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Emergence of Cooperation in Evolutionary Social Interaction Networks
Cooperation is the cornerstone of life and human societies—its evolution is a peren-
nial question. Evolutionary Game Theory models elucidated mechanisms promoting
cooperation. However, they pay little attention to its emergence, operate with prede-
fined states of defectors and cooperators, and presume defection as the natural state.
Models need more realism. Here, I introduce ReCooDy, a model combining popula-
tion dynamics, limited resources, dynamic networks, coevolution of nine parameters,
and optional social dilemma interactions, all implemented in the Utopia framework,
which allows performant, flexible, and reliable computer simulation. ReCooDy in-
vestigates the emergence of cooperation and defection in a generalized continuous
public goods interaction that incorporates “true defection”—exploitative destruction
for selfish benefits. I show that macroscopically classifying agents as selfish or selfless
oversimplifies the intricacy of the emerging mesoscopic social dilemma. Simulations
exhibit the emergence of cooperation, even for minute synergies if interacting is not
crucial. For moderate synergy, agents evolve specializations that depend vitally on
the interactions. Further, defection emerges naturally as a response to cooperation.
ReCooDy exhibits recurrent dynamics patterns with history dependence and frequent
strategy collapses through cascaded thresholds caused by Red Queen dynamics. Thus,
simulations reveal ReCooDy’s deterministically chaotic self-organized nature and the
overall unintuitive phenomenology of more realistic social dynamics modeling.

Emergenz von Kooperation in evolutionären, sozialen Interaktionsnetzwerken
Kooperation ist der Grundstein des Lebens und menschlicher Gesellschaften – ihre
Evolution ist eine immerwährende Frage. Evolutionäre Spieltheorie-Modelle haben
Mechanismen zur Verstärkung von Kooperation aufgezeigt. Sie berücksichtigen jedoch
kaum die Emergenz von Kooperation, arbeiten mit vordefinierten „Defekteur“ und
„Kooperateur“ Zuständen und gehen davon aus, dass Defektion der natürliche Zustand
sei. Modelle brauchen mehr Realismus. In dieser Arbeit stelle ich ReCooDy vor –
ein Modell, das Populationsdynamik, begrenzte Ressourcen, dynamische Netzwerke,
Koevolution von neun Parametern und optionale soziale Dilemmainteraktionen kom-
biniert. Es ist im Utopia-Framework implementiert, das performante, flexible und
zuverlässige Computersimulation ermöglicht. ReCooDy untersucht die Entstehung
von Kooperation und Defektion in einem verallgemeinerten, kontinuierlichen Öffentli-
che Güter Spiel, das „wahre Defektion“ beinhaltet – ausbeuterische Zerstörung für
egoistische Vorteile. Ich zeige, dass die makroskopische Agentenklassifizierung als
egoistisch oder selbstlos die Komplexität des entstehenden mesoskopischen sozialen
Dilemmas zu sehr vereinfacht. Simulationen zeigen die Entstehung von Kooperation,
selbst für geringe Synergien, solange Interaktionen nicht lebensnotwendig sind. Bei
moderaten Synergien entwickeln Agenten Spezialisierungen, die entscheidend von
Interaktionen abhängen. Defektion entsteht hierbei als natürliche Folge auf Koopera-
tion. ReCooDy zeigt wiederkehrende, geschichtsabhängige dynamische Strukturen und
häufige kaskadierte Strategiezusammenbrüche durch Überschreitung von Schwellen-
werten, getrieben durch eine „Red Queen“-Dynamik. Damit zeigen Simulationen die
deterministisch chaotische, selbstorganisierte Natur von ReCooDy und die insgesamt
unintuitive Phänomenologie einer realistischeren Modellierung sozialer Dynamiken.
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1 Introduction

“Scientific advances often come from
uncovering a hitherto unseen aspect of
things as a result, not so much of using
some new instrument, but rather from
looking at objects from a different
angle. This look is necessarily guided
by a certain idea of what the so-called
reality might be.”

François Jacob (1977)

Our world, with all of its observable complexity, is the result of a great unfolding.
It autonomously generates hierarchical structures, which are ubiquitous, observable in
physical, biological, social, and cultural systems (Simon 1962). They emerge from
evolutionary and complex systems. Evolution is not restricted to biological systems but
entails a much broader scope, including our cultural (Boyd and Richerson 2005; Richerson
et al. 2016) and technological world (Taylor and Dorin 2020). Biological evolution is
the most prominent and the best-understood system – because of its long history of
unfolding over a few billion years and its long research history. Humankind’s cultural and
emerging technological (r)evolution operate on top of our biological world. However, today
more than ever, the biological world is intertwined with our cultural and technological
one, even inseparable. The rate at which our world is changing is unprecedented, with
unseen magnitude across scales and massive feedbacks between our societies, life, and the
environment.

Early in Earth’s history, some 4Gy ago (Dodd et al. 2017), the first living beings—
replicators emerging in an RNA world—came into existence (Szathmáry and Maynard
Smith 1997). Biological evolution started shaping organisms through variation, natural
selection, and inheritance as Darwin (1859) found in his seminal book “On the origin of
species by means of natural selection, or the preservation of favoured races in the struggle
for life”. Survival of the fittest1 is, “ perhaps, the one profound idea in science that
we can all readily understand” (Maynard Smith and Szathmáry 1999, p. 1). Evolution
works as a sequence of gradually accumulated small changes as well as recombination
and adaption of already existing inventions best described as tinkering (Jacob 1977). It
contrasts the engineer’s workflow of having a specific aim for which a specific solution
is tailored and for which a new start from the beginning is always possible. Although,
with increasing complexity also the engineer becomes a tinkerer (Solé and Valverde 2020).
Importantly, evolution does not operate in a vacuum but is strongly embedded in the
biotic and abiotic environment. Thus, modern views on evolution such as evolutionary
connectionism (Watson et al. 2016) emphasize feedback mechanisms with the ecology

1Spencer (1866, p. 444) coined the phrase “Survival of the fittest”, which concisely sums up Darwin’s
theory.
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1 Introduction

(eco-evo dynamics) (Schoener 2011; Post and Palkovacs 2009; Turcotte et al. 2011),
the developmental organization (eco-devo), and the transition in individuality (evo-ego)
(Watson et al. 2016; Watson and Szathmáry 2016). Recognizing that evolutionary and
ecological time scales overlap (Murugan et al. 2021) and that human impact on both
is enormous (Steffen et al. 2015; Steffen et al. 2018; Cavicchioli et al. 2019) calls for a
more comprehensive view on evolutionary systems required to understand and cope with
humanity’s big challenges such as climate change and loss in biodiversity.

During our World’s history, several major evolutionary transitions happened that had
an enormous impact (Maynard Smith and Szathmáry 1995; Szathmáry and Maynard Smith
1995). Examples are the emergence of the genetic code, the eukaryotic cell, multicellularity,
eusociality, and language. Hierarchically lower entities recombined and integrated into
higher-level entities opening unseen levels of complexity as well as possibility (Maynard
Smith and Szathmáry 1995; Szathmáry and Maynard Smith 1995; Maynard Smith and
Szathmáry 1999; Szathmáry 2015). Such major evolutionary transitions cannot happen
without groups of entities forming and maintaining themselves (Bourke 2011). Group
formation itself requires cooperation. Indeed, looking at our World, we find cooperation to
be ubiquitous. Not only within each hierarchical level of organization but also among them.
Bacteria communicate and coordinate themselves via quorum sensing (Whiteley et al.
2017), cells cooperate to form multicellular organisms, plants communicate with other
plants (Yoneya and Takabayashi 2014), microbes (Wenke et al. 2010), and animals (Leonard
and Francis 2017), eusocial animals may transform into distributed superorganisms, at
times with sophisticated agricultures (Hölldobler and Wilson 2010), humans coexist with
their huge microbiome (Sender et al. 2016), and human societies exhibit previously unseen
levels of cooperation (Fehr and Fischbacher 2003; Perc et al. 2017), the foundation of our
cultural and technological progress. In short, “[a]ll of life is social” (Frank 2007).

The evolution of cooperation is a perennial question. In its strongest formulation, the
question becomes: Why should entities pay an incurred cost to create a direct benefit
for their apparent competitors in the survival of the fittest setting? Evolutionary Game
Theory (EGT) elucidated the question of how cooperation evolves in evolutionary systems
(Nowak 2006b; Brown 2016; Friedman and Barry 2016; Newton 2018) and was first
introduced by Lewontin (1961), Maynard Smith (1972), and Maynard Smith and Price
(1973). EGT investigates evolutionary settings, in which the outcome of an individual
depends not only on its actions (strategy) but also on the strategies of others. Over the
years, a plethora of EGT research emerged investigating the evolution of cooperation in
diverse fields such as biology, psychology, sociology, politics, economics, and virtual systems
(Friedman and Barry 2016; Perc et al. 2017; Nowak 2006a; Szabó and Fáth 2007). On the
most fundamental level, Wilson and Wilson (2007) concisely summarize the challenge and
motivation underlying the existence of cooperation: “Selfishness beats altruism within
groups. Altruistic groups beat selfish groups. Everything else is commentary”.

Most EGT results come from simple models that raise the question of how much realism
they represent and to what extent the obtained results apply to real-world scenarios.
Already early research provides examples: The winning strategy in the repeated iterated
prisoner’s dilemma of Axelrod’s tournament was tit-for-tat (Axelrod and Hamilton 1981).
However, it loses against the Pavlovian win-stay, lose-shift strategy as soon as occasional
errors are introduced (Nowak and Sigmund 1993). In real life, evolution does not operate by
optimizing one or two dimensions. It provides a vast space of possibilities and opportunities
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from which a single realization pathway is followed2. However, in EGT modeling, the curse
of dimensionality and the exploding system size, which we can expect, usually inhibit such
endeavors. Evolution can happen rapidly, especially in changing ecologies (Murugan et al.
2021), which needs to be addressed adequately in modeling. Already simple changes in
ecological assumptions such as abandoning the constant population size restriction through
varying sized groups can yield different results in EGT: Coexistence of cooperation and
defection in a public goods game (PGG) but extinction in a prisoner’s dilemma (PD)
(Hauert et al. 2006). García and Traulsen (2019) showed that increasing the strategy space,
including arguably stupid strategies and letting the model, not the modeler, decide which
path evolution can choose, yields unexpected results; Rare and counterintuitive strategies
can have a significant effect on the outcome. Interactions are usually non-linear and
non-trivial such that single parameters cannot always capture their complexity (van Cleve
and Akçay 2014). More fundamentally, many questions in evolution and ecology cannot
be answered by simple equations in structured populations (Ibsen-Jensen et al. 2015).
Contrasting most modeling results, several experiments in behavioral economics show
declining levels of cooperation through network structure in human networks, indicating
that models are still missing realism (Sánchez 2018). In section 2.1, I present a more
comprehensive range of examples showing current limitations. In general, researchers
emphasize the importance of coevolution as it can lead to unexpected and unintuitive
results that deepen our understanding (Perc and Szolnoki 2010; McNamara 2013; Akçay
2020); the too reductionist approach can be misleading.

Although “the evolution of cooperation is not the puzzle it used to be” as Akçay (2020)
claims, a comprehensive understanding remains an open question (Perc et al. 2017),
especially if we look at its sheer abundance most prominently in our human societies.
Further, the emergence of cooperation out of the blue from a natural population is usually
not addressed in models. Even if models let strategies evolve in continuous trait spaces
as in Doebeli et al. (2004), they generally do not account for the evolutionary origin of
the interaction structure itself. Furthermore, EGT models typically do not account for
the evolutionary origin of defection. In EGT models, defection means not paying a cost
but still profiting from a benefit. However, the word itself would actually imply a worse
quality: the active destruction of goods for personal benefit. This I will call true defection.
We could naturally assume the existence of such a strategy, for example, from parasitic
exploitation of host systems. Still, the concept was not yet introduced in evolutionary
games to the best of my knowledge. Furthermore, models usually do not include the agents’
lifetime development and resource extraction and usage cycles, i.e., population dynamics.
Also, there typically are unlimited resources available in the environment. Therefore, I
introduce in this dissertation ReCooDy—the Resource-flow-based Cooperation Dynamics
model—, which addresses all the mentioned issues with the aim of increasing the realism
of models concerning the evolution of cooperation.

A more realistic modeling approach comes with several challenges. In contrast to most
physical systems, social systems do not have known fundamental laws like, for instance,
the Navier-Stokes equation for fluid dynamics. Agent-based computer models and their
simulation become the primary research tool in such situations (Adami et al. 2016; Macal

2Ideally, such an open-ended evolution should be incorporated in modeling and simulating to allow for
inventions and the creation of qualitatively new behavior. Taylor and Dorin (2020) and Taylor (2016)
present approaches in that direction.
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2016). However, assuring the correctness of the modeling results becomes even more
demanding if results rely strongly on computer simulation models. There is a need for a
comprehensive but flexible and reliable modeling framework as well as testing of research
models. Still, it is a promising path towards a deeper understanding of the sophisticated,
multilayered cooperation found in our societies nowadays, which, in general, may help us
to address our future challenges.
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2 Background

In this chapter, I will present a brief theoretical and conceptual background that is helpful
to understand the concepts and results presented in this thesis. It is not a complete or
comprehensive introduction of any field, which would not be reasonably realizable within
the scope of this thesis and the amount of research and results within each research field.
Instead, I focus on introducing the fundamental concepts, definitions, and foundational
literature that form the conceptual scaffolding of this thesis. I open paths to the respective
literature for the interested reader to dive deeper into the individual topics.

2.1 Evolutionary Game Theory and the Evolution of
Cooperation

The outcome of one’s actions depends on the actions of others. This simple idea captures
the essence of game theory, the mathematical field that studies interactions between
strategic actors, which von Neumann (1928) pioneered. Lewontin (1961) first applied
game theory to evolutionary contexts by considering populations playing against nature
with the aim of minimizing their extinction rates. However, only with Maynard Smith
(1972) and Maynard Smith and Price (1973) Evolutionary Game Theory became popular,
who used it to explain animal conflict and introduced the Evolutionary Stable Strategy
(ESS). An ESS is stable over evolutionary time in the sense that another strategy cannot
invade it. The new field of EGT let to an explosion of research soon after Axelrod and
Hamilton (1981)’s famous tournament and the seminal book of Maynard Smith (1982).

2.1.1 Evolutionary Game Theory

EGT is a powerful tool that elucidated the question of how cooperation evolves (Brown
2016; Nowak 2006a; Friedman and Barry 2016). Typically, cooperation means that an
agent pays a cost to create a benefit for others (Nowak 2006b). In the evolutionary context,
the question arises of how cooperation can even exist and be stable if others are at the
same time competitors. EGT is a huge and interdisciplinary research field applied in
biology, psychology, sociology, economics, and virtual worlds to investigate social dilemma
situations (Friedman and Barry 2016; Perc et al. 2017; Nowak 2006a). Research has
discovered a multitude of mechanisms promoting the evolution of cooperation (Nowak
2006a) such as kin selection1 (Hamilton 1964), group selection (Wilson and Wilson 2007),

1Kin and group selection, and more generally inclusive fitness theory and multilevel selection, have
always been strongly disputed. (Nowak et al. 2010) reignited the debate explaining how eusociality,
the initial cornerstone of Hamilton’s rule (Hamilton 1964), can be explained by group selection alone,
concluding that kin selection theory is not needed to explain altruistic behavior. The selfish-gene
idea that humans are just vehicles for their genes, on which evolution solely operates (Dawkins 1976),
would be wrong. Instead, evolution would operate on multiple hierarchical levels (Wilson and Wilson
2007), including cultural ones (Boyd and Richerson 1982; Richerson et al. 2016). It provoked a huge
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2 Background

direct reciprocity for repeated interactions (Trivers 1971; Axelrod and Hamilton 1981),
indirect reciprocity (Nowak and Sigmund 1998), punishment (Clutton-Brock and Parker
1995; Fehr and Gächter 2002), altruistic punishment (Fowler 2005), volunteering (Hauert
et al. 2002), social norms (Hauert et al. 2007), spatiality (Nowak and May 1992; Hauert
and Doebeli 2004), and network structure (Lieberman et al. 2005; Santos et al. 2008; Szabó
and Fáth 2007). Additionally, there are specialized mechanisms capable of explaining the
evolution of cooperation, such as microbes that induce altruistic behavior in their hosts
(Lewin-Epstein et al. 2017).

2.1.2 The Game

The most important element of an EGT model is the game itself. A plethora of games
exist that model pair-wise social interactions as well as group interactions (Szabó and
Fáth 2007; Gintis 2009). They typically model social dilemma situations, which individual
games qualitatively capture.

2.1.2.1 Symmetric Two-Player Games

The archetypical symmetric two-player game is the prisoner’s dilemma (PD), in which
two actors interact through cooperation or defection (Rapoport et al. 1965). Usually,
the illustrative example story deals with two prisoners that can cooperate by staying
silent or defect by betraying the other in court. If both cooperate, they pay a cost but
receive a Reward (R). If one defects, (s)he gets a higher Temptation reward (T) while the
defector receives the so-called ”Succer’s” payoff (S). However, if both defect, they receive
a Punishment (P). Thus, if 𝑇 > 𝑅 > 𝑃 > 𝑆, we call the game a prisoner’s dilemma (PD).
Relating the four parameters in a different way results in changed game quality. The
snowdrift game (SD) (also chicken game or Hawk-Dove game) describes situations in which
cooperating always yields a personal profit while defecting when the other cooperates
yields an even higher one. With both defecting, both lose. The typical story follows two
opposite people shoveling through a snowdrift to clear the path or doing nothing. Thus, if
𝑇 > 𝑅 > 𝑆 > 𝑃 we call the game a snowdrift game (SD)2 (Hauert and Doebeli 2004). In
a harmony game (HG), cooperation is the best strategy for both players as 𝑅 > 𝑆 > 𝑃
and 𝑅 > 𝑇 > 𝑃. Here, there is no social dilemma. In a coordination game (CG), two
players are required to coordinate their strategy to create a valuable outcome for both.
Evolutionary games can also contain more than two discrete strategies, such as in the
rock-paper-scissors game (RPS). For a more comprehensive overview, I refer the interested
reader to standard textbooks and reviews such as (Szabó and Fáth 2007; Gintis 2009;
Friedman and Barry 2016).

2.1.2.2 Tragedy of the Commons and the Public Goods Game

The most prominent evolutionary game, which models group interactions, is the public
goods game (PGG) (Trivers 1971). It mathematically captures the tragedy of the commons

community response (Abbot et al. 2011). Since then, the dispute continues with positions ranging from
kin and group selection are equivalent or both needed (Gardner 2020; Birch 2017; Gardner 2015; Birch
and Okasha 2015) to kin selection has no predictable power at all (van Veelen 2020; Nowak et al. 2017;
van Veelen et al. 2017; Allen and Nowak 2016).

2Usually, the parameters have a different notation to match the respective storyline.

16



2.1 Evolutionary Game Theory and the Evolution of Cooperation

by Hardin (1968), also known as the free-rider problem. He coined the phrase and build
on ideas first described in Lloyd (1833): Overuse of a common meadow by cattle destroys
the common good leaving everyone emptyhanded. However, individuals have no incentive
to reduce or keep their number of cattle constant. The situation is a social dilemma. In
the public goods game (PGG), a population of 𝑁 players interacts with each other. Each
player can decide whether to cooperate and pay a cost to create a public good or not
to pay a cost, i.e., defect. The accumulated costs are transformed into public goods by
multiplying them with the synergy factor 1 < 𝑟 < 𝑁. Each player profits equally from the
public goods. We can write down the payoff of the cooperators 𝑃𝐶 and the defectors 𝑃𝐷
when 𝑁𝐶 agents cooperate and pay an equal cost 𝑐:

𝑃𝐶 = 𝑟 ⋅ 𝑁𝐶 ⋅ 𝑐
𝑁

− 𝑐 (2.1)

𝑃𝐷 = 𝑟 ⋅ 𝑁𝐶 ⋅ 𝑐
𝑁

. (2.2)

We assure that the game models a social dilemma through the restriction 1 < 𝑟 < 𝑁.
Otherwise, the game would generate no synergies, or a cooperator’s share of public goods
would exceed the paid cost eliminating the dilemma. From a selfish perspective, each
player is tempted to minimize the personal cost, but if no one cooperates, nobody receives
a payoff. The PGG and the PD share many defining features such that it is possible to
mathematically transform them into each other (Hauert and Szabó 2003). Therefore, the
PGG is sometimes called the N-person Prisoner’s Dilemma.

2.1.3 Evolutionary Update

In evolutionary game theory, we typically focus on the frequency change of strategies
over generations of agents. We use iterated versions of games, combine them with an
evolutionary update mechanism and solve the replicator equation in the simplest settings
(Hofbauer and Sigmund 1998). Evolutionary update rules are often simple birth-death,
death-birth, or imitation rules that select agents randomly and update their strategies
accordingly to the agent’s fitness (Nowak 2006a). The payoff from the games determines
the agent’s fitness. For simplicity, models often presume weak selection, meaning that
significant differences in agents’ payoffs result in small fitness differences. It facilitates
mathematical analysis. However, Wu et al. (2013) shows that although most EGT results
rely on weak-selection, ”[...] qualitative changes with changing selection intensity arise
almost certainly in the case of a large number of strategies”. Adami et al. (2016) conclude
that for scenarios that are analytically not feasible, e.g., outside the weak selection limit,
agent-based models and their simulation opens the door to predict outcomes still.

Under evolutionary update rules, both the PD and the PGG will yield entirely defective
populations in unstructured population settings with random encounters. In such well-
mixed systems, their ESS is a state of pure defection (Hofbauer and Sigmund 1998).
However, as mentioned above, the introduction of more realism through, for example,
spatiality, population structure, reciprocity, and the selection on the level of kin or groups
can overcome a state of defection and let cooperation evolve (Nowak 2006b).
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2.1.4 Cooperation in Nature and Evolutionary Game Theory Applications

Let us explore a few examples of cooperation in nature and how research uses EGT to
encompass the question of its evolution. Vampire bats sharing food with their peers
are a prominent example of cooperation in nature (Wilkinson 1990). The behavior can
be explained through reciprocity, the promise of a future reward for an action, through
models based on the iterated Prisoner’s Dilemma. Reciprocity can be direct, coming from
the former interaction partner, or indirect if future benefits come from another individual
of the population. However, whether the simple iterated Prisoner’s Dilemma is a valid
representation of the actual behavior is questionable because they lack key characteristics
such as continuous investments, the choice of interaction partners, and the integration of
different qualities of cooperation as experiments indicate (Carter and Wilkinson 2015;
Carter 2014). The model seems to lack realism.

Bacteria use quorum sensing to communicate and coordinate, which we can model as a
PGG (Whiteley et al. 2017). They invest energy and resources to produce chemical signal
molecules that trigger a collective behavior once a critical environmental concentration
is exceeded. Cooperating bacteria produce chemicals while defective bacteria do not. In
reality, such forms of cooperation can be embedded in a greater symbiotic environment as
the example of the Vibrio fischeri bacterium and the Hawaiian bobtail squid, Euprymna
scolopes shows (McFall-Ngai 2014). The bacteria live inside the squid and use quorum
sensing to coordinate luminescence that, in return, helps the former with hunting at dawn
by disguising him from its prey. Their coevolved interdependence building on top of this
symbiosis reveals an astonishing sophistication (Visick et al. 2021).

Moreover, plants cooperate by communicating via molecules released into the air
(Baldwin and Schultz 1983; Farmer and Ryan 1990). Also, researchers start addressing
questions in plant ecology with EGT (Mcnickle and Dybzinski 2013). Ants and other
eusocial organisms form cooperative superorganisms that rely on cooperation to survive as
a whole at times with symbiotic fungi and bacteria relations (Hölldobler and Wilson 1990;
Hölldobler and Wilson 2010). Researchers also interpret cancerous cells in multicellular
organisms as defectors in an overall cooperative multicellular organism (Michor et al.
2004; Axelrod et al. 2006; Aktipis 2016; Bozic and Nowak 2013).

Human cooperation is unique (Fehr and Fischbacher 2003) in its scale and sophistication.
It is the foundation of our societies and the basis of the cultural and technological
(r)evolution. Our language, which enables us to communicate and transfer concepts
efficiently (Pinker 1994), is a profoundly cooperative faculty. Perc et al. (2017) provides
an overview of how EGT models are used to explain human cooperation. However, for
cooperation among humans, it is not clear to what extent the existing results obtained by
simple EGT models accurately describe reality. There is a gap between theoretical models
and experimental results from simple experiments in behavioral economics (Sánchez 2018).
These experiments indicate that evolutionary games played on networks inhibit rather than
promote cooperative behavior (Cassar 2007; Kirchkamp and Nagel 2007; Gracia-Lázaro
et al. 2012; Grujíc et al. 2010) (see section 2.1.7 and section 2.1.8 for network models).
However, Rand et al. (2014) experimentally found that a static network can promote the
evolution of cooperation and Fowler and Christakis (2009) found cascades of cooperation
in social networks. EGT models most probably do not yet incorporate the complexity
and realm needed to adequately represent human cooperation with all its different layers
of sophistication.
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2.1.5 Continuous Games

It is natural to assume continuous strategy spaces in continuous games (Doebeli and
Hauert 2005). Killingback et al. (1999) introduced a continuous version of the iterated
PD and Doebeli et al. (2004) a continuous SD game. The strategy update can depend
in simple settings on the partner’s previous move (Killingback et al. 1999) or previous
payoffs (Doebeli and Knowlton 1998; Scheuring 2005). In Wahl and Nowak (1999) costs
evolve according to small mutations of successful strategies in a continuous iterated PD
showing that in the long run, the dilemma “is either characterized by unending cycles
or by stable polymorphisms of cooperators and defectors”. Doebeli et al. (2004) use a
continuous SD modified to incorporate costly investments that benefit both the defectors
as well as the cooperators and show that cooperators and defectors can evolve to coexist
in such a setting. McNamara et al. (2008) use continuous versions of both the PD and the
SD to show that the lifespan of players can be important when cooperation and choosiness
coevolve. McGill and Brown (2007) offers a broader review of games with continuous
traits, and McNamara (2013) emphasizes the importance of using continuous strategies in
contrast to discrete ones.

2.1.6 Spatiality

Nowak and May (1992) was the first to introduce a form of spatiality to EGT. He placed
players on a two-dimensional grid and let each player interact with its neighbors. This
system self-organized into kaleidoscope patterns of changing cooperators and defectors
and showed that spatiality could result in the evolution of cooperation. Later, Hauert and
Doebeli (2004) showed that spatiality does not always promote cooperation by investigating
a spatial SD game. A multitude of models relies on spatiality as review such as Perc et al.
(2017) make clear.

2.1.7 Static Networks

More general, networks are used to model population structure (Jackson et al. 2015;
Szabó and Fáth 2007) and simple representations of space. Network science itself is an
increasingly important research field with a huge range of applications (see section 2.2).
Its combination with EGT led to completely new insights. In EGT models, networks
usually promote the evolution of cooperation (Battiston et al. 2020). Lieberman et al.
(2005) introduced the evolutionary graph theory in which they focussed on two-player
games played on networks, in which nodes define players and edges define the interaction
neighbors. They found that the graph structure can entirely determine the game dynamics.
More recently, Allen et al. (2017) found that for a PD game under weak selection, strong
pair-wise links between players promote the evolution of cooperation. On networks, two-
player games and group games can yield different results. (Szolnoki et al. 2009) showed
that the indirectly connected next-neighborhood of an agent, connected through group
interactions, can have a significant impact. Further research showed that heterogeneous
populations modeled through scale-free networks enhance the evolution of cooperation
(Santos and Pacheco 2005; Gómez-Gardeñes et al. 2007; Santos et al. 2008), especially if
graphs are highly clustered, indicating that hubs and communities promote cooperation
(Assenza et al. 2008; Rong et al. 2010). Multiplex networks that connect the same players
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through multiple layers of edges further promote the evolution of cooperation through
correlated clusters of cooperators (Wang et al. 2015).

2.1.8 Dynamic Network

Models do not only cope with static networks but also with dynamic ones. Coevolving
networks repeatedly show self-organization into scale-free topologies and self-organized
critical states (Gross and Blasius 2008). Relinking undesired links to randomly selected
new agents can produce topologies similar to small-world networks (Eguíluz et al. 2005).
Pacheco et al. (2006) showed that relinking could change the effective game itself from a
PD to a coordination game (CG), or from a SD to a harmony game (HG). Furthermore,
removing bad links in combination with randomly created new links can promote the
evolution of cooperation through spontaneously emerging multilevel selection (Szolnoki and
Perc 2009a). Akçay (2018) distinguished between relinking locally within the neighborhood
and globally within the population. The network and strategy coevolution results in
cooperation undermining itself. He found that local links promote and global links inhibit
cooperation. Still, the introduction of a linking cost could counteract and prevent the
inhibitory effect of global linking.

2.1.9 Link Inheritance

Inheriting social links to offspring can create networks with properties found in human
social, economic networks (Jackson and Rogers 2007; Jackson 2008) and animal worlds
(Ilany and Akçay 2016). Combining social link inheritance with EGT via a PD shows
that cooperation leads to highly connected prosperous networks while defection causes
fragmented poor networks (Cavaliere et al. 2012). Models that implement strategy
and network evolution as independent processes also show sophisticated phenomenology.
(Szolnoki and Perc 2009b) showed that if agents accumulate links over their lifetime
starting with a single link, mechanisms such as Red Queen dynamics and group selection
emerge spontaneously, promoting cooperation. Also, allowing agents to optimize their
centrality within a network yields strongly fluctuating network topologies and strategy
change cascades (Holme and Ghoshal 2006).

2.1.10 Eco-Evolutionary Games

More recently, eco-evolutionary games and feedbacks have become increasingly important,
also showing that already simple feedback models yield rich and diverse dynamics (Hauert
et al. 2006; Stewart and Plotkin 2014; Weitz et al. 2016; Szolnoki and Chen 2017; Tilman
et al. 2020; Gokhale and Hauert 2016; Hauert et al. 2019; Wang and Fu 2020).

2.2 Network Science

Networks are a ubiquitous tool used to investigate entities, their relationship, and their
interactions. There is a vast amount of research fields applying networks ranging from
chemical reaction networks, over biological, disease spread, social, and opinion dynamics
networks to cultural and technological networks. Barabási and Pósfai (2016) and Albert
and Barabási (2002) present an excellent introduction into network theory and the
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respective fields of application. For a more recent review with a more mathematical
focus on network geometry see (Boguñá et al. 2021). Moreover, EGT models widely use
networks to model players and their interaction structure. The seminal work of Szabó
and Fáth (2007) provides an excellent overview and starting point into the field of EGT
network models. More generally, cooperative models on complex networks exhibit a wide
range of critical phenomena such as network structure phase transition, the emergence of
single huge connected components, and self-organized criticality (Dorogovtsev et al. 2008).

2.2.1 Networks and Graphs
Mathematically, we represent networks through graphs and the underlying mathematical
field of graph theory; Thus, we can define networks as graphs for which vertices (also
called nodes) and edges (also called links) have attributes (Barabási and Pósfai 2016).
In general, a graph 𝐺 = (𝑉 , 𝐸) consists of a set of vertices 𝑉 = {1, 2, ⋯ , 𝑁} and a set of
edges 𝐸 = (𝑉 , 𝑉 ) connecting two vertices. The graph has 𝑁 vertices and 𝐿 edges that can
be directed, undirected, or bidirectional. In this thesis, we will only work with undirected
networks. Therefore, we will focus on undirected graphs and networks, for which all edges
are undirected in the following.

2.2.2 Properties
The degree 𝑘 of a vertex is defined as the number of in-edges that target the vertex. In
undirected graphs, this in-degree equals the number of edges leaving the vertex, usually
referred to as out-degree. The total number of links is then given by

𝐿 = 1
2

𝑁
∑
𝑖=1

𝑘𝑖. (2.3)

Here, the factor comes in to prevent counting links twice. With it, we can calculate the
average degree of an undirected graph:

�̄� = 1
𝑁

𝑁
∑
𝑖=1

(2.3)
= 2𝐿

𝑁
. (2.4)

If 𝑁𝑘 vertices have the degree 𝑘, we can write down the probability that a randomly
selected vertex has the degree 𝑘, i.e., the degree distribution:

𝑝𝑘 = 𝑁𝑘
𝑁

. (2.5)

We note that the degree distribution is normalized (∑∞
𝑘=0 𝑝𝑘 = 1). Now, we can calculate

the average degree of the graph:

�̄� =
∞

∑
𝑘=0

𝑘𝑝𝑘. (2.6)

A path connects two vertices of a graph through a sequence of edges. The distance of
two vertices is the shortest path of two vertices. A graph is connected if all its vertices
are connected via paths. If a graph is not connected, it contains connected components.
A connected component is the set of all possible vertices that are connected via paths
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without further connections to other vertices of the graph. Standard textbooks on graph
or network theory such as Barabási and Pósfai (2016) offer comprehensive introductions
and explanations of fundamental graph (network) properties. Here, we focussed on the
most important definitions and concepts used throughout this thesis.

Many network properties exist that characterize the network’s quantitative and qual-
itative topological structure. A few examples of quantitative measures are the average
degree, the clustering, the betweenness, and network motifs. Often, researchers use these
quantities in order to find extract properties that could yield topological explanations of
observed system behavior. Probably the most renowned qualitative topological network
properties are the small-world and scale-free properties. A network is called a small-world
network if the usual distance 𝐿 between two randomly selected vertices is proportional
to the logarithm of the total number of nodes: 𝐿 ∝ log 𝑁 (Watts and Strogatz 1998). If
a network exhibits a degree distribution 𝑝𝑘 that (asymptotically) follows a power-law
distribution it is called a scale-free network (Barabási and Albert 1999). Even though
many observable real-world networks are said to exhibit the scale-free property, more
recently, researchers emphasize the importance of long-tails of the degree distribution
rather than the scale-freeness (Holme 2019; Stumpf and Porter 2012).

2.2.3 Generating Algorithms

Typically, computational models of real-world systems are based on networks generated
via graph generation algorithms structurally replicating key network properties. Such
networks are, for example, population structure in agent-based models (Macal 2016). A
huge variety of network-generating algorithms exist such that we will only mention the
most prominent algorithms. Erdös-Rényi networks are random networks that have random
connections between their vertices exhibiting a binomial degree distribution (Erdös and
Rényi 1959). Random networks were first studied by Solomonoff and Rapoport (1951).
Erdös-Rényi networks exhibit the small-world property. However, typically Watts-Strogatz
network are the networks of choice when investigating the small-world property (Watts
and Strogatz 1998). The generating algorithm can create entirely random networks as
edge cases. Barabási-Albert networks are scale-free networks that are built starting from
a small spawning network that grows via a preferential attachment mechanism, which
determines how to add new vertices and edges. Networks can also be organized and
generated in multiple layers of nodes and edges, so-called multilayer networks, that become
more and more popular (Hammoud and Kramer 2020; Kivelä et al. 2014; Boccaletti et al.
2014), also in EGT modeling (Wang et al. 2015).

Most network-generating algorithms assume a construction process that usually is
decoupled from the dynamics of the system that operates on top of the network. They
produce static networks constructed with a generator that is presumed but not derived
from the system dynamics. In contrast, network generating algorithms that implement
social inheritancetake into account the history of the network (Jackson and Rogers 2007;
Jackson 2008). Such social inheritance accounts for the evolutionary origin of network
structure and through evolution’s tinkering applied to networks replicates common real-
world network properties Solé and Valverde (2020) and Ilany and Akçay (2016) such as
modularity (Solé and Valverde 2008).
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2.3 Evolution Mechanics
Evolution mechanics is the conceptual framework we developed collectively within our
research group that summarizes our understanding of how evolution operates. I decided not
to present my view of evolution mechanics but instead introduce Utopia, our collectively
developed operational framework in chapter 3. Nevertheless, to understand the overarching
conceptual embedding of the work presented in this dissertation, I refer the reader to
(Sevinchan 2021) for an introduction to evolution mechanics from the perspective of the
author. It is not required to follow and understand the work presented in this dissertation
but offers a broader picture.
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3 Utopia: A Comprehensive Modeling
Framework for Complex and Evolving
Systems

Utopia, the comprehensive open-source modeling framework presented in this chapter, is
the result of the collaborative work of many contributors, most notably the initiators and
main contributors to the project (in alphabetical ordering) Benjamin Herdeanu (myself),
Harald Mack, Lukas Riedel, and Yunus Sevinchan1.

The work presented in this chapter is based on the following publications, in which I
contributed as coauthor:

• Riedel et al. (2020)

• Sevinchan et al. (2020a)

• Sevinchan et al. (2020b).

In the following, I present Utopia from my personal perspective.

3.1 Motivation
Research in complex and evolving systems strongly relies on computer models and
simulations answering questions in physical, environmental, biological, economic, and
socio-cultural worlds (Holland 2006; Levin 2003; Perc et al. 2017; Jackson and Zenou 2015;
Jackson et al. 2015). Such systems often exhibit non-linearities, hierarchical structures, self-
organization, emergence, and intricate dynamics due to coupled processes and overlapping
time-scales (Murugan et al. 2021; Goldenfeld and Woese 2011; Kauffman 1993). Rapid
advances in computational processing power make computer models ever more powerful
research tools. Nowadays, standard tools for research in complex and evolving system
are cellular automata (CAs) (Chopard et al. 2002; Wolfram 1983), agent based models
(ABMs) (Macal 2016), and network models (Boccaletti et al. 2006; Jackson and Zenou
2015; Albert and Barabási 2002). They enable a fast, heuristic way to investigate systems
when corresponding real-life systems are hard or impossible to investigate through lab or
in-field experiments. When effective system parameters themselves or their exact values
are unknown, computer models open a way to explore such systems. Researchers can
quickly try mechanisms, explore different scenarios and hypotheses, and do sensitivity
analyses via parameter sweeps.

Complicated models require complicated software that has to be reliable and performant.
Complicated models usually consist of many interacting parts that all need to work properly
as granular units as well as integrated as a whole. The more subparts a model entails,

1In the Acknowledgments, I list all contributors.

25



3 Utopia: A Comprehensive Modeling Framework for Complex and Evolving Systems

i.e., the more complicated it gets, the more difficult and time-consuming it becomes to
implement it and test its units as well as its integrated functionality. Each model unit
requires an implemented software representation and each model interaction requires an
interaction interface of the software. Therefore complicated models lead to complicated
software. Modern software engineering workflows encompass increasing complexity and
scale through extensive review processes and comprehensive automated code testing.
Although correctness and reproducibility are crucial to research, and testing scientific
software is pivotal (Kanewala and Bieman 2014), software engineering workflows are
seldomly applied to research software (Storer 2017). Large research software projects
that exceed a critical size can only be continuously developed and maintained collectively.
Successful collaborations rely on optimized communication. A common language and
extensive documentation of the functionality and the corresponding code are required.
Moreover, the code itself needs to be modularly structured into building blocks that
can flexibly be recombined in order to be competitive, as evolution indicates. In other
words, large software projects can only be realized through boosted group-level synergies
(Sevinchan et al. 2020a).

All of the mentioned inspired us, the Utopia Developer Team, to collectively develop
a comprehensive modeling framework for complex and evolving environmental systems:
Utopia. Utopia is written in modern C++ for performance-critical functionality and
Python, where usability and flexibility are required. Although several open-source modeling
frameworks are readily available in various programming languages (Cardinot et al.
2019; Masad and Kazil 2015; Vahdati 2019), such as NetLogo (Wilensky 1999), in
our perception, none encompasses all our needs for a valuable and versatile modeling
framework: comprehensible, flexible, performant, modular, while being developed with
high coding standards including review and extensive code testing. With Utopia, we
aimed at developing a common conceptual modeling foundation and operational toolkit as
well as a common modeling language. We wanted to prevent redundant reimplementations
and help users prevent common errors and pitfalls. Further, we designed Utopia to be
easy-to-use for new users, allowing its application in teaching. We took advantage of
group-level synergies to boost efficient and reliable collaborative research and teaching.

Utopia is a comprehensible framework helping users at all stages of our experienced
computational research workflow:

1. conceptualizing a research question,

2. implementing a model,

3. simulating the model and generating data, and

4. evaluating data.

In our experience, all stages are intrinsically linked and need frequent re-iterations.
Flexibility and adaptability are key. In the following, I will present an overview of Utopias
feature set and explain how Utopia helps researches at each corresponding research
workflow stage.
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3.2 Features
Utopia incorporates a rich feature set, which is neither useful nor desirable to explore
in its entirety within the scope of this thesis. Thus, I will only present an overview and
invite the curious reader to visit Utopia’s webpage (Utopia Developer Team 2021) and
the linked repository on the webpage for more information. In the following, we will go
through each phase of the mentioned complex and evolving research workflow and explore
Utopia’s features.

3.2.1 Conceptualizing a Research Question
Conceptualizing a research question requires researchers to create an abstracted repre-
sentation of the reality, a computational model. Usually, we use and adapt common
concepts, routines, and building blocks. Utopia helps users with their design decisions by
providing a library of model-building functionality. A common language enables efficient
communication within the user community as well as an efficient transfer of modeling
concepts. Utopia increases a user’s freedom to explore different modeling approaches and
provides flexibility to investigate them through interchangeable building blocks and their
human-friendly configurability. As a simple example, when conceptualizing the spatiality
of a model, changing the underlying grid’s periodicity, its neighborhood metric, or the
metric distance, each requires a single configuration entry to be changed.

Models can be part of the framework itself as well as independently developed, with
Utopia included as a dependency. Even more, Utopia can operate any computer model
that provides compatible configuration and data input and output interfaces.

3.2.2 Implementing a Model
Utopia models are derived from a model base class that enables effortless framework
integration and provides common functionality. It allows convenient access to the model
configuration, the data output, and simulation monitoring functionality and provides the
structural scaffolding to implement the model dynamics. The integration also enables
the creation of supermodels that couple and control submodels. Utopia relies on several
widely used software packages and serialization standards: Armadillo (Sanderson and
Curtin 2016; Sanderson and Curtin 2018) for linear alegbra, Boost Graph for networks
and Boost Test for advanced testing (Siek et al. 2002), the YAML serialization standard
(Ben-Kiki et al. 2009) for human-friendly configurations, and HDF5 (The HDF Group
1997) for data writing. For the latter, we wrapped the desired C-library functionality
into a C++ header-only library and integrated it into Utopia’s DataIO module. Utopia’s
core library supplies functionality for recurring tasks in ABMs, CAs and network models.
Examples range from setting up grids (square, hexagonal) with specific neighborhoods
(von Neumann, Moore) over creating common graphs ((un)directed random, scale-free,
small-world) and loading in real-world network data, to conveniently applying rules to
entities.
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Let us look at an instructive example of how Utopia provides convenient functionality
and assists users in their modeling choices:

1 // Increment the age of all vertices in a graph
2 apply_rule <IterateOver::vertices , Update::async , Shuffle::off>(
3 [](auto vertex , auto& graph) { // The rule for a vertex
4 ++graph[vertex].state.age;
5 },
6 graph // The graph
7 );

Listing 3.1: Example of a ruled applied to all vertices in a graph.

Listing 3.1 shows a code example, in which we apply the simple rule to increment the age
of all vertices of a graph. Users can specify over which graph entities to iterate, namely
vertices, (inverse) neighbors, or (in/out)edges. They need to choose whether the rule
should be applied (a)synchronously, i.e., instantaneously to all entities or in a sequence. If
async is chosen they have to specify whether the sequence of entities is randomized or not
(Shuffle::on/off). Only in the first case, a random number generator object needs to
be passed to the function. A correct function signature enforcing meaningful decisions is
checked during compile time to prevent run-time overheads. The apply_rule concept is
not only available for network models but also for grid-based CAs and ABMs. It facillitates
a model transformation e.g. from a cellular automaton (CA) model to a network model.
The example illustrates one of Utopia’s design aims to navigate users through design
decisions that each modeler needs to take: Does a rule represent an instantaneous event
for all entities or rather a sequential one? Do I need to randomize the order in which to
apply a rule? Utopia guides users by helping them make conscious design decisions and
avoid common modeling pitfalls.

Getting to know a new modeling framework can be challenging, but explanatory template
models, extensive documentation, and example models help to minimize hurdles. We can
create a new model via a simple command line interface (CLI) command:

1 utopia models copy CopyMeGraph --new-name MyGraph

This short command creates the new MyGraph model by copying the CopyMeGraph blueprint
model and sets up all the infrastructure and files needed to create and integrate a new model
in Utopia. The model already contains a basic graph, exemplifies dynamic implementations,
and most importantly, contains many explanatory comments that allow a learning-by-
doing approach during model development. With the copy command, any existing Utopia
model can conveniently be copied, not only the CopyMeBare, CopyMeGraph, CopyMeGrid
blueprint models for bare-basic, grid-based, or graph-based models. Utopia ships with
several implemented models that serve as potential starting points for individual research
explorations. These range from the classic sand-pile model (Bak et al. 1987), over ecological
models of forest-fires (Bak et al. 1990) as well as predator-prey dynamics, to contagious
disease spread models, a simple spatial evolutionary games model, based and expanded
on Nowak and May (1992), an opinion dynamics network model (Deffuant et al. 2000;
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Hegselmann and Krause 2002), to mention a selection. These models showcase Utopia’s
features in actual use-case scenarios as well as Utopia’s application spectrum. Moreover,
Utopia’s comprehensive documentation, including several guides, explains and exemplifies
specific features. We aimed at minimizing the investment of getting to know Utopia to
maximize efficient research with a powerful and flexible model development and simulation
framework.

Utopia usually provides basic, easy-to-use functionality as well as advanced, more
powerful, and flexible features. For example, when implementing data writing, model
developers can choose between straightforward and easy-to-use manual data writing within
a managed write_data function, or advanced, powerful writing capabilities with Utopia’s
DataManager. The first allows for simple data writing given by a write start time, an
end time, and a step size. The latter enables dataset-specific configuration with more
flexibility, e.g., via multiple customizable write intervals or custom state-specific write
triggers.

3.2.3 Simulating a Model and Generating Data

Utopia’s frontend manages simulation tasks, their hierarchical configuration, and auto-
mated evaluation through the utopya Python package. It aims at making simulation
runs as easy as possible. For this, configurations have sensible default parameters on all
levels that can easily be updated. Further, controlling Utopia is possible via a powerful
command line interface (CLI) as well as interactive Python sessions. For example, if we
want to run the ReCooDy model (introduced in chapter 4) via the CLI and have the data
automatically evaluated we execute the following command:

1 utopia run ReCooDy

To update default configurations for specific model scenarios we can specify a path to a
folder (here “emerging_cooperation”) that contains a dedicated run.yml and eval.yml
configuration pair:

1 utopia run ReCooDy --scenario emerging_cooperation

Utopia’s holistic nature requires configurations on different hierarchical levels to allow
for flexible simulation control. Configuration is based on the YAML serialization standard,
which provides a hierarchical, dictionary-like human-readable way to configure. utopya
combines the (i) base, (ii) model, (iii) user/machine, (iv) run and (v) cli-update
sub-configurations and stores them in a single meta configuration. Starting from (i), next-
higher levels can recursivly update previous configurations. This hierarchical frontend,
model, and run configuration allows for flexible parameter settings. The frontend parses
and recursively updates the frontend configuration, the model, and the specific run to
allow for enhanced usability through flexibility.

Utopia’s frontend distributes simulation tasks and manages their parallel execution in
scenarios that involve parameter sweeps with distributed computation cluster support.
Conceptually, we call a single model simulation run together with its configuration and
output a universe run. A set of independent universes define a multiverse. Different
universes within a multiverse cannot interact, but their simulation output can be evaluated
collectively. Investigating complex systems often requires parameter sweeps/multiverse
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runs such as classifying regimes and analyzing the system’s sensitivity. Utopia facili-
tates multidimensional parameter sweeps by integrating the paramspace Python package
(Sevinchan 2020). By default, multiverse runs are executed in parallel, which is especially
useful for simulations on distributed computation clusters.

During simulation, utopya monitors its progress, estimates the expected remaining
simulation time, and efficiently computes and displays information available for simulation
control. Users can configure their simulation to stop if a predefined condition is met, for
example, if a population density drops below a threshold or the system reaches its fixed
point. Simulation control can reduce the amount of unnecessary costly computations as
well as save the user’s valuable time.

3.2.4 Evaluating Data

Modern research often relies on generating and analyzing vast amounts of hierarchically
structured and semantically heterogeneous data. Hierarchy can arise from modules
within a model representation. Semantic heterogeneity means that data may consist of
different data structures and types, e.g., multidimensional numerical data, configuration
files, metadata, or raw data that only becomes meaningful after processing. These
properties generally hamper a holistic approach for handling and automated processing
data (Sevinchan et al. 2020b).

Still, comprehensive data evaluation is not impossible: We created the dedicated dantro2

Python package for handling, transforming, and visualizing hierarchically structured and
semantically heterogeneous data (Sevinchan et al. 2020b) and tightly integrated it into
Utopia. Similar to the common continuous integration pipelines, dantro streamlines
all predefined operations into a data processing pipeline: an automated, dynamically
configurable operation sequence. This data processing pipelines conveniently integrates and
combines functionality from various established Python packages such as h5py (Collette
2013), numpy (van der Walt et al. 2011), xarray (Hoyer and Hamman 2017), dask
(Dask Development Team 2016; Rocklin 2015), matplotlib (Hunter 2007), and seaborn
(Waskom 2021). It provides a general and flexible interface that simplifies interoperability
and allows for custom pipeline specializations. Once the data processing pipeline is
set up with a one-time overhead, dantro alleviates the need to interface with packages
individually and enables data evaluation entirely through YAML configurations—no
programming in Python is required.

dantro contains three main modules that represent the three stages of a data processing
pipeline: the data tree, the data transformation framework, and the plotting framework.
In the following, I will depict the basic functionality. More information on dantro and its
features is available in Sevinchan et al. (2020b) and its extensive online documentation
(Dantro Developer Team 2021).

The data tree structures data in a hierarchical tree. Data groups form tree nodes
that themselves contain other data groups or data containers. These dantro groups and
containers each share a common base class that provides a unified interface to handle and
traverse the data tree. They are specialized for various data and content types, allowing
data type-specific operations. dantro provides not only readily available group and

2The word “dantro” is a combination of “data” and “dentro”, Greek for tree.
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container specializations such as for numpy, xarray, time-series, graph, or grid data but
also enables convenient custom specializations. The added level of structural abstraction
coming with the data tree enables dantro to include generalized features such as lazy
and out-of-memory calculations; Huge datasets become manageable even on personal
computers.

The data transformation framework enables arbitrary configuration-based data trans-
formations. dantro ships with predefined often-used data operations such as many Python
build-in operations, operations on numpy arrays or xarray datasets and data arrays. Users
can also specify operations, which in principle expands dantro ’s functionality to the set
of all Python operations. For maximal flexibility, operations are applicable to arbitrary
objects within the data tree. Internally, dantro constructs a directed acyclic graph (DAG)
of operations from the specified YAML configuration entries. It allows for automated
file-based caching and reloading of transformation results that significantly reduces the
computational time for large, costly data transformation recalculations. In summary,
the data transformation framework allows users to transform data via configuration files
without the need to write actual code and automatically integrates powerful features such
as result caching.

The plotting framework enables convenient, configuration-based data visualization, the
final step of the data processing pipeline. The PlotManager manages which plots to
create, as well as the required handling and transformation of raw data. It provides
a convenient way to inherit plot configurations and recursively combine configuration
snippets, which ultimately provides a modularized building-block way of generating plots.
Furthermore, the integration of the paramspace Python package (Sevinchan 2020) enables
plot parameter sweeps that generate multiple plots for varying plot parameters. The actual
visualization and backend management of the plot creation is done via PlotCreators3.
Creators allow to set plot aesthetics via configuration entries and simplify the creation
of animations. As an example, dantro wraps xarray’s facet grid plotting capabilities,
makes it config-configurable, and extends it by providing the option to create an animation
by adding an optional frames dimension. Another example of the plotting frameworks’
capabilities is the multiplot function that provides a configuration-based interface to plot
multiple plots into a figure. It supports all axis-level matplotlib and seaborn functions,
and customized user-specific plot functions. Apart from the library-given plot functions,
users can easily integrate custom plot functions into the plotting infrastructure. The
plotting framework provides an integrated, powerful, modularized, and config-based way
to visualize data.

3Currently, the focus lies on matplotlib-based plot creation. However, integrating other plotting frame-
works such as altair (VanderPlas et al. 2018) with its declarative Vega-Lite grammar (Satyanarayan
et al. 2017) would be possible, and the scaffolding already exists.
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Showcase

Here, we look at a simple and comprehensive showcase to exemplify how data evaluation
works in an actual use-case setting. We focus on the basic functionality and omit
configuration details for clarity.

The first basic example creates an animation of a quantity (here, the agents’ investments)
dependent on another parameter (here, different synergy factors 𝑟) plotted column-wise
with frames given by varying random number generator seeds. Single frames of the
resulting animation are similar to Figure 6.1, but omit the color-encoding for simplicity;
Instead, single data points are plotted over each other creating a scatter plot. The plot
configuration is shown below in Listing 3.2.

1 # Example eval.yml plot configuration file
2 investment_facets:
3 based_on: # (1)
4 - .dag.generic.facet_grid
5 - .animation.ffmpeg
6
7 creator: multiverse # (2)
8
9 select_and_combine: # (3)

10 fields:
11 data:
12 path: data/ReCooDy/d_investment
13
14 x: agent # (4)
15 y: d_investment
16 col: r
17 col_wrap: 3
18 frames: seed
19 linestyle: ''
20 marker: .

Listing 3.2: Example plot configuration creating an animation of a colum-wise facetted
scatter plot similar to Figure 6.1.

The investment_facets plot is based on the general configurations of the generic
facet_grid plot with default animation settings (1). Both configuration snippets are
readily available via utopya. However, users can update and overwrite settings directly
in the plot configuration. The plot uses a multiverse plot creator (2). The creator selects
for each universe the two dimensional data located in the ‘data/ReCooDy/d_invest-
ment’ path and combines it into a xarray.DataArray with the four dimensions: agent,
d_investment, r, and seed (3). Note that the sweep dimensions are automatically com-
bined and added. The plot creator passes the configuration options defining the data
encoding and layout further on to the facet_grid plot function. We can visualize up to
6 data dimensions (here, just 4 for simplicity). Furthermore, dantro features automatic
encoding of the plot kind and layout, providing shorter configuration files and even more
flexibility.

The more comprehensive example configuration below in Listing 3.3 reproduces the
right plot of Figure 6.2, a combination of a seaborn violinplot and stripplot that shows
the distribution of final mean investments dependent on a synergy factor 𝑟 for varying
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random number generator seeds.
1 # eval_multiplot.yml – violinplot & stripplot of final mean

investments
2 final_mean_investments:
3 based_on: # (1)
4 - style.thesis
5 - dag.options.enable_caching
6
7 creator: multiverse # (2)
8
9 module: dantro.plot_creators.ext_funcs.multiplot

10 plot_func: multiplot # (3)
11
12 select_and_combine: # (4)
13 fields:
14 combined_data:
15 path: data/ReCooDy/investment_mean
16 transform: # Select last time step
17 - .isel: [!dag_prev , {time: -1}]
18
19 transform: # (5)
20 - .to_dataframe: [!dag_tag combined_data]
21 - callattr: [!dag_prev , reset_index]
22 tag: df
23
24 to_plot: # (6)
25 - function: sns.violinplot
26 data: !dag_result df
27 inner: quartile
28 - function: sns.stripplot
29 data: !dag_result df
30 x: r
31 y: investment_mean
32
33 helpers: # (7)
34 set_limits: {y: [-42, 42]}

Listing 3.3: Example plot configuration visualizing the final mean investments.

The plot is based on configuration snippets that contain options to set a matplotlib plot
style (style.thesis) and enable caching, respectively (dag.options.enable_caching)
(1). These options are combined via recursive updates and can be overwritten. User-defined
and library-given configurations are selectable. The multiverse creator actually creates
the plot, which takes and processes multiverse data (2). It calls the multiverse plot
function provided in dantro’s multiplot module (3). The creator selects and combines the
investment_mean data of all universes each with a unique 𝑟 and seed parameter pair, se-
lects only the last time step for each, and returns the data tagged combined_data (4). The
data is stored in a dimension and coordinate labeled four-dimensional xarray.DataArray
object, utopya’s default numerical data container type. We need to transform it into a
pandas.DataFrame in order to call seaborn plot functions (5). The seaborn violinplot
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and a stripplot functions are called with the transformed data as input (6). We can add
further keyword arguments directly below, exemplified with inner. The x and y plotting
dimensions are shared and passed to both plot functions. Finally, we can change the
figure aesthetics, such as setting the limit of the y axis, as done (7). Various plot helpers
are provided that wrap matplotlib functions such as setting a title, axis labels, tick
formators or locators, or adding horizontal or vertical lines to the figure.

Both examples use data evaluation scenarios presented in this thesis and exemplify how
utopya and especially dantro work in production. Of course, the examples show only
a fraction of the data evaluation possibilities. For more examples, readers are invited
to visit Utopia’s and dantro’s documentations (Utopia Developer Team 2021; Dantro
Developer Team 2021).

3.2.5 Testing, Review, and Workflow
Testing scientific software is pivotal to guarantee correctness (Kanewala and Bieman 2014).
Utopia uses GitLab’s continuous integration testing pipeline to test existing and new code
automatically. We put an emphasis not only on testing the framework itself but also on
helping model developers test their code. Utopia integrates the Boost Test framework
to facilitate C++ unit and integration tests of the framework itself and implemented
models. To help to test macroscopic model behavior, Utopia provides functionality for
Python-based model tests. Having the code base automatically tested proved utterly
useful multiple times, preventing severe bugs.

To further increase code quality, code only becomes part of the framework after a
successful review process. Utopia’s development and maintenance is coordinated on a
GitLab server. We use GitLab’s rich infrastructure to enable open discussions, coordinate
tasks, and carry out reviews. We aim to increase quality, efficiency, and productivity
through cooperative synergies.

3.3 Applications and Experience
Utopia is a modeling framework developed both for research and teaching. Within
our research group, more than 20 master’s and bachelor’s theses have been successfully
conducted using Utopia as the sole computational research tool. Many students actively
contributed to the codebase. Four Ph.D. students have actively developed and used
Utopia in their projects with topics ranging from “the feedback between environment
and evolving populations with CA and ABMs, the evolution of ecological interaction
networks, the emergence of cooperation in dynamic social interaction networks [(this
work)], and the development of geometric and polarity properties of the basilar papilla
in agent-based vertex models” (Riedel et al. 2020). The M.Sc. level physics lecture on
“chaotic, complex, and evolving environmental systems” at the Department of Physics and
Astronomy, Heidelberg University, incorporated Utopia as a teaching tool in its exercises
investigating complex systems. Furthermore, students explored existing models as well
as developed and explored their own Utopia models, even with limited programming
experience, in semesterly seminars on complex and evolving systems.

We designed Utopia to incorporate a good balance between usability and performance.
On the user level, Utopia’s operation should be simple and intuitive. Users should
be able to operate unknown models in a black-box fashion without any knowledge of
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implementation details to gain an initial, playful intuition of the system. On the model
developer level, the focus was on performance and flexibility. Our experiences, both in
teaching and research, indicated that, in our assessment, we reached our initial design
goal.

3.4 Summary
“Utopia provides the tools to conveniently implement computer models, perform simulation
runs, and evaluate the resulting data.” (Utopia Developer Team 2021). Developing,
maintaining, and using Utopia was a collective endeavor that fostered cooperation, helped
spread best practices of software engineering, and in general, boosted synergies within our
research group. Our work shows that it is possible to adopt modern software engineering
practices in science; It fosters reusability, reproducibility, sustainability, and reliability of
research software (Sevinchan et al. 2020a).
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4 ReCooDy: The Resource-Flow-Based
Cooperation Dynamics Model

The Resource-flow-based Cooperation Dynamics model—short ReCooDy––is a tool de-
signed to investigate the emergence of cooperation in evolving populations of agents
that need to extract resources, either independently or via high-risk high-reward inter-
actions, to survive, procreate, and modify their social interaction structure. Agents are
abstracted entities having internal traits that define their actions and internal states that
accumulate outcomes of their actions. Their state depends on their traits, their social
environment structure, and the actions of others. To represent this abstraction in our
language, we will refer to an agent with the neutral pronoun it throughout this thesis.
Due to their abstracted nature, agents do not necessarily represent one specific real-world
entity; Instead, I structurally identify properties of real-world entities such as individuals,
institutions, organizations, or groups of individuals in specific real-world systems and
develop expectations reliant on the presence or absence of such process structures.

4.1 Structure and Concepts
ReCooDy is formulated and propagated as an iterated computer simulation model. It is
implemented in the Utopia framework (see chapter 3). A model simulation has populations
of agents, which can change over time. Rule functions that operate on all 𝑁𝑡 agents of a
population at a given time 𝑡 ∈ ℕ≥0 implement the individual processes. All processes are
executed consecutively in each time step, determining the system state at the following
time step 𝑡 + 1. Figure 4.1 illustrates all implemented processes and their sequence. It
serves as a concise summary and guideline to keep in mind throughout this chapter.

Agents live in an environment providing a limited amount of resources per time. A
consistent resource-flow modeling is a central concept of ReCooDy. Resources flow into
the system via resource extraction and dissipate as every action—surviving, procreat-
ing, interacting, and linking—requires resources. Agents either extract basic resources
individually or synergistic resources collectively via synergistic interactions with their
social environment. The former is a comparatively secure way of receiving resources, in
which success is determined by an agent’s (costly) strength trait. The latter is based
on a high-risk, high-gain social dilemma interaction, which builds on a PGG, extends
it to a continuous cost space, and incorporates public goods destruction through the
notion of true defection. Cooperative strategies are prone to exploitation to more defective
strategies while potentially yielding enormous resource gains. All resources an agent
extracts accumulate into its internal resource reservoir. Agents with more resources have
a higher survival chance, can create more offspring, can invest more, can take more risks,
and can better optimize their interaction partners, i.e., their social environment.

Evolution is the integral process determining which strategy sets are competitive, thus,
which system states are actually realized. In the real world, evolution operates within an
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Figure 4.1: The ReCooDy process cycle. At the beginning of a simulation run, we initial-
ize ReCooDy with a neutral, unconnected population and set up all relevant
model parameters. Then, the actual process cycle starts. One cycle defines
one model iteration and one time step. As an overview, I concisely summa-
rize the model processes in the following, which I will, however, explain in
detail within the corresponding sections of this chapter. First, agents either
extract basic resources independently with probability 𝑝𝑏 or, with probability
𝑝𝑠 = 1 − 𝑝𝑏, synergistic resources through generalized public goods game
(gPGG) interactions that exhibit social dilemma characteristics. Then, agents
pay a constant cost of living 𝑐𝑙 and a strength cost 𝑐𝑠. The evolving strength
trait determines their success during basic resource extraction. They use their
internal resources to link, i.e., they add or remove interaction connections
to others to optimized their social environment. If their internally stored
resources fall below a death threshold 𝑡𝛿 they die of exhaustion; They get
removed from the population with all their links. Death also occurs randomly
with probability 𝑝𝛿 per agent and time step. If their resources exceed a birth
threshold 𝑡𝛽 they create an offspring with probability 𝑝𝛽 per agent and time
step, pay a birth cost 𝑐𝛽 and transfer resources 𝑗𝛽 to their offspring. Afterward,
the process cycle starts again with resource extraction.
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exorbitantly high possibility space, in which not only parameters but rules themselves
change over time1 What we experience is merely a single realization that unfolds. We
usually use fitness measures to quantify success in evolutionary systems, but more recently
Doebeli et al. (2017) emphasize a more mechanistic approach fundamentally based on
birth and death processes. EGT usually embraces simple death-birth, birth-death, or
imitation processes, which generally speaking combine both processes into a single strategy
update rule (e.g., see common textbooks such as Nowak (2006a) and Friedman and Barry
(2016)). In contrast, ReCooDy decouples and separately implements birth and death
processes. This separation softens arbitrarily strict modeling restrictions, e.g., replacing
randomly dying agents without changes to population structure and neglecting any agent
development. In ReCooDy, the agent’s social environment develops over time by being able
to add and remove links to other agents. Links are not a priori always socially inherited
as, for example, done by Ilany and Akçay (2016). Nevertheless, social inheritance can still
evolve indirectly in ReCooDy as agents are capable of evolving local link creation to their
parents’ neighbors. However, they could also evolve to form global links or no links at all.
ReCooDy includes an individual development phase over an agent’s lifetime in the form of
constructing and optimizing its social interaction environment and separates birth and
death processes from each other to increase realism.

The amount of resources flowing into the system needs to be limited to maintain
computational feasibility and increase realism. Without limited resource inflows, we could
easily imagine settings with higher birth rates than death rates, which would lead to more
and more agents as well as diverging simulation times. With limited resource inflows,
the model can only sustain a certain number of agents; Thus, it indirectly exhibits a
maximal carrying capacity. The exact number of agents and the number of links depend
on how agents evolve to extract and distribute their resources. Operationally, limited
resources prevent diverging computational times and, conceptually, they increase the
model’s realism because real populations usually live in limited environments and need
to share limited resources as simple logistic growth population models such as Verhulst
(1838) already indicate.

Limited resources prevent the system from exploding, introduce more realism, and
increase the evolutionary pressure on the agents living in a highly competitive and
dynamically changing (social) environment. Limited resources raise the issue of distribution
as soon as agents want to extract more resources than there are available resources. This
distribution issue will automatically increase the competition, thus, the pressure to
be successful. The main factor determining whether an agent will be successful is its
strategies—the set of agent-specific traits resulting in a combination of comparatively
high birth rates and low death rates. It contains information on how an agent will
(stochastically) act within its environment. Its social environment will develop over time.
We will see that specific local network configurations can be crucial because all processes
include thresholds that determine whether an agent survives, procreates, links, and also
how much it invests. With all of these in mind, we could expect that successful strategies
potentially need to adapt over time in order to remain successful.

Before we dive into the model itself, let us shortly reflect on the language used in
1In recent years, new research paths embracing the idea of open-ended evolution emerged—letting

parameters as well as the rules themselves evolve— which could be a promising way to deepen our
understanding of how evolution operates and potentially boosting our technological advances (see for
example (Taylor and Dorin 2020; Adams et al. 2017)).
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this thesis. I will use anthropomorphic language elements that do not necessarily entail
their complete corresponding set of connotations, which we would anticipate from our
accumulated low-level world experience. Instead, they represent high-level analogs of the
underlying low-level concepts. Consequently, words such as cooperator, social environment,
or resource do not have a direct real-world meaning but need to be translated and projected
to the respective structural real-world concept they represent. For example: Within the
EGT high-level modeling context, a cooperator is usually condensed into a single defining
property: paying a personal cost to create a benefit for others. Structurally, we can
often identify a real-world low-level analog when looking at a specific scenario. However,
usually the real-world situation entails much more complexity, is higher dimensional, and
requires various qualities to describe it in its whole adequately. E.g., whether and to
what extent an individual cooperates can depend on its phenotypically translated genetic
predisposition, its personal history also concerning the interaction partners, whether it
follows a bigger underlying plan, and so on. Further, dependent on the situation, time,
and context, different people sense, recognize, and grade cooperative behavior differently;
finding a standard all-entailing measure is complicated. These are just a few example
lines of thoughts that we could follow even deeper. In short, we should be aware that
the language elements and introduced respective concepts in this thesis are high-level
representations of their low-level real-world analogs and, as such, neither entails all of
their complexity nor necessarily all their semantic notions.

ReCooDy is a complicated and complex model; It incorporates several mechanistic
processes and consists of many interacting agents highly coupled and dependent on each
other through resource flows. The increased modeling complexity introduces more realism
but comes with the severe challenge of mathematical feasibility. To the best of my
knowledge, we do not yet have the adequate mathematical tools to extract a general
understanding from a system as complex and complicated as ReCooDy. Instead, we
currently need to apply a more explorative and heuristic way of extracting knowledge
based on computer simulations, their observation, and deduced consistent explanations
of these observations. All of which makes the investigation of ReCooDy a promising and
exciting but challenging endeavor.

4.2 Resource Extraction
Agents extract resources to increase their internal resource reservoir 𝑅 through one of
two ways2: (i) independent extraction of basic resources ℜ𝑏, or (ii) group extraction of
a synergistic resource ℜ𝑠. The probabilities 𝑝𝑏 and 𝑝𝑠 ≔ 1 − 𝑝𝑏 determine whether
to extract the basic or the synergistic resource, respectively, in each time step 𝑡 for each
agent3. They are evolving agent-specific traits, i.e., they get inherited with variation via
small mutations from parent to offspring and selected through birth and death processes
(see section 4.6 and section 4.5). Thus, each time step 𝑡, the agent population is split
into two groups by sampling for each 𝑎 a random number from a continuous uniform

2𝑅 is an agent-specific state, and therefore would require a subscript 𝑎 denoting the agent: 𝑅𝑎. However,
for elegance and visual noise reduction, I often omit the subscript 𝑎 when referring to an agent state
or trait, in general. Still, I use the full version, 𝑅𝑎, where it is helpful, useful, or required for better
understanding.

3Throughout the thesis, 𝑎 will refer to an agent 𝑎 ∈ 𝑁𝑡 being part of the whole population at a given
time 𝑡 if not otherwise indicated. For example, 𝑅𝑎 is the internal resource reservoir of an agent 𝑎 ∈ 𝑁𝑡.
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distribution 𝒰(0, 1). If this number is smaller than or equal to the agent-specific probability
𝑝𝑏, agent 𝑎 belongs to the set of agents that extract basic resources in that time step, ℬ𝑡.
If the number is greater than 𝑝𝑏, agent 𝑎 belongs to the set of agents that interact and
extract synergistic resources in that time step, 𝒮𝑡. During its lifetime, an agent 𝑎 will
extract the basic resource on average 𝐴final ⋅ 𝑝𝑏 times and the synergistic one 𝐴final ⋅ 𝑝𝑠
times with 𝐴final being the agent’s final age.

Both resource types add to the same internal reservoir 𝑅 of an agent when extracted.
Hence, we do not distinguish different resource types for simplicity but unify them into
one internal resource reservoir 𝑅 that provides the means of living and acting. If an
agent is strong enough compared to others and extracts basic resources, it receives a fixed
amount of basic resources added to its internal resource reservoir. Thus, the reward is
only indirectly dependent on others. In contrast, when extracting synergistic resources
via group interactions, the reward is directly dependent on others because of intrinsic
high-risk, high-gain social dilemma game characteristics (see section 4.2.2).

Both resources have a limited amount available per time step that can sustain only a
finite number of agents. There is a steady resource inflow into the system for which agents
need to compete. The distribution of resources follows the competitive principle: “the
most successful take first”. Strength and payoff define success, respectively. Successful
agents extract resources first until the resource exhausts; Others receive nothing. We can
expect an increased evolutionary pressure to select for successful strategies due to the
increased competition for the limited resources. Unsuccessful strategies cannot survive
easily. The limited resource inflow into the system limits the system’s carrying capacity
and adds another level of inter-agent competition, which effectively is expected to increase
the evolutionary pressure towards successful strategies.

Introducing two distinct resources with separate extraction mechanisms and parameters
offers a way to overcome the competitive exclusion principle (CEP) and allow strategy
specialization. Each resource type requires agents to evolve a distinct competitive toolset to
be able to extract enough resources to survive. Maintaining both toolsets is costly and most
probably not competitive against specialized agents. Theoretically, this lies the foundation
for agents to specialize in one of the two resource types. However, only simulations
will show whether such strategy specialization actually happens and, if so, under which
circumstances. In sum, two distinct resource types potentially provide different niches for
agents to survive, which could ultimately result in strategy specialization.

Now, we will look at the detailed formulation and implementation of both distinct ways
of resource extraction.

4.2.1 Basic Resource Extraction

All agents within the set of basic resource extracting agents at time 𝑡 , 𝑎 ∈ ℬ𝑡, intend to
extract basic resources ℜ𝑏 individually. However, the agents’ environment only provides a
limited amount of basic resource 𝒜𝑏 available for extraction each time step 𝑡. We can
think either of a regrowing resource assuming a state independent regrowth rule or a
constant flux of resource for example provided by the sun. 𝒜𝑏 determines the maximal
global flux of basic resource into the system per time step. If there are enough resources
available for all agents 𝑎 ∈ ℬ𝑡 each agent receives an inflow of basic resources 𝑗𝑏 added to

41



4 ReCooDy: The Resource-Flow-Based Cooperation Dynamics Model

its internal resource reservoir internal resource reservoir, i.e.,

𝑅(𝑡+ 1
5 )

𝑎 = 𝑅(𝑡)
𝑎 + 𝑗𝑏 if ∑

𝑎∈ℬ𝑡

𝑗𝑏 ≤ 𝒜𝑏, ∀𝑎 ∈ ℬ𝑡. (4.1)

Here, the system did not yet reach its carrying capacity. Each ReCooDy process alters
the internally stored resources such that one time step consists of multiple sub-steps. The
time 𝑡 increases by a fifth to indicate that the first of five sub-processes that happen
during one time step took place.

However, if the environment does not provide enough resources for all, ∑𝑎∈ℬ𝑡
𝑗𝑏 > 𝒜𝑏,

competition arrises and only agents with high strength extract resources. Only the
𝑛𝑏 = ⌊𝒜𝑏/𝑗𝑏⌋ agents with the highest strength 𝑠 receive resources in this case. Here, ⌊… ⌋
denotes the floor function. The (𝑛𝑏 + 1)th agent receives the rest and all others do not
get anything. Put into an equation, the internal ressource reservoir 𝑅𝑎 of agent 𝑎 updates
as follows:

𝑅(𝑡+ 1
5 )

𝑎 =
⎧{
⎨{⎩

𝑅(𝑡)
𝑎 + 𝑗𝑏 for the 𝑛𝑏 highest strength 𝑠 agents,

𝑅(𝑡)
𝑎 + (𝒜𝑏 − 𝑛𝑏𝑗𝑏) for the agent with (𝑛𝑏 + 1)th highest strength 𝑠,

𝑅(𝑡)
𝑎 for the rest.

(4.2)

Agents have an evolving strength 𝑠 trait, i.e., it gets inherited with variation via small
mutations from parent to offspring and selected through birth and death processes (see
section 4.6 and section 4.5). More strength comes with higher costs of keeping up the
agent’s internal workings (see section 4.3). But the higher 𝑠, the more probable it is for
an agent to be successful against the competition and actually receive resources.

We define the expected strength 𝜇𝑠 as the probability-weighted strength that is effectively
used to extract basic resources over the course of an agent’s lifetime, i.e.,

𝜇𝑠 = 𝑝𝑏 ⋅ 𝑠. (4.3)

We will use this quantity in the simulation results to compare an agent’s commitment to
extract basic resources compared to synergistic resources.

4.2.2 Synergistic Resource
All agents within the set of synergistically extracting agents, 𝑎 ∈ 𝒮𝑡, aim to extract
synergistic resources through local group interactions. They consitute an undirected,
effective interaction network that changes over time 𝑡 because the set of interacting agents
and the network structure update (see section 4.2 and section 4.4). The complete network
at a specific time 𝑡 connects all living agents at that time, i.e., also the ones extracting
basic resources, 𝑎 ∈ ℬ𝑡. More formally, all agents 𝑎 ∈ 𝑁𝑡 consitute the set of vertices
𝑉 𝑡 of the underlying mathematical graph and their undirected links define the edges
𝐸𝑡 ⊆ {{𝑥, 𝑦}|𝑥, 𝑦 ∈ 𝑉 𝑡 with 𝑥 ≠ 𝑦}, which together define the underlying graph at a time 𝑡:
𝐺𝑡 = (𝐸𝑡, 𝑉 𝑡). The effective interaction network at a time 𝑡 relies on a mathematical graph
with vertices 𝑉eff defined as the set of agents participating in the synergistic extraction at
that time step, 𝑎 ∈ 𝒮𝑡. This set of vertices together with its corresponding set of effective
edges 𝐸𝑡

eff ⊆ {{𝑥, 𝑦}|𝑥, 𝑦 ∈ 𝑉 𝑡
eff with 𝑥 ≠ 𝑦} form the underlying effective undirected graph:
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𝐺𝑡
eff = (𝐸𝑡

eff, 𝑉 𝑡
eff). It defines the actually relevant interaction structure in one specific time

step, which is a result of the agent-specific probabilities 𝑝𝑠 and 𝑝𝑏. In contrast, the whole
network defines the theoretically possible set of interaction partners. Due to the linking
process, both change over time (see section 4.4). I refer to the social environment of an
agent as its neighborhood and next-neighborhood combined for the entire network and the
effective social environment for the effective network. The social environment defines the
possible set of agents with which to interact directly or via neighboring sub-interactions
and which to modify in the linking process (see section 4.4). The interaction network
with all its social environments defines a population structure that, in the EGT context,
allows for the evolution of cooperation (Lieberman et al. 2005; Santos and Pacheco 2005;
Szabó and Fáth 2007). In contrast to well-mixed systems, in which each agent can interact
with each other agent, population structure potentially helps to overcome the CEP by
providing the possibility of strategy niche creation.

Figure 4.2 shows a schematics of an effective interaction network that visualizes an
agents current effective social environment. In the following, for elegance and simplicity,
we will always focus on the effective network and omit to explicitly state that we consider
the effective quantities, if not otherwise stated. The central agent is directly connected to
three other agents within its neighborhood. Let 𝒦𝑡

𝑎 be the set of all neighbors of agent 𝑎
at time 𝑡 and 𝒩𝑡

𝑎 be the same set including agent 𝑎 itself, i.e., 𝒩𝑡
𝑎 ∶= 𝒦𝑡

𝑎 ∪ {𝑎}. Then,
agent 𝑎 participates in 𝑛𝑡

𝑎 = #𝒩𝑡
𝑎 sub-interactions, centered around itself as well as each

neighbor.
The interaction itself is fundamentally based on a PGG, however, significantly altered

compared to the common version (Trivers 1971): It entails a continuous strategy space
in contrast to the typical binary cooperator-defector dualism and further introduces the
notion of true defection by creating bads, i.e., actively destructing goods for selfish reasons.
The PGG models a social dilemma group interaction, in which the individual outcome
strongly depends on the actions of others. There are plenty of continuous trait games
(see section 2.1.5). Here, we use continuous, evolving costs in the PGG and additionally
remove the usual notion of defection. There is no overlaying strategy dualism. Instead, I
introduce true defection, which occurs if agents have “negative costs” if we use the default
PGG language. In the context of ReCooDy, negative costs mean that agents actively grab
resources and, as a consequence, actively destroy goods. From a different perspective,
we can say that they create bads in contrast to the usually created goods for positive
costs. To distinct this generalized public goods game (gPGG) from the common PGG
and emphasize its generalization, we will in part use a different language, e.g., we will
talk about investments instead of costs or call the game an interaction.

In the following, I will introduce the gPGG by first focusing on goods creation before
looking at bads creation and their unification.
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α

β

γ

δ

Figure 4.2: Schematic effective interaction network
of agents 𝑎 ∈ 𝒮𝑡 extracting synergistic re-
sources at time 𝑡. The graph exemplifies
the local effective social environment of one
central agent (big blue). The central agent
participates in 𝑛𝑡

𝑎 = 4 sub-interactions:
one centered around itself (green 𝜶 area),
and the other three centered around its re-
spective neighbors (light green 𝜷, 𝜸, and 𝜹
areas). Each agent 𝑎 invests an equal share
𝜄𝑎/𝑛𝑡

𝑎 in all its sub-interaction partitioning
the potential gain as well as their risk. Col-
ors indicate the existence of cooperative
(𝜄𝑎 > 0, blue) and defective (𝜄𝑎 < 0, red)
strategies. The vertex size schematically
encodes payoff differences resulting from
the interactions.

4.2.2.1 Creating Goods

Creating goods is the way to extract resources cooperatively. Let 𝑐𝑠𝑎
> 0 be the cost an

agent 𝑎 ∈ 𝒮𝑡 pays to interact with its effective social environment to extract synergistic
resources. The resource goods 𝐺+

𝑣 created from the PGG-based sub-interaction centered
around vertex 𝑣 in the interaction network are

𝐺+
𝑣 = 𝑟+ ∑

𝑎∈𝒩𝑣

𝑐𝑠𝑎

𝑛𝑎
. (4.4)

Agents split their cost investments 𝑐𝑠𝑎
equally among their sub-interactions (𝑐𝑠𝑎

/𝑛𝑎),
where 𝑛𝑎 is the number of agents participating in the subinteraction around agent 𝑎. The
positive synergy factor 𝑟+ ∈ ℝ+ transforms the summed costs to goods. If 𝑟+ > 1, the
transformed goods are worth more resources than the summed investments. The higher 𝑟+,
the more goods are produced and the weaker the social dilemma becomes (see chapter 5
for a more detailed analysis of the inherent social dilemma). All agents profit equally from
the created goods, independent of their cost investments. Therefore, the payoff agent 𝑎
gets from the interaction centered around vertex 𝑣 is

𝑃 +
𝑣,𝑎 = 𝐺+

𝑣
𝑛𝑣⏟

shared benefit

−
𝑐𝑠𝑎

𝑛𝑎⏟
personal cost

. (4.5)

The first part represents the agent’s benefit, the fraction of shared goods, and the second
represents its cost invested in this specific sub-interaction. Recalling that agents participate
in multiple interactions, we note that agent 𝑎’s total payoff 𝑃 + equals the sum of all
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sub-interaction payoffs:

𝑃 +
𝑎 = ∑

𝑣∈𝒩𝑎

𝑃 +
𝑣,𝑎

(4.5)
= ∑

𝑣∈𝒩𝑎

(𝐺+
𝑣

𝑛𝑣
−

𝑐𝑠𝑎

𝑛𝑎
)

(4.4)
= ∑

𝑣∈𝒩𝑎

(𝑟+

𝑛𝑣
∑

𝑏∈𝒩𝑣

𝑐𝑠𝑏

𝑛𝑏
−

𝑐𝑠𝑎

𝑛𝑎
)

= ∑
𝑣∈𝒩𝑎

(𝑟+

𝑛𝑣
∑

𝑏∈𝒩𝑣

𝑐𝑠𝑏

𝑛𝑏
) − 𝑐𝑠𝑎

. (4.6)

The resource flow from the synergistic resources ℜ𝑠 from the interactions centered
around vertex 𝑣 is given by

𝑗+
𝑠𝑣

= 𝐺+
𝑣 . (4.7)

These resources are provided by the environment and flow into the respective agents.
Thus, 𝑗+

𝑠𝑣
also equals the total amount of resources interacting agents receive as benefits

from the interactions centered around 𝑣. We should keep in mind that we assume that
enough resources ℜ𝑠 are available here for simplicity. I.e., the resources are unlimited, or
the system is away from maximal total resource outflows. In section 4.2.2.5 we will focus
on settings with finite resources.

4.2.2.2 Creating Bads

Creating bads is the way to extract resources destructively. I introduce the word bads as
the conceptual opposite of goods to emphasize the conceptual similarity: Creating bads
equals destroying goods. The idea behind bads creation (goods destruction) is that agents
selfishly grab resources from the common resources, thereby destroying shared goods as
collateral damage. We mirror the PGG characteristics by introducing the negative synergy
factor, which assures that the agent’s personal benefit from grabbing resources outweighs
the commonly shared cost from destroying resources; In a sense, such agents incorporate
true defection.

Let us first introduce bads creation as a separate concept before unifying both goods
and bads creation based on their mathematical similarity.

Let 𝑔𝑎> 0 be the resources an agent 𝑎 ∈ 𝒮𝑡 selfishly grabs when interacting with its
social environment. The bads 𝐵𝑣 created from the PGG-like sub-interaction centered
around vertex 𝑣 in the interaction network are

𝐵𝑣 = 𝑟− ∑
𝑎∈𝒩𝑣

𝑔𝑎
𝑛𝑎

. (4.8)

Note the structural similarity to created goods (see equation 4.4). Each agent 𝑎 grabs
equal shares 𝑔𝑎/𝑛𝑎 in each of its sub-interactions. The negative synergy factor 𝑟− ∈ ℝ+

transforms the summed grabbed resources into bads. If 𝑟− > 1, the transformed bads
are worth more resources than the summed grabbings. The higher 𝑟−, the more bads are
produced. For the conditions specifying a social dilemma see chapter 5. 𝑟− enhances the

45
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negative impact of destroying resources through grabbing. However, as for goods creation,
all participating agents share the bads. Therefore, the payoff an agent 𝑎 receives from the
destructive interaction centered around vertex 𝑣 is

𝑃 −
𝑣,𝑎 = − 𝐵𝑣

𝑛𝑣⏟
shared cost

+ 𝑔𝑎
𝑛𝑎⏟

personal benefit

. (4.9)

The first part corresponds to the collectively shared cost of the created bads, and the second
determines the personal benefit of agent 𝑎 from grabbing resources. Agents participate in
multiple interactions due to the network structure. Thus, agent 𝑎’s total payoff 𝑃 − is

𝑃 −
𝑎 = ∑

𝑣∈𝒩𝑎

𝑃 −
𝑣,𝑎

(4.9)
= ∑

𝑣∈𝒩𝑎

(−𝐵𝑣
𝑛𝑣

+ 𝑔𝑎
𝑛𝑎

)

(4.8)
= ∑

𝑣∈𝒩𝑎

(−𝑟−

𝑛𝑣
∑

𝑏∈𝒩𝑣

𝑔𝑏
𝑛𝑏

+ 𝑔𝑎
𝑛𝑎

)

= − ∑
𝑣∈𝒩𝑎

(𝑟−

𝑛𝑣
∑

𝑏∈𝒩𝑣

𝑔𝑏
𝑛𝑏

) + 𝑔𝑎. (4.10)

We define the resource outflow from the synergistic resource ℜ𝑠 caused by the interaction
centered around vertex 𝑣 as

𝑗−
𝑠𝑣

= 𝐵𝑣 + ∑
𝑎∈𝒩𝑣

𝑔𝑎
𝑛𝑎

. (4.11)

𝐵𝑣 are the created bads, the destructed resources as collateral damage, and ∑𝑎∈𝒩𝑣

𝑔𝑎
𝑛𝑎

are the summed grabbed resources from all participating agents. We consider the directly
grabbed resources from the available resources and assume that resources are actively
destroyed through bads creation. The definition assures that for equal amounts of invested
and grabbed resources, the impact of resource destruction on the resources provided
by the environment is comparably higher for an equivalent setting: If we assume an (i)
equivalent network, (ii) 𝑟+ = 𝑟−, and (iii) 𝑔𝑎 = 𝑐𝑠𝑎

∀𝑎, we see that 𝐵𝑣 = 𝐺+
𝑣 directly

follows from their definitions (equation 4.8 and equation 4.4) through substitution. With
these assumptions, we note that

𝑗−
𝑠𝑣

− 𝑗+
𝑠𝑣

= 𝐵𝑣 + ∑
𝑎∈𝒩𝑣

𝑔𝑎
𝑛𝑎

− 𝐺+
𝑣

𝐵𝑣=𝐺+
𝑣= ∑

𝑎∈𝒩𝑣

𝑔𝑎
𝑛𝑎

. (4.12)

If we recall that 𝑔𝑎 > 0, we see that for equal costs and grabbings, the outflow of resources
from the synergistic resources ℜ𝑠 is always larger for goods destruction compared to goods
creation. By construction, the negative effect of bads creation is both directly harming
neighboring agents’ payoffs and reducing the available resources per time step through
collateral damage.

Again, we should keep in mind that we assume that enough resources ℜ𝑠 are available
here for simplicity. I.e., the resources are unlimited, or the system is away from maximal
total resource outflows. In section 4.2.2.5 we will focus on settings with finite resources.
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4.2.2.3 Unify Creation and Destruction

Goods creation and bads creation exhibit the same underlying mathematical structure.
This similarity allows us to unify both processes into one generalized public goods game
(gPGG) interaction. We extend the usual realm of the PGG to negative parameters,
which lets us incorporate true defection into the social dilemma interaction as we have
investigated in the previous section. In the following, we will speak of goods creation and
destruction to emphasize the unification of both processes. First, let us define an agent’s
investment 𝜄 ∈ ℝ as

𝜄 ≔ {
𝑐𝑠 if ≥ 0
−𝑔 if < 0.

(4.13)

If the agent’s investment is positive, it pays a cost to create goods for itself and its effective
social environment; If 𝜄 is negative, it selfishly grabs resources and harms itself and its
effective social environment. The magnitude of 𝜄 determines both the amount of created
or destructed goods and the personal harm or gain, respectively. For the interaction, we
assume that goods creation and destruction have the same impact. Thus, we equate the
positive and negative synergy factors and define a unifying synergy factor: 𝑟 ≔ 𝑟+ = 𝑟−.
This synergy factor 𝑟 transforms both positive investments into created goods and negative
investments into destroyed goods with the same weighting. In one sub-interaction centered
around vertex 𝑣, all participating agents create the following net amount of goods4:

𝐺𝑣 = 𝑟 ∑
𝑎∈𝒩𝑣

𝜄𝑎
𝑛𝑎

. (4.14)

Agents distribute their personal investment equally between all sub-interaction, i.e., the
invest 𝜄𝑏/𝑛𝑎 in each sub-interaction. Each agent receives the same share of net goods.
Therefore, the payoff an agent 𝑎 receives from the sub-interaction centered around 𝑣 is:

𝑃𝑣,𝑎 = 𝐺𝑣
𝑛𝑣⏟

group

− 𝜄𝑎
𝑛𝑎⏟

individual

. (4.15)

The first part, 𝐺𝑣/𝑛𝑣, is the share of goods resulting from the sub-interaction, the second,
𝜄𝑎/𝑛𝑎, is the agent’s investment, i.e., its subtracted cost or added grabbed resources,
respectively5. Thus, the former represents the resource flow due to group effects resulting
from the interactions, while the latter corresponds to resource flows caused by the

4In the following, we will always refer to goods instead of net goods but will imply the net amount of
created and destructed goods.

5In the following, we will always refer to investments and imply that investments can per definition either
be positive (costs for goods creation) or negative (grabbings from goods destruction).
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individuals’ actions. The resulting total payoff 𝑃 from all sub-interactions of agent 𝑎 is

𝑃𝑎 = ∑
𝑣∈𝒩𝑎

𝑃𝑣,𝑎

(4.15)
= ∑

𝑣∈𝒩𝑎

(𝐺𝑣
𝑛𝑣

− 𝜄𝑎
𝑛𝑎

)

(4.14)
= ∑

𝑣∈𝒩𝑎

( 𝑟
𝑛𝑣

∑
𝑏∈𝒩𝑣

𝜄𝑏
𝑛𝑏

− 𝜄𝑎
𝑛𝑎

)

= ∑
𝑣∈𝒩𝑎

( 𝑟
𝑛𝑣

∑
𝑏∈𝒩𝑣

𝜄𝑏
𝑛𝑏

) − 𝜄𝑎. (4.16)

The resource flow out of the synergistic resource ℜ𝑠 due to the gPGG interaction centered
around 𝑣 is:

𝑗𝑠𝑣
= 𝑟 ∑

𝑎∈𝒩𝑣

|𝜄𝑎|
𝑛𝑎⏟⏟⏟⏟⏟

creation/destruction

+ ∑
𝑎∈𝒩𝑣

̂𝑔𝑎
⏟
grabbing

(4.17)

with

̂𝑔𝑎 ≔ {
|𝜄𝑎| for 𝜄𝑎 < 0
0 else.

(4.18)

equation 4.17 defines the total resource outflow 𝑗𝑠𝑎
that incorporates both goods creation

and destruction. Recalling that 𝑟 = 𝑟+ = 𝑟−, we retrieve the resource outflow from goods
creation (equation 4.7) if we only consider positive investments 0 < 𝜄𝑎 = 𝑐𝑠𝑎

and the outflow
from bads creation (equation 4.11) if we only consider negative investments 0 > 𝜄𝑎 = −𝑔𝑎.
The unified resource outflow 𝑗𝑠𝑎

incorporates both the process of goods creation and goods
destruction even in populations in which positive and negative investments 𝜄 coexist.

Within the resource-flow-based modeling approach, we note that agents cannot invest
anything if they do not have enough resources available to do so. Therefore, we need
to distinguish between an agent’s investment trait 𝑖 and its actual investment in the
interactions 𝜄. The former is the heritable trait passed on from parent to offspring, while
the latter defines the situation-dependent actual action of the agent. We get the investment
of an agent 𝑎 in a time step from its trait via

𝜄(𝑡)
𝑎 = {

𝑖𝑎 if ≤ 𝑅(𝑡)
𝑎

𝑅(𝑡)
𝑎 else.

(4.19)

For the analysis and agent classification (see section 4.2.2.4), it is useful to introduce
the expected investment 𝜇𝑖 of an agent:

𝜇𝑖 = 𝑝𝑠 ⋅ 𝜄. (4.20)

It combines the information of how often an agent interacts (𝑝𝑠) and, if so, how much it
is expected to invest (𝜄) if it has enough resources. Thus, it yields the expected value of
investment within a time step.
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4.2.2.4 Classification

Even though the gPGG is based on a continuous investment space, it is useful to introduce
an agent classification to facilitate communication and concisely sum up the agents’
emerging contextual characteristics. The gPGG has its foundation in the standard PGG.
Figure 4.3 illustrates the similarities and differences of the strategies in both versions of
the game. In section 2.1.2.2, we already introduced the PGG and its cooperative and
defective strategies. Therefore, here we will focus on the strategies of the gPGG and
especially its differences from the standard version of the game. Most of the time, we
classify agents as cooperator, defector, or loner, but in specific simulation regimes, we
will observe gap-separated strategy branches, for which we introduce the more contextual
classification into benefactor, profiteer, exploiter, or malefactor.

A cooperator invests resources to create public goods, from which its entire social
environment profits. A defector selfishly grabs resources and thereby destroys resources,
for which all of its social environment has to pay. A loner relies on basic resources and
does not participate in the interactions (𝑝𝑠 ≈ 0 and 𝜇𝑖 ≈ 0). The idea to include not-
interacting agents, however, as a predefined strategy, can be found already in Michor and
Nowak (2002), who showed that Loners promote the evolution of cooperation in a simple
EGT model. In ReCooDy, the loner strategy emerges. These three definitions in their
detailed description expand the usual scope of the strategy set by allowing for continuous,
principally unbound magnitude of behavior derived from the expected investments. Most
notably, the gPGG redefines defectors as actually malevolent agents that destroy shared
public goods to gain a personal benefit, in contrast, to merely not-cooperating agents that
receive a public goods share without paying a cost. It refines the concept of defection to
incorporate truly selfish and destructive behavior compared to just free-riding, i.e., true
defection.

Within the strict PGG framework, Hauert et al. (2002) introduced a voluntary partici-
pation into the games in a computational model, Michor and Nowak (2002) the explicitly
defined loner strategy, and Semmann et al. (2003) the former in an experimental setup.
They found that the loner strategy can promote the evolution of cooperation. However, in
these studies, the loner strategy was introduced as a given strategy, whereas in ReCooDy
it can emerge out of itself if it proves successful. In general, the definitions of cooperator,
defector, and loner each entail a broader range of possible microscopic strategy realizations
compared to the PGG due to the unbound, continous evolvable investment space.

At times in diverse populations, context hugely matters when identifying, characterizing,
and denoting an agent’s behavior. Therefore, I introduce a more contextual agent
classification by defining benefactors, profiteers, exploiters, and malefactors as illustrated
in Figure 4.3. benefactors and profiteers are both cooperative strategies, but a benefactor
has a significantly higher expected investment than a profiteer. A gap between the two
sub-populations of the cooperative strategies contextually provides a significant difference
in strategy. A benefactor is highly cooperative because it invests more and also more
often than a profiteer, which makes the latter profit in total from the comparably more
beneficial strategy of the first. exploiters and malefactors are both defective strategies, but
a malefactor has a significantly lower expected investment than a exploiter. Here again,
a gap between the two sub-populations of the defective strategies contextually provides
a significant difference in strategy. A malefactor is highly defective because it destroys
more public goods and also more often than an exploiter, which lets us coin the first as
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Figure 4.3: Strategy classification for the standard public goods game (PGG) (left) and
the generalized public goods game (gPGG) (right). In the PGG, agents are
either cooperators (C) or defectors (D). Cooperators usually pay a fixed cost
𝑐 to create public goods, from which all benefit. Some models include varying
costs from a continuous space, but costs are always restricted to positive values.
Defectors do not pay a cost but still profit from the generated goods. Thus,
the standard PGG only implements public goods creation.
The gPGG generalizes the standard PGG to incorporate public goods creation
as well as destruction. Agents are either loners (L), cooperators (C), or
defectors (D). Loners do not interact, i.e., they have 𝜇𝑖 ≈ 0 with 𝑝𝑠 ≈ 0.
Cooperators create public goods through positive investments, and defectors
destroy public goods through negative investments. A positive investment
means paying a cost and a negative one actively grabbing resources. Thus, the
gPGG extends the concept of defection by incorporating true defection—active
destruction of goods for a personal benefit. All interacting agents benefit from
the created public goods but have to pay for the destructed ones. We will
further use a contextual classification: cooperators separate into benefactors
(B) with high 𝜇𝑖 and profiteers (P) with low 𝜇𝑖 through a gap in 𝜇𝑖, and
defectors separate into exploiters (E) with low |𝜇𝑖| and malefactors (M) with
high |𝜇𝑖| also through a gap. Blue represents cooperative strategies and
red defective ones. More opaque colors represent a comparatively smaller
magnitude of cooperative or defective behavior, respectively.
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indeed selfishly malevolent and the latter as comparably less selfish but still exploitative.
Introducing the contextual classification lets us realize that the connotation of agents
can switch during their lifetime dependent on dramatic population changes. For example,
former profiteers can suddenly become benefactors after the collapse of a subpopulation.
Looking from a different angle, this also means that investing 𝜇𝑖𝑎

= 4 could make an
agent a profiteer at early simulation times but a benefactor at later times. The combined
strategies of other agents influence how an agent is denoted; In short, context matters.
The contextual agent classification lets us denote agents in specific emerging contexts,
which is especially useful in extreme dynamics events, in which a distinct subpopulation
significantly impacts the dynamics of the whole system.

In general, we note that due to the more complicated interaction in the gPGG, it
becomes more complicated to classify and denote agents. As we will experience later on
in the results, a flexible contextual characterization is helpful to communicate and explain
the results in specific scenarios efficiently.

4.2.2.5 Finite Resources

Until now, the mathematical formulation implicitly assumed an infinite amount of resources.
But what if there are not enough resources available for all agents anymore? In other words,
what if the population reaches the environment’s carrying capacity? Let us assume that
the synergistic resource ℜ𝑠 is limited similar to the basic resource ℜ𝑏 (see section 4.2.1).
Each time step 𝑡, the environment provides the amount 𝒜𝑠 of synergistic resource. This
amount defines the maximal resource flow out of the synergistic resource into the system.
If 𝒜𝑠 is greater than the sum of all extracted resources through synergistic extraction all
agents indeed receive their payoff (equation 4.16) added to their resource reservoir:

𝑅(𝑡+ 1
5 )

𝑎 = 𝑅(𝑡)
𝑎 + 𝑃 (𝑡)

𝑎 , if ∑
𝑎∈𝒮𝑡

𝑗(𝑡)
𝑠𝑎 < 𝒜(𝑡)

𝑠 , ∀𝑎 ∈ 𝒮𝑡. (4.21)

However, if there is not enough resource available in the specific time step, ∑𝑎∈𝒮𝑡
𝑗𝑠𝑎

> 𝒜𝑠,
agents need to compete for the available resources. Agents are successful if they have
a high payoff. The 𝑛𝑠 agents with the highest payoffs 𝑃 indeed receive resources. The
(𝑛 + 1)th highest payoff agent takes in the remaining resources, and all others receive
nothing. Importantly, agents that do not receive their payoff as a resource gain still have
to pay their contributed cost investments. Thus, positive investments have a gambling
characteristics, which in this case yields no return. Grabbing resources does not have such
a direct gambling penalty. Still, unsuccessful agents cannot grab resources because there
are not resources left. In total, agents internal resources update according as follows:

𝑅(𝑡+ 1
5 )

𝑎 = 𝑅(𝑡)
𝑎 +

⎧{
⎨{⎩

𝑃 (𝑡)
𝑎 for the 𝑛 highest-payoff agents,

(𝒜(𝑡)
𝑠 − ∑𝑛𝑠

𝑖=0 𝑗(𝑡)
𝑠𝑖 ) − ̂𝑐𝑠𝑎

for the (𝑛 + 1)th highest-payoff agent,
− ̂𝑐𝑠𝑎

for the rest
(4.22)

with

̂𝑐𝑠𝑎
≔ {

𝜄𝑎 if 𝜄𝑎 ≥ 0
0 else.

(4.23)
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In summary, extracting synergistic resources is a high-risk, high-reward way of getting
resources, in which agents can profit highly from synergies but are at the same time
exploitable. They must be successful with their strategy within their social environment
to indeed get resources and be able to act and survive.

4.3 Living
Agents need resources to survive and keep up their internal metabolism6. Each time step
𝑡, all agents pay a constant cost of living 𝑐𝑙 and a cost to sustain their personal strength
𝑐𝑠:

𝑅(𝑡+ 2
5 )

𝑎 = 𝑅(𝑡+ 1
5 )

𝑎 − ( 𝑐𝑙⏟
living

+ 𝑐𝑠𝑎⏟
strength

). (4.24)

For simplicity, the strength sustenance cost is equal to an agent’s strength: 𝑐𝑠𝑎
= 𝑠𝑎.

From a modeling perspective, the costs of living introduce dissipation, i.e., a resource
sink, in the system, which scales with the number of agents 𝑁. In combination with
the death of exhaustion (see section 4.5), it assures that the population is constrained
and cannot grow infinitely. Moreover, agents cannot evolve infinite strength because the
strength cost introduces an indirect strength limit. We can expect agents to evolve an
optimal strength that enables them to compete against others for basic resources but still
yields return when subtracting the strength cost. The living process with its resource
dissipation implements part of a self-regulatory way to limit the population size and
computational time while increasing the evolutionary pressure for the agents at the same
time.

ReCooDy’s living process is perhaps the most straightforward way to model the costs of
living costs or even an underlying metabolism. Of course, the living process would need
to be adapted to cope with the organism’s complexity for more complex organisms. Still,
even in its simple form, the living process is crucial because it structurally implements
resource dissipation, a property many evolving systems exhibit in some form. Thus, not
including living costs at all would arguably be an even greater simplification.

4.4 Linking
Linking enables agents to invest their resources to shape their social environment, poten-
tially providing them with the means to optimize their social niche for maximal synergistic
resource extraction. The linking process described in this work is inspired by Akçay
(2018). However, I significantly extend the process by separating link addition from
removal, introducing various linking modes that let agents optimize using the information
on others, and introducing a configurable linking cost. The extension provides a multidi-
mensional choice space for agents to link. The evolutionary mechanism determines within

6The existence of a metabolism is sometimes seen as life’s defining property; Trifonov (2011) made
a meta-analysis on the definition of life. First, he summarized 123 definitions to “Life is [System,
Matter, Chemical (Metabolism), Complexity (Information), (Self-)Reproduction, Evolution (Change),
Environment, Energy, Ability,…] where the square brackets correspond to some compact expression
containing the words listed within.” Finally, he condensed it further into an inclusive overarching
definition “Life is self-reproduction with variations.”, following Darwin (1859).
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the coevolutionary setting of ReCooDy which linking mechanism actually is competitive.
(García and Traulsen 2019) found in a PGG setting that “letting evolution, and not
modellers, decide which strategies matter” can be crucial for the outcome because unlikely
low-abundance strategies “only temporarily pave the way for other strategies”. In this
sense, the linking mechanism presented below follows Akçay (2020) by letting the social
setting coevolve with strategy but goes one step further by increasing the choice-space
and letting evolution decide on the outcome. Even more, the network needs to develop
over an agent’s lifetime from the inherited traits.

Each time step, all agents potentially add links and remove links stochastically dependent
on their individual traits. Thus, the number of actually existing links within a population
at a given time strongly depends on the evolutionary outcome and are not fixed as usually
assumed for simplicity in EGT models. In ReCooDy, agents first add links to others and
afterward remove links. In the following, I will introduce both processes.

4.4.1 Adding Links

Agents add links either locally within their social environment or globally within the
whole population. A link addition threshold 𝑡𝑎 ∈ ℕ with 𝑡𝑎 ≤ 𝑡max

𝑎 determines whether
the agent indeed adds a link. It is an evolving agent trait limited to a maximal value 𝑡max

𝑎 .
Per time step, an agent tries to add a link if 𝑘𝑎 ≤ 𝑡𝑎 with 𝑘 being the agent’s number of
neighbors/links and degree.
The agent adds a local link with probability 𝑝𝑙 and a global link with probability 𝑝𝑔 = 1−𝑝𝑙.
How do agents choose their linking targets? For both local and global link addition, agents
inhere a heritable linking mode trait that determines which agent to choose as a target;
𝜈𝑙 for local linking and 𝜈𝑔 for global linking, respectively. They represent an integer value
in the range {0, ⋯ , 7} (𝜈𝑙 ∈ {0, ⋯ , 7} and 𝜈𝑔 ∈ {0, ⋯ , 7}). Each value represent an agent
trait or state with the following encoding: 0 ↔ None, 1 ↔ 𝑅, 2 ↔ 𝑝𝑠, 3 ↔ 𝑖, 4 ↔ random,
5 ↔ 𝑠, 6 ↔ 𝐺, and 7 ↔ 𝑃. For example, 𝜈𝑙 = 3 encodes that the agent links locally to its
neighbor with the highest investment trait, 𝜈𝑔 = 4 encodes that the agent links globally
to a random agent, and 𝜈𝑙 = 0 encodes that the agent does not add links at all. All
linking modes are heritable traits, which are passed on from parent to offspring with rare
mutations (see section 4.6 for more details). If there already is a link between source and
target agent, no additional link is created; Instead, nothing happens. However, if adding
links succeeds both agents potentially need to pay a linking cost: 𝜅𝑙 for the initiating
source agent (local addition), 𝛾𝑙 for the target agent (local addition), and their global
counterparts 𝜅𝑔 (source) and 𝛾𝑙 (target), respectively7. These linking costs are global and
constant throughout a simulation for all agents.

We expect that the distinction between local and global link addition optimizes two
distinct global network properties: Local link addition allows for an increased network
clustering, whereas global link addition reinforces well-mixedness by reducing the average
path length; The former should facilitate the evolution of cooperation whereas the latter
should inhibit it (Akçay 2018).

7Throughout this thesis, we will only consider a linking cost for the initiating source agent. However,
ReCooDy’s implementation includes the possibility to configure a cost for the target agent.
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4.4.2 Removing Links
A link removal threshold 𝑡𝑟 ∈ ℕ with 𝑡𝑟 ≤ 𝑡max

𝑟 determines whether the agent indeed
removes a link. It is an evolving agent trait limited to a maximal value 𝑡max

𝑟 . Per time
step, an agent tries to remove multiple links until the condition 𝑡𝑟 < 𝑘𝑎 is met with 𝑘
being the agent’s number of neighbors/links and degree.
As for link addition, link removal is defined via a link mode 𝜈𝑟 defining which link to cut.
The link mode is an integer value in the range {0, ⋯ , 7}, i.e., 𝜈𝑟 ∈ {0, ⋯ , 7}. Each value
represent an agent trait or state with the following encoding: 0 ↔ None, 1 ↔ 𝑅, 2 ↔ 𝑝𝑠,
3 ↔ 𝑖, 4 ↔ random, 5 ↔ 𝑠, 6 ↔ 𝐺, and 7 ↔ 𝑃. For example, 𝜈𝑟 = 3 encodes that the
agent removes the link to its neighbor with the lowest investment trait, 𝜈𝑟 = 4 encodes
that the agent removes a random link and 𝜈𝑟 = 0 encodes that the agent does not remove
links at all. Note that for link removal, the lowest, not the highest value of the respective
quantity is relevant in contrast to link addition. The removal link mode 𝜈𝑟 is a heritable
trait, which is passed on from parent to offspring with rare mutations (see section 4.6 for
more details). Each link removal action costs resources for the initiating agent 𝜅𝑟 and the
target agent 𝛾𝑟

8. The linking costs are global and constant throughout a simulation for
all agents.

4.4.3 Summary and Discussion
To summarize, let us write down the resource update for all linking subprocesses:

𝑅(𝑡+ 3
5 )

𝑎 = 𝑅(𝑡+ 2
5 )

𝑎

− {
𝜅𝑙𝑎

if linking
0 else⏟⏟⏟⏟⏟⏟⏟
add local links

− {
𝜅𝑔𝑎

if linking
0 else⏟⏟⏟⏟⏟⏟⏟

add global links

− {
∑ 𝜅𝑟𝑎

if cutting
0 else⏟⏟⏟⏟⏟⏟⏟⏟⏟

remove links

(source)

− {
𝛾𝑙𝑎

if receiving
0 else⏟⏟⏟⏟⏟⏟⏟⏟⏟

receive local links

− {
𝛾𝑔𝑎

if receiving
0 else⏟⏟⏟⏟⏟⏟⏟⏟⏟

receive global links

− {
∑ 𝛾𝑟𝑎

if cut
0 else⏟⏟⏟⏟⏟⏟⏟
remove links

(target)

(4.25)

Agents pay resources if they initiate linking (source agents; middle line) or, in principle, if
they are the targets of linking actions (target agents; bottom line). In the results presented
later in this thesis, we do not have target costs; thus, all equations in the bottom line
are equal to zero. Still, ReCooDy’s implementation contains the possibility to set and
explore target costs for future exploratory work. The first term for the source and target
agents corresponds to the respective local linking cost. The second term corresponds to
the respective global linking cost. The last term corresponds to the respective costs of
potentially removing multiple links. equation 4.25 gathers the costs for all linking actions
described above into one formula that shows the agents’ internal resource update.

The link modes for link addition and removal presume different amounts of sensory
capabilities within agents’ social environment. For example, random linking does not
require any cognitive capabilities to sensor and process information. Contrasting, resource-
focused linking (e.g., 𝜈𝑙 = 1) presumes that agents can sense and evaluate, or at least

8Throughout this thesis, only the initiating source agents pay a cost to remove or add links.
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estimate, how many resources the target agent has accumulated internally. Importantly,
ReCooDy provides various possibilities for how to link without judging them unuseful
beforehand, and evolution decides which linking strategy is successful.

Adding and removing links are decoupled mechanisms, each with a separate set of
parameters, some of which are evolving. The decoupling allows for different linking
strategies that can evolve if competitive against others, but most not. Let us look at two
examples that can evolve, just focussing on adding v.s. removing links and the resulting
interpretation and implication: 𝑡𝑎 ≥ 𝑡𝑟 and 𝑡𝑎 < 𝑡𝑟. In the first case, agents require more
neighbors to add links than to remove links. Thus, they will never initiate link addition
and spend resources on it. Instead, they rely on other agents to create links to them to
increase their number of neighbors. If the number of neighbors increases high enough
through this passive process, they will spend resources to remove as many links as to reach
their link removal threshold. This linking strategy saves the agent all link addition costs.
It either becomes an isolated agent or, if attractive for link-adding agents, can either
accumulate the incoming links without any costs or optimize their social environment
efficiently by spending resources only on cutting undesired links. Still, if many others
target such agents, they can be exhausted by spending exceeding amounts of resources
on removing links, which eventually can result in death from exhaustion. High values of
𝑡𝑟 on the one hand decrease this risk, but on the other hand also decrease optimization
possibilities. In the latter case, agents spend resources mainly on link addition and not
on link removal. They potentially optimize their social environment under the risk of
spending too many resources on it. We can expect the influence of both to scale with 𝑡𝑎.
Only if such agents become desired targets of others do they need to spend resources on
removing links. Here agents can be expected to experience a more dynamically changing
social environment, compared to the first case. If both thresholds are approximately equal,
𝑡𝑎 ≈ 𝑡𝑟, agents arguably have the highest potential to optimize their social environment
with the downside of having the highest total linking costs. They have the potential to
actively choose beneficial target agents and remove not wanted neighbors if they receive
links from others—as default, they accept incoming links but immediately remove a link
to an unwanted neighbor.

ReCooDy decouples linking from the birth and death processes to include an agents’
individual development phase. The decoupling enables to specify time-scales of the
individual processes independently, instead of assuming that the development of an
individual interaction network happens instantaneously in one model time step. The
social environment is not entirely inherited but develops depending on inherited traits
and specific local network configurations. The initial link to the parent and with it the
parent’s neighborhoods are passed on, which both significantly determine the agent’s
development phase (see section 4.6). The first provides a first interaction partner, and the
latter determines the set of available linking partners for local linking. Thus, ReCooDy
provides inherited predisposition combined with individual development in the social
environment.

Having agents develop their social interaction network over their lifetime should facilitate
the emergence of cooperation. As we will see in chapter 5, for a fixed synergy factor, the
social dilemma is less severe for agents with fewer links and small social environments.
Especially at the beginning of their lives, agents do not have many resources and, thus,
cannot take many risks. Therefore, we can expect cooperation to evolve for lower synergy
factors than scenarios in which links are already directly inherited. Later in their lives,
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when agents potentially have more internal resources available, we can expect them to
survive settings with a large social environments. Such settings increase the social dilemma
for the individual, and therefore the individual’s risk, but can still yield high profits if
many neighbors have higher expected investments than the respective agent. With links
building up over time, the individual social dilemma increases, and agents experience
more intricate settings, which are potentially more challenging to survive in but can also
be expected to be beneficial if they live in cooperative environments.

4.5 Death

Agents die either stochastically with death probability 𝑝𝛿 per time step or from exhaustion
if their resources fall below a death threshold 𝑡𝛿. A dead agent is completely removed
from the population together with all its links.

Each time step, a random number is drawn from a uniform integer distribution covering
the unit interval for each agent. If that number is smaller than 𝑝𝛿, the agent with all its
links is removed. This process is a simple way of modeling death from age or accidents
and assures that agents have a finite lifetime. Even highly successful agents cannot live
forever, die eventually, and leave space and resources for other agents to replace them.
Not having random deaths would enable unrealistic settings in which single successful
agents could potentially survive forever, even on evolutionary time scales. Random deaths
result in a Poisson age distribution with mean at 𝜇𝛿 = 1/𝑝𝛿. Therefore, varying the death
probability enables adjustment of the death rate impacting the lifetime of generations of
agents. We speak of one passed generation of agents if 𝑁𝑡 agents died after time 𝑡, with
𝑁𝑡 being the number of agents at time 𝑡. For ReCooDy, this rather rough classification of
a generation is sufficiently exact to measure evolutionary time with respect to, on average,
entirely exchanged populations. Further, from the system perspective, random deaths
provide the means to investigate the resilience of successful strategies in ReCooDy by
examining whether they can propagate and reappear after accidental extinctions.

Death from exhaustion is the direct consequence of unsuccessful strategies in ReCooDy’s
evolutionary population dynamics. Each time step, all agents with less internal resources
than the threshold die, i.e., if 𝑅(𝑡+ 3

5 )
𝑎 < 𝑡𝛿 agent 𝑎 dies. It implements the first part

of the evolutionary selection process because less successful strategies will experience
higher death rates. Still, high death rates can be compensated by high birth rates, which
constitute the second part of the selection process explained in section 4.6.

The dedicated death process acts as a resource sink, thus, explicitly introduces another
source of resource dissipation into the system besides linking costs and positive investments.
The death process constraints the system size by reducing the number of living agents
such that population size cannot explode while at the same time increasing the agents’
evolutionary pressure.

All agents 𝑎 that do not die keep their internal resources:

𝑅(𝑡+ 4
5 )

𝑎 = 𝑅(𝑡+ 3
5 )

𝑎 . (4.26)
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4.6 Birth
Agents procreate asexually and stochastically if they have enough resources. Each time
step, an agent creates offspring with probability 𝑝𝛽 if its internal resources exceed the
global birth threshold 𝑡𝛽, i.e., if the condition 𝑅(𝑡+ 4

5 )
𝑎 > 𝑡𝛽 is met. To evaluate 𝑝𝛽, a

random number is drawn from a uniform integer distribution spanning the unit interval.
If that random number is smaller than 𝑝𝛽, the agent creates one offspring. The parent
pays a birth cost 𝑐𝛽 subtracted from its resource and transfers resources 𝑗𝛽 to its offspring.
Thus, when giving birth, the parents resources and the offsprings resources change as
follows:

𝑅(𝑡+1)
𝑎 = 𝑅(𝑡+ 4

5 )
𝑎 − 𝑐𝛽 − 𝑗𝛽 (parent) (4.27)

𝑅(𝑡+1)
𝑜 = 𝑗𝛽 (offspring). (4.28)

The offspring inherits its parent’s traits with slight variation. Thus, these traits are not
passed on perfectly but slightly mutate, which results in trait variation throughout the
population. This variation is a necessary requirement for evolution. During their lifetime,
agents’ traits do not change. Therefore, there is no lifetime development of traits but
only change through inheritance. Traits determine the agent’s behavior and strategy, as
we have seen during all model processes. How an agent’s life will manifest exactly will
not only depend on its traits but also on the agent’s social environment as well as the
other agents’ strategies. In this sense, we could think about the very simplistic analogy to
a genotype-phenotype mapping in which the agent’s genotype (their traits) develops a
specific phenotype (strategy) within their environment.

Table 4.1 gathers all evolving agent traits together with their respective sampling
distributions used for mutations and their respective value spaces. Most traits change
by adding a small mutation sampled from the corresponding distributions when they are
inherited from parent to offspring. If the new trait would exceed the trait’s value space it
is capped to the upper or lower limit, respectively. In mathematical notation, a trait 𝑥 is
inherited from parent to offspring in the following way:

𝑥offspring = max(𝑎, min(𝑥parent + Δ𝑥, 𝑏)), (4.29)
Δ𝑥 ∼ 𝑈𝑥,
𝑥 ∈ 𝑀𝑥, 𝑎 ≔ min(𝑀𝑥), 𝑏 ≔ max(𝑀𝑥),
∀𝑥 ∈ {𝑝𝑠, 𝑠, 𝑖, 𝑝𝑙, 𝑡𝑎, 𝑡𝑟, 𝑝𝑏, 𝑝𝑔}.

All mutations rely on random numbers drawn from uniform distributions. The more
natural choice would probably have been to sample from Gaussian distributions. However,
these come with the downside of comparatively high computational cost, which could
result in significantly slower simulations of ReCooDy because a lot of random numbers are
required. Further, the central limit theorem assures that for a large number of random
numbers the resulting distribution approximates a Gaussian distribution. Even more, in
ReCooDy it is more important that mutations happen than how exactly they happen, as
long as mutations are comparatively small. These mutations lead to a variation of agent
traits that will be selected. Here, we assume that the selection mechanism has a more
significant impact on the evolutionary trajectory than the exact microscopic distribution
of the mutations.
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Table 4.1: Evolving parameters, their respective mutation sampling distributions, and
value spaces. Distributions with curly brackets indicate discrete uniform distri-
butions while square brackets denote continuous uniform ones.

symbol trait distribution 𝑈𝑥 value space 𝑀𝑥

evolving

𝑝𝑠 interaction probability 𝑈𝑝𝑠
[−0.05, 0.05] [0, 1]

𝑠 strength 𝑈𝑠[−0.1, 0.1] [0, ∞)
𝑖 investment trait 𝑈𝜄[−0.1, 0.1] (−∞, ∞)
𝑝𝑙 local linking probability 𝑈𝑝𝑙

[−0.05, 0.05] [0, 1]
𝑡𝑎 threshold for link addition 𝑈𝑡𝑎

{−1, 1} [0, 𝑡max
𝑎 ]

𝑡𝑟 threshold for link removal 𝑈𝑡𝑟
{−1, 1} [0, 𝑡max

𝑟 ]

𝜈𝑙 link mode add local 𝑈𝜈𝑙
{0, 7} {0, 1, ⋯ , 7}

𝜈𝑔 link mode add global 𝑈𝜈𝑔
{0, 7} {0, 1, ⋯ , 7}

𝜈𝑟 link mode remove 𝑈𝜈𝑟
{0, 7} {0, 1, ⋯ , 7}

indirectly evolving via coupled parameters

𝑝𝑏 basic extraction probability 𝑝𝑏 = 1 − 𝑝𝑠
𝑝𝑔 global linking probability 𝑝𝑔 = 1 − 𝑝𝑙

The link modes 𝜈𝑙, 𝜈𝑔, and 𝜈𝑟 do not mutate each time an offspring is created but
mutate stochastically with probabilities 𝑝𝜌𝑙

, 𝑝𝜌𝑔
, and 𝑝𝜌𝑟

, respectively. The probabilities
define the time scale at which mutations occur. If a mutation happens, the respective
mode changes to one randomly selected mode within the corresponding value space. I.e.,
mutations of the link modes happen according to

𝑥offspring = {
𝑥new with probability 𝑝𝑥

𝑥parent else
(4.30)

𝑥new ∼ 𝑈𝑥,
∀𝑥 ∈ {𝜈𝑙, 𝜈𝑔, 𝜈𝑟}.

4.7 Initialization
When initializing model parameters and their corresponding processes, we define the spe-
cific storyline (see storyline 4.8). In this thesis, I focus on the emergence of cooperation in
evolutionary systems. Emergence implies an initially neutral population, i.e., a population
in which cooperation does not yet exist (𝜇𝑖 = 0) and in which there are no links between
agents (𝑘 = 0) for all agents. Such a neutral initial population state contrast typical
EGT models that usually presume the existence of at least a few cooperators that can
invade the population. In ReCooDy, cooperation as a strategy needs to evolve in the first
place. Further, a suitable interaction structure also needs to evolve and develop during
an agent’s lifetime. Both strategy and population structure evolve and will self-organize
from the structurally included processes and their chosen parameters; Only computer
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simulation will tell whether cooperation emerges or not because the model’s complexity
most probably exceeds our human intuition and expectations capacity as well as analytical
feasibility (Holovatch et al. 2017).

Parameters and their initialization determine the time scales of evolving agent traits
and define the environment in which agents live and evolve. The rate and magnitude of
the evolving traits and their relation to one another define how fast traits evolve compared
to each other. Especially if we choose overlapping mutation time scales, we can expect
the evolution of one trait to directly impact the evolution of another one and vise-versa
resulting in feedback loops. Thus, the system can be expected to behave differently
than if orders of magnitude separate time scales. As a simple example, consider the
well-known spatial forest-fire model introduced by (Drossel and Schwabl 1992) which
exhibits self-organized cauliflower patterns when simulated over long time scales on large
grids. The tree growth rate and the velocity of spreading fires operate on similar time
scales, which allows for the observed structural self-organization. However, if fires spread
instantaneously, burning down whole tree clusters at once, the system exhibits a self-
organized critical state (Bak et al. 1990), in which these cauliflower patterns disappear.
The separation of time scales in these simple forest-fire models resulted in entirely different
dynamical structures. This argument not only holds for the mutation rates of traits but
can also be expected to hold more generally for processes with overlapping time scales.
In this thesis, we choose all parameters such that they all operate in the same order of
magnitude of time scales, such that we can assume the system to exhibit self-organized
states with structural patterns.

The choice of parameters also defines the agents’ environment. For example, the rates
of basic and synergistic resources inflow, 𝒜𝑏 and 𝒜𝑠, determine the amount of resource
flowing into the system and, therefore, the system’s driving force. We use 𝒜𝑏 and 𝒜𝑠 to
regulate the system size, i.e., the number of agents and links it can sustain given their
strategies, its resilience, and the experienced evolutionary pressure on the agents. With
more resources flowing into the system, more agents can sustain a successful strategy, but
in principle, it also allows for other strategies to survive in respective niches more easily.
More generally, we can expect a higher system driving force via increased resource inflows
to enlarge the possibility space of the model, which comes with the tradeoff of higher
computational costs.

As for many complex adaptive systems, effective parameters from experimental data
is not readily available for ReCooDy; Instead, we need to choose and relate parameters
to each other and systematically explore parameter regimes. Let us, for example, set
the resource intake from basic resources to 𝑗𝑏 = 1 as a reference value. With a basic
and synergistic resource amount 𝒜𝑏 = 500 and 𝒜𝑠 = 1000, a synergy factor of 𝑟 = 2,
and a cost of living 𝑐𝑙 = 0.1, we can estimate that the system can sustain less than
(𝒜𝑏 + 𝒜𝑠 − 𝒜𝑠/𝑟)/𝑐𝑙 = 10 000 agents in a population with entirely positive investments.
The last term in the sum corresponds to the agents’ investments costs. The actual
maximal number of agents will be significantly smaller because we omit strength, linking,
and birth costs, which act as resource sinks. Hence, simulation results rather show at
most 𝑁 = 4000 agents living at a time. Still, the estimated upper limit is a guaranteed
safeguard for population size and maximal estimated simulation time. We can further
deduce that the agent’s evolving strength should not exceed 1 over long times because
the basic resource intake is fixed at 𝑗𝑏 = 1, and more strength would result in a net loss.
Such a strategy should not be sustainable and eventually result in death. Additionally,
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Table 4.2: Initialized Parameters. For a detailed description of all parameters, look up
the symbol in the corresponding Appendix list.

symbol short description initialized value

𝑁 number of agents 1000
𝑘 agents’ number of links (degree) 0
𝑅 agents’ internally stored resources 5
𝐴 agents’ age 0

𝑝𝑠 prob. of synergistic extraction 0.5
𝑝𝑏 prob. of basic extraction 0.5
𝑗𝑏 inflow of extracted basic resources per time 1
𝒜𝑏 amount of basic resources available per time 500
𝒜𝑠 amount of synergistic recources available per time 1000
𝑠 agents’ strength 0
𝑖 agents’ investment trait 0
𝑟 synergy factor ⟨varying⟩

𝑐𝑙 cost of living 0.1
𝑐𝑠 cost of strength 0

𝑝𝑙 prob. to add links locally 0.5
𝑝𝑔 prob. to add lings globally 0.5
𝑡𝑎 threshold for link addition 2
𝑡max
𝑎 upper limit for the link addition threshold 40

𝑡𝑟 threshold for link removal 4
𝑡max
𝑟 upper limit for the link removal threshold 40

𝜈𝑙 linking mode local addition 0.125 prob. each
𝜈𝑔 linking mode global addition 0.125 prob. each
𝜈𝑟 linking mode removal 0.125 prob. each
𝜅𝑙 cost to add local links (source) 1
𝛾𝑙 cost to add local links (target) 0
𝜅𝑔 cost to add global links (source) 1
𝛾𝑔 cost to add global links (target) 0
𝜅𝑟 cost to remove links (source) 1
𝛾𝑟 cost to remove links (target) 0

𝑝𝛿 agent’s random death probability 0.01
𝑡𝛿 death threshold 0
𝑡𝛽 birth threshold 5
𝑝𝛽 birth probability 0.1
𝑐𝛽 birth cost 4
𝑗𝛽 transferred resources from parent to offspring 3
𝑝𝜌𝑙

prob. to change the local addition link mode 0.01
𝑝𝜌𝑔

prob. to change the global addition link mode 0.01
𝑝𝜌𝑟

prob. to change the removal link mode 0.01

60



4.8 Summary, Storylines, and Discussion

such parameter relations and derived expectations offer a convenient way of automatically
testing macroscopic model expectations within Utopia (see section 3.2.5); Especially,
edge-case scenarios can easily be tested, which in their entirety cover a broad range of
model dynamics expectations. I carried out a similar choose-and-relate method for all
initialization parameters to define a consistent storyline. Table 4.2 shows the resulting
parameters used to initialize ReCooDy throughout this thesis if not otherwise stated. Of
course, a multitude of different parameter combinations would be imaginable, defining
different storylines and most probably showing varying dynamical regimes.

Ideally, we would carry out a sensitivity analysis with all parameters; However, it is
fundamentally unfeasible due to the underlying curse of dimensionality. If we would sweep
all 37 parameters in Table 4.2 with 10 different values each, we would need to simulate
1037 separate universe runs to simulate every possible parameter combination—A number
vastly bigger than the approximately 1022 to 1024 stars in the universe (The European
Space Agency (ESA) 2021). Furthermore, this would not yet include any statistics as each
parameter combination would only be simulated ones. Sweeping over all combinations of
only 3 or 4 parameters with multiple system realizations, each can become computationally
unfeasible depending on the universe simulation time. The required computational time
diverges following a power-law distribution with an increasing number of parameters
deeming a complete, systematic parameter exploration impossible. Thus, we can only
choose a few critical parameters to sweep over and classify emerging dynamical regimes.
Still, such low-dimensional sweeps of the most relevant parameters are sensible approaches
to systematically exploring dynamics regimes and the system’s resilience. The underlying
curse of dimensionality forces me to focus on a few specific selected individual exploration
paths, leaving many options available for future investigations.

4.8 Summary, Storylines, and Discussion

ReCooDy is an abstract model and way too simple to model any reality with all its details,
its intrinsic complexity, and facets. It is especially true when we imagine ReCooDy’s
population to represent human societies. For example, take the linking mechanisms and
think about a real-world system in which entities would always look within the entire
population which agent has a specific highest trait or state and, without any further
thoughts, directly create a link to the corresponding individual. The target always accepts
without question, but can in principle, remove another link. We can easily imagine
questions such as “Where do agents get the needed information from to detect their
targets?”, “Why do they always behave the same following their traits (except for a bit of
randomness)?”, “What if linking to the best is not the best option in a specific context
because everyone does? Shouldn’t agents be more intelligent?”, and so on. These example
questions allude to the common intrinsic issue of modeling assumptions, their level of detail
in mathematical modeling, and how many and which processes are needed to correctly
investigate a specific real-world system. A modeler needs to decide which processes and
degree of detail to incorporate, and more importantly, what kind of knowledge can be
extracted from a specific model. The question of how the correct high-level abstraction for
a low-level real-world system looks like is a tremendously difficult one, usually connected
to a tradeoff between realism and analytically as well as computational feasibility.

Despite it probably being too simple to represent reality adequately in all its level of
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detail, ReCooDy is, to the best of my knowledge, enormously too complex to be analytically
feasible with our current mathematical toolset. While most EGT models focus on just one
or two (co-)evolving parameter(s) and related processes, ReCooDy has nine coevolving
parameters. Moreover, it incorporates several intertwined processes and introduces
an overarching resource-flow-based modeling approach to the fundamental population
dynamics, and assures consistency of the system’s driving forces. The combinatorial space
of possible system realizations is extremely high-dimensional. However, when simulating
ReCooDy, the implemented evolution process will choose one specific path along which
to progress. Another intrinsic mathematical difficulty lies in the history-dependence
of the system because agents’ actions accumulate over their overlapping lifetimes, and
trait combinations progress even further for generations. Additionally, most processes
are governed by probabilities, that we cannot expect to create enough statistics for all
imaginable strategy combinations within their local dynamically changing settings. All of
the mentioned pose severe challenges for a mathematical all-entailing approach.

Thus, ReCooDy is a system that is too simple for reality in all its detail and is too
complex to understand systematically in its entirety. So, the obvious questions arise
about what we can do with such a model and its purpose. As Goldenfeld and Kadanoff
(1999) pointed out: In complex system science, we typically learn “lessons” from one
system, adapt, and apply them to other ones. We identify and conceptualize the structural
properties and processes of real-world systems and model them comparatively. Thus, we
intend to create high-level abstractions of low-level systems. It is crucial to include all
relevant processes and their structural properties, even if their level of modeling detail
is low. More details are essential for more accurate results on a more refined level of
investigation, and more exact parameter estimates if these are the aim of the scientific
endeavor. With ReCooDy, I aim to identify structural properties that describe various
real-world systems on a high level of abstraction. As motivated before, with ReCooDy we
may extract results in a heuristic manner by including and coupling several structural
properties and apply these results to real-world systems in order to better understand
them on an abstracted high level.

Let us start by summing up ReCooDy’s structural process scaffolding and extract
ReCooDy’s structural properties. A population of agents competes for limited resources.
Resources enable agents to survive, interact, and optimize their interaction environment.
Interacting with others is a high-risk, high-reward way of getting resources. It allows for
both public good creation and destruction. Resources can also be extracted in a more
reliant, individual way with a fixed return, but still with the danger of receiving nothing
for not being strong enough to compete. A dynamic network defines the interaction
structure that agents can optimize locally or even globally for their advantage with
a resource cost. The time scales of the dynamic linking and the resource extraction
overlap. Multiple agent traits evolve at similar time scales. These traits characterize the
included processes, which have a stochastic nature. Agents get entirely removed from
the system, either by chance or from exhaustion. Offspring inherit traits of successful
agents with some variation. Structurally abstracted, ReCooDy models a competitive,
evolving, and dynamically changing population of agents that may cooperate, defect, or
retract themselves to gain resources in order to survive, optimize their resources extraction
mechanism, and pass on their traits. It is an evolving resource-flow-based cooperation
dynamics model of dynamic populations.

With these structural properties in mind, let us unfold a few potential storylines to
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identify structural similarities.

Climate Change Greenhouse gas emissions drive global warming and climate change
(IPCC 2021). Taking actions to reduce global greenhouse gas emissions and the probability
of a system collapse can be identified as a PGG with its underlying tragedy of the
commons as done, for example in Barfuss et al. (2020). However, the aim of reducing the
greenhouse gas concentration in the atmosphere exhibits two distinct behavioral qualities
structurally that are not captured in their entirety in the standard PGG but are included
in ReCooDy’s gPGG interaction: Acteurs (individuals, organizations, institutions) can
either cooperate by paying individual costs to actively reduce the atmospheric greenhouse
gas concentration or defect by maximizing personal profits and actively emit greenhouse
gases, for which all have to pay in the long run. Their positive and negative investments
are in first approximation unbound and reflect a continuous spectrum. They can change
their behavior towards more cooperative behavior, e.g., directly via planting trees or
carbon capture technologies, or indirectly, e.g., by generally reducing consumption, relying
on green energy sources, or reducing heat dissipation in buildings. In contrast, actors
can become more defecting, e.g., by actively increasing their fossil fuel extraction or
consumption, throwing working products away, or traveling more by airplane. Underlying
all is the need to remain competitive to survive, improve personal networks, and thrive in
a dynamically changing, evolving system with limited non-renewable energy resources in
the long run.

Economics EGT is widely applied to economical settings (Gintis 2009; Friedman and
Barry 2016), often assuming a “homo economicus” image. However, more recent research
directions aim at extending the scope to emphasize our socio-economical aspect, i.e.,
recognizing that humans are social beings relying on complex social interaction networks;
Thus, we are more accurately described as “homo socialis” and “homos ludens” species
(Gintis and Helbing 2015; Helbing 2015). Using the “homo socialis” as a basis, a bottom-up
economy built on a standardized reputation system becomes, at least in theory, imaginable
(Helbing 2013). Social aspects fundamentally rely on cooperative, benevolent, and altruistic
acts, which are structurally captured in the PGG. They can choose to invest in ethical,
social, educational, sustainable, and even their competition. On the contrary, in economic
contexts, we can identify truly defective behavior, which is not captured in the standard
PGG but in ReCooDy’s gPGG: A possible actor’s strategy is to actively work against
the competition through selfish and destructive acts that generate a personal benefit and
create collateral damage for others. Further, socio-economical settings frequently exhibit
actors that newly enter the population, imitating existing strategies with variation, need
to invest resources to develop their network over time, and eventually disappear on time
scales of a few to many years. The individual influence and potential investments are
strongly heterogeneous and, in first approximation, only bound to the available resources.
More influence usually comes with more local or global connections that may be created
or removed if not worth the cost of maintaining them. Dependent on the specific setting,
we can identify goods as money, power, opportunity, a general measure of well-being, or
similar9.

9The gPGG incorporates a more general notion of public goods as the usual definition in the economic
contexts, which define public goods as non-excludable and non-rivalrous goods such as clean air,
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Bacteria population With a few adjustments, we could adapt the ReCooDy model to
describe bacteria populations. Bacteria communicate and coordinate themselves via
quorum sensing—sending and sensing of chemical signals (Whiteley et al. 2017). The
effects of quorum sensing are public goods (Diggle et al. 2007). However, here we cannot
easily identify active destruction of public goods, except perhaps if we extend the scope of
the observed system to include multiple bacteria populations that could use the chem-
ical signals differently. Indeed, although bacteria populations are spatially structured,
they also seem to form socio-ecological networks of intra-population cooperation and
inter-population competition (Cordero et al. 2012). Nevertheless, whether a form of true
defection can be identified structurally in such settings remains unknown for now. In
general, the environment provides the chemical building blocks used to create the chemical
signal molecules. Especially with quickly growing populations, we can imagine cases in
which the system’s carrying capacity gets reached such that resources need to be competed
for among agents. In general, to investigate bacterial populations in ReCooDy, we need
to adjust either the structural processes or at least the chosen parameters; As a start, we
would need to configure the model to a changed linking process by excluding the global
linking and replace the link development phase with a more immediate social inheritance
process. In principle, this can be achieved by just adapting configuration parameters.
Nevertheless, bacteria populations exhibit a few structural properties, which ReCooDy
implements.

Obviously, ReCooDy cannot represent any of these storylines in all their detail and
complexity. Aiming at it would require knowing effective parameters and the indeed
relevant processes at the more macroscopic level. Physical systems, which usually exhibit
significantly less complexity and hierarchy than socio-ecological ones, such as water flowing
through porous media, already show us that it is even possible for effective descriptions
to fundamentally and irrevocably break down (Roth 2008). As Roth points out, in such
cases, the only way to proceed is via computer simulations as done in most environmental
systems. For ReCooDy, I structurally included multiple different processes, which we can
identify in real-world systems as exemplified above. Thus, we have a high-level abstracted
model system that structurally describes a range of possible low-level real-world systems.
By construction, we can only extract structural and abstracted knowledge from the model.

Simplified representations of complex systems can help to extract structural knowledge.
Examples are: From network science, we know that a preferential attachment mechanism
in a network will lead to a scale-free degree-distribution (Barabási and Albert 1999); From
complexity science, we know that a slowly-driven heap of sand will exhibit a self-organized
critical angle with power-law distributed avalanche-sizes (Bak et al. 1987). A structurally
similar mechanism leads to scale-free distributed burning clusters in a forest fire model
(Drossel and Schwabl 1992); From chaos theory, we know that a deterministic time
horizon exists in which we can determine the system’s exact trajectory, which becomes
fundamentally impossible for larger times (Lorenz 1963; Strogatz 2014). Of course, the
mentioned examples are profoundly fundamental and had an enormous impact in their
respective fields as well as beyond.

knowledge, or national security. See Samuelson (1954) for the first introduction of a public good in the
economic context as a “collective consumption good” and section 4.2.2 for the defining properties of a
public good in the gPGG.
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In this work, we will investigate what happens if we make models social dynamics
models more realistic and what structural results we can observe in the example system.
We explore whether this modeling approach leads to significant deviations from our
expectations and published results in the respective field of research. The questions we
will explore in the following are more of the type: How does cooperation emerge in the
first place and evolve if we base models on resource-flows within a population dynamics
context? What if agents can dynamically change and optimize their individual social
environments either randomly or through preferential attachment processes? What is the
impact of a limited driving force? ReCooDy is an endeavor to explore such questions in a
more realistic coevolving population dynamics-based EGT setting. Of course, within the
scope of this thesis, we will not wholly elucidate all questions in all their generality.
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The interaction based on the gPGG introduced in section 4.2.2 (section 4.2.2.3) per
definition contains social dilemma characteristics microscopically. For low synergy factors
𝑟, it models a tragedy of the commons. The standard PGG requires the dilemma condition
𝑟 < 𝑁 where 𝑁 is the number of agents playing the game (see section 2.1.2.2). As we
will see in the following, the situation is more intricate for the gPGG, primarily due to
the network topology. The fact that multiple sub-interactions occur each time agents
interact, and that they partition their investments among the individual sub-interactions,
effectively results in a changed, intricate dilemma setting for the agents dependent on
local context.

5.1 Tragedy of the Commons

Let us first look at a single gPGG interaction and elaborate on its dilemma characteristics.
Thus, we focus on the microscopically implemented interaction. Let us assume a fixed
interaction group. The payoff of an agent 𝑎 for a single interaction around vertex 𝑣 is
given by equation 4.15, which we use and slightly rearrange:

𝑃𝑣,𝑎 = 𝐺𝑣
𝑛𝑣

− 𝜄𝑎
𝑛𝑎

(4.14)
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+ ( 𝑟
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− 1) 𝜄𝑎
𝑛𝑎

. (5.1)

The left summand represents the payoff agent 𝑎 receives due to the investments of all
other participating agents. The right summand equals the payoff 𝑎 receives from only its
own investment 𝜄𝑎. When we fix the first and only focus on the latter, we immediately
see that a positive change in investment (Δ𝜄𝑎 > 0) only creates lower personal payoff
(Δ𝑃𝑣,𝑎

!
< 0) if the following condition is met: 𝑟 < 𝑛𝑣. To indeed create synergies, we

further required 𝑟 > 1. Thus, we obtain the well-known tragedy of the commons condition
(see section 2.1.2.2) implemented in the public goods game by construction. Increasing
ones’ investment results in a lower payoff as long as synergies are not exceedingly high.

Let us focus on another agent 𝑏 ≠ 𝑎. For simplicity and w.l.o.g., let us assume all
other agents’ investments to be zero. From agent 𝑎’s investment alone, 𝑏 receives a payoff
𝑃𝑣,𝑏 = (𝑟𝜄𝑎)/𝑛2

𝑎. Thus, 𝑏 will always receive a higher payoff as 𝑎 if the latter increases its
investment. It is also intuitively clear because, with the increased investment, 𝑎 creates
more public goods shared among all. Therefore, even if 𝑟 > 𝑛𝑣, other agents will profit
more from a personally increased investment because they profit from the shared goods
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while not paying for their creation. The PGG still implements a competitive dilemma
that is, however, of a weaker kind as in the tragedy of the commons.

In summary, in a microscopic single gPGG interaction, if 𝑟 < 𝑛𝑣, an agent receives a
lower payoff from synergies for higher personal investment. For higher synergies, 𝑛𝑣 < 𝑟,
the agent receives a higher payoff from a higher investment but will still always create
more payoff for others. We observe a tragedy of the commons for 1 < 𝑟 < 𝑛𝑣 and still a
weaker competitive social dilemma for higher synergy factors 𝑛𝑣 < 𝑟 in the microscopic
gPGG.

5.2 Personal Dilemma
To explore the social dilemma in the network setting, let us take an agent’s perspective
and explore the effect of an investment mutation, ̃𝜄𝑎 ≔ 𝜄𝑎 + 𝜖, 𝜖 ∈ ℝ, on the resulting
payoff difference Δ𝑃𝑎 = ̃𝑃𝑎 − 𝑃𝑎 in an otherwise constant network and population. Let
us take the payoff equation (equation 4.16), assume fixed neighborhoods 𝑛𝑥 and constant
neighbors’ investments, and use the sum’s linearity to calculate the payoff difference:

Δ𝑃𝑎 = ̃𝑃𝑎 − 𝑃𝑎

(4.16)
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To get a strict tragedy of the commons setting as presumed in the well-mixed default PGG
(see section 2.1.2.2), we require that a positive investment mutation results in a negative
payoff difference. It guarantees that in a fixed social environment, a high-investment agent
indeed has a smaller payoff than a low-investment agent from the personal investment.
Thus, for 𝜖 > 0, the strict tragedy of the commons condition is:

0
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If this agent-specific condition is met within its effective social environment an increase
in personal investment results in a decrease in payoff and vice versa. Agents that have
(high) positive investments within their mesoscopic social environment and satisfy the
condition (equation 5.3) truly experience a strict personal social dilemma because if they
increase their investments, they will receive a lower payoff.

Let us change our perspective and focus on agents with negative investments. If an
agent grabs more resources (𝜖 < 0) we expect the agent to increase its payoff difference
Δ𝑃𝑎

!
> 0 such that grabbing indeed is a selfish action with personal profit. We observe

that compared to the derivation above, here we have both signs of the preconditions
flipped such that, in the end, we retrieve the same condition as in equation 5.3. Thus, the
strict dilemma condition for the unified goods creation and destruction processes is the
same.

We notice that, for a single unconnected agent, the condition in equation 5.3 recovers
the trivial expectation that synergies only occur if 𝑟 > 1. Therefore, the agent will always
profit from increasing its investment because it alone receives all the created goods.

We can further derive that 𝑟c𝑎
is monotonically increasing with the number of sub-

interactions and also the number of agents in the next-neighborhood. The more links there
are in the agent’s social environment, the larger 𝑟c𝑎

gets. Moreover, we notice that for a
constant synergy factor, the personal dilemma gets worse from an agent’s point of view
the more intra-connected and populated its social environment becomes. However, we
only consider the individual view from personal investment changes so far and disregard
the beneficial effects of having cooperative neighbors.

Equation 5.3 defines the condition for an agent’s experienced personal dilemma that
specifies whether it receives a payoff lower than its additional investment from all the
interactions within its effective social environment. It emerges on the mesoscopic scale
from the microscopically defined gPGG interaction rules.

5.3 Competition Dilemma
A requirement for the strict tragedy of the commons is that others receive more payoff
than the investing agent if its investments are positive (see section 5.1). Here, we will
explore what effect the population structure, which defines multiple interactions, has on
this dilemma requirement.

Let us assume that, an agent changes its investment, ̃𝜄𝑎 = 𝜄𝑎 + 𝜖 with 𝜖 ∈ ℝ and 𝜖 > 0,
in an otherwise constant setting. I.e., its social environment and all of the neighbors’
investments stay constant. The goods created in the sub-interaction around vertex 𝑣 due
to the investment change then are

Δ𝐺𝑣 = ̃𝐺𝑣 − 𝐺𝑣
(4.14)

= 𝑟𝜖
𝑛𝑎

. (5.4)

With it, the change of the agent’s payoff in one sub-interaction is

Δ𝑃𝑣,𝑎 = ̃𝑃𝑣,𝑎 − 𝑃𝑣,𝑎
(4.15)

= ( 𝑟
𝑛𝑣

− 1) 𝜖
𝑛𝑎

. (5.5)

In contrast, another participating agent 𝑏 receives

Δ𝑃𝑣,𝑏 = ̃𝑃𝑣,𝑏 − 𝑃𝑣,𝑏
(4.15)

= 𝑟𝜖
𝑛𝑣𝑛𝑎

(5.6)
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because 𝑏 receive a share of the additionally created goods while not needing to pay for an
increased investment. Naively, we could conclude that agent 𝑎 always has a payoff disadvan-
tage compared to another participating agent 𝑏 because Δ 𝑃𝑣,𝑎 − Δ 𝑃𝑣,𝑏 = −𝜖 / 𝑛𝑎 < 0
with 𝜖 > 0, thus recovering what we found in the single-interaction setting in section 5.1.
However, the network topology again leads to a more complicated situation.

Agent 𝑎 participates in multiple sub-interactions. Hence, 𝑎’s accumulated total payoff
difference is

Δ𝑃𝑎 = ∑
𝑣∈𝒩𝑎

( ̃𝑃𝑣,𝑎 − 𝑃𝑣,𝑎)
(5.5)
= ∑

𝑣∈𝒩𝑎

( 𝑟
𝑛𝑣

− 1) 𝜖
𝑛𝑎

. (5.7)

An agent 𝑏, which is part of 𝑎’s social environment, only receives a share of the goods from
the shared sub-interactions with 𝑎. Therefore, the total payoff change for a neighboring
agent 𝑏 from an investment change of 𝑎 is

Δ𝑃𝑏 = ∑
𝑣∈𝒩𝑎∩𝒩𝑏

( ̃𝑃𝑣,𝑏 − 𝑃𝑣,𝑏)
(5.6)
= ∑

𝑣∈𝒩𝑎∩𝒩𝑏

𝑟𝜖
𝑛𝑣𝑛𝑎

. (5.8)

With it, we can derive the condition for when agent 𝑏 receives a smaller change in total
payoff than 𝑎 from a personally increased investment of 𝑎, 𝜖 > 0:

0
!
> Δ𝑃𝑏 − Δ𝑃𝑎

(5.7), (5.8)
⇔ 0

!
> ∑

𝑣∈𝒩𝑎∩𝒩𝑏

𝑟𝜖
𝑛𝑣𝑛𝑎

− ∑
𝑣∈𝒩𝑎

( 𝑟
𝑛𝑣

− 1) 𝜖
𝑛𝑎

⇔ 0
!
> ∑

𝑣∈𝒩𝑎∩𝒩𝑏

𝑟𝜖
𝑛𝑣𝑛𝑎

− ∑
𝑣∈𝒩𝑎

𝑟𝜖
𝑛𝑣𝑛𝑎

+ ∑
𝑣∈𝒩𝑎

𝜖
𝑛𝑎

⇔ 0
!
> − ∑

𝑣∈𝒩𝑎∖(𝒩𝑎∩𝒩𝑏)

𝑟𝜖
𝑛𝑣𝑛𝑎

+ ∑
𝑣∈𝒩𝑎

𝜖
𝑛𝑎

𝜖>0, 𝑛𝑎>0
⇔ 0

!
> − ∑

𝑣∈𝒩𝑎∖(𝒩𝑎∩𝒩𝑏)

𝑟
𝑛𝑣

+ ∑
𝑣∈𝒩𝑎

1

𝒩𝑎=𝒦𝑎∪{𝑎}
𝒩𝑏=𝒦𝑏∪{𝑎}
𝑎∈𝒩𝑎, 𝑎∈𝒩𝑏

⇔ 0
!
> − ∑

𝑣∈𝒦𝑎∖(𝒦𝑎∩𝒦𝑏)

𝑟
𝑛𝑣

+ 𝑛𝑎

⇔ 𝑟
!
> ̂𝑟c𝑎,𝑏

with ̂𝑟c𝑎,𝑏
≔ 𝑛𝑎

∑𝑣∈𝒦𝑎∖(𝒦𝑎∩𝒦𝑏)
1

𝑛𝑣

. (5.9)

This condition defines the competition dilemma of 𝑎 regarding neighbor 𝑏: If 𝑟 > ̂𝑟c𝑎,𝑏
is

satisfied, agent 𝑎 receives a higher change in total payoff when increasing its investment
than agent 𝑏. Instead, if 𝑟 < ̂𝑟c𝑎,𝑏

, agent 𝑎 experiences a competition dilemma regarding 𝑏
because increasing its investment results in a higher total payoff change than its neighbor’.
For each possible agent-neighbor pair equation 5.9 defines the personal competition
dilemma condition of the former.

We notice that the number of neighbors that 𝑎 does not share with 𝑏, encoded in
𝒦𝑎 ∖ (𝒦𝑎 ∩ 𝒦𝑏), and the actual number of agents participating in each sub-interaction
impact whether 𝑎 experiences a competition dilemma. As a rule of thumb, if 𝑎 and 𝑏
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share a lot of neighbors, #𝒦𝑎 ≈ #(𝒦𝑎 ∩ 𝒦𝑏), an increased investment of 𝑎 will more
probable result in comparatively higher total payoffs for 𝑏. Thus, shared neighbors tend to
increase the personal competition dilemma. However, if they do not share many neighbors,
#𝒦𝑎 ≫ #(𝒦𝑎 ∩ 𝒦𝑏), and if agent 𝑎 increases its investment, it can receive a higher
payoff than its neighbor 𝑏.

5.4 Instructive Example

Let us focus on an example to illustrate the different social dilemma qualities. We take the
central agent in Figure 4.2 and calculate 𝑟c𝑎

and ̂𝑟c𝑎,𝑏
with respect to all its neighbors. That

way, we can elaborate on the agent-specific dilemma situation. For the personal dilemma,
using equation 5.3 and inserting the respective numbers yields 𝑟c𝑎

= 623/450 ≈ 1.38. If 𝑟
exceeds this value, replacing 𝑎 with a higher investment agent on the same vertex results
in more payoff for the latter. Thus, only if 𝑟 < 1.38, that specific agent experiences a
personal dilemma.

Let us now focus on the competitor dilemma; thus, on how all its neighbors’ payoff would
change dependent on 𝑟. Using equation 5.9 and inserting the respective numbers, we get
(i) an undefined result for the bottom left single neighbor, (ii) ̂𝑟c𝑎,𝑏

= 24/5 = 4.8 for the
right neighbor, and (iii) ̂𝑟c𝑎,𝑏

= 40/7 ≈ 5.7 for the top left neighbor. Thus, if 𝑎 increases
its investment, neighbor (i) will always have a higher total payoff than 𝑎, independent of
𝑟, neighbor (ii) will have a higher total payoff only if 𝑟 < 4.8, and neighbor (iii) only if
𝑟 < 5.7.

Agents experience different qualities of a social dilemma or even no dilemma at all,
strongly dependent on their social environment and the synergy factor 𝑟. The simple
example illustrates that the population structure leads to intricate social dilemma settings
with different qualities—reducing the gPGG to one overarching public goods game dilemma
is a too simplistic point of view already in this simple example setting.

5.5 Offspring Benefit

The benefit of cooperative offspring is key to understanding the emergence of cooperation
in ReCooDy. Here, agents’ strategies are passed on to their offspring (see section 4.6), but
their social environment is not directly inherited. Instead, an offspring starts its life with
a single connection to its parent and can build up connections during its lifetime. If we
want to build a deeper understanding of ReCooDy’s social dilemma, we need to explore
how the parent’s payoff changes when it gives birth to an offspring.

Let us take the minimal example of two connected interacting agents (agent 0 and 1) and
calculate the expected payoffs analytically that come with one of them creating offspring.
For simplicity, we do not consider limited resources, and without loss of generality, we
focus on agent 0 as the parent. Using equation 4.15 we can directly write down its payoff
before giving birth:

𝑃0 = 2 ⋅ 𝑟
2

(𝜄0 + 𝜄1
2

) − 𝜄0 = 𝑟
2

(𝜄0 + 𝜄1) − 𝜄0. (5.10)

Now, if agent 0 creates an offspring, which we denote as agent 2, the new payoff in the
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next interaction updates according to

̃𝑃0 = 𝑟
⎛⎜⎜⎜
⎝

1
2

(𝜄0
3

+ 𝜄1
2

)
⏟⏟⏟⏟⏟

1 centered

+ 1
2

(𝜄0
3

+ 𝜄2
2

)
⏟⏟⏟⏟⏟

2 centered

+ 1
3

(𝜄0
3

+ 𝜄1
2

+ 𝜄2
2

)
⏟⏟⏟⏟⏟⏟⏟

0 centered

⎞⎟⎟⎟
⎠

− 𝜄0

̃𝑃0 = 𝑟 (4
9

𝜄0 + 5
12

𝜄1 + 5
12

𝜄2) − 𝜄0. (5.11)

I indicated around which agent the respective sub-interaction is centered. The parent’s
payoff thus changes by

̃𝑃0 − 𝑃0 = 𝑟 (4
9

𝜄0 + 5
12

𝜄1 + 5
12

𝜄2) − 𝜄0 − (𝑟
2

(𝜄0 + 𝜄1) − 𝜄0)

= 𝑟 (− 1
18

𝜄0 − 1
12

𝜄1 + 5
12

𝜄2)
𝜄0≈𝜄2≈ 𝑟 (13

36
𝜄0 − 1

12
𝜄1) . (5.12)

In the last step, we assume that the offspring’s investment is inherited from the parent
with expectation value ⟨𝜄2⟩ = 𝜄0 and small mutations with mean equal to zero (see the
inheritance process in section 4.6). Hence, 𝜄0 ≈ 𝜄2.

We observe the linear dependency of the parent’s payoff change with its investment.
Creating offspring creates more additional positive payoff for higher investment parents.
Thus, more cooperative agents profit most from creating offspring in contrast to more
defective agents that harm themselves by creating defective offspring.

Interestingly, the payoff difference is also proportional to the negative investment of the
other agent connected to the parent. However, the impact is lower as the propertionality
constant is significantly lower. Recognising its influence, we can calculate the condition
for when a cooperative parent indeed profits from its offspring’s investment:

̃𝑃0 − 𝑃0
!
> 0

(5.12)
⇔ 13

3
𝜄0 > 𝜄1. (5.13)

Therefore, a positive investment parent only profits from its offspring if the other connected
neighbor is not vastly more cooperative, as defined by the derived condition. What first
seems surprising makes sense if we recognize that the interaction structure and the number
of agents participating in each subinteraction changes with the new offspring. The offspring
receives a part of the parent’s previous share from the goods created by the additional
high-cooperative neighbor.

From the opposite perspective of a defective parent, creating defective offspring is
harmful because the parent has to pay for a part of the additionally destructed goods
from the offspring. Still, the parent’s payoff can increase from creating offspring if it has
a much more defective neighbor characterized by the condition in equation 5.13. In that
case, the offspring takes on a fraction of the destructed goods of the much more defective
neighbor because of the changed interaction structure.

If we take a relative perspective to classify the agent, we observe that a much less
defective parent than its neighbor is a comparatively much more cooperative agent.
Therefore, we again see a manifestation of the emerging property that more cooperative
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agents profit from their offspring while more defective agents harm themselves from
creating offspring.

This simple example illustrates a generalizable system property: More cooperative
agents within a social environment profit from their offspring while more defective agents
harm themselves. First, they have the direct benefit from the passed on cooperative trait
and the created goods from the offspring. And second, if they are much less cooperative
compared to their neighbors, they harm their profitable interacting structure, with which
they profit from their neighbors, by having to share the neighbor’s created goods with the
offspring, too.

We should not forget that a benefit for the parent comes with a potential penalty for
the cooperative offspring. For low synergy factors, and high absolute investment values, a
cooperative offspring will typically have a disadvantage over a more defective offspring:
The former shares the created goods with the parent and the parent’s neighbors but needs
to pay for the investment, while the latter will share the created bads with them and
directly grabs resources. However, the exact individual scenario again depends on the
local network configuration, which I will not derive here.

A generalization to arbitrary social environment would help us quantify the effect.
However, qualitatively, we can expect to see the same properties.

We have to keep in mind that, in ReCooDy, creating offspring requires resources (see
section 4.6 for birth costs). Thus, the offspring benefit only turns into a net resource gain
for the parent if the general payoff difference ̃𝑃0 − 𝑃0 is big or often received. The latter
requires the offspring to survive and not remove the link to the parent. Still, even if the
parent receives a net resource loss from creating offspring, the net loss will usually be
even greater if both have highly negative investments. The importance of the absolute
received payoff further supports the observation that more cooperative agents profit from
offspring while more defective ones do not.

5.6 Summary and Discussion

In this chapter, I analyzed the social dilemma, its microscopic implementation, and its
emergent mesoscopic characteristics resulting from the interaction structure.

In section 5.1, I investigated a single gPGG and retrieved the standard public goods
game dilemma condition 1 < 𝑟 < 𝑛𝑣 for a synergy factor 𝑟 and 𝑛𝑣 interaction agents (see
section 2.1.2.2 for comparison). However, even for 𝑟 > 𝑛𝑣, a competitor dilemma exists of
the kind that an agent never receives more payoff than its competitors from a personal
investment because it must pay for the investment while the created goods are shared.

As we have seen, the social dilemma situation becomes much more intricate with
population structure and the resulting multiple sub-interactions. In section 5.2, I derived
an agent’s personal dilemma condition (see equation 5.3) and in section 5.3 the agents
competition dilemma with respect to a specific neighbor (see equation 5.9).

In a personal dilemma, if an agent increases its investment, it receives less payoff than
before. In a competition dilemma with a specific neighbor, if an agent increases its
investment, it receives less payoff than its neighbor from the additionally created goods.
Both conditions depend on the agent’s entire social environment, and the latter also differs
for each neighbor. Generally, the more connections there are within an agent’s social
environment, i.e., its neighborhood and also next-neighborhood, the stronger are both his
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experienced dilemmas.
The competition dilemma is of a weaker form than the personal dilemma. Only if an

agent experiences both dilemmas defined by their respective conditions (equation 5.3 and
equation 5.9), we should classify the public goods game interaction on the networks as
a strict tragedy of the commons dilemma. We see that the emerging PGG condition on
a network is completely different than for a single interaction; Most importantly, it is
agent-specific and significantly depends on the local network realization. Thus, the social
dilemma is an emergent property on the mesoscopic scale.

We can easily imagine settings in which there is no personal dilemma but still a
competitor dilemma regarding one or several neighbors, as I have exemplified in section 5.4.
We should not characterize such a situation as a strict public goods dilemma (or tragedy
of the commons) because the individual increases its payoff by increasing its investment.
However, in the evolutionary context, in which the success against competitors is relevant,
we can still observe a competition dilemma when there is no personal dilemma because
others profit even more from the increased investment.

Even more, agents can experience a competition dilemma with a subset of neighbors
but not with all of them (see section 5.4). Combination of the personal dilemma condition
(equation 5.3) and the competition dilemma condition (equation 5.9) for each possible
pair of agents lets us anticipate the emerging intricacy of individual dilemma qualities
resulting from the population structure.

Taking the macroscopic perspective by averaging the degree on the network level and
demanding 𝑟 < �̄� + 1 as the public goods game condition hides the emerging intricacy
on the mesoscopic level, which agents actually experience. Even more, it is misleading
as some agents can indeed experience no dilemma condition at all, and others may only
experience a weak form. Therefore, demanding 𝑟 < �̄� + 1 as the effective public goods
game condition on networks is at least highly questionable, if not entirely wrong.

The situation gets even more complicated when we have settings that are not governed
by simple birth-death-like or imitation-based evolutionary update rules in which the
network topology stays constant but instead constantly developing network topologies. In
such situations, as implemented in ReCooDy, it is easily imaginable to have agents that
profit from high investments at the beginning of their development phase but experience
harsh dilemma situations near the end of their lives. It is not clear whether we can average
over such varying settings and scenarios and effectively state that agents experience a social
dilemma, although, in the microscopically defined game, it clearly is a social dilemma.
The results indicate that an effective macroscopic description captured in a single number
does not exist because of the qualitative differences of the individual dilemma regimes.

Furthermore, for ReCooDy’s dynamics, the impact of offspring is very important. As
derived in section 5.5, offspring creation is beneficial for cooperative agents but not for
defective ones. Cooperative offspring creates additional goods for the parent, too, while
defective offspring creates additional bads. Further, with the new agent, the parent’s
interaction structure also changes, and with it, the payoff fractions from the individual sub-
interactions. Here, the parent’s relative strategy compared to its neighbors is important.
Again, comparatively more cooperative agents profit more from created offspring than
comparatively more defective agents. Overall, we notice an intricate situation in which
the absolute benefit depends on the parent’s strategy as well as its neighbors and their
strategies. These observations rely on the minimal example and are not derived in all
generality. However, already from this simple example, we can qualitatively extract this
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statement because we could expect that for more connected parents, the offspring benefit
shrinks as potentially more agents would receive a share of the additionally created goods
from the offspring. Overall, we observe that cooperation is a self-supportive strategy in
contrast to defection, which is self-harming when spreading.

It is not trivial to analytically extract general expectations of the interaction dynamics,
especially in dynamically changing social environments on the macroscopic level. We
could, for example, dive even deeper than before and look at more generalized population
settings of offspring creation. The arguments and analytical considerations that we made
so far indicate that handling ReCooDy in an entirely analytical way is very challenging.
Still, analytical approaches such as presented here are helpful to develop the foundational,
intuitive expectations in simple settings, which we can then apply to explain the macro-
scopic observations later. Nevertheless, we will mainly focus on simulation results and
their interpretation in the next chapter because these show the dynamics in their entirety
and do not look at just a fraction of the relevant processes.

In the final discussion (chapter 7), I will further elaborate on the social dilemma from a
more comprehensive point of view.
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In this chapter, I will present simulation results that investigate the emergence of coopera-
tion and defection in ReCooDy (see chapter 4) from an initially neutral and unconnected
population. A strong focus lies in the results from the interplay of all implemented
processes operating on similar time scales:

• the option of extracting high-risk, high-reward synergistic resources

• the possibility to survive without these high-risk resources

• the limited amount of resources provided by the environment

• the dynamic development of the interaction structure

• the agents’ evolvable social environment modification potential.

How will the population self-organize and evolve if resources are limited and each action
requires agents to pay resource costs? The imaginable space of possibility exceeds our
intuitive understanding. Therefore, we will investigate and inspect simulation results, look
at the observed phenomenology, and deduce hypothetical explanations of the observations.
When possible, we will dive into these hypotheses and test them with further experiments
as well as assure consistency with the analytical investigations (see chapter 5) and the
overall expected process interaction consistency. As Holovatch et al. (2017) motivated,
here, we will use computer simulations to investigate a system in which comprehensive
analytical solutions are not obtainable. The results presented in the following represent
a selection of the most critical findings and are a first step in exploring ReCooDy’s full
capabilities.

Section 4.7 contains the initialization details for the population, the environment, and
the chosen parameter regime. The accompanying Table 4.2 presents an overview of all
initialization parameters used to create all simulation results throughout this chapter if
not otherwise stated.

I implemented ReCooDy as a Utopia model (see chapter 3) and simulated it to obtain
all the results presented in this chapter.

6.1 Overview
Synergy is the fundamental principle determining the evolution of cooperation and defection
in ReCooDy. Synergies effectively transform agents’ investments into public goods and
bads (see section 4.2.2). Thus, how often and how much an agent invests determines its
level of cooperation. We measure it directly through an agent’s expected investment trait
𝜇𝑖 = 𝑖 ⋅ 𝑝𝑠. We recall that it combines the agent’s probability of extracting synergistic
resources instead of basic ones with the magnitude of investment if interacting. Thus, it
quantifies how much an agent is expected to invest on average within a time step. Large
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positive values correspond to high levels of cooperation and large negative values to high
levels of defection (see section 4.2.2.4 for a more detailed classification). However, we
should notice that there are different types of cooperation as high 𝜇𝑖 can either mean
frequent but comparatively low investments or occasional but high investments. Therefore,
if necessary, we will additionally inspect 𝑖 or 𝑝𝑠 additionally. Still, usually we explore the
evolution of cooperation and defection mainly by observing the evolution of 𝜇𝑖.

Figure 6.1 shows the expected investment 𝜇𝑖 in a trait evolution plot for all agents
that lived throughout a simulation in birth order for varying synergy factors 𝑟 in a
two-dimensional histogram. To complement, Figure A.1 shows the corresponding 𝑖 and 𝑝𝑠
evolutions separately. Figure 6.1 provides a visual first impression of ReCooDy’s dynamics
regimes for the chosen parameters and dependent on 𝑟, which we will explore throughout
this chapter.

Minute synergy factors (𝑟 = 1.01 and 𝑟 = 1.1) exhibit barely visible changes in 𝜇𝑖
compared to higher synergy factors and within the observed time frame. For 𝑟 = 1.01, the
expected investment 𝜇𝑖 remains around zero with positive and negative values for the first
1.5 × 106 agents (approximately 2.9 × 103 generations1). From that point on, only positive
𝜇𝑖 remain with a slight tendency to increase. It is more clearly visible in the 𝑖 evolution
(see Figure A.1). For 𝑟 = 1.1, the evolution towards positive values happens earlier
(around agent 3 × 105, i.e., after approximately 60 generations). The following trend of
rising 𝜇𝑖 is more apparent, reaching values up to 𝜇𝑖 ≈ 2 at the end of the simulation.
Even though low synergy factors maximize the personal social dilemma, as we recall from
chapter 5, both simulations appear to show a slow emergence of cooperation with defective
strategies dying out. Without any doubt, we need to verify that these observations are
not mere fluctuations but systematic and seek explanations of the phenomenology. We
investigate this regime of emerging cooperation in section 6.2.

Increasing the synergy factor (𝑟 = 1.4) reveals a transition regime with intricate
dynamics. Agents quickly evolve exclusively positive 𝜇𝑖 with values spred within the range
0 < 𝜇𝑖 < 8. Around agent 1.1 × 106, a sudden transition happens showing a bifurcation
into a high local density cooperator branch and a coexisting loner branch, which are
stable for the next ≈ 3 × 106 agents. Then, the loners evolve into profiteers, i.e., start
interacting more (see also 𝑝𝑠 in Figure A.1), which eventually results in the collapse of
the cooperator branch and the death of all benefactors around 4.5 × 106. Zooming into
the region directly after the collapse reveals another bifurcation resulting in coexistence
of cooperators (𝜇𝑖 ≈ 1) and loners (𝜇𝑖 ≈ 0). It is stable for only around 0.3 × 106 agents.
Suddenly, the cooperators start evolving, increasing 𝜇𝑖 high levels of cooperation, 𝜇𝑖 ≈ 8
similar to before. Shortly after 𝜇𝑖 becomes maximal around agent 5.4 × 106, the loner
branch again bifurcates. However, this time defectors emerge that become more and more
defective with increasing time. At that point, the observed time-span ends, although we
can already suspect the model to exhibit more dynamic patterns emerge and eventually
collapse. Moreover, more than twice the total number of agents lived throughout the
simulation compared to other 𝑟 regimes. It indicates that the resources flowing into the
system are distributed to sustain in total more agents. Thus, agents evolve to share
resources among more individuals than in the other 𝑟 regimes during specific phases. To
understand all observations, we first need to understand the emergence regime. Afterward,

1Inspection of the data reveils that the number of agents is approximately constant in this regime around
𝑁 ≈ 520.
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Figure 6.1: Trait evolution plots of the expected investment 𝜇𝑖 for varying synergy factors
𝑟 that exemplify different dynamical regimes.
A trait evolution plot is a two-dimensional histogram of a quantity shown on the
y-axis and agents on the x-axis, in their order of birth, which allows visualizing
the evolutionary quantity change with respect to fixed-sized agent generations.
Thus, it shows the evolution of a quantity in trait space, which corresponds to
a non-linear time evolution. A trait evolution plot directly shows the total
number of agents that lived throughout a simulation in the maximum value
on the agent-axis that can be used for comparison between simulations. It
shows the color-encoded local agent and trait density, respectively, from low
densities (purple) to high (yellow) ones. Bins with counts equal to zero are
always shown as white bins.
Each time evolution plot has 900 bins in both dimensions with bin counts
higher than 300 shown as yellow bins. Each simulation ran for 𝑇 = 105 steps.
Figure A.1 complements this figure as it shows the evolution of 𝑖 and 𝑝𝑠
individually.
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we explore this intricate transition regime in section 6.3, for which we already have
observed the evolution of cooperation, defection, and the coexistence of varying strategy
combinations that are metastable on different time scales.

Further increasing the synergy factor (𝑟 = 1.8, 𝑟 = 3, and 𝑟 = 10), results in a
coexistence of cooperators and loners after an initial strategy bifurcation. For 𝑟 = 1.8,
the cooperator branch appears to remain approximately constant (𝜇𝑖 ≈ 20), however,
with signifant noice. If we look at 𝑖 and 𝑝𝑠 separately (see Figure A.1), we observe that
the investments are focused while 𝑝𝑠 exhibits variation. The higher the investments are,
the more the variation of 𝑝𝑠 will increase the spread of 𝜇𝑖 because we multiply higher
investment values with approximately equally fluctuating probabilities 𝑝𝑠. From the loner
branch occasionally defective strategy branches emerge (e.g. around agent 1 × 106 and
1.8 × 106) which however eventually die out. For a higher synergy factor of 𝑟 = 3, the
cooperator branch increases continuously in a linear-like manner. Interestingly, for even
higher synergy factors of 𝑟 = 10, thus, more beneficial cooperation regimes, the slope of
the linear increase appears to be smaller. In section 6.4 we investigate this high synergy
regime.

From these first simulation results, we already see that ReCooDy exhibits intricate
phenomenology and intuitively unexpected dynamical behavior such as the emergence
of cooperation even for minute synergy factors (𝑟 = 1.01), metastable coexistence of
varying strategies, low-probability and high-impact events, and potentially lower levels
of cooperation in high-synergy environments. To better understand how the observed
phenomenology can result from the microscopic interactions, we investigate collective mul-
tiverse results of multiple system realizations as well as representative single universe runs.
This way, we get more profound statistical results and their corresponding microscopic
explanations.

6.2 Emergence of Cooperation

Without synergy (𝑟 = 1.0), agents’ mean expected investments are approximately zero,
except for a few (6) outlier realizations with highly negative values that start evolving after
𝑡 = 3.5 × 105. The latter are better visible in Figure A.2 showing the full value range. In
general, we neither observe a strong selection towards cooperative strategies nor towards
defective ones, except for the outliers. In more detail, investments usually evolve in a
random-walk-like neutral way. The probability of extracting synergistic resources stays
around zero (both are not shown here but revealed by data inspection). The evolutionary
mechanism selects for agents that do not interact. However, due to mutations in 𝑝𝑠, they
will sometimes interact by chance. When interacting, neither cooperation nor defection
is usually strongly selected for if there are no synergies. With no positive and negative
synergies, there is neither a personal gain in creating nor in destructing resources (compare
section 4.2.2.3). Still, in a few cases, defection appears to be profitable. Investigating
these systems in more detail would be an exciting endeavor. However, it is not the focus
of this thesis because we will focus on systems that indeed provide synergies. It remains
an open pathway for future work. Overall, statistically, we do not observe the systematic
evolution of cooperation and the evolution of defection only in some realizations for no
synergies.

For very low synergy factors (1.01 < 𝑟 < 1.17), ̄𝜇𝑖 evolves positive values that monoton-
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6.2 Emergence of Cooperation

ically increase with time as well as 𝑟. The probability of synergistic resource extraction
resources stays around 𝑝𝑠 ≈ 0 with fluctuations in the order of the mutations as inspection
of the data reveils. Thus, the population seldomly interacts to extract synergistic resources.
However, if they interact, they invest resources to create shared goods rather than selfishly
grabbing, thereby destroying resources. Cooperation emerges. Here, the slow but steady
emergence and evolution of cooperation relies on infrequent interactions with few agents.
Interacting often with many agents comes hand in hand with a high risk of life-threatening
exploitation because payoffs are small and need to be shared with others. Instead, when
agents seldomly interact they can heavily rely on the basic resources for survival. If agents
do not crucially depend on the outcome of interactions to compete and survive, it facilitates
the evolution of positive investments. Another key to understanding why cooperators
emerges rather than defectors comes from the interaction and the interaction structure
itself: Although increasing individual investments usually results in smaller individual
payoffs when interacting with others, giving birth to a cooperative offspring almost always
creates a benefit for the parent if there are no defective neighbors (see chapter 5). Even
more, in cases in which agents extract synergistic resources with no interacting neighbors,
they gain a few resources from their investments 𝑃𝑎 = (𝑟 − 1)𝑖𝑎. But recalling the cost of
living 𝑐𝑙 = 0.1 together with the evolving strength cost 𝑐𝑠 (see section 4.3), we immediately
see that agents initially, when investments are small, cannot sustain themselves only from
synergistic resource extraction; They require contributions from others, too, as well as
the safety from basic resources. However, occasionally extracting synergistic resources
can be profitable enough to be selected for above a reached investment threshold. Still,
agents cannot evolve frequent interactions because of the huge risk of being exploited in
this 𝑟 regime. Below, in section 6.2.1, we investigate the case 𝑟 = 1.01 in more detail and
see how the network itself self-organizes and whether agents indeed intend to minimize
their connections, as we would expect for now. Summing up, we observe that cooperation
emerges already for minute synergy factors; Evolution selects for selfless creation rather
than selfish destruction in this ReCooDy regime.

Slightly higher synergies (1.18 < 𝑟 < 1.2) show on average higher ̄𝜇𝑇
𝑖 but with a few

clusters of final states, as well as several outliers. Outliers exhibit mostly positive ̄𝜇𝑇
𝑖

but in three case also extremely negative ̄𝜇𝑇
𝑖 up to ≈ −65 (see Figure A.2). Figure A.2

visualizes the whole value range to better illustrate the extreme scenarios. For 𝑟 = 1.2,
the time development of ̄𝜇𝑖 first shows rising values that, however, reach a maximum
and start shrinking again after 𝑡 ≈ 3.5 × 105. We also observe a standard deviation from
the different realizations, which is not present for lower 𝑠𝑟, and which slightly increases
with time. The observed variance is systematic due to the extreme outliers as well as
the internal clustering structure exhibited in the final ̄𝜇𝑇

𝑖 distribution. We observe a
transition of the system into the next regime, for which the microscopic organization is
crucial to understand the observables (see section 6.3). These synergy factor results are
included in the figure as references that reappear on the lower value range of the higher
synergy regime (see later in Figure 6.4). For now, we recognize that averaged quantities
are not sufficient to understand the overall behavior so far because simulations can yield
significantly different system realizations, as the outliers indicate.
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Figure 6.2: Time evolution of the mean expected investment ̄𝜇𝑖 (left) and its final distri-
bution ̄𝜇𝑇

𝑖 after 𝑇 = 5 ⋅ 105 time steps (≈ 103 generations) for varying synergy
factor 𝑟 (right) showing the emergence of cooperation regime. On the left,
lines represent the mean and their shaded areas the standard deviation of

̄𝜇𝑖 calculated over simulation runs. On the right, each of the 512 dots repre-
sents the final population-averaged expected investment ̄𝜇𝑇

𝑖 of a single system
realization. Color encodes the synergy factor 𝑟 from low values (yellow) to
high ones (blue). The violin plots in the background show the distributions’
kernel density estimates with width scaled to equal areas. The right figure
shows a zoomed ̄𝜇𝑇

𝑖 value range. Figure A.2 shows the entire value range for
completeness.

6.2.1 Emergence of Infrequent Cooperation in Sparse Effective Networks

Let us focus on the simulation results for a minute synergy factor of 𝑟 = 1.01 that
statistically already shows the emergence of cooperation, as seen before. Figure 6.3
visualizes simulation results of universe and multiverse runs for 𝑟 = 1.01.

Rising investments. The evolution of investment 𝑖 of a single model run shows increasing
values over long times (top left in Figure 6.3). However, the increase is not strictly
monotone and fluctuates, showing multiple phases of linearly increasing and decreasing
𝑖 with each lasting in the order of 107 agents (≈ 2000 generations) long and changing
𝑖 values within the range of 5 units. Zooming further into the structures reveals that
branches of agent strategies frequently emerge that intend to separate themselves from
the entire population. However, they die out quickly. If we would look at higher synergy
factors within this dynamics regime (e.g., 𝑟 = 1.1), we would see the rising investment
more clearly with less and smaller decreasing evolution phases. All these observations
indicate that the selection on 𝑖 is very weak and acts over many times and generations;
Still, investments and, therefore, cooperation rises.

Infrequent interactions. The corresponding evolution of the probability of extracting
synergistic resources 𝑝𝑠 (top right in Figure 6.3) shows that throughout the simulation,
the majority of agents do not extract synergistic resources (yellowish area). The emerging
horizontal line reflects the magnitude of 𝑝𝑠 mutations (𝑂(0.05); see also Table 4.2). Only
comparatively few have twice, thrice, or four times the 𝑝𝑠 mutations, which we expect
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6.2 Emergence of Cooperation

to see by chance from the random mutation process (greenish and purple areas above
the yellow line). Thus, agents evolve to rarely interact with others, i.e., to rely on basic
resources primarily.

Slight tendency to specialize in one resources. The middle left plot of Figure 6.3
visualizes the phase space of the expected investment 𝜇𝑖 and the expected strength
𝜇𝑠≔ 𝑠 ⋅ 𝑝𝑠. The latter describes the expected resources an agent effectively uses to extract
basic resources over its lifetime. Most 𝜇𝑠 values are within the range 0.4 and 0.9. Lower
values do not evolve because agents mainly compete for basic resources. After all, 𝑝𝑠 ≈ 0
and strength decide which agents indeed succeed in getting resources and which ones do
not. On the other side, higher values than 0.9 are not sustainable because agents extract
at most 𝑗𝑏 = 1 resource per time while they need to pay a cost of living 𝑐𝑙 = 0.1 and an
evolving cost for having high strength 𝑐𝑠 = 𝑠. Therefore, the evolved value range of 𝜇𝑠
corresponds to our expectations from the model formulation. Importantly, the phase-space
distribution is skewed such that agents with high 𝜇𝑖 tend to have low 𝜇𝑠 and vise-versa.
Thus, agents have a slight tendency to specialize themselves either in basic resources or
synergistic resources. However, not entirely because living from synergistic resources alone
yields too little to survive in this low-synergy regime. Nevertheless, on average higher
expected investments allow for slightly reduced strength costs.

Sparse networks with power-law-like distributions. Let us shift our focus to the un-
derlying network structure itself. In the bottom left of Figure 6.3, we see the degree
distribution that appears to follow a power-law with a steep decrease over only 1.5 orders
of magnitude. The plot accumulates results of the final network, which evolved after
𝑇 = 106 time steps, from 512 universe runs with varying seed. The stacked colors encode
the degree distributions of the underlying individual networks of each run. I applied a
least-squares fit to extract the distribution’s exponent: −4.09 ± 0.03. The observations
show that most agents develop few links, but a few agents become hubs in the network.
These hubs are still small because of the high exponent of the distribution. A combination
of processes can explain the observations. First, the offspring inherits just a single link
to their parent. All additional links have to build up during an agent’s lifetime with a
maximal addition rate of one link per time step. From the time snapshots, we, therefore,
can expect many low-degree agents. Second, adding and removing links comes with a cost
(here 𝜅𝑙 = 1, 𝜅𝑔 = 1, 𝜅𝑟 = 1) for the initiating agent. Agents that initiate linking actions
can accumulate a significant resource cost and, thus, can have a disadvantage compared
to receiving and more isolated agents. With low synergistic resource inflow (𝑟 = 1.01) and
limited resources initiating agents can have a selective disadvantage, which helps explain
why degree counts shrink rapidly with the increasing degree. Third, separated connected
clusters can reconnect via global linking. The reconnection probability scales with the
component size, introducing preferential attachment of larger connected clusters. We know
that above a given threshold, a similar process can lead to an approximated scale-free
connected component size distribution in the distribution’s tail (Yules 1924). Further,
percolation systems such as the simple forest fire model exhibit scale-free distributions
reliant on the preferential connection of large clusters (Bak et al. 1987). And forth, link
addition and removal exhibit trait-based preferential attachment and removal linking
mechanism, respectively, and preferential attachment in the context of network growth
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Figure 6.3: Simulation results for a minute synergy factor of 𝑟 = 1.01 showing the slow
but steady emergence of infrequent cooperation in sparse networks. It shows
trait evolution plots of the investment trait 𝑖 (top left) and the probability of
extracting synergistic resources 𝑝𝑠 (top right) with 900 bins in each dimension
and bin counts higher than 100 for 𝑖 and 20 for 𝑝𝑠 shown in yellow. The
middle left shows the phase space of the expected investment 𝜇𝑖 and the
expected strength 𝜇𝑠 for the last 106 agents with dots representing single
agents and color encoding time from early (yellow) until the simulation end
(blue). The middle right shows a final largest connected component example
for a population. The bottom left visualizes the final degree distribution, and
the bottom right the final connected component size distribution over 128
simulation runs, each with color encoding different simulation runs. Blue lines
show least-squares fit results of a power-law function. All simulations ran for
𝑇 = 106 time steps for the single runs and 𝑇 = 2 × 106 for the distributions.
See the caption in Figure 6.1 for the explanation of a trait evolution plot.
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6.2 Emergence of Cooperation

can result in scale-free degree distributions (Barabási and Albert 1999). Agents with
desirable traits within their local and global social environment preferably receive links
from others. With trait-based preferential attachment linking, we can expect a power-law
degree distribution.
Complementing the power-law degree distribution, we observe a power-law distribution
of connected component sizes (see bottom right Figure 6.3). A connected component
is an induced subgraph, for which all vertices are connected via paths. There are no
additional connections to other vertices of the original graph. The figure consists of the
same simulation data as for the degree distribution before: 512 model realizations and
the connected components calculated for the last time step 𝑇 = 106. An example largest
connected component of a corresponding single universe run is shown in Figure 6.3, too.
Its number of vertices/agents gives the size of the connected component. The figure
visualizes the sizes of the connected components and their accumulated count. Color
encodes the results of single system realizations. Again, we observe a power-law-like
distribution over approximately 1.5 orders of magnitude. Actually fitting a power-law
(blue line) to the data using a least-squares method yields the corresponding exponent
−3.19 ± 0.01. The same mechanisms that explain the power-law degree distribution also
explain the connected components size distribution: the lifetime dependent development
of the social environment, the resource costs to add and remove links, and most notably,
the trait-based preferential attachment linking mechanism.

6.2.2 Summary

Cooperation emerges and evolves almost always for minute synergies—defection does not.
Although we observe high positive investments evolving over long times, the probability of
interacting and actually investing resources to extract synergistic resources and the number
of interaction partners both evolve to small values. Further, the network structure evolves
to be sparse with most agents having no or just a few neighbors following a power-law-
like degree distribution with steep slope (exponent: −4.09 ± 0.03) and a power-law-like
connected cluster distribution (exponent: −3.19 ± 0.01). We can explain the power-law-
like distributions through the preferential attachment mechanism partly inherent in the
linking mechanism (see section 4.4). In total, mostly isolated or low-connected agents
evolve in this emergence regime. Together with the low 𝑝𝑠 values, we recognize that
populations consist of minimal, sparse, and generally low-connected effective networks.
Thus, evolution selects for agents that minimize their personal social environments and
thus their personal social dilemma (see the analytical considerations in chapter 5). Still,
creating offspring usually increases an agent’s personal payoff even for such minute
synergies if the parent is a cooperator and as long as there is no very defective neighbor.

Specializing solely in synergistic resources, however, is not a surviving strategy. Even
though agents tend to specialize either in basic or synergistic resource extraction, the
risk is too high and the reward too low within this low synergy dynamics regime to
survive. Overall, we observe the emergence of cooperators already for minute synergies
that infrequently interact with few agents and profit from creating cooperative offspring.
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6 Evolution of Cooperation and Defection

6.3 Transition Regime

Figure 6.4 shows simulation results for synergy factors in the range 1.2 < 𝑟 < 2.0. The
top shows the time evolution of the mean expected investment ̄𝜇𝑖 and the total number
of agents 𝑁 for four selected synergy factors. The mean and standard deviation are
calculated over the 512 different system realizations generated by varying the random
number generator seed. The bottom shows the corresponding final distribution of the
mean expected investments of single system realizations depending on the synergy factor
𝑟 in the whole value range and a zoomed-in range. We notice that for 𝑟 = 1.2 (yellow line)
the expected investment 𝜇𝑖 increases with time until 𝑡 ≈ 2 × 105. Increasing the synergy
factor to 𝑟 = 1.4 shows an initially steeper increase in ̄𝜇𝑖 and already at 𝑡 ≈ 5 × 104 the
mean expected investment ̄𝜇𝑖 reaches a maximum and starts continuously decreasing,
thereby reaching ever more negative values with increasing standard deviation. Further
increasing the synergy factor to 𝑟 = 1.8 completely changes the dynamics, again. After
the initialization phase with rising ̄𝜇𝑖, the population reaches a roughly constant mean
expected investment of ̄𝜇𝑖 ≈ 2 with a slight tendency of decreasing values throughout the
following time. The standard deviation is no longer visible, indicating that differences
between system realizations for equal 𝑟 are minimal on the observable scale. For 𝑟 = 2.0,
the population exhibits the same general ̄𝜇𝑖 evolution, however, without the tendency of
decreasing values.

When we shift our focus to the final distribution of expected investments ̄𝜇𝑇
𝑖 (bottom

left and right plot of Figure 6.4) we start to understand what leads to decreasing ̄𝜇𝑖
over time together with increasing standard deviations for low 𝑟. For synergy factors in
the range 1.2 < 𝑟 < 1.5, we observe single system realizations with exceedingly negative

̄𝜇𝑇
𝑖 with values ranging from approximately −10 to −145. The kernel density estimate

represented by the shaded violinplots enables us to approximate the ̄𝜇𝑇
𝑖 distribution. For

𝑟 = 1.3, most very defective populations arise, i.e., the probability of highly defective
populations emerging is highest. Furthermore, most defective populations are extremely
defective. Synergy factors in the range 1.6 < 𝑟 < 2.0 do not exhibit populations with
highly negative ̄𝜇𝑇

𝑖 , i.e., highly defective populations anymore.
Looking at the bulk of final states (bottom right of Figure 6.4), we notice that for

the observed synergy factors 1.2 < 𝑟 < 2.0 most final mean expected investments ̄𝜇𝑇
𝑖 are

positive, i.e., usually cooperative populations evolve. Interestingly, for 𝑟 = 1.2, a few
simulations show highly positive outliers with up to ̄𝜇𝑇

𝑖 ≈ 12. Moreover, the results show
clustering into subgroups of similar final values, which we can observe in the violinplots
and the grouped dots, dependent on 𝑟. Unintuitively, the lowest synergy factor in the
observed range (𝑟 = 1.2) results in the highest observed ̄𝜇𝑇

𝑖 values, as we can see in the
medians and quartiles inside the violins. Higher synergy factors result in lower median ̄𝜇𝑇

𝑖
up to 𝑟 = 1.8. For 𝑟 = 1.8, ̄𝜇𝑇

𝑖 appear to bifurcate, showing two density peaks at ̄𝜇𝑇
𝑖 ≈ 1.5

and ̄𝜇𝑇
𝑖 ≈ 2.0 (Figure A.3 exhibits the bifurcation more clearly in the respective investment

trait). Further increasing the synergy factor to 𝑟 = 1.9 and 𝑟 = 2.0 lets only the more
positive branch survive, effectively increasing the median again. However, medians at
𝑟 = 1.9 and 𝑟 = 2.0 are lower than for 𝑟 = 1.2. Most surprisingly, within the observed
synergy factor range 1.2 < 𝑟 < 2.0, the most cooperative populations arise on average for
the lowest synergies.

Furthermore, during most of the time, the lowest synergy factor (𝑟 = 1.2) sustains the
highest number of agents during most of the simulation time (see Figure A.3). However,
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Figure 6.4: The transition regime. The top row shows the time evolution of the mean
expected investment ̄𝜇𝑖 (top left) and the number of agents 𝑁 (top right)
for different synergy factors 𝑟. The mean and standard deviation (shaded
area) are calculated over system realizations. The bottom row shows the final
mean expected investment ̄𝜇𝑇

𝑖 after 𝑇 = 5 ⋅ 105 time steps in the whole value
range (bottom left) and zoomed (bottom right). Each dot represents the final
population average of one system realization, 512 per 𝑟. Color encodes rising
synergy factors from low (yellow) to high values (blue). The violin plots in
the background show the kernel density estimates of the distributions with
width scaled to equal areas. Lines within the violins show the median and
quartiles of the corresponding distribution. Figure A.3 complements this figure
by showing the time evolution of the number of agent and the trait evolution
plots of ̄𝑖𝑇 and ̄𝑝𝑇

𝑠 .
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with increasing defection for 𝑟 = 1.4 also the number of agents increases. In general,
these results indicate that if agents extract more resources either through cooperation or
through defection, the system can sustain more agents.

All of the observations indicate that the system exhibits intricate dynamics dependent
not only on the synergy factor but also on the specific realization. Just changing the
sequence of random numbers for a specific synergy factor can lead to entirely different
system states at a given time. In other words, the system’s evolved state, i.e., its history,
significantly determines the evolutionary pathway it will follow, at least for the observed
timeline. The results indicate that looking at averaged quantities can be misleading because
it hides and oversimplifies the underlying structure observed in the final distributions.
We can only explain the observations so far if we explore the microscopic organization of
single realizations of representative runs from the observed clustered final states in more
detail, which we will do in the following.

6.3.1 Rich Dynamics

In the following, we will focus on simulation runs with a synergy factor of 𝑟 = 1.4 as the
representative example for the diverse dynamics characterizing the transition regime.

Figure 6.5 shows selected universe runs that present a phenomenological overview for
simulation runs with a synergy factor of 𝑟 = 1.4 and varying seeds. Each subplot shows the
expected investment 𝜇𝑖 plotted against the corresponding agent. The ordering corresponds
to changes in the observed phenomenology. Color encodes local density from low (purple)
to high (yellow) by having both quantities binned into 500 bins each and displayed as a
two-dimensional histogram. Bin counts that exceed 500 are capped and shown in yellow.

Coexistence. We usually observe strategy coexistence that seems to be metastable on
varying times scales. The simulation for seeds 45 and 42 show that strategies can bifurcate
directly after initialization into a cooperative branch at 𝜇𝑖 ≈ 9 ± 3 and a neutral branch
at 𝜇𝑖 ≈ 0 that coexist during the whole simulation time. Agents specialize either in basic
or synergistic resource extraction. Here, cooperators not only invest positive amounts
but also frequently interact as inspection of the 𝑝𝑠 evolution reveals. In contrast to the
previous emergence of cooperation regime (see section 6.2 for comparison), agents can
and do sustain themselves from synergistic resource extraction alone. The benefit from
synergies outweighs the risk of interacting with these specialized agents. However, neither
too high nor too low expected investments relative to the other cooperators emerge; The
expected investments do not deviate more than ±3 from the cooperators’ average. It
seems that evolving higher investment first yields comparably higher returns making
the strategy evolutionary successful until investments rise so high that agents already
extract all synergistic resources. In these specific population settings, evolving even
higher investments comes with the risk of not receiving resources anymore such that
investments reach the observed maximum. The neutral agents (loners with 𝜇𝑖 ≈ 0) usually
do not extract synergistic resources. Instead, they compete for the basic resource through
strength, which can sustain a limited number of agents. Frequently, defective strategy
branches emerge from the neutral branch with mainly decreasing 𝜇𝑖 that survive for up
to 103 generations (≈ 6 × 106 agents) but typically less before dying out. Here, defection
is a metastable strategy on medium time scales that frequently dies out, however.
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6.3 Transition Regime

Figure 6.5: Trait evolution plots of the expected investments 𝜇𝑖 that exemplify the rich
dynamics of the transition regime. Simulation results for 𝑟 = 1.4 and nine
selected seeds representing typical dynamical phases are shown. Each plot
contains 500 bins in each dimension with counts higher than 500 shown in
yellow. Each simulation ran for 𝑇 = 105 steps. See Figure A.4 for the entire
value range and Figure A.5 for the corresponding time evolution of the number
of agents and the final degree distribution. See the caption in Figure 6.1 for
the explanation of a trait evolution plot.
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6 Evolution of Cooperation and Defection

Mountain-shape-like dynamic structures. The simulation result for seed 44 illustrates
a recurring dynamics pattern: Agent’s expected investments 𝜇𝑖 rise in an approximately
linear way to very high values (here 𝜇𝑖 ≈ 30) before they reach a maximum and start
decreasing again until they reach values around 𝜇𝑖 ≈ 9 ± 3. This mountain-shaped-like
dynamics pattern is probably an overshoot event that the agent’s linking traits could
cause if evolving such that investing too much becomes an evolutionary disadvantage.
However, the precise cause would need to be explored further. The mountain-shape-like
dynamic patterns not only occur directly after initialization (seed 44) but can also have
double-peaks (seed 52), follow directly after a synchronous collapse of a cooperative and a
defective branch (seeds 43 and 49), follow after the collapse of a highly cooperative branch
(seed 75), and last longer while reaching high values (seed 49).

High-density cooperation. Seed 75 shows another dynamics pattern around agents
1.5 × 106 to 2.0 × 106 exhibiting very high cooperator density. Not only does the cooperator
density increase significantly but also the total number of agents more than triples
(𝑁 ≈ 2200 compared to 𝑁 ≈ 600 (see Figure A.5)). The number of links increases
dramatically, as well as we can see in the degree distribution. Agents evolve linking
strategies that modify their social environments and enable more agents to live at a
time. More agents can live from the extracted synergistic resources despite their increased
linking cost; thus, they partition resources more equally among all living agents. However,
this dynamical phase is only metastable and collapses after approximately 3 × 107 agents,
again. Below in section 6.3.2, we will explore this regime and its collapse in more detail.

Ever growing defection. The simulation results for seeds 61 and 133 show a phase
of ever-growing defection at the end. Highly negative values are not shown to better
visualize the other dynamical phases but Figure A.4 shows the complete value range for
completeness. We can see that after the collapse of a cooperative branch, the defective
branch evolves ever lower 𝜇𝑖 over time. We will explore this transition into ever more
defection in section 6.3.3 and address its triggers, its stability, and whether it is the final
system state.

Investments shrink with emerging defection but Cooperators increase. In general,
we observe the tendency that if defection emerges and grows through a decreasing 𝜇𝑖
branch, its values decrease in the cooperative branch. Furthermore, if we focus on the
color-encoded local density, we observe increased local densities in the cooperative branch,
the lower the values of 𝜇𝑖 get. We see this pattern for all seeds. The number of agents stays
roughly the same around 𝑁 = 600 during these dynamical phases (see Figure A.5). Thus,
if defectors emerge, the relative number of cooperators increases but the contributions
of cooperators decrease. We can explain the correlated decrease of the defective and
cooperative branches through the nature of the interactions: defectors profit most when the
investment difference is high. Thus, they have an advantage if they lower their investments,
as long as they have cooperators with which to interact. In contrast, cooperators lose less
from interactions with defectors if the difference in investment is low. Thus, cooperators
lowering their 𝜇𝑖 as a response to lower 𝜇𝑖 from defectors could explain the correlated
decrease in expected investments.
The increased number of cooperators for lower 𝜇𝑖 is most probably related to the limited
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amount of extractable synergistic resource 𝒜𝑠 per time step. It is partitioned among all
interacting agents according to the success of their interactions (recall the finite resources
described in section 4.2.2.5). Inspection of the data reveals that indeed all synergistic
resources are extracted within at the respective times. The payoff individuals may receive
scales with the agent’s investment. Thus, with less investment per agent, potentially more
agents receive a share of the limited resources. Moreover, the number of defectors is very
small compared to the number of cooperators (all purple versus yellowish bins), indicating
that the effect from decreasing 𝜇𝑖 of the defectors is smaller than for cooperators. The
observations indicate that the presence of a few defectors indirectly increases the number
of cooperators by letting them evolve smaller investments such that more agents profit;
More agents profit but with lower shares from cooperatively extracted resources.

Slight Profiteers of rising cooperation. Interestingly, during the phases of linear-like
increases in 𝜇𝑖, a few agents emerge with low but positive 𝜇𝑖. They appear to be slight
profiteers that occasionally profit from interactions with cooperators. However, as soon as
agents extract all synergistic resources within a time step, this strategy does not appear
to be successful anymore, most probably because it yields too little payoff. When ̄𝜇𝑖
drops again after a maximum in the cooperative branch, a few agents emerge with low
but negative 𝜇𝑖, as described before for seeds 45 and 42. In rising cooperation times,
a minority of profiteers emerges and survives, while at decreasing cooperation times, a
minority of exploiters emerges and survives. Whether this is a general obervation or an
artifact and why exactly this is the case requires further investigation.

Collective starting phase. At the start of the described dynamic patterns, we usually
observe a trigger phase, in which the whole population evolves low but positive 𝜇𝑖 for
𝑂(30) generations (roughly 2 × 105 agents). It is before they bifurcate into a cooperative
and a neutral branch that, for example, triggers the mountain-shape-like dynamic pattern.
Here, agents already evolve positive investments, but they cannot survive on synergistic
resources alone because the overall investments and resulting payoffs are too small. They
first need to evolve high-enough investments to evolve 𝑝𝑠 ≈ 1, i.e., interact frequently and
be able to survive from the resulting payoffs. In section 6.3.2 we will explore and explain
the bifurcations following after the initial collective phase in more detail.

6.3.2 Dynamical Phases and their Transitions
We have already seen that simulations yield a small set of typical dynamical phases that
emerge, survive temporarily, and transition to the next phase mostly through sudden
collapses. Here, we will take a representative single simulation run and explore such
dynamics regimes, their observables, and sudden transitions in more detail by investigating
more evolved traits. Figure 6.6 shows simulation results from a single model realization.
The subplots show the number of agents 𝑁 over time and two-dimensional histograms
of the agents’ expected investments 𝜇𝑖, their probability to extract synergistic resources
𝑝𝑠, their final ages 𝐴, the lifetime-averaged cost paid for link addition and removal,
respectively, and the link modes, which determine the targetted quantity for global and
local link addition and link removal, respectively. The counts of the link addition mode
are weighted with the probabilities 𝑝𝑙 and 𝑝𝑔, respectively, to account for the fact that
within a time step, links are either added in the local or global social environment, never
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both. I.e., they show the weighted average counts for local or global link addition. Color
encodes the local density of states in the trait space from low (purple) to high (yellow)
values. The local density is linearly scaled for the expected investment and all link modes,
and logarithmically scaled for the age and the accumulated age-normalized linking costs.
The horizontal grey line in the mean link removal cost plot shows an average link removal
cost of 1, i.e., one link removal action per time step. Vertical red lines indicate transitions
between dynamical regimes. We will now go through these individual dynamics regimes
and their transitions, describe the observed phenomenology, try to derive explanations for
the observations, and extract results.

Initialization phase a⃝ The simulation begins with a spin-up and initialization phase.
The system holds 𝑁 ≈ 500 agents corresponding to the amount of basic resources 𝒜𝑏
available per time step and the extraction of 𝑗𝑏 = 1 per agent. The expected investments
start at 𝜇𝑖 = 0 and slowly rise. If we inspect the investments 𝑖 and probabilities to extract
synergistic resources 𝑝𝑠 individually, we notice rising investments but with 𝑝𝑠 ≈ 0. Most
agents have minimal mean cost for link addition and removal and preferably do not link
to others. We know that initially, all agents are neutral, i.e, 𝑝𝑠 = 0 and 𝑖 = 0 for all
agents. Investing in linking will be a waste of resources because the rare interactions to
extract the synergistic resources combined with the low investments will not be able to
compensate for the linking costs. Thus, agents that do not waste resources on linking do
have an evolutionary advantage; Evolution selects for agents that rarely link from the
initially linking population. With such low investments, agents cannot sustain themselves
only from the synergistic resource alone. The interactions cannot generate enough payoffs
to compensate for the agent’s cost of living and strength. However, in the rare occasions
that they interact by chance, induced by mutations of 𝑝𝑠, investing positive investments
is the more successful strategy. Importantly, agents do not vitally depend on high success
in the interactions because of the rare interactions, which in turn lowers the potential risk
of getting exploited from defectors. In this way, the initialization phase resembles the
dynamics of the emergence regime (see section 6.2) as similar arguments apply.

More frequent interactions b⃝ As investments slowly but steadily increase, the system
reaches a threshold with a rapid transition to a new dynamical phase characterized by
slightly more agents, 𝑁 ≈ 600, and expected investments with values approximately an
order of magnitude higher than before. The latter is a direct result of rapidly increasing
𝑝𝑠 with values spanning the whole range 0 < 𝑝𝑠 < 1 but most found in 0 < 𝑝𝑠 < 0.8.
The investments themselves, however, evolve slower towards higher values after an initial
instantaneous selection for high investments directly at the transition (see Figure A.6).
After the transition, we observe, on average, a slight decrease in the age 𝐴 as well as a vast
increase in the number of agents that die immediately (recall the logarithmic color-scale).
The cost for link addition slightly decreases, and nearly no agent pays a cost to remove
links. The few agents that add links do so preferably to a random target agent within
their social environment. As already said, link removal does not occur; thus, the link
removal mode evolves randomly despite the high density of apparently payoff-focussed
link removal mode for the observed times.
The observations indicate that the system exceeded a threshold allowing the transition
into a dynamics regime of more frequent interactions and slowly increasing cooperation
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6 Evolution of Cooperation and Defection

Figure 6.6: Trait evolution plots of the most important quantities and the time evolution
of the number of agents (top) that show examples of dynamical phases in
the transition regime in detail. Circled letters represent dynamical phases
referred to in the text. The simulation ran for 𝑇 = 5 × 105 steps. Figure A.6
complements this figure by showing further trait evolution plots. See the
caption in Figure 6.1 for the explanation of a trait evolution plot.
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throughout the population. The system can sustain ≈ 100 more agents from the synergistic
resources alone. The payoff from synergistic resource extraction outweighs the risk of
investing and getting exploited for a successful subset of agents. Other more unfortunate
agents die immediately, as the age distribution indicates due to the high exploitation risk
of investing. If agents invest directly after their birth by chance, it adds an additional
resource dissipation term that can trigger an immediate death if they are not successful
compared to others. For the more fortunate agents, the investments reach high enough
values to produce payoffs that allow survival and eventual reproduction. We observe a
manifestation of the high-risk nature of synergistic resource extraction section 4.2.2. Here,
we do not yet observe the high-reward nature directly because agents do not entirely
rely on synergistic resources yet and payoffs only allow survival without agents actively
tailoring their social environment. Still, agents receive a reward from extracting synergistic
resources, which elevates the system’s carrying capacity to sustain ≈ 100 more agents.
Living from synergistic resources alone seems not to be possible in this phase because we
do not observe cooperators wholly specialized in synergistic resources with 𝑝𝑠 ≈ 1. Still,
agents start interacting more frequently, thereby extracting more synergistic resources
and increasing the system’s carrying capacity. However, the risk of interacting with the
relatively low payoffs still prevents entire specialization.

Fully cooperative population c⃝ As the maximal expected investment slowly increases
over time, a rapid transition towards a complete cooperative dynamical phase happens
around agent 1.15 × 106, when the system reaches a threshold. This phase exhibits a
large population with approximately thrice the previous number of agents (𝑁 ≈ 2300
v.s. 𝑁 ≈ 750) that prevails for approximately 1430 generations (≈ 3.43 × 106/2.4 × 103)
or 5 × 105 time steps. The transition comes with a bifurcation of expected investments
into a cooperative branch, reaching around 𝜇𝑖 ≈ 6 with huge local strategy densities,
and a neutral branch around 𝜇𝑖 ≈ 0 with at most 𝜇𝑖 ≈ 2. The transition takes some 10
generations with overshooting values until the cooperative branch gets focussed. During
the entire phase, the cooperative branch evolves a broader 𝜇𝑖 distribution that decreases
in the first half on average but then starts increasing again. Before the next transition
and shortly after 𝜇𝑖 starts rising on average, we observe an increased local density of the
neutral branch. Indeed, if we inspect the 𝑝𝑠 evolution, we see that all formally neutral
agents, i.e., the ones completely specialized on basic resources with 𝑝𝑠 ≈ 0, all quickly
evolve values around 𝑝𝑠 ≈ 0.4 with a continuing increasing trend until the regime collapse
happens. Thus, the neutral branch evolves into a profiteer branch. When we look at the
age distribution, we see that most agents die directly after getting born. A few agents,
however, reach significantly higher ages (recall the logarithmic scaling). During the fully
cooperative population phase, we see significantly higher mean link addition costs as
well as moderate mean link removal costs for a small subset of agents. However, most
still not removing links at all. Interestingly, links are mainly created to globally selected
targets chosen at random. However, at the beginning of this dynamical phase, a subset
of the population chooses random targets within the local social environment. Still, it
switches to select for agents with high 𝑝𝑠, which maximizes directly before the collapse of
cooperation. At the beginning of the fully cooperative population phase, links are rarely
removed, followed by focusing on removing links to agents that receive a small payoff. In
the second half of this dynamical phase, agents start to increasingly remove links to agents
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with low investment, which maximizes shortly before the dynamics collapse. Overall we
see other link modes also emerge and die out. However, from the mean link removal costs,
we can derive that most agents do not reach their link removal threshold, thus, do not
indeed remove links. Such a situation makes the link removal mode meaningless, i.e.,
we mainly observe neutral evolution overlaid with a signal from the agents that indeed
remove links.
How can we interpret and explain these observations? This dynamics regime starts after
a small subset of agents exceeds a 𝜇𝑖 threshold that enables enough return to allow
agents to specialize on the synergistic resources entirely. With the specialization, they can
reduce their resources spent on strength if they evolve low strength through consecutive
small mutations, as they indeed do, as inspection of the data reveals. Thus, they avoid
competition for the basic resource. As we already know, cooperating parents usually profit
from cooperative offspring (see section 5.5). But they need to pay for resources to create
offspring. In this simulation, the total birth cost—creating offspring and transferring
resources— equals 7. With 𝜇𝑖 ≈ 6 and 𝑟 = 1.4, the parent of an interacting offspring
receives an estimated payoff of 6 ⋅ 1.4/2 = 4.2 just from the offspring’s investments into
the shared interactions if there is only one link to the parent, which is the case after birth.
Thus, in this scenario, the parent’s net cost of giving birth is less than 3 after birth. If
the offspring survives a second interaction, the parent’s birth cost is already compensated,
effectively yielding a profit. In general, the higher 𝜇𝑖 gets, the lower the personal birth
cost gets.
As the age distribution indicates, the offspring generally experiences a cruel regime in
which it usually immediately dies because their theoretical payoff is too low to allow them
actually to receive a share of the available synergistic resources. They are most of the
time not successful enough in the interactions to survive. Still, some cooperators get the
chance to survive the first few time steps and optimize their social environment enough to
survive with the extracted synergistic resources. Random deaths, given by 𝑝𝛿, occasionally
open niches for new agents to take over and become successful. Surprisingly, this link
optimization mostly happens randomly. Randomly choosing target agents is the only
link mode that does not include a trait-based preferential attachment mechanism. When
preferential linking occurs, multiple agents will link to the same (few) agents, effectively
overwhelming them. The link mode is heritable; thus, if a link mode temporarily is
successful, the offspring will most likely have the same link mode, which will increase
the number of agents that will link to the same small subset of agents. Overwhelm can
happen because a high individual degree can easily diminish payoffs (see section 5.2 and
section 5.3). Agents can counteract such an invasion of incoming links by removing bad
links directly afterward. Indeed agents remove links in this regime, as we observed. A few
agents even remove more than one link per time step (agents above the grey line in the
mean link removal cost plot). They first cut links to low payoff agents but later with low
investment agents; Both modes encode optimizations for increased individual interaction
outcomes. Receiving a lot of links and afterward removing bad links evolves as a strategy
to optimize the individual social environment.
Removing links, however, is costly. Directly before the collapse of the cooperative branch,
link removal costs slightly increase, which increases resource dissipation. Furthermore,
local link addition, targetted at agents with high 𝑝𝑠, increases drastically. Recalling the
emerging profiteer branch, we see that this change in linking mode also increases the
probability of an agent to form links to a profiteer. The transition of neutral agents to
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profiteers and their rising influence, combined with the effectively increased probability
of linking to harmful profiteers instead of beneficial cooperators eventually leads to
the collapse of cooperation. The effects accumulate, resulting in exceeded thresholds,
the invasion of cooperators, and their instantaneous death. Due to the cooperators’
self-supporting nature, the death of a few key agents could result in weaker remaining
cooperators and an eventual cascade effect, resulting in their extinction. The dynamics
regime of a fully cooperative population exhibits the high-risk, high-reward nature of
cooperation that eventually results in its collapse.

Low cooperation population d⃝ With the collapse of the highly cooperative branch,
the number of agents drops to around 𝑁 ≈ 1400, and the former profiteers become the
new benefactors that keep their expected investments for around 104 time steps (≈ 1400
generations) at low values of 𝜇𝑖 ≈ 1. Looking at the probability of synergistic resource
extraction 𝑝𝑠 we observe that the neutral branch 𝑝𝑠 ≈ 0 reappears and the cooperative
branch slowly evolves to lower 𝑝𝑠. The age distribution resembles the initial one but
with most agents dying after the second time step. Agents rarely spend resources on link
addition and, except for three outliers, do not remove links. In each generation, it seems
that the cooperators with comparably low 𝑝𝑠 survive for a bit longer and create slightly
more offspring, which results in the slow selection for lower 𝑝𝑠 agents. Cooperation is
metastable, and the nearly constant investments are sufficient to sustain many agents.
However, due to the shrinking 𝑝𝑠, fewer agents interact per time, and fewer agents share the
extracted resources, which eventually leads to the next dynamical phase. In this dynamics
regime, a large population still sustains itself from cooperation; however, evolution selects
agents that interact less often, which eventually leads to a transition into the next phase.

Rising cooperation e⃝ When 𝑝𝑠 falls below a threshold, 𝑝𝑠 ≈ 0.4, the system transitions
immediately into a dynamical phase of rising cooperation, i.e., increasing 𝜇𝑖. The number
of agents drops to 𝑁 ≈ 600, indicating that the extracted synergistic resources can
sustain less than half of the population of the previous dynamical phase. Interestingly,
the probability of extracting synergistic resources of the cooperative agents jumps back
to 𝑝𝑠 ≈ 1.0. Now, we see more agents modifying their social environment, especially
by removing links to agents that are located on nodes producing few goods. Thus,
there are fewer cooperators that extract all the synergistic resources and specialize in
them. Investing more and starting to optimize the social environment are both profitable
strategies as soon as there are fewer cooperating competitors left.

Emerging defection f⃝ When the cooperative branch reaches its local maximum of 𝜇𝑖,
a defective branch emerges out of the neutral branch containing only a few defectors
per generation that evolves increasingly low 𝜇𝑖 until its sudden collapse. This dynamics
regime happens on comparably long time scales, lasting around 𝑡 = 105 time steps or
approximately 4 × 104 generations. If we look closely at the 𝑝𝑠 distribution directly after
the transition, we see a small branch emerging from low probabilities near 𝑝𝑠 ≈ 0 to high
ones near 𝑝𝑠 ≈ 1 in just a few generations. These agents are the emerging defectors as
data inspection reveals. A few defectors can successfully survive from synergistic resources
alone by exploiting the cooperators. The population contains enough high-investment
cooperators to cope with the destructed goods and to remain stable. However, multiple
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defectors harm each other through resource destruction, effectively decreasing the resource
gain from grabbing resources and keep the number of defectors as a result low. A defector
with lower investment outcompetes a defector with comparably higher investments because
it grabs comparably more resources, thereby increasing its personal payoff and competitive
advantage. Selection happens for evermore defective agents within the defective branch.
Eventually, the defectors get so exploitative that the cooperators cannot sustain them
and themselves anymore, resulting in a collapse of both the cooperative and the defective
branch. The defectors do not grab enough resources to survive on their own but require
the aid of cooperators to survive.
When we look at the mean link addition cost, we observe a branch of rising values
reaching average costs of 1, which widens its distribution with increasing times. Indeed,
we can identify this subpattern as belonging to the defective branch. The defectors have
enough resources to invest in link addition, which usually profits them because their
destructed goods are shared, and they can keep their individual profit (see creating bads in
section 4.2.2.2). In the mean link removal costs, we see that the agents, in general, remove
links. A subset of agents even removes more than one links per time step on average.
Link removal costs grow over time in the upper extreme reaching up to 10 links removed
per time step on average for single agents directly before the collapse of the dynamics
regime. What we observe is that agents optimize their social environment. Especially
high-achieving cooperators invest a lot of resources in removing links, thus, optimizing their
social environment to counteract the pressure from the emerging defectors. In summary, in
this dynamical phase, the cooperators can sustain a small group of self-limiting defectors
over a long time until the latter eventually cause a collapse of both cooperation and
defection through their exploitation. Defection emerges naturally if stable cooperation
exists.

Collapsed population resembles intial population g⃝ Directly after the collapse of the
cooperative and defective branches, the population resembles the initial population in all
key traits. Agents do not interact but slowly start growing positive investments. Linking
does not happen frequently; There is no link removal and minimal link addition. Agents
rely entirely on the basic resource and start evolving anew, as they did at the beginning
of the simulation.

More frequent interactions h⃝ As before, agents quickly evolve more frequent interacts
for synergistic resource extraction, 𝑝𝑠 ≈ 0.3. However, they cannot yet live from synergistic
resources alone. The expected investments 𝜇𝑖 slowly evolve higher values. As soon as a
few agents reach a threshold of 𝜇𝑖, the transition to the next dynamical phase happens via
a bifurcation into one cooperative and one neutral branch. Qualitatively, we observe the
same dynamical phase as previously when interactions became more frequent. However,
there are a few differences. Here, only approximately half the number of agents until
the next following transition happens; thus, it lasts only half as long. On average, the
spread and the mean of 𝜇𝑖 are lower. And a few agents already start to remove links,
which does not happen previously. We observe structurally the same dynamics pattern,
however, with differences in the specific realizations. The distribution of all agent traits is
different compared to the initial population because the (linking) traits already evolved
and self-organized once. In contrast, they were artificially set at the beginning. We
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can expect these historical remnants to have an impact on the exact realization. We
see structurally similar, recurring dynamics patterns that transition to other dynamics
regimes when the system-defining states and traits reach threshold values.

Cooperative population i⃝ The last observable dynamics regime is a metastable coexis-
tence of a cooperative and a neutral branch. In contrast to the earlier cooperative dynamics
regimes, here, we observe fewer cooperators but with higher expected investments, 𝜇𝑖 ≈ 10.
Now and then, small groups of defectors emerge with similar characteristics as for the
previous dynamics regime of the emerging defective branch; the probability of synergistic
resource extraction 𝑝𝑠 and the mean link addition costs both increase for the emerging
defector subpopulation. However, within the observable time, the defective branches all
die out eventually. They do not evolve highly negative expected investments. In general,
we observe a state of coexisting cooperators and neutral agents with frequent unstable
emergence of defectors.

Overall observations and results Overall, we observe multiple qualitatively different
dynamics regimes that are metastable on varying time scales. However, none of the
evolved strategies is safe from the invasion of an eventually evolving defective strategy.
Only for the last cooperative dynamical phase can we not yet make a statement. However,
in section 6.3.3, we will see that it will eventually collapse, too. Often, transitions from
one dynamical phase into another one are triggered by sudden population collapses. These
collapses are the result of exceeded thresholds making it impossible for agents to survive
with the extracted resources. Such Exceeded thresholds can easily trigger a death cascade
because cooperators rely on each other to extract enough resources to survive. They
are self-supportive. As soon as key positions in the self-organized network break down,
it could lead to the sudden cascaded death of many cooperators. Further, within the
observed dynamical phases, defectors could not survive on their own because someone
else needs to pay for the destructed goods such that enough profits remain for them to
survive. Therefore, a collapse of cooperation can lead to a cascaded collapse of defection,
too. The latter would only be preventable if defectors would have low enough investments
such that their personal benefit outweighs the loss due to the destructed goods. Indeed,
as we will see in section 6.3.3, such a scenario also happens occasionally. The simulation
results show that transitions rarely happen, typically only after hundreds or thousands
of generations. Between those transitions, the dynamical phases are metastable. The
scarcity of the transitions implies that they require specific microscopic configurations
that first must evolve and manifest themselves.

6.3.3 Long-term Evolution – Defective Attractor
Until now, we focussed on medium time scales with simulations of around 𝑇 = 5 × 105

time steps with typically ≈ 1.5 × 107 agents and some ten thousand generations. They
predominantly exhibit metastable cooperative strategies with sudden transitions between
regimes. Now, we will shift our focus and look at simulations that run for approximately
two orders of magnitude longer. Figure 6.7 shows the results of a multiverse run with 128
different system realizations (seeds) that differ only in their random number sequence.
The orange line denotes the time 𝑡 = 5 × 105, the typical final time in the previous section.
We observe that the model lives through three consecutive phases denoted with circled
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numbers. The figure also includes a representative single universe run that exemplifies all
three phases (top). In the following, we will explore these phases.

Phase 1⃝: cooperative populations. Let us focus on the middle right plot. The first
phase exhibits, on average, primarily cooperative populations with ̄𝜇𝑖 ≈ 2. We explored
this phase previously in section 6.3.2 and know that it exhibits intricate dynamics with
several different metastable phases on low to medium time scales with sudden transitions
between them. All of the intricacies are hidden within the population-averaged ̄𝜇𝑖 quantity
and its variation. As the orange line indicates the final time of the mentioned section,
we notice that agents can live through many different medium time-scale cooperative
dynamical phases before they eventually transition to the next phase 2⃝. We observe a
single system realization that survives even for more than 1.5 × 107 time steps. Still, no
cooperative population survives on the observed long time scales; Eventually, all leave
their metastable cooperative attractors and transition to a phase of growing defection.

Phase 2⃝: ever growing defection. We see a sudden transition towards an ever more
defective population best seen in the middle left and top subfigures. We can recall that
already in Figure 6.5, we observed for seeds 61 and 133 two such collapses of the cooperative
branch that triggered the evolution towards a growingly defective population. Here, first
of all, we observe that the growing defection phase is metastable over long simulation
times because even after 2 × 107 time steps, the majority of systems (107/128) are still
in it (see bottom subfigure). With increasing time, 𝜇𝑖 decreases its rate of decreasing
values. Thus, the more defective the population becomes, the less evolutionary pressure
the agents experience on average per generation to become even more defective. With
limited available resources, the more defective agents get, the fewer defectors can survive
with their strategy within one generation. More defective agents grab larger individual
amounts leaving less for others. If the number of defectors per generation shrinks, the rate
of the 𝜇𝑖 decrease within the top trait-space-based subfigure decreases. For now, we have
mainly described macroscopic observations gained from the 128 system realizations. In
order to explain and interpret them adequately, we need to explore the microscopic system
constellation in more detail and look at more observables. Below in section 6.3.3.1, we will
do so while focussing on what triggers the transition from a cooperative population state
to an ever more defective one. Despite the long-term metastability of phase 2⃝, several
systems (21/128) eventually collapse to phase 3⃝ exhibiting a defective attractor. We could
suspect that for longer simulation times, most, if not all simulations, showing ever more
defection to collapse into a phase of moderate defection. As we learned so far, in ReCooDy,
transitions seem to depend on specific system constellations exceedings thresholds, which
irreversibly change the dynamics. Therefore, we could expect an eventual collapse of an
increasingly defective population, even if it takes a lot of time because it already happened
in several realizations.

Phase 3⃝: defective attractor A moderately defective population characterizes the
last phase within the observed time frame, reached by 21 of the 128 model realizations.
On average, populations exhibit a mean expected investment of ̄𝜇𝑖 ≈ −5.5, which is
moderately defective compared to phase 2⃝. The value remains approximately constant
with fluctuations of roughly ±1 but no noticeable overall direction. Even more, we do not
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Figure 6.7: Long-term evolution for a synergy factor 𝑟 = 1.4. The top shows the trait
evolution plot of the expected investment 𝜇𝑖 for a single example system
realization run for 𝑇 = 107 time steps. It has 1000(500) bins in the x(y)
direction with counts higher than 103 shown in yellow. The middle and bottom
rows show simulation results of 128 system realizations through varying seed.
It shows the time evolution of the mean expected investment ̄𝜇𝑖 in the entire
value range (middle left) and zoomed (middle right). Each line represents
one universe run. The bottom shows the final mean expected investment ̄𝜇𝑇

𝑖
distribution. The orange line marks 𝑡 = 5 × 105, the simulation time used
previously (Figure 6.5). The red lines mark the transitions in the example runs.
There are three regimes: 1⃝ Cooperative populations that 2⃝ eventually become
hugely defective before 3⃝ collapsing into a regime of moderate defection. All
initially cooperative populations die out on the visible time-scale, but only
part of the extremely defective populations collapse into moderate defective
populations (bottom). These transitions are highly improbable events with a
huge impact. No moderately defective population evolves cooperation anew.
See the caption in Figure 6.1 for the explanation of a trait evolution plot.
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6 Evolution of Cooperation and Defection

observe any following phase, i.e., on the simulated time frame, the moderately defective
system attractor is stable. If we zoom even further into the middle right subfigure showing
3⃝ we notice that this phase is predominantly reached as a result of the collapse of phase
2⃝ and rarely preceded by phase 1⃝. In section 6.3.3.2, we will take a single simulation
run to explore this last transition, what causes it, and how we can explain and interpret
the observations.

We could suspect observing even more phases for longer simulation times, but at this
point, we are limited by computational resources. Further, we would probably need to
reach at least one order of magnitude higher simulation times, increase the number of
simulations, or both. I did not observe a single simulation that showed another sequentially
reached system attractor, and the agents’ traits do not change significantly within the
last phase (see also section 6.3.3.2). Therefore, we may classify the moderately defective
system attractor as the final reached phase.

We notice that cooperative populations survive only on medium time scales but never
for the observed 128 system realizations in the long run. Even more, cooperation never
reemerges from the final moderately defective system state in contrast to the previ-
ous dynamical phase for which cooperation frequently reemerged after its collapse (see
section 6.3.2).

6.3.3.1 Trigger Towards Growing Defection

What triggers the first transition towards a phase of ever more defective populations – the
transition between phase 1⃝ and 2⃝ in Figure 6.7? This transition typically shows similar
characteristics when looking at different system realizations (see Figure A.7). Therefore,
I focus on a single representative simulation run in the following to understand what
triggers the transition towards defection in detail. Figure 6.8 shows, from top left to
bottom right, the trait evolution plots of the expected investment 𝜇𝑖, the final age 𝐴,
the lifetime accumulated costs for link removal, the lifetime accumulated cost for link
addition, the probability to add local links, the global link addition mode, the local link
addition mode, and the link removal mode at the transition point. All subfigures belong
to the same simulation with seed 61. As before, color encodes local state density from low
(purple) to high (yellow); The color scale is logarithmic for the accumulated quantities,
and the age with values higher than 103 shown in yellow. Color scales linearly for the rest
with bin counts larger than 30 (𝜇𝑖), 2 × 103 (for both link addition modes), or 103 (for
the link removal mode) shown in yellow.

We first note that the collapse of cooperation and the transition towards growing
defection actually happens in two sharp transitions, which are shown as vertical dark red
lines. Let us first focus on the first transition, the sudden collapse of the cooperator branch
with a surviving defector branch, as we can see in the upper left expected investment
evolution plot. With the collapse, the defective branch becomes yellowish, meaning that
the local defector density increases and, therefore, the number of defectors increases.
In more detail, both the number of agents with defective investments 𝑖 increases and
the number of agents with high probabilities to synergistically interact 𝑝𝑠. This sudden
collapse of cooperation is followed by a short phase of rising expected investments, which
quickly turns into a first rather unsteady state of shrinking 𝜇𝑖.

We can see that the agents’ age distribution changes drastically with a collapsing
cooperative branch (top right). At cooperative times, the vast majority of agents die after
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6.3 Transition Regime

Figure 6.8: Trait evolution plots of the most important quantities that show the transition
into growing defection. It happens in two main steps (red lines) that both
significantly alter agent traits and the population structure. The simulation
ran for 𝑇 = 5 × 105 steps. Figure A.8 complements this figure by showing the
mean link addition and removal costs and the agents’ accumulated number of
links. See the caption in Figure 6.1 for the explanation of a trait evolution
plot.
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one or two time steps already—recalling the logarithmically color-coded local density.
Thus, most agents born into the cooperative environment do not survive even for a few time
steps; The phase is highly competitive. However, a few highly successful agents outlive
most by up to two orders of magnitude. The situation changes at defective times. Here,
most agents live approximately one order of magnitude longer (order of 10 time steps).
Most survive the first few time steps with their initial resources. A few agents still outlive
the absolute majority of others, but they do so for less time compared to the previous
cooperative phase. If we recall the interaction properties (see section 4.2.2), we recognize
the manifestation of the high-risk, high-reward nature of cooperation. Cooperation is
a successful strategy only if others cooperate and the population structure promotes
cooperation. If agents are born into a competitive social environment, having to invest
resources in order to have the possibility to receive a payoff can result in immediate
exhaustion and death, especially due to limited resources that are shared among successful
agents only. Agents that live longer potentially have developed better tailored social
environments, have already accumulated resources, and can survive better.

In contrast, defection can be beneficial for an individual as long as enough resources
are available in the environment that can be extracted by multiple agents and if defectors
have more cooperative neighbors that pay for the destructed goods. Especially at an
early age, defection is the less risky strategy. Defective offspring do not experience a
direct resource dissipation caused by positive investments. Rather, grabbing resources via
negative investments comes with the potential immediate payoff that usually outweighs
the destructed resource cost because the latter is shared at least with the parent (see also
section 5.5). Here, we see that bads are shared, and profits are taken.

The individual resource dissipation via destructed resources caused by an agent’s
destruction gets even smaller for the agent if it has more links. Although, this comes with
a potential pitfall because if the agent links to comparably more defective agents, it will
need to pay the resource cost caused by their destruction. Also, the agent needs to pay a
one-time cost for each link. Thus, for the transition towards defection to be stable, the
benefit of grabbing resources needs to outweigh the costs of link formation. Translated to
the observed quantities, this means that the expected investment needs to reach a negative
threshold to allow for the defective branch to take off, which explains why, for different
seeds, the observed transition always happens roughly in the same range of −15 < 𝜇𝑖 − 20
(see the upper left figure in Figure 6.8 and more examples in Figure A.7).

If we shift our focus to the linking process, we observe that after the collapse of
cooperation, agents add more links and stop removing links. The second row of Figure 6.8
shows the agents’ accumulated costs for adding (left) and removing (right) links. Figure A.8
additionally shows the corresponding lifetime-averaged costs. Let us first focus on the
first transition marked by the first vertical red line. For link addition, we observe that
most agents spend only a few resources to add links before the transition, whereas a
few agents spend a vast amount. When we look at how agents determine their linking
partners, i.e. their link modes for global and local linking with weighted counts to
account for the probability to either create local links 𝑝𝑙 or global links 𝑝𝑔 per time step
(see section 4.4), we see that they target local links to agents with high probabilities
of extracting synergistic resources 𝑝𝑠. Most agents with high 𝑝𝑠 are cooperators but
some are also defectors, the ones on the defective branch. Directly before the collapse of
cooperation, we see a change in their local link addition preferences (3rd row, left): Agents
start to choose their targets at random instead of based on high 𝑝𝑠. This trait change
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decreases the probability to target more cooperative agents because the chance increases
to link to non-interacting agents, reducing the number of effective interaction partners.
We can expect two consequences: First, cooperators are less likely to get exploited by
defectors and second, cooperators support each other less. Both effects are enhanced
because with an ever more defective branch, the cooperative branch also decreases and
gets less populated due to a changed distribution of the limited resources (recall results
from section 6.3.1). With the observations so far, we can extract a potential explanation
for the collapse of cooperation: The cooperators’ increased risk to get exploited triggers
the decline of the 𝑝𝑠 link addition mode because it evades the increasingly defective agents.
However, the support between cooperator also diminishes as a result resulting in the
eventual cascaded death of cooperators if a threshold is exceeded.

Also, after the first transition, agents that add local links, i.e., do not have “none” link
addition mode choose their linking targets predominantly at random. Others start adding
global links to targets with many resources (3rd row, right). As a counterreaction, a few
agents cut a lot of links within their lifetime (2nd row, right), thereby focusing on cutting
links to agents with low investment (4th row).

As the agents die out that remove a lot of links from low-investment others, the second
transition happens (right red line), triggering a more steady evolution towards more and
more defection. The expected investment evolves more steadily towards negative values
(top left), the age distribution shifts to many more agents dying at just a few time steps
approximately after their initial resources exhaust (top right), and the linking structure
changes radically (bottom three rows). Apparently, a more hostile environment emerges
for agents to live in, in which the initial resources can safely sustain agents for less time
(3 steps instead of ≈ 5 as in the intermediate regime), but then instantaneously results
in the death of the vast majority of agents (see 1st row, right and recall the logarithmic
color-scaling). If we focus on the link addition and removal we see that nearly all agents
stop removing links (see 4th row and 2nd row, right) with just a few agents left removing
many links per time step (better seen in the normalized mean link removal costs in
Figure A.8). Agents predominantly add links locally to agents on vertices with the most
goods or rather the lowest bads. As expected, they try to avoid vertices, in which they
would need to pay higher shares of destructed goods and try to link to vertices with
fewer destructed goods. Another subset of agents connects globally to agents with high
investments. In a defective regime, these are agents that grab fewer resources, thus,
destruct fewer goods. For a defective agent that adds a link, the agent with the highest
investment will destroy fewer goods in the interactions. However, the proportion of agents
linking to the globally highest investment agent is comparatively small. If it gets too
large, the target agent will rapidly die of exhaustion because it needs to pay for all the
destructed goods from the incoming agents and additionally for removing links. If an
agent creates a link to another agent that quickly dies of exhaustion, the cost paid for link
addition will not yield a profit. Therefore, the source agents will no longer have a positive
return from this linking strategy, which makes the strategy unattractive for many agents.
This self-regulatory mechanism could explain the moderate density of agents globally
linking to agents with the highest investments.

Indeed, in summary, the average number of links increases, and the most connected
agents get even more links (see the number of total links evolution in Figure A.8). Defectors
only profit from defection if others pay for their destruction. Therefore, defectors have
an incentive to create links. As we already observed, they surpassed the threshold for
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them to survive from synergistic resources alone. Within a connected network of defectors,
more defective agents will be more successful in the evolutionary system as they can grab
more resources and partition more of their destructed goods than less defective agents.

Earlier in Figure 6.7, we have seen that the regime of rising defection remains metastable
over long times reaching highly negative expected investments of 𝜇𝑖 ≈ −800 in this specific
simulation. How does such a situation look microscopically? Let us, for simplicity, focus
on the extreme monopoly-like case, in which a single agent grabs all available resources
within a time step. All connected agents share the costs of the synergistically destroyed
resources and cannot take any resources themselves because nothing is left, whereas the
most defective agents gain an enormous amount of resources. Let us say that this agent
gains 800 resource units in one time step. In the given parameter setting and with these
resources, it can theoretically survive for 8, 000 time steps, create or delete 800 links, or
have 800/7 ≈ 114 offsprings. Thus, a single win in the interactions could be enough to
sustain the agent a whole lifetime, creating many defective offsprings. Even more, being
successful requires changes in the population structure to become unsuccessful the next
time. Further, the more offspring an agent generates and the more connections the agent
generates, the lower its individual cost for the destructed resources.

Still, the phase of rising defection eventually collapses into the final state of infrequent
defection. In the following, we will explore its transition.

6.3.3.2 Eventual Collapse into Infrequent Defection

Let us explore what happens at the transition at which the ever more defective population
collapses into a phase of moderate defection. Figure 6.9 shows the simulation results
for one system realization that eventually collapses and zoom into the relevant part. It
shows the trait evolution plot of the expected investment 𝜇𝑖 (top left), the probability of
extracting synergistic resources 𝑝𝑠 (top right), the investment 𝑖 (middle left), the expected
strength 𝜇𝑠 (middle right), and the mean link addition and removal costs averaged over an
agent’s lifetime (bottom left and right). The corresponding complete effective investment
evolution is visualized in Figure 6.7 (top). We observe that the transition happens in two
separate steps, as indicated by the dark red vertical lines that determine three distinct
dynamical phases.

First transition Before the first transition, we observe a steady decrease of the expected
investment 𝜇𝑖 within the defective branch. Inspection of the whole preceding range
reveals that not only the values of the investment but also the density of 𝑝𝑠 decrease
continuously. Thus, fewer agents interact but are more and more defective, meaning that
fewer agents share the extracted synergistic resources, which makes the system more
unstable. Moreover, we see that agents invest their resources in adding and removing
links to optimize their social environment to partition their created bads better. In
section 6.3.3.1, we already inspected this regime at an early phase.
Directly after the first transition (left vertical red line), we see that the local defector
density decreases significantly, and the local density of agents with 𝑝𝑠 ≈ 0 increases
substantially. The surviving defectors stop removing links but still invest their resources
to add links, even though a lot fewer agents do so. The defectors evolve expected strengths
𝜇𝑠 > 1 reaching up to 𝜇𝑠 ≈ 9. It is astonishing because the maximal return agents receive
from basic resource extraction is 𝑗𝑏 = 1, leaving them with a net loss of resources each
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Figure 6.9: Trait evolution plots of the most important quantities showing the final collapse
of growing defection into moderate defection. It has 500 bins in each dimension,
except for the bottom two rows with 100 bins in y-direction. The transition
happens in two stages (red lines) that significantly alter the agents’ traits. The
entire simulation ran for 𝑇 = 107 steps. It is the same as in Figure 6.7 (top).
See the caption in Figure 6.1 for the explanation of a trait evolution plot.
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time they extract basic resources. Even more, if they do not extract basic resources, they
still have to pay a cost 𝑐𝑠 for their strength. Even though they win each time against
their direct competition for these resources, they have guaranteed losses. This setting is
metastable for approximately 5 × 107 agents or roughly 5 × 104 generations. Nevertheless,
it eventually collapses in an instant event.
A possible explanation of these observations is as follows: At the point where the transition
happens, around 𝜇𝑖 ≈ 700, only one agent gets to extract all the synergistic resources
within one time step because the sum of created bads and actively grabbed resources
exceeds the available resource amount 𝒜𝑠. The lower 𝜇𝑖 evolves, the more resources
a single agent receives, further increasing the resource gap between the one successful
agent within a time step and its neighbors that have to pay for the additionally destroyed
resources. The successful agent will eventually, with a probability of 0.5, create a more
defective offspring. The parent potentially will have less success than some offspring,
depending on the exact local network configuration, leaving it empty-handed. With the
accumulated resources from the previous success, the parent can survive and pay for the
bads created by its offspring for some time. Still, the probability for a crucial part of
the network to collapse increases with the increasing success gap between successful and
unsuccessful agents, too. The death of a few crucial agents at key positions in the network
could result in a cascade of deaths because fewer agents have to pay for the destructed
goods.
The few defective agents evolve a completely unreasonable strategy of exceedingly high
𝜇𝑠 that lets them outcompete most others on rare occasions, in which they extract basic
resources but leaves them with a guaranteed net loss of resources. Their high success in
synergistic extraction lets them spend unreasonable amounts on optimizing basic resource
extraction, too. They receive so many resources in the synergistic extraction that they
can evolve unnecessary and unreasonable resource spendings without crucial implications.
Nevertheless, the increased spendings without return eventually lead to an instantaneous
collapse of the defective branch.

Collapse into the final defective attractor The right vertical red line in Figure 6.9
indicates the last transition; the collapse of the frequently interacting defectors branch
as previously observed for several simulation runs in Figure 6.7. The mean expected
investment stays constant at around ̄𝜇𝑖 ≈ −5.5, the probability of extracting synergistic
resources is predominantly around 𝑝𝑠 ≈ 0 and the investment trait 𝑖 stays constant over
time around 𝑖 ≈ −104. After the transition, the expected strength 𝜇𝑠 stays slightly below
1 again, which does not anymore create an inevitable net resource loss as before the
transition. Agents have low mean link addition and removal costs; they do not invest in
changing the network structure.
Overall, we see that the coexistence of strategies breaks together. Agents are not specialized
either in basic or synergistic resources anymore. Instead, all of them predominantly extract
basic resources and only infrequently extract synergistic ones. The investment does not
change anymore. Therefore, there is a mechanism counteracting the pressure of evolving
ever more defection. For such highly negative investments, the individual agents reach
the limit of available resources per time, here 𝒜𝑠 = 103. Only a few agents indeed receive
resources if a single agent tries to extract in the order of a tenth the total amount. That
agent will also produce collateral damage through negative synergies for which others
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need to pay. If no other agent pays for the destructed resources, the extracting agents
will indeed have a net loss of resources. Defectors need others to pay for the destructed
goods, but only a few defectors extract vast amounts of resources. Therefore, the final
attractor contains the minimal set of defectors that can successfully extract resources in
their infrequent attempts. Below, in dynamical phase 3⃝ of section 6.4.2, we will look at
the final defective attractor in higher synergy regimes in more detail by using the evolved
traits to estimate the number of successful agents and roughly quantify this regime.

Interestingly, we already encountered a setting in which agents evolve not to interact in
order to avoid vital dependency on the interaction outcome for minute synergies (𝑟 = 1.01),
which we explored in the first results (section 6.2). In both regimes, they cannot survive
from the extracted synergistic resources alone. For low synergy factors, the amount of
created goods is not enough, while here, the population evolved into a hostile defective
state, from which it cannot evolve away without external changes, effectively not allowing
for a vital dependency on synergistic resources.

6.3.4 Summary and Discussion

The transition regime, especially in the regime 1.2 ≤ 𝑟 ≤ 1.5, which we focussed on,
exhibits rich phenomenology with diverse dynamics, strategy coexistence, various strategy
bifurcations, and a final defective attractor in the long-term evolution. Only changing the
sequence of random numbers can significantly alter the system’s trajectory. However, the
population self-organizes into structurally similar dynamical phases that emerge and are
metastable on time scales typically ranging from some 10 up to some 104 generations in
the initial dynamical phase and to 106 for the long-term increasingly defective metastable
state. Typically, agents specialize either in basic or synergistic resource extraction resulting
in the emergence and metastable coexistence of at least two distinct strategies. Usually,
the majority of agents specialize in basic resources. However, cooperation emerges within
a subset of the population. Initially, cooperators infrequently interact. Thus, they are not
yet crucially dependent on the outcomes of the interactions. Evolution selects for more
cooperative agents, and as soon as the cooperative agents receive enough resources as a
result of their interactions, they start to rely on and specialize in the synergistic resources
entirely. Frequent cooperation emerges as a strategy, and agents self-organize either into
cooperators or loners. Here, accessing a formerly inaccessible resource drives the evolution
of cooperation and elevates the system’s carrying capacity such that more agents live
communally.

Once cooperation evolves, defection becomes profitable and emerges naturally as a
response because there are cooperators to exploit that evolved to vitally depend on the
interactions. Frequently, defector emerge but cannot survive because they harm each
other, and cooperator can evolve defense mechanisms. Still, at times defection emerges
with ever more defective agents evolving over generations. They need to evolve ever
more defective strategies to remain competitive against other defectors in a Red Queen
dynamics2. However, defection is a self-harming strategy because it creates defective,

2van Valen (1973) introduced the Red Queen hypothesis in the context of coevolving species that mutually
deteriorate the others’ fitness. He was inspired by what the Red Queen said to Alice in wonderland in
the inspiring book Through the Looking-Glass, and What Alice Found There by Lewis Carroll (1871):
“Now, here, you see, it takes all the running you can do, to keep in the same place.” In this thesis, I use
the qualitative concept behind the Red Queen’s statement: A replicator’s necessity to constantly adapt
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thus, harmful offspring from the parent’s perspective (see section 5.5). Therefore, the
Red Queen dynamics eventually leads to a collapse of either all defectors, all defectors
and all cooperators, or all cooperators. The first is most frequent and does not have a
great impact on the entire population dynamics. The second occasionally happens and
leads to a new starting dynamical phase, usually of emerging cooperation, thus driving
the observed recurring dynamics cycles. The last happens rarely but has a tremendous
impact as it shapes a different future. Defectors can only survive on their own without
cooperators if they evolve low-enough investments, i.e., if they grab enough resources to
sustain themselves and outweigh the resource losses caused by destructed goods. Once
there are only defectors without cooperators, they need to evolve ever more defection to
outcompete the other defectors. The Red Queen drives the dynamics. Cooperation cannot
reemerge in such a hostile population because cooperators would easily get exploited.

A collapse typically happens shortly after agents change their linking behavior. Two
examples, that we have observed, are agents that evolved to preferably add local links to
interacting agents or to remove links to low-investment agents. Both changes in linking
strategy introduce a preference in their linking action that targets a small subset of agent
strategies disproportionally. Both aim at selfishly optimizing an agent’s payoffs from
the interactions. However, such selfish optimizations target more cooperative agents
that are forced to spend a lot of resources on removing links and also on the more
defective neighborhood. Eventually, these selfish optimizations result in cooperators being
overwhelmed and dying out. cooperators support each other. Once a critical number of
connected cooperators dies out, a cascade of deaths can be triggered as their self-support
collapses.

From a different perspective, within the dynamical phase in which the system flourished
with stable cooperation and four times the number of agents compared to previous times,
agents preferably add links to random global neighbors because random linking is the only
introduced linking mechanism that does not inhere a linking preference. Thus, it creates
less network heterogeneity. It contradicts the simulation results of Santos et al. (2008)
who found that heterogeneity in static networks promotes the evolution of cooperation,
however, is in agreement with behavioral psychology experiments, which mostly indicate
that heterogeneous networks do not promote cooperation in human interactions (see
section 2.1.4). Moreover, the observation that random linking increases cooperation
contrasts the findings of the model from Akçay (2018), who found that random relocations
of links hinder the emergence of cooperation as random global linking increases the
well-mixedness of the system compared to local linking. The results obtained here indicate
that if the alternative to random linking is preferential linking with the risk of exhausting
target agents, random global linking can benefit the evolution of cooperation.

In the very long-term evolution, defectors experience a final transition into infrequent
defection, which, however, happened only for several systems (21/128) on the observed
time frame. In these situations, agents evolve minimal interaction probabilities, thus,
mainly rely on basic resource extraction instead of synergistic ones. The risk of relying on
synergistic resources alone significantly grows as the available resource amount has to be
shared among only a few agents each time. All other interacting defectors have to pay for
the collateral damage without receiving a profit. defectors need others to pay for their
destruction. Eventually, defectors evolved infrequent extraction of synergistic resources.

in an ever-changing biotic and abiotic environment in order to “keep in the same place”.
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This state of infrequent defection appears to be an attractive system state from which
agents apparently cannot evolve away.

The actual trigger of this last transition showed agents evolving a “stupid” strategy that
yields guaranteed losses during basic resource extraction. As we looked at one specific
simulation run, we observed highly defective agents that rarely extract basic resources
evolving extremely high expected strengths up to 8 times their maximal resource gain.
Thus, each time they extract basic resources, they outcompete others but will never profit
from them. Instead, they waste resources. They can evolve such high strength because
these defectors gain vast amounts of resources from the synergistic resource extraction
that allows them to spend otherwise not used resources also on invading agents competing
for basic resources. Nevertheless, the additional resource losses harm them in the long
run and eventually trigger the collapse of the frequently interacting defective agents.

More generally, in the transition regime, we typically observe instantaneous collapse
events, which raises the question of their origin. By construction, ReCooDy contains
several thresholds such as for birth, death, or all linking (see chapter 4). Also, the linking
mechanism is modeled in a simple form as agents always choose the best-suited target
with respect to a given trait or state. Errors do not occur. Thus, single agents can
become targets of many, which can result in quickly exceeded thresholds. Furthermore,
the outcome of the interactions crucially depends on the actions of others. Thus, combined
with the mentioned thresholds, we can expect cascades of agents exceeding thresholds
that can result in the death of many. ReCooDy is a threshold system in which highly
improbable events can trigger radical reorganization, as observed in the simulations.

The simulation results also show the general relevance of history. Formerly attractive
system states can be left irrevocably, as the long-term evolution shows. Even more, we
observe the system reaching a final attractive state, from which it cannot escape.

We cannot exactly predict when a transition between dynamical phases happens nor
which dynamical phase will be reached after the transition. Still, we observe a set of
possible dynamical structures and typical time horizons for the individual phases. These
are typical qualitative properties of chaotic and complex systems3.

Furthermore, the simulation results show that most offspring die immediately during co-
operative dynamical phases, while during more defective dynamical phases, most offspring
survive for longer times. What we already anticipated in the analytical considerations
in section 5.5 turns out to be observable in the simulations: Cooperative parents profit
because their offspring effectively pays for the investment creating the parents’ benefit. In
contrast, when defectors create offspring, the parent effectively pays for most of the off-
spring’s destruction while the offspring profits. By construction of the gPGG on networks,
cooperators act selfishly towards their offspring, while defectors act selflessly towards their
offspring, which reveals yet another facet of the social dilemma.

3See (Strogatz 2014) for an excellent introduction to chaos theory.
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6.4 High Synergy Regime
In this section, we will extend the previously investigated range of synergy factors to
higher values. Thus, we concentrate on interactions that generate a lot of synergies while
keeping all other model parameters constant as in the previous sections. Figure 6.10 shows
simulation results of 512 seeds for 17 different synergy factors in the range 2 < 𝑟 < 10,
which we will describe, interpret, and explain in the following. It shows the mean expected
investment ̄𝜇𝑖 time evolution and its final distribution after 𝑇 = 105 time steps for different
synergy factors 𝑟. It naturally extends the synergy factor range investigated previously in
Figure 6.2 and Figure 6.4.

Cooperation emerges, defection as well. We observe that for all synergy factors, posi-
tive mean expected investments ̄𝜇𝑖 evolve immediately. However, the general time evolution
is qualitatively different for 𝑟 = 2 than for 𝑟 > 2. It belongs to the dynamical regime
previously observed and described in Figure 6.4 and is included here for comparison. For
𝑟 = 2, we observe ̄𝜇𝑖 ≈ 1.8 after the initial phase, which does not change significantly
with increasing time. For 𝑟 > 2, simulations rapidly reach positive ̄𝜇𝑖 and from there
slowly but steadily increase further during the first 105 time steps. However, the variance
of ̄𝜇𝑖 increases, and eventually, ̄𝜇𝑖 starts decreasing again on average, reaching values
approximately half as high as for 𝑟 = 2. For 𝑟 = 10, we see only a slowly increasing
tendency without the decrease. If we focus on the final distributions at time 𝑇 = 5 × 105

(right) we observe that for each synergy factor, the majority of simulations reach positive
values within 0 < ̄𝜇𝑇

𝑖 < 2. However, for all synergy factors 𝑟 > 2, we also see several
simulations with negative ̄𝜇𝑇

𝑖 separated through a gap from the on average positive values.
Further, there are a few outlier simulations for some synergy factors with extremely
high ̄𝜇𝑇

𝑖 as indicated by the violinplots and clearly shown in Figure A.9. All of these
observations indicate that, as in the previous transition regime in section 6.3, the system
contains different dynamical attractors such that a changed sequence of random numbers
can lead to significantly different system realizations. On the observed time frame, most
model realizations show, on average, cooperative populations, a few exhibit extreme
magnitude of cooperation, and some show defective populations. We cannot explain the
observed dynamical regimes only from these averaged observable. Instead, we need to
explore the microscopic system realization again, which we will do in section 6.4.1 for the
representative 𝑟 = 3 case.

More synergy comes with less mean cooperation. With increasing synergy factors 𝑟,
we observe the tendency of lower mean expected investment (see right plot in Figure 6.10).
We see this decrease in the right plot if we follow the bulk of the violin plots indicating the
median of the ̄𝜇𝑇

𝑖 distribution. Of course, the tendency is slight and the measure rough
because, arguably, it does not adequately cope with the underlying intricacy of the system.
Still, it hints at a tendency that we actually could explain using a macroscopic explanation.
The higher 𝑟 is, the higher the shares of goods each agent would theoretically receive
from the same investment. However, a distribution issue arises with the fixed amount
of resources flowing into the system each time step. Either fewer agents receive their
expected resource share, or the same number of agents evolves lower expected investments
to receive effectively the same resource share as in the case of lower synergies. Both
would decrease the population’s mean cooperation, as observed in the figure. Therefore,
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Figure 6.10: Time evolution plot of the mean expected investment ̄𝜇𝑖 (left) and its final
distribution ̄𝜇𝑇

𝑖 at time 𝑇 = 105 (right) for different synergy factors 𝑟 showing
the high synergy regime. On the left, lines represent the mean and their
shaded areas the standard deviation of ̄𝜇𝑖 calculated over simulation runs.
On the right, each dot represents the final population average of a single
system realization (512 per 𝑟). Color encodes rising synergy factors from
low (yellow) to high values (blue). The violin plots in the background show
the kernel density estimates of the distributions. The width of each violin is
scaled according to equal areas. Lines within the violins show the median and
quartiles of the corresponding distribution. The right plot shows a zoomed
value range for ̄𝜇𝑇

𝑖 . Figure A.9 shows the full value range with extreme
outliers. Dead populations are shown as dots at ̄𝜇𝑇

𝑖 = 0.
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6 Evolution of Cooperation and Defection

partitioning the limited resources among fewer and lower investment agents can explain
the tendency of less cooperation for higher synergy factors.

More synergy comes with less severe defection. With increasing synergy factors 𝑟, we
further observe that the final defective populations have comparatively higher values of ̄𝜇𝑇

𝑖 .
Thus, overall defective populations are less defective for higher synergy factors. It again is
a manifestation of the distribution issue. Partitioning the limited resources among fewer
agents with less negative investments can explain the tendency of less extreme defective
populations for higher synergy factors.

6.4.1 Dynamical Phases and their Transitions

Figure 6.11 shows the expected investment 𝜇𝑖 evolution of selection of representative
example simulation runs with 𝑟 = 3 ordered according to their final mean expected
investment ̄𝜇𝑇

𝑖 from low to high values after 𝑇 = 5 × 105 time steps. In the following, we
explore the observed structural patterns.

Rising cooperative branch. First, we notice that all simulations start with a cooperative
branch that emerges and thrives towards higher and higher expected investments 𝜇𝑖
with roughly linear growth. These branches of ever-higher 𝜇𝑖 eventually collapse. In
the example runs, this collapse happens at some realization-specific exceeded threshold
approximately within the range 80 < 𝜇𝑖 < 160. If we recall the analytical considerations
in chapter 5, we recognize that for 𝑟 = 3, the social dilemma is weak in many microscopic
local configurations. Further, the personal benefit of creating cooperative offspring also
increases with 𝑟 (see section 5.5). Therefore, the emergence of cooperation and its evo-
lution towards ever higher 𝜇𝑖 is not surprising because agents indeed benefit from their
investments. With higher investment, the benefit increases, too, making more cooperative
agents more successful than their less investing competitors. Again, we observe Red Queen
dynamics towards increasing 𝜇𝑖. The cooperative branch evolves towards ever higher 𝜇𝑖
while the number of cooperators constantly decreasing. It is in contrast to the previous
transition regime (section 6.3), in which cooperation usually approaches a constant value
of 𝜇𝑖 without growing further. For higher synergies, the cooperative branch collapses
before reaching a perhaps existing but unreachable asymptotic state.
How could we explain the instantaneous collapse of a cooperative branch? Higher invest-
ments result in more goods created for local social environments. However, the amount
of available synergistic resources is limited (𝒜𝑠 = 103), i.e., not all agents indeed receive
a payoff. Therefore, with higher expected investments, fewer agents receive more of the
available goods. However, cooperators rely on the support of each other to create public
goods. After all, goods are only created within a social environment if there are investing
agents. Additionally, less cooperators with higher investments are easier to exploit by
profiteers or exploiters. Thus, the cooperative population evolves towards an increasingly
unstable state, eventually resulting in a collapse of the cooperative branch.
The observations exhibit yet another facet of the social dilemma because due to limited
resources, cooperators can indeed act incredibly selfish, taking all the goods and leaving
nothing for others. We will discuss the implications further in the overall discussion in
chapter 7.
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6.4 High Synergy Regime

Dying populations. Seed 110 in Figure 6.11 exemplifies a simulation run for which the
whole population dies out. As before, we observe an increase in 𝜇𝑖 only that here the
growth rate is roughly an order of magnitude faster than before and that there is no
subpopulation of agents left that specializes in basic resource extraction. All agents quickly
evolve the strategy to specialize in synergistic resource extraction entirely with quickly
growing investments. As explained in the paragraph above, such a rising cooperative
branch eventually collapses. With no other agents left, the entire population dies out.

Highly cooperative populations. In Figure 6.11, seed 111 shows a system realization
for which the whole population evolves high expected investments compared to other
realizations. This simulation represent a positive outlier in the violin plot for 𝑟 = 3 in
Figure 6.10 (more clearly visible in the appendix in Figure A.9). Interestingly, the initial
phase resembles the one for an eventually dying population (see paragraph directly above).
The important difference is that, here, before collapsing, the entire population evolves
minimal probabilities of extracting synergistic resources 𝑝𝑠. We can observe it indirectly
through the suddenly emerging low values of 𝜇𝑖 around agent 105. Inspection of 𝑝𝑠 reveals
it more clearly (not shown). Thus, the population evolves to predominantly extract basic
resources and, therefore, prevents its collapse as seen in seed 110. From there on, a new
cooperative branch emerges. It evolves much faster compared to other simulations because
agents already evolved high investments in their initial phase. The baseline of investments
belonging to the loners does not change significantly over the following time (see also the
evolution of the investment in Figure A.10). There is no strong selection for or against
higher or lower investments for the loners. Thus, the agents’ initial evolutionary phase, in
which they collectively evolved high investments, significantly shapes the course of the
whole simulation further on.

Defective populations. In Figure 6.11, the first row of simulations (seeds 71, 78, and
70) show defective final populations ordered from strongly defective to slightly defective.
At the final phase of the simulations, there is no strategy separation. Instead, the entire
population evolves towards a state of more and more defection. Agents evolve more and
more negative investments while having low synergistic extraction probabilities 𝑝𝑠 ≈ 0, as
revealed by looking at both quantities separately (see Figure A.10 for the former). Thus,
an agent infrequently extracts synergistic resources, but if it does, it grabs many resources
while creating a lot of collateral damage. From another perspective, we may say that if
the agent is occasionally forced to interact with others, being more defective appears to
be the more successful strategy in the evolved population setting.

6.4.2 Long-Term Evolution
Until now, we focussed on the medium-term evolution of ReCooDy in the high synergy
regime. We observed recurring dynamical patterns dominated by either emerging and
eventually collapsing cooperative branches or increasingly defective populations. Here, we
will look at the long-term evolution and investigate how the system unfolds in the long
run and which dynamics pattern predominantly occurs.

Figure 6.12 shows simulation results of 128 different model realizations over 𝑇 = 2 × 107

time steps. We observe that most model realizations evolve through three dynamic
phases in the long run marked by numbers within the figures: They 1⃝ evolve cooperative
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Figure 6.11: Trait evolution plots of the expected investment 𝜇𝑖 for 𝑟 = 3 and varying
random number generator seed that exemplify dynamical phases in the high
synergy regime. Each plot has 900 bins in both dimensions with counts
higher than 200 shown in yellow. The seed ordering follows lowest to highest
final mean expected investment values from top to bottom and left to right.
Each simulation ran for 𝑇 = 5 × 105 simulation steps. The populations with
seeds 71, 78, and 70 show ̄𝜇𝑇

𝑖 < 0, 110 shows ̄𝜇𝑇
𝑖 = 0, and 84, 54, 89, 64,

and 111 show ̄𝜇𝑇
𝑖 > 0. Seed 111 is a positive outlier in the respective violin

in Figure 6.10; Figure A.10 complements this figure by showing the trait
evolution plot of the corresponding investment trait. See the caption in
Figure 6.1 for the explanation of a trait evolution plot.
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6.4 High Synergy Regime

population in the beginning, 2⃝ collapse into a slightly defective population state from
which they can either re-evolve cooperation or 3⃝ transition into a final state of defection.
Figure 6.13 shows the expected investment 𝜇𝑖 and the investment traits 𝑖 evolution for
two example runs. Let us look at each dynamical phase individually in the following.

Phase 1⃝: cooperative populations. All 128 populations initially evolve positive ex-
pected investments ̄𝜇𝑖. They become cooperative from the initial neutral population
state. We already observed this phenomenology for single runs in Figure 6.11 but now for
more system realizations. After the first collapse of the cooperative branch, a few model
realizations reach slightly defective average states ( ̄𝜇𝑖 < 0), which trigger a transition into
the completely defective state (see phase 2⃝ below). However, we see that most model
realizations live through several phases of rising and collapsing cooperation because they
show ̄𝜇𝑖 > 0 over more than 106 time steps. Still, the absolute majority of cooperative
populations transition into defective ones within the first 107 time steps, with most in
the first half. However, after 𝑡 = 1.5 × 107, no system transitions into a defective state
anymore. Within the dynamical phase of rising cooperation, we occasionally observe
outstandingly high spikes of ̄𝜇𝑖 (see 0⃝ in Figure 6.12). These model realizations cor-
respond to the previously observed realizations, in which the entire population evolves
cooperation (see for example seed 111 in Figure 6.11). Now, we observe that these phases
do not necessarily only occur at the beginning of a simulation but can evolve after a
collapsed cooperation event, too. On the observed time scale, 8/128 model realizations
remain on average cooperative until the end of the simulation. We see a slight tendency
that these are model realizations with higher ̄𝜇𝑖 than the cooperative populations that
collapsed within the observed time frame. It indicates that populations that evolved high
investments as a whole during their lifetime, i.e., that lived through spike events (see 0⃝),
are much less likely to reach a negative expected investment threshold that can lead to the
irreversible evolution towards defection (see 2⃝ and 3⃝ below). Instead, these populations
indeed have a higher extinction probability, as we can, for example, see in two simulations
around time 1.5 × 107 that reach ̄𝜇𝑖 = 0. Therefore, on even longer time scales, we could
expect the on average highly cooperative populations to go extinct eventually and not
transition into a defective state.

Phase 2⃝: moderate defection transient This dynamical phase is occasionally reached
after a collapse of the cooperative branch under the precondition that the surviving
population is defective (see bottom left figure in Figure 6.12). Populations reach a
metastable state with ̄𝜇𝑖 ≈ −0.2, which is never reached through consecutive small
mutation steps beforehand but only instantaneously after a collapse of cooperation. Once
a population reaches this moderate defection transient, it stays and only slowly evolves
away on moderate time scales within the order of a few 105 times (2 × 106 agents or
approximately 3 × 103 generations). The system’s trajectory qualitatively behaves as if
on a critical point with slow repulsion. There is no strong selection on the investment
trait. Still, phase 2⃝ is only a transient phase because trajectories eventually leave the
critical point and either evolve cooperation again, which we can see in the trajectories
that evolve towards positive values before quickly shooting up again, or the defective state
of phase 3⃝, which we can observe in the rapidly decreasing ̄𝜇𝑖.
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Figure 6.12: Long-term evolution of the high synergy regime. The time evolution of
the mean expected investment ̄𝜇𝑖 for synergy factor 𝑟 = 3, simulation time
𝑇 = 2 × 107, and 512 different seeds in the entire value range (top left),
zoomed into ̄𝜇𝑖 (top right), and further zoomed into ̄𝜇𝑖 and 𝑡 (bottom left)
together with its final distributions ̄𝜇𝑇

𝑖 (bottom right) are shown. Each
line represents one system realization. The vertical orange line represents
the zoomed time 𝑡 = 5 × 105. Single dots represent ̄𝜇𝑇

𝑖 of a single system
realization with dead populations visualized as ̄𝜇𝑇

𝑖 = 0. The violin in the
background shows the kernel density estimate of the distribution. The plots
show the long-term evolution of the high synergy regime moving from 1⃝
cooperative populations through 2⃝ a metastable population state of defection
either back to a cooperative population or 3⃝ to the final defective attractor
state.
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6.4 High Synergy Regime

Figure 6.13: Example realizations showing the long-term evolution for 𝑟 = 3 with a defec-
tive final attractor (top two rows) and continuously cooperative populations
(bottom two rows) as shown in Figure 6.12. Trait evolution plots of the
respective expected investments 𝜇𝑖 and the investment traits 𝑖 are shown.
Each plot has 1000(500) bins in the x(y) direction with counts higher than
200(2000) shown in yellow for 𝜇𝑖(𝑖). See the caption in Figure 6.1 for the
explanation of a trait evolution plot.
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6 Evolution of Cooperation and Defection

Phase 3⃝: final defective attractor. Eventually, the absolute majority of simulation
runs end in a seemingly stable state of defection, as we can see in the final ̄𝜇𝑇

𝑖 distribution
(bottom right and upper right plots in Figure 6.12). The mean expected investment
remains around ̄𝜇𝑖 ≈ −4.5 until the end of the simulation. Indeed, as seen in the single
system realizations, the probability of synergistic resource extraction resources is minimal.
Inspection of the data reveals that ̄𝑝𝑠 ≈ 0.05 and that the investment reaches the highly
negative value of ̄𝑖 ≈ −80. Approximately 𝑁 ≈ 550 agents coexist in this dynamical phase
taking in all of the available synergistic resources 𝒜𝑠 per time step. Using these numbers,
we can develop an intuition of how the system roughly behaves on average within a time
step. At any time during this dynamical phase, 𝑁 ⋅ ̄𝑝𝑠 ≈ 28 agents intend to grab the
synergistic resources. The effective interaction network is minimal. As we know, synergistic
resources are limited (𝒜𝑠 = 103) such that a single defector that actually extracts resources
grabs and destroys a total of |𝑖| + |𝑖| ⋅ 𝑟 ≈ 320 resources (see equation 4.17). Therefore,
approximately only three agents actually receive synergistic resources, and all others do
not get anything but potentially need to pay for the collateral damage if they interacted.
The lower the investment would be, the fewer agents would receive resources; thus, the
fewer agents could survive from the synergistic resource intake. Why does ReCooDy not
evolve a single surviving agent but instead a minimal set of agents? A single defective
agent that extracts synergistic resources on its own will have a net loss in resources because
it needs others to pay for its destruction. With 𝑟 = 3 and using equation 4.15, we notice
that a single separated defector would receive 𝑃𝑣,𝑎 = (𝑟 − 1)𝑖𝑎 = 2𝑖𝑎 < 0. The damage
caused by negative synergies, which exceeds the amount of grabbed resources, thus needs
to be shared with others in order for the defector to be successful. There seems to be a
minimal set of successful defective agents required such that some defectors indeed can
profit from their defective strategy. This argument could explain why the system does not
evolve lower investments but gets trapped in the defective attractor.

Extreme Synergy

Here, we investigate how the model dynamics change if we go to extremely high synergies.
Let us choose the synergy factor of 𝑟 = 10 and explore the model dynamics. From the
analytical considerations in chapter 5, we know that for such high synergy factors, the
social dilemma that the agents’ experience is very weak or even not present at all, especially
because they can evolve to optimize their social environment accordingly. However, the
limited resource distribution dilemma, which we encountered early in this section, increases
because higher synergy factors make individual agents receive huge resource shares, leaving
other agents empty-handed. The individual’s social dilemma is weak, but the competition
for limited resources is strong.

Let us look at simulation results for 𝑟 = 10. Figure 6.14 shows the long-term evolution
of 128 system realizations that differ only in their random number sequence, i.e., the
seed. it contains the mean expected investment evolution (left) together with its final
distribution (right) and two instructive example expected investment evolutions (middle
and bottom). In Figure 6.10, we already encountered the regime of 𝑟 = 10 on medium
time scales.
The system realizations show that there are two qualitatively distinct trajectories, one
resulting in a cooperative population and one resulting in a defective population on
average. The initial dynamical phase crucially determines which trajectory a model
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realizes. At the beginning of each simulation, the population collectively evolves positive
investments before a cooperative branch emerges. Most agents focus on extracting basic
resources, and only a small fraction of the population interacts to extract synergistic
resources. Similar to 𝑟 = 3, the cooperative branch evolves higher and higher (expected)
investments, eventually resulting in a collapse of the cooperative branch and the death
of all high-investment agents. We again observe a Red Queen dynamics. While the
cooperative branch evolves ever-higher investments, the remaining population exhibits
a tendency to evolve lower investments; thus, the loner subpopulation becomes slightly
more defective in their infrequent interactions. Again as for 𝑟 = 3, the traits of the
surviving population after a collapse are crucial. If the investments are positive, the
population develops ever-higher values, while, if they are negative and low enough, they
evolve negative investments. We recognize that the latter, the evolution of defective
populations, happens qualitatively similar to the 𝑟 = 3 regime; Meanwhile, the former,
the evolution of cooperation, exhibits qualitative differences. We explore both attractors
in the following.

Attractor 1⃝: stable cooperation with final monopolies. For 𝑟 = 10, the population
evolves continuously increasing investments collectively, while the agents’ probability of
extracting synergistic resources 𝑝𝑠 stays roughly constant only slightly above 𝑝𝑠 ≈ 0 (see
Figure A.12). As we can see from the 𝜇𝑖 evolution of the corresponding example realization
(middle row), frequently high investment agents quickly evolve but immediately die out
again. They survive only on short time scales. Therefore, more defective agents do not
have time to evolve and successfully exploit cooperators. Instead, the majority of agents
evolve high investments in the long run but seldomly use them to extract synergistic
resources. They become cooperators that rarely interact and strongly rely on the basic
resources for survival. Still, if they interact, they are hugely cooperative, such that
we observe the on average evolving cooperation. This collective evolution of infrequent
cooperation is stable as no simulations show dying populations, which happens eventually
in the long run for 𝑟 = 3. Instead, all simulations reach a stable final cooperative attractor
around ̄𝜇𝑖 ≈ 20. Inspection of the data reveals that the population consists of 𝑁 ≈ 600
with ̄𝑝𝑠 ≈ 0.02. I.e., on average in this regime, 𝑁 ⋅ ̄𝑝𝑠 ≈ 12 agents intend to extract
𝑁 ⋅ ̄𝜇𝑖 ⋅ 𝑟 ≈ 1.2 × 104 resources per time step. However, there are only 𝒜𝑠 = 103 synergistic
resources available. Therefore, on average, only 1 agent gains all synergistic resources
per time step, and 11 agents invested but do not receive any resources. The successful
agent evolves a monopoly. Increasing the investment further does not yield an advantage
anymore because there is no competition and all resources already get extracted; Hence,
further increasing investments in this situation equals a waste of resources without an
additional gain.

Attractor 2⃝: defective attractor. For 𝑟 = 3, we already explored the long-term stable
defective attractor. Here, qualitatively nothing changes. Still, a minimal set of a few
successful agents is required such that the defective strategy can indeed be successful.

Overall, we observe no population to entirely die in contrast to the findings in 𝑟 = 3.
The system is more stable, even though the distribution dilemma is more extreme for
𝑟 = 10. However, the individual social dilemma is weaker. In general, cooperation emerges
most of the time for the extremely high synergy factor and remains stable throughout

121



6 Evolution of Cooperation and Defection

0.0 0.5 1.0 1.5 2.0
time, t ×107

0

10

20

30

m
ea

n
ex

p.
in

ve
st

m
en

t,
µ̄
i

2©

1©

T = 2.0× 107

time, t

0

5

10

15

20

fin
al

m
ea

n
ex

p.
in

v.
,µ̄

T i

Figure 6.14: Long-term evolution of the extreme high synergy regime of 𝑟 = 10 for 128
different seeds showing 1⃝ the cooperative attractor and 2⃝ the defective
attractor. The time evolution of the mean expected investment ̄𝜇𝑖 (top
left) and its final distribution ̄𝜇𝑇

𝑖 after 𝑇 = 2 × 107 time steps (top right)
with are shown together with trait evolution plots of 𝜇𝑖 that exemplify the
evolution towards the cooperative attractor (middle) and the defective one
(bottom). On the top left, each line represents one system realization. On
the right, each dot represents ̄𝜇𝑇

𝑖 of a single system realization. The violin in
the background shows the kernel density estimate. The middle and bottom
plots contain 1000(500) bins in the x(y) direction each, with counts higher
than 50 shown in yellow. Figure A.12 complements this figure by showing the
trait evolution plot of 𝑝𝑠. See the caption in Figure 6.1 for the explanation
of a trait evolution plot.
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the simulation time. Cooperator branches that eventually result either in the death of
the whole population or in the eventual evolution towards defection do only occur in the
initial phase and have no great impact.

We have seen that in the regime of very high synergy, the system reaches either a
cooperative attractor or a defective one in the long term. Ultimately, only the sequence of
random numbers and the resulting microscopic configurations determine the populations’
evolutionary trajectory, i.e., whether infrequent cooperation or defection evolves.

6.4.3 Summary and Discussion

For high synergies, cooperation always emerges from an initially neutral population but
can eventually trigger a collapse into permanent defection or extinction. High synergy
factors assure that plenty of goods are generated via synergies, in the in detail investigated
cases three times and ten times the value of the initial investment. For such high synergies,
the personal dilemma becomes minimal and can indeed vanish entirely dependent on the
local network configuration (see also the social dilemma section in chapter 5). As a result,
cooperation emerges each time in the observed simulations either within a specialized
subset of the population or collectively within the entire population.

The emerging cooperators show ever-rising expected investments in a Red Queen
dynamics pattern, i.e., they must constantly adapt in the evolutionary setting to survive
and successfully compete against others. With individuals investing increasing amounts of
resources, fewer agents obtain larger shares of the limited synergistic resources. However,
cooperators need other cooperators to be successful and to survive exploitation through
defectors. Cooperation is self-supportive. Thus, with fewer and fewer cooperators being
able to survive, the effective self-support shrinks, making cooperators more vulnerable,
which results in the eventual collapse of cooperation. If the entire population evolves
cooperation as a bulk, this Red Queen dynamics can lead to the complete extinction of the
population if no subpopulation evolves to specialize in basic resources before. However,
if only a subpopulation evolves cooperation, the surviving population of basic resource
extracting agents will reevolve cooperation. The cycle of emerging cooperation with Red
Queen dynamics towards ever higher expected investments until the eventual collapse
starts anew.

Importantly, agents do not actively choose to become ever more cooperative. Instead,
heritable traits determine the behavior, and the evolutionary mechanism selects for high-
investment agents through Red Queen dynamics. In a sense, their biotic and abiotic
environment forces agents to invest more and more, thereby creating an increasingly
hostile environment for themselves and each other to survive.

However, for a synergy factor 𝑟 = 3, the Red Queen dynamics cycles are metastable and
eventually collapse. Even though populations usually re-evolve a cooperative branch if
the surviving population is cooperative, occasionally a defective population survives that
does not re-evolve cooperation. Instead, the system remains on an attractor that exhibits
the characteristic dynamics on a critical point: On medium time scales the population
remains on the trajectory and slowly evolves either more cooperative or defective behavior
as observed in phase 2⃝ in section 6.4.2. If investments slowly decrease at the beginning,
eventually, the system trajectory gets quickly repelled and reaches the final defective
attractor. Once in the final defective phase 3⃝ in section 6.4.2, populations neither die
out nor leave the attractor; If the population becomes defective, it stays defective.
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6 Evolution of Cooperation and Defection

The synergy factor, as well as the simulation history, determine whether the defective
or cooperative attractor is reached. For a synergy factor 𝑟 = 3, the absolute majority of
realizations reach the defective attractor, while for 𝑟 = 10, they predominantly reach the
cooperative attractor. Only varying the sequence of random numbers influences the course
of the simulation significantly. It determines which attractor is eventually reached, how
long it takes, and which dynamical phases are realized before. After an eventual collapse
of a cooperative branch, it is predominantly important which strategies the surviving
agents have, which decides whether they reevolve cooperation or evolve defection. If the
surviving population is cooperative, the emergence of a new cooperative branch is the
rule; However, if the surviving population is defective, the emergence of a final defective
branch is probable. We may see it as a manifestation of evolution’s tinkering: What is
available at a time shapes and determines what will be realized in the future, especially
when new niches become available.

The observed Red Queen dynamics cycles eventually transition into a final attractive
state in the long-term—either defective or cooperative—with infrequently extracting
agents. Both are characterized by low probabilities 𝑝𝑠 but vast positive or negative
investments, respectively. I.e., agents rarely extract synergistic resources but invest huge
amounts of resources if they do. In these attractive states, the effective network is minimal,
and only one or a few agents are successful per time step, indeed receiving resources. All
other interacting agents receive nothing but still have to pay for their investments or the
created bads, respectively. Within the observed time frame, no population was able to
leave such an attractive system state. Thus, even though agents evolve cooperation or
defection in the long run, they evolve to interact rarely at the same time.

The simulations reveal yet another facet on the social dilemma, which agents expe-
rience. A qualitative new dilemma emerges with increasing cooperation in the limited
environment—a distribution dilemma with cooperators as effectively selfish actors that are
driven to invest more and more. Highly cooperative agents invest much to extract a lot of
resources for themselves and their social environment. However, because resources are
limited and successful agents get to extract first, cooperators leave less or even nothing for
other agents. Larger individual investments result in larger shares for successful strategies.
Therefore, the higher the cooperators’s investments are, the fewer cooperators can survive
from the available synergistic resource amount. Because cooperators need each other
to survive, they undermine their survival when becoming too cooperative in the limited
environment. Thus, a situation-dependent distribution dilemma emerges.

I will discuss the results in more generality in chapter 7.
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7 Summary and Discussion
Within each result section, I summarized and discussed the respective detailed results
(see section 6.2.2, section 6.3.4, and section 6.4.3) obtained from analyzing and simulating
the newly introduced ReCooDy model (see chapter 4). In this chapter, I will focus on the
general comprehensive findings and their holistic discussion.

Computer simulations are a powerful tool enabling the investigation of intricate complex
adaptive and evolutionary models (Macal 2016). Often, these are otherwise ungraspable
analytically (Holovatch et al. 2017). The ideal basis of complex and multifaceted computer
models is a performant, reliable, and comprehensive modeling framework. In chapter 3,
I introduced Utopia, a comprehensible modeling framework for complex and evolving
systems, that we developed within our research group collectively, to boost synergies,
introduce software development best practices in our research to improve software quality,
and facilitate model development during all stages1.

As for every computer simulation model, there is a risk of erroneous code despite
extensive countermeasures such as testing, which is especially true for the complicated
code required for a model as complicated and complex as ReCooDy. Still, software
development best practices help minimize the error potential, not only for the modeling
framework development but also for the individual models. I implemented ReCooDy in
the tested and reviewed Utopia framework and further includes automated model tests
checking for the correctness of microscopic units as well as macroscopic expectations.

One focus of this work was to investigate the emergence of cooperation from an initially
neutral state. Once cooperation evolved as a strategy in the first place, we know which
mechanisms promote its evolution (see section 2.1.1). Most evolutionary games prescribe
an existing fixed set of strategies. Where these strategies come from in the first place
usually remains an open question. Even the less presuming continuous game formulations
at least prescribe the population structure. In ReCooDy, cooperative as well as defective
strategies need to evolve from consecutive small changes. Further, the population structure
needs to evolve and develop. It is not prescribed, and there are no restrictions that assure
fixed network properties such as a fixed mean degree. Through self-organization, highly
connected networks of frequently interacting cooperative or defective populations can
emerge as well as sparsely connected ones of infrequently interacting neutral populations.
Both of which we indeed observe in the simulations dependend on the dynamical regime
(see section 6.2 and section 6.3).

The results indicate that, within the range of studied situations, the emergence of
cooperation from consecutive small steps is the rule rather than the exception. Already
minute synergies can yield cooperative populations as long as individuals do not crucially
rely on the outcome of interactions and their effective interaction network is minimal.
Both requirements coevolved enabling a slow but steady emergence of cooperation (see
section 6.2). It corresponds to what we observe in our world, as cooperation is indeed

1The interested reader finds more information on the applications and experiences using Utopia in
section 3.3 and a concise summary in section 3.4
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7 Summary and Discussion

ubiquitous, but contrasts expectations from simple EGT viewpoints, which often promote
the necessity for additional mechanisms such as reciprocity, punishment, or rewards
as solutions (see section 2.1). These boost cooperation once it exists. However, such
mechanisms are relatively advanced and cannot sufficiently explain how cooperation
emerges in the first place. Of course, also network reciprocity is a well-known mechanism
promoting the evolution of cooperation (Lieberman et al. 2005; Allen et al. 2017); however,
usually, models again presume the existence of cooperation as a strategy, not letting it
emerge out of the blue. Further, network models usually prescribe a static or dynamically
relinking network with a constant mean degree. Thus, they prescribe a population structure.
In ReCooDy, the population structure evolves and dynamically self-organizes from agent
traits, costly linking actions, and an initially unconnected population. Obviously, these
evolution and development rules are still prescribed but on a higher level giving the
population more flexibility to evolve, adapt and thereby construct a beneficial realization.
As a result of the increased but not complete degree of freedom in shaping one’s social
environment combined with a cooperator’s profit from creating cooperative offspring,
cooperation can emerge even in hostile social environments that offer just minute synergies.
Hereby, the driving force towards cooperation is accessing an otherwise inaccessible
resource. In ReCooDy, in minute-synergy settings, a form of cooperation emerges out of
the blue because agents are not crucially dependent on the success of the interactions but
still sometimes profit from otherwise inaccessible resources.

For intermediate and high synergy, agents specialize in strategies that coexist and
rely either on basic resources or synergistic ones. Cooperation evolves through agents
that depend crucially on synergistic resources. They evolve high probabilities to extract
synergistic resources and therefore devolve their ability to extract basic resources. The
access of previously inaccessible resources is the driving force primarily in the initial phase.
Still, after specialization, the agents’ evolutionary success is predominantly determined
by the competition against other specialized agents. It allows for more intricate system
dynamics and richer phenomenology such as Red Queen dynamics, which we will come
back to below. In intermediate and high synergy factor regimes, success against the
specialized competitors becomes the system’s driving force.

Usually, the simulations show that defection requires the existence of cooperation to
emerge but then emerges as a natural consequence. ReCooDy not only deals with the
emergence and evolution of cooperation but also focuses on the emergence and evolution
of defection. In contrast to the typical definition of defection—paying no cost in the
PGG but profiting from the created goods—I introduced the concept of true defection
in this work within the gPGG: the act of selfishly taking resources while destroying
goods and generating collateral damage (see mathematical formulation in section 4.2.2.2).
Therefore, I introduce a worse kind of defector within the PGG setting, which increases
the potential of cooperators to get exploited. However, defection needs to emerge in
the first place because all simulations start as neutral, unconnected, and non-interacting
populations. As for cooperation, instead of assuming an already existing set of (typically
binary) strategies like cooperation and defection, ReCooDy contains the option for varying
degrees of cooperation and defection to evolve from consecutively accumulated small
trait mutations. But agents do not need to evolve cooperation or defection because they
could, in principle, just live from basic resources alone. Defection does not immediately
evolve from a neutral population because defectors harm themselves via their destructive
nature, which only becomes a competitive strategy if they grab sufficient resources and
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distribute their destruction costs. If there is nobody to exploit, there is no incentive to
evolve defection; therefore, defection only emerges in the first place if cooperation already
exists, but then as a natural consequence.

We frequently observe Red Queen dynamics yielding increasingly defective agents in
medium synergy environments and increasingly cooperative agents in high synergy ones
(see section 6.3 and section 6.4, respectively). Because resources are limited, and more
extreme strategies come with bigger individual resource shares, the number of agents that
can survive with the corresponding strategy shrinks. However, cooperators need other
cooperators to support and shield themselves against defectors; And defectors need other
interacting agents to pay for the destructed goods else they effectively hurt themselves.
Therefore, both Red Queen dynamics towards rising cooperation and rising defection
collapse eventually, potentially resulting in the death of all predominantly interacting
agents or even the entire population. ReCooDy does not implement any active measures
that could prevent the eventual collapse of (sub)populations. The results indicate that
active prevention mechanism against such Red Queen dynamics would be needed to stop
a collapse of a (sub)population.

The long-term evolution of ReCooDy often exhibits a final state of defection or, for
huge synergy factors, a final state of cooperation. However, the quality of cooperation
and defection is different from preceding dynamics regimes as the respective magnitude
of agents’ investment is vast. Still, they tend not to extract synergistic resources. Only
a tiny fraction of the population interacts to extract resources, and even fewer actually
receive a benefit. The effective social network is minimal, while the agent’s commitment
to the interaction is maximal. Which dynamical phase precedes the attractive final states
depends on the synergy factor 𝑟. For 𝑟 = 1.4, we observe the previously mentioned
Red Queen dynamics towards ever rising defection with high probability of extracting
synergistic resources 𝑝𝑠, while for 𝑟 = 3 and 𝑟 = 10, the transition is less drastic as 𝑝𝑠
remained nearly non-existing. The results indicate to expect defection as final stable
state predominantly. However, we should be aware that there is no possibility to escape
from this final state because ReCooDy does not implement a mechanism that could lead
out of the trapped system state. In a sense, we could also interpret the final state as
a model deficit. In the real world, more than three million agent generations, which
roughly corresponds to the 2 × 109 agents living during the long-term simulations, will not
pass without evolution coming up with new inventions and innovations as evolutionary
pressures change in varying environments over time(Murugan et al. 2021). For example,
cooperative relations between hosts and symbionts typically coevolve such that symbionts
compete in the environment provided by their host, while the latter evolve to control and
shape their symbionts (Foster et al. 2017). Such control mechanisms evolve together with
and as a reaction to the cooperative benefit created by the emergent cooperative symbiosis.
Even in a simple laboratory experiment of one single initial bacteria population evolving
over more than 6 × 104 generations (> 25 years), Lenski (2017) summarizes: ”We have
quantified the dynamics of adaptation by natural selection, seen some of the populations
diverge into stably coexisting ecotypes, described changes in the bacteria’s mutation rate,
[and] observed the new ability to exploit a previously untapped carbon source [...]”. As
most evolutionary models, ReCooDy is not comprehensive enough to adequately represent
the very long-term evolution, which is especially true for humans and their unseen impact
on nature and evolution itself.

The system’s trajectory crucially depends on its history. Changing the sequence of
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random numbers alone changes the set of actually realized dynamic phases from the set of
possible dynamical phases in the transition regime (section 6.3). It also determines which
final attractive state is reached for high synergies and how long it takes (section 6.4).
Agents accumulate changes in nine different traits, some of which are not strongly selected
for or against within specific dynamic phases. However, after a collapse, the combined
traits of the surviving population determine the new initial population that can reconquer
the newly available niche by taking a potentially new evolutionary path after a population
bottleneck. What we observed in a simple form in ReCooDy, is a key property of evolution,
which we can already deduce from simple bacteria experiments (Blount et al. 2012; Lenski
2017) but is a general property of classic evolutionary systems (Lande 1988): What is
present at a given time in history determines what will be possible in the future.

ReCooDy’s dynamics in the transformation regime shows characteristics of complex
and chaotic systems. Its macroscopic phenomenology exhibits a set of attractors and
metastable dynamical phases that eventually transition to other attractive or repellent
states. Within each dynamical phase, ReCooDy self-organizes into a metastable system
state, which eventually transitions often through collapses caused by exceeded thresholds
and cascaded agent deaths. Such self-organized critical behavior is a typical property of a
complex system. In ReCooDy, the synergy factor determines the forcing. In contrast to a
typical complex system, this forcing is not global but local, intensifying the distribution
inequality of the constant inflowing resources. Besides ReCooDy’s complex nature, we
see that the sequence of random numbers significantly alters the system’s trajectory. It
determines which metastable dynamical phases the system indeed reaches. Changing
the sequence of random numbers can result in entirely different trajectories (as visually
exemplified in Figure 6.5). After a transition, we cannot predict which metastable
dynamical phase the system reaches next. Further, we observe that the system reaches
completely different attractors in the long-term, which previously did not exist, due to the
inherently complex model dynamics. Before the system reaches its final attractors, the long-
term behavior of ReCooDy is not predictable— a characteristic of a deterministic chaotic
system. Usually, models of chaotic systems focus on low-dimensional state spaces, equal
or slightly above two-dimensional for discrete and three-dimensional for continuous state
spaces. In ReCooDy, the dimensionality is much higher, which allows the system’s self-
organization. Future research should further investigate ReCooDy’s chaotic and complex
nature, for example, by quantifying critical exponents and critical points. Still, from the
macroscopic phenomenology, we can qualitatively classify ReCooDy as a deterministic
chaotic self-organized system.
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One of the main results presented in this work is the reflection on the nature of the
effectively emerging social dilemma obtained by simple analytical considerations. In
chapter 5, I presented the varying notions of the social dilemma, which I summarized,
exemplified, and shortly discussed in its final section 5.6. Let me condense the key
messages:

1. Tragedy of the Commons: By construction, agents have a microscopically defined
competitive social dilemma captured in the gPGG, which is independent of the
synergy factor. On its own, it models an extended version of the tragedy of the
commons (see section 5.1).

2. Personal dilemma: However, because the network structure prescribes multiple
interactions, agents can indeed profit from increased investments within a constant
network above a critical synergy factor. The latter only depends on the agent’s local
network configuration, i.e., its specific social environment (see section 5.2).

3. Competition dilemma: Even if investing agents have a personal profit from
increased investments, usually, their neighbors profit even more. Nevertheless, the
relative profit shrinks with an increasing synergy factor and can even turn into a
setting where agents yield higher total payoffs than their neighbors (see section 5.3).

4. Offspring benefit: Generally, a cooperator’s offspring benefits the cooperator,
while a defector’s offspring harms the defector. This property not only depends
on their respective personal strategy but also on their strategy relative to their
neighbors. The latter can even turn offspring benefit into harm, for cooperators in a
much more cooperative neighborhood, or harm into benefit for defectors in a much
more defective neighborhood (see section 5.5).

5. Distribution dilemma: For excessive levels of cooperation (or defection), a
distribution dilemma arises. It effectively turns cooperators into selfish actors that
take vast shares and leave nothing for other cooperators. This distribution dilemma
arises as a consequence of limited resources, specifically due to ReCooDy’s limited
resource-inflow. It is not a property of the gPGG in itself but observable in the
simulation results for intermediate and high synergy factors in section 6.3 and
section 6.4.

The results indicate that reducing the model interaction to a simple tragedy of the
commons (public goods) dilemma is not necessarily an adequate representation of the
agents’ experienced interaction setting. For a fixed synergy factor, we could, in principle,
partition agents into different groups experiencing qualitatively different social dilemma
settings dependent on their respective social environment; E.g., agents that experience a
competition dilemma but no personal dilemma. Some agents would not even experience
any dilemma for specific synergy factors and directly profit from being cooperative, being
effectively selfish. Furthermore, an agent can theoretically traverse multiple dilemma
qualities during its lifetime while consecutively building and removing links to others.
Already simple analytical considerations, arguably even simplistic ones, enabled extracting
these results. For a two-player game with active linking, Pacheco et al. (2006) used
effective parameters to show that linking can effectively transform games from a prisoner’s
dilemma (PD) to a coordination game (CG) or from a snowdrift game (SD) to a harmony
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game (HG). However, the results presented in this work question whether there are
meaningful, effective descriptions of social dilemmas that adequately describe all facets of
the qualitative microscopic variance in strategy. Even if it is possible for simple models
such as in Pacheco et al. (2006), it is not clear whether it is adequate in more complicated
situations such as in ReCooDy or real-world systems. Moreover, we cannot reduce an
agent’s strategy to being selfish or selfless as both are emergent properties in ReCooDy
dependent on local population structure, environmental conditions, and states2.

The results indicate that adding more realism exhibits an unintuitive and rich phe-
nomenology. It relies on the interplay of processes operating on similar time scales such
that they can react mutually and create feedbacks that produce emergent structures
and evolutionary pressures. For example, the limited resources only start affecting the
population dynamics when the agents’ total resource extraction exceeds the available
resources flowing into the system. Typically, they already evolved a specialized strategy by
then. The emerging distribution dilemma comes hand in hand with increased evolutionary
pressure. Agents either evolutionary adapt to the new circumstances or cannot survive
when the distribution inequality maximizes eventually, which is often triggered by changed
linking behavior. Linking costs prevent extensive linking, which potentially reduces the
individual dilemma, but can result in exhausting spendings on linking over the agent’s
lifetime. Without or with low linking costs, the system’s trajectories could be expected to
look differently, which could be a focus of future work. As we observed in the simulations,
agents evolved a metastable strategy invading other agents that specialize in basic resource
extracting. The former evolved huge strengths that guaranteed success against the latter,
however, with guaranteed high net resource losses (see section 6.3.3.2). Such sophisticated
strategies and model behaviors exist due to the lifetime-accumulated development and
impact of agents’ actions. On the mesoscopic level, we frequently encounter such surprising
relations, most notably when we explored the intricacy of the emerging social dilemma,
which indicates that we do not have an intuitive understanding of such systems.

ReCooDy is not a typical physics system with a prescribed structure; instead, dependent
on the system state, a structure emerges due to the strong interactions between the state
and the system rules. The hierarchically nested microscopic rules result in complicated
structure and dynamics a few hierarchical levels above. For example, we could find
rules describing the macroscopic behavior of individual cooperator-defector coexistence
regimes as observed in the transition regime (see section 6.3). However, these rules would
not be capable of describing the system behavior in the regime of increasing defection
or the afterward following regime of light defection. The observed time-varying set of
reachable, potentially emerging attractors raises a severe challenge. The rules defining the
macroscopic behavior change over time. The system’s quality is entirely different from a
typical physical system, such as one described through Newtonian mechanics.

Some presented results are based on a heuristic approach by hypothetical explanations of
the observed simulations in combination with a check for consistency of these hypotheses
with analytically deduced expectations for minimal settings. Currently, to the best of
my knowledge, such an approach is the only practically feasible one, as a comprehensive
rigorous mathematical formalism does not exist for complex systems(Holovatch et al.
2017), especially with the complexity ReCooDy encompasses. While the phenomenology
exposed by ReCooDy is already fairly complicated, real situations, particularly in highly

2Thinking further, we could even ask: “Does altruism exist?” (Wilson 2015)
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developed societies as in humankind’s, may be expected to be more complicated. What
aspects of them, if any, can be usefully represented by models of the current class remains
to be seen. The results presented in this dissertation are a small step towards a more
holistic modeling approach in eco-evolutionary settings.

The presented results entail only a minute fraction of exploration possibilities, leaving
many paths open for future investigations. A few example paths are the impact of linking
costs, the influence of global versus local linking, and the system size that could be
explored without the need to change any existing code. Future work could also focus on
the application of ReCooDy to a real-world scenario by working out the specific details
and systematically explore the respective system, all of which would, however, require a
lot of time and effort mainly on the data-side. More far-reaching extensions comprise the
introduction of multiple distinct resources providing separate niches, coupling ReCooDy’s
population on a spatial grid, which would be operationally possible with Utopia, or the
introduction of more advanced information processing capabilities for agents to take
decisions such as through evolving artificial neural networks (Stanley et al. 2019). These
proposed extensions embrace the idea of increasing model complexity to increase realism
with the risk of potential conceptual and operational challenges.

To fundamentally explain complex coupled systems, we need fundamentally complex
models in future research. The principles of this direction within the field of EGT are
noticed and promoted in recent years (McNamara 2013; Akçay 2020), however still to
a less comprehensive degree than presented in this dissertation in my perception. As I
motivated in the introduction and theory, general statements extracted from simple model
systems can become invalid if more realism or complexity is introduced. Fundamental
questions in eco-evolutionary systems cannot be answered by simple models. The findings
presented in this thesis show the potential of less restricted, more comprehensive modeling
as a complementing approach to simple models. Modeling without analytical feasibility
in mind, e.g., by omitting omnipresent weak-selection limitations or allowing several
coevolving traits instead of one or two, can exhibit a rich phenomenology from which we
can extract lessons to apply to real systems. In order to fundamentally understand the
origins of complex and evolving systems, we presumably need to embrace more modeling
complexity and coupled processes—a scientific path successfully taken in other fields of
research such as climate systems research.
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“Now, here, you see, it takes all the
running you can do, to keep in the
same place.”

Red Queen to Alice in Carroll (1871)

Our world, with its inhabitants and societies, is utterly complex and evolving at an
unseen rate within a rapidly changing environment with crucial feedback – exceedingly
forced and shaped by humanity’s cultural and technological (r)evolution. We only start
to recognize, let alone understand, its inherent complexity and interwovenness. Once
we notice the importance of process coupling and evolution’s capacity to adapt rapidly
to new situations through tinkered inventions and innovations, we see the necessity for
comprehensive modeling for eco-evolutionary social systems. In the context of social
evolution and Evolutionary Game Theory, the necessity for richer modeling approaches
already get promoted (McNamara 2013; Akçay 2020) but often still focussing on one or
two processes at a time.

In this work, I presented ReCooDy that I see as a first step towards much more
comprehensive modeling; an attempt to take a potentially game-changing perspective
on the question of how cooperation and defection emerge and evolve. It incorporates
resource-flows and couples Evolutionary Game Theory, population dynamics and agents’
lifetime development, as well as the coevolution of nine traits. Simulations unveiled a rich
phenomenology, intricate history-dependent dynamics with metastable states of strategy
coexistence, sudden transitions of dynamical phases, and Red Queen dynamics towards
exhausting and eventually deadly strategies within a limited environment.

We observed the emergence of cooperation for minute synergies out of the blue from
consecutive small mutations – how evolution fundamentally operates – that also optimized
conditions in the given setting by minimizing the interaction structure and frequency
to make new resources slowly accessible and usable. For higher synergy and only after
cooperation existed, defection emerged, frequently creating instability and at times
resulting in collapses due to an evolutionary arms race followed by a population bottleneck
from which new strategies could evolve. For very high synergy, cooperation could turn
even into an inherently selfish strategy within the limited environment. When we do not
presume the existence of cooperation and defection a priori but let them evolve within a
continuous strategy space and the aim to access otherwise inaccessible resources, then the
results indicate that the emergence of cooperation is the rule rather than the exception–as
observed in nature and with vastly greater extent human societies–and that true defection
can effectively evolve as a response.

The agent-centric simple analysis of the context-dependent social dilemma revealed a
multi-facetted emergent setting that, together with the emerging distribution dilemma,
exhibits a much more complicated setting as suggested by the microscopically implemented
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generalized public goods game. We could partition the population into context-dependent
groups of qualitatively distinct emerging dilemma settings for a fixed synergy factor.
Hence, in ReCooDy, selfishness and selflessness are emergent context-dependent interaction
properties that cannot be captured adequately in a single effective number because they
can exhibit different qualities. It leads to the broader question of whether a reductionist
view on selfish or selfless behavior in evolutionary social systems supports the required
complexity for systems outside of simple model settings.

In general, we need further research to support the derived explanations, claims, and
results and check for their scope. As mentioned and discussed in the previous chapter, we
should interpret the presented work cautiously because they come from initial steps into a
new direction of comprehensive modeling.

Although more realistic modeling comes with severe conceptual and operational chal-
lenges, the results presented in this work indicate that its capabilities open new paths
to address and eventually understand aspects of social dynamics that have turned into
inseparable aspects of our physical environmental system. It may be a next step in
the run-away dynamics between our understanding of social dynamics and the actual
development of our society.
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A Supplementary Figures

In the following, I present additional figures that supplement the results presented in
chapter 6.
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A Supplementary Figures

Figure A.1: Trait evolution plots of the investment 𝑖 (top two rows) and the probability of
extracting synergistic resources 𝑝𝑠 in the short-term. This figure complements
Figure 6.1 as it shows the evolution of the individual traits constituing the
expected investment: 𝜇𝑖 = 𝑖𝑝𝑠. See the corresponding figure caption for the
plotting details and an explanation of a trait evolution plot.
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Figure A.2: Final mean expected investment distribution ̄𝜇𝑇
𝑖 (left) and final mean in-

vestment distribution ̄𝑖𝑇 after 𝑇 = 5 ⋅ 105 time steps (≈ 103 generations) in
their full value range for varying synergy factor 𝑟 showing the emergence of
cooperation regime. It complements Figure 6.2. See there for figure details.
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Figure A.3: The transition regime. The top row shows the time evolution of the number
of agents 𝑁 for different synergy factors 𝑟. The mean and standard deviation
(shaded area) are calculated over system realizations. The bottom row shows
the final mean investments ̄𝑖𝑇 (bottom left) in a zoomed value range and
the final mean probability of extracting synergistic resources ̄𝑝𝑇

𝑠 (bottom
right). All simulations ran for 𝑇 = 5 ⋅ 105 steps. Each dot represents the final
population average of one system realization, 512 per 𝑟. Color encodes rising
synergy factors from low (yellow) to high values (blue). The violin plots in the
background show the kernel density estimates of the distribution with width
scaled according to equal areas. Lines within the violins show the median and
quartiles of the corresponding distribution. This figure uses the same data as
presented in Figure 6.4 but plots additional relevant quantities.
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Figure A.4: Overview of simulation results for 𝑟 = 1, 4 and 9 random number generator
seeds. Trait evolution plots of the corresponding expected investment 𝜇𝑖 are
shown in their full value range in contrast to a zoomed interval in Figure 6.5.
See the caption in Figure 6.1 for the explanation of a trait evolution plot.
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Figure A.5: Overview of simulation results for 𝑟 = 1, 4 and 9 random number generator
seeds showing the number of agents (top), the degree distribution at 𝑡 =
2.8 × 105 (bottom left), and the final degree distribution at 𝑡 = 5 × 105. In
combination with the expected investment evolution (see Figure 6.5) we
observe the following: A highly dynamic cooperative phase (seed 44 at 𝑡 =
2.8 × 105) yields more than thrice the number of agents (peak in top plot)
and a single high-degree hub agent (bottom left). Phases of rising defection
show approximately twice the number of agents and a higher degree than
typical dynamical phases with a cooperative branch.
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Figure A.6: Examples of transitions complementing Figure 6.6. Trait evolution plots of
the investment trait 𝑖, the probability to extract synergistic resources 𝑝𝑠, and
the accumulated link addition and removal costs are shown. The simulation
ran for 𝑇 = 5 × 105 steps. See the caption in Figure 6.1 for the explanation
of a trait evolution plot.
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Figure A.7: Examples of triggers into the rising defection phase for 𝑟 = 1.4. Trait evolution
plots of the expected investment 𝜇𝑖 are shown for a selection of 12 seeds that
all exhibit a transitions into growing defection. Each plot has 500 bins in
each dimension with counts higher than 200 shown in yellow. See the caption
in Figure 6.1 for the explanation of a trait evolution plot.
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Figure A.8: Collapse of cooperation and transition towards growing defection happens in
two main steps (red and orange line) that significantly alter agent traits and
the population structure. This figure complements Figure 6.8. It shows the
mean link addition and removal costs (top) averaged over an agent’s lifetime
and the total number of links an agent accumulates over its lifetime in trait
evolution plots. The simulation ran for 𝑇 = 5 × 105 steps. See the caption in
Figure 6.1 for the explanation of a trait evolution plot.
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Figure A.9: Full value range of the high synergy regime complementing Figure 6.10. The
mean expected investment time evolution of the population averaged over
512 simulation runs each (left) and their final distribution at time 𝑇 = 105

after approximately 500 generations (right) depending on the synergy factor 𝑟.
For clarity, we only show a selection of 𝑟 on the left. The shaded areas show
the standard deviation over varying system realization. Each dot represents
the final population average of a single system realization (512 per 𝑟). Color
encodes rising synergy factors from low (𝑟 = 2.0; yellow) to high values
(𝑟 = 10.0; blue). The violin plots in the background show the kernel density
estimate of the distribution. The width of each violin is scaled according to
equal areas.
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Figure A.10: Overview of simulation results for 𝑟 = 3, 0 and 9 random number generator
seeds showing trait evolution plots of the expected investment 𝜇𝑖. A growingly
defective branch emerges if the surviving population is defective after a branch
collapse and a cooperative branch emerges if the surviving population is
cooperative. The ordering corresponds from left to right and top to bottom
to the lowest to highest final mean expected investment values. I.e., we can
identify simulations in the corresponding violin in Figure 6.10 from bottom
to top. The simulation ran for 𝑇 = 5 × 105 simulation steps. Seeds 71, 78,
and 70 result in ̄𝜇𝑇

𝑖 < 0; Seed 110 results in ̄𝜇𝑇
𝑖 < 0 because the population

dies out quickly; Seeds 84, 54, 89, 64, and 111 result in ̄𝜇𝑇
𝑖 > 0 with the

latter representing a positive outlier in the violins; We expect more variance
for higher ̄𝜇𝑖 value because a constant spread of 𝑝𝑠 multiplied with high 𝑖
will exhibit a broader itnerval of resulting values as for los 𝑖. Each plot has
900 bins in each dimension with counts higher than 2000 shown in yellow.
Bin counts are capped showing values higher than 2 × 103 in yellow. See the
caption in Figure 6.1 for the explanation of a trait evolution plot.
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Figure A.11: This figure complements Figure 6.12, which shows the long-term evolution
of the high synergy regime of 𝑟 = 3.0 for 512 different seeds. It shows the
moderately cooperative range, i.e., the positive value extension of the bottom
left plot in Figure 6.12. Each line represents one universe run.

Figure A.12: The figure complements Figure 6.14, which shows the long-term evolution
for very synergy factors of 𝑟 = 10 by showing the trait evolution plots of
the probability of extracting synergistic resources 𝑝𝑠 for two example runs.
The top exemplifies a system realization reaching the cooperative attractor
and the bottom the defective attractor. Each plot has 1000(500) bins in x(y)
direction, with counts higher than 400 shown in yellow. See the caption in
Figure 6.1 for the explanation of a trait evolution plot.
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B.1 List of Figures

4.1 The ReCooDy process cycle. At the beginning of a simulation run, we
initialize ReCooDy with a neutral, unconnected population and set up all
relevant model parameters. Then, the actual process cycle starts. One
cycle defines one model iteration and one time step. As an overview, I
concisely summarize the model processes in the following, which I will,
however, explain in detail within the corresponding sections of this chapter.
First, agents either extract basic resources independently with probability
𝑝𝑏 or, with probability 𝑝𝑠 = 1 − 𝑝𝑏, synergistic resources through
generalized public goods game (gPGG) interactions that exhibit social
dilemma characteristics. Then, agents pay a constant cost of living 𝑐𝑙 and
a strength cost 𝑐𝑠. The evolving strength trait determines their success
during basic resource extraction. They use their internal resources to link,
i.e., they add or remove interaction connections to others to optimized their
social environment. If their internally stored resources fall below a death
threshold 𝑡𝛿 they die of exhaustion; They get removed from the population
with all their links. Death also occurs randomly with probability 𝑝𝛿 per
agent and time step. If their resources exceed a birth threshold 𝑡𝛽 they
create an offspring with probability 𝑝𝛽 per agent and time step, pay a birth
cost 𝑐𝛽 and transfer resources 𝑗𝛽 to their offspring. Afterward, the process
cycle starts again with resource extraction. . . . . . . . . . . . . . . . . . 38

4.2 Schematic effective interaction network of agents 𝑎 ∈ 𝒮𝑡 extracting syner-
gistic resources at time 𝑡. The graph exemplifies the local effective social
environment of one central agent (big blue). The central agent participates
in 𝑛𝑡

𝑎 = 4 sub-interactions: one centered around itself (green 𝜶 area),
and the other three centered around its respective neighbors (light green
𝜷, 𝜸, and 𝜹 areas). Each agent 𝑎 invests an equal share 𝜄𝑎/𝑛𝑡

𝑎 in all its
sub-interaction partitioning the potential gain as well as their risk. Colors
indicate the existence of cooperative (𝜄𝑎 > 0, blue) and defective (𝜄𝑎 < 0,
red) strategies. The vertex size schematically encodes payoff differences
resulting from the interactions. . . . . . . . . . . . . . . . . . . . . . . . . 44
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4.3 Strategy classification for the standard public goods game (PGG) (left)
and the generalized public goods game (gPGG) (right). In the PGG,
agents are either cooperators (C) or defectors (D). Cooperators usually
pay a fixed cost 𝑐 to create public goods, from which all benefit. Some
models include varying costs from a continuous space, but costs are always
restricted to positive values. Defectors do not pay a cost but still profit
from the generated goods. Thus, the standard PGG only implements public
goods creation. The gPGG generalizes the standard PGG to incorporate
public goods creation as well as destruction. Agents are either loners
(L), cooperators (C), or defectors (D). Loners do not interact, i.e., they
have 𝜇𝑖 ≈ 0 with 𝑝𝑠 ≈ 0. Cooperators create public goods through
positive investments, and defectors destroy public goods through negative
investments. A positive investment means paying a cost and a negative
one actively grabbing resources. Thus, the gPGG extends the concept of
defection by incorporating true defection—active destruction of goods for
a personal benefit. All interacting agents benefit from the created public
goods but have to pay for the destructed ones. We will further use a
contextual classification: cooperators separate into benefactors (B) with
high 𝜇𝑖 and profiteers (P) with low 𝜇𝑖 through a gap in 𝜇𝑖, and defectors
separate into exploiters (E) with low |𝜇𝑖| and malefactors (M) with high |𝜇𝑖|
also through a gap. Blue represents cooperative strategies and red defective
ones. More opaque colors represent a comparatively smaller magnitude of
cooperative or defective behavior, respectively. . . . . . . . . . . . . . . . 50

6.1 Trait evolution plots of the expected investment 𝜇𝑖 for varying synergy
factors 𝑟 that exemplify different dynamical regimes. A trait evolution
plot is a two-dimensional histogram of a quantity shown on the y-axis and
agents on the x-axis, in their order of birth, which allows visualizing the
evolutionary quantity change with respect to fixed-sized agent generations.
Thus, it shows the evolution of a quantity in trait space, which corresponds
to a non-linear time evolution. A trait evolution plot directly shows the total
number of agents that lived throughout a simulation in the maximum value
on the agent-axis that can be used for comparison between simulations. It
shows the color-encoded local agent and trait density, respectively, from
low densities (purple) to high (yellow) ones. Bins with counts equal to zero
are always shown as white bins. Each time evolution plot has 900 bins in
both dimensions with bin counts higher than 300 shown as yellow bins.
Each simulation ran for 𝑇 = 105 steps. Figure A.1 complements this figure
as it shows the evolution of 𝑖 and 𝑝𝑠 individually. . . . . . . . . . . . . . . 79
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6.2 Time evolution of the mean expected investment ̄𝜇𝑖 (left) and its final
distribution ̄𝜇𝑇

𝑖 after 𝑇 = 5 ⋅ 105 time steps (≈ 103 generations) for varying
synergy factor 𝑟 (right) showing the emergence of cooperation regime. On
the left, lines represent the mean and their shaded areas the standard
deviation of ̄𝜇𝑖 calculated over simulation runs. On the right, each of the
512 dots represents the final population-averaged expected investment ̄𝜇𝑇

𝑖
of a single system realization. Color encodes the synergy factor 𝑟 from low
values (yellow) to high ones (blue). The violin plots in the background
show the distributions’ kernel density estimates with width scaled to equal
areas. The right figure shows a zoomed ̄𝜇𝑇

𝑖 value range. Figure A.2 shows
the entire value range for completeness. . . . . . . . . . . . . . . . . . . . 82

6.3 Simulation results for a minute synergy factor of 𝑟 = 1.01 showing the
slow but steady emergence of infrequent cooperation in sparse networks.
It shows trait evolution plots of the investment trait 𝑖 (top left) and the
probability of extracting synergistic resources 𝑝𝑠 (top right) with 900 bins
in each dimension and bin counts higher than 100 for 𝑖 and 20 for 𝑝𝑠
shown in yellow. The middle left shows the phase space of the expected
investment 𝜇𝑖 and the expected strength 𝜇𝑠 for the last 106 agents with dots
representing single agents and color encoding time from early (yellow) until
the simulation end (blue). The middle right shows a final largest connected
component example for a population. The bottom left visualizes the final
degree distribution, and the bottom right the final connected component
size distribution over 128 simulation runs, each with color encoding different
simulation runs. Blue lines show least-squares fit results of a power-law
function. All simulations ran for 𝑇 = 106 time steps for the single runs
and 𝑇 = 2 × 106 for the distributions. See the caption in Figure 6.1 for the
explanation of a trait evolution plot. . . . . . . . . . . . . . . . . . . . . 84

6.4 The transition regime. The top row shows the time evolution of the mean
expected investment ̄𝜇𝑖 (top left) and the number of agents 𝑁 (top right)
for different synergy factors 𝑟. The mean and standard deviation (shaded
area) are calculated over system realizations. The bottom row shows the
final mean expected investment ̄𝜇𝑇

𝑖 after 𝑇 = 5 ⋅ 105 time steps in the whole
value range (bottom left) and zoomed (bottom right). Each dot represents
the final population average of one system realization, 512 per 𝑟. Color
encodes rising synergy factors from low (yellow) to high values (blue). The
violin plots in the background show the kernel density estimates of the
distributions with width scaled to equal areas. Lines within the violins show
the median and quartiles of the corresponding distribution. Figure A.3
complements this figure by showing the time evolution of the number of
agent and the trait evolution plots of ̄𝑖𝑇 and ̄𝑝𝑇

𝑠 . . . . . . . . . . . . . . . . 87
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6.5 Trait evolution plots of the expected investments 𝜇𝑖 that exemplify the rich
dynamics of the transition regime. Simulation results for 𝑟 = 1.4 and nine
selected seeds representing typical dynamical phases are shown. Each plot
contains 500 bins in each dimension with counts higher than 500 shown
in yellow. Each simulation ran for 𝑇 = 105 steps. See Figure A.4 for the
entire value range and Figure A.5 for the corresponding time evolution of
the number of agents and the final degree distribution. See the caption in
Figure 6.1 for the explanation of a trait evolution plot. . . . . . . . . . . 89

6.6 Trait evolution plots of the most important quantities and the time evolution
of the number of agents (top) that show examples of dynamical phases
in the transition regime in detail. Circled letters represent dynamical
phases referred to in the text. The simulation ran for 𝑇 = 5 × 105 steps.
Figure A.6 complements this figure by showing further trait evolution plots.
See the caption in Figure 6.1 for the explanation of a trait evolution plot. 94

6.7 Long-term evolution for a synergy factor 𝑟 = 1.4. The top shows the
trait evolution plot of the expected investment 𝜇𝑖 for a single example
system realization run for 𝑇 = 107 time steps. It has 1000(500) bins
in the x(y) direction with counts higher than 103 shown in yellow. The
middle and bottom rows show simulation results of 128 system realizations
through varying seed. It shows the time evolution of the mean expected
investment ̄𝜇𝑖 in the entire value range (middle left) and zoomed (middle
right). Each line represents one universe run. The bottom shows the
final mean expected investment ̄𝜇𝑇

𝑖 distribution. The orange line marks
𝑡 = 5 × 105, the simulation time used previously (Figure 6.5). The red
lines mark the transitions in the example runs. There are three regimes:
1⃝ Cooperative populations that 2⃝ eventually become hugely defective
before 3⃝ collapsing into a regime of moderate defection. All initially
cooperative populations die out on the visible time-scale, but only part
of the extremely defective populations collapse into moderate defective
populations (bottom). These transitions are highly improbable events with
a huge impact. No moderately defective population evolves cooperation
anew. See the caption in Figure 6.1 for the explanation of a trait evolution
plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.8 Trait evolution plots of the most important quantities that show the tran-
sition into growing defection. It happens in two main steps (red lines)
that both significantly alter agent traits and the population structure. The
simulation ran for 𝑇 = 5 × 105 steps. Figure A.8 complements this figure
by showing the mean link addition and removal costs and the agents’ accu-
mulated number of links. See the caption in Figure 6.1 for the explanation
of a trait evolution plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.9 Trait evolution plots of the most important quantities showing the final
collapse of growing defection into moderate defection. It has 500 bins in
each dimension, except for the bottom two rows with 100 bins in y-direction.
The transition happens in two stages (red lines) that significantly alter the
agents’ traits. The entire simulation ran for 𝑇 = 107 steps. It is the same
as in Figure 6.7 (top). See the caption in Figure 6.1 for the explanation of
a trait evolution plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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6.10 Time evolution plot of the mean expected investment ̄𝜇𝑖 (left) and its
final distribution ̄𝜇𝑇

𝑖 at time 𝑇 = 105 (right) for different synergy factors 𝑟
showing the high synergy regime. On the left, lines represent the mean and
their shaded areas the standard deviation of ̄𝜇𝑖 calculated over simulation
runs. On the right, each dot represents the final population average of a
single system realization (512 per 𝑟). Color encodes rising synergy factors
from low (yellow) to high values (blue). The violin plots in the background
show the kernel density estimates of the distributions. The width of each
violin is scaled according to equal areas. Lines within the violins show
the median and quartiles of the corresponding distribution. The right plot
shows a zoomed value range for ̄𝜇𝑇

𝑖 . Figure A.9 shows the full value range
with extreme outliers. Dead populations are shown as dots at ̄𝜇𝑇

𝑖 = 0. . . 113

6.11 Trait evolution plots of the expected investment 𝜇𝑖 for 𝑟 = 3 and varying
random number generator seed that exemplify dynamical phases in the
high synergy regime. Each plot has 900 bins in both dimensions with
counts higher than 200 shown in yellow. The seed ordering follows lowest
to highest final mean expected investment values from top to bottom and
left to right. Each simulation ran for 𝑇 = 5 × 105 simulation steps. The
populations with seeds 71, 78, and 70 show ̄𝜇𝑇

𝑖 < 0, 110 shows ̄𝜇𝑇
𝑖 = 0, and

84, 54, 89, 64, and 111 show ̄𝜇𝑇
𝑖 > 0. Seed 111 is a positive outlier in the

respective violin in Figure 6.10; Figure A.10 complements this figure by
showing the trait evolution plot of the corresponding investment trait. See
the caption in Figure 6.1 for the explanation of a trait evolution plot. . . 116

6.12 Long-term evolution of the high synergy regime. The time evolution of
the mean expected investment ̄𝜇𝑖 for synergy factor 𝑟 = 3, simulation time
𝑇 = 2 × 107, and 512 different seeds in the entire value range (top left),
zoomed into ̄𝜇𝑖 (top right), and further zoomed into ̄𝜇𝑖 and 𝑡 (bottom left)
together with its final distributions ̄𝜇𝑇

𝑖 (bottom right) are shown. Each
line represents one system realization. The vertical orange line represents
the zoomed time 𝑡 = 5 × 105. Single dots represent ̄𝜇𝑇

𝑖 of a single system
realization with dead populations visualized as ̄𝜇𝑇

𝑖 = 0. The violin in the
background shows the kernel density estimate of the distribution. The
plots show the long-term evolution of the high synergy regime moving from
1⃝ cooperative populations through 2⃝ a metastable population state of
defection either back to a cooperative population or 3⃝ to the final defective
attractor state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.13 Example realizations showing the long-term evolution for 𝑟 = 3 with
a defective final attractor (top two rows) and continuously cooperative
populations (bottom two rows) as shown in Figure 6.12. Trait evolution
plots of the respective expected investments 𝜇𝑖 and the investment traits
𝑖 are shown. Each plot has 1000(500) bins in the x(y) direction with
counts higher than 200(2000) shown in yellow for 𝜇𝑖(𝑖). See the caption in
Figure 6.1 for the explanation of a trait evolution plot. . . . . . . . . . . 119
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6.14 Long-term evolution of the extreme high synergy regime of 𝑟 = 10 for 128
different seeds showing 1⃝ the cooperative attractor and 2⃝ the defective
attractor. The time evolution of the mean expected investment ̄𝜇𝑖 (top
left) and its final distribution ̄𝜇𝑇

𝑖 after 𝑇 = 2 × 107 time steps (top right)
with are shown together with trait evolution plots of 𝜇𝑖 that exemplify
the evolution towards the cooperative attractor (middle) and the defective
one (bottom). On the top left, each line represents one system realization.
On the right, each dot represents ̄𝜇𝑇

𝑖 of a single system realization. The
violin in the background shows the kernel density estimate. The middle and
bottom plots contain 1000(500) bins in the x(y) direction each, with counts
higher than 50 shown in yellow. Figure A.12 complements this figure by
showing the trait evolution plot of 𝑝𝑠. See the caption in Figure 6.1 for the
explanation of a trait evolution plot. . . . . . . . . . . . . . . . . . . . . 122

A.1 Trait evolution plots of the investment 𝑖 (top two rows) and the proba-
bility of extracting synergistic resources 𝑝𝑠 in the short-term. This figure
complements Figure 6.1 as it shows the evolution of the individual traits
constituing the expected investment: 𝜇𝑖 = 𝑖𝑝𝑠. See the corresponding figure
caption for the plotting details and an explanation of a trait evolution plot. 140

A.2 Final mean expected investment distribution ̄𝜇𝑇
𝑖 (left) and final mean

investment distribution ̄𝑖𝑇 after 𝑇 = 5 ⋅ 105 time steps (≈ 103 generations)
in their full value range for varying synergy factor 𝑟 showing the emergence
of cooperation regime. It complements Figure 6.2. See there for figure
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.3 The transition regime. The top row shows the time evolution of the number
of agents 𝑁 for different synergy factors 𝑟. The mean and standard deviation
(shaded area) are calculated over system realizations. The bottom row
shows the final mean investments ̄𝑖𝑇 (bottom left) in a zoomed value range
and the final mean probability of extracting synergistic resources ̄𝑝𝑇

𝑠 (bottom
right). All simulations ran for 𝑇 = 5 ⋅ 105 steps. Each dot represents the
final population average of one system realization, 512 per 𝑟. Color encodes
rising synergy factors from low (yellow) to high values (blue). The violin
plots in the background show the kernel density estimates of the distribution
with width scaled according to equal areas. Lines within the violins show
the median and quartiles of the corresponding distribution. This figure
uses the same data as presented in Figure 6.4 but plots additional relevant
quantities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.4 Overview of simulation results for 𝑟 = 1, 4 and 9 random number generator
seeds. Trait evolution plots of the corresponding expected investment 𝜇𝑖
are shown in their full value range in contrast to a zoomed interval in
Figure 6.5. See the caption in Figure 6.1 for the explanation of a trait
evolution plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
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A.5 Overview of simulation results for 𝑟 = 1, 4 and 9 random number generator
seeds showing the number of agents (top), the degree distribution at 𝑡 =
2.8 × 105 (bottom left), and the final degree distribution at 𝑡 = 5 × 105.
In combination with the expected investment evolution (see Figure 6.5)
we observe the following: A highly dynamic cooperative phase (seed 44 at
𝑡 = 2.8 × 105) yields more than thrice the number of agents (peak in top
plot) and a single high-degree hub agent (bottom left). Phases of rising
defection show approximately twice the number of agents and a higher
degree than typical dynamical phases with a cooperative branch. . . . . . 143

A.6 Examples of transitions complementing Figure 6.6. Trait evolution plots
of the investment trait 𝑖, the probability to extract synergistic resources
𝑝𝑠, and the accumulated link addition and removal costs are shown. The
simulation ran for 𝑇 = 5 × 105 steps. See the caption in Figure 6.1 for the
explanation of a trait evolution plot. . . . . . . . . . . . . . . . . . . . . . 144

A.7 Examples of triggers into the rising defection phase for 𝑟 = 1.4. Trait
evolution plots of the expected investment 𝜇𝑖 are shown for a selection of
12 seeds that all exhibit a transitions into growing defection. Each plot has
500 bins in each dimension with counts higher than 200 shown in yellow.
See the caption in Figure 6.1 for the explanation of a trait evolution plot. 145

A.8 Collapse of cooperation and transition towards growing defection happens
in two main steps (red and orange line) that significantly alter agent traits
and the population structure. This figure complements Figure 6.8. It shows
the mean link addition and removal costs (top) averaged over an agent’s
lifetime and the total number of links an agent accumulates over its lifetime
in trait evolution plots. The simulation ran for 𝑇 = 5 × 105 steps. See the
caption in Figure 6.1 for the explanation of a trait evolution plot. . . . . 146

A.9 Full value range of the high synergy regime complementing Figure 6.10. The
mean expected investment time evolution of the population averaged over
512 simulation runs each (left) and their final distribution at time 𝑇 = 105

after approximately 500 generations (right) depending on the synergy factor
𝑟. For clarity, we only show a selection of 𝑟 on the left. The shaded areas
show the standard deviation over varying system realization. Each dot
represents the final population average of a single system realization (512
per 𝑟). Color encodes rising synergy factors from low (𝑟 = 2.0; yellow)
to high values (𝑟 = 10.0; blue). The violin plots in the background show
the kernel density estimate of the distribution. The width of each violin is
scaled according to equal areas. . . . . . . . . . . . . . . . . . . . . . . . 147
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A.10 Overview of simulation results for 𝑟 = 3, 0 and 9 random number generator
seeds showing trait evolution plots of the expected investment 𝜇𝑖. A
growingly defective branch emerges if the surviving population is defective
after a branch collapse and a cooperative branch emerges if the surviving
population is cooperative. The ordering corresponds from left to right and
top to bottom to the lowest to highest final mean expected investment
values. I.e., we can identify simulations in the corresponding violin in
Figure 6.10 from bottom to top. The simulation ran for 𝑇 = 5 × 105

simulation steps. Seeds 71, 78, and 70 result in ̄𝜇𝑇
𝑖 < 0; Seed 110 results

in ̄𝜇𝑇
𝑖 < 0 because the population dies out quickly; Seeds 84, 54, 89, 64,

and 111 result in ̄𝜇𝑇
𝑖 > 0 with the latter representing a positive outlier

in the violins; We expect more variance for higher ̄𝜇𝑖 value because a
constant spread of 𝑝𝑠 multiplied with high 𝑖 will exhibit a broader itnerval
of resulting values as for los 𝑖. Each plot has 900 bins in each dimension
with counts higher than 2000 shown in yellow. Bin counts are capped
showing values higher than 2 × 103 in yellow. See the caption in Figure 6.1
for the explanation of a trait evolution plot. . . . . . . . . . . . . . . . . 148

A.11 This figure complements Figure 6.12, which shows the long-term evolution
of the high synergy regime of 𝑟 = 3.0 for 512 different seeds. It shows
the moderately cooperative range, i.e., the positive value extension of the
bottom left plot in Figure 6.12. Each line represents one universe run. . . 149
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Symbols

Agent traits and states require a subscript 𝑎 denoting the specific agent. For example, the
age of agent 𝑎 is 𝐴𝑎. For elegance and visual noise reduction, I will omit this subscript 𝑎
in the following list, i.e., will denote the age with 𝐴. However, throughout the dissertation,
I will use the exact notation where it is beneficial for understanding.

𝑡 The time defining one model iteration step. 37
𝑁 The total number of agents. 60
𝑁𝑡 The total number of agents at time 𝑡. 37

𝑅 An agent’s internally stored resources; agent state. 40
𝐴 An agent’s age; agent state. 60
𝐴final An agent’s final age; agent state. 41

𝑝𝑠 An agent’s probability of extracting synergistic re-
sources at any time 𝑡 within its lifetime; evolving
agent trait. 38

𝑝𝑏 An agent’s probability of extracting basic resources;
𝑝𝑏 = 1 − 𝑝𝑠; evolving agent trait. 38

ℬ𝑡 The set of agents sampled to extract basic resources
at time 𝑡. 41

𝒮𝑡 The set of agents sampled to extract synergistic re-
sources at time t. 41

ℜ𝑏 The basic resource, which agents can extract individu-
ally. 40

𝒜𝑏 The amount of basic resource ℜ𝑏 available each time
step; global system trait. 41

𝑠 The strength of an agent; evolving agent trait. 42
𝜇𝑠 An agent’s expected strength actually used for basic

resource extraction; 𝜇𝑠 = 𝑠 ⋅ 𝑝𝑏; deduced agent trait.
42

𝑗𝑏 The resource inflow from basic resource ℜ𝑏 to an agent
in one time step; global system trait. 41

ℜ𝑠 The synergistic resource, which agents can extract
only through social interaction. 40

𝑃 An agent’s total payoff from all its interactions within
it’s social environment; agent state. 48
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Symbols

𝑗𝑠𝑎
The resource outflow from the synergistic resource ℜ𝑠
from a sub-interaction centered around an agent in a
time step. 48

𝒜𝑠 The amount of ℜ𝑠 available each time step; global
system trait. 51

𝑖 An agent’s investment trait: How many resources will
an agent invest if it has enough resources internally
stored in 𝑅 in one time step; evolving agent trait. 48

𝜄 An agent’s actual investment in one time step deter-
mined through equation 4.13; derived agent trait. 47

𝜇𝑖 An agent’s expected investment over its lifetime if it
has enough resources internally stored: 𝜇𝑖 = 𝑖 ⋅ 𝑝𝑠;
derived agent trait. 48

𝑟 The synergy factor transforming investments into
shared goods; global system trait. 47

𝑐𝑠𝑎
An agent’s cost to invest in goods creation. 44

𝑟+ The positive synergy factor transforming positive in-
vestments into created goods; global system trait. 44

𝐺+
𝑣 The goods created in the synergistic interaction re-

stricted to positive investments centered around the
agent at vertex 𝑣. 44

𝑃 + An agent’s total payoff from all synergistic interactions
restricted to positive investments; agent state. 44

𝑔𝑎 An agent’s grabbed resources from the synergistic
resource. 45

𝑟− The negative synergy factor transforming grabbed
resources into bads (destructed goods); global system
trait. 45

𝐵𝑣 The bads created (goods destructed) in the destruc-
tively synergistic interaction centered around the agent
at vertex 𝑣. 45

𝑃 − An agent’s total payoff from all destructice interac-
tions; agent state. 46

𝒦𝑡
𝑎 The set of neighboring agents linked to an agent ex-

cluding 𝑎 at time 𝑡. 43
𝑘 The number of neighbors of an agent corresponding

to the degree of an agent; 𝑘𝑎 = #𝒦𝑎. 53
𝒩𝑡

𝑎 The set of agents linked to an agent including 𝑎 at
time 𝑡. 43

𝑐𝑙 An agent’s cost of living subtracted each time step. 38
𝑐𝑠 An agent’s cost of strength subtracted each time step.

38
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𝑡𝑎 An agent’s threshold for adding links; evolving agent
trait. 53

𝜅𝑙 A source agent’s cost for adding a local link; global
trait. 53

𝜅𝑔 A source agent’s cost for adding a global link; global
trait. 53

𝜅𝑟 A source agent’s cost for removing a link; global trait.
54

𝛾𝑙 A target agent’s cost for adding a local link; global
trait. 53

𝛾𝑔 A target agent’s cost for adding a global link; global
trait. 60

𝛾𝑟 A target agent’s cost for removing a link; global trait.
54

𝑡max
𝑎 The maximal threshold for adding links; global trait.

53
𝑡𝑟 An agent’s threshold for removing links; evolving agent

trait. 54
𝑡max
𝑟 The maximal threshold for removing links; global trait.

54
𝑝𝑙 An agent’s probability of adding a local links at a time

𝑡; evolving agent trait. 53
𝑝𝑔 An agent’s probability of adding a global links at a

time 𝑡; 𝑝𝑔 = 1 − 𝑝𝑙; evolving agent trait. 53
𝜈𝑙 An agent’s link mode defining which agent to target for

local addition within the next-neighborhood; Integer
encoding: 0 ↔ None, 1 ↔ 𝑅, 2 ↔ 𝑝𝑠, 3 ↔ 𝑖, 4 ↔
random, 5 ↔ 𝑠, 6 ↔ 𝐺, and 7 ↔ 𝑃; evolving agent
trait. 53

𝜈𝑔 The link mode defining which agent to target for global
linking within the population; Integer encoding: 0 ↔
None, 1 ↔ 𝑅, 2 ↔ 𝑝𝑠, 3 ↔ 𝑖, 4 ↔ random, 5 ↔ 𝑠,
6 ↔ 𝐺, and 7 ↔ 𝑃; evolving agent trait. 53

𝜈𝑟 The link mode defining which agent to target for re-
moving links; Integer encoding: 0 ↔ None, 1 ↔ 𝑅,
2 ↔ 𝑝𝑠, 3 ↔ 𝑖, 4 ↔ random, 5 ↔ 𝑠, 6 ↔ 𝐺, and 7 ↔
𝑃; evolving agent trait. 54

𝑝𝛿 An agent’s death probability per time step; global
system trait. 38

𝑡𝛿 An agent’s death threshold: If 𝑅 < 𝑡𝛿, the agent dies
from exhaustion; global system trait. 38

𝑡𝛽 An agent’s birth threshold: If 𝑅 ≥ 𝑡𝛽, the agent gives
birth to an offspring with probability 𝑝𝛽; global system
trait. 38
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𝑝𝛽 An agent’s probability of giving birth to an offspring
per time step if the birth threshold 𝑡𝛽 is exceeded;
global system trait. 38

𝑐𝛽 The birth cost of creating an offspring subtracted from
the parent; global system trait. 38

𝑗𝛽 The transferred resources from parent to offspring. 38
𝑝𝜌𝑙

The probability to mutate the local link addition mode.
58

𝑝𝜌𝑔
The probability to mutate the global link addition
mode. 58

𝑝𝜌𝑟
The probability to mutate the link removal mode. 58
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Index & Acronyms

ABM agent based model 25, 27, 28
agent 37

Barabási-Albert network 22
basic resources 37
benefactor 49, 50

CA cellular automaton 25, 27, 28
carrying capacity 39
CEP competitive exclusion principle 41
CG coordination game 16, 20
CLI command line interface 28
climate change 63
competition dilemma 73
connected component 21
cooperator 49

DAG directed acyclic graph 31
dantro 30
data transformation framework 30
data tree 30
defector 49
degree 21
degree distribution 21
development 39
distance 21
distribution dilemma 124

effective interaction network 42
effective social environment 43
EGT Evolutionary Game Theory 12
Erdös-Rényi network 22
ESS Evolutionary Stable Strategy 15
evolution 37
evolutionary pressure 39
exploiter 49, 50

generation 56
global warming 63
gPGG generalized public goods game 38,
43

greenhouse gas 63

HG harmony game 16, 20

in-degree 21
inheritance 57
internal resource reservoir 37

loner 49
long-tail 22

malefactor 49, 50
multiverse 29

neighborhood 43
network 20
network model 25, 27, 28
next-neighborhood 43

out-degree 21

path 21
PD prisoner’s dilemma 13, 16
personal dilemma 69
PGG public goods game 13, 16, 17
plotting framework 30
population structure 43
profiteer 49, 50

quorum sensing 64

reciprocity 18
Red Queen dynamics 20
resource-flow 37
RPS rock-paper-scissors game 16
rule function 37

scale-free 20
SD snowdrift game 16
seed 83
small-world 20
social environment 37
social inheritance 22
state 37
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Index & Acronyms

strategy 39
strict tragedy of the commons 68
sub-interaction 43, 44
synergistic resources 37

tragedy of the commons 16
trait 37
trait evolution plot 79
true defection 13

universe 29
Utopia 23
utopya 29

variation 57

Watts-Strogatz network 22
weak selection 17
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