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Zusammenfassung

Quantenchemische Simulationen molekularer Eigenschaften sind essentiell, um einen de-

taillierten Einblick in eine Vielzahl chemischer und biologischer Prozesse zu erhalten. Ins-

besondere bei der Untersuchung lichtinduzierter Reaktionen ist die Interpretation expe-

rimenteller Ergebnisse ohne begleitende computerbasierte Modellierung der zugrunde lie-

genden elektronischen Anregungen kaum denkbar. Durch die Komplexität der beteiligten

molekularen Systeme in Bezug auf elektronische Struktur, intermolekulare Wechselwir-

kungen und Dynamik stößt man jedoch an die Grenzen der verfügbaren Rechenkapazität.

Abhilfe können hybride quanten-klassische Umgebungsschemata leisten, die die gesamte

Komplexität durch Aufspaltung des Systems in eine Quantenregion und ihre Umgebung

erfassen, was zu einer erheblichen Verringerung der benötigten Rechenressourcen führt.

Diese Schemata behalten somit die quantenchemische Beschreibung für den relevantesten

Teil bei, ohne den Einfluss der Umgebung zu vernachlässigen.

In dieser Dissertation entwickle ich Methoden zur Modellierung molekularer Eigenschaf-

ten in komplexen Umgebungen. Der erste Teil der Arbeit widmet sich kombinierten Sche-

mata aus dem polarizable embedding (PE)-Modell und dem algebraisch-diagrammatischen

Konstruktionsverfahren (ADC) des Polarisationspropagators für die Simulation spektro-

skopischer Eigenschaften. Ich leite insgesamt zwei solcher Schemata her: Das erste Schema

– pt-PE-ADC – verwendet einen selbstkonsistenten PE-Referenzzustand mit einem kano-

nischen ADC-Verfahren und eignet sich zur Berechnung elektronischer Anregungsenergien

mittels störungstheoretischer Korrekturen. Das zweite Schema – LR-PE-ADC – beinhal-

tet eine direkte iterative Kopplung an die polarisierbare Umgebung, wodurch es sowohl

für angeregte elektronische Zustände als auch für Response-Eigenschaften höherer Ord-

nung geeignet ist. Darüber hinaus leite ich Gleichungen für analytische Kerngradienten

mit PE-ADC her. Um die Verfügbarkeit des PE-Modells im Allgemeinen zu verbessern,

implementiere ich eine eigenständige, quelloffene und hybride Python/C++-Bibliothek

namens CPPE, die bereits in mehreren quantenchemischen Programmen zur Verfügung

steht. Die PE-ADC-Schemata werden in adcc, einem Toolkit zur Entwicklung von ADC-

basierten Methoden, welches mit mehreren Python-basierten Quantenchemieprogrammen

kombinierbar ist, implementiert. Das schlichte Design beider Bibliotheken ermöglicht die
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Erweiterung bestehender Workflows und rapid prototyping. Außerdem implementiere ich

Response-Eigenschaften für ADC mithilfe der intermediate state representation (ISR) in

einer neuen Python-Bibliothek namens respondo. Das Zusammenwirken dieser drei Biblio-

theken ermöglicht es dem Anwender, neue Funktionen einfach zu implementieren, während

Benutzerfreundlichkeit und Effizienz für praktische Berechnungen erhalten bleiben. Die

verschiedenen Schemata teste ich in mehreren Benchmark-Rechnungen und Fallstudien.

Beispielsweise zeige ich, dass die Fehler der Anregungsenergien bei Verwendung von pt-PE-

ADC für solvatisiertes p-Nitroanilin wesentlich kleiner sind als die intrinsischen Fehler des

ADC-Verfahrens. Außerdem untersuche ich den charge transfer (CT)-Zustand, der beim

Mechanismus der Photoprotektion im Flavoprotein Dodecin beteiligt ist. Ich führe zudem

die ersten Berechnungen von Response-Eigenschaften höherer Ordnung mit ADC und ei-

nem polarisierbaren Modell durch. In diesen Studien beobachte ich, dass LR-PE-ADC die

Genauigkeit der berechneten Eigenschaften im Vergleich zu einfacheren Kopplungssche-

mata stark verbessert. Weiterhin zeige ich, dass Korrekturen für Artefakte des PE-Modells

und die physikalisch korrekte Beschreibung der PE-ADC-Intensitäten bei Benchmarks mit

Supersystem-Berechnungen entscheidend sind. Mit meinen theoretischen Herleitungen und

frei verfügbaren Implementierungen stelle ich meines Wissens den bisher vollständigsten

Funktionsumfang polarisierbarer Modelle in Kombination mit ADC zur Verfügung.

Der zweite Teil der Arbeit beinhaltet zunächst eine allgemeine Verbesserung der Per-

formance von PE. Ich implementiere ein PE-Schema, bei dem die elektrischen Felder in

der Umgebung mit der fast-multipole-Methode (FMM) statt durch direkte Summation

ausgewertet werden. Folglich skaliert die Berechnung der elektrischen Felder als geschwin-

digkeitsbestimmender Schritt des klassischen Teils in PE-FMM asymptotisch linear, so-

dass effiziente Simulationen von Umgebungen mit über einer Million polarisierbarer Ato-

me möglich sind. Des Weiteren zeige ich algorithmische Details für die numerisch stabile

Lösung von Response-Gleichungen im ADC/ISR-Framework und analysiere das Konver-

genzverhalten verschiedener Lösungsalgorithmen. Diese Algorithmen sind auch für die

effiziente Lösung von PE-ADC-Response-Gleichungen vorteilhaft. Ich präsentiere außer-

dem Herleitungen und numerische Studien komplexer Polarisierbarkeiten für elektronisch

angeregte Zustände, womit das ADC/ISR-Framework über Response-Eigenschaften des

Grundzustands hinaus erweitert wird. Dann untersuche ich die Verzerrung von Molekülen

durch äußere Kräfte. Ich entwickle eine neue Methode zur Anwendung von hydrostatischem

Druck in quantenchemischen Simulationen durch Gauß-Potentiale. Dieses implizite Um-

gebungsschema namens GOSTSHYP übt durch Kompression der Elektronendichte Druck

auf ein Molekül oder Atom aus, sodass es möglich wird, Geometrieoptimierungen und Dy-

namiksimulationen bei einem festgelegten Druck durchzuführen. Dieser Funktionsumfang
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ist in keiner anderen vergleichbaren Methode zu finden. Ich verwende Molekulardynamiksi-

mulationen mit quantenchemischer Kraftanalyse zur Aufklärung des Entfaltungsprozesses

von Rubredoxin, dessen aktives Zentrum bereits durch sehr geringe Krafteinwirkung ge-

brochen wird. Mit meinen Berechnungen zeige ich, dass dieses Phänomen nicht – wie

bisher in der Literatur angenommen – aus Wasserstoffbrückenbindungen zum Protein

resultiert. Schließlich präsentiere ich das Design neuartiger photolabiler Schutzgruppen

auf Basis von Fluorenderivaten. Unter Verwendung eines effizienten computergestützten

Screening-Protokolls schlage ich Cyclopentadithiophen als molekulares Gerüst vor, was

zur nächsten Generation fluorenbasierter photolabiler Schutzgruppen mit verbesserten

Absorptions- und Reaktionseigenschaften führt.
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Abstract

Quantum chemical simulations of molecular properties are crucial to obtain in-depth in-

sight into a multitude of chemical and biological phenomena. In particular for investi-

gating light-driven systems, modeling of electronic excitations by computational means is

indispensable for supporting, complementing, and extending experimental findings. The

complexity in terms of electronic structure, intermolecular interactions, and dynamics of

the involved molecular systems, however, pushes the limits of computational feasibility.

Hybrid quantum-classical environment schemes tackle this complexity by splitting the sys-

tem into a quantum region and its environment. Thus, they retain the high-level quantum

chemical description for the part of interest without neglecting the pivotal effects of the

environment.

In this thesis, I develop methods for modeling molecular properties in complex envi-

ronments. The first half of the thesis is dedicated to new combined approaches of the

polarizable embedding (PE) model and the algebraic-diagrammatic construction (ADC)

scheme for the polarization propagator for computational spectroscopy simulations. I de-

rive and implement two PE-ADC coupling schemes: The first scheme – pt-PE-ADC –

uses a self-consistent PE reference state with a canonical ADC procedure and is suited

for computation of electronic excitation energies including a posteriori perturbative cor-

rections. The second scheme – LR-PE-ADC – includes direct coupling to the polarizable

environment in an iterative manner, making it suitable for excited electronic states and

higher-order response properties. Furthermore, I derive working equations to evaluate

analytic nuclear gradients using PE-ADC. To advance the availability of the PE model in

general, I implement a standalone, open-source, and hybrid Python/C++ library, called

CPPE, and interface it to several freely available quantum chemical host programs. The

PE-ADC schemes are implemented with adcc, a toolkit for development of ADC-based

methods and combinable with several Python-driven host programs. The simple and clean

design of both libraries allows for extension of existing workflows and rapid prototyping.

Moreover, I implement response properties using ADC and the intermediate state repre-

sentation (ISR) in a new Python library, called respondo. The synergy of all three libraries

enables the user to implement new features in a straightforward manner, while maintain-
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ing usability and efficiency for practical calculations. I test the individual approaches in

several benchmark calculations and case studies. For example, I find that excitation en-

ergy errors using pt-PE-ADC for microsolvated p-nitroaniline are much smaller than the

intrinsic error of ADC itself. Furthermore, I investigate the charge transfer (CT) state

involved in the photoprotection mechanism of the flavoprotein dodecin. In addition, I

conduct the first computations of higher-order response properties with ADC and a polar-

izable model. In these studies, I observe that LR-PE-ADC greatly improves the accuracy

of the property compared to simpler coupling schemes. I further show that corrections

for electron spill-out artifacts and the physically sound evaluation of PE-ADC intensities

are decisive when benchmarking against supersystem calculations. With my theoretical

derivations and open-source implementations, I provide, to the best of my knowledge, the

most complete and unique feature set of polarizable models combined with ADC to date.

The second half of the thesis first contains a general performance improvement of PE

models. I implement a PE scheme where the classical electric fields in the environment

are evaluated using the fast multipole method (FMM) instead of direct summation. Con-

sequently, the electric field evaluations as rate-limiting step of the classical part exhibit

an asymptotic linear scaling in the PE-FMM scheme, making it suitable for efficient sim-

ulations of environments with over a million polarizable sites. Next, I show algorithm

details for numerically stable solution of response equations in the ADC/ISR framework,

and I analyze convergence behavior of different solver algorithms. These algorithms are

beneficial for efficient evaluation of PE-ADC response properties, too. I present deriva-

tions and numerical case studies of complex excited state polarizabilities which extend the

ADC/ISR framework beyond ground state response properties. Then, I investigate the

distortion of molecules under external forces. I develop a new electronic structure method

to apply hydrostatic pressure in standard quantum chemical simulations via Gaussian po-

tentials, called GOSTSHYP. This implicit embedding scheme directly exerts pressure on

a molecule via compression of the electron density, such that it becomes possible to treat

atoms and molecules and to run geometry optimizations and dynamics simulations at a

pre-defined pressure. This feature set is not found in any other comparable method. I

use steered molecular dynamics (SMD) simulations with quantum chemical strain analysis

tools to elucidate the rupture process of rubredoxin. I prove that the extremely low rup-

ture force does not result from hydrogen bond networks to the protein as assumed so far

in the literature, but that its origin is likely more intricate. Finally, I present the design of

novel photocages based on fluorene derivatives. Using an efficient computational screening

protocol, I propose cyclopenta-dithiophene as scaffold, leading to the next generation of

fluorene-based photocages with desirable absorption and uncaging properties.
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Chapter 1

Introduction

Accurate modeling of molecular properties is the cornerstone of modern quantum and

computational chemistry. The vast availability of electronic structure methods together

with principles to obtain almost any kind of molecular property allows for the routine

application of computational simulations to complement and understand experimental

observations. [1–3] Such applications include, e.g., the simulation of various spectroscopic

properties. Electronic structure methods enable the computational investigation of ever

more complex systems – however, they are not the only ingredient required. Due to the

computational cost of ab initio quantum chemical methods, the size of the system under

study is limited, and often, these high-level methods cannot capture its entirety. For-

tunately, a smaller subsystem where a certain process occurs can usually be extracted.

For example, this could be the active site of a photoreactive protein system where the

electronic excitation process is primarily localized. Then the smaller subsystem can still

be treated using high-level ab initio methods, but interactions with the rest of the system

are ignored. This simplification must be made carefully to balance the trade-off between

computational feasibility on the one hand, and an accurate description of the system on

the other hand: Since most chemical processes do not take place in vacuum but in the

condensed phase, the influences of the environment are typically non-negligible, and might

even be pivotal to accurately discern the property of interest. To retain exactly these non-

negligible interactions with the molecular environment, a plethora of environment models

Parts of this chapter have already been published in:

• M. Scheurer, M. F. Herbst, P. Reinholdt, J. M. H. Olsen, A. Dreuw, and J. Kongsted, “Polarizable
Embedding Combined with the Algebraic Diagrammatic Construction: Tackling Excited States in
Biomolecular Systems”, J. Chem. Theory Comput. 2018, 14 (9), 4870-4883.

• M. Scheurer, “Polarizable Embedding for the Algebraic-Diagrammatic Construction Scheme”,
Springer Fachmedien Wiesbaden, 2020.
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2 1 Introduction

exist. [4–8] Each environment model captures important physical properties in a simplified

manner tailored to the requirements of the scientific question at hand, e.g., through a lower-

level quantum chemical method, or through purely classical electrostatic interactions. [4,9]

These methods are referred to as hybrid quantum-quantum and quantum-classical em-

bedding schemes. Two main classes of hybrid quantum-classical environment schemes –

implicit and explicit embedding schemes – are commonly employed. Implicit embedding

schemes mimic the medium surrounding a specific molecule by a dielectric continuum. For

these continuum solvation models (CSM), there are multiple formulations, e.g., the polar-

izable continuum model (PCM) and the conductor-like screening model (COSMO). [10–12]

Calculations involving CSM enable the description of a liquid solvent, and are straight-

forward to perform since only a dielectric constant and the molecular cavity need to be

chosen. One of the most severe shortcomings of CSM is the missing directionality of

explicit solvent interactions. [12,13] These interactions are, however, crucial in anisotropic,

heterogeneous environments, such as protic solvents, proteins, nucleic acids, and biolog-

ical membranes. Explicit embedding schemes capture this heterogeneity by retaining a

fully atomistic environment. [5] As a result, explicit quantum-classical embedding schemes

are generally more complex and computationally demanding than CSM as they require

parametrization of the atomistic environment. In the simplest case, these parameters can

be obtained from molecular mechanics (MM) force fields which are rarely constructed to

reproduce the microscopic detail required for accurate embedding calculations, especially

with respect to molecular response properties for computational spectroscopy. In fact, a

description of permanent electrostatics and mutual polarization effects between the envi-

ronment and the quantum region is important. To this end, polarizable embedding (PE)

models take into account electrostatic and mutual polarization interactions between the

quantum region and the atomistic environment. [7,8,14–22] Due to their reliability, accuracy,

and versatility, PE models are becoming increasingly popular for a variety of applications,

e.g., to address light-driven biochemical systems with respect to both dynamics and spec-

troscopy. [8,20–22] Quantum-classical PE models are considered the “future gold standard”

technique for simulation of complex systems. [20] They model electrostatic interactions of

the environment with the quantum region through a multi-center multipole expansion to-

gether with atomic polarizabilities located at the expansion sites. This formulation entails

a fully self-consistent treatment of polarization effects between the environment and the

quantum region, suitable for the description of the electronic ground state as well as ex-

cited states. [14] While different flavors of hybrid PE schemes exist, the overall formulation

can be generalized and expressed in a coherent manner. [21,23] In addition to the choice

of the embedding scheme, a reliable electronic structure method for the quantum region
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is a decisive factor for the quality of the computed molecular property. Currently, the

most popular method is density functional theory (DFT), which has severe shortcomings

compared to more expensive, ab initio wave function based methods. [24–26] Since DFT-

based methodologies are not systematically improvable, they can only in rare cases be

used as black-box methods and must otherwise be carefully benchmarked against ab initio

references. The use of wave function methods in combination with atomistic polarizable

models is still not common practice yet, even though some combinations using coupled

cluster (CC), [27–29] the second-order polarization propagator approximation (SOPPA), [30]

and the algebraic-diagrammatic construction (ADC) scheme for the polarization propaga-

tor exist. [31–33] Especially the ADC scheme is popular for its beneficial properties and its

computational efficiency. [31,34–36] The ADC scheme for the polarization propagator can be

used for simulating excited electronic states and for properties of higher order. [34–37] By

this versatility, combination of ADC with a PE model makes it possible to compute an

extensive set of molecular properties in atomistic polarizable environments.

For PE models to become the future gold standard for modeling molecular properties,

they must be freely available to a broad range of potential users through open-source com-

putational toolkits. Through community development endeavors, an integrative environ-

ment is created, and quantum chemical method development becomes more sustainable,

more accessible, and independently verifiable. [38] Two prominent examples for open-source

quantum chemistry toolkits are Psi4 and PySCF, [38,39] each providing a rich and competi-

tive feature set of electronic structure methods. Everyone can contribute features and bug

fixes for these toolkits via GitHub, a collaborative developer platform, and these contri-

butions are carefully reviewed by the maintainers and other developers before integrating

them into the main branch of the repository. Furthermore, these toolkits rely on program

and library interoperability to carry out specific tasks, such that their code components be-

come disentangled and are often maintained in third-party repositories, e.g., computation

of molecular integrals, inclusion of environment models, or post-processing routines. Tak-

ing advantage of a rich ecosystem of different programs and libraries pushes the frontiers of

today’s quantum chemistry simulation workflows. It is important to consider open-source

development for polarizable models which can only become the gold standard technique

in the future if they are easily accessible in many (free) programs combined with various

quantum chemical methods.

In this thesis, I develop and implement quantum chemical methods for the description of

molecular properties in different complex environments. I provide a comprehensive suite

of combined methodologies using the ADC scheme for the polarization propagator and
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the PE model, called PE-ADC approaches in the following. Relying on the PE formu-

lation by Kongsted and co-workers [14,15] together with ADC as ab initio wave function

method of choice, I present hybrid quantum-classical approaches for obtaining excited

states, higher-order response properties, and analytic nuclear gradients. This entails a

rigorous theoretical derivation of all working equations, together with a fully open-source

implementation of the relevant methodologies. Moreover, I verify, benchmark, and illus-

trate the combined PE-ADC approaches in several case studies.

In Chapter 2, I outline the theoretical framework required to derive hybrid quantum-

classical embedding models. After introducing general notation and the second quantiza-

tion (SQ) formalism (Section 2.1), I briefly describe Hartree-Fock (HF) theory (Section

2.2) and its self-consistent field (SCF) formulation. Then, I show a concise introduction

to the ADC scheme for the polarization propagator to obtain electronically excited states

(Section 2.3), together with a formulation of ADC within a response theory framework

for molecular properties (Section 2.4). In these sections, I use the so-called intermediate

state representation (ISR) to express ADC quantities via expectation values. [40] I present

a theoretical extension of the existing ADC/ISR framework toward linear response prop-

erties of excited states, proposing a simple and universal recipe for deriving ADC/ISR

response properties. The last part of the chapter is a detailed derivation of the PE model

(Section 2.5). As the essential embedding framework of this thesis, I derive all relevant

working equations, and I present the formulation of PE within an SCF framework. This

ground state PE-SCF scheme is the most basic combination of PE with an electronic

structure method, but it is mandatory since higher-level methods build upon it. Chap-

ter 3 contains most of the methodological development achieved in this thesis. First, I

present the combination of PE with ADC for excited electronic states employing a pos-

teriori perturbative corrections for the excitation energies, called pt-PE-ADC (Section

3.1). This method relies on a self-consistent PE-HF ground state without any explicit

contributions to the ADC problem itself, i.e., the environment contributions in ADC only

arise indirectly through the modified HF reference. To reduce the resulting error, I add

two perturbative corrections, taking into account different physical phenomena, to the

zeroth-order excitation energies. Afterwards, I derive a more accurate scheme accounting

for dynamic response of the polarizable environment through a linear response coupling

term (Section 3.2). This LR-PE-ADC approach retains the computational efficiency of in

vacuo ADC by using a simplified coupling density. Based on the linear response formal-

ism it is then straightforward to include dynamic environment contributions for response

properties within the ADC/ISR framework. The presented scheme enables the usage of

PE-ADC in combination with any response property available for ADC/ISR. Finally, I
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derive analytic nuclear PE gradients for correlated ground and excited state methods us-

ing the Lagrangian formalism. Next, in Chapter 4, I present the implementation of the

three open-source libraries that I use to carry out the implementation of all combined PE-

ADC methodologies. The first software component is my standalone library for PE, called

CPPE, which can be easily interfaced to any quantum chemical host program. The second

component is the adcc toolkit which enables rapid development of ADC-based methods.

The third library, respondo, is a plugin for adcc implementing various response proper-

ties based on the ADC/ISR framework. The synergy of all three components combined

with open-source host programs makes it possible to implement the derived methods in

a straightforward manner. In Chapter 5, I apply the derived and implemented PE-ADC

methodologies to several case studies, including the investigation of a biomolecular sys-

tem. In Chapter 6, I present an efficient open-source linear-scaling formulation of the PE

model based on the fast multipole method (FMM). This approach is independent of the

quantum method coupled to PE and removes the purely classical, quadratically scaling

performance bottleneck of PE when treating environments with thousands of polarizable

atoms. Naturally, I implement the PE-FMM scheme in the previously developed libraries.

In Chapter 7, I discuss the technical and algorithmic details of solving response equations

in the ADC/ISR framework. This includes two efficient solver algorithms which I integrate

into the respondo library and test for convergence behavior. I show numerical case studies

of the aforementioned excited state linear response functions in Section 7.3. In Chapter 8,

I consider more extreme environments, i.e., the distortion of molecules by the influence of

external forces. First, I introduce a new electronic structure method to apply hydrostatic

pressure via Gaussian potentials on the single molecule level, called GOSTSHYP (Section

8.1). Second, I show a new computational protocol for quantum mechanochemical anal-

yses of proteins under mechanical stress (Section 8.2). With this protocol I reveal that

the force-induced rupture mechanism of the metalloprotein rubredoxin is indeed much

more complicated than previously described in the literature. In Chapter 9, I illustrate

the design of new photocages built from fluorene derivatives. Together with experimental

collaborators, I develop the next-generation fluorene-based photocages with improved ab-

sorption behavior and uncaging quantum yields using an efficient computational screening

procedure. Finally, I conclude the thesis in Chapter 10 with further ideas and prospects

for future research.

Most of the presented results are published in peer-reviewed scientific journals, as in-

dicated by the respective citations and by footnotes at the beginning of the chapters. A

complete list of my publications can be found on page 229.





Chapter 2

Theoretical Background

To include effects from complex environments in quantum chemical simulations, the first

prerequisite is to build on established electronic structure methods and subsequently adapt

and extend these methods accordingly. In this chapter, a brief outline of the most impor-

tant electronic structure methods for electronic excited states and molecular properties

treated in this thesis (Fig. 2.1) is given. The following chapters expand upon these meth-

ods and refer to the key equations given herein. In addition, the main environment model

used in my work, namely PE, is thoroughly derived for combination with ADC in the next

Chapter 3.

2.1 Notation and Second Quantization

Using the second quantization (SQ) formalism, it is possible to define wave functions and

operators independent of the particle number. This powerful approach serves to conduct

algebraic derivations of matrix elements of operators. For an extensive discussion of SQ,

I refer to Refs. 43 and 44, which the description mostly follows.

Consider a basis of spin orbitals {ϕp(r, σ)} with the spatial coordinate r and the spin co-

ordinate σ. In the following, x is a collective variable of both spatial and spin coordinates,

i.e., ϕp(r, σ) = ϕp(x). Trial wave functions for many-electron systems are typically con-

structed from Slater determinants, which are anti-symmetrized and normalized products

Parts of this chapter have already been published in:

• M. Scheurer, T. Fransson, P. Norman, A. Dreuw, and D. R. Rehn, “Complex Excited State Polar-
izabilities in the ADC/ISR Framework”, J. Chem. Phys. 2020, 153, 074112. (Reference 41)

• M. Scheurer, “Polarizable Embedding for the Algebraic-Diagrammatic Construction Scheme”,
Springer Fachmedien Wiesbaden, 2020. (Reference 42)
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Schrödinger Equation
ĤΨ = EΨ

Hartree-Fock
fpq = δpqεp

Møller-Plesset
tijab

ADC(N)
MY = YΩ

Response Properties
α(ω)

Gradients
∂E
∂ξ

Ψ = single determinant |Φ0⟩

perturbation theory

ISR

SOS

Figure 2.1: Overview of important electronic structure methods in the context of this
thesis. The variables and equations are introduced later in the chapter.

of spin orbitals, here for an N -electron system

|Φ⟩ ≡ |ϕp1ϕp2ϕp3 . . . ϕpN | =
1√
N !

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

ϕp1(x1) ϕp2(x1) . . . . . . ϕpN (x1)

ϕp1(x2) ϕp2(x2) . . . . . . ϕpN (x2)

ϕp1(x3) ϕp2(x3) . . . . . . ϕpN (x3)
...

...
. . .

...
...

...
. . .

...

ϕp1(xN ) ϕp2(xN ) . . . . . . ϕpN (xN )

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
. (2.1)

This ansatz is chosen because it fulfills the Pauli exclusion principle. Such determinants

can be defined by means of an abstract linear vector space, called Fock space. Let

|k⟩ = |k1, k2, . . . , km⟩ , kp =

⎧⎨⎩1 ϕp occupied

0 ϕp unoccupied
(2.2)

be an occupation number (ON) vector that represents a single Slater determinant. Each

occupation number kp indicates whether the spin orbital ϕp(x) is occupied (kp = 1) or

not (kp = 0), i.e., spin orbitals with kp = 0 are not included in the respective Slater
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determinant. The scalar product of two ON vectors is defined as

⟨k|m⟩ =
N∏︂
p=1

δkpmp . (2.3)

From this definition, it follows that the overlap between Slater determinants with different

particle numbers is zero. Note that for a given spin orbital basis, there exists a one-to-

one mapping between an ON vector and a given Slater determinant Next, to manipulate

determinants or ON vectors, elementary creation and annihilation operators are defined.

The creation operator â†p creates an electron in an unoccupied spin orbital ϕp

â†p |k1, k2, . . . , 0p, . . . , km⟩ = Γk
p |k1, k2, . . . , 1p, . . . , km⟩ . (2.4)

The phase factor Γk
p depends on where in the ON vector the corresponding spin orbital

resides. It is −1 if there is an odd number of spin orbitals on the left-hand side of kp. If

there is an even number of spin orbitals on the left-hand side, it is equal to +1. Hence, the

phase factor gives the correct sign for column permutations in the corresponding Slater

determinant. Acting with â†p on an ON vector where kp = 1, i.e., the spin orbital is already

occupied gives zero,

â†p |k1, k2, . . . , 1p, . . . , km⟩ = 0, (2.5)

which is in agreement with the Pauli exclusion principle. The complementary annihilation

operator âp destroys an electron in spin orbital ϕp according to

âp |k⟩ = δkp1Γ
k
p |k1, k2, . . . , 0p, . . . , km⟩ . (2.6)

If kp = 0 and âp acts on the respective ON vector, the result is again zero, because one

cannot annihilate a non-existing electron. For derivation of algebraic expressions using

the elementary operators, the following anticommutation relations are important:

{â†p, â†q} = 0 (2.7)

{âp, âq} = 0 (2.8)

{â†p, âq} = δpq. (2.9)

From these anticommutation relations, all other algebraic properties of SQ can be derived.

Representing operators in SQ is a key feature used throughout this thesis. In general, a
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one-electron operator in first quantization

v̂c =
N∑︂
i=1

vc(ri, σi) (2.10)

is represented in SQ by

v̂ =
∑︂
pq

vpqâ
†
pâq, (2.11)

with the integrals of the first-quantized operator in the spin orbital basis

vpq =

∫︂
ϕ∗p(x)vc(x)ϕq(x)dx. (2.12)

The second-quantized representation of the operator does, in contrast to its first-quantized

form, not depend on the number of electrons, i.e., no explicit electron coordinates are used

within the definition of the operator. The spatial structure of the operator, however, enters

via the integral matrix elements. If the operator depends only on spatial coordinates, as

most often is the case, one can sum over spin coordinates and define

v̂ =
∑︂
pq

vpqÊpq (2.13)

with

Êpq = â†pσâqσ + â†pτ âqτ . (2.14)

Analogously, one obtains the SQ form of a two-electron operator

ĝ =
∑︂
pqrs

gpqrsâ
†
pâ

†
qâsâr (2.15)

with the four-index two-electron integrals

gpqrs =

∫︂∫︂
ϕ∗p(x1)ϕ

∗
q(x2)g

c(x1,x2)ϕr(x1)ϕs(x2)dx1dx2. (2.16)

2.2 Hartree-Fock Theory

Hartree-Fock (HF) theory is the cornerstone for more advanced and accurate methods in

electronic structure theory, and is thus, despite its simplicity and shortcomings, indispens-
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able in determining an approximate wave function for the electronic ground state. [43–46]

The wave function ansatz in HF consists of a single Slater determinant |Φ0⟩ that minimizes

the total energy

EHF = ⟨Φ0|Ĥ|Φ0⟩ , (2.17)

with the molecular electronic Hamiltonian [43,44]

Ĥ = ĥ+ Ŵ =
∑︂
pq

hpqâ
†
pâq +

1

2

∑︂
pqrs

⟨pq|rs⟩ â†pâ†qâsâr. (2.18)

The one-electron contribution ĥ, called core Hamiltonian, requires the integrals of the

kinetic energy and nuclear attraction operator in the basis of spin orbitals as

hpq = −1

2

∫︂
ϕ∗p(x)∇2ϕq(x)dx−

∑︂
K

∫︂
ϕ∗p(x)

ZK

|r−RK |
ϕq(x)dr, (2.19)

where the summation runs over all nuclei K with nuclear charge ZK at position RK .

The two-electron contribution Ŵ entails the following two-electron integrals of Coulomb

repulsion as

⟨pq|rs⟩ =

∫︂∫︂
ϕ∗p(r1)ϕ

∗
q(r2)

1

|r1 − r2|
ϕr(r1)ϕs(r2)dr1dr2. (2.20)

Often, anti-symmetrized two-electron integrals are used [43]

⟨pq||rs⟩ = ⟨pq|rs⟩ − ⟨pq|sr⟩ . (2.21)

Using the relation

⟨pq||rs⟩ = −⟨pq||sr⟩ (2.22)

together with

âsâr = −ârâs (2.23)

one can write the second-quantized Hamiltonian operator in the form

Ĥ =
∑︂
pq

hpqâ
†
pâq +

1

4

∑︂
pqrs

⟨pq||rs⟩ â†pâ†qâsâr. (2.24)
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The nuclear repulsion Vnn is, within the Born-Oppenheimer approximation, [43,44,47] a con-

stant term given as

Vnn =
∑︂
K<M

ZKZM

|RK −RM |
, (2.25)

which can be added to Ĥ to yield the total energy of the molecular system. Applying

the variational principle for the energy, one can devise Brioullin’s theorem stating that

rotations between occupied orbitals and unoccupied (virtual) orbitals vanish. [44] In other

words, singly excited determinant |Φa
i ⟩ do not couple to the variationally determined

ground state determinant |Φ0⟩. Throughout this thesis, let i, j, k, . . . be the indices of

occupied spin orbitals, so-called hole states, and a, b, c, . . . unoccupied spin orbitals, which

denote virtual orbitals or particle states. As before, p, q, r, s, . . . stand for general spin or-

bitals. From the Brioullin condition, an effective one-electron operator, the Fock operator

is constructed as

F̂ =
∑︂
pq

hpqâ
†
pâq +

∑︂
pqi

⟨pi||qi⟩ â†pâq (2.26)

with matrix elements fpq. The Fock operator matches the exact Hamiltonian Ĥ in the

non-interacting case, i.e., when only the contributions from the core Hamiltonian are

included. The second term describes interactions of a single electron in the mean field

of all other electrons and depends on the occupied orbitals {ϕi}, i.e., the solution of the

problem itself. Due to this dependence, one solves the HF problem in an iterative manner

until self-consistency is reached. Therefore, such procedures are called self-consistent field

(SCF) methods. The spin orbital basis in which the Fock operator is diagonal,

fpq = δpqεp, (2.27)

is called molecular orbital (MO) basis, [44] i.e., the MOs diagonalize the Fock operator.

The MO energies εp are found as diagonal elements of the Fock operator and are given as

εp = hpp +
∑︂
i

⟨ip||ip⟩ . (2.28)
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The HF energy is not equal to the expectation value of the Fock operator, which is the

sum of MO energies

⟨Φ0|F̂ |Φ0⟩ =
∑︂
i

hii +
∑︂
ij

⟨ij||ij⟩ =
∑︂
i

εi, (2.29)

but given by the expectation value of the Hamiltonian in eq (2.17) as

EHF =
∑︂
i

hii +
1

2

∑︂
ij

⟨ij||ij⟩ =
∑︂
i

εi −
1

2

∑︂
ij

⟨ij||ij⟩ . (2.30)

The integral ⟨ij|ij⟩ is called Coulomb integral since it models the Coulomb repulsion

between electrons in different spin orbitals, whereas the exchange integral ⟨ij|ji⟩ has no

analogous interpretation in classical physics. [44,47] It arises due to the fact that electrons are

indistinguishable particles. Again, the nuclear repulsion term Vnn is here omitted since

it does not depend on electron coordinates. Using the above nomenclature, a common

partitioning scheme of the Fock operator is

F̂ =
∑︂
pq

hpqâ
†
pâq +

∑︂
pqi

⟨pi|qi⟩ â†pâq⏞ ⏟⏟ ⏞
Ĵ

−
∑︂
pqi

⟨pi|iq⟩ â†pâq⏞ ⏟⏟ ⏞
K̂

(2.31)

with the Coulomb and exchange operator Ĵ and K̂, respectively.

Basis Set Approximation From a practical point of view, a convenient representation

of the MOs needs to be chosen that enables the actual implementation of HF. Usually,

MOs are constructed as linear combinations of atomic orbitals (AO), known as LCAO

approach. The linear combination of AOs {χµ(r)} gives

ϕp(x) =
∑︂
µ

Cµpχµ(r). (2.32)

The expansion coefficients C are called MO coefficients, which also contain the spin co-

ordinate. Unless specified otherwise, Greek letters α, β, γ, . . . , µ, ν, . . . are atomic orbital

indices. Using the LCAO form of the MOs, one recasts the above equation (2.27) to the

AO basis and finds a generalized eigenvalue problem

FC = SCε , C†SC = 1 (2.33)
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with the overlap matrix of atomic orbitals

Sµν =

∫︂
χµ(r)χν(r)dr, (2.34)

and the orthonormality condition in the MO basis

Spq = δpq. (2.35)

The Fock matrix elements in the AO basis are

fµν = hµν +
∑︂
γδ

Dγδ (⟨µγ|νδ⟩ − ⟨µγ|δν⟩) (2.36)

introducing the one-particle density matrix D as

Dµν =
∑︂
i

CµiCνi. (2.37)

Transformations between the AO and MO basis are achieved by

hpq =
∑︂
µν

CµphµνCνq (2.38)

and

⟨pq|rs⟩ =
∑︂
µνγδ

CµpCνq ⟨µν|γδ⟩CγrCδs. (2.39)

Now, the HF energy can be evaluated by means of the one-particle density matrix as [47]

EHF[D] =
∑︂
µν

Dµνhµν +
1

2

∑︂
µνγδ

DµνDγδ (⟨µγ|νδ⟩ − ⟨µγ|δν⟩) . (2.40)

A graphical illustration of a common SCF algorithm is shown in Figure 2.2. After

diagonalization of the Fock operator in each iteration, the density matrix is formed using

the aufbau principle, [47] i.e., the energetically lowest molecular orbitals are in the occupied

orbital space. Of note, the coefficient matrix, density matrix, and Fock matrix exhibit a
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Guess density D(0)

Build Fock operator (2.36)

Diagonalize Fock operator (2.33)

Update density (2.37)
Update energy (2.40)

SCF results: EHF, C, D

converged?

iterate

Figure 2.2: Simplified illustration of a typical SCF algorithm. The guess density D(0)

can be obtained by various different methods, [47] for example from the core
Hamiltonian.

block structure due to spin

D =

(︄
Dα 0

0 Dβ

)︄
(2.41)

C =

(︄
Cα 0

0 Cβ

)︄
(2.42)

F =

(︄
Fα 0

0 Fβ

)︄
(2.43)

with the α and β spin parts of each matrix. [47] Off-diagonal blocks are spin-forbidden. In

the case where all spatial molecular orbitals are doubly occupied (restricted HF, RHF), [47]

the α and β parts are identical and one may reformulate the problem in terms of just one

sub-block of the coefficients and density. In the unrestricted case (unrestricted HF, UHF),

two individual coefficient matrices, density matrices, and Fock operators are built for the

α and β spin part.
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Additional Remarks Applying the MO transformations to D, we have that

Dpq =
∑︂
kµν

CµpCµkCνkCνq =
∑︂
k

δkpδkq = δp∈occ.δq∈occ., (2.44)

where δp∈occ. = 1 if p is in an occupied orbital space and δp∈occ. = 0 otherwise. As follows,

the only non-zero block is

Dij = δij . (2.45)

Obviously, one recovers the HF energy functional (2.30) when writing eq (2.40) in terms of

the MO density matrix. Another interesting feature is that the Fock matrix elements can

be obtained by differentiating the energy functional with respect to the density matrix,

i.e.,

fαβ =
∂EHF

∂Dαβ
=
∑︂
µν

hµν
∂

∂Dαβ
Dµν⏞ ⏟⏟ ⏞

δαµδβν

+
∑︂
µνγδ

∂

∂Dαβ
Dµν⏞ ⏟⏟ ⏞

δαµδβν

Dγδ (⟨µγ|νδ⟩ − ⟨µγ|δν⟩) (2.46)

= hαβ +
∑︂
γδ

Dγδ (⟨αγ|βδ⟩ − ⟨αγ|δβ⟩) . (2.47)

2.3 Algebraic-Diagrammatic Construction Scheme

The algebraic-diagrammatic construction scheme for the polarization propagator was orig-

inally derived using many-body Green’s function theory. [31] In simple terms, the polar-

ization propagator describes the time evolution of polarization within a many-electron

system, that is, time-dependent fluctuations of the ground state electron density. [35] The

underlying description relies on the spectrum of the electronic Hamiltonian, such that

the polarization propagator contains information about the electronic excited states of a

molecular system. This becomes directly visible from the spectral representation of the

polarization propagator [31,34,35]

Πpq,rs(ω) =
∑︂
n ̸=0

⟨Ψ0|â†qâp|Ψn⟩ ⟨Ψn|â†râs|Ψ0⟩
ω − (En − E0)⏞ ⏟⏟ ⏞
Π+

pq,rs(ω)

+Π−
pq,rs(ω), (2.48)

where the negative part Π−
pq,rs(ω) contains the same physical information as Π+

pq,rs(ω). The

sum-over-states (SOS) expression above possesses poles at the vertical excitation energies

ω = En−E0, whereas the residues correspond to transition probabilities of the respective
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excitation. The polarization propagator can be written in a more compact diagonal matrix

form as

Π(ω) = x† (ω1−Ω)−1 x, (2.49)

with the diagonal matrix of vertical excitation energies Ωmn = (En − E0)δmn = ωnδmn,

and the matrix of transition amplitudes x. Now, a non-diagonal or ADC form of the above

matrix equation is postulated

Π(ω) = f † (ω1−M)−1 f , (2.50)

with the so-called ADC matrix M and the effective transition moments f . Both the

ADC matrix and the effective transition moments are then expanded in a perturbation

series such that approximate expressions can be obtained algebraically through a certain

order in perturbation theory. An expansion through N -th order in perturbation theory

consequently leads to the ADC(N) scheme, which contains all terms needed for a consis-

tent description of Π(ω). [35] The key equation is the resulting Hermitian ADC eigenvalue

problem

MY = YΩ, Y†Y = 1, (2.51)

which yields the excitation energies ωn as the eigenvalues of M and the corresponding

eigenvectors yn. The ADC matrix exhibits a block structure owing to the perturbation

expansions, presented in great detail in existing literature, [31,34,35,48] and illustrated for

ADC(0) through ADC(3) in Figure 2.3. The blocks arise from different excitation classes,

0

ADC(0)

ph

p
h 0− 1

ADC(1)

ph

p
h

0− 2

01

1

ADC(2)

ph

p
h

pphh

p
p
h
h

0− 3

0− 11− 2

1− 2

ADC(3)

ph

p
h

pphh

p
p
h
h

Figure 2.3: ADC matrix M block structures for ADC(0), ADC(1), ADC(2), and ADC(3).
Blocks with only non-zero diagonal elements are indicated by a black diagonal
line. Illustration adapted from Ref. 49.

i.e., the particle-hole (ph) part describes single excitations, whereas the two-particle-two-
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hole (pphh) part corresponds to double excitations. Consequently, the ADC excitation

vectors possess a ph block and/or pphh block, which correspond to occupied-virtual (ov)

and occupied-occupied-virtual-virtual (oovv) orbital spaces, respectively.

An alternative way to derive the ADC equations, which additionally provides access

to excited state ADC wave functions and properties, is the so-called intermediate state

representation (ISR). [40] Within the ISR, the ADC matrix is a representation of the shifted

Hamiltonian

MIJ = ⟨Ψ̃I |Ĥ − E0|Ψ̃J⟩ (2.52)

in the basis of intermediate states {|Ψ̃J⟩}. The intermediate state (IS) basis is obtained

by applying excitation operators to the correlated ground state wave function and sub-

sequently orthogonalizing the correlated excited states. By applying the ISR formalism

to a Møller-Plesset (MP) ground state wave function of order N , one obtains identical

perturbation series as with the purely diagrammatic approach as

M = M(0) + M(1) + M(2) + · · · + M(N). (2.53)

To obtain the ADC eigenstates, the matrix-vector product of M with a trial vector is then

required to solve eq (2.51) iteratively. [34,35,48] The matrix-vector product equations for the

N -th order ADC matrix are thus the key working equations to implement of any ADC

method. Using eq (2.51), the IS expansion of the k-th excited state wave function is given

by

|Ψk⟩ =
∑︂
J

YJk|Ψ̃J⟩. (2.54)

Most importantly, all excited state and transition properties can now be evaluated as

expectation values within the ISR, which makes the combined ADC/ISR scheme attractive

from a practical and implementation point of view. In the same spirit as the shifted

Hamiltonian, a general one-particle operator d̂ (e.g., eq (2.13)) in the IS basis is given by

BIJ(d̂) = ⟨Ψ̃I |d̂|Ψ̃J⟩ − δIJ ⟨Ψ0|d̂|Ψ0⟩ , (2.55)

where the ground state expectation value of the operator is subtracted from the diagonal.

For transition properties, the so-called modified transition moments are formulated as

FJ(d̂) = ⟨Ψ̃J |d̂ |Ψ0⟩ . (2.56)
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It is also convenient to formulate (transition) properties by means of one-particle density

matrices. The transition density matrix from the electronic ground state to an excited

state k using the ISR is [34]

ρk0pq = ⟨Ψk|â†pâq|Ψ0⟩ =
∑︂
J

Y †
Jk⟨Ψ̃J |â†pâq |Ψ0⟩ . (2.57)

Density matrices for excited states as well as transition densities between excited states

can be computed via

ρmk
pq = ⟨Ψm|â†pâq|Ψk⟩ =

∑︂
IJ

Y †
Im⟨Ψ̃I |â†pâq|Ψ̃J⟩YJk. (2.58)

By setting m = k, one obtains the difference density to the ground state

∆ρkpq = ρkkpq . (2.59)

A simple contraction with operator integrals yields the desired property, e.g., contract-

ing with the matrix elements of the electric dipole operator gives the transition dipole

moments, excited state dipole moments, or transition dipole moments between excited

states. Hence, relying on the ADC/ISR formulation directly provides access to a plethora

of molecular properties of excited states. A comprehensive summary of the “toolbox” of

equations provided by the ADC/ISR framework is shown in Table 2.1.

Table 2.1: ADC/ISR Toolbox Key Equations

Hermitian ADC eigenvalue problem MY = YΩ, Y†Y = 1

Eigenvectors Y = {yn}

ADC matrix representation MIJ = ⟨Ψ̃I |Ĥ − E0|Ψ̃J⟩

IS expansion |Ψn⟩ = |n⟩ =
∑︁

J YJn|Ψ̃J⟩

ISR one-particle operator BIJ(d̂) = ⟨Ψ̃I |d̂|Ψ̃J⟩ − δIJ ⟨Ψ0|d̂|Ψ0⟩

Modified transition moments FJ(d̂) = ⟨Ψ̃J |d̂ |Ψ0⟩

Going beyond properties that can be directly evaluated as expectation values will be

discussed in the following section.
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2.4 Response Theory in the ADC/ISR Framework

Response theory offers a general framework to derive and compute a multitude of molec-

ular properties. [2,50] Within ADC, such response properties can elegantly and easily be

derived owing to the Hermitian formulation using the formalism of the ISR. [40,51] The ISR

offers direct access to excited state wave functions and operators, as explained in the pre-

vious section, which makes it straightforward to implement method-independent spectral

representations of molecular response functions. Several response properties, e.g., static

and frequency-dependent polarizabilities of the electronic ground state, [51–53] two-photon

absorption (TPA), [37] and resonant inelastic X-ray scattering (RIXS) cross sections [54]

were already derived and implemented using ADC/ISR. In the following paragraphs, I

will briefly outline how spectral representations of various response functions can be re-

cast into the corresponding ISR formulation.

2.4.1 ADC Formulation of Linear Response Properties

ADC expressions for response properties were first formulated by Trofimov et al. [51]

based on the exact formulation of time-dependent linear response functions by Fetter

and Walecka. [55] Consider a property Ω with the associated one-particle operator Ω̂ whose

time-dependent linear response shall be expressed in the following. A time-dependent

perturbation V̂ f(t) with the time-independent perturbation operator V̂ is applied to the

system, e.g., an oscillating electric field. Note that f(t) = 0 for t < t0, i.e., the perturba-

tion is “switched off” before t0. The system is thus in the unperturbed ground state Ψ0

for t ≤ t0. The time-dependent linear response of Ω is given by [51,55]

∆Ω(t) =

∫︂ ∞

−∞
RΩ,V (t, t′)f(t′)dt′. (2.60)

The associated response function is

RΩ,V (t, t′) = θ(t− t′) ⟨Ψ0|[V̂ (t′), Ω̂(t′)]|Ψ0⟩ (2.61)

with the step function θ(t−t′) and the interaction picture form of a one-particle operator [55]

Ô(t) = eiĤtÔe−iĤt. (2.62)

Parts of this section have already been published in

• M. Scheurer, T. Fransson, P. Norman, A. Dreuw, and D. R. Rehn, “Complex Excited State Polar-
izabilities in the ADC/ISR Framework”, J. Chem. Phys. 2020, 153, 074112. (Reference 41)



2.4 Response Theory in the ADC/ISR Framework 21

The response function is subsequently transformed to the frequency domain by means of

a Fourier transform

RΩ,V (ω) =

∫︂ ∞

−∞
ei(ω+iη)tRΩ,V (t, 0)dt (2.63)

yielding the frequency-dependent form

RΩ,V (ω) = ⟨Ψ0|Ω̂(ω − Ĥ + E0 + iη)−1V̂ |Ψ0⟩ − ⟨Ψ0|V̂ (ω + Ĥ − E0 + iη)−1Ω̂|Ψ0⟩ . (2.64)

Inserting a resolution of identity for exact states 1 =
∑︁

n |Ψn⟩ ⟨Ψn| in the above expression

yields the well-known sum-over-states or spectral representation of the response function

RΩ,V (ω) =
∑︂
n̸=0

⟨Ψ0|Ω̂|Ψn⟩ ⟨Ψn|V̂ |Ψ0⟩
ω − En + E0 + iη

− ⟨Ψ0|V̂ |Ψn⟩ ⟨Ψn|Ω̂|Ψ0⟩
ω + En − E0 + iη

. (2.65)

Clearly, a similarity to the spectral representation of the polarization propagator (2.48) can

be seen. From eq (2.64) one can directly obtain the ADC/ISR form of the linear response

function by inserting a resolution of identity through intermediate states 1 =
∑︁

J |Ψ̃J⟩⟨Ψ̃J |
as

RΩ,V (ω) = F†(Ω̂)(ω −M)−1F(V̂ ) − F†(V̂ )(ω + M)−1F(Ω̂). (2.66)

Now, consider the response of the A-th Cartesian component of the electric dipole moment

Ω = µA of a system when an external oscillating electric field of the form −µ̂BFB(t), i.e.,

V̂ = −µ̂B, is applied. Inserting the operators in (2.66) yields an expression for the linear

electric dipole polarizability tensor components [2,51]

αAB(ω) = F†(µ̂A)(M− ω)−1F(µ̂B) + F†(µ̂B)(M + ω)−1F(µ̂A). (2.67)

In the static limit, i.e., when applying a static external electric field, the polarizability is

αAB(0) = 2F†(µ̂A)M−1F(µ̂B). (2.68)

2.4.2 From SOS Expressions to the ISR Form

Often, closed-form SOS expressions of response functions are given in textbooks [2] rather

than the form using the inverse of the Hamiltonian (2.64). For this reason, I outline how

one can convert the textbook SOS expressions to the ADC/ISR form in the following.

This is of course nothing new compared to insertion of the resolution of identity above,
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but just a different way of recasting the SOS form to the ISR form. Let

α0
AB(ω) =

∑︂
n̸=0

[︃
⟨0|µ̂A|n⟩ ⟨n|µ̂B|0⟩
ωn − ω − iγ

+
⟨0|µ̂B|n⟩ ⟨n|µ̂A|0⟩
ωn + ω + iγ

]︃
(2.69)

be the SOS expression for the complex electric dipole polarizability of the electronic ground

state and the frequency of the incoming oscillating electric field ω. [2] The damping term

γ ensures that we have a resonant-convergent SOS expression when ωn = ω, and further

entails a finite excited state life time. This formulation of damped response theory is also

called complex polarization propagator (CPP) approach. [2,54,56] Further, the short-hand

notation for wave functions |Ψn⟩ ≡ |n⟩ is used. To evaluate the SOS expression as stated

above, the entire spectrum of the Hamiltonian is required in order to compute transition

dipole moments between the ground state and all excited states. The ADC/ISR scheme,

however, gives us an approximate representation of the excited state wave functions found

in all SOS expressions, such that one can simply insert the ISR expressions for transition

moments into the SOS expressions. First, one requires

⟨n|µ̂A|0⟩ =
∑︂
I

Y †
In⟨Ψ̃I |µ̂A |0⟩ =

∑︂
I

Y †
InFI(µ̂A) = y†

nF(µ̂A) (2.70)

which is then inserted into eq (2.69) as

α0
AB(ω) =

∑︂
n̸=0

[︄
F†(µ̂A)yny

†
nF(µ̂B)

ωn − ω − iγ
+

F†(µ̂B)yny
†
nF(µ̂A)

ωn + ω + iγ

]︄
. (2.71)

Second, the summation needs to be removed

∑︂
n̸=0

yny
†
n

ωn
= YΩ−1Y†. (2.72)

This expression can be transformed to the inverse of the ADC matrix using the previous

definitions (see Tab. 2.1) according to

MY = YΩ | multiply with M−1 from the left (2.73)

⇒ Y = M−1YΩ | multiply with Ω−1 from the right (2.74)

⇒ YΩ−1 = M−1Y | multiply with Y† from the left (2.75)

⇒ Ω−1 = Y†M−1Y (2.76)

⇒ YΩ−1Y† = YY†M−1YY† = M−1. (2.77)
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The other terms in the denominators do not explicitly depend on excitation energies and

are just a shift on the diagonal of the ADC matrix. Third, the inverse of the ADC matrix

is inserted, where the perturbation frequency is subtracted/added on the diagonal of M,

that is

α0
AB(ω) = F†(µ̂A)(M− ω − iγ)−1F(µ̂B) + F†(µ̂B)(M + ω + iγ)−1F(µ̂A). (2.78)

Using the same procedure, all SOS expressions, e.g., for non-linear response properties, are

transformable to the ADC/ISR form. An example for a non-linear response property is the

TPA transition matrix [37] for an excited state f , which has the following SOS expression

Sf
AB(ω) =

∑︂
k

[︃
⟨0|µ̂A|k⟩ ⟨k|µ̂B|f⟩

ωk − ω
+

⟨0|µ̂B|k⟩ ⟨k|µ̂A|f⟩
ωk − ω

]︃
. (2.79)

For degenerate TPA, one sets ω = ωf/2, such that the energy sum of two degenerate

photons yields exactly the excitation energy of the final state f . In the vicinity of two-

photon resonances, the TPA matrix yields the so-called TPA transition strength as

δfTP =
1

15

∑︂
AB

(︂
Sf
AAS

f
BB + Sf

ABS
f
AB + Sf

ABS
f
BA

)︂
. (2.80)

When converting eq (2.79) to the ISR, special care needs to be taken. First, the ground

state k = 0 is included in the summation leading to a term with the ground state dipole

moment µ00A = ⟨0|µ̂A|0⟩. This contribution is not covered by the modified transition mo-

ments as they only cover transitions between the ground and excited states. Consequently,

an SOS term that is missed by straightforward transformation to the ISR is

∆k=0
AB =

⟨0|µ̂A|0⟩ ⟨0|µ̂B|f⟩
−ωf

2

+
⟨0|µ̂B|0⟩ ⟨0|µ̂A|f⟩

−ωf

2

= −2
µ00A µ

0f
B

ωf
− 2

µ00B µ
0f
A

ωf
. (2.81)

Second, the dipole moment of the final state µffA = ⟨f |µ̂A|f⟩ occurs in the summation.

This contribution is, however, not covered via the ISR operator matrix, because the ground

state contribution of the operator is subtracted on the diagonal (see eq (2.144))

⟨f |µ̂A|f⟩ = y†
fB(µ̂A)yf + µ00A , (2.82)

whereas the transition moment

⟨n|µ̂A|f⟩ = n†
fB(µ̂A)yf (2.83)
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does not contain a ground state contribution. The missing terms are

∆k=f
AB =

⟨0|µ̂A|f⟩ ⟨0|µ̂B|0⟩
ωf

2

+
⟨0|µ̂B|f⟩ ⟨0|µ̂A|0⟩

ωf

2

= 2
µ00B µ

0f
A

ωf
+ 2

µ00A µ
0f
B

ωf
. (2.84)

Intriguingly, the above terms add up to zero

∆k=0
AB + ∆k=f

AB = 0, (2.85)

such that no terms are actually ‘missed’ after all, yielding the ISR expression of the TPA

matrix as [37]

Sf
AB = F†(µ̂A)

(︂
M−

ωf

2

)︂−1
B(µ̂B)yf + F†(µ̂B)

(︂
M−

ωf

2

)︂−1
B(µ̂A)yf . (2.86)

The corresponding SOS expression is often given in the following form

Sf
AB =

∑︂
k ̸=0

[︃
⟨0|µ̂A|k⟩ ⟨k|µ̂A|f⟩

ωk − ω
+

⟨0|µ̂B|k⟩ ⟨k|µ̂B|f⟩
ωk − ω

]︃
, (2.87)

with the fluctuation dipole operator µ̂A = µ̂A − µ00A . A key point when SOS expressions

are converted to the ISR form is to check whether terms in the summation are not covered

(ground state or excited state moments) and whether these remaining terms add up to

zero or not. Another example for this is the so-called Kramers-Heisenberg-Dirac scattering

amplitude for RIXS within the rotating wave approximation [54]

F0f
AB(ω) =

∑︂
n

⟨f |µ̂A|n⟩ ⟨n|µ̂B|0⟩
ωn − ω − iγ

. (2.88)

This expression looks rather similar to the TPA equation (2.79), except that it consists

of a single term only. The additional terms not covered by ISR transition moments are

given as

∆n=f
AB =

µ00A µ
0f
B

ωf − ω − iγ
(2.89)

and

∆n=0
AB =

µ00B µ
0f
A

−ω − iγ
. (2.90)
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These two terms do not cancel each other out and have to be added as constant terms to

the ADC/ISR expression of the RIXS amplitude

F0f
AB(ω) = y†

fB(µ̂A)(M− ω − iγ)−1F(µ̂B) +
µ00A µ

0f
B

ωf − ω − iγ
+

µ00B µ
0f
A

−ω − iγ
. (2.91)

The terms that require extra consideration are relatively easy to find for linear response

functions, or when only a single summation index is present. For higher-order properties,

the conversion to the ISR form becomes more involved.

2.4.3 Linear Response Functions of Excited States

All previous properties described the response of the ground state to an external perturba-

tion. In the following, I extend the formalism for excited state response properties with the

example of complex excited state polarizabilities according to my recent publication. [41]

The linear response function (2.64) for a general electronic state |ΨN ⟩ is given by

RΩ,V (ω) = ⟨ΨN |Ω̂
(︂
ω − Ĥ + EN

)︂−1
V̂ |ΨN ⟩

− ⟨ΨN |V̂
(︂
ω + Ĥ − EN

)︂−1
Ω̂|ΨN ⟩ .

(2.92)

Inserting again Ω̂ = µ̂A and V̂ = −µ̂B as for the ground state case, eq (2.92) can be recast

to SOS form to yield the polarizability of an excited state f as

αf
AB(ω) =

∑︂
n̸=f

[︃
⟨f |µ̂A|n⟩ ⟨n|µ̂B|f⟩
ωn − ωf − ω − iγ

+
⟨f |µ̂B|n⟩ ⟨n|µ̂A|f⟩
ωn − ωf + ω + iγ

]︃
. (2.93)

The response function from eq (2.92) was further made resonant-convergent using a com-

plex frequency with the damping term γ in the denominator. Note that special care is

required with respect to this SOS expression, because the term where n = f is excluded

from the summation. To conveniently express this special summation with an excluded

excited state, I define the modified quantity

Mf = M− ωf − ωfyfy
†
f , (2.94)

which shifts the diagonal by ωf and projects the f -th eigenstate out of the matrix M, and

the analogously modified ISR operator matrix

Bf (d̂) = B(d̂) − ωfyfy
†
f . (2.95)
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These quantities replace the original ADC matrix M and operator matrix B in the cor-

responding excited state response function. As usual, we use eq (2.83) to express the

transition moments in eq (2.93). The special case where n = 0 yields two additional terms

obtained via eq (2.70) as

∆n=0
AB =

y†
fF(µ̂A)F†(µ̂B)yf

−ωf − ω − iγ
+

y†
fF(µ̂B)F†(µ̂A)yf

−ωf + ω + iγ
. (2.96)

This term ensures that the polarizability of the excited state also ‘couples’ to the electronic

ground state. Using the modified ISR operator matrix Bf and adding the additional terms

to eq (2.93) we have

αf
AB(ω) =

∑︂
n̸=f,
n̸=0

[︄
y†
fBf (µ̂A)yny

†
nBf (µ̂B)yf

ωn − ωf − ω − iγ
+

y†
fBf (µ̂B)yfy

†
fBf (µ̂A)yf

ωn − ωf + ω + iγ

]︄

+
y†
fF(µ̂A)F†(µ̂B)yf

−ωf − ω − iγ
+

y†
fF(µ̂B)F†(µ̂A)yf

−ωf + ω + iγ
. (2.97)

The final step to arrive at a programmable expression is to substitute the excitation vectors

yn and the denominator with an expression involving the inverse ADC matrix M−1
f , i.e.,

αf
AB(ω) = y†

fBf (µ̂A)(Mf − ω − iγ)−1Bf (µ̂B)yf + y†
fBf (µ̂B)(Mf + ω + iγ)−1Bf (µ̂A)yf

+
y†
fF(µ̂A)F†(µ̂B)yf

−ωf − ω − iγ
+

y†
fF(µ̂B)F†(µ̂A)yf

−ωf + ω + iγ
. (2.98)

The expression is almost identical to the ISR form of the ground state complex polariz-

ability (2.78), except that a modified ADC secular matrix and operator matrix are used

and two additional terms for coupling to the ground state are needed. The “recipes” to

arrive at ADC/ISR expressions from SOS expressions for linear ground and excited state

response functions are summarized in the box below.
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SOS to ADC/ISR Conversion Recipe

1. Ground state transition moments: ⟨n|µ̂A|0⟩ ⇒ y†
nF(µ̂A)

2. Excited state transition moments: ⟨n|µ̂A|f⟩ ⇒ y†
nB(µ̂A)yf

3. Resolve spectrum in terms of ADC matrix:
∑︂
n

yny
†
n

ωn − ω
⇒ (M− ω)−1

4. If
∑︂
n̸=f

, use modified quantities Mf and Bf

5. Check for extra terms ∆n=0
AB and ∆n=f

AB

6. Add extra terms to final expression if ∆n=0
AB + ∆n=f

AB ̸= 0

2.4.4 Solving ADC/ISR Response Expressions

To avoid full matrix inversions in the response property expressions presented above, a

system of linear equations is defined, here for the general complex case

(M− ω − iγ)x = R, (2.99)

with a general right-hand side R and the response vector x. By solving this system of

equations in an iterative manner, the resulting response vector can be inserted into the

original ADC/ISR expression to yield the desired property. The frequency argument is

omitted from the response vector in the following for clarity. To give an example, the first

equation for the complex, frequency-dependent excited state polarizability (eq (2.98)) with

R = Bf (µ̂B)yf and M = Mf is given by

(Mf − ω − iγ)xf (µ̂B) = Bf (µ̂B)yf . (2.100)

Subsequently, by inserting the response vector, the polarizability can be evaluated as

αf
AB(ω) = y†

fBf (µ̂A)xf (µ̂B) + y†
fBf (µ̂B)xf (µ̂A)

+
y†
fF(µ̂A)F†(µ̂B)yf

−ωf − ω − iγ
+

y†
fF(µ̂B)F†(µ̂A)yf

−ωf + ω + iγ
. (2.101)
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Table 2.2: Examples for response equations with right-hand sides R and frequency argu-
ments using ADC/ISR.

Property R Frequency Final Expression

α0
AB(ω) (2.78) F(µ̂B) −ω − iγ F†(µ̂A)x(µ̂B)

F(µ̂A) +ω + iγ F†(µ̂B)x(µ̂A)

Sf
AB(ω) (2.86) F(µ̂A) −ωf/2 x†(µ̂A)Bf (µ̂B)yf

F0f
AB(ω) (2.91) F(µ̂B) −ω − iγ y†

fB(µ̂A)x(µ̂B)

Note that in order to obtain the full polarizability tensor, the response equation has to

be solved for the three Cartesian components of the right-hand side and two different

frequency argument, amounting to six linear systems in total. Equation (2.99) can be

seen as the central building block for all ADC/ISR response properties. Depending on the

required property, only the matrix, frequency arguments, and/or right-hand side changes,

but the overall form remains the same. How the response vectors are used to evaluate

the final tensor in the end also varies. Sometimes, it is sufficient to compute a simple

scalar product with another vector (e.g., ground state polarizability), or a matrix multi-

plication with the ISR operator matrix is needed (e.g., excited state polarizability). The

corresponding equations for the above response properties are summarized in Table 2.2.

Note that the building blocks among all response properties are virtually identical. This

will be exploited when discussing implementation and different algorithmic approaches,

together with autogenerated evaluation of ADC/ISR properties in Chapter 7. Further-

more, the ADC matrix in eq (2.99) can be easily modified, making the first combination of

ADC/ISR response properties with polarizable environment models in Chapter 3 possible.
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2.5 Environment Effects through Polarizable Embedding

In this thesis, the PE model is combined with ab initio wave function methods for the com-

putation of excited states, molecular response properties, and nuclear gradients. Hence, PE

is the cornerstone for most of the development presented herein. In the following, a com-

prehensive derivation of PE is shown, mostly following the original literature. [14–16,22,42]

For details on how to prepare PE calculations in general, I refer to the excellent tutorial

review by Olsen and co-workers. [18]

2.5.1 Derivation of the PE Model

Consider a supermolecular system of two individual, non-overlapping fragments, named

A and B, with MA and MB nuclei, respectively. The number of fragments does not alter

the final equations, and two fragments are treated here for simplicity. In the beginning,

there is no distinction between the treatment of fragment A or B. Let

Ĥ
AB

= Ĥ
A

+ Ĥ
B

+ V̂
AB

(2.102)

be the supermolecular Hamiltonian operator of this composite system with fragment

Hamiltonians Ĥ
A

and Ĥ
B

, and the interaction Hamiltonian V̂
AB

. Since the isolated

fragment Hamiltonians only contain terms for one specific fragment and no interaction,

they are identical to the vacuum form of the molecular Hamiltonian in eq (2.24). To

arrive at a supermolecular wave function, one assumes that the individual fragment wave

functions solve the Schrödinger equation

Ĥ
A |A⟩ = EA |A⟩ and Ĥ

B |B⟩ = EB |B⟩ . (2.103)

Normalization of both wave functions

⟨A|A⟩ = 1 and ⟨B|B⟩ = 1 (2.104)

is a further requirement. The fragment wave functions can be expressed by a wave oper-

ator, i.e., a string of creation operators, acting on the vacuum state

|A⟩ = ψ̂
A |vac⟩ and |B⟩ = ψ̂

B |vac⟩ . (2.105)



30 2 Theoretical Background

Now we write the supermolecular wave function as a simple product of fragment wave

functions,

|AB⟩ = ψ̂
A
ψ̂
B |vac⟩ . (2.106)

If all states of each fragment are taken into account, this corresponds to a direct product

wave function ansatz, i.e., |AB⟩ ∈ {{|A⟩} ⊗ {|B⟩}}. Since the wave operators act on

different, non-overlapping molecular fragments, their commutator vanishes[︂
ψ̂
A
, ψ̂

B
]︂

= 0. (2.107)

Hence, we have

[â†Apσ , â
†B
qτ ] = [âApσ, â

B
qτ ] = [â†Apσ , â

B
qτ ] = 0. (2.108)

The last commutator evaluates to zero as it contains vanishing excitation operators as they

excite electrons from one fragment to another (â†Apσ â
B
qτ = 0). It is clear that the Hartree

product ansatz for the composite wave function only holds if no exchange/overlap between

A and B is found. In practical calculations, this assumption is often violated, e.g., in the

case where charge transfer between non-overlapping fragments occurs. For these cases,

special care is required in order to arrive at physically meaningful results.

The remaining key component is the interaction operator given by

V̂
AB

=

MB∑︂
m=1

ZB
m

∑︂
pq∈A

vpq(Rm)Ê
A
pq +

MA∑︂
n=1

ZA
n

∑︂
rs∈B

vrs(Rn)Ê
B
rs

+
∑︂
pq∈A
rs∈B

vAB
pq,rsÊ

A
pqÊ

B
rs +

MA∑︂
n=1

MB∑︂
m=1

ZA
n Z

B
m

|Rn −Rm|
,

(2.109)

with the nuclei-electron attraction between fragments (term 1 and 2), electron-electron

repulsion (term 3), and nuclear repulsion (term 4). The nuclear charges of fragment A

and B are respectively denoted ZA
n and ZB

m, located at Rn and Rm. The two-electron

excitation operator reduces to a product of two one-electron excitation operators acting

on one fragment each, as a result of eq (2.107). The general orbital indices p, q here refer

to fragment A, whereas r, s are indices of orbitals that belong to fragment B. The integral
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vpq(R) is defined as

vpq(R) = −
∫︂
ϕ∗p(r)ϕq(r)

|R− r|
dr. (2.110)

These matrix elements are, from a technical point of view, identical to the nuclei-electron

attraction operator found in the core Hamiltonian, but with nuclear charges from another

molecular system.

The integral over the Coulomb repulsion between electrons in either fragment is given

by

vAB
pq,rs =

∫︂∫︂
ϕ∗Ap (r)ϕ∗Br (r′)ϕAq (r)ϕBs (r′)

|r− r′|
drdr′. (2.111)

To describe fragment A in the linearly responsive environment of B, interaction ener-

gies through Rayleigh-Schrödinger perturbation theory on the supermolecular system are

derived. The perturbation operator is then identical to the fragment interaction operator

V̂
AB

. This treatment yields a subsystem Schrödinger equation for fragment A, where the

interaction operator is correct through second order. [16] The resulting energies through

second order in perturbation theory are given by

E(0) = ⟨AB|Ĥ|AB⟩ = EA + EB, (2.112)

E(1) = ⟨AB|V̂ AB|AB⟩ , (2.113)

E(2) = −
∑︂
ij

i+j ̸=0

⟨AB|V̂ AB|AiBj⟩ ⟨AiBj |V̂ AB|AB⟩
ϵAB
ij − ϵAB

00

. (2.114)

The zeroth-order contribution E(0) is the sum of the unperturbed fragment energies, and

the only terms that need further consideration are of higher order. To eliminate the

wave function dependence of fragment B, one can recast the interaction Hamiltonian to

a Taylor expansion of the inter-fragment Coulomb interactions around the coordinate Ro

in fragment B,

1

|r− r′|
=

∞∑︂
|k|=0

(−1)|k|

k!

(︃
∇k 1

|r−Ro|

)︃(︁
r′ −Ro

)︁k
(2.115)
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with

T
(k)
AB(r) = ∇k 1

|r−Ro|
. (2.116)

The summation uses a special multi-index notation with the following properties:

• k is a three-index tuple, k = (kx, ky, kz).

• |k| = kx + ky + kz

• k! = kx!ky!kz!

• The summation runs over 3|k| multi-indices, if no symmetry relations are employed.

• If symmetry is employed, only
(|k| + 1)(|k| + 2)

2
unique multi-indices are found, the

respective components need an appropriate prefactor. [57]

Further, ∇k is a short-hand notation for the multi-index power of the partial derivative

operator

∇k =

(︃
∂

∂rx

)︃kx (︃ ∂

∂ry

)︃ky (︃ ∂

∂rz

)︃kz

=
∂|k|

∂rk
. (2.117)

T
(k)
AB(r) are elements of the interaction tensor (also called T -tensor), [57] where (k) specifies

the index of multiple tensor elements and the rank of the tensor through |k|. More details

on the T -tensors can be found in Ref. 57. The Taylor expansion yields the Cartesian

multipole moment operator (r′ −Ro)
k. The expressions for all Taylor expansions of the

Coulomb interaction operator are given by

1

|r− r′|
=

∞∑︂
|k|=0

(−1)|k|

k!

(︃
∇k 1

|r−Ro|

)︃(︁
r′ −Ro

)︁k
=

∞∑︂
|k|=0

(−1)|k|

k!
T
(k)
AB(r)

(︁
r′ −Ro

)︁k
(2.118)

1

|r−Rm|
=

∞∑︂
|k|=0

(−1)|k|

k!
T
(k)
AB(r)(Rm −Ro)

k (2.119)
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1

|Rn − r′|
=

∞∑︂
|k|=0

(−1)|k|

k!
T
(k)
AB(Rn)

(︁
r′ −Ro

)︁k
(2.120)

1

|Rn −Rm|
=

∞∑︂
|k|=0

(−1)|k|

k!
T
(k)
AB(Rn)(Rm −Ro)

k (2.121)

Using these expressions, we can write the interaction Hamiltonian as

V̂
AB

=
∞∑︂

|k|=0

(−1)|k|

k!

MB∑︂
m=1

ZB
m (Rm −Ro)

k

⏞ ⏟⏟ ⏞
Q(k)

B,nuc

∑︂
pq∈A

(︃
−
∫︂
ϕ∗p(r)T

(k)
AB(r)ϕq(r)dr

)︃
Ê

A
pq⏞ ⏟⏟ ⏞

V̂(k)
A,el

+
∞∑︂

|k|=0

(−1)|k|

k!

MA∑︂
n=1

ZA
n T

(k)
AB(Rn)⏞ ⏟⏟ ⏞

V(k)
A,nuc

∑︂
rs∈B

(︃
−
∫︂
ϕ∗r(r

′)
(︁
r′ −Ro

)︁k
ϕs(r

′)dr′
)︃
Ê

B
rs⏞ ⏟⏟ ⏞

Q̂(k)
B,el

+
∞∑︂

|k|=0

(−1)|k|

k!

∑︂
pq∈A

(︃
−
∫︂
ϕ∗p(r)T

(k)
AB(r)ϕq(r)dr

)︃
Ê

A
pq⏞ ⏟⏟ ⏞

V̂(k)
A,el

×

∑︂
rs∈B

(︃
−
∫︂
ϕ∗r(r

′)
(︁
r′ −Ro

)︁k
ϕs(r

′)dr′
)︃
Ê

B
rs⏞ ⏟⏟ ⏞

Q̂(k)
B,el

+
∞∑︂

|k|=0

(−1)|k|

k!

MA∑︂
n=1

ZA
n T

(k)
AB(Rn)⏞ ⏟⏟ ⏞

V(k)
A,nuc

MB∑︂
m=1

ZB
m (Rm −Ro)

k

⏞ ⏟⏟ ⏞
Q(k)

B,nuc

.

(2.122)

Collecting terms for each fragment, one finds

V̂
AB

=
∞∑︂

|k|=0

(−1)|k|

k!

(︂
V(k)
A,nuc + V̂(k)

A,el

)︂(︂
Q(k)

B,nuc + Q̂(k)
B,el

)︂
=

∞∑︂
|k|=0

(−1)|k|

k!
V̂(k)
A Q̂(k)

B . (2.123)

Plugging in the new definition of the interaction Hamiltonian into eq (2.113), the first-order
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energy correction is

E(1) = EAB
es =

∞∑︂
|k|=0

(−1)|k|

k!

(︂
V(k)
A,nuc + ⟨A|V̂(k)

A,el|A⟩
)︂
Q(k)

B . (2.124)

Here, the expectation value of the multipole moment operator Q(k)
B is evaluated on frag-

ment B. Thus, the first-order energy describes the plain electrostatic interaction between

the fragments in terms of Cartesian multipole moments of fragment B. From this expres-

sion, one can directly obtain the effective PE operator for permanent electrostatics.

The second-order energy needs further analysis: The sum-over-states expression requires

at least one system or both systems at once to be in an electronically excited state. Hence,

the second-order energy can be split up into three individual contributions as

E(2) = −
∑︂
i ̸=0

⟨AB|V̂ AB|AiB⟩ ⟨AiB|V̂ AB|AB⟩
ϵAi − ϵA0

−
∑︂
j ̸=0

⟨AB|V̂ AB|ABj⟩ ⟨ABj |V̂ AB|AB⟩
ϵBj − ϵB0

+ Edisp (2.125)

= EA
ind + EB

ind + Edisp . (2.126)

The induction energy of fragment A, EA
ind, does not need to be taken into account since it

is implicitly included through the effective PE operator in the wave function optimization

such that |A⟩ is being polarized by the multipole moments of fragment B. Furthermore,

the aforementioned induction energy is a classical term, which is contained in the electron

density of the molecular system through the orbital rotations that build the electronic

ground state. The last term in eq (2.126), Edisp, denotes the dispersion energy (both

systems are in an excited state). [14,15,58] Since there is no well-defined way to include this

energy contribution in operator form, it is neglected. Note that an empirical dispersion

correction using a Lennard-Jones potential between fragment A and B can be introduced

in an ad hoc manner. [16,59]

Finally, we can evaluate the expectation value of the interaction Hamiltonian of the

second term in eq (2.126), namely when fragment B is in an excited state and fragment
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A is in the electronic ground state. This yields

EB
ind = −

∞∑︂
|k|=0

(−1)|k|

k!
⟨A|V̂(k)

A |A⟩
∑︂
j ̸=0

⟨B|Q̂(k)
B |Bj⟩ ⟨Bj |Q̂(k)

B |B⟩
ϵBj − ϵB0

⟨A|V̂(k)
A |A⟩ . (2.127)

The sum-over-states expression describes the polarizabilities of fragment B (eq (2.69)).

The zeroth-order term does not contribute due to orthogonality of the states, i.e., ⟨B|Bj⟩ =

0. When truncating the expansion at first order |k| = 1, and evaluating the expectation

values on fragment A, one finds

EB
ind = −1

2

(︁
FA

nuc + FA
el

)︁
αααB
(︁
FA

nuc + FA
el

)︁
= −1

2

(︁
FA

nuc + FA
el

)︁
µµµBind(F tot). (2.128)

Here, the total electric field arises from the electrons, FA
el, and nuclei, FA

nuc, of the quan-

tum region, however, the expression can be extended for multiple expansion sites in the

environment, as commonly done in practice and outlined in the following section.

PE Ingredients

1. Assume non-overlapping fragments

2. Hartree-product ansatz for super-system wave function

3. Rayleigh-Schrödinger perturbation theory (linearly responsive environment)

4. Multipole expansion on one of the fragments

5. Keep interactions representable in operator form (discard dispersion interac-

tion)

2.5.2 SCF Framework for PE

In the following, an effective PE operator is derived to couple PE to the SCF problem. The

equations derived above are generalized for S multipole expansion sites in the environment.

The resulting multi-center multipole expansion in practice yields better convergence for

the short range interactions. The electrostatics part of the operator is easily generalized

for multiple sites in the environment, whereas for the induction part, one needs to handle

the coupled linear equations for induced dipole moments.
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The total PE energy functional is given by [14–16]

Etot = EQM + EPE + Eenv, (2.129)

where EQM is the energy of the quantum region, including polarization of the wave func-

tion. EPE represents the interaction energy of the quantum region and the environment,

including polarization of the environment. Eenv denotes the internal energy of all frag-

ments in the environment, including interaction among fragments but excluding energy

contributions from polarization in the environment. Decomposing the polarizable embed-

ding energy, one finds

EPE = Ees + Eind, (2.130)

where Ees denotes the permanent electrostatic interaction between the core quantum part

and the fragments in the environment, and Eind is the energy due to induced charge

distributions of the environment. The explicit equation for the electrostatic interaction

energy is

Ees = Enuc
es + Eel

es, (2.131)

comprised by the nuclear and electronic interaction energies, respectively, where the former

is given by

Enuc
es =

S∑︂
s=1

Ks∑︂
|k|=0

(−1)|k|

k!
Q(k)

s

N∑︂
n=1

T (k)
sn Zn. (2.132)

The summation over |k| is running over 3|k| multi-indices up to the truncation level Ks

of the multipole expansion and the summation over s is running over the S sites in the

environment. The Q
(k)
s is thus the k-th component of the |k|-th-order Cartesian multipole

moment located at the expansion site coordinate Rs in the environment, and Zn is the

nuclear charge of the n-th nucleus in the quantum region comprised of N nuclei. As before,

we have used the k-th component of the interaction tensor, T
(k)
ij , between two sites i and

j,

T
(k)
ij =

∂|k|

∂xkxj ∂y
ky
j ∂z

kz
j

(︃
1

|rj − ri|

)︃
. (2.133)

Further, the electrostatic interaction energy of the electrons with the environment is given
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by

Eel
es = ⟨Φ0|V̂

es|Φ0⟩ =
∑︂
pq

DpqV
es
pq . (2.134)

Using the SQ formalism, one can write the electrostatic operator V̂
es

as

V̂
es

=
S∑︂

s=1

Ks∑︂
|k|=0

(−1)|k|

k!
Q(k)

s

∑︂
pq

t(k)pq (Rs)Êpq, (2.135)

with the one-electron orbital excitation operator Êpq and general molecular orbital indices

p and q. The integrals are given by

t(k)pq (Rs) = −
∫︂
ϕ∗p(r1)T

(k)
s1 ϕq(r1)dr1, (2.136)

and include again the k-th component of the interaction tensor (eq (2.133)).

The induction energy contribution of a linearly responsive environment amounts to

Eind = −1

2

S∑︂
s=1

µind,sFs, (2.137)

where µind,s is the induced dipole moment at site s in the environment, and Fs is the

electric field vector acting on site s, comprising the field from nuclei and electrons, as well

as the fields caused by the permanent multipole moments, i.e.,

F [D] = Fnuc + Fel[D] + Fmul . (2.138)

The static fields produced by the nuclei in the quantum region at site s in the environment

are given as

Fnuc,s = −
N∑︂

n=1

ZnT
(1)
ns , (2.139)
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whereas the static multipole fields created at site s area

Fmul,s =
∑︂
s′ ̸=s

Ks′∑︂
|k|=0

(−1)|k|+1

k!
Q

(k)
s′ T

(k+1)
ss′ . (2.140)

Note that the electric field from the electrons, and in turn the total field vector, depend

on the electronic density matrix D. We find that the induced moment at a site s depends

on the total electric field and is given by

µind,s = αs (Fs[D] + F ind,s) . (2.141)

The induced fields are produced by all other polarizable sites through

F ind,s =
∑︂
s′ ̸=s

T
(2)
ss′µind,s′ . (2.142)

This leads to a linear system of equations,

Bµind = F [D], (2.143)

with the classical response matrix B, [60] given by

B =

⎛⎜⎜⎜⎜⎜⎝
ααα−1
1 −T

(2)
12 . . . −T

(2)
1S

−T
(2)
21 ααα−1

2

. . .
...

...
. . .

. . . −T
(2)
(S−1)S

−T
(2)
S1 . . . −T

(2)
S(S−1) ααα−1

S

⎞⎟⎟⎟⎟⎟⎠ . (2.144)

The inverse polarizability tensors ααα−1
s are on the diagonal and the dipole-dipole interaction

tensors reside on off-diagonal elements. Subsequently, one can include the induced dipole

field into the wave function optimization through the induction operator

V̂
ind

[D] = −
S∑︂

s=1

∑︂
a=x,y,z

µind,s,a[D]F̂a(Rs) = −µind[D]F̂ = −F̂B−1F [D], (2.145)

using a for the respective Cartesian component x, y, or z. Further, we define the electric-

aThe bold notation of the T -tensor symbolizes the three uncontracted components which are the elements
of the resulting electric field vector.
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field operator as

F̂a(Rs) =
∑︂
pq

ta,pq(Rs)Êpq. (2.146)

The electric-field integrals are

ta,pq(Rs) = −
∫︂
ϕ∗p(r)

Rs,a − ra
|Rs − r|3

ϕq(r)dr. (2.147)

and the electric field operator F̂ contains the electric field operators for each site s and

component a

F̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F̂x(R1)

F̂y(R1)
...

F̂x(R2)
...

F̂z(RS)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.148)

The matrix elements of F̂ are defined as follows

Fpq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tx,pq(R1)

ty,pq(R1)
...

tx,pq(R2)
...

tz,pq(RS)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.149)

Finally, one solves the SCF problem (2.33) in the presence of the total embedding operator,

V̂
PE

[D] = V̂
es

+ V̂
ind

[D], (2.150)

from which we obtain an effective Fock operator

F̂
PE

= F̂ + V̂
PE
. (2.151)

Since the embedding operator depends on the one-particle density matrix D itself, namely

through the electric fields, the overall embedding operator is non-linear. As for a usual
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SCF procedure, the embedding operator is updated in every iteration using the current

SCF density matrix. Thus, polarization effects are treated in a fully self-consistent manner

for the SCF reference state.

MO representation of the PE operator It is useful to take a close look at the

properties of the PE contribution to the Fock operator for derivations following in Chapter

3. Transforming the operator (2.150) to the MO basis, one has the following matrix

elements

V PE
pq = V es

pq +
∑︂
i

−FpqB
−1 (F ii + Fnuc + Fmul)⏞ ⏟⏟ ⏞

V ind
pq

. (2.152)

From the equation above, the similarity of the induction operator and Coulomb/exchange

operators in eq (2.31) becomes evident: Both require a summation over the occupied

orbitals, and one can write the integrals of the induction operator in a more general four-

index form

V ind
pqrs = −FpqB

−1 (Frs + Fnuc + Fmul) . (2.153)

such that the PE operator is more compactly written as

V PE
pq = V es

pq +
∑︂
i

V ind
pqii. (2.154)

2.5.3 PE-SCF Nuclear Gradients

For geometry optimization or dynamics within the PE framework, analytical nuclear gradi-

ents for the quantum region molecule are needed. [59] Since the PE contribution is described

via the Fock operator, one may proceed just like in the vacuum case. This means that, in

addition to the vacuum contributions, only explicit PE energy terms need to be consid-

ered. The derivation is particularly easy because a) the quantum region coordinates are

not coupled to the expansion sites in the environment and b) the induced dipole moments

fulfill the variational condition. Starting from eq (2.129) and differentiating with respect

to nuclear displacement Ra, indicated with the superscript a, we have

Ea
tot =

∂Etot

∂Ra
=
∂EQM

∂Ra
+
∂EPE

∂Ra
+
∂Eenv

∂Ra⏞ ⏟⏟ ⏞
0

. (2.155)
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The first term is equal to the vacuum SCF gradient, and the last term vanishes because

it only depends on the (fixed) positions of the expansion sites in the environment. Note

that Ea
tot is a vector with three elements, one for each Cartesian coordinate. The second

term is split up into three individual parts

Ea
PE = Enuc,a

es + Eel,a
es + Ea

ind. (2.156)

The nuclear part of the electrostatics contribution (derivative of eq (2.132)) expands to

Enuc,al
es =

S∑︂
s=1

⎛⎝ Ks∑︂
|k|=0

(−1)|k|

k!
Q(k)

s T (k+l)
sa Za

⎞⎠ (2.157)

where l is a multi-index denoting the Cartesian component of the derivative with |l| = 1.

As a result, T -tensors of order |k|+1 are needed, but the additional Cartesian components

are assigned to the derivative itself and are not summed over. The electronic part of the

electrostatics contribution is

Eel,al
es =

S∑︂
s=1

Ks∑︂
|k|=0

(−1)|k|

k!
Q(k)

s

∑︂
pq

t(k)alpq (Rs)Dpq, (2.158)

with the integral derivatives

t(k)alpq (Rs) = −
(︂
⟨ϕalp |T (k)

si |ϕq⟩ + ⟨ϕp|T (k)
si |ϕalq ⟩

)︂
. (2.159)

Therein, ϕalp denotes the derivative of the orbital ϕp with respect to the nuclear coordi-

nate Ra and its Cartesian component l. Note that the mid center of the above integral,

i.e., the T -tensor itself, is independent of nuclear displacement such that no additional

term through product differentiation arises. The last term needed is the derivative of the

induction energy

Ea
ind = −1

2

∂

∂Ra

(︁
FB−1F

)︁
(2.160)

= −1

2

∂F
∂Ra

B−1F − 1

2
FB−1 ∂F

∂Ra
(2.161)

= −µind
∂F
∂Ra

= −µind (Fa
nuc + Fa

el) . (2.162)

No total derivative of the induced dipole moments with respect to nuclear coordinates

is required because the induced moments are variationally determined and minimize the
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induction energy, i.e.,

∂Eind

∂µind

dµind

dRa
= 0. (2.163)

The derivative of electric fields generated by nuclear charges is

Fa
nuc,s = −

N∑︂
n=1

ZnT
(1)a
ns = ZaT

(2)
as . (2.164)

Analogously, the electronic contribution uses the integral derivatives from eq (2.159) and

yields

Fal
el,s = −

∑︂
pq

t(1)alpq (Rs)Dpq. (2.165)

Thus, implementation of PE-SCF gradients is straightforward, because for the classical

part, only T -tensors of higher order are required. On the quantum side, the electrostatic

interaction integrals and field integrals need to be differentiated with respect to nuclear

coordinates. To avoid a collapse of the quantum region into the environment through

electrostatic attraction, a Lennard-Jones potential can be introduced, for example. [32,59]

Gradients for correlated ground and excited state methods will be derived in Section 3.4.



Chapter 3

Polarizable Embedding Combined with

ADC

In this chapter, I present my theoretical derivations to combine the PE model with

ADC for simulation of various properties. First, I introduce a computationally inexpen-

sive approach to electronic excitation energies based on a self-consistent PE-HF ground

state and perturbative corrections. [42,61] Second, I improve this combined scheme through

a linear response formalism for PE-ADC, which includes a coupling term of the polariz-

able environment in the ADC matrix. Through this computationally affordable post-SCF

coupling scheme, it is possible for the first time to accurately model higher-order molecu-

lar response properties with a polarizable model and ADC. Furthermore, I show the first

comprehensive derivation of PE-MP and PE-ADC analytic nuclear gradients, including

all orbital response contributions and explicit PE terms required for a successful imple-

mentation. This chapter does not only show all the theoretical derivations I performed for

PE-ADC, but serves as a blueprint for related solvent models, e.g., polarizable continuum

models. The transferability of the response and gradient equations can, in future work,

be exploited to derive and implement a plethora of combined methods within the ADC

framework. Test calculations and applications of all combined PE-ADC approaches are

shown in Chapter 5.

Parts of this chapter have already been published in:

• M. Scheurer, M. F. Herbst, P. Reinholdt, J. M. H. Olsen, A. Dreuw, and J. Kongsted, “Polarizable
Embedding Combined with the Algebraic Diagrammatic Construction: Tackling Excited States in
Biomolecular Systems”, J. Chem. Theory Comput. 2018, 14 (9), 4870-4883. (Reference 61)

• M. Scheurer, “Polarizable Embedding for the Algebraic-Diagrammatic Construction Scheme”,
Springer Fachmedien Wiesbaden, 2020. (Reference 42)
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3.1 Perturbative Treatment of Excitation Energies

In the simplest possible approach for any post-SCF and excited state method, the self-

consistently determined orbitals are kept unchanged. This scheme is called perturbation

in the energy (PTE), [62] and is easy to implement because PE contributions only explicitly

enter the Fock operator as outlined in Section 2.5.2. Furthermore, the environment contri-

butions do not add to the possibly high computational cost of the correlation treatment.

It was shown that the PTE scheme is “most correct” through second order in perturba-

tion theory, [63] and thus applicable, e.g., for a PTE-PE-MP2 treatment. In this case, no

PE contribution is included in the computation of the correlation amplitudes other than

through the “solvated” orbitals of the PE-HF ground state.

To compensate for the error of not including the environment response dynamically in

the excited state treatment or relaxing the environment with respect to a specific excited

state (perturbation in the energy and density, PTED scheme), [62] a posteriori perturbative

energy corrections can be computed for each excited state. The debate over which specific

correction terms are needed is not yet finished. In general, there are two commonly

used perturbative correction terms: i) the perturbative state-specific (ptSS) correction,

which accounts for the change in induction interaction energy upon excitation, and ii)

the perturbative linear-response (ptLR) correction, which describes the interaction energy

between the oscillating electron density and the polarizable environment. More detailed

explanations of these terms will follow. Note that these terms are not unique to atomistic

polarizable models, but also occur in polarizable continuum models, i.e., always when

mutual polarization effects are considered. In purely electrostatic embedding schemes,

none of these corrections are required in the first place, because the environment polarizes

the quantum region through a static multipole distribution entering a post-SCF treatment

by means of the modified Fock operator. This is an important starting point for deriving

the perturbative correction terms for polarizable models.

As stated above, some implementations only make use of the ptSS correction, e.g., EFP

combined with ADC and EOM-CCSD, [33,64] whereas it is common in other approaches

to treat the linear response of the environment dynamically. [14,27,28,30,32,65] The linear re-

sponse approach for PE-ADC will be shown in Section 3.2. A comprehensive and thorough

analysis carried out by Schwabe [58] using long-range perturbation theory shows that both

state-specific and linear response contributions should be included in order to capture

as much as possible of the perichromatic shift. The detailed derivation for the following

equations are available in Ref. 58, where the same starting point for multiple fragments

as in the PE derivation shown in Section 2.5.1 is used. From the perturbation analysis
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through second order, one obtains four terms that describe the perichromatic shift

∆E0→n
shift = ∆E0→n

es⏞ ⏟⏟ ⏞
(i)

+ ∆E0→n
ind⏞ ⏟⏟ ⏞

(ii)

+ ∆E0→n
excoupl⏞ ⏟⏟ ⏞
(iii)

+ ∆E0→n
disp⏞ ⏟⏟ ⏞

(iv)

. (3.1)

The first term (i) denotes the difference in Coulomb interaction energy with the electro-

static environment. This contribution is already accounted for through the HF reference

state used in ADC. The mutual change in induction energy (ii) through excitation, how-

ever, is only treated in zeroth order. The third term (iii) to consider denotes the non-

resonant excitonic coupling. The London dispersion energy (iv) is here neglected, because

its contribution is small and not part of the PE formulation anyways. [14,15,58,66] Consider-

ing the change in induction energy (ii), one can identify the terms that already entered the

ADC procedure in a static manner through the modified Fock operator by construction

as

∆E
(0),0→n
ind = ∆F0→n

ind µ0
ind = −Fn

elµ
0
ind,el + F0

elµ
0
ind,el, (3.2)

that is, the difference of the electric fields produced by the electrons multiplied with the

electronic contribution to induced dipole moments of the HF reference state µ0
ind,el. Note

that the electric fields through nuclei of the quantum region and static multipoles of the

environment remain unchanged. The zeroth-order perichromatic shift including the above

term and the electrostatic contribution from the environment is

∆E
(0),0→n
shift = ∆E0→n

es + ∆E
(0),0→n
ind . (3.3)

Again, for a purely electrostatic embedding scheme, the second term would vanish, and

the derivation would be finished at this point, with all the necessary contributions being

included by construction. To improve upon this zeroth-order scheme, the dipole moments

induced by the excited state wave function need to be incorporated by means of the ptSS

correction. [16,66] The electric field Fn
el created by the density of the n-th excited state

enters the total induction energy

En
ind = −1

2
Fn

elµ
n
ind,el, (3.4)

analogously to the ground state expression in eq (2.137). Hence, the difference of (elec-
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tronic) induction energies between the ground state and excited state n reads

∆E0→n
ind = −1

2

(︁
Fn

elµ
n
ind,el −F0

elµ
0
ind,el

)︁
. (3.5)

Subtracting eq (3.5) from eq (3.2), one obtains the ptSS correction term as

∆E0→n
ptSS = −1

2
Fel[∆ρn]µind,el[∆ρn]. (3.6)

To evaluate the above term, the induced dipole equations must be solved with the elec-

trons’ electric fields created by the difference density matrix, i.e., the same density-driven

approach used for the PE-SCF ground state can be applied. The remaining non-resonant

excitonic coupling term (iii) describes the interaction of the transition density ρn0 with

the polarizable environment, and is usually dynamically taken into account in response

theory approaches. [16] The physical phenomenon formulated in an ad hoc manner yields

the ptLR correction term

∆E0→n
ptLR = −Fel[ρ

n0]µind[ρn0]. (3.7)

Again, the correction term is easily evaluated in a density-driven framework by creating

the transition electric field and solving the induced dipole moments accordingly. In total,

the perturbative correction for the excitation energy of the n-th excited state is

∆E0→n
pt = ∆E0→n

ptSS + ∆E0→n
ptLR. (3.8)

In summary, the perturbative corrections for excitation energies entail several advantages:

• The approach is density-driven, i.e., no special routines need to be implemented

other than those already needed for PE-SCF.

• Corrections can be obtained for each excited state method for which transition

and/or excited state difference densities are available. The above derivation is inde-

pendent of the electronic structure method.

• An implementation is possible without detailed knowledge about the electronic struc-

ture method, i.e., no working equations etc. need to be modified, and only access to

the densities is necessary.

• The computational cost is almost zero, because transition and state densities are

usually evaluated anyways to obtain transition and excited state dipole moments.
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• It is straightforward to judge whether the perturbative treatment fails in the case of

the magnitudes of the corrections becoming too large (i.e., the perturbation is not

considered “small” anymore).

A small benchmark for excitation energies of solvated molecules and biomolecular appli-

cations of the pt-PE-ADC approach is presented in Chapter 5. Because of its simplicity,

however, the scheme has some shortcomings:

• Only excitation energies are corrected, but not the excitation vector itself, such that

transition and excited state properties are only correct in zeroth order.

• The pole structure of the underlying propagator is not correct anymore, i.e., the

corrected excitation energies are not identical to the poles of the response function,

but the zeroth-order excitation energies.

• There is no dynamic environment contribution to higher-order response properties,

just through the PE-HF reference state.

Motivated by this critique, a linear response formulation of PE-ADC, where the coupling

of the transition density to the environment is dynamically included in the ADC matrix,

is presented in the following section.

3.2 Linear Response Formalism for PE-ADC

To include a dynamic reaction field directly into the ADC secular equation instead of only

perturbative a posteriori contributions, the ADC matrix must include coupling terms

through linear response theory. Such combinations have recently been published for ADC

using continuum solvation models [65,67] and also the PE model presented in the follow-

ing. [32] The latter approach is based on a PE-CC2 approach, [28] closely related to the first

combination of PE and a correlated wave function method, namely PE-CCSD. [27] The

same approach was also applied for the second-order polarization propagator (SOPPA). [30]

The aforementioned methodologies were not only employed for the computation of elec-

tronic excitations, but also for higher-order response properties, such as TPA.

A key aim is to retain the computational efficiency of the already expensive ab ini-

tio methods, and it would be counterproductive if coupling to a polarizable environment

largely increased the cost of the calculation. For this reason, approximate coupling densi-

ties for the environment are typically used, [28,30,32] that is, the coupling density is evalu-

ated at a lower level of theory than the secular equations. In the PE-CC2 case, a CCS-like

coupling density was used, [28] corresponding to a CIS-like coupling density for ADC. [32]
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Evaluating a higher order transition density, i.e., an ISR(2) density in case of ADC(2), in

each iteration for each new trial vector would roughly double the computational cost com-

pared to the vacuum case. Hence, the terminology “CIS-like coupling density” [32] means

that the ISR(0) transition density (2.57) is used to create the transition electric fields in

the environment [34]

ρ
(0)
ai = via, (3.9)

where only the vo block of the density is non-zero and identical to the transposed ph block

of the excitation vector. The excitation vector, however, has arbitrary order N , resulting

in an ADC(N/0) scheme for the coupling. The modified ADC matrix M̄ is a sum of the

vacuum matrix (2.52) and the additional PE contribution

M̄ = M + MPE. (3.10)

The PE contribution to the matrix only has non-zero elements in the ph-ph block due to

the ISR(0) coupling density, which evaluate to

MPE
ia,jb = V ind,el

iajb , (3.11)

that is, the induction operator from eq (2.153) transformed to the ov space in both electric

field operators discarding non-electronic contributions [65]

V ind,el
pqrs = −FpqB

−1Frs. (3.12)

The four-index V ind,el
iajb tensor does not need to be explicitly constructed, because only the

matrix-vector product with a trial vector vjb is required

rPEia =
∑︂
jb

V ind,el
iajb vjb. (3.13)

Now, the contraction over jb brings us back to the density-driven approach with which all

PE contributions can be evaluated. In principle, one could of course construct the V ind,el
iajb

tensor, however, this would overcomplicate the implementation significantly. Using the

density-driven approach, the iterative coupling to the environment is achieved as easily

as the evaluation of, e.g., perturbative corrections described in the previous section. The

PE routine to evaluate operator and energy terms is thus independent of the electronic

structure method, as it just needs an “input” density and the information whether only
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electronic contributions are required. The corresponding implementation aspects are de-

tailed in Section 4.1. The trial vector is used as a density matrix according to eq (3.9)

producing transition electric fields

Fa(Rs)[ρ
(0)] =

∑︂
jb

ρ
(0)
bj ta,jb(Rs). (3.14)

Here, the contraction over jb corresponds to evaluation of the electric field expectation

value using the ISR(0) or CIS-like coupling density. Consequently, one obtains “transition-

induced” moments through

Bµind,el[ρ
(0)] = Fel[ρ

(0)]. (3.15)

The induction operator formed using only electronic contributions from eq (2.145) is trans-

formed to the ov space and directly yields the contribution of MPE to the matrix-vector

product

rPEia = V ind,el
ia [ρ(0)]. (3.16)

The work by Hättig and co-workers [32] uses exactly the same coupling terms. Due to

the structure of their implementation based on CC2, [28] they introduce left and right

matrix-vector products, which are of course identical in the case of the Hermitian ADC

matrix. [31,35] Finally, the modified LR-PE-ADC eigenvalue problem

M̄Y = YΩ (3.17)

can be solved iteratively as in the vacuum case. With the LR-PE-ADC scheme, however,

the environment response directly contributes to the excitation energies and excitation

vectors. The physical effect that was previously treated by means of the ptLR correction

is, in LR-PE-ADC, included dynamically through the modified ADC matrix. Note that

the change in induction energy, i.e., the interaction of the excited state wave function with

the environment, is not included using LR. One can still compute a ptSS correction on

top of LR-PE-ADC to obtain more accurate perichromatic shifts, especially when large

changes in dipole moments occur upon excitation. This combination of LR and a ptSS

energy correction was called “corrected PE” (cPE) for PE-TDDFT, [66] first introduced by

Caricato et al. for continuum models. [68]
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3.3 Molecular Response Properties in the PE-ADC/ISR

Framework

The PE model can not only been employed for linear spectroscopies, i.e., excitation ener-

gies and transition moments, but also for modeling higher-order spectroscopies that rely

on the computation of non-linear molecular response properties. The convenient approach

to such properties using the ADC/ISR framework was described in Section 2.4. Now, in-

corporating the dynamic response of the polarizable environment in an ADC/ISR response

function of any kind is straightforward having the modified secular matrix (3.10) at hand:

the vacuum ADC matrix M is just replaced by M̄, such that the matrix inversion carried

out includes the PE response contributions. Hence, no further modifications or additional

terms through the polarizable environment arise, not even for higher-order response func-

tions. This is due to the ISR approach which approximately resolves the SOS in terms of

expectation values. Considering the TPA matrix elements in a PE-ADC response scheme,

we have

Sf,PE
AB = F†(µ̂A)

(︂
M̄−

ωf

2

)︂−1
B(µ̂B)yf + F†(µ̂B)

(︂
M̄−

ωf

2

)︂−1
B(µ̂A)yf , (3.18)

which only differs from eq (2.86) by the modified PE-ADC secular matrix. Note that

also the excitation energy of the final state ωf first needs to be obtained by solving the

LR-PE-ADC eigenvalue problem from eq (3.17). The same replacement procedure can

be applied to all other response properties in the ADC/ISR framework as well. Once

the modified PE-ADC matrix is in place, no further theoretical derivations are needed,

which is very simple and convenient. The simplicity comes from the fact that response

functions are recast to the ADC/ISR form by means of expectation values. An alternative

approach is to implement response functions through derivatives of the energy. [2] The

difference between derivative and expectation value based properties is analyzed in great

detail in the excellent work by Hodecker et al. [69] For TPA, the PE model has already been

combined with PE-CCSD and PERI-CC2 [27–29] using a derivative-based scheme. In this

case, there are additional contributions arising through the coupling with the polarizable

environment, which makes derivation and implementation more complicated than in the

simple ISR scheme for ADC outlined above. Often, there are also approaches where no

coupling beyond the polarized ground state is incorporated, [70,71] which is of course much

easier from an implementation perspective. A small benchmark of different reaction field

schemes within the PE-ADC/ISR framework for TPA strengths will be shown in Chapter

5. To conclude, using the ADC/ISR formalism, it is rather simple and straightforward
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to include dynamic response of a polarizable environment when modeling all sorts of

molecular response properties.

3.4 Analytic Nuclear Gradients

Analytical evaluation of energy gradients with respect to nuclear displacement is one

of the cornerstones of electronic structure theory and quantum chemistry in general. [72]

According to the Hellmann-Feynman theorem, [73,74] the total derivative of the energy

E = ⟨Ψ|Ĥ|Ψ⟩ with respect to an external perturbation ξ is equal to the expectation

value of the partial derivative of the Hamiltonian with respect to the same perturbation.

The Hellmann-Feynman theorem holds for exact wave functions, for wave functions with

non-variational parameters ∆, additional terms arise via the chain rule

dE

dξ
= ⟨Ψ|∂Ĥ

∂ξ
|Ψ⟩ +

∂ ⟨Ψ|Ĥ|Ψ⟩
∂∆

d∆

dξ
. (3.19)

An approach to circumvent the explicit and very tedious evaluation of the non-Hellmann-

Feynman terms is the so-called Lagrangian formalism. [72,75] A Lagrangian energy func-

tional is introduced

L = E +
∑︂
i

κifi(∆) (3.20)

with the (unknown) Lagrange multipliers {κi}. The conditions {fi(∆) = 0} ensure that the

Lagrangian is stationary with respect to all multipliers. An additional requirement is the

stationarity of the Lagrangian with respect to all non-variational parameters ∂L
∂∆ = 0 which

allows one to analytically determine the unknown multipliers and making the Lagrangian

functional fulfill the Hellmann-Feynman theorem. Hence, the total derivative of the energy

becomes equal to the partial derivative of the Lagrangian

dE

dξ
=

dL
dξ

!
=
∂L
∂ξ
. (3.21)

With the Lagrangian technique, analytical excited state gradients for ADC through third

order in perturbation theory were reported by Rehn and Dreuw in 2019. [76] Here, I expand

upon their work on in vacuo gradients by deriving analytical gradients for combinations of

MP and ADC with the PE model. Analytic gradients for PE-MP2 and PE-ADC(2) were

first introduced by Hättig and co-workers in 2018, [32] however, the explicit equations given

in their work are rather scarce. For this reason, I carry out a comprehensive derivation of
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all required working equations in the following.

Construction of a General Lagrangian The total derivative of the energy can, for

any post-HF method, be constructed through effective one- and two-particle density ma-

trices and an additional set of Lagrange multipliers Ω = {ωpq} that need to be contracted

with derivatives of the overlap matrix Sξ
pq. [77] Let γe and Γe be the effective one- and

two-particle density matrix, respectively, the total derivative of the energy is expressed as

dE

dξ
=
∑︂
pq

hξpqγ
e
pq +

1

4

∑︂
pqrs

⟨pq||rs⟩ξ Γe
pqrs +

∑︂
pq

Sξ
pqωpq, (3.22)

with the derivative of the core Hamiltonian hξpq and the anti-symmetrized two-electron

integrals ⟨pq||rs⟩ξ. Both the effective densities and the Ω multipliers are obtained via the

Lagrangian formalism. For a canonical HF reference state, the Fock operator is diagonal,

fpq − δpqεp = 0, and the overlap matrix is equal to the unity matrix, Spq − δpq = 0 (see

eq (2.35)). To incorporate stationary conditions for the parameters of the correlation

treatment T = {tz}, the equations {fz(tz)} that satisfy the condition fz(tz) = 0 are

defined. Now, with all three conditions at hand, a general Lagrangian is formed [76,78]

L
(︁
C,T,Λ,Ω, T̄

)︁
= E(C,T) +

1

2

∑︂
pq

λpq(fpq − δpqεp) +
∑︂
pq

ωpq(Spq − δpq) +
∑︂
z

t̄zfz(tz).

(3.23)

All terms except the energy E(C,T) of the correlated method in the Lagrangian are equal

to zero, and the derivatives of the Lagrangian with respect to all multipliers vanish as

well. Note that the Ω and Λ multiplier matrices are symmetric. Through the following

requirements

∂L
∂C

!
= 0 (3.24)

and

∂L
∂T

!
= 0, (3.25)
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it is possible to determine all unknown multipliers in the Lagrangian. Once this is achieved,

the partial derivative of the Lagrangian evaluates as

∂L
∂ξ

=
∑︂
pq

hξpq
(︁
γpq(T) + γOpq(Λ) + γApq(T̄)

)︁⏞ ⏟⏟ ⏞
γepq

+
1

4

∑︂
pqrs

⟨pq||rs⟩ξ
(︁
Γpqrs(T) + ΓO

pqrs(Λ) + ΓA
pqrs(T̄)

)︁⏞ ⏟⏟ ⏞
Γe
pqrs

+
∑︂
pq

Sξ
pqωpq.

(3.26)

Here, the effective density matrices are split up into different contributions. First, the

so-called unrelaxed densities γ(T) and Γ(T) depend on the parameters of the correlation

treatment, but not on the Lagrange multipliers. Second, the orbital response contribu-

tions through γO(Λ) and ΓO(Λ) take into account stationarity with respect to variations

in the orbital basis and depend on the Λ multipliers. The third contribution consists of the

amplitude-relaxed densities γA(T̄) and ΓA(T̄) ensuring that the Lagrangian is stationary

with respect to parameters of the correlation method. The orbital response contributions

are independent of the underlying method, whereas the amplitude-relaxed densities are

method-dependent. Turning the focus back on PE within a Lagrangian formalism for

gradients, we notice that there is no explicit PE contribution to the correlation treat-

ment. Thus, all equations to determine unrelaxed and amplitude-relaxed densities are

unaffected by inclusion of PE and are identical to the vacuum form. The orbital response

contributions, however, will contain terms arising from PE through the modified Fock op-

erator in the PTE case, and in addition a modified energy expression for the LR-PE-ADC

case. Derivation of the orbital response contributions closely follows the notation from

Levchenko et al. [78] and Rehn et al. [76]. Some details are omitted for brevity and can be

found in the original literature.

3.4.1 Orbital Response Contributions via the PE Fock Operator

The following derivation for orbital response expressions can be used for all PTE schemes

using the PE model, i.e., no explicit PE contributions enter the correlation treatment

except for the modified Fock operator and the modified energy of the reference state. This

applies, e.g., to PTE-PE-MP2 and PTE-PE-ADC(N). Defining the energy in eq (3.23) in

terms of the Fock matrix and density matrices, a “re-sorted” Lagrangian is found as [76,78]

L =
∑︂
pq

fpqγ
′
pq +

1

4

∑︂
pqrs

⟨pq||rs⟩Γ′
pqrs +

1

2

∑︂
pq

λpq(fpq − δpqεp) +
∑︂
pq

ωpq(Spq − δpq). (3.27)
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In the equation above, the density matrices collect everything except the orbital response

part, that is [76]

γ ′ ≡ γ(T) + γA(T̄) and Γ′ ≡ Γ̃(T) + ΓA(T̄) (3.28)

with the non-separable part of the two-particle density matrix Γ̃. [76] As follows from eq

(3.24), we now need to differentiate the above Lagrangian functional and avoid partially

transformed tensors [78] via ∑︂
µ

Cµu
∂L
∂Cµt

!
= 0, (3.29)

which requires derivatives of the Fock operator, the two-electron integrals, and the overlap

matrix with respect to orbital coefficients. Their evaluation is straightforward for the

vacuum case. [76,78] The PE contributions, require further attention though. Using the

definition of the PE Fock operator (2.152), the matrix elements of the composite Fock

operator are given by

fPEpq = hpq +
∑︂
i

⟨pi||qi⟩ + V es
pq +

∑︂
i

V ind
pqii. (3.30)

As stated above, the derivatives of the first two terms are identical to the vacuum case.

The derivative of the electrostatic PE operator is simply

∑︂
µ

Cµu

∂V es
pq

∂Cµt
= V es

uqδpt + V es
puδqt. (3.31)

For the derivative of the induction operator defined in eq (2.153), it is convenient to carry

out the following split-up

V ind
pq =

∑︂
i

−FpqB
−1F ii⏞ ⏟⏟ ⏞

V ind,el
pqii

−Fpq B
−1 (Fnuc + Fmul)⏞ ⏟⏟ ⏞

µind,ne

. (3.32)

The second term only depends on two general orbital indices like the electrostatic PE

operator, and consequently the derivative is trivial

∑︂
µ

Cµu
∂Fpqµind,ne

∂Cµt
= δptFuqµind,ne + δqtFpuµind,ne. (3.33)
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The derivative of the ‘electronic’ part of the induction operator with respect to MO coef-

ficients is

∑︂
µ

Cµu

∑︂
i

∂V ind,el
pqii

∂Cµt
=
∑︂
µ

Cµu

∑︂
i

∂CγpCνqV
ind,el
γνδσ CδiCσi

∂Cµt
(3.34)

= δptV
ind,el
uqii + δqtV

ind,el
puii + δitV

ind,el
pqui + δitV

ind,el
pqiu . (3.35)

The first two terms and the derivatives in eqs (3.31) and (3.33) above share the same struc-

ture due to the Kronecker deltas, one realizes that these terms are nothing but elements

of the Fock operator itself

V PE
uq δpt + V PE

pu δqt = V es
uqδpt + V es

puδqt

− δptFuqµind,ne − δqtFpuµind,ne

+ δptV
ind,el
uqii + δqtV

ind,el
puii

(3.36)

= (V es
uq + V ind,el

uq )δpt + (V es
pu + V ind,el

pu )δqt. (3.37)

Hence, only the electronic part, i.e., the last two terms of eq (3.35), contributes beyond

the vacuum case. With this contribution at hand, the derivative of the entire Lagrangian

(3.27) with respect to orbital coefficients is [76,78]

∑︂
µ

Cµu
∂L
∂Cµt

=
(︁
2γ′ut + λut

)︁
εu

+
∑︂
pq

(︁
2γ′pq + λpq

)︁
⟨pu||qt⟩ δt∈occ.

+
∑︂
pq

(︁
2γ′pq + λpq

)︁
V ind,el
pqut δt∈occ.

+
∑︂
pqr

Γ′
tpqr ⟨up||qr⟩ + 2ωut.

(3.38)
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Swapping indices and subtracting one term from the other, one obtains

∑︂
µ

Cµu
∂L
∂Cµt

−
∑︂
µ

Cµt
∂L
∂Cµu

=
(︁
2γ′′ut + λut

)︁
(εu − εt)

+
∑︂
pq

(︁
2γ′′pq + λpq

)︁
(⟨pu||qt⟩ δt∈occ. − ⟨pt||qu⟩ δu∈occ.)

+
∑︂
pq

(︁
2γ′′pq + λpq

)︁ (︂
V ind,el
pqut δt∈occ. − V ind,el

pqtu δu∈occ.

)︂
+
∑︂
pqr

(︁
Γ′′
tpqr ⟨up||qr⟩ − Γ′′

upqr ⟨tp||qr⟩
)︁
.

(3.39)

The HF part of the densities in the equation above cancels out. For this reason, the

one- and two-particle densities which lack the HF contribution γ ′′ and Γ′′ are used. [76]

The Lagrange multipliers for the overlap matrix vanish due to symmetry (ωut − ωtu = 0).

Setting u = a and t = i, one finds the equation to determine λia as

∑︂
µ

Cµa
∂L
∂Cµi

−
∑︂
µ

Cµi
∂L
∂Cµa

=
(︁
2γ′′ia + λia

)︁
(εa − εi)

+
∑︂
pq

(︁
2γ′′pq + λpq

)︁
⟨pa||qi⟩

+
∑︂
pq

(︁
2γ′′pq + λpq

)︁
V ind,el
pqai

+
∑︂
pqr

(︁
Γ′′
ipqr ⟨ap||qr⟩ − Γ′′

apqr ⟨ip||qr⟩
)︁
,

(3.40)

which, splitting up summations in canonical blocks, expands to

0 = λia (εa − εi)

+
∑︂
kl

(2γ′′kl + λkl) ⟨ka||li⟩ +
∑︂
kl

(︁
2γ′′kl + λkl

)︁
V ind,el
klai

+
∑︂
bc

(2γ′′bc + λbc) ⟨ba||ci⟩ +
∑︂
bc

(︁
2γ′′bc + λbc

)︁
V ind,el
bcai

+
∑︂
jc

(2γ′′jb + λjb) ⟨ja||bi⟩ +
∑︂
jb

(︁
2γ′′jb + λjb

)︁
V ind,el
jbai

+
∑︂
bj

(2γ′′bj + λbj) ⟨ba||ji⟩ +
∑︂
bj

(︁
2γ′′bj + λbj

)︁
V ind,el
bjai

+
∑︂
pqr

(︁
Γ′′
ipqr ⟨ap||qr⟩ − Γ′′

apqr ⟨ip||qr⟩
)︁
.

(3.41)
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Exploiting symmetry and removing zero blocks (λkl = 0, λbc = 0), one can sort the

previous equation into λ-dependent and λ-independent parts

0 = λia (εa − εi)

+
∑︂
jb

λjb (⟨ij||ab⟩ − ⟨ib||ja⟩)

+
∑︂
jb

λjb

(︂
V ind,el
jbai + V ind,el

bjai

)︂
+ 2

∑︂
kl

γ′′kl ⟨li||ka⟩ + 2
∑︂
kl

γ′′klV
ind,el
klai

+ 2
∑︂
bc

γ′′bc ⟨ic||ab⟩ + 2
∑︂
bc

γ′′bcV
ind,el
bcai

+
∑︂
pqr

(︁
Γ′′
ipqr ⟨ap||qr⟩ − Γ′′

apqr ⟨ip||qr⟩
)︁
.

(3.42)

Note that PE terms are found in a) the part of the orbital Hessian matrix that multiplies

the Lagrange multiplies λjb (third term), and b) two static contributions to the right-hand

side of the linear equations (fifth and seventh term). Moving all λia-independent terms on

one side, the equation to iteratively determine the multipliers is

λia (εa − εi) +
∑︂
jb

λjb (⟨ij||ab⟩ − ⟨ib||ja⟩) +
∑︂
jb

λjb

(︂
V ind,el
jbai + V ind,el

bjai

)︂
= kia (3.43)

with the right-hand side

kia = − 2
∑︂
kl

γ′′kl ⟨li||ka⟩ − 2
∑︂
kl

γ′′klV
ind,el
klai

− 2
∑︂
bc

γ′′bc ⟨ic||ab⟩ − 2
∑︂
bc

γ′′bcV
ind,el
bcai

−
∑︂
pqr

(︁
Γ′′
ipqr ⟨ap||qr⟩ − Γ′′

apqr ⟨ip||qr⟩
)︁
.

(3.44)
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Once the multipliers λia are iteratively determined, the unknown Ω multipliers are acces-

sible. Starting from eq (3.38), the multipliers are given by

ωut = −
(︃
γ′ut +

1

2
λut

)︃
εu

−
∑︂
pq

(︃
γ′pq +

1

2
λpq

)︃
⟨pu||qt⟩ δt∈occ.

−
∑︂
pq

(︃
γ′pq +

1

2
λpq

)︃
V ind,el
pqut δt∈occ.

− 1

2

∑︂
pqr

Γ′
tpqr ⟨up||qr⟩ .

(3.45)

Three different canonical blocks of {ωpq} are obtained, starting with u = i and t = j yields

ωij = − γ′ijεi

−
∑︂
pq

(︃
γ′pq +

1

2
λpq

)︃
⟨pi||qj⟩

−
∑︂
pq

(︃
γ′pq +

1

2
λpq

)︃
V ind,el
pqij

− 1

2

∑︂
pqr

Γ′
jpqr ⟨ip||qr⟩ .

(3.46)

Next, with u = a and t = b, we have

ωab = − γ′abεa

− 1

2

∑︂
pqr

Γ′
bpqr ⟨ap||qr⟩ .

(3.47)

The last block is found for u = i and t = a, that is

ωia = −
(︃
γ′ia +

1

2
λia

)︃
εi

− 1

2

∑︂
pqr

Γ′
apqr ⟨ip||qr⟩ .

(3.48)

Hence, only the ωij multipliers contain explicit PE contributions when a PTE scheme is

employed.



3.4 Analytic Nuclear Gradients 59

3.4.2 Orbital Response for LR Schemes

In Section 3.2, I have presented the LR-PE-ADC scheme, where an additional coupling

term to the environment enters the ADC matrix. This goes beyond a PTE treatment,

requiring extra contributions to the orbital response equations beyond the modified Fock

operator. The total energy of an excited state n with the excitation vector x ≡ xn within

LR-PE-ADC is

En = E(0) + x†Mx + x†MPEx = E(0) + x†Mx +
∑︂
klcd

xkcxldV
ind,el
kcld⏞ ⏟⏟ ⏞

∆EPE

(3.49)

To obtain the contributions for the Λ and Ω multipliers, one requires the derivative of the

additional ∆EPE with respect to orbital coefficients

∑︂
µ

Cµu

∑︂
klcd

xkcxld
∂V ind,el

kcld

∂Cµt
. (3.50)

The derivative expands to

∂V ind,el
kcld

∂Cµt
=
∑︂
γνθσ

∂CγkCνcCθlCσdV
ind,el
γνθσ

∂Cµt
(3.51)

=
∑︂
γνθσ

δγµδktCνcCθlCσdV
ind,el
γνθσ

+
∑︂
γνθσ

CγkδνµδctCθlCσdV
ind,el
γνθσ

+
∑︂
γνθσ

CγkCνcδθµδltCσdV
ind,el
γνθσ

+
∑︂
γνθσ

CγkCνcCθlδσµδdtV
ind,el
γνθσ

(3.52)

= δkt
∑︂
νθσ

CνcCθlCσdV
ind,el
µνθσ

+ δct
∑︂
γθσ

CγkCθlCσdV
ind,el
γµθσ

+ δlt
∑︂
γνσ

CγkCνcCσdV
ind,el
γνµσ

+ δdt
∑︂
γνθ

CγkCνcCθlV
ind,el
γνθµ

(3.53)

= δktV
ind,el
µcld + δctV

ind,el
kµld + δltV

ind,el
kcµd + δdtV

ind,el
kclµ . (3.54)
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Using this result, we have

∑︂
µ

Cµu
∂V ind,el

kcld

∂Cµt
= δktV

ind,el
ucld + δctV

ind,el
kuld + δltV

ind,el
kcud + δdtV

ind,el
kclu , (3.55)

and consequently define

but =
∑︂
klcd

xkcxldδktV
ind,el
ucld

+
∑︂
klcd

xkcxldδctV
ind,el
kuld

+
∑︂
klcd

xkcxldδltV
ind,el
kcud

+
∑︂
klcd

xkcxldδdtV
ind,el
kclu

(3.56)

=
∑︂
lcd

xtcxldV
ind,el
ucld δt∈occ. +

∑︂
kld

xktxldV
ind,el
kuld δt∈virt.

+
∑︂
kcd

xkcxtdV
ind,el
kcud δt∈occ. +

∑︂
klc

xkcxltV
ind,el
kclu δt∈virt..

(3.57)

Setting the indices u, t to different orbital spaces, one obtains the contributions for both

Λ and Ω Lagrange multipliers. To determine Λ, we set u = a and t = i

bai = 2
∑︂
lcd

xicxldV
ind,el
acld , (3.58)

and also u = i and t = a, that is

bia = 2
∑︂
klc

xkcxlaV
ind,el
kcli . (3.59)

The difference bai − bia then contributes to the right-hand side of eq (3.42) as a constant

term, independent of λia. For the contributions to ωij (eq (3.46)), we set u = i and t = j

and find

bij = 2
∑︂
lcd

xjcxldV
ind,el
ldic . (3.60)
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In the same manner, one obtains the contribution to ωab (eq (3.47)) via u = a and t = b

as

bab = 2
∑︂
kld

xkbxldV
ind,el
kald . (3.61)

The additional ωia term (eq (3.48)) is accessible via bia. In summary, the adapted Ω

multipliers are

ω′
ij = ωij −

1

2
bij (3.62)

ω′
ab = ωab −

1

2
bab (3.63)

ω′
ia = ωia −

1

2
bia. (3.64)

Table 3.1: Summary of all orbital response working equations through the PE ground state
(Fock operator) in PTE, and the matrix term in LR-PE

Term PTE LR-PE

λ iteration
∑︂
jb

λjbV
ind,el
jbai + λbjV

ind,el
bjai -

kia −2
∑︂
kl

γ′′klV
ind,el
klai − 2

∑︂
bc

γ′′bcV
ind,el
bcai −2

∑︂
lcd

xicxldV
ind,el
acld + 2

∑︂
klc

xkcxlaV
ind,el
kcli

ωij −
∑︂
pq

(︃
γ′pq +

1

2
λpq

)︃
V ind,el
pqij −

∑︂
lcd

xjcxldV
ind,el
ldic

ωab - −
∑︂
kld

xkbxldV
ind,el
kald

ωia - −
∑︂
klc

xkcxlaV
ind,el
kcli

With these equations at hand, all Λ and Ω multipliers are available. No explicit con-

tributions are required for the amplitude response Lagrange multipliers T̄ because no

environment-specific terms enter the correlation treatment.

3.4.3 PE Contributions to the PTE-PE Gradient

As a final step to execute the derivative of the Lagrangian with respect to nuclear coordi-

nates, the explicit PE contributions need to be identified. These arise, in a PTE scheme

through a) the PE contribution to the HF energy (2.130), and b) through the Fock oper-
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ator (2.150). All other contributions needed for the derivative, including method-specific

density matrices for the amplitude response of ADC schemes can be found in Ref. 76. For

convenience, a difference density matrix between the effective density and the HF density

is defined as

γ∆ = γe − γHF (3.65)

with

γHF
ij = δij . (3.66)

Now, using this definition, let

∆LPTE-PE = EPE[γHF] +
∑︂
pq

V PE
pq γ∆pq (3.67)

be the difference to the vacuum Lagrangian. To simplify the expression, one can split up

the above terms to

∆LPTE-PE =
∑︂
pq

V es
pq γ

HF
pq +

∑︂
pq

(︂
V es
pq + V ind

pq

)︂
γ∆pq + Enuc

es + Eind (3.68)

=
∑︂
pq

V es
pq

(︁
γHF
pq + γ∆pq

)︁
+
∑︂
pq

V ind
pq γ∆pq + Enuc

es + Eind (3.69)

For clarity, let us split up the Lagrangian in an electrostatic part

∆LPTE-PE
es =

∑︂
pq

V es
pq γ

e
pq + Enuc

es (3.70)

and an induction part

∆LPTE-PE
ind =

∑︂
pq

V ind
pq γ∆pq + Eind. (3.71)

The derivative of the electrostatic contribution is given by

∂∆LPTE-PE
es

∂ξ
=
∑︂
pq

∂V es
pq

∂ξ
γepq +

∂Enuc
es

∂ξ
(3.72)

= Eel,ξ
es [γe] + Enuc,ξ

es (3.73)
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which can be evaluated via eq (2.158) using the total one-particle density γe, and eq

(2.157), which is method-independent. The induction part requires more handiwork due

to the fact that the induction operator itself is density-dependent and does not directly

yield the induction energy. Expanding eq (3.71) yields

∆LPTE-PE
ind = −1

2
µind[γHF]F [γHF] − µind[γHF]Fel[γ

∆]. (3.74)

Now carrying out the partial derivative of the induction Lagrangian, we have that

∂∆LPTE-PE
ind

∂ξ
= − µind[γHF]

∂F [γHF]

∂ξ

− ∂

∂ξ

(︁
µind[γHF]Fel[γ

∆]
)︁
,

(3.75)

where we have used eq (2.162) to simplify the derivative of the PE-HF induction energy.

The second term in the above equation yields two summands due to the chain rule

− ∂

∂ξ

(︁
µind[γHF]Fel[γ

∆]
)︁

= − ∂Fel[γ
∆]

∂ξ
B−1

(︁
Fnuc + Fel[γ

HF] + Fmul

)︁
−Fel[γ

∆]B−1

(︃
∂Fel[γ

HF]

∂ξ
+
∂Fnuc

∂ξ

)︃
.

(3.76)

Summing up all terms gives

∂∆LPTE-PE
ind

∂ξ
= −

(︁
Fnuc + Fel[γ

HF] + Fmul

)︁
B−1

(︃
∂Fel[γ

HF]

∂ξ
+
∂Fnuc

∂ξ

)︃
− ∂Fel[γ

∆]

∂ξ
B−1

(︁
Fnuc + Fel[γ

HF] + Fmul

)︁
−Fel[γ

∆]B−1

(︃
∂Fel[γ

HF]

∂ξ
+
∂Fnuc

∂ξ

)︃
.

(3.77)

= − (Fnuc + Fel[γ
e] + Fmul)B

−1

(︃
∂Fel[γ

HF]

∂ξ
+
∂Fnuc

∂ξ

)︃
− ∂Fel[γ

∆]

∂ξ
B−1

(︁
Fnuc + Fel[γ

HF] + Fmul

)︁ (3.78)

= − µind[γe]

(︃
∂Fel[γ

HF]

∂ξ
+
∂Fnuc

∂ξ

)︃
− µind[γHF]

∂Fel[γ
∆]

∂ξ
.

(3.79)

The induction part of the correlated gradient can thus be evaluated similarly to the SCF

case. It requires the solution of the induced dipole moments using the correlated density
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in the first term of eq (3.79), and the field derivative with the difference density in the

second term. After all, these expressions are easily evaluated. Note that the above gradient

expressions apply to all PTE-PE schemes, not only the PE-MP2 case. They also yield the

correct PTE-PE-ADC(N) gradient by using the respective excited state relaxed densities.

3.4.4 PE Contributions to the LR-PE-ADC Gradient

When a LR coupling scheme is employed, the additional term in the PE-ADC Lagrangian

is

∆LLR-PE-ADC =
∑︂
klcd

xklxcdV
ind,el
klcd = −Fel[ρ

(0)]B−1Fel[ρ
(0)]. (3.80)

Carrying out the derivative is straightforward

∂∆LLR-PE-ADC

∂ξ
= −2µind,el[ρ

(0)]
∂Fel[ρ

(0)]

∂ξ
. (3.81)

In the actual implementation, I use a symmetrized density matrix, yielding the following

working equation

∂∆LLR-PE-ADC

∂ξ
= −1

2
µind,el[ρ

(0) + ρ(0)†]
∂Fel[ρ

(0) + ρ(0)†]

∂ξ
. (3.82)

To obtain the total PE contribution to the excited state LR-PE-ADC gradient, one needs

to sum up the above expression and the expression for the PTE-PE-ADC gradient

∂∆LLR-PE-ADC,tot.

∂ξ
=
∂∆LPTE-PE-ADC

∂ξ
+
∂∆LLR-PE-ADC

∂ξ
. (3.83)

The PE contribution is then just added on top of the vacuum ADC gradient expres-

sion, yielding the correct PE-ADC energy derivative. Initial results demonstrating the

correctness of my derivation and implementation can be found in Chapter 5. Note that

the derivation I presented herein can be used to obtain gradients for related polarizable

models, e.g., polarizable continuum models.
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3.5 Summary of PE-ADC Methodologies

The derivations presented in this chapter for combining PE with ADC present a compre-

hensive toolkit to model all sorts of properties with the atomistic, polarizable model and

an ab initio wave function method. Of note, all the equations are in principle transfer-

able to other environment methods, which is particularly interesting for the derivation of

analytic nuclear gradients with, e.g., the polarizable continuum model. At a glance, the

derived methods and their possible applications are illustrated in the summary Figure 3.1,

and the implementations are described in the following chapter.

PE-SCF

PTE-PE-MP

LR-PE-ADC

PTE-PE-ADC

Electronic Excitations Response PropertiesGradients

+M̄

(+ ptSS)

ptSS, ptLR

0-th order

Figure 3.1: Illustration of PE-ADC methodologies (red) developed in this chapter and the
resulting molecular properties that have become available (blue).





Chapter 4

Open-Source Libraries for Computational

Spectroscopy

In the previous chapter, I outlined the theoretical foundations for the combination of the

polarizable embedding model with ADC for the computation of various molecular prop-

erties. The development of such combined methodologies requires reliable, easy-to-use,

and extensible software frameworks as completely orthogonal components, which need to

be assembled and interfaced with one another. For example, the formulation of a PE

framework is, in general, completely method-independent, and only the interface between

PE and the specific electronic structure method of choice actually needs to “know” how

quantities are to be handled. The realm of electronic structure theory and computational

chemistry software has in recent years seen the emergence of more and more projects rely-

ing on hybrid approaches between high-level scripting languages like Python, and low-level

compiled libraries written in C++. [38,81–83] During the work for this thesis, I have adopted

the same approach to further the framework for computational spectroscopy using PE and

ADC approaches, which resulted in mainly three software projects. First, I have imple-

mented a standalone hybrid Python/C++ library for the polarizable embedding model,

called CPPE. CPPE has enabled my own research work and it is currently interfaced to

four different quantum chemistry programs, ready to be combined with quantum chemical

methods of any kind. [79] Second, a toolkit for rapid development and experimentation of

Parts of this chapter have already been published in:

• M. Scheurer, P. Reinholdt, E. R. Kjellgren, J. M. H. Olsen, A. Dreuw, and J. Kongsted, “CPPE:
An Open-Source C++ and Python Library for Polarizable Embedding”, J. Chem. Theory Comput.
2019, 15 (11), 6154-6163. (Reference 79)

• M. F. Herbst, M. Scheurer, T. Fransson, D. R. Rehn, and A. Dreuw, “adcc: A Versatile Toolkit for
Rapid Development of Algebraic-Diagrammatic Construction Methods”, WIREs Comput Mol Sci.
2020, 10:e1462. (Reference 80)

67
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ADC-based methods was developed in collaboration with Dr. Michael F. Herbst in our

group, which allowed for implementation of PE in combination with ADC. [80] Third, I

have implemented the standalone respondo library that evaluates various response func-

tions within the ADC/ISR framework as a part of the Gator project. [84] This library also

contains state-of-the-art solver algorithms for efficient practical calculations of response

properties. All three software projects, their individual design, and implementation will

be described in the following.

4.1 CPPE: C++ and Python Library for Polarizable

Embedding

A first step toward advanced environment modeling with any quantum chemical method

is to have a reliable code for the environment part itself. The quantum and classical

part are, to some extent, uncoupled from one another, i.e., their implementation can be

achieved in an orthogonal manner. Hence, implementations of a single embedding method

like the PE model can be modularized and interfaced to multiple quantum chemical pro-

gram packages, and be combined with a multitude of methods therein. [79,85,86] Exploiting

modular libraries puts the main focus back on the development of quantum mechanical

methods: Using a well-tested, production-ready library for the inclusion of environment

contributions is much more sustainable and time-efficient than re-implementations for each

program package and method. The modular library must be cautiously designed to avoid

inefficient and overly complicated interfaces in the future. For this reason, it is important

to know exactly which tasks are to be performed by the library and which not. One may

now argue that such a library for the PE model already exists: PElib [87] is a Fortran library

with which the original implementation of the PE model formulation used also in this the-

sis was achieved. [14,15] PElib is certainly the most used implementation currently publicly

available, its source is fully disclosed, and it is interfaced to the Dalton program, [88] where

it enables PE computations with an enormous amount of methods. [27,28,30,89–92] Due to

close “entanglement” with the host program Dalton, PElib is not necessarily the most

suitable solution to provide modularity, extensibility, and maintainability. Furthermore,

no ADC-based methods are available in the programs that work with PElib. Motivated

by these problems and inspired by the feature-rich PElib, an initial standalone PE imple-

mentation in Q-Chem, [93,94] fully written in C++, was achieved, enabling my work in Ref.

61. Going a step further, this pilot implementation [42] was refactored and led to a fully

open-source modular library for PE, named CPPE, that is the “C++ and Python library
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for PE”. [79] The CPPE library contains the necessary routines to implement ground state

and molecular property calculations with PE, previously outlined in Chapters 2 and 3.

Through its minimalist application programming interface (API), CPPE can be easily

coupled to any quantum mechanical host program with minor programming effort. The

library was inspired by PCMSolver [86] and libefp, [85] which are similar libraries for con-

tinuum solvation models and the effective fragment potential (EFP) method, respectively,

and of course, PElib. Since its first release, I have interfaced CPPE to four quantum

chemical program packages: Q-Chem, [93,94] Psi4, [38,81] PySCF, [39,95] and VeloxChem. [83]

All implemented interfaces led to co-authorship on the respective publications of the pro-

gram packages. [38,39,83,94]

CPPE provides both a C++ and a Python API, exposing the necessary high-level func-

tionality. The Python API allows for quick manipulation of data and rapid prototyping to

try out new variants or combinations of the PE model, and is used in all interfaces except

for Q-Chem. On the low level, CPPE was originally based on PElib [87] and still contains

some code that was “literally” translated from Fortran to C++, however, I have refactored

most of the routines by now to adopt a more C++-typical code style. CPPE is designed

to be as modular as possible, such that it can be interfaced to any host program. There-

fore, the CPPE code base is completely free of any host-program-specific code. CPPE has

already rendered calculations with PE more accessible as it becomes available in more and

more program packages. In the following, I explain the design philosophy of CPPE, to-

gether with implementation details considering the theoretical methodology from Section

2.5.1. After that, I give instructions on how to easily interface CPPE to a new quantum

chemistry program, together with specific examples of the host programs I have interfaced

it to in the past.

4.1.1 Design and Implementation

Implementation of the CPPE library was initially guided by the existing Fortran library

PElib. [87] PElib was also used as a reference for quick testing of the individual routines in

the course of the implementation. I aimed for high modularity, host program agnosticy, [86]

and extensibility to achieve a sustainable library design. Therefore, CPPE is implemented

in C++, which provides the necessary scaffold for data containers and standard algorithms

through the standard template library (STL) and object-oriented programming. The latter

makes the implementation of the necessary data structures for the PE library intuitive and

easily extensible. CPPE is built with CMake, [96] widely used in quantum chemical program

packages, e.g., in Psi4, [38,81] and thus making CPPE easy to integrate in an existing build
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setups as an optional external dependency. The CMake setup in CPPE was adopted from

other external libraries that are optional dependencies of Psi4. To perform numerical linear

algebra operations, e.g., solving the linear equations for induced moments, the header-only

Eigen3 library [97] is used. To bring CPPE to modern Python-based quantum chemistry

codes, the functionality of the library is interfaced to the Python layer by the lightweight

header-only pybind11 library. [98] The pybind11 interface code inside CPPE is very concise

and allows for rapid extension of Python-exposed functionality. Other than the code of

the testing framework and some scripts, CPPE does not contain any Python code needed

for functionality. Consequently, new functions and features are implemented in C++ and

then exposed to Python via an appropriate interface. Furthermore, Eigen3 matrices and

vectors are seamlessly converted to numpy arrays [99] and vice versa through pybind11. A set

of unit and functionality tests are implemented in Python using pytest. [100] In general,

the presented hybrid C++/Python programming approach has also proven powerful in

the recently published Psi4NumPy package. [82] A summary of the number of source code

lines per programming language for the current CPPE version is shown in Figure 4.1.

As can be seen in the bar plot, CPPE relies on autogenerated code for some parts of

Figure 4.1: Number of source code lines for each language in CPPE, version 0.3.1. The
C++ statistics include both header and source files.

the library, contributing most of the source code. Other than that, the library is rather

lightweight with less than 700 lines of Python code for testing and less than 3000 lines of

handwritten C++ code for the core functionality and pybind11 interfaces. For this reason,
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it is easy for new developers to get started and to identify how the library components

are connected to each other. The most recent version of the CPPE source code (v.0.3.1)

can be downloaded from GitHub (https://github.com/maxscheurer/cppe). The C++

core library is contained in the cppe/core directory in the downloaded folder, whereas the

Python bindings reside in cppe/python iface. Since recently, CPPE is deployed to the

Python Package Index for easy installation via pip install cppe, and installation via the

Anaconda package manager with the command conda install -c conda-forge cppe is

conveniently possible. The deployment of a new CPPE version is automatically run once

a new release is tagged on GitHub, reducing the work for the maintainer dramatically.

Most importantly, the core library is equipped with data containers for embedding po-

tentials, comprised of multipole moments ({Q(k)
s }, Multipole class) and polarizabilities

({αsαsαs}, Polarizability class). The main parameter container for each site in the envi-

ronment is the Potential class, comprised of coordinates Rs for a site s, together with a

list of multipoles (std::vector<Multipole>), the polarizability (Polarizability), and

some helper functions. The full environment parametrization is stored as a

std::vector<Potential>. The three parameter container classes are depicted in Figure

4.2. Usually, all fields and functions of such classes are exposed to Python in a “pythonic”

Figure 4.2: C++ classes containing the embedding potential. The Multipole and
Polarizability classes contain the actual parameters and provide helper
functions, e.g., removing the trace of a multipole moment or making a po-
larizability isotropic. A single site in the environment is fully parametrized
through an instance of the Potential class, consisting of the site index s,
the coordinates, and vectors of multipoles and polarizabilities. Helper func-
tions make it easy to add additional parameters or to check if a specific site is
polarizable.

manner, i.e., the code reads nicely next to real Python code and does not make the im-

pression to be C++ under the hood. CPPE reads the parameters mentioned above from

https://github.com/maxscheurer/cppe
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a so-called potential file. The format is identical to that used in PElib, explained in Ref.

18. Read-in is performed by the PotfileReader class. If a special treatment of the border

between the quantum and classical region is required, the PotManipulator class can, for

example, redistribute or remove parameters of the affected sites. In addition to param-

eters, information about the quantum region has to be stored, for example, to evaluate

the nuclear electrostatic interaction energy or gradient (eqs (2.132) and (2.157)). This is

achieved by the Atom class, which holds the coordinate Rn, charge Zn, and element symbol

of an individual atom in the quantum region. A Molecule class is then defined as a type

alias of std::vector<Atom>. The core library naturally provides classes to compute all

classical energies and electric fields: MultipoleExpansion evaluates the nuclear-multipole

interaction energy (eq (2.132)), whereas NuclearFields and MultipoleFields implement

electric field contributions from nuclei and multipole moments, respectively (eqs (2.139)

and (2.140)). These classes also handle the computation of classical contributions to the

analytical nuclear gradient.

For solving the system of linear equations of the induced dipole moments in eq (2.143),

an iterative conjugate gradient (CG) solver is employed. In the solver procedure, ex-

plicit construction of the B matrix is not needed, but the algorithm is implemented in

a contraction-based manner, i.e., only using the matrix-vector product with a trial vec-

tor. This is taken care of by the BMatrix class, which contains routines to apply the

B matrix to a vector (apply function), or the inverse diagonal for Jacobi precondition-

ing (apply diagonal inverse function). Explicit construction would be computationally

prohibitive for large environments, however, the BMatrix class implements this feature for

testing purposes. The solver algorithm itself is implemented in the InducedMoments class,

providing convenient wrappers to solve equations like (2.143) with any right-hand side. A

guess vector for the linear equations is obtained by applying the preconditioner once to

the right-hand side, i.e., multiplying the field vectors at all sites with the respective po-

larizability. As can be seen from the theoretical part, the most important building block

of the classical expressions are the T -tensors (eq (2.133)), which are usually computed

using an open-ended formula. [18,101] For low-order T -tensors, however, it is beneficial for

performance to generate the code for evaluation of T -tensors automatically. This was

done based on a Python script written by my collaborator P. Reinholdt as part of his

polarizationsolver project (https://gitlab.com/reinholdt/polarizationsolver).

The script to generate the code for T -tensors up to a certain order can be found in the

scripts/gen tensors directory of the CPPE source. The script evaluates the derivatives

of 1/R analytically with SymPy [102] producing the necessary source and header files for

direct integration in CPPE. The function to evaluate the analytic derivative is shown

https://gitlab.com/reinholdt/polarizationsolver
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1 def T_cart(sequence):

2 x, y, z = sympy.symbols("x y z")

3 R = sympy.sqrt(x**2 + y**2 + z**2)

4 T = 1 / R

5 if sequence:

6 return sympy.diff(T, *[i for i in sequence])

7 else:

8 return T

Listing 4.1: Code fragment to produce Cartesian T -tensors with SymPy by analytic dif-
ferentiation.

in Listing 4.1. For optimized performance, common subexpression elimination (CSE) is

enabled, and the power function std::pow(b, n) is expanded to multiplications up to

n = 5. In the current version of the code, T -tensors are generated up to sixth order

as normally no higher-order tensors are required in practice. If the user desires to com-

pute tensors of higher order, the recursive, open-ended code can be used for that. To

avoid over-polarization, interactions involving T -tensors, i.e., permanent multipole fields

(eq (2.140)), or dipole-dipole interaction tensors (T(2) in eq (2.144)) can be damped using

Thole’s exponential scheme. [103,104] The code for the damped tensors is autogenerated,

too.

User-provided options, e.g., the path of the potential file, convergence thresholds, or

treatment of the border between the quantum and classical region, are defined in the

PeOptions class. On the Python side, it is, however, much more natural to handle op-

tions and parameters using dictionaries. For this reason, the methods that require a

PeOptions instance as argument on the C++ level are wrapped, such that a Python dict

can be conveniently passed. Since Python dictionaries are fully dynamic, the keyword

names and their respective types are checked for consistency in the wrapper function. The

inverse wrapper also exists, such that the options passed to CPPE can be conveniently

printed as a dict in Python code.

The aforementioned low-level building blocks and functions do not need to be assem-

bled from scratch when interfacing CPPE to a new host program, which would be tedious

and error-prone: CPPE provides a convenient top-level wrapper of all low-level functions

exposed through the CppeState class (Fig. 4.3). Using the CppeState to manage all

necessary PE tasks reduces the programming effort because all implemented functions

and data fields of CppeState are self-explanatory and correspond to the equations given
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Figure 4.3: CppeState class members. The CppeState serves as the top-level interface
of the CPPE library. It exposes a variety of functions to carry out all host-
program-independent tasks. All the building blocks, e.g., to solve the lin-
ear equations for induced dipole moments, are properly assembled in the
CppeState functions. Further, CppeState manages bookkeeping of energy
contributions and electric fields.

in the Theory part. The CppeState can be constructed from a Molecule object and a

PeOptions object. After instantiation, the potential file is automatically parsed, manipu-

lated if needed, and stored inside the CppeState. Then, the CppeState instance is ready

for use until it is deallocated. Through such a high-level class that allows access to all

required routines, some flexibility is of course given away, but the individual components

of CPPE can still be used in a dynamic workflow. With the components and high-level in-

terface of CPPE API at hand, I now want to provide a small tutorial on how to implement

the host program side of the interface in a general manner.

4.1.2 How to Interface CPPE to a Host Program

CPPE is completely agnostic of any host-program-specific code and data. As a result, only

an interface on the host program side needs to be implemented, integrating both CPPE
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and program-specific routines. A schematic overview of the overall interface structure

is shown in Figure 4.4. The host program side of the interface communicates with the

input reader, integral library, SCF driver, and post-SCF drivers of the host program. A

Figure 4.4: Schematic overview of the interface structure. The host program side of the
interface to CPPE requires access to the input reader (if applicable), integral
library, SCF driver, and post-SCF driver of the host program. The host-
program-independent tasks are taken care of on the CPPE side, wrapped by
a state object. Since the interface to include the CPPE state is minimal, the
major programming work is in gathering the required data and integrals from
the host program.1

mock implementation of such a CppeHostProgramInterface is presented using Python

code snippets. First of all, the constructor of the class (Listing 4.2) takes a Molecule and

PeOptions object to build the initial CppeState. Furthermore, the function constructs a

numpy array with the coordinates of all polarizable sites for downstream computation of

field integrals. Finally, the static contributions to the electrostatic interaction energy and

electric fields are calculated. The key ingredient of the host program interface is to expose

a routine to compute the PE operator and energy from an input density matrix. Such a

density-driven function can be employed both in the SCF driver and a post-SCF driver,

as previously explained in Chapter 3. For gradients, it is more convenient to implement

an additional function, handling exclusively gradient contributions, into the host program

interface. An illustrative implementation of the PE contribution routine is displayed in

Listing 4.3. The PE contribution routine first needs to compute the electrostatics oper-

ator (eq (2.135), step I), making use of the host program integral library together with

the multipole moments stored in the CppeState. A sketch of this function inside the

CppeHostProgramInterface class is displayed in Listing 4.4.

The required integrals (eqs (2.136) and (2.147)) must be available in the host program. For
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1 import numpy as np

2 from integral_library import Integrals # mock host program integral library

3 from cppe import CppeState

4

5 class CppeHostProgramInterface:

6 def __init__(self, molecule, options):

7 self.cppe_state = CppeState(molecule, options)

8 # coordinates of polarizable sites

9 self.polarizable_coords = np.array([

10 site.position for site in self.cppe_state.potentials

11 if site.is_polarizable

12 ])

13 # initialize the host program integral library

14 self.integrals = Integrals()

15 self.cppe_state.calculate_static_energies_and_fields()

Listing 4.2: Mock constructor of CppeHostProgramInterface.

practical applications, however, it is often sufficient to have potential derivative integrals

through second order, i.e., normal Coulomb integrals (used for the nuclear attraction oper-

ator), electric field integrals, and electric field gradient integrals. With these features, it is

possible to model electrostatic interactions up to quadrupole moments and to employ self-

consistent treatment of dipole polarization. Once computed, the electrostatics operator

can be cached. After storing the operator, the electronic contribution to the electrostatic

interaction energy (eq (2.134)) is obtained as the product-trace with the density matrix

(line 5 in Listing 4.3). Second, the PE routine obtains the expectation values of the electric

field operator from the input density matrix (step II) to compute the total electric field at

all polarizable sites (eq (2.138)). Third, a simple call to the CppeState is made, requesting

induced dipole moments from the given electric fields (step III). In the background, the

system of linear equations (eq (2.143)) is solved, the induction energies are updated (eq

(2.137)), and the resulting induced dipole moments are returned as a numpy array. In

the fourth step, the induction operator (eq (2.145)) is formed by contracting the electric

field integrals with the induced dipole moments (step IV). If the flag elec only is set to

True, only electronic contributions to the energy and PE operator are taken into account,

as it is required for post-SCF procedures (e.g., eq (3.13)). Otherwise, the full operator

(eq (2.150)) is assembled and returned, together with the PE energy contribution (lines

21-27 in Listing 4.3). Due to the simple structure of the host program interface, only a

single routine needs to be called from all places in the program where PE contributions

are required, as illustrated in Figure 4.5. For example, the SCF driver of the host program
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1 def get_pe_contribution(self, density_matrix, elec_only=False):

2 # step I: build electrostatics operator

3 if not self.V_es and not elec_only:

4 self.build_electrostatics_operator()

5 e_electrostatic = np.sum(density_matrix * self.V_es)

6 self.cppe_state.energies["Electrostatic"]["Electronic"] = e_electrostatic

7

8 # step II: obtain expectation values of elec. field at polarizable sites

9 elec_fields = self.integrals.electric_field_value(

10 self.polarizable_coords, density_matrix

11 )

12 # step III: solve induced moments

13 self.cppe_state.update_induced_moments(elec_fields)

14 induced_moments = self.cppe_state.induced_moments

15

16 # step IV: build induction operator

17 V_ind = np.zeros_like(self.V_es)

18 for coord, ind_mom in zip(self.polarizable_coords, induced_moments):

19 field_int = self.integrals.electric_field_integral(site=coord)

20 V_ind += -1.0 * sum(ind_mom[i] * field_int[i] for i in range(3))

21 E_pe = self.cppe_state.energies.total_energy

22 V_pe = self.V_es + V_ind

23 # only take electronic contributions into account

24 if elec_only:

25 V_pe = V_ind

26 E_pe = self.cppe_state.energies["Polarization"]["Electronic"]

27 return E_pe, V_pe

Listing 4.3: Mock PE contribution routine of the CppeHostProgramInterface class

1 def build_electrostatics_operator(self):

2 n_bas = self.integrals.n_bas # number of basis functions

3 self.V_es = np.zeros((n_bas, n_bas)) # zero numpy array for operator matrix

4 for site in self.cppe_state.potentials:

5 for multipole in site.multipoles:

6 self.V_es += self.integrals.potential_derivative(

7 position=site.position, order=multipole.k,

8 moments=multipole.values

9 )

Listing 4.4: Mock code snippet for computation of V es
pq .

calls get pe contribution every iteration providing the current SCF density matrix, and

in turn receives the PE contribution to the Fock operator without further ado. This sim-
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Figure 4.5: Overview of a program workflow employing PE via the
CppeHostProgramInterface. After the host program (red boxes) starts,
the interface is initialized. In downstream routines, e.g., the SCF procedure
or post-SCF methods, only the get pe contribution function needs to be
called providing any kind of input density matrix.1

plistic and clean design makes it easy to implement PE contributions in various places in

the host program with a single function call. Furthermore, it makes the interface code

easily maintainable. Note that the here presented interface is over-simplified for illustra-

tion purposes, some more details of the actually implemented host program interfaces are

given below. The CPPE library is currently interfaced to four program packages – Psi4,

PySCF, Q-Chem, and VeloxChem. All four host program interfaces are rather concise and

could be implemented with minimal time effort according to the how-to guide presented

above. Particularities and important aspects of the individual interfaces are discussed in

the following.

4.1.3 Interface to Psi4

The interface from Psi4 to CPPE is fully implemented in Python. The advanced CMake

setup of Psi4 makes it possible to integrate source builds of CPPE directly, or to use a

separately built CPPE, i.e., the library must only be present at run time. From a technical

point of view, the integration into Psi4 was rather easy because an interface for the related

EFP method with libefp [85] already existed. Hence, the multipole potential integrals

were readily accessible. Along the way, I had to refactor some parts of the Psi4-internal

integral library to enable a) evaluation of multipole potential integrals only through a

certain order (https://github.com/psi4/psi4/pull/1657), b) speed-up of electric field

computations (https://github.com/psi4/psi4/pull/1671), and c) integral routines for

a pilot PE gradient implementation (https://github.com/psi4/psi4/pull/2039). This

is one of the great advantages of open-source codes, because in the end, both users and

https://github.com/psi4/psi4/pull/1657
https://github.com/psi4/psi4/pull/1671
https://github.com/psi4/psi4/pull/2039
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all developers benefit from the joint effort. Using the Psi4 and Psi4NumPy API, it is

rather easy to amend user code with simple PE-related computational tasks. I want to

illustrate this here with the example of perturbative state-specific corrections of electronic

excitation energies, which I derived in Section 3.1. Regarding electronic structure methods

for excited states, Psi4 provides a selection of equation-of-motion coupled cluster (EOM-

CC). Densities of the excited states are readily available. With the CPPE interface to Psi4

1 def compute_ptss_corrections(ccwfn, nroots):

2 ptss = []

3 for i in range(1, nroots + 1):

4 # obtain the CC density matrix of state i

5 ccdmat = ccwfn.variable(f"CC ROOT {i} DA")

6 # obtain the SCF density matrix

7 scfdmat = ccwfn.Da()

8 # compute the difference density

9 ccdmat.subtract(scfdmat)

10 # scale with 2 due to restricted reference

11 ccdmat.scale(2.0)

12 # compute the energy correction

13 energy, _ = ccwfn.pe_state.get_pe_contribution(ccdmat.np, elec_only=True)

14 ptss.append(energy)

15 return ptss

Listing 4.5: Computation of ptSS corrections for EOM-CC states with Psi4NumPy and
CPPE.

in place, it is rather simple to implement ptSS corrections for EOM-CC excited states using

Psi4NumPy. The corresponding Python code snippet is shown in Listing 4.5. A converged

coupled cluster wave function object ccwfn, together with the number of excited states

nroots is passed to the Python function. Inside the loop over states, an energy correction

is computed for each individual excited state based on the CC difference density matrix,

as shown in eq (3.6). The here presented code was used in Ref. 79 to model the excited

states of a chromophore embedded in a protein environment with PE-EOM-CC2. In the

same manner, it was possible to add LR-PE contributions [66] to time-dependent density

functional theory (TDDFT) or linear response computations to Psi4 (https://github.

com/psi4/psi4/pull/2006). Since the overall structure of PE and PCM is rather similar

and the working equations do not differ except for which ‘kernel’ is used to evaluate the

contraction with the density matrix, adding LR-PE and LR-PCM capabilities was possible

in one go. Hence, in the process of maintaining the CPPE interface inside Psi4, I have also

seized the opportunity to improve the code in regard to other solvent models, refactored

https://github.com/psi4/psi4/pull/2006
https://github.com/psi4/psi4/pull/2006
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and cleaned up parts of the EFP integration code, and enabled new features not directly

related to PE. To avoid electron spill-out in PE computations, [105] I have also added the

recently presented PE(ECP) repulsive potentials to the Psi4 host program interface. [106]

4.1.4 Interface to PySCF

The CPPE interface to PySCF is entirely written in Python. No integration with the

build system is actually needed due to the various ways of installing CPPE, i.e., it is also

a run time dependency of PySCF. The host program interface resides in a single source

file inside PySCF, namely pyscf/solvent/pol embed.py. A particularity of the PySCF

implementation is the evaluation of the integrals: the underlying integral library does not

have the functionality to carry out higher order derivative on the ‘mid’ 1/R part of the

integral (e.g., eq (2.136)), such that partial integration must be used in order to shift

the derivative from the 1/R part to the bra and ket side. Consider the following general

integral

Ik =

∫︂
ϕ∗p(r)∇k 1

|r−R|
ϕq(r)dr (4.1)

with some arbitrary k-th order derivative of the Coulomb potential. For practical calcu-

lations with PE, usually only potentials through quadrupoles, i.e., k = 2, are required.

Performing integration by parts in the above equation gives

Ik = ∇k−1 1

|r−R|
ϕ∗p(r)ϕq(r)

⃓⃓⃓⃓∞
−∞⏞ ⏟⏟ ⏞

= 0

−
∫︂

∇ϕ∗p(r)∇k−1 1

|r−R|
ϕq(r)dr

−
∫︂
ϕ∗p(r)∇k−1 1

|r−R|
∇ϕq(r)dr.

(4.2)
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Another partial integration gives

Ik =− ∇k−2 1

|r−R|
∇
(︁
ϕ∗p(r)ϕq(r)

)︁⃓⃓⃓⃓∞
−∞⏞ ⏟⏟ ⏞

= 0

+

∫︂
∇2ϕ∗p(r)∇k−2 1

|r−R|
ϕq(r)dr

+

∫︂
ϕ∗p(r)∇k−2 1

|r−R|
∇2ϕq(r)dr

+ 2

∫︂
∇ϕ∗p(r)∇k−2 1

|r−R|
∇ϕq(r)dr.

(4.3)

Thus, one can shift the original derivative to the derivatives on the basis functions, which

are available in PySCF. Since recently, the implementation in PySCF can be used for rather

large environments: to achieve this, the computation of integrals is batched according to

the available memory, such that bottlenecks through too large integral matrices when the

number of environment sites is large are avoided (https://github.com/pyscf/pyscf/

pull/700). The PE implementation in PySCF is, due to efficient and threaded integrals,

probably the fastest one using CPPE. It also contains the PE(ECP) feature mentioned

above. [106]

4.1.5 Interface to Q-Chem

The interface to Q-Chem was the first one established, and it is written purely in C++.

Ground state PE-SCF calculations are available together with the simulation of excited

states using the pt-PE-ADC method. [61] In principle, it is possible to combine PE with

any post-SCF method in Q-Chem, e.g., EOM-CC methods while using PTE. For the EFP

method, which is the predominantly used and promoted explicit solvent model of Q-Chem,

this procedure is common and has been employed for example for TPA calculations. [70] The

same calculations in Q-Chem are also possible with the PE model. The first application

project of CPPE was to model excited states with pt-PE-ADC for large biomolecular

environments. [61]

https://github.com/pyscf/pyscf/pull/700
https://github.com/pyscf/pyscf/pull/700
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4.2 ADC-connect: Toolkit for Rapid Development of ADC

Methods

With a PE implementation in open-source Python-based quantum chemical libraries avail-

able, there is still an important component missing for computational spectroscopy, namely

the electronic structure method of choice: The ADC family of methods has only gained lit-

tle attention in recent endeavors to create open-source libraries for such purposes. In Psi4

and PySCF, for example, focus is put much more on coupled cluster methodologies. Re-

cently, ADC methods for computation of ionization and electron attachment energies were

added to PySCF. [107] A comprehensive toolkit to quickly carry out the implementation of

combined PE-ADC methodologies described in the previous Chapter 3 was however still

missing. Of course, such a toolkit’s purpose is not to implement ADC in combination with

environment methods only. It should enable rapidly prototyping of new ADC variants,

and be competitive with established codes for production calculations. To this end, our

group developed the ADC-connect toolkit, abbreviated adcc, as a versatile toolkit for the

rapid development of ADC methods. [80] As for the CPPE library and Psi4, we pursued

the same hybrid Python/C++ programming strategy to allow for high-level workflow and

method design in Python user code as well as performant tensor operations in C++ “un-

der the hood” using the libtensor library. [108] All the data structures are conveniently

available on the Python layer and can be used with, e.g., NumPy or matplotlib. [99,109] In

late 2020, the adcc toolkit became a fully open-source package that can be freely down-

loaded and used. The adcc library is fully standalone and can be seamlessly connected

to quantum chemical host programs to run ADC calculations on top of the provided SCF

reference state. Existing software packages of the Python ecosystem are employed for

common tasks, e.g., linear algebra operations, data export, visualization, and other post-

processing tasks. By re-using these libraries, the development of adcc focuses completely

on the implementation of ADC methods, and all other related tasks are handled by third-

party libraries, providing full flexibility. This is a stark contrast to classical monolithic

quantum chemistry software, which usually consists of a single code base. The interface

design is at the heart of the entire adcc toolkit, and has, in my opinion, proven easy to

use and maintain over the past years. Currently, interfaces to the host programs Psi4, [38]

PySCF, [39] molsturm, [110] and VeloxChem [83] are implemented. In this section, I present

the design strategy of adcc as published in Ref. 80, the structure of the library, my code

and feature contributions to adcc, including the main changes since the first publication.
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4.2.1 Design Goals

The aim to implement a standalone, flexible library for ADC development requires a spe-

cific design for seamless integration into the Python ecosystem, while carefully retaining

the specific needs and features for wave function based electronic structure calculations.

These design aspects, presented already in the publication, [80] are outlined in the follow-

ing. First, a common strategy is to rely on established software packages of the existing

ecosystem rather than building a full-featured quantum chemistry package from scratch.

The adcc toolkit should only fulfill the unique purpose of providing functionality for ADC

itself, and nothing else. Re-using the existing quantum chemical programs available in

Python, i.e., years of development work of the large Psi4 and PySCF community, is eco-

logical and keeps adcc a light-weight code, orthogonal to other endeavors. The second

design goal to provide an open and simple interface for reproducibility is a direct conse-

quence: adcc must provide a simple and clean interface for any SCF host program on the

Python layer to enable interoperability among several codes. The user can interchange

host programs as desired to verify results across different SCF implementations. The

key workflows implemented with adcc are automatically agnostic of the host program

and can be used in a plug-and-play fashion with any supported code, a design principle

I have explained in detail for CPPE. The third design goal to find a good compromise

between code complexity and performance balances the needs of developers and end users

of the library. It should be possible to implement new features with ease while still be-

ing able to run productive ADC calculations for practical purposes. Usually, performant

electronic structure codes come with high code complexity and reduced code readability.

This problem is solved to some extent automatically through the hybrid Python/C++

approach. All workflow components that are needed to steer, modify, or extend adcc are

found on the Python layer, including the entire working equations required for ADC. On

the other hand, routines that are performance bottlenecks, i.e., import of SCF data like

electron-repulsion integrals (ERIs) and highly demanding tensor operations are handled

by parallelized C++ code through an abstract tensor interface to libtensor. Note that

this general tensor interface could in principle be used with other tensor libraries as well.

As a consequence, the fourth and last main goal of adcc’s design is to maintain a low

barrier between users and developers. Most of the users might start out just wanting to

run ADC calculations for their research. They might, however, stumble upon a missing

feature or want to integrate adcc in a more complex workflow of their own. Through the

open and detailed documentation (https://adc-connect.org) we want to enable easy

understanding such that simple programming tasks are possible also for new developers.

https://adc-connect.org
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Through community-driven development, adcc would be possible to grow beyond what a

single developer or scientist can imagine. Making adcc a fully open-source was the final

step to an entirely open platform for ADC method development, residing completely on

GitHub and using freely available developer tool chains such as continuous integration

(CI) and continuous deployment (CD).

4.2.2 Demand-Driven Workflow and Library Structure

An illustration of the common workflow of an ADC calculation inside adcc is depicted

in Figure 4.6. As explained before, adcc is not responsible for carrying out the ground

state SCF calculation and the required data. Instead, this is handled by a (third-party)

SCF code, called host program herein. The terminology is identical to the one used

in the description of the CPPE library. In Figure 4.6, the adcc-specific classes and

functions are shown in teletype font. When providing a converged SCF state to the

Figure 4.6: Schematic illustration of the standard adcc workflow. The run adc routine
takes an SCF result from a host program, prepares the solution of the eigen-
value problem and yields the ExcitedStates or Excitation object as result
containers. These can be used for further built-in analysis, nuclear gradients,
or customized workflows in user code.

run adc function, or pre-defined aliases like adc2, the library selects an appropriate

HartreeFockProvider implementation to gain access to all required reference state data.

The HartreeFockProvider defines a unique and clean interface such that no host-program-

specific routines are spilled over into adcc. All data that need to be imported to run

ADC calculations, e.g., ERIs, MO energies, MO coefficients, operator integrals, and many

more, are handled via the custom subclass of HartreeFockProvider. [80] Details on how

to implement a program-specific HartreeFockProvider can be found in the adcc pub-

lication [80] or in the adcc online documentation (https://adc-connect.org). Another

important component is the container for the tensor block splitting, MoSpaces, capable of

mapping host-program-specific indices to adcc-internal MO blocks (o for occupied, v for

virtual in the following). The MoSpaces object is also required to set up custom tensors

https://adc-connect.org
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and operators. Finally, the first block consists of constructing the ReferenceState class

that defines the top-level adcc-side data container for all SCF-related data, ubiquitously

used in the entire toolkit. For example, let hf be an instance of ReferenceState im-

ported from a specific host program. Then hf.energy scf returns the SCF energy of

the molecule, hf.foo is a short-cut to get the oo block of the Fock matrix, and hf.oovv

retrieves the ⟨oo||vv⟩ integral. The possibility to conveniently include environment models

is granted by ReferenceState, as will be explained later. As a next step, the bookkeeping

classes for the MP ground state, LazyMp, and the lazy representation of the ADC matrix,

AdcMatrix, are created. [80,110,111] The AdcMatrix class collects all previous instances of

data containers (i.e., reference state and MP results) and in addition wraps the work-

ing equations of the matrix-vector product and matrix diagonal for a specific ADC(N)

scheme. Both the ReferenceState and LazyMp objects are of course used throughout the

working equations. Once the eigenvalue problem (eq (2.51)) is solved through the iter-

ative solver, all excited state information is conveniently wrapped in an ExcitedStates

object. In addition, properties of individual excitations are available via the Excitation

object. These attributes of Excitation are automatically generated from the parent

ExcitedStates class by Python decorators in order to avoid code duplication. Conve-

nient member functions of the ExcitedStates instance are available for built-in analysis.

A summary table with energies, oscillator strengths, and dipole moments can for example

be printed with the describe function. Furthermore, translation of the ExcitedStates

object to a pandas.DataFrame is implemented. [112,113] This enables custom data visualiza-

tion and manipulation in user code. Analytic nuclear gradients are currently available in a

development version of adcc (see https://github.com/adc-connect/adcc/pull/124).

The new nuclear gradient function either takes a LazyMp object as input to compute

the gradient for the MP ground state or an Excitation object for excited state gradients.

A key feature of adcc is that workflow extensions beyond the default run adc function

are easily accomplished.

As a matter of fact, the computational procedure carried out by adcc is rather com-

plex: Depending on the input parameters and selected method, many code execution

paths are imaginable, and each combination of parameters requires its own specific subset

of pre-computed data. In addition, most quantities are computationally expensive such

that they should be computed once and then cached for future purposes. To accomplish

this, adcc obeys a “demand-driven” strategy, i.e., instead of defining which quantities are

needed a priori, the computation and caching of a quantity is triggered by the first de-

mand. [80] When first initialized, the objects like ReferenceState or LazyMp are virtually

empty. Neither the integrals are imported yet, nor correlation energies or amplitudes are

https://github.com/adc-connect/adcc/pull/124
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computed. Only at the point where, e.g., the ⟨oo||vv⟩ integral block is requested for the

first time, its computation and import to adcc is triggered. At the next point the same

quantity is asked for, existence in the cache is checked, and the object is simply returned

if available. The demand-driven approach is easy to implement using standard Python

language components like decorators or simple if statements. This brings two important

advantages. First, the code responsible for computing a single quantity is self-contained,

which lowers the code complexity. The working equation is moreover uncoupled from the

caching procedure if the aforementioned building blocks are used. Second, the schedule

logic and computational algorithm cannot get out of sync. Thus, a major advantage of

the demand-driven computation is that it is impossible to forget the pre-computation of

a quantity, causing errors at some point. As a result, code entities are orthogonal to each

other and quantities become available when needed by adcc or user code, not through

some pre-defined caching policy, requiring an enormous amount of code adaptations when

adding or removing cached results. [80] From a performance perspective, the demand-driven

strategy only steadily increases memory usage and lets the calculation run out of memory

as late as possible. More details and an illustration of the demand-driven adcc workflow

can be found in the adcc publication. [80]

To enable both flexibility and performance at the same time, adcc is implemented us-

ing a hybrid Python/C++ approach. The code structure of the library, including main

components, data containers, and functions is shown in Figure 4.7. On the lowest level

of adcc, internally called the libadcc library or Core in the illustration, the main C++

building blocks are found. Most importantly, an abstract and convenient tensor interface

via the Tensor class supporting block-sparse symmetry via Symmetry is implemented.

The correct block tiling setup is handled by MoSpaces, which is required to build new

Tensor objects from scratch. The actual implementation of Tensor is interfaced to the

libtensor library, [108] a parallelized block-sparse tensor algebra library also used for the

same purpose in the original adcman implementation [34] in Q-Chem. [93,94] Raw tensor func-

tions like addition, element-wise multiplication, direct summation, or tensor dot products

are made available on this low-level already. As of recently, adcc supports lazy tensor

evaluations through a so-called expression tree which collects a set of tensor operations

which are only evaluated once required. This very important feature was implemented

by M. F. Herbst and goes hand in hand with the demand-driven philosophy of adcc

explained above. Moving upward to the Interface layer, a mix of Python and C++ is

used to implement the respective functions and classes. The C++ part of the code is

conveniently made available on the Python layer via pybind11, [98] where it is amended

to yield the full functionality. Most of the performance-critical code is implemented us-



4.2 ADC-connect: Toolkit for Rapid Development of ADC Methods 87

Figure 4.7: Code structure and main components of the adcc toolkit. The library is imple-
mented using a mix of Python (yellow) and C++ (blue) code, and it makes use
of third-party host programs, the libtensor library, [108] and opt einsum. [114]

Updated version of the graphic from Ref. 80.

ing C++, i.e., the raw functions to import ERIs, which require a lot of index mapping

and bookkeeping. On the contrary, the SCF import is made possible by subclassing,

e.g., the HartreeFockProvider on the Python layer to import data from third-party host

programs. The main SCF data containers, i.e., ReferenceState and OperatorIntegrals

also make use of the mixed implementation. The OperatorIntegrals object as a member

of ReferenceState provides functionality for importing (one-particle) operators from the

host program, i.e., the electric dipole operator or the PE induction operator, as we will see

later. Tensor integration through convenient and pythonic functions, i.e., operator over-

loading is mandatory to implement all working equations in Python. These are for example

found in the adcc.functions file and in the Python-side Tensor class. To conveniently

express complex tensor contractions for ADC, adcc implements an einsum function, i.e.,

tensor contraction expressions using the Einstein summation convention with labels of ten-

sor axes. The tensor contraction order is optimized through the third-party opt einsum
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library. [114] Of note, the expression tree functionality is fully supported on the Python

layer. All the updates to the tensor functionalities since the publication of the adcc paper

were implemented by M. F. Herbst. Above the Interface layer of adcc, the Algorithm

layer consists of pure Python code. On the lower level of the Algorithm layer, a tensor

container for excitation vectors, the AmplitudeVector, is located. The AmplitudeVector

is nothing but a Python dict that makes it possible to store tensors for the individual

blocks of the excitation vector, e.g., ph and pphh. Through some Python magic, algebraic

operations on AmplitudeVector are forwarded to the individual tensor blocks. A typical

construction of an AmplitudeVector with tensors ten1 for ph and ten2 for pphh looks like

AmplitudeVector(ph=ten1, pphh=ten2). For computation of properties and density matri-

ces, the OneParticleOperator provides a multi-tensor container for the respective canoni-

cal blocks, i.e., oo, ov, vo, and vv. All one-particle operators that are for example imported

using OperatorIntegrals are ultimately instances of OneParticleOperator, which also

has convenient short-cuts to the blocks, and expectation values can be computed via the

product trace function. As previously explained, the key quantum chemical quantities

for ADC are available through LazyMp and AdcMatrix. The MP working equations are

directly implemented inside the LazyMp class in Python, whereas the more complicated

and long ADC working equations are implemented separately inside the adc pp subdirec-

tory. Therein, the matrix working equations, transition and state densities and modified

transition moments are found. Using adcc.einsum, the implementation of the working

equations is human-readable and can be quickly tested and modified without any code

compilation. This feature has brought the rapid prototyping in adcc to a whole new

level since the first publication. On the upper Algorithm layer, interfaces to guess func-

tions for the iterative solver are implemented, together with the iterative solver schemes

themselves. Currently, a Jacobi-Davidson (jacobi davidson) solver is used for eigenvalue

problems, whereas a CG solver is available for systems of linear equations, e.g., the or-

bital response equations for analytical gradients. For the adcc users, the excited state

containers for analysis are crucial: There are currently three different entities to serve this

purpose. First, ExcitedStates wraps the entire set of excited states obtained from the

eigensolver. Properties are evaluated on demand, by calling the necessary ISR working

equations under the hood. The Excitation class contains the results of a single excited

state, whereas the State2States can be employed for transitions between excited state,

i.e., to model excited state absorption. The ExcitedStates class makes use of the rich

Python ecosystem for analysis jobs: Plotting of a spectrum with matplotlib [109] can

be realized with a single line of code by calling plot_spectrum() on an ExcitedStates

object. In addition to excitation spectra, one can, e.g., plot rotatory strengths through
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plot_spectrum(yaxis="rotational_strength"). Despite this default simplicity, the result-

ing plot is fully customizable through matplotlib. As shown above in Figure 4.6, default

workflows, handling all building blocks in the right manner for a specific method, are avail-

able on the Workflow layer and can be called from user code directly. With the library

structure at hand, it becomes clear that adcc finds the right balance between customiz-

ability and simplicity: A new user is not required to learn everything about the lower-level

layers of adcc, but can just use the Workflow layer to run their computation. If desired,

one can advance to implement more complicated workflows in user code or even implement

new working equations. The fourth design goal to only have low barriers for new develop-

ers is clearly fulfilled, and has proven very helpful and satisfactory in practice when, for

example, students had to carry out a simple programming task with adcc.

4.2.3 Environment Models

In this section, I describe my implementation of combined PE-ADC methodologies (Chap-

ter 3) for excitation energies. The presented building blocks of adcc allow for straight-

forward integration of environment models. Let us first recap the computational tasks

that need to be carried out to combine PE with ADC. In the perturbative treatment,

state difference densities and transition densities are required (see eqs (3.6) and (3.7)) for

the ptSS and ptLR term, respectively. These densities are available in the Excitation

class for an individual excited state. The PE energies, however, need to be evaluated by

the host program. Consequently, a natural way to integrate the correction is by expos-

ing possible energy corrections through a specific HartreeFockProvider implementation.

This is demonstrated with the example of PySCF in Listing 4.6 for both ptSS and ptLR.

In line 1, a function to compute the PE induction energy based on an input density is

defined. Inside this function, the get pe contribution routine of the CPPE host pro-

gram interface of PySCF is called (line 3) and returns the energy as e pe. The specific

HartreeFockProvider carries a property function that collects all available energy cor-

rections as a Python dict (line 21). The dict contains the energy correction terms

as instances of EnergyCorrection, a small class with a name for the energy correction

and a Python callable to evaluate the correction given an input Excitation instance,

here named view. For each correction, a separate instance of EnergyCorrection is cre-

ated. The EnergyCorrection class is designed such that it can be literally “added” to

an ExcitedStates object by operator overloading. This means that the __add__ function

of ExcitedStates is capable of adding EnergyCorrections to the excitation energies

automatically. The resulting code in the workflow integration reads as natural Python
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1 def pe_energy(self, dm, elec_only=True):

2 pe_state = self.scfres.with_solvent

3 e_pe, _ = pe_state.kernel(dm.to_ndarray(), elec_only=elec_only)

4 return e_pe

5

6 @property

7 def excitation_energy_corrections(self):

8 ret = []

9 if self.environment == "pe":

10 ptlr = EnergyCorrection(

11 "pe_ptlr_correction",

12 lambda view: 2.0 * self.pe_energy(view.transition_dm_ao,

13 elec_only=True)

14 )

15 ptss = EnergyCorrection(

16 "pe_ptss_correction",

17 lambda view: self.pe_energy(view.state_diffdm_ao,

18 elec_only=True)

19 )

20 ret.extend([ptlr, ptss])

21 return {ec.name: ec for ec in ret}

Listing 4.6: Code excerpt from PySCF HartreeFockProvider to set up ptSS and ptLR
corrections using EnergyCorrection.

code. The EnergyCorrection design thus allows for highly customizable inclusion of cor-

rection terms. Next, let us turn the attention to the LR-PE formalism for ADC. In eq

(3.17), the ADC matrix was modified to include a PE-specific response term. The cor-

responding matrix-vector product is shown in eq (3.13). As such, an extra term needs

to be added to the lazy matrix representation AdcMatrix. For this reason, I created the

AdcExtraTerm class, which contains a reference to the original matrix instance (for ac-

cessibility of the ReferenceState and LazyMp ground state) and a dictionary of block

spaces and callables for the extra term. For LR-PE-ADC, I have shown that only a con-

tribution to the ph-ph block is added. The code to compute this contribution from eq

(3.13) is shown in Listing 4.7. The resulting AdcBlock instance is an adcc data struc-

ture responsible for bookkeeping matrix apply and diagonal routines, also for the main

working equations. The AdcBlock instance for the LR-PE matrix-vector product contri-

bution can be assigned to an AdcExtraTerm and added to AdcMatrix. This mechanism

is again handled by overloading the __add__ operator of AdcMatrix. As a result, the

manual addition of an extra term term to a matrix matrix looks like matrix += term. In

contrast to the implementation of energy corrections, obtaining the PE induction opera-
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1 def block_ph_ph_0_pe(hf, mp, intermediates):

2 op = hf.operators

3 def apply(ampl):

4 tdm = OneParticleOperator(mp, is_symmetric=False)

5 tdm.vo = ampl.ph.transpose()

6 vpe = op.pe_induction_elec(tdm)

7 return AmplitudeVector(ph=vpe.ov)

8 return AdcBlock(apply, 0)

Listing 4.7: Code to compute the LR-PE contribution to the ph-ph block of the ADC
matrix-vector product (eq (3.13)), contained in file adc pp/environment.py.

tor is a bit more involved. This task was, however, easily achieved relying on the adcc

design philosophy and existing library infrastructure. I have simply added an operator to

the top-level OperatorIntegrals, namely pe induction elec and its counterpart to the

program-specific OperatorIntegralProvider implementation. The pe induction elec

property returns a function that 1) takes an input density, 2) transforms the density

to the AO basis, 3) computes the PE induction operator in the host program, and 4)

transforms the induction operator back to the MO basis. The corresponding routine is

called __import_density_dependent_operator inside the OperatorIntegrals class. Step

3) is implemented in the program-specific OperatorIntegralProvider as illustrated for

PySCF in Listing 4.8. All of this happens behind the scenes in line 6 of Listing 4.7, and

the programmer does not need to take care of it manually. Adding similar environment

models should be easy, since the machinery to do so is already in place. The integra-

1 @property

2 def pe_induction_elec(self):

3 if hasattr(self.scfres, "with_solvent"):

4 if isinstance(self.scfres.with_solvent, solvent.pol_embed.PolEmbed):

5 def pe_induction_elec_ao(dm):

6 return self.scfres.with_solvent._exec_cppe(

7 dm.to_ndarray(), elec_only=True

8 )[1]

9 return pe_induction_elec_ao

Listing 4.8: Code to set up the callable for the PE electronic induction operator in
PyscfOperatorIntegralProvider.

tion of the PE induction operator through OperatorIntegrals also makes it possible

to implement all ADC-related routines for analytic gradients, i.e., orbital response con-
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tributions. To summarize, perturbative corrections for pt-PE-ADC are implemented via

the EnergyCorrection class, whereas modification of the matrix-vector product for LR-

PE-ADC is enabled through AdcExtraTerm added to an AdcMatrix instance. No further

changes to the solver algorithm or any other part of the code are required due to the de-

sign of adcc: Only the AdcMatrix needs to know which contributions are required. This

means that for implementing PE-ADC response properties, no further work is needed.

This clearly emphasizes how cleanly the adcc interfaces and building blocks are designed,

because also more complex additions like LR-PE-ADC could easily be added. Without

adcc, the implementation of said methods would have taken significantly longer, both in

terms of implementation and debugging the code.

Integration into the standard adcc workflow

For the adcc end user, assembling all the building blocks for PE-ADC calculations would

be tedious, inefficient, and error-prone. Therefore, environment models are natively in-

tegrated in the standard adcc workflow outlined above. I have added an environment

parameter environment to the run adc function. Then, inside run adc, after the ADC

matrix has been set up, the setup environment routine is called with the matrix and

environment parameter (see Listing 4.9). The content of the setup environment func-

1 # Setup environment coupling terms and energy corrections

2 ret = setup_environment(matrix, environment)

3 env_matrix_term, env_energy_corrections = ret

4 # add terms to matrix

5 if env_matrix_term:

6 matrix += env_matrix_term

7

8 # ...

9 # [solve ADC eigenvalue problem and get ExcitedStates exstates]

10 # ...

11

12 # add environment corrections to excited states

13 exstates += env_energy_corrections

Listing 4.9: Code excerpt from adcc.run_adc responsible for the addition of environment
models, i.e., matrix terms and energy corrections.

tion will be explained below. It returns the additional matrix term env matrix term

as an AdcExtraTerm instance, if no additional term is required, the variable is set to

None. In line 6 of Listing 4.9, the additional matrix term is added to the AdcMatrix
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instance. For perturbative corrections, the returned env energy corrections is a list

of EnergyCorrections, added to the ExcitedStates object in the last line. Of course

all the actual setup takes place inside setup environment. The function is too long to

be displayed here, but the key steps are given in the following. First, the function checks

whether an environment is actually present for the given ReferenceState by checking its

environment property. If environment is set to None but an environment is found for the

reference state, an error is thrown. Also in the case where environment parameters are

specified, but no environment is present, the function throws an error. This ensures that

the user is actually aware of what should happen during the adcc calculation. Second, the

provided environment parameter is translated into a consistent and valid Python dict.

Various possibilities exist to specify environment to grant some flexibility. For example,

one can set environment=False (boolean argument) to request a PTE-PE-ADC calculation,

i.e., no extra terms or corrections are added. To get pt-PE-ADC with both ptSS and ptLR

corrections, environment=["ptss", "ptlr"] is the parameter to set, or environment=True.

These two inputs are converted to {"ptss": True, "ptlr": True} which is the final form

of the sanitized input parameter. If invalid arguments or combinations are given, an er-

ror is returned. Third and last, the requested terms are prepared. The code checks if

the requested perturbative correction is present in the excitation energy corrections

field of ReferenceState and collects all corrections in a list. In case of LR-PE-ADC,

available via environment="linear_response", the corresponding AdcExtraTerm is cre-

ated from the working equation in adc pp/environment.py (Listing 4.7) and returned

as env matrix term. More details on the options to be set in practice can be found in the

adcc online documentation. With the seamless integration of the PE-ADC in the standard

adcc workflow routines, the entire machinery to calculate analytic gradients with PE-MP

or PE-ADC is ready.

4.2.4 Analytic Gradients

Before turning myself to analytic gradients with PE, I had to implement the entire set

of vacuum MP and ADC gradients in adcc, since these features were not yet avail-

able. The gradient features are not released yet and under development (see https:

//github.com/adc-connect/adcc/pull/124), consequently, the implementation details

presented in the following might be subject to changes in the feature. Keeping the

PE contributions aside for a moment, the canonical flow I have implemented for an-

alytical gradients in adcc is outlined in Figure 4.8. It consists of a main function,

nuclear_gradient, which either takes a LazyMp object for MP gradients or an Excitation

https://github.com/adc-connect/adcc/pull/124
https://github.com/adc-connect/adcc/pull/124
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Figure 4.8: Illustration of the nuclear_gradient function of adcc. Based on a LazyMp or
Excitation input, the function assembles all contributions to obtain effective
densities through amplitude and orbital response and triggers evaluation of
the final gradient through contraction with integral derivatives in the host
program.

object for ADC gradients as input parameter. Inside the function, the work to be car-

ried out is split into four parts. As a first step, the amplitude-relaxed densities of the

specified wave function method are computed. All working equations for the vacuum

gradients were taken from Refs. 76 and 78. The amplitude_relaxed_densities func-

tion, contained in gradients/amplitude response.py, dispatches to the correct work-

ing equations for the amplitude-relaxed densities for the given input. One-particle den-

sity matrices are naturally stored in OneParticleOperator objects, whereas I have cre-

ated a TwoParticleDensityMatrix class for handling two-particle densities conveniently

(short-cut block access, addition of two densities, MO-to-AO transformation, etc.). The

amplitude-relaxed densities are subsequently used to obtain all orbital response Lagrange

multipliers {λpq} and {ωpq}. First, the right-hand side for the iterative solution of λia is

computed (orbital_response_rhs). Second, the right-hand side is passed to the

orbital_response routine, where the multipliers are iteratively solved with the CG algo-

rithm of adcc. Third, the {ωpq} multipliers are evaluated. For contraction with integral

derivatives, all one- and two-particle density matrices are built and then transformed to the

AO basis. For the final step, another new component developed according to adcc’s design

philosophy comes into play: each HartreeFockProvider that should be used for gradient

evaluations passes its own GradientProvider implementation on to the ReferenceState.

The task carried out by the host-program-specific GradientProvider is to take input one-

and two-particle density matrices and contract those with the integral derivatives from the

host program directly. In this manner, no differentiated two-electron integrals need to be

imported into adcc, which would be computationally rather expensive. Through the clean

GradientProvider interface, however, the correct backend is automatically chosen, such

that all host-program-specific code stays in a single place. Currently, MP and ADC gra-

dients are available with the Psi4 and PySCF backends.

As shown in Section 3.4, PE contributions arise in several spots of the analytic gradient

equations. The amendments to be made for PE orbital response both for the PTE and the
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LR scheme were shown in Table 3.1. These needed to be injected in several spots in the

vacuum implementation. The equation for the orbital response right-hand side kia for PE

is simply -2.0 * hf.operators.pe_induction_elec(g1a).ov, where g1a is the amplitude-

relaxed one-particle density matrix. This term is conditionally added if PE is present

in the reference state. The orbital response iterations contain an additional PE term in

the orbital Hessian matrix OrbitalResponseMatrix. Since these response equations are

iteratively solved, only the matrix-vector product function __matmul__ needs to be imple-

mented, shown in Listing 4.10. The vacuum part is implemented in lines 2 to 7, and the

1 def __matmul__(self, l_ov):

2 ret = (

3 + einsum("ab,ib->ia", self.hf.fvv, l_ov)

4 - einsum("ij,ja->ia", self.hf.foo, l_ov)

5 + einsum("ijab,jb->ia", self.hf.oovv, l_ov)

6 - einsum("ibja,jb->ia", self.hf.ovov, l_ov)

7 )

8 if self.hf.environment == "pe":

9 ops = self.hf.operators

10 dm = OneParticleOperator(self.hf, is_symmetric=True)

11 dm.ov = l_ov

12 ret += ops.pe_induction_elec(dm).ov

13 return evaluate(ret)

Listing 4.10: Python implementation of the orbital Hessian matrix-vector product inside
the OrbitalResponseMatrix class from eq (3.43). Here, l_ov are the input λjb
multipliers.

extra term is added if PE is present, again using the pe induction elec functionality of

OperatorIntegrals. Adding the PTE-PE contribution to the ωij multipliers is straight-

forward. Furthermore, the contributions to the orbital response that arise from the LR-PE

term in the ADC matrix are constant terms to be added to kia and the three canonical

blocks of {ωpq}, feasible in a couple of code lines. In the above code examples, the ease of

implementation using adcc is outstanding, because the equations are still clearly legible,

like in a textbook, and the concise integration of PE does not disturb the code readability.

Generally, the nuclear_gradient is rather concise with only approximately 100 lines of

code. As such, the pilot workflow for analytical gradients in adcc could be implemented

with the same philosophy as the rest of the library, making available new building blocks

that are easily assembled for a specific, pre-defined feature. Last but not least, the effec-

tive one- and two-particle density matrices obtained from the orbital response also need

to be contracted with PE integral derivatives as in eqs (3.73) and (3.79). This task is han-



96 4 Open-Source Libraries for Computational Spectroscopy

dled by the host-program-specific GradientProvider implementation and the explicit PE

contributions are then added to the final gradient. The analytic gradient implementation

(both vacuum and with PE) was tested against numerically obtained nuclear gradients

with a five-point stencil finite difference scheme. These tests are also added to the adcc

test framework run through the CI.

4.2.5 Current State and Code Contributions

The core feature set of adcc was described in the publication, [80] and, regarding the plain

ADC functionality, has remained mostly the same. The library was, however, made fully

available as an open-source package on GitHub, where the entire development now takes

place. In addition, all working equations were transferred to the Python layer through

the new tensor integration features. This largely facilitates implementation of low-level

new features, like the gradients mentioned above. Currently, gradients for MP2, ADC(1),

and ADC(2) are implemented in the development branch of adcc, with and without using

PE as environment model. Furthermore, the PE formalisms pt-PE-ADC and LR-PE-

ADC were recently added, in conjunction with the transparent environment parameter

handling. Over the last two years, adcc was equipped with more and more features,

including state-of-the-art environment models which are missing in established program

packages. This was made possible by the entire design of adcc, as envisioned in the design

goals. In the following, I present a breakdown of the most important features I myself

have contributed to adcc:

• Implementation of HartreeFockProvider subclasses for Psi4, PySCF, and Velox-

Chem, including support for unrestricted references (e.g., PR #20).

• Operator import through OperatorIntegrals and OperatorIntegralProvider.

• Maintenance of automatic deployment to Anaconda.

• Python-side OneParticleOperator implementation (PR #119).

• Python-side LazyMp implementation (PR #104).

• Rotatory strengths for simulation of ECD spectra (PR #56).

• Export of ExcitedStates to pandas.DataFrame (PR #78).

• State-to-state transition density matrices (State2States, PR #91).

• Environment model interface for pt-PE and LR-PE methodologies (PR #123).

https://github.com/adc-connect/adcc/pull/20
https://github.com/adc-connect/adcc/pull/119
https://github.com/adc-connect/adcc/pull/104
https://github.com/adc-connect/adcc/pull/56
https://github.com/adc-connect/adcc/pull/78
https://github.com/adc-connect/adcc/pull/91
https://github.com/adc-connect/adcc/pull/123
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• Analytic nuclear gradients for MP2, ADC(1), and ADC(2) (PR #124).

• Analytic nuclear gradients for PE-MP2, PE-ADC(1), and PE-ADC(2) (pe gradients

branch).

Numbers in parentheses indicate the corresponding pull request (PR) in the adcc GitHub

repository. The last two points are not yet merged to the main adcc branch, but fully

functional. The SCF interfaces had been implemented before adcc went open-source.

4.3 Respondo: Library for ADC/ISR Response Functions

Figure 4.9: Overview of respondo. The program flow consists of calling a compute rou-
tine for an implemented response property <response property>, which first
prepares the solution of linear equations, then solves these equations and forms
the output tensor. Red boxes are components of respondo, and the ADC/ISR
quantities obtained from adcc are indicated next to the respective arrows.

The last component needed to implement all previously presented PE-ADC methodolo-

gies is a library for computing response functions based on ADC. For this purpose, I imple-

mented the respondo library as part of the Gator project. [84] The respondo library can be

viewed as a small plugin for adcc which implements the necessary workflow for ADC/ISR

response properties. In Section 2.4.4, I have shown the fundamentals of iteratively solving

ADC/ISR response equations, and respondo picks up on these theoretical foundations.

The structure and workflow of respondo is schematically illustrated in Figure 4.9. The

https://github.com/adc-connect/adcc/pull/124
https://github.com/adc-connect/adcc/tree/pe_gradients
https://github.com/adc-connect/adcc/tree/pe_gradients
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library fully relies on adcc-provided data structures, such as ReferenceState, AdcMatrix,

or Excitation as input objects. Each response property implemented in respondo has

a specific compute function, here denoted generically as <response property>. I will

explain the individual steps with the example of the complex ground state polarizability,

Based on the input data and the property at hand, solution of the response equations

is first prepared by retrieving the appropriate operators, modified transition moments,

and ADC matrix representation from adcc. The respective code for the complex polar-

izability is shown in Listing 4.11. The right-hand side of the linear equations are here

1 def complex_polarizability(

2 data_or_matrix, method=None, omega=0.0, gamma=0.0, **solver_args

3 ):

4 # obtain matrix

5 matrix = construct_adcmatrix(data_or_matrix, method=method)

6 property_method = select_property_method(matrix)

7 hf = matrix.reference_state

8 mp = matrix.ground_state

9 dips = hf.operators.electric_dipole

10 # compute right-hand side

11 rhss = modified_transition_moments(property_method, mp, dips)

Listing 4.11: Preparation part of the complex_polarizability function in respondo.

equal to the modified transition moments computed with the electric dipole operators

dips. In the following step, the property routine calls the solve response function, a

convenient black-box routine to solve a linear equation based on a given matrix, right-

hand side, and frequency arguments. The code block calling solve response is shown

in Listing 4.12. Under the hood, distinct code paths have to be chosen based on the

selected solver algorithm. Currently, two different solver algorithms are used, namely the

new CPP solver presented in Chapter 7 and the CG solver from adcc. In addition, a

specific variant of the ADC(2) matrix can be used, where the pphh part of the response

vector is folded into the ph part. Details will be explained in Chapter 7. To conveniently

wrap all kinds of different matrix representations needed in respondo, I designed the

MatrixWrapper class, whose structure is shown in Figure 4.10. Here, it is most important

that the MatrixWrapper class provides a single interface to the matrix-vector product via

its __matmul__ function, together with helper routines to adapt to different solvers and

matrix representations. Once the MatrixWrapper instance is created, solve response

calls the desired iterative solver algorithm and returns the solution vector. The final part

of the complex_polarizability function is presented in Listing 4.13. In this part, an empty
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1 response_positive = [

2 solve_response(matrix, ResponseVector(rhs),

3 omega, gamma, **solver_args)

4 for rhs in rhss

5 ]

6 if omega == 0.0:

7 response_negative = response_positive

8 else:

9 response_negative = [

10 solve_response(matrix, ResponseVector(rhs),

11 -omega, gamma, **solver_args)

12 for rhs in rhss

13 ]

Listing 4.12: Solving part of the complex_polarizability function in respondo, calling
solve_response for each Cartesian component of the right-hand side.

Figure 4.10: Overview of MatrixWrapper with different matrix representations wrapped
and exposed via a single algebra interface.

complex tensor is created, which is then filled by computing scalar products of modified
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1 polarizability = np.zeros((3, 3), dtype=np.complex)

2 for A in range(3):

3 for B in range(A, 3):

4 rsp_pos = response_positive[B]

5 rsp_neg = response_negative[B]

6 polarizability.real[A, B] = (

7 rsp_pos.real @ rhss[A] + rsp_neg.real @ rhss[A]

8 )

9 polarizability.imag[A, B] = (

10 rsp_pos.imag @ rhss[A] - rsp_neg.imag @ rhss[A]

11 )

12 polarizability[B, A] = polarizability[A, B]

13 return polarizability

Listing 4.13: Construction of the output polarizability tensor inside the
complex_polarizability function.

transition moments and response vectors (see Table 2.2). For other properties, transition

densities between two vectors have to be obtained (e.g., TPA or RIXS) because there is

currently no implementation of the operator matrix B available in adcc. This task is han-

dled by the transition_polarizability routine. Finally, the property routine returns the

output tensor as a NumPy array np.ndarray. All properties implemented in respondo

are tested by carrying out a full ADC matrix diagonalization and then explicitly evaluat-

ing the corresponding SOS terms. The results from the SOS and the iterative solution are

checked for equality.

At the current stage, respondo is capable of computing a variety of response properties,

summarized in Table 4.1. Note that all of these properties are also supported together

Table 4.1: Response properties currently supported in respondo.

Property Function Equation

Static polarizability static_polarizability (2.78), ω = 0, γ = 0

Frequency-dependent polarizability real_polarizability (2.78), γ = 0

Complex polarizability complex_polarizability (2.78)

RIXS scattering amplitude rixs (2.91)

TPA matrix tpa_resonant (2.86)

with LR-PE, as explained in Section 3.3: The only thing that needs to be taken care of is

the inclusion of the additional matrix term through the AdcMatrix. This has already been
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achieved during the LR-PE implementation in adcc. Consequently, no PE-specific code

enters the respondo library. The only thing one needs to do is to use the appropriately

modified AdcMatrix to perform the matrix inversions. In this respect, the synergy of adcc

and respondo is clearly outstanding, because all properties that will eventually be added

to respondo will automatically be available for PE-ADC, without further ado.

4.4 Summary

To conclude this chapter, I want to demonstrate how one can run all the previously

derived and implemented PE-ADC methodologies for ground state PE, excitation energies,

response properties, and gradients in a single Python script, shown in Listing 4.14. In

this example, the formaldehyde molecule is used as the quantum region and six water

molecules in its environment are modeled through PE. In line 20, the PE-SCF problem in

PySCF is created and solved in line 23, making use of CPPE interfaced to PySCF in the

background. Then, five singlet excited states with pt-PE-ADC(2) are computed, taking

into account ptSS and ptLR terms. For comparison, the same task is carried out but

with LR-PE-ADC(2) by just switching the environment argument. Both ExcitedStates

results are printed as a table through the describe function. Next, respondo comes into

play and computes the complex polarizability with the PE-ADC(2) matrix, i.e., including

the PE linear response term. In the last line of the input example, the LR-PE-ADC(2)

gradient of the first excited state is evaluated. This input example nicely shows how the

methodologies derived in Chapter 3 can be applied in practice, exploiting the combination

of all open-source libraries described in the current chapter – CPPE, adcc, and respondo.

Through these libraries, the entire set of PE-ADC combinations is openly available for

everyone, which is a unique feature set for advanced environment modeling. The first

computational results with the presented methodologies and the implemented libraries

are shown in Chapter 5. In the future, the open-source libraries will be further expanded

and improved, especially the gradient implementation with PE-ADC is not capable of

carrying out efficient and stable geometry optimizations in the current state. Once this is

achieved, ever more complex systems can be studied with the comprehensive feature set

provided by the open-source libraries for computational spectroscopy illustrated here.
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1 import adcc

2 import numpy as np

3 from pyscf import gto, scf

4 from pyscf.solvent import PE

5 from respondo.polarizability import complex_polarizability

6

7 mol = gto.M(

8 atom="""

9 C 1.0632450881806 2.0267971791743 0.4338879750526

10 O 1.1154451117032 1.0798728186948 1.1542424552747

11 H 1.0944666250874 3.0394904220684 0.8360468907200

12 H 0.9836601903170 1.9241779934791 -0.6452234478151

13 """,

14 basis='sto-3g',

15 charge=0,

16 )

17 options = {"potfile": "fa_6w.pot"}

18

19 # Run PE-SCF with PySCF

20 scfres = PE(scf.RHF(mol), options)

21 scfres.conv_tol = 1e-10

22 scfres.conv_tol_grad = 1e-7

23 scfres.kernel()

24 # set up reference state

25 refstate = adcc.ReferenceState(scfres)

26

27 # run pt-PE-ADC(2)

28 state_pt = adcc.adc2(refstate, n_singlets=5, environment=['ptss', 'ptlr'])

29 print(state_pt.describe())

30 # run LR-PE-ADC(2)

31 state_lr = adcc.adc2(refstate, n_singlets=5, environment='linear_response')

32 print(state_lr.describe())

33

34 # solve complex polarizability at the second excitation energy

35 omega = state_lr.excitation_energy[1]

36 alpha = complex_polarizability(state_lr.matrix, omega=omega, gamma=0.0046)

37

38 # compute the nuclear gradient of the first excited state

39 grad = adcc.nuclear_gradient(state_lr.excitations[0])

Listing 4.14: Example input file for running PE-ADC calculations with PySCF, CPPE,
adcc, and respondo for formaldehyde.



Notes

1. Reprinted with permission from: M. Scheurer, P. Reinholdt, E. R. Kjellgren, J. M. H. Olsen, A. Dreuw,

and J. Kongsted, “CPPE: An Open-Source C++ and Python Library for Polarizable Embedding”, J.

Chem. Theory Comput. 2019, 15 (11), 6154-6163. Copyright 2019 American Chemical Society.
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Chapter 5

Application of PE-ADC Methodologies

The aim of this chapter is to expand upon the theoretical derivations and implemen-

tations of combined PE-ADC methodologies via test calculations of electronic excitation

energies, higher-order response properties, and analytic nuclear gradients. In the first

part, benchmarks and applications of the perturbative PE-ADC combined method are

briefly summarized. Then, a first benchmark study of the PE-ADC/ISR response for-

malism is presented by evaluating the two-photon transition strengths of two solvated

chromophores. The correctness of the PE gradient implementations is furthermore veri-

fied through a simple numerical test case. In the end, I give a short summary and ideas

for future applications on the devised methods.

5.1 Perturbatively Corrected PE-ADC Excitation Energies

The variant of the ADC scheme combined with the PE model for accurate calculations

of electronic excited states including perturbative corrections was presented in detail in

my publications. [42,61] Therein, I demonstrate the accuracy and large-scale applicability

with two benchmark studies and a biomolecular case study, analyzing the importance

of both ptSS and ptLR corrections for the excitation energies in presence of polarizable

environments. [42,61] In this study, I used my PE-ADC implementation in the Q-Chem

program package, [93,94] but the same calculations can also be carried out with adcc. In

Parts of this chapter have already been published in:

• M. Scheurer, M. F. Herbst, P. Reinholdt, J. M. H. Olsen, A. Dreuw, and J. Kongsted, “Polarizable
Embedding Combined with the Algebraic Diagrammatic Construction: Tackling Excited States in
Biomolecular Systems”, J. Chem. Theory Comput. 2018, 14 (9), 4870-4883. (Reference 61)

• M. Scheurer, “Polarizable Embedding for the Algebraic-Diagrammatic Construction Scheme”,
Springer Fachmedien Wiesbaden, 2020. (Reference 42)
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the following, I briefly summarize the results of the pt-PE-ADC benchmark computations

and explain how I applied the scheme to accurately model a charge transfer (CT) excitation

in the active site of the flavoprotein dodecin.

In a first test, the low-lying π → π∗ and n → π∗ singlet states of para-nitroaniline

(pNA) embedded in small water clusters were computed with pt-PE-ADC(2) and pt-PE-

ADC(3/2) are compared to the respective ADC result for the molecular supersystem. [42,61]

Since pNA forms hydrogen bonds to the surrounding water molecules via the lone pair

of the nitro group, this test system is particularly challenging. The expected blue shift

was observed for the n → π∗ excitation energy in presence of the water clusters through

destabilization of the excited state. In this case, ptSS and ptLR corrections were almost

equal to zero, because the transition is forbidden and the excited state dipole moment

does not change much compared to the ground state. Consequently, the observed blue

shift arises only through PE contributions to the ground state wave function. The prop-

erties of the π → π∗ transition of pNA in the presence of small water clusters are, on the

other hand, quite different. This transition corresponds to an intramolecular CT, such

that the electric dipole moment approximately doubles upon excitation. In addition, the

transition is allowed, such that the corresponding oscillator strength is larger than zero.

Both perturbative corrections were non-negligible in this case. The expected red shift of

the π → π∗ excitation energy was correctly captured through pt-PE-ADC, even though

the largest contribution to the solvent shift always stems from the PE contribution to

the reference state. [42,61] The maximum absolute errors found for pt-PE-ADC in compar-

ison with supersystem ADC calculations were only 0.07 eV for ADC(2) and 0.06 eV for

ADC(3/2), [42,61] well below the intrinsic error of the employed quantum chemical method

itself. [35] The second case study analyzes bulk solvation effects on the electronic excited

states of lumiflavin (Lf) via pt-PE-ADC(2). [42,61] In this case a supersystem computation

was not feasible because of the large number of solvent molecules. Instead, the results

were compared to the well established PCM-ADC(2) method using continuum solvation,

which also relies on perturbative corrections. [115,116] For pt-PE-ADC(2), configurations of

the entire system were sampled with QM/MM MD simulations, whereas PCM-ADC(2)

calculations were run on optimized structures of Lf in presence of the solvent continuum.

Two different solvents – water and cyclohexane – were employed. The comparison of

pt-PE-ADC(2) and PCM-ADC(2) showed good agreement of solvent shifts for π → π∗

excitations. On the contrary, different trends were predicted in case of n → π∗, which

might result from the underlying sampled structures in case of pt-PE-ADC(2). A sta-

tistical analysis of all snapshots and their excited state properties however showed that

the number of snapshots was large enough for meaningful median excitation energies.



5.1 Perturbatively Corrected PE-ADC Excitation Energies 107

The explicit and continuum solvation methods were found to agree in their description

of bright states, which are relevant for spectroscopy simulations. An illustration on the

general relationship between the magnitudes of the ptSS and ptLR corrections to excited

state properties, i.e., difference dipole moment and oscillator strength, respectively, was

presented. [42,61]

The last example demonstrates the use case pt-PE-ADC was developed for: Modeling

excited states of chromophores embedded in complex environments, such as photoreactive

proteins. Therefore, the CT state pivotal for the photoprotection mechanism of the flavo-

protein dodecin was analyzed with the combined method. [61,117–119] Dodecin, a homodo-

decameric protein complex, is the key player for flavin homeostasis in archaebacteria. [117]

It is capable of storing several types of flavin derivatives and efficiently protects those pho-

tolabile species from photodegradation through a multistep quenching mechanism. [119,120]

The key step of the quenching mechanism is a CT excitation from an adjacent tryptophan

(W36) residue to the flavin species bound by dodecin. Upon CT excitation, charge sepa-

ration results in a positively charged tryptophan radical cation and a negatively charged

flavosemiquinone radical, investigated using in vacuo calculations in a previous work of

mine. [120] An alternative pathway corresponds to a local excitation (LE) on the flavin

species, leading to photodegradation. For this reason, it is clear that dodecin must be

capable of efficiently promoting the CT excitation for photoprotection. To gain further

understanding whether a polarizable protein environment directly promotes this pathway,

the excitation process of the Lf-W36 dimer was elucidated using pt-PE-ADC(2). The

computational protocol for MD sampling, QM/MM MD simulations, and quantum chem-

ical calculations is presented in detail in Ref. 120. For the resulting 50 representative

snapshots, three singlet excited states were computed with pt-PE-ADC(2), [61] where the

lowest excited states were identified as CT transitions. The nature of this transition and

relative ordering of the states depend on the specific configuration, i.e., relative orientation

of Lf and W36. [61] Sometimes a mixture of LE and CT states is observed. For a CT state,

the magnitude of the ptSS correction is expected to be large due to the linear relationship

with the difference dipole moment. Indeed, snapshots with a ptSS correction smaller than

−0.05 eV for the lowest excited states were identified as CT states using the electron-hole

distance dh→e as a direct probe for CT character. In Figure 5.1a, the direct relationship

between the magnitude of the ptSS correction and the electron-hole distance is illustrated

for the entire set of snapshots. The larger the electron-hole distance, the larger the CT

character of the excitation, and consequently, the ptSS correction exhibits a large mag-

nitude. The effect of the polarizable environment in these computations is illustrated in

Figure 5.1b and c: With PE enabled, the first three singlet states show significant CT
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Figure 5.1: Analysis of Lf-W36 CT states using electron-hole distances. a) Relationship
between ptSS correction and electron-hole distance dh→e for S1 and S2. b)
Effect of PE on electron-hole distances. In isolation, i.e., without the protein
environment, the character of the excitation is shifted from CT to LE.1

character on average. This observation changes dramatically when the polarizable envi-

ronment is not present anymore. In this case, the LE state dominates, and almost no

CT character is present anymore for the Lf-W36 dimer. Clearly, the polarizable dodecin

and water environment stabilize the CT excitation of the Lf-W36 dimer. Of course, the

nature of the excited state is not changed through the perturbative corrections, but only

through the PE contribution to the reference state. In order to describe photoexcitations

in such flavoproteins realistically, a sophisticated environment model should be chosen

rather than ignoring the pivotal influence of the polarizable environment. As a next step,

the manipulation of the dodecin photocycle should be studied using pt-PE-ADC to unravel

the influence of redox potentials of the involved tryptophan derivative. [119]

5.2 Response Properties with PE-ADC

This section illustrates the PE-ADC/ISR response approach as derived in Section 3.3

applied to two-photon absorption simulations of small molecules. The implementation

in adcc and respondo was described in the previous chapter. Recall that in order to



5.2 Response Properties with PE-ADC 109

evaluate a PE-ADC/ISR response property, only the ADC matrix has been modified to

include a zeroth-order coupling term to the polarizable environment in an iterative man-

ner. In the following, I assess the accuracy of the PE-ADC approaches by comparing to

supersystem computations of excitation energies, oscillator strengths, and TP absorption

strengths δTP. To obtain accurate results, two additional corrections are employed. First,

electron spill-out, i.e., delocalization of the electron density to the environment is avoided

via the PE(ECP) approach. [106] These simple pseudopotentials, located at the environ-

ment expansion sites, capture the missing Pauli repulsion between the quantum region

and the environment, such that artifacts from electron spill-out are minimized. [32] Other

approaches to avoid electron spill-out in PE calculations exist, [105] however, the PE(ECP)

scheme is much easier to implement. It was shown in previous work that PE(ECP) effec-

tively remedies electron spill-out in PE-ADC computations, [106] and similar results were

shown for TPA simulations with TDDFT recently. [121] Inclusion of repulsive potentials is

almost mandatory with anionic species in the quantum region or diffuse basis sets. The

PE(ECP) potential is a simple one-electron contribution added to the core Hamiltonian

during the SCF, and is thus independent of the post-SCF treatment. As explained pre-

viously, I added the PE(ECP) option to PySCF and Psi4. A second improvement for

molecular response properties is the inclusion of local electric field effects, called effective

external fields (EEF), [122] in order to obtain correct transition moments. Without EEF,

the transition moments computed from the electric dipole operator completely ignore the

transition induced moments created in the polarizable environment. This physically wrong

behavior can be corrected by modification of the electric dipole operator matrix elements.

The effective dipole operator is then used to compute, e.g., transition dipole moments or

modified transition moments as right-hand side for response equations. [122] Using EEF is a

standard procedure in PE-TDDFT simulations, however, it has never been used together

with PE-ADC until now. To discern the effects of the coupling scheme, PE(ECP), and

EEF, different combinations of these settings are tested in the following.

The molecular structure of the deprotonated anionic chromophore of photoactive yellow

protein (PYPb), with two water molecules located next to the phenolate oxygen atom,

was taken from previous work. [70,123] The system is referred to as PYPb/2 H2O in the

following, depicted in Figure 5.2a. Embedding parameters, including static multipole

moments (charges, dipoles, quadrupoles) and dipole-dipole polarizabilities were obtained

with the LoProp approach [124] using PyFraME. [125] The LoProp calculations were run

using Dalton [88,126] with CAM-B3LYP and the loprop-6-31+G* basis set. [127] For the fol-

lowing ADC calculations, PySCF was used as the host program in combination with adcc.

Three excited singlet states were obtained at the ADC(2)/6-31+G* level of theory for the
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a)

b)

Figure 5.2: Molecular structures of the test systems a) PYPb/2 H2O and b) pNA/15
H2O. Water molecules comprise the polarizable environment, whereas the
solute molecules are used as the quantum region.

entire pNA/15 H2O supersystem as benchmark reference values. For the energetically low-

est singlet π → π∗ transition, the two-photon transition strength was computed. These

quantities were also obtained using PE-ADC(2)/6-31+G* with PYPb as quantum region

and the two water molecules as polarizable environment. Different PE coupling schemes

were used, i.e., PTE-PE and LR-PE, combined with PE(ECP) repulsive potentials and

EEF for transition moments, yielding six different combinations of coupling scheme and

additional correction (PTE-PE, PTE-PE + ECP, LR-PE, LR-PE + EEF, LR-PE + ECP,

LR-PE + ECP + EEF). From a conceptual point of view, it only makes sense to use EEF

in combination with the LR-PE formalism. [122] These computations were carried out using

ADC(3/2), too. The results of the ADC(2) calculations for PYPb/2 H2O are presented

in Table 5.1. Note that excitation energies are of course not affected by EEF. For such

a small system with only two water molecules as polarizable environment, the excitation

energy errors are almost negligible, as expected. The largest error is found for the simplest
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Table 5.1: Excitation energies Eexc, oscillator strengths f , and TP transition strengths δTP

for the low-lying π → π∗ state of PYPb/2 H2O obtained with ADC(2)/6-31+G*
using different environment coupling schemes.a)

Scheme Eexc [au] f δTP [au]

Supersystem 0.109 0.902 32494.877
PTE-PE 0.113 (2.84) 0.874 (−3.09) 27576.994 (−15.13)
PTE-PE + ECP 0.109 (−0.37) 0.877 (−2.75) 27727.543 (−14.67)
LR-PE 0.111 (1.87) 0.883 (−2.12) 28386.9 (−12.64)
LR-PE + EEF 0.111 (1.87) 0.918 (1.73) 30808.337 (−5.19)
LR-PE + ECP 0.108 (−1.35) 0.885 (−1.86) 28530.88 (−12.2)
LR-PE + ECP + EEF 0.108 (−1.35) 0.919 (1.86) 30871.888 (−4.99)

a) Relative errors in % with respect to the supersystem reference are shown in
parentheses.

PTE-PE scheme, however, all relative errors are smaller than 3%. Regarding oscillator

strengths, the LR-PE scheme improves upon PTE-PE by approximately one percentage

point. As expected, the most accurate oscillator strengths are obtained when using EEF to

compute transition moments. This observation is even more pronounced for TP transition

strengths. Here, the largest discrepancy is found for PTE-PE, i.e., again the most simple

scheme. Including the PE coupling term in the ADC matrix for the eigenvalue problem

and linear response procedure reduces the error by three percentage points, however, the

δTP value is still underestimated by approximately 13%. The most accurate δTP value is

obtained with the LR-PE + ECP + EEF combination, i.e., with LR coupling and both

corrections. The effect of PE(ECP) repulsive potentials is, however, negligible in this case,

since a similar error of approximately 5% results from LR-PE with just EEF. The expected

improvement through LR-PE in combination with finite field effects was found in this first

assessment. Turning to the ADC(3/2) results, shown in Table 5.2, a similar trend is ob-

served. All relative excitation energy errors are below 3% in magnitude. Interestingly, the

relative errors of δTP are much smaller for ADC(3/2) than for ADC(2). The most accurate

result is here found for the combination of LR-PE and EEF. Adding PE(ECP) to this set-

ting slightly increases the relative error. A key result from this analysis is that in any case

EEF should be used to obtain more precise transition intensities with the LR-PE model.

To the best of my knowledge, this has not been done before in the previously existing

PE-ADC implementation. Furthermore, this is the first LR-PE-ADC(3/2) computation

conducted, combining a highly accurate electronic structure method in a robust manner

with the PE model. To assess the performance of the methodological combinations for a
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Table 5.2: Excitation energies Eexc, oscillator strengths f , and TP transition strengths
δTP for the low-lying π → π∗ state of PYPb/2 H2O obtained with
ADC(3/2)/6-31+G* using different environment coupling schemes.a)

Scheme Eexc [au] f δTP [au]

Supersystem 0.115 0.886 14669.096
PTE-PE 0.117 (1.79) 0.843 (−4.92) 13552.182 (−7.61)
PTE-PE + ECP 0.113 (−2.17) 0.835 (−5.8) 14036.726 (−4.31)
LR-PE 0.116 (1.09) 0.852 (−3.92) 13846.046 (−5.61)
LR-PE + EEF 0.116 (1.09) 0.883 (−0.4) 14857.739 (1.29)
LR-PE + ECP 0.112 (−2.87) 0.843 (−4.88) 14340.235 (−2.24)
LR-PE + ECP + EEF 0.112 (−2.87) 0.873 (−1.52) 15357.64 (4.69)

a) Relative errors in % with respect to the supersystem reference are shown in
parentheses.

larger system, an additional test case is presented. The composite structure of pNA with

15 water molecules (pNA/15 H2O) was optimized at the CAM-B3LYP/cc-pVDZ [127,128]

level of theory using TeraChem 1.93. [129] The resulting molecular geometry is shown in

Figure 5.2b. The embedding parameters were obtained exactly as described above for the

PYPb system. Three excited singlet states were obtained at the ADC(2)/6-31+G* level

of theory for the entire pNA/15 H2O supersystem as the benchmark reference. For the

energetically lowest singlet π → π∗ transition, the two-photon transition strength δTP was

computed. These quantities were also obtained using PE-ADC(2)/6-31+G* with pNA as

quantum region and the water molecules as polarizable environment. The same method

combinations were used as described above for the PYPb/2 H2O system above. Since

the supersystem is quite large, an ADC(3/2) is unfortunately not feasible. The results

for the pNA/15 H2O system are shown in Table 5.3. Because the environment is now

comprised of 15 water molecules, the overall relative errors are naturally somewhat larger

than in the previous test case. Still, the deviation of excitation energies of the low-lying

π → π∗ singlet state from the supersystem ADC(2) reference are all smaller than 7%. The

most accurate excitation energy is obtained for LR-PE in combination with PE(ECP),

showing a deviation as small as 2.35%. For the oscillator strength f , the error of PTE-PE

of approximately −13% can be reduced to the remarkable small deviation of 1.8% with

LR-PE + ECP + EFF. This error reduction is even more pronounced for the higher-order

property δTP, where the error reduced from −44.45% in PTE-PE to only −9.4% when

using the most advanced LR-PE + ECP + EEF scheme. One can clearly see that the

combination of the PE linear response contribution with EEF and PE(ECP) is beneficial
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Table 5.3: Excitation energies Eexc, oscillator strengths f , and TP transition strengths δTP

for the low-lying π → π∗ state of pNA/15 H2O obtained with ADC(2)/6-31+G*
using different environment coupling schemes.a)

Scheme Eexc [au] f δTP [au]

Supersystem 0.147 0.500 9970.274
PTE-PE 0.157 (6.67) 0.434 (−13.24) 5538.653 (−44.45)
PTE-PE + ECP 0.153 (3.89) 0.431 (−13.85) 6575.304 (−34.05)
LR-PE 0.155 (5.22) 0.457 (−8.63) 5901.168 (−40.81)
LR-PE + EEF 0.155 (5.22) 0.514 (2.72) 7557.326 (−24.2)
LR-PE + ECP 0.151 (2.35) 0.446 (−10.73) 6941.542 (−30.38)
LR-PE + ECP + EEF 0.151 (2.35) 0.509 (1.8) 9033.5 (−9.4)

a) Relative errors in % with respect to the supersystem reference are shown in
parentheses.

especially for higher-order properties. Relying only on the approximate PTE scheme, as is

done frequently for similar models, [70] yields much larger errors. Even though only two test

cases are discussed here, it is likely that the combined LR-PE-ADC methodology performs

well for molecular response properties of higher order when (modified) transition moments

are computed with EEF, and electron spill-out artifacts are avoided through PE(ECP).

For electronic excitation energies only, however, little improvement was observed in the

presented benchmarks, where one could also just use perturbative corrections, for example.

It is evident that the PTE error largely amplifies with increasing order of the molecular

property under study, such that an LR-PE-ADC scheme in combination with EEF and

PE(ECP) should preferably be used in this case. The synergy of this first-time combined

methodology looks promising for accurate description of nonlinear response properties in,

e.g., photoreactive proteins. [130]

5.3 Analytic Nuclear Gradients

To verify the correctness of the entire PE gradient suite, especially PE-MP and PE-

ADC gradients derived in Chapter 3, I carried out a small set of test calculations. The

test system is a formaldehyde (FA) molecule as the quantum region, microsolvated by

six water molecules. This structure was taken from Ref. 64. Static charges and dipole

moments as well as dipole-dipole polarizabilities were obtained using LoProp [124] through

PyFraME [125] at the PBE0/loprop-cc-pVDZ level of theory as implemented in Dalton. [88,126,128,131]

The test system structure is illustrated in Figure 5.3. All calculations were carried out us-
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x y z

C 1.063 2.027 0.434
O 1.115 1.08 1.154
H 1.094 3.039 0.836
H 0.984 1.924 −0.645
O 1.379 −1.352 −0.484
H 1.186 −0.722 0.214
H 2.294 −1.592 −0.324
O 1.425 0.333 −2.729
H 1.307 −0.349 −2.064
H 1.134 −0.089 −3.54
O 4.294 −1.306 0.061
H 4.956 −1.963 0.286
H 4.292 −0.718 0.819
O 3.982 2.785 0.137
H 4.094 2.228 −0.636
H 4.672 3.444 0.043
O 4.168 0.934 −1.933
H 3.321 0.8 −2.364
H 4.323 0.104 −1.477
O 4.048 0.636 2.075
H 3.147 0.623 2.406
H 4.086 1.444 1.559

Figure 5.3: Graphical illustration of the FA test system with six water molecules as polar-
izable environments (left) and Cartesian coordinates in Å (right). The atom
labels marked in red belong to FA, i.e., the quantum region.

ing PySCF as host program interfaced with CPPE, [39,79] using the cc-pVDZ basis set. [128]

Numerical nuclear gradient values were obtained using a five-point finite difference scheme

with a step size of 10−3 au, and agreement with analytical values was tested with a tol-

erance of 10−8 au. First, the simplest gradient implementation in PySCF/CPPE was

tested by computing the analytical PE-HF gradient for the test system structure. These

results, together with numerical reference values are shown in Table 5.4. Here, the analyt-

ical PE-HF gradient values perfectly agree with the numerical result obtained from finite

differences, proving that the implementation and all gradient building blocks are indeed

correct. Note that my implementation supports all SCF ground state methods imple-

mented in PySCF, i.e., PE-DFT gradients are enabled, too. Furthermore, I implemented

PE-SCF gradients in Psi4, and the Psi4 implementation was found to be correct by com-

parison with finite difference values (data not shown). With the correct PE-HF gradient

implementation in place, the next step was to carry out a correlated ground state PE-MP2

gradient computation within the PTE scheme. For this task, PySCF was again used as

host program for adcc, and the implementation of all correlated gradients was achieved as

described in Section 4.2.4. As a prerequisite for working PE gradients, I tested the vacuum

MP and ADC gradients with the same numerical scheme, omitted here for brevity. The
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Table 5.4: PE-HF/cc-pVDZ gradient components for the FA molecule, microsolvated with
six water molecules.a)

Analytical Numerical

dE/dx dE/dy dE/dz dE/dx dE/dy dE/dz

C −0.0021497 0.0066146 −0.0105669 −0.0021497 0.0066146 −0.0105669
O −0.0032942 0.0017999 0.0043360 −0.0032942 0.0017999 0.0043360
H 0.0000844 −0.0062130 −0.0003124 0.0000844 −0.0062130 −0.0003124
H 0.0002680 0.0002660 0.0090324 0.0002680 0.0002660 0.0090324

a) All values in atomic units.

PTE-PE-MP2 gradient components for the FA test system are presented in Table 5.5.

Clearly, the analytically and numerically obtained values for all gradient components are

Table 5.5: PTE-PE-MP2/cc-pVDZ gradient components for the FA molecule, microsol-
vated with six water molecules.a)

Analytical Numerical

dE/dx dE/dy dE/dz dE/dx dE/dy dE/dz

C 0.0003620 −0.0274673 0.0161553 0.0003620 −0.0274673 0.0161553
O −0.0053668 0.0466184 −0.0305970 −0.0053668 0.0466184 −0.0305970
H −0.0000706 −0.0166210 −0.0025885 −0.0000706 −0.0166210 −0.0025885
H 0.0010418 −0.0006693 0.0191839 0.0010418 −0.0006693 0.0191839

a) All values in atomic units.

equivalent up to a threshold value of 10−8 au again. This shows that the derivation for all

orbital response contributions as well as the gradient contributions through the correlation

treatment do not contain any errors. The rate-limiting step for the final evaluation of the

correlated gradient is the GradientProvider implementation in which the contraction of

the densities with derivative integrals is carried out. Therein, one could possibly play

some tricks with PySCF to avoid evaluation of zero or redundant gradient contributions,

which would make the implementation more usable for larger systems. This should be

easily achievable, because the PE-MP2 implementation is working properly and can be

reliably tested. For further testing, I planned to run the exact same computation using

the PE-MP2 gradient implementation in Turbomole 7.5, [32,132] however, the feature was

unfortunately disabled. The last and most intricate feature of the presented PE suite

of gradient implementations is the evaluation of the LR-PE-ADC excited state gradient.
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To obtain well-converged eigenvectors, the five energetically lowest singlet excited states

for the microsolvate FA system were computed with LR-PE-ADC(2)/cc-pVDZ as imple-

mented in adcc using PySCF and CPPE. The convergence tolerance of the eigensolver

was set to 10−8 au. Then, both numerical and analytical gradients were evaluated for

the energetically lowest singlet state (Eexc = 0.15960386 au), summarized in Table 5.6.

Even though the LR-PE-ADC gradient expressions are somewhat involved, the result

Table 5.6: LR-PE-ADC(2)/cc-pVDZ gradient components for microsolvated FA.a)

Analytical Numerical

dE/dx dE/dy dE/dz dE/dx dE/dy dE/dz

C 0.0115224 −0.1511810 0.1106262 0.0115224 −0.1511810 0.1106262
O −0.0110975 0.1619811 −0.1213490 −0.0110975 0.1619811 −0.1213490
H −0.0019642 −0.0123892 −0.0044773 −0.0019642 −0.0123891 −0.0044773
H 0.0002861 0.0023864 0.0167721 0.0002861 0.0023864 0.0167720

a) All values in atomic units.

obtained with my analytical implementation is in perfect agreement with the numerical

result. This proves, without a doubt, the correctness of all the working equations and the

subsequent implementation in adcc. As an additional test calculation, I tried again to

run the exact same LR-PE-ADC(2) gradient computation using Turbomole 7.5, providing

the exact same input parameters, molecular geometry, and basis set. Since the Turbo-

mole implementation uses the resolution of the identity (RI) approximation, I selected the

aug-cc-pV6Z auxiliary basis set [133] to minimize the error of the RI approximation. The

PE-HF and PTE-PE-MP2 energy as well as the LR-PE-ADC(2) excitation energy were

in exact agreement with my results from adcc up to numerical accuracy. To my surprise,

an erroneous LR-PE-ADC(2) gradient was returned by Turbomole, shown in Table 5.7.

The equality of all energy terms clearly rules out a possible problem with the preparation

of the calculation. Hence, if the energy itself agrees among implementations, then also

its derivative must be identical. In addition, the numerical gradient values largely differ

from the Turbomole result, such that a numerical problem can be excluded. These errors

are on the order of 10−4 au, definitely too large considering the agreement among ground

and excited state energies. Consequently, there exists a problem with the current LR-PE-

ADC(2) gradient implementation in Turbomole, which can unfortunately not be tracked

down for such a closed-source code.

The sample computations presented above demonstrated the correctness of the PE gra-

dient derivations and implementations carried out in this work. All combined methodolo-
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Table 5.7: LR-PE-ADC(2)/cc-pVDZ/RI-aug-cc-pV6Z gradient components for FA ob-
tained with Turbomole 7.5.a)

dE/dx dE/dy dE/dz

C 0.01141519 −0.1502619 0.1102927
O −0.01103455 0.1590101 −0.1185370
H −0.00192592 −0.0103326 −0.0038015
H 0.00011647 0.0021209 0.0141014

a) All values in atomic units.

gies, for which PE gradient were implemented, perfectly agreed with numerical nuclear

gradient results. PE gradients for SCF reference states are available via the PySCF and

Psi4 host programs, whereas PE-MP2 and PE-ADC gradients can be computed using

adcc with either backend.

5.4 Summary

In this chapter, I presented possible applications of the combined PE-ADC methodolo-

gies. For example, the perturbative approach relying on corrections for excitation energies

was successfully tested in supersystem computations and in comparison to continuum

solvation models. The most advanced application of the pt-PE-ADC method so far is

the investigation of the CT state in the photocycle of the dodecin protein. [61] Using my

combined method, I showed that the polarizable protein environment directly promotes

this key step for efficient protection of embedded flavin species. Moreover, a first set of

benchmark computations for the novel LR-PE-ADC method applied to molecular response

properties was shown. Employing this more advanced coupling scheme together with cor-

rected transition intensities through EEF and removal of electron spill-out artifacts with

PE(ECP), highly accurate two-photon transition strengths were obtained for small water-

solvated chromophores. The correctness of PE gradients for ground and excited states

was verified by comparison to numerical schemes. I want to stress that the entire fea-

ture set presented in this thesis is freely available, as explained in Chapter 4. Almost

every ADC-related feature is already implemented in the most recent adcc release, the

rest is available through feature branches. The unique and comprehensive feature set of

combined PE-ADC methodologies for excited states, molecular response properties of any

order, and analytic gradients cannot be found in any other quantum chemical program

package. In addition, this chapter showed the first combination of the PE model with
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ADC/ISR for response properties, taking into account EEF and PE(ECP). Even though

only few applications are shown herein, the methodologies are promising for future re-

search because they are easily extensible, easy to used, and new features coming to adcc

will work with PE out of the box. Currently, the PE-ADC gradient code is difficult to use

in practice due to performance bottlenecks. Improving the speed of the implementation

and ad hoc addition of an empirical dispersion interaction [59] between the environment and

the quantum region will enable efficient PE-ADC geometry optimizations in the future.

To assess the quality of PE-ADC results in general, however, an in-depth analysis of the

performance on several systems will be required. This will pave the way for application

of, e.g., LR-PE-ADC to non-linear spectroscopies of biomolecular systems. [130]



Notes

1. Reprinted with permission from: M. Scheurer, M. F. Herbst, P. Reinholdt, J. M. H. Olsen, A. Dreuw, and

J. Kongsted, “Polarizable Embedding Combined with the Algebraic Diagrammatic Construction: Tackling

Excited States in Biomolecular Systems”, J. Chem. Theory Comput. 2018, 14 (9), 4870-4883. Copyright

2018 American Chemical Society.
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Chapter 6

Linear-Scaling Polarizable Embedding

For polarizable embedding models, a large share of the computational cost arises from

evaluation of the interaction integrals for the quantum-classical coupling, i.e., multipole

potential and field integrals. While for small environments, these contributions surely

dominate the additional computational cost, calculations with ever larger environments

are dominated by the contributions with the steepest asymptotic scaling. All PE models re-

quire the solution of classical polarization equations for the induced dipole moments, which

scales quadratically with the number of polarizable sites in the environment. Spurred

by this bottleneck, linear-scaling implementations relying on the Fast Multipole Method

(FMM) [134] have been developed in recent years. [135,136] The scaling of iteratively evaluated

terms arising in PE models is illustrated in Figure 6.1. The quantum→classical polariza-

tion consists of density-dependent electric field expectation values Fel[D] evaluated at

each polarizable site in the environment, as previously explained. The classical→quantum

polarization is, in addition to the presence of the permanent multipoles in the environ-

ment, described by the induction operator V̂
ind

taking into account the induced field at

each environment site. Hence, both terms scale linearly with the number of polarizable

sites. The key step in the PE model is to solve the linear equations for induced dipole

moments µind (eq (2.143)). The induced fields F ind in eq (2.142) are evaluated for each

pair of polarizable sites, such that this term scales quadratically with the number of sites.

Using FMM, this bottleneck can be mitigated, and as a result F ind scales linearly as well.

Similarly, the evaluation of the static multipole field Fmul in eq (2.140) scales quadratically

with the number of sites, however, it must only be evaluated once during a computation

Parts of this chapter have already been published in:

• M. Scheurer, P. Reinholdt, J. M. H. Olsen, A. Dreuw, and J. Kongsted, “Efficient Open-Source
Implementations of Linear-Scaling Polarizable Embedding: Use Octrees to Save the Trees”, J.
Chem. Theory Comput. 2021, 17 (6), 3445–3454.
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Figure 6.1: Illustration of iteratively evaluated interaction terms in PE models. Terms that
scale linearly with the number of polarizable sites Nsites are shown in blue,
whereas quadratically scaling terms are shown in orange. Using FMM, the
quadratically scaling term to compute the induced fields F ind at all polarizable
sites becomes linearly scaling.1

and can then be cached for further use. Very detailed derivations and analyses of FMM

can be found in the literature, [137–139] but in brief, FMM consists of the following key

steps: The system (sites in the environment) is subdivided in hierarchical boxes using an

octree. An octree is a three-dimensional spatial data structure with cubic boxes at differ-

ent levels, i.e., the boxes can have a “parent” box and, if they are not leaf nodes, eight

child boxes. The boxes are sometimes referred to as nodes as well. After the recursive

tree creation, multipole expansions of each node are computed through a given expansion

order p. These multipole expansions are started at the leaf level of the octree by a map-

ping from source particles to the multipole expansion (particle to multipole, P2M). Then,

the expansions are translated to higher-level tree nodes up to the root nodes (multipole

to multipole, M2M). Based on a so-called angle opening criterion, with the opening an-

gle θ, interactions lists of the tree nodes are generated. These are required to bookkeep

which cell-cell interactions are directly evaluated (particle to particle, P2P), i.e., via direct

summation, or via their far-field expansions. Interactions are evaluated using multipole

expansions if the cells are well separated, i.e., if they satisfy Rθ < RA + RB, where R

is the distance between the cell centers, and RA and RB are the sizes of cells A and B.

Then, short-ranged interactions (P2P) are directly evaluated, if the cells are too close to

interact via multipole expansions. The potential/fields of far-field nodes are computed

(multipole to local, M2L) and transferred down the octree to the leaf level (local to local,
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L2L). Finally, the long ranged part of the potential/field is evaluated by means of the

local expansion (local to particle, L2P). With this approach, the potential/field can then

be evaluated at a cost that scales asymptotically as O(Nsites). While the above outline

is rather simplistic, an actual FMM implementation requires caution to ensure high and

tunable performance and accuracy.

The quadratic scaling of the induced field equations becomes particularly problematic for

large environments when a lot of induced moment equations need to be solved. This is the

case for computation of molecular response properties within the PE framework, especially

for high-order response properties, where the induction operator must be obtained for

many trial vectors. Compared to the iterations needed to converge the PE-SCF electronic

ground state, the number of polarization equations that need to be solved to obtain, e.g.,

excitation energies and transition moments is much larger.

All previously presented FMM implementation in the context of PE models are found in

closed-source codes and are not publicly available. To this end, I teamed up with P. Rein-

holdt to develop a linear-scaling formulation of the PE model. We could achieve two inde-

pendent FMM implementations in two open-source libraries, PElib [87] and CPPE. [79,140]

The implementation in PElib by P. Reinholdt exposes PE-FMM to the Dalton program

package, [88] and interfaces to LSDalton [88] and DIRAC [141] will be available soon. Details

and benchmarks of this implementation can be found in the joint publication. [140] In the

following, I will only discuss the implementation and results of my implementation in

CPPE, which currently enables the linear-scaling functionalities in PySCF and Psi4. [38,39]

After presenting the implementation and computational details, benchmark analyses are

carried out, and the implementation is tested using real-world sizable biomolecular systems

with more than a million polarizable sites in the environment.

6.1 Computational Methodology

6.1.1 Implementation Details

The implementation in the CPPE library [79] is based on autogenerated C++ code us-

ing fmmgen. [139] I followed the design strategy for CPPE outlined in Chapter 4, that

is, use existing frameworks to achieve a single task. Some modifications to the fmmgen

code generator were required, as explained below. Still, the implementation with repro-

ducible, automatically generated code is sustainable and was finished with minor time

and programming effort. If at some point another FMM code should be interfaced with

CPPE, this is straightforward because only the function calls to the evaluation of elec-
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tric fields need to be refactored. The fmmgen library generates Cartesian operators and

all kernels required for FMM based on symbolic algebra with SymPy. [102] The script I

used to generate the FMM code for CPPE can be found in the CPPE GitHub repository

(https://github.com/maxscheurer/cppe). I enabled common subexpression elimina-

tion (CSE), as for the T -tensor code generator, and let the code generator expand the

power function std::pow(b, n) as products up to n = 11. To allow for damped P2P

kernels and streamlined code for multiple source orders, the fmmgen code was slightly

adapted (https://github.com/fmmgen/maxscheurer). For the latter, I used template

meta-programming such that the code path for each source order is fixed at compile time.

This means that the individual kernels posses two template arguments, one being the

order of the source multipole moment M, the second one is the output vector size osize.

For example, the code to compute the direct electric field interaction of a charge is ac-

cessible via the function P2P<0, 3>(...). With this strategy, the computation code is

rather concise as it is not polluted with if-statements to select the appropriate code path.

The generated code comes with loop-based OpenMP parallelism included. The tree code

in CPPE was adapted from the fmmgen code examples and interfaced to the low-level

routines which require electric field computations. Of course, host programs that interface

with CPPE do not require any changes to adapt for the linear-scaling FMM code except

for exposing the additional options (which is a trivial change). FMM is available in CPPE

as of version 0.3.1.

6.1.2 Test System Setup

The implementation was tested on the pNA molecule placed inside a water solvation

box. The pNA geometry was taken from Ref. 64 and solvated using the PACKMOL

package. [142] Eleven systems with different box sizes were generated, ranging from 1440

atoms to 193596 atoms. The system with 114465 polarizable sites (38155 H2O molecules)

will be referred to as pNA/38k H2O in the following, as it is used in several test cases.

The generated systems were not processed further because PACKMOL generates con-

figurations without steric clashes, such that they can directly be used for benchmark

purposes. The environment water molecules were parametrized using LoProp [124,126] at

the CAM-B3LYP/6-31+G* level of theory. [127,143] The parametrization of a single water

molecule was run with PyFraME [125] and Dalton, [88] and parameters for the remaining

waters were then assigned by translation and rotation of the parameters from the reference

molecule. Thus, each atom is assigned a charge, dipole moment, quadrupole moment, and

anisotropic dipole–dipole polarizability, i.e., all atoms in the test systems are polarizable.

https://github.com/maxscheurer/cppe
https://github.com/fmmgen/maxscheurer
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These benchmark systems were used for the PElib implementation in the joint publication,

too. [140]

6.1.3 Benchmark and Test Calculations

To assess the correctness and accuracy of the FMM implementation, initial testing was

performed on the systems described above. A parameter study for the expansion or-

der p and the opening angle θ was run by evaluating the static electric field Fmul of

the pNA/38k H2O test system at all sites. The field evaluations from FMM were then

compared to results from direct summation. Serial timings of the field evaluations were

recorded to assess the performance for different FMM parameters. These calculations

were run on an Intel Xeon E5-2680 v3 processor using the Intel 19 compiler. The choice of

compiler can have quite a large impact on the performance of the fmmgen-generated code,

and it was shown in the fmmgen publication that Intel compilers outperform, e.g., GCC in

this case. [139] Next, the linear equations to solve the induced dipole moments (eq (2.143))

were benchmarked for all water boxes generated in Section 6.1.2 with the field from static

multipole moments Fmul as the right-hand side of the equation, i.e., Bµind = Fmul. No

parallelization was used in these computations. The equations were solved using a Jacobi-

preconditioned Conjugate Gradient (PCG) algorithm with a residual norm convergence

threshold of 10−8 au. The same convergence threshold was used for all other calculations

presented in this chapter.

The linear scaling in production PE-SCF and PE-TDDFT calculations, where a mul-

titude of field evaluations is required, was then tested on all generated pNA systems.

Calculations were run with PySCF [39] at the TD-CAM-B3LYP [127]/6-31G(d,p) level of

theory using the Tamm-Dancoff approximation (TDA). [144] The five energetically lowest

singlet excited states were computed. All of these computations were run on a single node

with 24 OMP threads. Timings for the SCF and the linear response (LR) procedure were

recorded separately. All calculations were run employing i) direct summation and ii) FMM

with p = 5 and θ = 0.5.

The five lowest singlet excitation energies of pNA/38k H2O were computed with pt-PE-

ADC(2) and the 6-31G(d,p) basis set. PE-ADC(2) calculations were run with PySCF [39]

in the adcc [80] toolkit employing ptSS and ptLR corrections for the excitation energies,

i.e., the induced moment equations are not solved during the ADC procedure itself. [61]

These computations were run employing either i) direct summation and ii) FMM with

p = 5 and θ = 0.5.
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Table 6.1: Nile Red/BLG Systems.

System Name Unit Cells Nsites

1x1x1 1 61,634
3x1x1 3 184,902
3x3x1 9 554,706
3x3x3 27 1,664,118

6.1.4 Setup for Nile Red

A snapshot extracted from a QM/MM MD trajectory of the Nile Red molecule bound to a

Beta-lactoglobulin protein (BLG) was taken from a previous study. [22] The coordinates of

the Nile Red molecule were extracted directly and used as the QM region in the following.

Embedding parameters of the protein, water, and ions were assigned using the PyFraME

package. For the protein, the parameters described in Ref. 145 were used, while parameters

for the water molecules and ions were taken from Ref. 146. In addition to the primary

simulation cell, we also created larger 3x1x1, 3x3x1 and 3x3x3 replicated cells with 3, 9,

and 27 copies of the primary unit cell, respectively, which for the largest system yielded a

total of 1,664,118 environment sites, as summarized in Table 6.1. For the PE calculations,

FMM was used with the parameters set to p = 5 and θ = 0.5. Thole-style damping was

used for all systems using standard damping parameters. [103] Three singlet excited states

were computed using PE-ADC(2)/6-31G(d) with CPPE/PySCF in adcc [80] including ptSS

and ptLR corrections (see Section 3.1). [61] The ADC calculations were run on a single node

using 24 OpenMP threads. The resulting stick spectra were convoluted with a Lorentzian

broadening function with a half-width at half maximum value of 0.124 eV. The code used

to generate the pNA test systems and to produce the following plots can be found on

GitHub (https://github.com/maxscheurer/pe_fmm).

6.2 Results and Discussion

6.2.1 Errors and Timings of Electric Field Evaluations

To test the accuracy of electric field evaluations of the implementation, a parameter study

varying the expansion order p and the opening angle θ for the pNA/38k H2O test system

was conducted. [140] Static multipole fields Fmul with contributions from static charges,

dipoles, and quadrupoles were computed. The error of the static multipole field per site i

https://github.com/maxscheurer/pe_fmm
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is given by

Ferr
i =

⃦⃦
Fdirect

mul,i −FFMM
mul,i

⃦⃦⃦⃦
Fdirect

mul,i

⃦⃦ . (6.1)

The normalized error distributions for θ = 0.2, 0.3, 0.5, 0.7, 0.99 and p = 3, 5, 7 are shown

in Figure 6.2. For small opening angles and high expansion orders, the errors in the field

Figure 6.2: Accuracy of FMM electric fields. The histograms show probability densities
over the error defined in eq (6.1). The errors are shown for different values of
the expansion order p and opening angle θ for a static multipole field Fmul

evaluation in pNA/38k H2O. Data reproduced from Ref. 140.

evaluation are almost negligible due to the fact that a lot of field evaluations are identical

to direct summation. As a matter of fact, an opening angle close to 1.0 should not be used

in practice as the errors simply become too large. It is clear that the average error can be

easily controlled using both the opening angle and the expansion order in a well-defined

manner, comparable to previous implementations. [135] Since induced fields are evaluated

iteratively during the SCF or LR procedures, the overall errors due to FMM field evalu-

ations will, of course, accumulate. This will be analyzed in the following. The presented

error distributions show that the accuracy of the implementation are well controllable

and approach the result from direct summation for large expansion orders and/or small
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opening angles. The results found for the PElib implementation are comparable to CPPE,

which gave further assurance. [140]

Another aspect of ensuring the correctness of the implementation is the time spent

on the field evaluations. The trade-off between computational effort and accuracy is a

significant factor in the choice of p and θ for practical simulations. The timings for the

field evaluations in Figure 6.2 are summarized in Table 6.2, obtained without using any

parallelization scheme. The run time of the direct summation evaluation is about 1500

Table 6.2: Serial timings for static field evaluations Fmul in Figure 6.2a), b)

θ p = 3 p = 5 p = 7

0.20 668.20 666.66 692.21
0.30 255.36 312.30 272.18
0.50 69.00 76.86 74.62
0.70 33.26 34.01 35.99
0.99 12.17 12.36 13.52

Direct 1574.63

a) Timings are reported in seconds.
b) Data reproduced from Ref. 140.

seconds. The execution time is reduced by a factor of two with the most conservative (and

slow) FMM parameters tested, whereas the fastest parameter set is up to 130–260 times

faster. The run time increases with increasing expansion orders and decreasing opening

angle, as expected. To put the timings in perspective with respect to the entailed errors, we

observe that for (p = 5, θ = 0.50), the evaluation time decreases by approximately a factor

of 20–25, while the average Ferr
i is only 10−3. Our results qualitatively agree with a similar

accuracy analysis conducted by Caprasecca et al. [147] In summary, the presented errors

and timings show the anticipated behavior and allowed us to efficiently evaluate electric

fields with the expected error-performance trade-off. The performance of the PElib FMM

implementation was rather similar. [140] Based on both the timings and the field evaluation

accuracy, the combination of (p = 5, θ = 0.50) was selected as default in the following

analyses, since it gives a reasonable compromise between speed and errors.

Next, the performance of the fmmgen-based implementation was benchmarked by solv-

ing the linear equations for the induced dipole moments. The total time to solve the

equation Bµind = Fmul, number of iterations, and time per iteration are shown in Table

6.3. Since the induced fields F ind are evaluated for the matrix-vector product in each

iteration, the timings for FMM clearly shows the expected performance improvement: For
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Table 6.3: Timings for solution of the induced dipole moments with direct summation and
FMM.a), b)

Time [s] Niter Time / Niter [s]

Nsites Direct FMM Direct FMM Direct FMM

1440 0.9 0.8 10 10 0.1 0.1
4083 7.2 3.6 10 10 0.7 0.4
8805 37.6 9.4 11 11 3.4 0.9

16203 127.0 29.4 11 11 11.5 2.7
26883 347.5 56.4 11 11 31.6 5.1
41448 829.5 46.1 11 11 75.4 4.2
60498 1746.3 75.1 11 11 158.8 6.8
84636 3446.6 136.0 11 11 313.3 12.4

114465 7000.1 259.4 12 12 583.3 21.6
150585 13058.8 431.0 12 12 1088.2 35.9
193596 24833.7 679.9 12 12 2069.5 56.7

a) The equation Bµind = Fmul was solved with a residual norm convergence threshold of
10−8 au. No parallelization was used.
b) Data reproduced from Ref. 140.

the largest system with almost 200k polarizable sites, FMM is more than 30 times faster

than direct summation. FMM is already faster than the direct approach for the system

with 4083 polarizable sites, and becomes more than 10 times faster for 41448 polariz-

able sites. The number of required iterations when using FMM or direct summation is

identical. This indicates that FMM does not seem to affect the convergence behavior of

the linear solvers, i.e., no numerical instabilities were observed. Lipparini shows a similar

benchmark, [136] where the solution of the induced dipole moments for a system with 117k

polarizable sites takes 22 seconds on 12 cores. A rough extrapolation to serial time would

yield approximately 264 seconds, which is in the same range as the timings reported for

the size-wise closest system with 114k polarizable sites. This comparison must be treated

with caution, however, because the timings are recorded for different systems, different

hardware, and different FMM implementations that do not share the same tunable pa-

rameters. The FMM code by Lipparini uses a different boxing scheme for near/far field

interactions and is based on spherical multipoles. Nevertheless, the presented timings are

somewhat similar to existing implementations, even though this is only a crude qualitative

assessment.
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6.2.2 Linear Scaling Test for SCF and Linear Response

Next, the linear scaling behavior in practical quantum chemical calculations is evaluated.

The use of FMM is beneficial for systems where the iterative evaluation of induced fields

becomes the rate-limiting step, i.e., the classical part of the calculation cost dominates the

quantum part. To this end, I recorded timings for SCF and LR computations on the pNA

systems with direct summation and with FMM (p = 5, θ = 0.5). For these environment-

dominated systems, it is expected that the wall times for SCF and LR procedures increase

quadratically with the number of sites for direct summation, and FMM must show an

asymptotic linear scaling. The recorded timings are shown in Figure 6.3. First, for SCF

Figure 6.3: Scaling of direct (left) and FMM summation schemes (right). Wall times for
CAM-B3LYP/6-31G(d,p) SCF and linear response computations are shown.
The systems consist of box with a single pNA molecule surrounded by water
molecules, consisting of Nsites atoms. Note that the vertical axes scales differ
due to the large difference between direct and FMM wall times. Data repro-
duced from Ref. 140.

and LR with direct summation schemes, a quadratic increase in wall time is observed.

Second, employing FMM mitigates the quadratic scaling and reduces the run time for

larger systems significantly. A robust linear scaling is observed for environments with up

to 200,000 polarizable sites. It is interesting to see the rather early onset of the quadratic

function for SCF and LR jobs for systems with less than 100,000 atoms. This shows that

the effect of FMM can be already beneficial for environments that are commonly used in

PE computations. The cross-over point between the total run time of the direct and FMM

implementations is found at 1440 sites. For the systems with more than 100,000 atoms,
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the SCF takes at least three times longer with direct summation than with FMM. It is

thus advisable to use FMM for efficient PE computations already when moderately sized

environments are used.

6.2.3 Accuracy of Electronic Excitation Spectra

Figure 6.4: Errors in the excitation energies for pNA/38k H2O computed with pt-PE-
ADC(2). Note that with some parameter combinations, the FMM result is
identical to the direct reference in all printed digits, in which case no bar is
shown. Data reproduced from Ref. 140.

More important than the error of single field evaluations is the propagation of the

FMM error to molecular properties, such as excitation energies and transition moments.

Since one of the main focuses of this thesis is computational spectroscopy, I analyzed

how the FMM error affects pt-PE-ADC(2) excitation energies. For this task, I used the

pNA/38k H2O test system, and the errors of the excitation energies of the five energetically

lowest singlet states are shown in Figure 6.4. Since the energy convergence threshold in

the eigensolver for these computations is on the order of 10−5 au, all errors below this

threshold are numerically equal to zero in this error analysis. For p = 3, mean errors are

on the order of 0.5 meV and the maximum error is 9.7 meV for pt-PE-ADC(2). A good

trade-off in the accuracy is found for p = 5 and θ = 0.5, where the excitation energy errors

in this case are in the range between 10−5 and 10−3 eV. For practical calculations, i.e.,

analysis and plotting of excitation spectra, these errors are ‘invisible’. The most important

conclusion from this error analysis is that all errors are well below the intrinsic error of

the employed ADC(2) method. [35,148,149] This is encouraging because it allows one to use

PE in combination with FMM almost in a black-box manner for excited state calculations

when reasonable defaults for the tree parameters are set (e.g., p = 5 and θ = 0.5). FMM

can be employed by users not familiar with the underlying principles without reducing

the quality of the obtained results. For higher-order properties, however, one should again
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benchmark the FMM parameters, because larger deviations might be found if more and

more dependent induced moment evaluations are coupled together.

6.2.4 Sizable Biomolecular Systems: Nile Red in BLG

To showcase the robustness of the FMM implementation, from a timing and memory

perspective, I ran excited state computations with pt-PE-ADC(2) on the Nile Red molecule

embedded in BLG and solvated by water. Due to the enormous amount of field integral

evaluations, which were previously all stored in memory in PySCF, I had to refactor the

interface code and implement a batching scheme for multipole potential and electric field

integrals. The code automatically determines how much memory is available, estimates

the memory use for PE-related integrals and then splits up the computation of integrals

in an appropriate amount of individual batches of environment sites. An overview of

the systems is presented in Figure 6.5. The system size was artificially increased for

demonstration purposes by replicating the unit cell of the MD simulation box successively

in all directions (Tab. 6.1). The timings for individual computational tasks and resulting

spectra are presented in Figure 6.6.

Figure 6.5: Illustration of Nile Red/BLG systems. Left: Nile Red molecule (quantum
region). Center: single unit cell containing water, protein, and ions. Right:
27 unit cells (3x3x3) artificially replicated environment. The illustration was
created using VMD [150] by P. Reinholdt.1

The largest system (3x3x3) contains more than 1.6 million polarizable sites in the envi-

ronment. In the pt-PE-ADC(2) calculations, the number of polarizable sites only affects

the run time of the SCF and the perturbative corrections (PTC), i.e., the ptSS and ptLR

correction together. The ADC eigenvalue problem is solved without direct environment

coupling, such that it always requires the same computational cost. Linearly ideal timing
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increases are 3-fold, 9-fold, and 27-fold for the 3x1x1, 3x3x1, and 3x3x3 system, respec-

tively, when compared to the single unit cell 1x1x1 system. This trend is present for the

SCF timings. Even though the observed relative timing factors are a bit larger than the

theoretical estimates, the implementation is still capable of treating the largest systems

in a linearly scaling manner. For PTC, the relative timing factors are below the the-

oretical estimate due to the fact that the number of iterations needed to solve for the

induced moments varies a bit, especially when comparing to the smallest system. With

this example, the ecological and sustainable aspect of using FMM for large polarizable

environments becomes evident. Running these computations on the same hardware with

direct summation would roughly take 100 days. Now, one could think about distributing

the direct summation code over several nodes. To reach the speed of FMM with such a

hypothetical code, it would require 100 nodes just to run the field evaluations, consuming

100-fold more power than the FMM code. Most importantly, the FMM implementation

is robust with respect to system size, and no unexpected bottlenecks arise when treating

such large systems. Timing analyses clearly show that the implementation is ready to

handle polarizable environments of any practically relevant size without difficulties.

Figure 6.6: Timings and excitation spectra for Nile Red/BLG computed with pt-PE-
ADC(2) employing FMM. Data reproduced from Ref. 140.

The observed eigenstates of the systems are expected to vary only slightly due to the

long-range nature of the interactions with additional unit cells. This is indeed the case for

all presented computations on Nile Red/BLG. For pt-PE-ADC(2), no direct coupling to the

polarizable environment is taken into account in the ADC procedure, such that intensities

are virtually identical in each system. The excitation energies are almost independent

of the environment size. This is expected because the excitation energies should already

be well converged for the smallest system, the larger ones are just artificially increased.
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Consequently, the FMM implementation in CPPE can be employed for arbitrarily large

polarizable environments, and yields efficient linear scaling and physically sound molecular

properties.

6.3 Conclusions

In this chapter, I presented a linear-scaling formulation of the PE model, together with

performance and accuracy analyses. Using FMM, the asymptotic scaling of the PE calcu-

lations with the number of sites in the environment is linear, and large speed-ups compared

to direct summation techniques already for systems with a few thousand polarizable sites

are observed. The required linear asymptotic scaling is proven with an extreme case study

with more than one million polarizable environment sites. The implementation is openly

available as part of the CPPE library, [79] and was published as a joint effort with an im-

plementation in PElib. [140] The method allows for an accurate evaluation of the electric

fields needed for the solution of the induced dipole polarization equations. FMM can

be safely applied with almost no degradation to the accuracy of practical calculations of

electronic excitation energies. A logical next step would be to improve the performance of

PE calculations by reducing the computational effort of field integral evaluations for large

systems by, e.g., efficient screening techniques. With the FMM implementation available

in several of open-source quantum chemistry program packages via CPPE, it is now pos-

sible to model polarizable environments of virtually any size with a diverse set of density

functional and wave function methods to target a multitude of molecular properties.



Notes

1. Reprinted with permission from: M. Scheurer, P. Reinholdt, J. M. H. Olsen, A. Dreuw, and J. Kongsted,

“Efficient Open-Source Implementations of Linear-Scaling Polarizable Embedding: Use Octrees to Save the

Trees”, J. Chem. Theory Comput. 2021, 17 (6), 3445–3454. Copyright 2021 American Chemical Society.
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Chapter 7

ADC/ISR Response Properties:

Algorithms and Applications

In this chapter, I focus on describing algorithms to efficiently solve response equations in

the ADC/ISR framework. The underlying theoretical framework was shown in Section

2.4, and the implementation of the modular response library respondo was explained

in Section 4.3. After outlining the basic strategies to solve general response expressions

with ADC/ISR, I show benchmark and example calculations of complex excited state

polarizabilities (see Section 2.4.3 for the derivation), which is the first implementation of

excited state response properties with ADC. [41] Finally, I propose an automated approach

for convenient implementation of any response property based on SOS expressions.

7.1 Prerequisites

Recall the general, complex response equation (2.99). The following discussion focuses

on this more general case with complex frequency arguments, and the equations for real

equations can be easily obtained by setting γ = 0, i.e., discarding everything but real

blocks of the matrices. As an initial step, the response vector consists of a real and an

imaginary part

x = xR + ixI . (7.1)

Parts of this chapter have already been published in:

• M. Scheurer, T. Fransson, P. Norman, A. Dreuw, and D. R. Rehn, “Complex Excited State Polar-
izabilities in the ADC/ISR Framework”, J. Chem. Phys. 2020, 153, 074112. (Reference 41)
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The right-hand side of the linear equation is partitioned accordingly. To avoid complex

algebra, the general response equation is recast to a form of double dimension, i.e., the

real and imaginary part of the vector are vertically stacked. [41,54,56,151] Carrying out the

matrix multiplication in (2.99), we have

(M− ω − iγ)x = Mx− ωx− iγx (7.2)

= MxR − ωxR − iγxR + iMxI − iωxI + γxI . (7.3)

Sorting real and imaginary parts, one arrives at the following block matrix form(︄
M− ω γ

−γ M− ω

)︄(︄
xR

xI

)︄
=

(︄
RR

RI

)︄
, (7.4)

which is non-Hermitian. By multiplication with

(︄
1 0

0 −1

)︄
from the left, the Hermitian

form is obtained (︄
M− ω γ

γ −(M− ω)

)︄(︄
xR

xI

)︄
=

(︄
RR

−RI

)︄
, (7.5)

which is more suitable for common iterative solvers. Note that one has to take care of the

negative sign of the imaginary part of the right-hand side. This block is, however, zero

for real-valued operators, e.g., in case the right-hand side is equal to a modified transition

moment obtained from the electric dipole operator. To solve eq (7.5) numerically, almost

any linear solver can be employed. Since the system of equations is linear and symmetric,

a conjugate gradient (CG) solver [152] is employed by default in respondo, for example.

Convergence is improved by preconditioning the residual vectors, leading to a precondi-

tioned CG (PCG) algorithm. The simplest preconditioner P in this case is the Jacobi

preconditioner using the diagonal of the problem matrix. The preconditioner matrix P

can be formed by inverting the block matrix

P =

(︄
D− ω γ

γ −(D− ω)

)︄−1

(7.6)

=
1

−(D− ω)2 − γ2

(︄
−(D− ω) −γ

−γ D− ω

)︄
(7.7)

with the diagonal D of the ADC matrix M. These ingredients suffice to iteratively solve

eq (7.5) with standard numerical techniques. There are, however, other strategies to be
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applied to solve the CPP linear equations, which have proven successful for other methods

than ADC as well. [56,151] One option is to explicitly solve the CPP response equations in

a reduced space, [151] the corresponding algorithmic details for ADC are summarized in

Section 7.2.1. This solver algorithm is applicable to all ADC methods. Another option

for the second-order ADC(2) method exploits that the pphh-pphh block of the ADC(2)

is a diagonal matrix, i.e., it is easily invertible. With the Schur complement of the ADC

matrix, the pphh part of the solution vector can be folded into the ph block, reducing the

computational cost and improving convergence. The corresponding algorithm is described

in Section 7.2.2. In the following equations, the matrix blocks are denoted by subscripts

1 and 2 for ph and pphh parts, respectively, for clarity. Inserting all blocks of the ADC(2)

secular matrix into eq (7.5) yields⎛⎜⎜⎜⎜⎝
M11 − ω M12 γ 0

M21 D22 − ω 0 γ

γ 0 − (M11 − ω) −M12

0 γ −M21 − (D22 − ω)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

xR
1

xI
1

xR
2

xI
2

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
RR

1

RR
2

−RI
1

−RI
2

⎞⎟⎟⎟⎟⎠ (7.8)

From eq (7.8) one extracts expressions for the pphh parts of the response vector

xR
2 =

1

(D22 − ω)2 + γ2

[︁
(D22 − ω)

(︁
RR

2 −M21x
R
1

)︁
− γ

(︁
RI

2 −M21x
I
1

)︁]︁
(7.9)

xI
2 =

1

(D22 − ω)2 + γ2

[︁
(D22 − ω)

(︁
RI

2 −M21x
I
1

)︁
+ γ

(︁
RR

2 −M21x
R
1

)︁]︁
, (7.10)

that is, the ph and pphh parts of the response vector are decoupled. This can be used to

rewrite the system of linear equations in the ph space⎛⎝ M′
11 −M12

D′
22

D′
22

2+γ2
M21 M12

γ

D′
22

2+γ2
M21 + γ

M12
γ

D′
22

2+γ2
M21 + γ −

(︂
M′

11 −M12
D′

22

D′
22

2+γ2
M21

)︂ ⎞⎠(︄ xR
1

xI
1

)︄
=

(︄
R′R

1

R′I
1

)︄
,

(7.11)

with M′
11 = M11 − ω and D′

22 = D22 − ω. The ph-space right-hand-side is found as

R′R
1 = RR

1 −M12
D′

22

D′
22

2 + γ2
RR

2 + M12
γ

D′
22

2 + γ2
RI

2 (7.12)

R′I
1 = −

(︄
RI

1 −M12
D′

22

D′
22

2 + γ2
RI

2 + M12
γ

D′
22

2 + γ2
RR

2

)︄
. (7.13)
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The reduced matrix and right-hand side equations can be directly used in any iterative

solver procedure, decreasing the size of the problem matrix dramatically. As a result,

less memory is required and the equations converge much faster by only computing the

residual of the pphh block indirectly. Once the ph part of the vectors is converged, the

exact pphh solutions are computed using eqs (7.9) and (7.10).

7.2 Solver Algorithms

This section describes algorithms to solve complex response equations within the ADC/ISR

approach relying on a subspace projection technique. The subspace algorithm has been

used primarily for HF and DFT response properties in the past. [151] Here, I show a com-

prehensive description of this CPP solver algorithm for ADC. Note that for SCF response

properties, the vectors do not have a pphh block, such that the memory bottleneck is much

lower than for ADC. This makes simultaneous solution for multiple frequencies and/or

right-hand sides difficult. The response equations are then solved for each frequency and

right-hand side individually to avoid expensive memory accumulation.

7.2.1 CPP Solver Algorithm

Guess Vectors Initial guesses for the linear solver procedure are formed by applying

the (Jacobi) preconditioner matrix P to the right-hand side vector R, i.e.,

g = PR. (7.14)

Next, the real and imaginary parts of g are split up and taken as the initial subspace

vectors {xn}. As such, more flexibility due to mixing real and imaginary parts is possible.

Iterations The iterative solver proceeds as follows:

1. Compute matrix applies for new subspace vectors:

{sn} = {Mx1, . . . ,Mxn} (7.15)

2. Compute the subspace projection of M

M sub
ij = xT

i Mxj = xT
i sj , (7.16)
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and subtract the frequency ω

Mω,sub = Msub − ω . (7.17)

Compute subspace projections of the right-hand side

Rsub,R
i = xT

i RR (7.18)

Rsub,I
i = xT

i RI (7.19)

3. Construct the linear problem in the reduced space(︄
Mω,sub γ

γ −Mω,sub

)︄(︄
xsub,R

xsub,I

)︄
=

(︄
Rsub,R

Rsub,I

)︄
(7.20)

and solve for xsub. The current optimal solution in the full space is given by

xopt,R =

n∑︂
i=1

xsub,Ri xi (7.21)

xopt,I =

n∑︂
i=1

xsub,Ii xi (7.22)

4. Compute the residual vector

r =

(︄
M− ω γ

γ −(M− ω)

)︄(︄
xopt,R

xopt,I

)︄
−

(︄
RR

RI

)︄
, (7.23)

reusing the cached vectors as

r =

⎛⎜⎜⎜⎜⎝
n∑︂

i=1

xsub,Ri si − ωxsub,Ri + γxsub,Ii

n∑︂
i=1

−xsub,Ii si + ωxsub,Ii + γxsub,Ri

⎞⎟⎟⎟⎟⎠−

(︄
RR

RI

)︄
. (7.24)

5. Convergence check, preconditioning, subspace collapse:

• If the residual norm |r| smaller than convergence threshold, form solution, exit.

• Else precondition the residual vector p = Pr and add its real and imaginary

part to {xn} while orthogonalizing against the existing vectors. If the number

of subspace vectors is greater than the maximum number, collapse the subspace
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by computing the current optimal solution xopt, adding its real and imaginary

part to the subspace and discarding all other previous subspace vectors. Start

from step 1.

7.2.2 Single-Space CPP Solver Algorithm

Guess Vectors For the single-excitation (ph) space solver, the following preconditioner

matrix is used

P′ =
1

−(D11 − ω)2 − γ2

(︄
−(D11 − ω) −γ

−γ D11 − ω

)︄
(7.25)

with the diagonal D11 of the ph-ph block of M.

Iterations As for the previous algorithm, real and imaginary parts share a single sub-

space {x′
n}. A little more bookkeeping is required for the singles-space algorithm though.

For convenience, one can collect and rename some matrix blocks, i.e.,⎛⎝M11 − ω −M12
D′

22

D′
22

2+γ2
M12

γ

D′
22

2+γ2
+ γ

M12
γ

D′
22

2+γ2
+ γ −

(︂
M11 − ω −M12

D′
22

D′
22

2+γ2

)︂⎞⎠ =

(︄
M11 − S G

G −(M11 − S)

)︄
(7.26)

1. Compute matrix applies and cache results

• Apply M11 − S:

{m′
n} = {(M11 − S)x′

1, . . . , (M11 − S)x′
n} (7.27)

• Apply G

{gn} = {Gx′
1, . . . ,Gx′

n} (7.28)

2. Compute subspace projections of M11 − S

M sub
ij = x′T

i m′
j (7.29)

and G

Gsub
ij = x′T

i gj (7.30)
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The projected right-hand side R′sub can be computed analogously to the conven-

tional solver.

3. Construct the linear problem in the reduced space(︄
Msub Gsub

Gsub −Msub

)︄(︄
x

′sub,R

x
′sub,I

)︄
=

(︄
R′sub,R

R′sub,I

)︄
(7.31)

and solve for x
′sub. The current optimal solution (in the singles space only) is given

by

x
′opt,R =

n∑︂
i=1

x
′sub,R
i x′

i (7.32)

x
′opt,I =

n∑︂
i=1

x
′sub,I
i x′

i (7.33)

4. Compute the residual vector

r =

(︄
M11 − S G

G −(M11 − S)

)︄(︄
x

′opt,R

x
′opt,I

)︄
−

(︄
R′R

R′I

)︄
(7.34)

using the intermediates from above

r =

⎛⎜⎜⎜⎜⎝
n∑︂

i=1

x
′sub,R
i m′

i + x
′sub,I
i gi

n∑︂
i=1

−x
′sub,I
i m′

i + x
′sub,R
i gi

⎞⎟⎟⎟⎟⎠−

(︄
R′R

R′I

)︄
. (7.35)

5. Convergence check, preconditioning, subspace collapse:

• If the residual norm |r| smaller than convergence threshold, compute the solu-

tions in the singles space, then compute the doubles space solutions according

to eqs 7.9 and 7.10.

• Else precondition the residual vector p = P′r and add its real and imaginary

part to {x′
n} while orthogonalizing against the existing vectors. If the number

of subspace vectors is greater than the maximum number, collapse the subspace

by computing the current optimal solution x
′opt, adding its real and imaginary

part to the subspace and discarding all other previous subspace vectors. Start

from step 1.
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7.2.3 Convergence Analysis of PCG and CPP Solvers

To illustrate how different solvers and the folding of the pphh part of the matrix affect

convergence of the linear equations in practice, I carried out minimal test calculations

on the pyridine molecule using ADC(2)/aug-cc-pVDZ [128] with an optimized geometry

obtained with MP2/cc-pVTZ as implemented in Q-Chem. [93,94] The pyridine molecule

was placed in the xz plane. For brevity, only the y-component of the modified transi-

tion moment with the electric dipole operator F(µ̂y) was used as the right-hand side to

solve a) the equation for the static polarizability (Mx = F(µ̂y)) and b) for the complex

polarizability evaluated at the frequency of the energetically lowest singlet excited state

((M−ω1 − iγ)x = F(µ̂y)). In case b), a damping parameter γ = 10−4 au was used. Both

equations were then solved using either a PCG algorithm or the CPP solver, once in the

full space and once in the single-excitation space only (folded pphh part), as implemented

in adcc and respondo with PySCF as host program for the SCF. [39] The convergence

analysis, i.e., residual norm in each iteration of each solver/folding combination is shown

in Figure 7.1. Clearly, the simple matrix inversion does not show any convergence issues,

Figure 7.1: Convergence analysis for a) Mx = F(µ̂y) and b) (M− ω1 − iγ)x = F(µ̂y) for
the pyridine molecule at the ADC(2)/aug-cc-pVDZ level of theory using folded
and unfolded matrices with the PCG and CPP solvers.

as expected. The folded versions require four iterations less to achieve convergence than

the full matrix counterpart. From a performance point of view, it is thus advisable to use

the PCG solver directly, because only a single matrix apply needs to be computed per

iteration. On the contrary, solving the response equation at the electronic resonance in
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case b) proves to be difficult for all solver and matrix versions. Especially the PCG solver

needs roughly 40 iterations to achieve convergence, even with the folded ADC(2) matrix,

35 iterations are needed. The CPP solver is in this case more stable, requiring less than 30

iterations to converge the response vector. In case the CPP solver is used in combination

with the folded ADC(2) matrix, convergence is reached in just 14 iterations, without any

large jumps in the residual norm as seen for the other combinations. By mixing real and

imaginary parts of the residual vectors in the subspace, a rather stable progression to

convergence is observed. Furthermore, by reduction of the problem size to the ph space

only, large erroneous contributions to the pphh part of the vector are not a problem any-

more. This problem becomes even more pronounced when solving response equations in

the X-ray regime of the excitation spectrum, and can often only be remedied by further

approximations. [153] The brief analysis above shows how useful the newly implemented

solvers in respondo can be in practical simulations when a robust numerical procedure

to solve response equations is required. For this reason, the solvers are of course publicly

available in the respondo library.

7.3 Complex Excited State Polarizabilities

As explained previously, I evaluate the dipole polarizability of an excited state directly

through its linear response function. An alternative route would be to compute the double

residue of the ground state cubic response function. [154–156] With the linear response func-

tion of the excited state in combination with damped response theory [2] it is also possible

to obtain to one-photon absorption cross-sections as well as C6 dispersion coefficients for

excited states. To this end, I implemented complex excited state polarizabilities in the

respondo library using the adcc API for all ADC-related working equations. As for all

other response properties in respondo, complex excited state polarizabilities are available

for all ADC methods accessible via ADC, that is, also ADC(3).

Other quantum chemical methods have been previously employed to compute frequency-

dependent excited state polarizabilities, e.g., Hartree-Fock, [154,157–159]

coupled cluster, [155,156,160–163] multi-reference approaches, [158,159,161,164] and DFT meth-

ods. [163,165–167] Calculations of excited state C6 dispersion coefficients are more scarce [166]

and this property is also difficult to determine experimentally. The common strategy for

ADC response properties is to exploit the ISR to resolve SOS expressions such that they

become computationally accessible. In addition to this expectation-value-based strategy,

it is possible to define a response property in terms of derivatives of the energy. [69] A com-

parative analysis of these approaches was recently conducted for ADC methods. [69] For
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excited state polarizabilities, both approaches have been reported for equation-of-motion

coupled cluster with singles and doubles (EOM-CCSD). [156,168–170] The ISR-based ansatz

described here is comparable to the expectation-value coupled cluster approach to molec-

ular properties, and both methods will be analyzed and compared to experimental data

where available. Next, the implementation and computational methodology is presented,

followed by the results of test calculations on s-tetrazine, pyrimidine, formaldehyde, naph-

thalene, uracil, and p-nitroaniline for static excited state polarizabilities, and computations

of excited state C6 dispersion coefficients for pyridine, pyrazine, and s-tetrazine.

7.3.1 Implementation

Only the matrix-vector products of the non-shifted ADC/ISR matrices with a trial vector v

are available in adcc and the modified matrices Mf and Bf are implemented by projecting

out all components along the eigenvector xf after the matrix multiplication, i.e.,

Mfv = Mv − ωfv − xf

x†
fMv

x†
fxf

. (7.36)

The projection scheme for the Bf matrix is analogous. As explained above, a CG algorithm

with Jacobi preconditioning was used to obtain ground and excited state polarizabilities.

The excited state polarizabilities were implemented in an early development version of

respondo using the adcc toolkit for all ADC-based routines. [80] Since only the full matrix

representation for B is given in Ref. 40, I derived the necessary matrix-vector product,

and the programmable expressions are shown in the Appendix. At the time of the first

implementation, the working equations were still written in closed-source C++ code. They

can, however, now be easily implemented with Python-side adcc functionality. To test the

implementation, eq (2.93) was evaluated for small systems (H2O/6-31G, LiH/STO-3G),

where a full ADC(2) matrix diagonalization computationally achievable. The results from

evaluating the SOS expression were compared to the result from the linear solvers, and

were found to agree up to numerical accuracy (data not shown).

7.3.2 Computational Details

Geometries for s-tetrazine, pyrimidine, uracil and p-nitroaniline (pNA) were obtained

from Ref. 156. For s-tetrazine, static polarizabilities of the ground state and the 11B1u

excited state were computed using the Sadlej-pVTZ basis set [171] and the geometry of

the corresponding electronic state, as described in Ref. 156. Results were obtained using

ADC(2), ADC(2)-x, and ADC(3), as now implemented in adcc. SCF results were obtained
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using PySCF. [39,95] In all ADC calculations, the second-order ISR was employed. [40,52] In

combination with third-order ADC, this results in the ADC(3/2) approximation. For

consistency, the calculations using the EOM-CCSD derivative and expectation-value ap-

proaches were repeated from Ref. 156, employing the Q-Chem 5.2 program package. [93,94]

The same methods were employed to compute static polarizabilities of the pyrimidine

ground state and the 11B2 excited state. Formaldehyde and naphthalene were optimized

at the MP2/cc-pVTZ level of theory using Q-Chem 5.2, [93,94] where the former was placed

in the xz-plane and the latter in the xy-plane. For formaldehyde, the polarizabilities of

the ground state and the 11B1 excited state were computed, whereas the ground state and

11B3u state polarizabilities were obtained for naphthalene, using all three ADC methods

and CCSD with the aug-cc-pVDZ basis set. For uracil and pNA, the aug-cc-pVDZ ba-

sis set was employed to compute the polarizabilities of the ground state and 11A′′ and

21A′, as well as 21A1 excited states, respectively. For the computation of C6 dispersion

coefficients, pyridine, and pyrazine geometries were optimized at the MP2/cc-pVTZ level

of theory using Q-Chem 5.2, [93,94] whereas the previously mentioned ground state geom-

etry was taken for s-tetrazine. Ground and excited state C6 dispersion coefficients for

these three molecules were computed according to the procedure outlined in Ref. 52. For

pyridine, the 11B2 excited state was considered, and 11B3u for pyrazine and s-tetrazine.

Results were analyzed using cclib [172], pandas [112,113], and plotted using matplotlib [109]

and seaborn. [173] The computed data, which are published in Ref. 41, are openly avail-

able on GitHub (https://github.com/maxscheurer/adc_excipol_data) and have been

deposited on Zenodo with the DOI 10.5281/zenodo.3770508.

7.3.3 Numerical Case Studies

Excited state polarizabilities and C6 coefficients were computed for s-tetrazine, pyrimidine,

uracil, and pNA. The static polarizabilities of these molecules were previously investigated

using EOM-CCSD. [156] The ADC results are herein compared to this study, analyzing the

ADC/ISR results at different levels of perturbation theory. In addition, static polarizabil-

ities of formaldehyde and naphthalene are compared to experimental data and among the

employed methodologies. Anticipated trends for excited state polarizabilities have been

thoroughly discussed in Ref. 156: In brief, states with a large exciton size tend to have

larger polarizabilities than the electronic ground state (e.g., Rydberg states), whereas the

opposite should be the case for excited states with a large permanent dipole moment,

e.g., CT states. From the SOS expression of the polarizability (eq (2.93)), it also becomes

clear that low-lying dipole-allowed excited states should possess larger polarizabilities than

https://github.com/maxscheurer/adc_excipol_data
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the electronic ground state due to coupling to the ground state and to higher-lying ex-

cited states. [156] To discuss the different computational methods, absolute differences of

isotropic polarizabilities are used, αiso = 1
3(αxx + αyy + αzz). The largest differences can

be expected in comparison with derivative-based CCSD (CCSD Der.), since this approach

follows a different strategy than expectation-value-based methods. Thus, the deviation

defined as δDer. = |αiso(CCSD Der.)−αiso(expectation-value method)| is employed to dis-

cuss the results. Note that CCSD Der. results are not considered superior, i.e., they are

not the theoretical best estimate for excited state polarizabilities in this section.

s-Tetrazine and Pyrimidine

Table 7.1: Static polarizabilities of the s-tetrazine ground and excited 11B1u states.a), b)

State ground state 11B1u

(αxx, αyy, αzz) αiso (αxx, αyy, αzz) αiso Eexc

ADC(2) (66.08, 61.26, 33.50) 53.61 (39.06, 78.55, 15.71) 44.44 2.20
ADC(2)-x (69.38, 64.96, 35.72) 56.69 (50.64, 80.08, 21.60) 50.77 1.31
ADC(3/2) (64.10, 59.57, 33.41) 52.36 (57.28, 74.94, 25.90) 52.70 2.18
CCSD Der. (60.73, 56.02, 32.73) 49.83 (66.03, 80.09, 31.93) 59.35 2.39
CCSD E.V. (62.82, 58.01, 33.48) 51.44 (49.28, 71.75, 23.05) 48.03 2.39

a) Data reproduced from Ref. 41.
b) Polarizability components (αAA, αiso) in au, excitation energies (Eexc) in eV.

Table 7.1 shows the Cartesian components of the static polarizabilities for the ground

and 11B1u states of s-tetrazine, as obtained using ADC and CCSD methods. [156] As

previously stated, most CCSD results discussed herein have already been reported, [156]

and have only been amended by CCSD expectation-value (E.V.) results for completeness.

For the ground state static polarizabilities, all methods yield results of comparable

magnitude, with differences δDer. of 3.78, 6.86, 2.53, and 1.61 au for ADC(2), ADC(2)-x,

ADC(3/2), and CCSD E.V., respectively. For excited state polarizabilities the differences

are larger, with a decreasing discrepancy trend for the ADC hierarchy of 14.91 au for

ADC(2), 8.58 au for ADC(2)-x, and 6.64 au for ADC(3/2). By comparison, the deviation

for CCSD E.V. is 11.32 au. ADC(3/2) is thus in close agreement with the derivative-

based EOM-CCSD result. An experimental result for the anisotropy of the polarizability

(∆α = 1
2(αyy + αxx) − αzz ) is reported as 5.4 and 45.2 au for the ground state and the

lowest singlet state, respectively. [174] All computational methods overshoot the anisotropy
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for the electronic ground state (30.2, 31.5, 28.4, 25.6, and 26.9 au for ADC(2), ADC(2)-x,

ADC(3/2), CCSD Der., and CCSD E.V. respectively). However, the anisotropy of the

lowest singlet state static polarizability match the experimental result reasonably well

(43.1, 43.8, 40.2, 41.1, and 37.5 au for ADC(2), ADC(2)-x, ADC(3/2), CCSD Der., and

CCSD E.V. respectively).

Table 7.2: Static polarizabilities of the pyrimidine ground state and 11B2.
a), b)

State ground state 11B2

(αxx, αyy, αzz) αiso (αxx, αyy, αzz) αiso Eexc

ADC(2) (73.48, 38.69, 76.22) 62.80 (118.89, 26.65, 38.79) 61.45 4.32
ADC(2)-x (77.21, 39.99, 79.97) 65.72 (114.28, 31.22, 51.10) 65.53 3.44
ADC(3/2) (71.24, 38.27, 73.61) 61.04 (104.45, 33.64, 57.48) 65.19 4.50
CCSD Der. (67.79, 37.50, 70.18) 58.49 (111.76, 42.13, 71.38) 75.09 4.59
CCSD E.V. (70.05, 38.25, 72.52) 60.27 (102.93, 33.16, 51.14) 62.41 4.59

a) Data reproduced from Ref. 41.
b) Polarizability components (αAA, αiso) in au, excitation energies (Eexc) in eV.

For the pyrimidine molecule, a similar trend is observed for the agreement between

computational results, which are shown in Table 7.2. Here, we find discrepancies δDer.

for ground state polarizabilities of 4.31, 7.23, 2.55, and 1.78 au for ADC(2), ADC(2)-x,

ADC(3/2), and CCSD E.V., respectively. Deviations for the excited state (here 11B2) to

CCSD Der. are decreasing from ADC(2) (13.65 au), ADC(3/2) (9.90 au), to ADC(2)-x

(9.56 au) and the difference to CCSD E.V. lies between ADC(3/2) and ADC(2) (12.68

au). Both excited states are of n→ π∗ character, and the largest increase in polarizability

is found for in-plane components. This is consistent for all ADC methods in comparison

to EOM-CCSD. [156] While all methods based on ISR/expectation values are capable of

predicting these trends for s-tetrazine and pyrimidine correctly, one notices that trends for

out-of-plane components (αzz and αyy for s-tetrazine and pyrimidine, respectively), are

not in agreement with the EOM-CCSD derivative approach. However, this observation is

made for ADC and CCSD E.V., thus, the effect is solely related to the ansatz to compute

the polarizability, and not to the method itself. Note that coupling to the electronic

ground state is negligible for the reported polarizabilities, since the n → π∗ states are

dipole-forbidden. Another observation that requires discussion is the reduced discrepancy

to CCSD Der. results with increasing order of perturbation theory from ADC(2) toward

ADC(3/2). In a recent study, it has been demonstrated that ADC(3/2) yields orbital

relaxation effects for ph excited states through higher order of perturbation theory by
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including pphh states. [69] This explains the trends observed for the employed ADC schemes.

Our numerical results thus yield the anticipated behavior of the respective ADC schemes,

and provide values comparable to the related CCSD E.V. approach.

Formaldehyde and Naphthalene

Table 7.3: Static polarizabilities of the formaldehyde ground state and 11B1.
a), b)

State ground state 11B1

(αxx, αyy, αzz) αiso (αxx, αyy, αzz) αiso Eexc

ADC(2) (17.94, 12.88, 24.90) 18.57 (712.91, 243.79,
310.03)

422.25 6.27

ADC(2)-x (18.40, 13.20, 25.65) 19.09 (641.26, 250.44,
314.84)

402.18 5.98

ADC(3/2) (17.31, 12.68, 23.47) 17.82 (678.81, 281.39,
432.19)

464.13 7.57

CCSD Der. (17.23, 12.50, 22.58) 17.44 (680.32, 272.78,
384.16)

445.75 7.05

CCSD E.V. (17.39, 12.66, 22.98) 17.67 (688.15, 272.27,
388.23)

449.55 7.05

a) Data reproduced from Ref. 41.
b) Polarizability components (αAA, αiso) in au, excitation energies (Eexc) in eV.

Two more molecules for which experimental data for excited state polarizabilities are

available are presented in the following. First, we examine formaldehyde, for which the

computational results are displayed in Table 7.3. For all methods, a rather small ground

state polarizability is found, which largely increases when the molecule is in the 11B1

excited state. An approximately 20-fold increase in isotropic polarizability is present for

all computational methods. This is consistent with the experiment, which reports an

isotropic polarizability for the ground state as 18.9 au and that of 11B1 as approximately

410 ± 180 au. [158,175] As such, all computational result are well within the range of the

experimentally obtained values. The large increase in polarizability can be rationalized

from the Rydberg-type excitation of the state at hand which possesses a large exciton size.

This also explains why all components of the polarizability tensor are larger compared to

the electronic ground state.

Next, consider the ground state and 11B3u polarizability of naphthalene. The corre-

sponding results from computations and experiment are shown in Table 7.4. The per-
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Table 7.4: Static polarizabilities of the naphthalene ground and 11B3u states.a), b)

State ground state 11B3u

(αxx, αyy, αzz) αiso (αxx, αyy, αzz) αiso Eexc

ADC(2) (182.04, 133.68,
69.29)

128.34 (178.48, 73.79, 44.13) 98.80 4.45

ADC(2)-x (194.22, 140.69,
71.34)

135.42 (164.97, 88.51, 50.91) 101.47 3.46

ADC(3/2) (177.81, 129.95,
68.62)

125.46 (170.71, 98.76, 56.14) 108.53 4.16

CCSD Der. (166.78, 123.14,
66.67)

118.86 (195.12, 121.47,
70.32)

128.97 4.41

CCSD E.V. (173.89, 128.11,
68.22)

123.41 (164.30, 88.58, 54.89) 102.59 4.41

Experimentc) (162.0, 119.5, 70.9) 117.4 (186.9, 120.1, 76.9) 128.0 4.02

a) Data reproduced from Ref. 41.
b) Polarizability components (αAA, αiso) in au, excitation energies (Eexc) in eV.
c) References 176 and 157.

centage deviations from experimental values are depicted in Figure 7.2. The performance

of the computational methods compared to experiment is rather heterogeneous for the

ground state polarizability. The largest overestimation for in-plane components αxx and

αyy is found for ADC(2)-x with approximately 20%, whereas CCSD Der. agrees best with

the experimental results for these components. Deviations from the experimental αzz

result are below 5%, except for CCSD Der. which underestimates the component by ap-

proximately 6%. As such, all employed methods except for ADC(2)-x yield reliable static

polarizabilities for the electronic ground state of naphthalene. In the experiment, a small

increase was observed for the static polarizability components of the 11B3u state compared

to the ground state, the largest of which is found for αxx. For the polarizabilities based on

expectation values, this trend could not be observed in the computational results. Espe-

cially the αyy and αzz components are largely underestimated by expectation-value-based

methods, the most extreme being ADC(2) with more than −40% deviation for αzz. On

the contrary, derivative-based EOM-CCSD is capable of describing the trend of small in-

creases in the components correctly. Here, the deviations are below 5% for αxx and αyy,

and approximately −9% for αzz. Thus, one can conclude that in this case amplitude

relaxation effects seem to be especially important to model the polarizabilities correctly.
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Figure 7.2: Deviations of computed polarizability components from the experimental value
in percent for the ground and 11B3u states of naphthalene.1

Uracil and p-Nitroaniline

As another example, the ground state and lowest singlet n → π∗ (11A′′) and π → π∗

(11A′) states of uracil are considered, with results presented in Table 7.5. For the elec-

tronic ground state, all five methods again yield comparable results. Similar to s-tetrazine

and pyrimidine, the n→ π∗ states have slightly increased polarizabilities for in-plane com-

ponents αxx and αyy, when derivative-based EOM-CCSD is used. This is not the case for

the expectation-value methods. In fact, all ADC and the EOM-CCSD E.V. results show

a noticeable drop in polarizability for this state of uracil. Surprisingly, this discrepancy

is not reduced when employing ADC(3/2), but instead becomes even larger. EOM-CCSD

E.V. here yields values similar to ADC(3/2). For the π → π∗ transition, both dipole

moments and polarizabilities show a large increase. [156] For this state the αxx component

of the polarizability increases the most, due to the large coupling matrix element to the

ground state. Again, ADC(3/2) and EOM-CCSD E.V. show a much smaller increase for

this component than EOM-CCSD Der.

Results for pNA are shown in Table 7.6, including polarizability components of the

electronic ground state and the lowest singlet excited π → π∗ state (21A1). Ground

state polarizabilities are again similar. The probed singlet state corresponds to a strong

intramolecular CT excitation. [156] As such, the corresponding dipole moment increases

upon excitation, yielding a species with more ionic character than in the ground state.

The excitation still shows a large oscillator strength, i.e., transition dipole moment along
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Table 7.5: Static polarizabilities of the uracil ground state, 11A′′, and 21A′.a), b)

State ground state 11A′′ 21A′

(αxx, αyy,
αzz)

αiso (αxx, αyy,
αzz)

αiso Eexc (αxx, αyy,
αzz)

αiso Eexc

ADC(2) (105.23,
80.00,
43.37)

76.20 (86.44,
67.30,
27.08)

60.28 4.73 (138.88,
81.77,
35.46)

85.37 5.32

ADC(2)-x (110.75,
83.17,
44.48)

79.47 (85.17,
73.16,
33.17)

63.83 3.97 (147.08,
87.72,
38.37)

91.06 4.61

ADC(3/2) (98.47,
76.27,
42.30)

72.35 (74.72,
70.74,
36.03)

60.50 5.36 (105.12,
86.93,
42.27)

78.11 5.38

CCSD Der. (95.82,
74.62,
41.59)

70.67 (98.08,
88.29,
45.19)

77.19 5.22 (133.94,
102.78,
51.69)

96.14 5.58

CCSD E.V. (98.75,
76.41,
42.42)

72.53 (71.49,
69.43,
34.55)

58.49 5.22 (112.82,
85.86,
42.97)

80.55 5.58

a) Data reproduced from Ref. 41.
b) Polarizability components (αAA, αiso) in au, excitation energies (Eexc) in eV.

the z-axis. Therefore, the polarizability of the 11A1 largely increases in the αzz component

for all presented methods, particularly using CCSD Der. ADC(3/2) and EOM-CCSD

E.V. behave similarly for the excited state, with a deviation δDer. to EOM-CCSD Der. of

27.37 au and 29.04 au, respectively. Discrepancies of ADC(2) and ADC(2)-x are larger by

approximately 10 au, amounting to 39.17 au and 40.91 au, respectively. Hence, the π → π∗

intramolecular CT state shows the largest differences between derivative- and expectation-

value-based methods studied here. The effects of full amplitude response in case of a CT

excitation seem to have a large impact on the excited state polarizability of the respective

state. As such, care should be taken in these cases. Nevertheless, ADC methods are

capable to capture the trend of an increasing αzz component for CT excitations correctly,

whereas methods like time-dependent DFT tend to fail in this case. [177,178]

To summarize this brief study of static excited state polarizabilities, the presented find-

ings both match the expected trends and previously published results, suggesting that the

implementation is comparable to related methodologies using an expectation-value-based

ansatz. The agreement between methods solely depends on the approach to evaluate the
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Table 7.6: Static polarizabilities of the pNA ground state and 21A1.
a), b)

State ground state 21A1

(αxx, αyy, αzz) αiso (αxx, αyy, αzz) αiso Eexc

ADC(2) (118.84, 58.94, 168.68) 115.49 (68.26, 49.52, 196.97) 104.92 4.30
ADC(2)-x (125.29, 60.62, 183.45) 123.12 (82.44, 50.60, 176.49) 103.18 3.56
ADC(3/2) (112.76, 58.02, 162.94) 111.24 (86.53, 59.25, 204.37) 116.72 4.23
CCSD Der. (106.38, 56.95, 152.90) 105.41 (109.60, 83.60, 239.08) 144.09 4.62
CCSD E.V. (110.76, 58.20, 157.68) 108.88 (74.95, 69.30, 200.89) 115.05 4.62

a) Data reproduced from Ref. 41.
b) Polarizability components (αAA, αiso) in au, excitation energies (Eexc) in eV.

polarizability, and not whether ADC or CC is chosen. Hence, it would also be inter-

esting to see how derivative-based ADC excited state polarizabilities would compare to

derivative-based EOM-CCSD. In this case, amplitude-relaxed second derivatives of the

ADC excited state energy would need to be derived and implemented. In addition, note

that the ISR-based ansatz requires much less computational effort, yielding excited state

polarizabilities for the price of ground state polarizabilities, once the excited states are

determined. Using a derivative-based approach, however, more response equations need

to be solved. [156]

Dispersion Coefficients for Excited States

Until now, only considered static polarizabilities of excited states were under examined,

which do not require solutions of the complex response function. For C6 dispersion coeffi-

cients, however, the isotropic average of the molecular dipole polarizability as a function

of purely imaginary frequencies is needed to compute the interaction between two systems

through the Casimir-Polder potential. [52,179] With the Python function to solve eq (7.5)

in place, the required Gauss-Legendre integration can be easily carried out using built-in

NumPy functions, [99] as shown in the code snippet in Figure 7.3. This code example shows

again how well adcc integrates with the Python ecosystem, making it possible to quickly

implement new features with only minor effort. In addition, the rich feature set of NumPy

makes it possible to write code that strongly resembles the text book equations.

Using the code shown in Figure 7.3, C6 dispersion coefficients for excited states of pyri-

dine, pyrazine, and s-tetrazine were computed, previously studied with multi-configurational

complete active space (CAS) calculations using a derivative-based approach. [166] The re-
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Figure 7.3: Python function to compute the C6 dispersion coefficients with
adcc/respondo.1

sults for ADC(2), ADC(2)-x, ADC(3/2), and CAS are summarized in Table 7.7. The

Table 7.7: C6 dispersion coefficients of electronic ground and excited states employing
ADC and CAS.a)

C6 dispersion coefficient [au]

System State ADC(2) ADC(2)-x ADC(3) CASb)

pyridine ground state 1717.23 1770.02 1682.04 1374
11B2 923.17 1100.90 1248.39 1278

pyrazine ground state 1512.76 1559.15 1478.81 1245
11B3u 743.57 849.04 1007.38 1147

s-tetrazine ground state 1161.05 1197.54 1129.03 919.6
11B3u 499.53 575.77 687.24 835.0

a) Data reproduced from Ref. 41.
b) Obtained from Ref. 166.

ground state C6 dispersion coefficients for these molecules computed with ADC methods

are all larger than the respective CAS results by approximately 18-30%. This deviation,

however, becomes smaller from ADC(2) to ADC(3/2). In the case of excited state C6

coefficients, one observes the opposite: all values obtained with ADC methods are smaller

than the corresponding CAS value. In the case of pyrimidine, this amounts to dispersion

coefficients that are 27%, 13%, and 2% smaller for ADC(2), ADC(2)-x, and ADC(3/2),

respectively. This trend is even more pronounced for pyrazine, where decreases with re-

spect to CAS results by 35%, 26%, and 12% for the ADC method hierarchy are found.
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The findings are quite similar also for s-tetrazine with discrepancies of 40%, 31%, and

18%. These deviations to CAS results can be explained through the different method-

ologies used in the approaches. The C6 coefficients are just derived properties of the

excited state polarizabilities, which have been extensively discussed and compared previ-

ously. Hence, for the expectation-value-based ADC results, which only describe relaxation

effects through the ADC matrix itself, it is expected to see differences compared to re-

sults from fully relaxed multi-configurational CAS. This behavior of the ADC hierarchy

of methods is again corroborated by the fact that ADC(3/2) results, which include the

most relaxation, deviate least from CAS values. Thus, the same behavior that was already

observed for static excited state polarizabilities in previous calculations is observed also

for complex frequency-dependent polarizabilities. The general formulation and implemen-

tation in adcc allows to evaluate the polarizabilities for open-shell molecules on top of an

unrestricted Hartree–Fock reference, or for systems with few-reference character using the

spin-flip ansatz. [180]

7.4 Conclusions and Outlook

In this chapter, the frontier of response functions within the ADC/ISR framework was

pushed one step further to arbitrary response functions with the example of complex,

frequency-dependent excited state polarizabilities. The combination of adcc and respondo

is ideal to prototype novel properties and test them appropriately without compromise in

performance. Since the building blocks for all response properties within ADC/ISR are

virtually identical, and the ISR expressions can be directly obtained from the SOS form,

it would be desirable to automate this implementation process. Such a library, named

responsefun, using SymPy for symbolic algebra operations, [102] is currently under devel-

opment by myself and my master student A. Papapostolou. The pilot implementation can

be used with the following workflow, illustrated in Listing 7.1. First, the user conveniently

specifies a response function by means of a symbolic SOS expression. The short-hand

notation TransitionMoment creates a term of the type ⟨n|d̂|f⟩. In the example, the SOS

term for the complex ground state polarizability is given (see eq (2.78)). The variables

op a and op b are symbolic representation of the electric dipole operator, whereas O and n

are labels for the ground state and n-th excited state, respectively. Second, the symbolic

frequencies are assigned an actual value. Third, the routine to evaluate ADC/ISR response

properties evaluate property isr is called with the SOS expression, summation index,

and real and complex frequencies as arguments. This function automatically follows the

recipes shown in Chapter 2, i.e., it converts the SOS expression to ADC/ISR form, looks



7.4 Conclusions and Outlook 157

1 alpha_terms = (

2 + TransitionMoment(O, op_a, n) * TransitionMoment(n, op_b, O) / (w_n - w -

1j*gamma)↪→

3 + TransitionMoment(O, op_b, n) * TransitionMoment(n, op_a, O) / (w_n + w +

1j*gamma)↪→

4 )

5 omega_alpha = [(w, 0.59)]

6 alpha_tens = evaluate_property_isr(

7 state, alpha_terms, [n], omega_alpha, gamma_val=0.001

8 )

9 alpha_tens_sos = evaluate_property_sos(

10 state, alpha_terms, [n], omega_alpha, gamma_val=0.001

11 )

Listing 7.1: Sample code for responsefun to compute the complex frequency-dependent
ground state polarizability.

for special terms to be added, and collects response functions to be solved in a tree-like

structure. Only unique matrix inversions are solved, which is rather tedious to implement

manually otherwise. Finally, the function calls the respondo routine solve response

on each unique system of linear equations and assembles the output tensor automati-

cally. The same procedure is also possible by direct evaluation of the SOS expression

with the input ExcitedStates object named state in the example code. In the function

evaluate property sos, the transition moments of all excited states are used to evalu-

ate the response property tensor. When providing all ADC excitations to the function, it

serves as a reference for the iteratively determined ADC/ISR value. Hence, the automated

implementation provides direct access to reference data. Even though our implementation

is at a very early stage, it will make manual implementations of ADC/ISR response prop-

erties obsolete in the future. One could then just use a textbook expression for the SOS of

almost any response property and obtain the corresponding ADC result by conveniently

typing in this equation into the responsefun interface. The responsefun library will be

freely available as an add-on to respondo and adcc once the code is properly tested and

the user interface is consolidated.





Notes

1. Reprinted from M. Scheurer, T. Fransson, P. Norman, A. Dreuw, and D. R. Rehn, “Complex Excited State

Polarizabilities in the ADC/ISR Framework”, J. Chem. Phys. 2020, 153, 074112. With the permission of

AIP Publishing.
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Chapter 8

Distortion of Molecules Through

External Forces

In this chapter, I investigate more extreme molecular environments. The first part presents

a new electronic structure method for modeling molecules under high pressures in a black-

box manner, which was derived and implemented from scratch. [181] Together with the

derivation, first example applications to pressure-induced chemical reactions are presented.

The novel method clearly outperforms previously existing approaches, especially with re-

spect to versatility and ease of use. In the second part, the rupture mechanism of the

metalloprotein, rubredoxin, is analyzed by means of a newly designed workflow, combin-

ing classical molecular dynamics (MD) simulations with state-of-the-art quantum chemical

strain analysis tools. Through the hybrid workflow, the predominantly accepted mecha-

nism for the extremely low rupture force of the protein’s active site was questioned and

shown to be most likely incomplete. [182] The complex environment of the iron-sulfur cluster

in rubredoxin thus remains a challenge for future analyses.

Parts of this chapter have already been published in:

• M. Scheurer, A. Dreuw, E. Epifanovsky, M. Head-Gordon, and T. Stauch, “Modeling Molecules
under Pressure with Gaussian Potentials”, J. Chem. Theory Comput. 2021, 17 (1), 583-597. (Ref-
erence 181)

• M. Scheurer, A. Dreuw, M. Head-Gordon, and T. Stauch, “The Rupture Mechanism of Rubredoxin
is More Complex Than Previously Thought”, Chem. Sci. 2020, 11, 6036-6044. (Reference 182)
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8.1 Modeling Hydrostatic Pressure with the GOSTSHYP

Approach

In the past decades, the interest in high-pressure chemistry has been remarkable, [183–185]

both through the availability of various experimental techniques [186,187] and computational

methods complementing the experimental findings. [188] The computational approaches

are usually based on confining potentials using soft or hard boxes of varying shape and

size, [189–198] and the agreement between computation and experiment is often remark-

able. [199] These methods relying on confining potentials are hard to use in a black-box

manner. Indeed, at the electronic structure level, no term in the molecular electronic

Hamiltonian exists that would mediate an externally applied pressure. The most prag-

matic approaches, which are universally applicable, have their origin in mechanochem-

istry, [188] where the pressure is “applied” via an external mechanical force to the nuclear

energy gradient. An overview of such methods, e.g., the Generalized Force-Modified Po-

tential Energy Surface (G-FMPES) approach, [200,201] the Hydrostatic Compression Force

Field (HCFF) [202], or the recently published extended HCFF (X-HCFF) can be found

in the literature. [203] As stated above, all mechanochemical pressure models mediate the

external pressure through an additional term in the nuclear gradient, whereas the electron

density, the SCF procedure, and the resulting molecular orbitals are blind for the pres-

surized environment. Another shortcoming is that mechanochemical models can only be

applied to systems with at least two atoms. An alternative method for the application

of pressure to chemical systems is the eXtreme Pressure Polarizable Continuum Model

(XP-PCM). [204–206] Therein, an atom or a molecule is placed inside a cavity. Pressure is

“applied” by reducing the cavity size and increasing the Pauli repulsion term of the solvent

medium. The applied pressure is then calculated via a fitting procedure, a posteriori, as

the negative partial derivative of the free energy with respect to the volume. Note that the

user is here not capable of precisely defining the input pressure, and as such, no geometry

optimizations at constant pressure are possible. Still, XP-PCM allows the modeling of

chemical reactions, [205–207] spectroscopic properties, [208,209] as well as electronic [210] and

structural [204,211,212] changes of chemical systems under pressure.

In this section, the development of a new electronic structure method for the simulation

of atoms and molecules under pressure, the Gaussians On Surface Tesserae Simulate HY-

drostatic Pressure (GOSTSHYP) approach, is introduced. The idea for the GOSTSHYP

approach was conceived by T. Stauch and M. Head-Gordon, and in a collaborative project

I was able to execute the first complete and correct derivation and implementation as

explained in the following. [181] Similar to XP-PCM, GOSTSHYP considers a chemical
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system inside a cavity that is confined by a tessellated approximation of the van der Waals

surface. Pressure is applied via a field of Gaussian potentials located at the tessellation

points, confining the electron density. GOSTSHYP solves the shortcomings of previous

methods for the simulation of chemical systems under pressure in that a) the method

allows for geometry optimizations and AIMD simulations under user-defined pressures, b)

both atoms and molecules can be subjected to pressure and c) the compression of electron

density due to pressure is modeled realistically. GOSTSHYP is verified by comparing

against a range of literature values for energies, geometries, dipole moments and chem-

ical reactions under pressure. The GOSTSHYP method was implemented in Q-Chem

and is available as of version 5.4. [94] At present, electronic structure calculations at the

levels of Hartree-Fock [45,46] and density functional theory (DFT) [213,214] are supported.

GOSTSHYP enables, by construction, the separate calculation of the pure influence of

pressure on atoms or molecules, and therefore provides a unique and new point of view

on pressure-induced chemical processes. In the following, the theoretical derivation of the

GOSTSHYP model is presented.

8.1.1 Theoretical Background

In GOSTSHYP, hydrostatic pressure is modeled through a set of Gaussian potentials lo-

cated at the molecule’s van der Waals surface, which is discretized and tessellated through

a Lebedev grid. [215] In this procedure, atom-centered spheres with the scaled (pressure-

free) atom-specific van der Waals radii are superimposed and the overlapping regions are

omitted, leading to a physically sound tessellation field. Since atomic van der Waals radii

are in fact pressure-dependent, [216] in the following I refer to the scaling factors of the

atom-centered spheres as the “tessellation sphere scaling factors” (TSSF). Each tessera j

with the area Aj is assigned a Cartesian Gaussian function of the form

Gj(r) = pj exp
(︁
−wj(r− rj)

2
)︁

= pjG̃j(r). (8.1)

Here, pj is the amplitude of the Gaussian centered at rj, whereas wj is referred to as the

width parameter. Using the electronic one-particle density matrix elements Dpq and the

molecular orbitals {ϕp}, the energy penalty by pressure is given by

Ep =
∑︂
j

∑︂
pq

Dpq ⟨ϕp|Gj(r)|ϕq⟩ . (8.2)

This expression includes three-center overlap integrals, in which the mid center, i.e., the

Gaussian, corresponds to an s-type function. In the following, determination of the func-
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tion parameters wj and pj will be outlined. The simplest approximation is that the tessera

areas are circular. Making this assumption and acknowledging that not all areas are equal

(cf. Figure 8.1), the radius r̃j of the circle j that holds the Gaussian Gj can be calculated

by

r̃j =

√︃
Aj

π
. (8.3)

The goal of choosing an appropriate width parameter is to create a field of Gaussians that

is as smooth and continuous as possible, because a continuous hydrostatic pressure should

be modeled. Furthermore, “local high-pressure areas”, where Gaussians of the same width

and amplitude are densely packed, should be avoided (the green points in Figure 8.1).

Figure 8.1: In the employed surface tessellation routine, some tesserae have larger areas
than others. In this picture, red signifies large areas, whereas green represents
small areas. Figure created by T. Stauch.1

Hence, it is reasonable to demand that at the edge of each tessera the amplitude of the

accommodated Gaussian reaches half of its maximum value. This way, when neighboring

Gaussians that belong to tesserae with similar areas overlap at the border between the

two tesserae, their amplitudes add up to the value each of the Gaussian has in the middle
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of its tessera. Clearly, each Gaussian reaches its maximum when r = rj , i.e., at the center

of each tessera. At this point, the amplitude is Gj,max = pj . Requiring the value of wj

such that Gj, 1
2
max = 1

2pj at the border of the tessera leads to

wj =
π ln 2

Aj
. (8.4)

The amplitudes pj of the Gaussian functions modeling the pressure potential need to be

defined such that the user-defined input pressure is exerted on the embedded molecule.

At the interface between the molecule and the surrounding medium, the force acting from

the outside (Fouter), with which the field of Gaussian potentials compresses the electron

density, needs to cancel the force acting from the inside (Finner), with which the electron

density “pushes back”. Hence, the requirement is

Fouter = −Finner, (8.5)

which implies that the absolute values of the force also need to match, i.e.,

|Fouter| = |Finner| (8.6)

or

Fouter = Finner. (8.7)

Using the definition of pressure,

P =
F⊥
A
, (8.8)

one realizes that the force acting from the outside is already the normal force F⊥. Hence,

Fouter = PinpAj , (8.9)

where Pinp is the pressure that the user inputs and Aj is the surface area of tessera j.

To understand the definition of the force acting from the inside, we imagine taking a

Gaussian and displacing it along the surface normal vector. Pushing the Gaussian inwards,

i.e. closer to the molecule, results in an increase in energy. Pulling it outwards, i.e., away

from the molecule, results in a lowering of energy. Hence, the derivative of the electronic

energy w.r.t. the position of the Gaussian equals the force with which the molecule pushes
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the surroundings back. To obtain the force perpendicular to the surface, the scalar product

of the derivative vector and the normal vector of the surface n = (nx, ny, nz)T is used:

Finner =
∂Ep

∂xj
nx +

∂Ep

∂yj
ny +

∂Ep

∂zj
nz

=
∑︂
pq

Dpq

(︄
∂

∂xj
nx ⟨ϕp|Gj |ϕq⟩ +

∂

∂yj
ny ⟨ϕp|Gj |ϕq⟩ +

∂

∂zj
nz ⟨ϕp|Gj |ϕq⟩

)︄
. (8.10)

Inserting eqs 8.9 and 8.10 into eq 8.6 yields

PinpAj = pj
∑︂
pq

Dpq

(︂
nx

∂

∂xj
⟨ϕp| G̃j |ϕq⟩ + ny

∂

∂yj
⟨ϕp| G̃j |ϕq⟩ + nz

∂

∂zj
⟨ϕp| G̃j |ϕq⟩

)︂
= −pj

∑︂
pq

Dpq

(︂
nx ⟨ϕp| 2wj(x− xj)G̃j |ϕq⟩ + ny ⟨ϕp| 2wj(y − yj)G̃j |ϕq⟩

+ nz ⟨ϕp| 2wj(z − zj)G̃j |ϕq⟩
)︂
. (8.11)

This expression includes three-center overlap integrals in which the mid center is a p-type

function. Rearranging for pj , the amplitude of Gaussian j, yields

pj = −PinpAj˜︁Fj

, (8.12)

where

˜︁Fj =
∑︂
pq

DpqFj,pq (8.13)

and

Fj,pq = nx ⟨ϕp| 2wj(x− xj)G̃j |ϕq⟩

+ ny ⟨ϕp| 2wj(y − yj)G̃j |ϕq⟩

+ nz ⟨ϕp| 2wj(z − zj)G̃j |ϕq⟩ .

(8.14)

With the previous expressions at hand, the hydrostatic pressure energy for Gaussian j is
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given by

Ep,j =
∑︂
pq

Dpq ⟨ϕp|Gj |ϕq⟩

= −
∑︂
pq

Dpq ⟨ϕp|
PinpAj˜︁Fj

G̃j |ϕq⟩

= −PinpAj

∑︂
pq

Dpq ⟨ϕp|G̃j |ϕq⟩

(︄∑︂
pq

DpqFj,pq

)︄−1

. (8.15)

The total contribution of the set of Gaussians to the energy, Ep, can be calculated as

Ep =
∑︂
j

Ep,j , (8.16)

which entails the computation of three-center overlap integrals. The required integral rou-

tines were implemented based on the Obara-Saika scheme [217] in the Q-Chem 5.4 program

package [93,94].

SCF calculations of atoms and molecules in the GOSTSHYP scheme require the contri-

bution to the Fock operator due to the presence of the Gaussian potentials, which reads

Vj,pq =
∂Ep,j

∂Dpq
= −PinpAj

∂

∂Dpq

∑︂
rs

Drs ⟨ϕr|G̃j |ϕs⟩

(︄∑︂
rs

DrsFj,rs

)︄−1

= ⟨ϕp|Gj |ϕq⟩ + PinpAj

[︄∑︂
rs

Drs ⟨ϕr|G̃j |ϕs⟩

]︄
Fj,pq

(︄∑︂
rs

DrsFj,rs

)︄−2

. (8.17)

Hence, the Fock operator contribution through the Gaussian potentials is updated in

each SCF iteration with the current one-electron density matrix. It is not a “simple”

operator contribution to the core Hamiltonian, but introduces a non-linearity due to its

density dependence. This structure is similar to polarizable environment models like PE,

however, the GOSTSHYP operator terms require more bookkeeping and non-standard

building blocks in their implementation. Since the current one-electron density matrix is

used for setting up the Gaussian potentials in each SCF step and the tessellation field is

re-calculated in each step of a geometry optimization or AIMD simulation, the pressure

selected by the user, Pinp, is applied throughout the entire course of the calculations. For

geometry optimizations and AIMD simulations, analytical nuclear gradients were derived

and implemented. The explicit derivation is shown in the following.
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Analytic Nuclear Gradients A short-hand notation for integrals according to

⟨ϕp|Gj |ϕq⟩ = ⟨p|Gj |q⟩ (8.18)

will be used. Recall the definition of the Fock operator (eq (2.36)) in the presence of the

Gaussian potentials,

fpq = hpq +
∑︂
rs

Drs (⟨pr|qs⟩ − ⟨pr|sq⟩)

+
∑︂
j

⎡⎣⟨p|Gj |q⟩ − PinpAj

⎡⎣∑︂
rs

Drs ⟨r|G̃j |s⟩ Fj,pq

(︄∑︂
rs

DrsFj,rs

)︄−2
⎤⎦⎤⎦ . (8.19)

Let

ESCF =
∑︂
pq

Dpqhpq +
1

2

∑︂
pqrs

DpqDrs (⟨pr|qs⟩ − ⟨pr|sq⟩) + Vnn +
∑︂
j

∑︂
pq

Dpq ⟨p|Gj |q⟩

(8.20)

be the total SCF energy in presence of Gaussian potentials. Now consider the derivative

of the SCF energy with respect to a general perturbation λ, [47,218]

∂ESCF

∂λ
=
∑︂
pq

∂Dpq

∂λ
hpq +

∑︂
pq

Dpq
∂hpq
∂λ

+
1

2

∑︂
pqrs

(︃
∂Dpq

∂λ
Drs +Dpq

∂Drs

∂λ

)︃
(⟨pr|qs⟩ − ⟨pr|sq⟩)

+
1

2

∑︂
pqrs

DpqDrs
∂

∂λ
(⟨pr|qs⟩ − ⟨pr|sq⟩) +

∂Vnn
∂λ

+
∑︂
j

∂

∂λ
PinpAj

∑︂
pq

Dpq ⟨p|G̃j |q⟩

(︄∑︂
pq

DpqFj,pq

)︄−1

. (8.21)
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Everything but the last term is identical to the vacuum analytical SCF energy gradient,

so only the final term is now considered separately for each tessellation point j, i.e.,

Eλ
p,j =

∂

∂λ
PinpAj

∑︂
pq

Dpq ⟨p|G̃j |q⟩

(︄∑︂
pq

DpqFj,pq

)︄−1

(8.22)

=Pinp
∂Aj

∂λ

∑︂
pq

Dpq ⟨p|G̃j |q⟩

(︄∑︂
pq

DpqFj,pq

)︄−1

⏞ ⏟⏟ ⏞
E

λ,(1)
p,j

+ PinpAj

(︄∑︂
pq

DpqFj,pq

)︄−1(︄
∂

∂λ

∑︂
pq

Dpq ⟨p|G̃j |q⟩

)︄
⏞ ⏟⏟ ⏞

E
λ,(2)
p,j

+ PinpAj

∑︂
pq

Dpq ⟨p|G̃j |q⟩
∂

∂λ

(︄∑︂
pq

DpqFj,pq

)︄−1

⏞ ⏟⏟ ⏞
E

λ,(3)
p,j

. (8.23)

The first term in eq (8.23) contains the cavity derivative, [219,220] which can be computed

with the present routines for the non-electrostatic PCM nuclear gradients. Carrying out

the derivatives in the second term, E
λ,(2)
p,j , yields

E
λ,(2)
p,j = pj

∑︂
pq

Dpq
∂ ⟨p|G̃j |q⟩

∂λ
(8.24)

= pj
∑︂
pq

Dpq

(︄
⟨∂p
∂λ

|G̃j |q⟩ + ⟨p|G̃j |
∂q

∂λ
⟩ + ⟨p|∂G̃j

∂λ
|q⟩

)︄
. (8.25)

Note that all derivatives of the one-particle density matrix are already consumed into the

energy-weighted density matrix contracted with the derivatives of the overlap matrix, [218]

such that we only need to consider the derivative of the operator explicitly. Hence, the

last term of eq (8.25) requires further attention,

⟨p|∂G̃j

∂λ
|q⟩ = −∂wj

∂λ
⟨p|(r− rj)

2G̃j |q⟩ − wj ⟨p|
∂

∂λ
(r− rj)

2G̃j |q⟩ , (8.26)

where the first term contains a derivative of the width parameter wj multiplied with a

three-center overlap integral with a d-type function on the mid center, and the second term

represents the Hellmann-Feynman force through the Gaussian potential. The derivative
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of the width parameter is straightforward, since it depends on the cavity derivative given

by

∂wj

∂λ
=

∂

∂λ

π ln 2

Aj

= π ln 2
∂

∂λ

1

Aj

= −π ln 2
∂Aj

∂λ

1

A2
j

. (8.27)

Considering the last term of eq (8.23), E
λ,(3)
p,j , one obtains

E
λ,(3)
p,j = −PinpAj

(︄∑︂
rs

Drs ⟨r|G̃j |s⟩

)︄(︄∑︂
rs

DrsFj,rs

)︄−2∑︂
pq

Dpq
∂

∂λ
Fj,pq. (8.28)

The derivative of Fj,pq is expanded to

∂

∂λ
Fj,pq =

∂

∂λ

(︂
nx ⟨p|2wj(x− xj) exp

(︁
−wj(r− rj)

2
)︁
|q⟩

+ ny ⟨p|2wj(y − yj) exp
(︁
−wj(r− rj)

2
)︁
|q⟩

+ nz ⟨p|2wj(z − zj) exp
(︁
−wj(r− rj)

2
)︁
|q⟩
)︂
. (8.29)

The first term (the two other terms can be treated analogously) yields three different

contributions through the derivative, i.e.,

∂

∂λ
⟨p|2wj(x− xj) exp

(︁
−wj(r− rj)

2
)︁
|q⟩ = nx

[︂
⟨∂p
∂λ
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(︁
−wj(r− rj)

2
)︁
|q⟩

+ ⟨p|2wj(x− xj) exp
(︁
−wj(r− rj)

2
)︁
| ∂q
∂λ

⟩

+ ⟨p| ∂
∂λ

2wj(x− xj) exp
(︁
−wj(r− rj)

2
)︁
|q⟩
]︂
,

(8.30)

where the first two terms are simple derivatives of a three-center overlap integral on the

“bra” and “ket” side, respectively. The last term is more involved due to the non-vanishing
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derivative of the width parameter,
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∂λ
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2
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= 2
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wj−(x− xj)(r− rj)
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∂λ

]︃
|q⟩ . (8.31)

The red terms in the above equations arise from the standard derivative of the Gaussian

with perturbation-independent exponents, whereas the blue term gives rise to an overlap

integral involving (Cartesian) f-type orbitals on the mid center multiplied with the deriva-

tive of the width parameter given in eq (8.27). Collecting and assembling the terms for

the other two Cartesian components is straightforward.

8.1.2 Computational Methodology

All calculations were run using a development version of the Q-Chem 5.3 program pack-

age [93,94] in which the GOSTSHYP approach was first implemented. I implemented the

required three-center overlap integrals using an Obara-Saika scheme [217] for arbitrary an-

gular momentum and first analytical nuclear derivatives in Q-Chem’s libqints library.

Unit tests against reference results generated with Mathematica [221] were implemented.

The analytical derivatives were verified through comparison with finite difference result

using a five-point stencil. The GOSTSHYP model is implemented in the new distort

library of Q-Chem, where I also added other pressure models with a consistent and main-

tainable interface. The distort library has its own section in the Q-Chem input file

through which the pressure model and all other parameters can be selected. An example

input file for the geometry optimization of a water molecule at 50 GPa with GOSTSHYP

is shown in Listing 8.1. The distort library is maintained and updated by the group of T.

Stauch. For the calculations atomic van der Waals radii by Bondi were used. [222] Various

levels of theory, i.e., Hartree-Fock [45,46] and DFT [213,214] with different basis sets, were used

in the benchmark and example computations, the details can be found in the published

paper. [181] Atomic and molecular volumes were estimated using a numerical integration

scheme. [223] Cube files for the ground state electron density were generated in Q-Chem
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1 $molecule

2 0 1

3 H -3.5008791 1.2736107 0.7596000

4 O -3.9840791 1.3301107 -0.0574000

5 H -4.9109791 1.2967107 0.1521000

6 $end

7

8 $rem

9 jobtype opt

10 method hf

11 basis vdz

12 use_libqints 1

13 gen_scfman 1

14 distort 1

15 $end

16

17 $distort

18 model gostshyp

19 pressure 50000

20 npoints_heavy 302

21 npoints_hydrogen 302

22 $end

Listing 8.1: Q-Chem example input file for the geometry optimization of water with
GOSTSHYP. With the $distort section in the input, all model parameters
can be set by the user.

using the standard boundaries of the mesh box (± 3Å around the maximum/minimum of

the molecular coordinates) and a grid spacing of 0.1 Å. The number of grid points with

an electron density larger than 0.001 a.u. [223] was divided by the number of total grid

points and multiplied with the box volume yielding the molecular volume. The code to

estimate the molecular volume based on “cube files” is shown in Listing 8.2. The inte-

gration scheme was compared to results from Ref. 223 and was found to agree well with

their Monte-Carlo technique (data not shown). Born-Oppenheimer ab initio molecular

dynamics (BOMD) simulations of the Diels-Alder reaction between cyclopentadiene and

ethylene were run using an integration time step of 20 au. Ten independent simulations

were run for 1800 time steps at a temperature of 298 K. Initial velocities were randomly

generated from a Maxwell-Boltzmann distribution using the given temperature.
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1 import numpy as np

2 from scipy import constants

3 import sys

4

5 outfile = sys.argv[1]

6 plotfile = sys.argv[2]

7 box = None

8 with open(outfile, "r") as of:

9 ls = of.readlines()

10 ls = [l.strip() for l in ls]

11 for i, l in enumerate(ls):

12 if "Grid information in Angstroms:" in l:

13 gridinfo = ls[i+1:i+4]

14 box = []

15 for g in gridinfo:

16 sp = [col for col in g.split(" ") if col != ""]

17 box.append(float(sp[7])-float(sp[4]))

18

19 a0 = constants.value("Bohr radius") * 1e10

20 thresh = 0.001 # density isovalue threshold

21 x, y, z = box

22 v_box = x * y * z

23 cube = np.loadtxt(plotfile, skiprows=3)

24 density = cube[:, 3]

25 count = np.count_nonzero(density > thresh)

26 # MC integration

27 V = v_box * count / density.size

28 V_au = V / (a0**3)

Listing 8.2: Python code to compute molecular volumes using Monte-Carlo integration of
the electron density cube file.

8.1.3 Results and Discussion

GOSTSHYP Benchmarks

As a first step, the GOSTSHYP method was tested for reliable and consistent behavior

when changing the adjustable parameters. The number of tessellation points per atom

Npoints and the tessellation sphere scaling factors (TSSF) determine a) the density of the

Gaussian potentials and b) the “distance” of the potential field to the molecule itself.

We chose to benchmark these parameters against the related XP-PCM [204–206] with the

example of trans-1,3-butadiene. [204] First, the carbon-carbon double bond length under

pressure with a fixed TSSF of 1.2 and varying Npoints was evaluated. [181] The analysis

showed a converged bond length already at Npoints = 110. Only minor changes in bond



174 8 Distortion of Molecules Through External Forces

length were observed when varying the TSSF parameter, such that the typical value for

PCM of 1.2 was chosen as the default. One could also see that GOSTSHYP produced

very smooth pressure-dependent geometrical properties of trans-1,3-butadiene, in contrast

to XP-PCM. [181] Note that it becomes mandatory to increase the TSSF for computations

on multiple molecular fragments to avoid generation of tessellation points between the

individual fragments. From the parameter study, we concluded that GOSTSHYP can be

used in a black-box manner using the above default values without having to determine

the optimal parameters for each system under study.

The main motivation for GOSTSHYP was the possibility to compute pressure-dependent

electronic energies of atoms and molecules. To this end, the electronic energies of the hy-

drogen atom and the H+
2 cation under pressure were calculated with GOSTSHYP and

compared to exact analytical values from literature. [181] These reference values were ob-

tained by placing the hydrogen atom inside differently sized boxes with impenetrable

walls. [195] The agreement between GOSTSHYP and the literature values of the hydrogen

electronic energy under pressure was quite remarkable up to a pressure of approximately

3000 GPa. [181] Going beyond several TPa of hydrostatic pressure is, from a practical

point of view, not required. [186] This analysis demonstrates the striking difference be-

tween GOSTSHYP and existing mechanochemical pressure models, [200,202,203] which only

mediate the external pressure through a nuclear gradient contribution. I want to point

out that my implementation directly worked for unrestricted open-shell references due to

the fact that the Gaussian potentials are of course spin-independent and only “see” the

entire electron density of the system.

For the other open-shell test case, the H+
2 cation, the results obtained from GOSTSHYP

computations agree well with literature values. These reference values were produced by

placing the ion inside a spheroidal box. [192] The benchmarks for hydrogen atoms and the

H+
2 cation showed that pressure-dependent electronic energies with the GOSTSHYP ap-

proach are chemically sound and in good agreement with established pressure models.

Clearly, GOSTSHYP provides a great advantage over purely mechanochemical pressure

models through its integration of the pressure energy penalty in the molecular Hamilto-

nian. The compression of the electron density was further quantified by estimation of

molecular volumes, as explained above. [181] Further benchmark samples and analyses are

to be found in the GOSTSHYP publication, [181] including the dipole moment of water

under pressure. Now, we turn our attention to the practical application of GOSTSHYP

in investigating pressure-induced chemical reactions in a static and dynamic manner.
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Pressure-Induced Chemical Reactions

The first example for a pressure-induced reaction performed with GOSTSHYP was the

Diels-Alder reaction of cyclopentadiene and ethylene. [184,224] This reaction has already

been investigated using XP-PCM, [206] where a pressure of 11.2 GPa at zero temperature

was enough to induce the cycloaddition. To model the same reaction with GOSTSHYP, a

TSSF of 1.8 was used to avoid the generation of tessellation points between the two frag-

ments. The application of pressure to a complex of cyclopetadiene (diene) and ethylene

(dienophile) via the static GOSTSHYP approach (T = 0K) leads to a monotonic decrease

in the distance d between the diene and the dienophile (Fig. 8.2). Initially, the distance

shows two small downward steps, due to to minor changes in relative orientation and con-

formation. Between 39 and 40 GPa, a sudden downward jump of d indicates the formation

of the product through a pressure-induced Diels-Alder reaction. From 40 GPa onward, no

pronounced compression of the adduct is observed. The pressure required to induce the

Diels-Alder reaction with GOSTSHYP is approx. 3.5 times higher than in XP-PCM, [181]

however, both models are fundamentally different in their way of determining the applied

pressure. Note that with XP-PCM, no geometry optimizations under pressure are possible,

indicating a clear advantage of GOSTSHYP since analysis of pressure-dependent poten-

tial energy surfaces is the cornerstone for reliable modeling of chemical reactions. Going

one step further, it is also possible to carry out ab initio molecular dynamics (AIMD)

simulations using GOSTSHYP. To showcase these capabilities, proof-of-principle Born-

Oppenheimer molecular dynamics (BOMD) simulations of cyclopentadiene and ethylene

under a constant pressure of 40 GPa at 298 K were carried out. Throughout the ten

simulated trajectories, the average distance between the carbon atoms in cyclopentadiene

and ethylene that form bonds during the Diels-Alder reaction oscillates (Fig. 8.3), which

is a result of the compressing influence of the Gaussian potentials and the repulsion of the

electron density of the molecules. During the simulation time, in nine out of ten trajec-

tories, a Diels-Alder cyclization was observed, which is indicated by a steep decrease of

the average distance between cyclopentadiene and ethylene during bond formation. Af-

ter carbon-carbon bonds have been formed, the average distance still oscillates, which is

again a result of the interplay between compression due to the Gaussian potentials and

the restoring force of the molecule. These oscillations occur with an increased frequency

as soon as the bonds are formed, which is due to the larger force constant of the covalent

bonds compared to the intermolecular non-covalent coordinate. The oscillation ampli-

tude decreases over time due to equilibration of the reaction product. [181] Clearly, the

applicability of GOSTSHYP in AIMD simulations is an outstanding and important fea-
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Figure 8.2: Pressure-induced Diels-Alder reaction of cyclopentadiene and ethylene, mod-
eled with GOSTSHYP at the PBE [225]/cc-pVDZ [128] level of theory. d, which
refers to the distance between the carbon atoms in cyclopentadiene and ethy-
lene that form a bond during this reaction, is plotted as a function of pressure.
The contribution of the pressure to the energy (Ep) is plotted as well. Figure
produced by T. Stauch.1

ture, compared to related methods, since it allows investigation of the interplay between

pressure and temperature in a time-resolved manner on the single molecule level.

Another illustrative example of the capabilities of GOSTSHYP in the simulation of

pressure-induced chemical reactions is the cyclotrimerization of acetylene under pressure

yielding benzene. [226,227] Three acetylene molecules were placed in the same plane to mimic

the configuration on the surface of a heterogeneous catalyst. Geometry optimizations of

this arrangement of molecules at different pressures were carried out at the B3LYP [228–230]-

D3BJ [231]/6-31G(d) [143] level of theory. The optimization results for a pressure range from

0 to 100 GPa are shown in Figure 8.4. Indeed, the pressure exerted on the individual

acetylene molecules through GOSTSHYP ultimately leads to the formation of benzene at

a pressure of 68 GPa. The average bond length of newly formed carbon-carbon bonds (cf.

Fig. 8.4) steadily decreases up to 67 GPa. At 68 GPa and higher pressures, the carbon-
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Figure 8.3: Time-dependent progression of the average distance between the carbon atoms
in cyclopentadiene and ethylene that form a bond during the Diels-Alder re-
action during the BOMD simulation under a constant pressure of 40 GPa,
applied via the GOSTSHYP model at the PBE [225]/cc-pVDZ [128] level of the-
ory. Each line represents an individual trajectory.1

carbon bond lengths remain at an almost constant value of 1.37 Å. Such high pressures

are impossible to reach experimentally in the gas phase, where a catalyst is used to obtain

benzene out of acetylene. [226]

8.1.4 Conclusions and Outlook

In this section, an electronic structure method for geometry optimizations and AIMD

simulations of chemical systems under pressure, the Gaussians On Surface Tesserae Sim-

ulate HYdrostatic Pressure (GOSTSHYP) approach, was introduced. Ground state SCF

energies, together with analytic nuclear gradients were derived and implemented. The

user-defined input pressure specified for GOSTSHYP is applied during geometry opti-

mizations and AIMD simulations, and the compression of electron density is described

realistically since the pressure dependence is directly integrated into the molecular Hamil-

tonian through a density-dependent energy penalty. Benchmarks against established pres-

sure models and exact analytical results were successful, and GOSTSHYP is also capable

of modeling the pressure-dependent Diels-Alder reaction of cyclopentadiene and ethy-

lene as well as the cyclotrimerization of acetylene. GOSTSHYP is a black-box method

for both experts and novices in the field of modeling pressure-dependent quantities, and
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Figure 8.4: Pressure-induced cyclotrimerization of three acetylene molecules to benzene.
The upper panels show the vacuum-optimized geometry with three distinct
acetylene molecules and the GOSTSHYP geometry at a pressure of 100 GPa.
Carbon atoms involved in newly formed bonds are equally colored. The lower
panel shows the average bond distances davg of the newly formed bonds at
different pressures.1

the method was implemented in the Q-Chem program package at the SCF level, en-

abling Hartree-Fock and DFT calculations. It is one of the “highlighted” new features

of the recent Q-Chem 5.4 release through the newly implemented libdistort library

(https://www.q-chem.com/explore/pes/distort).

An interesting extension of the here presented approach would be the computation of

electronically excited states under pressure, e.g., with TDDFT or ADC. This would en-

able the simulation of UV/Vis spectra of compressed molecules. [232–235] A quick test of

GOSTSHYP together with ADC (data not shown) indicated that maybe the combina-

tion is not as straightforward and must be more thoroughly devised in future work. For

https://www.q-chem.com/explore/pes/distort
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improved performance, it would be beneficial to screen the required three-center overlap

integrals in general and maybe to derive a simplified GOSTSHYP model that requires less

gradient terms. The most cumbersome terms arise from the exponents of the Gaussian

potential functions that depend on the molecular geometry through the surface areas, i.e.,

if one could find a way to fix the exponent of all potentials in a reasonable manner, the

computational procedure of GOSTSHYP would simplify a lot. Another approach would

be the evaluation of the Gaussian potentials via grid integration techniques: one could

project the (adaptive) Gaussian potentials on a DFT integration grid and then evaluate

the Fock operator contribution and energy via efficient DFT routines. This suggestion,

however, is complicated by the fact that the potentials are dependent on the surface tes-

sellation in a non-linear manner through the width parameter. Both proposed extensions

and adaptations could in principle be quickly tested with the current implementation. The

latter approach can also be piloted in the Psi4 project, which would make the GOSTSHYP

method openly available to a broader user base, if successful.



180 8 Distortion of Molecules Through External Forces

8.2 The Rupture Mechanism of Rubredoxin

Proteins are constantly exposed to mechanical forces, from synthesis, folding, re-folding,

unfolding and degradation. [236] The field of mechanobiology has been under extensive in-

vestigation throughout the past decades, using experimental and computational method-

ologies, or combined approaches. [237–239] In fact, proteins display a rich and diverse behav-

ior when exposed to mechanical forces, [236,239] which can in some cases even be counterin-

tuitive: Metalloproteins, for example, are often much weaker than one would expect from

the covalent character of the involved metal-ligand bonds. [240,241] An intriguing example

for this phenomenon is found in rubredoxin, a protein that participates in electron transfer

reactions [242–244] and provides structural stability due to its central FeS4 unit. [244] Using

atomic force microscopy (AFM), it was found that the strong covalent character of the

iron-sulfur bonds [245] of the protein’s central FeS4 unit contrasts strikingly with a remark-

ably low rupture force of 200 pN. [246] On the contrary, covalent bonds typically display

rupture forces above 1.5 nN. [247] As iron-sulfur clusters are ubiquitous in biochemical sys-

tems, the mechanical properties of the rubredoxin active site were thoroughly investigated,

both experimentally and computationally, in the past years. It was found that the cleav-

age of the Fe−S bond in rubredoxin typically proceeds via a homolytic pathway, [248,249]

however, heterolytic bond rupture was described if nucleophiles are present. [250] Most im-

portant to the hypothetical mechanism devised in these seminal works is the environment

of the central FeS4 unit in rubredoxin, [250] and the mechanism and its kinetics of rupture

depend on the pulling direction. [251] The mechanical anisotropy of rubredoxin has been

confirmed through computational investigation by means of steered molecular dynamics

(SMD) simulations. [252]

The presence of hydrogen bonds (NH· · · S) between neighboring amino acid backbones

and the sulfur atoms of the FeS4 unit (Figure 8.5) was suggested as a possible explanation

for the surprisingly low rupture force of the Fe−S bonds in rubredoxin [254] by decreasing

the covalent character of the Fe−S bonds. Similar effects have been previously identified in

the context of a modulation of reduction potentials in rubredoxin by hydrogen bonds. [255]

Interestingly, however, rubredoxin model systems with intramolecular NH· · · S hydrogen

bonds exhibit mean Fe−S bond lengths that are significantly shorter than those of com-

parable complexes that do not form hydrogen bonds. [256] Considering that a short bond

is typically interpreted as strong, [237] this finding seems to be in conflict with the notion

that NH· · · S hydrogen bonds weaken the Fe−S bonds in rubredoxin.

Motivated by these contradictions and the excellent review, [240] I collaborated with

Prof. Dr. Tim Stauch to thoroughly investigate the hypothesized rupture mechanism of
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Figure 8.5: Close-up view of the central FeS4 unit in rubredoxin (PDB 1BRF). Dotted lines
represent possible hydrogen bonds between the sulfur atoms and the closest
amino acid backbones (Cys5: Lys6, Ile7, Cys8; Cys8: Gly9, Tyr10; Cys38:
Ile40, Cys41; Cys41: Gly42, Ala43) according to Ref. 253. The structure in
the right panel is rotated by 180◦ with respect to the structure in the left
panel.2

rubredoxin. Computational methodologies used up to this point were able to capture a

lot of the experimentally observed properties, however, detailed analysis of hydrogen bond

networks and most importantly, a quantum chemical investigation of the rupture process

in the protein environment was lacking. To this end, we sought to combine SMD with

quantum chemical strain analysis to describe the dynamic fluctuations of strain energy

during forced unfolding. To come up with a suitable approach was quite difficult from

a technical point of view. After several failed attempts to use QM/MM optimized in-

put structures for strain analysis, we came up with an SMD-JEDI analysis [237] workflow

that resolves the quantum mechanochemical properties with unprecedented spatial and

temporal resolution. Furthermore, DFT is used to investigate the mechanical resilience

and anisotropy of rubredoxin in detail. Hydrogen bonds between neighboring amino acid

backbones and the sulfur atom of the central FeS4 pseudo-tetrahedron are shown to play

only a minor role in the mechanical properties of rubredoxin. The protein’s mechanical

resistance is influenced by structural anisotropy and angle bendings in the FeS4 unit, as

evidenced by state-of-the-art strain analyses. These effects are not sufficient to explain

the experimentally observed low rupture force of rubredoxin, thus hinting at a rupture

mechanism that is likely more complex than previously thought.
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8.2.1 Computational Methodology

Atomic coordinates were obtained from a Pyrococcus Furiosus rubredoxin crystal struc-

ture (PDB: 1BRF). [257] Hydrogen atoms were added using the VMD [150] psfgen plugin,

and the protein was placed inside a water box with 0.15 M NaCl. For all molecu-

lar dynamics (MD) simulations, the CHARMM36 force field [258] was applied together

with NAMD, version 2.13. [259] The charges of Fe(III) and cysteine residues of rubredoxin

were re-parametrized. [182] The anharmonic Fe-S bond potential was modeled through a

Morse potential with parameters taken from previously published work (De = 90 kJ/mol,

β = 30 nm−1, r0 = 2.3 Å). [252] The system was first minimized and subsequently equi-

librated at a temperature of 300 K with a time step of 2 fs for 1 ns in total. During

equilibration, backbone atoms of the protein were harmonically constrained with a force

constant of k = 1.0 kcal · mol−1 · Å
−2

. Afterwards, a longer equilibration simulation was

carried out for 25 ns without any constraints. For further analysis of hydrogen bonds to

cysteine residues in the active site, an extended equilibration simulation of 250 ns length

was performed. Starting from the equilibrated protein structure, SMD simulations were

carried out to unfold the rubredoxin protein. In these SMD simulations, the Cα atom

of Ala1 were fixed in space, whereas the Cα atom of the C-terminal Asp53 was pulled

away from Ala1 along the bond axis at a constant velocity of 0.2 nm/ns employing a

force constant of k = 7.0 kcal · mol−1 · Å
−2

. Snapshots of the trajectory were saved ev-

ery 20 ps and the SMD trajectories were run until at least the first Fe−S bond rupture

occurred. Ten SMD runs were run in total, and for the strain analysis a single trajectory

was considered in the following due to the enormous computational cost of the workflow.

Hydrogen bond analysis in equilibrium and in all ten SMD trajectories was carried out

using PyContact, [260] taking into account distance criteria from Ref. 253 (S−H distance

≤ 3.0 Å). Possible hydrogen bond donors are Lys6, Ile7, Cys8, Gly9, Tyr10, Ile40, Cys41,

Gly42, and Ala43. [253] Distance analyses were performed with MDAnalysis. [261,262]

To obtain an improved temporal resolution of the bond rupture event, the chosen SMD

trajectory was restarted 1 ns before bond rupture while saving a snapshot every 0.1 ps.

The quantum chemical Judgement of Energy DIstribution (JEDI) analysis was applied to

investigate the partitioning of strain energy among all bonds, bendings and torsions of

a mechanically strained molecule. [263–265] Although force analyses by molecular dynamics

simulations have been conducted for proteins, [266,267] this is the first study to carry out

the quantum chemical JEDI analysis along the unfolding trajectory of a protein. The

workflow for this mixed quantum mechanical/molecular mechanics (QM/MM) approach

is illustrated in Figure 8.6. Snapshots including the four cysteine residues and Fe(III)
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Figure 8.6: Schematic illustration of the applied workflow for JEDI analysis along the SMD
unfolding trajectory. The upper part shows the individual steps toward JEDI
analysis. The (non-quantitative) plot illustrates the SMD trajectory leading to
a certain extension of the protein (red). Certain snapshots are extracted and
quantum chemically optimized keeping protein backbone atoms fixed (yellow
dots). Then, the nearest local minimum, needed for JEDI analysis, is found
through a constraint-free optimization of the previous geometry (green dot).
In this manner, pairs of strained and relaxed structures along the unfolding
trajectory are obtained, yielding a well-defined JEDI analysis per snapshot.2

were extracted from the previous trajectory up to 9 ps before bond rupture. Broken

bonds were saturated with hydrogen atoms. For each snapshot, a geometry optimization

with DFT [213,214] at the BP86VWN [228,268]/6-31G(d) [143] level of theory was performed

while keeping the backbone atoms of the amino acids fixed to provide a strained geometry

for each snapshot. The BP86VWN functional was chosen because it offers an attractive

compromise between agreement with experimental data and computational effort. Af-

terwards, a follow-up optimization without constraints was carried out with a tiny step

size (Q-Chem keyword geom opt dmax=20) to find the nearest local minimum, resulting in

the relaxed reference geometry for that particular snapshot. Finally, JEDI analyses were

carried out for each snapshot. The above protocol was implemented and carried out by

myself. The computational methodology for static quantum chemical calculations on a

minimal [Fe(III)(SCH3)4]
− system, [248] performed by T. Stauch, is reported in detail in our
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joint publication. [182] The bonding of the FeS4 cluster was analyzed by means of Localized

Orbital Bonding Analysis (LOBA), [269] and the covalent character of the Fe−S bond was

measured using the ALMO-EDA [270] charge transfer energy ∆ECT. All static quantum

chemical calculations were carried out using the Q-Chem 5.1 program package. [93,94]

8.2.2 Results and Discussion

Figure 8.7: Analysis of protein hydrogen bonds to sulfur atoms of Cys5 and Cys41. The
percentage of frames in which a certain number of hydrogen bonds occurs
in equilibrium (left) and during the SMD unfolding procedure (middle). In
the right panel, a time-resolved representation of hydrogen bond percentages
is shown by averaging 20 equally sized trajectory windows. During the final
parts of the trajectories, some of the Fe−S distances are already significantly
elongated.2

In all SMD trajectories, one of the Fe−S bonds ruptures. In six of the ten trajectories,

the sulfur atom involved in the bond rupture belongs to Cys5 and in the other four

trajectories it belongs to Cys41. Hence, in a first step, the hydrogen bond network of

the sulfur atoms belonging to Cys5 and Cys41 was analyzed in the equilibrium and in

the steered unfolding trajectories (Figure 8.7) to determine the influence of the hydrogen

bond network on the mechanical properties of rubredoxin. In the equilibrium trajectory,

most frames display either one or two hydrogen bonds in Cys5 and Cys41, with a minority

of frames showing either zero or three hydrogen bonds. While it is of course possible

that these hydrogen bonds influence the reactivity of the central FeS4 unit in the force-

free state of rubredoxin, a similar analysis carried out during the unfolding trajectories

prior to rupture of the Fe−S bond shows that the formation of NH· · · S hydrogen bonds

becomes less and less frequent with increasing stress: In almost half of the frames during

the unfolding trajectories, no such hydrogen bond is formed. The formation of one or two

hydrogen bonds occurs less frequently and only a very small minority of frames throughout
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the unfolding events displays three hydrogen bonds. The prevalence of hydrogen bonds

during the unfolding trajectory decreases almost continuously as rupture is approached

(Figure 8.7, right panel). As an exception, in the last 5-10% of the shown trajectories

hydrogen bonds on average become more frequent again. At these points, the mean iron-

sulfur distances have already increased significantly and approach the value of a ruptured

bond (see Fig. 8.8). In agreement with chemical intuition, the sulfur atoms tend to form

Figure 8.8: Fe−S distances averaged for 20 equally sized trajectory windows of all ten
SMD trajectories. At 100% trajectory progress, the first bond ruptures.

stabilizing hydrogen bonds if this is sterically feasible, i.e., if they are not screened by the

rest of the FeS4 unit. Hence, up to the point of rupture of the iron-sulfur bond, the mean

amount of hydrogen bonds to the sulfur atoms decreases. All in all, these observations
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demonstrate that hydrogen bonds to the sulfur atoms of the FeS4 unit are unlikely to

determine the low rupture force of rubredoxin found in the experiments, since close to the

bond rupture of the Fe−S bond these hydrogen bonds become less prevalent.

Subsequently, we focused on elucidating the real-time propagation of strain energy in

the central part of rubredoxin during unfolding. To this end, we applied the workflow

summarized in Figure 8.6 to one of the SMD trajectories to derive strain energies using

the JEDI analysis. As mentioned before, it is a stochastic process whether Cys5 or Cys41

ruptures. In the case of the particular unfolding trajectory considered here, the scissile

bond is Fe−S5 (where “5” represents amino acid residue Cys5), as can be observed from

the progression of the Fe−S distances in Figure 8.9. Together with the Fe−S41 bond,

which is also being elongated to a certain extent, the scissile Fe−S5 bond is part of the

force-bearing scaffold of rubredoxin, because it lies along the connection line between the

attachment point and the pulling point in the SMD simulation. The Fe−S5 bond distance

oscillates tremendously during the trajectory, which is a result of the dynamic nature of

the calculations, and partially breaks and reforms several times during the last 9 ps before

it is broken completely. The remaining Fe−S bonds (Fe−S8 and Fe−S38), in turn, stay

very close to their equilibrium bond lengths, since the force is acting almost perpendicular

to them.

Figure 8.9: Fe−S distances of strained geometries before bond rupture. Subscripts indicate
the amino acid residue number. Linear fits of the distances are displayed
together with the confidence interval (translucent areas).2

To study the dynamic propagation of mechanical strain energy during the unfolding

process, the JEDI analysis was carried out at each snapshot. Considering the last 9 ps

before the ultimate scission of the Fe−S5 bond, most strain energy is stored in the Fe−S5

bond itself (Figure 8.10a). A significant amount of strain energy is also stored in the

Fe−S41 bond as well as in several bond angles that lie along the connecting line of the
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attachment point and the pulling point of the SMD simulation. Together, these internal

coordinates comprise the force-bearing scaffold of the central part of rubredoxin. Dihedral

angle displacements play only a minor role in this trajectory. The significant role of the

Fe−S5 bond and the Fe−S41−C41 bond angle as reservoirs of strain energy is further

emphasized when considering the dynamic progression of strain energy (Figure 8.10b). As

expected, the amount of strain energy in the scissile Fe−S5 bond increases dramatically

when approaching the point of bond rupture.

Figure 8.10: Summary of JEDI analyses including a) mean strain energy percentages for
the most strained coordinates (bond lengths Fe−S5 and Fe−S41, bond angles
Fe−S5−C5, Fe−S38−C38 and Fe−S41−C41, and torsions Fe−S41−C41−C41α,
S5−Fe−S38−C38 and S5−Fe−S41−C41) and b) time-resolved strain energy
contributions (percentages of the total strain) of the most important bond
lengths and bendings. Bars around the mean percentages indicate the 95%
confidence interval.2

The distribution of strain energy in a representative snapshot is summarized by using

a color-coded representation in Figure 8.11. The force-bearing scaffold can be clearly

distinguished: As expected, it lies along the connecting line between the attachment point

and the pulling point. In the SMD trajectory, most strain energy is stored in the scissile

Fe−S5 bond, but the other side of the FeS4 pseudo-tetrahedron is also strained significantly.

The results obtained with the new SMD-JEDI combination were then complemented

with quantum chemical computations, carried out by my collaborator, to model the rup-

ture process in detail in isolated model systems [Fe(III)(SCH3)4]
− and [Fe(II)(SCH3)4]

2−. [182]

For the following summary, I will limit myself to the Fe(III) system. The computed rupture

force of the Fe(III) minimal model system was found to be 1.89 nN, which is much higher

than the experimentally observed value in the protein system (258 ± 122 pN). [246] Even

though this is a typical observation, [237,247,271] the drastic overestimation of the rupture

force clearly indicated that the model system does not capture the experimental conditions,
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Figure 8.11: Representative snapshot of the unfolding trajectory before bond rupture. The
strain energy contributions in the quantum region are mapped onto the bonds,
where red and green indicate high and low strain, respectively, and transitions
are fluent. The residues along the force coordinate bear most of the strain
energy (Cys5 and Cys41), whereas Cys8 and Cys38 only play a minor role.
The scissile bond Fe−S5 contains most of the strain energy, followed by the
angle on the opposite side (Fe−S41−C41).

2

since such a high rupture force usually indicates covalent character of the scissile bond. [272]

Using LOBA, the Fe(III)−S bond was characterized as covalent. To mimic the hydrogen

bond network provided by rubredoxin, the hypothetical “key player” in the rupture mech-

anism, rupture forces were determined for the model system with formamide molecules in

the environment. In the previous part, hydrogen bonds were shown to only play a minor

role by means of MD simulations, however, we aimed at ruling out the possibility that

hydrogen bonds can indeed dramatically reduce the computed rupture force. Formamide

is a typical protein backbone mimicking molecule, and up to six formamide molecules were

placed in proximity to the sulfur atoms of the model systems, forming hydrogen bonds

like in the rubredoxin active site. These six hydrogen bonds were also observable in the

SMD simulations and previous work. [254] Intriguingly, there is no consistent trend of the

rupture force when adding more and more hydrogen bonds. [182] Instead, the rupture force

is decreased by less than 10% with one or two hydrogen bonds, but increases again when

adding two more hydrogen bonds. We concluded that the electronic environment of the

iron-sulfur complex has a pivotal influence on the rupture force, but not in a manner that

one would have expected from experiment. The oscillations of the model system’s rupture

force clearly show that hydrogen bonds with the protein backbone cannot explain the sur-

prisingly low rupture force of rubredoxin. Using the JEDI [263–265] analysis, it was found

that the distribution of strain energy in the complex is indeed anisotropic. [182] Most of
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the strain energy is stored in the scissile Fe−S bond, more than in the chemically equiv-

alent adjacent Fe−S bond. A large portion of strain energy is furthermore distributed

over apparently uninvolved parts of the pseudo-tetrahedron. This is consistent with the

JEDI analysis carried out in the hybrid SMD-JEDI workflow. From all results presented

herein, it can be concluded that the hydrogen bond network in rubredoxin is most likely

not responsible for the extremely low rupture force.

8.2.3 Conclusions and Outlook

In this section, I presented the first combination of SMD and the quantum chemical JEDI

strain analysis to show that hydrogen bonds from neighboring amino acid backbones to

the sulfur atoms of the FeS4 unit of rubredoxin become less prevalent when unfolding

the protein and that they do not lower the rupture force. [182] This clearly precludes the

assumption that hydrogen bonds cause the low rupture force found in the experiment.

The protocol allowed us to track the distribution of strain energy during the mechanical

unfolding of rubredoxin, providing a time-resolved view of the propagation of strain in

the stretched protein in unprecedented detail. Hence, the SMD-JEDI protocol provides a

significant step toward modeling complex biomolecular systems under mechanical strain

with active sites that absolutely require quantum chemical accuracy and predictive power.

It would be interesting to extend the here presented SMD-JEDI protocol to a hybrid

QM/MM SMD approach. The prerequisites for this to be successful are, however, tightly

converged structures and an analytic hybrid QM/MM Hessian taking into account all terms

arising through the quantum-classical coupling scheme. This might provide an additional

improvement over the here presented SMD-JEDI protocol, which can be viewed as a

type of mechanical embedding scheme, whereas electrostatic embedding would model the

interaction of the quantum region with point charges in the environment. The software

packages used in this study are in principle capable of providing the required data, however,

the systems need to be prepared and propagated very cautiously. Instead of the so far

established hydrogen bond explanation, unobserved mechanisms most possibly prevail,

which will need to be investigated in detail using new experiments and computations. The

novel combination of SMD and quantum chemical strain analysis will prove as a valuable

tool for this purpose, not only for rubredoxin but also for other biomolecular systems

exposed to external forces. The study together with the new workflow is a stepping stone

for future modeling of protein mechanochemistry and will pave the way for a rigorous

understanding of such systems at quantum chemical detail.
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Chapter 9

Design and Investigation of Novel

Photocages

Photolabile protecting groups (PPGs), also called photocages, are molecules with the abil-

ity to release a biologically or chemically active substance upon light irradiation. [274,275]

Photocages enable the controlled activation of a specific molecule with high spatial and

temporal resolution through the underlying light-induced uncaging reaction. An efficient

and practically usable photocage has to meet a plethora of requirements. [274] First, to avoid

cellular damage in in vivo experiments, the photoreaction should be preferably triggered

through light with wavelengths larger than 300 nm. Second, the cage must exhibit a high

uncaging quantum yield together with a clean photoreaction without unwanted byprod-

ucts. Third, the PPG must be soluble in the medium for the application target, i.e., water

and buffer solutions for biochemical experiments. Fourth, it is important that the uncaging

reaction does not produce any toxic product, and the absorption behavior of the photo-

product should not be identical to that of the cage itself to avoid competitive absorption.

All together, fulfilling these requirements poses a difficult task for both experimentalists

and theoreticians. The quest for efficient new photocages thus requires detailed under-

standing of the underlying reaction mechanism to devise reasonable structure-activity

relationships. Once this mechanism is clearly understood, it would in principle be possi-

ble to tune the decisive molecular properties of candidate molecules. To effectively carry

out this task, new photocages can be studied by computational means, providing helpful

guidelines as to which scaffold and substituent combinations are worth synthesizing. The

Parts of this chapter have already been published in:

• V. Hermanns, M. Scheurer, N. Kersten, C. Abdellaoui, J. Wachtveitl, A. Dreuw, and A. Heckel,
“Re-Thinking Uncaging: A New Antiaromatic Photocage Driven by a Gain of Resonance Energy”,
Chem. Eur. J. 2021, Accepted Author Manuscript. DOI: 10.1002/chem.202102351. (Reference
273)
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design of new photocages relies on common molecular scaffolds, [274] and a species that has

only recently gained attention for this specific use is fluoren-9-ol. [276,277] The photochem-

Figure 9.1: Photolysis reaction of fluoren-9-ol and quenching through the solvent MeOH.

ical solvolysis of fluoren-9-ol (FOH) was first reported in 1985, [278] and follow-up studies

revealed that the intermediate species of this photoreaction is quenched through nucle-

ophilic solvent molecules. [279] Correspondingly, the diagram of the reaction steps is shown

in Figure 9.1. Through photoinduced heterolysis of fluoren-9-ol, a hydroxide anion OH– is

detached, forming a fluorenyl cation intermediate species F+. [276,280] In the final step, the

cationic intermediate is deactivated through nucleophilic attack of a methanol (MeOH)

solvent molecule. The first practical application of photocages based on this mechanism

was shown in 2018, [277] i.e., the first-generation of fluorene-based PPGs. Especially biolog-

ically relevant leaving groups could be efficiently released from these cages. Despite this

success, there is still room for systematic improvement and a more detailed understanding

of fluorene-based photocages. Extending the toolbox of cages based on fluorene requires an

efficient computational screening procedure to discern potent candidate molecules from in-

efficient ones. Through a well-defined structure-activity relationship, not established yet

for this type of photocage, it would be possible to design new molecular scaffolds with

even larger UV/Vis absorption red shifts, clean photoreactions, and synthetic variabil-

ity. An in silico procedure relying on, e.g., black-box DFT calculations would provide

a quantitative perspective on how to improve fluorene-based photocages systematically.

The most promising candidate molecules arising from such an undertaking can then be

synthesized and tested in vitro. Inspired by the work from Winter and co-workers, [281] I

devised a new screening procedure as proposed above, ultimately leading to an improved,

second-generation photocage based on fluorenol. [273] This was possible through a joint

experimental and computational endeavor with V. Hermanns from the Heckel group at

the University of Frankfurt. In the next section, I first analyze the proposed uncaging

mechanism of fluoren-9-ol in detail. With the confirmed mechanism as a basis, I explain

the simplistic screening procedure which can be applied to rapidly pre-scan and assess the

quality of new fluorene-like photocages at a minimal computational cost.
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9.1 Uncaging Mechanism of Fluorenol

Figure 9.2: Hypothetical reaction mechanism for photoheterolysis of fluorene-like com-
pounds. [281]

According to Winter and co-workers, the photoheterolysis of fluorene-like compounds

and other species is governed by a conical intersection (CI) between the ground state and

the energetically lowest singlet excited state. [281] This proposed mechanism is illustrated

in Figure 9.2. After photoexcitation from the singlet ground state S0 to the first singlet

excited state S1, the reaction path proceeds via a transition state, however, not directly

to the minimum product state, but through a CI energetically close to the S0 minimum

of the heterolysis product F+ + OH– . The thermal pathway is, in the depicted scenario,

rather unfavorable and unlikely to occur. To corroborate the proposed and widely ac-

cepted reaction mechanism by a theoretical analysis, I carried out DFT and TDDFT

calculations at the CAM-B3LYP/def2-SVP level of theory for the simplest fluoren-9-ol

species. [127,282] These computations were carried out using version 5.3 of the Q-Chem

program package. [93,94] First, an optimization of the S1 excited state was run with TD-

CAM-B3LYP/def2-SVP in the TDA approximation [144] to obtain the educt structure of

the photoreaction. In the following step, the structure of the CI was sought by means of

a minimum energy crossing point (MECP) optimization between the S0 and S1 state, us-

ing the spin-flip (SF) formalism as implemented in Q-Chem. [283] The obtained molecular

structure of the CI indeed showed that the OH– moiety was cleaved from the fluorene part.

As a final step, the transition state (TS) of this reaction path was optimized, in which the

OH– was partly detached from fluorene. The results of this reaction mechanism study are

illustrated in Figure 9.3, together with the relative energies of the involved states. The

energy difference between the Franck-Condon point and the S1 minimum is 0.48 eV, such

that enough excess energy should in principle be available to overcome the corresponding
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Figure 9.3: Illustration of species involved in the photoheterolysis reaction, including rel-
ative energies.

barrier of 0.39 eV. The C7-O distance steadily increases from 1.44 Å in the S1 state, to

1.85 Å in the TS, to 3.15 Å in the CI structure. As follows, the C7-O bond is already

broken at the CI, indicating proximity to the product state F+ + OH– in the target S0

state. This analysis confirms for the first time that the photoheterolysis of fluorene-like

species can in principle proceed via a productive CI channel, which is crucial for un-

derstanding and designing improved fluorene-derived photocages. If existence of such a

CI channel is mandatory, it should be a reliable indicator whether a certain compound

exhibits a productive uncaging behavior or not. As a matter of fact, two scenarios are

possible for such a reaction type, illustrated in Figure 9.4. The key part considered here is

the relative energy of the S0 and S1 state at the product geometry. [281] For a high-energy

F+ + OH– species, the two potential energy surfaces are energetically close to each other

(see Fig. 9.4a), i.e., the ground state cation is destabilized. Note that the effect of the

leaving group (LG), in this case OH– , is completely neglected in this line of reasoning.

The proximity of the S0/S1 PES, however, makes existence of a nearby CI rather likely.

On the contrary, the involved PES are further apart when a low-energy product state is

present (see Fig. 9.4b): In that case, the cationic species is stabilized, and the energy gap

between the PES becomes quite large. As a result, the productive uncaging CI channel

is likely not existent in the stabilized cation case. From a practical point of view, it is

rather time-consuming to use the existence of a productive CI directly as a parameter

for efficient uncaging, because it is not as easily implementable in an automated manner.

The vertical excitation energy of the cationic species ∆Evert can, however, be used as an
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Figure 9.4: Schematic illustration of ground and excited state potential energy surfaces
for a) destabilized fluorenyl cations and b) stabilized fluorenyl cations. [281]

indirect indicator for a nearby CI. This is visible directly from the illustration in Figure

9.4: The lower the vertical excitation energy, the closer are the involved potential energy

surfaces, and consequently, existence of a productive CI is likely. In the other scenario,

the larger the vertical excitation energy, the larger the energy gap between the S0 and

S1 PES, and the productive channel is most likely not existent, and the product state is

photochemically inaccessible. As such, a cationic species with a small vertical excitation

energy should, in principle, be suited as efficient fluorene-based photocage. Of note, the

absolute vertical excitation energies are not helpful. Much rather, a ranking of compounds

can be created to opt for the ideal molecular species in this regard. Using the vertical

excitation energy as an indicator for efficient uncaging greatly simplifies the computational

screening procedure. It essentially boils down to a two-step task, in which the cationic

species is first optimized in its electronic ground state, and the excitation energies are

then computed for the optimized structure. This task can be fully automated, and solvent

effects can be conveniently included through a continuum model. A major shortcoming of

the computational assessment is that the effect of the leaving group is completely ignored,

which could in principle have a large effect on the uncaging efficiency. Note that this

simplification makes it possible in the first place to study the plain scaffolds of prospect

fluorene-based cages without taking into account the vast amount of possible cage/leaving

group combinations. One could say that the protocol established here judges the quality

of the cage itself, independent of the attached leaving group.
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9.2 Computational Screening and Ranking of New Fluorene

Photocages

To improve upon the first-generation fluorenol photocages, modifications to the existing

cages in order to destabilize the cation were discussed, using chemical intuition. Not

only can the substituents at the ring systems be varied [277] but even more changes in

the electronic structure can be introduced through heteroatoms in the ring system. For

this reason, we proposed so-called “aza-fluorenol” derivatives, where a nitrogen atom is

placed in each of the outer aromatic rings of the fluorene derivative. These molecules

were, however, synthetically not accessible and did not provide much flexibility for inter-

changing ring substituents. Considering the nitrogen fluorenol derivatives a dead end, we

came up with the idea to replace the six-membered benzene rings with thiophene moieties.

These cyclopenta-dithiophene derivatives are of course not derivatives of fluorene itself,

but through the similar structure can be considered fluorene-like. Three different positions

of the sulfur atoms were suggested, leading to ortho-, meta-, and para-sulfur-cyclopenta-

dithiophene scaffolds. The position labels ortho, meta, and para refer to the position of the

sulfur atom from the top ring position, connected to the ipso-C atom. [273] Using standard

nomenclature, these would be denoted 7H, 6H, and 4H derivatives, respectively. The pro-

posed scaffolds in their simplest form were then tested with the screening protocol outlined

above. All computations were performed using Q-Chem 5.3. [93,94] Cationic species were

optimized at the CAM-B3LYP/def2-SVP level of theory [127,282] employing a polarizable

continuum model for water (ε = 78.4, n2 = 1.76). [284,285] Afterwards, the five energetically

Figure 9.5: Ranking of selected fluorene scaffolds by the S0 → S1 vertical excitation ener-
gies ∆Evert of the cationic species. Data reproduced from Ref. 273.
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lowest singlet excited states were computed with time-dependent DFT at the same level

of theory, from which the lowest vertical excitation energy ∆Evert was extracted. The

corresponding ranking by decreasing ∆Evert value for the raw fluorene-like scaffolds is

shown in Figure 9.5. [273] One can see that the cationic intermediate of the bare fluorenol

scaffold has a relatively high vertical excitation energy of about 1.61 eV. Compared to

this, the para-sulfur-cyclopenta-dithiophene derivative showed a much smaller excitation

energy of only 0.73 eV. The corresponding meta and ortho derivatives also showed higher

excitation energies compared to the para species. The aza-derivative was added here for

completeness, showing a slightly larger excitation energy than the plain fluorenol scaf-

fold. These five molecules are of course just the unmodified ring systems, and different

substitution patterns have not been taken into account. Nevertheless, the para-sulfur-

cyclopenta-dithiophene derivative seems to be the most promising candidate when follow-

ing the newly established screening and ranking protocol. With these assessments at hand,

my collaborator synthesized different variations of the para-sulfur-cyclopenta-dithiophene,

also varying the ring substituents. [273] The resulting compounds were then analyzed with

respect to UV/Vis absorption/fluorescence behavior and the uncaging quantum yield was

determined. Intriguingly, the para-sulfur-cyclopenta-dithiophene without any further sub-

stituents reached an enormously high uncaging quantum yield of 28%. [273] The compound

with the most favorable, red-shifted UV/Vis absorption bands still showed a remarkable

uncaging quantum yield of approximately 5%, compared to similar photocages with a

maximum absorption around 400 nm. [273,275] With this new generation of sulfur-based

fluorene-like PPGs, the effective release of the biologically relevant neurotransmitter sero-

tonin under physiological buffer conditions could be demonstrated, too. [273]

9.3 Conclusions

In this chapter, I presented the first efficient computational protocol to design and im-

prove new photocages based on fluorene. The prospect quality of a new compound can be

probed in silico directly through the vertical absorption energy of the energetically low-

est singlet excited state of the intermediate cationic species. Furthermore, the proposed

reaction pathway was confirmed for the first time by computational means. Understand-

ing the mechanism was also the cornerstone for deriving the simplified protocol, i.e., the

vertical absorption energy serves as an indicator for a nearby conical intersection through

which the photoheterolysis pathway proceeds, thereby detaching the leaving group. The

computational protocol is not only conclusive from a theoretical perspective, but was also

successfully applied in practice to design the next-generation fluorene-based photocages



200 9 Design and Investigation of Novel Photocages

recently. [273] In this work, cyclopenta-dithiophene derivatives, the computationally deter-

mined ideal compound candidates, showed improved UV/Vis absorption behavior and

uncaging quantum yields, compared to previously proposed fluorene-based PPGs. [277]

Even though the computational protocol may seem simple, it has proven practical re-

liability and can thus be considered indispensable for further improving this promising

family of photocages in the future.
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Conclusions

In this thesis, I presented new quantum chemical methodologies to accurately model molec-

ular properties in complex environments. I especially focused on the development of hybrid

quantum-classical approaches for computational spectroscopy simulations. For this pur-

pose, I utilized the algebraic-diagrammatic construction (ADC) scheme for the polarization

propagator and combined it with the polarizable embedding (PE) model, which is capable

of describing mutual polarization effects between the quantum region and environment in

a fully self-consistent manner.

My first PE-ADC combination employed a standard ADC scheme on top of a self-

consistent PE-HF ground state, thus only including explicit environment effects through

the “solvated” molecular orbitals. To improve the excitation energies produced by this

pt-PE-ADC scheme, I exploited perturbative corrections, accounting for the interaction of

the excited state wave function with the environment and the non-resonant excitonic cou-

pling. The pt-PE-ADC scheme is computationally inexpensive since the only additional

task is the evaluation of a posteriori corrections. A major shortcoming, however, is that

no dynamic response of the polarizable environment during the correlation treatment is

included. The second combination, LR-PE-ADC, includes a dynamic coupling term in the

ADC secular matrix evaluated from the zeroth-order transition density of the respective

ADC scheme. This iterative treatment of environment coupling was suitable for modeling

any kind of molecular response property within the ADC/ISR framework. For explo-

ration of potential energy surfaces with polarizable environments, I derived all working

equations for PE-ADC analytic nuclear gradients. In future work, PE could be combined

with related Hermitian electronic structure methods, for instance unitary coupled cluster

(UCC). [286] Moreover, the theoretical derivations for LR-PE-ADC could be transferred

to other implicit or explicit polarizable models, e.g., the PCM or EFP method. This is

possible because only the underlying expressions for the electrostatic and polarization in-

201
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teractions have to be modified, but the general structure among those methods is almost

identical. [23]

For efficient implementation of the derived approaches, I initially developed the stand-

alone CPPE library for the PE model. Relying on hybrid Python/C++ code, I interfaced

the CPPE library to four quantum chemical program packages, three of them can be freely

used. This made the PE model available in more programs than ever before. The CPPE

library can be easily built from sources or installed from pre-compiled binaries deposited

on popular package repositories. The CPPE library will enable the scientific community

to create combinations with many quantum chemical methods. As a next step, I added

a general interface for environment models to the adcc toolkit. Using this infrastructure,

I implemented and tested the pt-PE-ADC and LR-PE-ADC approaches. Furthermore, I

made correlated ground and excited state gradients for MP and ADC up to second order

available in adcc, which can be used together with PE. In future work, the performance

of this gradient implementation could be further improved in order to allow for treatment

of larger systems. In addition, continuum solvation models would complement the rich

feature set of environment models I added to adcc, providing even more flexibility for

users. I developed the respondo library as a plugin for adcc, which contains the necessary

building blocks to evaluate a variety of response functions in the ADC/ISR framework,

each combinable with PE, and made ADC/ISR response properties freely available for the

first time. Most importantly, my combined PE-ADC schemes are available for all ADC

variants in adcc, and all response properties in respondo.

In the presented test case on water-solvated pNA, the errors for excitation energies of

the pt-PE-ADC scheme were negligible, and bulk solvent effects were accurately captured.

Using pt-PE-ADC showed that the polarizable protein environment efficiently promotes

a CT excitation pivotal for the photoprotection mechanism of dodecin. This case study

proved that the pt-PE-ADC scheme can be applied to model excitation processes in large

biomolecular environments. Next, I benchmarked the LR-PE-ADC approach for excitation

energies, oscillator strengths, and TPA strengths for small, water-solvated chromophores. I

showed that LR-PE-ADC combined with two state-of-the-art add-ons to fix electron spill-

out artifacts and intensities is clearly superior to commonly employed hybrid schemes

to compute higher-order properties in polarizable environments. Finally, I tested the new

PE-MP and PE-ADC gradient implementations by comparing to finite differences. Future

applications of PE-ADC schemes could include modeling X-ray processes, [287] or ioniza-

tion/electron attachment in the condensed phase. [288,289] In addition, more benchmark

studies should be carried out for higher-order response properties on a heterogeneous set

of test systems. Ultimately, it might be possible to investigate more light-driven biomolec-
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ular systems, similar to dodecin, to entirely reap the benefits of the combined methods I

presented.

I showed a way to generally improve the performance of PE models: The iterative solu-

tion of the classical induced dipole equations normally exhibits an asymptotic quadratic-

scaling behavior with the number of polarizable sites. Using the fast multipole method

(FMM), the scaling becomes linear and the performance bottleneck of the classical part of

PE schemes is removed. I achieved the PE-FMM implementation through auto-generated

code from a third-party library and included it in CPPE, automatically available in all

connected host programs. I proved that the errors introduced through FMM-based electric

field computations are well controllable through the model parameters and tested the error

propagation for pt-PE-ADC excitation energies. Remarkably, I found that the error intro-

duced through FMM is negligible for such properties, but enormous speed-ups compared

to conventional PE formulations were achieved already for a few thousand polarizable

sites. A flagship test run on a system with more than one million polarizable sites illus-

trated that my PE-FMM scheme is capable of treating sizable polarizable environments

efficiently.

I presented two algorithms for solving general response equations in the ADC/ISR

framework, which rely on a subspace projection approach together with an efficient block

folding scheme in the case of ADC(2). I analyzed the convergence of the new solvers

and compared it to standard numerical approaches. The newly implemented algorithms

converged in numerically difficult cases without any problems. Naturally, these numer-

ically stable schemes can be used for PE-ADC response equations, too. Furthermore, I

showed comprehensive numerical case studies for complex excited state polarizabilities in

the ADC/ISR framework and studied their performance in comparison to related wave

function methods. It would be interesting to compare ADC response properties based on

energy derivatives with the ISR-based approach in the future.

I developed two new approaches to model properties under extreme environment condi-

tions. The first approach is the GOSTSHYP method which applies hydrostatic pressure to

a molecular system via Gaussian potentials on the solvent-accessible surface. GOSTSHYP

is the first pressure model with the capability to run geometry optimizations and dynamics

simulations at a pre-defined pressure. It works for atoms and molecular systems, and me-

diates hydrostatic pressure through direct compression of the electron density. I applied

GOSTSHYP to describe a pressure-induced Diels-Alder reaction. For improved perfor-

mance, I proposed a simplification of GOSTSHYP, together with grid-based evaluation of

the pressure potential. Future developments on GOSTSHYP should include direct contri-

butions through the surrounding solvent. A combination of GOSTSHYP with an excited
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state method would enable the investigation of spectroscopic properties under pressure

in future research. The second approach is a computational protocol based on steered

molecular dynamics (SMD) simulations and the quantum chemical Judgement of Energy

DIstribution (JEDI) analysis. Using this protocol, I showed that the mechanical lability

of rubredoxin is not caused by hydrogen bond networks, as previously assumed in the

literature. While it was not possible to determine which electronic and structural pa-

rameters of the system explain the low rupture force, the SMD-JEDI protocol will enable

similar investigations of force-induced processes in biomolecular systems. It might be fea-

sible to devise a more compact and direct hybrid quantum-classical workflow including

the JEDI analysis. This would require well-converged structures and reliable analytical

nuclear Hessian matrices.

I established an efficient and predictive screening procedure for fluorene-like molecular

scaffolds to judge their suitability as photocages. Together with an experimental collabora-

tor, we found derivatives of cyclopenta-dithiophene to outperform existing fluorene-based

photocages with respect to absorption behavior and uncaging quantum yield, resulting in

the next-generation photocages of this type. Hence, the computational screening procedure

proved helpful in practice and will support the quest for even more efficient fluorene-like

photocages in the future.

All in all, I hope that especially the PE-ADC methodologies developed in this thesis

will provide a helpful starting point for future development and applications. Through

the availability in open-source toolkits, I expect that the PE model will be more routinely

used and that a sustainable environment for modeling molecular properties in complex

environments will be created eventually.
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[157] Norman, P.; Jonsson, D.; Ågren, H. Excited state properties through cubic response
theory: Polarizabilities of benzene and naphthalene. Chem. Phys. Lett. 1997, 268,
337–344.
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Appendix

Matrix-Vector Product of an ISR

One-Particle Operator

Based on the original equations from Trofimov and Schirmer, [40] I derived the matrix-

vector product of the ISR one-particle operator with a vector v through second order

in perturbation theory, i.e., Bv = r. The B matrix possesses a block structure similar

to that of the ADC matrix, [40] such that the vectors v and r contain a singles and a

doubles block. Within the equations, anti-symmetrized two-electron integrals ⟨pq||rs⟩
occur, together with the T2-amplitudes defined as

tabij =
⟨ij∥ab⟩

εa + εb − εi − εj
.

Furthermore, the MP2 density matrix contribution [34] is defined as

ρ
(2)
ia = − 1

2 (εa − εi)

⎡⎣∑︂
jbc

tbcij ⟨ja∥bc⟩ +
∑︂
jkb

tabjk⟨jk∥ib⟩

⎤⎦ .

Parts of this chapter have already been published in:

• M. Scheurer, T. Fransson, P. Norman, A. Dreuw, and D. R. Rehn, “Complex Excited State Polar-
izabilities in the ADC/ISR Framework”, J. Chem. Phys. 2020, 153, 074112. (Reference 41)
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232 Matrix-Vector Product of an ISR One-Particle Operator

The permutation operator P̂pr,qs permutes the index pairs (p, q) and (r, s). Collecting all

terms, one finds the result for the singles block of the matrix-vector product as

rai =
∑︂
c

dacvci −
∑︂
k

dikvak −
∑︂
c

vci

⎛⎝∑︂
j

ρ
(2)
ja dcj + ρ

(2)
jc daj

⎞⎠
−
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k

vak

(︄∑︂
b

ρ
(2)
ib dbk + ρ

(2)
kb dbi

)︄

− 1

4
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c
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efmn

tefmn
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tafmndec + tcfmndea

)︂⎞⎠
+
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2
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af
mndef +
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1

4
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The doubles part of the vector is given by

rabij = − vai

⎛⎝djb −∑︂
fn

tbfjndfn

⎞⎠+ vaj

⎛⎝dib −∑︂
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Zum Schluss möchte ich mich ganz herzlich bei meinen Eltern bedanken, denen diese Dis-

sertation, zusammen mit meinem Bruder Lukas, gewidmet ist. Ohne deren Unterstützung
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