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Introduction

During the writing of this PhD thesis, I incidentally came across the famous
painting from French artist Paul Gauguin “Where Do We Come From? What
Are We? Where Are We Going?”. It artistically conveys the human obsession
of knowing the causes of things - why each thing comes into and goes out
of existence, and why it exists in the first place – in short: answers to the
philosophical question “why?”. In fact, our ability to perform predictive
causal reasoning and to answer questions causally has made homo sapiens
the most advanced species in history.

One of the pioneers of causal patterns of thinking, David Hume, once
stated: “[...] all reasonings concerning matter of fact seem to be founded on
the relation of Cause and Effect.”. In light of today’s ubiquitous statistical
models designed to predict various outcomes such as tomorrow’s weather,
the likelihood of malicious health conditions, future earthquakes, genetic
predispositions from gene expression data, and so on, this statement seems
quite far-fetched. However, often times, predictive models are based on the
extrapolation of observed past associations onto the future while completely
lacking clear causal evidence.
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Figure 1.1: Where Do We Come From? What Are We? Where Are We Going? is an
1897 painting by French artist Paul Gauguin. In the upper left corner,
the original French inscription can be seen: D’où Venons Nous / Que
Sommes Nous / Où Allons Nous.

As has been repeated mantra-like, statistical correlation of variables A and
B, i.e. them occurring together does not at all necessarily imply causation -
in fact, causation is only one of several explanations for an observed correla-
tion: A could actually cause B (direct causation), B could cause A (reverse
causation), a third variable X could cause both A and B (consequences of a
common cause), researchers could be conditioning on a collider Z , which is
caused by both A and B or the association might be caused by random noise
without there actually being any dependency. Therefore, simply assuming
causation from correlation is a logical fallacy (“Cum hoc ergo propter hoc” -
“with this, therefore because of this”) and not a legitimate form of scientific
argumentation. However, sometimes people commit the opposite fallacy
– refusing even well-founded arguments that are based upon correlation
entirely, as correlation could never imply causation. This would dismiss a
large swath of important scientific evidence. To inform on causal relation-
ships between variables of interest, well-conducted randomised controlled
trials are deemed the gold standard. In randomised controlled trials, a coin
flip decides about the assignment to treatment. This way and under some
assumptions, treated and untreated individuals could be exchanged without
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expecting a change in scientific conclusion.
In the absence of randomised controlled trials, researchers often have to

resort to observational data. The challenges that are then faced in pursuing
correct causal conclusions involve developing an understanding of natural
and induced variation in explanatory variables from both a theoretical and
empirical perspective and determining why certain variables take particular
values - in other words, to reason about the data-generating process. This is
necessary as, as will be seen, naive comparisons between variables across
groups are likely to yield biased results. Even though no statistical technique
can make the argument to move from correlation to causation persuasive,
it is, under certain conditions, possible to obtain valid causal estimates of
treatment effects even if randomised experiments are not feasible. In this
thesis, some of these methods will be applied to scenarios in the field of
health economics.

1.1 About Inference in Science

According to the Merriam-Webster dictionary, science is defined as “the state
of knowing: knowledge as distinguished from ignorance or misunderstand-
ing”, aiming at trying to build and organize knowledge systematically in the
form of testable explanations about certain aspects of the universe.
Accumulating this knowledge works differently for various disciplines of
science. While it is widely prevalent to build on previous knowledge ac-
quired by existing work and thereby expanding understanding, the means
of expanding this knowledge span from theoretical calculations over obser-
vational studies to randomised experiments where some disciplines possess
the luxury of performing the latter while some don’t. For example, it’s not
possible to conduct several supernovae to determine whether a particular
gamma-ray outburst was caused by it - contrary, different patients can be
administered different medications and deduct causal statements by simply
screening their particular bodily responses quite easily. But even in health
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and social sciences, being able to conduct experiments is not the norm but
rather the exception. Often, experiments are unfeasible due to ethical, legal,
and practical impediments or due to unbearable cost.
In such cases, observational data are typically analysed ex-post. The scien-
tific benefit is obvious as scenarios of interest are exposed to analyses that
are usually out of question.

Common to all branches of science is the desire to examine a given hy-
pothesis, a proposed explanation for a phenomenon of interest. In empirical
sciences, more particularly, researchers test these hypotheses against experi-
ence by observation or experiment. Typically, data from a sampling process
are available and the scientific progress consists of “inductive” inference, i.e.
inferring universal statements from “singular” statements. The question of
whether these inductive inferences are justified, or under what conditions,
is known as the “problem of induction” (Popper, 1959).

Statistical testing of hypotheses overwhelmingly often includes the deriva-
tion of a test statistic from empirical data whose singularity given a null
hypothesis (which is assumed to be true) is tested. While this approach is
statistically valid and forms the basis of the majority of literature in empirical
sciences, critique of it actually fills volumes and is best subsumed by 1) with
large enough samples, every null hypothesis can be falsified 2) the elusive
interpretation of the p-value as a “heuristic piece of inductive evidence” as
opposed to items conveying probabilistic dependencies such as confidence
intervals and 3) the strong tendency of journals to require statistical signif-
icance as a criterion for publication (Benjamin et al., 2018; Carver, 1978;
Chow, 1997; The Significance Test Controversy: A Reader 2006)1. In recent
times, there has been increasing consent that many areas of empirical science
are in a ’replication’ crisis of producing too many false positive non-replicable
results (Loken and Gelman, 2017), thereby wasting research funding, erod-
ing credibility and slowing down scientific progress. As a consequence, some
journals have gone so far as to either ban the use of p-values altogether

1This has lead to the formation of the term “publication bias”.
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(often in favour of confidence intervals). Also, the American Statistical Asso-
ciation (ASA) recently took the unexpected step of releasing a statement on
the ”Context, Process, and Purpose“ of p-values in hopes of providing some
clarity about their implications and meaning (Wasserstein and Lazar, 2016).
Despite these efforts towards the avoidance of misuse, the above remarks
point out that knowledge is best acquired in ways enabling causal inference
“by design” and not only by argumentatively well-grounded associations.

The above problem is aggravated by the problem that observational studies
also often fail to address common endogeneity pitfalls such as omitted
variables, omitted selection biases, simultaneous causality, common-method
variance and measurements, rendering the establishment of valid cause-
and-effect relationships impossible. Methods specifically designed to allow
for causal conclusions such as instrumental variable estimation, regression
discontinuity modelling and differences-in-differences methods bypass some
of these problems. In this work, the strengths, weaknesses and limitations
of these methods are demonstrated using demonstrative case studies from
my own research. To assess the extent to which these methods facilitate
causal conclusions, different causal frameworks are consulted which allow
researchers to use a priori domain knowledge about the causal structure of
interest, defining explicit research hypotheses to make valid causal inferences.
What follows is theoretical groundwork of causal inference which are laid
before turning to said empirical methods.

1.1.1 The causal hierarchy

In groundbreaking work, starting with the book “Causality: Models, Rea-
soning and Inference” and recently consolidated with “The Book of Why”,
Judea Pearl postulates a three-layer hierarchy concerning causal questions
whereby each level requires more detailed information than the layer below
and answering questions at level i (i = 1,2, 3) is only possible if information
from level j ( j > i) is available (Pearl, 2009; Pearl and Mackenzie, 2018).
.

Association: P(y|x) Associations embody purely statistical relationships
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and can be characterized by naked observational data - for example,
collecting weather data and finding that rainy weather is associated
with fewer people buying ice-cream (and vice versa) - such associations
can be inferred directly from data using tools from probability theory,
namely conditional expectations: P(icecream|rain). Questions at this
layer do not need any causal information whatsoever and are therefore
placed at the bottom of the hierarchy. Much research in statistics and
artificial intelligence is devoted to finding answers to these sorts of
questions when the knowledge of the joint distribution is constrained
by missing or limited information (Shpitser and Pearl, 2008). In tasks
where prediction is the goal (practically concerning many applications
of artificial intelligence), this layer is adequate as inference is neither
desired nor conductible.

Intervention: P(y|do(x), z) Interventions typically answer “What if”-questions
- this layer not only contains what is seen, but makes it possible to
change what is seen. Observational data alone cannot answer such
questions, as they involve information that relates to a change in some
variable. A typical question at this level would be: What will hap-
pen if we brush teeth thrice a day instead of twice? Randomized trials
belong to this category. (Holland, 1986) even argues “No causation
without manipulation”, hinting that there needs to be some sort of
manipulation to separate correlation from causation.

Counterfactuals: P(yx |x ′, y ′) Going back to the philosophy of causal think-
ing established by David Hume and Mill, this level of causal hierarchy
deals with distributions that span multiple “parallel worlds” of which
only one can ever be observed. A typical question at this level would
be: What would have happened if we had brushed teeth thrice a day
instead of twice? It is an extension of the above principle as it elimi-
nates the implicit notion that interventional changes to a variable take
time which might influence other time-dependent variables, whereas
counterfactual theory examines the very same individual in different
manifestations of reality.
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As (Pearl and Mackenzie, 2018) state, each layer in the hierarchy
has a syntactic signature characterizing statements admitted into that
layer. For example, the association layer is characterized by conditional
probability statements, e.g., P(y|x) = p stating that: the distribution
of event Y = y given that it is observed that event X = x is equal to p.
At the interventional layer, statements such as P(y|do(x), z) are of
interest, which means “The distribution of event Y = y given that
researchers intervene and set the value of X to x and observe event
Z = z”. Such expressions can be estimated experimentally.
Finally, at the counterfactual level, expressions of the type P(yx |x ′, y ′)
are of interest which stand for “The distribution of event Y = y had X
been x , given that actually, X is observed to be x ′ and Y to be y ′”.

1.1.2 Causal Inference in controlled experiments

As enlisted in the previous chapter on the causal hierarchy, the second layer
of the causal hierarchy postulated by Judea Pearl is concerned with “inter-
vention”. In practice, this layer encompasses the most straightforward way
to inferring causality - experiments - manipulating a treatment variable (i.e.
an intervention) to determine the effect on a dependent outcome variable.
Experimentation is a powerful methodology that enables scientists to estab-
lish causal claims empirically by randomly assigning study units to treatment
and control groups. Thereby, exchangeability is granted, i.e. the joint dis-
tribution of observations is invariant under permutations of the subscripts
(Good, 2002). Changes in outcome can then be attributed to the treatment
and an estimation of the average treatment effect is formed. Experiments
vary greatly in scale and purpose - depending on the problem statement
at hand, a multitude of designs is deemed appropriate. A comprehensive
overview can be found in (Campbell and Stanley, 2015).
It will be argued in forthcoming chapters how these principles apply to any
causal claim made, even if no a priori treatment assignment is possible.
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1.1.3 Causal Inference in observational studies

The ancient commonplace stating that “correlation does not prove causation”
has been used to reinforce the preference of experimental to observational
studies for a long time all over the empirical literature. Obviously, correlation
indeed does not prove causation, but it does not disprove it either. Due to
strict regulations on experiments, legal and ethical reasons, most data that
social science researchers have access to is observational, lacking random
assignment of individuals to treatment1. Naive ways of analysis run into
trouble here - lacking exchangeability leads to the impossibility of performing
valid causal inference and to estimates being inherently biased (De Finetti,
1972; Lindley and Novick, 1981). In this section, common forms of bias
will be presented, displaying how they affect estimates in naively estimated
models.

The term bias is defined as a deviation of the expected value of the results
from a “true” underlying quantitative parameter being estimated, stemming
from errors in data collection, analysis, interpretation or publication. Avoid-
ing bias in parameter estimates is “virtually impossible” if randomization is
no viable option (Cochran and Rubin, 1973). Bias may result in inconsistent
or wrong parameter estimates and eventually false claims. Therefore, it
should be carefully considered when interpreting the results of such studies.
The most prominent sources of bias include, but are not restricted to

• selection bias
• endogeneity
• information bias
• Simpson’s paradox

Selection bias is a general term describing preferential exclusion of sam-
ples from sample data (either by self-selection or by decision of data analysts),
thereby making the sample selected for analyses non-representative of the

1The division between experiments and observational studies is not clear as “natural
experiments” are typically both experiments and observational studies with researchers lacking
control over
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population intended to draw conclusions on. It comes in different flavours
(Berk, 1983) and constitutes a major obstacle to valid causal and statistical
inferences and cannot be dealt with by neither randomized experiments
nor observational studies. For example, conducting a survey in a dentists’
practice may lead to unreliable conclusions as it relies on self-selection of
individuals into answering a questionnaire, as these individuals are likely
not representative of the population (some individuals may be embarrassed
to respond since they do not visit the dentist regularly or the likes, also
linguistic or health barriers may lead to non-random exclusion, commonly
called non-response bias). Another example of selection bias is the very
well documented healthy worker bias (McMichael, 1976), which describes
the difficulty of comparing subgroups (such as healthy workers) with the
entirety of the population. (Heckman, 1979) describes that in presence
of selection bias, regression coefficients are confounded with regard to the
function determining the probability that an observation makes its way into
the non-random sample. In certain situations, selection bias can be mitigated
using Heckman correction where self-selection is controlled using an addi-
tional predictor function. However, it has since been shown that this method
only works in special scenarios (particularly in absence of multicollinearity)
(Puhani, 2000). Therefore, it is vitally important for researchers to clarify
possible sources of selection bias and restrictions that apply to any conclusion
made.
Information bias refers to inexact or wrong measurements or classifi-

cations of outcomes, covariates or exposure in certain or all observations
within a study, leading to different quality (accuracy) of information between
comparison groups (a conclusive overview of types of information biases can
be found in, for example, (Althubaiti, 2016)). The occurrence of information
biases may not be independent of the occurrence of selection biases (Hartge,
2015).

Endogeneity refers to situations where an explanatory variable is corre-
lated with the error term. In this case, a specified model is not reflective of
causal situation that it tries to capture - of course, by nature of OLS, it will
still correctly grasp mere correlations between all included variables.
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For example, a simple depiction of a linear relationship between a dependent
variable Y and an independent variable X , parametrized by a coefficient
vector β , is

y = βX + ε (1.1)

This equation can be interpreted in a number of ways. One could think
of it as a way of predicting y based on X ’s values (or even, after shuffling
the coefficients, as a way of predicting X based on y ’s values) or as a way
of conveniently modelling the conditional distribution E(y|X ). In these
cases, endogeneity is not an issue. However, once equation 1.1 is coerced
to embodying causation, the equation suddenly becomes “directional” with
X being interpreted as the cause and y as the effect (DAG representation
X → y). Then, β becomes the answer to the question “What would happen
to y if X was increased by 1?” Using this interpretation, using OLS for
estimation amounts to assuming that:

1. X causes Y

2. ε causes Y

3. ε does not cause X

4. Y causes X

5. Nothing which causes ε also causes X

Failure of any of (3-5) will generally result in E(ε|X ) ̸= 0. A perfectly con-
ducted randomized experiment actually forces (3-5) to be true (if X is picked
randomly, it obviously is not caused by Y , ε or anything else).
This way, the methods used in this thesis can be contextualized once more -
in so-called “natural experiments”, researchers try to find real-world circum-
stances where (3-5) are somehow fulfilled. In the setting of instrumental
variables, the fact that the causation is wrong is being corrected (by making
another, different, causal assumption as will be argued in chapter 2.1).

In order to obtain an unbiased estimate of β , the exogeneity assumption
E
�

X Tε
�

= 0 needs to be fulfilled. In observational studies, this assumption
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may be violated in a number of ways, which all lead to endogeneity, i.e.
E
�

X Tε
�

̸= 0:

measurement error in X If one of the independent variables within X is
measured erroneously, endogeneity ensues. Assume only X ⋆ = X +τ is
observed (with τ being arbitrarily distributed “measurement noise”).
Then, the regression model 1.1 becomes

y = βX ⋆ + ε

y = β
�

X +τ
�

+ ε

y = βX + ε+ βτ

y = βX + u (where u= ε+ βτ)

This then fulfils the very definition of endogeneity, i.e. error term u
and explanatory variables X ⋆ being correlated (they obviously both
are functions of τ).

reverse causality / simultaneous equations If two variables are co-determining
each other, the exogeneity assumption also fails. There is an important
distinction between reverse causality and simultaneity. Reverse causal-
ity entails a misidentification of cause and effect - the regressand X is
hereby fully causing the regressand Y (DAG representation: X ← Y ).
As (Gerstman, 2013) states: “although one may be tempted to say
that low social status causes schizophrenia, another plausible expla-
nation is that shizophrenia causes downward social mobility (so that
schizophrenics cannot maintain the normal social relations required
to maintain a high socio-economic status)”.
The latter entails a two-way causal relationship of X causing changes Y
and Y causing X , likewise (X ↔ Y ). It’s unclear whether this situation
even exists (discussions of this can become quite philosophical) as
causality requires temporal succession - variables causing each other
would then require concurrency. Therefore, examples thereof are
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mostly constructed and of no practical use (like electric current) (Kline,
1980).
Preventing bias arising from reverse (or simultaneous) causality is done
through “common sense” as these situations are logically improbable
and require strong prior arguments or information encoded e.g. in
causal graphs. In both of these cases, estimating the obvious regression
equations leads to endogeneity.

omitted variables Omitted variable bias comes in many shapes and forms -
omitted regressors, omitted interaction or polynomial terms, omitted
selection and omitted fixed effects. If variables are omitted that explain
part of the variation within the independent variable, the model will
reflect this variable in the error term.

As a researcher, keeping track of all potential sources of bias (and measuring
them) is typically impossible. To strengthen arguments in favour or causation,
empirical literature provides frameworks that allow causal reasoning. In the
following sections, some of the more common ones will be reviewed.

1.1.4 Natural Experiments / Quasi-experimental studies

While purely observational data can lead to situations prone to systematic
bias as shown above, certain scenarios resemble experiments even though the
researcher does not control the surroundings of the experimental implemen-
tation. Empirical literature subsumes these scenarios natural experiments,
some of which will be subject of study in later chapters.

1.2 The Bradford-Hill Criteria

As has been debated in the previous chapters, neither experiments nor
observational data can unveil causation in a metaphysical sense at all. Thus,
argumentative strategies are deemed possible to support presumed causal
connections between variables of interest, following the known phrase by
James Whitcomb Riley "When I see a bird that walks like a duck and swims
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like a duck and quacks like a duck, I call that bird a duck."
The “Bradford-Hill criteria”, also called “Hill Criteria for causality” are a set
of nine “aspects of association”, i.e. minimum conditions that help build
an argument for a supposed causal relationship of an observed association
between variables. They are based on the inductive canons of John Stuart
Mill and the rules given by Hume (Hume, 1739/1978; Mill, 1843; Mill, 2009)
- the most renowned version that will be introduced below was formulated
by the English epidemiologist Sir Bradford Hill (Hill, 1965b).

Strength The larger the magnitude of the association, the more likely a
causal relationship is present, even if a small effect does not imply an
absence of causality.

Consistency / Reproducibility Causality is more likely to be in place if an
association has been observed across a variety of locations, populations,
and methods. Also, Hill stressed the importance of reproducible find-
ings because a single study, no matter how statistically sound, cannot
be relied upon to prove causation due to enduring threats to internal
validity.

Specificity If an exposure is specific to exactly one disease, there is no other
conceivable explanation for the association, then causality is likely. It
has been argued that this criterion is rather weak (from an epidemio-
logical standpoint), as today typical exposure and health concerns at
the forefront of research revolve around a plethora of risk factors such
as complex chemical mixtures as well as low-dose environmental and
occupational exposures, making them highly unspecific (Fedak et al.,
2015).

Temporality Causality entails the temporal ordering of causes always pre-
ceding their effects in time. It is widely important to identify the valid
temporal succession between variables to obtain unbiased estimates of
their relationships. This condition is deemed “inarguable” in most prac-
tical settings, making study designs ensuring a temporal progression
of exposure and disease more persuasive (Rothman and Greenland,
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2005).
Biological gradient In the presence of causality, a larger dose leads to a

larger effect. However, there are conceivable cases where either the
mere presence of the cause leads to the effect or where there is an
inverse relation, i.e. greater exposure to the cause leads to a diminished
effect.

Plausibility A causal claim can justifiably be supported by the presence of
a causal explanation describing possible pathways between cause and
effect.

Coherence Previous findings (whether causal or associational, in the orig-
inal paper it is termed “facts”) explaining the relationship between
cause and effect should not contradict causal explanations - coherence
increases the likelihood of the presence of causality

Experiment When action has been taken on the basis of given evidence, for
example reductions of dust in workshops, a change in lubricating oils
or the stopping of smoking, strong support for causal hypothesis can
be unveiled.

Analogy A causal claim can be supported by the existence of similar, but
not equal causal connections.

In the current age of ever increasing capabilities of analytical computing
for exploring potential cause-and-effect relationships, (Fedak et al., 2015)
proposed an update to the Bradford-Hill criteria. In the case studies pre-
sented in later chapters, the above criteria will be used (mostly implicitly) to
support or dismiss presumed causal connections therein taking into account
respective data and interpretational background knowledge.

1.3 Modern models for causal inference

Before turning to methods capable of performing causal inference using
observational data, the present section provides a succinct overview of com-
mon causal frameworks that have been widely used in empirical literature.
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Hereby, the focus will lie on non-practical characterizations of the respective
frameworks. In chapter 4.1, the applicability of these frameworks will be
discussed in the context of actual scientific scenarios of causal inference.

As was already argued, causal inference is tightly linked with randomized
experimentation. The three models of causality dominating the evaluation
literature (i.e. Neyman-Rubin Causal Model (RCM), Campbell Causal Model
(CCM) and Pearl Causal Model (PCM)) support the viability of causal infer-
ence from observational data when certain assumptions are met relating
ex-post scenarios with controlled experiments.

1.3.1 The Neyman-Rubin Causal Model: The Potential Outcomes approach

The Neyman-Rubin causal model (RCM) (Rubin, 1974; Rubin, 1977; Rubin,
1978) is an approach to statistical analyses of cause and effect based on the
notion of potential outcomes (therefore, it is also often called the potential
outcomes model), allowing a rather straightforward definition of causal ef-
fects.
In a population under scrutiny of n units (whether a person, cohort, or
population), each of these units is able to be exposed to either a treatment
T or a control C. The treatment is given to a unit i and the outcome variable
of interest Yi(T ) is observed. Ideally, the control treatment C is given to the
same participant at the same time and in the same context, and the so-called
counterfactual outcome Yi(C) is observed.
The counterfactual outcome is a mental notion of what would have hap-
pened in a world where treatment assignment was different - in this way,
the framework can be viewed as a missing data problem where for each
individual, only one of the two potential outcomes is observed. Then, the
individual-level causal effect is conceived to be the difference between actual
and (hypothetical) counterfactual outcomes:

Yi(T )− Yi(C) (1.2)
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Counterfactual outcomes are inherently unobservable. In fact, being able
to deal with counterfactuals corresponds to level 3 of Pearl’s causal hierarchy
(see chapter 1.1.1, (Pearl, 2009)). Humans make use of such thinking all
the time and it intuitively makes sense that being able to answer such “What
if?”-questions is pretty useful for intelligent behaviour.
However, this does in no way translate to useful properties for causal em-
pirical research: in expression 1.2, for each individual i, either the outcome
under treatment Yi(1) or the outcome under no treatment Yi(0) can be
observed, but never both - observing both actual and counterfactual out-
comes is inherently impossible. This is called the fundamental problem
of causal inference. Therefore, instead of longing for the inferential goal
of treatment effect estimation for an individual unit, counterfactual analysis
in Rubin’s sense aims at the easier target of calculating average causal
effects. The averaging, in this case, corresponds to averaging the (unob-
servable) individual causal effects across all n units in some well defined
population, resulting in the average treatment effect (ATE) (Holland,
1986)

τAT E = E(Yi(T ))−E(Yi(C)) (1.3)

However, the problem arises how to assign units i to either treatment or
control groups. To that end, Rubin states that the fundamental problem of
causal inference can be overcome by considering two assumptions, namely
the independence assumption and the assumption of strong ignorability.
The independence assumption outlines a classical randomized experiment,
where by assumption (and, of course, best practice), treatment assignment
Zi for a unit i is independent of the potential outcomes (Yi(T ), Yi(C)) and
all other potential confounding variables. Causal inference for randomized
experiments is uncomplicated because when independence holds, the simple

τAT E = E(Yi(T )|Z = T )−E(Yi(C)|Z = C) (1.4)
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holds. That’s because due to random assignment, treatment and control
groups are (on expectation) similar, and any difference in outcomes can be
interpreted as a corresponding causal effect. Hereby, it is crucial that the
assignment mechanism is the sole explanation for why some units received
treatment and others control.
This, however, is a strong assumption which often does not hold in obser-
vational studies. In these cases, strong ignorability allows estimating the
average treatment effect anyway. It holds when

{Yi(0), Yi(1)} ⊥⊥ X |Z (1.5)

where X is a vector of covariates that measures the characteristics of some
unit (e.g., gender, paraent‘s educational level, etc.) before the treatment as-
signment, and thus is not affected by the treatment. Then, the fundamental
problem of causal inference can be overcome by utilizing additional knowl-
edge on pretreatment variables - treatment effects can then be estimated
without bias by adjusting (or “controlling”) for the confounding variables
Z1.
In the empirical part of this work, Rubin’s framework will be revisited to

deduct statements about the validity of causal claims in different subpop-
ulations. For future reference, it is sensible to introduce common forms of
treatment effects.

1.3.1.1 An overview of treatment effects

As has been elucidated in the above sections, causal claims on the level of
individuals are not obtainable, falling victim to the fundamental problem of
causal inference. Therefore, causal inference invariably aspires to estimate
causal effects on subpopulations. Even in study designs that are reknowned
for allowing causal inference such as randomized controlled trials, IVs or
DiD (this is assuming a “correct” study design) evidence of causation can

1An additional assumption that needs to be mentioned is overlap that ensures that for any
covariate, there are units in both treatment and control groups: 0< P(Zi = 1|X i = x)< 1
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only be drawn for subpopulations, thereby limiting what can be learned
from the study.
The ATE has already been covered. In certain scenarios, other kinds of
cumulative treatment effects are of interest or calculated. Generally, the
value of interest is

[Yi |Di = 1]− [Yi |Di = 0]

As only one of these items is observable, the above is only a theoretical
quantity. Therefore, one is often mostly interesting in the Average Treatment
Effect (ATE), which compares outcomes across populations of treated and
untreated units:

E[Yi |Di = 1]− [Yi |Di = 0]

In certain situations, only the treatment effect on the subpopulation of
treated individuals can be calculated, the Average Treatment Effect on the
Treated (ATET).

E[(Yi |Di = 1− Yi |Di = 0)|Di = 1]

In other settings, only the treatment effect for the subpopulation of units
compliant with treatment assignment can be identified, called the Local
Average Treatment Effect (LATE):

E[(Yi |Di = 1− Yi |Di = 0)|Zi = 0]

The last variant of treatment effects is also known as the complier average
causal effect (CACE). It always occurs when there is either one-sided or
two-sided non-compliance, leading to decreased internal validity. This prob-
lem will be revisited in the chapter concerned with the quasi-experimental
method of instrumental variables.
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1.3.2 The Pearl Causal Model - Draw inferences from Causal Graphs

The use of graphical representations to display causal relationships began
with the seminal work of (Wright, 1921) about interrelating factors in
agriculture. The Pearl causal model (PCM)(Pearl, 2009) is based on a
graphical representation of hypothesized causal relationships. Although
it is natural for humans to interpret graphs causally (an arrow from X to
Y representing the causal claim “X causes Y ”), the graphical approaches
first conveyed purely statistical relationships leading to so-called Bayesian
networks or directed acyclic graphs (DAGs). Before turning to the PCM,
DAGs will briefly be introduced.
The term directed acyclic graph (DAG) has its origins in graph theory, a

discipline of computer science allowing the modelling of complex systems of
relation. A directed graph G is a mathematical object describing a pair (V, E)
(termed vertices and edges) of sets such that the set of edges E is composed of
ordered pairs (a, b) of elements from the set of vertices V . The set of vertices
V consists of structureless objects that are connected by edges - if E contains
an edge (a, b), the vertices a and b are said to be connected or adjacent.
Then, a is referred to be a parent of b and b is a child of a, respectively. A
path in G is a sequence of pairwise distinct vertices V1, . . . , V N such that all
consecutive vertices Vi and Vi+1 are connected by edges. “Acyclic” implies
that there is no way to start at any vertex v and follow a consistently-directed
sequence of edges that eventually loops back into v again. Further, the
notion of d-separation will prove useful when hypothesizing about deducing
causal statements from assumptions encoded in DAGs. Two nodes X and
Y in a graph are d-separated, if a node Z “blocks” each undirected path
between X and Y . Pearl postulates a theory of causation based on Structural
Causal Models described in (Pearl, 1995), subsuming and unifying other
approaches to causation and providing a coherent mathematical foundation
for the analysis of causes and counterfactuals.
Without any further reasoning, DAGs are just mathematical structures

and d-separation and the Markov condition are just connecting DAGs and
probability distributions without any causative assumptions or assertions
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Figure 1.2: A depiction of a very generic Directed Acyclic Graph (DAG).

being present.

1.3.2.1 The interpretation of graphical models

There are, generally, three ways of applying directed graphs to statistical
modelling - graphing the structure of a probability model, graphing a hypoth-
esized causal pattern and graphing relations between real-world variables.

modelling probabilistic relationships If a graph is interpreted as to purely
convey probabilistic relationships between underlying variables, a
rather weak set of assumptions is needed: for this to be valid, the
parents pa(X) of each variable X in the graph need to render X inde-
pendent of all its non-descendants given pa(X). When a graph fulfils
this condition, it is said to be compatible with the underlying joint prob-
ability distribution. In practice, compatibility is given if each parent-
child family {X , pa(X )} in the graph represents a distinct stochastic
process by which randomness decides upon the values of a variable X
as a function of the parents pa(X), independently of values previously
assigned to variables other than the parents.

modelling causal relationships In more recent work, graphs have been
used to represent causal relationships between variables (Spirtes et al.,
1993). Numerous authors have proposed directed graphs to convey
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causality from early 20th century (Wright, 1921) to more recent artifi-
cial intelligence research (Guo et al., 2018). However, typical causal
models can’t contain every single cause of a given effect due to our
incomplete knowledge in interesting domains such as medicine, law,
social science, economics and so forth- instead, as causal models are
based on prior knowledge and assumptions, they can only display
causal relationships with errors and at certain granularities. Still, on
the supposition that (some of) these assumptions are correct, ignoring
the reality of our ignorance, (Pearl, 2009) derived a rigorous math-
ematical notation of cause and effect, allowing the quantification of
causal effects and using probability theory to quantify uncertainty
as in statistical regressions. When DAGs are interpreted causally, the
Markov condition and d-separation are in fact the correct connection
between causal structure and probabilistic independence.

The copulative element of these approaches is the representation of variables
as nodes while directed arrows represent direct cause-and-effect relation-
ships. (Shpitser, 2008) notes that causal graphs also represent modularity
meaning that full knowledge of all direct causes of a given effect determine
the manifestation of the effect no matter all other variables in a model. Also,
this modular structure to model how a PCM reacts to changes imposed
from the outside. The simplest of these impositions is to set a variable X
to a specific value x . This procedure, also referred to as an intervention, is
denoted by the so-called do-operator. The model Mintervention imposed by this
intervention is a submodel of the original model M , resulting in an inter-
ventional distribution, which depicts another way to formalize the intuitive
notion of counterfactuals. In the empirical part of this thesis, application of
this concept will be attempted.

It is well known that identification of causal effects depends on the struc-
ture of the graph representing the causal information, the set of observable
variables, the set of outcome variables (there is typically only one), and
the set of variables that is intervened on (Pearl, 1995; Pearl, 2009). Us-
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ing graphical conditions, most notably the concept of d-separation from the
theory of directed graphs, one can show whether a causal effect (i.e. the
joint response of any set S of variables to interventions on a set T of action
variables), denoted PT (S) is identifiable or not.

In other words, dependencies among variables (purely probabilistic or
causal depending on the nature of the graph) can be verified by check-
ing if the “flow of dependence” is blocked along paths between variables.
D-separation yields the precise way in which the flow of dependence can
be blocked (Pearl, 1986), allowing the derivation of a strict mathematical
calculus of causal effects when there exists a (conditional) probability distri-
bution consistent with the given graphical causal model. Building upon this,
Judea Pearl’s do-calculus, introduced in his 1995 paper “causal diagrams for
empirical research” (Pearl, 1995), establishes a mathematical language for
connecting statistical and subject-matter information. In particular, the paper
develops a non-parametric framework for causal inference using directed
graphs to determine if available assumptions are sufficient for identifying
causal effects from non-experimental data.
The do-calculus describes the conditional distribution one would learn from
data collected in randomized controlled trials or A/B tests where the experi-
menter controls. A pitfall of this strict mathematical notation of causality is
the availability of data and a priori knowledge of precise causal relationships
that are often unclear in practice.

1.3.3 The Campbell Causal Model - Identify threats to Internal Validity

The third widely used causal model has been brought upon by Donald
Campbell (Cambell and Stanley, 1963; Campbell, 1957), whose perspective
on causal inference is the most widely used in social sciences, particularly in
psychology, education and public health (Shadish, 2010). It revolves around
the concept “validity” where “internal validity” describes whether a study
supports a claimed cause-and-effect relationship of a given treatment and
“external validity” describes to which extent the results of a study can be
generalized to another population, time, or setting (in most cases, the whole
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population of interest).
The approach of the Campbell Causal Model (CCM) is rather practical,

taking into account all phases of pre-experimental, quasi-experimental and
experimental designs. It revolves around the idea of identifying nine threats
to validity plausibly undermining some aspect of the causal inference process
in practical research settings: "We took the position that there could be lots
of threats to validity that were logically uncontrolled but that one should
not worry about unless they were plausible. The general spirit was that any
interpretation of a body of data or research should be regarded as innocent
until judged guilty for plausible reasons, as determined through the scientific
method of mutual criticism." (Campbell et al., 1988)
For one of these plausible threats to be a problem that needs to be dealt

with, they must entail operational differences between treatment (T) and
control (C) groups. These nine threats defined in Campbell’s approach are

History Events other than planned treatments influence results.
Maturation During study, changes may occur within subjects.
Testing Exposure to a pretest or intervening assessment influences perfor-

mance on a post-test.
Instrumentation Measurement instruments may be inconsistent or may

experience changes in calibration may produce unwanted changes.
Regression to the mean In measurements where randomness is involved,

extremely high or low observations tend to regress towards the mean
Selection Treatment groups may entail systematic differences between

subjects’ characteristics.
Experimental mortality Study attrition of subjects may effect the results

in unintended ways.
Diffusion of treatments When multiple treatments are given to the same

subjects, it is difficult to control for any effects of prior treatments.
Different kinds of interaction effects This includes interaction effects be-

tween selection biases and the experimental variable, interaction effect
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of testing or selection-maturation interaction.

Application of the CCM rests on a critical perspective of researchers on
their own work both during the design of a study as well as during the
evaluation and analysis, viewing “causality” as an additional property of a
found association that can be claimed using an argumentative strategy.
Of course, it is impossible to attest that the above system of threats to

validity is complete, but the approach has proven to be a thorough and
practical tool for evaluating the validity of causal claims in applied research
in the social sciences. In the case studies of this thesis, the CCM will be
applied implicitly and explicitly to reason about causality in specific, concrete
research settings.

1.4 Scope of this work

Any of the above causal models can be used to infer causality in both obser-
vational and experimental designs - these models are generic in that they
explicitly include the formal synthesis of findings generated by research
using “true” controlled experiments. In the empirical part of this thesis,
however, these frameworks will be shone upon from the perspective of an
applied researcher with access to observational data only. This work thereby
contributes to the empirical literature by examining the three models of
causal reasoning above - the RCM, CCM and the PCM - in the context of three
case studies, showing their unique advantages and drawbacks by embedding
them empirically. In section 4.2 of this work, the subjective applicability of
them will be analyzed.
These case studies include the analysis of the implementation of a quality
improvement framework in the UK primary care, the analysis of the impact
of bearing children on oral health and the analysis of an implementation of
altered provider incentives in the Danish dental care system. All of these
make use of methods utilizing quasi-experiments, i.e. inherent randomiza-
tion within the data.
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In the following, this thesis will be concerned with introducing the setting
these case studies take place in, presenting the results of this empirical work,
ensued by a discussion about the validity of causal interpretations of their
results, particularly with respect to the proposed causal models and lines of
thinking along with their implications on common threats to studies based
on observation data such as selection bias, confounding and endogeneity.
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Case studies and methods
for causal inference

regarding observational
data

It has been argued in earlier chapters that reasoning about causality requires
experiments. The crucial component in these experiments is randomization,
ensuring that exchangeability is present (if treatment status of individuals
had been reversed, the outcome would not have changed). However, in
certain cases, there is no way of translating certain research questions into
experimental settings. Some relationships are hard to observe outside of their
natural environment (think about natural catastrophes such as hurricanes,
nuclear power plant accidents etc.), some exposures can’t be assigned to
humans for ethical reasons (e.g. most adverse health behaviours such as
smoking and drug abuse), policy interventions, participants not wanting to
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be randomized or doubts about equipoise. Also, it is not uncommon that
randomized experiments are “broken” - for example due to non-compliance
(patients refusing treatment, actively seeking out alternative treatment or
receiving partial treatment) or general attrition.
Elucidating causal relationships underlying these enigmatic cases of scientific
uncertainty often requires either strong, largely untestable assumptions (as
in “no selection bias”) or, sometimes, a different kind of methodological
approach. In some cases, researchers can leverage observational studies. Here,
treatment assignment is neither manipulated nor randomized. This, however,
does not imply that treatment assignment cannot be random – if it indeed is,
i.e. if some plausible exogenous variation in the treatment assignment can be
found, not all hope is lost. Minding some caveats, valid causal inference can
still be performed in these cases. In this chapter, light will be shed on three
common methods that allow to draw causal inference from observational
data used during my time as a PhD student. The following chapter will
introduce readers to the context of the three case studies and an in-depth
overview of the methods utilized to analyze the respective ramifications.

2.1 Gain a child, lose a tooth - Using natural experiments to
distinguish between fact and fiction using Instrumental
Variables1

The first case study examines the old wife’s tale which states “gain a child
and lose a tooth”. The idea that pregnancy causes tooth loss has been a
wide-spread myth for hundreds of years, but there has been little evidence
to deem serious countermeasures by expecting mothers necessary. This
gap in literature is bridged by leveraging observational data from a recent
large-scale European survey. A unique natural experiment allows for the
derivation of causal effects using “instrumental variables”.

1The corresponding paper has been published in the Journal of Epidemiology and
Community Health.
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2.1.1 Introduction

Dental conditions are among the most frequent diseases globally (Listl et
al., 2016; Marcenes et al., 2013). The loss of permanent teeth imposes a
significant burden on people’s quality of life, (Gerritsen et al., 2010) yet
disentangling the exact biological and behavioural pathways resulting in
tooth loss remains a major challenge for research. Against this background,
a particularly intriguing question is whether tooth loss is influenced by
fertility. Until now, however, there is no causal evidence for or against a
relationship between the number of biological children and their parents’
number of missing natural teeth (a detailed overview of the related literature
is provided in the appendix of (Gabel et al., 2018)).
To address this knowledge gap, this first case study relies on large-scale

multi-country data and exploits random natural variation in family size
resulting from (i) the birth of twins vs singletons, and (ii) the sex composition
of the two first-born children (increased likelihood of a third child if the
two first-born children have the same sex). A two-fold effect of fertility
on the number of teeth in adults is hypothesized: first, biological effects
during pregnancy influencing the oral health of women; and second, indirect
effects related to having children (pregnancy and parenting stress, economic
burden) which possibly affect both women and men.
Data Source The Survey of Health, Ageing, and Retirement in Europe

(SHARE) (Börsch-Supan, 2019), contains data on health, socio-economic
status, social and family networks for a total of over 120,000 older adults
from 27 European countries and Israel. SHARE Wave 5, conducted in 2013,
provides unique information about the number of natural teeth of individuals
in Austria, Belgium, Czech Republic, Denmark, Estonia, France, Germany,
Italy, Luxembourg, The Netherlands, Slovenia, Spain, Sweden, Switzerland,
and Israel (for more details, see (Malter, F. and A. Börsch-Supan, 2015)1).
Inclusion and exclusion criteria The population under study consisted of

1To guarantee high-quality data across all countries, SHARE employs a centralized
training program and rigorous quality control (Alcser KH, 2005; Börsch-Supan, 2019; Malter,
F. and A. Börsch-Supan, 2015). Details about data collection are published elsewhere
(Borsch-Supan et al., 2013).
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Figure 2.1: Study population and sample attrition.

individuals aged 50 years or older who were enrolled in SHARE Wave 5
unless they did not answer questions on key dimensions such as the number
of remaining natural teeth or information on their fertility biography, i.e., the
number, sex, and year of birth of their children. Further, for reasons related
to the identification strategy explained below, the analytical sample was
restricted to individuals with at least two children. After sample exclusions,
the final analytical sample included 34,843 individuals aged 50+ with full
fertility biographies and information on their number of teeth. Figure 2.1
illustrates the study population and sample attrition.
Dependent and independent variables Analyses are based on SHARE

wave 5 data and each participant’s number of missing teeth. Participants
were asked: “Do you still have ALL your natural teeth (except wisdom teeth)?”
(response options: “Yes” and “No”). Participants were informed that “Nor-
mally, a person has 28 teeth and 4 wisdom teeth. We are not interested in
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wisdom teeth.” Participants who reported not having all teeth were further
asked: “About how many natural teeth are you missing?”. Respondents’
number of missing teeth were derived accordingly. It has been shown that
self-reports are a valid means to report the number of teeth (Douglass et al.,
1991; Gilbert et al., 1997; Ramos et al., 2013). In addition to each respon-
dent’s procreation history (number, sex, and birth date of own children),
independent variables included each respondent’s current age, country of
residence, age at first birth, the number of siblings (to account for possible
preferences regarding optimal family size acquired in childhood), and edu-
cation as measured according to the International Standard Classification of
Education (ISCED) (UNESCO Institute for Statistics, 2012).
The role of in-vitro-fertilization (IVF) A potential limitation of the twin

births identification strategy is given by the recent rise in conception assisted
by fertility treatments (IVF) as IVF has increased the probability of multiple
births in a non-random fashion (Calhaz-Jorge et al., 2016; Pandian et al.,
2015). However, since IVF became available only in the last 25 years and the
study sample consists of individuals whose fertile period ended before the
introduction of IVF, it seems reasonable to assume that fertility treatments
are not responsible for most of the twin births. Robustness checks were
performed by restricting the study sample to persons with children born
before 1990. Further details hereof can be found in the appendix of (Gabel
et al., 2018).

2.1.2 Basics and Estimation

As stated earlier, endogeneous regressors, i.e. unexplained variation between
explanatory variables and error terms (for example due to unmeasured
confounding) causes the key “exogeneity” assumption of OLS to fail, leading
to inconsistent OLS parameter estimates. A classical strategy to encounter
endogeneity in the applied literature are instrumental variables (Angrist and
Krueger, 2001). The central strategy in IV estimation is to find “instrumental”
variables, also simply called “instruments” that are correlated with the
exposure of interest but not with the outcome. The variation induced by
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instruments can then be used to cleanly estimate the relationship between
the predictor and outcome (if the instrument is also not correlated with
unobserved confounders).

The following chapter provides a formal overview of IV regression - a more
thorough statistical approach can be found in the excellent book of (Angrist
and Krueger, 2001). In traditional structural equation models, a linear and
additive relationship between a dependent variable Yi, an endogeneous
regressor Di , a set of exogeneous regressors X1i , . . . , Xni , and an unobserved
error term εi is alleged:

Yi = β0 + β1Di + γ1X1i + · · ·+ γnXni + εi (OLS)

This can only be estimated consistently using OLS if the covariance between
X i and εi is zero (strict exogeneity). When endogeneity is present, i.e. there
exists a systematic relationship between X i and unobserved causes of Yi,
OLS is generally biased - in such cases, IV estimation can help yield un-
biased estimates. The IV estimator is premised on a two-equation model
commonly known as “two-stage least squares”. In the first stage, the rela-
tionship between an independent variable Y and the so-called instrument Z
is estimated1:

X = γ+δZ + ε (First stage)

In this equation, termed “first stage”, changes in X due to exogenous
variation are calculated. Using OLS, one can then estimate δ̂ = (Z T Z)−1Z T X
and use δ̂ to predict X̂ = Zδ̂: Under the IV assumptions, any variation in X̂
is then caused by the instrument Z and can be used in the “second stage”,
resulting in an unbiased estimate of the causal effect of X on Y:

1Variable indices are omitted for brevity and readability.
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Y = α+ βIV X̂ + E (Second stage)

This approach yields a numerically identical IV estimate as in direct esti-
mation of

βIV = (Z
′X )−1Z ′ y (IV estimate)

In subsequent chapters, the internal and external validity of this estimate
will be discussed.

2.1.2.1 Identification strategy

The above strategy can be abused to perform inference about the relationship
between the number of natural children and the number of missing teeth
from observational data which is complicated by the multitude of potential
underlying mechanisms. When using Ordinary Least Squares (OLS) regres-
sion analysis, various common causes of both tooth loss and parity – some
of them unobservable – can result in confounding and biased parameter
estimates. For OLS to provide unbiased estimates of the causal effect of
children on tooth loss, a “selection on observables” assumption has to be
made (Dale and Krueger, 2002; Rothstein, 2009). However, due to the
poorly understood mechanisms between fertility and dental health, it is
highly unlikely that all variables that correlate with fertility and have an
impact on tooth loss can be observed and controlled for in the regression.
The “selection on observables” assumption is therefore not appropriate. A
clean identification of the causal effect of an additional child on dental health
is ideally provided by a randomized controlled trial, a setup that is obviously
not available for this research question. Therefore, the instrumental variable
approach is employed (estimated using a two-stage least squares (2SLS)
regression model). Here, instruments relating to the number of natural chil-
dren are harnessed, an approach which has previously been used to examine
the effects of parity on physical and mental health later in life (Black et al.,
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Figure 2.2: Stylised illustration of the instrumental variables approach.

2005; Caceres-Delpiano and Simonsen, 2012; Kruk and Reinhold, 2014a).
These instruments are:

• The birth of twins vs singletons (“twin births”)
• The sex composition of the two first-born children (assuming an in-

creased likelihood of a third child if the two first-born children have
the “same sex”)

Figure 2.2 illustrates the principle of the 2SLS approach. The idea is that
random variation in Z (the instruments) is directly associated with the
predictor of interest X (the number of children). If the instruments Z are
linked with the outcome variable Y (tooth loss) only through X and not linked
with other confounders U (e.g. socio-economic status), causal inference
can be established that uses only the (random) variation in X (number of
children) attributable to variation in the instruments Z. Since the interest
lies in comparisons between results using the “twin births” instrument and
results stemming from the “same sex” instrument, the focus lies on the birth
of twins vs singletons at the second birth; both the “twin births” and the
“same sex” instrument are intended to primarily identify the effect of having
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three instead of two children. For delineation of sex-specific pathways, all
analyses were carried out separately for women and men. Besides descriptive
statistics and balancing tests, the following estimations were carried out
(controlling for the independent variables described laid out in Figure 2.2):

• OLS regressions of the number of missing teeth on the number of
children

• Intention to treat (reduced form) regressions (ITT) of the number
of missing teeth on the instruments

• 1st stage regressions (2SLS) of the number of children on the instru-
ments

• 2nd stage regressions (2SLS) of the number of missing teeth on the
number of children

This regression strategy allows to compare treatment effects from models
with different sets of assumptions, aiding in discussing whether a causal
connection is present and to which population results can be extrapolated.
The IV estimates in particular have a very specific set of assumptions that
will be discussed in the following.

2.1.3 Assumptions

Relevance: There exists a causal effect of the instrument Z on treatment
status X. In this empirically verifiable assumption, the correlation
between instrument and treatment status is calculated. The strength of
this association is being evaluated using the F-value. Many researchers
use an F-value of 10 to separate weak instruments (F-value < 10)
from strong instruments (F-value > 10). Weak instruments might still
be valid means of inserting exogenous variation, but result in wide
confidence intervals in the second stage.

Exclusion restriction: There must be no direct effect of Z on potential
outcomes Y. This assumption ensures that instruments affect the
outcome only through X and not through other confounders (which
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Table 2.1: Identifiable subgroups in an IV setup.
D0i = 0 D0i = 1

D1i = 0 never-taker defier
D1i = 1 complier always-taker

would then be correlated with X) or the error term. Unfortunately, as
the error term is unobservable by definition, this assumption is not
empirically verifiable from data and subject-matter knowledge must
be used to rule out possibilities for that.

Independence: Conditional on covariates, the instruments are as good
as randomly assigned in being independent of potential outcomes
and potential treatments. By comparingmeasured confounders across
levels of the instruments Z, potential unbalances can be detected and
the independence assumption can be empirically tested. This does
obviously not include unmeasured confounders, making the indepen-
dence assumption only partially testable. Commonly, a 4-way table
is used that subsumes covariates across so-called never-takers, defiers,
compliers and always-takers.

Monotonicity: The instruments affect everyone affected by them in the
same way. If homogenous treatment effects were to be assumed, i.e.
each individual is affected by the treatment in the same way, instrumen-
tal variable estimates would estimate the ATE1. However, in real-world
scenarios, this assumption is rarely fulfilled and mostly implausible.
Therefore, the monotonicity assumption has been brought forward,
weakening the generalisability of effect estimates.
As one can only observe the expose under actual assignment, there is
noway in real world scenarios to differentiate between these subgroups.
That being said, within the subgroup of compliers, exchangeability
is fulfilled. This fact also nicely displays the connnection between no

1As (Lousdal, 2018) points out, this does not imply that treatment effects can’t vary, but it
requires that the source of heterogeneity in the individual treatment effects is unrelated to
observables.
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defiers and monotonicity. If the subgroup of defiers is empty, only
compliers will make a contribution to the causal effect of Z on Y . In
other words, monotonicity assumes that for each subject, the level of
the treatment that a subject would take if given a level of the IV is a
monotonic increasing function if the level of the IV. For that reason, IV
identifies the average treatment effect of compliers only (also termed
Local Average Treatment Effect, LATE).

Implications thereof will be discussed in section 2.1.5 and the discussion
chapter.

2.1.4 History

Interestingly, the history of instrumental variables entails a very instructive
application, which is worth mentioning whenever possible: During the 1853-
1854 Cholera epidemic in London, the English scientist John Snow believed
that Cholera bacteria are waterborne (Snow, 1855), and the epidemic was
linked with consumption of consuming water. A naïve way of analyzing this
relationship would have been to analyze the correlation between drinking
water quality (X ) and Cholera incidence (y). However, those who drank
impure water were more likely to be poor, to live in crowded tenements
and to live in a surrounding contaminated in other ways, which impose a
threat to analyses due to unmeasurable confounding. Valid instruments in
this scenario would be strongly correlated with water quality but, at the
same time, not correlated with other observed and unobserved determinants
of Cholera incidence. Coincidentally, Snow (unknowingly) proposed such
an instrument: the identity of the water company supplying households
with drinking water (z). At that time, Londoners drew water directly from
the Thames. One company, the Lambeth water company, took out water
from the river upstream of the main wastewater discharge whereas the other
company, the Southwark and Vauxhall company, took its water directly below
the main discharge. The validity of this instrument has been discussed by
Jon Snow himself: “the mixing of the supply is of the most intimate kind.
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The pipes of each Company go down all the streets, and into nearly all
the courts and alleys... The experiment, too, is on the grandest scale. No
fewer than three hundred thousand people of both sexes, of every age and
occupation, and of every rank and station, from gentlefolks down to the
very poor, were divided into two groups without their choice, and in most
cases, without their knowledge; one group supplied with water containing
the sewage of London, and amongst it, whatever might have come from the
cholera patients, the other group having water quite free from such impurity.”
Thereby, John Snow was able to prove that the deaths were concentrated
around a water pump in Broad Street (upstream from the Southwark and
Vauxhall company, but downstream from the Lambeth water company). After
the pump was shut down by removing its handle, the epidemic came to a
halt. Interestingly, his theory was never accepted by scientists and doctors
at the time and was only confirmed several years after his death (Fowke,
1885).

2.1.5 Limitations

The IV approach always rests on the validity of instruments found by re-
searchers. This validity may, depending on the research design, be challenged
on various grounds. First, if subjects are not randomly assigned to treat-
ment, there may be doubts regarding the independence assumption. This
is especially relevant in observational studies - as (Dunning, 2008) points
out, instrumental variables may be classified along a spectrum ranging from
“plausibly random” to “less plausibly random”:

Also, it is often hard for empirical researchers to find valid instruments
that strongly affect treatment, are independent of unmeasured confounders
and affect the outcome only through its effect on the treatment.
If researchers resort to using IVs that are only weakly correlated with treat-
ment status (so called weak instruments), it has been shown that estimates
will have large standard errors, might be inconsistent and even biased in
the same direction as OLS as the power goes towards 0 (Bound et al., 1995).
In recent simulation studies, it has even been shown that IV reduces bias
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as compared to OLS in ideal circumstances only - also, small sample sizes
adversely affect the variance of the distribution of estimation errors which is
compounded when the instrument is weak (Crown et al., 2011; Gennetian
et al., 2005). As was mentioned in chapter 2.1.2.1, even when all of the
above practical problems can be ruled out, IV is still only able to estimate
treatment effects for compliers (those subjects who would take the treatment
if encouraged to do so by the IV and not take the treatment if not encour-
aged). Keeping in mind that this particular subgroup cannot be identified
from data (as only one of two counterfactual outcomes can be observed),
questions about the usefulness of IV estimates have been raised.

2.2 Implementation of altered provider incentives for a more
individual-risk-based assignment of dental recall intervals:
evidence from a health systems reform in Denmark using
Interrupted Time Series Analysis1

The second case study examines the impacts of 2015 regulatory changes
in Danish dental care which aimed at effectuating a transition from six-to-
twelve-monthly dental recall intervals, for every patient, towards a model
where patients with higher need receive dental recalls systematically more
frequently than patients with lower need. The implementation of this reform
constitutes a unique natural experiment that allows the derivation of causal
effects using “Interrupted Time Series Analysis” (ITS).

2.2.1 Introduction

In Denmark, dental care for adults is usually provided by private dental
practitioners. Dental care expenses are partly covered by self-payment and
from general taxation financed payments from the National Health Insurance.
All adult citizens are eligible for compensation. For persons under the age
of 18, dental care is provided in public dental clinics financed by general

1The corresponding paper has been published in Health Economics.
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taxation and without additional out-of-pocket expenses (Danish Health Act,
2018). According to WHO criteria, the Scandinavian countries belong to the
so-called very low and low-caries prevalence countries (Petersen, 2003). The
use of dental services is comparatively high in these countries, with 64and
77Denmark are paid using the fee-for-service payment model in which each
item of treatment is paid for separately, giving an incentive for dentists to
provide more treatments because payment is dependent on the quantity,
rather than quality of care.

In 2013, The Danish Health Authority issued new guidelines for dental re-
call intervals. From April 1, 2015, a new collective agreement was negotiated
between the Danish Regions and the Danish Dental Association, incorporat-
ing the 2013 guidelines (Regionernes Lønningsog Takstnævn, 2014). The
collective agreement describes the dental services delivered in adult dental
care and sets the level of remuneration paid from the Danish National Health
Insurance. In this paper, this is designated as the “2015 reform”. Since
then, dentists have been required to risk-classify their patients into three
distinct classes according to their current oral health status and the assessed
risk of future oral disease. Healthy patients (free from active oral disease
and free from risk factors for future oral disease) should be categorized as
“green”, at-risk patients (active oral-disease and/or presence of risk factors
for oral disease which are modifiable, for instance poor oral hygiene) should
be categorized as “yellow” and high-risk patients (active oral disease and/or
risk factors for oral disease, which are not modifiable, for instance chronic
general disease with known influence on oral health) should be categorized
as “red”. The recommended dental recall intervals vary across these risk-
groups. Patients categorized as either “yellow” or “red” are advised to attend
for check-ups more frequently while healthy patients are incentivized to
attend for check-ups less frequently (Figure 2.3). Additionally, in part, the
risk classification determines which treatments can be remunerated. Most
notably, remunerating “Individual Preventive Treatment (IPT)” in diagnostic
check-ups is now restricted to patients characterized as either yellow or red.
Also, claiming remuneration for newly created codes concerning “focused
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examination (FE)” is only possible if patients are classified as yellow or red.
This way, at-risk patients should both undergo a more thorough treatment
(through IPT) and visit the dentist more frequently (through FE). The “Status
Examination (SE)” is to be performed regularly (every 12-24 months) for
all patients. Further details of the Danish treatment approach are shown
in Figure 2.3 and in Table 6.3. From the dentists’ perspectives, the reform
was anticipated as likely to result in reductions in revenues from treating
patients in the low risk group (green category) but in increases in earnings
from treating patients in higher risk groups for whom provision of preventive
care (IPT) during follow-up examinations became mandatory. Yet dentists
who exceeded a maximum limit of health insurance reimbursements were
also subject to restitution of payments exceeding the respective threshold.
Unique administrative data with patient-level information on the services
provided by dental practitioners in Denmark over a 5-year period from 2012
to 2016 were obtained. The data comprise all treatment claims achieved
in the Danish National Health Insurance database between 2012 and 2016.
Usable variables included the treatment performed, patient age and sex,
date of treatment, municipality of both patient and dental practice as well
as cost of treatment. In total, 72,155,539 claims from a total of 3,759,721
unique patients in 25,533,311 distinct treatment sessions were investigated.
A single observation was formed by a claim handed into the health insurance
by a dentist. The raw data presented as very homogenous and were not
indicative of missing data. Several sense checks to exclude observations with
typing errors or missing commas were performed. A detailed description
of the raw dataset and variables can be found in the Appendix (Table 6.3).
The data used were pseudonymized in accordance with Danish jurisdiction
and no ethical clearance was required for purposes of this research project.

2.2.2 Basics and Estimation

In the introductory chapter, it was argued that causes always precede their
effects temporally, justifying the general preference of data containing a time
period over cross-sectional data in the applied literature on causal inference
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Figure 2.3: Treatment pathways according to risk grouping. Patients can switch
between risk groups when their disease status changes. The dental recall
intervals are now 12-24 months in all tracks with additional sessions
pertaining to yellow and red risk groups.

(Wunsch et al., 2010).
ITS analysis is a quasi-experimental design leveraging the longitudinal

nature of data typically used to evaluate the longitudinal effects of interven-
tions using standard regression techniques.
Hereby, a time series is a consecutive sequence of observations on a pop-
ulation, taken repeatedly over time (Shumway, 1988). In ITS studies, a
particular time series is “interrupted” by an event at a known, clearly defined
point in time. Then, a counterfactual scenario in Rubin’s sense can be de-
fined, vindicated by the hypothetical scenario under which the intervention
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had not taken place and the trend had continued as before (in other words:
the “expected” trend, given the pre-intervention trend). Using this scenario
as a counterfactual, one can compare the effect of the intervention by exam-
ining any changes occurring in the post-intervention period (Cambell and
Stanley, 1963).

Figure 2.4: Stylized illustration of interrupted time series designs

Figure 2.4 shows a typical ITS scenario where an intervention effectuates a
change in the variable of interest. ITS allows for modelling individual effects,
possibly including unobservable, time-invariant characteristics which may
be correlated with the observable variables. Considering these individual ef-
fects becomes especially interesting when there are unmeasured confounders
causally affecting the outcome variable and, at the same time, being corre-
lated with observed explanatory variables. If these unmeasured confounders
additionally are time-invariant, unbiased estimation using panel-regression
is warranted. Depending on assumptions imposed on the individual effects
(fixed or stemming from random variation), literature discerns two types of
panel data regression (Wooldridge, 2010) - fixed effects and random effects
models.
For the purpose of this thesis, a national reform to the dental system

implemented in Denmark is used as a case study. Given the nature of these
data, particular considerations are deemed necessary that will be scrutinized
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in chapter 2.2. To that end, the utilization of dental services thought to be
affected by this reformwas analyzed. The dental services under scrutiny were
divided into several treatment baskets: preventive, diagnostic, scaling, X-ray,
periodontal and fillings. For each of these categories, a binary variable was set
to 1 for a particular session (here, one session consists of several treatments,
all performed within one particular day) if at least one corresponding code
was remunerated in that session. Otherwise, it was set to 0.

Figure 2.5: Stylized illustration of interrupted time series designs

The identification strategy for the reform in 2015 rests on an interrupted
time series design on session level (more technically, estimated using OLS
with binary treatment variables, see equation below), comparing the utiliza-
tion of dental services before and after the introduction of the reform. By
binning treatments in different “baskets” and running separate ITS analyses
on each of them, a better view of the effects of implementing reforms using
individual risk classes is achieved, multiple interrupted time series analy-
ses on utilization of different treatment patterns were performed, which
is a valid way of evaluating large-scale implementations in analyzing data
known or thought to be affected by interventions. As argued above, if patient
characteristics are not fully contained in the explanatory variables, OLS
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regression models may be biased. In order to deal with potential problems of
this kind, the longitudinal character of our data was exploited by estimating
a fixed effects model (on patient level), giving the most complete control
for unobserved heterogeneity. The following equations enable capturing
both time trends, intervention effects, the interaction of them and covariates.
Very generally, ITS can be written as

Yt = β0 + β1T + β2X t + β3T X t

In the scenario described here where X describes whether a reform is present
or not, this amounts to

Yi t = β1reformi t + β2(reform× time)i t + εi t

Hereby, Y denotes the binary outcome variable at hand at time point
T (within an individual i), i.e. whether a particular session contained a
treatment code of interest or not. The variables year, gender and municipality
constitute categorical control variables and the binary variable reform is 1 if
an observation pertains to the period after the reform and 0 otherwise. The
variable (reform× time) captures possible changes in trend after the reform
was put into place.

2.2.3 Assumptions

ITS models are typically linear models estimated using Ordinary Least
Squares - the usual assumptions related to OLS apply (see, for example
(Angrist and Pischke, 2008)). With the outcome variable above being a
binary variable determining the conduct of a particular treatment in a par-
ticular session, without loss of generality, a logistic regression model was
used. However, other types of regression models have also been used, e.g.
linear regression and, for modelling count data, Poisson regression models.
Regardless of the distribution of the outcome variable, the longitudinal na-
ture of data usable for ITS requires additional methodological considerations
(many properties of the typical regression approaches are shared). (Bernal
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et al., 2016) lists these methodological subtleties:

Seasonality Seasonality is characterized by periodic patterns (often repre-
senting seasons) in time series data which are typically detected using
graphical criteria (Hylleberg, 1992). When seasonality is present, the
linearity assumption of OLS is violated, leading to biased estimates.
Another related methodological issue is seasonal noise which is both
hard to recognize and hard to correct (Sims, 1974).

Time-Varying Confounders ITS models are typically robust with respect
to confounders that are constant over time (e.g. education, socio-
economic status etc.). However, confounders that have the poten-
tial to change rapidly over the course of time may pose problems in
ITS studies (e.g. natural events, risk factors etc.), especially if these
confounders are other events targeting the same outcome (e.g. si-
multaneous changes in reimbursement schemes or treatment code
composition).

Use of controls and other more complex ITS designs Enhancements to
ITS techniques (in the design stages) have been proposed to miti-
gate effects of time-varying counfounders. In Controlled ITS (Cummins
et al., 2018a), different types of controls are used, each of which has
associated strengths and limitations. Researchers undertaking con-
trolled ITS should carefully consider a priori what confounding events
may exist and whether different controls might be able to exclude
these or if they could even introduce other sources of bias to the study.
Multiple-baseline designs consist of introducing the reform in different
places to different times.

Autocorrelation Conventional models estimated using OLS are only unbi-
ased if the error terms are independent. In time series, errors are often
correlated over time (autocorrelated). This does not cause bias, but
OLS estimators don’t fulfil the minimum variance paradigm anymore,
leading to an underestimation of the MSE and standard errors of re-
gression coefficients (Andrews, 1991). Thus, there is a need to model
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the time component in regressions as otherwise, the error term would
be subject to endogeneity.

2.2.4 Limitations

The most striking limitation of ITS is the non-existence of a real control
group which is assumed only implicitly as co-interventions or other effects
occuring at the time of intervention cannot be ruled out. A possible counter-
measure is the addition of a control series, introducing both a before-after
comparison as well as an intervention-control group comparison (Cummins
et al., 2018b). In the discussion section of this thesis, the implications of this
shortcoming on causal statements deducted from ITS analyses will be noted.
A second limitation is imposed by the need of having multiple pre- and post-
intervention observations - naive pre- and post-intervention based on single
time points have poor internal validity as they cannot exclude underlying
trends as a cause for found changes. The required number of observations to
correctly identify trends is debatable, but having at least 5 time points seems
to be a sensible middle ground between data availability and robustness of
the model (Soumerai et al., 2015). Even then, it is not always clear whether
the linearity assumption is even sensible - it is not easy to test and mostly
requires a qualitative inspection of time series.
Finally, ITS cannot typically be used to reason about individual effects as data
relate to population rates. Although it is tempting to make such inferences,
any interpretation needs to be wary of the ecological fallacy of deducing
inference about the nature of individuals from statements about the collective
they belong to (Penfold and Zhang, 2013; Selvin, 1958). The consequences
of these shortcomings and their interaction with causal statements will be
subject of discussion in subsequent chapters.
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2.3 An evaluation of a multifaceted, local Quality
Improvement Framework for long-term conditions in UK
primary care using Differences-in-Differences 1

The third case study evaluates the effects of a local, multifaceted large pay-
for-performance scheme in general practice in Stoke-on-Trent introduced
in 2009 in the context of the national Quality and Outcomes Framework
that operated from 2004. The implementation of this reform constitutes a
unique natural experiment that allows the derivation of causal effects using
“Differences-in-Differences” (DiD).

2.3.1 Introduction

Stoke-on-Trent is an industrial conurbation with a ceramics, mining and
steel heritage and a registered population of 285,000. Of the 326 local
authorities in England, Stoke-on-Trent is ranked the 16th most deprived,
with large areas in the city ranked among the top 10% most deprived in the
whole of England.

Across a range of health and lifestyle indicators, outcomes in Stoke-on-
Trent are poor. Male life expectancy at birth in 2012 was 76.5 years compared
with 79.4 years in England; female life expectancy was 80.6 and 83.1 years
in England (on Trent Clinical Commissioning Group, 2015). As a response
to poor health indicators, a local Quality Improvement Framework (QIF)
commenced in primary care in 2009. The important context for QIF was
that in 2004 as part of a new contract for GPs, the UK introduced a large,
national P4P scheme—the Quality and Outcomes Framework (QOF). This
article describes the evaluation of the local QIF up to 2015, in the context of
the continuing national QOF.
This article describes the evaluation of the local QIF up to 2015, in the

context of the continuing national QOF.
In the analyses, seven indicators relevant to the long-term conditions

included within the QIF analysed. For each indicator, Stoke-on-Trent was
1The corresponding paper has been published in Family Practice.
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compared with (i) national, (ii) regional (West Midlands) and (iii) a basket
of localities with similar population demographics and other characteristics
relevant to the determinants of health (peer localities).

In 2004, as part of a new contract for GPs, the UK government intro-
duced a pay-for-performance scheme with 136 indicators. The population
included in the indicators is defined by practice-based disease registers [e.g.
patients with coronary heart disease (CHD)] and the indicator measures the
achievement of evidence-based targets (e.g. “the percentage of patients with
coronary heart disease in whom the last blood pressure reading measured
in the preceding 12 months is 150/90 mmHg or less""). The indicators
covered the management of chronic disease, practice organization and pa-
tients’ experiences with respect to care. Electronic clinical records, which
were already used in many practices, became universal because they were
needed to support payment for work undertaken, though GPs employed
more administrative staff to collect the required data, and there was an
acceleration of existing trends to shift care for chronic physical conditions
to nurse-led clinics. Practices required more intensive internal and external
management support to ensure they achieved the targets. Periodic revisions
to the scheme added or removed indicators and topics depending on local
priorities. Payments make up 25% of general practice income, and 99.6%
of general practices participated in the scheme, which remains voluntary.
The scheme continues in England but has been replaced in Scotland, Wales
and Northern Ireland.
The quality improvement approach used in the local Quality Improve-
ment Framework The team leading the local QIF programme in Stoke-on-
Trent designed and delivered a wide-ranging approach to quality improve-
ment in all practices. The QIF had a local implementation strategy, which is
a close fit with the evidence on the best approaches to spread good practice
(Greenhalgh et al., 2004a).

The aims were to identify patients with long-term conditions currently
undiagnosed, to improve the management and treatment of people with
those conditions and to reduce health inequalities both within localities in the
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city and between the Stoke-on-Trent population and other areas in England.
The QIF was much more than a pay-for-performance scheme; a multifaceted
design included data feedback on achievement of locally agreed chronic
disease management standards, and an educational programme comprising
(i) individual support as bursaries, (ii) multidisciplinary learning events for
primary care teams and (iii) QIF-focussed practice visits from clinical leaders
and managers to encourage sharing of approaches between practices (Cox,
2012).

Pre-requisites for annual review of acceptance of each practice into the
QIF programme included thresholds for numbers of registered patients per
whole time equivalent practice clinicians, prevalence rates for specific long-
term conditions versus those expected, minimum QOF attainment of clinical
indicators, completion of clinical audits and progress with addressing clinical
indicators of unwarranted clinical variation. All of these were designed to,
and became, more challenging over time.
A panel of local stakeholders including patients was convened each year

to review attainment of progress with existing QIF indicators. Quality im-
provement support was individualized to each practice with annual practice-
related comparative reports covering 50 key indicators. These included the
practice attainment in addressing adverse lifestyle issues such as smoking
cessation quit rates, conversion rates for urgent cancer referrals, location of
diagnosis of cancer, as well as comparison with peer practice populations
and England average rates. Each year the practices that generated most
concerns about attainment of the quality indicators were visited by the QIF
team who agreed a regularly monitored development plan.
Practice income derived from the QIF was supplementary to practice’s

funding derived from national contracts. Payments were set at £6 per patient
(an additional 4.4% of average, gross practitioner income) if all standards
were achieved and gradually less if only part of the standards were achieved.
The patient population registered with the 55 general practices in Stoke-on-
Trent was 265000 in 2009. Over the first 7 years of the QIF scheme, there was
100% participation of all practices; this includes on average three practices
each year that failed to match the pre-requisite criteria for participation
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at the start of the year—for example, being able to meet data-availability
criteria. All such practices remained engaged via quality and performance
development in order to achieve the criteria for participation the following
year, but did not receive in-year direct funding for that year.

2.3.2 Basics and Estimation

For the analyses of the QIF and QOF, Difference-in-differences analyses
are used. Thereby, the longitudinal character of data is utilized to obtain
valid treatment and control groups whose outcomes before and after an
intervention has taken place is compared to obtain causal estimates of the
intervention.

It relies on scenarios where both treated and untreated units are observed
during an intervention of interest. In case both groups follow the same time
trends (where only the treated group is exposed to the intervention), one
can compare the outcomes of the groups before and after the intervention.
This approach allows the separation of factors that affect both groups from
the actual effects of the intervention. Figure 2.6 displays the general strategy.

Figure 2.6: Stylized illustration of a Difference-in-Differences designs

Under certain assumptions that will be discussed in section 2.3.2.1, coun-
founders are then eliminated by design. DiD is most typically used in sce-
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narios “at scale” such as the impact of the passage of laws or the enactment
of public interventions.
In order to show the basic methodological concept, a minimal example dis-
playing in what kind of setting DiD is applicable and sensible is introduced
in the following. This example is entirely non-parametric - empirical litera-
ture often imposes a linear model which comes with different identifying
assumptions which will be covered in the chapter about assumptions and
our case study.
Let D be a binary treatment variable with realisations {0,1} and a binary
temporal variable T with realisations t ∈ {0, 1}. t = 0 represents the pre-
treatment period (the outcome at some specific time therein, an average
of outcomes at several pre-treatment time points) and t = 1 represents the
post-treatment period (or, again, the outcome at some specific time therein,
an average of outcomes at several pre-treatment time points). y represents
the outcome variable. Then, the quantity of interest is the difference in
differences

δ̂ =
�

y(T = 1, D = 1)−y(T = 1, D = 0)
�

−
�

y(T = 0, D = 1)−y(T = 0, D = 0)
�

Albeit impossible, if the two groups are exactly identical, this exactly corre-
sponds to the counterfactual in Rubin’s sense. When the two groups are just
similar in some aspects that will be discussed below, the average treatment
effect can be estimated.
Hereby, groups are often identified by geography and time period. How-

ever, other scenarios are also conceivable such as product categories and ge-
ography, age groups and geography or age groups and time. The Difference-
in-Difference (DiD) approach exploits natural experiments and is predomi-
nantly used in social sciences and empirical economics, where it is used to
make statements about the effects of policy interventions or changes that
are not assumed to affect everybody at the same time and in the same way.
Figure 2.6 displays a very simple, generic scenario where the outcome of
two comparable groups follows the same trend. The decisive part is that it is
credible to deal with "group non-equivalence" through differencing (which,
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again, assumes that the two groups are comparable up to a constant). Thus,
the design compares de facto four different groups of objects (post-treatment
treated, pre-treatment treated, post-treatment nontreated, pre-treatment
nontreated) where three of these groups are not affected by the treatment.
The empirical idea of DiD rests on the assumption that the two treated and
non-treated follow the same time trends, but only the intervention has an
effect on the treated group. Then, the additional difference between treated
and non-treated after the intervention took place can be used to remove
the effect of confounding factors to which a comparison of post-treatment
outcomes of treated and non-treated may be subject to.
DiD analysis is problematic if there are confounders affecting treated and
non-treated differently. This can be remedied persuasively by employing
regression-based DiD analyses as confounding influences can then be con-
trolled for. In the following, the empirical strategy used to analyze the impact
of quality improvement frameworks in the NHS in Stoke-on-Trent will be
exemplified.

For DiD analyses, directly standardized mortality rates from a total of 326
local authorities in England were used. Data were available as three-year-
rolling averages. The time frame consisted of yearly observations from 1995
to 2013, totalling a balanced panel of 5542 observations for each condition
without any missing data.

The following key conditions were analysed: CHD, stroke, diabetes, chronic
obstructive pulmonary disease (COPD), asthma, chronic kidney disease (CKD)
and epilepsy. Data from four age bands (all age groups, <65 years, <75
years and 65–74 years) were available for several of the above conditions,
helping to increase the validity of analyses.

To determine any impact of the 2009 QIF and the 2004 QOF, a DiD setup
was used - in particular, estimating a fixed-effects linear regression model
with an interaction effect and a linear time trend (Dimick and Ryan, 2014):

yi t = β0 + β1(year) +δ(placet reatment × aftert reatment)i t + γi + εi t (2.1)
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The coefficient of interest is δ, representing the effect of being in the treat-
ment group (Stoke-on-Trent) after the treatment went into place (2004/2009).
Here, placet reatment and aftert reatment are the corresponding categorical vari-
ables. γi is a one-hot-encoded variable representing a regional fixed effect,
and εi t is an error term. Note that this approach also enables to check for
an effect of the 2004 national QOF in Stoke-on-Trent; if there is no effect in
Stoke-on-Trent, the interaction effect is insignificant.

This obtained coefficient is only valid under the common trend assumption
(see next section). In the absence of this assumption, the above model
yields biased estimates. Since this was the case for several of the models,
this problem was circumvented by merging four respective pre- and post-
treatment years, looking at the mean number of yearly deaths pre- and
post-treatment. This procedure is indicated in the results by an asterisk in
the corresponding tables.
To test for significant changes in mortality rates following the 2004 na-

tional QOF, an interrupted time-series regression with a linear time trend
was used:

yt = β0 + β1(year) +δ(aftert reatment)t + εi t (2.2)

The variables have similar meanings as described earlier; however, as a
national reform with no differential local implementation is dealt with, there
is neither a possible comparison of treated and untreated authorities nor
a possibility of applying authority-level fixed effects. The validity of this
secondary approach rests on the assumption that the slope, had there been
no reform, would have continued to follow the same slope.
In order to account for eventual correlation in the data, authority-level

cluster-robust standard errors were used in all regressions. Statistical analy-
ses were performed with R version 3.2.1.

To determine any impact of the 2009 QIF and the 2004 QOF, a differences-
in-differences setup was used, estimating a fixed-effects linear regression
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model with an interaction effect and a linear time trend (5):

yi t = β0 + β1(year) +δ(placet reatment × aftert reatment)i t + γi + εi t (2.3)

The coefficient of interest is δ, representing the effect of being in the treat-
ment group (Stoke-on-Trent) after the treatment went into place (2004/2009).
Here, placet reatment and aftert reatment are the corresponding dummy variables.
γi is a one-hot-encoded variable representing a regional fixed effect, and
εi t is an error term. Note that this approach also enables to check for an
effect of the 2004 national QOF in Stoke-on-Trent; if there is no effect in
Stoke-on-Trent, the interaction effect is insignificant.

This obtained coefficient is only valid under the parallel slopes assumption.
In the absence of this assumption, the above model yields biased estimates.
Since this was the case for several of our models, this problem was circum-
vented by merging four respective pre- and post-treatment years, looking at
the mean number of yearly deaths pre- and post-treatment. This procedure
is indicated in the results by an asterisk in the corresponding tables.
To test for significant changes in mortality rates following the 2004 na-

tional QOF, an interrupted time-series regression with a linear time trend
was used:

yt = β0 + β1(year) +δ(aftert reatment)t + εi t (2.4)

The variables have similar meanings as described earlier; however, as the
reform is national with no differential local implementation, there is neither
a possible comparison of treated and untreated authorities nor a possibility of
applying authority-level fixed effects. The validity of this secondary approach
rests on the assumption that the slope, had there been no reform, would
have continued to follow the same slope.
In order to account for eventual correlation in the data, authority-level

cluster-robust standard errors were used in all regressions. Statistical analy-
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ses were performed with R version 3.2.1.

2.3.2.1 Assumptions

The validity of the approach to identify causal effects as outlined above rests
on a number of assumptions. First and foremost, all assumptions impeding
OLS also apply to DiD. As briefly discussed above, the identification strategy
of DiD consists of comparing differences in average pre-treatment outcomes
between treatment and control groups with differences in average post-
treatment outcomes before and after a treatment has been performed or a
reform has taken place. Under a certain set of assumptions that will now be
discussed, this strategy will identify an average causal effect by mimicing an
actual experiment.

Common Trend (CT) The Common Trend Assumption is the most crucial
one of the DiD approach. It is assumed that in absence of treatment the
difference between control and treatment groups would be constant
or “fixed” over time. This assumption states that the differences in
the expected potential non-treatment outcomes over time (conditional
on X) are unrelated to belonging to the treated or control group in
the post-treatment period. When dealing with linear models, this can
be represented geometrically by “parallel trends"" in outcome levels
between treatment and control groups in absence of a treatment. It
has been argued above already that the common trend assumption
essentially ensures exchangeability and thereby allows estimation of
the ATE in Rubin’s sense.

Stable Unit Treatment Value Assumption (SUTVA) This assumption actu-
ally consists of non-interference and stability. Non-interference
means that treatment status of one subject of study does not exert
influence on the treatment status of other subjects of study. Treatment
stability means that treatment is the same for all subjects under study
(for example, no patients receive a different dose). In most cases,
SUTVA is fulfilled by design - especially in experimental studies. How-

66 2 | Case studies and methods for causal inference regarding observational data



ever, for example, if a researcher aims to analyze the ramifications of
vaccinating people in a geographically close environment, SUTVA may
be violated. In the discussion section, strategies will be enumerated
on how to counter possible violations.

Exogeneity/Ignorability (EXO) Usually, DiD models are interpreted using
linear dependencies between independent variables and dependent
variables. Thereby estimated using standard OLS techniques and
allowing the use of covariates - exogeneity, as often, assumes that the
components of covariates X are not influenced by the treatment or are
independent of treatment assignment.
In the following, limitations that may arise from these assumptions
are discussed.

2.3.3 Limitations

There are a number of issues possibly arising that lead to a biased DiD es-
timate δ̂DD. Checking for these deviations is often difficult and sometimes
impossible as they are made about unobservable quantities.
In particular, the conventional DiD estimator requires that, in absence of
treatment, the average outcomes for the treated and control groups follow
parallel paths over time. If pre-treatment characteristics that are thought to
be associated with the outcome variable are unbalanced between treated
and untreated, this assumption may be implausible. This would happen,
for example, if selection for treatment (for each individual) is influenced
by past outcomes. (Abadie, 2005) proposed a semi-parametric estimators
mitigating the effects of non-parallel trends, allowing a consistent estimation
of the ATOT.
Also, limitations applying to randomized controlled trials in general such
as non-compliance, results only relating to limited populations (e.g. con-
venience sampling) or non-blinded participants (Deaton and Cartwright,
2018), (Krauss, 2018) can also be translated to DiD and predominantly
jeopardize the external validity of results arising from DiD studies.
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2.4 A word on panel data

In this piece of work, most data used entails a time component (particularly
case studies using ITS and DiD), i.e. units are observed over time. This
temporal nature of data can be exploited by using panel regression methods.
The two panel regression approaches described in the literature vary from
each other with respect to assumptions related to the “individual effects”,
where fixed effects are constant, time-invariant attributes of individuals
and random effects are stochastic attributes of individuals stemming from a
probability distribution (where these variables are uncorrelated with other
explanatory variables).
In presence of a balanced longitudinal dataset of N units and T time periods,
a simple linear unobserved effects regression model in the following way can
be parametrized (for each unit i at time t, the outcome variable Yi t and the
binary treatment variable X i t ∈ {0,1}) is observed:

Yi t = αi + βX i t + εi t

Here, Yi t is the dependent variable, αi are the unobservable group-specific
effects for unit i, X i t denotes the K×1 column vector of explanatory variables
and εi t is a disturbance term for unit i at time t with E(εi t). In this model,
the unit fixed effect αi can be written as αi)h(Ui), where Ui is a vector of
unobserved time-invariant confounders within a certain unit i and h is an
unknown function.
The unobservable coefficients αi determine the type of model - in case they
are group-specific (where group often equals individuals) fixed quantity,
then fixed effects is the correct estimation procedure, whereas in case they
are drawn from an (unknown) distribution and are therefore stochastic.

In the case studies examined in this dissertation, it is assumed that unob-
served heterogeneity within individuals is constant, justifying the use of fixed
effect model estimation. This line of thought will be justified individually in
the methods section of the respective case studies.

Nevertheless, limitations also apply to panel data analysis, as selection bias
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might still occur and the implicit assumption of fixed effects (confounders
don’t vary over time) might be violated (Hsiao, 2014).
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Results of case studies

After having discussed the methodological approaches to causal inference
using observational data (while introducing three case studies from the
research done during my time as a PhD student), this chapter subsequently
introduces readers to the results thereof. In the first section, causal rela-
tionships between the dental health of parents as measured by the number
of remaining teeth and the number of their children using Instrumental
variables are explored.
The second section and third section will be concerned with investigating
the ramifications of reforms of the Health system in two European countries.
First, the impact of the introduction of the “Quality Improvement Framework”
in Stoke-on-Trent on mortality rates as compared to peer regions unaffected
by the reform using a Differences-in-differences framework is analyzed.
Second, the impact of the introduction of a patient-risk-classification system
in Denmark, aimed at improving the alignment of need and supply, on the
utilization of dental services using an Interrupted Time Series design will
be scrutinized.
In the greater context of this work, this section provides the contextual back-
ground for embedding the scientific argumentations within the frameworks
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of causal inference introduced in the above chapter.

3.1 Gain a child, lose a tooth? Using natural experiments to
distinguish between fact and fiction

The mean age of the individuals in the sample is 67.4 years, and on average,
10.4 teeth were reported missing at the time of the interview. On average,
the birth of the youngest child happened 35.5 years ago. Thus, the majority
of individuals in the sample have completed their fertile period, allowing to
examine the long-term effects of childbearing on oral health.
Table 3.1 presents average numbers of missing teeth by the various in-

dependent variables used in subsequent analyses. The average number of
missing teeth mostly differed by age (values ranging from an average of 6.8
missing teeth for women aged 50–65 years to an average of 19.2 missing
teeth for men aged 80+) and educational attainment (on average 6.3 missing
teeth for women with post-secondary education; on average of 15.2 missing
teeth for women with (pre-)primary education) and less notably by other
independent variables.

3.1.0.1 Results from regression analyses

The upper part of table 3.2 shows the results from OLS and intention to
treat regressions. The OLS estimates indicate that women have an average
of 0.57 (95%-CI: 0.45 to 0.69) fewer teeth per additional child; men have an
average of 0.26 (95%-CI: 0.12 to 0.40) fewer teeth per additional child. The
intention to treat estimates indicate that women have an average of 0.36
(95%-CI: 0.11 to 0.60) fewer teeth if their first two children had the same
sex instead of different sexes; women have an average of 0.88 (95%-CI: -0.25
to 2.02)fewer teeth if they gave birth to multiples rather than a singleton;
men have an average of 0.24 (95%-CI: -0.53 to 0.05) fewer teeth if their first
two children had the same sex instead of different sexes; and men have an
average of 0.01 (95%-CI: -1.26 to 1.23) fewer teeth if they had a multiple
birth instead of the birth of a singleton.
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Table 3.1: Mean number of missing natural teeth by covariates
Number of missing teeth mean (std.dev.)

Women Men % of sample
Age
50 to 65 years old 6.8 (8.6) 6.9 (8.6) 0.47
66 to 80 years old 12.4 (10.7) 11.5 (10.5) 0.42
81 years and older 16.9 (10.8) 19.2 (10.5) 0.11

Sex
Women 10.7 (10.6) 0.57
Men 10.1 (10.3) 0.43

Educational attainment
(Pre-)primary (ISCED 0 and 1) 15.2 (11.0) 13.3 (10.9) 0.22
Secondary (ISCED 2 and 3) 10.6 (10.5) 10.8 (10.3) 0.51
Post-secondary (ISCED 4 and 5) 6.3 (8.5) 7.1(9.0) 0.27

Age at first birth
Up to 25 years old 11.2 (10.7) 10.8 (10.4) 0.65
26 to 30 years old 9.2 (10.3) 9.7 (10.2) 0.26
31 years and older 8.3 (10.2) 8.9 (10.2) 0.09

Number of children
Two children 9.7(10.2) 9.6 (10.1) 0.56
Three or more children 11.8 (11.0) 10.7 (10.5) 0.44

Number of siblings
No siblings 13.1 (11.1) 11.6 (10.6) 0.17
One sibling 10.1 (10.6) 9.9 (10.3) 0.28
Two siblings 9.8 (10.4) 9.4 (10.0) 0.22
Three or more siblings 10.4 (10.4) 9.9 (10.2) 0.33

Ever had a multiple birth
Yes 10.9 (11.0) 9.9 (10.4) 0.04
No 10.7 (10.6) 10.1 (10.3) 0.96

First two children
Same Sex 10.5 (10.6) 10.2 (10.3) 0.50
Different Sexes 10.8 (10.7) 10.0 (10.3) 0.50

observations 19 970 14 873 34 843
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Table 3.2: Results of regression analysis of the number of children on oral health

Women Men
OLS 0.57 0.26

Same-sex
instrument

Multiple-
birth
instrument

Same-sex
instrument

Multiple-
birth
instrument

ITT 0.36 0.88 -0.25 -0.01
[0.11; 0.60] [-0.25; 2.02] [-0.53; 0.05] [-1.26; 1.23]

1st stage (2SLS) 0.084 1.04 0.076 1.15
(F = 31.69) (F = 235.50) (F = 20.20) (F = 251.53)

2nd stage (2SLS) 4.27 0.85 -3.12 -0.01
[1.08; 7.46] [-0.23; 1.93] [-7.17; 0.93] [-1.09; 1.07]

observations 19 970 14 873

The lower part of Table 3.2 shows the results from 2SLS regressions:

1st stage: on average, individuals whose first two children have the same
sex have 0.084 (women) and 0.076 (men) more children than indi-
viduals whose first two children have different sexes. The F-statistics
relate to the statistical significance of the instruments. With values of
31.69 and 20.20, respectively, they are higher than the rule-of-thumb
critical value of 10 (Bound et al., 1995), indicating sufficient strength
of the same-sex instrument. Multiple as compared to singleton births
cause a change in the number of children with parents having coeffi-
cients of 1.04 (women) and 1.15 (men). This means that individuals
hardly compensate for additional children due to twin births by re-
ducing subsequent fertility. Again, the F-statistics of the multiple birth
instruments indicate sufficient strength.

2nd stage: owing to identification via smaller subsamples of the study popu-
lation, confidence intervals are generally wider than in OLS regressions.
An additional child caused by the first two children having the same
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sex has a large causal effect on the number of teeth in women; these
women have an average of 4.27 [95%-CI: 1.08; 7.46] fewer teeth than
women who did not have another child while their first two children
have different sexes. For men, the same sex instrument indicates a
smaller effect of 3.12 [95%-CI: -7.17; 0.93] more teeth. Having one
additional child in response to having twins at second birth leads to
an average of 0.85 [95%-CI: -0.23; 1.93] fewer teeth among women.
For men, the point estimate is small, suggesting no causal effect of
multiple births on the number of teeth in men.

3.2 Implementation of altered provider incentives for a more
individual-risk-based assignment of dental recall intervals:
evidence from a health systems reform in Denmark

The following section deals with results gained from ITS analyses on the
2015 reform to the Danish dental health care system.

Table 3.3 shows summary statistics for dependent and explanatory vari-
ables. The mean age of patients was 49.4 years. Overall, in most sessions,
scaling and diagnostic codes were utilized. Fillings and periodontal treat-
ments were performed in 32% and 22% of sessions, respectively, while the
preventive code was used in about 15% of all sessions. Radiographs were
taken in about every 6th session. Table 3.4 shows descriptive statistics regard-
ing changes in dental utilization and recall interval characteristics before
and after the reform. The average number of dentist visits and recalls per
patient was shown to have increased slightly. The average number of days
between dental visits per patient reduced by about seven days and that of
dental recalls reduced by about six days. The proportion of patients visiting
the dentist every 6 months or more often increased by about 0.9%, whereas
the proportion of patients with 6-12-monthly or more than 12-monthly
dental visits decreased somewhat. In comparison to the pre-reform period,
the proportion of patients with recall intervals of up to 6 months was by
1.2%-points larger post-implementation; that of patients with 6-12-monthly
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Table 3.3: Summary statistics of dependent and independent variables.
sample size description mean(std.dev.)
25,533,311 claims

age in years 49.4 (16.9)
sex Women/men in percent 53.8 / 46.2
total number of sessions mean number of yearly sessions 2.41 (0.74)
preventive (IPT) 1 if a preventive code was remunerated in

a session
0.15

diagnostic (SE, DE, FE) 1 if a diagnostic code was remunerated in
a session

0.75

scaling 1 if scaling was remunerated in a session 0.58
fillings 1 if fillings were remunerated in a session 0.32
periodontal 1 if periodontal codes were remunerated

in a session
0.22

radiographs 1 if x-rays were remunerated in a session 0.15
surgical treatments 1 if operations were remunerated in a ses-

sion
0.07

A detailed description of the presented variables can be found in the Appendix (Table A2).

recalls increased by 0.7%-points; that of patients with more than 12-monthly
dental recalls decreased by 1.9%-points.

Figure 3.1 illustrates the trajectories of treatment codes over time for the
years 2012-2016. The proportion of treatment sessions including preventive
items or scaling is shown to have become larger after the regulatory changes
in April 2015; the proportion of diagnostic items was shown to have become
lower. Table 3.5 displays results from regression analyses on the utiliza-
tion of certain treatment codes represented by independent, mostly binary
variables (except for "total number of sessions" which is a count variable)
following the 2015 reform. The second column contains point estimates
from OLS regressions. A total of 5,420,552 sessions were included in this
regression. The total number of sessions did only change marginally (point
estimate: -0.003 [95%-Confidence Interval: -0.005; -0.002] as compared
to the pre-reform baseline). The proportion of sessions containing preven-
tive codes and the proportion of sessions with scaling increased by 0.301
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[0.300, 0.302] %-points and 0.225 [0.224; 0.226] %-points, respectively. At
the same time, fewer sessions contained diagnostic codes (-0.298 [-0.299;
0.297] %-points). The two columns on the right of Table 4 show parame-
ter estimates from fixed-effects regressions when considering both the 12
months before and after the reform (third column) and, as a robustness
check, both 2014 and 2016 excluding 2015 (fourth column). In the third
column (12 months pre/after reform), the results indicate an increase in the
proportion of sessions including the preventive code by about a third (0.310
[95%-Confidence-Interval: 0.309; 0.311] %-points).

Figure 3.1: Trajectories of the proportion of treatment claims containing codes for preventive care, diagnos-
tic care, scaling, and filling treatment sessions taking place in the period of 2012 to 2017. The
vertical grey line depicts April 1, 2015, when the reform commenced.

The proportion of diagnostic sessions decreased by 0.345 [-0.346; -0.344]
%-points and scaling experienced a sizable increase as well (0.241 [0.240;
0.242] %-points). Treatment codes apart from preventive and diagnostic
codes and scaling did not exhibit large variations: fillings slightly decreased
while the number of radiographs remained relatively stable. Results in the
fourth column (19 months pre-/post-reform) are similar, with exceptions be-
ing different signs for the total number of sessions and periodontal treatment
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Table 3.4: Summary statistics of the frequency of dental visits recalls before and after
the refor

sample size: 3,759,721 unique patients beform the
2015 reform

after the
2015 reform

Average number of dental visits per patient
(per year)

1.83 1.85

Average number of dental recalls* per pa-
tient (per year)

1.29 1.30

Average number of days between dental
visits (per patient)

148.5 141.6

Average number of days between dental
recalls* (per patient)

230.6 225.3

% of patients with a 6-month interval be-
tween dental visits (or more frequently)

20.4 21.3

% of patients with a 6-month interval be-
tween dental recalls* (or more frequently)

16.3 17.5

% of patients with a 6-12-month interval
between dental visits

33.4 32.6

% of patients with a 6-12-month interval
between dental recalls

36.1 36.8

% of patients with a more than 12-month
interval between dental visits

46.2 46.1

% of patients with a more than 12-month
interval between dental recalls

47.6 45.7

Observations: 5,420,552 sessions
*dental recalls were defined as treatment sessions which only included only SE and/or
DE (see Figure 1). Patients with 0 visits to the dentist were not considered as their recall
intervals can’t be recovered with claims-data based observations.
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Table 3.5: OLS and Fixed Effects regression results for effects of the 2015 reform

OLS FE (Patient Level)
12 months pre 19 months pre
vs. 12 months
post

vs. 19 months
post

total number of sessions -0.003 -0.012 0.018
[-0.005; -0.002] [-0.014; -0.010] [0.016; 0.020]

Preventive 0.301 0.310 0.315
[0.300; 0.302] [0.309; 0.311] [0.314; 0.316]

Diagnostic -0.298 -0.345 -0.364
[-0.299; -0.297] [-0.346; -0.344] [-0.365; -0.363]

Scaling 0.225 0.241 0.282
[0.224; 0.226] [0.240; 0.242] [0.281; 0.283]

Fillings -0.029 -0.041 -0.041
[-0.030; -0.028] [-0.042; -0.039] [-0.043; -0.040]

Periodontal treatments -0.005 -0.032 0.008
[-0.006; -0.004] [-0.033; -0.031] [0.007; 0.009]

Radiographs -0.008 -0.041 -0.016
[-0.010; -0.007] [-0.042; -0.040] [-0.017; -0.015]

Surgical treatments -0.003 -0.012 -0.018
[-0.004; -0.002] [-0.013; -0.011] [-0.020; -0.017]

Patient fixed effects NO YES YES
[-0.004; -0.002] [-0.013; -0.011] [-0.020; -0.017]

N (observations = sessions) 5,420,552 3,181,824 3,259,848
[-0.004; -0.002] [-0.013; -0.011] [-0.020; -0.017]

Observations 3,181,824 sessions (12 mo.) 3,259,848 sessions (19 mo.)
OLS (second column) and linear individual fixed effects regression (third and fourth
column) using the number of sessions containing preventive, diagnostic, scaling, fillings
and periodontal codes as well as codes related to surgical procedures and extractions
("surgical treatments") resp. as independent variables. In our OLS model, age, sex and
municipality of patients was used as confounders. In our Fixed Effects model, no additional
controls were included as no time-varying confounders could be identified (controlling for
age did not add explanatory power). 95% Confidence Intervals in brackets.
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(relative to preventive, diagnostic and scaling codes, however, these effect
sizes are much smaller). By and large, our results are robust to changes in
the observation periods and the general tendency of variations in utilization
remains. When the sample is split according to various proxies for dental
disease risk, the results were mixed. Parameter estimates differed relatively
little when differentiating between persons with high vs. low income al-
though effects for codes related to preventive and diagnostic services were
stronger for the high-risk group. There was more variation between parame-
ter estimates when differentiating between persons in young vs. old age;
again, the estimated effects of regulatory changes on utilization of preven-
tive, diagnostic and scaling items are larger for persons with higher risk
(older age) than for persons with lower risk (younger age) but all have the
same sign (more prevention and scaling but less diagnostics after regulatory
changes). When using previous treatment experience as dental disease risk
proxy, the most substantial differences in parameter estimates were found
for the total number of treatment sessions (after regulatory changes: fewer
sessions for high risk patients; more sessions for low risk patients), scaling
(after regulatory changes: nearly four-fold more sessions with scaling for
low-risk than for high-risk patients), and fillings (after regulatory changes:
fewer fillings for high-risk patients but more fillings for low-risk patients). By
and large, the robustness checks neither provide clear evidence in support of,
or against treatment patterns having become more risk-oriented in response
to regulatory changes.

3.3 An evaluation of a multifaceted, local Quality Improvement
Framework for long-term conditions in UK primary care

The following section will deal with the results of an evaluation of a multi-
faceted, local Quality Improvement Framework for long-term conditions in
UK primary care, utilizing DiD.
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Figure 3.2: Time series of mortality rates from 1995 to 2013 for different geographic localities in England
and for the 2004 Quality and Outcomes Framework and 2009 Quality and Outcomes Framework
interventions. (a) The dashed black line refers to the 2004 national Quality and Outcomes
Framework introduction— mortality time series are for cardiovascular heart disease in all age
groups (left) and 65- to 74-year-old age groups (right). (b) The dashed black line refers to the
2009 local Quality Improvement Framework introduction—mortality time series are for stroke
(left) and cardiovascular heart disease (right).

Table 3.6 (left panel) displays the mean mortality rates per 100000 people
in England before any intervention took effect. It was found that from 2004
the downward trend in the national mean mortality rate for the conditions
analysed increased by an additional 3.72 fewer deaths for CHD and 5.53
fewer deaths per 100 000 general population per annum for stroke (see
Table 3.6, Figure 3.2). This came in addition to a yearly trend indicating
a reduction of 11.07 deaths per 100 000 general population per annum
for CHD and 4.37 deaths per 100 000 general population per annum for
stroke. In relation to the comparison groups ‘national’ and ‘West Midlands’,
pre-2004 mean mortality rates in Stoke-on-Trent (Table 3.7, italic) for all
the conditions and age bands were considerably higher. The mortality rates
of the peer group of local authorities show a mixed picture across conditions
and age groups, and are mostly similar to Stoke-on-Trent (see Fig. 3.2).

A statistically significant greater benefit in Stoke-on-Trent on CHD mortal-
ity associated in time with the 2004 introduction of the national QOF with an
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Table 3.6: Interrupted time series analysis of mortality rates in England following
the 2004 Quality and Outcomes Framework introduction based on data
from 1998 to 2014

Absolute mortality Linear time trend Intervention
rate before 2004 [95% confidence interval] [95% confidence interval]
CHD
All age groups -11.07 -3.72
256.93 [-11.32, -10.82] [-5.46, -1.97]

<65 years -1.85 0.39
39.45 [-1.92, -1.77] [-0.11, 0.89]

<75 years -5.05 -0.03
97.68 [-0.20, -4.91] [-0.87, 0.81]

65-74 years -29.63 -3.22
544.07 [-30.46, -28.79] [-8.76, 2.33]

Stroke
All age groups -4.37 -5.53
129.89 [-4.51, -4.22] [-6.59, -4.47]

<65 years -0.42 -0.44
11.19 [-0.45, -0.39] [-0.71, -0.17]

<75 years -1.18 -1.40
28.53 [-1.23, -1.13] [-1.78, -1.02]

65-74 years -6.97 -8.75
161.43 [-7.29, -6.64] [-11.35, -6.16]

Diabetes
All age groups -0.35 0.30
13.61 [-0.38, -0.32] [0.09, 0.50]

Epilepsy
All age groups 0.02 -0.11
1.80 [0.01, 0.03] [-0.21, -0.00]

COPD
All age groups -0.60 -0.73
56.48 [-1.29, 0.09] [-0.82, -0.65]

Asthma
All age groups -0.08 -0.09
2.98 [-0.09, -0.06] [-0.23, 0.05]

CKD
All age groups -0.04 0.17
3.16 [-0.06, -0.02] [0.00, 0.33]
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additional reduction of 36 deaths per 100 000 general population per annum
in Stoke-on-Trent compared with the national mean (see Table 3.7) was
found. This effect occurred in all age groups and is especially relevant for the
65- to 74-year-old age group with an excess reduction of 166 deaths per 100
000 per annum in this population group (see Figure 3.2, upper right). When
compared with the West Midlands, this effect consistently becomes less (for
all age bands, see Figure 3.2, upper left) over time; when compared with
peer localities, the reduction marginally fails to be statistically significant
for all age groups but is significant for all three age subgroups. For stroke,
a significant benefit on mortality for the 65- to 74-year age groups and
<75-year age groups (13 fewer deaths per 100 000 per annum for the 65- to
74-year age group; -1 per 100 000 per annum for the <75-year age group)
when compared with the national mean and the West Midlands was found.
There was also a significant benefit in the 65- to 74-year age group when the
comparison group was peer local authorities. Results in the all age group
and <65 years showed small but statistically significant increases against the
national comparator (see Table 3.7). Analyses of the other conditions show
a mixed picture with small reductions in CKD in Stoke-on-Trent and small
adverse trends for deaths from diabetes, chronic obstructive kidney disease
and asthma. Effects of the introduction of the 2009 Quality Improvement
Framework The pre-2009 mean mortality rates were higher in Stoke-on-
Trent across all conditions and age bands compared with the regional and
national means, with smaller absolute differences than in 2004. With some
exceptions, the mortality rates for the conditions analysed were generally
lower in Stoke-on-Trent in 2009 than the mean mortality rates of the peer
local authorities. Mortality rates for most conditions and age groups showed
a clear reduction associated in time with the introduction of the 2009 QIF
in Stoke-on-Trent (see Table 3.8). Compared with the national mean, there
was an additional reduction of about 9 deaths per 100 000 people for CHD
(see Figure 3.2, bottom left) and a reduction of 14 deaths per 100 000
people for stroke (see Figure 3.2, bottom right). This effect remains when
compared with the regional mean, but there was no significant difference
when compared with the mean of the peer regions. Analyses of other condi-
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tions showed a small reduction in mortality from diabetes, asthma and CKD
consistent across all comparison group means. On the other hand, epilepsy
and COPD showed small increases.

84 3 | Results of case studies



Table 3.7: Interrupted time series analysis of mortality rates in England following
the 2004 Quality and Outcomes Framework introduction based on data
from 1998 to 2014

National West Midlands Peer localities
Intervention [95% CI] Intervention [95% CI] Intervention [95% CI]

Mean difference to Mean difference to Mean difference to
Stoke (pre 2004) Stoke (pre 2004) Stoke (pre 2004)

CHD
All age groups -35.85 [-37.87; -33.82] -24.69 [-30.73; -18.65] -13.58 [-28.24; 1.07]

63.01 53.35 -6.95

<65 years -14.11 [-14.65; -13.57] -12.69 [-14.36; -11.03] -5.10 [-7.27; -2.93]
23.60 21.47 2.00

<75 years -31.64 [-32.74; -30.55] -27.86 [-31.06; -24.66] -14.69 [-18.63; -10.75]
48.16 42.65 5.52

65-74 years -166.05 [-172.27;-159.84] -144.13 [-161.36;-126.90] -88.25 [-117.63;-58.88]
236.44 205.02 32.54

Stroke
All age groups 3.60 [2.76; 4.44] 6.21 [2.73; 9.70] 6.12 [-0.01; 12.25]

5.97 -5.72 -14.29

<65 years 0.62 [0.41; 0.83] 0.03 [-0.57; 0.63] 1.96 [0.87; 3.05]
1.96 1.74 -2.74

<75 years -0.96 [-1.27; -0.65] -1.33 [-2.54; -0.12] 1.13 [-1.53; 3.79]
6.35 4.49 -3.99

65-74 years -13.10 [-15.30; -10.90] -11.78 [-19.90; -3.66] -5.27 [-27.14; 16.62]
39.98 25.54 -13.51

Diabetes
All age groups 1.90 [1.63; 2.17] 1.39 [0.16; 2.62] 1.27 [-0.63; 3.18]

0.87 -2.00 -0.54

Epilepsy
All age groups 0.06 [-0.02; 0.14] -0.12 [-0.45; 0.20] 0.14 [-0.34; 0.63]

0.44 0.33 -0.18

COPD
All age groups 3.34 [2.75; 3.93] 4.54 [2.37; 6.71] 2.27 [-1.25; 5.79]

21.31 22.57 -8.00

Asthma
All age groups 2.18 [2.07; 2.28] 1.74 [1.33; 2.14] 2.66 [2.03; 3.30]

0.73 0.39 0.16

CKD
All age groups -1.29 [-1.41; -1.16] -1.51 [-1.95; -1.07] -1.21 [-1.74; -0.67]

2.01 1.14 1.23
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Table 3.8: Interrupted time series analysis of mortality rates in England following
the 2004 Quality and Outcomes Framework introduction based on data
from 1998 to 2014

National West Midlands Peer localities
absolute mortality Intervention [95% CI] Intervention [95% CI] Intervention [95% CI]
rate in Stoke Mean difference to Mean difference to Mean difference to
pre-intervention Stoke (pre 2009) Stoke (pre 2009) Stoke (pre 2009)

CHD
All age groups -8.85 [-10.11; -7.60] -10.77 [-15.47; -6.07] 4.60 [-1.82; 11.01]
321.52 29.21 31.65 -22.99

<65 years -4.98 [-5.36; -4.60] -4.90 [-6.40; -3.40] -2.32 [-4.72; 0.09]
63.30 12.43 11.59 -1.39

<75 years -7.90 [-8.59; -7.20] -7.15 [-9.55; -4.74] 0.06 [-4.46; 4.58]
147.14 21.36 19.32 -7.89

65-74 years -30.25 [-34.42; -26.07] -24.36 [-37.44; -11.29] 18.27 [-5.79; 42.34]
789.96 89.84 78.59 -57.76

Stroke
All age groups -13.61 [-14.46; -12.77] -10.21 [-12.87; -7.55] -6.81 [-14.82; 1.21]
132.56 7.97 -1.22 -8.15

<65 years -0.06 [-0.25; 0.14] 0.59 [0.01; 1.16] 1.10 [-0.27; 2.47]
13.64 1.87 1.27 -1.44

<75 years -3.03 [-3.34; -2.72] -1.33 [-2.45; -0.22] -0.66 [-2.37; 1.04]
35.41 4.44 4.44 -3.12

65-74 years -23.24 [-25.24; -21.25] -16.33 [-24.00; -8.67] -11.83 [-23.71; 0.05]
202.36 21.62 12.65 -18.40

Diabetes
All age groups -3.59 [-3.82; -3.37] -2.08 [-3.02; -1.13] -2.63 [-3.26; -2.00]
14.49 2.18 -1.22 0.76

Epilepsy
All age groups 0.69 [0.62; 0.77] 0.44 [0.12; 0.76] 0.99 [0.48; 1.50]
2.57 0.20 -0.10 -0.35

COPD
All age groups 5.59 [5.07; 6.11] 5.74 [3.74; 7.74] 5.35 [1.60; 9.10]
76.32 27.09 29.15 -3.01

Asthma
All age groups -0.88 [-0.97; -0.79] -0.62 [-1.00; -0.24] -0.93 [-1.32; -0.54]
3.66 1.76 1.05 1.44

CKD
All age groups -1.10 [-1.22; -0.98] -0.78 [-1.31; -0.25] -0.85 [-1.80; 0.09]
5.30 1.10 0.08 0.59
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Discussion

The objective of this chapter is to discuss the above results with particular
focus on the causal approaches and frameworks introduced in earlier chap-
ters. To that end, it is structured as follows. The major findings of each
of the studies will be critically discussed with respect to what implications
the respective methods provide intrinsically and also how other frameworks
of causality, before turning to reasoning about causality in a one-by-one
manner.
Using the combined findings from all three studies, the chapter is concluded
by general remarks and limitations concerning causality in observational
studies.

4.1 Separate Causal Discussions

4.1.1 Case study 1

In the following section, implications of the results of the first case study
will be covered, discussing conceivable causes and considering implications
on causality based on the causal frameworks introduced in chapter 1. Using
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Figure 4.1: A directed acyclic graph depicting the presumed relationships between
the number of children and tooth loss. The methodological setup deemed
both the inclusion of relevant confounders as well as instrumental vari-
ables necessary.

quasi-experimental methods (instrumental variables / 2SLS) and unique
survey data from SHARE (Börsch-Supan, 2016), the relationship between
the number of biological children and the number of missing natural teeth
among these children’s parents was investigated. Thereby, random natural
variation in family size resulting from (i) the birth of twins vs singletons,
and (ii) the sex composition of the two first-born children was investigated,
relying on an increased likelihood of a third child if the two first-born children
have the same sex.
Regressions detected a strong relationship between the number of chil-

dren and teeth for women when an additional birth was given after the
first two children had the same sex. Women then had an average of 4.27
[95%-CI: 1.08; 7.46] fewer teeth than women without an additional birth
whose first two children had different sexes. In contrast, sizeable effects for
the relationship between children and missing teeth for men or when using
natural variation in twin births as an instrument could not be identified. The
choice of 2SLS as a estimation strategy provides a strong argument for a
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causal interpretation of these effects.
Therefore, the above study examined causal links between fertility and the
number of missing natural teeth. This relationship is generally plausible -
tooth loss is a relevant health outcome, representing a frequent endpoint
of dental diseases, particularly untreated caries (the most prevalent disease
worldwide according to the Global Burden of Disease study) and severe
periodontitis (the 6th most prevalent disease worldwide according to the
Global Burden of Disease study). It is worth noting that plain OLS is prob-
lematic in this case: there is a multitude of often unknown factors that both
contribute to the probability of parents to get children and tooth loss, some
of which change over time and some of which maturate. As argued above,
this jeopardizes internal validity as effects might be captured that are of
no interest. To strengthen causal arguments, the PCM offers to introduce a
priori knowledge (or assumptions) of causal connections. Figure 4.1 displays
a conceived graph. OLS only considers the right three nodes where it is
unclear whether all possible confounders are included or if data to correct
them are available.
Therefore, another strength of the study is the use of instrumental variables,
which offers a remedy to this problem and in combination with unique and
large-scale survey data, identifies causal effects for a field of research in
which there was previously no causal evidence. This is particularly relevant
given that controlled experiments on the relationship between the number of
biological children and the number of missing natural teeth seem impossible.
As such the present study is, to our knowledge, the first to provide causal
evidence for the question whether tooth loss is influenced by fertility. On the
other hand, our study also has some limitations. The external validity of our
results is limited because our findings only concern narrow subpopulations
(“compliers”) with certain fertility patterns (experience of multiple birth;
additional child because the first two children had the same sex). Moreover,
since the complier-subpopulations are relatively small, most of our results suf-
fer from large standard errors, which is a typical “price to pay” (statistically)
for the theoretically “clean” causal identification via instrumental variables.
Nevertheless, the plausibility and usefulness of the analytical approach used
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in the present study is endorsed by the existing and growing literature in
support of quasi-experimental methods. The features of the instrumental
variables used in this study correspond closely with previous literature (for
example, see previous publications using the same sex instrument (Angrist
and Evans, 1996; Kruk and Reinhold, 2014b)).
OLS regressions indicated that, per additional child, women have an average
0.57 fewer natural teeth and men have an average 0.26 fewer natural teeth.
By and large, these results are consistent with previous non-experimental
evidence on the relationship between the number of children and teeth.
Although sparse, most of the extant literature suggests that individuals with
more children have more missing teeth than individuals with fewer children.
For example, 70-year-old Swedish women without children were found to
have 5.0 to 6.6 more teeth than their counterparts with five or more children.
Similarly, a study from Japan found an age-adjusted difference of 2.97 teeth
between women with no and women with more than four children (Ueno
et al., 2013). However, given that unobserved confounders may affect both
oral health and fertility, such results should be interpreted with caution.
A solution to this problem is to exploit two different natural experiments
which give raise to exogenous variation in family size: (i) the birth of twins
vs multiples; and (ii) the increased likelihood of a third child if the two
first-born children had the same sex (as compared to different sexes). As
is common practice in the quasi-experimental literature, 2SLS regressions
for computation are used. 1st stage estimates are in line with studies using
similar instruments (Angrist and Evans, 1998; Kruk and Reinhold, 2014a),
hence corroborating this empirical approach. In 2nd stage regressions, a
large causal effect of 4.27 fewer teeth for women with an additional birth
after their first two children had the same sex was identified (as compared
to women without additional birth whose first two children had different
sexes); this is a larger effect size than that identified via OLS regression
or that previously reported in the non-causal literature on the association
between fertility and (missing) teeth. One potential explanation for the
larger effect size in 2SLS regression is that healthier women are generally
less susceptible of tooth loss and tend to have more children than less healthy
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women; as health is largely multifactorial and likely not fully observable,
OLS regression and other non-causal approaches may underestimate the
effect of children on the number of missing teeth due to omitted variable
bias.
In the present study, a large causal effect of fertility on tooth loss could
only be identified for women and only via the “same sex” instrument but
not for men and not via the “twin birth” instrument. Differences between
regressions with different instruments are to be expected if treatment effects
vary across population subgroups (Imbens and Angrist, 1994). Individuals
with changes in fertility because their first two children had the same sex
are likely different from individuals with changes in fertility because of a
multiple birth. Causal effects of fertility can thus differ for various reasons.
First, twin births cause two children to be born and grow up at the same time;
whereas births induced by the parents´ sex preference on their offspring
occur consecutively. Second, twin pregnancies are more demanding than
singleton pregnancies; evidence indicates the total birth weight of twins is
nearly twice that of a singleton birth weight (Min et al., 2000). But having
an additional child because of the sex imbalance of the first two children
implies an additional pregnancy (with increased risk of gum disease) and
an additional cycle of (time-consuming) parenting. Hence, two singleton
motherhoods might have a different (as our results suggest: more detrimen-
tal) effect on the oral health of the mother than one twin motherhood. Yet
the precise role of pregnancy-related vs parenting-related factors requires
further deciphering. On basis of our findings, enhanced promotion of oral
hygiene, tooth-friendly nutrition, and regular (preventive) dental attendance
– specifically targeted at expecting and parenting mothers – seem to be sen-
sible strategies for clinicians and health policy. This study provides unique
and novel evidence for causal links between the number of natural children
and missing teeth. While no sizable effects for men could be identified, two
motherhoods with singletons seem to be more harmful to a mother’s oral
health than one motherhood with twins. Still, the role of pregnancy-related
vs parenting-related impacts on individuals’ oral health need to be examined
in more detail. For example, the changing roles of modern day fathers might
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Figure 4.2: A directed acyclic graph depicting the presumed relationships between
the Quality Improvement Frameworks introduced to the UK NHS and
mortality. This presumption deemed the methodological approach of
Differences-in-differences necessary and possible.

provide an interesting analytical setup: if causal research would detect no
relevant effects for fathers which are younger than those observed in our
study, this might provide evidence against parenting-related impacts on oral
health. Further research is needed to establish refined interventions against
tooth loss.

4.1.2 Case study 2

In the following section, the results of the second case study will be covered,
discussing conceivable causes and consider implications on causality based
on the causal frameworks introduced in chapter 1.
The cardiovascular health of the population of Stoke-on-Trent improved

faster from 2004, with statistically significant greater improvements seen in
Stoke-on-Trent when compared with most other populations. These were
associated in time with the 2004 QOF and the 2009 QIF. The national
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improvement was a reduction of 10 deaths per year per 100000 of the
general population; the additional effects associated with the QOF in Stoke-
on-Trent per annum were 36 CHD deaths per 100000 general population
and 166 CHD deaths per 100000 population of 65-74 years old.
Figure 4.2 displays a DAG that encodes assumptions about causal rela-

tionships contributing to the proclaimed association. The graph deliberately
contains only a sparse selection of variables deemed contributing - reflecting
both the fact that actual causal pathways are unclear and that only very few
confounders were measurable. The intervention scrutinized in this scenario
entails a variety of sub-interventions and influential factors of which many
likely interact and essentially none are available for analyses. The choice
of ITS as a methodological strategy therefore represents a valid means of
encountering such issues.

Stroke mortality in the 65- to 74-year age group showed that in addition
to the national effect of the 2004 QOF introduction of about -8.75 deaths per
100000 population, there was an additional reduction of around -5 deaths
per 100000 per year in Stoke-on-Trent.
Whether these changes are causally connected to the introduction of

QOF/QIF respectively is unclear. In chapter 2, it has been debated under
which assumptions DiD can be used to estimate the ATE. Most prominently,
estimation can only be unbiased if the common trend assumption is met
which can only be verified graphically. Figure 3.2 displays three time series
corresponding to outcomes in different localities, showing that the CTA is
a reasonable assumption. Remarkably, the strength of the associations is
large, as the estimates correspond to significant reductions in mortality rates.
According to the BHC, this strengthens claims of causality. These claims
are also strengthened by the coherent nature of the findings. Following the
2009 local introduction of the QIF, there were further significant reductions
of mortality rates for most conditions measured, again largest for CHD and
stroke. These effects remain when compared to the West Midlands but are
not detectable in comparison with peer localities. A possible explanation
for this is that when the QIF commenced, Stoke-on-Trent had improved its
implementation of evidence-based interventions in response to the QOF to
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improve cardiovascular health better than those peer localities; therefore, the
ability to further achieve a statistically significant reduction mortality was
reduced because much of the available benefits had already been achieved.
An alternative explanation is this might have occurred due to the statistical
impreciseness of the coefficients. The likely explanation of the failure to
detect a statistically significant reduction in stroke in <65-year age group
from 2009 is the low event rate at baseline and therefore the small number
of potentially preventable events in that age group, especially in relatively
small, sub-group population samples.

Benefits were greatest for the high-prevalence conditions amenable in the
short term to evidence-based interventions-blood pressure lowering and lipid-
lowering medicines, and the existing smoking cessation services and support.
Self-reported, short-term smoking cessation rates were high in Stoke-on-
Trent during this time (NHS England, 2013), and sample data showed that
hypertension and cholesterol levels improved locally during the relevant time
period. By 2014/2015, detection and control of hypertension were better
than comparable localities, while overall smoking, diet and activity indices
in Stoke-on-Trent continued to be adverse. A differential increase in the
effectiveness of the acute, secondary care treatment of myocardial infarction
and stroke in Stoke-on-Trent compared with other localities is a possible
but unlikely explanation for our findings. It seems far more plausible that
the mortality of high prevalence chronic diseases such as CHD and stroke
is more amenable to primary prevention interventions than secondary care
interventions.
That differences in mortality rates were detectable and associated with

the QIF that started in 2009, after 5 years of QOF, is a very interesting
finding. For there to be detectable, small mortality benefits across several
conditions, including diabetes, asthma and CKD where simple short-term
therapeutic interventions are less likely to result in detectable improvements
in mortality data-is notable. These consistent excess reductions in mortality
further increase the likelihood of a causal connection.
The results demonstrate that some important outcomes that health care

quality improvement schemes seek to address can be satisfactorily assessed

94 4 | Discussion



using publicly available mortality data. However, there are well-known
limitations to mortality data (notably diagnostic imprecision), and local au-
thority populations do not map directly to patients registered with practices
in clinical commissioning groups. This constraint, might explain part of the
effects found, even though the direction of error is unclear. Further, given the
large year-to-year variability in the data of the lesser prevalent conditions,
the corresponding results should be treated with care, since eventual effects
of any change could be concealed by random variation.

A detailed review of the literature evaluating pay-for-performance schemes
was undertaken to inform this evaluation. The evidence that large, complex,
pay-for-performance schemes improve the health of populations is mixed,
and no examples of local schemes similar to the Stoke-on-Trent QIF with its
multifaceted approach combining P4P, professional and managerial support
and monitoring, and educational co-initiatives were found. In summary, the
concerns with P4P schemes are a lack of evidence of benefits associated with
the schemes, loss of focus on conditions outwith schemes, schemes not being
relevant to local health priorities, mechanistic approaches to individual care
as clinicians ‘follow the rules’ irrespective of whether the intervention is
appropriate for that patient (including their values and preferences), and the
sheer burden of administration and management on the workforce. Perhaps
the most important finding in the many evaluations of the UK QOF is that it
was associated with a reduction in health inequalities (Doran et al., 2008);
this analysis supports that finding.

It seems plausible that both the QOF from 2004 and QIF from 2009 may
have contributed to reducing premature mortality from some important
conditions in this specific locality. Given the limitations of large, national,
pay-for-performance schemes, the question is what now replaces large-scale,
complex, invasive, mandatory measurement as the dominant approach in
some health systems to reduce unwarranted variation in provided care
(Berwick, 2016). Despite several inherent analytical limitations, a local, mul-
tifaceted scheme incorporating P4P alongside other locally agreed strategies
may improve the health of populations. In the short term, benefits may
only occur for common conditions for which there are simple, safe, effective,
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acceptable interventions in localities with high event rates. Benefits may
be more difficult to achieve when disease-specific pathophysiology is more
complex, and when event rates in the targeted diseases drop over time,
presumably in part due to early gains resulting from the more consistent
adoption of interventions in vulnerable populations. Nevertheless, local
approaches, if they are well led and managed, may overcome many of the
drawbacks of national schemes.

4.1.3 Case study 3

In the following section, the results of the third case study, utilizing In-
terrupted Time Series Analysis will be put into perspective, discussing
conceivable causes and consider implications on causality based on the
causal frameworks introduced in chapter 1. The findings of this study in-
dicate significant and quantitatively large shifts in treatment compositions
following regulatory changes to provider incentives in Denmark in 2015. By
having dentists classify patients into three distinct risk groups, these changes
were intended to effect a transition from six-to-twelve-monthly dental recall
intervals for every patient towards a more patient-centered model in which
patients with higher need should receive dental recalls systematically more
frequently than patients with lower need.
In comparison to the pre-reform period, our findings suggest that the

proportion of patients with dental recalls every 6 months or more often
increased by 1.2%-points, the proportion of patients with 6-12-monthly
recalls increased by about 0.7%-points and the proportion of patients with
more than 12-monthly dental recalls decreased by about 1.9% points. While
this distribution of recall intervals changed only to a relatively small extent,
the composition of utilized care items shifted substantially. For the time
period following regulatory changes, substantial increases in preventive
services and scaling as well as a substantial decrease in diagnostic services
were observed. Given the comparably low dental disease burden in Denmark,
these findings may appear to be somewhat against expectations.
In international comparisons, the Danish population has comparatively
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good oral health. According to WHO criteria, the Scandinavian countries be-
long to the so-called very low and low-caries prevalence countries (Petersen,
2003; Silveira Moreira, 2012), but there is still room for improvement due
to disparities related to social inequalities (Rosing, 2015).
However, in a recent review, the Danish Health Authority reported that

following the 2015 reform, only a minority of Danish patients were classified
as having a low oral disease risk. It was remarkable that - despite good oral
health - the majority of examined individuals were categorised as belonging
to the at-risk groups. However, following regulatory changes, most patients
(79%) were classified as either being at-risk or high-risk (Sundhedsstyrelsen,
2017). Following the reform, there were many payments for the FE-code,
pertaining to patients with active disease status only. This code also made
it mandatory to perform IPT (unlike before the reform, where preventive
treatment was to be performed only when found to be necessary by the
dentist), contributing to the steep rise in the usage of this code. Also,
the number of "scalings" increased in a similar manner, while the use of
diagnostic codes decreased - as most patients were assigned to the yellow
and red tracks, there were fewer basic examinations where diagnostics were
being performed routinely (see Figure 2.3). The volume of other types of
treatment changed only marginally.
It’s plausible that treatments vary in response to altered incentives as

has previously been reported (Brocklehurst et al., 2013; Chalkley and Listl,
2018), the type and extent of variation observed in the present paper may
still appear intriguing. It is relevant to note that facilitative problems have
been reported with respect to the regulatory changes examined in this study.
A recently published report pointed at misalignments in treatment codes
and care delivery, that is dentists were unable to receive a remuneration
for a filling that needed replacement unless the patient was classified as
having active disease (Healthcare in Denmark: An overview 2016). Appar-
ently, dentists categorised patients in the yellow (moderate) risk group in
order to get any remuneration. This was reported to have given rise to
approximately 20% of yellow risk group categorizations. Also, the use of the
initially introduced criteria for diagnosing gingivitis seemed to be affected
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by inaccuracy, resulting in a relatively large number of patients who were
diagnosed with mild gingivitis (yellow risk category). After revision of the
guideline, the criteria for mild gingivitis were changed so that individuals
with bleeding gums at 15% of sites or less could be classified as green instead
of yellow, leading to a 7%-point decrease in patients classified within the
yellow category (down from a baseline of 33% before the revision).

While a considerable proportion of patients might have been misclassified,
this may have happened for various reasons. Dentists may have exploited the
high-risk classes by increasing demand for their services for a financial gain,
taking into account that patients classified as "green" are inclined to visit the
dentist less often. If such behaviour was also linked to changes in clinical
activity, it may be questioned whether such changes were in the best interests
of the patient. In addition to provider incentives, other factors might prevent
movement towards a more individual-risk-based approach to recalls for
dental check-ups. First, assessing risk is not a trivial task (Cagetti et al., 2018),
especially for high-risk patients (Twetman et al., 2013). There have been
doubts regarding the usefulness of popular risk assessment tools (Clough
et al., 2016). Second, given the scarcity of conclusive evidence regarding
fixed vs. variable recall intervals (see above), it could be hypothesised that
dental care professionals may be reluctant to extend recall intervals for risk
of causing harm or potential (perceived) threats of legal action for alleged
malpractice. Some dentists may believe that the prolonged recall intervals
for the “green” category may be too long. Third, demand-side influences
may also play a role. For example, patients may have developed preferences
for a frequency of services that they have become familiar with over a longer
period of time or dentists might feel pressured by patients to categorize
them into the yellow risk group instead of the green one because patients
might have expectations or preferences to be seen semi-annually as they
have been before the reform. Following this logic, the "yellow" and "red" risk
classes might support both physician profit and (perceived) patient care.
These presumed causes can be nicely subsumed graphically (see Figure

4.3). However, it is deemed inconceivable to derive mathematical notation
of causality from this graph - much of these confounders are unavailable to
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Figure 4.3: A directed acyclic graph depicting the presumed relationships between
the introduction of a reform to remuneration in dental care in Denmark.

analyses. By and large, rationally explainable distortions in classifications of
patients into risk groups due to dentist or patient interests or preferences
may constitute only one possible explanation for the observed treatment
patterns. It is not always clear how best to roll out and sustain innovations to
health care systems while taking into account the perspective of all relevant
stakeholders and, at the same time, achieve the desired changes in health
care providers’ behaviour (Greenhalgh et al., 2004b). Given their standards,
beliefs and expectations, dentists and patients may react differently than
anticipated by health policymakers, leading to unpredictable consequences
(possibly caused by, e.g., utility maximization or rational/irrational behav-
ior).
Our study has limitations. First, there is no way of postulating intrinsic

claims of causality as conducting a sufficiently randomised experiment is
not possible at this scale (which contradicts Hill’s “experiment” criterion
of causality). As the calculations are based on unique patient-level and
population-representative data composed of all 72 million treatments car-
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ried out in Denmark from 2012 to 2016, statistical analyses of this study
do not suffer from pitfalls related to sampled data such as selection bias,
entirely eliminating the need of extrapolating statements to a larger popula-
tion. Also, the multifactorial nature of the data allowed an exact matching
of patients and treatments, giving rise to the application of fixed effect
methods and thus the modeling of unobserved inter-patient heterogeneity.
In total, the statistical approach used is highly robust and not very prone
to error and bias. However, our study suffers from the fact that detailed
individual risk groupings were not available for scientific evaluation. Despite
performing some robustness checks and using proxy variables for dental
disease risk (socio-economic status, age, previous treatment experience),
no more detailed analyses within actual classifications of risk groups could
be performed. This tarnishes causal claims as incorporating risk groupings
would make a causal connection more “plausible” in Hill’s sense (of course,
assuming no qualitative change in results). Another weakness of our study
was the lack of suitable outcome measures – while the DHA regulations
require dentists to monitor the number of carious and missing teeth as well
as the number of teeth with fillings, these data are limited to very narrow
age groups, hence they do not provide sufficient longitudinal character and
rendering the usefulness of the data for purposes of assessing oral health
outcomes non-applicable to the present study (see Appendix for details)).
Note that all treatment codes were changed with the introduction of the
regulatory changes (only exception: code for preventive treatment). While
this means that, by design of the regulatory changes, there was no possibility
for dentists to be slow in changing towards the new taxonomy of treatment
codes, data entry mistakes could still be a relevant issue. However, given
the absence of reliable reference values for dental diagnostics or treatment
needs, the extent of such coding issues is difficult to determine.

Successful implementation of healthcare reforms is a function of the dy-
namic interaction between evidence, context and facilitation (Cohen et
al., 2015). While it is often hard to translate research findings into modi-
fied provider behavior (Grimshaw et al., 2001), the problems encountered
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throughout the studied reform have mostly been contextually and facilita-
tive.
Moreover, implementing health system and practice changes through incen-
tives is highly complex and many various influencing factors can determine
success or failure of payment reforms (for a more detailed review of the
relevant literature see the introduction section above). Therefore, the ques-
tion arises how future implementations of similar systems can try to prevent
these problems. For example, a sensible amendment could be the use of a
monitoring system such as regular checks and inspections of dentists’ assess-
ment of oral disease risk scores by an independent regulatory institution.
This way, the use of risk categories might be better aligned with actual dis-
ease prevalence rates. Another conceivable scenario would be to connect a
risk-classification system and a Pay-for-Performance (P4P) implementation
based on the powerful assumption that individuals and organizations are
motivated to perform better by incentives (Witter et al., 2013). Literature
regarding previous implementations of P4P systems in dentistry is sparse, but
it has been suggested that P4P in dentistry may not be a viable option before
progress is achieved in the development of reliable indicators for quality of
dental care (Voinea-Griffin et al., 2010). Other conceivable options include
introductions of risk group quotas based on available evidence to regulate
the share of patients in each group. This approach was used as an ad-hoc
solution in the actual reform by the DHA in 2016 (Sundhedsstyrelsen, 2017).
In addition, the existing literature about program implementation suggests
it could be sensible to precede large-scale implementations with localised,
controlled implementation trials to estimate possible ramifications (Bauer
et al., 2015) as adaptations to implementations of health care reforms are not
uncommon (Escoffery et al., 2018). This would allow for a closely supervised
roll-out during which changes can be implemented smoothly and in a co-
productive manner (considering the perspectives of all relevant stakeholders)
in advance of large scale (and expensive) implementation. Not least, it is
important to bear in mind that health care payment reform may be shaped
by social and learning processes that can affect all stakeholders involved
(Conrad et al., 2015).
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It remains to be discussed how Campbell’s approach to causal inference
can be used to analyze causality in this study. In this study, the reform was,
to the knowledge of the researchers, not accompanied by events other than
planned treatment (i.e. history). Also, the risk subsumed as “maturation” is
not very prevalent as the reform was not incrementally introduced, rendering
changes during intervention impossible. The “instrumentation” risk, however,
poses a greater risk to internal validity for two reasons. First, as the study
is based on claims data, these claims may not be consistent across time,
within practices and ETC. Second, the reform was accompanied by changes
in remuneration codes, making comparisons between practices before and
after the reform challenging. As this study is based on a complete sample,
there is neither selection nor attrition effect in place.
Another way of reasoning about causation is presented by the Bradford-

Hill criteria. The first criterium, “strength of association”, demands that the
larger an association between exposure and disease, the more likely it is to
be causal. As it’s never objectively possible to call an association “strong” or
“weak” - arguments based on contextual information are deemed necessary
to do so, for example by comparing changes with baseline values. In the
current study, the share of sessions containing preventive items increased
from 0.153 by 0.310 (on average), from 0.753 by -0.345 for diagnostic items,
from 0.584 by 0.241 for sessions including scaling and from 2.413 by -0.012
regarding the total number of sessions. Considering that all these point
estimates have been calculated on non-sampled data, these comparisons
bolster the “strength of association”-argument, thereby strengthening the
causality argument in Hill’s sense.
The study does not uphold the “consistency” criterion as there are no

similar studies with a variety of locations, populations and methods showing
the same association. As also mentioned in the second case study, this is
often the case in studies analyzing impacts of policy reforms - the more
overarching and the more specific the reform, the less likely it is to find
comparable results reinforcing causality claims.
The “specificity” criterion is also hard to justify - there may be multiple

causes contributing to the found effect. In the above discussion, several of
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these possible causes were discussed. Figure 4.3 also displays this relation-
ship.

That being said, “temporality” is obviously given - as can be seen in figure
3.1, the steep changes in utilization begin right after the reform has taken
place. Interestingly, one could argue that there is a “biological gradient”
in place, i.e. a dose-response relationship, even though this term refers to
epidemiological or biological circumstances mostly. More accurately, some
of the treatment baskets (such as preventive items) are more affected by the
reform than others, and they also show the largest response to the reform.
This train of thought is complicated by the fact that these “doses” are only
assumed (in real-world biological scenarios, one could objectively increase
the dose and measure the response).

4.2 Putting things together - discussion on causal claims

In the earlier chapters of this thesis, three case studies relating to causal
inference on observational data were presented. While it was insinuated
that intrinsic causal inference is only possible when conducting randomised
experiments (leading to an estimate of treatment effects), it was shown how
observational data in conjunction with causal frameworks can be used to
deduce causal statements when certain identifying assumptions are met.
Matters are made easier by scenarios where randomized experiments can
be emulated.
In general, performing randomised experiments is often challenging in so-
cial, political and life sciences where proper randomization is unfeasible for
ethical, juristic or practical reasons. Thus, researchers are forced to resort
to either naively extrapolating statements from associational information
(attained typically from a linear regression design or a variation thereof) or,
more reasonable when applicable, using a method for causal inference on
observational data. The common discrepancy between the inferential goal
of causality and the reality of neither being able to capture causal effects by
design or analytically contributes to the mentioned methodological crisis. In
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this concluding section of the discussion chapter, the empirical applicability
of these causal frameworks will be discussed by contemplating how they can
be integrated in the case studies enlisted above and also research conducted
by others.

Tightly embedding the three causal models PCM, CCM and RCM within
the context of case studies utilizing quasi-experiments showed that each
of them can be used to better integrate causal thinking into scientific argu-
ments. The PCM forces researchers to wrap a priori assumptions of causal
relationships into causal graphs, the CCM enforces contemplating about
internal validity and the RCM encourages counterfactual thinking. This
section will start by enlisting the practicability of these frameworks based
on the three case studies discussed above.
The PCM in particular could unfortunately not be used for calculating causal
effects as suggested by Pearl, but rather for displaying presumed causal
relationships graphically. There were mainly three reasons for this. First, the
assumed causal graphs were so simple that the rules of d-separation were
not applicable. Second, there are always doubts regarding assuming the
correctness of priors such as contrived causal graphs - subsequent deduction
depend on them being correct and third, data availability gravely constricted
any inference possibly drawn from such graphs as many confounders deemed
necessary were simply not available for analyses.
As such, a direct application of the PCM requires benevolent data scenar-
ios which are mostly not given. The CCM, however, is easily applicable
as it is based on arguing in favour of internal validity. It was found that
these arguments are somewhat helpful during interpretation as they indi-
cate inappropriate conclusions from results stemming from selection biases,
regression-to-the-mean, instrumentation and so on. Still, it is likely that
researchers are aware of these limitations, anyway. Also, it is conceptually
similar to the Bradford-Hill criteria, which systematically cover principles
that subsume evidence for a presumed causal relationship between variables
(Hill, 1965a). These are implicitly used in established scientific discussion
structures: plausilibity and coherence ensure that results are consistent with
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the body of knowledge, strength, specificity, biological gradient and temporal-
ity ensure internal validity and experiment and analogy occasionally help
uncover similarities to experimental evidence or similar previous studies.
Similarly, the RCM is a powerful framework of causal thinking that forces
researchers to formulate counterfactuals (“What if”-questions) and allows
derivation of different types of treatment effects depending on the study
population. For example, as has been argued, instrumental variables are
only able to identify treatment effects for compliers. For this group, however,
these counterfactuals can be calculated, which is a powerful tool for causal
inference. Many of the econometric methods ultimately ensure exchange-
ability of units (and thereby calculation of counterfactuals) under study by
imposing identifying assumptions that then allow straightforward compari-
son of treated and untreated units. In essence, the RCM is an overarching
principle that all methods for causal inference can be condensed into - using
the case studies above, the generality of the RCM can be displayed. Any
causal inference can be ascribed to some form of counterfactual question:
these questions were “What would be the oral health of parents had they not
had children? (when in fact they had children)?”, “What would mortality
have developed like, had there not been quality improvement schemes in a lo-
cal NHS implementation?” and “How would the utilization in Danish dental
care system have developed had there been no re-design of the remuneration
system?”.
Also, by design, a very prominent facilitator of causal inference in obser-

vational studies is data with a time component: temporal precedence of
the cause over the effect has been exemplified as a necessity for causation
several times above. This precedence, however, also constitutes a chance to
perform valid causal inference (rather than just a necessity). Therefore, the
following section enlists, based on experiences drawn from the case studies
above, arguments for the usability of longitudinal and cross-sectional data
in causal inference research.
It seems natural that putative causes and effects should indeed be ordered
in time. By that logic, longitudinal data (where the same individuals are
followed over time either prospectively or retrospectively), are required for
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testing causal hypotheses. Such data can vastly help regression analyses as
they allow capturing “individual effects”, which are defined as per-individual,
unobservable, time-invariant characteristics (Fixed Effects). If these indi-
vidual effects are assumed to be the result of random variation, the model
of Random Effects may be applied. In general, application of these mod-
els (where possible) is beneficial as they allow controlling for unobserved
confounders correlated with observed explanatory variables and consistent
estimation of their effects.

Two of the case studies above utilised methods (DiD and ITS) make exten-
sive use of these counterfactual arguments by comparing units of observation
before and after an acclaimed cause has taken effect. The lack of such tempo-
ral features in data disallows a straightforward application of counterfactual
arguments as suggested in the RCM - elapsing time between measurements
of some outcome is contrary to the idea of counterfactual outcomes that
were measured at the same time and under the same circumstances.
It’s interesting that the identifying assumptions of DiD and ITS assume such
similarity of circumstances explicitly (e.g. by means of the common trends
assumption).

The study has limitations. The data acquired to conduct the studies above
originated from insurers incentivised through the European research project
ADVOCATE and the pan-European survey SHARE. It is well-established and
makes sense intuitively that data containing a large number of covariates
(as possible causal mediators) makes causal inference more plausible (Imai
et al., 2010). However, data availability turned out to be a major obstacle in
performing valid causal inference in observational studies. Complications
related to data availability were four-fold. First, it was found that in practice,
there is a significant gap between what some of the causal models implicitly
assume regarding availability of covariates as well as data in general and
what is typically available to researchers. This discrepancy particularly
relates to causal models that require significant covariate adjustment to
construct valid models for causal inference. For example, the PCM assumes
knowledge of a causal graph in which every mediating causal factor (i.e.
node) is covered by underlying data. If that is not the case as in our practical
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examples, only a subset of possible causal factors can be accounted for,
resulting in partly restricted, partly unclear interpretability of the remaining
graph.
Second, as was already discussed in the case studies, non-experimental

data available to researchers is often prone to selection bias, which may
eventually lead to entirely spurious associations and false inference (Ellen-
berg, 1994). Meanwhile, detecting selection bias is hard and avoiding it
typically requires a careful planning of studies (Hammer et al., 2009). In
presence of selection bias, regression coefficients are confounded with regard
to the function determining the probability that an observation makes its
way into the non-random sample (Heckman, 1979). In certain situations,
selection bias can be mitigated using Heckman correction where self-selection
is controlled using an additional predictor function. However, it has been
since shown that this method only works in special scenarios (particularly
in absence of multicollinearity) (Puhani, 2000).

The third practical obstacle encountered in this thesis were missing data
due to incomplete observations. (Rubin, 1976) points out that inferences
from such data generally depend on the observed pattern of missing data
where it is only appropriate to ignore missing data when they are “missing at
random” and the observed data are “observed at random”. Meanwhile, elab-
orate techniques have been developed to identify missing data mechanisms
and to statistically reflect this information, mostly related to the well-known
resampling technique of multiple imputation (Sterne et al., 2009).

Another major impediment for the analyses conducted in ADVOCATE were
data protection regulations. High standards of data privacy, requiring per-
sonal data to be processed lawfully and fairly based on the subject’s consent,
are valuable in modern societies and have been subject to intensive debates
in the recent past. Some of its requirements are, however, fundamentally
incompatible with the demands of scientific research, especially those that
require data processors to disclose the purpose of data processing and min-
imize their use of data as it is not always clear to researchers which data
are needed and which covariates might be useful for their future models.
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The digitation of medicine has made a pledge towards tapping vast public
health databases for research purposes. Data protection regulations such as
the GDPR are threatening to derail projects such as ADVOCATE that aim to
utilize such knowledge. For this reason, some data providers were only able
to provide aggregated data that were found mostly unusable for meaningful
analyses, let alone considerations for sensibly inferring causality. Further,
possible erasure of individuals’ data from health care records or health insur-
ance databases introduces another possibility of selection bias in analyses
if this selection is non-random and some characteristics of individuals who
have their data removed are correlated with the outcome of interest.
Further, even when suitable data is at researchers’ disposal, applying

quasi-experimental methods ultimately rest on the availability of suitable
interventions. Often, these are very hard to find as unlike in controlled,
randomised experiments, there is no active conduct of studies. Also, quasi-
experimental methods have narrowing premises that restrict external validity
and generalizability - for example, IV only identifies causal effects for a
subgroup of the study population having been affected by the instrument.
In the case study above, any statements therefore only apply to parents who
both had two children and also decided to get another one due to them
having the same sex. Generalization beyond this subgroup is then a matter
of reasoned argumentation. The causal frameworks can help support such
claims by providing causal graphs (as seen in Figure 4.1), argumentation
using counterfactual claims (“Would parents with two children of different
sexes plausibly have reacted similarly to the same sex instrument?”) and
using structured arguments as Campbell suggested. Lastly, it’s not always
clear in quasi-experiments if all identifying assumptions are met. As they (or
rather, some of them) are inherently untestable, researchers have to make
an a-priori effort to plausibly reason about the applicability of these methods
(this is very much similar to designing a randomised study).

Scientific work will always benefit from arguing in favour of causality.
This has become particularly relevant due to the ongoing methodological
crisis that states that many studies are not replicable. Partly, this is due to
researchers finding spurious correlations, selective reporting, or “p-hacking”
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(Pashler and Wagenmakers, 2012). It was shown that 14 % of researchers
alleged others of having fabricated and falsified data (at least 2 % conceded
own scientific misconduct) (Fanelli, 2009). Thus, future research should
make sure that they don’t fall prey to this by utilizing appropriate methods,
common sense and principles from reproducible science.
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Conclusion

In this dissertation, observational data were used in conjunction with meth-
ods for causal inference to deduct causative relationships between variables
of interest. Disregarding causality in empirical research altogether exposes
results to the risk of enormous biases and false interpretations. This is ar-
guably problematic as expressing the simple causal relationship between
two variables X and Y statistically is not possible in an explicit manner - a
problem known as the "fundamental problem of causality" where only one
of multiple possible outcomes manifests in the real world.
Meticulously conducted randomised experiments allow approaching an "as-
close-as-possible" replication of these multiple outcomes, thereby constituting
science’s greatest tool of attaining real causal inference. However, it was
argued that observational research, a major constituent of scientific progress,
does not possess this luxury. Researchers have to resort to methods designed
to emulate experiments (quasi-experimental methods) or make strong argu-
ments (in the form of, for example, grounded causal graphs) in favour of
possible causal interpretations. Thus, this work contributed to preventing
these shortcomings by attempting to integrate methods for causal infer-
ence on observational data with three frameworks to conceptually represent
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causal relationships - the frameworks of Neyman-Rubin, Pearl and Campbell.
It was found that these frameworks’ extensive causal implications are based
on strong theoretical assumptions that are hardly met in practice. While this
often forbids direct application of such frameworks, there is still merit for
scientists to attempt and integrate the general ideas of these frameworks into
their research: constructing strong counterfactuals (inspired by Neyman-
Rubin), building causal graphs (inspired by Pearl) and check-listing research
strategies to preemptively exclude threats to internal validity (inspired by
Campbell and Bradford-Hill).

The daunting replication crisis, publication bias and fake science have
wrongfully dented researchers’ reputations all over the globe. This world
full of alternative realities needs the neutral voice of science to articulate
strong facts more than ever.

Facts are stubborn things; and whatever may be our wishes, our
inclinations, or the dictates of our passions, they cannot alter the
state of facts and evidence.

(John Adams)
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Summary

This dissertation reflects the use of various methods of causal inference
using observational data based on three articles in health economics and
epidemiology. These case studies encompass analyses of the implementation
of a quality improvement framework in UK primary care (using Difference-
in-differences), the analysis of the impact of bearing children on oral health
(using Instrumental Variables) and the analysis of an implementation of
altered provider incentives in the Danish dental care system (using Inter-
rupted Time Series Analysis). All of these make use of methods utilizing
quasi-experiments that allow post-hoc derivation of causal effects if certain
identifying assumptions are met. Disregarding causality in empirical re-
search altogether exposes results to the risk of enormous biases and false
interpretations. This is arguably problematic as expressing the simple causal
relationship between two variables X and Y statistically is not possible in an
explicit manner - a problem known as the "fundamental problem of causality"
where only one of multiple possible outcomes manifests in the real world.
This thesis offers a remedy to this problem by showcasing how the causal
frameworks of Pearl, Campbell and Rubin may contribute to causal argu-
mentation and ultimately more robust research.
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Zusammenfassung

Diese Dissertation reflektiert die Anwendung verschiedenerMethoden kausaler
Inferenz unter Verwendung von Beobachtungsdaten auf der Grundlage von
drei Artikeln aus der Gesundheitsökonomie und Epidemiologie. Diese als
Fallstudien konzipierten Artikel umfassen Analysen der Implementierung
eines Rahmenwerks zur Qualitätsverbesserung in der Primärversorgung im
Vereinigten Königreich (unter Verwendung von Differenzen-in-Differenzen-
Verfahren), die Analyse der Auswirkungen des Gebärens von Kindern auf die
Mundgesundheit (unter Verwendung von Instrumentalvariablen) und die
Analyse einer Implementierung veränderter Anbieteranreize im dänischen
Zahngesundheitssystem (unter Verwendung der Analyse von Zeitreihen).
Bei all diesen Methoden werden Quasi-Experimente verwendet, die eine
post-hoc-Ableitung kausaler Effekte ermöglichen, wenn bestimmte identi-
fizierende Annahmen erfüllt sind. Die Missachtung der Kausalität in der
empirischen Forschung setzt die Ergebnisse insgesamt dem Risiko enormer
Verzerrungen und Fehlinterpretationen aus. Dies ist insofern problematisch,
als es nicht möglich ist, den einfachen kausalen Zusammenhang zwischen
zweier Variablen X und Y statistisch explizit auszudrücken - ein Problem,
das als "fundamentales Problem der Kausalität" bekannt ist, bei dem sich in
der realen Welt nur eines von mehreren möglichen Ergebnissen manifestiert.
Diese Arbeit soll daher aufzeigen, wie die Kausalmethoden von Pearl, Camp-
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bell und Rubin zur kausalen Argumentation und letztlich zu einer robusteren
empirischen Forschung beitragen können.
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Individual Preventive Treatment (IPT)
Applicability: IPT can be used in the presence of active caries, gingivitis,

mucositis around implants, marginal periodontitis and
periimplantitis. It may also be used in the presence of
other oral disorders which require preventive treatment.
Diagnoses underlying the preventive treatment must be
recorded in patients clinical documents. In order to per-
form this service, patients need to be classified as being
in either the yellow or the red risk group.

Details:
• Detection of the extent of the observed disease in-

cidence. It is explained to the patient how the
condition is known by symptoms and changes on
the tooth surfaces, in the gums and/or mucous
membranes.

• Tailored instruction in preventive measures for the
detected condition and presentation of available
treatment options.

• Detection and demonstration of disease-causing
plaque and of general plaque retaining factors.

• Instruction in self-care, with special attention to
individual needs appropriate for the individual pa-
tient.

• Information should be provided on risks related to
tobacco use and on specific damages tobacco can
cause in the oral cavity and on the importance of a
heathy diet.

• Provision of fluoride treatments of active caries le-
sions (maximum four times a year). Caries lesions
must be cleaned professionally beforehand (dental
floss or polish).

• Scale and/or polish for removal of plaque - if not
contained in other dental service within the same
dental visit, to support an understanding of good
oral hygiene.

Table 6.1: An overview of the most important remuneration codes in the Danish
dental health care system. A detailed version of treatment items can be
found in the Appendix (Table A1).
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Status examination (SE)
Applicability: The SE service forms the basis for the planning of neces-

sary preventive and treatment efforts until the next SE
or FE service can be carried out.

Details:
• Update of medical history.
• Removal of plaque.
• Clinical examination of teeth, periodontium, oral

cavity, mucosal surfaces, tongue and jaws.
• Screening for occlusal interferences.
• Update of charting tooth restorations and replace-

ments.
• Assessment of disease progression.
• Treatment planning including patient information

and involvement.
• Identification of risk factors.
• Diagnostics
• Determining the interval until the next examination

based on risk assessment and the individual need
of the patient.

• Categorization of the patient according to the
Health Authorities´ guidelines from 2013 into
green, yellow or red risk-category.

Table 6.2: An overview of the most important remuneration codes in the Danish
dental health care system. A detailed version of treatment items can be
found in the Appendix (Table A1).
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Focused examination (FE)
Applicability: A focused examination is a follow-up examination fo-

cused on a current disease problem.
Details:

• Update of medical history.
• Removal of plaque.
• Update of clinical examination focusing on progres-

sion of previously diagnosed disease.
• Update of diagnoses.
• Re-instruction in self-care, if necessary.
• Update of treatment planning.
• Determining the interval for the next focused exam-

ination or status examination based on individual
risk.

Table 6.3: An overview of the most important remuneration codes in the Danish
dental health care system. A detailed version of treatment items can be
found in the Appendix (Table A1).
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