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Abstract

Computer Vision aims to artificially mimic the visual reasoning capabilities of humans by
using algorithms which, once deployed to mechanical agents and software tools, improve
car and traffic safety, enable effective visual search on the World Wide Web, or increase
productivity and quality in industrial production processes. Similar to the reasoning pro-
cesses that are constantly occurring in our brains, such algorithms directly rely on abstract
representations of the objects in the visually perceivable environment and beyond. Con-
sequently, learning informative representations that allow to detect and recognize objects,
and to evaluate image scenes is of paramount importance to almost all areas of computer
vision.
The quality of a learned object representation typically depends on certain properties such
as invariance to image noise, e.g. uninformative background, and robustness to object ro-
tation, translation, or occlusion. In addition, many applications require representations
that enable comparisons, i.e. to determine how similar or dissimilar two objects are se-
mantically. However, arguably the most challenging aspect of learning object represen-
tations is ensuring generalization to unseen objects, object variations, and environments.
While on the first aspects a large corpus of similarity learning literature exists, the latter,
i.e. the generalization of object representations, is still poorly understood and thus rarely
addressed explicitly.
In this thesis, we analyze the current field of similarity learning and identify properties
of object representations that correlate well with their generalization performance. We
leverage our findings and propose novel methods that improve current approaches to sim-
ilarity learning, both in terms of data sampling and learning problem formulation. To
this end, we introduce several training tasks that complement the prevailing paradigm of
standard class-discriminative learning, which are eventually unified under the concept of
Diverse Feature Aggregation. To optimally facilitate the optimization of similarity learn-
ing approaches, we replace the commonly used heuristic and predefined data sampling
strategies with a learnable sampling policy that adapts to the training state of our model.
Typically, similarity learning finds applications in supervised learning problems. How-
ever, due to more training data becoming available and annotation processes often being
tedious or even infeasible, unsupervised learning settings have been of particular interest
in recent years. In the second part of this thesis, we explore the effectiveness of similarity
learning for obtaining informative representations without the need for training labels
for both static images and video sequences. To enable learning, our approaches alternate
between inferring data relations during training and refinement of our visual representa-
tions. In doing so, we resort to the classic divide-and-conquer principle: we decompose
overall complex learning problems into feasible local subproblems whose solutions are
subsequently consolidated to yield concerted, global representations.
Throughout this work, we justify our contributions through rigorous analysis and strong
model performance on standard benchmarks sets, often outperforming previous state-of-
the-art results.
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Zusammenfassung

Computer Vision hat das Ziel das visuelle Denkvermögen desMenschen künstlich mit Al-
gorithmen nachzuahmen, welche eingesetzt in Software Tools undmechanischenAgenten
die Sicherheit im Autoverkehr verbessern, effektive visuelle Suche im World Wide Web
ermöglichen oder die Produktivität und Qualität in industriellen Produktionsabläufen
steigern. Ähnlich wie die Denkprozesse, die ständig in unserem Gehirn ablaufen, stützen
sich solche Algorithmen direkt auf abstrakte Repräsentationen der Objekte in der visuell
wahrnehmbaren Umgebung und darüber hinaus. Folglich ist das Erlernen informativer
Repräsentationen, die es ermöglichen Objekte zu detektieren und erkennen, sowie Bild-
szenen zu bewerten, von größter Bedeutung für fast alle Bereiche von Computer Vision.
Die Qualität einer gelernten Objektrepräsentation hängt typischerweise von bestimmten
Eigenschaften ab, wie die Invarianz gegenüber Bildstörungen, z. B. uninformativen Hin-
tergrund, und der Robustheit gegenüber Objektrotation, -translation oder -verdeckung.
Darüber hinaus benötigen viele AnwendungenRepräsentationen, die Vergleiche zwischen
Objekten erlauben und somit bestimmen lassen, wie ähnlich oder unähnlich zweiObjekte
semantisch sind. Der wohl schwierigste Aspekt beim Lernen von Objektrepräsentatio-
nen ist jedoch die Gewährleistung der Generalisierung auf ungesehene Objekte, Objekt-
variationen und Umgebungen. Während zu den erstgenannten Eigenschaften ein großer
Korpus an Literatur zum Ähnlichkeitslernen vorliegt, ist der letzte Aspekt, d.h. die Gen-
eralisierung von Objektrepräsentationen, noch wenig verstanden und wird daher selten
explizit behandelt.
In dieser Arbeit analysieren wir das aktuelle Feld des Ähnlichkeitslernens und identi-
fizieren Eigenschaften vonObjektrepräsentationen, die gutmit ihrerGeneralisierungsleis-
tung korrelieren. Wir nutzen unsere Erkenntnisse und schlagen neuartige Methoden
vor, die aktuelle Ansätze des Ähnlichkeitslernens sowohl in Bezug auf die Datenauswahl
als auch auf die Formulierung des Lernproblems verbessern. Zu diesem Zweck führen
wir mehrere Trainingsaufgaben ein, die das vorherrschende Paradigma des standardmäßi-
gen klassendiskriminierenden Lernens ergänzen und die schließlich unter dem Konzept
der vielfältigen Merkmalsaggregation vereinheitlicht werden. Um die Optimierung von
Methoden desÄhnlichkeitslernens bestmöglich zu unterstützen, ersetzenwir die üblicher-
weise verwendeten heuristischen und vordefiniertenDaten-Sampling-Strategien durch eine
lernfähige Sampling-Strategie, die sich an den Trainingszustand unseres Modells anpasst.
Typischerweise findet das Ähnlichkeitslernen Anwendung in überwachten Lernproble-
men. Da jedoch immer mehr Trainingsdaten zur Verfügung stehen und Annotation-
sprozesse oft mühsam oder sogar undurchführbar sind, sind unüberwachte Lernsettings
in den letzten Jahren immer mehr in den Fokus gerückt. Im zweiten Teil dieser Arbeit
untersuchen wir daher die Nützlichkeit des Ähnlichkeitslernens zur Gewinnung infor-
mativer Repräsentationen ohne die Notwendigkeit von Trainingslabeln sowohl im Bere-
ich der statischen Bilder als auch der Videosequenzen. Um das Lernen zu ermöglichen,
alternieren unsere Ansätze zwischen der Inferenz von Trainings-Datenbeziehungen und
die Verfeinerung unserer visuellen Repräsentationen. Dabei greifen wir auf das klassis-
che Divide-and-Conquer-Prinzip zurück: Wir zerlegen komplexe Gesamtlernprobleme
in einfachere lokale Teilprobleme, deren Lösungen anschließend zu globalen Repräsenta-
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tionen vereinigt werden.
In dieser Arbeit rechtfertigen wir unsere Beiträge durch rigorose Analysen und eine starke
Modellleistung bei Standard-Benchmarks, die oft die bisherigen State-of-the-Art-Ergebnisse
übertreffen.
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1 Introduction

1.1 Visual Reasoning and Computer Vision

Every day we navigate the world as we perceive and interact with our immediate envi-
ronment. We recognize and discriminate among tens of thousands of objects [20, 78],
read the faces and emotions of other people [104] and identify various types of dangerous
situations on our quest for survival. To master these and many other essential tasks of
visual reasoning, our brain is continually trained on a steady stream of visual input while
simultaneously applying the already built-up knowledge. Beginning with the reception
of visual sensory signals on our retina, we process and aggregate the information in our
visual cortex [104], the basis of further interpretation and reasoning in various other ar-
eas of our brain [67]. Amazingly, despite the enormous complexity and vast amount of
information to be processed, we perform these tasks effortlessly and usually even uncon-
sciously [113] at almost every moment of our lives.
The goal of Computer Vision is to artificially mimic this process in mechanical agents and
software tools, e.g. to improve safety in automobile traffic, enable effective visual search
on the World Wide Web, increase productivity and quality in industrial production pro-
cesses and aid in many more applications. To this end, algorithms must be developed that
can solve the many tasks that constitute visual reasoning. Typical tasks are for instance
object detection [64, 187, 190], classification [45, 91, 131] and object segmentation [75, 89],
which are illustrated in Fig 1.1. An initial effort to construct a visual system solving such
tasks and, thus, put Computer Vision on the map of academic research was launched in
the early 1960s with the famous MIT ’Summer Vision Project’ and, among others, the
seminal work ’Machine Perception Of Three-Dimensional Solids’ [192]. After failing to
meet initially high expectations, Computer Vision found its first commercial application
in the late 1970s with Optical Character Recognition (OCR). Thereafter, research gained
momentum in the 1980s and set milestones, for instance with the Lucas-Kanade method
for optical flow [10] (1981), the Canny Edge Detector [29] (1986) and the first Face Recog-
nition system [230] (1991).
Nowadays, driven by breakthroughs in machine learning, Computer Vision lives up to
early expectations by achieving superhuman performance in many recognition tasks, en-
abling applications in autonomous driving [106],medical imaging [39, 82] and robotics [35,
52]. The success and growing importance of Computer Vision for these and many other
applications is ultimately enabled by increasingly more complex tasks coming within
reach and eventually being solved. Ongoing advances in generative modeling, holistic
scene understanding, temporal reasoning, and extensions to the 3D world are bringing

1



1 Introduction

(a) Object classification (b) Object detection (c) Instance segmentation

Figure 1.1: Examples of threemainComputer Vision tasks. (a) Image classification aims at predicting
labels reflecting the objects depicted in an image. (b) Object detection additionally
localizes the objects by means of bounding boxes. (c) Instance segmentation extends
object detection to a pixel-level localization of objects, i.e. assigning pixel-wise class
labels for each object detected.

Computer Vision ever closer to the goal of developing systems that exhibit a complete
understanding of the visually perceivable environment and beyond.

1.2 The role and importance of object representations

A key factor of making sense of the massive amount and complexity of visual input is our
ability to develop abstract representations in our brain [78, 135, 152] that describe the ob-
jects we encounter in the visual world. Typical visual cues that allow us to identify and dis-
tinguish between objects are for instance color and texture. However, since many objects,
such as cars, exhibit large variations in these features, also geometrical properties describ-
ing object shape must be captured. Eventually, the closer distinct object categories are, the
more complex and fine-grained representations are needed to enable effective recognition.
Hence, object representations should describe objects on different levels of granularity and
detail to ultimately serve as a basis to the various higher-level (visual) reasoning processes
[67]. Moreover, to successfully and reliably enable these processes, object representations
are required to exhibit the following characteristics [44, 53, 92, 231, 279]:
(i) Our world is dynamic and objects may be perceived in infinite variations. Therefore,
consistent and accurate object recognition requires representations to be invariant to vari-
ations such as size, rotation, position, and background.
(ii) We are living in a continuous world and reasoning requires us to make situational
choices and comparisons. Since these tasks typically involve the evaluation of objects,
representations must allow for a notion of how similar or dissimilar objects are to others
and also account for their own variations. Examples are the condition and value of an
object to be purchased, whether or not foods are still consumable, estimating a person’s
mood or attitude towards us, and the evaluation of skills or actions.
(iii) Finally, the world is vast and ever-changing. The objects we encounter in our lives are
not predefined from the start. We will always be discovering and learning new things and
are constantly faced with situations we have never experienced before. Rapid evaluation

2



1.2 The role and importance of object representations

Figure 1.2: Prototypical depiction of a (deep) neural network model. Each layer φ1, . . . , φT can be
considered as an (intermediate) representation of the inputs X , while the low-level
representations are also often referred to as features. In essence, deep neural networks
are a composition of simple, parametrized functions, e.g. convolutions or inner prod-
ucts, at large scale. Trained to yield outputs Ŷ by optimizing a given task such as
object classification, the parameters of the network are updated via the backprogation
algorithm [48, 199]. Due to the immediate connection between X and Ŷ , the repre-
sentations φt are learned to support the task at hand and this optimization procedure
is called end-to-end training. For a detailed introduction to DNNs and Deep Learning
in general, we refer the reader to the ’Deep Learning’ book by Goodfellow et al. [79].

of and adaptation to the unknown is thus an important part of our interaction with the
world, and was particularly crucial for survival in the earlier days of human existence.
Consequently, the representations we rely on must also capture and generalize to novel
variations of already known objects and their evaluations within new circumstances [11,
53] or even unknown objects.

1.2.1 Object representations in Computer Vision

Considering the human brain as a paragon for effective visual reasoning, almost any Com-
puter Vision model today operates on abstract object representations. Designed to war-
rant the aforementioned properties, a large corpus of research on representation and simi-
larity learning has emerged in recent decades. Early works proposed representations based
on shallow, hand-crafted image features like pixel gradients [13, 16, 49, 147], color his-
tograms [202] and local texture changes [2], thus predefining and fixing the visual patterns
and features used to describe and compare objects. With the advent of Deep Learning
and the powerful concept of backpropagation-based end-to-end training [48, 79, 199], the
paradigm of finding object representations has changed. Nowadays, object representa-
tions are learned, i.e. explicitly optimized to yield flexible, deep hierarchies of features
describing objects on multiple levels of granularity, directly solving a particular task. Typ-
ically, starting from low-level features that activate on similar patterns as the hand-crafted
predecessors, features are gradually aggregated to more high-level and eventually holis-

3



1 Introduction

tic descriptions of objects. Fig. 1.2 illustrates a prototypical depiction of a deep neural
network (DNN) consisting of a sequence of fully connected layers. Similar sequential
architectures which may consist of various, conceptually different layers, in particular
convolution-based1, are the backbone of almost every modern Computer Vision model.
Today, there exist many different network architectures, consisting of increasingly more
complex andmore densely inter-connected functions, which are specialized to given tasks.
Among the most widely used network families are Inception networks [222], residual neu-
ral networks (ResNets) [91], UNets [193], autoregressive and recurrent neural networks
(RNNs) [40, 97] and generative networks [80, 123]. Equipped with millions of trainable
parameters, these models can be trained on huge amounts of data, learn powerful repre-
sentations, and thus contribute greatly to recent breakthroughs in Computer Vision.

1.2.2 Applications and challenges

Well-generalizing representations that effectively capture similarities and dissimilarities
between objects have a strong impact on a broad range of Computer Vision applications.
The most immediate application are image retrieval based tasks [145, 161, 241, 256]. For
a given query image, these problems aim to select the most similar instances from large
collections of images, thus they can also be considered as an equivalent formulation of
image classification. In a similar vein, there are numerous related tasks such as face verifi-
cation[41, 143, 205, 224, 230, 245], person (re-)identification [37, 211], human pose estima-
tion[12, 24, 46, 154, 220] or image style transfer [128]. Moreover, while these tasks are often
formulated to operate within a given data distribution, typically a fixed, predefined set of
object classes, arguably themost important and challenging application is transfer learning.
Transfer learning strives for finding representations that not only allow to describe and
compare objects within the training distribution but in particular also generalize to novel
data (cf. (iii) above), such as novel object variations, entirely unseen categories, or even
different tasks. Depending on the exact training and evaluation setting, we distinguish be-
tween many flavors of transfer learning, e.g. (general) transfer of learned representations
[36, 127, 131, 177, 253], few-shot learning [66, 125, 186, 235], domain adaptation [47, 69, 246]
and zero-shot learning [170, 171]. While each setting has its own dedicated methods pro-
posed over the past years, the most influential and general class of algorithms today for
learning image representations is Similarity or (Distance) Metric Learning.

1Typically low-level features are learned by convolutional layers. These layers [79] exploit sets of shared pa-
rameterized convolution masks to circumvent the heavy computational burden when processing large in-
put images. Consequently, themorewidely used expression convolutional neural networks (CNN) emerged
and is often used synonymously for deep neural networks in general.
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1.3 (Deep) Visual Similarity and Representation Learning

1.3 (Deep) Visual Similarity and Representation Learning

Under the paradigm of end-to-end training, in deep neural networks a representation φ of
an object depicted in image x is composed of a sequence of differentiable, parameterized
functions φ1, . . . , φT ,

φ(x; θ) = (φT ◦ φT−1 ◦ · · ·φ1)(x; θ) = φT (φT−1(· · ·φ1(x; θ1) · · · ; θT−1); θT ) , (1.1)

with trainable parameters θ = (θ1, . . . , θT ). Hence, the representation φ is adjustable
to optimally support the solution to a given task, respectively the optimization of its
corresponding learning problem (cf. Fig. 1.2). To this end, a representation learns to
capture the information about input images and the depicted objects within in sufficient
detail, as well as invariances to potentially unimportant factors such as background clutter,
viewpoint, or occlusions. Consequently, the quality of an object representation, i.e. its
ability to express similarities between objects, its robustness to noise and clutter, and
also its generalization capabilities, directly depend on the mathematical formulation and
optimization of the targeted learning problem.

1.3.1 Learning representations by optimizing visual tasks

Let {x1, x2, . . . xN} = X be a set of D′ dimensional training images. The goal is to learn
a D-dimensional representation φ : RD

′ → Φ ⊆ RD. Finding a visual representation
φ is typically framed as a learning problem of a visual task in terms of a task-specific
function G(φ(x, θ), ζ), with G directly depending on the representation φ and additional
task-specific parameter ζ. Such objectives are naturally formulated inDNNbased learning
frameworks (1.1), where θ denotes the trainable parameters of the (deep) representation
φ and (if required) ζ the trainable parameters specialized to G.
Learning the visual task, thus optimizing the model parameters (θ, ζ), is typically per-
formed by matching its predicted output ŷ = G(φ(x; θ), ζ) to an expected output y ∈ Y
for the training images X . Depending on the task at hand, y may be discrete object labels,
coordinate locations in an image, pixel-wise scores, or any suitable space for modeling the
learning problem. Thus, G expresses a relationship between the representation of images
x and the output ŷ. A typical example for a task G is object classification, typically for-
mulated to predict probabilities ŷ = P (j|x) of an image x depicting a certain object class
j by means of the softmax function2 σ over K classes with parameters ζ = (ζ1, . . . , ζK),
with ζi ∈ RD for i = 1, . . . ,K, i.e.

G(φ(x; θ); ζ) , σ(φ(x; θ); ζ) =
exp(ζ>j φ(x; θ))∑K
k=1 exp(ζ>k φ(x; θ))

. (1.2)

2In this case we assume the bias term, which is typically considered for classification problems, to be equal
to zero. Consequently we can omit these terms.
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where ζk can be interpreted as class representations. Formally, to train our model on
the task G, we optimize an objective function L suitable to match the predictions ŷ and
expected outputs y, i.e.

min
θ,ζ
L(ŷ, y) . (1.3)

Note, that (1.3) is in particular optimized for parameters θ. Hence, to optimally perform
task G, the representation φ needs to extract and capture informative features from the
images X . In most cases Y is provided by human annotated ground-truth information
which constitutes the realm of supervised learning. However, Y may also be formulated to
solely exploit inductive biases in the training data itself, which gives rise to other research
areas such as unsupervised learning3 [30, 36, 90, 165, 257] also see chapter 6 and 7) and semi-
supervised learning [32, 121, 136, 172].

1.3.2 Deep similarity learning

Optimizing image classification tasks such as (1.2) on large and diverse datasets, such as
ImageNet [50] (∼ 1.2 million images), YFCC100M dataset [226] (∼ 100million flicker im-
ages and videos), etc., results in highly discriminative representations. Due to their partic-
ularly well-generalizing low-level features, they are the most widely used representations
today for initializing Computer Vision models which accelerates and more easily enables
further training on various kinds of tasks [127]. However, despite yielding universal low-
level features, the actual set of objects to be recognized by these models is pre-defined
and fixed. Thus, the naive application of such representations for directly recognizing
and retrieving objects outside the training distribution is limited [51], diminishing desired
generalization capabilities of the learned object representation φ. Moreover, training clas-
sification models are governed by the availability of discrete class labels. Consequently,
their applicability to weaker or more abstract forms of supervision is restricted, e.g. in
cases where only relative image relations can be induced or more continuous notions of
similarity are to be learned [119].
Similarity learning addresses these shortcomings by directly optimizing the target repre-
sentation space Φ to reflect similarity, respectively dissimilarity constraints between im-
ages – i.e., constraints specifying if samples are supposed to be similar or not. Given a
distance function d : Φ × Φ → R≥0 (e.g. Euclidean or Mahalanobis distance), the map-
ping φ is optimized to embed similar images close together in Φ under d and dissimilar
images far apart, reflecting some semantic concept of similarity, cf. Fig. 1.3. Typically Φ
is also referred to as the embedding space. Hence, we optimize tasks G expressed as distance
functions d between embedded training images φ(X ; θ), i.e.

G(φ(x1; θ), φ(x2; θ); ζ) , d(φ(x1; θ), φ(x2; θ)) , (1.4)

to implement the similarity constraints on Φ. Hence, in Eq. (1.4) we define the learning
task G on relations between two or potentially even more samples. One of the most ef-
fective and arguably the most widely used category of objective functions L to optimize

3Often equivalently referred to as self-supervised learning.
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1.3 (Deep) Visual Similarity and Representation Learning

(a) (b)

Figure 1.3: The basic principle of similarity learning. (a) The representation φ is optimized to map
similar images close together, i.e. minimizing the distance between some anchor image
(grey) and similar images (green) while maximizing its distance to negative images
(red). (b) An example of a representation optimized using class membership as binary
similarity constraints. Each class is represented by a different color. Similar classes
should be close, dissimilar classes far from each other. Moreover, φ is regularized by
restricting it to the surface of a three-dimensional hypersphere.

our distances are summarized as ranking-based approaches [171, 205, 217, 251, 256]. These
methods directly optimize relative ordering constraints between tupels of images based
on similarities defined by Y . For instance, suppose Y allows to induce pairwise simi-
larity scores yij ∈ R which quantifies how similar images xi, xj are, with higher scores
indicating larger similarity. Using yij we can construct triplets of images {(xi, xj , xk) ∈
X × X × X | yij > yik} to represent our ordering constraints. Choosing d to be the
squared euclidean distance, the well-known triplet loss [34, 205] is now formulated as

L(d(φ(xi; θ),φ(xj ; θ)), d(φ(xi; θ), φ(xk; θ));Y) =

[||φ(xi; θ)− φ(xj ; θ)||22 − ||φ(xi; θ)− φ(xk; θ)||22 + β]+ .
(1.5)

Here, the supervision provided by Y determines which distances to minimize and and
to maximize and [·]+ , max (0, ·) denotes the hinge function. Typically, xi is called an-
chor, xj positive and xk negative. The parameter β denotes a fixed, scalar margin which
ensures that (1.5) only enforces constraints yij > yik up to a certain degree in order to
stabilize optimization. In the literature, similarity learning is naturally addressed by the
field of Metric Learning, respectively, in the era of deep neural networks, by Deep Metric
Learning (DML). The subsequent chapter 2 provides a dedicated introduction to (Deep)
Metric Learning by summarizing and comparing the most important objectives, as well
the overall training pipeline of DML models.
Concluding, formulating G directly based on distance relations offers several benefits for
both learning and inference. Among the most important ones are (i) similarity constraints
are very general and, thus, can be derived from and combined with different kinds of su-
pervision signals; (ii) depending on the granularity of Y , we are able to exercise immediate
control over the learned embedding φ which, for instance, ranges from implementing a
clustered structure separating between object categories to total orderings on the training
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samples X ; (iii) the learned embedding φ is naturally applicable to classification and im-
age retrieval applications and is also defined for instances and on object classes outside the
training data distribution. Moreover, due to the general nature of the contrastive learning
signal, similarity learning can be used to formulate many other tasks, such as learning
hashing functions [73, 169, 254], recommender systems [142, 203] and density estimation
[84]. Finally, also the research area of unsupervised (low-level) representation learning is
today heavily influenced by breakthroughs and techniques of similarity learning [36, 174].

1.4 Thesis Objective and Challenges

Benefiting from the advent of deep neural networks, representation and similarity learn-
ing havemade remarkable progress with supervised, class-discriminative training being the
leading learning paradigm. Training ever largermodels on vasts amounts of data while still
being able to effectively capture the training distribution, clearly demonstrates their ex-
cellent scaling and predictive capabilities. However, despite the tremendous success, such
models are still subject to serious limitations, such as out-of-distribution generalization
and strong label dependency. Motivated by these shortcomings the following research
objectives are addressed in the scope of this thesis.
Standard discriminative training by design yields representations which are highly special-
ized to the training data. As a result, performance deteriorates with a growing gap between
the distribution of training data and test data. However, as discussed in Sec. 1.2.2, repre-
sentations should ideally equally well generalize to data outside the training distribution.
Unfortunately, in the limit case, such out-of-distribution samples and classes may be com-
pletely unknown when learning our object representation. Therefore it is particularly
challenging to formulate learning objectives that yield sufficiently expressive representa-
tions that also capture features of these instances. As a results, out-of-distribution general-
ization remains an open research problem to this day. Addressing this problem leads to the
the main research question of this thesis: with only a limited amount of available training
data, can we find training signals beside the current paradigm of class-discriminative learn-
ing to extend the generalization of object representations beyond the training distribution
? To answer this question, we analyze the current field of similarity learning, respectively
Deep Metric Learning, to identify potential factors that drive out-of-distribution general-
ization. Based on this analysis, we aim to develop new approaches for similarity learning
that advance the capabilities and performance of its current state. Since the lack of prior
knowledge about the potential objects to be captured seriously hinders the provision of
informative training supervision, we particularly aim to explore learning signals which
do not rely on specialized annotation information.
In the second part of this thesis, we want to go further and explore the application of sim-
ilarity learning to the realm of completely unsupervised training settings. Although the
number of available training images is growing larger, providingmodels also with the typi-
cally required supervision information is tedious, costly and, thus, ultimately restricts the
learning of stronger representations. Especially for complex data domains such as video
sequences, providing annotations is often prohibitively expensive, preventing to tackle

8



1.5 Contributions

certain tasks altogether. The research area of unsupervised representation learning is ded-
icated to address this problem. While specialized surrogate tasks are typically formulated
as substitutes for labeling information, the adaptation of the more general framework of
similarity learning to unsupervised representation learning is poorly explored. In this
thesis we investigate this question and the applicability of similarity learning for unsuper-
vised representation learning both for the domains of static images and video sequences.
Without having access to labels or side information about data relations to use for train-
ing, we must carefully infer them ourselves. Given the large amount of potential relations
to be exploited, the main challenge is to estimate which relations actually refer to true
object similarities and dissimilarities and which are likely noise. Since only a small set of
relations can typically be identified at the outset, our goal is to develop training curricu-
lums that progressively refine and improve our object representations during training by
carefully inferring and leveraging more and more reliable learning constraints.

1.5 Contributions

In collaboration with my great colleagues, the following publications emerged within the
scope of this thesis:

• Unsupervised Representation Learning by Discovering Reliable Image Rela-
tions
T.Milbich∗, O.Ghori∗, B.Ommer
Pattern Recognition Journal (PR), Volume 102, June 2020

• DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning
T. Milbich∗, K. Roth∗, H. Bharadhwaj, S. Sinha, Y. Bengio, B. Ommer†, J. Paul Cohen†
European Conference on Computer Vision (ECCV) 2020

• Sharing Matters for Generalization in Deep Metric Learning
T.Milbich∗, K.Roth∗, B.Brattoli, B.Ommer
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), only online,
has yet to appear in print.

• Revisiting Training Strategies and Generalization Performance in DeepMetric
Learning
K.Roth∗, T.Milbich∗, S.Sinha, P.Gupta, B.Ommer, J.P.Cohen
International Conference on Machine Learning (ICML) 2020

• PADS: Policy-adapted Sampling for Visual Similarity Learning
K.Roth∗, T.Milbich∗, B.Ommer
Conference on Computer Vision and Pattern Recognition (CVPR) 2020

• Unsupervised Video Understanding by Reconciliation of Posture Similarities
T.Milbich, M.Bautista, E.Sutter and B.Ommer
International Conference on Computer Vision (ICCV) 2017
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As indicated by (*), in particular Karsten Roth contributed under my supervision equally
to various works, in particular helping with the implementation in large parts. In sum-
mary, this thesis comprises the following main contributions published in these works:

• Based on a study and comparison of the current state of Deep Metric Learning,
we analyze driving factors of generalization of object representations. As a result,
we identify correlations between generalization and certain structural properties of
the learned embedding space. In particular, we uncover a strong relationship to the
concept of representation compression.

• In agreement with the insights derived from the generalization analysis, the con-
cept of shared features is introduced to similarity learning. These features target
and capture patterns that are shared between training classes, thus increasing the
expressiveness of representations. Moreover, effective ways to learn shared features
and how to jointly optimize them with discriminative features are proposed and
evaluated.

• An analysis of the distribution gap between training and test data and its influence
on the performance of ranking-based similarity learning. Results considering both
discriminative and shared features indicate a significant benefit of the latter to alle-
viate the overfitting problem of zero-shot classification.

• The idea of learning features that are complementary to the standard, discriminative
learning paradigm is extended to capture various semantic concepts of similarity to
further bridge the generalization gap. In particular, learning tasks targeting features
across different object classes, features within object classes, and features indepen-
dent of class assignments are designed and jointly optimized.

• Many deep ranking-based similarity learning approaches strongly rely on effective
training data sampling strategies. To optimally support this class of algorithms, a
novel data sampling policy is proposed which adapts to the learning state of DML
models. Resorting to Reinforcement Learning (RL), the sampling policy is trained
to directly enhance generalization performance. (Karsten Roth contributed equally
to the development of the sampling strategy).

• New state-of-the-art results are achieved by the proposed novel DML models and
model extensions across standard benchmark sets of varying scale and sample-to-
class ratios.

• A novel approach to unsupervised representation learning to yield representations
that transfer to down-stream tasks such as detection, segmentation, and recognition.
The proposed method is based on techniques from similarity learning.

• An effective strategy to mine reliable, most likely correct, similarity constraints for
learning without any need for supervision. In order to find such reliable relations,
the overall learning problem is partitioned into and optimized on sub-problems.
Subsequently, their solution is consolidated into a single, global solution. The
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proposed model achieves competitive and new state-of-the-art results on standard
benchmark datasets.

• Learning representations that are able to capture and compare video sequences are
difficult to train due to the very expensive annotation process for temporal data.
This thesis proposes an unsupervised approach to learn such representations for
understanding human activity, based on similarity learning.

• In order to derive similarity constraints for temporal visual data, an integer linear
problem for pairwise sequence matching of human postures is formulated. For
efficient optimization, training sequences are split into sub-sequences. A deep neural
network is then trained to consolidate the local correspondences into a consistent
global representation.

1.6 Thesis Organization

Chapter 2 first reviews and empirically evaluates the most important aspects of common
strategies for training DML models, including objective functions and crucial hyperpa-
rameter choices. Moreover, inconsistencies in training protocols in the literature are dis-
cussed and best practices for a fair comparison between different models are presented.
Based on this analysis, metrics reflecting both the arrangement of samples projected into
the embedding space and its captured information content are introduced. We show cor-
relations between our metrics and the generalization performance of DMLmodels which
gives rise to driving factors for improving the transfer learning capabilities of such ap-
proaches. Finally, exploiting our observations, we present a simple regularization tech-
nique that improves the performance of ranking-based DML models.
Chapter 3 further makes use of the insights from chapter 2 to improve generalization in
similarity learning. To this end, the concept of shared features is introduced which aims at
capturing commonalities across training classes to improve the expressiveness of learned
embedding representations. Moreover, we show how to efficiently learn such features next
to the classical discriminative training paradigm. A detailed analysis and evaluation of the
presented approach verifies the benefit of incorporating shared features for generalization
in similarity learning.
Chapter 4 extends the idea of chapter 3 and proposes a multi-task similarity learning
framework. We introduce and jointly optimize several novel tasks that yield mutually
complementary features to further increase the expressiveness and, thus, the generaliza-
tion of representations. In particular, learning tasks targeting discriminative, inter-class,
intra-class, and sample-specific features are examined. For the latter, we review and an-
alyze the utility of recent self-supervised learning approaches. Experiments on standard
benchmark datasets prove the effectiveness of the proposed framework.
Chapter 5 addresses the data sampling aspect of ranking-based DML methods which is
crucial for optimizing such models. In contrast to prevailing static sampling heuristics,
a dynamic and learned sampling policy is presented. Using Reinforcement Learning the
policy is continuously updated to adapt to the learning state of the DML model during
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training. Moreover, by optimizing the policy on a dedicated validation set, its effective-
ness is further increased. Experiments show the general applicability and utility of our
method across different DML approaches, backbone architectures, and datasets.
Chapter 6 applies similarity learning to the task of unsupervised representation learning.
To compensate for lacking ground-truth data relations typically required for training, a
strategy for mining reliable estimates for such similarity relations is developed. To this
end, the overall learning problem is partitioned into subproblems defined on subsets of re-
liable relations. First, each of them is solved independently by an alternating optimization
procedure. Subsequently, these solutions are consolidated to a single, overall representa-
tion exploiting inter-relations between the subproblems. We evaluate the utility of this
representation for downstream tasks such as classification, detection, and segmentation
and demonstrate strong results on each task.
Chapter 7 presents an approach for learning similarities between video sequences at the
example of human activities. Contrary to holistic video representations operating on ac-
tion labels, e.g. learned by standard action recognition, frames are encoded independently
and we represent video sequences as trajectories in a fine-grained activity space. Due to the
lack of labels, the approach is formulated as an unsupervised learning problem and solved
by alternating optimization between identifying frame-wise similarity relations and cap-
turing them in the activity space. Sequence matching is formulated as a novel Integer Lin-
ear Program (ILP) and representation learning is optimized using techniques from DML.
Activity is finally captured and understand bymeans of a recurrent neural network operat-
ing on activity representations. Experiments including zero-shot pose retrieval, temporal
super-resolution, and action synthesis verify the capabilities of the presented method.
Chapter 8 concludes the thesis with a final discussion.
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2 Deep Metric Learning: Training

Strategies and Generalization

Learning visual similarity is important for a wide range of vision tasks, such as image
clustering [22], face detection [205] or image retrieval [256]. Measuring similarity requires
learning an embedding which captures images and reasonably reflects their similarities by
means of a predefined distance metric. One of the most adopted classes of algorithms for
this task is Deep Metric Learning (DML) which leverages deep neural networks to learn
such a distance metric preserving embedding.
Due to the growing interest in and influence of DML on representation learning in gen-
eral, a large corpus of literature has been proposed contributing to its success. How-
ever, as recent DML approaches explore more diverse research directions such as architec-
tures [105, 261], objectives functions [250, 266] and additional training tasks [141, 194], an
unbiased comparison of the impact of such factors becomes more and more difficult. Fur-
thermore, undisclosed technical details of published methods (e.g. data augmentations or
training regularization) pose a challenge to the reproducibility of these models, which is
of great concern in the machine learning community in general [23].
The first part of this chapter aims at establishing a transparent training and evaluation
protocol for fair comparison of DML approaches. We provide an introduction to deep
metric learning while briefly summarizing the transition of early linear metric learning
approaches to the deep variants mostly employed today. Subsequently, we identify and
discuss crucial design choices and hyperparameters of common DML training strategies,
which greatly influence the success and performance of these models. To this end, we
conduct a comprehensive study examining their impact on model performance and com-
pare current DML baselines under identical training conditions on standard benchmark
datasets.
On that basis, we extend our analysis in the second part of this chapter to examine gen-
eralization in DML more closely and analyze its connection to the structure of the em-
beddings learned by these models. In particular, we examine typically applied concepts
when learning representations such as (i) enforcing large inter-class margins [45, 51, 143],
(ii) maintaining intra-class variance [141] and (iii) compression of the learned representa-
tions. In summary, our most important contributions in this chapter can be described as
follows:

• We provide an exhaustive analysis of recent DML objective functions, their training
strategies, the influence of data-sampling, and model design choices to set a standard
benchmark. To this end, we made our code publicly available.

13
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• We provide new insights into DML generalization by analyzing its correlation to
the embedding compression (as measured by its spectral decay), inter-class margins
and intra-class variance.

• Based on the result above, we propose a simple technique to regularize the embed-
ding compression which we find to boost generalization performance of ranking-
based DML approaches.

This chapter is based on our publication ’Revisiting Training Strategies and Generalization
Performance in Deep Metric Learning’ [196].

2.1 Preliminaries: From Linear to Deep Metric Learning

Subsequently, we briefly introduce the idea ofmetric learning and how to learn a similarity
preserving distance function.

2.1.1 Learning a distance metric

Learning a metric space reflecting similarity betweenD′-dimensional training data points
xi ∈ X requires to find a corresponding distance function d : X × X → R. For any
x1, x2, x3 ∈ X , a distance function d fulfills

d(x1, x2) ≥ 0 ∧ d(x1, x2) = 0⇔ x1 = x2 (identity of indiscernibles)
d(x1, x2) = d(x2, x1) (symmetry)

d(x1, x2) ≤ d(x1, x3) + d(x3, x2) (triangle inequality)

(2.1)

To learn such a distance function d, we resort to parametrized functions, whose parame-
ters θ are optimized during training (1.3). In practice, enforcing the conditions (2.1) dur-
ing optimization is tedious, in particular when using deep neural networks to represent
d. Instead, we typically choose d to be a predefined metric function, e.g. the Euclidean
or Cosine distance, and learn a suitable transformation of our data points xi such that d
reflects provided similarty relations Y , as already mentioned in 1.3.2. Let us know discuss
the basic linear metric learning problem formulations, their non-linear extension and the
transition to Deep Metric Learning.

2.1.2 (Linear) Mahalanobis metric learning

For a chosen metric d on a target space RD, the general goal of metric learning is to learn
a transformation φ : RD′ → Φ ⊂ RD of our data points xi ∈ X such that the available
semantic relations, implicitly defined by some supervision information Y , are captured in
the pairwise distances dφ(xi, xj) = d(φ(xi), φ(xj)).
The simplest class of models for the metric learning problem is given by requiring φ to
be a linear transformation. The most prominent and arguably earliest representative is
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Mahalanobis metric learning [252] which is often used equivalently for the general class of
linear metric learning in literature. The Mahalanobis distance is defined as

dmahal(xi, xj) =
√

(xi − xj)>Σ−1(xi − xj) (2.2)

with Σ being the sample covariance matrix (assumed to be positive definite) estimated
from the given dataX . While originally introduced to quantify the distance between a data
point and some distribution1, (2.2) measures the pairwise distance between datapoints
while taking the covariance into account. Equivalently, the Mahalanobis distance can
be considered as the Euclidean distance between whitened datapoints x̃ = Σ−1/2(x −
µ). General linear metric learning now extends the distance (2.2) allowing an arbitrary
positive semi-definite matrix A,

dA(xi, xj) =
√

(xi − xj)>A(xi − xj) , (2.3)

Thus we can factorize A = G>G, resulting in the linear distance metric dA(xi, xj) =
||Gxi − Gxj ||2 with the linear data transformation φ(x; θ) = Gx, where the learnable
model parameter θ represent the entries of the matrix G.
Considering the supervised learning setting, we typically learn (2.3) using a set of pairwise
constraints which, depending on the supervision signal Y , may be given by scores directly
inducing quantitative pairwise similarity/dissimilarity constraints or relative ranking con-
straints between data points X . As already introduced in the introduction, the latter is
often represented by means of triplets t = (xi, xj , xk) ∈ TX ⊂ X × X × X , where TX
consists of those triplets t for which xj is supposed to be more similar to xi than xk. Thus,
we can formulate learning (2.3) as a regularized optimization problem

min
A<0

r(A)

subject to dA(xi, xj) < dA(xi, xk)− β ∀t ∈ TX ,
(2.4)

where A < 0 is a shorthand notation for the requirenment of A to be positive-semi
definite. Similar to (1.5) β denotes the a predefined margin and r is a regularization on
A, such as the Frobenius norm g(A), i.e.

g(A) =
1

2
‖A‖2F =

1

2

D′∑
i,j=1

(Aij)
2 . (2.5)

This norm is commonly used in other machine learning algorithms like ridge regression
[98] or support vector machines [45]. The selected regularization r(A) has important
implications for both the optimization process and properties of the resulting distance
metric. Thus, depending on the choice of r, various different algorithms for learning

1In this case the distribution is assumed to be gaussian N (µ,Σ) and we replace the second datapoint xj in
(2.2) with the distribution mean µ.
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dA(xi, xj) have been proposed [134].
A popular example of metric learning algorithms for problem (2.4) is the Large Margin
Nearest Neighbour classification (LMNN) model proposed by Weinberger et al. [252].
This approach is learned from both direct similarity constraints (xi, xj) ∈ S ⊂ X × X
given as pairs of data points which are supposed to be similar and relative triplet ranking
constraints TX and is formulated as

min
A<0

∑
(xi,xj)∈S

dA(xi, xj) + λ
∑
t∈TX

[1 + dA(xi, xj)− dA(xi, xk)]+ (2.6)

with [·]+ = max (0, ·) being the hinge function.

2.1.3 Non-linear metric learning

Kernelization. Linear transformations represent weighted combinations of the data
points x, which are consequently required to already provide a sufficient data description
for dA to be able to reflect similarity induced by Y . However, in practice this is gener-
ally not the case and linear models quickly fail to apply to complex data, such as high-
dimensional images, as the famous XOR toy problem [26] demonstrates. Consequently,
non-linear data transformations φ(x) are required to tackle complex data domains of real-
world applications.
Since the Euclidean distance in its squared form can be formulated bymeans of inner prod-
ucts, i.e. ||xi − xj ||22 = (xi − xj)>(xi − xj) = x>i xi + 2x>i xj − x>j xj a straight-forward
extension of linear models to yield non-linear transformations, is the kernelization of lin-
ear models. The key idea of kernel methods [209] is to replace linear inner products x>y
with non-linear kernel functions κ(x, y) : X × X → R with

κ(x, y) = φ(x)>φ(y) , (2.7)

thus assuming Φ to be an inner product space. It follows that we do not explicitly need
to evaluate or even to know the mapping φ(x), but only implicitly by evaluating the
kernel function κ(x, y). In order for a kernel function κ(x, y) to be valid, it has to satisfy
the Mercer condition [209]: Any kernel matrix K = (κ(xi, xj)))ij of kernel function
values defined over X , must always be positive semi-definite. In particular, φ can be a
complicated, non-linear mapping into a arbitrarily high-dimensional embedding space Φ
while we are still able to compute κ(x, y) efficiently. The substitution of inner products
x>y with κ(x, y) is known as the kernel trick and often also applied to extend other linear
methods such as support vector machines [45] or principle component analysis [112].
As a result, we can solve linear metric learning problems such as (2.4) in a kernel space Φ
using the now implicit, non-linear transformation φ, thus obtaining a distance function
dA(xi, xj) of form ||Gφ(xi)−Gφ(xj)||22. The distance between novel query samples can
in general be computed by O(n) kernel evaluations over the training samples X . For
a detailed introduction to kernelized metric learning and its optimization, we refer the
reader to [134].
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2.2 Training a Deep Metric Learning Model

(Deep) Neural Representations. Recent advances in training deep neural networks
show that complex, highly non-linear data transformations can be learned effectively for
a large range of machine learning tasks and applications. Thus, representing the data
transformation φ by means of a deep learning model is a natural extension for metric
learning problems of the form (2.4). Analogously, this deep metric learning problem
(DML) is then formulated as

min
θ

r(θ)

subject to dφ(xi, xj) < dφ(xi, xk)− β ∀t ∈ TX .
(2.8)

where θ are now the parameters associated with the network architecture of choice. More-
over, we now denote the distance function to be learned as dφ(xi, xj) = ||φ(xi)−φ(xj)||22
to indicate the direct dependence on the deep representation. Note that similarity and
ranking constraints are basically identical and unchanged. The learning problem (2.8) is
referred to as triplet loss learning in DML literature [205] (cf. (1.5) in chapter 1) and has
since been subject to several extensions [37, 256].

Discussion. For visual similarity learning, implementing φ as a deep representation has
several advantages over the kernelized linear variant. In practice kernel methods restrict
the choice of the embedding φ due to the Mercer condition, which may not optimally
capture the data to be represented. Moreover, due to the high dimensionality of the image
domain, we typically need to resort to predefined intermediate representations of x. In
contrast, deep models allow for learning flexible representations which can be trained to
directly support the target metric learning problem. Moreover, evaluating the kernelized
distance function dA for arbitrary pairs of data points requires to evaluate kernel functions
over the full training set. Thus, given the scale of problem sizes nowadays, including up to
millions of images, evaluation of dA may be computationally expensive. Although, deep
models can also exhibit costly inference times due to their vast amount of parameters, it
does not scale with the training set size. Finally, the massive amount of training parame-
ters are arguably also their strongest advantage, as it allows to learn extremely powerful
representations.
Effective learning of suchwell-generalizing neural distance functions dφ, however, requires
carefully designed training strategies, which in particular includes tuning and regulariza-
tion of the deep learning model. Next, we identify and introduce crucial parts of their
training pipeline followed by an analysis of their impact on performance by comparing
the recent publications of deep metric learning baseline methods.

2.2 Training a Deep Metric Learning Model

In this section, we summarize key components, hyperparamters and their options for
training DML models, which we subsequently analyze in an empirical study. We can
2While in chapter 1 we use φ(x; θ) to denote the deep embedding function, we now drop the explicit
dependence on θ for simplicity reasons.
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2 Deep Metric Learning: Training Strategies and Generalization

Figure 2.1: Design taxonomy of Deep Metric Learning models. In this thesis, we decompose and
categorize models on similarity learning, respectively Deep Metric Learning, using the
depicted taxonomy. Throughout this work, we address several of those model building
blocks (i.e. general model, objective function and data sampling) in various chapters.
The remainder of this chapter introduces, summarizes and evaluates most of the ba-
sic components of DML models. Advanced components highlighted in the grey boxes
(bold) are addressed in subsequent chapters. Tuning and improving the different build-
ing blocks aims at increasing the generalization capabilities of DML models. To this
end, in this chapter, we both thoroughly evaluate the impact of different basic model
components based on a transparent training and testing protocol, and subsequently em-
pirically analyze desirable and beneficial properties of well-generalizing embeddings.

roughly group these elements into (i) training objective, i.e. the main objective function
addressing the core metric learning problem and potential extensions to it, which, for
instance, influence the features to be learned or regularizations; (ii) data sampling strategies
including batch sampling strategies and negative sampling strategies crucial for learning
many ranking-based approaches. (iii) general Deep Metric Learning training components
such as the backbone architecture of a DML model, its general regularization or data
preprocessing. Fig. 2.1 provides a taxonomy of these building blocks. In the following,
we discuss basic DMLmodel components, which constitute and affect most DML training
pipelines, significantly impact their performance and exhibit an increased divergence in
the field, thus impairing objective comparisons between proposed approaches.

2.2.1 The objective function

In Deep Metric Learning we learn an embedding function φ which allows to measure the
similarity between datapoints xi, xj ∈ RD

′ typically as the Euclidean distance dφ(xi, xj) =
||φ(xi)− φ(xj)||2 between their projections into Φ. The corresponding embedding func-
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2.2 Training a Deep Metric Learning Model

tion φ is formulated as a deep neural network parametrised by θ. To stabilize training
[100, 256], the embedding space Φ is often regularized to the real hypersphere, i.e. we
choose

Φ = SD = {z ∈ RD : ‖z‖22 = 1} . (2.9)

Moreover, we assume a supervised training setting where our distance function dφ is
trained to reflect semantic similarity defined by given sample-wise class labels yi ∈ Y , thus
we want samples of the same class to be similar while being dissimilar for other classes.
Objective functions formulated to learn such an embedding function can be roughly cat-
egorized into ranking-based, proxy-based and classification-based approaches.

Ranking-based DML. The most widely used family of DML are ranking-based loss
functions operating on pairs [86], triplets [205, 256, 265] or larger sets of datapoints [37,
171, 217, 250]. Learning φ is defined as an ordering task, such that the distances dφ(xi, xj)
between an anchor xi and positive xj of the same class, yi = yj , is minimized and the
distances dφ(xi, xk) to negative samples xk with different class labels, yi 6= yk, is maxi-
mized. For example, triplet-based formulations (cf. (1.5)) typically optimize their relative
distances as long as a margin β is violated, i.e. as long as dφ(xi, xk)− dφ(xi, xj) < β. An-
other prominent example of instance-based deep metric learning is the margin loss [256],
which introduces an additional dynamic, learnable margin α,

Lmargin = [(−1)
1yi 6=yj (dφ(xi, xj)− α) + β]+ . (2.10)

Here 1a denotes the indicator function given the condition a. Moreover, a state-of-the-art
representative of ranking-losses considering multiple negatives and positives at once for
a given anchor xi is the multi-similarity loss [251]. Suppose P is a set of indices denot-
ing positive training instances for xi and N a set of indices denoting negative training
instances. The multisimilarity loss Lmultisim is then formulated as

Lmultisim =
1

α1
log[1 +

∑
j∈P

exp(α1(dφ(xi, xj) + β))]

+
1

α2
log[1 +

∑
k∈N

exp(−α2(dφ(xi, xk) + β))] ,

(2.11)

where each negative and positive sample is exponentially weighted depending on its dis-
tance to xi. Further, the constants {α1, α2, β} are predefined, fixed hyperparameters con-
trolling the optimization process.
The performance of ranking-based approaches is particularly sensitive to sampling strate-
gies for negative data points in, e.g. triplets TX or the negative set N , as these sets can
only represent small parts of the data distribution3, thus determining the features to be
learned. Consequently, finding the most effective strategies is an active field of research
[71, 88, 195, 205, 256, 262]. Chapter 5 is dedicated to this problem and provides an overview
3The larger the training set, the more sparsely is the (negative) data distribution representated for a given
anchor sample xi.
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over commonly used strategies and proposes a novel approach for learning such sampling
strategies.

Proxy-based DML. Proxy-based DML approaches circumvent the sampling issue of
ranking-based approaches by approximating the data distribution using one [161] or more
[118, 183] learned representatives (proxies) for each class. In the former case, each repre-
sentative basically acts as a estimated centroid of its class samples in Φ. Replacing the
individually sampled, (true) negative and positive data points in standard ranking-based
DML with the class representatives dramatically reduces the complexity of the learning
problem. Consequently, computing the loss function over the full set of proxy negatives
(i.e. class approximations) is now computationally feasible, which leads to more stable
and faster training convergence [161].
The first proposed proxy-based DML model is the ProxyNCA loss [161] which is based
on the Neighbourhood Component Analysis [77]. Denoting ψyi ∈ RD as the proxy
representative for class yi ∈ Y , ProxyNCA is then formulated as

LproxyNCA = − log

(
exp(−d(φi, ψyi))∑M

k=1,k 6=yi exp(−d(φi, ψk))

)
(2.12)

Moreover, comparing equation (2.12) with (1.2), we see that softmax-based classification
objectives can also be interpreted as proxy-based approaches. In this case, the model pa-
rameters ζk in (1.2) represent the learned proxy representations for each class k with the
inner product used as distance measure.

Classification-based DML. The interpretation of softmax weights ζ = (ζ1, . . . , ζK)
(cf. Sec. 2.2.1) acting as a class representation (cf. (1.2)) is exploited by classification-
based DML approaches by proposing dedicated adaptations. Making use of the equality
ζ>k φ(xi) = ‖ζk‖2‖φ(xi)‖2 cosϕi,k with ϕi,k(0 ≤ ϕi,k ≤ π) being the angle between
φ(xi) and ζk, we can reformulate the softmax-logits as

σ(φ(xi); ζ) =− log

[
exp(ζ>yiφ(xi))∑M
k=1 exp(ζ>k φ(xi))

]

− log

[
exp(‖ζyi‖‖φ(xi)‖ cos(ϕi,yi))∑M
k=1 exp(‖ζk‖‖φ(xi)‖ cos(ϕi,k))

]
.

(2.13)

By constraining ||ζk||2 = 1 and the regularization of Φ to the hypersphere, ||φ(xi)||2 = s,
we get

σ(φ(xi); ζ) = −log

[
exp(s cos(ϕi,yi))∑M
k=1 exp(s cos(ϕi,k))

]
. (2.14)

Optimizing (2.14) now only relies on the angle between samples xi and the class proxies
ζk, thus directly targeting the margin between them. Consequently, similar to ranking-
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based objectives, we can now introduce a margin parameter β to explicitly enforce large
decision boundaries between classes, i.e.

σ(φ(xi); ζ, β) = −log

[
exp(s cos(β + ϕi,yi))

exp(s cos(β + ϕi,yi)) +
∑M

k=1,k 6=yi exp(s cos(ϕi,k))

]
. (2.15)

Various DML formulations based on (2.15) emerged [51, 143, 144, 243] and have proven to
be particularly beneficial when dealing with millions of classes such as in face verification
problems. In these applications, each person constitutes an individual class where the
corresponding images can be regarded as natural data augmentations. Hence, the class
proxy-based learning problem is closely related to the explicit instance-based objectives
resulting in fine-grained distance functions dφ.

AdvancedDMLapproaches. Additionally, more involved research extending the above
objectives has been proposed as explicitly considered in our overview Fig. 2.1. Examples
are the work of Sanakoyeu et al. [201] follow a divide-and-conquer strategy by partitioning
and subsequently merging both the data and embeddings; BIER [175, 261] employs an en-
semble of specialized learners to represent diverse data features and [156, 157, 194] extends
this idea by combining DML with explicit diverse feature learning tasks (cf. chapter 3
and 4). In an orthogonal way, approaches like [141] and [277] generate artificial samples
to effectively augment the training data, thus learning more complex ranking relations.
The majority of these methods are essentially based on the objective functions introduced
above and further hinge on the training parameters discussed in the following study, thus
directly benefiting from our findings. We will discuss several of such advanced DMLmod-
els in more detail and in relation to concepts introduced over the course of the following
chapters.

2.2.2 Data sampling

Data sampling plays a crucial role in training deep networks in general [111, 117, 215], as
the gradients during optimization can only be computed on small subsets of the training
data. While the synergy between tuple mining strategies and ranking losses has been
widely studied [71, 205, 256] and is subject of chapter5, this section analyzes the impact of
mining informative mini-batches B. This process is independent of the specific training
objective and so far has been commonly neglected in DML research. Following we present
batch mining strategies operating on both labels and the data itself: label samplers, which
are sampling heuristics that follow selection rules based on label information only, and
embedded samplers, which operate on data embeddings themselves to create batches B
exhibiting diverse data statistics.

Label Samplers. To control the class distribution within B of size b = |B|, we examine
two different heuristics based on the number, n, of ’Samples Per Class’ (SPC-n) heuristic:
SPC-n: Given bach-size b, we randomly select b/n unique classes from which we select n
samples randomly. In practice, typical values for n are 2, 4 or 8.

21



2 Deep Metric Learning: Training Strategies and Generalization

SPC-R: We randomly select b− 1 samples from the dataset and choose the last sample to
have the same label as one of the other b − 1 samples to ensure that at least one triplet
can be mined from B. Thus, we effectively vary the number of unique classes within
mini-batches.

Embedded Samplers. Increasing the batch-size b has proven to be beneficial for stabi-
lizing optimization due to an effectively larger data diversity and richer training informa-
tion [25, 158]. As the DML training is commonly performed on a single GPU (limited
especially due to tuple mining process on the mini-batch), the batch-size b is bounded by
memory. Nevertheless, in order to ‘virtually’ maximize the data diversity, we distill the
information content of a large set of samples B∗, b∗ = |B∗| > b into a mini-batch B by
matching the statistics of B and B∗ under the embedding φ. To avoid computational over-
head, we sample B∗ from a continuously updated memory bankM of embedded training
samples. Similar to [159],M is generated by iteratively updating its elements based on the
steady stream of training batches B. UsingM, we mine mini-batches by first randomly
sampling B∗ fromM with b∗ = 1024 and subsequently find a mini-batch B to match its
data statistics by using one of the following criteria:
Greedy Coreset Distillation (GC): Greedy Coreset [1] finds a batch B by iteratively adding
samples x∗ ∈ B∗ which maximize the distance from the samples that have already been
selected x ∈ B, thereby maximizing the covered space within Φ by solving

min
B:|B|=b

max
x∗∈B∗

min
x∈B

dφ(x, x∗) . (2.16)

Matching of distance distributions (DDM): DDM aims to preserve the distance distribution
of B∗. We randomly selectm candidate mini-batches and choose the batch B with smallest
Wasserstein distance between normalized distance histograms of B and B∗ [198].
FRD-Score Matching (FRD): Similar to the recent GAN evaluation setting, we compute the
frechet distance [96]) between B and B∗ to measure the similarity between their distribu-
tions using

FRD(B,B∗) , ‖µB − µB∗‖22 + Tr(ΣB + ΣB∗ − 2(ΣBΣB∗)
1/2) , (2.17)

with µ•,Σ• being the mean and covariance of the embedded set of samples. Like in DDM,
we select the closest batch B to B∗ amongm randomly sampled candidates.

2.2.3 General model training parameters and architecture

Next to the objectives and data sampling process, successful learning hinges on a reason-
able choice of the training environment. While there is a multitude of hyperparameters to
be set, we identify several factors which both influence performance and recently exhibit
an divergence in proposed approaches.

Architectures. Predominantly three basis network architectures are used in recent
DML literature: GoogLeNet [223] (GN, typically with embedding dimensionality 512),
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Network GN IBN R50
CUB200, R@1 45.41 48.78 43.77
CARS196, R@1 35.31 43.36 36.39
SOP, R@1 44.28 49.05 48.65

Table 2.1: Recall performance of commonly used network architectures after ImageNet pretraining.
Final linear layer is randomly initialized and normalized to the unit-hypersphere.

Inception-BN [103] (IBN, 512) and ResNet50 [91] (R50, 128) (with optionally frozen
Batch-Normalization layers for improved convergence and stability across varying batch
sizes4, see e.g. [28, 194]). Due to the varying number of parameters and configuration
of layers, each architecture exhibits a different starting point for learning, based on its
initialization by ImageNet pretraining [50]. Table 2.1 compares their initial DML perfor-
mance measured in Recall@1 (R@1). The reference to differences in architecture is one of
the main arguments used by individual works not to compare themselves to competing
approaches. Disconcertingly, even when reporting additional results using adjusted net-
works is feasible, typically only the performance using a single architecture are reported.
Consequently, a fair comparison between approaches is heavily impaired.

Weight Decay. Training deep networks commonly involves a regularization of the
parameters to be optimized. Similar to (2.4), r(θ) in problems like (2.8) is typically im-
plemented as a L2-regularization ||θ||2, which is also referred to as weight decay [132].
In similarity learning, particularly on small datasets, its careful adjustment is crucial to
maximize generalization performance. Nevertheless, many works do not report this.

Embedding dimensionality. Choosing a dimensionalityD of the embedding φ influ-
ences the embedding structure and consequently generalization performance. While each
architecture typically uses an individual, standardized dimensionality D in DML, recent
works differ without reporting proper baselines using an adjusted dimensionality. Again,
comparison to existing works and the assessment of the actual contribution is impaired.

Data Preprocessing. Preprocessing training images significantly influences both the
learned features and model regularization and is widely adopted when training deep net-
works. Nevertheless, many works fail to report the applied augmentation protocols.
Thus, the value of their proposed approaches is difficult to assess, as potential perfor-
mance gains are difficult to link to the approaches contributions with sufficient certainty.
Moreover, comparisons of results is also suffering from the trend of operating on increas-
ing training and test image sizes, thus increasing the level of details to be captured by the
DML model.

4Note that Batch-Normalization is still performed, but no parameters are learned.
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Batchsize. Deep networks are typically trained using stochastic gradient decent, i.e.
gradient updates to the network parameters are computed on small mini-batches B of
the training data only. Consequently, larger batch sizes result in better approximations
of the training data distribution, stabilizing optimization and often result in better local
minima. Especially large datasets involving many different training classes greatly benefit
from increased batch sizes. However, it is commonly not taken into account as an influen-
tial factor of variation and thus is not considered for establishing fair evaluation protocols
for DML.

2.3 Analyzing DML training strategies

In this section we now first evaluate the previously discussed design choices and hyper-
parameters. Subsequently, we conduct a large comparison between the most common
DML baselines. All our experiments are based on a fair evaluation protocol for Deep
Metric Learning which we fix throughout this study.

2.3.1 Datasets

Our experiments are conducted on the following standard benchmark datasets:
CUB200-2011: Contains 11,788 images in 200 classes of birds. Train/Test sets are made up
of the first/last 100 classes (5,864/5,924 images respectively) [239]. Samples are distributed
evenly across classes.
CARS196: Has 16,185 images/196 car classes with even sample distribution. Train/Test
sets use the first/last 98 classes (8054/8131 images) [130].
Stanford Online Products (SOP): Contains 120,053 product images divided into 22,634
classes. Train/Test sets are provided, contain 11,318 classes/59,551 images in the Train
and 11,316 classes/60,502 images in the Test set [171]. In SOP, unlike the other bench-
marks, most classes have few instances, leading to a significantly different data distribution
compared to CUB200-2011 and CARS196.

2.3.2 Experimental protocol

Our training protocol follows parts of [256], which utilize a ResNet50 architecture with
frozen Batch-Normalization layers and embedding dimensionality 128 to be comparable
with already proposed results with this architecture. While both GoogLeNet [223] and
Inception-BN [103] are also often employed in the DML literature, we choose ResNet50
due to its success in recent state-of-the-art approaches [194, 201]. In line with standard
practices we randomly resize and crop images to 224 × 224 for training and center crop
to the same size for evaluation. During training, random horizontal flipping (p = 0.5)
is used. Optimization is performed using Adam [122] with learning rate fixed to 10−5

and no learning rate scheduling for unbiased comparison. Weight decay is set to a con-
stant value of 4 · 10−4, as motivated in section 2.3.3. We implemented all models in
PyTorch [180], and experiments are performed on individual Nvidia Titan X, V100 and
T4 GPUs with memory usage limited to 12GB. Each training is run over 150 epochs
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Figure 2.2: Evaluation of DML pipeline parameters and architectures on all benchmark datasets and
their influence on relative improvement across different training criteria.

for CUB200-2011/CARS196 and 100 epochs for Stanford Online Products, if not stated
otherwise. For batch sampling we utilize the the SPC-2 strategy, as motivated in section
2.3.4. Finally, each result is averaged over multiple seeds to avoid seed-based performance
fluctuations. For our study, we examine the following evaluation metrics: Recall@1 and
Recall@2 [107], Normalized Mutual Information (NMI) [151], F1 score [217] and (class-
averaged) mean average precision measured on recall (mAP).

2.3.3 Studying DML parameters and architectures

Now we study the influence of parameters & architectures discussed in Sec. 2.2.3 using
five different objectives. For each experiment, all metrics noted at the end of Sec. 2.3.2
are measured. For each loss, every metric is normalized by the maximum across the
evaluated value range. This enables an comparable summary of performance across all
metrics, where differences correspond to relative improvement. Fig. 2.2 analyzes each
factor by evaluating a range of potential setups with the other parameters fixed to val-
ues from Sec. 2.3.2: Increasing the batchsize generally improves results with gains varying
among criteria, with particularly high relevance on the SOP dataset. For weight decay, we
observe loss and dataset dependent behavior up to a relative performance change of 5%.
Varying the data preprocessing protocol, e.g. augmentations and input image size, leads
to large performance differences as well. Base follows our protocol described in Sec. 2.3.2.
Red. refers to resizing of the smallest image side to 256 and cropping to 224x224 with
horizontal flipping. Big uses Base but crops images to 256x256. Finally, we extend Base
to Adv. with color jittering, changes in brightness and hue. We find that larger images
provide better performance regardless of the chosen objective or dataset. Using the Adv.
processing on the other hand is dependent on the dataset. Moreover, we see that random
resized cropping is a generally stronger operation than basic resizing and cropping.
All these factors underline the importance of a complete declaration of the training pro-
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Figure 2.3: Comparison of mini-batch mining strategies on three different datasets. Performance
measures Recall@1 and 2, NMI, mAP and F1 are normalized across metrics and loss
function. We plot the distributions of relative performances for each strategy.

tocol to facilitate reproducibility and comparability. Similar results are observed for the
choice of architecture and embedding dimensionalityD. At the example of R50, our anal-
ysis shows that training objectives perform differently for a givenD but seem to converge
atD = 512. However, for R50D is typically fixed to 128, thus disadvantaging some train-
ing objectives over others. Finally, comparing common DML architectures reveals their
strong impact on performance with varying variance between loss functions. Highest
consistencies seem to be achievable with R50 and IBN-based setups.

2.3.4 Batch sampling impacts DML training

We now analyze how the data sampling process for mini-batches impacts the performance
of DML models using the sampling strategies presented in Sec. 2.2.2. To conduct an un-
biased study, we experiment with six conceptually different objective functions: Margin-
loss with Distance-Weighted Sampling, Triplet Loss with Random Sampling, ProxyNCA,
Multi-Similarity Loss, Histogram loss and Normalized Softmax loss. To compare our
evaluation metrics (cf. 2.3.2), we utilize the same normalization procedure discussed in
Sec. 2.3.3. Fig. 2.3 summarizes the results for each sampling strategy by reporting the
distributions of normalized scores of all pairwise combinations of training loss and eval-
uation metrics. Our analysis reveals that the batch sampling process indeed effects DML
training with a difference inmean performance up to 1.5%. While there is no clear winner
across all datasets, we observe that the SPC-2 and FRD samplers perform very well and,
in particular, consistently outperform the SPC-4 strategy which is commonly reported to
be used in the literature [205, 256].

26



2.3 Analyzing DML training strategies

Benchmarks→ CUB200-2011 CARS196 SOP
Approaches ↓ R@1 NMI R@1 NMI R@1 NMI
Imagenet [50] 43.77 57.56 36.39 37.96 48.65 58.64

Angular [245] 62.10± 0.27 67.59± 0.26 78.00± 0.32 66.48± 0.44 73.22± 0.07 89.53± 0.01
ArcFace [51] 62.67± 0.67 67.66± 0.38 79.16± 0.97 66.99± 1.08 77.71± 0.15 90.09± 0.03
Contrast. [86] (Dist.) 61.50± 0.17 66.45± 0.27 75.78± 0.39 64.04± 0.13 73.21± 0.04 89.78± 0.02
GenLifted [94] 59.59± 0.60 65.63± 0.14 72.17± 0.38 63.75± 0.35 75.21± 0.12 89.84± 0.01
Hist. [232] 60.55± 0.26 65.26± 0.23 76.47± 0.38 64.15± 0.36 71.30± 0.10 88.93± 0.02
Margin (β = 0.6) [256] 62.50± 0.24 67.02± 0.37 77.70± 0.32 65.29± 0.32 77.38± 0.11 90.45± 0.03
Margin (β = 1.2) [256] 63.09± 0.46 68.21± 0.33 79.86± 0.33 67.36± 0.34 78.43± 0.07 90.40± 0.03
Multisimilarity [251] 62.80± 0.70 68.55± 0.38 81.68± 0.19 69.43± 0.38 77.99± 0.09 90.00± 0.02
Npair [217] 61.63± 0.58 67.64± 0.37 77.48± 0.28 66.55± 0.19 75.86± 0.08 89.79± 0.03
Pnca [161] 62.80± 0.48 66.93± 0.38 78.48± 0.58 65.76± 0.22 − −
Quadruplet (Dist.) [37] 61.71± 0.63 66.60± 0.41 76.34± 0.27 64.79± 0.50 76.95± 0.10 90.14± 0.02
SNR (Dist.) [266] 62.88± 0.18 67.16± 0.25 78.69± 0.19 65.84± 0.52 77.61± 0.34 90.10± 0.08
SoftTriple [183] 60.83± 0.47 64.27± 0.36 75.66± 0.46 62.66± 0.16 − −
Softmax [268] 61.66± 0.33 66.77± 0.36 78.91± 0.27 66.35± 0.30 76.92± 0.64 89.82± 0.15

Triplet (Dist.) [256] 62.87± 0.35 67.53± 0.14 79.13± 0.27 65.90± 0.18 77.39± 0.15 90.06± 0.02
Triplet (Hard) [205] 61.61± 0.21 65.98± 0.41 77.60± 0.33 65.37± 0.26 73.50± 0.09 89.25± 0.03
Triplet (Rand.) [205] 58.48± 0.31 63.84± 0.30 70.63± 0.43 61.09± 0.27 67.86± 0.14 88.35± 0.04
Triplet (Semi) [205] 60.09± 0.49 65.59± 0.29 72.51± 0.47 62.84± 0.41 73.61± 0.14 89.35± 0.02

R-Contrast. (Dist.) 63.57± 0.66 67.63± 0.31 81.06± 0.41 67.27± 0.46 74.36± 0.11 89.94± 0.02
R-Margin (β = 0.6) 64.93± 0.42 68.36± 0.32 82.37± 0.13 68.66± 0.47 77.58± 0.11 90.42± 0.03
R-Margin (β = 1.2) 63.32± 0.33 67.91± 0.66 81.11± 0.49 67.72± 0.79 78.52± 0.10 90.33± 0.02
R-SNR (Dist.) 62.97± 0.32 68.04± 0.34 80.38± 0.35 67.60± 0.20 77.69± 0.25 90.02± 0.06
R-Triplet (Dist.) 63.28± 0.18 67.86± 0.51 81.17± 0.11 67.79± 0.23 77.33± 0.14 89.98± 0.04

Table 2.2: Comparison of Recall@1 and NMI performances for all objectives averaged over 5 runs.
Each model is trained using the same training setting over 150 epochs for CUB/CARS
and 100 epochs for SOP. ’R-’ denotes model trained with ρ-regularization. (Dist.) de-
notes distance-weighted negative sampling [256], (Rand.) denotes random negative sam-
pling, (Hard) denotes hard-negative sampling [205] and (Semi) denotes semi-hard neg-
ative sampling [205] being used for constructing triplets. Bold denotes best results
excluding regularization. Boldblue marks overall best results.

In summary, our study indicates that DML benefits from data diversity in mini-batches,
independent of the chosen training objective. This coincides with the general benefit of
larger batchsizes as noted in section 2.3.3. While complex mining strategies may perform
better, simple heuristics like SPC-2 are sufficient.

2.3.5 Comparing DML models

Based on our training parameter and batch-sampling evaluations we compare a large se-
lection of 14 different DML objectives and 4 mining methods under fixed training con-
ditions (see 2.3.2 & 2.3.3), most of which claim state-of-the-art by a notable margin. For
ranking-based models, we employ distance-based tuple mining (D) [256] which proved
most effective. We also include random, semihard sampling [205] for our tuple mining
study using the classic triplet loss. Loss-specific hyperparameters are determined via small
cross-validation gridsearches around originally proposed values to adjust for our training
setup. Table 2.2 summarizes our evaluation results on all benchmarks. We observe partic-
ularly on CUB200-2011 and CARS196 a higher performance saturation between methods
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Approach Architecture Dim R@1 R@10 R@100 NMI
DVML[141] GoogLeNet 512 70.2 85.2 93.8 90.8
HTL[71] Inception-BN 512 74.8 88.3 94.8 -
MIC[194] ResNet50 128 77.2 89.4 95.6 90.0
D&C[201] ResNet50 128 75.9 88.4 94.9 90.2
Rank[250] Inception-BN 1536 79.8 91.3 96.3 90.4
ABE[120] GoogLeNet 512 76.3 88.4 94.8 -
Margin (ours)[256] ResNet50 128 78.4 - - 90.4

Table 2.3: Comparison to the state-of-the-art DML methods on SOP[171]. Dim denotes the di-
mensionality of φθ.

as compared to SOP due to the strong difference in data distribution. Generally, perfor-
mance between criteria is much more similar than indicated by the literature, as also has
been noted in concurrent work by [162]. We find that representatives of ranking based ob-
jectives in general slightly outperform their classification/NCE-based counterparts. On
average, margin loss [256] and multisimilarity loss [251] offer the best performance across
datasets. Remarkably, under our carefully chosen training setting, a multitude of losses
compete or even outperform more involved state-of-the-art DML approaches on the SOP
dataset. To this end, Tab. 2.3 provides a detailed comparison between current state-of-the-
art DML approaches and our strongest baseline model, margin loss (D, β = 1.2) [256], on
the SOP dataset. The results for these approaches are taken from their publicly available
manuscripts. We observe that our baseline model outperforms each of the models using
varying architectures, but especially other ResNet50-based implementations. While R50
proves to be a stronger base network than GoogLeNet based model, improvements over
MIC and D&C using the same backbone by at least 0.9% and methods based on the simi-
larly strong Inception-BN showcase the relevance of a well-defined baseline. Additionally,
even though Rank [250] and ABE [120] employ considerable more powerful network en-
sembles, our carefully motivated baseline exhibits competitive performance.
In summary, we demonstrated that, under equal training conditions, performance sat-
urates across different methods, contrasting results reported in the recent literature, as
carefully trained baseline models even outperform state-of-the-art approaches which use
considerable stronger architectures. Thus, to evaluate the true benefit of proposed con-
tributions, baseline models need to be competitive and implemented under comparable
settings.

2.4 Generalization in Deep Metric Learning

The previous section showed how different model and training parameter choices result
in vastly different performances. However, how such differences can be best be explained
on basis of the learned embedding is an open question and, for instance, studied under
the concept of compression [228]: the information theoretic tradeoff between describing
the input data with as little information as possible, while only retaining sufficient infor-
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Figure 2.4: Correlation between generalization and structural properties derived from ΦX using dif-
ferent DML objectives on each dataset. Left-to-Right: Mean intra-class distances πintra
& inter-class distances πinter, the ratio πintra/πinter and spectral decay ρ.

mation to infer an output variable corresponding to a given task, thus enabling efficient
supervised learning. Recent work [233] links compression to class-conditioned flattening
of a representation, indicated by an increased decay of singular values obtained by Singular
Value Decomposition (SVD) on the data representations. Thus, class representations oc-
cupy a more compact volume, thereby reducing the number of directions with significant
variance. The subsequent strong focus on the most discriminative directions is shown
to be beneficial for classic classification scenarios with i.i.d. train and test distributions.
However, this overly discards features which could capture data characteristics outside the
training distribution. Hence, generalization in transfer problems like DML is hindered
due to the shift in training and testing distribution [14]. We thus hypothesize that actually
retaining a considerable amount of directions of significant variance (DoV) is crucial to
learn a well generalizing embedding function φ.
To verify this assumption, we analyze the spectral decay of the embedded training data
ΦX , {φ(x)|x ∈ X} via SVD. We then normalize the sorted spectrum of singular values
(SV) SΦX and compute the KL-divergence to a D-dim. discrete uniform distribution UD,
i.e.

ρ(Φ) = KL(UD || SΦX ) , (2.18)
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Figure 2.5: Toy example based on horizontally discriminative training data, where to goal is to
generalize to vertically discriminative test data. (Leftmost) training and test data. (Mid-
left) A small, normalized two-layer fully-connected network trainedwith standard con-
trastive loss fails to separate both test classes as it never has to utilize vertical discrimina-
tion. (Mid-right) The regularized embedding successfully separates the test classes by
introducing additional features and decreasing the spectral decay. (Rightmost) Singular
value spectra of training embeddings learned with and without regularization.

where the divergence between distributions p and q is given byKL(p, q) =
∑

i pilog(pi/qi).
For simplicity we use the notation ρ(Φ) instead of ρ(ΦX ). We do not consider individual
training class representations, as testing and training distribution are shifted. Lower values
of ρ(Φ) indicate more directions of significant variance. Using this measure, we analyze
a large selection of DML objectives in Fig. 2.4 (rightmost) on CUB200-2011, CARS196
and SOP. Comparing R@1 and ρ(Φ) reveals significant inverse correlation (≤ −0.63) be-
tween generalization and the spectral decay of embedding spaces Φ, which highlights the
benefit of more directions of variance in the presence of train-test distribution shifts.
We now compare our finding to commonly exploited concepts for training. For this, let
Φyl = {φi , φ(xi)|xi ∈ X , yi = yl} denote the set of embedded samples of a class yl,
µ(Φyl) their mean embedding and Zinter, Zintra normalization constants. Our comparison
includes concepts such as (i) Larger margins between class samples in Φ [51, 143], i.e. an
increase in average inter-class distances

πinter(Φ) =
1

Zinter

∑
yl,yk,l 6=k

d(µ(Φyl), µ(Φyk)) ; (2.19)

(ii) explicitly introducing intra-class variance [141], which is indicated by an increase in
average intra-class distance

πintra(Φ) =
1

Zintra

∑
yl∈Y

∑
φi,φj∈Φyl

,i 6=j
d(φi, φj) . (2.20)

We also investigate (iii) their relation by using the ratio

πratio(Φ) = πintra(Φ)/πinter(Φ) , (2.21)
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Figure 2.6: Singular Value Spectrum for models trained with (red) and without (blue) ρ-
regularization for various ranking-based criteria.

which can be regarded as an embedding space density. Fig. 2.4 compares these measures
with ρ(Φ). It is evident that neither of the distance relatedmeasures π•(Φ) consistently ex-
hibits significant correlation with generalization performance similar to ρ(Φ), especially
when taking all three datasets into account. For CUB200-2011 and CARS196, we how-
ever we also find that an increased embedding density (πratio) can be linked to stronger
generalization. For large, diverse datasets like SOP, the distance-related measures do not
provide sufficient explanation.

2.4.1 ρ-regularization for improved generalization

We now exploit our findings to propose a simple ρ-regularization for ranking-based ap-
proaches by counteracting the compression of representations. We randomly alter tuples
by switching negative samples xn with the positive xp in a given ranking-loss formulation
(cf. Sec. 2.2.1) with probability pswitch. This pushes samples of the same class apart, en-
abling a DML model to capture extra non-label-discriminative features while dampening
the compression induced by strong discriminative training signals.
Fig. 2.5 depicts a 2D toy example which illustrates the effect of our proposed regular-
ization and further highlights the issue of overly compressed data representations. Even
though the training distribution exhibits features needed to separate all test classes, these
features are disregarded by the strong discriminative training signal. Regularizing the
compression by attenuating the spectral decay ρ(Φ) enables the model to capture more
information and as a result exhibits stronger generalization to the unseen test classes. In
addition, Fig. 2.6 verifies that the ρ-regularization also leads to a decreased spectral decay
on DML benchmark datasets, resulting in improved recall performance (cf. Tab. 2.2 (bot-
tom)), i.e. R-constrastive, R-margin, R-SNR and R-Triplet loss.
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2 Deep Metric Learning: Training Strategies and Generalization

Fig. 2.7 provides a more detailed illustration comparing the performance of DML train-
ing objectives and their corresponding spectral decay ρ(Φ). For ranking losses, we further
include the results using ρ-regularization while training, which further shows that in each
case a gain in performance is related to a decrease of ρ(Φ). Especially the contrastive
loss [86] greatly profits from our proposed regularization, as also indicated by the analysis
of the singular value spectra in Fig. 2.6. Its large gains, more then 5% on the CARS196
dataset, is well explained by comparison of its training objective with those of triplet-
based formulations. The latter optimizes over relative positive (dφ(xi, xj))) and negative
distances (dφ(xi, xk)) up to a fixed margin β, which counteracts a compression of the em-
bedding to a certain extend. On the other hand, the constrastive loss, while controlling
only the negative distances by β, is able to perform an unconstrained contraction of en-
tire classes, which facilitates overly compressed embeddings φ. Finally, Fig. 2.8 studies the
influence of pswitch on generalization performance at the example of Margin loss [256].
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Figure 2.7: Relation between ρ(Φ) and generalization performance onRecall@1 formodels trained
with (orange) and without (blue) ρ-regularization. We report mean results and error-
bars (gray). When error is small, bars are covered.

2.5 Discussion

In this chapter, we conduct a large, comprehensive study of the most influential com-
ponents for training a DML model which, further, contribute severely to the impaired
comparability of recent approaches. On this basis, we analyze the correlation between
DML generalization and the compression of the learned data representation. Our find-
ings reveal that highly compressed representations disregard helpful features for capturing
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Figure 2.8: Analysis of the influence of pswitch on Recall@1 using margin loss with β = 0.6. Dashed
lines denote performance without ρ-regularization.

data characteristics that transfer to unknown test distributions. To this end, we propose a
simple technique for ranking-based methods to regularize the compression of the learned
embedding, which results in boosted performance across all benchmark datasets.
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3 Shared Features for Improved

Generalization

Deep metric learning (DML)[205, 217, 256] is currently the main paradigm for learning
similarities between images. The main challenge is then not just maximizing generaliza-
tion performance from a training to an independent and identically distributed test set.
Rather, DML typically aims at transfer learning, i.e., discovering an embedding that is
also applicable for differently distributed test data. A typical example is training and test
data that exhibits entirely different classes. This degree of generalization is significantly
more demanding. It requires to learn visual characteristics that generalize well and likely
transfer to unknown object classes.
Current DML approaches are mostly optimized using purely class-discriminative training
objectives [205, 217, 256]. Hence, the task is typically framed as learning only the character-
istics which separate the classes while being invariant to all those shared across classes. The
underlying assumption is that features that discriminate between training classes will also
help to separate between arbitrary other test classes. As discussed in the previous chapter,
such learning results in overly compressed image representations. Intuitively, while the
underlying learned features accurately circumscribe each training class, it is unlikely that
they will generalize to samples and classes outside the training distribution, cf. Fig. 3.1.
Taking up the idea of ρ-regularization introduced in Sec. 2.4.1, subsequently we analyze
how to incorporate a complementary source of features learning more profoundly into
DML models. Additionally to the class-specific discriminative features, we now want to
explicitly learn those so far neglected characteristics that are shared across samples of var-
ious training classes. Since such features are of more general nature, they are more likely
to generalize to unseen test classes. Therefore, we develop a strategy to learn such shared
features without the need for extra supervision or additional training data. Our approach
is formulated as a novel triplet sampling strategy which explicitly leverages triplets con-
necting images from mutually different classes. Consequently, it can be easily employed
by any ranking loss framework. In summary, this chapter

• introduces the concept of shared characteristics into DML on a more general level
and analyze its importance for successful DML generalization.

• examines how standard discriminative approaches suffer from impaired generaliza-
tion capabilities and shows how shared features help to alleviate these issues while
providing a complementary training signal.
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Figure 3.1: Motivation. ( left) Real data is described by several latent characteristics (color and
shape). (center) Only the discriminative characteristics (color) which separate classes
are learned, while the others are ignored, thus failing to generalize to unseen classes.
(right) Including characteristics shared across classes (shape) leads to a better represen-
tation of the data. Also see Sec. 2.4.1 for a toy example illustrating this idea.

• proposes a novel and simple method to effectively learn shared characteristics with-
out the need for extra data or annotations and, further, overcome the shortcomings
of our previous heuristic-based approach.

• presents an effective strategy for incorporating the learning of shared characteris-
tics into classic discriminative ranking loss frameworks, thereby strongly boosting
generalization performance.

Experiments using different ranking losses and architectures on standard DML bench-
marks show consistent improvements over previous DML approaches. We further inves-
tigate our model and its generalization ability by conducting thorough ablation studies.
This chapter is based on our publication ’Sharing Matters for Generalization in Deep Metric
Learning’ [157].

3.1 Efficient Learning of Shared Features in DML

In this section, we propose a method to improve the generalization ability of existing
metric learning frameworks by incorporating features that are shared across classes. After
defining classical discriminative metric learning, we discuss the rationale behind shared
features and how to learn them. Finally, we present how to best incorporate discriminative
and shared features in one model.

3.1.1 Recall: Discriminative metric learning

Let us briefly adjust the general formulation of discriminative deep similarity learning
models from the previous section to explicitly consider an intermediate feature repre-
sentation f . Assume fi , f(xi;ω) to be a Df -dimensional feature representation f :
RD

′ → RDf of a datapoint xi ∈ RD
′ parametrized by ω. Then, we seek to learn the

consecutive mapping φ : RDf → Φ ⊂ RD with φi , φ(fi; θ) = φ(f(xi;ω); θ), such
that similar datapoints xi, xj are close in the embedding space Φ under a predefined dis-
tance function d = d(φi, φj) = dφ(xi, xj) and far from each other if they are dissimilar.
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Figure 3.2: tSNE[150] projections of encoding spaces. (left) Discriminative training of the embed-
ding on TX only, (right) Shared training of the embedding on T ∗X only. The same ran-
dom image subset from the CARS196[130] training set is visualized. Image contour
color indicates ground-truth class. (left) the embedding groups images into compact
class-based clusters, (right) the embedding aligns images based on characteristics shared
across classes, e.g. view point (green) and color (orange), which are likely to generalize.
See supplementary for larger version.

Here, θ parametrizes the mapping φ and d is chosen to be the Euclidean distance with
dφ(xi, xj) = ‖φi − φj‖2. Typically, f(xi, ω) is represented as the output of a feature
extractor network and φ(fi; θ) is realized as an encoder network (typically a subsequent
fully connected layer) with its output normalized to a unit hypersphere SD for training
stability [205].
Let us consider the widely used family of ranking-basedDML training objectives (cf. 2.2.1)
for learning φ at the example of the prominent triplet loss [205]. Operating on triplets of
datapoints t = (xi, xj , xk) it is formulated as

L(t;φ) = L(xi, xj , xk;φ) = max(0, dφ(xi, xj)− dφ(xi, xk) + β) , (3.1)

where xi is called the anchor, xj the positive and xk the negative sample. Following the
paradigm of supervised class-discriminative metric learning with given class labels yi ∈ Y ,
xi and xj are sampled from the same class (i.e. yi = yj ) and xk from another class (i.e.
yi 6= yk ). Thus, by optimization on the set of triplets

TX ,
{

(xi, xj , xk) ∈ X × X × X : yi = yj ∧ yi 6= yk
}
, (3.2)

metric learning is framed as a discriminative task. Intuitively L(t, φ) imposes a relative
ordering on the distances within t, pushing xi closer to xj than xk by at least a fixed
margin β.

3.1.2 Designing a learning task for shared features

In DML, ranking losses, such as Eq. 3.1, enforce mutual similarity of samples from the
same training class and dissimilarity to others. Provided a large number of training classes,
each class will be accurately separated from all others. This contracts training categories
in the embedding space and separates them from one another, as can be seen in Fig. 3.1.
While such accurate models are beneficial for generalizing from training to i.i.d. test data,
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Figure 3.3: Nearest neighbour retrieval using φ and φ∗. Based on the class- (φ) and shared (φ∗ )
embedding, we show nearest neighbor retrievals limited to images with different class
label than the query image. The neighbors obtained based on the embedding φ∗ trained
for shared characteristics exhibit common visual properties. Most prominent: (a) red
color, (b) and (c) pose and car type, (d) roundish shape, (e) back view and color. The
embedding φ trained for class discrimination fails to consistently retrieve meaningful
neighbours outside of the query’s class.

transfer to entirely novel classes is significantly more challenging and asks for additional
information.
Now, which complementary, so far unused information can we exploit without reverting
to additional training data or extra annotations? The class-discriminative task ideally seeks
commonalities shared by all samples in a class that separate them from the other classes.
A representation that generalizes to different, unknown classes calls for features that are
not just discriminative. They should also be shared by different training classes so they
are likely to transfer to and reoccur in unknown classes. However, simply merging classes
and subsequently learning to separate these super-classes would not be complementary
to the existing representation from the class-discriminative task. Moreover, individual
classes already have a large intra-class variability. Learning a common representation for
even more heterogeneous super-classes would, therefore, be only more difficult and prone
to noise. In contrast, we could learn complementary features that are shared across subsets
of different classes while still separating from other subsets. Such a representation would
be (i) complementary to the class-discriminative one, since discrimination is between sub-
sets of the original classes and (ii) more likely to transfer, since its features are already
shared across classes. However, this directly raises the question of finding such subsets
without supervision on what is shared between which subsets. We will now first discuss
a grouping-based approach for learning shared features between the training samples in X
before presenting a more direct and simple solution.

Learning shared features by grouping The prevailing learning strategy in absence
of supervision is that of clustering-based methods[12, 30, 155]. Given a feature representa-
tion f , the training data X is partitioned into L groups Gl, l ∈ 1, . . . , L. Mutual closeness
of group members due to similar feature representations indicates that these members
share certain characteristics. Consequently, discriminating groups Gl from another en-
courages the model to learn about these shared group characteristics and the correspond-
ing features that distinguishes different groups. Thus, we can formulate the learning objec-
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Figure 3.4: Unique classes per group. The average number of unique classes per group decreases
during training on CARS196[130] and CUB200-2011[239] dataset.

tive as minimization of a standard discriminative ranking loss, such as Eq. 3.1, on triplets
defined based on the assignment of samples xi to groups Gl [194], i.e. triplets tGl sampled
from

T GlX ,
{

(xi, xj , xk) ∈ X × X × X : yGli = yGlj ∧ y
Gl
i 6= yGlk

}
. (3.3)

Here yGli = yGlj denotes samples xi, xj belonging to the same group Gl and yGli 6= yGlk
indicates xi, xj to come from different groups Gl,Gm, l 6= m.
Unfortunately, clustering-based models are typically strongly biased to learn class-specific
structures [30], since images from the same class share many common (class-)properties
and thus are likely to be assigned to similar groups. Consequently, in order to learn fea-
tures which are complementary to the class-discriminative task, we first have to reduce the
influence of class characteristics. For this purpose, we perform a per-class feature standard-
ization before grouping our data X : For each ground-truth class c ∈ C we compute the
mean µc and the diagonal of the covariance matrix σc based on the features fi of samples
xi ∈ X belonging to class c. To obtain a grouping Gl, we next apply a clustering algorithm
like K-Means [146] on the standardized features fi = fi−µc

σc
, thus reducing the impact of

class-specfic information on the feature representations before grouping as presented in
our earlier work [194].

Explicit inter-class triplet constraints. The just described procedure which fol-
lows the work of MIC [194] enables learning of characteristics shared within a group Gl.
However, even though applying feature standardization the impact of class-specific infor-
mation on these characteristics is still significant as Fig. 3.4 reveals. During training, each
groupGl is gradually dominated by only few classes. Consequently, by sampling anchors
xi and positives xj of triplets tGl from the same group (yGli = yGlj ), xi, xj are increasingly
likely to also have the same class label (yi = yj ). As a result, due to a growing intersec-
tion between TX and T GlX , lots of class-discriminative, thus redundant features are learned.
Concluding, only those triplets tGl ∈ T GlX will actually provide for new, complementary
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Figure 3.5: Architecture and gradient flow. (left) A single encoder φ is alternately trained on both
tasks. (right) Each task is trained on a dedicated encoder φ and φ∗ based on a shared
feature extractor f . Loss is computed per encoder and back-propagated through the
shared feature representation f . Using a projection network ψ, we map φ∗ to the
embedding φ and compute the decorrelation loss (eq. 3.6) with gradient reversal R(.).

features, where each constituent comes from a different ground-truth class so that xi and
xj are unlikely to share class-specific properties. Following this intuition, we hypothesize
that for almost any arbitrarily formed triplet t∗ from mutually different classes, the an-
chor xi and positive xj share some common pattern when compared to a third, negative
image xk.
Let t∗ be such a triplet of images from the set

T ∗X ,
{

(xi, xj , xk) ∈ X × X × X : yi 6= yj 6= yk
}
. (3.4)

For each t∗, the commonality between xi and xj either represents (i) actual shared char-
acteristics across classes which are repetitively supported by many other triplets t∗ or (ii)
some unique or rarely occurring pattern which is typically referred to as noise. Learning
such informative characteristics while discarding noisy patterns on T ∗X constitutes the clas-
sical task of DML: Due to the nature of stochastic gradient decent training, deep neural
networks only learn by being repetitively exposed to similar training signals. Thus, only
the most frequently occurring patterns, i.e. shared characteristics, corroborate their sig-
nals and are captured during training, e.g. when learning on imbalanced training classes [33].
Moreover, the learned features are guaranteed to be complementary and also discriminate
between different shared characteristics since xi, xj , xk are forced to come from different
classes. Fig 3.2 verifies this by comparing the learned embedding by DML trained on TX
and T ∗X .

Online sampling of inter-class triplets t∗. Shared features can basically be learned
between any given training classes from corresponding triplets t∗. However, due to the
common regularization of Φ to a unit hypersphere with large dimensionality D (cf. Sec.
3.1.1), distances in Φ are strongly biased towards the analytical mean distance [225]. Thus,
to learn shared features between classes from the whole range of distances in φ and, in
turn, increase their diversity, we employ distance-based sampling [256],which is discussed
in detail in Sec. 5.1.
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3.1.3 Deep metric learning by combining shared and discriminative

characteristics

The features learned in the previous section represent a complementary source of infor-
mation to the discriminative features from Sec. 3.1.1. Thus, to maximize generalization
performance both should be combined. The following discusses strategies for integrating
both characteristics, which are compared in the experiments of Sec. 3.3.3.
As we formulated learning shared features as a novel triplet sampling strategy, it can easily
be incorporated into any standard ranking loss framework (in the following we use T ∗X ).
The most natural way to combine both kinds of features is to alternately optimize L on
t ∈ TX and t∗ ∈ T ∗X using the same encoder φ. The combined loss is then formulated as

Lc = L(t;φ) + L(t∗;φ) . (3.5)

However, as similarity learned from t and t∗ is based on different semantic concepts (class-
discriminative vs. class-shared characteristics), simultaneous optimization of a joint en-
coder φmay diminish the individual training signals of both tasks. Hence, to fully exploit
the overall training signal, we optimize a dedicatedD∗ dimensional embedding φ∗ on t∗ to
capture the shared characteristics. This requires a second encoder φ∗ : RDf → Φ∗ ⊂ RD∗

with parameters θ∗, such that φ∗i , φ∗(fi; θ
∗) = φ∗(f(xi;ω); θ∗). Note that both en-

coders φ(fi) and φ∗(fi) act on the same feature representation fi. Thus, the training
signals from L(t;φ) and L(t∗;φ∗) are merged into the same feature extractor network by
backpropagation. Consequently, even though φ and φ∗ optimize different embeddings,
both benefit from learning to represent shared and discriminative characteristics in fi.
Fig. 3.3 shows that shared characteristics are prominent in φ∗, while φ is almost random
when searching for nearest neighbors across different classes.
While either learning task contributes distinct information to the joint feature extractor
f , there may still be redundant overlap in the their training signals. In order to maximize
the diversity and information of the overall training signal, we will subsequently decor-
relate the embeddings φ and φ∗. In a first step, we need to make them comparable by
learning a projection ψ : RD

∗ → RD from φ∗i to φi. This is implemented as a regressor
network that is trained by maximizing the correlation c between the projection ψ(φ∗i )
and φi,

c(φi, φ
∗
i ) = ‖(R(φi)� ψ(R(φ∗i )))‖22 . (3.6)

Here, � denotes the point-wise product. While the regressor seeks to maximize the cor-
relation c, we invert its gradients (and thus the corresponding training signal) to the em-
bedding representations during backpropagation using a gradient reversalR(.) which flips
the gradient sign. As a result, we actually learn to minimize the correlation c and, hence,
de-correlate φ and φ∗. This procedure is inspired by [175],which optimizes an ensemble of
learners on the same discriminative DML task so each learner is active on different train-
ing classes. In contrast, we aim at learning separate embeddings using different training
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tasks to capture shared and discriminative characteristics with minimum overlap. This
yields our final training objective

Lfinal = L(t;φ) + L(t∗;φ∗)− γ · c(φ, φ∗) , (3.7)

where c(φ, φ∗) denotes the de-correlation between φ, φ∗ by applying Eq. 3.6 on the in-
dividual embedded triplet constituents and the subsequent gradient inversion R(.). The
parameter γ balances the metric learning tasks with the de-correlation. Fig. 3.5 visualizes
gradient flow and training signal of each embedding φ, φ∗ and Algorithm 1 summarizes
the training procedure.
After training, we can now combine the information captured in both encodings by con-
catenating φi and φ∗i and obtain distances d([φi, φ

∗
i ], [φj , φ

∗
j ]). However, the experimental

analysis in Sec. 3.3.2 shows that both encoders individually already improve over stan-
dard DML. By effectively exploiting the shared and discriminative information captured
by the feature extractor f and reducing the bias towards the training classes, they exhibit
increased generalization onto the test distribution.

3.2 Related Works

Ensemble-based DML. Combining multiple image representations to ensembles is a
well-studied line of research to improve the capabilities of DML models [175, 201, 267].
Opitz et al. [175] train many encoding spaces using the same discriminative task while
reducing their mutual information. DREML[261] partitions the label space into subsets
by means of whole classes and learns independent encoders optimizing the same standard
label-based DML task. In contrast, our approach does not represent an ensemble method,
as we optimize dedicated encoders for inherently different tasks: standard discriminative
DML and learning complementary shared characteristics. A novel line of research has
been introduced by Lin et al. [141] which proposes to explicitly learn the intra-class vari-
ance by training a generative model in parallel to the embedding function. Differently
from [141], we directly learn characteristics shared across classes and not only the distri-
bution over the classes. Further, we do not have to revert to a costly generative model, but
use standard triplet formulations which can be naturally integrated into standard ranking
loss frameworks.

Multi-task learning. The general topic of multi-task learning[19, 182] aims at simul-
taneously learning multiple classifiers on different semantic concepts and/or datasets, thus
sharing a similar motivation with our approach. However, compared to Battarai et al.[19]
we require no additional training data and costly extra annotations as we learn shared fea-
tures solely from the training data already used for the discriminative task. Pu et al.[182]
train individual classifiers for groups of whole categories. Our concept of shared features
operates on individual samples. Hence, we are able to learn features which are only shared
between some samples of different classes which is much more flexible.
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Algorithm 1: Joint training of φ and φ∗

Input:
Images X , Feature extractor network f , Embedding network φ, Embedding
network φ∗, Regressor network ψ, Ranking loss L, Batchsize b, Decorrelation
weight γ.

epoch← 0
while Not Converged do

repeat
Get batches of batchsize b
B ← GetBatch(X , b)
B∗ ← GetBatch(X , b)

Sample discriminative triplet for each anchor xi in B (cf. Sec. 3.1) based on
q−1(d)

TX ← {xi, xj , xk
q−1

∼ B | yij = 1 ∧ yik = 0 }

Sample explicit inter-class triplet for each anchor xi in B∗ (cf. Sec. 3.2) based on
q−1(d)

T ∗X ← {xi, xj , xk
q−1

∼ B∗ | yij = yik = yjk = 0 }

Alternate optimization (cf. Sec. 3.3)
`discr ← L(TX , φ)− γ · c(R(φ), R(φ∗))
φ, φ∗, f ← Backward(`discr)

`inter ← L(T ∗X , φ∗)− γ · c(R(φ), R(φ∗))
φ, φ∗, f ← Backward(`inter)

until end of epoch;
epoch← epoch+ 1

end

3.3 Experiments and Analysis

This section presents technical details of our implementation followed by an evaluation
of our proposed model on standard Deep Metric Learning benchmarks. Furthermore,
to analyze the impact of shared features on embedding generalization, we additionally
present ablation studies of our proposed model.

Implementation details. We follow the training protocol of [256] for ResNet50 and
[217] for GoogLeNet utilizing the original images without object crops. During train-
ing, each image is resized to 256 × 256, followed by a random crop to 224 × 224 for
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ResNet50 and 227 × 227 for GoogLeNet, as well as random horizontal flipping. For all
experiments, learning rates are set to 10−5 for ResNet50 and 10−4 for GoogLeNet. We
choose the triplet parameters according to [256], with α = 0.2. For margin and triplet
loss with semihard sampling[205],m = 4 images are sampled per class until the batch size
is reached[256]. For ProxyNCA[161] m = 1, and for n-pair loss[217] m = 2. The regres-
sor network ψ (Sec. 3.1.3) is implemented as a two-layer fully-connected network with
ReLU-nonlinearity inbetween. We obtain the weighting parameter γ for decorrelation by
cross-validation within a range of [500, 2000], depending on the dataset. For implemen-
tation we use the PyTorch framework[180]. All experiments are performed on a single
NVIDIA Titan X. While training, we use the same ranking loss for optimizing φ∗ and φ,
except for ProxyNCA[161]. In this case we train φ∗ using triplet loss with semi-hard neg-
ative mining[205], as T ∗X operates on individual triplets and thus the concept of proxies is
not applicable. For n-pair loss[217] we utilize our described method extended to multiple
random negatives.

Benchmark datasets. We evaluated on three standard benchmarks for DML report-
ing image retrieval performances using Recall@k[107] and the normalized mutual infor-
mation score (NMI)[151]. Our evaluation protocol follows [256]. For each dataset, we
use the first half of the classes for training and the second half for testing. CARS196[130]:
16,185 car images divided in 196 classes. Stanford Online Products (SOP)[171]: 120,053 im-
ages in 22,634 classes from 12 product categories. CUB200-2011[239]: 200 classes of bird
species for a total of 11,788 images.

3.3.1 Results and comparison with previous works

In Tab. 3.1, 3.2 and 3.3 we compare our approach to state-of-the-art DML methods based
on the standard image retrieval task (Recall@K). For our methods, we report the results
of the concatenated embedding with a dimensionality of 256. If not stated otherwise, we
optimize both the discriminative and shared DML tasks using Margin loss[256]. Thus
we also provide its baseline results using 256 dimensions based on our re-implementation
for fair comparison. Further, we evaluate our approach for both options to learn shared
features, i.e. leveraging T GlX or T ∗X , respectively. While both options clearly improve
over purely discriminative DML methods, using T ∗X leads to stronger results in general.
We conclude that by using triplet constraints which explicitly link different classes, we
learn shared features more effectively due to less class-specific information affecting the
optimization of the complementary shared feature task. Consequently, in the remainder
of the experimental section, we focus on T ∗X .
We outperform other approaches with comparable embedding capacities by at least

2.4% on CARS196[130], 2.5% on CUB200[239] and 1.0% on SOP[171]. Moreover, our
model outperforms DREML[261], a large ensemble method, by ∼ 5% on CUB200-2011
(Tab. 3.2) and ∼ 1% on CARS196 (Tab. 3.1). Similar behavior is observed for the clus-
tering task (NMI). The results reported by Ranked list[250] are computed using the In-
ceptionV2[103] architecture and a concatenation of three features layers, totaling 1536
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Approach Dim R@1 R@2 R@4 NMI

Rank[250][Iv2] 512 74.0 83.6 90.1 65.4
HTG[275] - 76.5 84.7 90.4 -
HDML[277] 512 79.1 87.1 92.1 69.7
Margin[256] 128 79.6 86.5 90.1 69.1
HTL[71] 512 81.4 88.0 92.7 -
DVML[141] 512 82.0 88.4 93.3 67.6
MIC[194] 128 82.6 89.1 93.2 68.4
D&C[201] 128 84.6 90.7 94.1 70.3
A-BIER[175] 512 82.0 89.0 93.2 -
Rank[250][Iv2] 1536 82.1 89.3 93.7 71.8
DREML[261] 9216 86.0 91.7 95.0 76.4
Margin(ReImp) 256 81.5 88.1 92.8 67.4
Ours (T GlX ) 256 85.8 91.3 95.1 70.3
Ours (T ∗X )[194] 256 87.0 92.1 95.4 69.8

Table 3.1: Evaluation on CARS196[130].

Approach Dim R@1 R@2 R@4 NMI

DVML[141] 512 52.7 65.1 75.5 61.4
HDML[277] 512 53.7 65.7 76.7 62.6
HTL[71] 512 57.1 68.8 78.7 -
Rank[250](Iv2) 512 57.4 69.7 79.2 62.6
HTG[275] - 59.5 71.8 81.3 -
Margin[256] 128 63.6 74.4 83.1 69.0
D&C[201] 128 65.9 76.6 84.4 69.6
MIC[194] 128 66.1 76.8 85.6 69.7
A-BIER[175] 512 57.5 68.7 78.3 -
Rank[250][Iv2] 1536 61.3 72.7 82.7 66.1
DREML[261] 9216 63.9 75.0 83.1 67.8
Margin(ReImp) 256 65.2 75.9 84.5 68.1
Ours (T GlX )[194] 256 67.0 77.3 85.8 69.3
Ours (T ∗X ) 256 68.6 79.4 86.8 71.0

Table 3.2: Evaluation on CUB200-2011[239].

dimensions. Similarly to DREML[261], this significantly increases the capacity of the
underlying model, making it not directly comparable.

Detailed evaluation using ResNet50 architecture. In Tab. 3.4 we evaluate our
approach based on different ranking losses for optimization: triplet loss with semihard
negative sampling[205], n-pair loss[217], ProxyNCA[161] and margin loss with distance
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Approach Dim R@1 R@10 R@100 NMI

HDML[277] 512 68.7 83.2 92.4 89.3
DVML[141] 512 70.2 85.2 93.8 90.8
Margin[256] 128 72.7 86.2 93.8 90.7
A-BIER[175] 512 74.2 86.9 94.0 -
HTL[71] 512 74.8 88.3 94.8 -
D&C[201] 128 75.9 88.4 94.9 90.2
Rank[250][Iv2] 512 76.1 89.1 95.4 89.7
MIC[194] 128 77.2 89.4 95.6 90.0
Rank[250][Iv2] 1536 79.8 91.3 96.3 90.4
Margin(ReImp) 256 76.1 88.1 94.9 89.5
Ours (T GlX )[194] 256 77.7 89.8 95.9 90.0
Ours (T ∗X ) 256 78.2 90.1 96.1 90.3

Table 3.3: Evaluation on SOP[171].

sampling[256]. We compare the re-implemented baselines with and without learning com-
plementary shared features. For completeness we present for our approach results based
on the individual embeddings φ, φ∗ and their concatenation after training our model as
described in Sec. 3.1.3. We show the results using ResNet50[91] and present additional
results using GoogLeNet[223] in our ablation studies. Our method consistently improves
upon the state-of-the-art across all datasets, irrespective of architecture and ranking loss.
This clearly indicates the universal benefit of shared feature learning.

Detailed evaluation using GoogLeNet architecture. Similar to Tab. 3.4, we
now present evaluations using the GoogLeNet architecture in Tab. 3.5. We provide the
results of our re-implementations of the baseline models[161, 205, 217, 256] without and
in combination with our proposed approach. The experiment shows that, similar to our
ResNet50[91] results, our approach consistently boosts the baseline models in both image
retrieval (Recall@1) and clustering (NMI). In particular, we outperform the best baseline
recall by 7% on CARS196, 3% on CUB200-2011 and 3.5% on SOP.

3.3.2 Generalization and analysis of the embeddings

This section analyzes the performance of our embeddings φ and φ∗. It further compares
the generalization capabilities of (i) pure class-discriminative Deep Metric Learning (only
a single embedding φ trained on triplets TX ) using margin loss [256] with that of (ii) also
exploiting shared characteristics (by leveraging T ∗X ) as suggested in Sec. 3.1.2 and 3.1.3.
For the analysis we evaluate different encodings on both train- and testset in Tab. 3.6.

Performance of embeddings. Tab. 3.6 summarizes the performance of the discrim-
inatively trained embedding φ, the embedding φ∗ trained for shared characteristics (only
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Approach Original Baseline128 Baseline256 φ(Ours) φ∗(Ours) φ+φ∗(Ours)
Dataset: CARS196[130]

Semihard[205] R@1 51.5 71.9± 0.3 72.7± 0.3 72.7± 0.6 76.5± 0.4 79.4± 0.3
NMI 53.4 64.1± 0.3 64.5± 0.4 64.1± 0.3 63.2± 0.3 66.0± 0.2

N-pairs[217] R@1 71.1 70.2± 0.3 70.6± 0.2 70.0± 0.5 74.8± 0.5 77.2± 0.4
NMI 64.0 62.5± 0.3 62.3± 0.2 63.2± 0.3 62.7± 0.1 64.3± 0.1

PNCA[161] R@1 73.2 79.8± 0.1 80.8± 0.3 80.2± 0.1 81.6± 0.1 82.7± 0.1
NMI 64.9 65.9± 0.2 66.9± 0.3 66.1± 0.1 64.5± 0.3 66.3± 0.3

Margin[256] R@1 79.6 80.1± 0.2 81.5± 0.3 82.1± 0.2 86.2± 0.2 87.0± 0.1
NMI 69.1 66.6± 0.3 67.4± 0.1 68.3± 0.3 67.3± 0.2 69.8± 0.1

Dataset: CUB200-2011[239]
Semihard[205] R@1 42.6 60.6± 0.2 61.7± 0.3 60.2± 0.1 62.5± 0.2 64.6± 0.1

NMI 55.4 65.5± 0.3 66.1± 0.2 65.8± 0.3 67.5± 0.2 68.5± 0.1
N-pairs[217] R@1 51.0 60.4± 0.4 60.2± 0.3 58.8± 0.3 61.1± 0.3 62.9± 0.2

NMI 60.4 66.1± 0.4 65.0± 0.2 65.1± 0.4 66.0± 0.2 67.8± 0.2
PNCA[161] R@1 61.9 64.0± 0.1 64.6± 0.2 63.6± 0.2 65.7± 0.2 66.4± 0.2

NMI 59.5 68.1± 0.2 68.0± 0.2 67.5± 0.2 67.5± 0.3 68.1± 0.2
Margin[256] R@1 63.6 63.6± 0.3 65.2± 0.3 66.2± 0.3 67.4± 0.4 68.6± 0.2

NMI 69.0 68.5± 0.3 68.1± 0.3 69.2± 0.5 69.7± 0.6 71.0± 0.6
Dataset: SOP[171]

Semihard[205] R@1 - 73.5± 0.2 74.7± 0.3 75.3± 0.2 65.8± 0.3 75.5± 0.2
NMI - 89.2± 0.2 89.4± 0.2 89.7± 0.1 86.9± 0.2 89.8± 0.1

N-Pairs[217] R@1 67.7 71.3± 0.3 72.8± 0.2 74.1± 0.2 67.8± 0.2 74.6± 0.1
NMI 88.1 89.2± 0.2 89.2± 0.3 89.8± 0.2 87.3± 0.1 89.9± 0.1

Margin[256] R@1 72.7 74.4± 0.2 76.1± 0.3 77.7± 0.2 72.2± 0.2 78.2± 0.1
NMI 90.7 89.6± 0.2 89.5± 0.2 90.1± 0.2 88.8± 0.2 90.3± 0.1

Table 3.4: Evaluation using different ranking losses using ResNet50 [91] backbone architecture. Orig-
inal: results reported in the original paper. Baseline<dim>: our implementation with
ResNet50 and <dim> embedding dimensions. φ,φ∗: class and shared embedding with
128 dimensions each. φ+φ∗: embedding concatenation resulting in 256 dimensions.
Our model is trained using Eq.3.7. bold: best result for the given loss. underlined:
best result on the dataset. We report 5-run average and standard deviation.

for our approach), φ with random weight re-initialization after training (φ(N ))1, and the
feature extractor f on the train and test set of CARS196[130] dataset. Comparing the test
set results of φ and f (for both (i) and (ii)) shows that the embedding φ performs worse
than the feature encoding f . Consequently, φ is not able to effectively use the informa-
tion captured in the features f . Comparing φ to φ(N ) confirms this, since the randomly
re-initialized embedding actually performs better in testing. Moreover, learning shared
characteristics improves the features f , which clearly demonstrates them being comple-
mentary to the standard discriminative training signal. Note that in our approach, both
embeddings (φ and φ∗) have equal access to the discriminative and shared features captured
in f . However, we observe that φ∗ performs 4.0% better than φ on the test set. This in-
dicates that φ is overfitting to the train classes while φ∗ is able to successfully use both,

1Note that the weights of f remain trained and are not re-initialized.
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Approach Original Baseline512 Baseline1024 φ(Ours) φ∗(Ours) φ+φ∗(Ours)
Dataset: CARS196[130]

Semihard[205] R@1 51.5 67.3± 0.3 66.3± 0.4 64.4± 0.6 71.4± 0.2 72.7± 0.2
NMI 53.4 60.3± 0.3 58.9± 0.2 56.9± 0.2 58.2± 0.5 60.5± 0.2

N-pairs[217] R@1 71.1 67.4± 0.4 64.5± 1.2 60.4± 0.8 67.8± 0.3 67.0± 0.2
NMI 64.0 60.0± 0.3 58.6± 0.4 56.1± 0.2 59.5± 0.3 60.1± 0.2

PNCA[161] R@1 73.2 71.1± 0.2 71.2± 0.2 73.8± 0.2 76.7± 0.2 78.3± 0.1
NMI 64.9 60.2± 0.2 58.9± 0.2 61.7± 0.2 62.3± 0.4 63.8± 0.3

Margin[256] R@1 79.6 72.6± 0.3 73.3± 0.2 74.3± 0.3 75.5± 0.3 77.4± 0.3
NMI 69.1 63.2± 0.2 62.2± 0.2 63.3± 0.5 59.3± 0.4 64.1± 0.3

Dataset: CUB200-2011[239]
Semihard[205] R@1 42.6 54.8± 0.3 56.6± 0.4 57.4± 0.3 60.2± 0.3 60.9± 0.2

NMI 55.4 61.9± 0.2 62.5± 0.5 63.5± 0.4 65.3± 0.3 66.0± 0.2
N-pairs[217] R@1 51.0 52.2± 0.3 50.9± 1.4 50.8± 0.1 52.5± 0.2 54.8± 0.2

NMI 60.4 60.7± 0.3 59.2± 1.4 59.5± 0.3 61.1± 0.3 61.6± 0.2
PNCA[161] R@1 61.9 55.9± 0.2 56.4± 0.3 58.6± 0.2 60.8± 0.1 61.5± 0.1

NMI 59.5 62.9± 0.1 62.0± 0.2 64.5± 0.2 65.5± 0.2 65.8± 0.2
Margin[256] R@1 63.6 58.3± 0.3 59.3± 0.3 60.9± 0.3 61.9± 0.3 62.6± 0.2

NMI 69.0 64.8± 0.2 64.4± 0.3 65.0± 0.3 66.2± 0.2 66.7± 0.2
Dataset: SOP[171]

Semihard[205] R@1 - 67.3± 0.1 67.4± 0.3 70.7± 0.2 67.5± 0.3 71.1± 0.2
NMI - 88.4± 0.1 88.4± 0.3 88.6± 0.1 86.8± 0.1 89.2± 0.1

N-Pairs[217] R@1 67.7 67.2± 0.3 63.4± 0.4 68.3± 0.3 66.6± 0.1 68.9± 0.1
NMI 88.1 88.3± 0.2 87.2± 0.3 88.5± 0.2 86.4± 0.3 88.8± 0.1

Margin[256] R@1 72.7 68.5± 0.2 67.1± 0.3 71.0± 0.3 69.2± 0.3 72.0± 0.3
NMI 90.7 88.6± 0.2 87.6± 0.3 88.4± 0.1 87.5± 0.2 89.1± 0.1

Table 3.5: Evaluation using different ranking losses with GoogLeNet[223] backbone architecture.
Original: results reported in the original paper. Note that the original works of Mar-
gin[256] uses ResNet50 and ProxyNCA (PNCA)[161] uses Inception-BN. All other
use GoogLeNet. Baseline<dim>: our re-implementation with GoogLeNet architec-
ture and <dim> embedding dimensions. φ,φ∗: class and shared embedding with 512
dimensions each. φ+φ∗: embedding concatenation resulting in 1024 dimensions. bold:
best result for the given loss. underlined: best result on the dataset. We report 5-run
average and standard deviation.

the strong discriminative features and the more general shared features. Thus, φ∗ general-
izes more effectively to unseen test classes. The next paragraph now further analyzes this
observation.

Generalization analysis. Additionally to the performance of the individual embed-
dings on train and test set, Tab. 3.6 further shows their difference, the generalization
gap. For (i) (Tab. 3.6 top) we observe a large gap of −10.8% compared to −5.8% of φ in
our approach, thus indicating strong overfitting. Indeed, simply randomly re-initializing
the weights of the encoder φ before testing already improves the gap to −6.1% and in-
creases test performance by 1.5%. Computing distances based on f further reduces the
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Model Representation Dim. Trainset Testset Generalization gap
φ 128 90.7 79.9 -10.8

Margin[256] φ (N ) 128 87.5 81.4 -6.1
f 2048 87.0 82.8 -4.2
φ 128 87.9 82.1 -5.8

Ours (T ∗X ) φ∗ 128 84.8 86.2 1.4
φ (N ) 128 84.2 82.9 -1.3
f 2048 83.7 83.5 -0.2

Table 3.6: Generalization gap study. The generalization gap is measured as the difference of perfor-
mances on the train and test set of CARS196[130] dateset. Performance measured in
Recall@1. N (.) indicates random weight reset of the embedding layer connected to the
feature extractor f . Dim. denotes the dimensionalitay of a representation.

Noise Margin[256] + dropout + noise output + noise input Ours
Rec@1 79.9 80.5 79.8 80.4 83.2

Table 3.7: Comparison of our approach against standard generalization techniques. ResNet50[91] is
trained on CARS196[130] and Recall@1[107] is reported. Embedding dimensionality
is 128 for all cases.

generalization gap. For (ii), Tab. 3.6 bottom not only shows a significant increase in test
performance as discussed above but also an improvement in generalization compared to (i)
due to the additional shared characteristics. The generalization gap is significantly smaller
for each encoding. Thus, the benefit of learning shared characteristics for improved gener-
alization in the transfer learning problem addressed by DML seems to be twofold: it not
only adds complementary information to the features f but also regularizes training to
reduce overfitting to the training classes. Note, that overfitting in transfer learning is of
different nature and significantly more challenging to counteract than in standard learning
settings with i.i.d. training and testing data. In the latter case this issue can be addressed
by training on more data from the underlying training distribution or regularizing the
adaptation of a model to the available training samples. However, such techniques can
only have small impact in the presence of train-test distribution shifts, as even an ideal
representation of the training data may not transfer equally well to a unknown testing
distribution. Further, as we are measuring the test performance on unknown test classes,
we do not know if the overfitting effect would also be as severe when evaluating on an
i.i.d. test set (as class-discriminative training is actually the standard way to learn on such
data). Therefore, to support our hypothesis, we apply standard regularization techniques
to a discriminative DML baseline model.

Comparison with standard generalization techniques. In Tab.3.7 we compare
our approach with techniques typically used to improve generalization in deep neural
networks such as dropout [218] and noise injection [164], which proved to be effective
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3 Shared Features for Improved Generalization

Figure 3.6: Training curves. Train loss and test recall@1 for the class φ and shared φ∗ encoders.
The model is trained using margin loss[256] with ResNet50[91] on CARS[130] and
CUB[239].

for classification and representation learning. As baseline we use margin loss[256] on
ResNet50[91]. For fair comparison, we use for our approach the same encoder for both
the discriminative and shared task (as also discussed in Tab. 3.8 denoted as ’both’) and
thus the same architecture as for the analyzed techniques. The evaluation is performed
on CARS196[130] reporting Recall@1 on the test set. In particular, we apply dropout
between the features f and the embedding φ which gives a little boost of 0.6% over the
baseline, which is, however, minor respect to the 3.3% gain obtained by our approach.
Applying Gaussian noise to the input provides little improvement, while Gaussian noise
on the network output reduces performance. Concluding, our approach adds actual com-
plementary information to the discriminative training signal in form of complementary
features, and does not only act as a regularization by inducing noise.

Analysis of training progress Fig. 3.6 analyzes the learning behavior of the encoder
φ and φ∗ in our model based on training loss and Recall@1 on the test set during training.
Evidently, learning shared characteristics across classes that still separate from others is
initially a harder task than only discriminating between classes. Thus, we would expect
a weaker performance in earlier training epochs. Further, since shared characteristics are
less specialized to the training classes, they yield higher overall performance (cf. Tab. 3.6).
And indeed, while φ∗ is initially weaker than φ, it continues to increase when φ is already
saturated.

3.3.3 Ablation studies

Subsequently, we conduct ablation studies for different aspects of our approach. We first
analyze our proposed architecture and then examine different triplet assembling and sam-
pling strategies for learning shared characteristics. Further ablations are shown in the
supplementary.

Architecture. Sec. 3.1.3 proposes two options for jointly learning discriminative and
shared characteristics during training: Alternately optimizing the same single embedding
and learning dedicated embeddings for φ and φ∗ with and without decorrelation. Tab. 3.8
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3.3 Experiments and Analysis

Arch. discr. only[256] shared only both both+sep both+sep+decor
Rec@1 81.5 36.1 83.2 84.1 87.0

Table 3.8: Architecture study for our approach by computing Recall@1 on CARS196[130] dataset.
We compare the purely discriminative baseline leveraging only TX (discr. only), a model
trained only on shared characteristics, i.e. using only T ∗X (shared only), as well as learning
both tasks simultaneously using the same encoder (both), separate encoders (both+sep)
and separate encoders with decorrelation (both+sep+decor).

compares these options against baselines trained only on either TX or T ∗X . Firstly, we ob-
serve that only learning the shared task (shared only) results in a huge drop in performance
to 36.1% compared to 81.5% of the discriminative baseline (discr. only). This result is to
be expected and easily explained: By neglecting the strong discriminative learning signal
obtained from optimizing on TX , no class concept is learned, which stands in contrast to
the class-based evaluation protocol of nearest neighbor retrieval accuracy. This highlights
the importance of of the discriminative task for learning a reasonable distance metric.
However, adding the shared task to the discriminative baseline consistently improves per-
formance independent of our proposed options for joint optimization. Even the simplest
option, i.e. using a single encoder for learning from both TX and T ∗X (both) improves over
the baseline by 1.7%. Further, we see an additional gain of 0.9% when optimizing sepa-
rate encoders, i.e. φ for TX and φ∗ for T ∗X (both+sep) which is explained by the reduced
interference between both tasks during training. Finally, using separate encoders allows
for explicit de-correlation (both+sep+decor) to minimize the overlap in the captured char-
acteristics between φ and φ∗, yielding another significant gain of 3%.

Strategies for assembling shared triplets. Tab. 3.10 evaluates different strate-
gies to assemble triplets for learning shared characteristics: T GlX -std.: Sampling from T GlX
without using feature standardization before grouping. This strategy adds 0.8% to the
purely discriminative baseline. However, since these surrogate classes tend to resemble
the ground-truth classes in the train set, the performance is significantly worse than our
best strategy. Thus, redundant and mostly discriminative signals are added. T GlX +std.:
Sampling from T GlX with feature standardization as proposed in [194]. Even though the
effect of class-specific information is strongly reduced and thus performance is boosted
by 3.5%, this strategy is still inferior to sampling triplets from T ∗X . min d(a,p): Sampling
from T ∗X , but for a given anchor, we constrain sampling the positive by always choosing
the closest sample in a batch based on distances defined by φ∗. This follows the intuition

γ 0 5 50 200 500 1000 2500
Rec@1 84.1 84.3 85.2 86.0 87.0 85.5 82.1

Table 3.9: Controlling the influence of decorrelation by varying theweighting γ in the both+sep+decor
setup.
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3 Shared Features for Improved Generalization

Setup Base[256] T GlX - std. T GlX + std. min d(a, p) NoConstr T ∗X
Rec@1 81.5 82.3 85.8 82.1 86.0 87.0

Table 3.10: Comparison of different sampling strategies. Evaluation based on Recall@1 on the
CARS196[130] dataset.

that mutually close samples are more likely to share some characteristic. Applying this
strategy loses 5% compared to our best result. We conclude that shared characteristics can
be learned from almost all image pairs. Thus, restricting the sample range, neglects very
important information. No constraint: we report numbers for unconstrained assembling
of shared triplets as a proxy for T ∗X , i.e. anchors, positives and negatives are randomly
sampled. With 86.0% this simplest strategy works very well. We reason that the per-
formance drop of 1.0% is explained by direct disagreement between some of the triplets
sampled from T ∗X and TX , distorting the feature extractor f . T ∗X : Our proposed strategy
of sampling each constituent of a triplet from a different class, i.e. sampling triplets from
T ∗X .
Note that all proposed strategies show improvement over the baseline (margin loss [256]),
clearly proving that learning complementary features is crucial for improved generaliza-
tion of deep metric learning.

Influence of de-correlation on generalization. To evaluate the relevance of de-
correlation between our embeddings φ and φ∗, Tab. 3.9 examines generalization perfor-
mance for different values of γ. As we see, increasing the de-correlation boosts perfor-
mance over the non-decorrelated baseline (with γ = 0) for a robust interval. However,
if γ becomes to large, performance drops below the baseline as enforcing de-correlation
strongly dominates the actual DML training signal.

Strategies for sampling shared triplets. In Tab. 3.11 we investigate different pro-
cedures for online sampling of shared triplets T ∗X . We fix the training procedure for φ
(Margin [256]) and vary the shared triplet sampling procedure. We see that sampling
triplets t∗ from a broad range of distances and thus diverse classes (cf. Sec. 3.1.2) is es-
sential for effectively learning inter-class features. This holds especially for distance-based
sampling [256] which encourages triplets with anchor-negative pairs sampled uniformly
over distances.

Sampling T ∗X + random T ∗X + semihard[205] T ∗X (distance [256])
Rec@1 82.0 85.3 87.0

Table 3.11: Relevance of sampling methods for shared triplets. T ∗X uses distance-based sampling [256]
by default. φ is trained with [256] for each test. Only sampling for φ∗ is changed.
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3.4 Discussion

tSNE projection of image embeddings Fig. 3.7 and 3.8 show 1000 images sam-
pled randomly from the CARS196[130] training set and projected in 2D by applying t-
SNE[150] on the image encodings. For Fig. 3.7 the underlying model is trained solely on
the discriminative task, while in Fig 3.8 the model is trained solely on the shared feature
tasks. In Fig. 3.7 themodel learns to group classes very compactly and far from each other,
which indicates strong adaptation to the training classes. In Fig. 3.8 images which share vi-
sual properties are grouped closer together, independently from their ground-truth labels.
This results in complementary features which generalize better to new data.

Figure 3.7: Image projections resulting from a model trained on discriminative task. The contour
color of the individual images indicate the ground-truth class.

3.4 Discussion

This chapter addressed and analyzed the generalization issues of standard deep metric
learning approaches arising from their purely discriminative nature. As a remedy, we
propose to additionally learn characteristics shared across different classes, which are more
likely to transfer to unseen test data. To this end, we additionally train a dedicated encoder
on a novel ranking task, explicitly linking samples across classes. Moreover, we show how
to combine both discriminative and shared feature learning during training. Evaluations
on standard metric learning datasets show that our simple method provides a strong, loss-
and architecture independent boost, achieving new state-of-the-art results.
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3 Shared Features for Improved Generalization

Figure 3.8: Image projections resulting from a model trained on shared task. The contour color of
the individual images indicate the ground-truth class.
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4 Diverse Visual Feature Aggregation

Learning about features which are complementary to those learned by standard, class-
discriminative training, proved to help to alleviate the overfitting tendencies of DML
models (cf. Ch. 3). As a result, these enhanced models are more likely to capture and
describe samples and even classes outside the training distribution. Inspired by this in-
sight, we ideally find additional sources of complementary features to further increase
out-of-distribution generalization. Thus the question at hand is, which other training
signals can we leverage to learn such features and how to formulate the corresponding
learning tasks by only resorting to the available training images and class labels?
Recent breakthroughs in self-supervised learning have shown that contrastive image rela-
tions inferred from images themselves yield rich feature representations which even sur-
pass the transfer learning capabilities of supervised features to novel downstream tasks [36,
90, 174]. However, although DML typically also learns from contrasting data relations
in the form of pairs [86], triplets [205, 256] or more general image tuples [37, 171], the
complementary benefit of self-supervision in DML is largely unstudied. Moreover, the
commonly available class assignments give rise to image relations aside from the stan-
dard, supervised learning task of ‘pulling’ samples with identical class labels together while
‘pushing’ away samples with different labels. As such ranking-based learning is not lim-
ited to class-discrimination only, other relations can be exploited to learn beneficial data
characteristics which so far have seen little coverage in DML literature.
In this chapter, we extend to notion of learning diverse features for improved generaliza-
tion in DML by designing learning tasks complementing standard supervised training and
representing different relationships between our training classes and samples: (i) features
discriminating among classes, (ii) features shared across different classes, (iii) features cap-
turing variations within classes and (iv) class-independent features contrasting between
individual images. Finally, we present how to effectively incorporate them in a unified
learning framework. In our experiments we the study mutual benefits of these tasks and
show that joint optimization with each task added further improves generalization perfor-
mance as shown in Fig. 7.1 (left), outperforming the state-of-the-art in DML. In summary,
in this chapter we

• design novel triplet learning tasks resulting in a diverse set of features and study
their complementary impact on supervised DML.

• adopt recent contrastive self-supervised learning to the problem of DML and ex-
tend it to effectively support supervised learning, since direct incorporation of self-
supervised learning does not benefit DML (cf. Fig. 7.1) (right).
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4 Diverse Visual Feature Aggregation

None One Task Two Tasks DiVA
No. of diverse features included in discr. training
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Figure 4.1: DML using diverse learning tasks vs. naive incorporation of self-supervision only. (Left)
Generalization performance increases with each task added to training, indepen-
dent of the exact combination of our proposed tasks (blue: one extra task, orange:
two extra tasks, green: all tasks). (Right) Directly combining supervised learning
with self-supervised learning techniques such as DeepC(luster) [30], Rot(Net) [72],
Inst.Dis(crimination) [258] or Mo(mentum)Co(ntrast) [90] actually hurts DML gen-
eralization.

• show how to effectively incorporate these learning tasks in a single model, resulting
in state-of-the-art performance on standard DML benchmark sets.

This chapter is based on our publication ’DiVA: Diverse Visual Feature Aggregation for
Deep Metric Learning’ [156].

4.1 Diverse Complementary Learning Tasks for Similarity

Learning

As already discussed previously, in supervised DML we typically learn a single embed-
ding representation φ of our images which discriminates between given training classes.
Thus, its underlying feature representation is trained to predominantly capture highly
discriminative features while being invariant to image characteristics which do not facili-
tate training class separation. However, as we are interested in generalizing to unknown
test distributions, we should rather aim at maximizing the amount of features captured
from the training set X , thereby increasing the expressiveness of the embedding φ to cap-
ture and accurately represent out-of-distribution images and potentially unseen classes. In
chapter 3 we show how we can find an additional training signal yielding complementary
shared features. Following, we now extend this idea and present a multi-task learning
framework for similarity learning to even further increase the expressiveness our learned
distance function. Since our model is based on the results of Sec. 3.1, we use the same
definitions and notations introduced in Sec. 3.1.1.
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4.1 Diverse Complementary Learning Tasks for Similarity Learning

Figure 4.2: Schematic description of each task. We learn four complementary tasks to capture fea-
tures focusing on different data characteristics. The standard class-discriminative task
which learning features separating between samples of different classes, the shared task
which captures features relating samples across different classes, a sample-specific task
to enforce image representations invariant to transformations and finally the intra-class
task modelling data variations within classes.

4.1.1 Diverse learning tasks for DML

We now discuss the our tasks for learning a diverse set of features, resorting only to the
standard training information provided in a DML problem, thus not requiring any addi-
tional annotations or side information. Each of these tasks is designed to learn features
which are conceptually neglected by the others to be mutually complementary. First, we
introduce the intuition behind each feature type, before describing how to learn it at the
example of triplet-based objectives L(t;φ) such as (3.1) in Sec. 3.1.1 with t representing a
triplet of images.

Class-discriminative features. These features are learned by standard class-discriminative
optimization of φ and focus on data characteristics which allow to accurately separate one
class from all others. It is the prevailing training signal of common classification-based [51,
245, 268], proxy-based [161, 183] or ranking-based [175, 194] approaches. For the latter, we
can perform training by means of triplets

T disc
X ,

{
(xi, xj , xk) ∈ X × X × X : yi = yj 6= yk

}
, (4.1)

and optimization of

Ldisc =
1

Z

∑
t∈T disc
X

L(t;φ) , (4.2)

thus minimizing embedding distances between samples of the same class while maximiz-
ing it for samples of different classes. Again Z is a normalizing constant. Moreover, the
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4 Diverse Visual Feature Aggregation

discriminative signal is important to learn how to aggregate features into classes, follow-
ing the intuition of “the whole is more than the sum of its parts" analyzed in Gestalt
theory [238].

Class-shared features. In contrast to discriminative features which look for char-
acteristics separating classes, class-shared features capture commonalities shared across
classes as discussed in the previous chapter 3. For instance, birds and cars share a simi-
lar variety in colors, which are of little help when separating between them. However, to
learn about this characteristic is actually beneficial, when describing other colorful object
classes like flowers or fish. Given suitable label information, learning such features would
naturally follow the standard discriminative training setup. However, having only class
labels available, we must resort to approximations. To this end, we exploit the hypothesis
that for most arbitrarily sampled triplets

T shared
X ,

{
(xi, xj , xk) ∈ X × X × X : yi 6= yj 6= yk

}
, (4.3)

i.e. each constituent coming from mutually different classes, the anchor xi and positive
xj share some common pattern when compared the negative image xk. Commonalities
which are frequently observed between classes yi, yj , will occur more often than noisy
patterns which are unique to few t ∈ T shared

X , which is commonly observed when learning
on imbalanced data [33, 70, 126]. Learning class-shared features is then performed by

Lshared =
1

Z

∑
t∈T shared
X

L(t, φ) . (4.4)

As deep networks learn from frequent backpropagation of similar learning signals result-
ing in informative gradients, only prominent shared features are captured. Further, since
shared features can be learned between any classes, we need to warrant diverse combina-
tions of classes in our triplets Tshared. Thus, enabling triplets to be sampled from the whole
range of difficulty using distance-based sampling [256] is crucial to avoid any bias towards
samples which are mostly far (random sampling) or close (hard-negative sampling) to a
given anchor xi. See 5.1 for a detailed discussion on triplet sampling strategies.

Intra-class features. The tasks defined so farmodel image different relations between
classes. In contrast, intra-class features describe variations within a given class. While these
variations may also apply to other classes [141, 194] (thus exhibiting a certain overlap with
class-shared features) more class-specific details are targeted, thus explicitly retaining intra-
class variance when learning φ. As shown by Lin et at. [141], employing generative mod-
els allows to add additional intra-class signal to a certain extend. However, this greatly
increases the computational cost and, thus, is not considered in this work. Instead, to
capture such data characteristics we again resort to triplet constraints which can be natu-
rally incorporated into DML frameworks as shown in Sec. 3.1, ’Explicit inter-class triplet
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constraints’. Consequently, to train this task we follow a similar intuition as for learning
class-shared features: We define triplets

T intra
X ,

{
(xi, xj , xk) ∈ X × X × X : yi = yj = yk

}
(4.5)

thus using only triplets of images with all constituents coming from the same class when
minimizing

Lintra =
1

Z

∑
t∈T intra
X

L(t;φ) . (4.6)

Sample-specific features. Recent approaches for self-supervised learning [9, 90, 174]
proved that informative features exhibiting strong generalization for transfer learning can
be learned only from images themselves, without resorting to a supervised learning task.
Looking at the learning tasks we defined so far which are based on the concept of classes,
self-supervised approaches offer another complementary source of features.

Overview: Self-supervised representation learning literature: Commonly, self-supervised
representation learning aims to learn transferable feature representations from unlabelled
data, and is typically applied as pre-training for downstream tasks [90, 155, 165]. Early
methods on unsupervised representation learning are based on sample reconstructions
[123, 234] which have been further extended by interpolation constraints [18] and gener-
ative adversarial networks [38, 55, 59]. Further, introducing manually designed surrogate
objectives encourage self-supervised models to learn about data-related properties. Such
tasks range from predicting image rotations [72] to solving visual jigsaw puzzles by spa-
tial image decomposition and shuffling [165, 168] or leveraging inductive biases of neural
networks using clustering algorithms [30]. Recently, self-supervision approaches based
on contrastive learning result in strong features performing close to or even stronger than
supervised pretraining [36, 90, 159, 227] by leveraging invariance to realistic image aug-
mentations. As the these approaches are essentially defined on pairwise image relations,
they share common ground with ranking-based DML. Therefore, contrastive learning
constitutes an attractive approach to include instance-specific features into our multi-task
similarity learning framework.

Noise contrastive estimation (NCE) [84] is the driving mechanism behind the aforemen-
tioned contrastive learning frameworks. As NCE learns to increase the correlation be-
tween embeddings of an anchor sample and a similar positive sample by constrasting
against a set of negative samples, it naturally translates to DML. He et al. [90] proposed an
efficient self-supervised framework which first applies data augmentation to generate pos-
itive surrogates x̃i for a given image xi. Next, using NCE we contrast their embeddings
φ(xi; θ), φ(x̃i; θ) against randomly sampled negatives xk ∈ N ⊂ X by minimizing

LNCE =
1

Z

∑
xi∈X

− log
exp(φ(xi; θ)

>φ(x̃i; θ)/τ)∑
xk∈N exp(φ(xi; θ)>φ(xk; θ)/τ)

(4.7)
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where the temperature parameter τ is adjusted during optimization to control the train-
ing signal, especially during earlier stages of training. Note, that in NCE formulations
typically inner products are used as a distance function, in contrast to the euclidean dis-
tance used for general DML formulations. Moreover, (4.7) closely resembles the standard
softmax formulation of classification tasks and the formulations underlying proxy-based
learning (see Sec. 2.2.1). While the latter contrasts samples against learned class proxies,
NCE typically operates fully between actual training samples. By contrasting each sample
against many negatives, i.e. large setsN , this task effectively yields a general, class-agnostic
feature description of our data. Moreover, as the contrastive objective explicitly increases
the similarity of an anchor image with its augmentations, invariance against data transfor-
mations and scaling are learned.
Fig. 4.2 summarizes and visually explains the different training objectives of each task.

4.2 Improved generalization by multi feature learning

Following we show how to efficiently incorporate the learning tasks introduced in the
previous section into a single DML model. We first extend the objective Eq. 4.7 using
established triplet sampling strategies for improved adjustment to DML, before we jointly
train our learning tasks for maximal feature diversity.

Adapting noise contrastive estimation toDML. Efficient strategies formining in-
formative negatives xk are a key factor [205] for successful training of ranking-based DML
models. Since NCE essentially translates to a ranking of image triplets (xi, x̃i, xk), its
learning signal is also impaired if the negatives xk are uninformative, i.e. dφ(xi, xk) being
large. To this end, we control the contribution of negatives xk ∈ X to LNCE by a weight
factor w(d) = min(λ, q−1(d)). Here, q(d) = dn−2

[
1− 1

4d
2
]n−3

2 is the distribution of
pairwise distances on theD-dimensional unit hypersphere and λ a cut-off parameter (For
more details, see Sec. 5.1). Similar to [256], w(d) helps to equally weigh negatives from the
whole range of possible distances in Φ and, in particular, increases the impact of harder
negatives. Thus, our distance-adapted NCE loss becomes

LDaNCE =
1

Z

∑
xi∈X

− log
exp(φ(xi; θ)

>φ(x̃i; θ)/τ)∑
xk∈N exp(w(dφ(xi, xk)) · φ(xk; θ)>φ(xi; θ)/τ)

. (4.8)

NCE-based objectives learn best using large sets of negatives [90]. However, due to the
stochastic, batch-wise optimization procedure of deep learning, N in (4.8) is typically re-
stricted to samples from the current training batch, whose size is resticted by the available
GPU memory. To alleviate this limitation, we follow [90] and realize N as a large mem-
ory queue Q storing embedding representations for all training samples. Since updating
the embedding representations φ(xi; θ) for all samples xi ∈ X after each training iteration
s is computationally prohibitive, the representations φ∗,s(xi) ∈ Q are gradually updated
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4.2 Improved generalization by multi feature learning

Figure 4.3: Architecture of our proposed model. Each task L• optimizes an individual embedding
φ• implemented as a linear layer with a shared underlying feature encoder f . Pairwise
decorrelation c(·, ·) of the embeddings utilizing the mapping ψ based on a two-layer
MLP encourages each task to further emphasize on its targeted data characteristics.
Gradient inversion R is applied during the backward pass to each embedding head.

during training by running-averages using the computed representations from a training
mini-batch at s. The update follows

φ∗,s+1(xi) = µφ∗,s(xi) + (1− µ)φ(xi; θ) (4.9)

with µ being a fixed, scalar factor weighing the former and newly inferred representation
of xi based on the current model state at iteration s with parameters weights θ. Other
embeddings are still represented by older network states. Substituting the actual embed-
ding representation φ(xk; θ) of negative instances xk in (4.8) with representations sampled
from the memory queue Q transforms (4.8) to

LDaNCE =
1

Z

∑
xi∈X

− log
exp(φ(xi; θ)

>φ(x̃i; θ)/τ)∑
xk∈Q exp(w(dφ(xi, xk)) · φ∗,s(xk)>φ(xi; θ)/τ)

. (4.10)

Consequently, using and maintaining the memory queue constitutes a trade-off between
leveraging larger sets of negatives for computing the loss (4.10) and evaluating it using
negatives based on the most current inferred representations.

Joint optimization for maximal feature diversity. The tasks presented in Sec. 4.1
are formulated to extract mutually complementary information from our training data.
In order to capture their learned features in a single model to obtain a rich image represen-
tation, we now discuss how to jointly optimize these tasks by extending the architecture
we introduced in Sec. 3.1.3. For completeness and readability, we re-iterate both notation
and reasoning behind the (adjusted) joint optimization framework already provided in
this section.
While each task targets a semantically different concept of features, their driving learning
signals are based on potentially contradicting ranking constraints on the learned embed-
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ding. Thus, aggregating these signals to optimizing a joint, single embedding function
φ may entail detrimental interference between them. In order to circumvent this issue,
we learn a dedicated embedding for each task, as often conducted in multi-task optimiza-
tion [189, 194]. Thus, we introduce φdisc, φshared, φintra and φDaNCE with φ• : RDf 7→ Φ• ⊂
RD with φ•i = φ•(fi; θ•) = φ•(f(xi;ω); θ•). Here, • indicates a particular task (i,e. disc,
shared, intra, DaNCE) and consequently θ• the corresponding trainable parameters of
the embedding representations.
As all embeddings share the same feature extractor f , each task still benefits from the
aggregated learning signals. Additionally, as there may still be redundant overlap in the
information captured by each task, we mutually decorrelate these representations, thus
maximizing the diversity of the overall training signal. Again, we minimize the mutual
information of two embedding functions φa, φb (a, b represent two of our introduced
tasks) by maximizing their correlation c, followed by a gradient reversal. For that, we
learn a mapping ψ : RD 7→ RD from φai to φbi given an image xi and compute the corre-
lation c(φai , φbi) = ‖(R(φai ) � ψ(R(φbi)))‖22 with � being the point-wise product. Note,
that φ• is regularized to the unit-hypersphere and thus trivial solutions are prevented. R
denotes a gradient reversal operation, which inverts the resulting gradients during back-
propagation. Maximizing c results in ψ aiming to make φai and φbi comparable. However,
through the subsequent gradients reversal, we actually decorrelate the embedding func-
tions. Joint training of all tasks is finally performed by minimizing

L = Ldisc + α1Lshared + α2Lintra + α3LDaNCE −
∑

(φa,φb)∈P

ρa,b · c(φa, φb) (4.11)

where P denotes the pairs of embeddings to be decorrelated. We found

P = {(φdisc, φDaNCE), (φdisc, φshared), (φdisc, φintra)} , (4.12)

to work best, which decorrelates each of our introduced novel tasks with the standard
class-discriminative task. Our experiments showed that further decorrelation among our
learning tasks does not result in additional benefits. The weighting parameters ρa,b adjust-
ing the degree of decorrelation between the embeddings are set to the same, constant value
in our implementation. Fig. 4.3 provides an overview of our model architecture. Finally,
to also combine our learned embedding representations we concatenate the individual
task embeddings, thus forming an ensemble representation.

Computational Costs. We train all tasks using the same mini-batch to avoid compu-
tational overhead. While optimizing each learner on an individual batch can further al-
leviate training signal interference [201, 261], training time increases significantly. Across
datasets, we measure an increase in training time by 10 − 15% per epoch compared to
class-discriminative training only. This is comparable to or lower than other recently pro-
posed DML methods, which perform a full clustering on the dataset [194, 201] after each
epoch, compute extensive embedding statistics [105] or simultaneously train generative
models [141].
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Backbone→ Inception-V1 + BN ResNet50

Parameter ↓ CUB200 CARS196 SOP CUB200 CARS196 SOP
ρa,b, αi 300, 0.1 100, 0.1 50, 0.1 1500, 0.3 100, 0.1 300, 0.2
τ 0.01 0.01 0.01 0.01 0.01 0.01
ε, ν 70, 0.3 160, 0.3 100, 0.3 60, 0.3 70, 0.3 70, 0.3

Table 4.1: Hyperparameters. The parameter ε denotes the epoch at which the learning rate is an-
nealed by ν. Decorrelation weights ρa,b and weightings αi (eq. 4.11) are the same for
all pairs in P (see eq. 4.12). τ denotes the temperature in LDaNCE (eq. 4.10).

4.3 Experiments

Following we first present our implementation details and the benchmark datasets. Next,
we evaluate our proposedmodel and study how our learning tasks complement each other
and improve over baseline performances. Finally, we discuss our results in the context of
the current state-of-the-art and conduct analysis and ablation experiments.

Implementation details. We follow the common training protocol of [194, 201, 256]
for implementations utilizing a ResNet50-backbone. The shorter image axis is resized to
256, followed by a random crop to 224× 224 and a random horizontal flip with p = 0.5.
During evaluation, only a center crop is taken after resizing. The embedding dimension
is set to D = 128 for each task embedding. For model variants using the Inception-V1
with Batch-Normalization[103], we follow [105, 251] and use D = 512. Resizing, crop-
ping and flipping is done in the same way as for ResNet50 versions. For training, we use
Adam[122] with learning rate 10−5 and a weight decay of 5 · 10−4. For ablations, we
use no learning rate scheduling, while our final model is trained using scheduling values
determined by cross-validation. The implementation is done using the PyTorch frame-
work[180], and experiments are performed on compute clusters containing NVIDIA Ti-
tan X, Tesla V4, P100 and V100, always limited to 12GB VRAM following the standard
training protocol [256]. For DiVA, we utilise the triplet-based margin loss [256] with fixed
margin γ = 0.2 and β = 1.2. The utilized hyperparameters for DiVA are listed in Tab. 4.1.
Training is run for 200 epochs on CUB200/CARS196 and 150 epochs on SOP.

Datasets. We evaluate the performance on three common benchmark datasets with
standard training/test splits (see e.g. [194, 201, 251, 256]): CARS196[130], which contains
16,185 images from 196 car classes. The first 98 classes containing 8054 images are used for
training, while the remaining 98 classes with 8131 images are used for testing. CUB200-
2011[239]with 11,788 bird images from 200 classes. Training/test sets contain the first/last
100 classes with 5864/5924 images respectively. Stanford Online Products (SOP)[171] pro-
vides 120,053 images divided in 22,634 product classes. 11318 classes with 59551 images
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Dataset→ CUB200-2011[239] CARS196[130] SOP[171]

Approach ↓ Dim R@1 R@2 NMI R@1 R@2 NMI R@1 R@10 NMI

Margin[256] (orig, R50) 128 63.6 74.4 69.0 79.6 86.5 69.1 72.7 86.2 90.7
Margin[256] (ours, IBN) 512 63.6 74.7 68.3 79.4 86.6 66.2 76.6 89.2 89.8
DiVA (IBN, D & Da) 512 64.5 76.0 68.8 80.4 87.7 67.2 77.0 89.4 90.1
DiVA (IBN, D & S) 512 65.1 76.4 69.0 81.5 88.3 66.8 77.2 89.6 90.0
DiVA (IBN, D & I) 512 64.9 75.8 68.4 80.6 87.9 67.4 76.9 89.4 89.9
DiVA (IBN, D & Da & I) 510 65.3 76.5 68.3 82.2 89.1 67.8 75.8 89.0 89.8
DiVA (IBN, D & S & I) 510 65.5 76.4 68.4 82.1 89.4 67.2 77.0 89.3 89.7
DiVA (IBN, D & Da & S) 510 65.9 76.7 68.9 82.6 89.6 68.0 77.4 89.6 90.1
DiVA (IBN, D & Da & S & I) 512 66.4 77.2 69.6 83.1 90.0 68.1 77.5 90.3 90.1

Table 4.2: Comparison of our proposed method using different combinations of learning tasks.
IBN (Inception-V1 with Batch-Normalization), and R50(ResNet50) denote the back-
bone architecture. No learning rate scheduling is used. Our tasks are denoted by
D(iscriminative), S(hared), I(ntra-Class) & and Da(NCE). For fair comparison, the di-
mensionality per task embedding depends on the number of tasks incorporated to en-
sure a total ofD = 512. Two tasks therefore each useD = 256, three useD = 170 and
when four tasks are combined, each use D = 128.

are used for training, while the remaining 11316 classes with 60502 images are used for
testing.

4.3.1 Performance study of multi-feature DML

We now compare our model and the complementary benefit of our proposed feature
learning tasks for supervised DML. Tab. 5.1 evaluates the performance of our model based
on margin loss [256], a triplet based objective with an additionally learnable margin, and
distance-weighted triplet sampling [256]. Weuse Inception-V1with Batchnorm and amax-
imal aggregated embedding dimensionality of 512. Thus, if two tasks are utilized, each
embedding has D = 256, in case of three tasks 170 and four tasks result in D = 128.
No learning rate scheduling is used. Evaluation is conducted on CUB200-2011 [239],
CARS196 [130] and SOP [171]. Retrieval performance is measured throughRecall@k[107]
and clustering quality via Normalized Mutual Information (NMI) [151]. While our re-
sults vary between possible task combinations, we observe that the generalization of our
model consistently increases with each task added to the joint optimization. Our strongest
model including all proposed tasks improves the generalization performance by 2.8% on
CUB200-2011, 3.7% on CARS196 and 0.9% on SOP. This highlights that (i) purely dis-
criminative supervised learning disregards valuable training information and (ii) carefully
designed learning tasks are able to capture this information for improved generalization to
unknown test classes. We further analyze our observations in the ablation experiments.
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Dataset→ CUB200-2011[239] CARS196[130] SOP[171]
Approach ↓ Dim R@1 R@2 NMI R@1 R@2 NMI R@1 R@2 NMI

HTG[275] 512 59.5 71.8 - 76.5 84.7 - - - -
HDML[277] 512 53.7 65.7 62.6 79.1 87.1 69.7 68.7 83.2 89.3
Margin[256] 128 63.6 74.4 69.0 79.6 86.5 69.1 72.7 86.2 90.8
HTL[71] 512 57.1 68.8 - 81.4 88.0 - 74.8 88.3 -
DVML[141] 512 52.7 65.1 61.4 82.0 88.4 67.6 70.2 85.2 90.8
MultiSim[251] 512 65.7 77.0 - 84.1 90.4 - 78.2 90.5 -
D&C[201] 128 65.9 76.6 69.6 84.6 90.7 70.3 75.9 88.4 90.2
MIC[194] 128 66.1 76.8 69.7 82.6 89.1 68.4 77.2 89.4 90.0
Significant increase in network parameter:
HORDE[105]+Contr.[86] 512 66.3 76.7 - 83.9 90.3 - - - -
Softtriple[183] 512 65.4 76.4 - 84.5 90.7 70.1 78.3 90.3 92.0
Ensemble Methods:
A-BIER[175] 512 57.5 68.7 - 82.0 89.0 - 74.2 86.9 -
Rank[250] 1536 61.3 72.7 66.1 82.1 89.3 71.8 79.8 91.3 90.4
DREML[261] 9216 63.9 75.0 67.8 86.0 91.7 76.4 - - -
ABE[120] 512 60.6 71.5 - 85.2 90.5 - 76.3 88.4 -
Inception-BN
Ours (DiVA-IBN-512) 512 66.8 77.7 70.0 84.1 90.7 68.7 78.1 90.6 90.4
ResNet50
Ours (Margin[256]-R50-512) 512 64.4 75.4 68.4 82.2 89.0 68.1 78.3 90.0 90.1
Ours (DiVA-R50-512) 512 69.2 79.3 71.4 87.6 92.9 72.2 79.6 91.2 90.6

Table 4.3: Comparison to the state-of-the-art methods on CUB200-2011[239], CARS196[130] and
SOP[171]. DiVA-Arch-Dim describes the backbone used with DiVA (IBN: Inception-
V1 with Batchnorm, R50: ResNet50) and the total training and testing embedding di-
mensionality. For fair comparison, we also ran a standard ResNet50 with embedding
dimensionality of 512. As can be seen, DiVA significantly outperforms other methods
on CUB200 and CARS196 while achieving competitive performance on SOP. Even
with the weaker IBN-backbone we reach state-of-the-art on CUB200 and comparable
results on CARS196 and SOP.

4.3.2 Comparison to state-of-the-art approaches

Next, we compare our strongest model trained with the same hyperparameters and a
fixed learning rate scheduling per benchmark (Tab. 4.1) to the current state-of-the-art ap-
proaches in DML. For fair comparison to the different methods, we report result both
using Inception-BN (IBN) and ResNet50 (R50) as backbone architecture. As Inception-
BN is typically trained with embedding dimensionality of 512, we restrict each embedding
toD = 128 for direct comparison with non-ensemble methods. Thus we deliberately im-
pair the potential of our model due to a significantly lower capacity per task, compared
to the standard D = 512. For comparison with ensemble approaches and maximal per-
formance, we use a ResNet50 [194, 201, 256] architecture and the corresponding standard
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Figure 4.4: Analysis of complementary tasks for supervised learning. (left): Performance comparison
between class-dicsriminative training only (Baseline), ensemble of class-discriminative
learners (Discr. Ensemble) and our proposedDiVA,which exhibits a large boost in per-
formance. (right): Evaluation of self-supervised learning approaches combined with
standard discriminative DML.

dimensionality D = 128 per task. Fig. 5.2 summarizes our results. We significantly
improve over methods with comparable backbone architectures and achieve new state-of-
the-art results with our ResNet50-ensemble. In particular we outperform the strongest
ensemble methods, including DREML [261] which utilize a much higher total embed-
ding dimensionality. The large improvement is explained by the diverse and mutually
complementary learning signals contributed by each task in our ensemble. In contrast,
previous ensemble methods rely on the same, purely class-discriminative training signal
for each learner. Note that some approaches strongly differ from the standard training
protocols and architectures, resulting in more parameters and much higher GPU mem-
ory consumption, such as Rank [250] (32GB), ABE [120] (24GB), Softtriple [183] and
HORDE [105]. Additionally, Rank [250] employs much larger batch-sizes to increase the
number of classes per batch. This is especially crucial on the SOP dataset, which greatly
benefits from higher class coverage due to its vast amount of classes, as shown by [196].
Nevertheless, ourmodel outperforms thesemethods - in some cases even in its constrained
version (IBN-512).

4.3.3 Ablation studies

In this section we conduct ablation experiments for various parts of our model. For every
ablation we again use the Inception-BN network. The dimensionality setting follows the
performance study in sec. 4.3.1. Again, we train each model with a fixed learning rate for
fair comparison among ablations.

Influence of distance-adaption in DaNCE. To evaluate the benefit of our exten-
sion from Lnce [84, 90] to LDaNCE, we compare both versions in combination with stan-
dard supervised DML (i.e. class-discriminative features) in Fig. 4.4 (right). Our experi-
ment indicates two positive effects: (i) The training convergence with our extended ob-
jective is much faster and (ii) the performance differs greatly between employing Lnce and
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Methods→ Baseline DiVA No De-correlation Separated models
Recall@1→ 63.6 66.4 65.6 48.7

Table 4.4: Ablation studies. We compare standard margin loss as baseline and DiVA perfor-
mance against ablations of our model: no decorrelation between embeddings (No-
Decorrelation.) and training an independent model for each task (Separated models).
Total embedding dimensionality is 512.

LDaNCE. In fact, using the standard NCE objective is even detrimental to learning, while
our extended version improves over the only discriminatively trained baseline. We at-
tribute this to both the slow convergence of Lnce which is not able to support the faster
discriminative learning and to emphasizing harder negatives in LDaNCE. In particular the
latter is an important factor in ranking based DML [205], as during training more and
more negatives become uninformative. To tackle this issue, we also experimented with
learning the temperature parameter τ . While convergence speed increases slightly, we find
no significant benefit in final generalization performance.

Evaluation of self-supervision methods. Fig. 4.4 compares DaNCE to other meth-
ods from self-supervised representation learning. For that purpose we train the discrim-
inative task with either DeepCluster [30], RotNet [72] or Instance Discrimination [258].
We observe that neither of these tasks is able to provide complementary information to
improve generalization. DeepCluster, trained with 300 pseudo classes for classification,
actually aims at approximating the class-discriminative learning signal while RotNet is
strongly dependent on the variance of the training classes and converges very slowly. In-
stance discrimination seems to provide a contradictory training signal to the supervised
task. These results are in line with previous works [93] which report difficulties to directly
combine both supervised and self-supervised learning for improved test performance. In
contrast, we explicitly adapt NCE to DML in our proposed objective DaNCE.

Comparison to purely class-discriminative ensemble. We now compare DiVA to
an ensemble of class-discriminative learner (Discr. Ensemble) based on the same model
architecture using embedding decorrelation in Fig. 4.4. While the discriminative ensemble
improves over the baseline, the amount of captured data information eventually saturates
and, thus, performs significantly worse compared to our multi-feature DiVA ensemble.
Further, our ablation reveals that joint optimization of diverse learning tasks regularizes
training and reduces overfitting effects which eventually occur during later stages of DML
training.

Benefit of task decorrelation. The role of decorrelating the embedding represen-
tations of each task during learning is analyzed by comparison to a model trained with-
out this constraint. Firstly, Tab. 4.4 demonstrates that omitting the decorrelation still
outperforms the standard margin loss (’Baseline’) by 2.1% while operating on the same
total embedding dimensionality. This proves that learning diverse features significantly
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Figure 4.5: Singular Value Spectrum. We analyze the singular value spectrum of DiVA embed-
dings and that of a network trained with the standard discriminative task. Consistent
with [196] we find that our improvements in generalization performance (as shown in
Tab. 5.2 and Tab. 5.1) are reflected by a reduced spectral decay.

improves generalization. Adding the de-corralation constraint then additionally boosts
performance by 1.2%, as now each task is further encouraged to capture distinct data
characteristics.

Learning without feature sharing. To highlight the importance of feature shar-
ing among our learning tasks, we train an individual, independent model for the class-
discriminative, class-shared, sample-specific and intra-class task. At testing time, we com-
bine their embeddings similar to our proposed model. Tab. 4.4 shows a dramatic drop
in performance to 48% for the disconnected ensemble (’Separately Trained’), proving
that sharing the complementary information captured from different data characteristics
is a crucial element of our model and mutually benefits learning. Without the class-
discriminative signal, the other tasks lack the concept of an object class, which hurts
the aggregation of embeddings. In addition, the supervised task again suffers from strong
overfitting to the training data. However, sharing the learned information aggregates their
training signal and results in an overall improvement in generalization.

Generalization and representation compression. In chapter 2 we link improved
DML generalization to a decreased compression [228] of the representation. Our findings
suggests that the number of directions with significant variance [196, 233] of a representa-
tion correlates with the generalization ability in DML. To this end, we analyze our model
using the spectral decay ρ (lower is better) which is computed as the KL-divergence be-
tween the normalized singular value spectrum and a uniform distribution. Fig. 4.5 com-
pares the spectral decays of our model and a standard supervised baseline model. As
expected, due to the diverse information captured, our model learns a more complex rep-
resentation which results in a significantly lower value of ρ and better generalization.
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4.4 Discussion

In this chapterwe proposed several learning taskswhich complement the class-discriminative
training signal of standard, supervised Deep Metric Learning (DML) for improved gen-
eralization to unknown test distributions. Each of our tasks is designed to capture dif-
ferent characteristics of the training data: class-discriminative, class-shared, intra-class and
sample-specific features. For the latter, we adapted contrastive self-supervised learning to
the needs of supervised DML. Jointly optimizing all tasks results in a diverse overall train-
ing signal which is further amplified bymutual decorrelation between the individual tasks.
Unifying these distinct representations greatly boosts generalization over purely discrimi-
natively trained models. Our experiments and ablation studies show significantly boosted
generalization performance, improving over existing state-of-the-art DML approaches.
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Reinforcement Learning

Similarity learning typically learns a representation which maps similar images close to-
gether and dissimilar images far apart. This task is naturally formulated by ranking tasks,
in which individual pairs of images are compared[86, 171, 217] or contrasted against a third
image[205, 245, 256]. These triplet-based objective functions constitutes the basis of most
Deep Metric Learning (DML) algorithms[156, 175, 194, 201, 261]. However, with growing
training set size, leveraging every single triplet for learning becomes computationally in-
feasible, limiting training to only a subset of all possible triplets. Thus, a careful selection
of those triplets which drive learning best is crucial. This raises the question: How to
determine which triplets to present when to our model during training?
As training progresses, more and more triplet relations will be correctly represented by
the model. Thus, ever fewer triplets will still provide novel, valuable information. Con-
versely, leveraging only triplets which are hard to learn[58, 205, 275] but therefore informa-
tive, impairs optimization due to high gradient variance[256]. Consequently, a reasonable
mixture of triplets with varying difficulty would provide an informative and stable train-
ing signal. Now, the question remains, when to present which triplet? Sampling from a
fixed distribution over difficulties may serve as a simple proxy[256] and is a typical remedy
in representation learning in general[21, 123]. However, (i) choosing a proper distribu-
tion is difficult; (ii) the abilities and state of our model evolves as training progresses and,
thus, a fixed distribution cannot optimally support every stage of training; and (iii) triplet
sampling should actively contribute to the learning objective rather than being chosen
independently. Since a manually predefined sampling distribution does not fulfill these
requirements, we need to learn and adapt it while training a representation.
Such online adaptation of the learning algorithm and the parameters that control it during
training is typically framed as a teacher-student setup and optimized using Reinforcement
Learning (RL). When modeling a flexible sampling process (the student), a controller
network (the teacher) learns to adjusts the sampling such that the DML model is steadily
provided with an optimal training signal.
Subsequently, we present how to learn a novel triplet sampling strategy which is able to
effectively support the learning process of a DML model at every stage of training. To
this end, we model a sampling distribution so it is easily adjustable to yield triplets of arbi-
trary mixtures of difficulty. To adapt to the training state of the DML model, we employ
Reinforcement Learning to update the adjustment policy. Directly optimizing the policy
so it improves performance on a held-back validation set, adjusts the sampling process to
optimally support DML training. Experiments show that our adaptive sampling strategy
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significantly improves over fixed, manually designed triplet sampling strategies on multi-
ple datasets. Moreover, we perform diverse analyses and ablations to provide additional
insights into our method.
This chapter is based on our publication ’PADS: Policy-Adapted Sampling for Visual Simi-
larity Learning’ [195].

5.1 Preliminaries: Static Triplet Sampling Strategies in DML

While triplet-based ranking losses have proven to be powerful, the number of possible
triplets (xi, xj , xk) ∈ X × X × X grows dramatically with the size of the training set.
Thus, training quickly becomes infeasible, turning efficient triplet sampling strategies into
a key component for successful learning as discussed here. The notation in this chapter
follows the notation introduced in chapter 2.
When performing DML using triplet-based ranking losses, distances dik , dφ(xi, xk) =
‖φ(xi)− φ(xk)‖2. between an anchor and negative samples, respectively dij between the
anchor and positive samples decreasingly violate a given, fixed triplet margin β ∈ R>0 (i.e.
dik − dij < β ) as training progresses. Naively employing random triplet sampling entails
many of the selected triplets being uninformative, as distances in Φ are strongly biased
towards larger distances d due to its regularization to the unit-hypersphere SD. Con-
sequently, recent sampling strategies explicitly leverage triplets which violate the triplet
margin and, thus, are difficult and informative.

(Semi-)Hard negative sampling. Hard negative sampling methods focus on triplets
violating the margin β the most, i.e. by sampling negatives

x∗k = arg min
xk∈X :dik<dij

dik . (5.1)

While it speeds up convergence, it may result in collapsed models[205] due to a strong
focus on few data outliers and very hard negatives. Facenet[205] proposes a relaxed, semi-
hard negative sampling strategy restricting the sampling set to a single mini-batch B and
to those which are closest to the margin β without violating it. Hence, they employ
considerably less hard negatives samples

x∗k = arg min
xk∈B:dik>dij

dik (5.2)

for learning. Based on this idea, different online[179, 217] and offline[88] strategies emerged.

(Static) Distance-based sampling. By considering the hardness of a negative, one can
successfully discard easy and uninformative triplets. However, triplets that are too hard
lead to noisy learning signals due to overall high gradient variance [256]. As a remedy, to
control the variance while maintaining sufficient triplet utility, sampling can be extended
to also consider easier negatives, i.e. introducing a sampling distribution xk ∼ p(xk|xi)
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Figure 5.1: Sampling distribution p(xk|xi) for selecting negatives xk given an anchor xi. We dis-
cretize the distance intervalU = [λmin, λmax] intoM equi-sized bins um with individual
sampling probabilities pm.

over the range of distances dik between anchor and negatives. Wu et al. [256] propose to
sample from a static uniform prior on the range of dik, thus equally considering negatives
from the whole spectrum of difficulties. As pairwise distances in Φ are strongly biased
towards larger dik, their sampling distribution requires to weigh p(xk|xi) inversely to the
analytical distance distribution q(d) on Φ, i.e.

q(d) ∝ dD−2

[
1− 1

4
d2

]D−3
2

, (5.3)

for large D ≥ 128 [225]. Distance-based sampling from the static, uniform prior is then
performed by

xk ∼ p(xk|xi) ∝ min
(
λ, q−1(dik)

)
(5.4)

with λ being a clipping hyperparameter for regularization.

5.2 PADS: Learning an Adaptive Sampling Strategy

Distance-based sampling of negatives xk has proven to offer a good trade-off between fast
convergence and a stable, informative training signal. However, a static sampling distri-
bution p(xk|xi) provides a stream of training data independent of the the changing needs
of a DML model during learning. While samples of mixed difficulty may be useful at the
beginning, later training stages are calling for samples of increased difficulty, as e.g. ana-
lyzed by curriculum learning[15]. Unfortunately, as different models and even different
model intializations[76] exhibit distinct learning dynamics, finding a generally applicable
learning schedule is challenging. Thus, again, heuristics[85] are typically employed, infer-
ring changes after a fixed number of training epochs or iterations. To provide an optimal
training signal, however, we rather want p(xk|xi) to adapt to the training state of the DML
model than merely the training iteration. Such an adaptive negative sampling allows for
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Figure 5.2: Overview of approach. Blue denotes the standard Deep Metric Learning (DML) setup
using triplets (xi, xj , xk). Our proposed adaptive negative sampling is shown in green:
(1) We compute the current training state s using Xval. (2) Conditioned on s, our
policy πω(a|s) predicts adjustments to pm. (3) We perform bin-wise adjustments of
p(xk|xi). (4) Using the adjusted p(xk|xi) we train the DML model. (5) Finally, πω is
updated based on the reward r.

adjustments which directly facilitate maximal DML performance. Since manually design-
ing such a strategy is difficult, learning it is the most viable option.
Subsequently, we first present how to find a parametrization of p(xk|xi) that is able to
represent arbitrary, potentially multi-modal distributions, thus being able to sample neg-
atives xk of any mixture of difficulty needed. Using this, we can learn a policy which
effectively alters p(xk|xi) to optimally support learning of the DML model. We refer to
this strategy as PADS: Policy-adapted Sampling.

5.2.1 Modelling a flexible sampling distribution

Since learning benefits from a diverse distribution p(xk|xi) of negatives, uni-modal dis-
tributions (e.g. Gaussians, Binomials, χ2) are insufficient. Thus, we utilize a discrete
probability mass function

p(xk|xi) , P (dik ∈ um) = pm , (5.5)

where the bounded interval U = [λmin, λmax] of possible distances dik is discretized into
M disjoint equidistant bins u1, . . . , uM ,

um = [
m− 1

M
,
m

M
] . (5.6)

The probability of drawing xk from bin um is pm with pm ≥ 0 and
∑

m pm = 1. Fig. 5.1
illustrates this discretized sampling distribution.
This representation of the negative sampling distribution effectively controls which sam-
ples are used to learn φ. As φ changes during learning, p(xk|xi) should also adapt to always
provide the most useful training samples, i.e. to control when to use which sample. Hence
the probabilities pm need to be updated while learning φ. We subsequently solve this task
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by learning a stochastic adjustment policy πω for the pm, implemented as a neural network
parametrized by ω.

5.2.2 Learning an adjustment policy for p(xk|xi)

Our sampling process based on p(xk|xi) should provide optimal training signals for learn-
ing φ at every stage of training. Thus, we adjust the pm by a multiplicative update a ∈ A
conditioned on the current representation (or state) s ∈ S of φ during learning. We in-
troduce a conditional distribution πω(a|s) to control which adjustment to apply at which
state s of training φ. To learn πω, we measure the utility of these adjustments for learn-
ing φ using a reward signal r = r(s, a). We now first describe how to model each of
these components, before presenting how to efficiently optimize the adjustment policy
πω alongside φ.

Adjustments a. To adjust p(xk|xi), πω(a|s) proposes adjustments a to the pm. To
lower the complexity of the action space, we use a limited set of actions A = {α, 1, β} to
individually decrease, maintain, or increase the probabilities pm for each bin um, i.e.

a , [am ∈ {α, 1, β}]Mm=1 . (5.7)

Further, α, β are fixed constants 0 < α < 1, β > 1 and α+β
2 = 1. Updating p(xk|xi) is

then performed by bin-wise updates pm ← pm · am followed by re-normalization. Using
a multiplicative adjustment accounts for the exponential distribution of distances on Φ
(cf. Sec. 5.1).

Training states s. Adjustments a depend on the present state s ∈ S of the represen-
tation φ. Unfortunately, we cannot use the current model weights θ of the embedding
network, as the dimensionality of s would be to high, thus making optimization of πω
infeasible. Instead, we represent the current training state using representative statistics
describing the learning progress: running averages over Recall@1[107], NMI[151] and av-
erage distances between and within classes on a fixed held-back validation set Xval . Ad-
ditionally we use past parametrizations of p(xk|xi) and the relative training iteration (cf.
Implementation details, Sec. 5.4).

Rewards r. An optimal sampling distribution p(xk|xi) yields triplets whose training
signal consistently improves the evaluation performance of φ while learning. Thus, we
compute the reward r for for adjustments a ∼ πω(a|s) by directly measuring the relative
improvement of φ(·; θ) over φ(·; θ′) from the previous training state. This improvement
is quantified by DML evaluation performance e(φ(.; θ),Xval), i.e. evaluation the embed-
ding φ with parameters θ on the evaluation set Xval using the evaluation metric e. More
precisely, we define r as

r = sign
(
e(φ(.; θ),Xval)− e(φ(.; θ′),Xval))

)
(5.8)
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where θ was reached from θ′ after H DML training iterations using p(xk|xi). We choose
e to be the sum of Recall@1[107] and NMI[151]. Both metrics are in the range [0, 1] and
target slightly different performance aspects. Further, similar to [102], we utilize the sign
function for consistent learning signals even during saturated training stages.

Learning of πω. Adjusting p(xk|xi) is a stochastic process controlled by actions a
sampled from πω(a|s) based on a current state s. This defines a Markov Decision Process
(MDP) [221] which is naturally optimized by Reinforcement Learning. For a detailed
introduction to Reinforcement Learning, we refer the reader to Sutton et al. [221]. The
policy objective J(ω) is formulated to maximize the total expected reward

R(τ) =
∑
l

rl(al, sl) (5.9)

over training episodes of tuples τ = {(al, sl, rl)|l = 0, . . . , L]} collected from sequences
of L time-steps, i.e.

J(ω) = Eτ∼πω(τ)[R(τ)] (5.10)

Hence, πω is optimized to predict adjustments a for p(xk|xi) which yield high rewards
and thereby improving the performance of φ. Common approaches use episodes τ com-
prising long state trajectories which potentially cover multiple training epochs[62]. As a
result, there is a large temporal discrepancy between model and policy updates. However,
in order to closely adapt p(xk|xi) to the learning of φ, this discrepancy needs to be min-
imized. In fact, our experiments show that single-step episodes, i.e. L = 1, are sufficient
for optimizing πω to infer meaningful adjustments a for p(xk|xi). Such a setup is also
successfully adopted by contextual bandits [138] 1. In summary, our training episodes τ
consists of updating p(xk|xi) using a sampled adjustment a, performingH DML training
iterations based on the adjusted p(xk|xi) and updating πω using the resulting reward r.
Optimizing Eq. 5.10 is then performed by standard RL algorithms which approximate
different variations of the policy gradient [221] based on the gain G(s, a), i.e.

∇ωJ(ω) = Eτ∼πω(τ)[∇ω log πω(a|s)G(s, a)] . (5.11)

The choice of the exact form ofG = G(s, a) gives rise to different optimization methods,
e.g REINFORCE [255] (G = R(τ)), Advantage Actor Critic (A2C) [221] (G = A(s, a)),
etc. Other RL algorithms, such as TRPO [206] or PPO [207] replace Eq. (5.10) by sur-
rogate objective functions. Fig. 5.2 provides an overview over the learning procedure.
Moreover, in the supplementary material we compare different RL algorithms and sum-
marizes the learning procedure in Alg. 1 using PPO [207] for policy optimization.

1Opposed to bandits, in our RL setup, actions which are sampled from πω influence future training states
of the learner. Thus, the policy implicitly learns state-transition dynamics.
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Initialization of p(xk|xi). We find that an initialization with a slight emphasis to-
wards smaller distances dik works best. However, as shown in Tab. 5.7, also other initial-
izations work well. In addition, the limits of the distance interval U = [λmin, λmax] can
be controlled for additional regularization as done in [256]. This means ignoring values
above λmax and clipping values below λmin, which is analyzed in Tab. 5.5.
Self-Regularization: As noted in [194], the utilization of intra-class features can be ben-
eficial to generalization. Our approach easily allows for a learnable inclusion of such fea-
tures. As positive samples are generally closest to anchors, we can merge positive samples
into the set of negative samples and have the policy learn to place higher sampling prob-
ability on such low-distance cases. We find that this additionally improves generalization
performance.

Computational costs. Computational overhead over fixed sampling strategies[205,
256] comes from the estimation of r requiring a forward pass over Xval and the computa-
tion of the evaluation metrics. For example, setting M = 30 increases the computation
time per epoch by less than 20%.

5.3 Related Works

Metric learning has become the leading paradigm for learning distances between images
with a broad range of applications, including image retrieval[141, 161, 256], image classi-
fication [65, 276], face verification[99, 143, 205] or human pose analysis[46, 154]. Ranking
losses formulated on pairs[86, 217], triplets[71, 205, 245, 256] or even higher order tuples
of images[37, 171, 250] emerged as the most widely used basis for DML [196]. As with
the advent of CNNs datasets are growing larger, different strategies are developed to cope
with the increasing complexity of the learning problem.

Complexity management in DML. The main line of research are negative sampling
strategies [88, 205, 256] based on distances between an anchor and a negative image. FaceNet [205]
leverages only the hard negatives in a mini-batch. Wu et al. [256] sample negatives uni-
formly over the whole range of distances to avoid large variances in the gradients while
optimization. Harwood et al. [88] restrict and control the search space for triplets using
pre-computed sets of nearest neighbors by linearly regressing the training loss. Each of
them successfully enable effective DML training. However, these works are based on fixed
and manually predefined sampling strategies. In contrast, we learn an adaptive sampling
strategy to provide an optimal input stream of triplets conditioned on the training state
of our model.
Orthogonal to sampling negatives from the training set is the generation of hard negatives
in form of images [58] or feature vectors [275, 277]. Thus, these approaches also resort to
hard negatives, while our sampling process yields negatives of any mixture of difficulty
depending on the model state.
Finally, proxy based techniques reduce the complexity of the learning problem by learning
one [161] or more [183] virtual representatives for each class, which are used as negatives.
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Dataset CUB200-2011[239] CARS196[130] SOP[171]

Approach Dim R@1 R@4 NMI R@1 R@4 NMI R@1 R@10 R@100 NMI

Margin[256] + U -dist (orig) 128 63.6 83.1 69.0 79.6 90.1 69.1 72.7 86.2 93.8 90.7
Margin[256] + U -dist (β = 1.2) 128 63.5 84.4 68.1 80.1 91.9 67.6 74.6 87.5 94.2 90.7
Margin[256] + U -dist (β = 0.6) 128 63.0 83.0 66.9 79.7 91.8 67.1 73.5 87.2 93.9 89.3
Margin[256] + PADS (Ours) 128 67.3 85.9 69.9 83.5 93.8 68.8 76.5 89.0 95.4 89.9
Triplet[205] + semihard (orig) 64 42.6 66.4 55.4 51.5 73.5 53.4 66.7 82.4 91.9 89.5
Triplet[205] + semihard (ReImp) 128 60.6 82.1 65.5 71.9 88.5 64.1 73.5 87.5 94.9 89.2
Triplet[205] + U -dist (ReImp) 128 62.2 82.8 66.3 78.0 91.4 65.7 73.9 87.7 94.5 89.3
Triplet[205] + PADS (Ours) 128 64.0 84.3 67.8 79.9 92.3 67.1 74.8 88.2 95.0 89.5

Table 5.1: Comparison of our proposed adaptive negative sampling (PADS) against common
static negative sampling strategies: semihard negative mining[171] (semihard) and static
distance-based sampling (U -dist)[256] using triplet[205] and margin loss[256]. Dim the
dimensionality of φ.

Thus, these approaches approximate the negative distributions, while our sampling adap-
tively yields individual negative samples.

Adaptive learning. Curriculum Learning [15] gradually increases the difficulty of the
the samples presented to the model. Hacohen et al. [85] employ a batch-based learnable
scoring function to provide a batch-curriculum for training, while we learn how to adapt
a sampling process to the training state. Graves et al. [cl_tasks] divide the training data
into fixed subsets before learning in which order to use them from training. Further,
Gopal et al. [81] employs an empirical online importance sampling distribution over in-
puts based on their gradient magnitudes during training. Similarly, Shreyas et al. [204]
learn an importance sampling over instances. In contrast, we learn an online policy for
selecting triplet negatives, thus instance relations. Meta Learning aims at learning how to
learn. It has been successfully applied for various components of a learning process, such
as activation functions [184], input masking [62], self-supervision [27], finetuning [212],
loss functions [102], optimizer parameters [4] and model architectures [181, 259]. In this
work, we learn a sampling distribution to improve triplet-based learning.

5.4 Experiments

In this section we provide implementation details, evaluations on standardmetric learning
datasets, ablations studies and analysis experiments.

Implementation details. We follow the training protocol of [256] with ResNet50.
During training, images are resized to 256 × 256 with random crop to 224 × 224 and
random horizontal flipping. For completeness, we also evaluate on Inception-BN [103]
following standard practice in the supplementary. The initial learning rates are set to
10−5. We choose triplet parameters according to [256], with γ = 0.2. For margin loss,
we evaluate margins β = 0.6 and β = 1.2. Our policy π is implemented as a two-layer
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Dataset CUB200-2011[239] CARS196[130] SOP[171]
Approach Dim R@1 R@2 R@4 NMI R@1 R@2 R@4 NMI R@1 R@2 R@4 NMI

HTG[275] 512 59.5 71.8 81.3 - 76.5 84.7 90.4 - - - - -
HDML[277] 512 53.7 65.7 76.7 62.6 79.1 87.1 92.1 69.7 68.7 83.2 92.4 89.3
HTL[71] 512 57.1 68.8 78.7 - 81.4 88.0 92.7 - 74.8 88.3 94.8 -
DVML[141] 512 52.7 65.1 75.5 61.4 82.0 88.4 93.3 67.6 70.2 85.2 93.8 90.8
A-BIER[175] 512 57.5 68.7 78.3 - 82.0 89.0 93.2 - 74.2 86.9 94.0 -
MIC[194] 128 66.1 76.8 85.6 69.7 82.6 89.1 93.2 68.4 77.2 89.4 95.6 90.0
D&C[201] 128 65.9 76.6 84.4 69.6 84.6 90.7 94.1 70.3 75.9 88.4 94.9 90.2
Margin[256] 128 63.6 74.4 83.1 69.0 79.6 86.5 90.1 69.1 72.7 86.2 93.8 90.8
Margin[256] + PADS 128 67.3 78.0 85.9 69.9 83.5 89.7 93.8 68.8 76.5 89.0 95.4 89.9
Significant increase in network parameter:
HORDE[105]+contr. [86] 512 66.3 76.7 84.7 - 83.9 90.3 94.1 - - - - -
SOFT-TRIPLE[183] 512 65.4 76.4 84.5 - 84.5 90.7 94.5 70.1 78.3 90.3 95.9 92.0
Ensemble Methods:
Rank[250] 1536 61.3 72.7 82.7 66.1 82.1 89.3 93.7 71.8 79.8 91.3 96.3 90.4
DREML[261] 9216 63.9 75.0 83.1 67.8 86.0 91.7 95.0 76.4 - - - -
ABE[120] 512 60.6 71.5 79.8 - 85.2 90.5 94.0 - 76.3 88.4 94.8 -

Table 5.2: Comparison to the state-of-the-art DML methods on CUB200-2011[239],
CARS196[130] and SOP[171]. Dim denotes the dimensionality of φ.

fully-connected network with ReLU-nonlinearity inbetween and 128 neurons per layer.
Action values are set to α = 0.8, β = 1.25. Episode iterationsH are determined via cross-
validation within [30,150]. The sampling range [λmin, λmin] of p(xk|xi) is set to [0.1, 1.4],
withM = 30. The sampling probability of negatives corresponding to distances outside
this interval is set to 0. For the input state we use running averages of validation recall,
NMI and average intra- and interclass distance based on running average lengths of 2, 8, 16
and 32 to account for short- and longterm changes. We also incorporate the metrics of the
previous 20 iterations. Finally, we include the sampling distributions of the previous itera-
tion and the training progress normalized over the total training length. For optimization,
we utilize an A2C + PPO setup with ratio limit ε = 0.2. The history policy is updated
every 5 policy iterations. For implementation we use the PyTorch framework[180] on a
single NVIDIA Titan X.

Init. Reference fix πω fix last p(xn|xa)

R@1 6= 65.4 64.3 59.0
R@1 = 65.4 65.8 57.6

Table 5.3: Transferring a fixed trained policy πω and fixed final distribution p(xn|xa) to training
runs with different ( 6=) and the same network initialization (=). Reference denotes the
training run from which πω and p(xn|xa) is obtained.

Benchmark datasets. We evaluate the performance on three common benchmark
datasets. For each dataset the first half of classes is used for training and the other half
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Dataset CUB200-2011[239] CARS196[130]

Metrics R@1 NMI R@1 NMI

Ours 67.3 69.9 83.5 68.8
linear CL 59.1 63.1 72.2 64.0
non-linear CL 63.6 68.4 78.1 66.8

Table 5.4: Comparison to curriculum learning strategies with predefined linear and non-linear
progression of p(xk|xi).

is used for testing. Further, we use a random subset of 15% of the training images for our
validation set Xval. We use:
CARS196[130], with 16,185 images from 196 car classes.
CUB200-2011[239], 11,788 bird images from 200 classes.
Stanford Online Products (SOP)[171], containing 120,053 images divided in 22,634 classes.

5.4.1 Results

In Tab. 5.1 we apply our adaptive sampling strategy on two widely adopted basic ranking
losses: triplet[205] and margin loss[256]. For each loss, we compare against the most com-
monly used static sampling strategies, semi-hard[205] (semihard) and distance-based sam-
pling[256] (U -dist) on the CUB200-2011, CARS196 and SOP dataset. We measure image
retrieval performance using recall accuracy R@k[107] following [175]. For completeness
we additonally show the normalized mutual information score (NMI)[151], despite not
fully correlating with retrieval performance. For both losses and each dataset, our learned
negative sampling significantly improves the performance over the non-adaptive sampling
strategies. Especially the strong margin loss greatly benefits from the adaptive sampling,
resulting in boosts up to 3.8% on CUB200-2011, 3.4% on CARS196 and 1.9% on SOP.
This clearly demonstrates the importance of adjusting triplet sampling to the learning
process a DML model, especially for smaller datasets.
Next, we compare these results with the current state-of-the-art in DML which extend
these basic losses using diverse additional training signals (MIC[194],DVML[141],HORDE[105],
A-BIER[175]), ensembles of embeddings (DREML[261], D&C[201], Rank[250]) and/or
significantly more network parameters (HORDE[105], SOFT-TRIPLE[183]). Tab. 5.2
shows that our results, despite not using such additional extensions, compete and partly
even surpass these strong methods. On CUB200-2011 we outperform all methods, includ-
ing the powerful ensembles, by at least 1.2% in Recall accuracy. On CARS196[130] we
rank second behind the top performing non-ensemble method D&C[201]. On SOP[171]
we lose 0.7% toMIC[194]which, in turn, we surpass on bothCUB200-2011 andCARS196.
This highlights the strong benefit of our adaptive sampling.
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Figure 5.3: Averaged progression of pxk|xi) over multiple training runs on CUB200-2011, CARS196
and SOP.

5.4.2 Analysis

We now present various analysis experiments providing detailed insights into our learned
adaptive sampling strategy.

Training progression of p(xk|xi). Wenow analyze in Fig. 5.3 how our adaptive sam-
pling distribution progresses during training by averaging the results of multiple training
runs with different network initializations. While on CARS196 the distribution p(xk|xi)
strongly emphasizes smaller distances dik, we observe on CUB200-2011 and SOP gener-
ally a larger variance of p(xk|xi). Further, on each dataset, during the first half of training
p(xk|xi) quickly peaks on a sparse set of bins um, as intuitively expected, since most
triplets are still informative. As training continues, p(xk|xi) begins to yield both harder
and easier negatives, thus effectively sampling from a wider distribution. This observation
confirms the result of Wu et al. [256] which proposes to ease the large gradient variance
introduced by hard negatives with also adding easier negatives. Moreover, for each dataset
we observe a different progression of p(xk|xi) which indicates that manually designing
similar sampling strategies is difficult, as also confirmed by our results in Tab. 5.1 and 5.4.

Transfer of πθ and p(xk|xi). Tab. 5.3 investigates how well a trained policy πω or
final sampling distribution p(xk|xi) from a reference run transfer to differently ( 6=) or
equally (=) initialized training runs. We find that applying a fixed trained policy (fix πω )
to a new training run with the same network initialization (=) improves performance by
0.4% due to the immediate utility of πω for learning φ as πω is already fully adapted to the

81



5 Adaptive Triplet Sampling using Reinforcement Learning

[λmin, λmax] [0, 2] [0.1, 1.4] [0.25, 1.0] [0.5, 1.4]

Recall@1 64.7 65.7 64.8 63.7
NMI 67.5 69.2 68.2 67.5

Table 5.5: Varying the interval U = [λmin, λmax] of distances dik used for learning p(xk|xi). The
number of bins um is kept fixed toM = 30.

Num. binsM 10 30 50 100

Recall@1 63.8 65.7 65.3 64.9
NMI 67.8 69.2 68.7 68.6

Table 5.6: Varying the number of bins um used to discretize the range of distances U = [0.1, 1.4]
used for learning p(xk|xi).

reference learning process. In contrast, applying the trained policy to a differently initial-
ized training run ( 6=) drops performance by 1.5%. Since the fixed πω cannot adapt to the
learning states of the new model, its support for optimizing φ is diminished. Note that
the policy has only been trained on a single training run, thus it cannot fully generalize
to different training dynamics. This shows the importance of an adaptive sampling.
Next, we investigate if the distribution p(xk|xi) obtained at the end of training can be
regarded as an optimal sampling distribution over dik, as πω is fully trained. To this end
we fix and apply the distribution p(xk|xi) after its last adjustment by πω (fix last p(xk|xi))
in training the reference run. As intuitively expected, in both cases performance drops
strongly as (i) we now have a static sampling process and (ii) the sampling distribution is
optimized to a specific training state. Given our strong results, this proves that our sam-
pling process indeed adapts to the learning of φ.

Curriculum learning. To compare our adaptive samplingwith basic curriculum learn-
ing strategies, we pre-define two sampling schedules: (1)A linear increase of negative hard-
ness, starting from a semi-hard distance intervall[205] and (2) a non-linear schedule using
distance-based sampling[256], where the distribution is gradually shifted towards harder
negatives. We visualize the corresponding progression of the sampling distribution in the
supplementarymaterial. Tab. 5.4 illustrates that both fixed, pre-defined curriculum sched-
ules perform worse than our learned, adaptive sampling distribution by at least 3.6% on
CUB200-2011. On CARS196 the performance gap is even larger. The strong difference in
datasets further demonstrates the difficulty of finding broadly applicable, effective fixed
sampling strategies.

5.4.3 Ablation studies

Subsequentlywe ablate different parameters for learning our sampling distribution p(xk|xi)
on the CUB200-2011 dataset. More ablations are shown in the appendix. To make the fol-
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Init. Distr. U[0.1,1.4] N (0.5, 0.05) U[0.3,0.7]

Recall@1 63.9 65.0 65.7
NMI 67.0 68.6 69.2

Table 5.7: Comparison of p(xk|xi)-initializations on distance interval U = [0.1, 1.4]. U[a,b] de-
notes uniform emphasis in [a, b] with low probabilities outside the interval. N (µ, σ)
denotes a normal distribution.

lowing experiments comparable, no learning rate scheduling was applied, as convergence
may significantly change with different parameter settings. In contrast, the results in Tab
5.1-5.2 are obtained with our best parameter settings and a fixed learning rate scheduling.
Without scheduling, our best parameter setting achieves a recall value of 65.7 and NMI
of 69.2 on CUB200-2011.

Distance interval U . As presented in Sec. 5.2.1, p(xk|xi) is defined on a fixed interval
U = [λmin, λmax] of distances. Similar to other works[88, 256], this allows us to addition-
ally regularize the sampling process by clipping the tails of the true range of distances
[0, 2] on Φ. Tab. 5.5 compares different combinations of λmin, λmax. We observe that,
while each option leads to significant performance boost compared to the static sampling
strategies, an interval U = [0.1, 1.4] results in the most effective sampling process.

Number of binsM . Next, we analyze the impact of the resolution of the interval U in
Tab. 5.6, i.e. the number of binsM . This affects the flexibility of p(xk|xi), but also the
complexity of the actions a to be predicted. As intuitively expected, increasingM allows
for better adaption and performance until the complexity grows too large.

Initialization of p(xk|xi). Finally, we analyze how the initialization of p(xk|xi) im-
pacts learning. Tab. 5.7 compares the performance using different initial distributions,
such as a neutral uniform initialization (i.e. random sampling) (U[0.1,1.4]), emphasizing
semi-hard negatives xk early on (U[0.3,0.7]) or a proxy to [256] (N (0.5, 0.05)). We observe
that our learned sampling process benefits from a meaningful, but generic initial configu-
ration of p(xk|xi), U[0.3,0.7], to effectively adapt the learning process of φ.

Performance with Inception-BN. For fair comparison, we also evaluate using Inception-
V1 with Batch-Normalization [103]. We follow the standard pipeline (see e.g. [161, 183]),
utilizing Adam [122] with images resized and random cropped to 224x224. The learning
rate is set to 10−5. We retain the size of the policy network and other hyperparameters.
The results on CUB200-2011[239] and CARS196[130] are listed in Table 5.8. OnCUB200,
we achieve results competitive to previous state-of-the-art methods. On CARS196, we
achieve a significant boost over baseline values and competitive performance to the state-
of-the-art.
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Dataset CUB200-2011[239] CARS196[130]
Approach Dim R@1 R@2 R@4 NMI R@1 R@2 R@4 NMI

HTG[275] 512 59.5 71.8 81.3 - 76.5 84.7 90.4 -
HDML[277] 512 53.7 65.7 76.7 62.6 79.1 87.1 92.1 69.7
HTL[71] 512 57.1 68.8 78.7 - 81.4 88.0 92.7 -
DVML[141] 512 52.7 65.1 75.5 61.4 82.0 88.4 93.3 67.6
A-BIER[175] 512 57.5 68.7 78.3 - 82.0 89.0 93.2 -
MIC[194] 128 66.1 76.8 85.6 69.7 82.6 89.1 93.2 68.4
D&C[201] 128 65.9 76.6 84.4 69.6 84.6 90.7 94.1 70.3
Margin[256] 128 63.6 74.4 83.1 69.0 79.6 86.5 90.1 69.1
Reimpl. Margin[256], IBN 512 63.8 75.3 84.7 67.9 79.7 86.9 91.4 67.2
Ours(Margin[256] + PADS, IBN) 512 66.6 77.2 85.6 68.5 81.7 88.3 93.0 68.2
Significant increase in network parameter:
HORDE[105]+Contr.[86] 512 66.3 76.7 84.7 - 83.9 90.3 94.1 -
SOFT-TRIPLE[183] 512 65.4 76.4 84.5 - 84.5 90.7 94.5 70.1
Ensemble Methods:
Rank[250] 1536 61.3 72.7 82.7 66.1 82.1 89.3 93.7 71.8
DREML[261] 9216 63.9 75.0 83.1 67.8 86.0 91.7 95.0 76.4
ABE[120] 512 60.6 71.5 79.8 - 85.2 90.5 94.0 -

Table 5.8: Comparison to the state-of-the-art DML methods on CUB200-2011[239] and
CARS196[130] using the Inception-BN Backbone (see e.g. [161, 183]) and embedding
dimension of 512.

Validation set Xval: The validation set Xval is sampled from the training set Xtrain, com-
posed as either a fixed disjoint, held-back subset or repetitively re-sampled from Xtrain
during training. Further, we can sample Xval across all classes or include entire classes.
We found (Tab. 5.9 (d)) that sampling Xval from each class works much better than do-
ing it per class. Further, resampling Xval provides no significant benefit at the cost of an
additional hyperparameter to tune.

Composition of states s and target metric e. Choosing meaningful target metrics
e(φ(·; θ),Xval) for computing rewards r and a representative composition of the training
state s increases the utility of our learned policy πω. To this end, Tab. 5.10 compares
different combinations of state compositions and employed target metrics e. We observe
that incorporating information about the current structure of the embedding φ into s,
such as intra- and inter-class distances, is most crucial for effective learning and adaptation.
Moreover, also incorporating performance metrics into s which directly represent the
current performance of the model φ, e.g. Recall@1 or NMI, additional adds some useful
information.
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Validation Set: X By
val X Per

val X By, R
val X Per, R

val

Recall@1 62.6 65.7 63.0 65.8
NMI 67.7 69.2 67.8 69.6

Table 5.9: Composition of Xval. Superscript By/Per denotes usage of entire classes/sampling
across classes. R denotes re-sampling during training with best found frequency of

1
50 epochs .

Frequency of updating πω. We compute the reward r for an adjustment a to p(xk|xi)
everyH DML training iterations. High values ofH reduce the variance of the rewards r,
however, at the cost of slow policy updates which result in potentially large discrepancies
to updating φ. Tab. 5.11 shows that choosing H from the range [30, 70] results in a good
trade-off between the stability of r and the adaptation of p(xk|xi) to φ. Moreover, we also
show the result for settingM =∞, i.e. using the initial distribution throughout training
without adaptation. Fixing this distribution performs worse than the reference method
Margin loss with static distance-based sampling[256]. Nevertheless, frequently adjusting
p(xk|xi) leads to significant superior performance, which indicates that our policy πω
effectively adapts p(xk|xi) to the training state of φ.

Importance of long-term information for states s. For optimal learning, s should
not only contain information about the current training state of φ, but also about some
history of the learning process. Therefore, we compose s of a set of running averages
over different lengths R for various training state components, as discussed in the imple-
mentation details of the main paper. Tab. 5.12 confirms the importance of long-term
information for stable adaptation and learning. Moreover, we see that the set of moving
averages R = {2, 8, 16, 32} works best.

Visual curriculum evaluations. In Fig. 5.4 we visually illustrate the fixed curricu-
lum schedules which we applied for the comparison experiment in Sec. 5.3 of our main
paper. We evaluated various schedules - Linear progression of sampling intervals starting
at semi-hard negatives going to hard negatives, and progressively moving U -dist[256] to-
wards harder negatives. The schedules visualized were among the best performing ones
to work for both CUB200 and CARS196 dataset.
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Reward metrics e
Composition of state s NMI R@1 R@1 + NMI

Recall, Dist., NMI 63.9 65.5 65.6
68.5 68.9 69.2

Recall, Dist. 65.0 65.7 64.4
68.5 69.2 69.4

Recall, NMI 63.7 63.9 64.2
68.4 68.2 68.5

Dist., NMI 65.3 65.3 65.1
68.8 68.7 68.5

Dist. 65.3 65.5 64.3
68.8 69.1 68.6

Recall 64.2 65.1 64.9
67.8 69.0 68.4

NMI 64.3 64.8 63.9
68.7 69.2 68.4

Table 5.10: Comparison of different compositions of the training state s and reward metric e. Dist.
denotes average intra- and inter-class distances. Recall in state composition denotes all
Recall@k-values, whereas for the target metric only Recall@1 was utilized.

H 10 30 50 70 100 ∞ [256]

R@1 64.4 65.7 65.4 65.2 65.1 61.9 63.5
NMI 68.3 69.2 69.2 68.9 69.0 67.0 68.1

Table 5.11: Evaluation of the policy update frequency H , i.e. the number of DML training itera-
tions performed before updating the policy πθ using a reward r.

R 2 2, 32 2, 8, 16, 32 2, 8, 16, 32, 64

R@1 64.5 65.4 65.7 65.6
NMI 68.6 69.1 69.2 69.3

Table 5.12: Evaluation of various setsR of moving average lengths to analyze the benefit of long-
term learning progress information added to training states s.
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5.4 Experiments

Figure 5.4: Visual comparison between fixed sampling curriculums and a learned progression of
p(xk|xi) by PADS. Left: log-scale over p(xk|xi), right: original scale. Top row: learned
sampling schedule (PADS); middle row: linear shift of a sampling interval from semi-
hard[205] negatives to hard negatives; bottom row: shifting a static distance-based sam-
pling[256] to gradually sample harder negatives.

Comparison of RL algorithms. We evaluate the applicability of the following RL
algorithms for optimizing our policy πω (Eq. 4 in the main paper):

• REINFORCE algorithm[255]with andwithout ExponentialMovingAverage (EMA)

• Advantage Actor Critic (A2C)[221]

• Rainbow Q-Learning[95] without extensions (vanilla) and using Priority Replay
and 2-Step updates

• Proximal PolicyOptimization (PPO)[207] applied to REINFORCEwith EMA and
to A2C.

For a comparable evaluation setting we use the CUB200-2011[239] dataset without learn-
ing rate scheduling and fixed 150 epochs of training. Within this setup, the hyperparam-
eters related to each method are optimized via cross-validation. Tab. 5.13 shows that all
methods, except for vanilla Q-Learning, result in an adjustment policy πω for p(xk|xi)
which outperforms static sampling strategies. Moreover, policy-based methods in general
perform better thanQ-Learning basedmethods with PPO being the best performing algo-
rithm. We attribute this to the reduced search space (Q-Learningmethods need to evaluate
in state-actions space, unlike policy-methods, which work directly over the action space),
as well as not employing replay buffers, i.e. not acting off-policy, since state-action pairs
of previous training iterations may no longer be representative for current training stages.

Qualitative UMAP visualization. Figure 5.5 shows a UMAP[153] embedding of
test image features for CUB200-2011[239] learned by our model using PADS. We can see
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5 Adaptive Triplet Sampling using Reinforcement Learning

Approach R@1 NMI

Margin[256] 63.5 68.1

REINFORCE 64.2 68.5
REINFORCE, EMA 64.8 68.9
REINFORCE, A2C 65.0 69.0
PPO, EMA 65.4 69.0
PPO, A2C 65.7 69.2
Q-Learn 63.2 67.9
Q-Learn, PR/2-Step 64.9 68.5

Table 5.13: Comparison of different RL algorithms. For policy-based algorithms (REINFORCE,
PPO) we either use Exponential Moving Average (EMA) as a variance-reducing base-
line or employ Advantage Actor Critic (A2C). In addition, we also evaluate Q-
Learning methods (vanilla and Rainbow Q-Learning). For the Rainbow setup we
use Priority Replay and 2-Step value approximation. Margin loss[256] is used as a
representative reference for static sampling strategies.

clear groupings for birds of the same and similar classes. Clusterings based on similar
background is primarily due to dataset bias, e.g. certain types of birds occur only in
conjunction with specific backgrounds.

5.4.4 Typical image retrieval failure cases

Fig. 5.6 shows nearest neighbours for good/bad test set retrievals. Even though the nearest
neighbors do not always share the same class label as the anchor, all neighbors are very
similar to the bird species depicted in the anchor images. Failures are due to very subtle
differences.

5.5 Discussion

This chapter presented a learned adaptive triplet sampling strategy using Reinforcement
Learning. We optimized a teacher network to adjust the negative sampling distribution to
the ongoing training state of a DML model. By training the teacher to directly improve
the evaluation metric on a held-back validation set, the resulting training signal optimally
facilitates DML learning. Our experiments show that our adaptive sampling strategy im-
proves significantly over static sampling distributions. Thus, even though only built on
top of basic triplet losses, we achieve competitive or even superior performance compared
to the state-of-the-art of DML on multiple standard benchmarks sets.
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5.5 Discussion

Figure 5.5: UMAP embedding based on the image embeddings φ(·; θ) obtained from our proposed
approach on CUB200-2011[239] (Test Set).
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5 Adaptive Triplet Sampling using Reinforcement Learning

Figure 5.6: Selection of good and bad nearest neighbour retrieval cases on CUB200-2011 (Test). Or-
ange bounding box marks query images, green/red boxes denote correct/incorrect re-
trievals.
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6 Unsupervised Representation

Learning from Reliable Image

Similarities

The driving force of deep learning is supervised training using vast amounts of tediously
labeled training samples, such as object bounding boxes for visual recognition. Since easily
accessible visual data is growing exponentially, manual labeling of training samples consti-
tutes a bottleneck to utilizing all this valuable data. Consequently, there has recently been
great interest in weakly supervised [274], self-supervised [166], and unsupervised [154, 260]
approaches to representation learning. Fundamental computer vision problems like classi-
fication [197, 269], object detection [270] and image segmentation [185] all directly depend
on such learned representations to find similar objects or group related image areas.
To learn a characteristic representation of images and the relations between them, different
degrees of supervision can be considered: (i) supervised learning using samples with class
labels [149, 205, 256] as, for instance, covered in the previous chapters; (ii) problem specific
surrogate tasks such as colorization [140], permutations [166], or transitivity [249], and
(iii) unsupervised feature learning [21]. Regardless of the training signal, be it unaries such
as class labels [12], binary similarity constraints between samples [217] or sample order-
ing constraints [188], a dataset of N training samples gives rise to N2 pairwise relations,
exploitable for learning our representation. In the absence of supervisory information,
these relations need to be automatically inferred during training. However, the vast ma-
jority of these inferred pairwise relations turn out to be unreliable as discussed in Sect.
6.1, Fig. 6.2, and Fig. 6.3. Despite the danger of diminished performance due to learning
from spurious relations, recent approaches on unsupervised representation learning [21,
30], nevertheless, do not question the reliability of these relations. Now, assuming that
only a small fraction of correct relations per sample can be identified reliably (i.e. we are
left with at most O(N) class labels or pairwise link constraints), how can we discover
those few reliable relations, when no label or guiding side information is available?
Subsequently, we propose a novel approach to visual representation learning that explic-
itly identifies and leverages reliable image relations without the need for annotations,
supervision, problem-specific surrogate tasks for self-supervision, or pre-training. By
extracting compact groups of images we are able to harness reliable similarities. Subse-
quently, we divide these compact groups constituting the overall learning problem into
smaller, (potentially overlapping) subproblems, such that each contains only reliable dis-
similarities between their groups. Thus, whereas the complicated global problem suffers
from many of the N2 relations not being reliable, we ensure that the samples in each
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6 Unsupervised Representation Learning from Reliable Image Similarities

Figure 6.1: Overview of our iterative learning procedure. We first find reliable similarity constraints
by forming compact groups. To avoid unreliable dissimilarities, we partition the data
into sets of mutually dissimilar groups, X̄k. Based on these (dis-)similarity constraints
between/within groups, we learn a local representation φk(xi) for subset X̄k. Finally,
we exploit sparse couplings between the local representations to arrive at a consolidated
global representation. This iterative procedure improves the overall representation by
successively adding reliable constraints into the learning process.

subproblem are either reliably similar or dissimilar. Optimization is then performed by
learning a mapping from the images onto dedicated target embedding locations, sampled
to reflect the structure and distribution estimated from the reliable relations for each sub-
set. Next, coupling the local subproblems by utilizing transitivity between their samples
allows us to consolidate the learned individual representations into a concerted global
representation using well-known techniques from Deep Metric Learning. Finally, by al-
ternating between extracting reliable relations and learning, we successively incorporate
more reliable relations and in turn more data which ultimately improves our image rep-
resentation (cf. Fig. 6.1).
We evaluate our model on challenging benchmarks and achieve state-of-the-art perfor-
mance on the ImageNet [50] dataset, thus proving the scalability of our approach. Further,
our approach performs comparably to the state-of-the-art in transfer learning on PASCAL
VOC [61] indicating its general applicability. By performing ablation and analysis studies,
we finally provide insights into our learning procedure.
This chapter is based on our publication ’Unsupervised Representation Learning by Discov-
ering Reliable Image Relations’ [155].

6.1 Discovering and Learning from Reliable Similarities

Let us now learn a representation φ : RD
′ → Φ ⊂ RD that allows to relateD′ dimensional

image samples xi, xj ∈ X to another. As discussed in the previous chapters, this problem
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6.1 Discovering and Learning from Reliable Similarities

Figure 6.2: Nearest neighbour distance ratios. For most of the N2 pairwise relations, the ratio
d(xi,xj)/d(xi,xj+1) (for sorted neighbors xj ) is close to 1. Only O(N) have a robust
ordering. This analysis is based on N = 5000 samples from the STL-10[43] dataset
using the Euclidean distances based on an unsupervised, learned representation.

is typically addressed by similarity learning and formulated as learning image distances
dφ(xi, xj) = ‖φ(xi; θ) − φ(xj ; θ)‖2. Following earlier notation, θ denotes the learnable
parameters of the representation. Hence, this naturally yields a representation φ such that
given image relations d(xi, xj) are reflected and preserved under the embedding φ. Thus,
learning φ is propelled by pairwise relationships between images indicated by d(xi, xj):
In supervised training d(xi, xj) is typically defined on the basis of manually provided class
labels yi (thus, d(xi, xj) ∈ {0, 1}), weak user feedback, problem specific surrogate tasks,
dense triplet ranking constraints such as d(xi, xj) < d(xi, xk), or other sparse partial
ordering constraints.
Without being externally provided with information driving the training process, we have
to infer learning constraints ourselves during training. Subsequently, we now showhow to
identify learning constraints which are likely to agree with ground-truth, thus constitute
a reliable substitute for manual supervision signals.

6.1.1 Identifying reliable relations

Regardless of the origin of d(xi, xj), only a small number of all possible N2 pairwise
relations (forN training samples) may be feasibly provided bymanual annotation. For the
particular case of unsupervised learning only a small number of the pairwise relations can
be inferred correctly for training with high confidence. Let’s consider a triplet of images
(xi, xj , xk) with the ground-truth distance between xi and xj being small and between xi
and xk being large, i.e. d(xi, xj) < d(xi, xk). A learned distance function dφ is correct, if
it obeys these ground-truth constraints. Furthermore to ensure robustness to noise these

constraints should be obeyed reliably by a clear margin d(xi, xj)/d(xi, xk)
!
� 1. In Fig.

6.2 we plot this ratio for consecutive nearest neighbors. This is the same ratio used in
[147] to measure the reliability of a matching similar image. We observe that for only
O(N) pairwise distances the ratio is significantly smaller than 0.95. All other relations
would not even have an opportunity to exhibit above correctness constraints reliably and,
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6 Unsupervised Representation Learning from Reliable Image Similarities

Figure 6.3: Sorted pairwise similarities for a query image based on different representations and dis-
tance metrics resulting from supervised and unsupervised training on STL-10[43]. Only
the strong (dis-)similarities at both ends are reliable to provide a robust ordering.

thus, would be falsely identified to be correct rather than spurious. Further, in Fig. 6.3
we plot the sorted similarities for a query image. Observe from Fig. 6.2 that above triplet
constraints can only be fulfilled where there is significant slope in Fig. 6.3. Thus, only
relations from both ends, where we have strong (dis-)similarities, can be considered to be
reliable. These relations are significantly less susceptible to change under noise than the
vast majority, as analyzed in Fig. 6.4. However, recent work on unsupervised learning
has nevertheless simply relied on all pairwise relations [21] inferred during training at the
cost of incorporating corrupted relations. In contrast, we now present an approach for
unsupervised representation learning which explicitly aims at extracting and leveraging
these reliable relations.

6.1.2 Outline of our iterative representation learning:

We first decompose the training set into K subsets X̄k ⊂ X , k = 1, . . . ,K of images
by extracting (Sec. 6.1.3) and distributing (Sec. 6.1.4) potentially overlapping compact
groups of images to the subproblems X̄ which exhibit reliable mutual similarity, based
on the representation from the previous training iteration. Within each X̄k all mutual
image relations are reliable. In each iteration, learning a representation φ (Sec. 6.1.5)
then proceeds as follows: For each subset X̄k we seek an embedding φk(xi) , φk(xi; θk)

1

with φk : RD
′ → Φk ⊂ RD. To learn φk, we randomly sample target points ϕkt ∈ Φk

such that the distribution of their pairwise distances matches those of the constituents
xi in the groups comprised by the subproblem X̄k. Learning the mapping from images
xi to targets ϕkt then yields the local representations φk (Sec. 6.1.5). In a final step, all
these local representations aremerged into a single overall representation φ by formulating
triplet learning problems exploiting transitivity relations between those samples xi which
are shared among subsets X̄k (Sec. 6.1.5). Based on representation φ, reliable relations are
1Subsequently, we omit the explicit dependence on the model parameters θk for readibility.
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6.1 Discovering and Learning from Reliable Similarities

Figure 6.4: Sorted pairwise image similarities for an STL-10 query image. Color indicates amount
of noise (gaussian, µ = 0, σ2 = 0.01, . . . , 2) needed for each image to change its rank
w.r.t. query.

then again extracted to serve as input for the next iteration. Since no annotations are
provided, the first iteration of our training starts from scratch with a randomly initialized
CNN and random assignments.

6.1.3 Compact groups for finding reliable similarities

Every training iteration builds upon the distances learned in the previous round. Since
the majority of inferred relations between our training samples is not reliable, how can we
find the ones we can rely upon without annotations? In Fig. 6.2 to Fig. 6.4 we empirically
demonstrate that only a few nearest neighbours (NN) can robustly be identified. Unfor-
tunately, even these do not always give rise to correct relations. For instance, two samples
may spuriously have a small distance or a sample may be an outlier, thus corrupting the
nearest neighbors for a given sample xi. This issue can however be alleviated by forming
compact groups of images. Fig. 6.5 (a) shows that considering dense groups of h samples
increases the chance of inferring correct similarity relations, following the intuition that
in dense areas of our feature space pairwise relations do not arise accidentally but due to
actual commonalities. For different group sizes h on ImageNet, the plot illustrates the
average percentage of correct image relations in a group based on their ground-truth la-
bels (blue). As we observe, the chance that h samples appear erroneously close to another
(forming a compact group) becomes increasingly unlikely as h increases. On the other
hand, large compact groups are scarce and therefore only a small number of samples can
be covered for large h (red).
Let the largest pairwise distance, dGmax = maxxi,xj∈G dφ(xi, xj), between members of a
group G represent its compactness. Further, when building groups of random samples,
it is highly unlikely to form a group with low compactness, i.e. correctly mutually close
samples. Thus, we demand dGmax for each G to be smaller than the p-th percentile of the
compactness of a set of randomly built groups of equal size. Consequently, we extract
reliable groups G by starting with a seed xi and add its nearest neighbors as long as the
resulting compactness dGmax is below the p-th percentile compactness of the randomly sam-
pled groups of equal size. Thus, we grow G to be as large as possible.
Repeating this process with all samples xi ∈ X , we denote G as the resulting set of all
groups G with reliable pairwise similarity relationships. Note, since all groups are build
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Correctness and Coverage

(a) (b)

Figure 6.5: a) Group correctness vs. data coverage w.r.t group size. blue: average correctness of rela-
tions in a group. red: data coverage for groupsG of different size extracted on ImageNet
using our representation. We call a relation correct if it links images with the same la-
bel. Note that we only use labels for evaluation in this plot, but not for extracting our
groups. Coverage: fraction of all samples that can be covered by compact groups of
a given size relative to the overall number of extracted groups G. b) Data- vs. Target-
Distribution. Distribution of all pairwise intra-group and inter-group distances (blue)
based on a fully supervised trained representation, of points uniformly sampled from
an `2 unit sphere (orange), and of a Gaussian distribution (yellow). Evidently, most
data points are far apart, approximated by the orange mode. But there are also charac-
teristic compact hubs approximated by the yellowmode (which has been magnified for
the purpose of this illustration). Note that the sampled distributions can approximate
the data distribution.

independently, typically there is overlap between groups G, i.e. G not being mutually
disjoint.

6.1.4 Reliable dissimilarity by partitioning groups

The compact groups in G provide small distances that we can reliably use for learning a
representation. However, the relationships between the groups can be arbitrary and many
are unlikely to be reliable as discussed above and in Fig. 6.2. Therefore, to further increase
reliability, instead of using all relations in G ⊂ X for learning our representation, we
partition them intoK subsets of L groups each, i.e. X̄k = {Gk1, . . . , GkL}. By distributing
overlapping groups across different X̄k while maximizing the distance between groups
within a subset, we gathers the reliable dissimilarity relationships from the tail of the
distance distributions shown in Fig. 6.3. Thus, all relations in each subset are as reliable
as possible.
Following the work of CliqueCNN [12], we formally partition G using the following
criteria: (i) all groupsG ∈ X̄k should be mutually distant, (ii) partially overlapping groups
should be distributed across different X̄k to establish couplings between the subproblems
exploitable for transitivity relations, and (iii) the union of all subsets

⋃K
k=1 X̄k should cover

X as much as possible to maximize the usage of training samples. Using these constraints,
we formulate the partitioning process as the following optimization problem [12].
LetC ∈ {0, 1}|G|×|X | be the assignment matrix of samples xi to groups G. Furthermore,
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6.1 Discovering and Learning from Reliable Similarities

Figure 6.6: Sampling target points in Φk. Large distances between groups Gl are captured by sam-
pling centroids µl uniformly from the surface of a hypersphere. Then target points
ϕt for the xi ∈ Gl are sampled from a Gaussian around µl to represent the compact
groups’ constituents.

the column vector ak ∈ {0, 1}|G|×1 indicates groups assigned to subset X̄k. Then A =
(a1, . . . , aK) ∈ {0, 1}|G|×K are the assignments of groups to all X̄k. Moreover, S ∈
R|G|×|G| contains the pairwisemean similarities between any two groups. With 1 denoting
the all-ones vector, the partitioning objective is the formulated as

min
A

tr(A>SA)− tr(A>diag(S)A)

− λ1

K∑
k

||a>k C||pp − λ2||1A>C||pp

s.t. A>1 = L1

(6.1)

where tr(A>SA) is regularized for the diagonal elements of S and enforces constraint (i),
minimal similarity, i.e. maximal distance between groups in X̄k, ||a>k C||

p
p maximizes (ii),

the distribution of groups across the subsets X̄k, and ||1A>C||pp enforces (iii), maximal
coverage of training samples. As discussed in detail in [12], this optimization problem can
be efficiently solved with p = 1

16 for the penalty terms to approximate the non-linear step-
function. The hyperparameters λ1, λ2 are weighting terms for adjusting relative impact of
individual constraints. CliqueCNN [12] has addressed a similar problem to find a discrete
partitioning of images into surrogate classes for optimizing a standard classification task
similar to DeepCluster [30]. However, both [12] and [30] are using all resulting surrogate
classes without considering their reliability. Thus, they are inevitably prone to introduc-
ing noise into the learning process. In contrast, we seek a partitioning of the set of already
extracted groups G into subsets to further increase the reliability of our relations which
we use to formulate the following learning problem.

6.1.5 Reliable unsupervised similarity learning

Nowwe learn a representation φk(xi) that preserves all the reliable relations in X̄k. In the
previous chapters we showed that DML is a powerful tool to learn similarities between
datapoints. However, in Sec. 5.1 we discussed the crucial need for hard-negative sampling
strategies in order to fully unfold the potential of ranking-based methods. Moreover, the
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large-scale datasets, which are commonly employed in unsupervised representation learn-
ing settings due to the cheaply available data pose a computational challenge to most DML
approaches. Instead we follow the idea of [21] and randomly sample prototype locations
ϕkt ∈ Φk, such that the distribution of their pairwise distances in the embedding spaces
Φk matches the distribution of distances between the samples in X̄k. Given an inferred
assignment t = π(i) between the datapoints xi of groups G ∈ X̄k and the targets ϕkt ,
optimizing the embedding functions φk can then be formulated as an efficient regression
problem.

Sampling the targets ϕkt . Following the practice of similarity learning, we restrict
Φk to the surface of a D dimensional unit hypersphere. Then, we sample the targets ϕkt
from Φk to consider small Gaussian distributed hubs accounting for the compact groups
G. More precisely, we first sample centroids µl, l = 1, . . . , L uniformly from Φk. Next,
we sample ϕkt from the Gaussians N (µl,Σ) with fixed covariance matrix Σ as illustrated
in Fig. 6.6. Note that this sampling process is designed to approximate the empirical
data distribution as illustrated in Fig. 6.5 (b). Using the representation of a fully super-
vised model as a proxy for ground-truth image relations (for this experiment only), we
observe that the distribution of pairwise intra-group and inter-group distances (blue distri-
bution) exhibits two distinctive modes as intuitively expected: A large mode representing
mediocre to large inter-group distances and a minor second mode of small intra-group
distances reflecting dense neighborhoods of mutually similar samples. Sampling ϕkt based
on Gaussians N (µl,Σ) uniformly distributed on a hypersphere explicitly approximates
this distribution (orange and yellow distributions). In contrast, other approaches such as
[21] rely on a data independent prior which does not sufficiently account for dense neigh-
bourhoods of highly similar datapoints and consequently diminishes the expressiveness
of the representation to be learned.

Learning the representations φk. Learning φk is now formulated as establishing
correspondences t = π(i) between the xi from groups G ∈ X̄k and the targets ϕkt . This
requires to minimize the distances between φk(xi) and ϕkπ(i). We obtain φk and π by
minimizing the objective

Lklocal :=
∑

xi∈G: G∈X̄k

‖φk(xi)− ϕkπ(i)‖2 . (6.2)

We solve this problem by alternating between two steps: (i) Find optimal assignments π
based on the current representation φk. Since global solvers for such an assignment prob-
lem typically exhibit the prohibitive cost of O(N3) in the number of input samples, we
adopt the efficient algorithm of [21] which uses stochastic local updates to approximate
the standard Hungarian method [133] which is often employed for solving assignment
problems. (ii) Given an assignment, we optimize the representation φk by minimizing
the distances ‖φk(xi)− ϕkπ(i)‖2, thus updating the weights θ of our embedding network.
By alternating between these two steps (we re-assign between xi and ϕkt every 3 epochs),
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6.1 Discovering and Learning from Reliable Similarities

Figure 6.7: Triplet constraints for consolidating subproblems. A reliable relations between two sub-
sets X̄m and X̄n 6=m couples them locally: solid black arrow between samples xi and xj
which appear in the same group G (green group). Further, we find xk ∈ X̄n 6=m which
are reliably dissimilar to xj and have not been used for optimizing φm (dashed black
lines). We now have a triplet (xi, xj , xk) relating the previously unknown xk to the
subset X̄m.

the model needs to reason about which targets apply for which images and, thus, which
images should be placed next to each other. Thus it needs to find an optimal assignment
of groupsG to the target points preserving their relations and further needs to infer mean-
ingful relations between groups G. At initialization, we start with randomly initialized
parameters θ and random assignments π(i).
Using this learning process, we obtain a representation φk for each of our subsets X̄k, each
having learned its own image distances dφk(xi, xj).

Coupling subproblems to consolidate their representations. We now have an
ensemble of K representations φk, each representing a different subset of the data. The
goal is now to consolidate their learned relationships dφk(·, ·) into a global representation
dφ(·, ·) reflecting all of the data. Therefore, we look for reliable relations between differ-
ent subsets to establish links that allows to locally transfer relations from one subset into
the other, respectively from one representation to other. Groups G, which are (partially)
shared among subsets due to their overlap and distribution to different subsets by the par-
titioning, act as anchors for such links as illustrated in Fig. 6.7. Using transitivity we thus
find triplets (xi, xj , xk) across subsets which allows to transfer information about previ-
ously unknown datapoints and the corresponding relations from one local representation
to another.
Let xi be a member of a subset X̄m, but not of X̄n, i.e. xi ∈ X̄m ∧ xi /∈ X̄n. Similarly
let xj ∈ X̄n ∧ xj /∈ X̄m and xk ∈ X̄n ∧ xk /∈ X̄m. Assume ∃G ∈ G : xi, xj ∈ G, thus
providing a reliable similarity between xi, xj and consequently between both subsets.
Similarly, we assume xj , xk to have a reliable dissimilarity. Using transitivity the triplet
(xi, xj , xk) thus implies an ordering constraint under the representation φm, i.e., we want

dφm(xi, xj)
!
< dφm(xi, xk). Note that these are additional relations imputed from X̄n6=m,

which were previously not present in X̄m. Let Tm be the set of all such triplets deduced by
transitivity between X̄m and X̄n 6=m. Incorporating this additional information to refine
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φm is now naturally formulated as a standard triplet ranking problem, which we already
discussed e.g. by (2.8) in chapter 2. Based on this we get the transfer objective

Lmtransfer =
∑

(xi,xj ,xk)∈Tm

[
dφm(xi, xj)− dφm(xi, xk) + β

]
+

(6.3)

for a given representation φm. The parameter β controls the margin between xj and xk
with respect to xi. Note that the relations between X̄m and the other subsets are only
sparse. Thus the potentially large computational complexity of the triplet ranking loss
does not dominate the complexity of the overall approach.
However, optimizing this objective alone would ignore and potentially forget about the
dense relationships in X̄m exploited by Lmlocal. Thus we combine both objectives,

Lmrefine = Lmlocal + Lmtransfer. (6.4)

to avoid forgetting while still incorporating the new information. Optimizing (6.4) re-
tains the constraints from X̄m while incorporating couplings to other subsets X̄n6=m to
improve φm. Due to the additional inter-set relations, φm effectively now covers more of
X than before the refinement.
In the last training iteration, one representation φ ∈ {φk}k becomes the final global rep-
resentation. We conducted experiments using different aggregation strategies (averaging,
random selection, etc.) and observed that after the final iteration all φk capture the dataset
X nearly equally well, allowing to randomly select one.

Initialization. As our overall iterative approach starts from random network initial-
ization, initially we have no representation φ provided to extract reliable (dis)similarities
for the grouping process in Sect. 6.1.3. Therefore, we train the first iteration by optimiz-
ing only the problem Llocal (6.2) based on the whole training set and randomly sample
individual target points for each image, yielding our first representation φinit. The itera-
tive approach then gradually learns stronger representations φ from iteration to iteration
by capturing more and more reliable relationships in our dataset.

Pseudo-Code for summary. For additional clarity we now present a pseudo-code
overview for our iterative approach (cf. Algorithm 3).

6.2 Related Works

Due to the difficulty of extracting reliable relations from data, many recent label-free ap-
proaches resort to generic prior assumptions on the data distribution or single image-
and class-based tasks. (Deep) clustering methods [12, 30] rely on a predefined number
of pseudo-classes which typically is estimated by heuristics and further focus on similar-
ity constraints only. Our model explicitly models both similarity and dissimilarity con-
straints estimated from data itself. Bojanowski et al.[21] find a mapping between images
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Algorithm 2: Unsupervised Representation Learning by Extracting Reliable Image
Relations.
Input : X : Set of training images
Parameter : T : Number of training iterations; K: Number of subsets X̄k
Output : φ: global representation

Train initial representation φinit:
ϕinit
i ∼ uniform distribution on unit hypersphere; ∀xi ∈ X

φinit ← min Llocal // Eq.2

φ← φinit // initialize φ

Iterative learning:
for iter ← 1 to T do

Extract reliable image relations
Ghrand ← SampleRandomGroups(X , φ) // different sizes h
G = {}
for i← 1 to |X | do

G← BuildMaximalReliableGroup(xi, G
h
rand)

G ← G ∪G
{X̄k}Kk=1 ← PartitionGroups(G,K) // Sec.3.4

Train local representations φk // Sec. 3.5.2

for k ← 1 toK do
µkl ∼ uniform distribution on unit hypersphere; ∀G ∈ X̄k
ϕkt ∼ N (µkl ,Σ); ∀xi ∈ G // gaussian around µkl
while not converged do

π ← LocalReassignment(φk, X̄k, ϕkt )
θk ← RegressTargets(X̄k, ϕkπ(i))

Refine local representations φk // Sec. 3.5.3

for k ← 1 toK do
Tk ← SampleTriplets({X̄s}Ks=1)

µkl ∼ uniform distribution on unit hypersphere; ∀G ∈ X̄k
ϕkt ∼ N (µkl ,Σ); ∀xi ∈ G // gaussian around µkl
while not converged do

π ← LocalReassignment(φk, X̄k, ϕkt )
θk ← RegressTargetsAndRefine(X̄k, ϕkπ(i), Tk)

Update global φ by randomly choosing k∗ ∈ {1, . . . ,K}
φ← φk∗

and a uniformly discretized target space, thus enforcing their representation to resemble a
distribution of pairwise relationships independent of the actual data structure. Sanakoyeu
et al. [12] cluster data into small surrogate classes to perform a global classification task,
however, not considering that similar images may end up in competing, different classes.
Thus, inferred relationships during training suffer from contradicting training signals.
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6 Unsupervised Representation Learning from Reliable Image Similarities

Method Acc@1
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Colorization [272] 35.2
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RotNet [72] 43.8
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Supervised [21] 57.4
NAT [21] 36.0
Deep Cluster [30] 44.0
Ours (Initialization) 30.0
Ours (Round 1) 39.1
Ours (Round 2) 44.6
Ours (Round 3) 45.8
Ours (Round 4) 46.0
Ours (mean±std) 45.8±0.3

Table 6.1: Comparison of our method to other state of the art unsupervised learning approaches on the
ImageNet dataset. We report classification accuracy (Acc@1).

Also DeepCluster [30] follows this strategy based on disjoint k-means clustering, thus
enforcing clear distinct boundaries which potentially disagree with the real data distribu-
tion. In contrast, our grouping process does not enforce hard class boundaries and is able
to adapt to the data structure. Moreover by splitting groups into reliable subproblems
and constructing a learning problem following their distance distribution, our groups
corroborate their training signal. Dosovitski et al. [57] cast distance learning as an exem-
plar classification task utilizing heavy data augmentations at the cost of poor scalability
to large data collections.
Self–supervised learning approaches aim to leverage data itself by typically solving sur-
rogate tasks based on temporal [248] and spatial [166] coherence. These approaches are
either domain specific or operate on images independently thus missing out on their rela-
tionships. Our work, in contrast, explicitly models relationships between images. Gidaris
et al. [72] exploit image geometry and classify rotations applied to input images. Even
though they report good results on image classification tasks on large datasets, this task
is conceptually dependent on large variations in the underlying data distribution to avoid
trivial image representation, potentially missing out fine-grained relationships between
images.

6.3 Experiments

Following we evaluate the performance of our model on large scale datasets and the us-
ability of our learned representation for the tasks of classification, detection and segmen-
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Method Class Det Seg
(%mAP) (%mAP) (%mIoU)

Supervised 79.9 56.8 48.0
Random 57.0 44.5 30.1
Colorization [272] 65.6 46.9 35.6
BIGAN [55] 60.1 46.9 34.9
Jigsaw Puzzle [166] 67.6 53.2 37.6
NAT [21] 65.3 49.4 -
Split-Brain [271] 67.1 46.7 36.0
Counting [167] 67.7 51.4 36.6
RotationNet [72] 73.0 54.4 39.1
DeepCluster [30] 73.7 55.4 45.1
Ours 74.2 55.6 44.6
Ours (mean±std) 74.1±0.3 55.5±0.2 44.5±0.3

Table 6.2: Comparing our model to state-of-the-art unsupervised approaches on PASCAL VOC 2007
classification, detection, and segmentation (measured in mean average precision and mean
intersection over union.

tation. Further, we present ablation and analysis experiments providing insights into our
iterative learning process.

6.3.1 Implementation details and benchmarking

We now evaluate our learned image representation on the ImageNet and PASCAL VOC
dataset. We test on different vision tasks, such as image classification, objection detection,
and semantic segmentation and compare our approach against state-of-the-art unsuper-
vised methods. As preprocessing we convert our images to gradient images (obtained
using a sobel filter) to avoid trivial solutions based on color, thus following the protocol
of recent approaches [21, 30]. These also conducted experiments on supervised ImageNet
classification and concluded that gradient images yield similar performance in comparison
to RGB inputs, thus indicating a fair comparison. If not stated otherwise, for all experi-
ments the number of subsets X̄k used for training is fixed toK = 5. In the grouping stage
we set p to be the 3% percentile. We set the dimensionality of φk toD = 2048 and choose
the parameters λ1, λ2,Σ using cross-validation on the training set. The margin parameter
γ is set to 0.2 as suggested in various works [256]. We train our model using stochas-
tic gradient descent using an initial learning rate of 0.01 and momentum of 0.9. Building
groups can be efficiently performed using the FAISS [109] library for fast nearest-neighbor
retrieval with GPU support, thus leading to no significant computational overhead.

ImageNet. We evaluate the ability of our model to capture differences between objects
and its ability to scale to large image collections on the ImageNet dataset [50]. This dataset
is composed of 1.2M images distributed over 1,000 categories including subtle category
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Method Acc@1
Target coding [263] (supervised) 73.2
Wang et al. [242] 68.2
CliqueCNN [12] 69.3
Exemplar CNN [57] 75.4
Discr. Attr. [101] 76.8
Chang et al. [31] 74.6
Ours 75.3

Table 6.3: Comparison to other approaches based on average classification accuracy on STL-10, using
the unlabeled split for training.

boundaries (such as dog breeds). For fair comparison with other methods we use the
AlexNet [alexnet] architecture with batch normalization. Our evaluation follows the stan-
dard protocol for unsupervised ImageNet pretraining: First, performing our unsupervised
training on a randomly initialized network without using any labels. Afterwards, the con-
volutional layers are fixed while the last layers are randomly reinitialized and trained using
ImageNet labels. Table 6.1 compares our results with other state-of-the-art unsupervised
approaches. Our method converges to its final performance of 46.0% after 4 training it-
erations (excluding initialization). Hence, we are significantly improving upon all other
unsupervised approaches including DeepCluster [30] by 2%, which is trained on all train-
ing data at the cost of also incorporating unreliable noisy information. In contrast, our
model successfully leverages more and more reliable image relations over the iterations,
thus alleviating the issue of noise. Additionally we report mean and standard deviation
of our approach (Ours (mean±std)) over 5 runs. Note that all of the other methods are
only reporting their best run.

PASCAL VOC. We now illustrate the generalization capability of our learned repre-
sentation on different transfer learning tasks. We utilize our representation trained on
ImageNet without labels (using the same architecture as above) and fine tune it on the
PASCAL VOC 2007 [61] classification, detection, and segmentation tasks (VOC 2012).
For transfer learning we use the framework of Krähenbühl et al. [129] for classification
experiments, the Fast R–CNN [74] framework for object detection and the method of
Long et al. [210] for semantic segmentation. Our results are summarized in Table 6.2. On
all transfer learning tasks, i.e. classification, detection and segmentation, our approach
achieves comparable results to the unsupervised state-of-the-art which further demon-
strates the expressive power of our representation. Additionally we report mean and
standard deviation of our approach (Ours (mean±std)) over 5 runs. Note that all of the
other methods are only reporting their best run.
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Method Acc@1
Ours (Initialization) 67.5
Ours (Round 1) 71.2
Ours (Round 2) 72.8
Ours (Round 3) 75.2
Ours (Round 4) 75.3
No decomposition into X̄k (Round 1) 69.1
Triplets Only (Round 1) 62.6

Table 6.4: Average classification accuracy on STL-10 for ablations of our approach.

6.3.2 Ablation studies

We now show ablation experiments on the STL-10 dataset to evaluate the individual parts
of our iterative approach, summarized in Tab. 6.3 and 6.4.

STL-10 Performance. We contrast our approach to state-of-the-art methods on STL.
For a fair comparison, we use the same network architecture as [57] and train our model
on the unlabeled split of the dataset. For this experiment we setD = 128. Tab. 6.3 shows
that our proposed approach achieves competitive performance to unsupervised state-of-
the-art approaches, ExemplarCNN [57], Discriminative Attributes [101] and Chang et
al. [31]. However, in contrast to ExemplarCNN [57] and Discriminative Attributes [101]
whose learning procedures rely on dense, costly (instance-level-)exemplar classification
tasks, our approach leverages only a sparse set of reliable constraints and thus scales to
large datasets as shown on ImageNet. Chang et al. [31] leverages individual images in
combination with strong augmentations, thus neglecting valuable information from di-
rect relations between training samples. Further, they are operating on a more powerful
network architecture leading to unfair comparison in their favor. Note that our approach
outperforms CliqueCNN [12] by 6%which also learns from relations inferred by a group-
ing of images, however, without considering their reliability. This strongly indicates that
the concept of reliability actually helps to reduce the amount of noise introduced into the
learning process.

Divide-and-Conquer. The performance of our representation increases with each it-
eration and improves over our initial representation by 7.8%, cf. Tab. 6.4. Now, to
evaluate the effect of incorporating reliable dissimilarities, we train our model using only
a single, global learning problem,K = 1, (No decomposition) for all groups for one itera-
tion after initialization. As a result there are only reliable relations within theG ∈ G, but
lots of unreliable relationships between them. Due to the former, performance slightly
increases over the initialization by 1.6%. The latter explains the 2.1% lower performance
compared to our divide-and-conquer strategy. This highlights the importance of mod-
elling reliable dissimilarities when learning visual representations.
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Number of Subsets X̄k Acc@1
no partitioning 69.1
2 subsets 69.5
5 subsets 70.8
10 subsets 71.2
20 subsets 71.0

Table 6.5: Average classification accuracy on STL-10 dataset as number of subsetsK is varied. Results
are for one iteration of training after initialization.

Full model vs. triplet learning. In this ablation experiment (Tab.6.4 Triplets
Only) we use our extracted reliable (dis-)similarity relationships tomine triplet-constraints
as input into a standard triplet-loss framework [256]. For a sample that serves as triplet
anchor, reliable similarity relations act as positive constraints and reliable dissimilarity re-
lations act as negative constraints. The aim of this experiment is to contrast our learning
objective, Eq. (4), against popular ranking loss approaches. The massive drop of 8.6% in
performance can be explained by the dependence of such frameworks on hard-negative
mining strategies. Since reliable constraints are only based on high similarities and dis-
similarities, the ranking framework obviously has no access to hard constraints, which are
very difficult to find reliably without supervision [256] or strong pretraining [188]. Note
that we are using triplet constraints only for transferring already learned information to
refine our representations φk (Sec. 6.1.5) rather than using them as the driving overall
learning signal.

Number of subsets. To evaluate the sensitivity of our approach with respect to the
number of subsets X̄k used for training, we train multiple models using different values of
K. Tab. 6.5 illustrates, that training performance saturates for K > 10 subsets. This in-
dicates that further partitioning of the data and thus further maximizing the dissimilarity
between groups in X̄k has no effect and has been achieved to a sufficient degree.

6.3.3 Analysis of the model:

We now further analyze the effect of iterative training based on the model used for the Im-
ageNet benchmark. The following experiments highlight the ability of our model to turn
reliable (dis-)similarities into increasingly correct sample relations while simultaneously
harnessing more and more data.

Correctness of image relations in groupsG. In Sec. 6.1.3 and Sec. 6.1.4 we gather
reliable relations driving the learning of our representation. Fig. 6.5 (a) illustrates that our
procedure of extracting groups G for reliable relations increases the probability of find-
ing correct relationships. Moreover, successive iterations of training improve the learned
image relations. Fig. 6.8 confirms this by measuring how many relations within a group
disagree. One can see that in consecutive iterations, our groupsG exhibit more and more
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Figure 6.8: Average correctness for groupsG of different size and in different training iterations. Aver-
age correctness is the fraction of members with the same ground-truth ImageNet class
label (not used for training).

correct relationships. This proves that our model is able to extend the reliable relations
learned from a group G to relations which so far could not be identified as reliable. Con-
sequently the performance of our model increases.

Data coverage. In our proposed method we deliberately explore an orthogonal ap-
proach to simply using all training samples by reducing the noise introduced into the
training process using only reliable relations for learning. Consequently there is a trade-
off between exploring more data and introducing more noise due to unreliable relations.
Fig. 6.9 shows the amount of training data covered in each training iteration. Overall
and per subset, our grouping process covers more and more data samples, since represen-
tations improve and more relations become reliable. Between iteration 1 and iteration 4
the amount of data available for training φ is almost doubled to 60%. Moreover, Fig. 6.8
proves that the additional data is meaningful and not just noise, since overall data quality is
improving simultaneously. This demonstrates that our model not only reinforces already
available reliable relations but is able to generalize its representation to previously unused
data, i.e., discovering new reliable relationships. Further, the result that we achieve state-
of-the-art performance using 60% of the available data proves (i) there exists an alternative
way to using all but therefore noisy relations between training samples, (ii) we are able
to successfully find and exploit reliable samples and (iii) the idea of considering data re-
liability for unsupervised representation learning is not fully solved, thus opening new
promising directions for future research.

Fixing the seed of groups G. In Fig. 6.10 and Fig. 6.11 we present examples for
groups of size 4 and 8 while training on the ImageNet dataset. To allow for a detailed
comparison, we fix the seed elements xi and show how the constituents of a group change
over the iterations. We observe that over the iterations the constituents of each group share
more andmore meaningful visual features. At the beginning the representation focuses on
coarse visual commonalities like rough shape and scene. At the end relationships between
constituents are dominated by true (intra-)class-specific features and similar pose.
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Figure 6.9: Fraction of training data covered by subsets X̄k in successive training iterations. Solid:
overall data coverage. Dashed: mean data coverage per subset.

Method Training time Acc@1
Supervised 3 days (Titan X) 59.7

NAT [21] 1 days (Titan X) 36.0
RotNet [72] 2 days (Titan X) 43.8
Jigsaw Puzzle [166] 3 days (Titan X) 38.1
BiGAN [55] 3 days (Titan X) 32.2
DeepCluster [30] 12 days (Titan X) 44.0
Ours 14 days (Titan X) 46.0

Table 6.6: Training time vs. performance on the ImageNet dataset. Comparison of training times is
based on the reported timings in themanuscripts of eachmethod using a singleNVIDIA
Titan X (Pascal). Additionally, their performance for Acc@1 on ImageNet is reported.

Typical sources of incorrectness. To explain common sources of incorrect rela-
tionships within groups, i.e., group constituents having different labels, we show typical
examples in Fig. 6.12. As one can see, disagreements often arise due to subtle differences
between the constituents’ classes (such as different dog breeds, hedgehogs vs. sea urchins,
etc.) and misleading scene settings (such as a buildup of flags imitating a ship’s shape, a
dog’s head above the surface while swimming looking like a duck, etc.).

Analysis of computational cost. As deriving exact computational complexities is
often difficult, it is common practice for deep learning based methods to compare their
computational complexities based on their training times. For our model learning one
representation φk (including the refinement step) for a subset X̄k takes approx. 16h on a
Titan X (Pascal), resulting in 14 days of training in total for the Imagenet dataset. Thus,
our overall training time is comparable to the current state-of-the-art approach DeepClus-
ter [30] (12 days). Further, Tab. 6.6 compares the computational cost of our method with
recent unsupervised representation learning approaches in relation to their performance.
As we observe, peak performances on Imagenet are computationally costly. Further, we
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observe that RotNet [72] offers the best trade-off between training efficiency and perfor-
mance.

Figure 6.10: Groups of size 4 for fixed seed image (pink) over the iterations while training the ImageNet
model. Each column represents a group G.

Figure 6.11: Groups of size 8 for fixed seed images (pink) over the iterations while training the ImageNet
model. Each column represents a group G.

Figure 6.12: Examples of groups with incorrect constituent relationships (i.e. different labels) taken
from the last iteration while training on ImageNet. Orange highlights the source of
disagreement. Each column represents a group G.

109



6 Unsupervised Representation Learning from Reliable Image Similarities

6.4 Discussion:

In this chapter we presented a novel iterative approach for unsupervised learning of visual
feature representations. Experimental evaluation shows that our method yields a repre-
sentation of competitive or even superior performance on the tasks of unsupervised clas-
sification and transfer learning compared to the state-of-the-art. We propose a novel tech-
nique for finding reliable relations (i.e. dis-/similarities) between training images which
are likely to agree with the ground-truth. This reduces the amount of noise due to er-
roneous relations introduced into training, which is typically an issue when all possible
training data relations are directly used. As using all relations is typically common practice
in the vast majority of unsupervised learning literature, our work offers a new direction of
future research directions: Instead of solely looking for more powerful surrogate tasks to
compensate for missing supervision, we also address the question which training samples
and relations can be trusted and which are likely to obstruct learning. This question nat-
urally leads to a trade-off between covering all available training data and exploiting only
reliable relations for learning. Hence, future work should focus on further improving the
estimation of reliability to increase data coverage while maintaining a high reliability for
efficient learning.
We presented a technique for identifying reliable relations resulting in a set of local sub-
problems. For each subproblem the data samples are either reliably similar or reliably
dissimilar. Further, the learning process for each subproblem is formulated to preserve
their reliable relations and approximate the actual distribution of distances of the train-
ing data. This stands in contrast to previous approaches whose feature space relies on
data-independent prior assumptions which potentially disagree with the training data at
hand. We then optimize each problem individually before using transitivity relations be-
tween them to efficiently merge their learned local representations into a single concerted
representation.
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7 Learning Continuous Posture

Similarities for Unsupervised Video

Understanding

The ability to understand human actions is of cardinal importance for our interaction
with another. Explaining the activity of another person by observing only individual
postures and their temporal transitions in a sequence of video frames has been a long-
standing challenge in computer vision. There are numerous applications in problems like
activity indexing and search [139, 200, 216], action prediction [115, 236], behavior under-
standing and transfer [173, 178], abnormality detection [8], and action synthesis and video
generation [7, 60, 197, 237].
In this chapter, our goal is to apply similarity learning [205, 256] to learn a representa-
tion for human activity based on the finest accessible level, i.e. individual human poses.
Hence, our model needs to both capture the characteristic postures and the distinctive
transitions between them. Moreover, since providing manual supervision information
indicating the similarity between given postures is not feasible, we need to infer such su-
pervision automatically during training. In short,our approach to activity representation
and understanding, summarized in Fig. 7.1 (also see videomaterial1), entails the following
characteristics:

• Unsupervised: The most prominent paradigm to video understanding has been su-
pervised action classification [115], since labeling finer entities such as individual
poses [3] is tedious. Action classification typically utilizes holistic models and a dis-
criminative approach is trained to classify actions into discrete classes. As a result,
such approaches model actions globally in terms of their overall most salient dif-
ferences, rather than capturing the subtle changes of human posture over time (the
clothing of a person may suffice to discriminate running from diving).

• Model-free: Multiple works have modeled activity and posture using a predefined
model for joint locations (i.e. MoCap [114, 213, 278], depth [191], etc.). However,
obtaining this meta information is costly and prevents scaling these approaches to
use large unlabeled collections of video data.

• Continuous in time: Several approaches have tackled the problem of understanding
activity by decomposing it into discrete sub-actions [137, 240, 273] or into a hierarchy

1Video material demonstrating the different applications can be found under https://hciweb.iwr.

uni-heidelberg.de/compvis/research/tmilbich_iccv17
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7 Learning Continuous Posture Similarities for Unsupervised Video Understanding

Figure 7.1: Visualizing all frames of all long-jump sequences using the learnt posture representation
φ. Similar frames across different sequences and repetitions across time are mapped
nearby, yielding a concise rendering of the overall activity with its characteristic gait
cycles. Moreover, intermediate frames can be synthesized (top right) as well as future
frames of a sequence (visualized by nearest neighbors from training set (right)).

[219, 278]. Consequently, the detailed, continuous evolution between consecutive
postures is neglected.

• Multi-granular: A lot of work has focussed separately either on pose matching [12,
148, 229], action classification [5, 63, 115, 244], or mid-level entities (e.g. clusters of
postures) [137, 219, 273]. Explaining activities, however, demands to describe overall
activity based on fine-granular postures and the transitions in between, thus linking
coarse with fine granularities.

• Fine-grained activity parsing: Explaining activity on the temporal scale of single pos-
tures with all their diverse changes is farmore detailed and complex thanmere action
classification [63, 244]. Previous efforts [83] have approximated posture and its tran-
sitions using discrete states in an AND-OR graph and relied on tedious supervision
information.

With no supervision information, no predefined model for human posture, and train-
ing from scratch, we need to compensate for there being no labels for individual pos-
tures. Therefore, we utilize a large number of training video frames and have our learning
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framework alternate between proposing pairwise similarities/dissimilarities among pos-
tures and resolving transitivity conflicts to bring the relationships into mutual agreement.
In contrast to the presented unsupervised framework in chapter 6, we can now exploit the
temporal information inherent in the video domain as an inductive bias for inferring our
similarity constraints. To propose similarities, a combinatorial sequence matching algo-
rithm is used which can find optimal solutions, but only for small sets of frames. We then
resolve the transitivity conflicts between these different subsets of the training data by
learning a posture embedding that reconciles the similarity constraints from the different
subsets. While the sequence matching is already incorporating information about the nat-
ural order of postures in video, a Recurrent Neural Network (RNN) is trained to capture
the overall activity and to predict future frames of an activity sequence by synthesizing
transitions.
Our experimental results show that our approach is able to successfully explain an activity
by understanding how posture continuously changes over time and tomodel the temporal
relationships between postures. Furthermore, our posture representation obtains state-of-
the-art results on the problem of zero-shot human pose estimation. Also for the classical
application of transfer learning, our model proves worth as a powerful initialization for
other supervised human pose estimation methods. In addition, our approach captures
the temporal progression of an activity, it can predict future frames, and it also enables a
Generative Adversarial Network (GAN) [80] to provide temporal super-resolution.
This chapter is based on our publication ’Unsupervised Video Understanding by Reconcili-
ation of Posture Similarities’ [154].

7.1 Representation Learning for Parsing Activities

We are interested in detailed understanding of human activity without requiring manual
interaction or predefined models. Therefore, we can explain overall activity in a video
only using the most basic entity that we can directly access: the human posture observed
in individual frames x ∈ RD′ . Activity, which emerges at the temporal scale of an entire
video sequence, is then represented by individual poses and their characteristic transitions
and repetitions on a fine temporal scale. Hence, to model an activity, we learn a pos-
ture representation φ : RD

′ → RD which: (i) is invariant to changes in environmental
conditions such as lighting and background. (ii) is invariant to the appearance of persons
(clothing and skin color). (iii) is continuous in time (consecutive frames are near in fea-
ture space). Only then we can understand the essential characteristics of an activity and
spot all repetitions of the same pose over time and in different sequences, despite changes
in person appearance or environment.
As seen in the previous chapters, similarity, respectively metric learning constitutes an
effective way to learn an embedding φ(x; θ) with trainable parameters θ. Such approaches
exhibit great expressive power to learn highly non-linear representations, however, typ-
ically at the cost of requiring lots of manually labeled samples for training. A popular
alternative is then to only fine-tune a representation that has been pre-trained for discrete
classification on large datasets, such as ImageNet [50]. Unfortunately, the performance
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of pre-trained models for transfer learning is heavily task dependent, i.e. how closely the
pre-train tasks resembles the target task (cf. Sec. 1.3). In our scenario, the most com-
mon pre-train task, discrete classification objective, contradicts our requirements for φ,
i.e., a discrete classification loss neglects smoothness within the representation space φ.
In addition, since datasets like ImageNet [50] are composed of single images, pre-trained
models fail to encode temporal relationships between frames. This explains the inferior
performance of these pre-trained models in Sec. 7.2.
Instead of using a pre-trained representation we seek to learn a representation φ(x; θ) that
maps similar postures close in feature space while retaining temporal structure of an ac-
tivity. Ideally, manual supervision of human postures, such as joint annotations, and/or
positive links of similar postures within and across sequences together with negative links
of dissimilar postures could be used to learn φ(x; θ) employing, for example, triplets of
similar and dissimilar poses. However, we are lacking these labels, altogether. To over-
come this lack of labels we exploit the relationships inherent in large collections of video
sequences. We infer the supervision information, which is required to learn φ(x; θ), by
solving a combinatorial sequence matching problem. The solution of this matching prob-
lem then provides us with correspondences of similar and dissimilar postures, which we
then impose onto the representation φ(x; θ) to learn it.

7.1.1 Sequence matching for self-supervision

We aim to learn an embedding representation φ(x; θ) which encodes posture similarity,
without being provided with any labels. In order to learn such a representation, we em-
ploy a self-supervision strategy, leveraging the temporal information in videos to solve
a sequence matching problem and find pair-wise correspondences between frames on a
sequence level. Let S = (xj)

n
j=1 and S ′ = (x′j′)

n′
j′=1 denote two sequences of n and n′

frames respectively. We want to find a correspondence π : {1, ..., n} 7→ {0, 1, ..., n′} that
matches frames of S to frames of S ′, where the index 0 is used to match outliers. Further-
more, in order to successfully learn φ(x; θ) using self-supervision, we want to enforce the
following constraints on π: (i) Corresponding frames should be similar in appearance. (ii)
To avoid temporal cross-over and to reduce false positives matches, consecutive correspon-
dences must be chronologically ordered. (iii) To avoid only part of a sequence being used
and to explore the full span of possible postures therein, one-to-many correspondences
should be penalized. (iv) Correspondences should be invariant to the sequence frame
rate. As we see, most matching constraints are based on temporal information, whose
need is demonstrated in Fig. 7.2 and 7.3. These constraints prevent, by definition, to uti-
lize classical sequence matching approaches like the computational costly StringMatching
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[124] or Dynamic Time Warping [17, 116]. Thus, we follow Buechler et al. [6] and define
the following optimization problem which combines all these constraints,

min
π:{1,...,n}7→{0,1,...,n′}

n∑
j=1

∥∥∥φ(xj ; θ)− φ(x′π(j); θ)
∥∥∥2

2

+ λ1

n−1∑
j=1

1π(j)>π(j+1)

+ λ2

n−1∑
j=1

1π(j)=π(j+1)

+ λ3

n−1∑
j=1

1π(j)+1<π(j+1)[π(j + 1)− π(j)] (7.1)

where 1• denotes the indicator function and λ1, λ2, λ3 penalize the violations of the
different temporal constraints. The use of inequalities ensures constraint (iv). Similar
to [6], we can convert the optimization problem in Eq. (7.1) into an Integer Linear Pro-
gram (ILP). In order to do so, we define a matrix Z ∈ {0, 1}n×n′×n′ , where zj,j′1,j′2 ,
1π(j)=j′1∧π(j+1)=j′2

. A non-zero z indicates matches for two consecutive frames starting
at position j. The ILP is then

max
Z∈{0,1}n×n′×n′

n−1∑
j=1

n′∑
j′1,j
′
2=0

zj,j′1,j′2pj,j′1,j′2

subject to
n′∑

j′1,j
′
2=0

zj,j′1,j′2 = 1

n′∑
j′1=0

zj,j′1,j′2 =

n′∑
j′3=0

zj+1,j′2,j
′
3

(7.2)

where pj,j′1,j′2 is the sum of all terms in Eq. (7.1) with zj,j′1,j′2 = 1. To obtain reliable
self-supervision information, we obtain an exact solution of this ILP using a branch-and-
cut algorithm [176] following [6]. However, exactly solving this problem for pairs of long
sequences (e.g. n > 500) is a costly operation with exponential worst case complexity in
n, making it computationally infeasible. To circumvent this high cost when matching
S onto S ′, we break the target sequence S ′ into k equal length sub-sequences of length
n′ ≈ 40 and find an exact solution for Eq. (7.2) on each local sub-sequence in parallel.
Thus, the overall computational cost is reduced by a factor of k, making it a feasible to
tackle long sequences. However we obtain only local correspondences at sub-sequence
level and thus, discarding important relationships between different sub-sequences that
compose the overall activity. To compensate for this shortcoming, we optimize φ(x; θ)
with the different, local sub-sequence solutions in subsequent mini-batches as discussed in
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Figure 7.2: Correspondences for two query sequences obtained using standard nearest neighbors (first
row) and our sequence matching with temporal constraints (second row). Note how the
temporal constraints provide much more accurate correspondences.

Sec. 7.1.2. Our model then reconciles the local sub-sequence correspondences. Thus, we
benefit from combining the computational feasibility of exact local sub-sequencematching
with the power of stochastic gradient decent optimization, which aggregates lots of local
observations in one concerted representation φ.

7.1.2 From local correspondences to a globally consistent posture

representation

We now learn a joint representation φ(x; θ) that reconciles all the sub-problems. Given
proper learning constraints, we can utilize powerful similarity learning frameworks, such
as ranking-based losses (cf. Sec. 2.2.1).
To provide the required supervision information to learn a representation for encoding
human activity in a fully unsupervised manner, the mini-batches for training are com-
posed just by pairs of sequences {S,S ′}. We find these pairs by first randomly choosing
S and sampling S ′ from a set of nearest neighbour sequences Snn to S, thus sorting out
totally unrelated sequences. Snn is constructed using simple sequence descriptors by tem-
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Figure 7.3: Correspondences for query sequences of three different categories (rows (i)). Assignments
are obtained using standard nearest neighbors (rows (ii)) and our sequence matching
with temporal constraints (rows (iii)). Note how the temporal constraints provide
much more accurate correspondences of posture.

porally pooling similarities over all frames of a video. After breaking S ′ into equal-length
sub-sequences, the ILP in Eq. (7.2) yields a solution Z∗. These are exact pair-wise cor-
respondences between S and a particular sub-sequence of S ′. We then use these corre-
spondences Z∗ to generate triplets t = (xi, xj , xk) ∈ T . Here, (xi, xj , xk) consists of a
randomly sampled anchor image xi ∈ S and its positive correspondence xj = π(xi) ∈ S ′,
together with a randomly chosen negative xk ∈ S ′. We randomly sample negatives based
on the q-th percentile of the similarity distribution of sequence S ′ to xj . That is, we com-
pute the similarity of xk to each frame of S ′, and sample negatives from frames with a
lower similarity than the q-th percentile. We thus include increasingly hard negatives by
decreasing q over epochs. Note that by sampling positives and negatives from the same
sequence and by comparing the same sequence with different other sequences, relation-
ships within sequences are also implicitly established. Using this triplet self-supervision
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Figure 7.4: Similarity matrices for a long jump sequence of Olympic Sports dataset: computed using
(a) VGG-S pre-trained on Imagenet, (b) CliqueCNN [12], (c) Ours. The diagonal
structures correspond to repetitions of gait cycles during running.

we update the model parameter θ of φ(x; θ) via back-propagation and the triplet ranking
loss [205, 247],

L(T ; θ)
1

|T |
∑
t∈T
L′(t; θ) (7.3)

L′(t; θ) =
[
‖φ(xi; θ)− φ(xj ; θ)‖2 − ‖φ(xi; θ)− φ(xk; θ)‖2 + β

]
+
, (7.4)

with β controlling the margin between xj and xk with respect to xi. The matching
algorithm from Eq. (7.2) provides the self-supervision information needed to train the
representation φ, whereas the training using Eq. (7.3) yields the posture embedding re-
quired to compute the similarities in Eq. (7.2). Alg. 3 outlines this iterative procedure.
We found that using HOG-LDA [87] to initialize φ for the first epoch provides a decent
initialization leading to a speed-up compared to a random φ. Learning a single posture
representation that captures characteristic similarities across and within sequences is thus
decomposed into a series of mini-batch optimizations. For each, Eq. (7.2) provides a
matching that is locally, within the respective sub-sequences, optimal. The stochastic op-
timization of the CNN then consolidates, over a number of mini-batches, the transitivity
conflicts between the local solutions to arrive at a single posture representation. That way,
both approaches combine their strengths and weaknesses in an ideal manner. Fig. 7.4(a-
c) show an excerpt of similarity matrices from different models. Note the significantly
improved signal-to-noise ratio in (c).

7.1.3 Recurrent neural networks for learning temporal transitions

We now have an algorithm which effectively learns an overall posture representation
φ(x; θ) for an activity based on relationships within and across sequences. This detailed
posture encoding is an ideal basis to also deal with coarser temporal scales, enabling to
learn the complete temporal structure of an activity without requiring any prior model
and to synthesize future frames of a sequence. As φmaps into the continuous representa-
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tion space Φ, also the transitions between the embeddings of consecutive sequence frames
will be continuous. To explain or synthesize overall activity on basis of the progression
of a video sequence in Φ, Recurrent Neural Network (RNN) are an ideal model class.
RNNs are recurrent functions which naturally lend themselves to process and encode in-
herently temporally ordered data points. Most RNNs use an internal, hidden state vector
h ∈ RD′′ with dimensionality D′′ � D to represent the current state of the already pro-
cessed temporal sequence and to effectively learn the variability of the individual temporal
transitions (cf. Sect. 7.2). By recursively applying the RNN to a given video sequence
(x1, . . . , xs, . . . , xS), the hidden hs state at time step s typically gets updated by the gen-
eral form

hs = fa(fb(xs) + fc(hs−1)) , (7.5)

with fa, fb, fc being some functions to incorporate the information in xs to the state hs.
Due to significant computational costs, using RNNs on video data requires a meaningful
image representation. Here, we can use the structured representation that we learn in Sect.
7.1.2. In this work, we incarnate our RNN as a widely used LSTM (Long-Short-Term-
Memory) [97]. In order for the LSTM to learn an activity with all its temporal transition
between individual postures, we formulate a regression task for future embedding predic-
tion based on our representation φ(x; θ). To successfully predict the embeddings of future
frames based on the observation of a small preceding sub-sequence, the LSTM needs to
learns typical progressions of the complete activity.
Let Cs,L = (xs−L, . . . , xs) ⊂ S be an L frame sub-sequence of a video sequence S up
to the s-th frame. Further, let hs be the hidden state of the LSTM after consecutively
processing the individual embeddings of the frames Cs,L. To estimate a potential future
embedding φ̂(xs+1) ∈ Φ, we learn a predictor function g : RD

′′ → RD on the hidden
states hs, thus reverting to the embedding dimensionality D with

φ̂(xs+1) = g(hs; θ
′) (7.6)

and θ′ denoting the corresponding trainable parameters of g. Applying the predictor
recurrenlty will then allow us to continue and generate activity represented as a sequence

Algorithm 3: Unsupervised learning of a consistent posture representation using
local correspondences.
Data: {Si}Si=1, θ
// Unlabeled video sequences and randomly initialized θ
Result: {θ}
while not converged do

(S,S ′)← {Si}Si=1 // Training batch

Z∗ ← arg min Eq. (7.2) // Find assignment

T ← (S,S ′,Z∗) // Sample triplets

θ ← θ + α∇θL(T ; θ) // Update θ
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Figure 7.5: Visualizing the Top 5 predictions (red) for the next frame s+ 1 given four previous frames
on basis of our representation φ (green). Actual successor in blue.

of embeddings in Φ. For learning, we formulate our future embedding prediction as an
regression problem to estimate the embedding of the next ground-truth frame xs+1 to
Cs,L,

Lpredict(hs, xs+1; θ′) = ‖g(hs; θ
′)− φ(xs+1; θ)‖22 . (7.7)

The trained LSTM is then able to hypothesize transitions to future frames based on a
small subsequence of an activity as demonstrated in Fig. 7.5.

7.2 Experimental Evaluation

To evaluate our approach at all granularity levels of an activity, we report quantitative
results for posture retrieval in Sect. 7.2.1 and human pose estimation (HPE) in Sec. 7.2.2-
7.2.3. In addition, we provide qualitative results for activity understanding in Sect. 7.2.4,
and for temporal super-resolution, and action synthesis in Sec. 7.2.5 to 7.2.7.

7.2.1 Posture retrieval: Olympic sports Dataset

The Olympic Sports (OS) dataset [163] is a compilation of video sequences of 16 different
sports, containing more than 170000 frames overall in 300 video sequences. During train-
ing, each training mini-batch is generated by sampling two random sequences S,S ′ and
solving the ILP in Eq. (7.2) to obtain correspondencesZ∗. Solving the ILP takes∼ 0.1sec
(IBM CPLEXOptimization framework) compared to∼ 0.5sec to process a minibatch on
a NVIDIA Titan X (Pascal). We then use these correspondences to sample 300 triplets,
where the initial percentile q = 100 is decreased by 10 every epoch. In each frame the ap-
proach of [64] yields person bounding boxes. During training we utilize VGG-S up to the
fc6 layer and stack a 128-dimensional fc7 layer on top together with an L2-normalization
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HOG-LDA [87] Ex-CNN [57] VGG-S Imagenet [214] Doersch et. al [54]
0.62 0.56 0.64 0.58

Shuffle&Learn [160] CliqueCNN [12] Ours (Scratch) Ours (Imagenet)
0.63 0.79 0.83 0.83

Table 7.1: Avg. AUC for each method on Olympic Sports dataset.

layer following standard setups of deep metric learning as discussed in chapter 2, which is
our representation φ(x; θ). We use Caffe [108] for our implementation. To evaluate our
representation on fine-grained posture retrieval we utilize the annotations provided by [12]
and follow their evaluation protocol, using their annotations only for testing. We compare
our method with CliqueCNN [12], the triplet formulation of Shuffle&Learn [160], the
tuple approach of Doersch et. al [54], VGG-S [214], and HOG-LDA [87]. For complete-
ness we also include a version of our model that was initialized with Imagenet pre-trained
weights [214]. (i) For CliqueCNN, Shuffle&Learn, andDoersch et. al methods we use the
models downloaded from their respective project websites. (ii) Exemplar-CNN is trained
using the best performing parameters reported in [57] and the 64c5-128c5-256c5-512f ar-
chitecture. Then we use the output of fc4 and compute 4-quadrant max pooling. During
training of our approach, each image in the training set is augmented by performing ran-
dom translation, scaling and rotation to improve invariance.
In Tab. 7.1 we show the average Area Under the Curve(AuC) measure over all cate-

gories for the different methods. When compared with the best method so far [12], the
proposed approach improves the performance by 4%, although the method in [12] was
even pre-trained on Imagenet. This improvement is due to the cross sequence relationships
enforced by the sequence matching, which enforce a representation which is invariant to
background and environmental factors, encoding only posture. In addition, when com-
pared to the state-of-the-art methods that leverage tuples [54] or triplets [160] for training
a CNN from scratch, our approach shows 20% higher performance. This is explained
by the more detailed similarity relationships encoded in the cross-sequence correspon-
dences obtained by the sequence matching approach, which uses temporal constraints to
obtain high quality relationships of similarity and dissimilarity. It is noteworthy, that our
randomly initialized VGG-S trained with our self-supervision strategy yields equivalent
performance to a version with pre-trained Imagenet weights as initialization. Thus, the
proposed self-supervision circumvents the use of the 1.2M labelled Imagenet samples. To
the best of our knowledge, this is the first time that a self-supervised method performs
equivalently without the widely adopted Imagenet pre-training strategy.

7.2.2 Zero-Shot human pose estimation

After evaluating the proposed method for fine-grained posture retrieval, we tackle the
problem of zero-shot pose estimation on the LSP dataset. That is, we transfer the pose
representation learnt on Olympic Sports to the LSP dataset without any further training
and retrieve similar poses based on their similarity. The LSP [110] dataset is one of the
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Method T UL LL UA LA H Total
Ground Truth 93.7 78.8 74.9 58.7 36.4 72.4 69.2
Chu et al. [42] 98.4 95.0 92.8 88.5 81.2 95.7 90.9

CliqueCNN [12] 80.1 50.1 45.7 27.2 12.6 45.5 43.5
VGG-S [214] 82.0 48.2 41.8 32.4 15.8 53.6 47.0
Ours Scratch 73.0 45.1 41.6 26.2 12.2 44.4 43.0

Shuffle&Learn [160] 60.4 33.2 28.9 16.8 7.1 33.8 30.0
Ours (Imagenet) 81.3 54.6 48.8 36.1 19.1 56.9 50.0

Table 7.2: PCP measure for each method on Leeds Sports dataset for zero-shot pose estimation.

most widely used benchmarks for pose estimation. For evaluation we use the represen-
tation to compute visual similarities and find nearest neighbours to a query frame. Since
the evaluation is zero-shot, joint labels are not available. At test time we therefore esti-
mate the joint coordinates of a query person by finding the most similar frame from the
training set and taking its joint coordinates. We then compare our method with VGG-S
[214] pre-trained on Imagenet, the triplet approach of Misra et. al (Shuffle&Learn) [160]
and CliqueCNN [12]. In addition, we also report an upper bound on the performance
that can be achieved by zero-shot evaluation using ground-truth similarities. Here the
most similar pose for a query is given by the frame which is closest in average distance
of ground-truth pose annotations. This is the best one can achieve without a parametric
model for pose (the performance gap to 100% shows the discrepancy between poses in
test and train set). For completeness, we compare with a fully supervised state-of-the-art
approach for pose estimation [42]. For computing similarities we now use the the inter-
mediate pool5 layer of VGG-S as our representation φ(x; θ), provided that our model is
transferred from another dataset [264].
In Tab. 7.2 we show the PCP@0.5 obtained by the different methods. For a fair compar-
ison with CliqueCNN [12] (which was pre-trained on Imagenet), we include a version of
our method trained using Imagenet initialization. Since in this experiment we are trans-
ferring our model from another dataset, we expect that Imagenet pre-training increases
performance. Our approach significantly improves the visual similarities learned using
both Imagenet pre-trained VGG-S and CliqueCNN [12], obtaining a performance boost
of at least 3% in PCP score. In addition, when trained from scratch without any pre-
training on Imagenet our model outperforms the model of [160] by 13%, due to the fact
that the cross-sequence correspondences obtained by our approach encode finer relation-
ships between samples. Finally, it is notable that even though our pose representation is
transferred from a different dataset without fine-tuning on LSP, it obtains state-of-the-art
performance in the realm of unsupervised methods.

7.2.3 Self-supervision as pre-training for human pose estimation

In addition to the zero-shot learning experiment we also evaluate our approach on the
challenging MPII Pose dataset [3] which is a state of the art benchmark for evaluation
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Approach Head Neck Shoulders Elbows Wrists Hip Knees Ankles Thorax Pelvis Total
Rand. Init. 79.5 87.1 71.6 52.1 34.6 64.1 58.3 51.2 85.5 70.1 65.4

Imagenet Init. 87.2 93.2 85.2 69.6 52.0 81.3 69.7 62.0 93.4 86.6 78.0
S&L [160] 75.8 86.3 75.0 59.2 42.2 73.3 63.1 51.7 87.1 79.5 69.3

Ours (scratch) 80.6 88.4 74.8 56.9 41.6 73.3 63.6 56.9 88.6 79.9 70.5
Ours (Imagenet) 90.2 93.8 86.3 70.4 58.6 82.4 73.2 67.4 93.7 88.4 80.4

Table 7.3: PCKh@0.5 measure on MPII Pose benchmark dataset using different initializations for the
DeepPose approach [229].

of articulated human pose estimation. The dataset includes around 25K images contain-
ing over 40K people with annotated body joints. MPII Pose is a particularly challenging
dataset because of the clutter, occlusion and number of persons appearing in images. We
are interested in evaluating how far our self-supervised approach can still boost a paramet-
ric approach that is trained with extensive supervision. Thus, we report the performance
obtained by DeepPose [229], when trained using as initialization each of the following
models: Random initialization, Shuffle&Learn [160], Imagenet and our approach trained
onOS (scratch and Imagenet pretraining). For this experiment the Alexnet [131] architec-
ture is used like in [229]. Following the standard evaluation metric on MPII dataset, Tab.
7.3 shows the PCKh@0.5 obtained by training DeepPose (stg-1) using their best reported
parameters with the different initializations.
The performance obtained onMPII Pose benchmark shows that our unsupervised feature
representation successfully scales to challenging datasets, successfully dealing with clutter,
occlusions and multiple persons. In particular, when comparing our unsupervised initial-
ization with a random initialization we obtain a 5.1% performance boost, which indicates
that our features encode a robust notion of pose that is robust to the clutter present in
MPII dataset. Furthermore, we obtain a 1.2% improvement over the Shuffle&Learn [160]
approach.

7.2.4 Visualizing the activity representation

Whereas previous experiments have evaluated our representation on the level of individual
poses, we now analyze the ability of our representation φ(x; θ) to also capture transitions
between successive postures. Our model is trained using temporally aligned correspon-
dences across sequences, thus representing not only relationships between different se-
quences but also encoding temporal transitions of pose within a sequence. Therefore, φ
captures all the regularity of posture. It maps similar postures of different persons and
repetitions of the same posture in a sequence, e.g., repeated gait cycles, to the same spot
in feature space. Moreover, successive poses are also mapped to similar representations, so
an activity has a smooth trajectory over φ. To visually demonstrate the ability of φ(x; θ)
to capture the fine-grained pose interactions over time and between sequences we project
the high dimensional representation φ to a 2D plot using the t-SNE procedure [150]. Fig.
7.6(a) shows a mapping of all instances of vault activity. Successive postures within each
video are connected by straight lines and color encodes the time within the sequence. The
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(a) (b)

Figure 7.6: Visualizing the learned posture representation φ and the progression of an activity (indi-
cated by color). All frames of all vault sequences are shown (a) Our representation
successfully learns the inherent structure of an action, e.g. repetitive gait and spinning
cycles (blue, orange loops). Also, on a coarser temporal scale, repeated postures are
brought near (outstretched arms before/after jump; cyan and red). Vector quantiza-
tion of φ yields mutually dissimilar, characteristic poses shown in frames. (b) Repre-
sentation obtained using [160]. As this model discards cross-sequence interactions, it
misses the regularity of related postures across time and sequences.

learned representation captures the repetitive structure of running and spinning (blue and
orange loops) and the characteristic transitions between. Additionally, the regularity of
φ allows to group repetitive postures and to provide a condensed overview of an activity.
Therefore, we employ standard agglomerative clustering [68] to extract prominent mutu-
ally dissimilar posture that span an activity. We show the representative of each cluster
on its corresponding location in Fig. 7.6(a). Moreover, we compare our representation
with the state-of-the-art approach of Misra et al. [160] which introduces a temporal verifi-
cation problem and learns to find the correct temporal order of triplets of postures within
a sequence, Fig. 7.6(b). This shows that modeling only posture interactions within a se-
quence [160] and excluding cross-sequences correspondences as proposed in Sect. 7.1 fails
to capture the temporal evolution of an activity and degrades temporal structure.

7.2.5 Inferring temporal super-resolution

The previous section has demonstrated that our representation φ(x; θ) successfully en-
codes posture and provides a basis for modeling the characteristic progression of an ac-
tivity on the finest accessible level—individual frames. To further demonstrate the fine
granularity at which activity is captured, we now unfold transitions between postures in
consecutive frames, that is, we obtain super-resolution between two consecutive frames.
Whereas [208] aggregates frames from within the same sequence, we bring all the different
sequences with all their variability together. Since our representation maps related poses
close to another, we can employ a local linear interpolation between successive postures
to infer intermediate frames. Then the Generative Adversarial Network (GAN) of [56] is
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Figure 7.7: Inferring intermediate frames between consecutive postures. For each transition we inter-
polate representations φ at regular intervals in between and invert interpolated features
with [56].

used to invert the feature back to an image. We use the implementation of [56] for both the
generator and discriminator networks, where our learned activity representation φ(x; θ)
acts as the encoder network. To jointly train the three networks we use the DeePSiM-loss
[56] considering adversarial and euclidean terms on both the image and feature domain.
This inversion of our representation φ(x; θ) creates images for the synthesized interme-
diate frames, allowing us to go past the limited temporal scale of given video sequences.
Fig. 7.7 shows temporal super-resolution results for two different activities. The conti-
nous progression of activity is preserved due to the continuity of our pose representation
φ(x; θ). It has finer temporal granularity than an individual video, since it interleaves a
large number of related sequences, providing a truly continuous activity representation.

7.2.6 Activity understanding using LSTMs

So far we have provided a comprehensive analysis of our activity representation, demon-
strating its ability to understand actions on the fine-grained scale of single postures. Now,
we evaluate the capability of our method to understand activity. To this end, we train
an RNN on top of the posture representation φ to yield a sequence-level encoding hs, as
discussed in Sect. 7.1.3. We employ an LSTM, trained on sub-sequences Cs,L of length
L = 4, densely sampled from all video sequences to predict the next succeeding frame
embedding φ̂(xs+1). During training, we sample mini-batches to cover the overall diver-
sity of activity, so that all constituent postures are equally represented for learning the
LSTM. Fig. 7.5 shows exemplary predictions from different activities. Let us quantify
the quality of predicted next frames. Given the true successor embedding φ(xs+1; θ), we
identify its nearest neighbor in all the videos. We then compute the distance between
these two frames and average it over all videos. The same is then done for the second,
third, etc. nearest neighbor. Similarly, we compute the distance of our prediction and
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(a)
(b)

Figure 7.8: (a) Setup of quantitative evaluation. Blue is the actual next frame, red the prediction,
purple the nearest neighbours. (b) LSTM evaluation: Comparing our average pre-
diction error (red) against the average distance of φ(xt+1; θ) to each of its 10 nearest
neighbours embeddings (blue). The error bars indicate the standard deviation of the
measurements.

φ(xs+1; θ) and also average it. Fig. 7.8 (b) compares the resulting error of our prediction
against that of the k nearearest neighbor from the dataset. Our prediction is better than
actually observing the next frame and picking its second nearest neighbor. Despite the
large variability of an activity this shows that the temporal progression of an activity has
been well captured to yield favorable predictions of a successive frame.

7.2.7 Video understanding by action synthesis

We have just seen predictions of the next frame xs+1 of a sequence. By recursively adding
this predicted frame and then predicting a next successive frame we can iteratively synthe-
size an overall activity frame by frame. For visualization of the predicted next posture, we
choose the nearest neighbor from the training set. Fig. 7.9 summarizes the synthesis of a
snatch activity initialized at the green posture. One can see that our model successfully
infers the temporal ordering of the activity from its beginning until the end.

7.3 Discussion

In this chapter we presented an unsupervised approach for understanding activity by
means of its most fine-grained temporal constituents, individual human postures. A com-
binatorial sequence matching algorithm proposes relations between frames from subsets
of the training set, which are then used to learn a single concerted pose embedding that
reconciles transitivity conflicts using a similarity learning approach. Without any manual
annotation, the model learns a structured representation of postures and their temporal
development. The model not only enables retrieval of similar postures but also tempo-
ral super-resolution. Additionally, based on a recurrent formulation, future frames and
activities can be synthesized.

126



7.3 Discussion

Figure 7.9: Synthesizing the ’clean and jerk’ activity from the Olypmic Sports dataset [163] by recur-
sively predicting the next posture. Green indicates initial image and every 5th frame is
shown.
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8 Conclusion

In this thesis, we addressed the problem of learning abstract representations that effec-
tively describe and allow to compare between objects, one of the cornerstones of many
Computer Vision applications. The quality of object representations is typically mea-
sured by their generalization performance, thus how accurately unseen object instances
are captured. Particularly challenging is the grand goal of effective out-of-distribution gen-
eralization, i.e. the transfer of a representation to objects which are far from the training
data distribution – to date poorly understood and an open research problem. The first part
of this work was devoted to analyzing and advancing out-of-distribution generalization of
object representations learned by Deep Metric Learning approaches. To this end, we chal-
lenged the prevailing learning paradigm of class-discriminative training, which typically
results in representations that are highly specialized only on the discriminative features of
the training objects. Consequently, they are unlikely to also describe novel unseen objects
which naturally hinders out-of-distribution generalization.
To identify driving factors of out-of-distribution generalization, we conducted a large-scale
study of the current field of Deep Metric Learning (DML), arguably the main research
direction of similarity learning. In particular, by focusing on the structure of representa-
tions, we uncovered a strong relationship between generalization and the (information)
compression of a representation. Representations which are less compressed, i.e. rep-
resentations which describe data more comprehensively (and less specialized), exhibit
stronger generalization performance. Naturally, such representations are more expres-
sive and capture a more diverse set of object features which increases the chance to also
capture out-of-distribution objects. This finding is particularly interesting as it is diametri-
cally opposed to the class-discriminative learning paradigm, which actually aims at learn-
ing strongly compressed object representations. Following this property, we combined
classic class-discriminative learning with learning tasks focusing on complementary ob-
ject features, thus directly increasing the overall expressiveness of object representations.
In particular, we introduced the concept of class-shared features, i.e. characteristics which
are explicitly common among training classes – and neglected by discriminative learning.
Our evaluations clearly show that they have a significant impact on generalization per-
formance, outperforming the pure class-discriminative state-of-the-art. Motivated by this
result, we extended our DML training framework to include even more additional learn-
ing tasks, eventually merging various, diverse learning signals into a single model, which
set a new state-of-the-art in DML. Besides training objectives, also the data sampling pro-
cess is known to affect learning of deep models. Hence, to provide a comprehensive work
on representation generalization, we also addressed data sampling strategies for the widely
used triplet-basedmetric learning. Similar to the discriminative paradigm discussed above,
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predefined and fixed heuristics have been used so far to complement learning without ex-
plicitly taking generalization into account. Although such heuristics are efficient and can
provide informative data samples at least at some stages of the learning process, a model’s
training state continually changes. Hence, this actually asks also for a change in the learn-
ing signal provided by the input triplets. As a solution, we proposed the first learnable
selection policy for triplets during training, while explicitly targeting generalization to
unknown samples. Using Reinforcement Learning, we adapt the sampling policy to the
current training state of a DML model. While Reinforcement Learning often introduces
substantial computational overhead, our sampling policy is based on the efficient formu-
lation of heuristic-based strategies. Therefore, we are able to maintain efficient learning,
while simultaneously explicitly optimizing generalization performance. In conclusion,
we showed that to improve out-of-distribution generalization, it has to be consideredmore
explicitly in the learning formulations. Although effective, our proposed frameworks are
only specific solutions to the broader insights on out-of-generalization generalization pro-
vided in this work. Hence, we hope to stimulate future lines of research on this topic.
The learning tasks that have been introduced to advance representation generalization are
formulated to only reuse already provided class annotations or to not require any super-
vision at all. The reason for this is partly that we simply cannot tell what kind of shared
features can be learned from data, thus what kind of supervision would be required. On
the other hand, providing sufficient supervision information is often tedious and costly.
Both of these reasons are actually common issues for machine learning in general. This
supervision dependency issue is particularly unfortunate, since Deep Learning has proven
to scale extremely well with the amount of training data, which, for example in the case
of images or videos, seems to be available in unlimited quantities. As a consequence,
bottlenecks in providing the required supervision information often directly represent
bottlenecks in model performance. To overcome these problems, the research area of un-
supervised learning is devoted to learning from pure data without the need for supervisory
information – often using highly specific surrogate tasks as a substitute for annotations. In
the second part of this thesis, we investigated the application of well-established similarity
learning, respectively Deep Metric Learning techniques, to unsupervised representation
learning, both for the domain of static images and complex video sequences. To provide
such models with the necessary similarity constraints for learning, we explored how to
extract reliable sample relations from the data itself, i.e. relations that are likely to be
correct. This is orthogonal to related work in unsupervised learning, which typically
does not consider the reliability of the inferred constraints, despite the risk of degraded
performance due to learning from erroneous self-supervision. Indeed, our experimental
results show that reliability benefits learning and the eventually learned representations.
By alternating between refining our representations and inferring more and more simi-
larity relations, our models show significant performance improvements. In particular in
the domain of video sequences depicting human activity, our proposed model enables ap-
plications like temporal super-resolution, zero-shot human pose estimation, and transfer
learning.
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