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Abstract

Datadriven machine learning approaches have made computer vision solutions
more robust and easily adaptable to various circumstances. However, they are often
limited by their dependency on large datasets with accurate groundtruth annotations for
training. In most scene understanding tasks, like instance segmentation and object de
tection, training data is often scarce since annotations can not be measured directly from
the real world using sensors but instead have to be manually created by humans at large
cost. Virtual scenes could offer a feasible alternative in these cases since the full ac
cess to the underlying scene geometry enables generating fast and accurate annotations.
However, scene understanding models trained on rendered images often do not perform
well on real test images due to the difference in appearance between the synthetic and
real images.
This thesis proposes several new methods for images synthesis with focusing on gener
ating training images that could partially or totally replace real data for training deep
learning models. It first explore the use of augmented reality techniques for combining
synthetic 3D objects and real scenes. This can greatly reduce the effort needed for gen
erating diverse training scenes with accurate annotations. We study and compare the
effect of various factors of image generation on the performance of the trained scene un
derstanding models. To overcome the limitations of rendering engines, we next propose
a novel geometric image synthesis approach that generates geometrically consistent and
controllable images. The deep neural network learns to imitate the rendering process
while at the same time optimizing for an explicit realism objective making the resulting
images more suitable to train scene understanding models. Finally, to alleviate the need
for rendered images, we introduce an unsupervised neural rendering model trained only
using unpaired 3D models and real images of similar object class. This is achieved by
learning the forward rendering and backward decomposition processes jointly. The re
sults in this thesis indicate that deeplearning based image synthesis models could be an
efficient tool for generating realistic images and highquality synthetic training data.
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Zusammenfassung

Datengesteuertemaschinelle Lernansätze habenComputerVisionLösungen robus
ter und leichter an verschiedene Umstände anpassbar gemacht. Sie sind jedoch oft
eingeschränkt durch ihre Abhängigkeit von großen Datensätzen mit genauen Ground
TruthAnnotationen, die für das Training benötigt werden. Bei den meisten Szenen
verstehensaufgaben, wie z.B. der Instanzsegmentierung und Objekterkennung, sind die
Trainingsdaten oft knapp, da Annotationen nicht direkt aus der realen Welt mit Hilfe
von Sensoren gemessen werden können, sondern stattdessen manuell vonMenschen mit
großemAufwand erstellt werdenmüssen. Virtuelle Szenen könnten in diesen Fällen eine
praktikable Alternative bieten, da der volle Zugriff auf die zugrundeliegende Szenenge
ometrie die Erzeugung schneller und genauer Annotationen ermöglicht. Allerdings führt
die Benutzung von Szeneverständnismodellen, die auf gerenderten und daher synthetis
chen Bildern trainiert wurden, bei realen Testbildern aufgrund des unterschiedlichen
Aussehens zwischen den synthetischen und realen Bildern oft zu keinen guten Ergeb
nissen.
In dieser Arbeit werden mehrere neue Methoden für die Bildsynthese vorgeschlagen,
wobei der Schwerpunkt auf der Erzeugung von Trainingsbildern liegt, die reale Daten
für das Training von DeepLearningModellen teilweise oder ganz ersetzen können.
Zunächst wird die Verwendung von AugmentedRealityTechniken zur Kombination
von synthetischen 3DObjekten und realen Szenen untersucht. Dies kann den Aufwand
für dieGenerierung diverser Trainingsszenenmit genauenAnnotationen stark reduzieren.
Wir untersuchen und vergleichen die Auswirkung verschiedener Faktoren der Bilderzeu
gung auf die Leistung der trainierten Szenenverstehensmodelle. Um die Einschränkun
gen von RenderingEngines zu überwinden, schlagen wir als nächstes einen neuarti
gen Ansatz zur geometrischen Bildsynthese vor, der geometrisch konsistente und kon
trollierbare Bilder erzeugt. Das tiefe neuronale Netzwerk lernt, den RenderingProzess
zu imitieren, während es gleichzeitig für ein explizites RealismusZiel optimiert wird,
wodurch die resultierenden Bilder besser geeignet sind, umModelle zum Verstehen von
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Szenen zu trainieren. Um den Bedarf an gerenderten Bildern zu verringern, führen wir
schließlich ein unbeaufsichtigtes neuronales RenderingModell ein, das nurmit ungepaar
ten 3DModellen und realen Bildern ähnlicher Objektklassen trainiert wird. Dies wird
durch gemeinsames Lernen der Vorwärtsrendering und Rückwärtszerlegungsprozesse
erreicht. Die vorliegende Arbeit zeigt, dass DeepLearningbasierte Bildsynthesemod
elle ein effizientes Werkzeug zur Erzeugung realistischer Bilder und hochwertiger syn
thetischer Trainingsdaten sein könnten.
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Chapter 1

Introduction

The modern approach to Artificial Intelligence is largely centered around using Ma
chine Learning methods that utilize large collections of data to create highly adaptive
solutions to difficult problems. In Computer Vision, the importance of learning fea
ture extraction and visual perception models from data became especially visible after
deep neural networks quickly overtook classical handcrafted methods in performance
on a wide range of visual tasks. Indeed, the flexibility of learningbased approaches
opened new possibilities and accelerated the development in previous tasks since the
same learning algorithm developed for one task could be quickly adapted to work for
another task by changing its training data. But to better understand the relation between
visual perception and learning, it is worth to ask first a more fundamental question: Is
visual perception in Humans learned or innate?

The Human Visual System starts with the eyes which focus light coming from the
environment on light sensitive cells in its retina. The first image processing already oc
curs here by the bipolar, horizontal and ganglion cells which aggregate the signal from
those 100 million photoreceptors into around 1 million axons that transmit the infor
mation to the brain. However, most visual information processing that we consider as
“seeing”, like depth perception, motion detection, and object recognition, happens in
the visual cortex of the brain. But the question of whether these abilities are innate
or learned by experiencing the world has captured the interest of many philosophers,
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psychologists and scientists over the centuries. The 12th century Andalusian philoso
pher Ibn Tufail alluded to the concept of learnable vision [200] which was developed by
WilliamMolyneux [174] in the 17th century into the following thought experiment: If a
blind man who can feel the differences between shapes such as a sphere and a cube was
suddenly able to see, could he distinguish them by sight alone? The British empiricist
philosopher John Locke’s (1689) answer to this question was “Not. For, though he has
obtained the experience of how a globe, how a cube affects his touch, yet he has not
yet obtained the experience, that what affects his touch so or so, must affect his sight
so or so” [115]. This view that perception can only be directly learned from sensation
and experience was the opinion of many empiricist philosophers and psychologists like
Barkley (1709), Hobbes (1651), Hume (1758) and William James (1890) [94]. Start
ing in the 1950s, modern developmental psychology and cognitive science opened the
doors to scientifically investigation of the question of learnable vision through the study
of perception of human infants. The work of James and Eleanor Gibson [57] challenged
the view that visual perception is actively learned and instead suggested that perception
depends on hardwired features in the brain constructed through evolution. This theory
was later advanced in computational approaches to perception by Marr [124]. The mod
ern view of human visual perception is that it developes from innate foundations. But
learning plays an important role in improving and calibrating some abilities while can
be key in developing some others [94].

The invention of digital imaging combined with the rapid increase in power and
availability of computation in 1970s led to a large interest in visual perception concepts
but with a new computational perspective. Thus, the research field of Computer Vision
was established with the goal of imitating this human ability to understand visual in
formation using computational systems. During the earlier years of its history, many
researchers focused on crafting physicallybased computational models for reconstruct
ing a scene and its properties from images. Computer Vision has been largely seen
during this time as “inverse graphics” where methods like shapefromshading [76] and
shapefromstereo [210] attempted to use the physical knowledge about the image for
mation process to reverseengineer the scene from one or few images. This, however,
often required making several simplifying assumptions about the imaging process and
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scene structure like pinhole cameramodels, calibrated noisefree image sensors, smooth
geometry, single directional lighting, Lambertian materials andmany others. Those con
ditions are rarely met in real images taken “in the wild”, therefore limiting the usability
of such handcrafted models. Additionally, this meant that new solutions and algorithms
had to be invented for each task and scenario which greatly slowed down progress.
To deal with the large variability and complexity of real images, researchers instead
turned to supervised machine learning models. Instead of exploiting knowledge of the
task and scene structures, this class of learningbased algorithms relies heavily on la
beled training examples to build a good prediction model of target scene properties that
can generalize to new images. This approach pushed forward the stateoftheart per
formance on many computer vision tasks sustained by the continuous improvements
in Deep Neural Network architectures, the large increase in dataset sizes and the wide
availability of parallel computational power through the use of Graphical Processing
Units (GPUs). Datadriven machine learning models helped advance computer vision
from engineering single solutions to building more generic algorithms that can easily be
adapted to new tasks and circumstances [127]. However, their Achilles’ heel remained
in their dependance on accurately labeled training data.

1.1 Motivation

1.1.1 Data is the new algorithm

The performance of deep learning models is strongly dependant on three factors: com
putational power, the model size and the amount of training data. Recent experimental
studies in deep language models [88] show that each one of those three factors con
sistently follows a powerlaw relation to the performance, when not bottlenecked by
the other two. A similar study [188] on deep vision models unveiled that the power
law relation between the dataset size and performance still holds even when increasing
the dataset size by twoorders of magnitude while keeping the model size and compute
power fixed. This suggests that even with current vision models, the available train
ing data is still the limiting factor. What makes scaling datasets in computer vision
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difficult is that creating groundtruth annotations is often done manually by humans,
which means the cost of labeling larger training datasets grows linearly while their per
formance impact only grows logarithmically. For some tasks like image classification,
crowdsourcing methods were especially successful since labeling millions of real im
ages [170] manually or hundreds of millions [33, 73] semiautomatically is still feasible.
However, annotating images for tasks which require dense pixelwise predictions, like
motion estimation or intrinsic image decomposition, is very laborious and sometimes
infeasible for human annotators. Synthetic data generation using computer graphics is
increasingly used as an alternative to create accurate training data automatically at scale
(see Fig. 1.1). However, two factors limit it from being a solution to the data scarcity
problem. First, rendering has been historically tuned to produce visually appealing rather
than physically accurate images, which can introduce strong bias into the learned vision
model. Secondly, the cost of creating realistic and rich simulated worlds is very large and
hard to scale. For example, the cost of creating video games has grown exponentially in
the past 20 years [102] and can reach hundreds of millions of dollars [183] for a single
virtual city. One motivation for this thesis is to alleviate these limitations by exploring
new paradigms of image synthesis that can close the realism gap between synthetic and
real images. It is believed that scalability of training data is one of the major challenges
facing deep vision models in the future and using image synthesis techniques presented
in this thesis could be an important step toward making larger and more powerful models
possible.

1.1.2 Autonomous driving in the real world

This thesis largely focuses on scene understanding tasks in the context of automotive sce
narios. Autonomous driving is one of the most promising and yet difficult applications
of machine learning and computer vision in the next decades. The data challenge here
is not only limited to the amount of annotated training images, but also in the diversity
and controllability needed to build robust and safe driving systems. Critical and danger
ous scenarios can be extremely rare in real data, yet they are the most crucial since the
system’s reaction to critical events like accidents is of highest importance. Fig 1.2 gives
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Figure 1.1. The percent of published machine learning research papers using the terms
”synthetic data” in title or abstract according to ScienceDirect database (data from
[198]).

some examples of rare driving situations that humans can easily deal with but can pose
a serious challenge for autonomous driving models trained on common driving datasets.
Validation against such dangerous scenarios is essential when failures can be fatal but
it is only feasible through realistic and controllable synthetic data. A recent study esti
mated that to achieve 95% confidence that an autonomous driving system has reached
humanlevel failure rate, it needs to be tested for 440 million kilometers [87, 100]. Even
with a test fleet of 100 cars driving 24 hours at 60 km/h, each system would require
around 8 years to be validated. This strongly indicates that simulations are going to be
an integral part of bringing autonomous driving systems safely into the real world.

1.1.3 The Realism Gap

While traffic modeling and physical simulation systems are relatively mature fields, the
problem of generating realistic images from simulated environments has not been solved
yet. Classical rendering algorithms, which have been engineered and tuned to produce
visually pleasing results for humans, often fail to produce good training data for scene
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(a) examples from Mapillary [142] (left) and Cityscapes [34] (right) driving datasets.

(b) Examples of rare but dangerous scenarios in real life.

Figure 1.2. Autonomous driving datasets often focus on average common driving scenes
and traffic situations. However, some rare situation in the real world can pose a seri
ous and maybe dangerous challenge for autonomous driving systems trained only on
common driving scenes.

understanding deep learning models. One motivation of this thesis is to explore the
causes behind this difference and test possibility of learning the rendering process using
a neural network. Combining datadriven neural rendering methods with an explicit
realism loss can help reduce the performance gap between real and synthetic training
data.
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1.2 Contributions

The contributions in this thesis are summarized here:

• We propose an alternative paradigm for generating training and test data for learn
ing semantic instance segmentation and object detection models which combines
real and synthetic data. Exploiting the fact that not all aspects of the scene are
equally important for target tasks, we propose to augment realworld imagery
with virtual objects of a target category. Specifically, we develope an efficient
procedure for augmenting urban driving images with virtual car objects.

• We analyze the significance and contribution of different aspects of the image
generation and augmentation process on the generated training data quality. This
includes rendering quality, background realism, postprocessing and realistic ob
ject placement in augmented scenes.

• We propose a trainable, geometryaware image generation method that leverages
various types of scene information, including geometry and segmentation, to cre
ate realistic looking natural images that match the desired scene structure. Our
geometricallyconsistent image synthesis method is a deep neural network which
retains the advantages of a trainable method, e.g. differentiability and adaptive
ness, but, at the same time, makes a step towards the generalisability, control and
quality output of modern graphics rendering engines. We utilize this framework
to insert vehicles in outdoor driving scenes, as well as to generate novel views
of objects from the different datasets. We qualitatively show that our network is
able to generalize beyond the training set to novel scene geometries, object shapes
and segmentation. Furthermore, we quantitatively show that our framework can
be used to synthesize large amounts of training data which proves beneficial for
training instance segmentation models.

• We propose a novel approach to train a neural deferred renderer using unpaired
3D geometry and 2D appearanceimages. We train a joint model for both generat
ing realistic images from synthetic 3D models and the inverse problem of getting
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intrinsic properties like shape and albedo from real images. We demonstrate that
training the two inverse tasks jointly using unpaired real and synthetic datasets can
improve in both. In contrast to a traditional graphics pipeline, this approach does
not need to specify all remaining object properties, such as material parameters
and lighting, which often require expert skills.

• We introduce two new datasets to help evaluate the proposed synthetic augmen
tation and image synthesis methods:

– KITTI2015 semantic, instance and panoptic segmentation dataset is an
extension of the popular KITTI dataset and benchmark [131] into 3 new seg
mentation tasks. Semantic and instance level image annotations of 200 train
ing images and 200 test images from the original KITTI2015 dataset were
labeled through crowdsourcing services and were then carefully inspected
for quality control. The training data and a public evaluation benchmark
were made publicly available as part of the KITTI benchmark. The panoptic
segmentation [99] labels were created by combining the semantic and in
stance segmentation. Additionally, I contributed in organizing two editions
of the Robust Vision Challenge [221, 222] which included this new dataset
as part of the multidataset benchmark to test robustness of computer vision
algorithms.

– KITTI360 is a dataset specialized for developing and testing virtual object
augmentation in driving datasets. It consist of two parts:

⋄ A set of 28 3D models of cars with 32 high quality physicallybased
materials including 16 different car paint materials and scripts for gen
erating realistic rendered and postprocessing images.

⋄ A set of 200 image from the KITTI360 [214] manually annotated with
accurate car instance masks with matching 360◦ environment maps.



1.3. List of published research papers 9

1.3 List of published research papers

The remaining chapters of this thesis are based on the following published research pa
pers.

• Alhaija, H. A., Mustikovela, S. K., Mescheder, L., Geiger, A., & Rother, C. Aug
mented reality meets deep learning for car instance segmentation in urban scenes.
In British machine vision conference (BMVC) 2017 [3].

• Alhaija, H. A., Mustikovela, S. K., Mescheder, L., Geiger, A., & Rother, C. Aug
mented reality meets computer vision: Efficient data generation for urban driving
scenes. International Journal of Computer Vision (IJCV), 2018 [2].

• Alhaija, H. A., Mustikovela, S. K., Geiger, A., & Rother, C. Geometric image
synthesis. In Asian Conference on Computer Vision (ACCV) 2018 [1].

• Alhaija, H. A.∗, Mustikovela, S. K.∗, Thies, J., Jampani, V., Nießner, M., Geiger,
A., & Rother, C. Intrinsic Autoencoders for Joint Deferred Neural Rendering and
Intrinsic Image Decomposition. In International Conference on 3D Vision (3DV)
2020 [4].
(∗: Equal contributions)
Declaration: The idea for this paper and the initial implementation was done by
me. Siva Karthik Mustikovela led the first stage of experiments and development
while I was doing an internship. After returning, I led the second stage of experi
ments and development. The paper writing has been done jointly with him.

Additionally, I contributed to the following related research papers during working on
this thesis. They will not be discussed here.

• Swoboda, P., Rother, C., Alhaija, H. A., Kainmuller, D., & Savchynskyy, B. A
study of lagrangean decompositions and dual ascent solvers for graph matching.
In Computer Vision and Pattern Recognition (CVPR) 2017 [189].

• Behl, A., Hosseini Jafari, O., Karthik Mustikovela, S., Alhaija, H. A., Rother,
C., & Geiger, A. Bounding boxes, segmentations and object coordinates: How
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important is recognition for 3d scene flow estimation in autonomous driving sce
narios? In Proceedings of the IEEE International Conference on Computer Vision
(ICCV) 2017 [12].

• Richter, S., Alhaija, H. A., Koltun, V., Enhancing photorealism enhancement
ArXiv 2021 [163].

1.4 Outline of The Thesis

The remaining part of this thesis is structured as follows: In Chapter 2 we present the cur
rent strategies for generating real and synthetic training data and discuss the challenges
facing them. We next give a background on the growing field of neural image synthesis
and its potential as a competitor for the classical rendering pipeline. In Chapter 3 we
introduce a novel augmentedrealitybased method for generating training images with
accurate groundtruth annotations in urban driving scenarios. Here we study the effect
of various factors of image generation on the training performance of the generated aug
mented data. Chapter 4 introduces Geometric Image Synthesis, a neural network model
for generating geometryconsistent images from input 3D models with an explicit real
ism loss. Next, in Chapter 5 we present a novel unsupervised method for jointly learning
neural rendering and intrinsic image decomposition from unpaired sets of 3Dmodels and
2D images. Finally, we conclude in Chapter 6 with a discussion of the contributions in
this thesis and an outlook of possible future directions.



Chapter 2

Background

2.1 Real data for deep learning

In statistical learning theory [202], the goal of a learning algorithm is to use a training
set of input/output pairs to find a function that can best predict the output of new un
seen input samples called a test set. This definition implicitly includes two important
assumptions: First, that both training and test sets are sampled i.i.d.from the same data
distribution. And second, that the training set is accurate, large and diverse enough to
represent the full complex data distribution. In computer vision applications, the first
condition implies that using real training images is preferred since the ultimate goal is
to predict some properties of a real scene from one or few images of it. However, the
second condition is much harder to satisfy using real data since real training images are
usually labeled manually by humans which puts a limit on their accuracy and scalability
due to high cost of annotation. Crowd sourcing platforms, like Amazon Mechanical
Turk, have greatly reduced the cost of labeling large image datasets by distributing the
task among a wide population of workers. However, this humandriven approach to
training data generation has its limits and drawbacks. This section describes three ma
jor challenges facing manual annotation as a way to create training data and a popular
method to cheaply expand computer vision training sets through image transformation.

11
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2.1.1 Challenges

Scale. Recently proposed Deep neural networks architectures have shown a clear trend
toward increasing the number of network layers and therefore the number of learnable
parameters of the model. Just in the past 7 years the number of parameters in the state
oftheart image classification models has increased from tens of millions [182] to hun
dreds of millions [78] to billions [179]. This increase in model capacity, without strong
overfitting, was only possible due to the relatively large available datasets for image
classification, namely ImageNet dataset [170]. Moreover, Sun et al. [188] have shown
that using a dataset 300 times bigger can still yield improved performance for large im
age classification models. The catch, however, is that the performance improvement
only grows logarithmically with the size of the dataset. Figure 2.1 shows how an order
ofmagnitude more data is needed for a linear improvement in performance. Even with
the reduced cost of annotation through crowd sourcing, the increase in labeling costs is
still linear with the number of labeled examples which makes manual labeling a very
costineffective method for improving a model performance beyond a certain threshold.

Feasibility and accuracy. Computer vision tasks can be very different in the time and
effort needed for labeling an image by a human annotator. This can vary largely between
tasks like image classification where a single choice of label per example is needed,
to dense annotation tasks like semantic and instance segmentation which can take up
to 2 hours of annotation time per image [34]. Such difficulties in labeling can also
reduce the accuracy of the results either due to the ambiguity of the task for humans (Fig
2.2b) or disagreement between different human annotators on the solution (Fig 2.2a).
Moreover, some tasks require special skills or knowledge for annotation like 3D object
reconstruction or bioimaging applications. Other tasks are not even feasible for humans
to manually annotate like dense depth or motion estimation.

Control and rare scenarios. Manually labeling images randomly collected from the
real world is a good way to ensure the training dataset is unbiased and reflects the true
data distribution. This unbiased approach operates under the assumption that the dataset
size is large enough to cover all real world scenarios with enough samples. In some
applications, however, critical scenarios can be more important to learn for a model
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(b) Object detection

Figure 2.1. Results from [188] show how the performance of object detection on the
the COCO minival dataset changes depending on training set size and model capacity.
(a) When the model is pretrained on subsets of the the JFT300M dataset, the perfor
mance improves linearly with the exponential increase of the training set size. (b) The
higher capacity models are better at utilizing the larger JFT300M dataset compared to
ImageNet.

while being very rare in the real data. Collecting a large dataset of such critical data can
be difficult, dangerous or costly. For examples, in Autonomous Driving applications
the real training data is usually collected by driving cars in real traffic with high level
of safety measures to avoid accidents. However, examples of accidents are crucial for
training a safe and reliable Autonomous Driving system that is able to deal with rare but
dangerous situations, which creates an ethical paradox.

2.1.2 Image Transformations for Data Augmentation

A common way to improve the effectiveness of a training dataset is to exploit the knowl
edge of the data invariance by artificially introducing transformations that alter the data
without invalidating its groundtruth label. These data augmentation techniques are of
ten used to reduce the overfitting problem especially when the dataset size is small
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(a) Berkeley Segmentation Data Set (BDSD500) [7]

(b) KITTI2015 segmentation dataset examples.

Figure 2.2. Challenges with human annotated datasets. (a) Shows the different results
given by different human workers when asked to segment the image from the BDSD
dataset [7]. (b) Shows a difficult situation in two consecutive images in the KITTI2015
dataset where the human annotator labels the wall on the right as “building” in the first
and “wall” in the second. Similar inconsistencies can be noticed for the forklift in the
center, the lighting poles, and car group in the back.

compared to the model capacity. For example, Krizhevsky et al. [104] reported in their
landmark work on ImageNet classification reported over 1% performance improvement
by using random cropping, horizontal flipping and simple color shifting during train
ing. Since then, a large variety of data augmentation operations have been proposed in
the literature including adding image noise [140], random style transfer [81] and ran
dom erasing [227]. The goal of the data augmentation step is not to increase the dataset
size but rather improve the quality of the information extracted from it by the model.
Therefore the expected benefit from the augmented samples is much smaller than from
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new independent data samples and the performance increase is limited by the variance
already existing in the dataset.

2.2 Synthetic data for deep learning

A possible alternative to annotating real training images is to use an exact or approxi
mate process to generate input/output pairs for train a machine learning model. This can
be especially applicable when the process of generating an input from an output is easier
that predicting the output from the input. For example, generating gray scale or low
resolution images from high resolution colored ones is an easy and exact process which
can be used to generate a theoretically unlimited amount of training data for the tasks
of image colorization and superresolution. However these situations are the exception.
And in most scene understanding tasks, the input is one or few images of a scene and
the output is some unknown label or information about the scene that is nontrivial to
compute from the input, e.g. semantic segmentation. In these cases, an exact automated
process of generating real training data is not defined. Instead, an approximate process
for generating images with groundtruth labels can be used to build synthetic training
sets that could replace or enrich manually labeled real training data. This synthetic data
generation approach has gained more importance recently (see Fig. 1.1) because it offers
two main advantages. First, the cost of setting up the synthetic training data generation
process is often constant and independent of the amount of generated data. This makes
it more cost efficient for creating large training datasets for deep learning applications.
Second, the generated groundtruth annotations are usually accurate, consistent and de
tailed.
In the following we discuss the main 3 types of Synthetic data generation strategies and
their challenges.
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(a) Synthia dataset [167] (b) Virtual KITTI 2 dataset [21]

(c) Playingforbenchmarks dataset [164] (d) SynScapes dataset [211]

Figure 2.3. Examples of several synthetic datasets for autonomous driving applications.

2.2.1 Classical rendering

A rendering algorithm can be defined in general as the process of generating an im
age from a scene definition which can include geometry, materials, lights and a camera
model [193]. Most classical rendering algorithms follow one of two approaches: Raster
izationmethods project the 3D objects in the scene onto the image grid and compute their
visibility and appearance based on their position in space. These methods are largely
used in realtime graphics due to their simplicity and possibility to be easily parallelized.
Ray tracingmethods compute the color value at each pixel by sending multiple ray sam
ples from the camera center through the pixel into the scene and then recursively track
those rays as they bounce and interact with different objects and materials in the scene
until they hit a light source or reach the maximum number of bounces. Such techniques
are much more computationally demanding but can produce very realisticlooking im
ages especially when combined with physicallybased material models. These models
are often used in offline rendering applications like animation movies and visualiza
tion. Most recently, Physicallybased rendering [154] techniques where able to achieve
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Training Data Type Dataset FRRN Mean IoU DeepLab Mean IoU

Synth
Synthia[167] 21.78% 32.73%
GTA[164] 20.88% 32.20%
SynScapes[211] 45.20% 50.35%

Domain Gap

Real Cityscapes (CS) 68.27% 76.56%

Synth+Real
Synthia+CS 69.89% 77.45%
GTA+CS 70.76% 77.57%
SynScapes+CS 74.52% 78.85%

Table 2.1. The domain gap between real and synthetic training data. The results from
[211] show the difference in performance of two semantic segmentation models (FRRN
[157] and DeepLab [26]) when trained on synthetic, real or real+synthetic datasets and
tested on the real Cityscapes [34] validation set.

unprecedented levels of photorealism by deeply integrating the physical properties of
matter and building accurate models of lightmatter interaction [154].
In computer vision, one of the first uses of virtual scene and rendering was to create syn
thetic images with accurate optical flow [10, 69] for the purpose of evaluating different
optical flow estimation algorithms. Similarly, the MPISintel dataset [20] used an open
source 3Dmovie in Blender [15] to create a synthetic dataset for training and benchmark
ing optical flow estimation models. The increasing popularity of deeplearning models
in computer vision applications led to an increase in using virtual data and classical ren
dering to create large synthetic datasets that bridge the gap between the datademanding
machine learning models and the scarcity of real training data in many domains. In
the automotive driving scenario, projects like VirtualKITTI [21, 50], SYNTHIA [167],
CARLA [43] and Synscapes[211] all built custom virtual urban environments and used
different simulation and rendering techniques to create realistic and accurate training
data with full control over the scene contents. Others [5, 86, 164, 165] leveraged al
ready existing video game environments to capture training data. For indoor scenes,
synthetic datasets like SUNCG[184] and SceneNet[128] have helped accelerate research
in indoor scene understanding and robotic navigation tasks since collecting real data in
this domain is often hard due to either privacy concerns or technical difficulties in 3D
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scanning indoor environments. Other projects like AI Habitat[123], Gibson[212] and
AI2THOR[101] also use fully simulated indoor virtual scenes to move from “Static
AI”, i.e. training machine learning system on fixed static datasets like ImageNet, to
“Embodied AI” where the learning algorithms is trained through its continuous interac
tion with the environment. Synthetic data also plays a large role in many other domains
of computer vision research like human body reconstruction [118, 159, 203] and UAV
navigation [49, 178]. Despite its wide adaptation, synthetic image data generation using
classical rendering faces several significant challenges.

2.2.2 Challenges

Virtual scene construction. An unlimited number of images can theoretically be ren
dered from a virtual scene just by moving the camera position or shuffling the poses
and colors of objects in the scene. This simple method for creating variance and diver
sity in synthetic data can be enough for some tasks like optical flow [127]. However,
for most scene understanding tasks, like Autonomous driving or indoor navigation, the
context of the object can be as important as its appearance. This requires virtual scenes
to be carefully designed and constructed to accurately imitate the complex and variance
of the real world in order for the rendered training data to be useful, which is costly
and timeconsuming. For this reason, virtual urban driving environments like Virtu
alKITTI [21, 50], Synthia [167] and CARLA [43] often include only a handful virtual
towns with only a few blocks and highly repetitive building templates. One proposed
solution has been to reuse the large complex virtual world from established video games
like Grand Theft Auto [5, 86, 164, 165] for generating synthetic training data. This can
greatly enrich the variety and quality of the data. But it comes at the cost of less control
over the environment since the data is mostly collected by reverse engineering the game
rendering pipeline without full access to its assets and simulation engine.

Rendering photorealism. To create perfect training data for a learning algorithm, a syn
thetic data generator should mirror the real data generation process to avoid introducing
any unwanted biases. This means that a rendering engine would have to accurately
simulate the physical lightmatter interaction process on a subatomic level in order to
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reproduce all the optical phenomena that are captured in a real image. This is com
putationally infeasible and limited by our understanding of the physics of lightmatter
interaction. Instead, the longstanding goal of most rendering algorithms has been to
achieve photorealism, defined as producing images that are indistinguishable to a human
observer from real photographs. This focus on perceived realism rather than physical
accuracy allows them to exploit the limitation of the human visual system and employ
several approximations and heuristics to improve computational efficiency without sac
rificing photorealism. Deep neural networks, on the other hand, learn to extract useful
features from the training images directly. This means they can pickup on various opti
cal effects, patterns and artifacts unique to rendered images that are not noticeable to the
human eye. Experimental results in Table 2.1 show how stateoftheart semantic seg
mentation models trained using only realtime rendered images from the GTA [164] and
Synthia [167] datasets fail to achieve the same performance on real test data compared
to networks trained using real training images. Using more advanced ray tracing and
physicallybased rendering techniques, SynScapes dataset [211] is able to achieve very
high level of photorealism (2.3) and significantly improve training performance com
pared to realtime rendering result. However, it still falls short when compared to train
ing on real images even when using a much higher number of rendered images. These
results indicate that the humanbased photorealism of rendered images is not enough to
predict their effectiveness as training data for deeplearning models. And a new more
objective way to measure the quality of rendered images as training data is needed.

Imaging artifacts. Another source of disparity between real and rendered images is the
presence of noise and aberrations in real images caused by the the characteristics and
limitations of real camera systems. Meanwhile, rendering engines mostly use the pin
hole camera model which assumes that light rays coming from the scene pass through
an infinitely small pinhole and transfer the scene information perfectly onto the image
without any distortions. While the pinhole camera model is simple, using it to take
real photos is not practical since it would require an extremely strong source of light in
the scene to project a bright and focused image on the sensor. Instead, a real camera
uses a complicated optical system consisting of multiple concave and convex lenses that
help collect light from the scene and focus it on the imaging plane. Each one of those
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lenses has its own optical properties and introduces a unique set of optical aberrations
like distortions, vignetting, chromatic aberrations and others. Additionally, the imagine
sensor itself introduces various artifacts due to technological limitations. Those include
sensor noise, demosaicing patterns, over/under exposure, rolling shutter, motion blur,
color corrections and compression. The nature and level of such artifacts in a specific
training set can have a significant impact on the learned lowlevel features in a deep
neural network [6, 41, 114]. Therefore, it is important that this imaging system specific
effects are also addressed when generating synthetic training images to avoid introduc
ing unwanted bias. One proposed solution was to learn the real image denoising and
debluring process from raw data [39] in combination with learning the task model as an
endtoend process. This approach however requires careful calibration and access to
the raw sensor data which is not always available. Another proposed mechanism to deal
with this problem is to model the optical and sensor effects and apply them to rendered
images [22, 171]. Results show how this can lead to significant gains in generalization
ability of machine learning models when trained on synthetic images and testing on real
images.

2.3 SynthetictoReal Domain Adaptation

An alternative approach to synthetic images is to not view them as “unrealistic” but rather
as coming from a different data distribution to that of the real test images. This takes
the emphasis away from the humansubjective concept of photorealism and focuses on
the measurable difference in performance between training a model using synthetic and
real training data, commonly known as the Domain Gap. For most semantic and scene
understanding tasks, this gap is still significantly large even when using stateoftheart
rendered images as shown in Table 2.1. The task of adapting a machine learning model
or its training procedure to be trained on data from a source domain, like rendered im
ages, and tested on a target domain, like real images, is called domain adaptation [60].
The most common setup for this task is unsupervised domain adaptation where no target
domain labels are available during adaptation or training process. The other setup is the
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semisupervised where a few labeled samples from the target domain are available for
finetuning themodel. Indeed, several benchmarks [151] have been proposed to evaluate
methods for synthetictoreal domain adaptation. For example, the Synth2Real bench
mark [152] focuses on the tasks of object classification and detection. Similarly, the
GTAVtoCityscapes benchmark measures semantic segmentation model performances
when trained on the synthetic GTAV [164] dataset and evaluated on the Cityscapes [34]
real dataset.
The domain gap problem has recently gained attention not only for training deep neural
networks, but also in reinforcement learning for robotics agents [17] where training in
simulated environments is more efficient and safe. In general, domain adaptation meth
ods can be classified in thee catagories: imagespace, featurespace and selftraining
domain adaptation.

2.3.1 Imagespace domain adaptation

Imagespace domain adaptation methods operate directly on the pixel values of the syn
thetic images. One proposed solution for removing the domain bias in training data has
beenDomain Randomization [172, 194, 220]. This method challenges the idea that pho
torealism is essential for creating good synthetic training data. Instead, it proposes to
randomize the training image appearance [220], the rendering parameters (like camera
parameters, noise, lighting, textures, etc.) [120, 194] or even the simulation physics dy
namics [153]. The results are training images that vary largely in their appearance which
prevents the trained model from overfitting on any single particular appearance feature
and makes it more robust across multiple domains. A major advantage of this approach
is that it needs no access to even unlabeled test images since the randomization is sup
posed to reduce the model dependency on the training images domain in general [172].
Similarly, Domain Stylization [46] uses a standard style transfer method [109] to trans
form the overall appearance of real test images to look more like the synthetic training
images. Adversarial domain adaptation is another group of methods based on Adversar
ial Generative Networks (GAN) [61] which uses an adversarial discriminator to ensure
style similarity between real and synthetic images [180]. Supervised imagetoimage
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translation GANs [80, 206] can also be used for domain adaptation. They combine ad
versarial and supervised perceptual losses requiring matching pairs of real and synthetic
images for training which is often not available. To train with only unpaired data, L1 loss
[180] between the original and refined image can be added to ensure the image content
does not change too much. But this is only valid when the source and target domains are
relatively similar. Some methods [190] proposed to use an encoderdecoder architecture
with reconstruction loss to overcome this need for paired training data. CycleGAN [228]
takes this idea one step further by training two imagetoimage translation networks
(realtosynthetic and synthetictoreal) jointly with cycleconsistency losses. However,
this does not guarantee that the adapted image still has the same semantic content as the
input image and the networks can learn to “hallucinate” objects or large artifacts that
can affect the usefulness of the data. CyCADA [74] attempts to solve this problem by
combining unpaired adversarial loss with semantic consistency and feature losses, thus
ensuring the semantic information gets correctly translated between domains.

2.3.2 Featurespace domain adaptation

Featurespace domain adaptation methods look instead at the representation learned by
the deeplearning model and attempt to close the gap between the statistical distributions
of features extracted from real and synthetic images. Some methods rely on minimizing
an explicit distance measure between the two distributions like theMaximumMean Dis
crepancy (MMD) [62, 116, 207]. Others use adversarial discriminators as well but be
tween the learned features [51, 117] and integrate class or instance information [29, 205].
The advantage of those methods is that they can adapt the synthetic training data to a
specific task and network architecture allowing them to achieve stateoftheart perfor
mance on many domain adaptation tasks. However, this performance relies on having
access to the exact model and large number of target domain images which might be
restrictive in some practical applications.
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2.3.3 Selftraining

Selftraining is a technique often used in semisupervised learning where a small amount
of labeled source domain data and a large amount of unlabeled target domain data are
available [24, 197]. The main idea is to use the labeled synthetic training data to train
an early model which is used to generate noisy pseudolabels for the real data. Those
in turn are used to finetune the supervisedlearning models on real data [230]. The
pseudolabels are usually generated iteratively where at each iteration only predicted
labeledwith high confidence are used to retrain themodel whichwill be used for another
iteration of pseudolabel generation. However, applying this strategy naively can lead to
the model drifting toward some easy classes as those will tend to have higher prediction
confidence, thus making them more likely to enter the training data pool in the next
iteration further reinforcing their dominance. Several ideas were proposed to deal with
this issue, like classbalanced selftraining (CBST) [230] framework which incorporates
additional spacial priors to increase diversity. Another useful idea has been to use the
scaleinvariance property, especially in the semantic segmentation task, to constrain the
generated pseudolabels to be consistent across multiple scales of real images [187].
A combination of pseudolabels and adversarial domainadaptation has also been used
[224] to further ensure the categoryspecific distributions of features of real and synthetic
images are matching.

2.4 Neural image synthesis

2.4.1 Deep generative models

Generative models are a class of machine learning algorithms that try to learn the under
lying data distribution of a training dataset rather than a mapping function between pairs
of inputs and outputs. Some models allow for explicit evaluation of the probability dis
tribution function while others learn only an implicit representation that allows for gen
erating new samples from the hidden distribution [60]. The use of deep neural networks
as generative models has followed on the large success of the gradient decent training
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of classification or regression neural networks. After training, the network parameters
should implicitly represent a specific instance from the family of distributions defined
by the model architecture which best fits the training data. But unlike supervised learn
ing where the training data consists of inputoutput pairs, the generative models need
to be trained using only unlabeled data samples from an unknown distribution which
makes the supervised training procedure unclear. Therefore, different models have been
proposed to address this problem by either introducing additional constraints or using
multiple networks.

Autoencoders [72] are a class of selfsupervised neural network models that learn
the identity function through an information bottleneck which allows the learned rep
resentation to be efficient. They consist of an encoder E that takes an image x and
produces a lowdimensional latent vector z = E(x) and a decoder D that takes the la
tent vector z and produces a reconstructed image x′ = D(z) (Fig 2.4). The loss is then
computed as the L2 norm between the input x and reconstructed image x′. In principle,
Autoencoders can be used as generative models by randomly producing latent vectors z

and using the decoder D(z) as a generator. However, the structure of the learned latent
space is usually nonregular due to lack of regularization and overfitting on training
examples. Using a random z vector often produces images not similar to those of the
training set.

Variatianal Autoencoders (VAE) [98] instead encode the input x image as a con
ditional distribution pθ(z|x) defined by the encoder network paramteres θ. A common
choice is to model this distribution as multivariate Gaussian which can be parametrized
by its mean µ and covariance matrix σ which are directly estimated by the encoder net
work based on input x. A latent vector can then be sampled z ∼ N (µ, σ2) and used
by the decoder to produce a reconstructed image sample x′ to be compared to the input.
A regularization term is added in the training loss as a KLDivergence between the esti
mated distribution and the standard Gaussian distribution N (0, I). Variational autoen
coders are relatively easy to train and produce regular latent space that allow meaningful
interpolations between samples. However, they are often hard to scale to highresolution
images and often produce blurred results due to their stochastic nature. Several modifi
cation on image generation VAEs have been proposed to improve the result quality and
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resolution like VDVAE [31], NVAE [201] and VAEBM [213].

Flowbased generative models take the idea of probabilistic generative models one
step further by learning the explicit distribution of the input data p(x) through normaliz
ing flows. Normalizing flows are a sequence of invertible and differentiable transforma
tion functions T that transform a complex multimodal distribution p(x) to simple one
p(z) or the other way around [147]. In practice, those transformations are implemented
as a set of invertible neural network layers and the latent distribution p(z) is defined as
a standard multivariate Gaussian. RealNVP [40] introduced the affine coupling layer
as an invertible transformation and was one of the first methods to show the effectiv
ity of flowbased methods on image generation tasks. GLOW [97] further simplified
the process by using invertible 1x1 convolutions to generate realistic highquality face
images.

2.4.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [61] have been the most popular and fastest
growing category of image generative models in the past few years due to their ability
to learn complex distributions and generate highresolution semanticallyconsistent im
ages. A GAN consists of two neural networks, a generator G and a discriminator D,
which compete in an adversarial zerosum game during training. The generator takes a
random vector z and produces a fake image x′ = G(z). The discriminator takes either a
batch of real images x or fake images x′ and its task is to estimate the probability of the
images coming from the real image distribution or being synthesized by the generator.
The combined GAN loss L(G, D) then can be expressed [61] as:

min
G

max
D

L(G, D) = Ex∼p(x)[log D(x)] + Ez∼p(z)[log(1 − D(G(z)))]

In practice this loss is optimized using an iterative approach alternating between train
ing the discriminator to maximize L(G, D) while the generator is fixed and training the
generator to minimize Ez∼p(z)[log(1 − D(G(z)))] while the discriminator is fixed.
A great number of modification has been proposed to the original GAN formulation to
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add conditioning [136], improve their stability [168], generation quality [137] and res
olution [18, 89]. Those have been applied across a large spectrum of image generation
applications. Particularly, StyleGAN based methods [90, 91, 92] have achieved out
standing quality levels especially in the domain of face image generation. Nevertheless,
GAN models often face several challenges:

• Training stability. The process of training GANs can be very unstable because
of their adversarial gametheoretical nature which requires careful tuning to keep
the balance between the generator and discriminator. Even though achieving a
perfect Nash Equilibrium is not usually needed in practice to generate good quality
images, a strong imbalance can lead the two GAN losses to oscillate and diverge
very quickly [132].

• Vanishing gradients. The dependency of the generator lossEz∼p(z)[log(D(G(z)))]
on the discriminator network can lead to a smaller and smaller gradients in the
generator as the discriminator is getting better. This further enforces the discrimi
nator’s dominance of the balance and decreases the generator’s gradients in a pos
itive feedback loop [8]. Goodfellow et al.proposed to reduce this by training the
generator to maximize log(D(G(z))) [61] instead of minimizing Ez∼p(z)[log(1 −
D(G(z)))] while others suggested using the Wasserstein GAN fomulation instead
[9, 63].

• Mode collapse. Another common problem of GANs is when the generator de
grades to generating the same image or very similar images instead of covering
the full training image distribution. This is called Mode collapse and often hap
pens when the discriminator gets stuck in a local minima [8].

• Evaluation. A major challenge for GANs and image generative models in gen
eral is evaluating the quality of their results [16]. The golden standard for this is
still human evaluation, often through crowdsourcing platforms, since the goal is
usually to make visually plausible results. For quantitative evaluation, using tra
ditional image quality measures like SSIM or PSNR is not sufficient since those
measure the lowlevel features and statistics while ignoring the highlevel im
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age consistency and realism. Alternatively, measures based on distance between
pretrained features like Inception Score (IS) [173], Frechet Inception Distance
(FID) [70] and Kernel Inception Distance (KID) [13] have been proposed to mea
sure the distance between semantic feature distributions of the generated and real
images.

Figure 2.4. Comparison of different types of Generative neural network architectures.
[209]

2.4.3 Imagetoimage translation

Deep generative models are designed to capture the distribution p(x) of training image
x ∈ X and allow for sampling random images from it. However, most practical image
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synthesis applications require a degree of control over the output images to make them
useful. Conditional generative models instead learn the distribution p(x|y) of training
images conditioned on a controllable input y ∈ Y . Early methods were built around
conditioning on some global lowdimensional property like a class label [136], an im
age style [53], or a 3D object pose [45]. Imagetoimage translation models [80, 206]
instead extend the condition to be a 2D spatial map of similar size to the output image.
This makes the conditioning more local and detailed as different regions of the generated
image can correspond to different input conditions. Indeed the input to imagetoimage
translation networks can include images from different domains, 2D semantic maps,
depth maps, edge maps or any other spatial maps that contain information related to an
image. They can be split based on their training data into two categories: Paired and
unpaired imagetoimage translation.

Paired imagetoimage translation. The simplest way to train imagetoimage net
works is to use a dataset of image pairs (x ∈ X, y ∈ Y ) with matching content but
different domains. The network can then be trained in a supervised fashion using an L1
distance between the pixels of the generated and groundtruth images as loss. However,
this can cause results to be blurry since the loss minimizes the average distance over
the whole training set. The results often lack consistency and correct semantics since
this loss considers image pixels to be independent and does not take into account the
structure and semantics of the image [193]. Perceptual loss was proposed as a solution
to include highlevel features into the loss [85]. It computes the distance between im
ages using the learned representations from a pretrained image classification network.
This allows it to better measure the difference in image content on different levels of
abstractions based on the depth of the representation layer which can greatly improve
the generated image details and consistency [27]. Similar to GANs, an adversarial dis
criminator can also be leveraged as a loss function to produce more detailed results. The
difference between the perceptual loss and adversarial discriminator networks is that the
former is pretrained and fixed while the latter is trained together with the translation
network allowing it to be more adaptive to the training data. A second difference is that
it learns the conditional distribution p(x|y) over the whole dataset rather than measuring
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a distance with only one groundtruth image which allows for more flexibility in the
output image as long as it matches the input conditioning. Unlike in the GAN architec
ture, the discriminator here takes two inputs: the conditioning image y and either the
translation network output x′ or the paired groundtruth image x to learn the conditional
distribution p(x|y). In practice, combining the adversarial with the perceptual losses can
produce better results since it can ensure the content of the image does not change too
much while making the adversarial training faster and more stable.

Unpaired imagetoimage translation. Collecting a large dataset of matching image
pairs from different domains is hard and even impossible in many applications. There
fore, it is desirable to rely on large collections of unpaired images to train the translation
neural networks instead. The challenge however is that the translation is not unique for
a specific input image y ∈ Y since the training datasets only include samples from p(x)
and p(y) but not any samples from p(x|y). For this reason, the nature of the translation
can vary greatly and is usually defined by the structure and constraints of the translation
model. The most common assumption is that the translation function should replace the
common features of the input set Y by the shared features of the output setX while keep
ing the unique attributes of the specific input sample y ∈ Y intact in the output image
x′. An early form of such imagetoimage translation methods has been Imagebased
Neural Style Transfer [84] methods where the goal is to transfer the style or texture of
one image to another while keeping its semantic content. To achieve this, they often use
the image optimization technique pioneered by DeepDream [139]. It uses a pretrained
convolutional neural network to compute image features of the target and style images
on different depths. Then, a new image is optimized using gradient decent to produce
lowlevel features matching the style image and highlevel features matching the con
tent image [53, 54]. This process is slow due to the iterative nature of gradient decent
optimization. It is also limited because it relies on pretrained networks on tasks like
object classification which might not produce the best features for all images domains.
A more general solution is to train a model to translate between the two specific image
domains. CycleGAN [228] has been one of the most successful in this field as it builds
on the simple idea of cycleconsistency to ensure that the translation process preserves
the image content while the adversarial discriminator loss ensures the appearance of the
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image matches the target domain. Another common idea is to use two sets of encoder
decoder networks to map images from both domains into a shared content latent space
[111]. The translation then happens by combining the encoder for one domain with the
decoder of the other. Alternatively, an additional explicit style encoder can be used to
condition the decoder allowing for learning multiple styles using the same network [77].
A large number of GANbased unpaired imagetoimage translation methods has been
proposed since then to add attention mechanisms [95, 130], improve result diversity
[107] and make it more dataefficient [112].

2.4.4 Neural rendering

Deep image generative models have made large leaps in performance in the past year
making it possible to create high resolution photorealistic images at near realtime rates
using only a few user clicks [91, 148]. However, they remained rarely used in practi
cal applications compared to classical rendering because they lack fine control over the
scene structure, materials, lighting and rendering parameters. This limitation is a “deal
breaker” in many professional applications like computer animation where experts need
full control over the generated images and therefore prefer to use classical rendering
algorithms.

At the intersection of classical rendering and generative neural networks, the new
field of Neural Rendering has recently emerged with the aim of combining the photo
realism of generative models with the precise control of classical rendering approaches.
A recent review [193] has defined Neural Rendering as “Deep image or video gener
ation approaches that enable explicit or implicit control of scene properties such as il
lumination, camera parameters, pose, geometry, appearance, and semantic structure”.
Indeed, to make this control over the scene possible, Neural Rendering methods often
try to learn an implicit or explicit representation of the scene structure from one or few
of its images. However, they differ from traditional imagebased rendering in that they
do not use the input images at inference time and rely on their own constructed scene
representation instead.
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An early work showing the potential of neural networks to generate novelviews
from a learned representation was Generative Query Network (GQN) [48]. The twopart
model consists of a representation network that takes a few images of the target scene and
generates a compact representation, and a generator network that takes the representa
tion and a random query viewpoint from which it predicts the scene image. The method
showed great results when trained on synthetic scenes with primitive shapes and colors,
however it is hard to extend to real scenes due to the limited lowdimensional latent
representation. To address the complexity in real scenes, Meshry et al. [133] proposed
to first create a rich 3D pointcloud representation of the target scene from its images
using traditional reconstruction methods. The pointcloud is then projected from the tar
get camera view and used as an input to a neural network that generates the new image.
This method allows for flexible novel view synthesis of large scenes but requires a large
number of images of the same scene to create an accurate 3D pointcloud representation
in addition to semantic segmentation maps. HoloGAN[144] focuses instead on learning
controllable image generation from a large collection of different objects from the same
semantic class. It using 3D convolutions to generate a 3D latent representation of the
object at the early stage of the image generator network. This 3D feature volume is then
transformed to a target camera viewpoint and projected into a 2D feature volume using
a differentiable projection unit [143] which is further processed using 2D convolutions
to produce an image. The neural 3D representation allows the generator to disentangle
the object’s pose, shape and appearance while still keeping the whole network trainable
endtoend. NguyenPhuoc et al. [145] extended this method further to scenes with mul
tiple objects (including the background) allowing for independent control over the pose
and appearance of each object. Mildenhall et al. [135] recently introduced the radically
novel idea of representing a scene with a continuous volumetric function called aNeural
Radiance Fields (NeRF) [135] which maps a 3D location (x, y, z) and viewing direction
(ϕ, θ) in the scene volume to an image value (R, G, B) and radiance (σ). This function
can be implicitly learned using a fully connected neural network from multiple images
of the scene and used at inference time to generate novel views of it. This formulation
combines 3D reconstruction and neural rendering intro a single task of estimating the
radiance field which allows it to naturally handle situations like reflective or transparent
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objects which are very difficult for traditional 3D reconstruction methods. The simplic
ity and highquality results of Neural Radiance Fields [135] have inspired a large number
of works exploring their use for nonrigid objects [196], dynamic scenes [158], human
faces[52], unstructured [125] or few image collections [219], and many others.

2.5 Discussion

This chapter presents an overview of methods for creating large scale training data for
deep neural networks and their limitations and challenges. Manual annotation of real
images has been the goldenstandard for training datasets in many practical applications
for decades. But the exponentially growing size of datasets needed for training large
neural networks clearly indicates that other more scalable sources of training data are
needed. Rendering engines could be a cheap alternative for producing training data
from virtual environments. However, their focus on human perceptual photorealism
makes them less suitable for training deep neural networks. Additionally, building large
and accurate virtual replicas of real environments can be very costly [102]. One pos
sible solution to this problem is to carefully combine virtual objects with real scenes
to easily expand the variability in the real images without largely impacting their real
ism. This idea is explored further in Chapter 3 of this thesis. On the other hand, recent
developments in neural image synthesis models like Generative Adversarial Networks
and neural rendering provide a viable alternative to traditional rendering engines. Their
main advantage in relation to synthetic data generation is that they can be trained using
different loss functions and objectives than just photorealism. This presents an opportu
nity to develop image synthesis models that explicitly specialize in generating training
data for other machine learning models. This idea will be further explored in Chapters
4 and 5 of this thesis.



Chapter 3

Augmented reality for deep learning

3.1 Introduction

In recent years, deep learning has revolutionized the field of computer vision. Many
tasks that seemed elusive in the past, can now be solved efficiently and with high accu
racy using deep neural networks, sometimes even exceeding human performance [191].
However, it is wellknown that training high capacity models such as deep neural net
works requires huge amounts of labeled training data. This is particularly problematic
for tasks where annotating even a single image requires significant human effort, e.g.,
for semantic or instance segmentation. A common strategy to circumvent the need for
human labels is to train neural networks on synthetic data obtained from a 3D renderer
for which ground truth labels can be automatically obtained, [50, 66, 141, 165, 167,
177, 203, 225]. While photorealistic rendering engines exist [82], it is difficult and
timeconsuming to attain a levelofdetail comparable to realworld photographs (e.g.,
leaves of trees).

In this chapter, we demonstrate that stateoftheart photorealistic rendering can be
utilized to augment realworld images and obtain virtually unlimited amounts of train
ing data for specific tasks such as semantic instance segmentation and object detection.
Towards this goal, we introduce a newly augmented dataset called KITTI360 which
contains real images augmented with virtual objects based on 360 degree environment

33
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Figure 3.1. Obtaining synthetic training data usually requires building large virtual
worlds (top right) [50]. We propose a new way to extend datasets by augmenting real
training images (top left) with realistically rendered cars (bottom) keeping the resulting
images close to real while expanding the diversity of training data.

maps and partially annotated with semantic and instance information. In particular, we
augment the data with realistically rendered car instances. This allows us to keep the
full realism of the background while being able to generate arbitrary amounts of fore
ground object configurations. Figure 3.1 shows a real image before and after augmen
tation. While our rendered objects rival the realism of the input data, they provide the
variations (e.g., pose, shape, appearance) needed for training deep neural networks for
instance aware semantic segmentation and bounding box detection of cars. Using those
augmented images, we are able to considerably improve the accuracy of stateoftheart
deep neural networks trained on real data.

While the level of realism is an important factor when synthesizing new data, there
are two other important aspects to consider  data diversity and human labor. Manually
assigning a class or instance label to every pixel in an image is possible but tedious,
requiring up to one hour per image [34]. Thus existing realworld datasets are limited
to a few hundred [19] or thousand [34] annotated examples, thereby severely limiting
the diversity of the data. In contrast, the creation of virtual 3D environments allows
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for arbitrary variations of the data and virtually infinite number of training samples.
However, the creation of 3D content requires professional artists and the most realistic
3D models (designed for modern computer games or movies) are not publicly available
due to the enormous effort and cost involved in creating them [102, 183]. In the domain
of urban driving scenario, a few recent projects [164, 165, 177] have demonstrated how
content from commercial games can be accessed through manipulating lowlevel GPU
instructions and used to create large amount of training data. But legal problems are
likely to arise and often the full flexibility of the data generation process is no longer
available.

In this chapter we demonstrate that the creation of an augmented dataset which
combines real with synthetic data requires onlymoderate human effort while yielding the
variety of data necessary for improving the accuracy of stateoftheart instance segmen
tation network (Multitask Network Cascades) [35] and object detection network (Faster
RCNN) [162]. To assess the performance of networks trained on various datasets, we
annotated the popular KITTI2015 dataset [131] with semantic and instance labels. We
show that a model trained using our augmented dataset generalizes better than models
trained on real data or purely synthetic data. Finally, combining our augmented dataset
with a purely synthetic dataset yields a noticeable increase in performance indicating
that augmented and synthetic data can be advantageously combined for training high
performance recognition models. Since our data augmentation approach requires only
minimal manual effort, we believe that it constitutes an important milestone towards
the ultimate task of creating virtually infinite, diverse and realistic datasets with ground
truth. In summary, our contributions are as follows:

• We propose an efficient solution for augmenting real images with photorealistic
synthetic object instances which can be arranged in a flexible manner.

• We provide an indepth analysis of the importance of various factors of the data
augmentation process, including the number of augmentations per real image, the
realism of the background and the foreground regions.

• We demonstrate through extensive experiments how augmentation of real images
increases the variability in the data leading to more generalizable models that out
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perform training on real or purely synthetic datasets. Furthermore, we found that
synthetic and augmented datasets are complementary and combining the two en
hances performance further.

• For conducting the experiments in this chapter, we introduce two new datasets:
KITTI15 semantic, instance and panoptic segmentation dataset consisting of 400
manually labeled images from the KITTI dataset [56]. And the KITTI360Cars
dataset consisting of 200 images from [214] with accurate manual instance seg
mentation for cars in addition to 28 3D car models with highquality physically
based materials in Blender [15].

3.2 Related Work

Due to the scarcity of realworld data for training deep neural networks, several re
searchers have proposed to use synthetic data created with the help of a 3D rendering
engine. Indeed, it was shown in [141, 165, 177] that deep neural networks can be trained
on synthetic data and that the accuracy can be further improved by fine tuning on real
data [165]. Moreover, it was shown that the realism of synthetic data is important to
obtain good performance [129, 141]. Making use of this observation, several synthetic
datasets have been released which we will briefly review in the following. [67] presents
a scenespecific pedestrian detector using only synthetic data. [203] presents a synthetic
dataset of human bodies and use it for human depth estimation and part segmentation
from RGBimages. In a similar effort, [28] uses synthetic data for 3D human pose es
timation. In [36], synthetic videos are used for human action recognition with deep
networks. [226] presents a synthetic dataset for indoor scene understanding. Similarly,
[66] uses synthetic data to train a depthbased pixelwise semantic segmentation method.
In [225], a synthetic dataset for stereo vision is presented which has been obtained from
the UNREAL rendering engine. [229] presents the AI2THOR framework, a 3D en
vironment and physics engine which they leverage to train an actorcritic model using
deep reinforcement learning. [150] investigates how missing lowlevel cues in 3D CAD
models affect the performance of deep CNNs trained on such models. [185] uses 3D
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CAD models for learning a multiview object class detector. [105]

In the context of autonomous driving, the SYNTHIA dataset [167] contains a col
lection of diverse urban scenes and dense class annotations. [50] introduces a synthetic
video dataset (Virtual KITTI) which was obtained from the KITTI dataset [55] alongside
with dense class annotations, optical flow and depth. [186] uses a dataset of rendered
3D models on random real images for training a CNN on viewpoint estimation. While
all aforementioned methods require labor intensive 3D models of the environment, we
focus on exploiting the synergies of real and synthetic data using augmented reality.
In contrast to purely synthetic datasets, we obtain a large variety of realistic data in an
efficient manner. Furthermore, as evidenced by our experiments, combining real and
synthetic data within the same image results in models with better generalization perfor
mance.

While most works use either real or synthetic data, only few papers consider the
problem of training deep models with mixed reality. [169] estimates the parameters
of a rendering pipeline from a small set of real images for training an object detector.
[64] uses synthetic data for text detection in images. [156] uses synthetic human bodies
rendered on random backgrounds for training a pedestrian detector. [42] renders flying
chairs on top of random Flickr backgrounds to train a deep neural network for opti
cal flow. Unlike existing mixedreality approaches for training data generation which
are either simplistic, consider single objects or augment objects in front of random back
grounds, our goal is to create high fidelity augmentations of complexmultiobject scenes
at high resolution. A detailed survey of stateoftheart photorealistic mixedreality tech
niques is presented in [105]. In particular, our approach takes the geometric layout of
the scene, environment maps as well as artifacts stemming from the image capturing
device into account. We experimentally evaluate which of these factors are important
for training good models.
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Figure 3.2. Overview of our augmentation pipeline. Given a set of 3D car models,
physicallybased materials, sampled locations and environment maps, we render high
quality cars with shadows and overlay them on top of real images. The final post
processing step insures better visual matching between the rendered and real parts of
the resulting image.

3.3 Data Augmentation Pipeline

In this section, we describe our approach to data augmentation through photorealistic
rendering of 3D models on top of real scenes. To achieve this, three essential compo
nents are required: (i) detailed high quality 3D models of cars, (ii) a set of 3D locations
and poses used to place the car models in the scene and, (iii) the environment map of
the scene that can be used to produce realistic reflections and lighting on the models that
matches the scene. We use 28 high quality 3D car models covering 7 categories (SUV,
sedan, hatchback, station wagon, minivan, van) obtained from online model reposito
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ries1. The car color is chosen randomly during rendering to increase the variety in the
data. To achieve high quality realistic augmentation, it is essential to correctly place
virtual objects in the scene at practically plausible locations, matching the distribution
of poses and occlusions in the real data. We explored four different location sampling
strategies: (i) Manual car location annotations, (ii) Automatic road segmentation, (iii)
Road plane estimation, (iv) Random unconstrained location sampling. For (i), we lever
age the homography between the ground plane and the image plane, transforming the
perspective image into a birdseye view of the scene. Based on this new view, our in
house annotators marked possible car trajectories on the road where cars can be placed
(Figure 3.3). We sample the locations randomly from these annotations and set the ro
tation along the vertical axis of the car to be aligned with the trajectory set by the user.
For (ii), we use the algorithm proposed by [192] which segments the image into road
and nonroad areas with high accuracy. We backproject those road pixels and compute
their location on the ground plane to obtain possible car locations and use a random ro
tation around the vertical axis of the vehicle. While this strategy is simpler, it can lead
to visually less realistic augmentations mainly due to random rotations and unrealistic
overlap with neighboring real objects. For (iii), since we know the intrinsic parameters
of the capturing camera and its exact pose, it is possible to estimate the ground plane in
the scene. This reduces the problem of sampling the pose from 6D to 3D, namely the
2D position on the ground plane and one rotation angle around the model’s vertical axis.
Finally for (iv), we randomly sample locations and rotations from an arbitrary distribu
tion. We empirically found manual car location annotations to perform slightly better
than automatic road segmentation and on par with road plane estimation as described
in Sec. 3.4. We use the manual location labeling in all our experiments, unless stated
otherwise.

We leverage the 360 degree panoramas of the environment from the KITTI360
dataset [214] as environment map proxies for realistic rendering of cars in street scenes.
These 360 degree images are taken from the location of the capture vehicle. Thus, they
are only an approximation of the true environment maps expected at the location of the
augmented object. Using the 3D models, locations and environment maps, we render

1http://www.dmi-3d.net

http://www.dmi-3d.net
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Figure 3.3. (Top) The original image. (Middle) Road segmentation using [192] in red
for placing synthetic cars. (Down) Using the camera calibration, we project the ground
plane to get a birdseye view of the scene. From this view, the annotator draws lines
indicating vacant trajectories where synthetic cars can be placed.
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(a) The two cars in the center are rendered

(b) The car to the left and in the center are rendered

(c) The three cars in the center are rendered

(d) The three cars on the road are rendered

Figure 3.4. Example images produced by our augmentation pipeline.
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cars using the Cycles renderer implemented in Blender [15]. Figure 3.2 illustrates our
augmentation approach. However, the renderings obtained from Blender lack typical
artifacts of the image formation process such as motion blur, lens blur, chromatic aber
rations, etc. To better match the image statistics of the background, we thus design a
postprocessing workflow in Blender’s compositing editor which applies a sequence of
2D effects and transformations to simulate those effects, resulting in renderings that are
more visually similar to the background. More specifically, those operations include (i)
independent color shifts on the RGB channels to simulate chromatic aberrations in the
real lens, (ii) depthblur operation to match the depthoffield of the camera, (iii) radial
motionblur that matches the blur caused by the moving camera, (iv) color noise and
(v) glow effects to imitate sensor overexposure. Finally, we use several color curve op
erations and Gamma transformations to visually match the color statistics and contrast
of the real data. The parameters of these operations have been estimated empirically
to optimize the visual similarity between the synthetic and real cars. Some results are
shown in Figure 3.4.

3.4 Evaluation

In this sectionwe show how augmenting driving scenes with synthetic cars is an effective
way to expand a dataset and increase its quality and variance. In particular, we highlight
two aspects in which data augmentation can improve the real data performance. First,
introducing new synthetic cars in each image with detailed ground truth labeling makes
the model less likely to overfit to the small amount of real training data and exposes it
to a large variety of car poses, colors and models that might not exist or be rare in real
images. Second, our augmented cars introduce realistic occlusions of real cars which
makes the learned model more robust to occlusions since it is trained to detect the same
real car each time with a different occlusion configuration. This second aspect also
protects the model from overfitting to the relatively small amount of annotated real car
instances.

We study the performance of our data augmentation method on two challenging
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vision tasks, instance segmentation and object detection. Using different setups of our
augmentation method, we investigate how the quality and quantity of augmented data
affects the performance of a stateoftheart instance segmentation model. In particu
lar, we explore how the number of augmentations per real image and number of added
synthetic cars affects the quality of the learned models. We compare our results on both
tasks to training on real and fully synthetic data, as well as a combination of the two (i.e.,
training on synthetic data and finetuning on real or augmented data). We also experi
ment with different aspects of realism such as environment maps, postprocessing and
car placement methods.

3.4.1 Datasets

KITTI360. For our experiments, we created a new dataset which contains 200 im
ages chosen from the dataset presented in [214]. We labeled all car instances at pixel
level using our inhouse annotators to create high quality semantic instance segmenta
tion ground truth. This new dataset (KITTI360) is unique compared to KITTI [55] or
Cityscapes [34] in that each frame comes with two 180◦ images taken by two fisheye
cameras on top of recording platform. Using an equirectangular projection, the two im
ages are warped and combined to create a full 360◦ omnidirectional image that we use
as an environment map during the rendering process. These environment maps are key
to creating photorealistic augmented images and are used frequently in Virtual Real
ity and Cinematic special effects applications. The dataset consists of 200 real images
which form the basis for augmentation in all our experiments, i.e., we reuse each im
age n times with differently rendered car configurations to obtain an nfold augmented
dataset.

VKITTI. To compare our augmented images to fully synthetic data, we use the Virtual
KITTI (VKITTI) dataset [50] which has been designed as a virtual proxy for the KITTI
2015 dataset [131]. Thus, the statistics of VKITTI (e.g., semantic class distribution, car
poses and environment types) closely resembles those of KITTI15 which we use as a
testbed for evaluation. The dataset comprises ∼12,000 images divided into 5 sequences
with 6 different weather and lighting conditions for each sequence.
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KITTI15. To demonstrate the advantage of data augmentation for training robust mod
els, we create a new benchmark test dataset different from the training set using the
popular KITTI2015 dataset [131]. More specifically, we annotated all the 200 publicly
available images of the KITTI2015 [131] with pixelaccurate semantic instance labels
using our inhouse annotators. While the statistics of the KITTI15 dataset are similar to
those of the KITTI360 dataset, it has been recorded in a different year and at a different
location / suburb. This allows us to assess performance of instance segmentation and
detection methods trained on the KITTI360 and VKITTI dataset.

Cityscapes. To further evaluate the generalization performance of augmented data, we
test our models using the larger Cityscapes validation dataset [34] which consists of 500
instance mask annotated images. The capturing setup and data statistics of this dataset
is different to those of KITTI360, KITTI15 and VKITTI making it a more challenging
test set.

3.4.2 Evaluation Protocol

We evaluate the effectiveness of augmented data for training deep neural networks using
two challenging tasks, instancelevel segmentation and boundingbox object detection.
In particular, we focus on the task of car instance segmentation and detection as those
dominate our driving scenes.

Instance segmentation. We choose the stateoftheart Multitask Network Cascade
(MNC) by [35] for instanceaware semantic segmentation. We initialize each model
using the features from the VGG model [182] trained on ImageNet and train the method
using variants of real, augmented or synthetic training data. For each variant, we train
the model until convergence and average the result of the best performing 5 snapshots
on each test set. We report the standard average precision metric of an intersectionover
union threshold of 50% (AP50) and 70% (AP70), respectively.

Object detection. For boundingbox car detection we adopt the popular FasterRCNN
[162] method. We initialize the model using the VGG model trained on ImageNet as
well and then train it using the same dataset variants for 10 epochs and average the
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(a) (b)

Figure 3.5. Instance segmentation performance using augmented data. (a) We fix the
number of synthetic cars to 5 per augmentation and vary the number of augmentations
per real image. (b) We fix the number of augmentations to 20 and vary the maximum
number of synthetic cars rendered in each augmented image.

best performing 3 snapshots on each test set. For this task, we report the mean average
precision (mAP) metric commonly used in object detection evaluation.

3.4.3 Augmentation Analysis

We experiment with the two major factors for adding variation in the augmented data.
Those are, (i) the number of augmentations, i.e the number of augmented images cre
ated from each real image, (ii) the number of synthetic cars rendered in each augmented
images.
Figure 3.5a shows how increasing the number of augmentations per real image improves
the performance of the trained model through the added diversity of the target class, but
then saturates beyond 20 augmentations. While creating one augmentation of the real
dataset adds a few more synthetic instances to each real image, it fails to improve the
model performance compared to training on real data only since the introduced synthetic
cars are likely to occlude other real cars behind them resulting in little gain in diversity.
Nevertheless, creating more augmentations results in a larger and more diverse dataset
that performs significantly better on the real test data. This suggests that the main advan
tage of our data augmentation comes from adding realistic diversity to existing datasets
through having several augmented versions of each real image. In the rest of our exper
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iments, we use 20 augmentations per real unless stated otherwise.

In figure 3.5b we examine the role of the synthetic content of each augmented im
age on performance by augmenting the dataset with various numbers of synthetic cars in
each augmented image. At first, adding more synthetic cars improves the performance
by introducing more instances to the training set. It provides more novel car poses and
realistic occlusions on top of real cars leading to more generalizable models. Neverthe
less, increasing the number of cars beyond 5 per image results in a noticeable decrease in
performance. Considering that our augmentation pipeline works by overlaying rendered
cars on top of real images, adding a larger number of synthetic cars will cover more of
the smaller real cars in the image reducing the ratio of real to synthetic instances in the
dataset. This negative effect soon undercuts the benefit of the diversity provided by the
augmentation leading to decreasing performance. Our conjecture is that the best perfor
mance can be achieved using a balanced combination of real and synthetic data. Unless
explicitly mentioned otherwise, all our experiments were conducting using 5 synthetic
cars per augmented image.

3.4.4 Comparing Real, Synthetic and Augmented Data

Synthetic data generation for autonomous driving has shown promising results in the
recent years. However, it comes with several drawbacks:

• The time and effort needed to create a realistic and detailed 3Dworld and populate
it with agents that can move and interact.

• The difference in data distribution and pixelvalue statistics between the real and
virtual data prevents it from being a direct replacement to real training data. In
stead, it is often used in combination with a two stage training procedure where
the model is first pretrained on large amounts of virtual data and then fine tuned
on real data to better match the test data distribution.

Using our data augmentation method we hope to overcome these two limitations. First,
by using real images as background, we limit the manual effort to modeling high quality
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(a) (b)

Figure 3.6. Using our 20fold augmented KITTI360 dataset (Aug), we can achieve
better performance on both (a) the KITTI15 dataset and (b) Cityscapes [34] test set
compared to using synthetic data (VKITTI) or real KITTI360 data (Real) separately.
We also outperform models trained on synthetic data and finetuned with real data
(VKITTI+Real) while significantly reducing manual effort. Additionally, finetuning
the model trained on VKITTI using our Augmented data (VKITTI+Aug) further im
proves the performance.

3D cars compared to designing full 3D scenes. A large variety of 3D cars is available
through online 3Dmodel warehouses and can be easily customized. Second, by limiting
the modification of the images to the foreground objects and compositing them with the
real backgrounds, we keep the difference in appearance and image artifacts at minimum.
As a result, we are able to boost the performance of the model directly trained on the
augmented data without the need for a two stage pretraining/refinement procedure.
In Figure 3.6, we compare models trained on the real KITTI360 dataset with 200 im
ages, the synthetic VKITTI dataset with ∼12000 images and the augmented dataset cre
ated from the same 200 real images of KITTI360, but each now augmented 20 times
with different car models and poses yielding a total of 4000 augmented images. To fur
ther compare our augmented data to fully synthetic data, we train a model using VKITTI
and refine it with the real KITTI360 training set. While finetuning the model with
real data improves the results from 42.8% to 48.2%, our augmented dataset achieves
a performance of 49.7% in a single step. Additionally, using our augmented data for
finetuning the VKITTI trained model significantly improves the results (51.3%). This
demonstrates that the augmented data is closer in nature to real than to synthetic data.
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(a) (b)

Figure 3.7. Training the Faster RCNN model [162] for bounding box detection on var
ious datasets. Using our augmented dataset we outperform the models trained using
synthetic data or real data separately on both (a) KITTI15 test set and (b) Cityscapes
[34] test set. We also outperform the model trained on VKITTI and finetuned on real
data (VKITTI+Real) by using our augmented data to fine tune the model trained on
VKITTI (VKITTI+Aug).

While the flexibility of synthetic data can provide important variability, it fails to pro
vide the expected boost over real data due to differences in appearance. On the other
hand, augmented data complements this by providing high visual similarity to the real
data, yet preventing overfitting.

While virtual data captures the semantics of the real world, at the low level real and
synthetic data statistics can differ significantly. Thus training with purely synthetic data
leads to biased models that underperform on real data. Similarly training or finetuning
on a limited size dataset of real images restricts the generalization performance of the
model. In contrast, the composition of real images and synthetic cars into a single frame
can help the model to learn shared features between the two data distributions with
out overfitting to the synthetic ones. Note that our augmented dataset alone performs
slightly better than the models trained on VKITTI and finetuned on the real dataset
only. This demonstrates that stateoftheart performance can be obtained without de
signing complete 3D models of the environment. Figure 3.7a and 3.7b show similar
results achieved for the detection task on both KITTI15 and Cityscapes respectively.



3.4. Evaluation 49

(a) (b)

(c) (d)

Figure 3.8. Instance segmentation performance using real, synthetic and augmented
datasets of various sizes tested on KITTI15. (a) We fix the number of augmentations
per image to 20 but vary the number of real image used for augmentation. This leads to
a various size dataset depending on the number of real images. (b) We vary the number
real images while keeping the resulting augmented dataset size fixed to 4000 images by
changing the number of augmentations accordingly. (c) We train on various number of
real images only. (d) We train on various number of VKITTI images.

3.4.5 Dataset Size And Variability

The potential usefulness of data augmentations comes mainly from its ability to realisti
cally expand a relatively small dataset and train more generalizable models. We analyze
here the impact of dataset size on training using real, synthetic and augmented data.
Figures 3.8a and 3.8c show the results obtained by training on various number of real
images with and without augmentation, respectively. The models trained on a small
real dataset suffer from overfitting that leads to low performance, but then slowly im
prove when adding more training images. Meanwhile, the augmented datasets reach
good performance even with a small number of real images and significantly improve
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when increasing dataset size outperforming the full real data by a large margin. This sug
gests that our data augmentation can help improve the performance of not only smaller
datasets, but also medium or even larger ones.
In figure 3.8b, the total size of the augmented dataset is fixed to 4000 images by adjust
ing the number of augmentations for each real dataset size. In this case the number of
synthetic car instances is equal across all variants which only differ in the number of
real backgrounds. The results highlight the crucial role of the real background diversity
in the quality of the trained models regardless of the number of added synthetic cars.
Even though fully synthetic data generation methods can theoretically render an unlim
ited number of training images, the performance gain becomes smaller as the dataset
grows larger. We see this effect in figure 3.8d where we train the model using various
randomly selected subsets of the original VKITTI dataset. In this case, rendering adding
data beyond 4000 images doesn’t improve the model performance.

3.4.6 Realism and Rendering Quality

Even though our task is mainly concerned with segmenting foreground car instances,
having a realistic background is very important for learning good models. Here, we an
alyze the effect of realism of the background for our task. In Figure 3.9 we compare
models trained on the same foreground objects consisting of a mix of real and synthetic
cars, while changing the background using the following four variations: (i) black back
ground, (ii) random Flickr images [155], (iii) Virtual KITTI images, (iv) real background
images. The results clearly show the important role of the background imagery and its
impact even when using the same foreground instance. Having the same black back
ground in all training images leads to overfitting to the background and consequently
poor performance on the real test data. Using random Flickr images improves the per
formance by preventing background overfitting but fails to provide any meaningful
semantic cues for the model. VKITTI images provide better context for foreground cars
improving the segmentation. Nevertheless, it falls short on performance because of the
appearance difference between the foreground and background compared to using real
backgrounds.
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(a) Black BG
AP50 = 21.5%

(b) Flickr BG
AP50 = 40.3%

(c) Virtual KITTI BG
AP50 = 47.7.3%

(d) Real BG
AP50 = 49.7%

Figure 3.9. Comparison of performance of models trained on augmented foreground
cars (real and synthetic) over different kinds of background.

Finally, we take a closer look at the importance of realism in the augmented data.
In particular, we focus on three key aspects of realism that is, accurate reflections, post
processing and object positioning. Reflections are extremely important for visual qual
ity when rendering photorealistic car models (see Figure 3.10) but are they of the same
importance for learning instancelevel segmentation? In Figure 3.10 we compare aug
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(a) No env. map
AP50 = 49.1%

(b) Random env. map
AP50 = 49.2%

(c) True env. map
AP50 = 49.7%

(d) No postprocessing
AP50 = 43.8%

Figure 3.10. Comparison of the effect of postprocessing and environment maps for
rendering.

mented data using the true environment map to that using a random environment map
chosen from the same car driving sequence or using no environment map at all. The
results demonstrate that the choice of environment map during data augmentation af
fects the performance of the instance segmentation model only minimally. This finding
means that it’s possible to use our data augmentation method even on datasets that do
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Figure 3.11. Results using different techniques for sampling car poses.

not provide spherical views for the creation of accurate environment map. On the other
hand, comparing the results with and without postprocessing (Figure 3.10c+3.10d) re
veals the importance of realism in lowlevel appearance.
Another important aspect which can bias the distribution of the augmented dataset is the
placement of the synthetic cars. We experiment with 4 variants: (i) randomly placing
the cars in the 3D scene with random 3D rotation, (ii) randomly placing the cars on the
ground plane with a random rotation around the up axis, (iii) using semantic segmen
tation to find road pixels and projecting them onto the 3D ground plane while setting
the rotation around the up axis at random, (iv) using manually annotated tracks from
birdseye views. Figure 3.11 shows our results. Randomly placing the cars in 3D per
forms noticeably worse than placing them on the ground plane. This is not surprising
as cars can be placed at physically implausible locations, which do not appear in our
validation data. The road segmentation method tends to place more synthetic cars in
the clear road areas closer to the camera which covers the majority of the smaller (real)
cars in the background leading to slightly worse results. The other 2 location sampling
protocols don’t show significant differences. This indicates that manual annotations are
not necessary for placing the augmented cars as long as the ground plane and camera
parameters are known.
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3.5 Conclusion

In this chapter, we have proposed a new paradigm for efficiently enlarging existing
datasets using augmented reality. The realism of our augmented images rivals the re
alism of the input data, thereby enabling us to create highly realistic datasets at a large
scale which are suitable for training deep neural networks. The main limitation of our
current model for data generation is that synthetic objects can only be placed on top of
real images and thus cannot be partially occluded by real objects. This can be solved
by using pixel accurate depth information if such information is available. In the future
we plan to reduce the manual effort and improve the realism of our method by making
use of additional labels such as depth and optical flow or by training a generative adver
sarial method which allows for further finetuning the lowlevel image statistics to the
distribution of realworld imagery and makes it possible to expand it to other datasets
and tasks.



Chapter 4

Geometric image synthesis

4.1 Introduction

Methods for generating natural images from noise or sparse input have gained signifi
cant interest in recent years with the developments in Generative Deep Neural Networks.
Specifically, Generative Adversarial Networks (GANs)[61], allowed for trainable mod
els that can produce naturallooking images with little or no prior knowledge input just
by learning to imitate the distribution in a target image set. While the generated images
often consist of realistic looking local patterns, the overall structure of the images can
be inconsistent. Using more sparse cues, like edge maps or semantic segmentation[80],
introduces some local control over the output but does not address the global structure.
Further, recent works have addressed the problem of global consistency by generating
the image at different scales [27] or using two separate global and local networks [206].
These solutions, nevertheless, address the global 2D structure of the image but not the
3D structure of the scene. This is evident when trying to generate an object in a different
pose than those present most commonly in the training dataset (see figure 4.1b, 4.1c).
While image generation from semantic segmentation can produce visually impressive
images, it is not clear whether it can produce new training data for other vision tasks.
This could be attributed to two factors: (i) The sparse input makes the image generation
problem largely underconstrained leading to inconsistent image structure; (ii) The lack

55
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(a) Cycles renderer (b) CRN [27] (c) Pix2PixHD [206] (d) GIS (Ours)

Figure 4.1. (a) The result of a stateoftheart Physicallybased Renderer (”Cycle” Ren
derer). (b,c) Results of two other deep neural network based image generation methods
[27],[206]. While in both cases local image patches looks plausible the whole image
does not look realistic. (d) Our GIS framework can realistically synthesize the car ob
ject with a specific pose using a deep neural network.

of control parameters over the image generation process (e.g.Pose and color of objects)
makes it hard to define the desired attributes of the output image. On the other hand,
generating natural images from known 3D geometry, texture and material properties
through rendering engines has been widely used to generate training data for various
computer vision tasks. While physicallybased rendering engines aim at accurately re
producing the physical properties of lightmaterial interactions, most available rendering
engines use a set of carefully designed approximations, in order to reduce the computa
tional complexity and produce results that are visually appealing to humans. Rendered
images accurately matches the input scene structure but differ in local appearance from
real images due the disparity between the real capturing process and the approximations
in the software rendering pipeline. Previous works [195] pointed to the performance gap
between synthetic and real data when used for training a task like semantic or instance
segmentation. The other limitation of rendering engines is that they require accurate and
complete information about the objects and the scene, namely, detailed 3D geometry,
texture and material properties, lighting information, environment maps, and so on. This
usually requires laborious manual work by experts to set up the 3D scene.

In this work, we propose a geometryaware image generation method, called Ge
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ometric Image Synthesis (GIS), that leverages various types of scene information, like
geometry and segmentation, to create realistic images which match the desired scene
structure and properties. The network is trained with two objectives, the first is a super
vised loss where the goal is to learn a mapping from the multichannel input to an RGB
image that matches the input structure. The second is an adversarial loss that learns to
compare generated and real images enforcing the generator results to look similar to real
data. We explore different input modalities like normals, depth, semantic and material
segmentation and compare their usefulness. Using this rich input we are able to show
visually a clear improvement over existing stateoftheart image generation approaches,
e.g. [27] [80] [206].

The goal of our approach is not only to generate visually realistic images, but also
to explore whether the images generated can be useful for training other networks for
various computer vision tasks. The advantage of using a trainable model instead of a
software rendering engine is twofold. Firstly, it can produce realistic looking images
from geometry and segmentation while learning, from training data, to implicitly predict
the remaining rendering parameters (e.g. material properties and lighting conditions).
Secondly, the trainable model has the advantage of producing images that are finetuned
to specific characteristics of the training dataset by leveraging the adversarial loss. For
instance, it can capture the specific noise distribution and color shifts in the data.

In order to demonstrate the abilities of our GIS framework, we perform two types
of experiments. In the first, we utilize an augmented reality dataset where synthetic
vehicles were realistically rendered into a scene using “Cycles” renderer from Blender
[2]. We use the normals, depth andmaterial labels as input and the rendered images as the
target in the supervised loss, while using real car images to train the discriminator in the
adversarial loss. In this way, our network is able to generate realistic looking images (see
Fig. 4.1d and supplementary video1) similar to the rendered data from [2] (see fig. 4.1a).
In fact, we train the GIS network to give 9 diverse outputimages and observed that each
image captures a different lighting condition (e.g. direct sunshine, clear sky, or cloudy),
all present in the training data. Using our trained network, we produce a new dataset
of 4000 augmented images of car objects on top of real driving images. This dataset is

1https://youtu.be/W2tFCz9xJoU

https://youtu.be/W2tFCz9xJoU
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used to train a stateoftheart instance segmentation network, here Mask RCNN [68].
This improves the performance of Mask RCNN over the original augmented data [2].
In the second experiment, we demonstrate how our network can be trained directly using
real images only. For that we utilize the Linemod dataset [71] that includes images of
several objects and their 3D scanned models in addition to the corresponding 6D pose
of the objects in each image. We show that using our GIS Network we are able to
generate large amount of training data that helps improve the performance of instance
segmentation. To summarize, our contributions are as follows :

• We introduce a trainable deep neural network, called Geometric Image Synthesis
(GIS), that is able to generate geometryconsistent images from limited input in
formation, like normals and material segmentation, While the remaining aspects
of the image, e.g. lighting conditions, are learned from training data.

• We qualitatively show that our framework generalizes to novel scene geometries,
objects and segmentation, for both synthetic and real data.

• We quantitatively show that our network can synthesize training data that im
proves the performance of a stateoftheart instance segmentation approach, here
Mask RCNN ([68]). To the best of our knowledge, this was the first time that syn
thesized training data from a Neural Network is used to advance a stateoftheart
instance segmentation approach.

4.2 Related work

Synthetic Datasets.

The success of supervised deep learning models has fueled the demand for large anno
tated datasets. An alternative to tedious manual annotation is provided by the creation
of synthetic content, either via manual 3D scene modeling [167, 226] or using some
stochastic scene generation process [36, 128, 199, 204]. Mayer et al.[126, 127] demon
strate that simple synthetic datasets with “flying 3D things” can be used for training
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stereo and optical flow models. Ros et al.[167] proposed the SYNTHIA dataset with
pixellevel semantic segmentation of urban scenes. In contrast, Gaidon et al.[50] pro
pose “Virtual KITTI”, a synthetic dataset reproducing in detail the popular KITTI dataset
[56]. Richter et al.[164, 165] and JohnsonRoberson et al.[86] have been the first to
demonstrate that content from commercial video games can be accessed for collecting
semantic segmentation, optical flow and object detection ground truth.

An alternative to synthesizing the entire image content is to render only specific
objects into natural images. The simplest approach is to cut object instances from one
image and paste them onto random background images [47] using appropriate blending
or GANbased refinement [216]. More variability can be obtained when rendering en
tire 3D CADmodels into the image. Several works consider the augmentation of images
with virtual [30, 67] or scanned humans [28, 203]. In contrast, [2] considers the prob
lem of augmenting scenes from the KITTI dataset with virtual vehicles for improving
object detectors and instance segmentation algorithms. In particular, it has shown that
a well performing instance segmentation method, here MNC [35], can be considerably
improved by intelligently generating additional training data.

While great progress has been made in rendering photorealistic scenes, creating
the required content and modeling all physical processes (e.g., interaction of light) cor
rectly is a nontrivial and timeconsuming task. In contrast to classical rendering, we
propose a generative feedforward model which maps an intermediate representation of
the scene to the desired output. The geometry and appearance cue of this intermediate
representation are easily obtained using fast standard OpenGL rendering.

Conditional Adversarial Learning.

Recently, generative adversarial networks (GANs) [61] have been proven to be power
ful tools for image generation. Isola et al.[80] formulate the imagetoimage translation
problem by conditioning GANs on images from another domain and combining an ad
versarial with a reconstruction loss. Yang et al.[217] introduce an additional diversity
loss to generate more diverse outputs. Wang et al.[206] propose a multiscale condi
tional GAN architecture for generating images of up to 2 Megapixel resolution. Wang
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et al.[208] use a GAN to synthesize surface normals and another GAN to generate an
image from the resulting normal map. GANs’ major advantage is that they do not require
matching source and target images but rather enforce the generator to produce images
that match the target data distribution. We exploit this by adding an Adverserial loss in
our GIS framework such that the generated images are realistic. Besides, we explore a
richer set of input modalities compared to just raw images [37, 160, 208] or semantic
segmentations [80, 206, 217] for generating higherquality outputs. We demonstrate that
our model compares favorably to the HighResolution Image Synthesis model of Wang
et al.[206] (see fig 4.1d).

FeedForward Image Synthesis.

Dosovitskiy et al.[44] consider an alternative formulation to GANs using feedforward
synthesis with a regression loss. Their work demonstrates that an adversarial loss is
not necessary to generate accurate images of 3D models given a model ID and a view
point. In the same spirit, Chen et al.[27] consider the problem of synthesizing photo
graphic images conditioned on semantic layouts using a purely feedforward approach.
They demonstrate detailed reconstructions at resolutions up to 2 Megapixels, improv
ing considerable upon the results of Isola et al.[80]. Our work also uses a feedforward
formulation for the image synthesis problem. Unlike [27], however, our focus is on
synthesizing controllable, high quality images. Thus, we consider 3D geometry and
segmentation (semantic or material) as input, provided by a simple OpenGL rendering
unit.

4.3 Method

A general image generation process can be defined as a mapping F : {G, A, E} → I

from scene description {G, A, E} to an RGB image I . The scene description consists
of three parts, (i) the geometry parameters G which include the poses and shapes of ob
jects, (ii) the appearance parameters A which describe the objects’ materials, textures
and transparency and finally (iii) the environment parameters E which describe global
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conditions of the scene that affect all objects such as lighting, camera parameters, and
the environment. In this work in contrast, our goal is to train a mappingR : {G, S} → I

that can produce natural images from a given geometry G and material segmentation S

only, without the knowledge of exact appearanceA or environment parametersE. Simi
lar to semantic segmentation, the material segmentation labels each pixel with a specific
material label (e.g.metal, glass etc.) from a predefined set of materials without provid
ing any properties or parameters of the material. The task of the network is to learn the
unknown parameters from the training data directly and apply them to generate images
from new input geometry.
The target image I , which is used for training, can either be a real image of a known
scene geometry or a rendered synthetic image obtained through a highquality software
renderer. While learning image generation directly from real images is desirable, it is
often difficult to obtain geometry and material labels which are pixelaccurately aligned
with realworld images. For this reason, it is possible to exploit synthetically rendered
data using a stateoftheart physically based renderer as supervised target while using
an adversarial loss with real images to acquire realistic looking results. Using realisti
cally rendered images also gives us finegrained control over the data, which we exploit
to conduct various experiments for analyzing our model. Additionally, we demonstrate
how our method can be trained directly using real images for the supervised loss when
an exact 6D pose of the objects in the image is known.

4.3.1 Input Representation

Geometry plays a major role in defining the appearance of an object in an image since
it defines its shape in addition to its shading through interaction with light. Providing
the geometry as an input changes the learning objective from learning to create objects
to learning a correlation between geometry and appearance. This makes the network
more generalizable to new geometries as we show in later expriments. To use geom
etry in a deep neural network, it is important to find a compact representation of the
object’s 3D surface. While meshes are one of the most common representations for 3D
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Figure 4.2. Overview of our approach. WeproposeGeometric Image Synthesis frame
work, feedforward architecture for synthesizing RGB images based on geometric and
semantic cues. Here we show the case where a car is augmented onto an empty road.
Compared to existing image synthesis approaches, our model benefits from a rich set of
input modalities, while learning realistic mappings which generalize to novel geometries
and segmentations, and integrate the objects seamlessly into provided image content.

objects, they are problematic in the context of convolutional neural networks due to their
irregular 3D structure. Another popular representation of 3D objects are voxels. Voxel
based representations can be handled using 3D convolutions [166] but suffer from two
shortcomings: high memory requirements and comparably low resolution.

A common 2D representation of 3D shapes is their depth in the camera view. The
advantage of such an imagebased geometry representation is that it can be directly pro
cessed with a regular 2D convolutional neural network. Nevertheless, the object appear
ance does not usually depend on its absolute depth except for secondary effects like lens
blur and environmental distortions. Rather, it depends on the small changes in depth
between neighbouring points which defines the relative surface orientation with respect
to the light source. This can be better characterized by computing the surface normals
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in the camera coordinates system at each point of the visible surface.

The main advantage of learning the image generation from geometry compared to
rendering is the ability to exploit highlevel semantic and context cues to predict the
appearance of an object. This allows it to learn nongeometric attributes of the object
appearance such as material parameters, lighting, environment reflections and texture
directly from data. Using semantic [27] or instance segmentation [206] can help the net
work to learn the appearance of semantically similar objects across multiple examples.
Nevertheless, it can be challenging in cases where a semantic class has a large variety in
appearance, e.g.cars with different models and colors. We propose in this work to use
material segmentation instead. Each pixel in the segmentation input gets a label from a
predefined set of materials (e.g.metal, plastic, glass etc.). This does not include any ma
terial properties or parameters. Rather, it groups parts made of similar materials together
allowing the network to learn the material appearance model from multiple objects in
different contexts, e.g.different lighting conditions. This results in more generalization
power since the material appearance is often independent of the object class, pose or
shape. We expect this labeling to be particularly effective when generating objects that
consist of a small number of materials but vary significantly in shape, e.g., cars.

4.3.2 Network Architecture

We now define our network architecture in detail. As discussed before, our goal is to
learn a mapping from an intermediate representation to a natural RGB image using a
deep neural network. As input layers to our network, we use the normal map, the depth
map, object mask and material segmentation of the object which can be easily obtained
using OpenGL based rendering. Additionally, by providing the network with a back
ground image Ibg, the network can learn to augment synthetic objects realistically into
real images, e.g. add shadows underneath a synthetic car and blending edges.

Fig. 4.2 illustrates the input layers to our network. Let N, D, S be the 2D images
representing the normal map, depth map and semantic segmentation of the input object
respectively. Let M denote the material label where each pixel is represented by a one
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hot encoding vector which identifies its material ID, see Fig. 4.2 for an illustration. We
are now ready to formally represent the mapping as R : {N, D, S, M, Ibg} → I .

For our generator R, we follow Chen et al.[27] and use a feedforward coarseto
fine network architecture for image synthesis. More specifically, we leverage a cascade
of convolutional layer modules C starting from a very low resolution input and growing
to modules of higher resolutions (Fig. 4.2). Each convolutional module Ci has an input
resolution of wi × hi and produces a feature map Fi of the same size. Ci receives the
feature map Fi−1 from the previous module, upsampled to wi × hi, and concatenated
with the input downscaled to the same resolution. The following layer, Ci+1, operates
at twice the resolution of the previous layer (2wi × 2hi), and receives the feature maps
Fi and the input rescaled to 2wi × 2hi. Each convolutional module Ci consists of an
input layer, intermediate layer and output layer, each of which is followed by a set of
convolutions, a layer normalization and a leaky ReLU nonlinearity. The output layer
of the final module is followed by a 1 × 1 convolution applied to the feature map and
normalized to obtain the synthesized image. For the adversarial discriminator D, we
adopt a fully convolutional network architecture consisting of 5 convolutional layers
each followed by a leaky ReLU with a stride of 2 for all except the last layer. The
discriminator’s output is a 2D binary map where each value describes the discriminator
classification of a patch as real or synthesized by the generator. This is specially useful
when synthesizing objects into real images where the same image would contain both
real and synthetic patches. To further stabilize the adversarial training, we employ the
simple discriminator gradient regularization method proposed in [168]

4.3.3 Training

We train the generator R in our GIS framework to produce synthesized images Is that
resemble the target images It obtained using the “Cycles” rendering engine while at the
same time being close in appearance to real images in order to “confuse” the adversarial
discriminator. Effectively, the task of the network is to learn the process of generating
images, directly from the target images, given {N, D, S, M, Ibg} without information
such as lighting, environment map or material properties. Those properties are estimated
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by the network during training and combined with the geometry and segmentation input
to produce a high quality image. To achieve this, we choose to compute the perceptual
loss (feature matching loss) as proposed in [54] between the generated and target image.
The goal of the perceptual loss is to match the feature activations produced by It and
Is at various convolutional levels through a perception network, e.g., VGG. This helps
the network to learn finegrained image patterns while also preserving the global object
structure. We use VGG pretrained on ImageNet as our perceptual network. Let us
denote this network by V , and let Vl denote a layer of this network. The loss between It

and Is is given by
LP =

∑
l

Sl λl ∥Vl(It) − Vl(Is)∥1

where Vl(·) denotes the feature activations of VGG at layer l and Sl is the binary mask of
the object rescaled to the size of Vl. The GIS framework can also learn to synthesize ob
jects on top of real images. In this case, our goal is to create augmented images by learn
ing not just the target object appearance but also its interaction with the environment in
the real image, including shadows, reflection and blending at the object’s edges. Towards
this goal, we add the background image to the input and train the network using an ℓ1 loss
for the background areas outside the object mask LB = (1 − S)∥It − Is∥1. The adver
sarial discriminatorDs is trained to segment the augmented images by the generator into
real and synthetic parts using the Binary CrossEntropy loss LD = E[log(S − Ds(Is))].
By replacing the synthetic object mask S with its inverse (1 − S), we define an adver
sarial loss for the generator LA = E[log((1 − S) − Ds(Is))] that evaluates the realism
of the synthesized objects.

4.3.4 Diversity

Synthesizing images from geometry and segmentation alone is an illposed problem.
That is, for a specific set of inputs, there are infinite plausible outputs due to differ
ent possible lighting conditions, object colors etc. Thus, we task our network to pro
duce K diverse outputs from the last layer using multiplechoice learning [27, 65].
More specifically, we compute the loss for each of these outputs, but only back prop
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agate the gradient of the best configuration for the foreground prediction, while av
eraging the background predictions as none of them should deviate from the input:
L = w mink[ LP

k + LA
k ] + (1 − w) 1

K

∑
k LB

k . where w is a weight inversely proportional
to the number of pixels of the synthesized object(s). Note that only the foreground object
with the smallest loss is taken into account, thus the min operator effectively acts as a
multiple choice switch. This encourages the network to output a diverse set of images
to spread its bets over the domain of possible images that could be produced from the
current input. In all our experiments we use K = 9 as the number of diverse outputs,
see Fig. 4.5 for an illustration.

4.4 Experiments

To demonstrate the ability of our GIS network to synthesize realistic images, we perform
a set of experiments which assess the quality and generalization capacity of the method.
We mainly focus on two scenarios, outdoor driving and indoor objects. Realistically
synthesizing augmented objects like cars or obstacles into realworld scenes is an im
portant feature for expanding manually annotated training datasets. In the case of indoor
objects, a learned network can be used to synthesize novel views of objects to provide
extensive training data for various tasks. In the following experiments, we show that our
GIS framework produces better images for training an instance segmentation network
compared to a stateoftheart software rendering engine.

4.4.1 Augmentation of KITTI360 dataset

The augmented KITTI360 [2] dataset features 4000 augmented images obtained from
200 realworld images through carefully rendering up to 5 highquality 3D car models
into each image using classical rendering techniques. The set of 28 car models have
been manually created and placed to ensure high realism. Rendering was performed
using the physicallybased Cycles renderer in Blender and followed by a manually de
signed postprocessing pipeline to increase the realism of the output. Additional scene
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information like 360 degree environment maps and camera calibration has been used to
ensure realistic reflections and good integration with the real image.

To train the GIS network, we use normals, depth, material segmentation and se
mantic masks of the augmented cars obtained using the augmented KITTI360 pipeline.
The material labels include 16 materials of different properties (e.g.plastic, chrome glass
etc.) in addition to 15 car paint materials which differ only in color. We use the cor
responding RGB images from augmented KITTI360 as target images for training the
parameters of GIS network. Mixing the real images with rendered cars presents an addi
tional challenge since interactions between the inserted objects and the real background,
e.g.shadows and transparencies, have to be taken into account. To deal with this, we
input the background image to the network in addition to geometry and segmentation.
The network’s task is to learn the process of synthesizing cars realistically and blend
them into the surrounding environment by appropriately adding reflections, shadows
and transparencies, amongst others.

During inference, we obtain a new set of car model positions and orientations fol
lowing the procedure in [2]. We render the mask, depth, normals and material labels
from the camera viewpoint and use them as input to our GIS network. Note that during
the inference phase, we do not require a sophisticated rendering pipeline, like Cycles
renderer, since normals, depth maps and segmentation can be obtained directly using a
simple OpenGL based renderer. We then leverage the trained GIS model to create a new
dataset of 4000 augmented images with new car poses and combinations.

Qualitative evaluation:

Fig. 4.3 shows augmented images produced by our GIS framework when trained on the
augmented KITTI360 dataset. Note that the synthesized cars exhibit realistic appear
ance properties like shading, shadows, reflections and specularity, despite the fact that
this information is not provided to our model. The material labeling of the cars allows
the model to tune the synthesis process to each material. Importantly, note that the ma
terial label is just a semantic label of material and does not contain any information with
respect to the physical properties of the material. Interestingly, our model is able to learn
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Figure 4.3. Images from KITTI360 dataset augmented with cars synthesized using our
GIS framework (Real image without augmentation in upper left corner).

the transparency property of the material with label ”glass” from data, without providing
any alpha channel or explicitly modeling transparency. Additionally, the model is able
to replicate camera effects such as blur and chromatic aberrations, which are present in
the augmented KITTI360 dataset.
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Quantitative evaluation:

To verify the effectiveness of data produced by our model, we train the stateoftheart
Mask RCNN model [68] for car instance segmentation using the images produced by
our network. Alongside, we also train the samemodel with images from the original Cy
cles rendering pipeline from [2] with the same 3D car models and poses, and a baseline
model using the unaugmented real images from KITTI360. We evaluate all models on
the KITTI2015 training set. The results are presented in Table 4.1. We observe that the
model trained on images synthesized by the GIS network significantly outperforms the
one trained only on real data, and marginally outperform the highlytuned data from [2].
This clearly indicates that our model does not only learn to imitate the training data, but
also the adversarial loss can contribute in make the resulting appearance more realistic
and, therefore, more effective in training.

4.4.2 Generalization and Ablation Study

A key feature of our GIS framework is that it learns a mapping from any geometry to
natural images and is not limited to a specific set of objects or shapes. In the follow
ing sections, we present an extensive experimental study to demonstrate that our model
learns a generic image formation function and does not overfit or limit itself only to
objects of certain geometry and material.

To show generalization ability, we present the network with two tasks: (i) syn
thesize seen objects with material combinations never seen before, and (ii) synthesize
learned materials on new, unseen, geometries. In Fig. 4.4a we show the results of our
model applied to the ”Monkey” model from blender with different material labels ap
plied to it. Our results clearly demonstrate that the material properties have been learned
by the network independently from the geometry. In Fig. 4.4b we replace the car paint
with the chrome material previously seen in the training data only on the car wheel rims.
The resulting image looks realistic, demonstrating that the material properties learned
from one part of the model can be transferred to other, geometrically different, parts by
simply changing the material label. Using the diversity loss, described in Section 4.3.4,
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(a) (b)

Figure 4.4. (a) GIS output for a monkey model with material labels: car paint, chrome
and glass. (b) GIS output for a car with material label chrome.

Figure 4.5. Three diverse outputs obtained from GIS on the KITTI360 dataset. Note
how the renderings vary in lighting conditions and reflections.

our GIS model produces 9 different possible images from the same input. The results
in Fig. 4.5 show how the network can learn different lighting conditions (direct light,
cloudy etc.) without providing any explicit lighting information.

To better understand the importance of different input modalities, we perform an
ablation study where we train the GIS model from scratch using all inputs excluding one
at a time. We qualitatively compare the results in Fig. 4.6. When normals are not used for
training, the output images become smooth and lack fine geometric details. Excluding
depth maps from the input, on the other hand, leads to no noticeable difference. We
hypothesize that this is due to the fact that most of the shading of the object can be
modeled based on the local geometry cues that are expressed well in the normals, but
little difference in appearance relates to the absolute depth of an object. In contrast,
removing the material segmentation results in blurry images.
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Dataset IoU 50% AP
Real KITTI360 58.80% 31.92%
Augmented KITTI360 66.68% 37.88%
GIS (ours) 67.74% 38.69%

Table 4.1. Accuracy of Mask RCNN when trained with real, augmented or GIS gener
ated images.

(a) Normal, depth, material, mask (b) All inputs except normals

(c) All inputs except material ids (d) All inputs except depth

Figure 4.6. Output of GIS using various types of inputs. Note that GIS with all four
inputs, or all inputs except depth, synthesizes realistic images.

4.4.3 Novel view synthesis on Linemod dataset

The Linemod dataset was introduced byHinterstoisser et al.[71] for evaluating 6D object
pose estimation algorithms. This dataset contains real images of multiple known objects,
each of them annotated with a 6 degreeoffreedom pose. It provides 3D CADmodels of
all the objects in the dataset for which we annotated the materials present on each CAD
model with a material label. Hence, using the 6D pose and the CAD model, we can
obtain the normal map (N ), material segmentation (S) and depth map (D) of objects.

The objective of this experiment is to use real images as target training data for
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Figure 4.7. Top row contains rendered images. Middle row contains real images in
similar poses. Bottom row contains images synthesized by our network. The middle
row images are not seen during training phase. GIS is still able to synthesize novel
views of objects realistically.

our network with the corresponding geometric information (N, S, D) as inputs. Un
like the KITTI360 dataset, where the target data is acquired using a manually designed
rendering framework, the availability of real images as target data in this case allows
the network to model real world images and their statistics directly. We use the objects
Ape, Can, Cat, Duck, Eggbox, Holepuncher eachwith 1200 images and their pose an
notations. We use 600 images of each object for training and the rest for testing.

Due to the generalisability of our method, we can use the trained GIS network to
generate new images of the objects in previously unseen poses. To demonstrate the ef
ficacy of the images produced by our GIS network for training, we compare them to a
training set generated using the traditional OpenGL rendering engine. To this end, we use
the two kinds of datasets to train the Mask RCNN. First, we crop the rendered images
and place them at random locations on NYU dataset [181] images. We repeat the same
process for object images generated by our network. To evaluate the performance of
Mask RCNN, we test it on LinemodOccluded dataset, proposed by Michel et al.[134]
(note that we do not use this data while training our GIS network). We observe that the
Mask RCNN trained with rendered images performs at an average accuracy of 21.1%
for all objects. On the other hand, the Mask RCNN trained with our synthesized images
performs at an average accuracy of 68.4%. This clearly indicates that the images synthe
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sized by our network are highly realistic and are useful for training other deep networks
which cannot be achieved with rendered data. Qualitatively, our GIS generated images
appear more similar to real images as shown in Fig. 4.7.

4.5 Conclusion

In this chapter, we have proposed GIS, a deep neural network which is able to learn
to synthesize realistic objects by leveraging semantic and geometric scene information.
Through various experiments we have demonstrated the generalization performance of
our GIS framework with respect to varying geometry, semantics and materials. Further,
we have provided empirical evidence that the images synthesized by GIS are realistic
enough to train the stateoftheart instance segmentation methodMask RCNN, and im
prove its accuracy on car instance segmentation with respect to a baseline model trained
on nonaugmented images from the same dataset. We believe that our approach opens
new avenues towards ultimately reaching the goal of photorealistic image synthesis
using deep neural networks.





Chapter 5

Joint learning of image synthesis and
decomposition

5.1 Introduction

Stateoftheart samplingbased rendering engines (e.g., Mitsuba [82] ) are able to gen
erate photorealistic images of virtual objects which are nearly indistinguishable from
realworld photographs. However, this is not an easy task to accomplish since all intrin
sic physical aspects of the virtual object must be accurately modeled, such as accurate
3D geometry, detailed textures and physicallybased materials. While some of these in
trinsics are abundant on the internet, such as the geometry of 3D objects (e.g. Turbosquid
and 3D Warehouse), others are hard to obtain, such as highquality materials – ideally
in the form of a highlyaccurate spatiallyvarying BRDF. In addition, sophisticated and
slow rendering algorithms with many tunable parameters (lighting, environment map,
camera model, postprocessing) are required for turning 3D content into photorealistic
images. These parameters are often tuned individually with each rendered image, mak
ing it hard to create a large and diverse set of rendered images. On the other hand,
obtaining a large number of real images which capture the complex interaction of light
with scene geometry and surface properties is easy. This makes the idea of learning
neural image synthesis from real images very attractive.

75
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Figure 5.1. Deferred Neural Rendering and Intrinsic Image Decomposition. At
training time, our model exploits normals, albedo and reflections from a small set of
3D models as well as a large set of unpaired RGB images of the same object category.
Our model solves two tasks simultaneously: (i) generating photorealistic images given
the input geometry and basic intrinsic properties, and (ii) decomposing real images back
into their intrinsic components.

Several works on conditional image generation [27, 80, 148, 206] have exploited
paired datasets of real images with semantic information, including semantic segmenta
tion [27, 148] and body part labels [106] for training realistic image synthesis models.
However, such sparse inputs only allow limited control over the generated image. This
limits the applicability of these methods, e.g., in virtual reality or video game simula
tions where precise control over the output is essential. Training a conditional image
generation model from richer control inputs would require a large dataset of paired real
images with pixel aligned intrinsic properties such as 3D structure, textures, materials
and reflections. Obtaining such a dataset is hard in practice.

Our goal is to take a step towards learning a highly controllable realistic image
synthesis model without requiring real world images with aligned 3D models. Our key
insight is that learning the inverse task of intrinsic decomposition is helpful for learning
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image synthesis from real images and viceversa. We therefore train both, the forward
rendering process and the reverse intrinsic decomposition process, jointly using a single
objective as illustrated in Fig. 5.1. Inspired by recent results in unpaired imagetoimage
translation [77, 111, 228], we train our model using an small set of synthetic 3D models
of an object category as well as a large unpaired dataset of real images of the same
category.

Towards this goal, we exploit a technique from realtime rendering calledDeferred
Rendering which splits the rendering process into two stages and thus improves effi
ciency. In the first stage, the geometry of the scene along with its textures and material
properties are projected onto a 2D pixel grid, resulting in a set of 2D intrinsic images
which capture the geometry and appearance of the object. This step is efficient since
it does not require physically accurate path tracing but relies on simple rendering oper
ations. In the second “deferred” stage, lighting, shading and textural details are added
to form the final rendered image. Our goal is to replace this second deferred stage of
the rendering process with a neural network which we call Deferred Neural Render
ing (DNR) network. To ensure that the input information is represented in the output
image, we decompose it back into its intrinsics using a second Intrisic Image Decompo
sition (IID) network. However, we found that using this cycle alone leads to overfitting,
especially in the IID network. To improve the IID network, we introduce a second De
composition cycle in which we train the IID network to decompose real images.

Overall, our model follows a similar dual cycle training setup as proposed in [228]
and [218]. However, an important conceptual difference to these works is that our task is
not a onetoone but a onetomanymapping. Different realistic images can be generated
from the same set of intrinsic maps as the intrinsics do not uniquely define the image.
Likewise, a single image can be explained using different intrinsic decompositions due
to projection from the higher dimensional intrinsics into the RGB image space.

We therefore introduce a shared adversarial discriminator between the input and the
reconstruction at the end of each cycle. Our model enables both highly photorealistic
image synthesis and accurate intrinsic image decomposition. We summarize our main
contributions as follows:
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• We propose the Intrinsic Autoencoder, a method to jointly train photorealistic
image synthesis and intrinsic image decomposition using cycle consistency losses
without using any paired data.

• We propose a shared discriminator network that enables better generalization and
proves key for learning both tasks without paired training data.

• We analyze the importance of various model components using quantitative met
rics and human experiments. We also show that our method recovers accurate
intrinsic maps from challenging real images.

5.2 Related Work

Differentiable Rendering. A standard way of synthesizing images from a given ge
ometry and material is to use rendering engines. Several works try to implement the
rendering process in a differentiable manner, amenable to neural networks. The work
of [14] used differentiable rendering with deformable face models for face reconstruc
tion. The works of [119] and [93] proposed rasterizationbased differentiable renderers
but only support local illumination. In order to support more realistic image formation,
some other works [25, 58, 59, 108] propose to backpropagate though path tracing. Dif
ferentiable rasterizers are relatively fast, but at the same time highly restrictive as they
do not support complex global illumination. While differentiable path tracers produce
more realistic images, they are usually quite slow, thus restricting their usage to specific
applications. Another drawback of differentiable renderers is that they require a detailed
representation of the rendering input in terms of geometry, illumination, materials and
viewpoint. In this work, we bypass the specification of complex image formation by
training a CNN to directly generate realistic images from given geometry and material
inputs.

Neural Image Synthesis. Generative models such as Generative Adversarial Networks
[61] and Variational AutoEncoders (VAE) [98] are widely use to synthesize realistic im
ages from a latent code. In contrast, our goal is to perform conditional image synthesis
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which allows more finegrained control over the image generation process. Some pop
ular conditional image generation approaches are labeltoimage translation [138, 146],
imagetoimage translation [27, 44, 80, 111, 206, 228] and texttoimage generation [75,
161, 215, 223]. Earlier works [27, 44, 80] on conditional imagetoimage generation are
mostly supervised with paired data from both domains. Several works [111, 228] pro
pose a way to use unpaired data from both domains for conditional image generation.
Other advances in conditional image generation include innovations in network archi
tectures and loss functions for generating high resolution images [206] and generating
multiple diverse images [32, 77, 79, 217]. In this work, we develop a model for photo
realistic geometrytoimage translation using only unpaired training data as supervision.
Our work is closely related to [1] which also considers geometrytoimage translation,
but requires paired training data. Our work belongs to the family of unpaired conditional
image generation models with architecture and losses (e.g., shared discriminator) spe
cialized for the geometrytoimage translation. Our model outperforms stateoftheart
unpaired imagetoimage translation models [77, 228] by a large margin.

Intrinsic Image Decomposition is a long standing problem in computer vision. [11]
poses the task as an optimization problem with a set of handcrafted priors for shape,
shading albedo etc. On the other hand supervised methods like [83, 175, 176] use syn
thetic data to train the model followed by refinement on real images. However, synthetic
data might not capture all the real world statistics and models trained with synthetic data
might now generalize well to real images. Recently, several selfsupervised intrinsic
decomposition methods have been proposed [110, 113, 121]. [113] uses single images
during both training and inference stages. [110, 121] make use of multiview images or
video sequences of the scene during training and infer on a single image . Our work falls
in the realm of selfsupervised intrinsic image decomposition. We do not use any paired
synthetic data or multiview sequences to train out model. Instead, we rely on jointly
training models for neural rendering and image decomposition.
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Figure 5.2. Intrinsic Autoencoder. Our model comprises two cycles: The first cycle
(blue) autoencodes a set of intrinsics rendered from 3D CAD models using appearance
as latent representation. The second cycle (red) autoencodes real images using image
intrinsics as representation. Consistency is achieved through a combination of cycle
losses and shared adversarial losses. Networks sharing the same weights are illustrated
with the same color (green/yellow).

5.3 Method

Our Intrinsic Autoencoder model (Fig. 5.2) consists of two generator networksR andH
for Deferred Neural Rendering and Intrinsic Image Decomposition, respectively. The
Deferred Neural Rendering Network R : M → Î takes as input a set of intrinsic maps
M = {A, N, F}. The object’s surface normal vectors in the view coordinate system
N ∈ RH×W ×3 provides the Deferred Neural Rendering Network important information
about the local shape of the object which is necessary for creating shading and reflec
tion in the output image. The albedo A ∈ RH×W ×3 is a pixelwise RGB value that de
scribes the material or texture color at every pixel, ignoring any lighting effects. Finally,
the environment reflections F ∈ RH×W ×3 are computed by projecting a high dynamic
range environment map onto the 3D model. Note that this simple projection operation
does not involve any complicated sampling or raytracing operations. As shown in our
experiments, the Deferred Neural Renderer can also be trained with a subset of those
inputs since it is able to compensate for the missing information. The DNR network
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R : M → Î transforms all the input intrinsics M into a realistic image Î ∈ RH×W ×3

that corresponds to the input intrinsics. Similarly, the Intrinsic Image Decomposition
(IID) network H : I → M̂ performs the opposite task by taking an input image I and
predicting its intrinsics M̂ ∈ RH×W ×9.
Supervised training of R and H on real data is typically difficult due to the lack of real
training image and intrinsics pairs (Ir, Mr). Instead, we use a combination of cycle
consistency losses and adversarial losses that require no paired training examples. This
allows us to leverage a large dataset of real images {I i

r}n
i=0 and an unpaired set of syn

thetically generated intrinsic maps {M i
s}m

i=0. In the following, we detail our cycle con
sistency losses and the novel shared adversarial losses.

5.3.1 Cycle Consistency

Rendering Cycle. The goal of the rendering cycle is to train R in order to produce
realistic images Îs = R(Ms) from synthetic intrinsic maps Ms. To train R without
paired data, we use the inverse transformationHwhich decomposes the predicted image
Îs back into its intrinsic maps M̂s = H(R(Ms)) as illustrated in Fig. 5.2. We encourage
consistency of the intrinsics using the rendering cycle consistency loss which is defined
as the SmoothL1 distance between the input and reconstructed intrinsics

Lren(R, H, Ms) = ∥H(R(Ms)) − Ms∥1. (5.1)

Decomposition Cycle. Similarly, we train H to generate intrinsic maps M̂r = H(Ir)
from real images Ir. To ensure consistency with the input Ir, the output intrinsics M̂r

are passed to the deferred neural renderer R to reconstruct the image Îr = R(H(Ir)).
The decomposition cycle consistency loss is defined by:

Ldec(R, H, Ir) = ∥R(H(Ir)) − Ir∥1. (5.2)

The combined cycle consistency loss is then defined as:

Lcyc(R, H, Ir, Ms) = Lren(R, H, Ms) + Ldec(R, H, Ir) (5.3)
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To ensure that the predicted normals N̂s = HN(Ir) and the reconstructed real normals
N̂r = HN(R(Ms)) are properly normalized, we exploit an additional normalization loss
Lnorm:

Lnorm(R, H, I) =| 1 − ∥HN(Ir)∥2 | + | 1 − ∥HN(R(Ms))∥2 |

5.3.2 Shared Adversarial Loss

While the cycle consistency loss ensures that the network input can be reconstructed
from its output, it does not place any importance on the realism of that output. Addition
ally, the cycle consistency loss assumes a onetoone deterministic mapping between
the input and output. While this is a reasonable condition for some imagetoimage
translation tasks [228], it is violated when translating between images and their intrinsic
properties. Decomposing an RGB image into its highdimensional intrinsic properties
is a onetomany transformation since multiple decompositions can be consistent at the
same time with the same image, e.g., a gray patch may correspond to a gray diffuse sur
face or a black glossy surface with specular highlight. Likewise, the process of creating
an image from an incomplete set of intrinsic properties involves making additional pre
dictions about missing attributes like lighting conditions, optical aberrations, noise or
higherorder light interactions. To better capture this multimodal relationship, we use
an adversarial loss between the input and its reconstruction.

An adversarial discriminator D is a classification model trained to predict if a data
sample is produced by a generative model or if it stems from the true data distribution.
To train our Intrinsic Autoencoder, we use two adversarial discriminators, DI for dis
criminating generated images Î{s,r} from real images Ir, andDM for discriminating gen
erated intrinsic maps M̂{r,s} from synthetic intrinsic maps Ms. The discriminators help
our model to learn the distribution of real images and synthetic intrinsics by optimizing
the following adversarial [61] loss function

Ladv(R, H, DI , DM ) = LI
adv(R, H, DI) + LM

adv(R, H, DM ) (5.4)

where
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LI
adv(R, H, DI) = log(DI(Ir)) + log(1 − DI(R(Ms))

+ log(1 − DI(R(H(Ir)))
(5.5)

is our novel shared adversarial image loss which discriminates both between the
real image Ir and the generated synthetic image Îs = R(Ms), as well as between the
real image Ir and the reconstructed real image Îr = R(H(Ir)). Similarly, we define the
shared adversarial intrinsic loss as

LM
adv(R, H, DM ) = log(DM(Ms)) + log(1 − DM (H(Ir))

+ log(1 − DM (H(R(Ms))))
(5.6)

Using the reconstructed inputs Îr and M̂s in addition to the generated samples Îs and M̂r

for training DI and DM makes the discriminators more robust and prevents overfitting.
This is especially important when a relatively small number of 3D objects are used to
create the synthetic intrinsic maps which can lead to a discriminator that recognizes the
model features rather that the image realism.

5.3.3 Implementation and Training

We train our Intrinsic Autoencoder networksR, H in addition to the adversarial discrim
inators DM , DI from scratch by optimizing the joint objective

min
R,H

max
DI ,DM

Lcyc + Lnorm + Ladv (5.7)

Our framework is implemented in PyTorch [149] and trained using Adam [96] with a
learning rate of 0.0002. The Deferred Neural Rendering Network is a coarsetofine
generator introduced in [206] for the deferred neural rendering network. The input to
the network is of size 256 × 512 constructed by concatenating normals, albedo and re
flections. The output of the network is an RGB image of size 256 × 512 × 3. We use
three networksH = {HN ,HA,HF} for estimating the surface normalsN , AlbedoA and
environment reflections F , respectively, from an image I . Each network has a ResNet
architecture with 5 ResNet blocks.
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Adversarial Discriminator Networks. Since the local structure of the generated im
ages is mostly controlled by the input intrinsics, we want the image discriminator DI to
mainly focus on the global realism of the output. To address this, we use a multiscale
PatchGAN [206] discriminator which comprises two fullyconvolutional networks that
classify the local image patches at two scales, full and half resolution. The discriminator
outputs a realism score for each patch instead of a single prediction per image. This has
been shown to produce more detailed images for similar conditional image generation
tasks [80, 206, 228]. The intrinsics discriminator DM has the same architecture except
that the input is a 9channel stack combining all three intrinsic maps. We found that
using a single discriminator for the combination of the intrinsic maps performs better
than separate networks for each. This is likely due to the interdependence between the
different intrinsic properties that allows the discriminator to detect inconsistencies be
tween the generated intrinsic maps. We provide more architecture and training details
in the supplementary material.

5.4 Experiments

Synthetic Data Generation. To generate the synthetic training data, we use dataset
from [2] containing 28 3D car models covering 6 car categories (SUV, sedan, hatch
back, station wagon, minivan and van). Apart from the geometry, we do not need any
physicallybased materials or textures for the models. Instead, we assign to each car part
a simple material with only two properties, the color and a scalar glossiness factor for
computing reflection maps. We assign each 3D car part a fixed material from a set of
18 fixed materials. Additionally, we randomly pick one of 15 materials with different
colors for the car body during the rendering process. Next, a camera position is ran
domly chosen within a radius of 8 meters and a maximum height of 3 meters. We use
a fast OpenGL based rendering engine which operates at around 3 frames per second
including the model loading time. It outputs the surface normals of the car model in the
camera coordinate space and the albedo channels indicating the material color at each
pixel without any lighting or shading. Finally, we produce the environmental reflections
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by using a 360 degree environment map from [2]. These kind of reflections are very ef
ficient to compute since they only require the view vector and the surface normal and
do not rely on expensive pathtracing. We render 20,000 synthetic samples of normals,
albedo and reflections.

Real training data. We obtain the real images from a fine grained car classification
dataset presented in [103]. For convenience, we refer to this as the real car dataset. It
contains 16,000 images of cars captured in various lighting conditions, resolutions and
poses and with different camera sensors and lenses.

5.4.1 Baselines

Since our goal is to train with only unpaired data, we choose to benchmark our method
against two stateoftheart unpaired image generation approaches, CycleGAN[228] and
MUNIT[77]. However, since both methods were originally designed for imageto
image translation rather than deferred rendering, we setup two additional strong base
lines that highlight the importance of our contributions in improving the quality of our
results.
CycleGAN and MUNIT. CycleGAN[228] is a generic method for translating between
two domains without available paired data. MUNIT[77] aims at producing a diverse set
of translations between different domains. We modify the two methods slightly to use
our stacked 9 channel synthetic intrinsic maps as inputs.
Without shared discriminator. In this setup, we do not use the shared adversarial dis
criminator discussed in 5.3.2. Instead, we only use the discriminator DI between gen
erated image Îs, real image Ir. Similarly, the discriminator DM is used only between
synthetic intrinsics Ms and generated intrinsics M̂r.
Only rendering cycle. Here, we train the model using only the deferred rendering cycle
discussed in (Sec. 5.3.1) and do not use the decomposition cycle.
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Figure 5.3. Images generated using our Deferred Neural Renderer. Inputs to the
network are intrinsic maps consisting of albedo, normals and reflections, shown above
the generated images.

5.4.2 Deferred Neural Rendering

To evaluate our approach for deferred neural rendering, we use the networkR to produce
images given synthetic intrinsic maps (albedo, normals, reflections) and compare it to
other baselines, both qualitatively and quantitatively.

Qualitative results

Fig. 5.3 shows car images generated using our deferred neural renderer from the input
synthetic intrinsic maps shown above them. The car models in the evaluation set have
been previously seen by the generator, but the unique combination of pose and paint
color has not been seen during training. Our approach is able to generate detailed photo
realistic images of cars with consistent geometry and distinct parts. We emphasize that
the deferred neural rendering network is trained without any rendered or real geometry
image pairs. Instead, it is able to learn the appearance of different car parts from a large
set of real car images. For more results see supplementary 1

In Fig. 5.4 we compare the results of our full model to various baselines. The
1https://youtu.be/FOWoCeOAiug

https://youtu.be/FOWoCeOAiug
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Figure 5.4. Qualitative Comparison with baselines on Neural Rendering. Inputs
to the network are intrinsic maps consisting of albedo, normals and reflections, shown
above the generated images. Additional higher resolution results are provided in the
supplementary materials.

results clearly show the improvements in visual quality achieved when using our full
model. Specifically, MUNIT appears to be unable to preserve the geometry and albedo
of the input in the generated image, CycleGAN images has significant artefacts on the
windows, body, etc. When training our model without the shared discriminator, the
resulting images suffer from irregular reflection patterns and a noisy image. This is
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likely due to the strong overfitting required by the network to reproduce the input image
exactly when using only an L1 loss. The model trained without the decomposition cycle
is not able to preserve the input intrinsics in terms of albedo and reflection.

In figure 5.5, we show the effect of input intrinsic maps on the quality of rendered
images. When the model is trained only with normals as intrinsic input, the geome
try of the result is well rendered but the color of different parts poorly defined. The
model trained on both normals and albedo demonstrates sharper image quality but the
hallucinated reflections by the network lacks lack realistic details. Finally, using the en
vironmental reflections helps the network produce consistent and realistic images with
sharp details.

Figure 5.5. Images generated using models trained with ablated inputs.

Quantitative results

We evaluate the quality of generated images using Fréchet Inception Distance(FID) [70]
and Kernel Inception Distance(KID) [13]. Both metrics compute the distance between
the features of two sets of images, obtained from a pretrained CNN. Table 5.1 presents
both the FID and KID between the images generated using various methods and the real
images. Our full model achieves the lowest FID and KID values (47.6, 4.2) indicating
that the rendered images from our model are closest to the distribution of real images
compared to MUNIT [77] and CycleGAN [228]. Further, when we ablate each of the
intrinsic map inputs, both FID and KID increase substantially. Notably, in the case of
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w/ w/o
Cycle Shared Decom. w/o w/o w/o
GAN MUNIT Ours Discr Cyc. A N F

FID 103.3 99.0 47.6 59.2 99.6 88.7 60.2 56.7
KID 10.2 13.5 4.2 4.8 11.8 5.4 4.9 5.9

Table 5.1. FID and KID between real images and generated samples. All inputs are
provided to the generator (Albedo, Normals and Reflections).

ablating albedo input, the highest increase in distances can be observed (88.7, 5.4), im
plying its importance for photorealistic image generation. We conclude that albedo is
the most important for our task followed by normals and reflections maps. In both cases
where we ablate the decomposition cycle or rendering cycle, we observe a huge increase
in the distances signifying the importance of using both cycle consistency losses during
training. Finally, training with the setup of separate discriminators as mentioned in 5.4.1
leads to an increase in the distances.

Human Experiments

We design two experiments to measure the visual realism of generated car images using
the Amazon Mechanical Turk platform to crowd source human evaluations. For each
comparison, we presented 40 human subjects each with 50 image pairs to choose the
more realistic looking image. The results are presented in Table 5.2. The first row
presents experiments where one image is picked from the real images and the other is
from one of the synthesis methods and presented in a random order. Images from our
full model seem to be most confused with real car image since only 67.5% of choices
were correct while in 32.5% of the trials the subjects choose our images to be the real
one.
In the second experiment subjects are presented with an image generated by our full
model and a matching image generated by one other synthesis methods. The results in
the second row of Table 5.2 show that subjects choose our results to be more realistic
over 80% of times when compare to CycleGAN and MUNIT. This clearly indicates a
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Cycle w/o Shared w/o Decom
GAN MUNIT Ours Discr. Cyc.

Real Im 77.7% 75.6% 67.5% 68.9% 71.0%
Ours 80.0% 85.8% – 57.6% 63.8%

Table 5.2. Human Subject Study. Comparisons to identify realistic images in an A/B
test using Amazon Mechanical Turk. The numbers indicate the ratio of trials where the
image from real or our model was chosen as more realistic compared to the image from
the method on the header.

high level of visual quality of our generated images compared to those generated from
existing methods. On the other hand, images from our ablated models appear to be much
closer to our full model visual quality.

5.4.3 Intrinsic Image Decomposition

Qualitative results

In fig. 5.6, we show that the intrinsic decomposition network is able to decompose real
car images into their intrinsic maps. We would like to emphasize that the model does
not have access to groundtruth intrinsic maps for real images during the training phase.
Also, these car models are not present in the synthetic training data.

Figure 5.7 compares the decompositions produced by our model to those from other
baselines. Both CycleGAN [228] andMUNIT [77] show significant artificats and incon
sistencies when trained to decompose real images. The USI3D [113] fails to generalize
to real models since it was trained using synthetic data from ShapeNet [23]. Our model
without decomposition cycle also recovers noisy albedo and normals due to overfit only
to synthetic data. On the other hand, training without the shared discriminator leads to
severe artefacts. This is because the rendering network tries to encode intrinsics infor
mation in the generated images in the form of high frequency artefacts such that the
decomposition network can easily recover them.
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Figure 5.6. Results of our intrinsic decomposition network on real images. The first
column shows the inputs to the network. Our model is able to decompose the sport car in
first row accurately even though our synthetic training dataset does not include any sport
cars at all. The car models of other inputs images are also not present in our synthetic
dataset.

Figure 5.7. Comparison with Baselines for intrinsic decomposition. Note that
USI3D [113] only produces albedo and shading and not reflections or normals.

Quantitative results

To evaluate the intrinsic maps predicted by the intrinsic image decomposition network
(H) we construct a synthetic dataset containing rendered RGB images and their corre
sponding intrinsic maps rendered using a standard Physically Based Renderer (Blender
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w/o Sharedw/o Decom. Cycle
Discr. cycle GAN MUNIT Ours

Normal Err. 17.75◦ 18.80◦ 27.82◦ 29.15◦ 14.73◦

Albedo Err. 54.00 67.21 68.18 81.44 52.74
Reflection Err. 55.60 71.00 73.18 74.75 51.74

Table 5.3. Errors for the Intrinsic Decomposition Task. Our method achieves the
lowest error on all tasks.

[15]). To obtain the error between predicted and ground truth normals, we compute the
average cosine distance between them. The errors for albedo and reflection are the av
erage ℓ1 distances between the predicted and ground truth maps. Table 5.3 presents the
errors of various methods for predicting intrinsic maps. Our full model has the least error
for all the modalities followed by our model without the shared discriminator, without
decomposition cycle and finally MUNIT and CycleGAN. This indicates that our model
is able to learn accurate image decomposition while keeping generalization. Note that
these PBRrendered images have not been presented to our network during training.

5.4.4 Results on ShapeNet Airplanes

We train our model for the object class ”Airplanes”. We obtain the real images from
FGVCAircraft dataset [122] which contains 10,000 images of airplanes. We use the
3D models of airplanes from the Shapenet dataset [23] to obtain our intrinsic maps.
We follow the process mentioned in sec.5.4 to generate input training data. We use
the normals and albedo as inputs to the network. Figure 5.8 illustrates realistic images
generated using our deferred rendering network, demonstrating the ability of our method
to handle lowquality mesh and texture models.
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Figure 5.8. Images generated by our network trained on airplanes from ShapeNet
[23].

5.5 Conclusion

In this chapter, we presented a joint approach for training a deferred rendering network
for generating realistic images from synthetic image intrinsics and an intrinsic image
decomposition network for decomposing real images of an object into its intrinsic prop
erties. We trained the model using unpaired 3D models and real images. Our qualitative
and quantitative experiments revealed that using a combination of shared adversarial
losses and cycle consistency losses is able to produce images that are both realistic and
consistent with the control input.





Chapter 6

Discussion

The chapters in this thesis present several novel ideas and paradigms for synthetic image
generation with focus on making the generated images more effective in training scene
understanding machine learning models. In this final chapter, the main ideas from each
chapter are first summarized and then the advantages and limitations of the proposed
methods are discussed. Finally, possible directions for future work based on ideas in
this thesis are presented.

6.1 Augmented reality for deep learning

Chapter 3 explored the use of mixing real and synthetic objects in the same training im
age as an alternative to pure synthetic images. This method is especially efficient for
augmenting urban driving datasets where capturing and labeling the static background
(e.g. streets, buildings and street signs) are relatively easy. Meanwhile, foreground ob
jects (e.g. cars, bicycles and people) are dynamic and hard to capture using 3D sensors
like lidar and label. Indeed, those foreground objects are usually of high importance
when making driving decisions, which makes them crucial for training autonomous
driving systems. The experimental results showed how using mixed images can cre
ate more effective training data for deep learning models. Several ablation experiments
in this chapter studied the various factors that affect the usefulness of augmented im
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ages. Those point to two main conclusions: First, the training performance of rendered
objects is mostly limited by the lowlevel local image features, like noise and blur, more
than by the global data distribution parameters, like car position, direction or shadow.
Second, the balance between the number of real and rendered objects in the same aug
mented image is important for training performance since that helps to avoid network
overfitting on the synthetic objects.

Despite its effectiveness and simplicity, the augmentation framework introduced
in Chapter 3 has several limitations. The realism and quality of the generated mixed
images rely heavily on the accurate manual tuning of the rendering parameters and post
processing pipeline done by experts. This tuning is done once per dataset but still re
quires highlevel skills. This limitation is mainly addressed by the Geometric Image
Synthesis model presented in Chapter 4 which aims to learn the process of tuning the
object appearance to fit the background. The proposed method also requires manual
annotation of street lanes for realistic virtual car placement. This could be replaced and
improved by using a combination of scene understanding techniques, like lane detection
and road segmentation, with traffic simulation models and physics engines which can
generate realistic and physically accurate traffic scenarios automatically. Constructing
a scene structure graph of real images [38] can also be employed to ensure the simulated
traffic scenario matches the real background scene. Another limitation of using 2D im
age information only in this work is that it can not generate synthetic objects partially
occluded by real objects due to lack of depth data. A possible future extension could be
to use the 3D structure of the scene captured through lidar sensors or lightfield systems
which can capture the material properties additionally. This can be used to better match
the reflections, integrate shadows, and handle occlusions between real and synthetic ob
jects.
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6.2 Geometric image synthesis

Chapter 4 proposed replacing a classical rendering engine with a learned model called
Geometric Image Synthesis. Using a differentiable neural network for rendering has two
advantages compared to traditional rendering engines. First, it allows the object appear
ance to be partially learned from real images of similar objects. This largely reduces
the amount of manual tuning of rendering and postprocessing parameters required for
producing realistic results. Second, the flexibility and differentiable nature of a neural
network allows for using different inputs or multiple loss functions depending on the
target task. For example, the goal of experiments in Chapter 4 was to render images that
are both realistic and blend well with the real background. This required giving the back
ground image as input to the synthesis network and using an adversarial discriminator
that examines rendered objects in context of the real background image to determine if it
is real or fake. An interesting direction for developing this approach would be to jointly
train the rendering network with the scene understanding task network. This could make
the resulting images even more challenging for the task network leading to better train
ing data and a more robust model. One limitation of the proposed network architecture
is that it follows the fully convolutional imagetoimage network design which requires
the input to be defined pixelwise. This means global rendering parameters like light
direction, camera parameters or object pose can not be easily controlled or learned. In
stead, GIS relies on a simple traditional nondifferentiable rendering engine to convert
the object mesh and sampled global parameters into several 2D maps that constitute the
input to the network. A possible way to alleviate this limitation would be to replace
the traditional nondifferentiable rendering engine with a differentiable one. This would
allow gradients of the loss function to backpropagate not only into the GIS network
but also to the global rendering parameters opening up the use of this method for tasks
like post estimation. The other limitation of the proposed GIS network is that it uses
a traditional rendering engine during training to produce matching RGB images for the
input. This is used as a form of regularization to ensure that the image produced by GIS
is not only realistic but also matching the input structure. A more desirable setup would
be where the image synthesis network is trained solely based on real images which is
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explored in Chapter 5.

6.3 Joint learning of image synthesis and decomposition

Chapter 5 introduced Intrinsic Autoencoders, a novel model for training a neural render
ing network without any paired real or rendered images. This was achieved by combin
ing the two complimentary tasks of neural rendering and intrinsic image decomposition
into a single model that can be trained with unpaired sets of 3D models and real im
ages using a combination of adversarial discriminators and cycle consistency. One of
the main challenge in this setup is that the adversarial discriminator loss should depend
only on the appearance of the generated image and not on its content. This is difficult in
practice since it requires the 3D models and images to be coming from the exact same
data distribution (e.g. the same set of car models). The Intrinsic Autoencoder model
introduces the shared adversarial discriminator as a mean to solve this problem by com
paring real images not only to rendered 3D models but also to rerendered real images
after decomposing them into their intrinsic maps. The real and rerendered imagesmatch
in their content and only differ in appearance creating thus forcing discriminator to focus
on the latter. Another advantage of this approach is that it can be learned even using a
small number of 3D models (e.g. 28 car models used in experiments in Chapter 5) mak
ing it more applicable in practice.
Similar to GIS, the Intrinsic Autoencoders model relies on basic nondifferentiable ren
dering methods to generate input maps like normals and reflections. Replacing this step
with a differentiable rendering model could allow the use of the neural rendering and
intrinsic image decomposition networks as intermediate modules for other tasks. For ex
ample, the intrinsic decomposition model combined with differentiable rendering could
be seen as singleimage 3D shape reconstruction method making it useful in many new
applications. Another future direction would be to replace the two networks solving the
inverse tasks of rendering and decomposition with a single flowbased invertible neural
network [209] making the model much simpler and the training more straightforward.
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