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ABSTRACT

Computer Vision aims to artificially mimic the visual reasoning capabilities of humans by
using algorithms which, once deployed to mechanical agents and software tools, improve
car and traffic safety, enable effective visual search on the World Wide Web, or increase
productivity and quality in industrial production processes. Similar to the reasoning pro-
cesses that are constantly occurring in our brains, such algorithms directly rely on abstract
representations of the objects in the visually perceivable environment and beyond. Con-
sequently, learning informative representations that allow to detect and recognize objects,
and to evaluate image scenes is of paramount importance to almost all areas of computer
vision.

The quality of a learned object representation typically depends on certain properties such
as invariance to image noise, e.g. uninformative background, and robustness to object ro-
tation, translation, or occlusion. In addition, many applications require representations
that enable comparisons, i.e. to determine how similar or dissimilar two objects are se-
mantically. However, arguably the most challenging aspect of learning object represen-
tations is ensuring generalization to unseen objects, object variations, and environments.
While on the first aspects a large corpus of similarity learning literature exists, the latter,
i.e. the generalization of object representations, is still poorly understood and thus rarely
addressed explicitly.

In this thesis, we analyze the current field of similarity learning and identify properties
of object representations that correlate well with their generalization performance. We
leverage our findings and propose novel methods that improve current approaches to sim-
ilarity learning, both in terms of data sampling and learning problem formulation. To
this end, we introduce several training tasks that complement the prevailing paradigm of
standard class-discriminative learning, which are eventually unified under the concept of
Diverse Feature Aggregation. To optimally facilitate the optimization of similarity learn-
ing approaches, we replace the commonly used heuristic and predefined data sampling
strategies with a learnable sampling policy that adapts to the training state of our model.
Typically, similarity learning finds applications in supervised learning problems. How-
ever, due to more training data becoming available and annotation processes often being
tedious or even infeasible, unsupervised learning settings have been of particular interest
in recent years. In the second part of this thesis, we explore the effectiveness of similarity
learning for obtaining informative representations without the need for training labels
for both static images and video sequences. To enable learning, our approaches alternate
between inferring data relations during training and refinement of our visual representa-
tions. In doing so, we resort to the classic divide-and-conquer principle: we decompose
overall complex learning problems into feasible local subproblems whose solutions are
subsequently consolidated to yield concerted, global representations.

Throughout this work, we justify our contributions through rigorous analysis and strong
model performance on standard benchmarks sets, often outperforming previous state-of-
the-art results.
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Z USAMMENFASSUNG

Computer Vision hat das Ziel das visuelle Denkvermdgen des Menschen kiinstlich mit Al-
gorithmen nachzuahmen, welche eingesetzt in Software Tools und mechanischen Agenten
die Sicherheit im Autoverkehr verbessern, effektive visuelle Suche im World Wide Web
ermoglichen oder die Produktivitit und Qualitdt in industriellen Produktionsabliufen
steigern. Ahnlich wie die Denkprozesse, die stindig in unserem Gehirn ablaufen, stiitzen
sich solche Algorithmen direkt auf abstrakte Reprisentationen der Objekte in der visuell
wahrnehmbaren Umgebung und dariiber hinaus. Folglich ist das Erlernen informativer
Reprisentationen, die es ermdglichen Objekte zu detektieren und erkennen, sowie Bild-
szenen zu bewerten, von grofiter Bedeutung fiir fast alle Bereiche von Computer Vision.
Die Qualitit einer gelernten Objektreprisentation hingt typischerweise von bestimmten
Eigenschaften ab, wie die Invarianz gegeniiber Bildst6rungen, z. B. uninformativen Hin-
tergrund, und der Robustheit gegeniiber Objektrotation, -translation oder -verdeckung.
Dariiber hinaus benétigen viele Anwendungen Reprisentationen, die Vergleiche zwischen
Objekten erlauben und somit bestimmen lassen, wie dhnlich oder unihnlich zwei Objekte
semantisch sind. Der wohl schwierigste Aspekt beim Lernen von Objektreprisentatio-
nen ist jedoch die Gewihrleistung der Generalisierung auf ungesehene Objekte, Objekt-
variationen und Umgebungen. Wihrend zu den erstgenannten Eigenschaften ein grofier
Korpus an Literatur zum Ahnlichkeitslernen vorliegt, ist der letzte Aspekt, d.h. die Gen-
eralisierung von Objektreprisentationen, noch wenig verstanden und wird daher selten
explizit behandelt.

In dieser Arbeit analysieren wir das aktuelle Feld des Ahnlichkeitslernens und identi-
fizieren Eigenschaften von Objektreprisentationen, die gut mit ihrer Generalisierungsleis-
tung korrelieren. Wir nutzen unsere Erkenntnisse und schlagen neuartige Methoden
vor, die aktuelle Ansitze des Ahnlichkeitslernens sowohl in Bezug auf die Datenauswahl
als auch auf die Formulierung des Lernproblems verbessern. Zu diesem Zweck fithren
wir mehrere Trainingsaufgaben ein, die das vorherrschende Paradigma des standardmifii-
gen klassendiskriminierenden Lernens erginzen und die schliefflich unter dem Konzept
der vielfiltigen Merkmalsaggregation vereinheitlicht werden. Um die Optimierung von
Methoden des Ahnlichkeitslernens bestmdglich zu unterstiitzen, ersetzen wir die tiblicher-
weise verwendeten heuristischen und vordefinierten Daten-Sampling-Strategien durch eine
lernfihige Sampling-Strategie, die sich an den Trainingszustand unseres Modells anpasst.

Typischerweise findet das Ahnlichkeitslernen Anwendung in tiberwachten Lernproble-
men. Da jedoch immer mehr Trainingsdaten zur Verfiigung stehen und Annotation-
sprozesse oft mithsam oder sogar undurchfiithrbar sind, sind uniiberwachte Lernsettings
in den letzten Jahren immer mehr in den Fokus gertickt. Im zweiten Teil dieser Arbeit
untersuchen wir daher die Niitzlichkeit des Ahnlichkeitslernens zur Gewinnung infor-
mativer Reprisentationen ohne die Notwendigkeit von Trainingslabeln sowohl im Bere-
ich der statischen Bilder als auch der Videosequenzen. Um das Lernen zu ermoglichen,
alternieren unsere Ansitze zwischen der Inferenz von Trainings-Datenbeziehungen und
die Verfeinerung unserer visuellen Reprisentationen. Dabei greifen wir auf das klassis-
che Divide-and-Conquer-Prinzip zuriick: Wir zerlegen komplexe Gesamtlernprobleme
in einfachere lokale Teilprobleme, deren Losungen anschliefiend zu globalen Reprisenta-
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tionen vereinigt werden.

In dieser Arbeit rechtfertigen wir unsere Beitrige durch rigorose Analysen und eine starke
Modellleistung bei Standard-Benchmarks, die oft die bisherigen State-of-the-Art-Ergebnisse
tibertreffen.
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1 INTRODUCTION

1.1 VisuaL REASONING AND COMPUTER VISION

Every day we navigate the world as we perceive and interact with our immediate envi-
ronment. We recognize and discriminate among tens of thousands of objects [20, 78],
read the faces and emotions of other people [104] and identify various types of dangerous
situations on our quest for survival. To master these and many other essential tasks of
visual reasoning, our brain is continually trained on a steady stream of visual input while
simultaneously applying the already built-up knowledge. Beginning with the reception
of visual sensory signals on our retina, we process and aggregate the information in our
visual cortex [104], the basis of further interpretation and reasoning in various other ar-
eas of our brain [67]. Amazingly, despite the enormous complexity and vast amount of
information to be processed, we perform these tasks effortlessly and usually even uncon-
sciously [113] at almost every moment of our lives.

The goal of Computer Vision is to artificially mimic this process in mechanical agents and
software tools, e.g. to improve safety in automobile traffic, enable effective visual search
on the World Wide Web, increase productivity and quality in industrial production pro-
cesses and aid in many more applications. To this end, algorithms must be developed that
can solve the many tasks that constitute visual reasoning. Typical tasks are for instance
object detection [64, 187, 190], classification [45, 91, 131] and object segmentation [75, 89],
which are illustrated in Fig 1.1. An initial effort to construct a visual system solving such
tasks and, thus, put Computer Vision on the map of academic research was launched in
the early 1960s with the famous MIT *Summer Vision Project” and, among others, the
seminal work ’Machine Perception Of Three-Dimensional Solids’ [192]. After failing to
meet initially high expectations, Computer Vision found its first commercial application
in the late 1970s with Optical Character Recognition (OCR). Thereafter, research gained
momentum in the 1980s and set milestones, for instance with the Lucas-Kanade method
for optical flow [10] (1981), the Canny Edge Detector [29] (1986) and the first Face Recog-
nition system [230] (1991).

Nowadays, driven by breakthroughs in machine learning, Computer Vision lives up to
early expectations by achieving superhuman performance in many recognition tasks, en-
abling applications in autonomous driving [ 106], medical imaging [39, 82] and robotics 35,
52]. The success and growing importance of Computer Vision for these and many other
applications is ultimately enabled by increasingly more complex tasks coming within
reach and eventually being solved. Ongoing advances in generative modeling, holistic
scene understanding, temporal reasoning, and extensions to the 3D world are bringing
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i person
frisbee
dog

(a) Object classification (b) Object detection (c) Instance segmentation

Figure 1.1: Examples of three main Computer Vision tasks. (a) Image classification aims at predicting
labels reflecting the objects depicted in an image. (b) Object detection additionally
localizes the objects by means of bounding boxes. (c) Instance segmentation extends
object detection to a pixel-level localization of objects, 1.e. assigning pixel-wise class
labels for each object detected.

Computer Vision ever closer to the goal of developing systems that exhibit a complete
understanding of the visually perceivable environment and beyond.

1.2 THE ROLE AND IMPORTANCE OF OBJECT REPRESENTATIONS

A key factor of making sense of the massive amount and complexity of visual input is our
ability to develop abstract representations in our brain [78, 135, 152] that describe the ob-
jects we encounter in the visual world. Typical visual cues that allow us to identify and dis-
tinguish between objects are for instance color and texture. However, since many objects,
such as cars, exhibit large variations in these features, also geometrical properties describ-
ing object shape must be captured. Eventually, the closer distinct object categories are, the
more complex and fine-grained representations are needed to enable effective recognition.
Hence, object representations should describe objects on different levels of granularity and
detail to ultimately serve as a basis to the various higher-level (visual) reasoning processes
[67]. Moreover, to successfully and reliably enable these processes, object representations
are required to exhibit the following characteristics [44, 53, 92, 231, 279]:

(1) Our world is dynamic and objects may be perceived in infinite variations. Therefore,
consistent and accurate object recognition requires representations to be invariant to vari-
ations such as size, rotation, position, and background.

(ii) We are living in a continuous world and reasoning requires us to make situational
choices and comparisons. Since these tasks typically involve the evaluation of objects,
representations must allow for a notion of how similar or dissimilar objects are to others
and also account for their own variations. Examples are the condition and value of an
object to be purchased, whether or not foods are still consumable, estimating a person’s
mood or attitude towards us, and the evaluation of skills or actions.

(111) Finally, the world is vast and ever-changing. The objects we encounter in our lives are
not predefined from the start. We will always be discovering and learning new things and
are constantly faced with situations we have never experienced before. Rapid evaluation



1.2 The role and importance of object representations

Deep Neural Network Output
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Figure 1.2: Prototypical depiction of a (deep) nenral network model. Each layer ¢1,. .., ¢ can be
considered as an (intermediate) representation of the inputs X, while the low-level
representations are also often referred to as features. In essence, deep neural networks
are a composition of simple, parametrized functions, e.g. convolutions or inner prod-
ucts, at large scale. Trained to yield outputs J by optimizing a given task such as
object classification, the parameters of the network are updated via the backprogation
algorithm [48, 199]. Due to the immediate connection between X and Y, the repre-
sentations ¢ are learned to support the task at hand and this optimization procedure
is called end-to-end training. For a detailed introduction to DNNs and Deep Learning
in general, we refer the reader to the 'Deep Learning’ book by Goodfellow et al. [79].

of and adaptation to the unknown is thus an important part of our interaction with the
world, and was particularly crucial for survival in the earlier days of human existence.
Consequently, the representations we rely on must also capture and generalize to novel
variations of already known objects and their evaluations within new circumstances [11,
53] or even unknown objects.

1.2.1 OBJECT REPRESENTATIONS IN COMPUTER VISION

Considering the human brain as a paragon for effective visual reasoning, almost any Com-
puter Vision model today operates on abstract object representations. Designed to war-
rant the aforementioned properties, a large corpus of research on representation and simi-
larity learning has emerged in recent decades. Early works proposed representations based
on shallow, hand-crafted image features like pixel gradients [13, 16, 49, 147], color his-
tograms [202] and local texture changes [2], thus predefining and fixing the visual patterns
and features used to describe and compare objects. With the advent of Deep Learning
and the powerful concept of backpropagation-based end-to-end training [48, 79, 199], the
paradigm of finding object representations has changed. Nowadays, object representa-
tions are learned, i.e. explicitly optimized to yield flexible, deep hierarchies of features
describing objects on multiple levels of granularity, directly solving a particular task. Typ-
ically, starting from low-level features that activate on similar patterns as the hand-crafted
predecessors, features are gradually aggregated to more high-level and eventually holis-
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tic descriptions of objects. Fig. 1.2 illustrates a prototypical depiction of a deep neural
network (DNN) consisting of a sequence of fully connected layers. Similar sequential
architectures which may consist of various, conceptually different layers, in particular
convolution-based', are the backbone of almost every modern Computer Vision model.
Today, there exist many different network architectures, consisting of increasingly more
complex and more densely inter-connected functions, which are specialized to given tasks.
Among the most widely used network families are Inception networks [222], residual neu-
ral networks (ResNets) [91], UNets [193], autoregressive and recurrent neural networks
(RNNs) [40, 97] and generative networks [80, 123]. Equipped with millions of trainable
parameters, these models can be trained on huge amounts of data, learn powerful repre-
sentations, and thus contribute greatly to recent breakthroughs in Computer Vision.

1.2.2 APPLICATIONS AND CHALLENGES

Well-generalizing representations that effectively capture similarities and dissimilarities
between objects have a strong impact on a broad range of Computer Vision applications.
The most immediate application are image retrieval based tasks [145, 161, 241, 256]. For
a given query image, these problems aim to select the most similar instances from large
collections of images, thus they can also be considered as an equivalent formulation of
image classification. In a similar vein, there are numerous related tasks such as face verifi-
cation[41, 143, 205, 224, 230, 245], person (re-)identification [37, 211], human pose estima-
tion[ 12, 24, 46, 154, 220] or image style transfer [128]. Moreover, while these tasks are often
formulated to operate within a given data distribution, typically a fixed, predefined set of
object classes, arguably the most important and challenging application is transfer learning.
Transfer learning strives for finding representations that not only allow to describe and
compare objects within the training distribution but in particular also generalize to novel
data (cf. (71z) above), such as novel object variations, entirely unseen categories, or even
different tasks. Depending on the exact training and evaluation setting, we distinguish be-
tween many flavors of transfer learning, e.g. (general) transfer of learned representations
[36, 127, 131, 177, 253], few-shot learning [66, 125, 186, 235], domain adaptation [47, 69, 246]
and zero-shot learning [170, 171]. While each setting has its own dedicated methods pro-
posed over the past years, the most influential and general class of algorithms today for
learning image representations is Similarity or (Distance) Metric Learning.

"Typically low-level features are learned by convolutional layers. These layers [79] exploit sets of shared pa-
rameterized convolution masks to circumvent the heavy computational burden when processing large in-
put images. Consequently, the more widely used expression convolutional newral networks (CNN) emerged
and is often used synonymously for deep neural networks in general.



1.3 (Deep) Visual Similarity and Representation Learning

1.3 (DEEeP) VISUAL SIMILARITY AND REPRESENTATION LEARNING

Under the paradigm of end-to-end training, in deep neural networks a representation ¢ of
an object depicted in image x is composed of a sequence of differentiable, parameterized
functions ¢1, ..., o7,

¢(x;0) = (pr o pr—10---¢1)(x;0) = ¢r(dr—1(- - P1(x;01) - -3 07_1):07) , (1.1)

with trainable parameters # = (61, ...,07). Hence, the representation ¢ is adjustable
to optimally support the solution to a given task, respectively the optimization of its
corresponding learning problem (cf. Fig. 1.2). To this end, a representation learns to
capture the information about input images and the depicted objects within in sufficient
detail, as well as invariances to potentially unimportant factors such as background clutter,
viewpoint, or occlusions. Consequently, the quality of an object representation, i.e. its
ability to express similarities between objects, its robustness to noise and clutter, and
also its generalization capabilities, directly depend on the mathematical formulation and
optimization of the targeted learning problem.

1.3.1 LEARNING REPRESENTATIONS BY OPTIMIZING VISUAL TASKS

Let {z1,z2,...xzn} = X be a set of D' dimensional training images. The goal is to learn
a D-dimensional representation ¢ : R”" — & C RP. Finding a visual representation
¢ is typically framed as a learning problem of a visual task in terms of a task-specific
function G(¢(z, ), ¢), with G directly depending on the representation ¢ and additional
task-specific parameter (. Such objectives are naturally formulated in DNN based learning
frameworks (1.1), where 6 denotes the trainable parameters of the (deep) representation
¢ and (if required) ¢ the trainable parameters specialized to G.

Learning the visual task, thus optimizing the model parameters (0, ¢), is typically per-
formed by matching its predicted output § = G(¢(z;6), ) to an expected output y € Y
for the training images X'. Depending on the task at hand, y may be discrete object labels,
coordinate locations in an image, pixel-wise scores, or any suitable space for modeling the
learning problem. Thus, G expresses a relationship between the representation of images
x and the output §. A typical example for a task G is object classification, typically for-
mulated to predict probabilities § = P(j|x) of an image = depicting a certain object class
j by means of the softmax function’ o over K classes with parameters ¢ = (¢y, ..., (k),
with G e RP fori=1,..., K, ie.

exp((] 6(2:9))

G((x;0);C) = o(b(x:0); ) = '
(6050 £ 00 ) = e L

(1.2)

*In this case we assume the bias term, which is typically considered for classification problems, to be equal
to zero. Consequently we can omit these terms.
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where (i, can be interpreted as class representations. Formally, to train our model on
the task G, we optimize an objective function £ suitable to match the predictions § and
expected outputs y, 1.e.
min £(9,y) . (1.3)
0,¢
Note, that (1.3) is in particular optimized for parameters 6. Hence, to optimally perform
task G, the representation ¢ needs to extract and capture informative features from the
images X. In most cases ) is provided by human annotated ground-truth information
which constitutes the realm of supervised learning. However, Y may also be formulated to
solely exploit inductive biases in the training data itself, which gives rise to other research
areas such as unsupervised learning’[30, 36, 90, 165, 257] also see chapter 6 and 7) and semi-
supervised learning [32, 121, 136, 172].

1.3.2 DEEP SIMILARITY LEARNING

Optimizing image classification tasks such as (1.2) on large and diverse datasets, such as
ImageNet [50] (~ 1.2 million images), YFCC100M dataset [226] (~ 100 million flicker im-
ages and videos), etc., results in highly discriminative representations. Due to their partic-
ularly well-generalizing low-level features, they are the most widely used representations
today for initializing Computer Vision models which accelerates and more easily enables
further training on various kinds of tasks [127]. However, despite yielding universal low-
level features, the actual set of objects to be recognized by these models is pre-defined
and fixed. Thus, the naive application of such representations for directly recognizing
and retrieving objects outside the training distribution is limited [51], diminishing desired
generalization capabilities of the learned object representation ¢. Moreover, training clas-
sification models are governed by the availability of discrete class labels. Consequently,
their applicability to weaker or more abstract forms of supervision is restricted, e.g. in
cases where only relative image relations can be induced or more continuous notions of
similarity are to be learned [119].

Similarity learning addresses these shortcomings by directly optimizing the target repre-
sentation space ® to reflect similarity, respectively dissimilarity constraints between im-
ages - l.e., constraints specifying if samples are supposed to be similar or not. Given a
distance function d : ® x ® — R>( (e.g. Euclidean or Mahalanobis distance), the map-
ping ¢ is optimized to embed similar images close together in ® under d and dissimilar
images far apart, reflecting some semantic concept of similarity, cf. Fig. 1.3. Typically ®
is also referred to as the embedding space. Hence, we optimize tasks G expressed as distance
functions d between embedded training images ¢(X; 6), i.e.

G(p(x150), d(2;0);¢) = d(P(2150), d(x2;0)) , (1.4)

to implement the similarity constraints on ®. Hence, in Eq. (1.4) we define the learning
task G on relations between two or potentially even more samples. One of the most ef-
fective and arguably the most widely used category of objective functions £ to optimize

3Often equivalently referred to as self-supervised learning.
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Figure 1.3: The basic principle of similarity learning. (a) The representation ¢ is optimized to map
similar images close together, i.e. minimizing the distance between some anchor image
(grey) and similar images (green) while maximizing its distance to negative images
(red). (b) An example of a representation optimized using class membership as binary
similarity constraints. Each class is represented by a different color. Similar classes
should be close, dissimilar classes far from each other. Moreover, ¢ is regularized by
restricting it to the surface of a three-dimensional hypersphere.

our distances are summarized as ranking-based approaches [171, 205, 217, 251, 256]. These
methods directly optimize relative ordering constraints between tupels of images based
on similarities defined by ). For instance, suppose Y allows to induce pairwise simi-
larity scores y;; € R which quantifies how similar images x;, z; are, with higher scores
indicating larger similarity. Using v;; we can construct triplets of images {(z;, zj, i) €
X X X x X | yij > yir} to represent our ordering constraints. Choosing d to be the
squared euclidean distance, the well-known triplet loss [34, 205] is now formulated as

L(d(d(;0),0(x5;0)), d(p(2i;0), p(2x;0)); V) =

) , (1.5)
1633 0) — ¢ 0I5 — llé(wi; 0) — dlak; O)]5 + B+ -

Here, the supervision provided by } determines which distances to minimize and and
to maximize and [-]; £ max (0, -) denotes the hinge function. Typically, z; is called an-
chor, x; positive and xj, negative. The parameter 3 denotes a fixed, scalar margin which
ensures that (1.5) only enforces constraints y;; > v; up to a certain degree in order to
stabilize optimization. In the literature, similarity learning is naturally addressed by the
field of Metric Learning, respectively, in the era of deep neural networks, by Deep Metric
Learning (DML). The subsequent chapter 2 provides a dedicated introduction to (Deep)
Metric Learning by summarizing and comparing the most important objectives, as well
the overall training pipeline of DML models.

Concluding, formulating G directly based on distance relations offers several benefits for
both learning and inference. Among the most important ones are (7) similarity constraints
are very general and, thus, can be derived from and combined with different kinds of su-
pervision signals; (7z) depending on the granularity of ), we are able to exercise immediate
control over the learned embedding ¢ which, for instance, ranges from implementing a
clustered structure separating between object categories to total orderings on the training
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samples X; (112) the learned embedding ¢ is naturally applicable to classification and im-
age retrieval applications and is also defined for instances and on object classes outside the
training data distribution. Moreover, due to the general nature of the contrastive learning
signal, similarity learning can be used to formulate many other tasks, such as learning
hashing functions [73, 169, 254], recommender systems [142, 203] and density estimation
[84]. Finally, also the research area of unsupervised (low-level) representation learning is
today heavily influenced by breakthroughs and techniques of similarity learning [36, 174].

1.4 Tuesis OBJjECTIVE AND CHALLENGES

Benefiting from the advent of deep neural networks, representation and similarity learn-
ing have made remarkable progress with supervised, class-discriminative training being the
leading learning paradigm. Training ever larger models on vasts amounts of data while still
being able to effectively capture the training distribution, clearly demonstrates their ex-
cellent scaling and predictive capabilities. However, despite the tremendous success, such
models are still subject to serious limitations, such as out-of-distribution generalization
and strong label dependency. Motivated by these shortcomings the following research
objectives are addressed in the scope of this thesis.

Standard discriminative training by design yields representations which are highly special-
ized to the training data. Asa result, performance deteriorates with a growing gap between
the distribution of training data and test data. However, as discussed in Sec. 1.2.2, repre-
sentations should ideally equally well generalize to data outside the training distribution.
Unfortunately, in the limit case, such out-of-distribution samples and classes may be com-
pletely unknown when learning our object representation. Therefore it is particularly
challenging to formulate learning objectives that yield sufficiently expressive representa-
tions that also capture features of these instances. As a results, out-of-distribution general-
ization remains an open research problem to this day. Addressing this problem leads to the
the main research question of this thesis: with only a limited amount of available training
data, can we find training signals beside the current paradigm of class-discriminative learn-
ing to extend the generalization of object representations beyond the training distribution
? To answer this question, we analyze the current field of similarity learning, respectively
Deep Metric Learning, to identify potential factors that drive out-of-distribution general-
ization. Based on this analysis, we aim to develop new approaches for similarity learning
that advance the capabilities and performance of its current state. Since the lack of prior
knowledge about the potential objects to be captured seriously hinders the provision of
informative training supervision, we particularly aim to explore learning signals which
do not rely on specialized annotation information.

In the second part of this thesis, we want to go further and explore the application of sim-
ilarity learning to the realm of completely unsupervised training settings. Although the
number of available training images is growing larger, providing models also with the typi-
cally required supervision information is tedious, costly and, thus, ultimately restricts the
learning of stronger representations. Especially for complex data domains such as video
sequences, providing annotations is often prohibitively expensive, preventing to tackle
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certain tasks altogether. The research area of unsupervised representation learning is ded-
icated to address this problem. While specialized surrogate tasks are typically formulated
as substitutes for labeling information, the adaptation of the more general framework of
similarity learning to unsupervised representation learning is poorly explored. In this
thesis we investigate this question and the applicability of similarity learning for unsuper-
vised representation learning both for the domains of static images and video sequences.
Without having access to labels or side information about data relations to use for train-
ing, we must carefully infer them ourselves. Given the large amount of potential relations
to be exploited, the main challenge is to estimate which relations actually refer to true
object similarities and dissimilarities and which are likely noise. Since only a small set of
relations can typically be identified at the outset, our goal is to develop training curricu-
lums that progressively refine and improve our object representations during training by
carefully inferring and leveraging more and more reliable learning constraints.

1.5 CONTRIBUTIONS

In collaboration with my great colleagues, the following publications emerged within the
scope of this thesis:

* Unsupervised Representation Learning by Discovering Reliable Image Rela-
tions
T.Milbich*, O.Ghorit*, B.Ommer
Pattern Recognition Journal (PR), Volume 102, June 2020

* DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning
1. Milbich*, K. Roth*, H. Bharadhwaj, S. Sinba, Y. Bengio, B. Ommer', J. Paul Cohen'
European Conference on Computer Vision (ECCV) 2020

* Sharing Matters for Generalization in Deep Metric Learning
T Milbich*, K.Roth*, B.Brattoli, B.Ommer
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), only online,
has yet to appear in print.

* Revisiting Training Strategies and Generalization Performance in Deep Metric
Learning
K.Roth*, T.Milbich*, S.Sinha, P.Gupta, B.Ommer, ].P.Cohen
International Conference on Machine Learning (ICML) 2020

e PADS: Policy-adapted Sampling for Visual Similarity Learning
K.Roth*, T.Milbich*, B.Ommer
Conference on Computer Vision and Pattern Recognition (CVPR) 2020

* Unsupervised Video Understanding by Reconciliation of Posture Similarities
T.Milbich, M.Bautista, E.Sutter and B.Ommer
International Conference on Computer Vision (ICCV) 2017
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As indicated by (*), in particular Karsten Roth contributed under my supervision equally
to various works, in particular helping with the implementation in large parts. In sum-
mary, this thesis comprises the following main contributions published in these works:

10

Based on a study and comparison of the current state of Deep Metric Learning,
we analyze driving factors of generalization of object representations. As a result,
we identify correlations between generalization and certain structural properties of
the learned embedding space. In particular, we uncover a strong relationship to the
concept of representation compression.

In agreement with the insights derived from the generalization analysis, the con-
cept of shared features is introduced to similarity learning. These features target
and capture patterns that are shared between training classes, thus increasing the
expressiveness of representations. Moreover, effective ways to learn shared features
and how to jointly optimize them with discriminative features are proposed and
evaluated.

An analysis of the distribution gap between training and test data and its influence
on the performance of ranking-based similarity learning. Results considering both
discriminative and shared features indicate a significant benefit of the latter to alle-
viate the overfitting problem of zero-shot classification.

The idea of learning features that are complementary to the standard, discriminative
learning paradigm is extended to capture various semantic concepts of similarity to
further bridge the generalization gap. In particular, learning tasks targeting features
across different object classes, features within object classes, and features indepen-
dent of class assignments are designed and jointly optimized.

Many deep ranking-based similarity learning approaches strongly rely on effective
training data sampling strategies. To optimally support this class of algorithms, a
novel data sampling policy is proposed which adapts to the learning state of DML
models. Resorting to Reinforcement Learning (RL), the sampling policy is trained
to directly enhance generalization performance. (Karsten Roth contributed equally
to the development of the sampling strategy).

New state-of-the-art results are achieved by the proposed novel DML models and
model extensions across standard benchmark sets of varying scale and sample-to-
class ratios.

A novel approach to unsupervised representation learning to yield representations
that transfer to down-stream tasks such as detection, segmentation, and recognition.
The proposed method is based on techniques from similarity learning.

An effective strategy to mine reliable, most likely correct, similarity constraints for
learning without any need for supervision. In order to find such reliable relations,
the overall learning problem is partitioned into and optimized on sub-problems.
Subsequently, their solution is consolidated into a single, global solution. The



1.6 Thesis Organization

proposed model achieves competitive and new state-of-the-art results on standard
benchmark datasets.

* Learning representations that are able to capture and compare video sequences are
difficult to train due to the very expensive annotation process for temporal data.
This thesis proposes an unsupervised approach to learn such representations for
understanding human activity, based on similarity learning.

* In order to derive similarity constraints for temporal visual data, an integer linear
problem for pairwise sequence matching of human postures is formulated. For
efficient optimization, training sequences are split into sub-sequences. A deep neural
network is then trained to consolidate the local correspondences into a consistent
global representation.

1.6 THESIS ORGANIZATION

Chapter 2 first reviews and empirically evaluates the most important aspects of common
strategies for training DML models, including objective functions and crucial hyperpa-
rameter choices. Moreover, inconsistencies in training protocols in the literature are dis-
cussed and best practices for a fair comparison between different models are presented.
Based on this analysis, metrics reflecting both the arrangement of samples projected into
the embedding space and its captured information content are introduced. We show cor-
relations between our metrics and the generalization performance of DML models which
gives rise to driving factors for improving the transfer learning capabilities of such ap-
proaches. Finally, exploiting our observations, we present a simple regularization tech-
nique that improves the performance of ranking-based DML models.

Chapter 3 further makes use of the insights from chapter 2 to improve generalization in
similarity learning. To this end, the concept of shared features is introduced which aims at
capturing commonalities across training classes to improve the expressiveness of learned
embedding representations. Moreover, we show how to efhiciently learn such features next
to the classical discriminative training paradigm. A detailed analysis and evaluation of the
presented approach verifies the benefit of incorporating shared features for generalization
in similarity learning.

Chapter 4 extends the idea of chapter 3 and proposes a multi-task similarity learning
framework. We introduce and jointly optimize several novel tasks that yield mutually
complementary features to further increase the expressiveness and, thus, the generaliza-
tion of representations. In particular, learning tasks targeting discriminative, inter-class,
intra-class, and sample-specific features are examined. For the latter, we review and an-
alyze the utility of recent self-supervised learning approaches. Experiments on standard
benchmark datasets prove the effectiveness of the proposed framework.

Chapter 5 addresses the data sampling aspect of ranking-based DML methods which is
crucial for optimizing such models. In contrast to prevailing static sampling heuristics,
a dynamic and learned sampling policy is presented. Using Reinforcement Learning the
policy is continuously updated to adapt to the learning state of the DML model during

11
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training. Moreover, by optimizing the policy on a dedicated validation set, its effective-
ness is further increased. Experiments show the general applicability and utility of our
method across different DML approaches, backbone architectures, and datasets.
Chapter 6 applies similarity learning to the task of unsupervised representation learning.
To compensate for lacking ground-truth data relations typically required for training, a
strategy for mining reliable estimates for such similarity relations is developed. To this
end, the overall learning problem is partitioned into subproblems defined on subsets of re-
liable relations. First, each of them is solved independently by an alternating optimization
procedure. Subsequently, these solutions are consolidated to a single, overall representa-
tion exploiting inter-relations between the subproblems. We evaluate the utility of this
representation for downstream tasks such as classification, detection, and segmentation
and demonstrate strong results on each task.

Chapter 7 presents an approach for learning similarities between video sequences at the
example of human activities. Contrary to holistic video representations operating on ac-
tion labels, e.g. learned by standard action recognition, frames are encoded independently
and we represent video sequences as trajectories in a fine-grained activity space. Due to the
lack of labels, the approach is formulated as an unsupervised learning problem and solved
by alternating optimization between identifying frame-wise similarity relations and cap-
turing them in the activity space. Sequence matching is formulated as a novel Integer Lin-
ear Program (ILP) and representation learning is optimized using techniques from DML.
Activity is finally captured and understand by means of a recurrent neural network operat-
ing on activity representations. Experiments including zero-shot pose retrieval, temporal
super-resolution, and action synthesis verify the capabilities of the presented method.
Chapter 8 concludes the thesis with a final discussion.

12



2 DEeer METRIC LEARNING: TRAINING
STRATEGIES AND (GENERALIZATION

Learning visual similarity is important for a wide range of vision tasks, such as image
clustering [22], face detection [205] or image retrieval [256]. Measuring similarity requires
learning an embedding which captures images and reasonably reflects their similarities by
means of a predefined distance metric. One of the most adopted classes of algorithms for
this task is Deep Metric Learning (DML) which leverages deep neural networks to learn
such a distance metric preserving embedding.

Due to the growing interest in and influence of DML on representation learning in gen-
eral, a large corpus of literature has been proposed contributing to its success. How-
ever, as recent DML approaches explore more diverse research directions such as architec-
tures [105, 261], objectives functions [250, 266] and additional training tasks [141, 194], an
unbiased comparison of the impact of such factors becomes more and more difficult. Fur-
thermore, undisclosed technical details of published methods (e.g. data augmentations or
training regularization) pose a challenge to the reproducibility of these models, which is
of great concern in the machine learning community in general [23].

The first part of this chapter aims at establishing a transparent training and evaluation
protocol for fair comparison of DML approaches. We provide an introduction to deep
metric learning while briefly summarizing the transition of early linear metric learning
approaches to the deep variants mostly employed today. Subsequently, we identify and
discuss crucial design choices and hyperparameters of common DML training strategies,
which greatly influence the success and performance of these models. To this end, we
conduct a comprehensive study examining their impact on model performance and com-
pare current DML baselines under identical training conditions on standard benchmark
datasets.

On that basis, we extend our analysis in the second part of this chapter to examine gen-
eralization in DML more closely and analyze its connection to the structure of the em-
beddings learned by these models. In particular, we examine typically applied concepts
when learning representations such as (7) enforcing large inter-class margins [45, 51, 143],
(1) maintaining intra-class variance [141] and (7ii) compression of the learned representa-
tions. In summary, our most important contributions in this chapter can be described as
follows:

® We provide an exhaustive analysis of recent DML objective functions, their training
strategies, the influence of data-sampling, and model design choices to set a standard
benchmark. To this end, we made our code publicly available.

13
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* We provide new insights into DML generalization by analyzing its correlation to
the embedding compression (as measured by its spectral decay), inter-class margins
and intra-class variance.

® Based on the result above, we propose a simple technique to regularize the embed-
ding compression which we find to boost generalization performance of ranking-
based DML approaches.

This chapter is based on our publication ’Revisiting Training Strategies and Generalization
Performance in Deep Metric Learning’ [196].

2.1 PrRELIMINARIES: FROM LINEAR TO DEEP METRIC LEARNING

Subsequently, we briefly introduce the idea of metric learning and how to learn a similarity
preserving distance function.

2.1.1 LEARNING A DISTANCE METRIC

Learning a metric space reflecting similarity between D’-dimensional training data points
z; € X requires to find a corresponding distance function d : X x X — R. For any
21, T2, 23 € X, a distance function d fulfills

d(z1,22) > 0Nd(x1,22) =0 21 = 22 (identity of indiscernibles)
d(w1,v2) = d(w2,71) (symmetry) (2.1)
d(x1,x2) < d(z1,23) + d(z3, 22) (triangle inequality)

To learn such a distance function d, we resort to parametrized functions, whose parame-
ters 0 are optimized during training (1.3). In practice, enforcing the conditions (2.1) dur-
ing optimization is tedious, in particular when using deep neural networks to represent
d. Instead, we typically choose d to be a predefined metric function, e.g. the Euclidean
or Cosine distance, and learn a suitable transformation of our data points z; such that d
reflects provided similarty relations ), as already mentioned in 1.3.2. Let us know discuss
the basic linear metric learning problem formulations, their non-linear extension and the
transition to Deep Metric Learning.

2.1.2 (LiINEAR) MAHALANOBIS METRIC LEARNING

For a chosen metric d on a target space R, the general goal of metric learning is to learn
a transformation ¢: R”" — @ < RP of our data points ; € X such that the available
semantic relations, implicitly defined by some supervision information ), are captured in
the pairwise distances dy(z;, x;) = d(¢(x;), d(xj)).

The simplest class of models for the metric learning problem is given by requiring ¢ to
be a linear transformation. The most prominent and arguably earliest representative is

14
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Mahalanobis metric learning [252] which is often used equivalently for the general class of
linear metric learning in literature. The Mahalanobis distance is defined as

inahal (T3, T5) = \/(l‘z' — ;) TN (@ — ) (2.2)

with ¥ being the sample covariance matrix (assumed to be positive definite) estimated
from the given data X'. While originally introduced to quantify the distance between a data
point and some distribution!, (2.2) measures the pairwise distance between datapoints
while taking the covariance into account. Equivalently, the Mahalanobis distance can
be considered as the Euclidean distance between whitened datapoints # = ¥ /?(x —
). General linear metric learning now extends the distance (2.2) allowing an arbitrary
positive semi-definite matrix A,

da(wi,z;) = \/(a?z‘ — ;)T Az — ;) (2.3)

Thus we can factorize A = G' G, resulting in the linear distance metric da (z;,z;) =
||Gz; — Gzj||2 with the linear data transformation ¢(x;60) = Gz, where the learnable
model parameter 6 represent the entries of the matrix G.

Considering the supervised learning setting, we typically learn (2.3) using a set of pairwise
constraints which, depending on the supervision signal )V, may be given by scores directly
inducing quantitative pairwise similarity/dissimilarity constraints or relative ranking con-
straints between data points X. As already introduced in the introduction, the latter is
often represented by means of triplets t = (x;,zj,x) € Ty C X x X x X, where Ty
consists of those triplets ¢ for which x; is supposed to be more similar to x; than x,. Thus,
we can formulate learning (2.3) as a regularized optimization problem

min 7(A)
A0 (2.4)
subject to  da(zi,x;) < da(zi,zx) —B Vte Ty,

where A = 0 is a shorthand notation for the requirenment of A to be positive-semi
definite. Similar to (1.5) 5 denotes the a predefined margin and r is a regularization on
A, such as the Frobenius norm g(A), i.e.

Dl
1 1
9(A) = §HAH% =3 Z (Ai)? . (2.5)
ij=1

This norm is commonly used in other machine learning algorithms like ridge regression
[98] or support vector machines [45]. The selected regularization r(A) has important
implications for both the optimization process and properties of the resulting distance
metric. Thus, depending on the choice of r, various different algorithms for learning

'In this case the distribution is assumed to be gaussian A/ (1, ©) and we replace the second datapoint z; in
(2.2) with the distribution mean p.
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da (z, z;) have been proposed [134].

A popular example of metric learning algorithms for problem (2.4) is the Large Margin
Nearest Neighbour classification (LMNN) model proposed by Weinberger et al. [252].
This approach is learned from both direct similarity constraints (z;,z;) € S C X x X
given as pairs of data points which are supposed to be similar and relative triplet ranking
constraints 7Ty and is formulated as

min Y dalwinz) + A Y [+ dawiag) — dalwi )]s (2.6)
(zi,25)€S teTx

with []4 = max (0, -) being the hinge function.

2.1.3 NON-LINEAR METRIC LEARNING

KERNELIZATION. Linear transformations represent weighted combinations of the data
points x, which are consequently required to already provide a sufficient data description
for d 4 to be able to reflect similarity induced by . However, in practice this is gener-
ally not the case and linear models quickly fail to apply to complex data, such as high-
dimensional images, as the famous XOR toy problem [26] demonstrates. Consequently,
non-linear data transformations ¢(x) are required to tackle complex data domains of real-
world applications.

Since the Euclidean distance in its squared form can be formulated by means of inner prod-
ucts, ie. ||z, — |13 = (v; — ;) (2 — xj) = o) 2 + 22 2 — m}—mj a straight-forward
extension of linear models to yield non-linear transformations, is the kernelization of lin-
ear models. The key idea of kernel methods [209] is to replace linear inner products z "y
with non-linear kernel functions k(z,y) : X x X — R with

K(z,y) = ¢(z) " d(y) , (2.7)

thus assuming @ to be an inner product space. It follows that we do not explicitly need
to evaluate or even to know the mapping ¢(z), but only implicitly by evaluating the
kernel function x(x,y). In order for a kernel function x(z, y) to be valid, it has to satisfy
the Mercer condition [209]: Any kernel matrix K = (k(x;,2;)))i; of kernel function
values defined over X', must always be positive semi-definite. In particular, ¢ can be a
complicated, non-linear mapping into a arbitrarily high-dimensional embedding space ®
while we are still able to compute x(x,y) efficiently. The substitution of inner products
x "y with k(z, y) is known as the kernel trick and often also applied to extend other linear
methods such as support vector machines [45] or principle component analysis [112].

As a result, we can solve linear metric learning problems such as (2.4) in a kernel space ®
using the now implicit, non-linear transformation ¢, thus obtaining a distance function
da(z;, ;) of form ||Gé(x;) — Gd(z;)||3. The distance between novel query samples can
in general be computed by O(n) kernel evaluations over the training samples X. For
a detailed introduction to kernelized metric learning and its optimization, we refer the
reader to [134].
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(DEeep) NEURAL REPRESENTATIONS. Recent advances in training deep neural networks
show that complex, highly non-linear data transformations can be learned effectively for
a large range of machine learning tasks and applications. Thus, representing the data
transformation ¢ by means of a deep learning model is a natural extension for metric
learning problems of the form (2.4). Analogously, this deep metric learning problem
(DML) is then formulated as

min  r(0)
0 (2.8)
subject to  dy(x;, xj) < dg(xi,xp) —F Vt€ Ty .

where 6 are now the parameters associated with the network architecture of choice. More-
over, we now denote the distance function to be learned as dy(z;, z;) = ||(z:) —p(z;)]|2>
to indicate the direct dependence on the deep representation. Note that similarity and
ranking constraints are basically identical and unchanged. The learning problem (2.8) is
referred to as triplet loss learning in DML literature [205] (cf. (1.5) in chapter 1) and has
since been subject to several extensions [37, 256].

DiscussioN.  For visual similarity learning, implementing ¢ as a deep representation has
several advantages over the kernelized linear variant. In practice kernel methods restrict
the choice of the embedding ¢ due to the Mercer condition, which may not optimally
capture the data to be represented. Moreover, due to the high dimensionality of the image
domain, we typically need to resort to predefined intermediate representations of x. In
contrast, deep models allow for learning flexible representations which can be trained to
directly support the target metric learning problem. Moreover, evaluating the kernelized
distance function d 4 for arbitrary pairs of data points requires to evaluate kernel functions
over the full training set. Thus, given the scale of problem sizes nowadays, including up to
millions of images, evaluation of d 4 may be computationally expensive. Although, deep
models can also exhibit costly inference times due to their vast amount of parameters, it
does not scale with the training set size. Finally, the massive amount of training parame-
ters are arguably also their strongest advantage, as it allows to learn extremely powerful
representations.

Effective learning of such well-generalizing neural distance functions dg, however, requires
carefully designed training strategies, which in particular includes tuning and regulariza-
tion of the deep learning model. Next, we identify and introduce crucial parts of their
training pipeline followed by an analysis of their impact on performance by comparing
the recent publications of deep metric learning baseline methods.

2.2 TrRAINING A DEEP METRIC LEARNING MODEL

In this section, we summarize key components, hyperparamters and their options for
training DML models, which we subsequently analyze in an empirical study. We can

*While in chapter 1 we use ¢(x;6) to denote the deep embedding function, we now drop the explicit
dependence on  for simplicity reasons.
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Figure 2.1: Design taxonomy of Deep Metric Learning models. In this thesis, we decompose and
categorize models on similarity learning, respectively Deep Metric Learning, using the
depicted taxonomy. Throughout this work, we address several of those model building
blocks (i.e. general model, objective function and data sampling) in various chapters.
The remainder of this chapter introduces, summarizes and evaluates most of the ba-
sic components of DML models. Advanced components highlighted in the grey boxes
(bold) are addressed in subsequent chapters. Tuning and improving the different build-
ing blocks aims at increasing the generalization capabilities of DML models. To this
end, in this chapter, we both thoroughly evaluate the impact of different basic model
components based on a transparent training and testing protocol, and subsequently em-
pirically analyze desirable and beneficial properties of well-generalizing embeddings.

roughly group these elements into (1) training objective, i.e. the main objective function
addressing the core metric learning problem and potential extensions to it, which, for
instance, influence the features to be learned or regularizations; (12) data sampling strategies
including batch sampling strategies and negative sampling strategies crucial for learning
many ranking-based approaches. (ii1) general Deep Metric Learning training components
such as the backbone architecture of a DML model, its general regularization or data
preprocessing. Fig. 2.1 provides a taxonomy of these building blocks. In the following,
we discuss basic DML model components, which constitute and affect most DML training
pipelines, significantly impact their performance and exhibit an increased divergence in
the field, thus impairing objective comparisons between proposed approaches.

2.2.1 THE OBJECTIVE FUNCTION

In Deep Metric Learning we learn an embedding function ¢ which allows to measure the
similarity between datapoints z;, z; € R’ typically as the Euclidean distance dy (z;, x;) =
||@(z3) — ¢(x;)||2 between their projections into ®. The corresponding embedding func-
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2.2 Training a Deep Metric Learning Model

tion ¢ is formulated as a deep neural network parametrised by 6. To stabilize training
[100, 256], the embedding space ® is often regularized to the real hypersphere, i.e. we
choose

d=SP ={zeRP:|z|3=1}. (2.9)

Moreover, we assume a supervised training setting where our distance function dy is
trained to reflect semantic similarity defined by given sample-wise class labels y; € Y, thus
we want samples of the same class to be similar while being dissimilar for other classes.
Objective functions formulated to learn such an embedding function can be roughly cat-
egorized into ranking-based, proxy-based and classification-based approaches.

RANKING-BASED DML. The most widely used family of DML are ranking-based loss
functions operating on pairs [86], triplets [205, 256, 265] or larger sets of datapoints [37,
171,217, 250]. Learning ¢ is defined as an ordering task, such that the distances d(z;, z;)
between an anchor z; and positive z; of the same class, y; = y;, is minimized and the
distances dy(z;, x)) to negative samples 3, with different class labels, y; # i, is maxi-
mized. For example, triplet-based formulations (cf. (1.5)) typically optimize their relative
distances as long as a margin £ is violated, i.e. as long as dy(z;, x) — dg(xi, ;) < 5. An-
other prominent example of instance-based deep metric learning is the margin loss [256],
which introduces an additional dynamic, learnable margin c,

Lonargin = [(=1)17% (dg (i, 25) — ) + Bl . (2.10)

Here 1, denotes the indicator function given the condition a. Moreover, a state-of-the-art
representative of ranking-losses considering multiple negatives and positives at once for
a given anchor z; is the multi-similarity loss [251]. Suppose P is a set of indices denot-
ing positive training instances for x; and A a set of indices denoting negative training
instances. The multisimilarity loss £,,u1sim 1S then formulated as

1
Lonuitisim = OT log[l + Z eXp(al(d¢($i7 xj) + 6))]
' jep (2.11)

+ 1 log[1 + Z exp(—aa(dg(xi, xr) + B))] ,
a2 keN

where each negative and positive sample is exponentially weighted depending on its dis-
tance to x;. Further, the constants {1, ag, B} are predefined, fixed hyperparameters con-
trolling the optimization process.

The performance of ranking-based approaches is particularly sensitive to sampling strate-
gies for negative data points in, e.g. triplets Ty or the negative set NV, as these sets can
only represent small parts of the data distribution’, thus determining the features to be
learned. Consequently, finding the most effective strategies is an active field of research
[71, 88, 195, 205, 256, 262]. Chapter 5 is dedicated to this problem and provides an overview

*The larger the training set, the more sparsely is the (negative) data distribution representated for a given
anchor sample z;.
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2 Deep Metric Learning: Training Strategies and Generalization

over commonly used strategies and proposes a novel approach for learning such sampling
strategies.

Proxy-BaAsep DML. Proxy-based DML approaches circumvent the sampling issue of
ranking-based approaches by approximating the data distribution using one [161] or more
[118, 183] learned representatives (proxies) for each class. In the former case, each repre-
sentative basically acts as a estimated centroid of its class samples in ®. Replacing the
individually sampled, (true) negative and positive data points in standard ranking-based
DML with the class representatives dramatically reduces the complexity of the learning
problem. Consequently, computing the loss function over the full set of proxy negatives
(L.e. class approximations) is now computationally feasible, which leads to more stable
and faster training convergence [161].

The first proposed proxy-based DML model is the ProxyNCA loss [161] which is based
on the Neighbourhood Component Analysis [77]. Denoting v, € R as the proxy
representative for class y; € ), ProxyNCA is then formulated as

exp(—d(i, 1y,)) )
Ziéil,kyéyi exp(—d(¢i, Yr))

Moreover, comparing equation (2.12) with (1.2), we see that softmax-based classification
objectives can also be interpreted as proxy-based approaches. In this case, the model pa-
rameters (, in (1.2) represent the learned proxy representations for each class k with the
inner product used as distance measure.

ﬁproacyNCA = - 108;( (212)

CLASSIFICATION-BASED DML. The interpretation of softmax weights ¢ = ({1, ..., (k)
(cf. Sec. 2.2.1) acting as a class representation (cf. (1.2)) is exploited by classification-
based DML approaches by proposing dedicated adaptations. Making use of the equality
o) = Gl ll6(zo)ly cos i with k(0 < @yp < ) being the angle between
é(x;) and (i, we can reformulate the softmax-logits as

exp((,) o (1)) ]

Sas exp(¢)] é(:))

—1og[ exp (|G o) cos(piy) ] '
> k=1 XD Ckll[@ () || cos(ik))

By constraining ||Cx||2 = 1 and the regularization of ® to the hypersphere, ||¢(z;)|]2 = s,
we get

o(¢(ri);¢) = — 10g[
(2.13)

o(d(x;);¢) = —lo exp(s 08(@iy)) ] ) 2.14
(¢(x:); C) g[szZlexp(SCOS(%k» (2.14)

Optimizing (2.14) now only relies on the angle between samples z; and the class proxies
Ck, thus directly targeting the margin between them. Consequently, similar to ranking-
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based objectives, we can now introduce a margin parameter 3 to explicitly enforce large
decision boundaries between classes, i.e.

exp(s cos(B + @iy,))
exp(s €o8(5 + Piy,)) + Dopiy sy, XP(5 cOS(0ik))

o(¢(xi); ¢, 8) = —log (2.15)

Various DML formulations based on (2.15) emerged [51, 143, 144, 243] and have proven to
be particularly beneficial when dealing with millions of classes such as in face verification
problems. In these applications, each person constitutes an individual class where the
corresponding images can be regarded as natural data augmentations. Hence, the class
proxy-based learning problem is closely related to the explicit instance-based objectives
resulting in fine-grained distance functions dy.

Apvancep DML approacHES.  Additionally, more involved research extending the above
objectives has been proposed as explicitly considered in our overview Fig. 2.1. Examples
are the work of Sanakoyeu et al. [201] follow a divide-and-conquer strategy by partitioning
and subsequently merging both the data and embeddings; BIER [175, 261] employs an en-
semble of specialized learners to represent diverse data features and [ 156, 157, 194] extends
this idea by combining DML with explicit diverse feature learning tasks (cf. chapter 3
and 4). In an orthogonal way, approaches like [141] and [277] generate artificial samples
to effectively augment the training data, thus learning more complex ranking relations.
The majority of these methods are essentially based on the objective functions introduced
above and further hinge on the training parameters discussed in the following study, thus
directly benefiting from our findings. We will discuss several of such advanced DML mod-
els in more detail and in relation to concepts introduced over the course of the following
chapters.

2.2.2 DATA SAMPLING

Data sampling plays a crucial role in training deep networks in general [111, 117, 215], as
the gradients during optimization can only be computed on small subsets of the training
data. While the synergy between tuple mining strategies and ranking losses has been
widely studied [71, 205, 256] and is subject of chapter5, this section analyzes the impact of
mining informative mini-batches B. This process is independent of the specific training
objective and so far has been commonly neglected in DML research. Following we present
batch mining strategies operating on both labels and the data itself: label samplers, which
are sampling heuristics that follow selection rules based on label information only, and
embedded samplers, which operate on data embeddings themselves to create batches B
exhibiting diverse data statistics.

LaBeL SamPLERS.  To control the class distribution within B of size b = | B|, we examine
two different heuristics based on the number, n, of *Samples Per Class’ (SPC-n) heuristic:
SPC-n: Given bach-size b, we randomly select b/n unique classes from which we select n
samples randomly. In practice, typical values for n are 2, 4 or 8.
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SPC-R: We randomly select b — 1 samples from the dataset and choose the last sample to
have the same label as one of the other b — 1 samples to ensure that at least one triplet
can be mined from B. Thus, we eflectively vary the number of unique classes within
mini-batches.

EMBEDDED SaMPLERS. Increasing the batch-size b has proven to be beneficial for stabi-
lizing optimization due to an effectively larger data diversity and richer training informa-
tion [25, 158]. As the DML training is commonly performed on a single GPU (limited
especially due to tuple mining process on the mini-batch), the batch-size b is bounded by
memory. Nevertheless, in order to ‘virtually’ maximize the data diversity, we distill the
information content of a large set of samples B*,b* = |B*| > b into a mini-batch B by
matching the statistics of B and B* under the embedding ¢. To avoid computational over-
head, we sample B* from a continuously updated memory bank M of embedded training
samples. Similar to [159], M is generated by iteratively updating its elements based on the
steady stream of training batches B. Using M, we mine mini-batches by first randomly
sampling B* from M with b* = 1024 and subsequently find a mini-batch B to match its
data statistics by using one of the following criteria:

Greedy Coreset Distillation (GC): Greedy Coreset [1] finds a batch B by iteratively adding
samples z* € B* which maximize the distance from the samples that have already been
selected x € B, thereby maximizing the covered space within ® by solving

min max mindg(z, 2*) . 2.16
B:|B|=bxxcB* zeB o(7,77) (2.16)

Matching of distance distributions (DDM): DDM aims to preserve the distance distribution
of B*. We randomly select m candidate mini-batches and choose the batch B with smallest
Wasserstein distance between normalized distance histograms of B and B* [198].
FRD-Score Matching (FRD): Similar to the recent GAN evaluation setting, we compute the
frechet distance [96]) between B and B* to measure the similarity between their distribu-
tions using

FRD(B,B*) 2 ||up — p+ |3 + Tr(Sp + L= — 2(8p8s-)/?) . (2.17)
with e, Xe being the mean and covariance of the embedded set of samples. Like in DDM,
we select the closest batch B to B* among m randomly sampled candidates.

2.2.3 GENERAL MODEL TRAINING PARAMETERS AND ARCHITECTURE

Next to the objectives and data sampling process, successful learning hinges on a reason-
able choice of the training environment. While there is a multitude of hyperparameters to
be set, we identify several factors which both influence performance and recently exhibit
an divergence in proposed approaches.

ARCHITECTURES. Predominantly three basis network architectures are used in recent
DML literature: GoogLeNet [223] (GN, typically with embedding dimensionality 512),
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Network ‘ GN ‘ IBN ‘ R50
CUB200, R@1 45.41 | 48.78 | 43.77
CARS196, R@1 | 35.31 | 43.36 | 36.39
SOP, R@1 44.28 | 49.05 | 48.65

Table 2.1: Recall performance of commonly used network architectures after ImageNet pretraining.
Final linear layer is randomly initialized and normalized to the unit-hypersphere.

Inception-BN [103] (IBN, 512) and ResNet50 [91] (R50, 128) (with optionally frozen
Batch-Normalization layers for improved convergence and stability across varying batch
sizes®, see e.g. [28, 194]). Due to the varying number of parameters and configuration
of layers, each architecture exhibits a different starting point for learning, based on its
initialization by ImageNet pretraining [50]. Table 2.1 compares their initial DML perfor-
mance measured in Recall@1 (R@1). The reference to differences in architecture is one of
the main arguments used by individual works not to compare themselves to competing
approaches. Disconcertingly, even when reporting additional results using adjusted net-
works is feasible, typically only the performance using a single architecture are reported.
Consequently, a fair comparison between approaches is heavily impaired.

WEIGHT DEcay. Training deep networks commonly involves a regularization of the
parameters to be optimized. Similar to (2.4), () in problems like (2.8) is typically im-
plemented as a L2-regularization ||6|]2, which is also referred to as weight decay [132].
In similarity learning, particularly on small datasets, its careful adjustment is crucial to
maximize generalization performance. Nevertheless, many works do not report this.

EMBEDDING DIMENSIONALITY. Choosing a dimensionality D of the embedding ¢ influ-
ences the embedding structure and consequently generalization performance. While each
architecture typically uses an individual, standardized dimensionality D in DML, recent
works differ without reporting proper baselines using an adjusted dimensionality. Again,
comparison to existing works and the assessment of the actual contribution is impaired.

DAta PREPROCESSING. Preprocessing training images significantly influences both the
learned features and model regularization and is widely adopted when training deep net-
works. Nevertheless, many works fail to report the applied augmentation protocols.
Thus, the value of their proposed approaches is difficult to assess, as potential perfor-
mance gains are diflicult to link to the approaches contributions with sufficient certainty.
Moreover, comparisons of results is also suffering from the trend of operating on increas-
ing training and test image sizes, thus increasing the level of details to be captured by the
DML model.

*Note that Batch-Normalization is still performed, but no parameters are learned.
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BarcHsize. Deep networks are typically trained using stochastic gradient decent, i.e.
gradient updates to the network parameters are computed on small mini-batches B of
the training data only. Consequently, larger batch sizes result in better approximations
of the training data distribution, stabilizing optimization and often result in better local
minima. Especially large datasets involving many different training classes greatly benefit
from increased batch sizes. However, it is commonly not taken into account as an influen-
tial factor of variation and thus is not considered for establishing fair evaluation protocols
for DML.

2.3 ANALYZING DML TRAINING STRATEGIES

In this section we now first evaluate the previously discussed design choices and hyper-
parameters. Subsequently, we conduct a large comparison between the most common
DML baselines. All our experiments are based on a fair evaluation protocol for Deep
Metric Learning which we fix throughout this study.

2.3.1 DATASETS

Our experiments are conducted on the following standard benchmark datasets:
CUB200-2011: Contains 11,788 images in 200 classes of birds. Train/Test sets are made up
of the first/last 100 classes (5,864/5,924 images respectively) [239]. Samples are distributed
evenly across classes.

CARS196: Has 16,185 images/ 196 car classes with even sample distribution. Train/Test
sets use the first/last 98 classes (8054/8131 images) [130].

Stanford Online Products (SOP): Contains 120,053 product images divided into 22,634
classes. Train/Test sets are provided, contain 11,318 classes/59,551 images in the Train
and 11,316 classes/60,502 images in the Test set [171]. In SOP, unlike the other bench-
marks, most classes have few instances, leading to a significantly different data distribution

compared to CUB200-2011 and CARS196.

2.3.2 EXPERIMENTAL PROTOCOL

Our training protocol follows parts of [256], which utilize a ResNet50 architecture with
frozen Batch-Normalization layers and embedding dimensionality 128 to be comparable
with already proposed results with this architecture. While both GoogLeNet [223] and
Inception-BN [103] are also often employed in the DML literature, we choose ResNet50
due to its success in recent state-of-the-art approaches [194, 201]. In line with standard
practices we randomly resize and crop images to 224 x 224 for training and center crop
to the same size for evaluation. During training, random horizontal flipping (p = 0.5)
is used. Optimization is performed using Adam [122] with learning rate fixed to 107°
and 7o learning rate scheduling for unbiased comparison. Weight decay is set to a con-
stant value of 4 - 1074, as motivated in section 2.3.3. We implemented all models in
PyTorch [180], and experiments are performed on individual Nvidia Titan X, V100 and
T4 GPUs with memory usage limited to 12GB. Each training is run over 150 epochs
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Figure 2.2: Evaluation of DML pipeline parameters and architectures on all benchmark datasets and
their influence on relative improvement across different training criteria.

for CUB200-2011/CARS196 and 100 epochs for Stanford Online Products, if not stated
otherwise. For batch sampling we utilize the the SPC-2 strategy, as motivated in section
2.3.4. Finally, each result is averaged over multiple seeds to avoid seed-based performance
fluctuations. For our study, we examine the following evaluation metrics: Recall@1 and
Recall@2 [107], Normalized Mutual Information (NMI) [151], F1 score [217] and (class-
averaged) mean average precision measured on recall (mAP).

2.3.3 STuDYING DML PARAMETERS AND ARCHITECTURES

Now we study the influence of parameters & architectures discussed in Sec. 2.2.3 using
five different objectives. For each experiment, all metrics noted at the end of Sec. 2.3.2
are measured. For each loss, every metric is normalized by the maximum across the
evaluated value range. This enables an comparable summary of performance across all
metrics, where differences correspond to relative improvement. Fig. 2.2 analyzes each
factor by evaluating a range of potential setups with the other parameters fixed to val-
ues from Sec. 2.3.2: Increasing the batchsize generally improves results with gains varying
among criteria, with particularly high relevance on the SOP dataset. For weight decay, we
observe loss and dataset dependent behavior up to a relative performance change of 5%.
Varying the data preprocessing protocol, e.g. augmentations and input image size, leads
to large performance differences as well. Base follows our protocol described in Sec. 2.3.2.
Red. refers to resizing of the smallest image side to 256 and cropping to 224x224 with
horizontal flipping. Big uses Base but crops images to 256x256. Finally, we extend Base
to Adv. with color jittering, changes in brightness and hue. We find that larger images
provide better performance regardless of the chosen objective or dataset. Using the Adv.
processing on the other hand is dependent on the dataset. Moreover, we see that random
resized cropping is a generally stronger operation than basic resizing and cropping.

All these factors underline the importance of a complete declaration of the training pro-
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Figure 2.3: Comparison of mini-batch mining strategies on three different datasets. Performance
measures Recall@1 and 2, NMI, mAP and F1 are normalized across metrics and loss
function. We plot the distributions of relative performances for each strategy.

tocol to facilitate reproducibility and comparability. Similar results are observed for the
choice of architecture and embedding dimensionality D. At the example of R50, our anal-
ysis shows that training objectives perform differently for a given D but seem to converge
at D = 512. However, for R50 D is typically fixed to 128, thus disadvantaging some train-
ing objectives over others. Finally, comparing common DML architectures reveals their
strong impact on performance with varying variance between loss functions. Highest
consistencies seem to be achievable with R50 and IBN-based setups.

2.3.4 BATCH SAMPLING IMPACTS DML TRAINING

We now analyze how the data sampling process for mini-batches impacts the performance
of DML models using the sampling strategies presented in Sec. 2.2.2. To conduct an un-
biased study, we experiment with six conceptually different objective functions: Margin-
loss with Distance-Weighted Sampling, Triplet Loss with Random Sampling, ProxyNCA,
Multi-Similarity Loss, Histogram loss and Normalized Softmax loss. To compare our
evaluation metrics (cf. 2.3.2), we utilize the same normalization procedure discussed in
Sec. 2.3.3. Fig. 2.3 summarizes the results for each sampling strategy by reporting the
distributions of normalized scores of all pairwise combinations of training loss and eval-
uation metrics. Our analysis reveals that the batch sampling process indeed effects DML
training with a difference in mean performance up to 1.5%. While there is no clear winner
across all datasets, we observe that the SPC-2 and FRD samplers perform very well and,
in particular, consistently outperform the SPC-4 strategy which is commonly reported to
be used in the literature [205, 256].
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Benchmarks— CUB200-2011 CARS196 SOP

Approaches | R@1 NMI R@1 NMI R@1 NMI
Imagenet [ 50] 43.77 57.56 36.39 37.96 48.65 58.64
Angular [245] 62.10 £ 0.27 | 67.59 & 0.26 | 78.00 & 0.32 | 66.48 4 0.44 | 73.22 + 0.07 | 89.53 + 0.01
ArcFace [51] 62.67 £ 0.67 | 67.66 & 0.38 | 79.16 4 0.97 | 66.99 4 1.08 | 77.71 4+ 0.15 | 90.09 + 0.03
Contrast. [86] (Dist.) | 61.50 £ 0.17 | 66.45 £ 0.27 | 75.78 & 0.39 | 64.04 & 0.13 | 73.21 4 0.04 | 89.78 4 0.02
GenlLifted [94] 59.59 + 0.60 | 65.63 £ 0.14 | 72.17 £ 0.38 | 63.75 £ 0.35 | 75.21 & 0.12 | 89.84 & 0.01
Hist. [232] 60.55 £ 0.26 | 65.26 & 0.23 | 76.47 4 0.38 | 64.15 4 0.36 | 71.30 4 0.10 | 88.93 % 0.02
Margin (8 = 0.6) [256]| 62.50 & 0.24 | 67.02 & 0.37 | 77.70 4 0.32 | 65.29 4 0.32 | 77.38 + 0.11 |90.45 =+ 0.03
Margin (8 = 1.2) [256]|63.09 + 0.46| 68.21 4 0.33 | 79.86 4- 0.33 | 67.36 4 0.34 |78.43 + 0.07| 90.40 + 0.03
Multisimilarity [251] | 62.80 4 0.70 [68.55 + 0.38(81.68 + 0.19(69.43 + 0.38| 77.99 + 0.09 | 90.00 % 0.02
Npair [217] 61.63 £ 0.58 | 67.64 & 0.37 | 77.48 4 0.28 | 66.55 4 0.19 | 75.86 4 0.08 | 89.79 % 0.03
Pnca [161] 62.80 £ 0.48 | 66.93 & 0.38 | 78.48 & 0.58 | 65.76 & 0.22 - —
Quadruplet (Dist.) [37]| 61.71 £ 0.63 | 66.60 £ 0.41 | 76.34 & 0.27 | 64.79 & 0.50 | 76.95 & 0.10 | 90.14 4 0.02
SNR (Dist.) [266] 62.88 £0.18 | 67.16 & 0.25 | 78.69 4 0.19 | 65.84 4= 0.52 | 77.61 4 0.34 | 90.10 + 0.08
SoftTriple [ 183 ] 60.83 +0.47 | 64.27 £ 0.36 | 75.66 & 0.46 | 62.66 £ 0.16 - -
Softmax [268] 61.66 & 0.33 | 66.77 £ 0.36 | 78.91 4 0.27 | 66.35 4 0.30 | 76.92 £ 0.64 | 89.82 + 0.15
Triplet (Dist.) [256] 62.87 +0.35 | 67.53 £ 0.14 | 79.13 + 0.27 | 65.90 4 0.18 | 77.39 £ 0.15 | 90.06 % 0.02
Triplet (Hard) [205] | 61.61 4 0.21 | 65.98 4 0.41 | 77.60 4 0.33 | 65.37 4 0.26 | 73.50 & 0.09 | 89.25 % 0.03
Triplet (Rand.) [205] | 58.48 4 0.31 | 63.84 4 0.30 | 70.63 & 0.43 | 61.09 4 0.27 | 67.86 % 0.14 | 88.35 % 0.04
Triplet (Semi) [205] | 60.09 & 0.49 | 65.59 4 0.29 | 72.51 4 0.47 | 62.84 4 0.41 | 73.61 + 0.14 | 89.35 %+ 0.02
R-Contrast. (Dist.) 63.57 £ 0.66 | 67.63 = 0.31 | 81.06 & 0.41 | 67.27 & 0.46 | 74.36 + 0.11 | 89.94 + 0.02
R-Margin (3 = 0.6) 64.93 + 0.42| 68.36 4+ 0.32 |82.37 £ 0.13| 68.66 + 0.47 | 77.58 £ 0.11 | 90.42 £ 0.03
R-Margin (3 = 1.2) 63.32 £ 0.33 | 67.91 £ 0.66 | 81.11 4+ 0.49 | 67.72 £ 0.79 |78.52 £ 0.10| 90.33 % 0.02
R-SNR (Dist.) 62.97 £ 0.32 | 68.04 & 0.34 | 80.38 4 0.35 | 67.60 4= 0.20 | 77.69 4 0.25 | 90.02 + 0.06
R-Triplet (Dist.) 63.28 £0.18 | 67.86 & 0.51 | 81.17 £ 0.11 | 67.79 4+ 0.23 | 77.33 + 0.14 | 89.98 + 0.04

Table 2.2: Comparison of Recall@1 and NMI performances for all objectives averaged over 5 runs.
Each model is trained using the same training setting over 150 epochs for CUB/CARS
and 100 epochs for SOP. ’R-* denotes model trained with p-regularization. (Dist.) de-
notes distance-weighted negative sampling [256], (Rand.) denotes random negative sam-
pling, (Hard) denotes hard-negative sampling [205] and (Semi) denotes semi-hard neg-
ative sampling [205] being used for constructing triplets. Bold denotes best results
excluding regularization. Boldblue marks overall best results.

In summary, our study indicates that DML benefits from data diversity in mini-batches,
independent of the chosen training objective. This coincides with the general benefit of
larger batchsizes as noted in section 2.3.3. While complex mining strategies may perform
better, simple heuristics like SPC-2 are sufficient.

2.3.5 CompPARING DML MODELS

Based on our training parameter and batch-sampling evaluations we compare a large se-
lection of 14 different DML objectives and 4 mining methods under fixed training con-
ditions (see 2.3.2 & 2.3.3), most of which claim state-of-the-art by a notable margin. For
ranking-based models, we employ distance-based tuple mining (D) [256] which proved
most effective. We also include random, semihard sampling [205] for our tuple mining
study using the classic triplet loss. Loss-specific hyperparameters are determined via small
cross-validation gridsearches around originally proposed values to adjust for our training
setup. Table 2.2 summarizes our evaluation results on all benchmarks. We observe partic-
ularly on CUB200-2011 and CARS196 a higher performance saturation between methods
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Approach Architecture |Dim|R@1 R@10 R@100|NMI
DVML[141] GoogLeNet | 512 |70.2 852 93.8 |90.8
HTL[71] Inception-BN| 512 | 74.8 88.3  94.8 -

MIC[194] ResNet50 |128(77.2 89.4 95.6 |90.0
D&C[201] ResNet50 | 128759 88.4 949 |90.2
Rank[250] Inception-BN|(1536(79.8 91.3 96.3 |90.4
ABE[120] GoogleNet | 512763 88.4 94.8 -

Margin (ours)[256]| ResNet50 | 128 (78.4 - - 90.4

Table 2.3: Comparison to the state-of-the-art DML methods on SOP[171]. Dim denotes the di-
mensionality of ¢g.

as compared to SOP due to the strong difference in data distribution. Generally, perfor-
mance between criteria is much more similar than indicated by the literature, as also has
been noted in concurrent work by [162]. We find that representatives of ranking based ob-
jectives in general slightly outperform their classification/NCE-based counterparts. On
average, margin loss [256] and multisimilarity loss [251] offer the best performance across
datasets. Remarkably, under our carefully chosen training setting, a multitude of losses
compete or even outperform more involved state-of-the-art DML approaches on the SOP
dataset. To this end, Tab. 2.3 provides a detailed comparison between current state-of-the-
art DML approaches and our strongest baseline model, margin loss (D, § = 1.2) [256], on
the SOP dataset. The results for these approaches are taken from their publicly available
manuscripts. We observe that our baseline model outperforms each of the models using
varying architectures, but especially other ResNet50-based implementations. While R50
proves to be a stronger base network than GoogleNet based model, improvements over
MIC and D&C using the same backbone by at least 0.9% and methods based on the simi-
larly strong Inception-BN showcase the relevance of a well-defined baseline. Additionally,
even though Rank [250] and ABE [120] employ considerable more powerful network en-
sembles, our carefully motivated baseline exhibits competitive performance.

In summary, we demonstrated that, under equal training conditions, performance sat-
urates across different methods, contrasting results reported in the recent literature, as
carefully trained baseline models even outperform state-of-the-art approaches which use
considerable stronger architectures. Thus, to evaluate the true benefit of proposed con-
tributions, baseline models need to be competitive and implemented under comparable
settings.

2.4 (GENERALIZATION IN DEEP METRIC LEARNING

The previous section showed how different model and training parameter choices result
in vastly different performances. However, how such differences can be best be explained
on basis of the learned embedding is an open question and, for instance, studied under
the concept of compression [228]: the information theoretic tradeoff between describing
the input data with as little information as possible, while only retaining sufficient infor-
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Figure 2.4: Correlation between generalization and structural properties derived from @y using dif-
ferent DML objectives on each dataset. Lefi-to-Right: Mean intra-class distances Tiqr,
& inter-class distances Tiyer, the ratio T/ Minter and spectral decay p.

mation to infer an output variable corresponding to a given task, thus enabling efficient
supervised learning. Recent work [233] links compression to class-conditioned flattening
of a representation, indicated by an increased decay of singular values obtained by Singular
Value Decomposition (SVD) on the data representations. Thus, class representations oc-
cupy a more compact volume, thereby reducing the number of directions with significant
variance. The subsequent strong focus on the most discriminative directions is shown
to be beneficial for classic classification scenarios with i.i.d. train and test distributions.
However, this overly discards features which could capture data characteristics outside the
training distribution. Hence, generalization in transfer problems like DML is hindered
due to the shift in training and testing distribution [14]. We thus hypothesize that actually
retaining a considerable amount of directions of significant variance (DoV) is crucial to
learn a well generalizing embedding function ¢.

To verify this assumption, we analyze the spectral decay of the embedded training data
Py = {p(x)|z € X} via SVD. We then normalize the sorted spectrum of singular values
(SV) Sg,, and compute the KL-divergence to a D-dim. discrete uniform distribution Up,
Le.

:0((1)) = KL(UD || S‘DX) ) (2-18)
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