�=2 is imaginary, shown in Figure 4.7a; the red lines denote
the zero-dimensional and quantum-mechanical theories. For 2 < u� < 4 the coeffi-
cient becomes complex; the imaginary and real parts are displayed in Figure 4.7b and
Figure 4.7c respectively.
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For 𝑝 = 1 the two-vertex approximation to the one-point Green’s function is
found to be

𝐺u�
1(𝜀; 𝑦1)∣

u�=2
=

2𝑖 u�2u�−2

u�
√1

2Δu�(0) 𝜇u�/2−1
0 sin(u�u�

2 ) Γ(u�+4
2 )([2Δu�(0)]u� cos(u�u�

2 ) Γ(u�+3
2 )

× {∫𝑑u�𝑥′ Δu�(0)(2𝐹1[ − u�+1
2 , −u�+2

2 ; 1
2 ; (Δu�(u�′)

Δu�(0) )2] − 1)

+ (𝜀 + 2) ∫𝑑u�𝑥′ Δu�(𝑥′) 2𝐹1[ − u�
2 , −u�+1

2 ; 3
2 ; (Δu�(u�′)

Δu�(0) )2]}

−
√

𝜋𝑚−2[2Δu�(0)]u�/2 [1 + 1
2(𝜀 + 1)(1 − 𝐷/2)]),

(4.58)

using the normalization (2.29) of the propagator and the integral (2.61) over its
square. The behavior of 𝐺u�

1(𝜀; 𝑦1)|u�=2 is shown in Figure 4.7 as a function of the
space-time dimension 𝐷 and the nonlinearity parameter 𝜀. Similar to the single-
vertex result in (4.32), it is an imaginary function for 0 ≤ 𝐷 < 2, that diverges in
the limit of two dimensions, see Figure 4.7a. The red lines indicate the behavior
for 𝐷 = 0 and 𝐷 = 1. In 2 < 𝐷 < 4 dimensions (4.58) is generally a complex
function due to the dependence on the selfloop propagator, which is negative in
this region and is raised to generally noninteger powers involving the parameter
𝜀. The imaginary and real parts of 𝐺u�

1(𝜀; 𝑦1)|u�=2 are shown in Figure 4.7b and
Figure 4.7c respectively. Similar to the two-vertex approximation of the energy
density ℰ(𝜀)|u�=2 in (3.10), cf. Figure 3.3, a complicated divergence structure is
found the region 2 < 𝐷 < 4. This again demonstrates that renormalization
techniques are not only required for 𝐷 = 2 and 𝐷 = 4 but in-between as well.

In addition, the two-vertex contribution (4.58) is found to vanish in all dimen-
sions for even values of 𝜀 due to the sine function, and in 2 < 𝐷 < 4 its real part
vanishes for odd values of 𝜀, so that 𝐺u�

1(𝜀; 𝑦1)|u�=2 becomes a purely imaginary
function in this region, like for 0 ≤ 𝐷 < 2. These features were also observed
for the single-vertex approximation in (4.32) and it was argued there that they
are to be expected based on the structure of the Lagrangian density. They are
not apparent in the nonlinearity expansion due to its perturbative nature but
reemerge in the single-vertex and two-vertex approximations where terms to all
orders in 𝜀 are taken into account.
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In the case of the two-vertex approximation of the two-point Green’s function,
that is when 𝑝 = 2, (4.57) becomes

𝐺u�
2(𝜀; 𝑦1, 𝑦2)∣

u�=2
= 𝑔2𝜇u�−2

0 {𝜅2(𝜀) ∫𝑑u�𝑥′
1 Δu�(𝑥′

1 − 𝑦′
1)Δu�(𝑥′

1 − 𝑦′
2)

+ ∫𝑑u�𝑥′
1𝑑u�𝑥′

2 Δ(𝑥′
1 − 𝑦′

1)Δ(𝑥′
2 − 𝑦′

2) ℎ(𝑥′
1 − 𝑥′

2)}
(4.59)

in terms of

𝜅2(𝜀) =

2
u� Δu�(0) ∫𝑑u�𝑥′(−

√
u�

2 𝜀 cos(u�u�
2 ) [2Δu�(0)]u�/2 Γ(u�

2 + 3
2) (u�+2

2 ) (Δu�(u�′)
Δu�(0) )2

+ cos(u�u�
2 )2 [2Δu�(0)]u� Γ(u�

2 + 3
2)2 (u�+2

2 ) {2𝐹1[ − u�+2
2 , −u�

2 ; 1
2 ; (Δu�(u�′)

Δu�(0) )2] − 1}

− sin(u�u�
2 )2 [2Δu�(0)]u� Γ(u�

2 + 2)2 (𝜀 + 1)Δu�(u�′)
Δu�(0) 2𝐹1[ − u�+1

2 , −u�−1
2 ; 3

2 ; (Δu�(u�′)
Δu�(0) )2] ),

(4.60)

and

ℎ(𝑥) = 2
u� cos(u�u�

2 )2 [2Δu�(0)]u� Γ(u�
2 + 3

2)2 (u�+2
2 )2 2Δu�(u�)

Δu�(0) 2𝐹1[ − u�
2 , −u�

2 ; 3
2 ; (Δu�(u�)

Δu�(0) )2]

− 2
u� sin(u�u�

2 )2 [2Δu�(0)]u� Γ(u�
2 + 2)2 {2𝐹1[ − u�+1

2 , −u�+1
2 ; 1

2 ; (Δu�(u�)
Δu�(0) )2] − 1}

− 2
u�

√
𝜋 Δu�(u�)

Δu�(0) cos(u�u�
2 ) [2Δu�(0)]u�/2 Γ(u�

2 + 3
2) (𝜀 + 2) + Δu�(u�)

Δu�(0) .
(4.61)

Note that 𝜅2(𝜀) and ℎ(𝑥), and thus 𝐺u�
2(𝜀; 𝑦1, 𝑦2)|u�=2, vanish when 𝜀 → 0, as ex-

pected from the coupling-constant expansion interpretation of the vertex approx-
imation established in (2.47). In addition, both (4.60) and (4.61) are real-valued
functions in all space-time dimensions for integer values of 𝜀 due to the combi-
nations of trigonometric functions and powers of the (possibly negative) selfloop
propagator Δu�(0), similar to the behavior of 𝜅1(𝜀) in (4.34).
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4.4 The Effective Mass

Having derived the general closed-form behavior of the 𝑝-point Green’s functions
to second order in the 𝜀 expansion of the model, as well as their single-vertex
and two-vertex approximations, this section closes the general discussion of the
Green’s functions by remarking upon the behavior of the effective mass 𝑀(𝜀) of
the theory.

The effective mass is defined through the Fourier transform of the two-point
Green’s function as

𝑀2(𝜀) = lim
u�→0

𝐺u�
2(𝜀; 𝑝)−1. (4.62)

In the previous sections, 𝐺u�
2(𝜀; 𝑦1, 𝑦2) was determined in position space, finding

its nonlinearity expansion to second order to be of the form

𝐺u�
2(𝜀; 𝑦1, 𝑦2) = 𝜇u�−2

0 {Δu�(𝑦′
1 − 𝑦′

2) + 𝑔 𝜀𝐾1 ∫𝑑u�𝑥′ Δu�(𝑥′ − 𝑦′
1)Δu�(𝑥′ − 𝑦′

2)

+ 𝜀2(𝑔𝐾2 + 𝑔2𝐾3) ∫𝑑u�𝑥′ Δu�(𝑥′ − 𝑦′
1)Δu�(𝑥′ − 𝑦′

2)

+ 𝜀2𝑔2 ∫𝑑u�𝑥′
1𝑑u�𝑥′

2 Δ(𝑥′
1 − 𝑦′

1)Δ(𝑥′
2 − 𝑦′

2) 𝑓(𝑥′
1 − 𝑥′

2)},

(4.63)

where 𝑦′
1 = 𝜇0𝑦1 and 𝑦′

2 = 𝜇0𝑦2 are dimensionless space-time variables, and 𝐾1,
𝐾2, 𝐾3, and 𝑓(𝑥′) are given in (4.22), (4.51), (4.52), and (4.53) respectively.
The space-time integrals in this expansion form convolutions, so that obtaining
𝐺u�

2(𝜀; 𝑝) is straightforward:

𝐺u�
2(𝜀; 𝑝) = 𝜇−2

0 {Δ̂u�(𝑝′) + 𝑔 𝜀𝐾1 Δ̂u�(𝑝′)2 + 𝜀2(𝑔𝐾2 + 𝑔2𝐾3)Δ̂u�(𝑝′)2

+ 𝜀2𝑔2 ̂𝑓(𝑝′) Δ̂u�(𝑝′)2},
(4.64)

where 𝑝′ = 𝑝𝜇−1
0 is the dimensionless momentum variable, so that all functions

are dimensionless expressions and the only dimensional dependence is explicit in
the overall factor 𝜇−2

0 ; that is 𝐺u�
2(𝜀; 𝑝) has the expected dimension [mass]−2.
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Figure 4.8: Behavior of the first-order and second-order effective mass coefficients u�2
1

and u�2
2 in 0 ≤ u� < 4 dimensions. The black dots denote the zero-dimensional and

quantum-mechanical theories in (4.71), (4.72), (4.74), and (4.75).

By expanding the inverse of the two-point Green’s function in terms of the
momentum-space 𝜀-expansion coefficients

𝐺u�
2(𝜀; 𝑝) =

∞
∑
u�=0

𝐺u�
2,u�(𝑝) 𝜀u�, (4.65)

one obtains the expansion coefficients of the effective mass, given by

𝑀2(𝜀) =
∞

∑
u�=0

𝑀2
u� 𝜀u�, (4.66)

to be

𝜀0 ∶ 𝑀2
0 = [𝐺u�

2,0(0)]−1 = 𝜇2
0Δ̂u�(0)−1 = (𝑚𝜇0)2, (4.67)

𝜀1 ∶ 𝑀2
1 = − 𝐺u�

2,1(0) [𝐺u�
2,0(0)]−2 = −𝑔 𝑚−2𝐾1 (𝑚𝜇0)2, (4.68)

𝜀2 ∶ 𝑀2
2 = [𝐺u�

2,1(0)]2 [𝐺u�
2,0(0)]−3 − 𝐺u�

2,2(0) [𝐺u�
2,0(0)]−2

= − 𝑔𝑚−2 (𝑚𝜇0)2 {𝐾2 + 𝑔[𝐾3 + ̂𝑓(0) − 𝑚−2𝐾2
1 ]},

(4.69)

using that Δ̂u�(𝑝′) = 1/(𝑝′2 + 𝑚2). The term ̂𝑓(0) = ∫ 𝑑u�𝑥′𝑓(𝑥′) is a dimen-
sionless constant.

In Figure 4.8 the behavior of the first-order and second-order mass coefficients
𝑀2

1 and 𝑀2
2 is shown as a function of the space-time dimension 𝐷 for 𝑔 = 𝑚 = 1

and 𝜇0 = 1 in the range 0 ≤ 𝐷 < 4. Note in particular that both coefficients
diverge at 𝐷 = 2, demonstrating that renormalization techniques are required
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in this case. Moreover, they evaluate to finite complex values in dimensions
2 < 𝐷 < 4, and diverge again when approaching 𝐷 = 4. The special cases
of the zero-dimensional and quantum-mechanical models are denoted as black
dots. In 𝐷 = 0, Δ(𝑥) = Δ(0) = 1, so (4.67) to (4.69) simplify to

𝜀0 ∶ 𝑀2
0 |u�=0 = 1, (4.70)

𝜀1 ∶ 𝑀2
1 |u�=0 = 1

2[ ln 2 + 𝜓(3
2) + 1] ≈ 0.865, (4.71)

𝜀2 ∶ 𝑀2
2 |u�=0 = 1

8[𝜓′(3
2) + 1

2𝜋2 − 4𝜋 + 12] ≈ 0.729. (4.72)

In 𝐷 = 1, Δ(𝑥) = 1
2 𝑒−|u�| and Δ(0) = 1

2 , so the constants are easily evaluated,
resulting in:

𝜀0 ∶ 𝑀2
0 ∣

u�=1
= 1, (4.73)

𝜀1 ∶ 𝑀2
1 ∣

u�=1
= 1

2[𝜓(3
2) + 1] ≈ 0.518, (4.74)

𝜀2 ∶ 𝑀2
2 ∣

u�=1
≈ 0.611. (4.75)

When approximating the two-point Green’s function in terms of the single-
vertex and two-vertex contributions

𝐺u�
2(𝜀; 𝑦1, 𝑦2) =

𝜇u�−2
0 {Δu�(𝑦′

1 − 𝑦′
2) + 𝑔 𝜇u�−2

0 𝜅1(𝜀) ∫𝑑u�𝑥′ Δu�(𝑥′ − 𝑦′
1)Δu�(𝑥′ − 𝑦′

2)

+ 𝑔2𝜇u�−2
0 𝜅2(𝜀) ∫𝑑u�𝑥′ Δu�(𝑥′ − 𝑦′

1)Δu�(𝑥′ − 𝑦′
2)

+ 𝑔2𝜇u�−2
0 ∫𝑑u�𝑥′

1𝑑u�𝑥′
2 Δ(𝑥′

1 − 𝑦′
1)Δ(𝑥′

2 − 𝑦′
2) ℎ(𝑥′

1 − 𝑥′
2)},

(4.76)

with 𝜅1(𝜀) given in (4.34), 𝜅2(𝜀) in (4.60), and ℎ(𝑥′) in (4.61), the Fourier trans-
form becomes

𝐺u�
2(𝜀; 𝑝) = 𝜇−2

0 {Δ̂u�(𝑝′) + 𝑔 𝜅1(𝜀) Δ̂u�(𝑝′)2 + 𝑔2 [𝜅2(𝜀) + ℎ̂(𝑝′)] Δ̂u�(𝑝′)2}.

(4.77)

As argued in Section 2.2, when treating 𝑚 and 𝑔 as independent parameters
the vertex approximations correspond to first-order and second-order coupling-
constant expansion coefficients and the relation between the effective mass coeffi-
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(a)

(b)

(c)

Figure 4.9: Behavior of the single-vertex approximation of the effective mass as a func-
tion of the dimension u� and the nonlinearity parameter u�. For 0 ≤ u� < 2 the coeffi-
cient u�2|u�=1 is real, shown in Figure 4.9a; the red lines denote the zero-dimensional
and quantum-mechanical theories. For 2 < u� < 4 the coefficient becomes complex; the
real and imaginary parts are displayed in Figure 4.9b and Figure 4.9c respectively.
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cients and the coefficients in (4.77) has the same form as for the 𝜀 expansion:

𝑀2∣
u�=0

= [𝐺u�
2(0)∣

u�=0
]−1 = [𝐺u�

2,0(0)]−1 = (𝑚𝜇0)2, (4.78)

𝑀2∣
u�=1

= − 𝐺u�
2(0)∣

u�=1
[𝐺u�

2,0(0)]−2 = −𝑔 𝑚−2𝜅1(𝜀) (𝑚𝜇0)2, (4.79)

𝑀2∣
u�=2

= 𝐺u�
2(0)∣2

u�=1
[𝐺u�

2,0(0)]−3 − 𝐺u�
2(0)∣

u�=2
[𝐺u�

2,0(0)]−2

= − 𝑔2𝑚−4 (𝑚𝜇0)2 {𝑚2[𝜅2(𝜀) + ℎ̂(0)] − 𝜅1(𝜀)2}.
(4.80)

The behavior of the single-vertex and two-vertex approximations 𝑀2|u�=1 and
𝑀2|u�=2 is shown in Figure 4.9 and Figure 4.10 respectively as a function of the
space-time dimension 𝐷 and the nonlinearity parameter 𝜀. Both contributions are
real functions in the region 0 ≤ 𝐷 < 2, which diverge in the limit of two dimen-
sions, see Figure 4.9a and Figure 4.10a, where the behavior in 𝐷 = 0 and 𝐷 = 1
dimension is indicated as red lines. Similar to previous vertex approximations
they become generally complex functions in 2 < 𝐷 < 4 dimensions; their real and
imaginary parts are visualized in Figure 4.9b and Figure 4.9c, and Figure 4.10b
and Figure 4.10c respectively. However, observe that the vertex approximations
of the effective mass remain purely real functions for integer values of 𝜀, as previ-
ously indicated for the functions 𝜅1(𝜀) given in (4.34), 𝜅2(𝜀) in (4.60), and ℎ(𝑥)
in (4.61).

Overall, the analysis in this chapter has demonstrated how the nonlinearity-
expansion techniques of [1], that were generalized in Chapter 2, can be used to
determine the behavior of the 𝑝-point Green’s functions. The general coefficient
structure was presented and evaluated to closed-form solutions at first and second
order in 𝜀. This analysis was supplemented with the discussion of the vertex
approximation based on the resummation of contributions with only a single or
two internal space-time points to all orders in 𝜀.

Furthermore, the general results for the 𝑝-point Green’s function were speci-
fied, in particular for the special cases of the one-point Green’s function and, based
on the two-point Green’s function result, the effective mass of the theory. These
cases demonstrate that the renormalization of the theory becomes necessary in,
and above, two space-time dimensions. A first step towards this is presented in
the following chapter with the perturbative renormalization in two dimensions.
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(a)

(b)

(c)

Figure 4.10: Behavior of the two-vertex approximation of the effective mass as a function
of the dimension u� and the nonlinearity parameter u�. For 0 ≤ u� < 2 the coefficient
u�2|u�=2 is real, shown in Figure 4.10a; the red lines denote the zero-dimensional and
quantum-mechanical theories. For 2 < u� < 4 the coefficient becomes complex; the real
and imaginary parts are displayed in Figure 4.10b and Figure 4.10c respectively.



Chapter 5

Towards Perturbative Renormalization in Two Dimensions

So far, the discussion of the nonlinearity expansion of the 𝒫𝒯-symmetric quantum-
field-theory analogue of the Bender-Boettcher model (1.1) has focused on develop-
ing the general techniques introduced in [1] beyond the initial first-order results,
aiming to study the behavior of the theory in greater detail and establishing the
nonlinearity expansion as a promising approach to non-Hermitian 𝒫𝒯-symmetric
field theories in 𝐷 space-time dimensions. In Chapter 2 to Chapter 4 the techni-
cal aspects of this expansion at higher orders have been examined in detail and
were applied to determine the behavior of the ground-state energy density ℰ(𝜀),
the connected Green’s functions 𝐺u�

u�(𝜀; 𝑦1, … , 𝑦u�) and the effective mass 𝑀2(𝜀) to
second order in the nonlinearity parameter 𝜀. Moreover, by resumming certain
contributions of these coefficients to all order in 𝜀, the connection to a common
coupling-constant expansion of the theory was examined, which allows one to
analyze the perturbative study of the model from a different angle.

A noteworthy feature, which was remarked upon by Bender, Hassanpour,
Klevansky and Sarkar in [1], is that the propagator of the underlying free theory
with Lagrangian density (2.3) diverges when approaching the two-dimensional
case, that is 𝐷 → 2−. This divergence is reflected in the expansion coefficients
of the ground-state energy density, see Chapter 3, of the one-point and two-point
Green’s functions, and of the effective mass, see Chapter 4. The theory requires
renormalization. In fact, as the behavior of the two-vertex approximation of these
quantities has illustrated, the renormalization of the model is necessary for 𝐷 ≥ 2.

83
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In this study, the renormalization program for 𝐷 = 2 dimensions, proposed
in [1], is considered; it is presented in this chapter. Using the dimensional regu-
larization 𝛿 = 2 − 𝐷, Section 5.1 gives the analysis of the behavior of the Green’s
functions and the effective mass in the limit 𝛿 → 0. In Section 5.2 it is then
demonstrated that the divergent behavior found for 𝐺u�

1(𝜀; 𝑦1) can be addressed
through the introduction of a linear counterterm 𝑣(𝜀)𝜙 into the Lagrangian den-
sity. Then the divergence found for 𝐺u�

2(𝜀; 𝑦1, 𝑦2), and in turn for the effective
mass 𝑀2(𝜀), is countered through perturbative mass renormalization, which is
performed to second order in 𝜀 in Section 5.3. Finally a multiple-scale analysis in
𝜀 and 𝛿 is investigated in Section 5.4, centering on the single-vertex and two-vertex
approximations of the Green’s functions, and the behavior observed is contrasted
with that found in the 𝜀 perturbation expansion.

Central results of this analysis can be found in [43] and [44].

5.1 Divergence Structure in Two Dimensions

The general 𝑛th-order Green’s function coefficient 𝐺u�
u�,u�(𝑦1, … , 𝑦u�) in (4.14)

depends on the dimension 𝐷 of space-time due to the free-theory propagators
Δu�(𝑥) and Δu�(0) in (2.28) and (2.30):

Δu�(𝑥) = (2𝜋)−u�/2 𝑚u�/2−1 |𝑥|1−u�/2 K1−u�/2(𝑚|𝑥|) (5.1)

and

Δu�(0) = 𝑚u�−2 (4𝜋)−u�/2 Γ(1 − u�
2 ). (5.2)

As remarked upon in (2.31), when denoting 𝛿 = 2 − 𝐷, the selfloop propagator
diverges asymptotically like

Δu�(0) ∼ 1
2𝜋𝛿

+ 𝑂(1), as 𝛿 → 0. (5.3)

The propagator Δu�(𝑥) on the other hand does not diverge, but behaves as

Δu�(𝑥) ∼ 1
2𝜋

K0(𝑚|𝑥|) + 𝑂(𝛿), as 𝛿 → 0. (5.4)
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Using (5.3) and (5.4), the structure of the leading-order behavior for the
general Green’s function coefficients in (4.14),

𝐺u�
u�,u�(𝑦1, … , 𝑦u�) =

1
2u� [u�u�−2

0 Δu�(0)
2 ]

u�/2 u�
∑
u�=1

(−u�Δu�(0)√
u� )

u�
⅀

u�

u�+1−u�

∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥′
u�

u�

∑
u�u�=0

( u�
u�u�

)

× (𝑖𝜋)u�u� lim
u�u�→0

( u�
u�u�u�

)
u�−u�u�

[2Δu�(0)]u�u�
∞

⅀
u�

u�+u�

∏
u�,u�=1,

u�<u�

1
𝑙u�u�!

[
2Δu�(u�′

u� − u�′
u�)

Δu�(0) ]
u�u�u�

×
Γ(𝑁u� + 2) Γ(𝑁u� + 3

2)
Γ(𝑁u� + 2 − 1

2𝐿u�)
(1 + eu�u�(u�u�−u�u�)

2
) {

u�

∏
u�=1

( 1 + eu�u�(1−u�u�+u�)

2Γ(3
2 − 1

2𝐿u�+u�)
)}∣

connected
,

(5.5)

is found as follows:
The overall factor Δu�(0)u�/2 is of the order 𝑂(𝛿−u�/2). Similarly, for any fixed

values of 𝑘, the factor Δu�(0)u� is of the order 𝑂(𝛿−u�). In addition, the summa-
tion in 𝑚u� over derivatives ( u�

u�u�u�
)u�−u�u� [2Δu�(0)]u�u� contributes terms of the order

[𝑂(1) + ⋯ + 𝑂(lnu�𝛿)], using the definition (2.18) of the multi-index 𝛽 and the
restriction (2.11) to find the highest possible power of logarithms that can occur.
This only modifies the degree of divergence by sub-leading contributions. Finally,
the summation ⅀u� is a function of the term Δu�(𝑧)/Δu�(0), which, according to
(5.3) and (5.4), is of the order 𝑂(𝛿). It thus suppresses the degree of divergence.
To obtain the leading-order behavior in the limit 𝛿 → 0, only the minimally
connected contributions, which contain the least factors of Δu�(𝑧)/Δu�(0), have
to be considered. For the 𝑘 + 𝑝 space-time points in (5.5), at least 𝑘 + 𝑝 − 1
connections, i.e. factors Δu�(𝑧)/Δu�(0), are required. Thus the summation ⅀u�
suppresses the asymptotic behavior by at least 𝑂(𝛿u�+u�−1). Overall, the 𝑛th-order
Green’s function coefficient generally behaves as

𝐺u�
u�,u�(𝑦1, … , 𝑦u�) ∼ 𝑂(𝛿u�/2−1) [ 𝑂(1) + 𝑂(ln 𝛿) + … + 𝑂(lnu�𝛿) ], as 𝛿 → 0.

(5.6)

Notably, the algebraic asymptotic behavior does not depend on the order 𝑛 of the
expansion in 𝜀. Leading-order terms of the asymptotic 𝛿 expansion arise at every
order in the nonlinearity parameter 𝜀.
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The structural analysis of the asymptotics in (5.6) leads to some notewor-
thy observations: The 𝜀-expansion coefficients of the one-point Green’s function
𝐺u�

1(𝜀; 𝑦1) diverge as 𝛿−1/2 in the limit of the two-dimensional theory. For the
two-point Green’s function 𝐺u�

2(𝜀; 𝑦1, 𝑦2) the algebraic 𝛿 dependence becomes a
constant, but the additional logarithmic terms still result in the divergence of the
𝜀-expansion coefficients. Accordingly, this also implies that the expansion coeffi-
cients of the effective mass diverge logarithmically. For all higher-order Green’s
functions, that is for 𝑝 ≥ 3, the positive exponent of the algebraic 𝛿 dependence
overrides the logarithmic divergences and the 𝜀-expansion coefficients vanish in
the two-dimensional theory. Therefore, to any finite order in the nonlinearity
parameter 𝜀, the theory is free in two dimensions!

The following two sections address the perturbative renormalization of the
one-point Green’s function and of the effective mass, while the apparent freedom
of the model is reexamined through the lens of the single-vertex and two-vertex
approximations thereafter.

5.2 Divergence of the One-Point Green’s Function

In the limit of two-dimensional space-time, 𝛿 → 0, the one-point Green’s function
diverges as 𝛿−1/2. Since 𝐺u�

1(𝜀; 𝑦1) is not directly measurable, this divergence can
be removed through the introduction of a linear counterterm of the form −𝑣(𝜀)𝜙
into the Lagrangian density, so that

ℒu�(𝜀) = 1
2(∇𝜙)2 + 1

2𝜇2𝜙2 + 1
2𝑔𝜇2

0𝜙2(𝑖𝜇1−u�/2
0 𝜙)u� − 𝑣(𝜀)𝜙. (5.7)

The factor 𝑣(𝜀) = ∑∞
u�=1 𝑣u� 𝜀u� has the dimension [mass]1+u�/2. When 𝑣(𝜀) is imag-

inary such a counterterm is consistent with 𝒫𝒯 symmetry, because the field
changes sign under parity reflection (1.4) and 𝑣(𝜀) changes sign under time rever-
sal, which acts as complex conjugation.

The dependence of the connected Green’s functions 𝐺u�
u�(𝑣, 𝜀) of the theory

(5.7) on the coefficients 𝑣u� of the linear counterterm can be examined in terms of
the Green’s functions of the theory without the counterterm studied previously:



Chapter 5. Towards Perturbative Renormalization in Two Dimensions 87

Consider the general form (4.4) of the connected Green’s functions,

𝐺u�
u�(𝑣, 𝜀; 𝑦1, … , 𝑦u�) = 1

u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒu�(u�) 𝜙(𝑦1) … 𝜙(𝑦u�) ∣
connected

= 1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ(u�) 𝜙(𝑦1) … 𝜙(𝑦u�)

× exp[∫𝑑u�𝑥 𝜙(𝑥)
∞

∑
u�=1

𝑣u� 𝜀u�] ∣
connected

.

(5.8)

Using the generating function relation (2.7) of the exponential partial Bell poly-
nomials, this takes the form

𝐺u�
u�(𝑣, 𝜀; 𝑦1, … , 𝑦u�) =

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�) +

∞
∑
u�=1

𝜀u�

𝑟!

u�
∑
u�=1

Bu�,u�[1! 𝑣1, … , (𝑟 + 1 − 𝑗)! 𝑣u�+1−u�]

× ∫𝑑u�𝑥1 … 𝑑u�𝑥u�
1

u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ(u�) 𝜙(𝑦1) … 𝜙(𝑦u�)𝜙(𝑥1) … 𝜙(𝑥u�) ∣
connected

= 𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�) +

∞
∑
u�=1

𝜀u�

𝑟!

u�
∑
u�=1

Bu�,u�[1! 𝑣1, … , (𝑟 + 1 − 𝑗)! 𝑣u�+1−u�]

× ∫𝑑u�𝑥1 … 𝑑u�𝑥u� 𝐺u�
u�+u�(𝜀; 𝑦1, … , 𝑦u�, 𝑥1, … , 𝑥u�)

(5.9)

in terms of the Green’s functions of the theory without linear counterterm.
When writing 𝐺u�

u�(𝜀; 𝑦1, … , 𝑦u�) in the 𝜀 expansion (4.2), and expanding

𝐺u�
u�(𝑣, 𝜀; 𝑦1, … , 𝑦u�) =

∞
∑
u�=0

𝐺u�
u�,u�(𝑣; 𝑦1, … , 𝑦u�) 𝜀u� (5.10)

similarly, the coefficients 𝐺u�
u�,u�(𝑣; 𝑦1, … , 𝑦u�) are determined from (5.9) to be of the

form 𝐺u�
u�,0(𝑣; 𝑦1, … , 𝑦u�) = 𝐺u�

u�,0(𝑦1, … , 𝑦u�) when 𝑛 = 0, and

𝐺u�
u�,u�(𝑣; 𝑦1, … , 𝑦u�) =

𝐺u�
u�,u�(𝑦1, … , 𝑦u�) +

u�
∑
u�=1

1
𝑟!

u�
∑
u�=1

Bu�,u�[1! 𝑣1, … , (𝑟 + 1 − 𝑗)! 𝑣u�+1−u�]

× ∫𝑑u�𝑥1 … 𝑑u�𝑥u� 𝐺u�
u�+u�,u�−u�(𝑦1, … , 𝑦u�, 𝑥1, … , 𝑥u�)

(5.11)
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for 𝑛 ≥ 1 in terms of the Green’s function coefficients of the theory without the
linear counterterm. The first-order and second-order coefficients have the explicit
form:

𝐺u�
u�,1(𝑣; 𝑦1, … , 𝑦u�) = 𝐺u�

u�,1(𝑦1, … , 𝑦u�) + 𝑣1 ∫𝑑u�𝑥1 𝐺u�
u�+1,0(𝑦1, … , 𝑦u�, 𝑥1), (5.12)

𝐺u�
u�,2(𝑣; 𝑦1, … , 𝑦u�) = 𝐺u�

u�,2(𝑦1, … , 𝑦u�) + 𝑣1 ∫𝑑u�𝑥1 𝐺u�
u�+1,1(𝑦1, … , 𝑦u�, 𝑥1)

+ 1
2𝑣2

1 ∫𝑑u�𝑥1𝑑u�𝑥2 𝐺u�
u�+2,0(𝑦1, … , 𝑦u�, 𝑥1, 𝑥2)

+ 𝑣2 ∫𝑑u�𝑥1 𝐺u�
u�+1,0(𝑦1, … , 𝑦u�, 𝑥1).

(5.13)

Observe that in the relation (5.11), the last contribution in the summation over
𝑟, i.e. when 𝑟 = 𝑛, is proportional to the coefficients 𝐺u�

u�+u�,0. As initially remarked
in (4.7), these coefficients vanish for all values 𝑝+𝑗 ≠ 2, including in particular all
values 𝑝 ≥ 2 (since 𝑗 ≥ 1). The terms with 𝑟 ∈ [1, 𝑛−1], however, only contain the
counterterm coefficients 𝑣1 to 𝑣u�−1. Thus, when 𝑝 ≥ 2, the coefficient 𝑣u� arises
earliest at order 𝑂(𝜀u�+1). For 𝑝 = 1, on the other hand, one contribution with
𝑟 = 𝑛 does not vanish: that with 𝑗 = 1. (Using that Bu�,1(1! 𝑣1, … , 𝑛! 𝑣u�) = 𝑛! 𝑣u�,
this contribution is readily found to be 𝑣u� ∫𝑑u�𝑥 𝐺u�

2,0(𝑦1, 𝑥) = 𝑣u�(𝑚𝜇0)−2.) In the
one-point Green’s function the coefficient 𝑣u� thus arises already at order 𝑂(𝜀u�).
Accordingly, the counterterm coefficients are, in fact, determined by the behavior
of the one-point Green’s function.

The coefficients of 𝑣(𝜀) are chosen to cancel the divergence of the coefficient
𝐺u�

1,u�(𝑣; 𝑦1) in the limit 𝛿 → 0 order-by-order in the nonlinearity expansion. To
second order they take the explicit form

𝑣1 = 1
2𝑖𝑔𝜇2

0 𝛿−1/2 and 𝑣2 = 1
4𝑖𝑔𝜇2

0 𝛿−1/2 [𝜓(2) − ln 𝜋 − ln 𝛿] (5.14)

based on the asymptotic behavior of (5.12) and (5.13). Note that these coeffi-
cients are imaginary so that the linear counterterm is in fact consistent with 𝒫𝒯
symmetry. The resulting one-point Green’s function vanishes to second order.
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According to (5.6) all coefficients 𝑣u� of the counterterm diverge as 𝛿−1/2 at
leading order. Notably, this implies that the Bell polynomials in (5.11) diverge like
𝛿−u�/2, as can be seen from the condition (2.12). This exactly cancels the suppres-
sion of the divergence in the Green’s function coefficients 𝐺u�

u�+u�,u�−u� ∼ 𝑂(𝛿(u�+u�)/2−1)
which accompany the Bell polynomials, so that the overall divergence structure
of the 𝑝-point Green’s function coefficients of the theory with the linear counter-
term remains generally unchanged for 𝑝 ≥ 2; the counterterm absorbs only the
divergence of the one-point Green’s function.

Because the general divergence structure of the higher-order Green’s func-
tions remains unchanged by the linear counterterm contributions, the following
discussion of the mass renormalization does not include them. Nevertheless, all
considerations remain equally valid when including these terms; they are dropped
for the sake of brevity.

5.3 The Mass Counterterm

The study of the model with the Lagrangian density ℒ(𝜀) in (2.1), discussed
throughout previous chapters, includes the dimensional mass parameter 𝜇 that
is often implicitly contained in the dimensionless parameter 𝑚2 = 𝑔 + 𝜇2/𝜇2

0.
The parameter 𝜇 will here act as a mass counterterm, canceling the logarithmic
divergences that the effective mass 𝑀2(𝜀) inherits from the two-point Green’s
function in the 𝜀 expansion.

In Section 4.4 the nonlinearity expansion of the effective mass was examined,
presenting the expansion coefficients to second order explicitly, see (4.67) to (4.69):

𝜀0 ∶ 𝑀2
0 = (𝑚𝜇0)2, (5.15)

𝜀1 ∶ 𝑀2
1 = − 𝑔 𝑚−2𝐾1 (𝑚𝜇0)2, (5.16)

𝜀2 ∶ 𝑀2
2 = − 𝑔𝑚−2 (𝑚𝜇0)2 {𝐾2 + 𝑔[𝐾3 + ̂𝑓(0) − 𝑚−2𝐾2

1 ]}, (5.17)

with 𝐾1,𝐾2, 𝐾3, and ̂𝑓(0) determined by (4.22), (4.51), (4.52), and (4.53). With
the asymptotic behavior of Δu�(0) and Δu�(𝑥) in (5.3) and (5.4) the leading-order
asymptotic behavior of these coefficients is evaluated exactly, finding the following
results.
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At order 𝑂(𝜀0) in the nonlinearity expansion, the coefficient of the effective
mass behaves as

𝑀2
0 = (𝑚𝜇0)2 = 𝜇2 + 𝑔𝜇2

0, as 𝛿 → 0; (5.18)

the coefficient is constant.
At first order in 𝜀, the effective-mass coefficient has the form

𝑀2
1 ∼ 1

2𝑔𝜇2
0 [𝜓(3

2) + 1 − ln 𝜋] − 1
2𝑔𝜇2

0 ln 𝛿 + 𝑂(𝛿), as 𝛿 → 0. (5.19)

The coefficient diverges like ln 𝛿 in the limit of two space-time dimensions. It is
independent of 𝑚 and therefore also of 𝜇. This implies that the mass counter-
term 𝜇 in (5.18) has to absorb divergences, which arise at higher orders in the 𝜀
expansion.

The second-order coefficient of the effective mass behaves like

𝑀2
2 ∼ 1

8𝑔𝜇2
0{(𝜓(1)(3

2) − 𝜋2 − 1 + [𝜓(3
2) + 1 − ln 𝜋]2 + 4𝜋𝑔𝑚−2)

− 2 ln 𝛿 [𝜓(3
2) + 1 − ln 𝜋] + ln2𝛿} + 𝑂(𝛿)

(5.20)

in the limit 𝛿 → 0. Notably, the constant term depends on 𝑚−2 and therefore
on 𝜇. Such a dependence on 𝜇 is suspected to arise beyond second order as
well, and may initially appear troubling. However, since absorbing the 𝑂(𝜀1)
divergence into 𝜇 results in a divergent counterterm, 𝜇 → ∞ as 𝛿 → 0, the factor
𝑚−2 = 1/(𝑔 + 𝜇2/𝜇2

0) vanishes. The divergent behavior at order 𝑂(𝜀2) can thus
effectively be absorbed into the counterterm, disregarding the 𝜇 dependence of
𝑀2

2 .
Thus, to second order in the nonlinearity parameter 𝜀, the mass counterterm

is of the form:

𝜇2 = 1
2𝜀𝑔𝜇2

0 ln 𝛿 + 1
8𝜀2𝑔𝜇2

0(2 ln 𝛿 [𝜓(3
2) + 1 − ln 𝜋] − ln2𝛿) (5.21)

up to a constant of dimension [mass]2, which is determined by the experimental
value of the renormalized mass.
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5.4 Multiple-Scale Analysis

Besides the perturbative expansion in the nonlinearity parameter 𝜀, the Green’s
functions have been examined in another approximation scheme in Chapter 4.
These vertex approximations relied on the resummation of contributions in the
𝜀-expansion coefficients with only a single or two internal space-time points to all
orders in 𝜀. The single-vertex approximation in (4.30) and (4.31), and the two-
vertex approximation in (4.57) can also be examined in the limit of two space-time
dimensions (𝛿 → 0) to understand the asymptotic behavior of the 𝑝-point Green’s
functions in this limit better.

Using the asymptotic behavior (5.3) and (5.4) of the propagators to analyze
the single-vertex approximation in (4.30) and (4.31), one finds that the leading-
order asymptotic behavior takes the form

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�)∣

u�=1
∼ − u�

2
√

u� (𝜋𝛿)u�/2−1−u�/2 Γ(u�
2 + 2) Γ(u�

2 + 3
2)

Γ(u�
2 + 2 − u�

2)
cos(u�u�

2 )

× ∫𝑑2−u�𝑥′
1

u�

∏
u�=1

K0(𝑚|𝑥′
1 − 𝑦′

u�|), as 𝛿 → 0,
(5.22)

for even values of 𝑝, and

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�)∣

u�=1
∼ − u�u�

2
√

u� (𝜋𝛿)u�/2−1−u�/2 Γ(u�
2 + 2) Γ(u�

2 + 3
2)

Γ(u�
2 + 2 − u�

2)
sin(u�u�

2 )

× ∫𝑑2−u�𝑥′
1

u�

∏
u�=1

K0(𝑚|𝑥′
1 − 𝑦′

u�|), as 𝛿 → 0,
(5.23)

for odd values of 𝑝. (Note that for 𝑝 = 2 (4.31) contains an additional term, which
is, however, of order 𝑂(𝛿u�/2−1) and does thus not contribute at leading order.)

Remarkably, this single-vertex approximation is of the order 𝑂(𝛿u�/2−1−u�/2),
contrasting the 𝑂(𝛿u�/2−1) behavior of the 𝜀-expansion coefficients. Through the
summation to all orders in 𝜀, which constitutes the vertex-approximation scheme,
the logarithmic contributions in the 𝜀-expansion coefficients, cf. (5.6), are re-
summed to an algebraic form, which promotes a divergent behavior of this ap-
proximation. This resembles the summation of logarithms employed by Cheng
and Wu in high energy quantum electrodynamics [56]. Notably, the algebraic
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dependence of the asymptotic behavior on 𝜀 affects the apparent freedom of the
theory, which was obtained to all finite orders in 𝜀 in Section 5.1: For values
𝜀 > 1, the single-vertex approximation of the three-point Green’s function be-
comes divergent, even though the 𝜀-expansion coefficients vanish at each order in
𝜀. Similarly, even-higher-order Green’s functions diverge in the limit 𝛿 → 0 for
sufficiently large values of 𝜀.

Analyzing the asymptotic behavior of the two-vertex approximation (4.57)
of the 𝑝-point Green’s function is somewhat more cumbersome. The leading
contribution depends in particular on the behavior of the function 𝐿u�u�u�(u�

2 , u�
2) in

𝑤(𝜀/2) given by (4.41), which scales as 𝑂(𝛿1−u�) when 𝛿 → 0. Together with
the prefactors in (4.57) the general leading-order asymptotic behavior of the two-
vertex approximation is thus found to be of the order

𝐺u�
u�(𝜀; 𝑦1, … , 𝑦u�)∣

u�=2
∼ 𝑂(𝛿u�/2−1−u�), as 𝛿 → 0. (5.24)

Notably, this is not of the same order as the single-vertex approximation in (5.22)
and (5.23); the summation to all orders in 𝜀 here promotes a divergent behav-
ior even further. For example, the two-vertex approximation of the three-point
Green’s function already diverges for 𝜀 > 1/2. The asymptotic behavior of the
single-vertex and two-vertex approximations suggests that in higher-order ver-
tex approximations the divergent behavior is promoted even further, so that at
any given value of 𝜀 sufficiently high-order vertex approximations of all Green’s
functions diverge.

The apparent freedom of the theory in two space-time dimensions, observed
in the nonlinearity expansion in Section 5.1, arises as a feature of the finite-order
𝜀 expansion, but breaks down when considering the vertex-approximation scheme
that takes into account terms to all orders in 𝜀. For further investigations of
the 𝒫𝒯-symmetric 𝜙2(𝑖𝜙)u� quantum field theory it is therefore imperative that a
robust renormalization scheme is developed, which takes the divergence of high-
order Green’s functions that emerges beyond any finite order in the nonlinearity
parameter into account.



Chapter 6

Concluding Remarks

The nonlinearity expansion was introduced as a powerful perturbation technique
to address open questions of quantum field theory in [24–26] and it was adapted for
the analysis of non-Hermitian 𝒫𝒯-symmetric quantum-field-theory models in [1].
This first part of the thesis has expanded upon the discussion in [1] in multiple
ways:

The nonlinearity-expansion techniques introduced in [1] for a 𝜙2(𝑖𝜙)u�

theory without dimensional quantities were generalized beyond their application
in first-order calculations for the corresponding model that includes dimensional
parameters. They were then used to determine the general coefficient structure of
the normalized partition function 𝒵(𝜀) and the connected 𝑝-point Green’s func-
tions 𝐺u�

u�(𝜀; 𝑦1, … , 𝑦u�). Algebraic closed-form solutions were presented for these
functions to second order and the coefficients of the related ground-state en-
ergy density ℰ(𝜀) and of the effective mass 𝑀2(𝜀) were derived. The system
was furthermore examined through first- and second-order vertex approximations
which relate the nonlinearity expansion to the common coupling-constant expan-
sion picture. These technical advances emphasize the conclusion of [1] that the
nonlinearity expansion is a powerful technique that enables the investigation of
non-Hermitian 𝒫𝒯-symmetric quantum field theories in 𝐷-dimensional Euclidean
space-time. They also illustrate that the results of this artificial expansion can
be related to an expansion in a natural parameter, such as the coupling con-
stant, which allows one to examine the behavior of these theories from multiple
perspectives.
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The analysis of the ground-state energy-density coefficients of the 𝜙2(𝑖𝜙)u�

theory in both approximation schemes suggests that the characteristic spectral
reality found in the quantum-mechanical case is retained in all space-time dimen-
sions 𝐷 < 2. In 2 < 𝐷 < 4 dimensions, however, these coefficients become com-
plex functions. But the appearance of divergences in the vertex-approximation
coefficients of the ground-state energy density, of the Green’s functions, and of
the effective mass indicate that the theory requires renormalization in this region.
The apparent breakdown of the spectral reality in two dimensions and beyond
therefore has to be reexamined after the renormalization of the system.

A first step towards renormalizing the theory in two dimensions was made in
a perturbative scheme: Using a linear counterterm 𝑣(𝜀)𝜙 and a mass counterterm
the divergent behavior of the one-point Green’s function and the effective mass
were renormalized to second order in 𝜀. In addition, the asymptotic analysis
of the general Green’s function coefficient structure indicated that all 𝑝-point
Green’s functions with 𝑝 > 2 vanish in two dimensions, resulting in an apparently
free theory. An analysis in the vertex-approximation scheme, however, signals
that this freedom is an artifact of the perturbative nature of the nonlinearity
expansion, which holds to any finite order in 𝜀 but not beyond all orders. As
such, a perturbative renormalization scheme would appear unsuitable and a new
robust scheme is required.

Overall, the technical generalizations presented in this first part allowed for
significant progress towards understanding the behavior of the non-Hermitian 𝒫𝒯-
symmetric 𝜙2(𝑖𝜙)u� theory in 𝐷-dimensional space-time and first steps towards the
renormalization of the system were made.
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Chapter 7

Introduction to 𝒫𝒯 Symmetry in Fermionic Field Theories

In 2010, Jones-Smith and Mathur [57] brought attention to a subtle but essential
difference of fermionic 𝒫𝒯 theory compared to the bosonic case: While time
reversal in a bosonic theory is always even, that is the time-reveral operator 𝒯
satisfies 𝒯2 = +1, a fermionic system can have odd time reversal 𝒯2 = −1. This
is a well established property of fermionic systems, see for example [58], but it
becomes essential when considering a theory that is centered around the behavior
under combined parity-reflection and time-reversal operations, namely 𝒫𝒯 theory.

On a fundamental level, the difference between systems with even and odd time
reversal can be seen in the composition of the unbroken 𝒫𝒯-symmetry regime.
Considering 𝒫𝒯-symmetric quantum mechanics for simplicity, one finds generally
that the symmetry [𝐻, 𝒫𝒯] = 0 of the Hamiltonian implies that, when 𝜓 is an
eigenstate with eigenvalue 𝐸, then the state 𝒫𝒯𝜓 has the complex conjugate
eigenvalue 𝐸∗, since 𝒯 is an antilinear operation. When 𝒯2 = +1, an unbroken
symmetry, that is when the eigenstate 𝜓 itself is 𝒫𝒯-symmetric 𝒫𝒯𝜓 = 𝜓, thus
entails that the energy is real, and vice-versa. However, for a system in which 𝒯2 =
−1, there exists no state which satisfies 𝒫𝒯𝜓 = 𝜓 (as can be seen by operating
with 𝒫𝒯 on both sides of the equation, implying that −𝜓 = 𝜓). Therefore, the
characteristic reality of the eigenvalues in the unbroken 𝒫𝒯-symmetry phase does
not originate in the symmetry of the eigenstate, but rather in the degeneracy of
the states 𝜓 and 𝒫𝒯𝜓. This occurrence of doubly degenerate real eigenvalues in
the unbroken phase for 𝒯2 = −1 is analogous to Kramer’s theorem in conventional
quantum mechanics [59] and differs fundamentally from the case when 𝒯2 = +1.
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A more immediate consequence of having odd instead of even time reversal is
the structure of the operator 𝒯. Evidently, the time-reversal operator satisfying
𝒯2 = −1 differs from the one satisfying 𝒯2 = +1. But this affects the question
of whether or not an interaction term is 𝒫𝒯-symmetric or not. Consider, for
example, the system with Hamiltonian density

ℋ = ̄𝜓(−𝑖𝛾u�𝜕u� + 𝑚0 + 𝑔𝛾5)𝜓, (7.1)

which was introduced in [60] and extends the Hamiltonian density of the free Dirac
fermion by a non-Hermitian pseudoscalar mass term. Here the mass parameter
𝑔 ∈ ℝ, and 𝛾5 denotes the fifth Dirac matrix [58]. Following the recent discussion
in [61] one observes:

In 1 + 1 dimensional space-time the Dirac matrices are

𝛾0 = (
0 1
1 0

) , 𝛾1 = (
0 1

−1 0
) , 𝛾5 = 𝛾0𝛾1, (7.2)

and the parity-reflection and time-reversal operators are given by

𝒫 ∶ 𝜓(𝑡,x) → 𝒫𝜓(𝑡,x)𝒫−1 = 𝛾0𝜓(𝑡, −x),

𝒯 ∶ 𝜓(𝑡,x) → 𝒯𝜓(𝑡,x)𝒯−1 = 𝛾0𝜓∗(−𝑡,x).
(7.3)

In particular, 𝒯2 = +1, that is time-reversal is even. And notably, the pseu-
doscalar mass term 𝑔𝛾5 in (7.1) is 𝒫𝒯-symmetric, that is it commutes with the
𝒫𝒯 operator: [𝒫𝒯, 𝑔𝛾5] = 0. The modified Dirac fermion therefore describes a
𝒫𝒯-symmetric system in 1 + 1 dimensions.

In 3 + 1 dimensional space-time, on the other hand, the Dirac matrices are

𝛾0 = (
𝟙 0
0 −𝟙

) , 𝛾u� = (
0 𝜎u�

−𝜎u� 0
) , 𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3, (7.4)

where 𝜎u� with 𝑘 ∈ [1, 3] are the Pauli matrices. The parity-reflection and time-
reversal operators are now given by

𝒫 ∶ 𝜓(𝑡,x) → 𝒫𝜓(𝑡,x)𝒫−1 = 𝛾0𝜓(𝑡, −x),

𝒯 ∶ 𝜓(𝑡,x) → 𝒯𝜓(𝑡,x)𝒯−1 = 𝑖𝛾1𝛾3𝜓∗(−𝑡,x).
(7.5)
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Contrary to the 1 + 1 dimensional version, here 𝒯2 = −1, that is time reversal
is odd. Furthermore, the pseudoscalar mass term 𝑔𝛾5 in (7.1) now anticommutes
with the 𝒫𝒯 operator: {𝒫𝒯, 𝑔𝛾5} = 0. It is an anti-𝒫𝒯-symmetric term, and thus
the model (7.1), having 𝒫𝒯-symmetric and anti-𝒫𝒯-symmetric contributions, has
no overall 𝒫𝒯 symmetry in 3 + 1 dimensions.

This illustrates how the question of evenness or oddness of the time reversal
𝒯 can influence the symmetry of the model under consideration. But remarkably,
whether 𝒫𝒯-symmetric or not, the dispersion relation of the non-Hermitian model
(7.1) studied in [60] remains the same: From the equation of motion associated
with ℋ in (7.1),

(𝑖/𝜕 − 𝑚0 − 𝑔𝛾5)𝜓(𝑡,x) = 0, (7.6)

multiplication with (𝑖/𝜕 + 𝑚0 − 𝑔𝛾5) gives rise to the Klein-Gordon equation

(𝜕2 + 𝑚2)𝜓(𝑡,x) = 0, with 𝑚2 = 𝑚2
0 − 𝑔2. (7.7)

The effective mass 𝑚 of the theory is therefore only real in the presence of a
sufficiently large bare mass term 𝑚0. If the bare mass vanishes, however, the
effective mass 𝑚 is inherently complex, independent of the parameter 𝑔. When
the model is 𝒫𝒯 symmetric, as in 1 + 1 dimensions, (7.7) describes a system
with phases of broken and unbroken 𝒫𝒯 symmetry, transitioning at 𝑚2

0 = 𝑔2.
However, even without 𝒫𝒯 symmetry being present, as in 3+1 dimensions, these
spectral phases are maintained.

This simple example shows that odd time-reversal symmetry has a significant
effect on 𝒫𝒯 theories and it raises immediate questions: For one, while the 3 + 1
dimensional version of the non-Hermitian model with Hamiltonian density (7.1) is
not 𝒫𝒯 symmetric, a bilinear interaction term other than the pseudoscalar mass
term 𝑔𝛾5 can preserve 𝒫𝒯 symmetry. In [61] two such models of 𝒫𝒯 fermions
in 3 + 1 dimensions were identified and their dispersion relations were studied.
Furthermore, the existence of real mass solutions (7.7) in the presence of a finite
bare mass 𝑚0 challenges the idea that it is 𝒫𝒯 symmetry causing the occurrence
of real solutions. Including other non-Hermitian non-𝒫𝒯-symmetric interaction
terms instead of the pseudoscalar mass 𝑔𝛾5 could clarify this relation. Beyond
these variations of the model (7.1), the breakdown of a phase with real mass
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solutions in the absence of a bare mass term, even in the 𝒫𝒯-symmetric model
in 1 + 1 dimensions, is a curious feature that raises the question as to which role
higher-order interactions play. A discussion of the (bosonic, that is 𝒯2 = +1)
quantum-mechanical system with Hamiltonian of the form

𝐻 = 𝑝2 + (𝑚2
0 − 𝑔2)𝑥2 − 𝐺𝑥4 (7.8)

in [62] (see also [63]) illustrates the idea, that higher-order interactions might
mimic the effect of 𝑚0 and restore a regime with real solutions: For 𝐺 = 𝑚0 = 0
the system has complex eigenvalues. But for 𝐺 ≠ 0 it was demonstrated that the
system is spectrally equivalent to a Hermitian Hamiltonian with a real spectrum
for all values of 𝑔 and 𝑚0, in particular for 𝑚0 = 0.

In the context of relativistic fermionic quantum theory, a suitable model to
study the influence of higher-order interactions on modified Dirac fermions, such
as (7.1), is the Nambu–Jona-Lasinio (NJL) model [64,65]. It is briefly introduced,
modified, and analyzed throughout this part of the thesis. Central results of this
study were previously presented in two papers [66, 67]. The following discussion
combines these studies and presents all essential features of the topic.

While 𝒫𝒯 theory has become a highly active field of research, there are
still relatively few studies of fermionic theories. Following the formalism of
Jones-Smith and Mathur [57] for odd time-reversal symmetry, Bender and
Klevansky have studied 𝒫𝒯-symmetric representations of fermionic algebras [68].
This work was expanded upon in [69] and [70,71], relating it to an early study of
Mostafazadeh [72] on fermionic algebras in pseudo-Hermitian quantum mechan-
ics as well. In addition, Jones-Smith and Mathur demonstrated in [73] that when
incorporating odd time-reversal symmetry, 𝒫𝒯 fermions might give rise to new
types of flavor oscillations in the context of the standard model, establishing the
potential relevance of such models to neutrino physics. Non-Hermitian neutrino
oscillations were investigated further in [74], and in [75] Alexandre, Bender, and
Millington proposed a non-Hermitian Yukawa model, which presents a possible
explanation for small masses of light neutrinos. The generation of light neutrino
masses through the presence of axion-like particles has recently been discussed
in other non-Hermitian Yukawa-type models [76, 77] as well. The discussion of
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non-Hermitian fermions beyond that in (7.1) within this thesis is of direct interest
to these ongoing developments in fermionic 𝒫𝒯 theory. In particular, the quali-
tative behavior of the modified NJL model might be of interest to non-Hermitian
Yukawa-type models, since such models can, at least in principle, be obtained from
the two-body interactions of the NJL model through partial bosonization [78]. In
fact, the investigations in [76, 77] have taken some of these aspects into account
and demonstrated qualitative agreements.

This study is structured as follows:
In Chapter 8 the NJL model is introduced and modified through non-Hermitian

bilinear terms. All possible terms of this nature are identified and their behav-
ior under 𝒫𝒯 symmetry and chiral symmetry is discussed. The question of the
Lorentz symmetry of the model is addressed as well.

In Chapter 9 the gap equation of the modified NJL model is derived for all non-
Hermitian extensions and the effective mass solutions for all models are evaluated
in the chiral limit of vanishing bare mass. Their behavior is discussed in the light
of dynamical mass generation.

In Chapter 10 the meson mass equation is derived and solved for all models
that allow for dynamically generated fermion masses.

In Chapter 11 the discussion of the modified NJL model is supplemented by
the analysis of similar non-Hermitian extensions to the chiral Gross-Neveu (GN)
model which can be considered as a 1+1 dimensional analogue of the NJL system.

Concluding remarks are presented in Chapter 12.



Chapter 8

The Modified Nambu–Jona-Lasinio Model

The NJL model [64, 65] is a fermionic theory in which masses for Dirac fermions
are generated through an attractive chirally symmetric two-body interaction of
bare fermions. This mass generation of the individual fermion, as well as that of
mesonic (fermion-antifermion) bound states, is a consequence of spontaneous chi-
ral symmetry breaking within the model. In this it parallels the Bardeen-Cooper-
Schrieffer theory of superconductivity [79], where the generated bound states are
instead pairs of like particles, namely electrons with opposite spin (Cooper-pairs).
First proposed before the development of quantum chromodynamics (QCD), the
NJL model was initially constructed as a nucleon theory. It has since been reinter-
preted as an effective theory with quark degrees of freedom, which approximates
the behavior of QCD in the low-energy limit. A detailed overview of the develop-
ment within this context can be found, for example, in [80]. The introduction of
the NJL model and its modification through non-Hermitian terms in this chapter
closely follows the presentation in the previously published analyses of this subject
in [66, 67].

For two flavors of quarks (𝑁u� = 2), the Hamiltonian density of the standard
NJL model has the form

ℋNJL = ̄𝜓(−𝑖𝛾u�𝜕u� + 𝑚0)𝜓 − 𝐺[( ̄𝜓𝜓)2 + ( ̄𝜓𝑖𝛾5 ⃗𝜏𝜓)2] (8.1)

in terms of the Dirac matrices 𝛾 with 𝑘 ∈ [1, 3], the isospin SU(2) matrices ⃗𝜏 , and
the two-body coupling strength 𝐺. In addition, (8.1) includes a bare fermion mass
𝑚0 = 𝑚u� = 𝑚u�. While the two-body interaction term is chirally symmetric, the
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mass term 𝑚0 breaks this symmetry explicitly. In the limit of vanishing bare mass,
(8.1) describes a chirally symmetric theory that allows the study of spontaneous
symmetry breaking; this limit is therefore commonly referred to as the chiral limit
of the theory. In this case, a sufficiently strong two-body interaction generates
an effective fermion mass, which is identified with the valence quark mass in
the context of QCD, and furthermore gives rise to a massless Nambu-Goldstone
boson in form of the pseudoscalar bound state. Including a small bare mass
term 𝑚0 (relative to the effective mass generated in the chiral limit) affects the
fermion and meson masses only slightly. Therefore, even though 𝑚0 breaks the
chiral symmetry of the system, the model is called approximately symmetric. The
resulting light pseudoscalar bound state, referred to as a pseudo-Goldstone boson,
is identified with the pion in QCD. The generation of the effective fermion mass,
as well as the masses of both the scalar (𝜎 meson) and the pseudoscalar (𝜋 meson)
bound states is discussed in detail in the following chapters.

While chiral symmetry breaking can be studied within the NJL model to great
effect, it has to be stressed that it is inherently an effective model which is not
renormalizable in 3 + 1 dimensional space-time and requires the specification of
a regularization scheme, such as the four-momentum Euclidean cutoff scheme
used in this thesis. The model does not describe a consistent physical system by
itself and has to be understood as an approximation in the context of a more
general theory, such as QCD. Nevertheless it is not necessary to identify the
fermions of the NJL model with quarks; it can be discussed as a general fermionic
model with chiral symmetry. However, the numerical analyses in this thesis are
based on quantities established within the QCD interpretation: A four-momentum
Euclidean cutoff scale of Λ = 1015 MeV is used for the purpose of regularization
and the two-body coupling strength is chosen as 𝐺Λ2 = 3.93, see [80].

8.1 Non-Hermitian Extension

In the following study, the 3+1 dimensional NJL model (8.1) is modified through
the introduction of various possible non-Hermitian bilinear terms. These bilinears
of the fermionic field 𝜓 and its conjugate ̄𝜓 have the general form ̄𝜓Γ𝜓, containing
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a complex 4 × 4 matrix Γ. The Hamiltonian density of such a model has the form

ℋ = ̄𝜓(−𝑖𝛾u�𝜕u� + 𝑚0 + 𝑔Γ)𝜓 − 𝐺[( ̄𝜓𝜓)2 + ( ̄𝜓𝑖𝛾5 ⃗𝜏𝜓)2], (8.2)

where 𝑔 ∈ ℝ is the associated coupling constant.
To identify all possible non-Hermitian modifications Γ, consider the complete

set of 4 × 4 matrices, as generated by the Dirac matrices 𝛾: Any matrix can be
written as a real superpositions of the following 32 matrices:

𝟙, 𝛾5, 𝛾u�, 𝛾5𝛾u�, 𝛾u�𝛾u� ,

𝑖𝟙, 𝑖𝛾5, 𝑖𝛾u�, 𝑖𝛾5𝛾u�, 𝑖𝛾u�𝛾u� ,
(8.3)

where 𝜇 ≤ 𝜈 denote the spin indices. They behave, from left to right, as scalars,
pseudoscalars, vectors, pseudovectors, and antisymmetric second-rank tensors un-
der observer Lorentz transformations. Based on these matrices, the following
structurally distinct modifications are identified

𝟙, 𝛾5, 𝐴u�𝛾u�, 𝛾5𝐵u�𝛾u�, 𝐹u�u�𝛾u�𝛾u� ,

𝑖𝟙, 𝑖𝛾5, 𝑖𝐴u�𝛾u�, 𝑖𝛾5𝐵u�𝛾u�, 𝑖𝐹u�u�𝛾u�𝛾u� ,
(8.4)

in which 𝐴u� and 𝐵u� are real vector elements, and 𝐹u�u� are real elements of an
antisymmetric matrix. Considering that including an imaginary unit into any
bilinear changes it from being symmetric under Hermitian conjugation to being
antisymmetric, and vice versa, demonstrates that only half of the terms in (8.4)
result in non-Hermitian modifications in the model (8.2). Namely those, for which
Γ takes one of the forms

𝑖𝟙, 𝛾5, 𝑖𝐴u�𝛾u�, 𝑖𝛾5𝐵u�𝛾u�, 𝐹u�u�𝛾u�𝛾u� . (8.5)

These terms establish the non-Hermitian extensions of the NJL model that are
considered in the following analysis.

Notice that the bilinears ̄𝜓Γ𝜓, with Γ being one of the terms in (8.5), are
either Lorentz scalars or Lorentz pseudoscalars, depending in particular on the
behavior of the background fields 𝐴u�, 𝐵u�, and 𝐹u�u� under Lorentz transformations.
In the pseudoscalar case the modified NJL model (8.2) is not Lorentz invariant.
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Nonetheless, these systems are analyzed for the following reason: Like the NJL
model itself, the modified versions have to be understood as effective models which
result as approximations of a more fundamental theory. It has been proposed that
such an approximation process can result in the occurrence of Lorentz-symmetry-
breaking terms [81–83]. The nature of this process, especially in the context of
𝒫𝒯-symmetric and non-Hermitian models, is the topic of ongoing investigation.
Therefore, the inclusion of Lorentz pseudoscalar bilinears in the modified NJL
model has not been ruled out in this discussion. Moreover, one finds that the
calculation of fermion and meson masses in the following analyses is not affected
by the behavior of the background fields under Lorentz transformations.

Under the combined parity reflection 𝒫 and time reversal 𝒯 in 3+1 dimensional
space-time, as given in (7.5), only two of the non-Hermitian bilinears ̄𝜓Γ𝜓, with
Γ as in (8.5), are symmetric, that is [𝒫𝒯, Γ] = 0:

Γu�u�1
= 𝑖𝛾5𝐵u�𝛾u� and Γu�u�2

= 𝐹u�u�𝛾u�𝛾u� . (8.6)

For these terms, the modified NJL model (8.2) is a 𝒫𝒯-symmetric theory. The
bilinears based on the remaining three choices of Γ in (8.5) are anti-𝒫𝒯-symmetric,
that is {𝒫𝒯, Γ} = 0, and will in the following be referred to as

Γu�u�u�1
= 𝑖𝐴u�𝛾u�, Γu�u�u�2

= 𝛾5, Γu�u�u�3
= 𝑖𝟙. (8.7)

While the bilinears themselves are anti-𝒫𝒯-symmetric, the modified NJL models
that include these terms have no such overall symmetry. They are non-Hermitian
and non-𝒫𝒯-symmetric systems.

Moreover, out of the five non-Hermitian bilinears based on (8.5), only two
preserve chiral symmetry: Only

Γu�u�u�1
= 𝑖𝐴u�𝛾u� and Γu�u�1

= 𝑖𝛾5𝐵u�𝛾u� (8.8)

anticommute with 𝛾5, so that the bilinears ̄𝜓Γu�u�1
𝜓 and ̄𝜓Γu�u�u�1

𝜓 are invariant
under the axial flavor transformation 𝜓 → eu�u� ⃗u�u�5𝜓, where 𝛼 ∈ ℝ. Combined with
the symmetry under the vector flavor transformation 𝜓 → eu�u� ⃗u�𝜓, which is satisfied
by all bilinears ̄𝜓Γ𝜓 based on (8.5), one therefore finds that only the modified
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NJL models with the non-Hermitian extensions in (8.8) are chirally symmetric
theories. In the models based on

Γu�u�2
= 𝐹u�u�𝛾u�𝛾u� , Γu�u�u�2

= 𝛾5, Γu�u�u�3
= 𝑖𝟙 (8.9)

chiral symmetry is broken explicitly, similar to the effect of the bare mass term
𝑚0. The limit of vanishing bare mass is thus not a chiral limit.

Taking previous analyses of non-Hermitian Dirac fermions into account, the
study of the modified NJL model can be seen from two perspectives: On one
hand, the non-Hermitian Dirac fermions display a curious breakdown of real mass
solutions in the limit of vanishing bare fermion mass [60, 61]. Studying the mass
generation in the modified NJL model thus allows one to address the question
of whether two-body interactions can mimic the effect of a bare mass term and
restore a region of real mass solutions even in the limit of vanishing bare fermion
mass. The investigation of all possible non-Hermitian extensions of the NJL
model, not only 𝒫𝒯 symmetric ones, furthermore addresses the question which
role 𝒫𝒯 symmetry plays in the generation of real solutions. This aspect is explored
further by contrasting the results of the 3 + 1 dimensional modified NJL model
with those of the 1 + 1 dimensional analogue, the modified chiral Gross-Neveu
model. On the other hand, the modified NJL model can be seen as precisely
that: a non-Hermitian extension of the standard NJL model. This rather raises
the question of how the behavior of the NJL model, in form of the generated
fermion and meson masses, is affected by the inclusion of non-Hermitian bilinear
additions, be they 𝒫𝒯 symmetric or not.

These viewpoints come with an intuitive approach to which coupling constant
is varied and which is kept fixed: The first perspective suggests a variation of
the two-body coupling 𝐺, while the latter that of the non-Hermitian coupling 𝑔.
Overall, it is of course primarily the relative size of both contributions that is
important. In the following analyses the two-body coupling constant 𝐺 is kept
fixed initially, so that the modified NJL model remains connected to the context
of QCD that is established in the standard NJL model. Nevertheless, the results
are discussed from both points of view.



Chapter 9

The Effective Fermion Mass

The effective fermion mass 𝑚 of the standard NJL model can be determined
approximately in a self-consistent approach through the gap equation, which is
obtained in Feynman-Dyson perturbation theory. Its study in this chapter follows
[80,84] and the presentation closely follows that of the published discussions [66,
67]. The full fermion propagator 𝑆 is expressed in terms of the propagator 𝑆(0)

of the free theory, which is unperturbed by the two-body interactions, and the
proper self-energy Σ through the (algebraic) Dyson equation:

𝑖𝑆u�u�(𝑘) = 𝑖𝑆(0)
u�u�(𝑘) + [𝑖𝑆(0)

u�u�(𝑘)] [−𝑖Σu�u�(𝑘)] [𝑖𝑆u�u�(𝑘)], (9.1)

where 𝛼, 𝛽, 𝜆, and 𝜇 denote combined color, flavor, and spin indices, and 𝑘 is
a four-momentum dependence. At first order the proper self-energy comprises
two contributions, the Hartree term and the Fock term, which are shown in the
schematic visualization of (9.1) in Figure 9.1. Even though the two-body interac-
tion of the NJL model is a point interaction, a finite range has been introduced
in form of the wavy line in the diagrammatic representation for simplicity of vi-
sualization. Considering that the two-body interaction of the NJL model (8.1)
consists of a scalar ( ̄𝜓𝜓)2 and a pseudoscalar ( ̄𝜓𝑖𝛾5 ⃗𝜏𝜓)2 contribution, the proper
self-energy is calculated using the appropriate Feynman rules as follows.
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Figure 9.1: Schematic visualization of the algebraic Dyson equation to first order.
Shown are in particular the Hartree and Fock terms of the proper self-energy Σ.

The Hartree term for the scalar interaction evaluates to

−𝑖Σu�
Hartree,u�u�(𝑘) = (−1) ∫ u�4u�

(2u�)4 [−𝑖(−2𝐺 𝛿u�u�𝛿u�u�′)][𝑖𝑆(0)
u�u�′(𝑝)]

= 2𝐺𝑁u�𝑁u� 𝛿u�u� ∫ u�4u�
(2u�)4 tr[𝑆(0)(𝑝)],

(9.2)

where the factor of two originates in the symmetry of the interaction under the
exchange (𝜆, 𝜇) ↔ (𝜈, 𝜈′) and a factor of (−1) arises due to the closed fermion
loop. The trace over the color and flavor indices was evaluated and tr denotes the
spinor trace only. The Hartree term for the pseudoscalar interaction,

−𝑖Σu�u�
Hartree,u�u�(𝑘) = (−1) ∫ u�4u�

(2u�)4 [−𝑖(−2𝐺(𝑖𝛾5 ⃗𝜏 )u�u�(𝑖𝛾5 ⃗𝜏 )u�u�′)][𝑖𝑆(0)
u�u�′(𝑝)] = 0,

(9.3)

vanishes because of the flavor trace over ⃗𝜏 . The Fock term of the scalar interaction
becomes

−𝑖Σu�
Fock,u�u�(𝑘) = ∫ u�4u�

(2u�)4 [−𝑖(−2𝐺 𝛿u�u�𝛿u�′u�)][𝑖𝑆(0)
u�u�′(𝑝)] = −2𝐺 ∫ u�4u�

(2u�)4 𝑆(0)
u�u�(𝑝),

(9.4)

and the Fock term of the pseudoscalar interaction is

−𝑖Σu�u�
Fock,u�u�(𝑘) = (−1) ∫ u�4u�

(2u�)4 [−𝑖(−2𝐺(𝑖𝛾5 ⃗𝜏 )u�u�(𝑖𝛾5 ⃗𝜏 )u�′u�)][𝑖𝑆(0)
u�u�′(𝑝)]

= 6𝐺 𝛿u�u�u�u�
𝛿u�u�u�u�

∫ u�4u�
(2u�)4 [𝛾5𝑆(0)(𝑝)𝛾5]

u�u�u�u�
,

(9.5)

using that the trace of ⃗𝜏2 over the flavor indices is 3𝛿u�u�u�u�
and the trace over the

color indices yields 𝛿u�u�u�u�
.
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In the context of QCD, the NJL model describes an effective model of quark
interactions in the limit of large 𝑁u� while 𝐺𝑁u� ∼ 𝑂(1), see [85, 86]. As such, the
Hartree-Fock approximation is to be understood as a first-order contribution in
a 1/𝑁u� expansion, compare [87]. In this picture, only the Hartree contribution
describes a leading-order term due to the dependence on the factor 𝐺𝑁u� in (9.2).
The Fock contributions are of order 𝑂(𝑁−1

u� ). Since any other next-to-leading or-
der terms arising beyond the Hartree-Fock approximation have been disregarded,
the Fock terms are omitted likewise in the following. The approximate proper
self-energy thus becomes

−𝑖Σu�u�(𝑘) = 2𝐺𝑁u�𝑁u� 𝛿u�u� ∫ u�4u�
(2u�)4 tr[𝑆(0)(𝑝)]. (9.6)

By replacing the dependence of Σ in (9.6) on the free-theory propagator 𝑆(0)

with the full fermion propagator 𝑆, this first-order approximation can be improved
upon in a self-consistent way: Together with the Dyson equation (9.1) such a
replacement describes an infinite-order approximate series. Noticing furthermore
that the expression in (9.6) is independent of the four-momentum 𝑘, and therefore
a constant, one can identify

Σu�u�
u�u�(𝑘) = 2𝑖𝐺𝑁u�𝑁u� 𝛿u�u� ∫ u�4u�

(2u�)4 tr[𝑆(𝑝)] = (𝑚 − 𝑚0) 𝛿u�u�, (9.7)

where 𝑚 plays the role of an effective mass. This identification of the effective
mass becomes clear when considering that the free-theory propagator satisfies the
equation of motion

(/𝑘 − 𝑚0) 𝑆(0)
u�u�(𝑘) = 𝟙 𝛿u�u�. (9.8)

Acting with (/𝑘 − 𝑚0) on the Dyson equation (9.1) and identifying the proper
self-energy according to (9.7) then results upon rearrangement in the equation of
motion of the full fermion propagator

(/𝑘 − 𝑚) 𝑆u�u�(𝑘) = 𝟙 𝛿u�u�, (9.9)

in which the nature of 𝑚 as effective mass becomes apparent. The result (9.7) for
the self-energy thus determines the gap equation of the standard NJL model:

𝑚 = 𝑚0 + 2𝑖𝐺𝑁u�𝑁u� ∫ u�4u�
(2u�)4 tr[𝑆(𝑝)]. (9.10)
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For the Dirac fermion propagator

𝑆(𝑝) = (/𝑝 − 𝑚)−1 = /𝑝 + 𝑚
𝑝2 − 𝑚2 , with tr[𝑆(𝑝)] = 4𝑚

𝑝2 − 𝑚2 , (9.11)

the gap equation (9.10) is evaluated in the chiral limit (𝑚0 → 0) and the four-
momentum Euclidean cutoff regularization by letting 𝑝0 = 𝑖𝑝4 and introducing
the radial cutoff scale Λ: With 𝑝2

u� = 𝑝2
1 + ... + 𝑝2

4 = −𝑝2 equation (9.10) becomes

1 = 8𝐺𝑁u�𝑁u� ∫
Λ u�4u�u�

(2u�)4
1

𝑝2
u� + 𝑚2 =

𝐺𝑁u�𝑁u�

2𝜋2 ∫
Λ

0
𝑑𝑟 2𝑟3

𝑟2 + 𝑚2 . (9.12)

Integration results in the established gap equation within this regularization scheme

2𝜋2

̃𝐺𝑁u�𝑁u�
= 1 − �̃�2 ln(1 + 1

�̃�2 ) (9.13)

in terms of the rescaled quantities �̃� = 𝑚Λ−1 and ̃𝐺 = 𝐺Λ2.
This equation can be solved in terms of the Lambert 𝑊 function [88] with the

result that

�̃� = [1
u� 𝑊−1(𝑐 eu�) − 1]

−1/2
, where 𝑐 = 2𝜋2

̃𝐺𝑁u�𝑁u�
− 1. (9.14)

For 𝑁u� = 3, 𝑁u� = 2, and with Λ = 1015 MeV and 𝐺Λ2 = 3.93, which
are traditionally determined within the given regularization scheme from the
pion decay constant 𝑓u� = 93 MeV and the quark condensate density per fla-
vor ⟨�̄�𝑢⟩ = ⟨ ̄𝑑𝑑⟩ = (−250 MeV)3, see [80], the gap equation (9.13) results in an
effective mass of 𝑚u�u�u� = 238 MeV. In Figure 9.2 the behavior of the mass so-
lution under variation of the two-body coupling ̃𝐺 is shown, demonstrating that
the generation of an effective fermion mass requires sufficiently strong two-body
interactions in the standard NJL model. In fact, the critical coupling ̃𝐺crit, above
which the spontaneously broken chiral symmetry gives rise to finite mass solu-
tions, is determined by the constant 𝑐 in (9.14): When 𝑐 is positive no real mass
is generated, but when 𝑐 becomes negative a finite mass solution can be found.
The phase transition arises at 𝑐 = 0, that is ̃𝐺crit = 𝜋2/3. The behavior when in-
cluding a small chiral-symmetry-breaking bare mass 𝑚0 is shown for comparison.
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Figure 9.2: Behavior of the effective mass u� of the NJL model as a function of the
two-body coupling strength ̃u�. A phase transition occurs at ̃u�crit = u�2/3, after which
finite mass solutions are generated in the model. The behavior when including a small
bare mass u�0 is shown as red line for comparison.

For the non-Hermitian extensions of the standard NJL model that were iden-
tified in the previous chapter, the structure of the two-body interactions remains
unchanged, so that the general form of the gap equation (9.10) persists. However,
the bilinear modifications in the non-Hermitian models do change the structure
of the free-theory propagator (9.8), as the free theory now describes various non-
Hermitian extensions of the Dirac fermion. In the general modified model with
Hamiltonian density (8.2) the spinor trace tr[𝑆(𝑝)] in the gap equation is now
based on the fermion propagator satisfying the equation of motion

(/𝑝 − 𝑚 − 𝑔Γ) 𝑆(𝑝) = 𝟙, (9.15)

with Γ being one of the non-Hermitian terms in (8.5). Evaluating these traces
and the resulting gap equations is the subject of this chapter. In Section 9.1 and
Section 9.2 the non-Hermitian 𝒫𝒯-symmetric modified models are analyzed, Sec-
tion 9.3 to Section 9.5 discuss the non-Hermitian non-𝒫𝒯-symmetric extensions.
The results are summarized in Section 9.6.
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9.1 The Fermion Mass for Γu�u�1
= 𝑖𝛾5𝐵u�𝛾u�

The fermion propagator (9.15) for the non-Hermitian NJL model based on the
𝒫𝒯-symmetric and chirally symmetric extension term Γu�u�1

= 𝑖𝛾5𝐵u�𝛾u� is formally
given as

𝑆(𝑝) = (/𝑝 − 𝑚 − 𝑖𝑔𝛾5𝐵u�𝛾u�)−1. (9.16)

To evaluate the spinor trace tr[𝑆(𝑝)] this expression is recast into a form with a
scalar denominator: An expansion of (9.16) with the factor (/𝑝 + 𝑚 + 𝑖𝑔𝛾5𝐵u�𝛾u�)
yields the denominator

(/𝑝 − 𝑚 − 𝑖𝑔𝛾5𝐵u�𝛾u�)(/𝑝 + 𝑚 + 𝑖𝑔𝛾5𝐵u�𝛾u�)

= 𝑝2 − 𝑚2 − 𝑔2𝐵2 − 2𝑖𝑔𝑚𝛾5𝐵u�𝛾u� − 2𝑖𝑔𝐵u�𝑝u�𝛾5,
(9.17)

using that 𝛾5𝛾u�/𝑝 − /𝑝𝛾5𝛾u� = 2𝑝u�𝛾5. The last two terms are still not scalar, but
under expansion with a factor of the same form as (9.17), but with opposite sign
in those two terms, the denominator becomes

[𝑝2 − 𝑚2 − 𝑔2𝐵2 − 2𝑖𝑔𝑚𝛾5𝐵u�𝛾u� − 2𝑖𝑔𝐵u�𝑝u�𝛾5]

×[𝑝2 − 𝑚2 − 𝑔2𝐵2 + 2𝑖𝑔𝑚𝛾5𝐵u�𝛾u� + 2𝑖𝑔𝐵u�𝑝u�𝛾5]

= (𝑝2 − 𝑚2 − 𝑔2𝐵2)2 − 4𝑔2𝑚2𝐵2 + 4𝑔2(𝐵u�𝑝u�)2.

(9.18)

Thus the fermion propagator (9.16) takes the form

𝑆(𝑝) =
(/𝑝 + 𝑚 + 𝑖𝑔𝛾5𝐵u�𝛾u�)[𝑝2 − 𝑚2 − 𝑔2𝐵2 + 2𝑖𝑔𝑚𝛾5𝐵u�𝛾u� + 2𝑖𝑔𝐵u�𝑝u�𝛾5]

(𝑝2 − 𝑚2 − 𝑔2𝐵2)2 − 4𝑔2𝑚2𝐵2 + 4𝑔2(𝐵u�𝑝u�)2 .

(9.19)

The spinor trace of the terms in the numerator vanishes for all but the com-
binations tr[𝛾u�𝛾u� ] = 4𝜂u�u� and tr[𝟙] = 4, resulting in the trace of the fermion
propagator

tr[𝑆(𝑝)] = 4𝑚(𝑝2 − 𝑚2 + 𝑔2𝐵2)
(𝑝2 − 𝑚2 − 𝑔2𝐵2)2 − 4𝑔2𝑚2𝐵2 + 4𝑔2(𝐵u�𝑝u�)2 . (9.20)
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In the chiral limit of vanishing bare mass, the gap equation (9.10) thus becomes

𝑚 =
2𝑖𝐺𝑁u�𝑁u�

(2𝜋)4 𝐼u�u�1
, (9.21)

with

𝐼u�u�1
= 4𝑚 ∫𝑑4𝑝 𝑝2 − 𝑚2 + 𝑔2𝐵2

(𝑝2 − 𝑚2 − 𝑔2𝐵2)2 − 4𝑔2𝑚2𝐵2 + 4𝑔2(𝐵u�𝑝u�)2 . (9.22)

The four-momentum integral (9.22) can be evaluated in the Euclidean four-
momentum cutoff regularization by first transforming to Euclidean coordinates,
that is letting 𝑝0 = 𝑖𝑝4 and choosing 𝐵0 = 𝑖𝐵4 so that 𝑝2

u� = 𝑝2
1 + ... + 𝑝2

4 = −𝑝2,
𝐵2

u� = −𝐵2, and 𝐵u�𝑝u� = −𝐵u� ⋅ 𝑝u� in the Euclidean dot product:

𝐼u�u�1
= −4𝑖𝑚 ∫𝑑4𝑝u�

𝑝2
u� + 𝑚2 + 𝑔2𝐵2

u�
(𝑝2

u� + 𝑚2 − 𝑔2𝐵2
u�)2 + 4𝑔2𝑚2𝐵2

u� + 4𝑔2(𝐵u� ⋅ 𝑝u�)2 . (9.23)

In a spherical coordinate system with zenith direction 𝐵u�, the product 𝐵u� ⋅ 𝑝u� =
|𝐵u�||𝑝u�| cos 𝜃 depends only on the radial component |𝑝u�| and the zenithal angle
𝜃. The four-momentum cutoff scale Λ is then introduced as a radial integration
limit, yielding:

𝐼u�u�1
= −16𝑖𝜋𝑚 ∫

Λ

0
𝑑𝑟 𝑟(𝑟2 + 𝑚2 + 𝑔2𝐵2

u�)
4𝑔2𝐵2

u�
∫

u�

0
𝑑𝜃 sin2 𝜃

𝑓(𝑟) − sin2 𝜃
, (9.24)

with 𝑓(𝑟) = (𝑟2 + 𝑚2 + 𝑔2𝐵2
u�)2/4𝑔2𝐵2

u�𝑟2. Evaluating the angular integration

∫
u�

0
𝑑𝜃 sin2 𝜃

𝑓(𝑟) − sin2 𝜃
= 𝜋(√ u�(u�)

u�(u�) − 1 − 1) (9.25)

then results in the radial integral

𝐼u�u�1
= 16𝑖𝜋2𝑚 ∫

Λ

0
𝑑𝑟 𝑟(𝑟2 + 𝑚2 + 𝑔2𝐵2

u�)
4𝑔2𝐵2

u�

× (1 − 𝑟2 + 𝑚2 + 𝑔2𝐵2
u�

√(𝑟2 + 𝑚2 + 𝑔2𝐵2
u�)2 − 4𝑔2𝐵2

u�𝑟2
),

(9.26)

which can be performed using established integral identities, see for example [51].
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The resulting gap equation (9.21) has the form

2𝜋2

̃𝐺𝑁u�𝑁u�
= 1

4 ̃𝑔2 {√(1 + �̃�2 − ̃𝑔2)2 + 4 ̃𝑔2�̃�2(1 + �̃�2 + 7 ̃𝑔2)

− (�̃�2 + ̃𝑔2)(2 + �̃�2 + 7 ̃𝑔2) − 1 + 4 ̃𝑔2(2 ̃𝑔2 − �̃�2)

× ln [ 1
2�̃�2 (√(1 + �̃�2 − ̃𝑔2)2 + 4 ̃𝑔2�̃�2 + 1 + �̃�2 − ̃𝑔2)]}

(9.27)

in terms of the rescaled quantities �̃� = 𝑚Λ−1, ̃𝐺 = 𝐺Λ2, and ̃𝑔 = 𝑔|𝐵u�|Λ−1,
which is proportional to the amplitude of the background field. In the limit of
vanishing coupling 𝑔, (9.27) simplifies to the gap equation (9.13) of the standard
NJL model within this regularization scheme.

The effective mass solution 𝑚 of the gap equation can now be determined
through the intersection of the function on the right-hand side of (9.27) with
the real positive constant left-hand side, which is determined through 𝑁u� = 3,
𝑁u� = 2, the choice of the cutoff scale Λ = 1015 MeV, and the two-body interaction
strength ̃𝐺 = 3.93 for comparison with the standard NJL model as 𝑔 → 0. In
Figure 9.3 the behavior of the right-hand side of (9.27) is shown as a function
of the (scaled) effective mass �̃� at various values of the coupling ̃𝑔, while the
constant left-hand side is visualized as a dashed horizontal line.

In the limit of vanishing ̃𝑔 the right-hand side reaches a finite maximum at
�̃� = 0, see Figure 9.3a, and the intersection with the dashed horizontal line lies
at 𝑚u�u�u� ≈ 0.2349Λ ≈ 238 MeV, giving rise to the standard NJL model solution.

For any non-vanishing coupling 0 < ̃𝑔 ≤ 1 the right-hand side has a singularity
at �̃� = 0, see Figure 9.3a and Figure 9.3b, which guarantees an intersection with
the finite constant left-hand side, and thus the existence of a real mass solution
of this 𝒫𝒯-symmetric non-Hermitian model at small couplings ̃𝑔.

But for coupling values ̃𝑔 > 1 the singularity vanishes and the right-hand
side reaches a finite maximum at �̃� = 0 again, see Figure 9.3c. The height
of this maximum decreases with increasing ̃𝑔. One finds that for coupling values

̃𝑔 > ̃𝑔crit ≈ 1.261 the maximum falls below the dashed line, so that an intersection
with the left-hand side can no longer be found. Therefore, the gap equation no
longer has a real mass solution in this region.
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Figure 9.3: Behavior of the right-hand side of (9.27) as a function of the scaled mass ũ�
for given ranges of the scaled coupling constant ̃u� (curves). The constant left-hand side
is plotted as a dashed horizontal line for fixed values of u� and Λ. Adapted from [66].
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Figure 9.4: The behavior of the effective fermion mass solution to the gap equation
(9.27) is shown as a function of the scaled coupling constant ̃u�. Adapted from [66].

The behavior of the real mass solution 𝑚 of the gap equation is shown in
Figure 9.4 as a function of ̃𝑔. Starting at the mass of the standard NJL model
when ̃𝑔 = 0, the solution increases to a maximum of 𝑚 ≈ 460.870 MeV at a
coupling value of ̃𝑔 ≈ 0.702. Thereafter it decreases with increasing coupling
until breaking down at the critical value of ̃𝑔crit ≈ 1.261. Notably, for all coupling
values below ̃𝑔dyn ≈ 1.183, an increase in mass compared to 𝑚u�u�u� is generated
dynamically through the 𝒫𝒯-symmetric non-Hermitian extension term.

The equivalent of a bare mass 𝑚0 in the range of the up quark mass, 𝑚u� =
(1.7 − 3.3) MeV, is obtained at coupling values ̃𝑔 ≈ (0.025 − 0.034) or ̃𝑔 ≈
(1.181 − 1.182). For the equivalent of a bare down quark, 𝑚u� = (4.1 − 5.8) MeV,
coupling values ̃𝑔 ≈ (0.038 − 0.046) or ̃𝑔 ≈ (1.179 − 1.181) are required. The
coupling is expected to be small, and therefore lie in the first range given.

When considering the model as an extension of a non-Hermitian Dirac fermion,
that is treating the two-body coupling ̃𝐺 as a variable, one obtains the behavior
visualized in Figure 9.5: The singularity of the right-hand side of (9.27) for values
0 < ̃𝑔 ≤ 1 implies that mass solutions exist for all values of ̃𝐺, softening the phase
transition of the standard NJL model ( ̃𝑔 = 0) similar to the inclusion of a finite
bare mass 𝑚0, cf. Figure 9.2, but without breaking chiral symmetry explicitly.
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Figure 9.5: Behavior of the effective mass solution as a function of the two-body coupling
strength ̃u� for different values of the (scaled) bilinear-coupling constant ̃u�.

However, for values ̃𝑔 > 1 the finite maximum of the right-hand side of (9.27)
implies that an abrupt phase transition similar to that of the standard NJL model
is restored. Nevertheless, as seen in Figure 9.5, the large-𝐺 behavior of the mass
solution for such values of ̃𝑔 differs from that of the standard NJL model. The
non-Hermitian bilinear term here modifies the two-body interaction rather than
mimicking the effect of including a bare mass term.

Altogether, the modified NJL model based on the 𝒫𝒯 and chirally symmetric
bilinear extension Γu�u�1

= 𝑖𝛾5𝐵u�𝛾u� admits real, effective mass solutions in the
chiral limit of vanishing bare mass 𝑚0 within a finite region of coupling values
up to a critical coupling ̃𝑔crit. This represents a phase of unbroken 𝒫𝒯 symmetry
in the system, that is generally missing without the inclusion of the two-body
interactions. When compared to the standard NJL model, mass is generated
dynamically due to the extension term for ̃𝑔 < ̃𝑔dyn; larger coupling values ̃𝑔dyn <

̃𝑔 < ̃𝑔crit result in an effective mass loss. As a function of the two-body coupling
𝐺 the mass solution shows two distinct behaviors: For ̃𝑔 ≤ 1 the phase transition
of the standard NJL model is softened, resembling the inclusion of a bare mass
𝑚0, though here the mass solution vanishes in the limit of 𝐺 = 0. For coupling
values ̃𝑔 > 1 an abrupt phase transition like that of the standard NJL model is
restored.
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9.2 The Fermion Mass for Γu�u�2
= 𝐹u�u�𝛾u�𝛾u�

In the non-Hermitian NJL model based on the 𝒫𝒯-symmetric, but chiral-symme-
try-breaking, extension term Γu�u�2

= 𝐹u�u�𝛾u�𝛾u� , with 𝐹u�u� = −𝐹u�u� being real, the
fermion propagator (9.15) is formally given as

𝑆(𝑝) = (/𝑝 − 𝑚 − 𝑔𝐹u�u�𝛾u�𝛾u�)−1. (9.28)

To evaluate the spinor trace tr[𝑆(𝑝)] in the gap equation, one first recasts this
expression into a form with a scalar denominator: By expanding (9.28) with the
factor (/𝑝 − 𝑚 + 𝑔𝐹u�u�𝛾u�𝛾u�), the denominator becomes

(/𝑝 − 𝑚 − 𝑔𝐹u�u�𝛾u�𝛾u�) (/𝑝 − 𝑚 + 𝑔𝐹u�u�𝛾u�𝛾u�)

= (𝑝2 + 𝑚2 − 2𝑔2𝑓1) − 2𝑚/𝑝 − 4𝑔𝐹u�u�𝑝u�𝛾u� + 8𝑖𝑔2𝑓2𝛾5,
(9.29)

utilizing that 𝐹u�u�(𝛾u�𝛾u�/𝑝 − /𝑝𝛾u�𝛾u�) = 4𝐹u�u�𝑝u�𝛾u� and 𝐹u�u�𝐹u�u�𝛾u�𝛾u�𝛾u�𝛾u� = 2𝑓1𝟙 −
8𝑖𝑓2𝛾5, with

𝑓1 = 2(𝐹 2
01 + 𝐹 2

02 + 𝐹 2
03 − 𝐹 2

12 − 𝐹 2
13 − 𝐹 2

23) = tr[𝐹 2], (9.30)

𝑓2 = (𝐹01𝐹23 − 𝐹02𝐹13 + 𝐹03𝐹12) = Pf(𝐹). (9.31)

The expression (9.29) is not yet scalar, but when expanded with a factor having
the opposite sign in all non-scalar contributions, the denominator takes the desired
form:

[(𝑝2 + 𝑚2 − 2𝑔2𝑓1) − 2𝑚/𝑝 − 4𝑔𝐹u�u�𝑝u�𝛾u� + 8𝑖𝑔2𝑓2𝛾5]

×[(𝑝2 + 𝑚2 − 2𝑔2𝑓1) + 2𝑚/𝑝 + 4𝑔𝐹u�u�𝑝u�𝛾u� − 8𝑖𝑔2𝑓2𝛾5]

=(𝑝2 + 𝑚2 − 2𝑔2𝑓1)2 − 4𝑚2𝑝2 + 64𝑔4𝑓2
2 + 16𝑔2𝑝u�𝐹u�u�𝐹 u�

u�𝑝u�,

(9.32)

where {𝛾u�, 𝛾u�} = 2𝜂u�u� , {𝛾u�, 𝛾5} = 0, and 𝐹u�u� = −𝐹u�u� was used. The fermion
propagator (9.28) can thus be written as

𝑆(𝑝) =
(/𝑝 − 𝑚 + 𝑔𝐹u�u�𝛾u�𝛾u�)[(𝑝2 +𝑚2 −2𝑔2𝑓1)+2𝑚/𝑝+4𝑔𝐹u�u�𝑝u�𝛾u� − 8𝑖𝑔2𝑓2𝛾5]

(𝑝2 + 𝑚2 − 2𝑔2𝑓1)2 − 4𝑚2𝑝2 + 64𝑔4𝑓2
2 + 16𝑔2𝑝u�𝐹u�u�𝐹 u�

u�𝑝u� .

(9.33)
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When evaluating the spinor trace of this propagator, almost all terms in the
numerator vanish. With tr[𝟙] = 4, tr[𝛾u�𝛾u� ] = 4𝜂u�u�, and 𝐹 u�

u� = 0 one finds that

tr[𝑆(𝑝)] = 4𝑚(𝑝2 − 𝑚2 + 2𝑔2𝑓1)
(𝑝2 + 𝑚2 − 2𝑔2𝑓1)2 − 4𝑚2𝑝2 + 64𝑔4𝑓2

2 + 16𝑔2𝑝u�𝐹u�u�𝐹 u�
u�𝑝u� , (9.34)

so that, in the limit of vanishing bare mass, the gap equation (9.10) becomes

𝑚 =
2𝑖𝐺𝑁u�𝑁u�

(2𝜋)4 𝐼u�u�2
, (9.35)

with

𝐼u�u�2
= ∫𝑑4𝑝 4𝑚(𝑝2 − 𝑚2 + 2𝑔2𝑓1)

(𝑝2 + 𝑚2 − 2𝑔2𝑓1)2 − 4𝑚2𝑝2 + 64𝑔4𝑓2
2 + 16𝑔2𝑝u�𝐹u�u�𝐹 u�

u�𝑝u� .

(9.36)
To evaluate this gap equation in the Euclidean four-momentum cutoff regular-

ization, one first changes to a Euclidean system by denoting 𝑝0 = 𝑖𝑝4 and choosing
𝐹0u� = 𝑖𝐹4u�, ∀𝑘 ∈ [1, 3], so that 𝑝2 = −𝑝2

u� and 𝑝u�𝐹u�u�𝐹 u�
u�𝑝u� = −𝑝u� ⋅ 𝐹u� ⋅ 𝐹u� ⋅ 𝑝u�

in terms of the Euclidean dot product, where the (now complex) matrix 𝐹u� is

𝐹u� =
⎡
⎢
⎢
⎢
⎣

0 𝐹41 𝐹42 𝐹43

−𝐹41 0 𝐹12 𝐹13

−𝐹42 −𝐹12 0 𝐹23

−𝐹43 −𝐹13 −𝐹23 0

⎤
⎥
⎥
⎥
⎦

. (9.37)

The momentum integral (9.36) then becomes

𝐼u�u�2
= ∫𝑑4𝑝u�

−4𝑖𝑚(𝑝2
u� + 𝑚2 − 2𝑔2𝑓1)

(𝑝2
u� −𝑚2 + 2𝑔2𝑓1)2 + 4𝑚2𝑝2

u� + 64𝑔4𝑓2
2 − 16𝑔2𝑝u� ⋅𝐹u� ⋅𝐹u� ⋅𝑝u�

.

(9.38)

In principle, the momentum cutoff Λ can now be introduced as a radial bound
of the integral, but in the form (9.38) the dependence of the momentum integral
on 𝐹u� is somewhat unwieldy. However, when the matrix 𝐹u� is diagonalizable, it
is orthogonally diagonalizable [89], so that one can find a transformation 𝑄 with
𝑄u� 𝑄 = 𝟙 and 𝑄u� 𝐹u� 𝑄 = diag(𝜆1, −𝜆1, 𝜆2, −𝜆2) in terms of

𝜆1,2 = 1
2

√𝑓1 ∓ √𝑓2
1 + 16𝑓2

2 . (9.39)
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Applying such an orthogonal transformation to the Euclidean four-momentum
𝑝u� → 𝑄 𝑝u� leaves the integral measure invariant, but yields a much more conve-
nient dependence of the integral 𝐼u�u�2

on the momentum components:

𝐼u�u�2
= − 4𝑖𝑚 ∫

Λ
𝑑4𝑝u� (𝑝2

u� + 𝑚2 − 2𝑔2𝑓1) [(𝑝2
u� − 𝑚2 + 2𝑔2𝑓1)2 + 4𝑚2𝑝2

u�

+ 64𝑔4𝑓2
2 − 16𝑔2𝜆2

1(𝑝2
4 + 𝑝2

1) − 16𝑔2𝜆2
2(𝑝2

2 + 𝑝2
3)]

−1
.

(9.40)

From the structure of the eigenvalues in (9.39) one observes that 𝐹u� is diagonaliz-
able if 𝑓2 does not vanish. Given the form of 𝑓2 in (9.31), this is equivalent to the
requirement that 𝑓2

2 = Det(𝐹) does not vanish, which is only a minor restriction
that is assumed to be the case in the following analysis.

In order to evaluate (9.40), one can now rewrite the four-momentum integra-
tion in two sets of polar coordinates with 𝑝4 = 𝑅1 cos 𝜙1, 𝑝1 = 𝑅1 sin 𝜙1 and
𝑝2 = 𝑅2 cos 𝜙2, 𝑝3 = 𝑅2 sin 𝜙2 with 𝜙1, 𝜙2 ∈ [0, 2𝜋]:

𝐼u�u�2
= − 16𝑖𝜋2𝑚 ∫

Λ
𝑑𝑅1𝑑𝑅2 𝑅1𝑅2(𝑅2

1 + 𝑅2
2 + 𝑚2 − 2𝑔2𝑓1)

× [(𝑅2
1 + 𝑅2

2 − 𝑚2 + 2𝑔2𝑓1)2 + 4𝑚2(𝑅2
1 + 𝑅2

2) + 64𝑔4𝑓2
2

− 16𝑔2(𝜆2
1𝑅2

1 + 𝜆2
2𝑅2

2)]
−1

,

(9.41)

where Λ is the upper bound for √𝑅2
1 + 𝑅2

2. And in a polar coordinate system for
𝑅1 and 𝑅2, that is 𝑅1 = 𝑟 cos 𝜃 and 𝑅2 = 𝑟 sin 𝜃, with 𝜃 ∈ [0, 𝜋/2] and 𝑟 ∈ [0, Λ]
the integral 𝐼u�u�2

thus becomes

𝐼u�u�2
= −16𝑖𝜋2𝑚 ∫

Λ

0
𝑑𝑟 𝑟3(𝑟2 + 𝑚2 − 2𝑔2𝑓1) ∫

u�/2

0
𝑑𝜃 cos 𝜃 sin 𝜃

𝐴(𝑟) − 𝐵(𝑟) cos2 𝜃
, (9.42)

where

𝐴(𝑟) = (𝑟2 + 𝑚2 − 2𝑔2𝑓2
1 ) + 64𝑔4𝑓2

2 + 4𝑔2𝑟2(𝑓1 − √𝑓2
1 + 16𝑓2

2 ), (9.43)

𝐵(𝑟) = − 8𝑔2𝑟2√𝑓2
1 + 16𝑓2

2 . (9.44)
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The angular integral is a standard integral, see for example [51], so that

𝐼u�u�2
= −𝑖𝜋2𝑚 ∫

Λ

0
𝑑𝑟 𝑟(𝑟2 + 𝑚2 − 2𝑔2𝑓1)

𝑔2√𝑓2
1 + 16𝑓2

2
ln [1 − 𝐵(𝑟)

𝐴(𝑟)
], (9.45)

which can be rewritten as

𝐼u�u�2
= 𝑖𝜋2𝑚

2𝑔2√𝑓2
1 + 16𝑓2

2
∫

Λ2

0
𝑑𝑧 (𝑧 + 𝑚2 − 2𝑔2𝑓1)

× [ln(𝑧 + 𝑎1) + ln(𝑧 + 𝑎2) − ln(𝑧 + 𝑎3) − ln(𝑧 + 𝑎4)],

(9.46)

with

𝑎1,2 = 𝑚2 − 2𝑔2√𝑓2
1 + 16𝑓2

2 ± √4𝑚2𝑔2(𝑓1 − √𝑓2
1 + 16𝑓2

2 ), (9.47)

𝑎3,4 = 𝑚2 + 2𝑔2√𝑓2
1 + 16𝑓2

2 ± √4𝑚2𝑔2(𝑓1 + √𝑓2
1 + 16𝑓2

2 ). (9.48)

Integration and some simplification yields:

𝐼u�u�2
= −𝑖Λ3𝜋2�̃�

2 ̃𝑔2√1 + 𝑓2
[4 ̃𝑔2√1 + 𝑓2 − ( ̃𝑎1 + 1) ln(1+ũ�1

ũ�1
)(�̃�2 − 2 ̃𝑔2 + 1−ũ�1

2 )

− ( ̃𝑎2 + 1) ln(1+ũ�2
ũ�2

)(�̃�2 − 2 ̃𝑔2 + 1−ũ�2
2 )

+ ( ̃𝑎3 + 1) ln(1+ũ�3
ũ�3

)(�̃�2 − 2 ̃𝑔2 + 1−ũ�3
2 )

+ ( ̃𝑎4 + 1) ln(1+ũ�4
ũ�4

)(�̃�2 − 2 ̃𝑔2 + 1−ũ�4
2 )]

(9.49)

in terms of the rescaled quantities �̃� = 𝑚Λ−1, ̃𝑎 = 𝑎Λ−2, ̃𝑔2 = 𝑔2𝑓1Λ−2, and
𝑓 = 4𝑓2/𝑓1 ∈ ℝ. The resulting gap equation (9.35) has the form

2𝜋2

̃𝐺𝑁u�𝑁u�
= 1

8 ̃𝑔2√1 + 𝑓2
[4 ̃𝑔2√1 + 𝑓2 − ( ̃𝑎1 + 1) ln(1+ũ�1

ũ�1
)(�̃�2 − 2 ̃𝑔2 + 1−ũ�1

2 )

− ( ̃𝑎2 + 1) ln(1+ũ�2
ũ�2

)(�̃�2 − 2 ̃𝑔2 + 1−ũ�2
2 )

+ ( ̃𝑎3 + 1) ln(1+ũ�3
ũ�3

)(�̃�2 − 2 ̃𝑔2 + 1−ũ�3
2 )

+ ( ̃𝑎4 + 1) ln(1+ũ�4
ũ�4

)(�̃�2 − 2 ̃𝑔2 + 1−ũ�4
2 )],

(9.50)

where ̃𝐺 = 𝐺Λ2. In the limit of vanishing coupling 𝑔, (9.50) simplifies to the gap
equation (9.13) of the standard NJL model within this regularization scheme.
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Figure 9.6: (a) Behavior of the right-hand side of the gap equation (9.50) as a function
of the scaled mass ũ� for different values of the coupling ̃u�. The value for u� = 0.5 is
fixed, but this case is representative of the general behavior. The dashed horizontal line
represents the left-hand side of the gap equation. (b) Behavior of the critical coupling
value ̃u�crit up to which the gap equation (9.50) has real mass solutions as a function of
u�. Both figures are adapted from [67].

In Figure 9.6a the behavior of the right-hand side of (9.50) is shown as a
function of the (scaled) effective mass �̃� at various values of the coupling ̃𝑔,
while the real positive constant left-hand side, determined by 𝑁u� = 3, 𝑁u� = 2,
and ̃𝐺 = 3.93 for comparison with the standard NJL model, is visualized as a
dashed horizontal line. The parameter 𝑓 is fixed at 𝑓 = 0.5, but the behavior is
representative of other values. For small coupling values the behavior of the right-
hand side deviates only slightly from that of the standard NJL model ( ̃𝑔 = 0). In
particular, the right-hand side reaches a finite maximum which exceeds the dashed
horizontal line for sufficiently small coupling values ̃𝑔, so that a real fermion mass
solution �̃� can be found. Beyond a critical value ̃𝑔crit, however, the right-hand
side falls below the dashed line and real mass solutions no longer exist. The
behavior of this critical coupling value is shown in Figure 9.6b as a function of
the parameter 𝑓 . Notably, it vanishes asymptotically for large values of 𝑓 .

In Figure 9.7 the behavior of the real mass solution 𝑚 of the gap equation
is shown as a function of the coupling ̃𝑔 for different values of 𝑓 . One observes
that independent of 𝑓 , the effective mass decreases as the coupling constant ̃𝑔
increases: the 𝒫𝒯-symmetric extension Γu�u�2

always results in an effective mass
loss. The dynamical generation of a bare quark mass is not possible in this model.
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Figure 9.7: The behavior of the effective fermion mass solution of the gap equation
(9.50) is shown as a function of the coupling constant ̃u� up to the corresponding critical
coupling value for different values of u�. Adapted from [67].

In Figure 9.8 the model is considered as an extension of a non-Hermitian
Dirac fermion and the mass solution is shown as a function of the two-body
coupling ̃𝐺. For small coupling values ̃𝑔, where the behavior of the right-hand
side of (9.50) resembles that of the standard NJL model, see Figure 9.6a, the mass
solution behaves similar to the standard NJL solution as well - the phase transition
occurs at larger values of 𝐺 with increasing ̃𝑔 and is softened to some extent with
increasing values of the parameter 𝑓 . However, for sufficiently large values ̃𝑔 this
behavior changes and the gap equation can admit multiple mass solutions in a
finite range of the two-body coupling 𝐺. An increase of the parameter 𝑓 reduces
the size of this region. It is remarked that the occurrence of a region in which the
gap equation has multiple mass solutions, as well as the qualitative change of its
right-hand side with increasing bilinear coupling ̃𝑔, resembles to some extent the
behavior of the standard NJL model at finite densities, cf. [80]. The investigation
of non-Hermitian extensions to the NJL model at finite temperature and density
and of this resemblance is the subject of ongoing investigation.

Altogether, the modified NJL model based on the 𝒫𝒯-symmetric, but chiral-
symmetry-breaking, bilinear extension Γu�u�2

= 𝐹u�u�𝛾u�𝛾u� admits real effective mass
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Figure 9.8: Behavior of the effective mass solution as a function of the two-body coupling
strength ̃u� for different values of the (scaled) bilinear-coupling constant ̃u� and the
parameter u�.

solutions in the limit of vanishing bare mass 𝑚0 within a finite region of coupling
values ̃𝑔 up to a critical coupling ̃𝑔crit. This represents a phase of unbroken 𝒫𝒯
symmetry in the system. But contrary to the non-Hermitian extension Γu�u�1

, the
dynamical generation of mass is not possible within this model and the effect of
a bare mass term 𝑚0 can not be mimicked through the non-Hermitian extension.
The bilinear term lessens the effect of the two-body interaction and results in an
effective mass loss. As a function of the two-body coupling 𝐺 the mass solution
initially resembles the standard NJL solution, with the critical value of the two-
body coupling increasing with increasing values of ̃𝑔. But for sufficiently large
bilinear coupling values ̃𝑔 a region in which the gap equation admits multiple
mass solutions forms.

9.3 The Fermion Mass for Γu�u�u�1
= 𝑖𝐴u�𝛾u�

The modified NJL model based on the non-Hermitian non-𝒫𝒯-symmetric but
chirally symmetric term Γu�u�u�1

= 𝑖𝐴u�𝛾u� is structurally similar to the model based
on Γu�u�1

, that is discussed in Section 9.1. The fermion propagator is formally given
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as
𝑆(𝑝) = (/𝑝 − 𝑚 − 𝑖𝑔𝐴u�𝛾u�)−1. (9.51)

By expansion with (/𝑝 + 𝑚 − 𝑖𝑔𝐴u�𝛾u�) the propagator takes the form

𝑆(𝑝) = /𝑝 + 𝑚 − 𝑖𝐴u�𝛾u�

𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u� , (9.52)

which has a scalar denominator. The spinor trace is then readily obtained:

tr[𝑆(𝑝)] = 4𝑚
𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u� . (9.53)

In the chiral limit of vanishing bare mass, the gap equation (9.10) thus becomes

𝑚 =
2𝑖𝐺𝑁u�𝑁u�

(2𝜋)4 𝐼u�u�u�1
=

2𝑖𝐺𝑁u�𝑁u�

(2𝜋)4 ∫𝑑4𝑝 4𝑚
𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u� . (9.54)

The regularization of the integral within the Euclidean four-momentum cutoff
scheme can be performed as described in Section 9.1: The cutoff Λ is introduced as
a bound of the radial integration after transforming to Euclidean coordinates with
𝑝0 = 𝑖𝑝4 and 𝐴0 = 𝑖𝐴4, so that 𝑝2 = −𝑝2

u�, 𝐴2 = −𝐴2
u�, and 𝐴u�𝑝u� = −𝐴u� ⋅ 𝑝u�.

In a spherical system with zenith direction 𝐴u�, the integral 𝐼u�u�u�1
then becomes

𝐼u�u�u�1
= 8𝜋𝑚

𝑔 |𝐴u�|
∫

Λ

0
𝑑𝑟 𝑟2 ∫

u�

0
𝑑𝜃 sin2 𝜃

𝑓(𝑟) + cos 𝜃
, (9.55)

where 𝑓(𝑟) = (𝑟2 + 𝑚2 − 𝑔2𝐴2
u�)/(−2𝑖𝑔𝑟|𝐴u�|). Both the angular integral and

the resulting radial integral are standard integrals, that can be found for example
in [51], yielding

𝐼u�u�u�1
= 𝑖Λ3𝜋2�̃�

̃𝑔2 {4�̃�2 ̃𝑔2 ln [ 1
2�̃�2 (√(1 + �̃�2 + ̃𝑔2)2 − 4 ̃𝑔2�̃�2 + 1 + �̃�2 + ̃𝑔2)]

− (1 + �̃�2 + ̃𝑔2)√(1 + �̃�2 + ̃𝑔2)2 − 4 ̃𝑔2�̃�2 + 1

+ (�̃�2 − ̃𝑔2)(2 + �̃�2 + ̃𝑔2)},
(9.56)

in terms of the rescaled quantities �̃� = 𝑚Λ−1 and ̃𝑔 = 𝑔|𝐴u�|Λ−1, which is
proportional to the amplitude of the background field.
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Figure 9.9: (a) Behavior of the right-hand side of the gap equation (9.57) as a function
of the scaled mass ũ� for different values of the coupling ̃u�. The dashed horizontal line
represents the left-hand side of the gap equation. (b) Behavior of the effective fermion
mass solution u� as a function of the scaled coupling constant ̃u�. Both figures are
adapted from [67].

The resulting gap equation (9.54) has the form

2𝜋2

̃𝐺𝑁u�𝑁u�
= 1

4 ̃𝑔2 {(1 + �̃�2 + ̃𝑔2)√(1 + �̃�2 + ̃𝑔2)2 − 4 ̃𝑔2�̃�2 − 1

− 4�̃�2 ̃𝑔2 ln [ 1
2�̃�2 (√(1 + �̃�2 + ̃𝑔2)2 − 4 ̃𝑔2�̃�2 + 1 + �̃�2 + ̃𝑔2)]

− (�̃�2 − ̃𝑔2)(2 + �̃�2 + ̃𝑔2)},
(9.57)

where ̃𝐺 = 𝐺Λ2. In the limit of vanishing coupling 𝑔, the gap equation (9.13) of
the standard NJL model within this regularization scheme is recovered.

Notably, the right-hand side of the gap equation (9.57) is a real-valued function
of the (scaled) mass �̃� and the coupling constant ̃𝑔, the behavior of which is
shown in Figure 9.9a as a function of �̃� for various values of ̃𝑔. The real positive
constant left-hand side at 𝑁u� = 3, 𝑁u� = 2, and ̃𝐺 = 3.93 for comparison with the
standard NJL model is visualized as a dashed horizontal line. A finite maximum
of the right-hand side is reached at �̃� = 0, whose height increases with increasing

̃𝑔. Therefore, an intersection with the dashed horizontal line, and thus a real
fermion mass solution, can always be found.
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Figure 9.10: Behavior of the effective mass solution as a function of the two-body
coupling strength ̃u� for different values of the (scaled) bilinear-coupling constant ̃u�.

In Figure 9.9b the behavior of the real mass solution 𝑚 of the gap equation is
shown as a function of the coupling ̃𝑔. The mass increases monotonically with ̃𝑔
and, in contrast to the 𝒫𝒯-symmetric models discussed previously, is not restricted
to a finite coupling region. An increased mass compared to 𝑚u�u�u� is generated
dynamically through the non-Hermitian non-𝒫𝒯-symmetric extension term Γu�u�u�1

.
The equivalent of a bare up quark mass, 𝑚u� = (1.7 − 3.3) MeV, is obtained at
the coupling value ̃𝑔 ≈ (0.059 − 0.083) and for the the equivalent of a bare down
quark, 𝑚u� = (4.1 − 5.8) MeV, a coupling value of ̃𝑔 ≈ (0.092 − 0.110) is required.

In Figure 9.10 the model is considered as an extension of a non-Hermitian
Dirac fermion, that is the two-body coupling 𝐺 is treated as a variable, and the
effective fermion mass is shown as a function of ̃𝐺. The qualitative behavior of the
mass solution of the standard NJL model without bare mass is generally preserved
while the critical value of the coupling ̃𝐺, beyond which the chiral symmetry of
the model is spontaneously broken, decreases as the bilinear coupling constant ̃𝑔
increases. Even though the non-Hermitian bilinear results in an increase of the
effective mass, it does not mimic the effect of a bare mass term in the sense that
it softens the phase transition as a function of the two-body coupling; it rather
modifies the effect of the two-body interaction.
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Altogether, the modified NJL model based on the non-𝒫𝒯-symmetric, but
chirally symmetric, extension Γu�u�u�1

= 𝑖𝐴u�𝛾u� admits real, effective fermion mass
solutions in the chiral limit of vanishing bare mass 𝑚0, even though 𝒫𝒯 sym-
metry is explicitly broken. These solutions are not restricted to a finite coupling
region and dynamically generate mass compared to the standard NJL model. In
addition, when treating the two-body coupling as a variable the general behavior
of the effective fermion mass as a function of 𝐺 remains qualitatively unchanged:
the generation of an effective fermion mass requires a sufficiently strong two-body
interaction. The critical value of the two-body coupling decreases with an increas-
ing strength ̃𝑔 of the non-Hermitian non-𝒫𝒯-symmetric bilinear term.

9.4 The Fermion Mass for Γu�u�u�2
= 𝛾5

In the modified NJL model based on the non-Hermitian, non-𝒫𝒯-symmetric, and
chiral-symmetry-breaking extension term Γu�u�u�2

= 𝛾5, the fermion propagator
(9.15) is formally given as

𝑆(𝑝) = (/𝑝 − 𝑚 − 𝑔𝛾5)−1. (9.58)

An expansion with (/𝑝 + 𝑚 − 𝑔𝛾5) results straightforwardly in the form

𝑆(𝑝) = /𝑝 + 𝑚 − 𝑔𝛾5

𝑝2 − 𝑚2 + 𝑔2 , with tr[𝑆(𝑝)] = 4𝑚
𝑝2 − 𝑚2 + 𝑔2 . (9.59)

In the limit of vanishing bare mass the gap equation (9.10) thus becomes

𝑚 =
2𝑖𝐺𝑁u�𝑁u�

(2𝜋)4 𝐼u�u�u�2
=

2𝑖𝐺𝑁u�𝑁u�

(2𝜋)4 ∫𝑑4𝑝 4𝑚
𝑝2 − 𝑚2 + 𝑔2 . (9.60)

The argument of the momentum integral only depends on the square of the
four-momentum, so that the introduction of a radial cutoff Λ in Euclidean coor-
dinates for the purpose of regularization follows immediately by letting 𝑝0 = 𝑖𝑝4,
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so that 𝑝2 = −𝑝2
u� = −𝑟2:

𝐼u�u�u�2
= −8𝑖𝑚𝜋2 ∫

Λ

0
𝑑𝑟 𝑟3

𝑟2 + 𝑚2 − 𝑔2 . (9.61)

Subsequently, performing the integration yields

𝐼u�u�u�2
= 4𝑖Λ3𝜋2�̃�[(�̃�2 − ̃𝑔2) ln(1 + 1

�̃�2 − ̃𝑔2 ) − 1], (9.62)

in terms of the rescaled parameters �̃� = 𝑚Λ−1 and ̃𝑔 = 𝑔Λ−1. The resulting gap
equation (9.60) has the form

2𝜋2

̃𝐺𝑁u�𝑁u�
= 1 − (�̃�2 − ̃𝑔2) ln(1 + 1

�̃�2 − ̃𝑔2 ), (9.63)

where ̃𝐺 = 𝐺Λ2.

In the limit of vanishing coupling 𝑔, (9.63) clearly simplifies to the gap equation
(9.13) of the standard NJL model within this regularization scheme. In fact, the
gap equation (9.63) is structurally identical to that of the standard NJL model,
with �̃�2 − ̃𝑔2 = �̃�2

u�u�u�. Accordingly, the real fermion mass solution �̃� has the
form

�̃� = √ ̃𝑔2 + �̃�2
u�u�u� = √ ̃𝑔2 + [1

u� 𝑊−1(𝑐𝑒u�) − 1]−1, (9.64)

using the solution (9.14) of the standard NJL model with 𝑐 = 2𝜋2/ ̃𝐺𝑁u�𝑁u� − 1.

In Figure 9.11 the behavior of this real mass solution 𝑚 of the gap equation
is shown as a function of the coupling ̃𝑔. The mass increases monotonically with

̃𝑔 like in the case discussed in Section 9.3 and, in contrast to the 𝒫𝒯-symmetric
models discussed previously, it is not restricted to a finite coupling region. An
increased mass compared to 𝑚u�u�u� is generated dynamically. The equivalent of a
bare up quark mass, 𝑚u� = (1.7 − 3.3) MeV, is obtained at the coupling value ̃𝑔 ≈
(0.028−0.039) and for the equivalent of a bare down quark, 𝑚u� = (4.1−5.8) MeV,
a coupling value of ̃𝑔 ≈ (0.044 − 0.052) is required.
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Figure 9.11: The behavior of the effective fermion mass solution (9.64) is shown as a
function of the scaled coupling constant ̃u�. Adapted from [67].

When considering the model as an extension of a non-Hermitian Dirac fermion,
that is treating the two-body coupling 𝐺 as a variable, the effective fermion mass
behaves as shown in Figure 9.12. Independent of the bilinear coupling ̃𝑔 a non-
trivial, real effective fermion mass is obtained only when ̃𝐺 > ̃𝐺crit = 𝜋2/3; that
is the transition occurs at the same two-body coupling value as in the standard
NJL model. (For smaller values of ̃𝐺 the Lambert 𝑊 function in (9.64) becomes
complex.) The value of the effective fermion mass at ̃𝐺crit is �̃�( ̃𝐺crit, ̃𝑔) = ̃𝑔; the
inclusion of the chiral-symmetry-breaking bilinear term results in a discontinuous
transition. For every coupling ̃𝐺 > ̃𝐺crit the effective mass increases with increas-
ing values of the bilinear coupling ̃𝑔, similar to the case shown in Figure 9.11.

Altogether, the modified NJL model based on the non-𝒫𝒯-symmetric, non-
chirally-symmetric extension Γu�u�u�2

= 𝛾5 admits real effective fermion mass so-
lutions in the limit of vanishing bare mass 𝑚0, even though 𝒫𝒯 symmetry is
explicitly broken. It resembles the solution found in Section 9.3: The real mass
is not restricted to a finite coupling region and dynamically generates a mass
increase compared to the standard NJL model. Contrary to the solution in
Section 9.3 the critical value of the two-body coupling ̃𝐺 remains unaffected by
the non-Hermitian extension and the transition becomes discontinuous.
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Figure 9.12: Behavior of the effective mass solution as a function of the two-body
coupling strength ̃u� for different values of the (scaled) bilinear-coupling constant ̃u�.

9.5 The Fermion Mass for Γu�u�u�3
= 𝑖𝟙

The non-Hermitian, non-𝒫𝒯-symmetric, and chiral-symmetry-breaking model based
on the extension term Γu�u�u�3

= 𝑖𝟙 has the fermion propagator

𝑆(𝑝) = (/𝑝 − 𝑚 − 𝑖𝑔)−1, (9.65)

which, in essence, corresponds to that of the standard NJL model with the mass
shifted to 𝑚 + 𝑖𝑔. Accordingly, the trace of the propagator takes the form

tr[𝑆(𝑝)] = 4(𝑚 + 𝑖𝑔)
𝑝2 − (𝑚 + 𝑖𝑔)2 , (9.66)

and in the limit of vanishing bare mass the gap equation (9.10) becomes

2𝜋2

̃𝐺𝑁u�𝑁u�
= �̃� + 𝑖 ̃𝑔

�̃�
{1 − (�̃� + 𝑖 ̃𝑔)2 ln [1 + (�̃� + 𝑖 ̃𝑔)2

(�̃� + 𝑖 ̃𝑔)2 ]} (9.67)

in the Euclidean four-momentum cutoff regularization scheme, where �̃� = 𝑚Λ−1

and ̃𝑔 = 𝑔Λ−1. In the limit of vanishing coupling 𝑔, (9.67) simplifies to the gap
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equation (9.13) of the standard NJL model within this regularization scheme. For
non-vanishing coupling values ̃𝑔, the right-hand side of (9.67) takes on inherently
complex values for real masses �̃�, so that an intersection with the real constant
left-hand side can not be found. Thus the gap equation has no real effective
fermion mass solutions.

Overall, the modified NJL model based on Γu�u�u�3
is the only non-Hermitian

bilinear extension of the NJL model that does not admit real fermionic masses.
This is independent of the (real) two-body coupling 𝐺, because the left-hand side
of (9.67) remains a real constant.

9.6 Summary of the Fermion Masses

The effect of the five possible non-Hermitian bilinear extensions of the NJL model
on the generated effective fermion mass was investigated through the analysis of
the self-consistent gap equation in the limit of vanishing bare mass. For all but
the case of the bilinear based on Γu�u�u�3

= 𝑖𝟙 the modified gap equation admits
real mass solutions. In the 𝒫𝒯-symmetric models based on Γu�u�1

= 𝑖𝛾5𝐵u�𝛾u� and
Γu�u�2

= 𝐹u�u�𝛾u�𝛾u� these solutions arise in a finite region up to a critical coupling
strength ̃𝑔crit, signifying a phase of unbroken 𝒫𝒯 symmetry in the system. For
Γu�u�u�1

= 𝑖𝐴u�𝛾u� and Γu�u�u�2
= 𝛾5 on the other hand, any coupling value ̃𝑔 results

in real masses, which is remarkable given that these models are neither Hermitian
nor 𝒫𝒯 symmetric.

A dynamical mass generation through the inclusion of a non-Hermitian bi-
linear can be observed for the terms based on Γu�u�1

, Γu�u�u�1
, and Γu�u�u�2

. The
𝒫𝒯-symmetric modification based on Γu�u�2

, however, resulted in an effective mass
loss at all coupling-constant values. Nevertheless, in this it shows an intriguing
resemblance to the effect of a finite density in the standard NJL model. The dis-
cussion of non-Hermitian extensions to the NJL model at finite temperature and
density is the subject of ongoing investigations and will be presented in future
work.

Furthermore, by considering the behavior of the effective mass under varia-
tion of the two-body coupling strength 𝐺 the following distinction between the
three bilinear terms that generate mass dynamically could be made. For the two
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non-𝒫𝒯-symmetric terms Γu�u�u�1
and Γu�u�u�2

the general behavior of the standard
NJL model is qualitatively preserved to a large extent. Notably a transition from
the existence of only the vanishing mass solution at small two-body coupling values
to finite mass solutions beyond a critical value 𝐺crit remains intact. In the 𝒫𝒯-
symmetric model based on Γu�u�1

this behavior can also be found when considering
a large bilinear coupling value ̃𝑔 = 𝑔|𝐵u�|Λ−1 > 1. Therefore, the modifications
based on Γu�u�u�1

and Γu�u�u�2
, as well as on the strong bilinear-coupling regime of

Γu�u�1
, generate mass dynamically by modifying the effect of the two-body inter-

action rather than by mimicking the inclusion of a bare mass 𝑚0. However, at
small coupling values of the bilinear term based on Γu�u�1

the standard-NJL-model
transition was softened instead, resembling the effect of a finite bare mass term
without breaking chiral symmetry explicitly.



Chapter 10

The Meson Masses

A central feature of the standard NJL model is that it allows one to study
the mechanism of spontaneous chiral symmetry breaking. Without a chiral-
symmetry-breaking bare mass term, this is in particular manifested in the ex-
istence of a massless Nambu-Goldstone boson in the form of the pseudoscalar
mesonic bound state. In the approximately chirally symmetric case when a small
bare mass term is included, this bound state gains a small mass as well. As the
discussion of fermion mass generation in the previous chapter has established,
modifying the NJL model through the inclusion of non-Hermitian bilinear terms
can result in the dynamical generation of increased fermion masses which are com-
parable to a bare mass term. Such a mass generation was observed in the systems
based on the 𝒫𝒯-symmetric extension Γu�u�1

= 𝑖𝛾5𝐵u�𝛾u� as well as for the non-𝒫𝒯-
symmetric terms Γu�u�u�1

= 𝑖𝐴u�𝛾u� and Γu�u�u�2
= 𝛾5. While the last extension term

breaks chiral symmetry, similar to a bare mass term 𝑚0, the former two do not -
they generate the equivalent of a bare mass term without breaking chiral symme-
try explicitly. In this chapter, the effect of these three non-Hermitian extensions of
the NJL model on the mass of the scalar and pseudoscalar mesonic bound states,
which in the context of QCD are identified as the 𝜎 and 𝜋 mesons, is investigated
in detail. This analysis closely follows that of the published discussion in [67].

Recall that the study of the fermion mass served to establish the relation
between higher-order interaction terms, in the form of the NJL two-body interac-
tion, and non-Hermitian extensions, in particular those that are 𝒫𝒯 symmetric.
In this aspect, the modified NJL model can be viewed as either an extension of

134
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the non-Hermitian modified Dirac fermions or an extension of the standard NJL
model. The following study of the mesonic bound states focuses on the role of
chiral symmetry in the modified NJL model, and as such it is inherently tied
to the perspective of extending the standard NJL model through non-Hermitian
bilinears.

Similar to the analysis of the gap equation for the fermion mass, the meson
mass equations for the scalar and pseudoscalar bound state can be derived follow-
ing the approach of [80] and [84] to the standard NJL model: the effective meson
interaction 𝑉u�u�′,u�u�′ , in which all relevant degrees of freedom are denoted in the
indices 𝛼, 𝛼′, 𝛽, and 𝛽′, is expressed in terms of the bare two-body interaction
𝑉 (0)

u�u�′,u�u�′ of the model and the (proper) polarization insertion Πu�u�′,u�u�′ as

−𝑖𝑉u�u�′,u�u�′(𝑘) = −𝑖𝑉 (0)
u�u�′,u�u�′(𝑘) + [−𝑖𝑉 (0)

u�u�′,u�u�′(𝑘)] [−𝑖Πu�u�′,u�u�′(𝑘)] [−𝑖𝑉u�u�′,u�u�′(𝑘)].
(10.1)

Considering that the two-body interaction of the NJL model (8.1) consists of a
scalar ( ̄𝜓𝜓)2 and a pseudoscalar ( ̄𝜓𝑖𝛾5 ⃗𝜏𝜓)2 contribution, one can analyze (10.1)
for these contributions separately, writing

𝑉 (0)
u�u�′,u�u�′(𝑘) = 𝑉 (0)(𝑘) 𝛿u�u�′𝛿u�u�′ (10.2)

or

𝑉 (0)
u�u�′,u�u�′(𝑘) = 𝑉 (0)(𝑘) (𝑖𝛾5 ⃗𝜏 )u�u�′(𝑖𝛾5 ⃗𝜏 )u�u�′ (10.3)

respectively. Identifying the contributions of the effective interaction accordingly
then leads (10.1) to become

−𝑖𝑉 (𝑘) = −𝑖𝑉 (0)(𝑘) + [−𝑖𝑉 (0)(𝑘)] [−𝑖Πu�/u�u�(𝑘)] [−𝑖𝑉 (𝑘)], (10.4)

where Πu�(𝑘) = 𝛿u�u�′Πu�
u�u�′,u�u�′(𝑘)𝛿u�u�′ and Πu�u�(𝑘) = (𝑖𝛾5 ⃗𝜏 )u�u�′Πu�u�

u�u�′,u�u�′(𝑘)(𝑖𝛾5 ⃗𝜏 )u�u�′

for the scalar and pseudoscalar case respectively. This is a geometric progression
and can thus be summed to the form

− 𝑖𝑉 (𝑘) = −𝑖𝑉 (0)(𝑘)
1 + 𝑉 (0)(𝑘) Πu�/u�u�(𝑘)

. (10.5)
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Figure 10.1: Schematic visualization of equation (10.4) for the effective meson inter-
action to first order, where the polarization insertion corresponds to a closed fermion
loop.

The pole of (10.5) corresponds to the pole of the general scalar or pseudoscalar
bound-state propagator, which lies at 𝑘2 = 𝑚2

u�/u�u�, denoting the mass of the scalar
or pseudoscalar meson as 𝑚u�/u�u�. These masses are therefore determined by the
equation

1 + 𝑉 (0)(𝑘) Πu�/u�u�(𝑘) = 0 at 𝑘2 = 𝑚2
u�/u�u�. (10.6)

At the lowest perturbative order, the polarization insertion corresponds to a
closed fermion loop, shown diagrammatically in Figure 10.1. Furthermore identi-
fying that 𝑉 (0)(𝑘) = −2𝐺 1 for the NJL model (8.1) thus results in

𝑉 (0)(𝑘) [−𝑖Πu�(𝑘)] = −
2𝐺𝑁u�𝑁u�

(2𝜋)4 ∫𝑑4𝑝 tr[𝑆(0)(𝑝 + 𝑘)𝑆(0)(𝑝)] (10.7)

for the scalar vertex function and

𝑉 (0)(𝑘) [−𝑖Πu�u�(𝑘)] =
2𝐺𝑁u�𝑁u�

(2𝜋)4 ∫𝑑4𝑝 tr[𝛾5𝑆(0)(𝑝 + 𝑘)𝛾5𝑆(0)(𝑝)] (10.8)

for each pseudoscalar channel. Similar to the gap equation, this first-order approx-
imation can be improved self-consistently by replacing the free fermion propagator
𝑆(0) with the full propagator 𝑆.

Using the gap equation (9.10) at vanishing bare mass,

𝑚 =
2𝑖𝐺𝑁u�𝑁u�

(2𝜋)4 𝐼 =
2𝑖𝐺𝑁u�𝑁u�

(2𝜋)4 ∫𝑑4𝑝 tr[𝑆(𝑝)], (10.9)

1 Note that this follows the commonly used convention of identifying the two-body interaction
in the Hamiltonian density as 1

2 u� and denoting with u� the interaction between a pair of particles
counted once. The factor of two in u� (0)(u�) = −2u� explicitly accounts for the symmetry of the
interaction under particle exchange.
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the meson mass equation (10.6) can thus be written as

𝑅u�/u�u�(𝑘) − 𝐼/𝑚 = 0 at 𝑘2 = 𝑚2
u�/u�u�, (10.10)

with

𝑅u�(𝑘) = ∫𝑑4𝑝 tr[𝑆(𝑝 + 𝑘)𝑆(𝑝)], (10.11)

𝑅u�u�(𝑘) = − ∫𝑑4𝑝 tr[𝛾5𝑆(𝑝 + 𝑘)𝛾5𝑆(𝑝)], (10.12)

and where 𝐼 , as defined in (10.9), is evaluated through

𝐼 = 1
2 ∫𝑑4𝑝 (tr[𝑆(𝑝 + 𝑘)] + tr[𝑆(𝑝)]). (10.13)

For the Dirac fermion propagator

𝑆(𝑝) = (/𝑝 − 𝑚)−1 = /𝑝 + 𝑚
𝑝2 − 𝑚2 , (10.14)

with 𝑚 = 𝑚u�u�u� being the effective fermion mass (9.14) determined by the gap
equation (9.10) in the chiral limit, this is readily calculated, leading to the ex-
pressions

𝑅u�
u�u�u�(𝑘) = ∫𝑑4𝑝

4(𝑝2 + 𝑝u�𝑘u� + 𝑚2)
[(𝑝 + 𝑘)2 − 𝑚2](𝑝2 − 𝑚2)

, (10.15)

𝑅u�u�
u�u�u�(𝑘) = ∫𝑑4𝑝

4(𝑝2 + 𝑝u�𝑘u� − 𝑚2)
[(𝑝 + 𝑘)2 − 𝑚2](𝑝2 − 𝑚2)

, (10.16)

as well as

𝐼u�u�u� = ∫𝑑4𝑝
4𝑚 (𝑝2 + 𝑝u�𝑘u� − 𝑚2) + 2𝑘2

[(𝑝 + 𝑘)2 − 𝑚2](𝑝2 − 𝑚2)
. (10.17)

The meson mass equation (10.10) then takes the form of the established conditions

0 = (𝑘2 − 4𝑚2) ∫𝑑4𝑝 1
[(𝑝 + 𝑘)2 − 𝑚2](𝑝2 − 𝑚2)

at 𝑘2 = 𝑚2
u� (10.18)

for the mass 𝑚u� of the scalar 𝜎 meson bound state, and

0 = 𝑘2 ∫𝑑4𝑝 1
[(𝑝 + 𝑘)2 − 𝑚2](𝑝2 − 𝑚2)

at 𝑘2 = 𝑚2
u�u� (10.19)
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for the pseudoscalar 𝜋 meson mass 𝑚u�u�, cf. [80]. They yield the apparent solutions
that

𝑚2
u� = 4𝑚2 = 4𝑚2

u�u�u� and 𝑚2
u�u� = 0, (10.20)

the latter of which is the Nambu-Goldstone mode in this model, in which chi-
ral symmetry is spontaneously broken. An additional simultaneous solution of
𝑚u� and 𝑚u�u� can be found when the momentum integral in (10.18) and (10.19)
vanishes. In the Euclidean four-momentum cutoff regularization scheme this hap-
pens at |𝑘| = 𝑚u�/u�u� ≈ 0.712Λ. Besides the Nambu-Goldstone mode and its chiral
partner, the meson mass spectrum of the NJL model therefore contains an addi-
tional finite mass solution that describes a scalar/pseudoscalar mode degeneracy.
However, since this state is heavier than the sum of its constituent fermions, i.e.
𝑚u�/u�u� > 2𝑚u�u�u� ≈ 0.469Λ, this mode degeneracy likely describes a resonance
rather than a bound-state solution.

Paralleling the discussion of the gap equation, the evaluation of the self-
consistent approximation of the meson masses given above persists structurally
when extending the NJL model through non-Hermitian bilinear terms, since the
two-body interaction remains unchanged. The influence of the bilinear modifica-
tions is accounted for in the fermion propagator of the extended model, satisfying
the equation of motion (9.15):

(/𝑝 − 𝑚 − 𝑔Γ) 𝑆(𝑝) = 𝟙. (10.21)

In the following, the meson masses are obtained for the non-Hermitian extensions
that allow for the dynamical generation of fermion mass. First, the extension
based on Γu�u�u�2

= 𝛾5, which, like 𝑚0, breaks chiral symmetry explicitly, is ana-
lyzed. Then the effect of the chirally symmetric modifications Γu�u�u�1

= 𝑖𝐴u�𝛾u� and
Γu�u�1

= 𝑖𝛾5𝐵u�𝛾u� are studied, raising the question as to which role 𝒫𝒯 symmetry
plays. In the 𝒫𝒯-symmetric model, dynamical fermion mass generation is, in ad-
dition, restricted to a finite coupling region. The analysis of the 𝒫𝒯 extension of
the model on the meson masses is restricted to this region accordingly.
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10.1 The Meson Masses for Γu�u�u�2
= 𝛾5

In the modified NJL model based on the non-Hermitian, non-𝒫𝒯-symmetric, and
chiral-symmetry-breaking extension term Γu�u�u�2

= 𝛾5, the spinor traces (10.11)
to (10.13) are evaluated using the fermion propagator in the form (9.59) discussed
in Section 9.4. They take the explicit form

𝑅u�
u�u�u�2

(𝑘) = ∫𝑑4𝑝
4(𝑝2 + 𝑝u�𝑘u� + 𝑚2 + 𝑔2)

[(𝑝 + 𝑘)2 − 𝑚2 + 𝑔2] (𝑝2 − 𝑚2 + 𝑔2)
, (10.22)

𝑅u�u�
u�u�u�2

(𝑘) = ∫𝑑4𝑝
4(𝑝2 + 𝑝u�𝑘u� − 𝑚2 − 𝑔2)

[(𝑝 + 𝑘)2 − 𝑚2 + 𝑔2] (𝑝2 − 𝑚2 + 𝑔2)
, (10.23)

𝐼u�u�u�2

𝑚
= ∫𝑑4𝑝

4(𝑝2 + 𝑝u�𝑘u� − 𝑚2 + 𝑔2) + 2𝑘2

[(𝑝 + 𝑘)2 − 𝑚2 + 𝑔2] (𝑝2 − 𝑚2 + 𝑔2)
, (10.24)

in which the effective fermion mass 𝑚 is given by (9.64). The meson mass equation
(10.10) thus becomes

0 = (𝑘2 − 4𝑚2) ∫𝑑4𝑝 1
[(𝑝 + 𝑘)2 − 𝑚2 + 𝑔2](𝑝2 − 𝑚2 + 𝑔2)

(10.25)

at 𝑘2 = 𝑚2
u� for the scalar mode, and

0 = (𝑘2 + 4𝑔2) ∫𝑑4𝑝 1
[(𝑝 + 𝑘)2 − 𝑚2 + 𝑔2](𝑝2 − 𝑚2 + 𝑔2)

, (10.26)

at 𝑘2 = 𝑚2
u�u� for the pseudoscalar mode.

These resemble the equations (10.18) and (10.19) of the standard NJL model,
but show one significant difference: The apparent solution of the pseudoscalar
meson is no longer massless, signifying the breakdown of the Nambu-Goldstone
mode. This is to be expected, considering that the non-Hermitian term Γu�u�u�2

=
𝛾5 breaks the chiral symmetry of the model explicitly. Instead, one finds that

𝑚2
u�u� = −4𝑔2, (10.27)

that is the pseudoscalar 𝜋 meson of this model is a tachyonic state with mass
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𝑚u�u� = ±2𝑖𝑔. At the same time, the apparent scalar meson mass solution of (10.25)
remains structurally unchanged compared to the standard NJL case (10.18). How-
ever, the effective fermion mass 𝑚 of this model, as determined in (9.64), depends
on the coupling strength 𝑔, such that

𝑚2
u� = 4𝑚2 = 4(𝑚2

u�u�u� + 𝑔2). (10.28)

That is to say, the dynamical mass generation of the effective fermion mass is
reflected in the mass generation of the 𝜎 meson.

Moreover, similar to the standard NJL model, the scalar and pseudoscalar me-
son mass equations (10.25) and (10.26) admit an additional simultaneous solution,
when the momentum integral vanishes. In fact, the coupling dependence of the
effective fermion mass, 𝑚2 = 𝑚2

u�u�u� +𝑔2, exactly counteracts the coupling depen-
dence of this momentum integral. That is, it is found to be the same integral that
occurs in the meson mass equations of the standard NJL model. Accordingly, the
resulting scalar/pseudoscalar mode degeneracy remains unaffected by the chiral
symmetry breaking due to the non-Hermitian extension and has the same mass
as the degenerate solution of the standard NJL model; namely 𝑚u�/u�u� ≈ ±0.712Λ
in the Euclidean four-momentum cutoff regularization. Contrary to the standard
NJL model, this scalar/pseudoscalar meson mode degeneracy can in principle be
lighter than the sum of the constituent fermions when the coupling constant 𝑔
exceeds values 𝑔 ≈ 0.268Λ. However, in this coupling region the effective fermion
mass exceeds values of 𝑚 ≈ 0.356Λ = 361 MeV, which corresponds to a significant
current quark mass of about 123 MeV.

Altogether, extending the NJL model based on the non-𝒫𝒯-symmetric, non-
chirally-symmetric term Γu�u�u�2

= 𝛾5 results in a dynamical mass gain of the
scalar 𝜎 meson, reflecting the effective mass generation of the fermion. However,
it appears to act as a tachyonic instability of the pseudoscalar 𝜋 meson. Despite
the fact that the Nambu-Goldstone mode becomes tachyonic, the combination of
the non-degenerate scalar and pseudoscalar meson masses 𝑚2

u� + 𝑚2
u�u� = 4𝑚2

u�u�u�

remains unchanged from the NJL model. The mass of the scalar/pseudoscalar
meson mode degeneracy in the standard NJL model remains unaffected by this
non-Hermitian extension of the model.
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10.2 The Meson Masses for Γu�u�u�1
= 𝑖𝐴u�𝛾u�

In the modified NJL model based on the non-Hermitian, non-𝒫𝒯-symmetric, but
chirally symmetric term Γu�u�u�1

= 𝑖𝐴u�𝛾u�, the spinor traces in the meson mass
equation (10.10) are evaluated for the fermion propagator (9.52). With this prop-
agator, the terms (10.11) to (10.13) become

𝑅u�
u�u�u�1

(𝑘) = ∫𝑑4𝑝 4(𝑝2 + 𝑝u�𝑘u� + 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u� − 𝑖𝑔𝐴u�𝑘u�)

× {[(𝑝 + 𝑘)2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�(𝑝 + 𝑘)u�]

× (𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u�)}
−1

,

(10.29)

𝑅u�u�
u�u�u�1

(𝑘) = ∫𝑑4𝑝 4(𝑝2 + 𝑝u�𝑘u� − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u� − 𝑖𝑔𝐴u�𝑘u�)

× {[(𝑝 + 𝑘)2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�(𝑝 + 𝑘)u�]

× (𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u�)}
−1

,

(10.30)

as well as

𝐼u�u�u�1

𝑚
= ∫𝑑4𝑝 4(𝑝2 + 𝑝u�𝑘u� − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u� − 𝑖𝑔𝐴u�𝑘u�) + 2𝑘2)

× {[(𝑝 + 𝑘)2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�(𝑝 + 𝑘)u�]

× (𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u�)}
−1

,

(10.31)

in which the fermion mass 𝑚 is the solution to the gap equation (9.57) discussed
in Section 9.3. The meson mass equation (10.10) thus takes the form

0 = (𝑘2 − 4𝑚2) ∫𝑑4𝑝 {[(𝑝 + 𝑘)2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�(𝑝 + 𝑘)u�]

× (𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u�)}
−1

(10.32)

at 𝑘2 = 𝑚2
u� for the scalar mode, and

0 = 𝑘2 ∫𝑑4𝑝 {[(𝑝 + 𝑘)2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�(𝑝 + 𝑘)u�]

× (𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u�)}
−1

(10.33)

at 𝑘2 = 𝑚2
u�u� for the pseudoscalar mode.
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Figure 10.2: Behavior of the meson mass ũ�u�/u�u� of the scalar/pseudoscalar mode de-
generacy as a function of the angle u� between the Euclidean background field and the
Euclidean meson momentum for different values of the coupling constant ̃u�. Adapted
from [67].

Again, a close resemblance to the meson mass equations (10.18) and (10.19)
of the standard NJL model can be noticed: Both apparent solutions,

𝑚2
u� = 4𝑚2 and 𝑚2

u�u� = 0, (10.34)

are structurally identical to the solutions (10.20). In particular, the presence of the
massless pseudoscalar mode as the Nambu-Goldstone boson of the theory remains
intact, since the chiral symmetry is preserved by the non-Hermitian extension
Γu�u�u�1

. Likewise, the structure of the scalar 𝜎 meson remains unchanged, although
it now reflects the mass generation of the fermion mass 𝑚.

In addition, the appearance of identical four-momentum integrals in both me-
son mass equations (10.32) and (10.33) indicates the existence of a simultaneous
meson mass solution, as was the case in the standard NJL model. But due to
the dependence of this momentum integral on the term 𝐴u�𝑘u�, this solution is not
constant, as in the standard NJL model or in Section 10.1. It varies with the
angle between the background field 𝐴u� and the meson momentum 𝑘u�. In the Eu-
clidean four-momentum cutoff regularization the mass solution can be determined
numerically as a function of the angle 𝛼 between the the Euclidean background
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Figure 10.3: Behavior of the region of mass in the scalar/pseudoscalar mode degeneracy
that is accessible through variation of the angle u� as a function of the bilinear-coupling
constant ̃u�. The dashed black line denotes the behavior of 2u�, with u� being the
fermion mass solution of the model, see Figure 9.9b. Adapted from [67].

field 𝐴u� and the Euclidean meson momentum 𝑘u� from the roots of the integral.
The behavior of this solution as a function of 𝛼 is visualized in Figure 10.2 for
various small coupling values ̃𝑔 = 𝑔|𝐴u�|Λ−1 < 1, which are in particular propor-
tional to the amplitude of the background field. Figure 10.3 shows the behavior
of the extremal values that the meson mass takes when varying 𝛼 as a function
of the coupling ̃𝑔. The shaded regions indicate that all mass values between these
extrema are realized at some angle 𝛼, because the mass varies continuously in the
angle. Notably, arbitrarily small or vanishing degenerate meson masses 𝑚u�/u�u� can
be found for coupling values larger than ̃𝑔 ≈ 0.425, but such coupling values also
generate a significant fermion mass in the model. The dashed black line denotes
the behavior of 2𝑚, where 𝑚 is the effective fermion mass of this model. At small
coupling values ̃𝑔 the mode degeneracy is heavier than the sum of its constituent
fermions for all angles 𝛼, i.e. �̃�u�/u�u� > 2𝑚, so that this state is likely a resonance
rather than a bound-state solution.

Altogether, extending the NJL model based on the non-𝒫𝒯-symmetric, but
chirally symmetric term Γu�u�u�1

= 𝑖𝐴u�𝛾u� results in a dynamical mass gain of
the scalar 𝜎 meson, reflecting the effective mass generation of the fermion, and
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a massless pseudoscalar 𝜋 meson as the Nambu-Goldstone boson of this model
in which chiral symmetry is spontaneously broken. An additional scalar/pseu-
doscalar mode degeneracy of the meson masses, which depends intricately on the
amplitude of the background field and its angle relative to the meson momentum,
can be found.

10.3 The Meson Masses for Γu�u�1
= 𝑖𝛾5𝐵u�𝛾u�

In the modified NJL model based on the non-Hermitian, but 𝒫𝒯-symmetric
and chirally symmetric extension term Γu�u�1

= 𝑖𝛾5𝐵u�𝛾u�, real fermion masses
are generated dynamically within a finite region of coupling values smaller than

̃𝑔dyn = 𝑔dyn|𝐵u�|Λ−1 ≈ 1.183. In particular, at small bilinear-coupling values
̃𝑔 ≤ 1 the non-Hermitian extension mimics the inclusion of a bare mass term 𝑚0.

To study the effect of the extension on the meson masses the spinor traces (10.11)
to (10.13) are evaluated using the fermion propagator in the form (9.19),

𝑆(𝑝) =
(/𝑝 + 𝑚 + 𝑖𝑔𝛾5𝐵u�𝛾u�)[𝑝2 − 𝑚2 − 𝑔2𝐵2 + 2𝑖𝑔𝑚𝛾5𝐵u�𝛾u� + 2𝑖𝑔𝐵u�𝑝u�𝛾5]

(𝑝2 − 𝑚2 − 𝑔2𝐵2)2 − 4𝑔2𝑚2𝐵2 + 4𝑔2(𝐵u�𝑝u�)2 ,
(10.35)

discussed in Section 9.1. This propagator simplifies less than in the case of the
models discussed previously, and results in somewhat cumbersome expressions
for (10.11) to (10.13). But when combined in the meson mass equation (10.10)
additional simplifications are possible, resulting in the equations

0 = ∫𝑑4𝑝 [(𝑘2 − 4𝑚2)𝑎(𝑝, 𝑘) + 8𝑔2𝑏(𝑝, 𝑘)]

× {[((𝑝 + 𝑘)2 − 𝑚2 − 𝑔2𝐵2)
2

− 4𝑔2𝑚2𝐵2 + 4𝑔2(𝐵u�(𝑝 + 𝑘)u�)
2
]

× [(𝑝2 − 𝑚2 − 𝑔2𝐵2)2 − 4𝑔2𝑚2𝐵2 + 4𝑔2(𝐵u�𝑝u�)2]}
−1

(10.36)

at 𝑘2 = 𝑚2
u� for the scalar mode, and

0 = ∫𝑑4𝑝 [𝑘2𝑎(𝑝, 𝑘) + 8𝑔2𝑏(𝑝, 𝑘)]

× {[((𝑝 + 𝑘)2 − 𝑚2 − 𝑔2𝐵2)
2

− 4𝑔2𝑚2𝐵2 + 4𝑔2(𝐵u�(𝑝 + 𝑘)u�)
2
]

× [(𝑝2 − 𝑚2 − 𝑔2𝐵2)2 − 4𝑔2𝑚2𝐵2 + 4𝑔2(𝐵u�𝑝u�)2]}
−1

(10.37)
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Figure 10.4: Behavior of the meson mass ũ�u�u� of the pseudoscalar mode as a func-
tion of the angle u� between the Euclidean background field and the Euclidean meson
momentum for different values of the coupling constant ̃u�. Adapted from [67].

at 𝑘2 = 𝑚2
u�u� for the pseudoscalar mode, where

𝑎(𝑝, 𝑘) = [(𝑝 + 𝑘)2 − 𝑚2 + 𝑔2𝐵2](𝑝2 − 𝑚2 + 𝑔2𝐵2)

+ 4𝑔2[𝐵2𝑝u�(𝑝 + 𝑘)u� − (𝐵u�𝑝u�)(𝐵u�(𝑝 + 𝑘)u�)],
(10.38)

𝑏(𝑝, 𝑘) = 2(𝑝u�𝑘u�)(𝐵u�𝑘u�)(𝐵u�𝑝u�) − 𝐵2(𝑝u�𝑘u�)2 + 𝑝2𝑘2𝐵2

− 𝑘2(𝐵u�𝑝u�)2 − 𝑝2(𝐵u�𝑘u�)2.
(10.39)

Notably, the vector products in 𝑏(𝑝, 𝑘) show an overall proportionality to |𝑘|2, so
that the equation (10.37) admits a vanishing mass solution of the pseudoscalar
𝜋 meson. Thus, as in Section 10.2, the non-Hermitian extension Γu�u�1

does not
disrupt the presence of the Nambu-Goldstone boson, because the chiral symme-
try of the model is preserved. In addition, the pseudoscalar meson mass equation
(10.37) permits a second possible solution that can be found through numerical
evaluation of the momentum integral in the Euclidean four-momentum cutoff reg-
ularization scheme. This solution depends, in particular, on the angle 𝛼 between
the Euclidean background field 𝐵u� and the Euclidean pion momentum 𝑘u�.

The behavior of this second pseudoscalar mode solution is visualized in
Figure 10.4 as a function of 𝛼 for various coupling values ̃𝑔 = 𝑔|𝐵u�|Λ−1 in the
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Figure 10.5: Behavior of the region of masses in the pseudoscalar mode that is accessible
through variation of u� as a function of the bilinear-coupling constant ̃u�. The dashed
black line denotes the behavior of 2u�, with u� being the fermion mass solution of the
model, see Figure 9.4. Adapted from [67].

region where a fermion mass is dynamically generated, that is ̃𝑔 < ̃𝑔dyn ≈ 1.183.
Figure 10.5 shows the behavior of the extremal values that the pseudoscalar me-
son mass takes when varying 𝛼 as a function of the coupling ̃𝑔 in the same region.
The shaded areas indicate that all mass values between the extrema are realized
at some angle 𝛼, since the mass varies continuously with the angle. Notably, for
all coupling values ̃𝑔 and angles 𝛼 this solution of the meson mass has finite real
values. The dashed black line denotes the behavior of 2𝑚, where 𝑚 is the effec-
tive fermion mass of this model. At small coupling values ̃𝑔, where the system
mimics the generation of a small current quark mass through the inclusion of a
finite bare mass 𝑚0, the pseudoscalar mode is heavier than the sum of its con-
stituent fermions, �̃�u�u� > 2𝑚, so that this state is likely a resonance rather than
a bound-state solution.

Contrary to the standard NJL model and the modified NJL models discussed
previously, the second solution of the pseudoscalar mode is not a simultaneous
solution of the scalar mode. Furthermore, the meson mass equation (10.36) does
in general not have an apparent solution, which factors out of the momentum
integral, as was the case in the other models discussed so far. Specifically, the 𝜎
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Figure 10.6: Behavior of the meson mass ũ�u� of the scalar mode as a function of the
angle u� between the Euclidean background field and the Euclidean meson momentum
for different values of the coupling constant ̃u�. Adapted from [67].

meson does not have a mass solution which is proportional only to the effective
fermion mass 𝑚 of the model.

Evaluating the equation (10.36) numerically in the Euclidean four-momentum
cutoff regularization, one finds two possible solutions, which both depend on the
coupling constant ̃𝑔 as well as the angle 𝛼 between the Euclidean background
field 𝐵u� and the Euclidean scalar-meson momentum 𝑘u�. Their behavior is shown
in Figure 10.6 for various fixed values of the coupling constant ̃𝑔 as a function
of the angle 𝛼. Note that for small coupling values below ̃𝑔 ≈ 0.107 the real
mass solutions exist for all angles 𝛼, but at larger couplings the solutions begin
to break down around 𝛼 = 𝜋/2. Nevertheless, the 𝜎 meson mass solutions never
break down entirely (for all 𝛼), and a real solution can always be found at some
angle. Where scalar meson mass solutions exist, they are continuous functions of
the coupling, so that all masses between the extremal values are realized. The be-
havior of the extremal values is shown in Figure 10.7 as a function of the coupling
constant ̃𝑔 in the region where an effective fermion mass is generated dynami-
cally ( ̃𝑔 < ̃𝑔dyn ≈ 1.183). The accessible mass values between these extrema are
indicated as shaded regions. When the real mass solutions begin to break down
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Figure 10.7: Behavior of the region of masses in the scalar mode that is accessible
through variation of u� as a function of the bilinear-coupling constant ̃u�. The dashed
black line denotes the behavior of 2u�, with u� being the fermion mass solution of the
model, see Figure 9.4. Adapted from [67].

around 𝛼 = 𝜋/2 at sufficiently large coupling values, the two separated solutions
of the scalar mode merge at the boundary, as can be seen in Figure 10.6. The
initially separate regions of accessible 𝜎 meson mass solutions at small coupling
constants ̃𝑔 < 0.107 therefore combine into a single region in Figure 10.7. The
dashed black line again denotes the behavior of 2𝑚, where 𝑚 is the effective
fermion mass of this model. At small coupling values ̃𝑔 both scalar-mode solu-
tions are heavier than the sum of the constituent fermions, �̃�u� ≥ 2𝑚, so that
these states are likely resonances rather than a bound-state solutions.

One special case of the scalar meson mass shall be emphasized: When the Eu-
clidean background field 𝐵u� is parallel to the meson momentum 𝑘u�, that is 𝛼 = 0,
the function 𝑏(𝑝, 𝑘) in (10.39) vanishes, resulting in the apparent scalar-meson
mass of the standard NJL model 𝑚2

u� = 4𝑚2 and the presence of a scalar/pseu-
doscalar mode degeneracy. Here the effective fermion mass 𝑚 is given as solution
to the gap equation (9.27) and depends on the coupling strength 𝑔 of the bilinear
term. The case of 𝛼 = 0 is, in addition, a special case of the modified Dirac
fermion with Hamiltonian density

ℋ = ̄𝜓(−𝑖𝛾u�𝜕u� + 𝑖𝑔𝛾5𝐵u�𝛾u�)𝜓, (10.40)
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obtained at 𝐺 = 0, as well: From its dispersion relation

0 = (𝑝2 − 𝑔2𝐵2)2 + 4𝑔2(𝐵u�𝑝u�)2 at 𝑝2 = 𝑚2 (10.41)

the effective mass is found to be 𝑚2 = 𝑔2𝐵2 exp[∓2𝑖𝛼], describing generally
complex solutions, see [61], but for 𝛼 = 0 it simplifies to the real result 𝑚2 = 𝑔2𝐵2.

Altogether, extending the NJL model based on the 𝒫𝒯-symmetric and chirally
symmetric term Γu�u�1

= 𝑖𝛾5𝐵u�𝛾u� results in a massless pseudoscalar 𝜋 meson as
the Nambu-Goldstone boson of this model. In addition, a finite pseudoscalar-
meson mass solution, which depends intricately on the amplitude of the back-
ground field and its angle relative to the meson momentum, is found. Moreover,
two scalar-meson mass solutions, which are both independent from the pseu-
doscalar mode and do generally not form a mode degeneracy, can be obtained.
Similar to the finite mass solution of the pseudoscalar meson, these solutions show
an intricate dependence on the amplitude of the background field and its angle
relative to the meson momentum. They can break down for specific angles 𝛼 and
bilinear coupling strengths ̃𝑔 = 𝑔|𝐵u�|Λ−1.

10.4 Summary of the Meson Masses

The effect of non-Hermitian bilinear extensions of the NJL model on the mass
of the scalar- and pseudoscalar-meson bound states was studied for those models
in which the extension results in the dynamical mass generation of the fermion.
Namely, the bilinears based on the chirally symmetric terms Γu�u�1

= 𝑖𝛾5𝐵u�𝛾u�

and Γu�u�u�1
= 𝑖𝐴u�𝛾u�, as well as the chiral-symmetry-breaking term Γu�u�u�2

= 𝛾5,
were considered.

In both chirally symmetric models one finds that the pseudoscalar 𝜋 meson is a
massless state, identifying it as the Nambu-Goldstone boson. The existence of this
solution thus remains expectedly unaffected by the inclusion of chirally symmetric
bilinears into the standard NJL model. This is in particular independent of the
fact that Γu�u�1

is 𝒫𝒯 symmetric, while Γu�u�u�1
results in a non-Hermitian, non-𝒫𝒯-

symmetric system. Including the chiral-symmetry-breaking term Γu�u�u�2
acts as a

tachyonic instability of the pseudoscalar-meson mode.
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A structural difference between the 𝒫𝒯-symmetric and the non-𝒫𝒯-symmetric
models is found for the scalar 𝜎 meson: In the non-𝒫𝒯-symmetric models based on
Γu�u�u�1

and Γu�u�u�2
the mass of the scalar meson, 𝑚2

u� = 4𝑚2, remains structurally
unchanged compared to the standard NJL model and depends on the bilinear
coupling strength 𝑔 only indirectly through the effective fermion mass 𝑚. In
the 𝒫𝒯-symmetric model, on the other hand, the mass of the scalar-meson mode
depends intricately on ̃𝑔 = 𝑔|𝐵u�|Λ−1, as well as the angle of the background
field 𝐵u� to the meson momentum. This distinction is furthermore reflected in
the existence of a meson-mode degeneracy. When modifying the standard NJL
model through a bilinear based on Γu�u�u�1

or Γu�u�u�2
a scalar/pseudoscalar mode

degeneracy continues to exist. In fact, for Γu�u�u�2
the mass of this state remains

unaffected by the extension term. For the extension based on Γu�u�u�1
the state

depends intricately on the coupling strength ̃𝑔 = 𝑔|𝐴u�|Λ−1 and the angle of the
background field to the meson momentum, but it remains present in the system. In
the 𝒫𝒯-symmetric model based on Γu�u�1

a meson-mode degeneracy does generally
not exist. These additional meson mass solutions, degenerate or not, are, at small
coupling values where small current quark masses are generated, heavier than
their constituent fermions and thus likely resonance states rather than bound-
state solutions.



Chapter 11

The Modified Gross-Neveu Model

The analysis of the self-consistent gap equation in Chapter 9 and of the self-
consistent meson-mass equations in Chapter 10 has demonstrated that non-
Hermitian bilinear extensions of the 3 + 1 dimensional NJL model provide a fer-
tile ground for the study of 𝒫𝒯 symmetry in fermionic field theories. However,
like the standard NJL model, these systems come with the caveat that they are
not renormalizable. The 1 + 1 dimensional chiral Gross-Neveu (GN) model [90]
structurally resembles the NJL model and retains many of its properties while
also being renormalizable. As such it is an important toy-model for the study of
QCD. Its Hamiltonian density has the form

ℋGN = ̄𝜓(−𝑖𝛾1𝜕1 + 𝑚0)𝜓 − 𝐺[( ̄𝜓𝜓)2 + ( ̄𝜓𝑖𝛾5 ⃗𝜏𝜓)2] (11.1)

in terms of the (1 + 1 dimensional) Dirac matrices 𝛾, see (7.2), the isospin SU(2)
matrices ⃗𝜏 , and the two-body coupling strength 𝐺. In this chapter the GN model
is modified through the inclusion of non-Hermitian bilinear terms in the same way
as the NJL model in Chapter 8 and Chapter 9.

Beyond their renormalizability these systems are of particular interest in the
context of 𝒫𝒯 symmetry, because time reversal is an even operation in 1 + 1
space-time dimensions: 𝒯2 = +1, see Chapter 7. The analysis of the modified GN
model might therefore supplement the study of 𝒫𝒯 symmetry in the modified NJL
model and clarify the role of 𝒫𝒯 symmetry in fermionic systems. This chapter is
structured as follows.
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In Section 11.1 the possible non-Hermitian bilinear extensions of the GN model
are identified and their behavior under combined parity reflection and time rever-
sal is established.

In Section 11.2 to Section 11.4 the gap equation for the modified GN models
is derived following the same approach as in Chapter 9 for the NJL model. In
addition, the systems are then renormalized.

Section 11.5 presents a comparison to the corresponding extensions of the NJL
model and closing remarks.

11.1 Non-Hermitian Extension

The 1 + 1 dimensional GN model is modified through the inclusion of various
non-Hermitian bilinear terms ̄𝜓 Ω 𝜓, containing a complex 2×2 matrix Ω, similar
to the extension of the NJL model in Section 8.1. The Hamiltonian density of
such a model has the form

ℋGN = ̄𝜓(−𝑖𝛾1𝜕1 + 𝑚0 + 𝑔 Ω)𝜓 − 𝐺[( ̄𝜓𝜓)2 + ( ̄𝜓𝑖𝛾5 ⃗𝜏𝜓)2], (11.2)

where 𝑔 ∈ ℝ is the associated bilinear-coupling constant.
The complete set of complex 2 × 2 matrices can be written as a real super-

position of the eight matrices that are generated by the 1 + 1 dimensional Dirac
matrices (7.2):

𝟙, 𝛾5, 𝛾u�, 𝑖𝟙, 𝑖𝛾5, 𝑖𝛾u�, (11.3)

where 𝜇 ∈ [0, 1] denotes the spin indices. Based on these matrices, the following
structurally distinct modifications are identified

𝟙, 𝛾5, 𝐴u�𝛾u�, 𝑖𝟙, 𝑖𝛾5, 𝑖𝐴u�𝛾u�, (11.4)

with 𝐴u� being the elements of a real vector. Out of these, only the bilinears for
which Ω has one of the forms

𝑖𝟙, 𝛾5, 𝑖𝐴u�𝛾u�, (11.5)

describe non-Hermitian extensions of the GN model.
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Under the combined parity reflection 𝒫 and time reversal 𝒯, as given in (7.3),
the bilinears ̄𝜓 Ω 𝜓 with Ω being

Ωu�u�u�1
= 𝑖𝐴u�𝛾u� or Ωu�u�u�2

= 𝑖𝟙 (11.6)

are anti-𝒫𝒯-symmetric, that is {𝒫𝒯, Ω} = 0. The modified GN models based on
these terms are therefore non-Hermitian and non-𝒫𝒯-symmetric systems. Notice
that the extension terms based on Ωu�u�u�1

and Ωu�u�u�2
have the same symmetry

properties as their respective 3 + 1 dimensional counterparts Γu�u�u�1
and Γu�u�u�3

,
see (8.7).

The bilinear extension based on

Ωu�u�1
= 𝛾5, (11.7)

on the other hand, is 𝒫𝒯 symmetric; that is [𝒫𝒯, Ωu�u�1
] = 0. The associated

modified GN model describes a 𝒫𝒯-symmetric theory. This is the exact opposite
of the modified NJL model based on the 3+1 dimensional counterpart Γu�u�u�2

, see
(8.7). The symmetry change from being a non-𝒫𝒯-symmetric theory to being a
𝒫𝒯 theory was previously remarked upon for the modified Dirac fermion in [61],
see also Chapter 7.

The behavior of the modified GN models under chiral symmetry remains un-
changed from their 3 + 1 dimensional counterparts. Namely, the model based
on Ωu�u�u�1

is chirally symmetric, while the remaining models based on Ωu�u�1
and

Ωu�u�u�2
break chiral symmetry explicitly. In the latter cases the limit of vanishing

bare mass 𝑚0 is thus not a chiral limit.
A self-consistent approximation of the effective fermion mass in the modified

GN models is obtained by following the same approach as described for the NJL
model in Chapter 9. This mass 𝑚 is determined by the gap equation of the form

𝑚 = 𝑚0 + 2𝑖𝐺𝑁u�𝑁u� ∫ u�2u�
(2u�)2 tr[𝑆(𝑝)], (11.8)

where 𝑚0 denotes the bare mass term and 𝑆(𝑝) is the full fermion propagator,
which has the general form

𝑆(𝑝) = (/𝑝 − 𝑚 − 𝑔 Ω)−1. (11.9)



154 Chapter 11. The Modified Gross-Neveu Model

For the standard GN model, obtained at 𝑔 = 0, the propagator

𝑆(𝑝) = (/𝑝 − 𝑚)−1 = /𝑝 + 𝑚
𝑝2 − 𝑚2 , with tr[𝑆(𝑝)] = 2𝑚

𝑝2 − 𝑚2 (11.10)

results in the gap equation of the form

1 =
𝑖𝐺𝑁u�𝑁u�

𝜋2 ∫𝑑2𝑝 1
𝑝2 − 𝑚2 (11.11)

in the chiral limit 𝑚0 → 0. By rewriting the momentum integral in Euclidean
coordinates with 𝑝0 = 𝑖𝑝2, so that 𝑝2

u� = 𝑝2
1 + 𝑝2

2 = −𝑝2, and introducing a radial
cutoff scale Λ, this reduces to

𝜋
𝐺𝑁u�𝑁u�

= ln(1 + Λ2

u�2 ). (11.12)

In the ultraviolet limit of large Λ, the divergence of the gap equation (11.12)
can be absorbed into a renormalized two-body interaction strength 𝐺u� as follows.
Rewriting the cutoff scale in terms of an arbitrarily chosen dimensional energy
scale 𝑐 = 1 MeV and a dimensionless parameter 𝜆 as Λ = 𝑐𝜆, the gap equation is
expanded in the limit of large 𝜆, yielding

𝜋
𝐺𝑁u�𝑁u�

= 2 ln 𝜆 + ln( u�2

u�2 ) + 𝑂( 1
u�2 ) as 𝜆 → ∞. (11.13)

The logarithmically divergent term is then absorbed into the renormalized two-
body coupling as

1
𝐺u�

= 1
𝐺

−
2𝑁u�𝑁u�

𝜋
ln 𝜆. (11.14)

The renormalized gap equation follows in the limit 𝜆 → ∞ while keeping 𝐺u�

fixed as
𝜋

𝐺u�𝑁u�𝑁u�
= ln( u�2

u�2 ), (11.15)

with the solution for the renormalized mass being

𝑚u�u� = 𝑐[exp( 𝜋
𝐺u�𝑁u�𝑁u�

)]
−1/2

. (11.16)

In the following sections the gap equation (11.8) is analyzed for the three
non-Hermitian extensions of the GN model based on Ω in (11.6) and (11.7).
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11.2 The Fermion Mass for Ωu�u�1
= 𝛾5

The analysis of the non-Hermitian GN model based on the 𝒫𝒯-symmetric, but
chiral-symmetry-breaking extension term Ωu�u�1

= 𝛾5 has been published in [66]
and the following discussion closely follows that presentation.

For the extension term Ωu�u�1
= 𝛾5 the fermion propagator (11.9) is formally

given as
𝑆(𝑝) = (/𝑝 − 𝑚 − 𝑔𝛾5)−1 (11.17)

and can, similar to the discussion of the 3 + 1 dimensional analogue discussed in
Section 9.4, be rewritten as

𝑆(𝑝) = /𝑝 + 𝑚 − 𝑔𝛾5

𝑝2 − 𝑚2 + 𝑔2 , with tr[𝑆(𝑝)] = 2𝑚
𝑝2 − 𝑚2 + 𝑔2 . (11.18)

The general gap equation (11.8) thus takes the form

1 =
𝑖𝐺𝑁u�𝑁u�

𝜋2 ∫𝑑2𝑝 1
𝑝2 − 𝑚2 + 𝑔2 (11.19)

in the limit of vanishing bare mass 𝑚0. In Euclidean coordinates with 𝑝0 = 𝑖𝑝2,
so that 𝑝2

u� = 𝑝2
1 + 𝑝2

2 = −𝑝2, and by introducing a radial cutoff scale Λ, this
reduces to

𝜋
𝐺𝑁u�𝑁u�

= ln(1 + Λ2

u�2 − u�2 ). (11.20)

By rewriting Λ = 𝑐𝜆, with 𝑐 = 1 MeV, the equation (11.20) behaves as

𝜋
𝐺𝑁u�𝑁u�

= 2 ln 𝜆 + ln( u�2

u�2 − u�2 ) + 𝑂( 1
u�2 ) as 𝜆 → ∞. (11.21)

The ultraviolet divergence can be absorbed into the renormalized two-body cou-
pling

1
𝐺u�

= 1
𝐺

−
2𝑁u�𝑁u�

𝜋
ln 𝜆, (11.22)

which has the same form as in the standard GN model, cf. (11.14). In the limit
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of large 𝜆, while keeping 𝐺u� fixed, the renormalized gap equation becomes

𝜋
𝐺u�𝑁u�𝑁u�

= ln( u�2

u�2 − u�2 ), (11.23)

with the solution for the renormalized mass being

𝑚 = √𝑔2 + 𝑐2[exp( 𝜋
𝐺u�𝑁u�𝑁u�

)]
−1

= √𝑔2 + 𝑚2
u�u� . (11.24)

This effective mass solution parallels the solution found in the 3 + 1 dimensional
NJL model based on Γu�u�u�2

= 𝛾5, cf. (9.64). In fact, when choosing 𝑚u�u� = 𝑚u�u�u�

for comparison of the two systems, the mass solutions are identical.
In this the solution to the gap equation resembles the dispersion relation of

the underlying modified Dirac fermion (obtained at 𝐺 = 0) discussed in [61] and
Chapter 7: Even though the behavior under 𝒫𝒯 symmetry changes between the
3+1 dimensional system, in which time reversal is odd, and the 1+1 dimensional
system, where time reversal is even, the effective fermion-mass solution remains
unchanged. Contrary to the modified Dirac fermion, the addition of two-body
interactions has, however, restored the existence of real mass solutions even in
the limit of vanishing bare mass 𝑚0.

11.3 The Fermion Mass for Ωu�u�u�1
= 𝑖𝐴u�𝛾u�

In the non-Hermitian GN model based on the non-𝒫𝒯-symmetric, but chirally
symmetric extension term Ωu�u�u�1

= 𝑖𝐴u�𝛾u� the fermion propagator (11.9) is for-
mally given as

𝑆(𝑝) = (/𝑝 − 𝑚 − 𝑖𝑔𝐴u�𝛾u�)−1 (11.25)

and can, like the 3 + 1 dimensional analogue in Section 9.3, be rewritten as

𝑆(𝑝) = /𝑝 + 𝑚 − 𝑖𝐴u�𝛾u�

𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u� , (11.26)

with the spinor trace

tr[𝑆(𝑝)] = 2𝑚
𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u� . (11.27)
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In the limit of vanishing bare mass the gap equation (11.8) thus becomes

1 =
𝑖𝐺𝑁u�𝑁u�

𝜋2 ∫𝑑2𝑝 1
𝑝2 − 𝑚2 − 𝑔2𝐴2 − 2𝑖𝑔𝐴u�𝑝u� . (11.28)

The momentum integral can now be evaluated in Euclidean coordinates with
𝑝0 = 𝑖𝑝2 and 𝐴0 = 𝑖𝐴2, so that 𝑝2 = −𝑝2

u�, 𝐴2 = −𝐴2
u�, and 𝐴u�𝑝u� = −𝐴u� ⋅ 𝑝u�,

by transforming into a polar coordinate system with 𝐴u� ⋅ 𝑝u� = |𝐴u�| 𝑟 cos 𝜃 and a
radial cutoff Λ:

1 =
𝐺𝑁u�𝑁u�

𝜋2 ∫
Λ

0
𝑑𝑟 ∫

2u�

0
𝑑𝜃 𝑟

𝑟2 + 𝑚2 − 𝑔2𝐴2
u� − 2𝑖𝑔𝐴u�𝑟 cos 𝜃

. (11.29)

Both the angular integral and the resulting radial integral are standard integrals
that can be found, for example, in [51]. Evaluating them yields the equation

𝜋
𝐺𝑁u�𝑁u�

= ln [ 1
2�̃�2 (√(1 + �̃�2 + ̃𝑔2)2 − 4 ̃𝑔2�̃�2 + 1 + �̃�2 + ̃𝑔2)] (11.30)

in terms of the rescaled quantities �̃� = 𝑚Λ−1 and ̃𝑔 = 𝑔|𝐴u�|Λ−1.
When writing Λ = 𝑐𝜆, with 𝑐 = 1 MeV, equation (11.30) behaves like

𝜋
𝐺𝑁u�𝑁u�

= 2 ln 𝜆 + ln( u�2

u�2 ) + 𝑚2 + 𝑔2

𝑐2𝜆2 + 𝑂( 1
u�4 ) as 𝜆 → ∞. (11.31)

Notably, the ultraviolet-divergent first term can be absorbed into the renormalized
two-body coupling 𝐺u� in the same way as for the standard GN model (11.14),

1
𝐺u�

= 1
𝐺

−
2𝑁u�𝑁u�

𝜋
ln 𝜆. (11.32)

Moreover, the remaining nonvanishing contribution does not depend on the bilinear-
coupling constant 𝑔: the resulting renormalized gap equation

𝜋
𝐺u�𝑁u�𝑁u�

= ln( u�2

u�2 ) (11.33)

is identical to the standard GN model, cf. (11.15), and as such has the mass
solution 𝑚u�u� given in (11.16). The renormalized mass remains unaffected by the
inclusion of the non-𝒫𝒯-symmetric bilinear extension term based on Ωu�u�u�1

.
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11.4 The Fermion Mass for Ωu�u�u�2
= 𝑖𝟙

The non-Hermitian, non-𝒫𝒯-symmetric, and chiral-symmetry-breaking model
based on the extension term Ωu�u�u�2

= 𝑖𝟙 has the fermion propagator

𝑆(𝑝) = (/𝑝 − 𝑚 − 𝑖𝑔)−1, (11.34)

which, in essence, corresponds to that of the standard GN model with the mass
being shifted to 𝑚 + 𝑖𝑔. Accordingly, the trace of the propagator takes the form

tr[𝑆(𝑝)] = 2(𝑚 + 𝑖𝑔)
𝑝2 − (𝑚 + 𝑖𝑔)2 , (11.35)

and after the introduction of a radial cutoff Λ the gap equation (11.8) becomes

𝜋
𝐺𝑁u�𝑁u�

= u� + u�u�
u� ln[1 + Λ2

(u� + u�u�)2 ] (11.36)

in the limit of vanishing bare mass 𝑚0.

When writing Λ = 𝑐𝜆, with 𝑐 = 1 MeV, equation (11.36) behaves like

𝜋
𝐺𝑁u�𝑁u�

= 2 ln 𝜆 + 2u�u�
u� ln 𝜆 + u� + u�u�

u� ln[ u�2

(u� + u�u�)2 ] + 𝑂( 1
u�2 ), (11.37)

as 𝜆 → ∞. Contrary to the cases discussed previously, the renormalization of the
two-body coupling strength 𝐺 according to (11.14),

1
𝐺u�

= 1
𝐺

−
2𝑁u�𝑁u�

𝜋
ln 𝜆, (11.38)

does not rid the gap equation of its ultraviolet-divergent behavior:

𝜋
𝐺u�𝑁u�𝑁u�

= 2u�u�
u� ln 𝜆 + u� + u�u�

u� ln[ u�2

(u� + u�u�)2 ] + 𝑂( 1
u�2 ) as 𝜆 → ∞. (11.39)

This can be remedied by introducing the renormalized bilinear-coupling constant
𝑔u� = 𝑔 ln 𝜆, resulting in the equation

𝜋
𝐺u�𝑁u�𝑁u�

= 2u�u�u�
u� + ln( u�2

u�2 ) (11.40)
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in the limit 𝜆 → ∞ with 𝐺u� and 𝑔u� kept constant, which has the complex-valued
solution

𝑚 = 𝑖𝑔u�[𝑊0(± u�u�u�
u�u�u�

)]
−1

(11.41)

in terms of the Lambert 𝑊 function [88] and the mass 𝑚u�u� of the standard GN
model, see (11.16). But already in (11.39) it is apparent that this model does
not admit real-valued mass solutions. In this it parallels its 3 + 1 dimensional
counterpart, the modified NJL model based on Γu�u�u�3

= 𝑖𝟙.

11.5 Summary

The effect of the three possible non-Hermitian bilinear extensions of the 1 + 1 di-
mensional GN model on the generated renormalized fermion mass was investigated
through the analysis of the self-consistent gap equation at vanishing bare mass.
These three bilinear modifications, Ωu�u�1

= 𝛾5, Ωu�u�u�1
= 𝑖𝐴u�𝛾u�, and Ωu�u�u�2

= 𝑖𝟙,
form the counterparts to the three non-𝒫𝒯-symmetric bilinears (8.7) of the 3 + 1
dimensional NJL model. However, due to the change from odd time reversal in
3+1 space-time dimensions to even time reversal in 1+1 dimensions, the bilinear
based on Ωu�u�1

= 𝛾5 is a 𝒫𝒯-symmetric extension of the GN model.
Notably, it is only this 𝒫𝒯-symmetric term which admits a real renormalized

mass solution that depends on the bilinear-coupling strength 𝑔 and generates mass
dynamically. In fact, when choosing the standard GN model mass to coincide with
the mass of the standard NJL model for comparison, 𝑚u�u� = 𝑚u�u�u�, the mass
solutions of both models coincide. When comparing the 𝒫𝒯-symmetric GN model
based on Ωu�u�1

to the 𝒫𝒯-symmetric extensions of the NJL model, one notices
that in the GN model real mass solutions exist at all coupling values 𝑔, i.e. the
system is always in an unbroken 𝒫𝒯-symmetry phase, while in the NJL model the
unbroken 𝒫𝒯-symmetry phases were restricted to finite coupling regions.

Modifying the GN model through the inclusion of the bilinear based on Ωu�u�u�1
=

𝑖𝐴u�𝛾u� remarkably does not affect the renormalized fermion mass, at least in the
self-consistent first-order approximation that was investigated.

The modified GN model based on Ωu�u�u�2
= 𝑖𝟙 does not admit real renormalized-

mass solutions. In this it reflects the behavior of the corresponding NJL model.



Chapter 12

Conclusion and Remarks

Contrary to bosonic theories, the time reversal 𝒯 is an odd operation in 3 + 1
dimensional fermionic models. This has substantial implications when considering
the role of 𝒫𝒯 symmetry in such systems.

In this second part of the thesis, the role of 𝒫𝒯 symmetry in fermionic quan-
tum field theories was investigated through the analysis of non-Hermitian bilinear
extensions to the NJL model. This was achieved in two ways: On one hand, the
modified NJL models were investigated for a fixed two-body coupling-constant
value 𝐺 to relate these systems to the NJL model of QCD and study the fermion
mass generation caused by the inclusion of the non-Hermitian bilinear terms.
On the other hand, by varying the two-body coupling strength 𝐺, the modified
NJL models were considered as extensions of the modified non-Hermitian Dirac
fermions through two-body interactions. This allowed one to see whether an ef-
fective mass increase or loss is caused by the bilinear terms either modifying the
interaction or rather by mimicking the inclusion of a bare mass term. In addition
to the effective fermion mass, the scalar- and pseudoscalar-meson modes were
studied to observe the interplay of 𝒫𝒯 symmetry and chiral symmetry in the
modified NJL model.

Real-valued effective fermion mass solutions were found in four different non-
Hermitian bilinear extension of the NJL model:

For the 𝒫𝒯-symmetric bilinear extension based on Γu�u�1
= 𝑖𝛾5𝐵u�𝛾u� real ef-

fective fermion masses were obtained in a finite region up to a critical bilinear-
coupling strength 𝑔crit, representing a phase of unbroken 𝒫𝒯 symmetry. This
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region is split into two distinct parts: For 0 < 𝑔 < 𝑔dyn mass is dynamically
generated. At both boundaries of this region, i.e. at 𝑔 = 0 and 𝑔 = 𝑔dyn the mass
solution coincides with that of the standard NJL model. Therefore, the equivalent
of a small current quark mass can be generated at small couplings near 𝑔 = 0, or
at “large” coupling values close to 𝑔dyn. In the second region, 𝑔dyn < 𝑔 < 𝑔crit,
the bilinear extension results in an effective mass loss. While the generation of
small current quark masses is possible at two distinct bilinear-coupling values,
the variation of the two-body coupling constant reveals that this mass generation
happens in two distinct ways. At coupling values near 𝑔dyn the dynamical mass
increase qualitatively results as a modification of the two-body interaction. But
at small coupling values near 𝑔 = 0 it resembles the inclusion of a small bare
mass 𝑚0. This latter case is especially noteworthy, because contrary to a bare
mass term, Γu�u�1

does not explicitly break the chiral symmetry of the model.
In particular, a massless pseudoscalar-meson mode that can be identified as the
Nambu-Goldstone boson of the theory continues to be present in this model.

Similar to Γu�u�1
the second possible 𝒫𝒯-symmetric bilinear extension, based on

Γu�u�2
= 𝐹u�u�𝛾u�𝛾u�, admits real-valued mass solution in a finite region up to a critical

bilinear-coupling constant 𝑔crit, signifying an unbroken 𝒫𝒯-symmetry phase. But
within this region the extension always results in an effective fermion mass loss.
However, the variation of the two-body coupling strength 𝐺 demonstrates that
the inclusion of this bilinear extension resembles, in a way, the effect of a finite
density on the NJL model. This similarity is the subject of ongoing investigations.

Moreover, the existence of real fermion mass solutions is not restricted to 𝒫𝒯-
symmetric non-Hermitian bilinears. The extension based on Γu�u�u�1

= 𝑖𝐴u�𝛾u� and
the extension based on Γu�u�u�2

= 𝛾5 admit real-valued fermion masses even though
they are not 𝒫𝒯 symmetric. And contrary to the 𝒫𝒯-symmetric extensions, these
solutions are not restricted to a finite region; the effective fermion mass remains
real for all bilinear-coupling strengths 𝑔. Furthermore, in both models fermion
mass is generated dynamically, increasing monotonically with 𝑔. A variation of
the two-body coupling constant 𝐺 shows that this mass generation is the result
of the bilinear extensions modifying the effect of the two-body interaction rather
than mimicking the inclusion of a bare mass term.
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Γ 𝒫𝒯 symmetry real fermion mass dynamical fermion
mass generation chiral symmetry

𝑖𝛾5𝐵u�𝛾u� yes
0 ≤ 𝑔 ≤ 𝑔crit

(unbroken u�u� symmetry)
0 ≤ 𝑔 ≤ 𝑔dyn < 𝑔crit

yes
(massless Goldstone boson)

𝐹u�u�𝛾u�𝛾u� yes
0 ≤ 𝑔 ≤ 𝑔crit

(unbroken u�u� symmetry)
no no

𝑖𝐴u�𝛾u� no ∀𝑔 ∀𝑔
yes

(massless Goldstone boson)

𝛾5 no ∀𝑔 ∀𝑔
no

(tachyonic instability of
the Goldstone boson)

𝑖𝟙 no no – no

Ω 𝒫𝒯 symmetry real fermion mass dynamical fermion
mass generation chiral symmetry

𝛾5 yes
∀𝑔

(unbroken u�u� symmetry)
∀𝑔 no

𝑖𝐴u�𝛾u� no ∀𝑔
(𝑚 = 𝑚u�u�) no yes

𝑖𝟙 no no – no

Table 12.1: Overview of the effects that various non-Hermitian bilinear extensions ̄u�Γu� or ̄u�Ωu� have on the 3+1 dimensional
NJL model (top) or the renormalized 1 + 1 dimensional GN model (bottom) respectively.
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The modified NJL model based on Γu�u�u�1
is, in addition, a chirally symmetric

model. One finds this in particular reflected in a massless pseudoscalar-meson
mode which is identified as the Nambu-Goldstone boson of this theory. Never-
theless, a study of the 1 + 1 dimensional analogue of this system, the chiral GN
model modified through the inclusion of a bilinear based on Ωu�u�u�1

= 𝑖𝐴u�𝛾u�,
results in a renormalized fermion mass that is unaffected by the non-Hermitian
bilinear. This might be a first indication that this non-𝒫𝒯-symmetric extension of
the NJL model is unphysical; but further investigation is necessary for conclusive
statements.

The effective fermion mass of the modified NJL model based on Γu�u�u�2
= 𝛾5,

on the other hand, coincides with the renormalized fermion mass found in the
1 + 1 dimensional analogue of the system. It is noteworthy in this context that
the modified GN model based on Ωu�u�1

= 𝛾5 is symmetric under combined parity
reflection and time reversal, even though the 3 + 1 dimensional modified NJL
model is not. The inclusion of the bilinear based on Γu�u�u�2

= 𝛾5 (or Ωu�u�1
= 𝛾5)

also breaks the chiral symmetry of the NJL (or GN) model explicitly. This leads
in particular to a tachyonic instability of the Nambu-Goldstone boson.

An overview of the effects that the various non-Hermitian bilinear extensions
have on the 3 + 1 dimensional NJL model and the GN model is presented in
Table 12.1.

Overall, this study of non-Hermitian extensions to the NJL model has demon-
strated that the role of 𝒫𝒯 symmetry in fermionic quantum field theories is a
very subtle one. The existence of real-valued mass solutions and even dynamical
mass generation through the inclusion of non-Hermitian terms is a remarkable re-
sult, but this is markedly not immediately tied to the presence of 𝒫𝒯 symmetry
in the system. Nevertheless, it is especially the 𝒫𝒯-symmetric model based on
Γu�u�1

= 𝑖𝛾5𝐵u�𝛾u� which, in the dynamical mass generation that resembles the in-
clusion of a bare mass term but without breaking the chiral symmetry of the NJL
model, displays remarkable behavior. Ongoing investigations studying the effect
of non-Hermitian bilinears on the NJL model at finite temperature and density
might reveal additional differences between the 𝒫𝒯-symmetric and the non-𝒫𝒯-
symmetric extensions and clarify the importance of 𝒫𝒯 symmetry in fermionic
field theories further.



General Conclusion

Two problems in 𝒫𝒯-symmetric quantum field theory were discussed in this thesis:
the analysis of the 𝐷-dimensional 𝜙2(𝑖𝜙)u� quantum field theory and the extension
of the Nambu–Jona-Lasinio model through non-Hermitian bilinear terms. These
problems address important open questions of 𝒫𝒯 theory since it remains gen-
erally unclear how higher-dimensional non-Hermitian 𝒫𝒯 quantum field theories
can be addressed, how renormalization works in such models, and how odd time
reversal influences the role of 𝒫𝒯 symmetry in fermionic systems. As such they
address questions that are essential for the development of a general framework
of 𝒫𝒯-symmetric quantum field theories.

In the first part the perturbative techniques for the analysis of the 𝜙2(𝑖𝜙)u�

quantum field theory that were proposed in [1] were generalized beyond their first-
order application and for a model including dimensional parameters. The general
structure of the perturbation coefficients of the partition function and the Green’s
functions, as well as of the associated ground-state energy density and the effective
mass, were derived. Closed-form solutions were obtained to second order in the
nonlinearity parameter 𝜀. Both the general coefficient structure and the closed-
form solutions were furthermore used to perform the perturbative renormalization
program proposed in [1] in two dimensions to second order and investigate the
general asymptotic behavior of the theory. While the two-dimensional theory
appears to be free to any finite order in 𝜀, a multiple-scale analysis suggests that
higher-order Green’s functions might diverge beyond all orders in 𝜀, requiring a
more robust renormalization scheme.

The study of non-Hermitian bilinear extensions to the NJL model in the second
part of this thesis has illustrated that the existence of real-valued effective mass
solutions is, at least in the self-consistent first-order approximation considered,
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not directly tied to the presence of 𝒫𝒯 symmetry. In fact, even the dynami-
cal generation of fermion mass is possible through anti-𝒫𝒯-symmetric extensions
which result in non-𝒫𝒯-symmetric models. The analysis of the effective fermion
masses, as well as of the scalar- and pseudoscalar-meson masses, in various mod-
els has shown that non-Hermitian bilinear additions, 𝒫𝒯-symmetric or not, might
give rise to feasible models, or that a more subtle property than the reality of
the effective mass distinguishes the fermionic 𝒫𝒯 models from the fermionic non-
𝒫𝒯-symmetric models when time reversal is odd.

Moreover, this work has built a foundation for the investigation of 𝒫𝒯 sym-
metry in fermionic systems at finite temperature and density. Such investigations
are, however, beyond the scope of this thesis and remain a part of ongoing inves-
tigations.
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Appendix

A: The Free Propagator Δu�(𝑥)

The free propagator Δu�(𝑥) obeys the 𝐷-dimensional Euclidean Klein-Gordon
equation

(−∇2 + 𝜆2) Δu�(𝑥) = 𝛿(u�)(𝑥). (A1)

Through Fourier transformation of this equation one finds that

(𝑝2 + 𝜆2) Δ̃u�(𝑝) = 1, i.e. Δ̃u�(𝑝) = 1/(𝑝2 + 𝜆2). (A2)

The propagator Δu�(𝑥) can thus be determined as the inverse Fourier transform:

Δu�(𝑥) = 1
(2𝜋)u� ∫𝑑u�𝑝 eu�u�u� 1

𝑝2 + 𝜆2

= 1
(2𝜋)u� ∫𝑑u�𝑝 eu�u�u� ∫

∞

0
𝑑𝑠 e−(u�2+u�2)u�

= 1
(2𝜋)u� ∫

∞

0
𝑑𝑠 e−u�2u� ∫𝑑u�𝑝 e−u�u�2+u�u�u�.

(A3)

After evaluating the 𝐷-dimensional Gaussian integral over 𝑝 this becomes

Δu�(𝑥) = 1
(2𝜋)u� ∫

∞

0
𝑑𝑠 e−u�2u� (u�

u� )
u�/2

e(u�u�)2/4u�

= 1
(4𝜋)u�/2 ∫

∞

0
𝑑𝑠 𝑠−u�/2 e−u�2u�−u�2/4u�. (A4)
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At 𝑥 = 0, equation (A4) simplifies to the selfloop propagator in (2.30):

Δu�(0) = 𝜆u�−2

(4𝜋)u�/2 ∫
∞

0
𝑑𝑟 𝑟−u�/2 e−u� = 𝜆u�−2 (4𝜋)−u�/2 Γ(1 − u�

2 ). (A5)

For general values of 𝑥, changing the variable of integration 𝑠 in (A4) to 𝑡 =
2𝜆𝑠/(𝑖|𝑥|) results in the expression

Δu�(𝑥) = − (𝑖|𝑥|)1−u�/2

2 (2𝜋)u�/2𝜆1−u�/2 ∫
0

−u�∞
𝑑𝑡 𝑡−u�/2 exp[−𝑖 |u�|u�

2 (𝑡 − 1
u� )]. (A6)

In this form the integral is identified as the Hankel function of the second kind [91],

Δu�(𝑥) = − (𝑖|𝑥|)1−u�/2

2 (2𝜋)u�/2𝜆1−u�/2 [𝑖𝜋 𝐻(2)
u�/2−1(−𝑖𝜆|𝑥|)], (A7)

which can be rewritten [51] as

Δu�(𝑥) = − |𝑥|1−u�/2

(2𝜋)u�/2𝜆1−u�/2
𝑖u�/2𝜋

2
𝐻(2)

1−u�/2(−𝑖𝜆|𝑥|) (A8)

and is then expressed in terms of the associated Bessel function [50], resulting in
the form given in (2.28):

Δu�(𝑥) = (2𝜋)−u�/2 𝜆u�/2−1 |𝑥|1−u�/2 K1−u�/2(𝜆|𝑥|). (A9)
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B: Evaluation of the Functional Integral

The functional integral

1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 𝜙u�1(𝑧1) … 𝜙u�u�(𝑧u�) (B1)

corresponds to the sum over all possible graphs on 𝑘 vertices 𝑧1 to 𝑧u�, with a
total of 𝑛1 to 𝑛u� lines ending at those respective vertices. That is, the summation
over possible graphs extends over all possible arrangements of lines between the
vertices such that all 𝑛1 to 𝑛u� ends of the vertices 𝑧1 to 𝑧u� are occupied.

Each line between two vertices 𝑧u� and 𝑧u� corresponds to a propagator Δ(𝑧u�−𝑧u�)
of the free theory with Lagrangian density ℒ0, including the possibility of selfloops
Δ(0) when 𝑖 = 𝑗.

The number of ends at a vertex 𝑧u� that are connected to another vertex 𝑧u� are
labeled as 𝑙u�u�. When 𝑧u� and 𝑧u� are distinct vertices, i.e. 𝑖 ≠ 𝑗, then 𝑧u� and 𝑧u� are
connected by 𝑙u�u� lines, meaning propagators Δ(𝑧u� − 𝑧u�). However, in the case of
selfloops, that is when 𝑖 = 𝑗, both ends of each line are connected to the same
vertex 𝑧u�, so that only 𝑙u�u�/2 selfloops are formed, signifying only 𝑙u�u�/2 propagators
Δ(0).

Since the free propagator Δ(𝑧u�−𝑧u�) is symmetric in its argument, and therefore
𝑙u�u� = 𝑙u�u�, one can assume that 𝑖 ≤ 𝑗 without loss of generality. In this way, each
possible graph is in particular proportional to the following propagators:

u�
∏

u�,u�=1,
u�<u�

Δ(𝑧u� − 𝑧u�)
u�u�u�

u�
∏
u�=1

Δ(0)u�u�u�/2. (B2)

The values of the numbers 𝑙u�u� and 𝑙u�u� in (B2) are, of course, restricted by the total
numbers 𝑛1 to 𝑛u� of available ends at the vertices 𝑧1 to 𝑧u�. Together with the
requirement that any number of selfloops occupies an even number of ends of a
vertex, these constraints can be expressed as

∀𝑗 ∈ [1, 𝑘] ∶ 𝑙u�u� = 𝑛u� − 𝐿u� = 𝑛u� − (
u�−1

∑
u�=1

𝑙u�u� +
u�

∑
u�=u�+1

𝑙u�u�) != even, (B3)

where 𝐿u� denotes the number of ends of the vertex 𝑧u� at which it is connected
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to any vertices other then itself, that is the number of ends which do not form
selfloops. The constraint (B3) can be included algebraically using the factor

u�
∏
u�=1

(1 + 𝑒u�u�(u�u�−u�u�)

2
). (B4)

Furthermore, for each specified graph, meaning an appropriately chosen set of
numbers 𝑙u�u�, one has to account for its symmetry factors. These account for the
following considerations:
(i): All possible ways to choose 𝑙u�u� ends at a vertex 𝑧u�, which connect it to another
vertex 𝑧u� or itself, out of the total number of ends 𝑛u� that are available at that
vertex, are interchangeable. Thus for each vertex 𝑧u�, the number of possible
orderings of the ends give rise to a factor:

∀𝑗 ∈ [1, 𝑘] ∶
𝑛u�!

(∏u�−1
u�=1 𝑙u�u�! ) 𝑙u�u�! (∏u�

u�=u�+1 𝑙u�u�! )
. (B5)

(These are the multinomial coefficients of the total number 𝑛u� of ends at the
vertex and the numbers of ends connecting it to other vertices or itself.)
(ii): When two distinct vertices 𝑧u� and 𝑧u� are connected by 𝑙u�u� lines, then these
lines are indistinguishable. The different possible ways of interchanging them give
rise to factors 𝑙u�u�! (∀𝑖, 𝑗 ∈ [1, 𝑘] ∶ 𝑖 < 𝑗).
(iii): Similar to (ii), the ways of interchanging the lines that connect a vertex 𝑧u�

to itself give rise to factors (𝑙u�u� − 1)! ! (∀𝑗 ∈ [1, 𝑘]).
When combining all symmetry factors from all vertices and connections, some

simplifications can be made: In joining the factors in (i) for all 𝑘 vertices, one
notices, that every specific factor of 𝑙u�u�! with 𝑖 < 𝑗 in the denominator occurs
twice - once due to the contribution at the vertex 𝑧u� and once due to that at 𝑧u�.
One of these two copies is canceled by the factors 𝑙u�u�! from (ii). Together with
the remaining factors of 𝑛u�! /𝑙u�u�! from (i) and the factors of (𝑙u�u� − 1)! ! from (iii),
as well as the propagators in (B2) and the factors in (B4), each specified graph
corresponds to the algebraic expression

u�
∏

u�,u�=1,
u�<u�

Δ(𝑧u� − 𝑧u�)
u�u�u�

𝑙u�u�!

u�
∏
u�=1

𝑛u�!
(𝑙u�u� − 1)! !

𝑙u�u�!
Δ(0)u�u�u�/2(1 + 𝑒u�u�(u�u�−u�u�)

2
). (B6)
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By rewriting the double factorial according to

(𝑙u�u� − 1)! ! = 𝑙u�u�! [2u�u�u�/2 Γ( u�u�u�
2 + 1)]

−1
, (B7)

replacing 𝑙u�u� as in (B3), and rewriting

𝑛u�! = 2u�u� 𝜋− 1
2 Γ(u�u�

2 + 1) Γ(u�u�
2 + 1

2), (B8)

the expression (B6) becomes

( 1√
u�)

u� u�
∏
u�=1

[2Δ(0)]
u�u�
2

Γ(u�u�
2 + 1)Γ(u�u�

2 + 1
2)

Γ(u�u�
2 + 1 − 1

2𝐿u�)
(1 + 𝑒u�u�(u�u�−u�u�)

2
)

×
u�

∏
u�,u�=1,

u�<u�

1
𝑙u�u�!

[
2Δ(u�u� − u�u�)

Δ(0) ]
u�u�u�

.
(B9)

The summation over all graphs can now be taken to run over all integers 𝑙u�u� ∈
[0, ∞] with 𝑖, 𝑗 ∈ [1, 𝑘] ∶ 𝑖 < 𝑗. Notice, in particular, the infinite upper limit of the
summation: In general, the maximal number of connections 𝑙u�u� is restricted by the
number of ends at the vertices 𝑧u� and 𝑧u�, that is 𝑙u�u� ≤ min(𝑛u�, 𝑛u�). However, having
the limit of the summation depend on these variables is quite inconvenient. But,
considering that the Γ functions in the denominator of (B9) result in vanishing
contributions, when any 𝑙u�u� exceeds these limits, one can extend the summation to
infinity, obtaining independent summation limits. When denoting this summation
over all integers 𝑙u�u� with 𝑖, 𝑗 ∈ [1, 𝑘] ∶ 𝑖 < 𝑗 as⅀u�, one thus finds that the functional
integral (B1) can be evaluated in terms of the propagators as

1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 𝜙u�1(𝑧1) … 𝜙u�u�(𝑧u�)

= ( 1√
u�)

u� ∞

⅀
u�

u�
∏

u�,u�=1,
u�<u�

1
𝑙u�u�!

[
2Δ(u�u� − u�u�)

Δ(0) ]
u�u�u�

u�
∏
u�=1

[2Δ(0)]
u�u�
2

×
Γ(u�u�

2 + 1)Γ(u�u�
2 + 1

2)
Γ(u�u�

2 + 1 − 1
2𝐿u�)

(1 + 𝑒u�u�(u�u�−u�u�)

2
),

(B10)

where the numbers 𝐿u� = ∑u�−1
u�=1 𝑙u�u� + ∑u�

u�=u�+1 𝑙u�u�, as defined in (B3).
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In Section 2.1 the general integral (B10) is used for 𝑧1 to 𝑧u� being the space-
time points 𝑥1 to 𝑥u� and with 𝑛u� = 2(𝑁u� + 1) + (2𝜔u� + 1)𝑚u�, ∀𝑗 ∈ [1, 𝑘]. The
propagators are of the form Δu�u�0

given in (2.28). In the multi-index notation
introduced in Section 2.1, the result (B10) thus becomes:

1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 [𝜙(𝑥u�)]2(u�u�+1)+(2u�u�+1)u�u�

= (
2Δu�u�0

(0)
√

u� )
u�

[2Δu�u�0
(0)]u�u�+u�u�(u�u�+ 1

2 )
∞

⅀
u�

u�
∏

u�,u�=1,
u�<u�

1
𝑙u�u�!

[
2Δu�u�0

(u�u� − u�u�)
Δu�u�0

(0) ]
u�u�u�

×
Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2)] Γ[𝑁u� + 3
2 + 𝑚u�(𝜔u� + 1

2)]
Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2) − 1
2𝐿u�]

(1 + eu�u�(u�u�−u�u�)

2
).

(B11)

In Section 4.1 the integral (B10) is evaluated for 𝑘 → 𝑘 + 𝑝 space-time points:
As before, 𝑧1 to 𝑧u� are the space-time points 𝑥1 to 𝑥u� with 𝑛u� = 2(𝑁u� + 1) +
(2𝜔u� + 1)𝑚u�, ∀𝑗 ∈ [1, 𝑘]. But in addition the 𝑝 space-time points 𝑧u�+1 to 𝑧u�+u�,
denoting 𝑦1 to 𝑦u� are taken into account. For these latter points 𝑛u� = 1, ∀𝑗 ∈ [𝑘+
1, 𝑘 + 𝑝], which simplifies the associated terms in (B10) significantly. The former
contributions can be written in the multi-index notation as in (B11). Overall the
functional integral becomes:

1
u�(0) ∫𝒟𝜙 𝑒− ∫u�u�u� ℒ0 𝜙(𝑦1) … 𝜙(𝑦u�) [𝜙(𝑥u�)]2(u�u�+1)+(2u�u�+1)u�u�

= [1
2Δu�u�0

(0)]u�/2 (
2Δu�u�0

(0)
√

u� )
u�
[2Δu�u�0

(0)]u�u�+u�u�(u�u�+ 1
2 )

∞

⅀
u�

u�+u�

∏
u�,u�=1,

u�<u�

1
𝑙u�u�!

× [
2Δu�u�0

(u�u� − u�u�)
Δu�u�0

(0) ]
u�u�u� Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2)] Γ[𝑁u� + 3
2 + 𝑚u�(𝜔u� + 1

2)]
Γ[𝑁u� + 2 + 𝑚u�(𝜔u� + 1

2) − 1
2𝐿u�]

× (1 + eu�u�(u�u�−u�u�)

2
) {

u�

∏
u�=1

1
Γ(3

2 − 1
2𝐿u�+u�)

(1 + eu�u�(1−u�u�+u�)

2
)}.

(B12)
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C: An Identity for Γ Functions

In the following it is demonstrated that

∫
∞

0
𝑑𝑡

∞
∑
u�=0

2 (−𝑡2)u�

𝜋 (2𝜔 + 1)!
Γ[𝑎 + 𝑚(𝜔 + 1

2)] Γ[𝑏 + 𝑚(𝜔 + 1
2)]

Γ[𝑐 + 𝑚(𝜔 + 1
2)]

𝑥u�(u�+ 1
2 ) = Γ(𝑎) Γ(𝑏)

Γ(𝑐)
.

(C1)

First, one rewrites (2𝜔 + 1)! = 22u�𝜔! (3
2)(u�) in terms of the rising factorial (or

Pochhammer symbol) [45], (3
2)(u�) = Γ(3

2 + 𝜔)/Γ(3
2), and expands the fraction of

the Γ functions, so that they can be identified as rising factorials as well:

∫
∞

0
𝑑𝑡

∞
∑
u�=0

2 (−𝑡2)u�

𝜋 (2𝜔 + 1)!
Γ[𝑎 + 𝑚(𝜔 + 1

2)] Γ[𝑏 + 𝑚(𝜔 + 1
2)]

Γ[𝑐 + 𝑚(𝜔 + 1
2)]

𝑥u�(u�+ 1
2 )

= 2
𝜋

Γ(𝑎 + u�
2 ) Γ(𝑏 + u�

2 )
Γ(𝑐 + u�

2 )
𝑥u�

2 ∫
∞

0
𝑑𝑡

∞
∑
u�=0

(−1
4𝑥u�𝑡2)u�

𝜔! (3
2)(u�)

(𝑎 + u�
2 )(u�u�) (𝑏 + u�

2 )(u�u�)

(𝑐 + u�
2 )(u�u�) .

(C2)

Then expanding the rising factorials according to their multiplication formula [92]

(𝑧)(u�u�) = 𝑚u�u�
u�−1
∏
u�=0

(𝑧 + 𝑠
𝑚

)
(u�)

, (C3)

yields

2
𝜋

Γ(𝑎 + u�
2 ) Γ(𝑏 + u�

2 )
Γ(𝑐 + u�

2 )
𝑥u�

2 ∫
∞

0
𝑑𝑡

∞
∑
u�=0

(−1
4𝑚u�𝑥u�𝑡2)u�

𝜔! (3
2)(u�) [

u�−1
∏
u�=0

(
𝑎 + u�

2 + 𝑠
𝑚

)
(u�)

]

× [
u�−1
∏
u�=0

(
𝑏 + u�

2 + 𝑝
𝑚

)
(u�)

] [
u�−1
∏
u�=0

(
𝑐 + u�

2 + 𝑞
𝑚

)
(u�)

]
−1

.
(C4)

The summation over 𝜔 can now be identified as the series expansion of the hy-
pergeometric function

2u�𝐹u�+1[(
𝑎 + u�

2
𝑚

), ... , (
𝑎 + u�

2 + 𝑚 − 1
𝑚

) , (
𝑏 + u�

2
𝑚

), ... , (
𝑏 + u�

2 + 𝑚 − 1
𝑚

) ;

(
𝑐 + u�

2
𝑚

), ... , (
𝑐 + u�

2 + 𝑚 − 1
𝑚

) , (3
2

) ; −1
4𝑚u�𝑥u�𝑡2 ],

(C5)
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which is abbreviated as 2u�𝐹u�+1(𝑎, 𝑏, 𝑐, −1
4𝑚u�𝑥u�𝑡2) in the following. After rescal-

ing the integration variable 𝑡 → 𝑟 = 1
4𝑚u�𝑥u�𝑡2 one thus obtains the expression

2
𝜋

Γ(𝑎 + u�
2 ) Γ(𝑏 + u�

2 )
Γ(𝑐 + u�

2 )
𝑚−u�/2 ∫

∞

0
𝑑𝑟 𝑟− 1

2 2u�𝐹u�+1(𝑎, 𝑏, 𝑐, −𝑟). (C6)

The integral over the hypergeometric function is the Mellin transform of the
Mellin-Barnes integral representation of the generalized hypergeometric function,
see [93], which evaluates to

∫
∞

0
𝑑𝑟 𝑟− 1

2 2u�𝐹u�+1(𝑎, 𝑏, 𝑐, −𝑟)

= 𝜋
2

[
u�−1
∏
u�=0

(
𝑎 + u�

2 + 𝑠
𝑚

)
(− 1

2)
] [

u�−1
∏
u�=0

(
𝑏 + u�

2 + 𝑝
𝑚

)
(− 1

2)
] [

u�−1
∏
u�=0

(
𝑐 + u�

2 + 𝑞
𝑚

)
(− 1

2)
]

−1

(C7)

in terms of rising factorials. Utilizing the multiplication formula (C3) once more
thus leads to the result that

∫
∞

0
𝑑𝑡

∞
∑
u�=0

2 (−𝑡2)u�

𝜋 (2𝜔 + 1)!
Γ[𝑎 + 𝑚(𝜔 + 1

2)] Γ[𝑏 + 𝑚(𝜔 + 1
2)]

Γ[𝑐 + 𝑚(𝜔 + 1
2)]

𝑥u�(u�+ 1
2 )

=
Γ(𝑎 + u�

2 ) Γ(𝑏 + u�
2 )

Γ(𝑐 + u�
2 )

(𝑎 + u�
2 )(− u�

2 ) (𝑏 + u�
2 )(− u�

2 )

(𝑐 + u�
2 )(− u�

2 ) = Γ(𝑎) Γ(𝑏)
Γ(𝑐)

.

(C8)
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D: Evaluation of the Zero-Dimensional Model

In 𝐷 = 0 dimensions the functional integral in the partition function, which is
discussed in Section 2.1, can be evaluated directly as an ordinary integral over the
(real) field. For 𝑔 = 𝑚 = 1, the partition function 𝒵(𝜀) in (2.4) takes the explicit
form

𝒵(𝜀) = 1
u�(0) ∫

∞

−∞
𝑑𝜙 𝑒−u�2

0u�2/2 exp[−1
2𝜇2

0

∞
∑
u�=1

𝜀u�

𝑛!
𝜙2 lnu�(𝑖𝜇0𝜙)], (D1)

with
𝑍(0) = ∫

∞

−∞
𝑑𝜙 𝑒−u�2

0u�2/2 = √2𝜋𝜇−2
0 . (D2)

The exponential factor in (D1) containing the summation is rewritten using the
defining relation of the exponential complete Bell polynomials Bu�, see [45],

exp(
∞

∑
u�=1

𝑥u�
𝑡u�

𝑚!
) = 1 +

∞
∑
u�=1

𝑡u�

𝑛!
Bu�(𝑥1, … , 𝑥u�), (D3)

so that
𝒵(𝜀) = 1 +

∞
∑
u�=1

𝜀u�

𝑛!
1

u�(0) ∫
∞

−∞
𝑑𝜙 𝑒−u�2

0u�2/2 Bu�(𝐼1, … , 𝐼u�), (D4)

with 𝐼u� = −1
2𝜇2

0𝜙2 logu�(𝑖𝜇0𝜙). The partition-function coefficients 𝒵u� in the non-
linearity expansion (2.6) are thus identified as

𝒵u� = 1
𝑛! 𝑍(0)

∫
∞

−∞
𝑑𝜙 𝑒−u�2

0u�2/2 Bu�(𝐼1, … , 𝐼u�). (D5)

Because the field 𝜙 is not evaluated at different space-time points in the zero-
dimensional model, the logarithmic terms can be factored out of the complete
Bell polynomial

𝒵u� = 1
𝑛! 𝑍(0)

∫
∞

−∞
𝑑𝜙 𝑒−u�2

0u�2/2 logu�(𝑖𝜇0𝜙) Bu�(−1
2𝜇2

0𝜙2, … , −1
2 𝜇2

0𝜙2), (D6)

and the remaining Bell polynomial at all identical arguments is rewritten as the
Touchard polynomial Tu�, which is expressed in terms of Stirling numbers of the
second kind as [45]:

Bu�(𝑥, … , 𝑥) = Tu�(𝑥) =
u�

∑
u�=0

{
𝑛
𝑗
} 𝑥u�. (D7)
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Therefore, the partition-function coefficients have the form

𝒵u� = 1
𝑛! 𝑍(0)

u�
∑
u�=0

{
𝑛
𝑗
} (−1

2𝜇2
0)u�∫

∞

−∞
𝑑𝜙 𝑒−u�2

0u�2/2 𝜙2u� logu�(𝑖𝜇0𝜙). (D8)

Expanding the complex logarithm according to (2.21) and its power through
the binomial theorem, keeping only even terms in the field 𝜙, yields

𝒵u� =
u�

∑
u�=0

u�
∑
u�=0
even

{
𝑛
𝑗
}(u�

u� )
(−𝜇2

0)u�(𝑖𝜋)u�

2u�+u� 𝑛! 𝑍(0)
∫

∞

−∞
𝑑𝜙 𝑒−u�2

0u�2/2 𝜙2u� logu�−u�(𝜇2
0𝜙2). (D9)

The remaining real logarithm can be rewritten using the replica trick (2.25),
resulting in the expression

𝒵u� = lim
u�→0

u�
∑
u�=0

u�
∑
u�=0
even

{
𝑛
𝑗
}(u�

u� )
(−𝜇2

0)u�(𝑖𝜋)u�

2u�+u� 𝑛! 𝑍(0)
( u�

u�u� )
u�−u�

𝜇2u�
0 ∫

∞

−∞
𝑑𝜙 𝑒−u�2

0u�2/2 𝜙2(u�+u�).

(D10)

Here the integral over the field is recognized as an integral representation of a Γ
function, evaluating to

∫
∞

−∞
𝑑𝜙 𝑒−u�2

0u�2/2 𝜙2(u�+u�) = (2𝜇−2
0 )u�+u�+ 1

2 Γ(𝑁 + 𝑗 + 1
2). (D11)

The partition-function coefficient thus simplifies to

𝒵u� = lim
u�→0

1
2u� 𝑛!

√
2𝜋

u�
∑
u�=0
even

(u�
u� )(𝑖𝜋)u�( u�

u�u� )
u�−u�

2u�+ 1
2 [

u�
∑
u�=0

{
𝑛
𝑗
}(−1)u� Γ(𝑁 + 𝑗 + 1

2)].

(D12)

The summation involving the Stirling numbers of the second kind can be
evaluated according to

u�
∑
u�=0

{
𝑛
𝑗
}(−1)u� Γ(𝑁 + 𝑗 + 1

2) = (−1)u�(𝑁 + 1
2)u� Γ(𝑁 + 1

2). (D13)

The remaining summation over only even values of 𝑘 can then be evaluated in the
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same way as in (2.43) and (2.44) using the general Leibniz rule [50], so that the
partition-function coefficient becomes:

𝒵u� = lim
u�→0

(−1)u�

2u� 𝑛!
√

2𝜋
( u�

u�u� )
u�

2u�+ 1
2 cos(𝜋𝑁) (𝑁 + 1

2)u� Γ(𝑁 + 1
2). (D14)

The evaluation for a chosen value of 𝑛 is straightforward. In particular, the
results for the first-order and second-order coefficients

𝒵1∣
u�=0

= −1
4 [ln 2 + 𝜓(3

2)], (D15)

𝒵2∣
u�=0

= 1
32[ln 2 + 𝜓(3

2)]2 + 1
8[ln 2 + 𝜓(3

2)] + 1
32[𝜓(1)(3

2) − 𝜋2] (D16)

confirm the result of the general solutions (2.42) and (2.62), when evaluated in
𝐷 = 0 dimensions.

In order to find the exact solution 𝒵(𝜀), one has to sum the coefficients (D14)
to all orders in 𝜀. After rescaling the variable 𝑁 → −𝑁/2 the partition function
can be written as

𝒵(𝜀) = lim
u�→0

∞
∑
u�=0

(𝜀/2)u�

𝑛!
√

2𝜋
( u�

u�u� )
u�
(1 − 𝑁)u� 𝑓(𝑁), (D17)

with 𝑓(𝑁) = 2(1−u�)/2 cos(−u�u�
2 )Γ(1−u�

2 ). Using the general Leibniz rule to evalu-
ate the derivative, this can be written as

𝒵(𝜀) = lim
u�→0

∞
∑
u�=0

(−𝜀/2)u�
√

2𝜋

u�
∑
u�=0

(u�
u� )(−1)u�

𝑘!
( u�

u�u� )
u�

𝑓(𝑁). (D18)

Exchanging the order of summation then yields

𝒵(𝜀) = lim
u�→0

∞
∑
u�=0

(𝜀/2)u�
√

2𝜋 𝑘!
( u�

u�u� )
u�

𝑓(𝑁)
∞

∑
u�=0

(u� + u�
u� ) (−1

2𝜀)u�. (D19)

Here the summation over 𝑛 can be evaluated according to

∞
∑
u�=0

(u� + u�
u� )(−1

2𝜀)u� = (1 + 1
2𝜀)−(1+u�), (D20)
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so that

𝒵(𝜀) = 1√
2𝜋 (1 + 𝜀/2)

∞
∑
u�=0

1
𝑘!

( 𝜀
𝜀 + 2

)
u�

lim
u�→0

( u�
u�u� )

u�
𝑓(𝑁). (D21)

In this form the summation is recognizable as the Taylor series of 𝑓( u�
u�+2) around

0. The partition function is therefore given by

𝒵(𝜀) = 1√
2𝜋 (1 + 𝜀/2)

𝑓( u�
u�+2) = 21/(u�+2)

√
2𝜋 (1 + 𝜀/2)

Γ( 1
u�+2) cos(−u�

2
u�

u�+2). (D22)

Similarly, the integrals

𝑁u�(𝜀) = 1
u�(0) ∫

∞

−∞
𝑑𝜙 𝑒−u�2

0u�2/2 𝜙u� exp[−1
2𝜇2

0

∞
∑
u�=1

𝜀u�

𝑛!
𝜙2 lnu�(𝑖𝜇0𝜙)], (D23)

which arise in the numerator of the Green’s functions 𝐺u�(𝜀) = 𝑁u�(𝜀)/𝒵(𝜀), can
be evaluated, yielding the closed-form results

𝑁even
u� (𝜀) = 2(u�+1)/(u�+2)

√
2𝜋(1 + 𝜀/2)

Γ(u�+1
u�+2) cos ( − u�

2
(u�+1)u�

u�+2 ) (D24)

for even values of 𝑝, and

𝑁odd
u� (𝜀) = 2(u�+1)/(u�+2) 𝑖√

2𝜋(1 + 𝜀/2)
Γ(u�+1

u�+2) sin ( − u�
2

(u�+1)u�
u�+2 ) (D25)

for odd values of 𝑝.
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E: Rayleigh-Schrödinger Perturbation Theory

For the model in 𝐷 = 1 dimension, it is possible to confirm the result of the
energy-density coefficients using the Rayleigh-Schrödinger perturbation approach
of quantum mechanics.

The ground-state wave function

𝜓(𝜀) = 𝜓0 + 𝜀 𝜓1 + 𝜀2 𝜓2 + 𝜀3 𝜓3 + 𝑂(𝜀4) (E1)

and the ground-state energy eigenvalue

ℰ(𝜀) = ℰ0 + 𝜀 ℰ1 + 𝜀2 ℰ2 + 𝜀3 ℰ3 + 𝑂(𝜀4) (E2)

satisfy the Schrödinger equation

𝐻𝜓(𝜀) = ℰ(𝜀) 𝜓(𝜀) , (E3)

in which the Hamiltonian 𝐻 is given to third order in 𝜀 as

𝐻 = −1
2

u�2

u�u�2 + 1
2𝑥2 + u�

2 𝑥2 ln(𝑖 𝑥) + u�2

4 𝑥2 ln2(𝑖 𝑥) + u�3

12 𝑥2 ln3(𝑖 𝑥) + 𝑂(𝜀4). (E4)

Expanding (E3) in orders of 𝜀, one finds that at order 𝑂(𝜀0) the expected harmonic-
oscillator equation is obtained:

− 1
2𝜓″

0 + 1
2𝑥2𝜓0 − ℰ0 𝜓0 = 0, (E5)

with eigenfunction 𝜓0 = e−u�2/2 and ground-state eigenvalue ℰ0|u�=1 = 1
2 .

At order 𝑂(𝜀1), equation (E3) has the form

− 1
2𝜓″

1 + 1
2𝑥2𝜓1 − ℰ0 𝜓1 = −1

2𝑥2 ln(𝑖 𝑥)𝜓0 + ℰ1 𝜓0, (E6)

which is an inhomogeneous version of (E5) for 𝜓1. Since the eigenfunctions can
be chosen orthogonally, the left-hand side vanishes under multiplication with 𝜓0

and integration from −∞ to ∞, so that

ℰ1 = ∫
∞

−∞
𝑑𝑠 1

2𝑠2 ln(𝑖 𝑠) e−u�2/ ∫
∞

−∞
𝑑𝑠 e−u�2 = 1

8 (2 − 𝛾 − 2 ln 2). (E7)
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Furthermore, following the discussion in [1], the eigenfunction is determined
through a reduction of order of (E6) by substituting the ansatz 𝜓1 = 𝑓(𝑥)𝜓0,
which yields

𝑓″(𝑥) − 2𝑥𝑓(𝑥) = 𝑥2 ln(𝑖 𝑥) − 2ℰ1. (E8)

After the introduction of an integrating factor e−u�2, integration results in

𝑓 ′(𝑥) e−u�2 = ∫
u�

−∞
𝑑𝑠 [𝑠2 ln(𝑖 𝑠) − 2ℰ1] e−u�2 , (E9)

which can then be integrated once more to find

𝑓(𝑥) = ∫
u�

0
𝑑𝑡 eu�2 ∫

u�

−∞
𝑑𝑠 [𝑠2 ln(𝑖 𝑠) − 2ℰ1] e−u�2 . (E10)

At order 𝑂(𝜀2), equation (E3) has the form

−1
2𝜓″

2 + 1
2𝑥2𝜓2 − ℰ0 𝜓2 = [−1

2𝑥2 ln(𝑖 𝑥) + ℰ1] 𝜓1 + [−1
4𝑥2 ln2(𝑖 𝑥) + ℰ2] 𝜓0.

(E11)

The calculation proceeds identically to that at first order: the energy eigenvalue
has the form

ℰ2 = ∫
∞

−∞
𝑑𝑠 { [1

2𝑠2 ln(𝑖 𝑠) − ℰ1]𝑓(𝑠) + 1
4𝑠2 ln2(𝑖 𝑠) } e−u�2/ ∫

∞

−∞
𝑑𝑠 e−u�2 (E12)

and for the ansatz 𝜓2 = 𝑔(𝑥)𝜓0, one finds that

𝑔(𝑥) = ∫
u�

0
𝑑𝑡 eu�2 ∫

u�

−∞
𝑑𝑠 { [𝑠2 ln(𝑖 𝑠) − 2ℰ1]𝑓(𝑠) + [1

2𝑠2 ln2(𝑖 𝑠) − 2ℰ2] } e−u�2 . (E13)

With this second-order eigenfunction it is then also possible to determine the
third-order energy eigenvalue: The Schrödinger equation at order 𝑂(𝜀3) has the
form

−1
2𝜓″

3 + 1
2𝑥2𝜓3 − ℰ0 𝜓3 = [−1

2𝑥2 ln(𝑖 𝑥) + ℰ1] 𝜓2 + [−1
4𝑥2 ln2(𝑖 𝑥) + ℰ2] 𝜓1

+ [− 1
12𝑥2 ln3(𝑖 𝑥) + ℰ3] 𝜓0,

(E14)
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so that

ℰ3 =
∫∞
−∞

𝑑𝑠 { [1
2𝑠2 ln(𝑖 𝑠)−ℰ1]𝑔(𝑠) + [1

4𝑠2 ln2(𝑖 𝑠)−ℰ2]𝑓(𝑠) + 1
12𝑠2 ln3(𝑖 𝑠) } e−u�2

∫∞
−∞

𝑑𝑠 e−u�2 .

(E15)

The ground-state energy coefficients ℰ2 and ℰ3 in (E12) and (E15) are quite
difficult to evaluate analytically, because of the dependence on 𝑓(𝑥) and 𝑔(𝑥).
But to confirm the results obtained using functional integral techniques it suffices
to evaluate these expressions numerically:

ℰ2∣
u�=1

≈ 0.116445, (E16)

ℰ3∣
u�=1

≈ − 0.077952, (E17)

which is in agreement with the results (3.20) in Section 3.3 and (3.27) in
Section 3.5.
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F: Two-Vertex Contributions of the Green’s Function
Coefficients

The general two-vertex contribution 𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=2
of the 𝑝-point Green’s

function at order 𝑂(𝜀u�) is determined from the general coefficient (4.14) for 𝑘 = 2,
which specifies the multi-index 𝛼 = (1, 2). Keeping the multi-index 𝛽 = (𝛽1, 𝛽2)
unspecified for now, it can be written as:

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=2
=

u�2Δ2
u�(0)

2u�u� [ 2u�u�−2
0

Δu�(0)]
u�/2
⅀

u�

u�−1
∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥′
1𝑑u�𝑥′

2 lim
u�1,u�2→0

u�

∑
u�=0

{ΣΠΔ(𝑝, 𝑞)}

×
u�1

∑
u�1=0

u�2

∑
u�2=0

( u�1
u�1

)( u�2
u�2

)(𝑖𝜋)u�1+u�2( u�
u�u�1

)
u�1−u�1

( u�
u�u�2

)
u�2−u�2

[2Δu�(0)]u�1+u�2

×
∞

∑
u�12=1

1
𝑙12!

[2Δu�(u�1 − u�2)
Δu�(0) ]

u�12 Γ(𝑁1 + 2) Γ(𝑁1 + 3
2)

Γ(𝑁1 + 2 − u�
2 − 1

2 𝑙12)
Γ(𝑁2 + 2) Γ(𝑁2 + 3

2)
Γ(𝑁2 + 2 − u�−u�

2 − 1
2 𝑙12)

× (1 + eu�u�(u�1−u�−u�12)

2
)(1 + eu�u�(u�2−(u�−u�)−u�12)

2
),

(F1)
where

{ΣΠΔ(𝑝, 𝑞)} ∶= 1
𝑞! (𝑝 − 𝑞)!

∑
u�

[
u�

∏
u�=1

Δu�(𝑥′
1−𝑦′

u�(u�))][
u�

∏
u�=u�+1

Δu�(𝑥′
2−𝑦′

u�(u�))] (F2)

describes the possible ways in which the external points 𝑦1 to 𝑦u� can be connected
to the two internal points 𝑥1 and 𝑥2: 𝑞 ∈ [0, 𝑝] out of the 𝑝 external points are
connected to the internal point 𝑥1 through a propagator Δu�. The remaining
𝑝 − 𝑞 external points are consequently connected to the internal point 𝑥2. The
summation ∑u� in (F2) is a sum over all permutations of the external points 𝑦1

to 𝑦u� and thus accounts for all ways to choose the 𝑞 points that are connected
to 𝑥1. A schematic visualization of these connections is shown in Figure F.1.
The factorials 1/[𝑞! (𝑝 − 𝑞! )] compensate for the fact that, once 𝑞 such external
points are chosen, they are interchangeable. This is, of course, a diagrammatic
picture. Algebraically, the possible ways of connecting an external point 𝑦u� to
either the internal point 𝑥1 or 𝑥2 enters in the general coefficient (4.14) through
the different combinations of either the number 𝑙1,2+u� of propagators connecting
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Figure F.1: Schematic visualization of the propagators in (F2). A total of u� out of
the u� external points u�1 to u�u� are connected to the internal point u�1, the remaining
u� − u� external points are connected to u�2. All choices of u� out of u� points are included,
signified through the permutations u� of the indices. The points u�1 and u�2 are connected,
shown by the grey obround shape.

𝑦u� to 𝑥1, or the number 𝑙2,2+u� when connecting to 𝑥2, being one, while the other
vanishes. Note that when 𝑞 external points are connected to 𝑥1, the total number
of propagators connected to 𝑥1 is 𝐿1 = 𝑞 + 𝑙12; accordingly the total number of
propagators connected to 𝑥2 is then 𝐿2 = (𝑝 − 𝑞) + 𝑙12.

The factors in (F1), which contain the exponential functions, imply that the
summations over 𝑙12, 𝑞, 𝑚1, and 𝑚2 split into different combinations of summing
only even or odd instances. In particular, these combinations also depend on the
evenness or oddness of 𝑝. For an even number 𝑝, (F1) takes the form:

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=2
=

u�2Δ2
u�(0)

2u�u� [ 2u�u�−2
0

Δu�(0)]
u�/2
⅀

u�

u�−1
∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥′
1𝑑u�𝑥′

2 lim
u�1,u�2→0

×{
∞

∑
u�12=1
even

1
𝑙12!

[2Δu�(u�1 − u�2)
Δu�(0) ]

u�12
(

u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)} 𝑀 even
1 𝑀 even

2

+
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)} 𝑀odd
1 𝑀odd

2 )

+
∞

∑
u�12=1
odd

1
𝑙12!

[2Δu�(u�1 − u�2)
Δu�(0) ]

u�12
(

u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)} 𝑀odd
1 𝑀odd

2

+
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)} 𝑀 even
1 𝑀 even

2 )},

(F3)
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where

𝑀 even/odd
1 =

u�1

∑
u�1=0

even/odd

( u�1
u�1

)(𝑖𝜋)u�1( u�
u�u�1

)
u�1−u�1

[2Δu�(0)]u�1 Γ(𝑁1 + 2) Γ(𝑁1 + 3
2)

Γ(𝑁1 + 2 − u�
2 − 1

2 𝑙12)

= ( u�
u�u�1

)
u�1

[2Δu�(0)]u�1 Γ(𝑁1 + 2) Γ(𝑁1 + 3
2)

Γ(𝑁1 + 2 − u�
2 − 1

2 𝑙12)

⎧{
⎨{⎩

cos(𝜋𝑁1), when even

𝑖 sin(𝜋𝑁1), when odd
(F4)

and

𝑀 even/odd
2 =

u�2

∑
u�2=0

even/odd

( u�2
u�2

)(𝑖𝜋)u�2( u�
u�u�2

)
u�2−u�2

[2Δu�(0)]u�2 Γ(𝑁2 + 2) Γ(𝑁2 + 3
2)

Γ(𝑁2 + 2 − u�−u�
2 − 1

2 𝑙12)

= ( u�
u�u�2

)
u�2

[2Δu�(0)]u�2 Γ(𝑁2 + 2) Γ(𝑁2 + 3
2)

Γ(𝑁2+2− u�−u�
2 − 1

2 𝑙12)

⎧{
⎨{⎩

cos(𝜋𝑁2), when even

𝑖 sin(𝜋𝑁2), when odd.
(F5)

The summations in (F4) and (F5) were performed as variants of the Leibniz
rule [50] in the same way as in Section 2.3, see (2.65) and (2.66).

Using the results for (F4) and (F5), the expression (F3) can be rewritten as

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=2
=

u�2Δ2
u�(0)

2u�u� [ 2u�u�−2
0

Δu�(0)]
u�/2
⅀

u�

u�−1
∏
u�=1

1
𝑐u�! (𝑠! )u�u�

∫𝑑u�𝑥′
1𝑑u�𝑥′

2 lim
u�1,u�2→0

( u�
u�u�1

)
u�1

( u�
u�u�2

)
u�2

× { cos(𝜋𝑁1) cos(𝜋𝑁2)(
u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)}𝐿even(𝑁1, 𝑁2)

+
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)}𝐿odd(𝑁1, 𝑁2))

− sin(𝜋𝑁1) sin(𝜋𝑁2)(
u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)}𝐿odd(𝑁1, 𝑁2)

+
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)}𝐿even(𝑁1, 𝑁2))},

(F6)
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where the summation over even or odd values of 𝑙12 is denoted as

𝐿even/odd(𝑁1, 𝑁2) = [2Δu�(0)]u�1+u�2
∞

∑
u�12=1

even/odd

1
𝑙12!

[2Δu�(u�1 − u�2)
Δu�(0) ]

u�12

×
Γ(𝑁1 + 2) Γ(𝑁1 + 3

2)
Γ(𝑁1 + 2 − u�

2 − 1
2 𝑙12)

Γ(𝑁2 + 2) Γ(𝑁2 + 3
2)

Γ(𝑁2 + 2 − u�−u�
2 − 1

2 𝑙12)
.

(F7)

The summation⅀u� and the index 𝛽 can now be specified following (2.69) to (2.73)

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=2
=

𝑔2Δ2
u�(0)

2u�+1𝑛! 𝜋
[ 2𝜇u�−2

0
Δu�(0)

]
u�/2

∫𝑑u�𝑥′
1𝑑u�𝑥′

2 lim
u�→0

( 𝑑
𝑑𝑁

)
u�

× { cos2(𝜋𝑁) [
u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)} 𝐿even(𝑁, 𝑁) +
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)} 𝐿odd(𝑁, 𝑁)]

− sin2(𝜋𝑁) [
u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)} 𝐿odd(𝑁, 𝑁) +
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)} 𝐿even(𝑁, 𝑁)]

− cos(𝜋𝑁) [
u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)} 𝐿even(𝑁, 0) +
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)} 𝐿odd(𝑁, 0)]

− cos(𝜋𝑁) [
u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)} 𝐿even(0, 𝑁) +
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)} 𝐿odd(0, 𝑁)]}.

(F8)
By collecting summations over even or odd values of 𝑞 one finds

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=2
=

u�2Δ2
u�(0)

2u�+1u�! u� [ 2u�u�−2
0

Δu�(0)]
u�/2

∫𝑑u�𝑥′
1𝑑u�𝑥′

2 lim
u�→0

( u�
u�u� )

u�

× {
u�

∑
u�=0
even

{ΣΠΔ(𝑝, 𝑞)} [cos2(𝜋𝑁) 𝐿even(𝑁, 𝑁) − sin2(𝜋𝑁) 𝐿odd(𝑁, 𝑁)

− cos(𝜋𝑁) 𝐿even(𝑁, 0) − cos(𝜋𝑁) 𝐿even(0, 𝑁)]

+
u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)} [cos2(𝜋𝑁) 𝐿odd(𝑁, 𝑁) − sin2(𝜋𝑁) 𝐿even(𝑁, 𝑁)

− cos(𝜋𝑁) 𝐿odd(𝑁, 0) − cos(𝜋𝑁) 𝐿odd(0, 𝑁)]}.

(F9)
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Finally, notice that the functions 𝐿even/odd(𝑁1, 𝑁2) in (F7) can be summed as
Gaussian hypergeometric functions, similar to the discussion in (2.50) to (2.53):

𝐿even(𝑁1, 𝑁2) =

[2Δu�(0)]u�1+u�2 Γ(𝑁1 + 2) Γ(𝑁1 + 3
2)

Γ(𝑁1 + 2 − u�
2)

Γ(𝑁2 + 2) Γ(𝑁2 + 3
2)

Γ(𝑁2 + 2 − u�−u�
2 )

× {−1 + 2𝐹1[ − (𝑁1 + 1 − u�
2), −(𝑁2 + 1 − u�−u�

2 ); 1
2 ; (Δu�(u�1−u�2)

Δu�(0) )2]}

(F10)

and

𝐿odd(𝑁1, 𝑁2) =

2Δu�(u�1−u�2)
Δu�(0) [2Δu�(0)]u�1+u�2 Γ(𝑁1 + 2) Γ(𝑁1 + 3

2)
Γ(𝑁1 + 2 − u�

2)
Γ(𝑁2 + 2) Γ(𝑁2 + 3

2)
Γ(𝑁2 + 2 − u�−u�

2 )

× 2𝐹1[ − (𝑁1 + 1
2 − u�

2), −(𝑁2 + 1
2 − u�−u�

2 ); 3
2 ; (Δu�(u�1−u�2)

Δu�(0) )2].

(F11)

Overall, (F9) describes the two-vertex contribution of the general Green’s function
coefficient 𝐺u�

u�,u�(𝑦1, … , 𝑦u�) for unspecified values 𝑛 ≥ 2 and even numbers 𝑝.

For odd values of 𝑝, the calculation proceeds along the same lines as for even
values of 𝑝, resulting analogously in the expression:

𝐺u�
u�,u�(𝑦1, … , 𝑦u�)∣

u�=2
=

u�2Δ2
u�(0)

2u�+1u�! u� [ 2u�u�−2
0

Δu�(0)]
u�/2

∫𝑑u�𝑥′
1𝑑u�𝑥′

2 lim
u�→0

( u�
u�u� )

u� u�

∑
u�=0
odd

{ΣΠΔ(𝑝, 𝑞)}

× [2𝑖 sin(𝜋𝑁) cos(𝜋𝑁) 𝐿even(𝑁, 𝑁) + 2𝑖 sin(𝜋𝑁) cos(𝜋𝑁) 𝐿odd(𝑁, 𝑁)

− 2𝑖 sin(𝜋𝑁) 𝐿even(𝑁, 0) − 2𝑖 sin(𝜋𝑁) 𝐿odd(0, 𝑁)].

(F12)
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