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1.0 Introduction 

1.1 Cellular origin of brain tumors  

The central nervous system is made up of the spine and brain. The largest part of the brain is 

the cerebrum which divides into four lobes namely, the frontal lobe which controls speech, 

reasoning, movement and even emotions, parietal lobe controls sense responses e.g touch, pain 

and environmental temperature1, occipital and temporal lobe controls vision and memory 

respectively. At the back of the brain below the cerebrum, we find cerebellum. This part of the 

brain is in-charge of body coordination and balance. 

 

Brain tumours are thought to arise from transformed neuronal stem cells (NSCs). This can lead 

to either benign or malignant stem cells. Regardless of the malignancy status, these cells are 

believed to reside in perivascular niches which are formed by the blood vessels of the brain2. 

The ability to identify alterations and differentiate cells of origins in the brain allow to compare 

both causality and tumorigenic potentials of these alterations and specific neural stem and 

progenitor cells. For example, KRAS activation and inactivation of PTEN, P53 and RB1 has 

been used as prospective makers to address the occurrence of cancer in different cells. Other 

common tumour suppressor genes used include NF1. It has been shown that astrocytes and 

oligodendrocytes progenitors are probably the source of gliomas as shown in figure 1.13. Based 

on cell of origin, we therefore classify this tumor as astrocytic, oligodendroglial or mixed 

tumors. 
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Figure 1.1 Neural stem cell lineages with dotted lines indicating the probable cells that could 

serve as source of glioma tumours. 

It also indicates a glioma classification scheme based on cell of origin. This figure was adopted 

from H.zhong et al., 2015. 

 

1.2 Brain tumor markers with focus to glioma markers distribution and molecular 

diagnosis  

Central nervous tumors account for 1% of all human body tumors. They usually occur in the 

brain parenchymal and spinal cord4. Since histology proved not sufficient in predicting 

response and treatment outcomes, molecular expression has become common in 

characterization of tumors. This has attracted development of different technologies and 

algorithms in identifying this alteration e.g the 850K Illumina bead chip and conumee that aid 

in both methylation pattern brain tumor identification and copy number alterations as well.  

 

Malignant glioma has an annual incidence of 6-7 cases per 100,000 and frequently occurs at 

age of 50-60 years in both females and males. Surgical resection and temozolomide therapy is 

the standard of care however most patients succumb to glioma within 15-20 months5. Histology 
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has proved to be not sufficient in stratifying patients based on clinical outcomes as patients 

with identical histological tumors often end up with different outcome6. Molecular 

characterization promises to significantly solve this problem6. 

 

Classification of glioma based on gene expression usually depends on key gene mutations and 

expression status such as EGFR, NFI and PDGFRA and IDH17. This can classify the 

mesenchymal and proneural glioma subtypes. Most WHO grade I glioma are common in 

children and are characterized by BRAF mutations and fusion at BRAF_KIAA1549 while grade 

II commonly known as low grade glioma (LGG) are seen in young adults and are characterized 

by R132 residue mutations at IDH18.  

 

1.2.1 Loss of heterozygosity (LOH)  

 

LOH at chromosome 10q has a prevalence of 60-80 % in both primary and secondary GBMs9. 

Since the frequency of this alteration is high it complicates classification of brain tumors 

although it’s highly associated with primary events of GBM9. It is also a common genetic event 

in carcinogenesis of the majority of inherited cancer syndromes due to somatic loss of wild 

type alleles10. For example, a short arm at chromosome 11 that harbours tumour suppressor 

genes need to be inactivated in both alleles for LOH-wilms tumour to occur as shown in figure 

1.2 below11. The presence of GBM is therefore well characterized by IDH1/IDH2, ATRX status, 

EGFR, TP53 and H3-K27M mutations12.  
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Figure 1.2 Process of development of wilm’s tumour due to LOH in both alleles. 

The second hit which deletes tumor suppressor genes at chromosome 11p13 is necessary for 

the pediatric kidney nephroblastoma to occur and not the initial small point mutations. Blot 

image illustrate the Southern blot that can be used to monitor both polymorphic paternal and 

maternal markers. It’s clear that Wilms tumour has a deleted short arm of chromosome 11 due 

to lack of the band in tumour DNA blot. This figure was adopted from K. Brown et al., 2001. 

 

1.2.2 IDH1/IDH2 Mutations in glioblastoma 

 

Isocitrate dehydrogenase-1 (IDH1) is an NDP-dependent enzyme found in the cytoplasm and 

located at chromosome 2q33.3 while IDH2 is located at chromosome 15q26.1. These genes 

affect citrate metabolism thus leads to 2-hydroxyglutarate metabolism as shown in Figure 1.3 

below 13,14. The IDH enzyme is generally thought to catalyse the conversion of Isocitrate to 2-

hydroxyglutarate which acts as oncometabolite thus causing tumorigenesis15. 
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Figure 1.3 Forward oxidative decarboxylation reaction of wildtype IDH1/2 and reverse 

reductive carboxylation reaction of wildtype IDH1/2 

The mutated IDH1/2 form that leads to production of D-2-hydroxyglutarate. Figure was 

adapted from Molenaar, R.J et al., 2018. 

Patients having IDH1/IDH2 mutations tend to have better clinical outcomes than ones with 

IDH1/IDH-2 wild type14. This is partly because presence of mutation at IDH1/IDH2 enzyme 

reduce the ability of production of the coded proteins which are responsible for the conversion 

of isocitrate to alpha-ketogluterate and thereby producing NADPH, which in turn reduce 

reactive oxygen species13,16. The increased oxidative state due to presence of mutation is 

associated with carcinogenesis17,18. This also explains why the IDH mutation is rarely found at 

around primary glioma (6%) but pilocytic astrocytoma frequently found in progressed tumour 

such as secondary glioma (>80%), anaplastic astrocytoma and oligodendroglioma (>90%)13. 

The nature of mutation is a point mutation IDH1- R132H (arginine-histidine at position 132) 

and IDH2 172 accounts for 3-5% of IDH mutations which are commonly found in 

oligodendrogliomas. IDH1/2 mutations are common in young adolescents with glioma and rare 

in adults as shown in figure 1.3 17,18. Detection of IDH1 R132H mutation is by use of mouse 

anti human monoclonal antibody by Dianova with clone name H09 through 

immunohistochemistry techniques17,18. IDH1/2 can be used to detect secondary glioblastoma 

using RT-PCR. The mutations are common in primary and secondary glioma as shown in 

figure 1.4 below17,18. 

 

 

 

 

 

about:blank
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Figure 1.4 Main glioma pathways and distributions, where IDH1 mutation and chromosome 

1p19q deletion defines grade 2 oligodendroglioma. 

 

The p53 mutation together with IDH1 mutation is observed in grade 2 astrocytoma with the 

ability to progress to secondary glioma. PTEN deletion and EGFR amplification are common 

in primary glioblastoma and not IDH mutation. This figure was adapted from Cohen Adam et 

al., 2013 

 

1.2.3 P53 predict progression of astrocytoma to glioblastoma 

 

Tumor protein p53 gene is located at chromosome 17p13.1 and is known to regulate apoptosis, 

DNA repair and cell cycle induction19. Astrocytoma usually progresses, from premalignant 

state e.g low grade astrocytoma to malignant stages which include high grade astrocytoma, 

anaplastic astrocytoma to glioblastoma multiforme. Alteration of tumor suppressor gene p53 

has shown evidence in dissecting this tumor into different classes20. Polymerase chain reaction 

of loci coding for the p53 is a common method to identify these mutations in chromosome 10 

and 17 20. LOH loss on the other hand can be established using Southern DNA transfer analysis 

of somatic and tumor DNA from the same patients using polymorphic markers for various loci 

on chromosomes 10 and 1721. In most cases the somatic genetic mutations in the p53 usually 

occur in the progression stage of astrocytoma and this explains why p53 mutations occur at 

reasonable frequency > 25 % in anaplastic astrocytoma and glioblastoma (25-30%), low grade 

glioma (>70%) but very rare in low grade astrocytoma9. 
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1.2.4 Methylguanine-DNA methyltransferase (MGMT) 

 

MGMT gene is located on chromosome 10q26. Methylation of MGMT gene promoter is 

common in about 48% glioblastoma cases and in 85% IDH-mutants lower grade glioma22. 

MGMT enzyme is known to remove alkyl adducts from the O6 position of guanine thus aid in 

DNA repair and contribute in glioma alkylating drug susceptibility13. Monosomy of 

chromosome 10 and MGMT methylation do inhibit DNA repair by MGMT enzyme. It also 

contributes to temozolomide resistance13. The alterations are usually tested by using bisulfite 

sequencing and pyrosequencing. 

 

1.2.5 Epidermal growth factor (EGFR) 

 

EGFR is part of the ErbB receptor family and has tyrosine kinase activity. Mutations in EGFR 

are common in 60% primary tumors and about 10% in primary glioblastoma23. The common 

alteration of EGFR leading to its activations are amplification or over-expression of the gene 

in most of the affected cancers. The activation of EGFR can lead to cancer through 

dysregulation of the cell cycle and enhanced cell proliferation including invasion24 as shown 

in figure 1.5. The frequency of these mutations differs from each site. Classical glioblastoma 

accounts for 95% of EGFR amplifications while 17% amplification accounts for neural and 

proneural glioblastoma. The dysregulation of EGFR/HER1 occurs in most glioblastoma 

multiforme cases which is associated with growth and malignant transformation of the tumor25. 

Major probable mechanisms leading to dysregulation of HER1/EGFR include alteration of the 

receptor structure due to mutational changes. The common mutation being in-frame deletion 

of 801 bp in DNA sequence encoding extracellular domain thus leads to truncated and 

constitutive receptor EGFRvIII as shown in figure 1.5 and 1.6 below25. This mutated receptor 

is a target of most tyrosine kinase inhibitor therapies. Moreover, monoclonal antibodies can be 

helpful in blocking these targets. 
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Figure 1.5 Sequence of events and gene products involved in transferring external signals to 

the nucleus as mediated by the EGFR pathway. 

Figure was adapted from Hongsheng Xu et al., 2017. 

 

 

Figure 1.6. Structure of wild type HER1/EGFR and a mutated form of EGFR “EGFRvIII” 

genes. 

This is brought about by deletion of 801 base pairs of exon 2-7. The right side shows the new 

glysine insertion as the result of the deletion at the fusion junction. This figure was adapted 

from Georg Karpel-Massler et al., 201025. 
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1.2.6 Stem cell makers of clinical relevance to glioma  

 

The major molecular stem cell markers identified can be classified as membrane markers e.g 

CD133, podoplanin, CD15, and A2B526,27. Second there are filament markers e.g nestin, RNA-

binding proteins e.g Musashi-1 and transcription factors e.g BMI1, SOX2, and Id1 28–30. Below 

are descriptions of some of these makers. 

 

1.2.6.1 Nestin and CD133 expression in glioblastoma multiforme 

 

CD133 is a 5-TM glycoprotein antigen located in normal human hematopoietic cells, neural 

progenitor cells and also in malignant tissues26,27. CD133+ (positive) cells have been 

recognized as a marker for the growth of cancer cells since they are required for tumour 

development. CD133- (negative) were shown to be unable to produce tumour28–30. It is also 

known to be a marker of poor survival in astrocytomas. In glioblastoma multiforme co-

expression of CD133/Ki67 and CD133+ cells are also makers for poor disease outcome which 

has been reported to be <14 months overall survival31.  

Glioma stem cells (GSCs) are known to demonstrate high tumorigenic potential and this 

contributes to glioma invasiveness leading to incomplete surgical resection. CD133 and nestin 

are known reliable markers for the GSCs32–34. Nestin is also a filament marker expressed in the 

primary central nervous system and expression increases with astrocytoma increases in 

malignancy35–37. It plays a crucial role in enhanced motility and differentiated status36. 

 

1.2.6.2 Podoplanin (Aggrus) 

 

It’s a transmembrane glycoprotein that is associated with poor prognosis in glioblastoma. In 

vitro studies have shown that it influences tumor cell migration and proliferation however there 

is limited information about its role in the glioma formation in vivo37. Some of the methods 

used to study the glycoprotein in vitro included genome-wide expression analysis and clustered 

regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 

(Cas9)-mediated deletion of podoplanin in patient-derived human glioblastoma cells37–39. The 

manipulated cells can be combined with organotypic brain slice cultures and intracranial 

injections follow into mice. Using tissue microarrays, Podoplanin was shown to be highly 

expressed in high grade astrocytomas but not in low-grade astrocytomas and thus reflects its 
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role in prognostic in this brain entity. It has also been shown to play a role in spheroid 

formations and glioma invasion39–41. It is a reliable maker for tumour initiating cells and 

interaction between C-type lectin receptors-2 (CLEC-2) is important for cancer metastasis and 

can induce platelet aggregation39 

 

1.2.6.3 Cluster of differentiation 15- (CD15) and A2B5 maker 

 

Cancer stem cells (CSC) offer an alternative novel approach to the treatment of glioblastoma. 

Cluster of differentiation-15 is a potential marker that has limited information in vivo however 

implantation of these cells in the mouse brain was shown to initiate tumour formation thus 

suggesting the possibility of CD15 as a potential CSC marker42. However, in the primary 

glioblastoma cell line, CD15+ were shown to have similar proliferative ability as CD15- 

cells43. 

A2B5 on the other hand is a surface glycoside that acts as 0-2A neural progenitor cell 

markers44. A2B5+ cells present the potential to differentiate to oligodendrocytes and few of 

them to neurons44,45. It’s also associated with poor prognosis35. Apart from differentiation, 

A2B5+ cells can distinguish glioma subtypes since A2B5- does not present with neural stem-

like cell properties44,45.  

 

1.2.7 Methods for identification of molecular markers in glioma 

1.2.7.1 An overview to CNV analysis using aCGH and EPIC BeadChip(850k) 

 

Copy number variations (CNV) are common in both health and disease conditions. CNV ranges 

from 50 base pairs (bp) to > 450 kilobase(kb) in the human genome46. They are known to 

influence gene expression patterns or indirectly gene dosage hence responsible for phenotypic 

changes and disease occurrence 46,47. 

Microarray-based comparative genomic hybridization (aCGH) allows high resolution DNA 

copy number alteration association with chromosomal abnormalities at genome level 48,49. It 

can be routinely applied in basic research and clinical practise to detect CNV and Methylation 

defects 50–53. aCGH depends on total genomic DNA from a test and a reference genomic 

material. In principle the two are hybridized together to normal chromosome at metaphase54. 

Blocking DNA is used to suppress signals from repetitive DNA sequences. The resultant 
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fluorescence intensities ratio is therefore proportional to DNA copy number between the test 

and the reference genome54. Once the intensity ratio is obtained from the microarray 

hybridization process, several steps including logarithmic transformation, segmentation and 

detecting change point are crucial in order to determine regions of gain and losses. Different 

bioinformatic packages and statistical models are available for change point detection and 

detection of DNA CNV 55,56. 

 

In 2016 the 450K method was replaced by EPIC BeadChip(850K). The 850K is advantageous 

since it almost doubles CpG sites to >850,000 from the initial 450,000 CpG57. We therefore 

used combined data from the two BeadChips for our analysis. Recently epigenome-wide 

association studies (EWAS) have been used to associate altered DNA methylation and health 

outcomes 58. Also the reliability of Conumee, ChAMP and CNVnalysis450k to CNV 

evaluation have recently been done. Conumee showed high reliability for 

HumanMethylationEPIC array at 57% while CNVnalysis450k had the highest reliability in 

450K data at 43%58. 

 

Different genotyping CNV calling algorithms rely on probe intensities, log R Ratio (LRR) and 

allele frequency (BAF), to call CNVs59. The common programs used for calling CNV from 

genotyping arrays include Birdsuite, ipattern and pennCNV59.The major setback of genotyping 

arrays is the inability to detect inversion and translocations.  

 

The DNA methylation arrays data is usually analysed using ChAMP, Conumee and CNV 

analysis 450K packages. These methods have the ability to detect CNVs within genes but not 

intergenic CNVs. Both methods operate under the principle that total methylation signal, which 

is the sum of unmethylated signal and methylated signal, has a direct relationship with copy 

number state110. In our study we used the Conumee package (Hovestadt and Zapatka). 

Conumee identifies CNVs by normalisation of experimental samples to reference samples 

using multiple linear regression53,58,60. It then takes the log2 probe intensity ratio between the 

reference sample and test sample. The individual intensities are then combined to bins and the 

genome is segmented based on equal copy numbers (Hovestadt and Zapatka). Though the 

method is widely used, limited research has been conducted to compare the results with gold 

standard methods like aCGH, an area I focused on in phase I of this thesis.  
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1.2.7.2 Fluorescence in situ hybridization (FISH) in non-stem glioma makers detection 

 

FISH is applied to detect or screen for genetic chromosomal anomalies such as amplifications, 

co-deletion or chromosomal loss using a set of chromosomal probes61. In principle the methods 

use a hybrid DNA probe which is labelled using fluorescence nucleotides directly or using a 

reporter molecule that can be detected by antibodies or other affinity molecules indirectly. In 

oligodendroglioma 1p/19q co- deletion of short chromosome arm p and long chromosome arm 

q is a reliable marker that is absent from any other non-glial tumours62. This can be detected 

using FISH. Proneural tumor which is characterised by CDK4 amplification and MET 

amplification in mesenchymal tumor can also be detected by FISH63. Commercial probes for 

detection Polysomy 7,9 and 19 (Centromere (CEP) 7,9 and 10) together with EGFR 

amplification, 10q23/PTEN loss and 1p36/19q/13 co-deletions in pediatric astrocytic glioma 

are also available for FISH method too64. 

 

1.2.7.3 Markers and common commercial antibodies for immunohistochemistry  

 

Protein analysis in gliomas is important to detect pathological conditions. Different biomarkers 

which are detected in tumor tissues can give information about pathological processes, 

response to chemotherapy and even disease recurrence65.  

Oncogenic gene alteration results from point mutations, duplication, insertion, amplifications, 

deletion, hypermethylation or hypomethylation and translocations66. All these events may 

result in amino acid changes that may cause abnormal protein production. The resultant protein 

provides the basis of designing appropriate antibodies to detect the product in pathological 

condition66. Therefore, immunohistochemical diagnostics involve use of specific antibodies to 

differentiate normal protein (wild type) from the mutants67. Some commercial antibodies 

available are listed below which can aid in the diagnosis of some of the glial tumours. 

IDH1 R132H canonical point mutation antibody detects IDH1 R132H which indicates 

presence of diffuse glioma with a sensitivity/specificity of 80-100%68–70. It mainly stains the 

cytoplasm and acts as a weak nuclei stain. H3K27M antibodies stain tumour nuclei and detect 

H3.1K27 M mutations in diffuse midline gliomas with 100% specificity and sensitivity71. 

BRAF V600E is a cytoplasmic targeting antibody that detects BRAF V600E mutation which 

are common in PXA and glioblastoma multiforme (GBM) glial tumours66. P53 antibody used 

to detect TP53 point mutation antibodies in glioma and astrocytic tumours which leads to 
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increased expression of protein and stabilisation70,72. It stains the nuclei. ATRX antibodies are 

used to detect loss of ATRX protein expression in tumour cells and only present in normal cells. 

The ATRX loss is common in diffuse astrocytic tumors and secondary GBM73. It can also be 

detected through PCR and sequencing. Sometimes western blot is employed. Other 

commercially available antibodies include EGFR for detection of overexpression, CIC and 

beta-catenin antibody to access the canonical Wnt pathway activation though its sensitivity and 

specificity is not well studied66. Moreover, homozygous deletion of CDKN2A and RB deletions 

or mutations in GBM can be detected by either immunohistochemistry technique or FISH 66,67. 

 

1.2.7.4 Sequencing and PCR based method in glioma marker identifications 

 

Mutations in cancer reside in both coding and non-coding regions. Most studies have focused 

on the coding region, however whole genome sequencing enables us to study even the non-

coding regions and infer causal associations74. Whole genome sequencing (WGS) has been 

instrumental in deciphering both clonal and subclonal evolution in cancer, especially the GBM 

recurrence75. Different disease aetiology such as TERT promoter contribution in disease 

progression was established through whole genome sequencing approach76. Different markers 

have been identified and RNA functional annotation platform for the non-coding region is also 

available in about 129 species77. Oncogenic processes have been linked to both genomic and 

epigenetic adaptation that are linked to conserved functional outcomes 74. Many glioma 

markers can be identified through sequencing and PCR62. These markers include; MGMT 

promoter methylation in GBM which predicts better response to Temozolomide (TMZ) and 

P13K activation mutation in GBM62. Other makers benefiting from sequencing approach is the 

IDH missense mutation identification at arginine 132 which is common in oligodendroglioma 

and secondary GBM and NFI mutation in mesenchymal and pilocytic astrocytoma66,75,78.  

 

1.3 Classification of brain tumor 

 

A brain tumor affects the normal function of the brain. In-general, we have primary brain 

tumors which are classified as low-grade e.g the low-grade glioma (LGG) and high-grade 

tumor e.g glioblastoma. Low grade tumors grow slowly but can transform into high grade. 

Most people usually die of metastasis which is simply the spread of the tumor from its primary 

site. Metastasized tumors are therefore types of secondary tumors. It is important to precisely 

classify this tumor for patient’s management. 
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The classification of brain tumors was built up from histogenesis where tumors were 

histologically differentiated using haematoxylin eosin-stained sections on a light microscope. 

Immunohistochemical expression, lineage associated protein and ultrastructural were later 

used in the classification of tumour79. In 2016 the world health organization (WHO) introduced 

the use of molecular parameters along histological features in the characterization of brain 

tumors. This classification stratified tumors further e.g based on histology, the diffused 

astrocytic and oligodendroglioma could be classified into WHO grade I and II79. 

 

Using molecular parameters such as isocitrate dehydrogenase 1 or 2 (IDH) mutation status, we 

could have three groups which include IDH-mutant with retained nuclear transcriptional 

regulator ATRX, IDH-mutant with lost ATRX and IDH-wild type with nuclear ATRX retained. 

The ATRX status is usually determined using immunohistochemistry techniques80. Using the 

ATRX retained IDH-mutant status this category of tumors could be further divided into two 

based on copy number variations at chromosome 1 and 19, where 1p/19q co-deletion is a 

characteristic feature of oligodendroglioma while absence of the co-deletion leads to IDH- 

Mutant astrocytoma as illustrated in Reifenberger, G. et al. (2016) as shown in the adapted 

figure 1.7 below80. 

  

On the other hand diffuse astrocytic glioma and glioblastoma which belongs to WHO grade IV 

could be further divided into glioblastoma IDH-wild type WHO grade IV, glioblastoma 

IDH_mutant WHO grade IV and diffuse midline glioma H3K27M mutant WHO grade IV. 

Middle line gliomas are usually located on the thymus, brainstem or spinal cord79. Apart from 

the Glioma family the WHO 2016 further introduced tumour groups based on brain invasion 

as a criterion for atypical meningioma79. 
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Figure 1.7 Histology and molecular classification integration of diffuse glioma based on 

WHO 2016 classification. 

This figure was adapted from Reifenberger, G. et al. (2016). 

 

1.3.1 Conflicts in brain tumour classification during diagnosis 

 

Despite the development and improvement in brain tumour diagnosis there are still conflicts in 

brain tumour diagnosis in the clinics that were recently reported as shown in figure 8 below50. 

It is therefore important to integrate methylation patterns, molecular patterns including copy 

number alteration to strengthen the stratification of patients' risk beyond classes. This 

ambiguity in tumour classification usually costs the life of patients in some cases. 
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Figure 1.8. Conflicts in histological, methylation and copy number diagnosis of brain tumours. 

Using microscopy diffuse astrocytoma, IDH wt (a) shows cell differentiation but may lack 

mitotic activity while glioblastoma, IDH wt (b) may show mitotic activity, necrosis and 

angiogenesis. The glioblastoma (c) and pleomorphic xanthoastrocytoma (d) are different 

entities from diffuse astrocytoma and glioblastoma respectively. This would affect patient 

management though such discrepancy may be resolved with inclusion of copy number profiles. 

This figure results were adapted from Capper et al.,2018 

 

1.3.2 Methylation classifier and illumina epic beads in brain tumour diagnosis 

 

Differential diagnosis of brain tumour depends on immunohistochemistry and molecular 

signatures such as EGFR, MGMT (promoter methylation status), 19q13.42,1p/19q codeletion, 

MYC, MYCN and PDGFRA. Immunohistochemistry involves the use of CTNNB1 and LIN28A 

staining. These routine signatures have proved to be difficult to standardize. It was therefore 

hypothesised that methylome which is a combination of both somatically acquired DNA 

methylation changes could harbour unique properties that reflect the cell of origin hence can 

be a better classification of tumorous cells81.  
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DNA methylation can result in dysregulation of cellular processes which are frequently taught 

to cause a disease. Addition of a methyl can lead to hypermethylation of DNA making it not 

accessible to key enzymes required in gene expression especially at promoter and enhancer 

regions. It has also been shown to contribute to silencing of specific tumour suppressor genes 

and this partly explains its role in cancer82. In diagnosis methylation patterns in the 850,000 

CpG islands or > 450,000 CpG islands in illumina epic beads could be used to identify specific 

tumours and this is possible because the methylome remains stable in the cause of disease. 

Recently the methylome classifier was developed based on clusters of this pattern and act as a 

novel tool that is used in research with promising application on the bed side even for cases 

which can’t be classified by histopathology83. Following clinical experiences, it has been 

reported that the methylome is reliable in better classification of the tumour. In addition, copy 

number alteration would stratify patients better and provide better clinical management84. 

WHO brain tumour classes that have benefited much from the methylome based classification 

include the medulloblastoma and supratentorial primitive neuroectodermal tumors (PNET)50. 

The molecular classification was shown to be superior in-terms of risk stratification than 

traditional histopathology85. The details of this classifier can be found elsewhere 

https://www.molecularneuropathology.org/mnp. Details of the use of this classifier and results 

interpretation was also published 86. 

 

The methylome classifier was developed by a random forest algorithm. It requires one to load 

data information of IDAT files which are obtained by processing patients' DNA from FFPE 

and other sources into 450k or 850k illumina epic beads. In principle the Epic beads contain 

probes which hybridize with patient DNA. This beadarray technology uses beadChips coated 

in microwells with multiple copies of oligonucleotide that targets specific genome locus. When 

a DNA fragment passes over the BeadChip, each probe binds to a complementary sequence in 

the sample DNA. During excitation by a laser, the nucleotide label emits a signal. This intensity 

of signal provides information about the allelic ratio of the position. In brain tumor research 

we have 450K and 850K epic arrays. The Infinium methylation arrays therefore detect cytosine 

methylation at single CpG site level. 

 

The methylated bead type and unmethylated bead type hybridize to the test DNA as shown in 

figure 1.9 below. The methylated intensity is then divided by the sum of methylated and 

unmethylated intensity to get the beta value. As part of our findings in this thesis we provided 

https://www.molecularneuropathology.org/mnp
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evidence that the copy number alteration could also be estimated from the infinium epic array 

data with > 95 percent agreement to comparative genome hybridization assay (data shown on 

results section). Unlike beta value calculation of the copy number alterations are calculated by 

addition of the methylated and unmethylated intensities and then compared with a reference 

flat genome sample50. 

 

Figure 1.9. Cytosine is converted to uracil (U) which is read as thymine after bisulfite 

conversion in unmethylated CpG while for methylated CpG the cytosine is prevented from 

conversion as shown by methylated probe (M). 

The U and M types of probes are used to detect methylation state of DNA samples through 

hybridization and termination by single base extension. Mismatch will terminate the reaction 

and green and red intensities produced based on CpG state. This figure was adapted from 

www.illumina.com 

 

1.4 Molecular and histopathology diagnosis of diffuse glioma 

 

The 2016 WHO classification divides diffuse glioma into three grades namely; WHO grade II, 

grade III and grade IV. In other words, these are low grade glioma, anaplastic tumorous cells 

i.e characterised by poorly defined cellular differentiation and glioblastoma respectively. In 

general, the diffuse gliomas are known to exhibit infiltrative growth in the neutrophil. 

Stratification of these families of tumour is important in precision medicine especially due to 

its possibility to enhance prolonged survival. During diagnosis, this type of tumour is difficult 

to characterise using the histology gold methods. It is therefore recommended to include 

molecular markers combined with the methylome classification87.  

 

http://www.illumina.com/
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Normal grey matter or white matter develop lesions during the cancer development stages. 

Malignancy is usually characterised by necrosis, angiogenesis and mitotic activity, while 

oligodendroglial tumors are characterised by extensive calcification which is a deviation from 

its normal round cells with dense chromatin pattern which stain negative with GFAP 87. 

Moreover, Ki67 proliferation index is reliable in differentiation of grade II from grade III 

tumours. 

 

Different biomarkers have been suggested in glial tumour for example the expression of 

platelet-derived growth factor receptor alpha (PDGFRA) has been suggested as mitotic marker 

in medulloblastoma during mitosis88. These markers were also reported to increases 

medulloblastoma migration and also enhance expression of MAP2K1/MEK1, MAP2K2/MEK2, 

MAPK1 (p42 MAPK) and MAPK3 (p44 MAPK) phosphorylation in a dose-dependent 

manner88. The chromosome 17p deletion has been shown to occur in up to 50% 

medulloblastoma cases with short survival however its reliability is not yet clear. 

 

In glioblastoma patients, around 70-80% cases show over-expression of epidermal growth 

factor receptor (EGFR). Common deletion at CDKN2A (p16) is seen and sometimes in a few 

cases MDM2 amplification is evident89. For lower grade astrocytoma which occurs in younger 

patients (45years) progression to GBM is typically detected by mutations in TP53. TP53 

usually acts as a stress inducible switch that allows cells to undergo G1 arrest or apoptosis. 

Most importantly, the low grade and secondary glioma also exhibit mutations in isocitrate 

dehydrogenase-1 (IDH1) and IDH2 at high frequency89. 

 

1.4.1 An overview to molecular diagnosis of glioma 

 

In the molecular era, the 2016 world health organisation classification of CNS tumours 

integrated molecular parameters along histology in the classification of tumours79. This was 

allowed accurate diagnosis and improve patient management. Among the categories of tumour 

that majorly benefited from this approach is oligoastrocytoma. This category had issues with 

inter observer histological discordances. Based on 1p/19q codeletion and IDH mutation status 

it was possible to differentiate astrocytoma from oligodendroglioma90. Patients with IDH 

mutation and 1p/19q codeletion are known to have favourable clinical outcomes in low grade 

glioma unlike those without IDH mutation which present like glioblastoma90,91. Those lower 

grade gliomas with no 1p/19q codeletion were shown to have IDH mutation with most of them 
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having additional TP53 and ATRX inactivation112. Recently, a machine learning approach for 

classification of central nervous system tumors based on the analysis of genome-wide DNA 

methylation patterns was developed and published 86. Using this tool tumor classes (or 

subclasses) can now be dissected better and diagnostic accuracy is improved, though, for some 

cases the "classifier" is not able to give a conclusive prediction). A rough overview of the Copy 

Number Variations (CNV) of methylation classes used in the "classifier" was reported in 

[Capper et al., Acta Neuropathologica 2018]50, however, the CNV are not well studied and 

integrated into any standardized diagnostic procedures, yet. It seems promising to achieve 

improvements in methylation-based diagnostics by establishing an approach to systematically 

include CNV information.I therefore, proposed to find characteristic patterns of CNV in tumor 

cases and also evaluate if copy number alterations can aid in stratifying patients further. 

 

1.5 Glioblastoma necrogenesis and FAS Expression 

 

The presence of necrotic tumour in the astrocytic neoplasm is an important feature for 

glioblastoma diagnosis by a pathologist. There are two distinct forms of necrosis. One is 

characterised by presence of irregular small, band like shaped glial cells and the other form is 

characterised by extensive area of necrosis containing necrotic vessels and tumorous cells. The 

second type is more common in primary glioblastoma but absent in secondary glioblastoma89. 

FAS/APO-1 (CD95, APT1) is predominantly expressed in glial cells and known to play a role 

in regulating cell membrane apoptotic associated proteins. It is also more frequent in primary 

glioblastoma (100%) than in secondary glioblastoma (21%) suggesting a key clinical role 

during the initial stage of glioblastoma development89. 

 

1.6 Molecular stratification of glioblastoma along low grade and anaplastic astrocytoma 

 

The World health organisation divided astrocytoma grades based on clinical presentation (non-

infiltrative or infiltrative). WHO grade II which mainly include low grade astrocytoma e.g 

pilocytic astrocytoma. They are mainly found in children and have a low fatality rate due to 

their non-infiltrative ability. WHO grade III includes anaplastic astrocytoma. Grade IV 

astrocytoma is the most aggressive and mainly includes glioblastoma (GBM). Patients with 

grade III and IV have average survival of 5-2years respectively92.  
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Astrocytoma is characterised by presence of IDH-mutations in >= 30% cases and TERT 

mutation in >=50% of patients, while glioblastoma is characterised by MGMT methylation69,93. 

Most molecular alterations in astrocytoma are enriched in the calcium signaling pathway which 

plays a critical role in its tumor progression and prognosis93. There are four molecular subtypes 

of glioblastoma namely; Proneural, mesenchymal, classical and neural. These subtypes are 

known to respond differently to treatments. Classical subtype is characterised by chromosome 

7, and EGFR (>94%) amplification94.  Classical subtype also shows chromosome 10 deletion 

and homozygous deletion of Ink4a/ARF locus95. Mesenchymal type is characterised by 

elevated expression of Chitinase 3-like 1 (CH13L1) and MET proto-oncogene. Moreover, NFI 

mutations are associated with mesenchymal type. In proneural types, PDGFR alpha 

amplifications, IDH1 mutation and TP53 loss of heterozygosity mutations are important in 

differentiating this group. Finally, the neural type is identified by differential expression of 

neural makers for example GABRA1, SYT1, SLC12A5 and NEFL94. 

 

The clinical presentation of glioblastoma can be differentiated further from other grades by 

differential gene expression of key genes, e.g Over expression of vascular cell adhesion 

molecule I (VCAMI) is unique in low grade glioma and anaplastic astrocytoma but not GBM96. 

Secreted modular calcium-binding I (SMOCI) and Adenosine A3 receptor (ADORA3) are over 

expressed mainly in anaplastic astrocytoma. Overexpression of Aquaporin (AQP1), 

Topoisomerase (DNA) II alpha (TOP2A), ATP- binding cassette, subfamily C, member 3 

(ABCC3), Thymidylate synthetase (TYMS), stabling I (STABI), Chemokine (C-C- motif) ligand 

2 (CCL2), Matrix metalloproteinase (MMP) and Matrix Gla protein (MGP) are mainly 

overexpressed in GBM92. The Chitinase 3-like 2 (CHI3L2) and neuromedin B (NMB) are 

overexpressed in all astrocytoma grades92. 
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Aim of the study / research hypothesis 

The aim of the study was to explore the importance of copy number variations in diagnostics 

of brain tumor entities. I also proposed to provide evidence of reliability of epic illumina data 

in copy number estimation by comparing with aCGH data. Different brain tumor entities were 

analyzed in detail for specific patterns of copy number alterations. I tested, if CNV profiles can 

be of help, to identify subclasses, establish a diagnosis and grading in cases that are or not 

classifiable well by the methylation-based tumor classifier. Based on this, I hoped to come up 

with initial profiles and a systematic approach for diagnostics that would include the CNVs in 

the methylation-based classifier. I also planned to correlate CNV profiles with clinical 

parameters and analyze if CN data is of use in grading within methylation classes. 
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2.0 Materials and Methods 

2. 1 Comparative analysis of CNV status in paired data set between aCGH and Illumina 

epic (450K and 850K)  

2.1.1 Study sample/ cohort  

 

The cancer genome atlas database helped to retrieve the astrocytoma and glioma data. For the 

first phase, I used a total of 61 paired samples from 450/850K data and aCGH data for which 

I did all the analysis during my stay at DKFZ. Once tumors are collected for diagnostic 

purposes, they provide a source of samples for research investigation too. DNA is then 

extracted from formalin-fixed paraffin-embedded (FFPE) tissue with estimated 75% or above 

tumour content. An automated extraction is done with a Maxwell system (Promega, Fitchburg, 

WI, USA). Maxwell 16 FFPE Plus LEV DNA Purification Kit and the Maxwell 16 LEV RNA 

are used using the FFPE Kit according to the manufacturer’s instructions84.  

 

2.1.2 CNV calling from aCGH data 

 

Human methylation arrays imaging and array comparative genomic hybridization data are 

often accompanied by noise which challenges the CNV threshold determination. To reduce the 

noise and need to detect significant CNV I opted for log2 (test(T)/reference(R) analysis of the 

intensity values in both data sets. I followed heuristic thresholds for calling copy number 

alterations (CNVs) in tumor samples97. In brief, humans have two copy numbers in all 

autosomes (diploid state) however in cancer duplications or losses occur. In principle the 

hybridized genomic segments in a microarray chip/slide are composed of Cy3 dyes for test and 

Cy5 dye for the diploid reference. Upon hybridization the test and reference intensities are 

obtained. The test intensity can be low or high compared to reference and this defines loss and 

gain of copy number as reference to diploid state97. For a single copy gain, assuming 50% 

tumor clonality then R was estimated to be >log2 (2:6/4). This corresponds to -1.0, -0.4, 0.0, 

0.3 and 0.6. We allowed for random noise of + /- 0.1, and the default log2 cut off ratio for my 

alterations were; deletions < -1.0, Loss < -0.25, gain >= 0.2 and amplification>= 0.7. We 

further considered plateau (plot p) as described in the DNAcopy package98 and more guidance 

from Antonie M. Snijders et al.,51. Following the sample plateaus (plot p) and description of 

cutoffs of microarrays data I settled on a cut-offs for loss (log2 ratio< -0.2), gain (log2 ratio > 
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0.2) and balance fall between (log2 ratio >= -2.0 to log2 ratio <0.2). To test the reliability of 

cutoff values, I analysed each individual sample and checked the plot p trends. I observed that 

most balanced segment alteration aligned to log2 ratio value close to 0.0 (+/-0.5) or between 

the specified balanced cutoff window. I therefore considered that an optimal established CGH 

baseline corrected cut off for our data was obtained at 0.2 and -0.2 log intensity values.  

 

2.1.3 CNV calling from EPIC and HumanMethylation450 BeadChip data 

 

I did genome-wide copy number analyses as previously described, using the in house conumee 

R package version 1.9.0 (Hovestadt V, Zapatka M). Conumee uses the combined unmethylated 

and methylated intensity and normalises it with a normal set of controls (to control bias). This 

is followed by combining close probes to form bins with a minimum number of probes and 

size97,99–101. Methylation data copy number alterations of genomic segments were inferred from 

the methylation array data after additional baseline correction with cutoff of 0.1 for gains and 

−0.1 for losses on log2-scale (https://github.com/dstichel/conumee). Copy number plots for the 

methylation set of samples were generated using the CNV.genomeplot for the complete 

genome and CNV. Detailplot for a specific chromosomal detail region. Segments and copy 

number profiles for the methylation data were obtained from these data in each individual set 

of samples used in the analysis. The method is described in details elsewhere 

http://bioconductor.org/packages/conumee/.  

 

2.1.4 Creating G-range segments from both data set 

 

Human genome is usually presented as a linear sequence divided into chromosomal range 

position102. To get a complete set of data between the two paired methods, I used the g-range 

package and disjoin to align segments with similar chromosomal range between the two data 

sets. I then conducted an annotation of the copy number state between the two data sets. To do 

this I opted to take care of any overlaps and adopt a simple match approach to compare each 

segment call at a given position between the two methods. Large segments were also weighed 

more than small segments. This was done by eliminating overlaps in the chromosome segment 

between the data points using the genomic range package and disjoin function with 

modifications102 
. 

 

https://github.com/dstichel/conumee
http://bioconductor.org/packages/conumee/


 25 

 

2.1.5 Statistical analysis in paired segments and computing overall agreement analysis 

 

All the statistical analysis was done in R version 3.6. The matched Copy Number Variations 

(CNV) profiles generated from micro-array based comparative genomic hybridization (aCGH) 

and CNV methylation data were compared in all the 61 paired samples. For Samples which 

baseline correction and proper pair match could not be achieved, I eliminated them from the 

analysis(n=6). A match or agreement was defined as a unique/similar loss, gain or balance call 

in a specific range segment between the two methods. Percent agreement was calculated to 

show the extent of agreement between the two methods103.Overall the two methods were 

considered to agree if percent agreement of segments classified were ≥ 79.5 percent. Figure 

2.1. below shows the analysis plan I used and further statistics interpretation. 

 

Figure 2.1. Steps used in the association and agreement calculations of paired chromosomal 

segments CNV calls between aCGH and Epic BeadChip. 

Kappa statistics interpretations are indicated on the grey outline shapes with no fill. 
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To get more insight to the agreement, I further checked the interrater reliability of the two 

methods to ensure that the agreement is not by chance. This was assessed using unweighted 

Kappa statistics since I had more than two categories (gain, loss and deletion). 

The Kappa value is usually similar to intraclass correlation coefficient (ICC) and this enabled 

me to confirm the agreement extent calculated beside checking reliability. I selected a two-way 

random effects ICC model which fitted well with our dataset. This model is reliable to assess 

clinical methods agreements or reliability especially for routinely planned clinical use 

methods103. The agreement estimates and their 95% confidence were calculated in Rstudio 

based on mean rating k=3 (balance, loss, gain).  

 

2.2 Astrocytoma BeadChip EPIC data CNV analysis 

2.2.1 Astrocytoma data retrieval 

 

DNA methylation data (Illumina Epic Human Methylation 450k) was downloaded from the 

TCGA (n=116). The so generated raw methylation data was analyzed using the standard 

pipeline established in the department using Hovestadt V, Zapatka M. conumee: 

http://bioconductor.org/packages/conumee/, with minor modification in algorithms. All further 

statistical analyses were done using the programming language R. The copy number alteration 

was classified as gain, amplification, loss or deletions based on log2 intensity values in specific 

chromosomes. For example log2 of copy number > 0.1 was considered a gain while log2 of 

copy number < -0.1 was considered a loss. This analysis was done as described in the 

Bioconductor package with minor modification. 

https://bioconductor.org/packages/release/bioc/html/DNAcopy.html. Canonical pathway and 

network analyses were conducted using Qiagen’s ingenuity pathway analysis (IPA) tool 

(www.qiagen.com/ingenuity). Hierarchical clustering was done on R version R 3.6 

(http://www.R-project.org/). 

 

2.2.2 Kaplan meier survival analysis 
 

Survival was simply considered as the time point up to occurrence of an event (death) while 

survival analysis was the analysis of such occurrences in the data104. The data contained WHO 

grade classifications and time to event (death). With this type of data, I aimed to analyse the 

fraction of individuals that were living after being diagnosed with grade II or III astrocytoma 

based on WHO grading system. The ultimate goal was to see if the survival function differs 

http://bioconductor.org/packages/conumee/
https://bioconductor.org/packages/release/bioc/html/DNAcopy.html.%20The
http://www.qiagen.com/ingenuity
http://www.r-project.org/
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from each grade. This would be an indicator of severity of disease. In the event I found no 

difference in the survival functions I opted to screen for sub-groups using the copy number 

alteration and test their survival too. Kaplan meier estimates are reliable in computing the 

survival over time despite the challenges observed during follow up of individuals over time 

before the censored events105,106. This method simply computes probabilities of occurrence of 

events at a certain point of time and multiplying the successive probabilities with earlier 

probabilities to get the final estimates105,106. All the survival analysis was done on R. 

 

2.2.3 Hierarchical clustering 

 

I used unsupervised clustering approach for the 116 Astrocytoma samples based on CNV.I 

further used hclust in stats package and agnes in cluster package for the agglomerative 

clustering approach. I adopted the agglomerative clustering which combines two neighbour 

cluster into a larger cluster in what is commonly known as bottom to top approach. At first, I 

applied the four major distance measures (Euclidean, Manhattan, Minkowski and pearson) with 

three dissimilarity combination (Complete, average and ward) since I was not able to accurately 

choose the best methods for my copy number data clustering approach at the first time. All 

could be used however Pearson Ward-D2 provided better clusters with distinct copy number 

variations. I therefore concentrated with the Pearson correlation metric and ward as the 

agglomeration method. This combination allowed me to measure linear dependencies within 

the CNVs and also to minimise the total within cluster variance by merging clusters with 

minimum variance between clusters 107. 

 

2.2.4 CNV frequency and heatmap analysis 

 

This was conducted using the copynumber package (Gro Nilsen, 2020) in R. Briefly using this 

package, I first organised each data set into a matrix. I ensured that each row represented a 

probe and each column had chromosome and corresponding genomic position. The other 

columns had Log2 transformed copy number intensity values and specific sample identifier. 

After initial data cleaning considerations, I continued with segmentation and common break 

points were obtained. This was done in each sample with a multipcf function. I applied a 

gamma parameter to determine a penalty for each discontinuity obtained during segmentation. 

I then visualized the data by using plotSample and plotChrom in order to plot the data along 

the genome for each given chromosome. For heat maps I used plotHeatmap function. 
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2.2.5 Identification of the canonical pathways associated with the altered genes  

 

To get more insight to the identified altered region I further retrieved genomic ranges of human 

genes using the biomart library genes. I then used the ranges to annotate our altered segments. 

This approach allowed me to compile the gene list which I uploaded on IPA in order to identify 

the pathways associated with the altered region. I adapted ingenuity pathway analysis in order 

to explain the pattern expression especially in the altered genes as shown in figure 2.2 below. 

I also aimed to identify biological key regulators and relevant pathways that could explain the 

role played by the altered genes in astrocytoma grade II progression to glioblastoma 

multiforme. Details on the application of ingenuity pathway can be found in user data sheet108 

 

 

 

Figure 2. 2 Groupwise canonical pathway analysis workflow adapted in our analysis for each 

sub-group identified in the astrocytoma samples. 
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2.2.6 Methylation profiling classifier to confirm the astrocytoma classes 

 

The methylation classifier was built based on a random forest algorithm. Based on 450K and 

850K data unsupervised clustering was done on a reference cohort and each loaded sample is 

classified by comparing with this cohort 50,86. For correct prediction of a tumour class a 

threshold of ≥ 0.9 is required between the sample and the reference set. Therefore, to confirm 

the methylation classes of each sample per group, I uploaded the 450K or Epic output data of 

green and red-channels (.idat files). The upload was done in the classifier as directed in the 

classifier website. www.molecularneuropathology.org. This allowed us to get the methylation 

classes along each CNV clustered group sample. 

 

2.3 Identification of subclasses in low-grade and high-grade glioma based on CNV 

between cases and controls. 

 

2.3.1 Data retrieval from the GDC national cancer institute (NCI) data portal 

 

The retrieval and analysis of circo plot was adopted from the TCGA workflow with minor 

correction. The glioblastoma (GBM), low grade glioma (LGG) and sarcoma (SARC) data set 

were retrieved from the GDC NCI data portal (https://gdc.nci.nih.gov/) using Bioconductor 

package TCGAbiolinks8. I used the main functions GDCquery, GDCdownload and 

GDCprepare respectively to conduct the search. I further downloaded and loaded the data as 

an R object as described in the workflow. All analyses were done in R version 3.6.  

 

2.3.2 Controls choice basis for CNV profiles and frequency in our data set 

 

I selected case control samples from the GDOC databases. The samples were mainly from the 

TCGA project and Rembrandt databases. I considered blood normal samples as control since I 

assumed with high confidence that the samples came from diploid cells. Unlike tumour–

adjacent tissue samples blood normal control is usually not contaminated by tumours during 

early tumorigenesis events. Moreover, it also fulfilled the batch effects considerations. Batch 

effects ensure that the samples come from the same laboratory and were processed with the 

same reagents. 

 

http://www.molecularneuropathology.org/
https://gdc.nci.nih.gov/
http://bioconductor.org/packages/TCGAbiolinks/
http://bioconductor.org/packages/TCGAbiolinks/
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2.3.3 Determination of the localization of the mutation frequency 

 

The circo plot provides the chromosome position and specific gene altered per chromosome. 

However, to identify the frequency of each mutation based on position located in more than 

400 cases and controls per group. I used the DNA copy package to process the log-intensity 

values97,107. Prior to determining the frequency and gene localisation, I first established the 

possible cluster per each glioblastoma multiforme group i.e I identified subclusters per each 

primary tumour, recurrent tumour or metastasized tumors.  

 

2.3.4 Hierarchical clustering 

 

I used a similar approach as applied in our astrocytoma data set as reported on section 2.2.3 

above. In brief I adapted unsupervised clustering. I then clustered samples based on their log2 

intensities values which gave basis on the copy number variations. I used hclust in the stats 

package and Agnes in cluster package for the agglomerative clustering approach. I adapted the 

agglomerative clustering which combines two neighbour clusters into a larger cluster in what 

is commonly known as bottom to top approach. Since I previously showed that Pearson 

correlation matrix and ward agglomeration method provided better clusters thus I depended 

much on results from this method. This combination allowed me to measure linear 

dependencies within the CNVs and also to minimise the total within cluster variance by 

merging clusters with minimum variance between clusters 97. 

 

2.3.5 CNV frequency and heatmap analysis 

 

This was conducted using the copy number package in R97,98. Briefly using this package, I first 

organised each data set into a matrix. I ensured that each row represented a probe and each 

column had chromosome and corresponding genomic position. The other columns had Log2 

transformed copy number intensity values and specific sample identifier. After initial data 

cleaning considerations, I continued with segmentation and common break points were 

obtained. This was done in each sample with a multipcf function. I applied a gamma parameter 

to determine a penalty for each discontinuity obtained during segmentation. I then visualized 

the data by using plotSample and plotChrom in order to plot the data along the genome for 

each given chromosome. For heat maps I used the plotHeatmap function. 
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3.0 Results 

 

3.1 Reliability of EPIC BeadChip (450/850K) and aCGH data in copy number variation 

calling in brain tumor samples-phase 1 

3.1.1 Rationale for phase I results  

 

Following technological developments, different methods have been developed that use EPIC 

Beadchip (850K) and HumanMethylation450 Beadchip (450K) data to call CNVs. The three 

major analysis packages include ChAMP, Conumee, and CNV analysis450k. However no 

major research has been done to validate or compare the CNV calls of these packages with the 

gold standard aCGH data on DNAcopy package. In these results set, I therefore aimed to 

provide evidence on the comparison between microarray-based genomic hybridization (aCGH) 

CNV calls and 850K combined with 450K data Conumee CNV calls analysed using paired 

samples (n=61). In specific I opted to determine percent agreement and reliability of the CNV 

calls from 450K/850 K methylation epic and aCGH paired data as shown in results below. 

 

3.1.2 Genome wide aCGH data coverage in the CNV analysis in 61 samples 

 

The sum of the length of all the autosome and sex chromosomes based on GRCh37 is 

3095677412bp (3095.68Mb) per individual. I used the chromosomal length as reference to 

compute genome wide coverage of the two methods. The average segment length generated by 

the aCGH was 2771397022bp (2771.40Mb) per sample. This accounted for 90% genome wide 

segment length coverage and 96% in the autosomes only as compared with the GRCh37 total 

chromosomal length.  

 

3.1.3 Genome wide methylation data coverage in the CNV analysis in 61 samples  

 

The average genome wide chromosomal length covered by the methylation 450K or 850K 

data was 2746234758bp (2746.24Mb). This accounted for 89% of the total chromosomal 

genome length and 93% coverage for the autosomes. 
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3.1.4 Pairwise comparative analysis of paired data between aCGH and methylation 

results  

 

A total of 4314 short segments had missing information on the aCGH data but had data for the 

methylation. This segment with missing data from aCGH was 1366702bp (1.37Mb) long on 

average. For the methylation dataset I observed short segments (3529) of around 2105653 

(2.11Mb) on average that had no data for methylation but had data for the aCGH method. A 

summary of the chromosomal length covered by both methods is shown in table 1 below. The 

total percent matched and unmatched lengths of mapped chromosome positions were 74% and 

19% respectively of the total length of chromosomes observed. The remaining 7% length 

accounted for the missing data in either of the cases. The methylation data contributed 3% of 

all lengths missing data while aCGH data contributed 4% lengths of the missing data.  The 

average length covered by each method is shown in table 1 below. To calculate percent 

agreement, I considered the paired complete matched and unmatched data. I observed 80% 

agreement between the two methods. 

 

Table 1 Summary of chromosomal length covered by the two methods 

 Match aCGH no data Methylation no data Unmatched 

Segments 4310 4314 3529 1934 

Average length (Mb) 2117.87 96.65 121.82 531.71 

Percent coverage  74% 3% 4% 19% 

 

3.1.5 Individual case analysis, agreement and chance agreement determination  

 

To test the extent of agreement, I computed kappa statistics for each paired sample. I observed 

92% of the sample had true agreement (p < 0.05) while in the remaining 8% (5/61) the samples 

had high kappa p-value (p> 0.05) which may be attributed to experimental errors or chance. I 

further calculated the percent agreement of the sample pairs which had true agreement. 

Interestingly I observed 88.3% agreement between the two methods based on chromosomal 

length weighted agreement and 80% unweighted agreement. To get more insight into the data 

I computed the interrater coefficient correlation (ICC) which was similar to the kappa k=0.57 

and 95% C.I of 0.52-0.61. In summary for all the sample paired segments unweighted Kappa  
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and ICC value was 0.57 with a 95% confidence interval of 0.54-0.61 as shown in figure 3.1 

below. In specific 7%,11%, 40%,35% and 7% of the paired samples were rated as slight, fair, 

moderate, substantial and perfect agreement respectively by kappa (k-value).  

 

 

 

Figure 3.1 Percent agreement and Cohen's kappa value of 0.574 (p<0.05) that rule out any 

possibility of chance agreement between the two methods. 

Often the ICC value is used along the Cohens value. Substantial to moderate agreement 

observed is sufficient for clinical diagnostic methods applications. 

Moreover, a balance to gain or balance to loss disagreement is usually considered less severe 

than a loss to gain disagreements. I therefore computed the percent disagreement between the 

two methods. In an unweighted calculation I observed 13.5% were loss to balance/balance to 

loss, 5.7% were gain to balance/balance to gain and 0.8% accounted for gain to loss or loss to 

gain mismatches. Based on chromosomal length I observed 8.4%, 3.3% and 0.1%; loss-

balance, gain to balance and loss to gain mismatch respectively. Table 2 below shows a 

summary of the segment’s agreement. 
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Table 2 Overall segments agreement and disagreement between the paired data sets. 

 

 Epic-450/850K data segment-mb 
 

aCGH _mb Balanced Gain Loss Total %Agreement Proportion of mismatch 

Balanced 1783.65 48.24 188.6 2020.49 88.23 Loss-balance ( 8.4 %) 

Gain 30.8 177.9 1.94 210.64   Gain-balance ( 3.3%) 

Loss 11.47 0.68 149.25 161.4   Gain-loss   (0.1%) 

Total 1825.92 226.82 339.79 2392.53   5/61- kappa (p >0.05) 

 

3.1.6 Selected summarized copy number profiles generated by the two methods 

 

Copy number variation profiles in a selected set of samples with perfect and slight agreement 

are shown in figure 3.2 to figure 3.5 below. I observed that 90% of the samples (55/61) showed 

similar copy number profiles patterns across the genome. For the remaining 10% of the samples 

(5/61); we could not establish either a correct pair or baseline correction for our intensity value.  
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Figure 3.2 Sample chip ID:201530480047_R01C01.ID:X4M71; Summary of aCGH data CNV 

profile. 

The green and black bins in (a) show alteration of chromosome number starting from 

chromosome 1-22 with corresponding chromosome position on x-axis b. Epic array 

methylation data CNV profile plot pair of the aCGH plot in (a). The two profiles indicate the 

correct sample pair match with moderate agreement.  
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Figure 3.3 Sample chip ID:9444374147_R05C01.ID:X4M34; Summary of a. CGH data CNV 

profile. 

The green and black colours on the plot shows alteration of chromosome number starting from 

chromosome 1-22 with corresponding genomic position on x-axis b. methylation data CNV 

profile that shows perfect pair match and sample perfect agreement. A plateau with baseline 

reference was achieved with most of the balanced segment aligned to the log2 (R/T) zero.  
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Figure 3.4 Sample chip ID:9610361029_R04C02.ID:X4M36, shows summary of a. CGH data 

CNV profile. 

The green and black colours on the plot shows alteration of chromosome number starting from 

chromosome 1-22 with corresponding genomic position on x-axis b. Methylation data CNV 

profile that shows perfect pair match and agreement.In this figure segment plateau with 

baseline correction was not achieved. Balanced segment aligned to the log2 (R/T) below or 

above zero. In normal baseline correction, balanced segments align to 0.0. 
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Figure 3.5. Sample chip ID:201533500059_R07C01.ID:X4M6; Summary of a. CGH data 

CNV profile. 

The green and black colours on the plot shows alteration of chromosome number starting from 

chromosome 1-22 with corresponding genomic position on x-axis b. Methylation data CNV 

profile with failed baseline correction that shows perfect pair match and sample poor agreement  

with the aCGH data. 
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3.2 Copy number alterations profile and implications in astrocytoma patient 

stratification and diagnosis 

 

3.2.1 Specific aims in phase II  
 

In this phase I proposed to evaluate survival of WHO grades before and after clustering using 

the log2 copy number intensity value. I also aimed to identify relevant glioma pathways 

explained by the CNV in our astrocytoma data set and determine composition of methylation 

classes within our clusters. I further proposed to identify unique alteration patterns in each 

cluster. 

 

3.2.2 Results on grading and survival analysis 

 

To test whether the current world health organization grading system had an impact on 

survival, I conducted Kaplan Meier survival analysis in 116 samples between WHO 

astrocytoma grade II (n=46) and III (n=70). I found out that there was no significant difference 

in survival (p>0.05) between WHO astrocytoma grade II and grade III (Figure 3.6 a below). I 

observed an average survival of 1.7 years. The survival curves are shown in figure 3.6 a-c 

below. Although group III had considerable short survival time, it was not significantly 

different from grade II tumor’s (p=0.84) as shown in figure 3.6 (3a). To identify subgroups 

from the WHO astrocytoma grade cases, I conducted hierarchical clustering (Pearson 

coefficient correlation ward D2 linkage) of the mixed WHO grade II and III using the log 2 

intensity CNV. I was able to identify 7 clusters in the WHO grade II and grade III data sets as 

shown in the cluster dendrograms in figure 3.6 (3b). After identification of the clusters, I 

conducted survival analysis once again to find out whether the cluster had differences in 

survival time as shown in figure 3.6 (3c). I observed a significant difference in survival within 

the clusters. However only group 3 had a large sample size (n=56). In brief, cluster 1 (n=5) had 

median overall survival of 5 months while other clusters had median survival of 11, 10, 42, 8, 

8 and 19 months for cluster 2-7 respectively. In the data set, I considered overall survival > 17 

months as better survival which was only observed in cluster 4 and 7. Minimum survival of 

groups was 3, 1, 1, 4, 2, 1 and 1 months respectively while Maximum survival was 9, 87, 95, 

108, 84, 68 and 80 months from cluster 1-7 respectively. 
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Figure 3.6. WHO survival curves before clustering, subgroups and groupwise survival curves 

after clustering. 

3a. WHO grade II survival curve is shown by the brown line while WHO grade III survival 

curve is shown by the blue-line. There was no difference in survival between the two groups 

(p = 0.84). 3b; Shows the seven hierarchical clusters in 116 astrocytoma samples after 

clustering based on log2 intensity values. The circular node colour is in line with the survival 

analysis curve colours after hierarchical clustering in figure 3c; Shows the identified 7 clusters 

survival curves. There was significant survival difference between the clusters (P = 0.019). 

Cluster 1 (pink) had the least number of samples n=5 and poor survival. Cluster 7 (Violet) had 

few samples too but relatively better survival (n=8). Cluster 4 (Green) and 6 (Mint Green light) 

had 10 samples each while cluster 2 (brown) and 5 (blue) had 14 samples each. Cluster 3 

(Olive-green) had the highest number of samples n=57 and most samples had poor survival too 

as compared to clusters 4 and 7.  

 

I further conducted hierarchical clustering (Pearson coefficient correlation ward linkage) using 

the CNV value to determine clusters that may be used in grading). I was able to identify 7 

clusters in the WHO grade II and grade III data set (Figure 3.6. 3b above). To identify if the 
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subgroups identified have differences in survival, I conducted survival analysis. I observed a 

significant difference in survival between the data sets (P < 0.05).  

 

After clustering I conducted survival analysis within the clusters and observed a significant 

difference in survival between the clusters (Figure 3c above). There was a significant survival 

difference between the 7 subgroups (P = 0.019). Clusters 1 (pink) had the least number of 

samples n=5 and poor survival. Cluster 7 (purple) had few samples too but relatively better 

survival (n=8). Cluster 4 (Mint Green light) and 6 (Violet) had 10 samples each while Cluster 

2 (Olive-green) and 5 (blue) had 14 samples each. Cluster 3(Green) had the highest number of 

samples n=57 and most samples had poor survival too as compared to cluster 4 and 7. 

 

3.2.3 Identification of CNV frequencies in each astrocytoma sub-groups 

 

To identify CNV patterns, I first determined the alteration profile in each group. I  

further re-grouped them based on the survival curves as some presented with better survival 

and some presented with poor survival figure (3.1 a and figure 3.1b) 
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Figure 3.7 Four clusters that had poor survival outcomes. Red bar indicates chromosomal gain 

i.e log 2 intensity > 0.1 while blue bar indicates chromosomal loss log2 value <-0.1. 

Dotted line indicates the centromere i.e divide p and q arm of each chromosome respectively. 

The common deletion with >50% occurrence in at least 2 of the 4 groups were observed at 

Chr3q Chr4q, Chr5p/q, Chr7q and Chr13q. C2 was characterized by chr 6q deletion (98%) and 

Chr8p/q (50%) while C5 was characterized by 11p deletion (98%). Cluster3 was characterized 

by deletion at 6q (50%), Chr8p/q (25%) and Chr11p(25%). Though the frequency was low, the 

number of cases were considerably high to consider these CNVs in C3. 
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Figure 3. 8.Three clusters (C4, C6 and C7) that had poor and better survival mixed outcome 

among its subjects 

The common CNV with >50% frequency in groups C6 and C7 included Chr4p and Chr13q co-

deletions.  C4 had relatively better survival though it had most alterations. It was characterised 

by Chr3q (60%), Chr4q (76%), Chr5p/q (50%), Chr11q (72%), Chr12q (72%) and Chr13q 

(60%) co-deletions. In-addition there was chr12p (77%) gain. C6 had Chr4q (55%) and Chr13q 

(60%) co-deletions and Chr8q gain (50%). G7 had Chr6q, Chr13q, Chr14q and Chr19q co-

deletions. 

 

3.2.4 Heatmap analysis of a selected poor and better survival subgroups 

 

To identify the nature of the intensity values among the poor and better survival groups, we 

conducted heat map analysis. It was observed that the groups with poor survival had much 

alterations, mostly loss of chromosomal segments which appeared in higher frequencies than 

the groups with better survival (Figure 4.2.3). I observed severe deletion of chromosome 4 and 

13 in C3 which had poor survival. In C7 which had better survival this region had 40-60% 

frequencies in deletions. 
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Figure 3.9. Heat maps showing the distribution of log2 intensity values in cluster 3 (C3), C4 

and C7. 

C3 had poor patient survival outcome whileC4 and C7 had better patient survival outcome. 

Dark nuisance means balance, blue (deletion) and red (gain) in all the autosomes. There were 

reduced alterations in C4 and C7 as compared to C3. General C3 had unique deletions at Chr 

1q,2q,6q,14p,18p/q,21p/q and 14p While gain was at chr 17p/q, 20p and 22 q. Common 

deletion in C4 was on Chr3p/q, 4q, 5p/q, 12q,13p/q and 14q. In-addition Unique gain in group 

4 was at Chr12p.C7 had chromosome deletions at 4p/q,13p/q and 19q (100% cases). C7 had 2 

samples with  Chr1p/19q co-deletions which could be oligodendroglioma tumor cases.  
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Figure 3.10. Heat maps showing the distribution of log2 intensity values in cluster 2 (C2), C5 

and C6. 

They all had poor patient survival outcomes i.e Overall median survival of 11 months, 8 months 

and 8 months respectively. Dark nuisance means balance, blue (deletion) and red (gain) in all 

the autosomes. There were reduced alterations in C6, C2 and C5 in reducing order respectively. 

Chromosome 13p/q was a common deletion. C5 which had the most poor outcome had unique 

deletion at Chr11p (100%) While C2 had Chr4p/q,6q and 18p/q deletions. In-addition Unique 

gain in C6 was at Chr8p (60%). 

 

3.3 Methylation classes identified based on the classifier 

 

To confirm the methylation classes in each cluster, we used the classifier. The principal output 

of the classifier was a list of predicted methylation classes per each group member as shown in 

figure 3.10 below. For each class, I considered the threshold probability calibrated score of ≥ 

0.9 of the 91 classes. This implies that the remaining class probability will add to < 0.1 in the 

classification scheme. However, in some cases a cut-off value of ≥ 0.5 performed well. Details 

of the scores organised per cluster are shown in supplementary table 1 attached. After 

uploading unprocessed idat-files of Illumina Human Methylation 450 BeadChip arrays to the 

classifier, whereby in principle the classifier compares the data set of 12 in each load to a 

reference cohort of 2800 neuropathological tumours that were used to develop this classifier. I 

was able to get the methylation profiling of data along with checking Isocitrate dehydrogenase 

Figure 3.9. Heat maps showing the distribution of log2 intensity values in cluster 2(G2), G5 and G6. 

They all had poor patient survival outcome i.e Overal median survival of 11months,8 months and 8 months 
respectively. Dark nuisance means balance, blue (deletion) and red (gain) in all the autosomes. There was 
reduced alterations in G6, G2 and G5 in reducing order respectively. Chromosome 13p/q was a common 
deletion. G5 which had most poor outcome had unique deletion at Chr 11p (100%) While G2 had chr 
4p/q,6q and 18p/q deletions. In-addition Unique gain in G6 was at chr8p (60%).  
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(IDH) mutation status, and the 06- methylguanine DNA methyltransferase (MGMT) 

methylation promoter status as shown in selected set of samples in cluster 3 (figure 3.10 below). 

 

Figure 3.11 A_IDH (left) and A_IDH_HG (right) methylation status in group 3 samples. 

Red dot shows sample methylation status against grey dots of reference methylated samples in 

a box plot with error bars for the reference. A total of 116 TCGA samples were successfully 

reclassified and methylation profiles along with CNV profiles and WHO grades are available. 

 

3.3.1 Similar age distributions between clusters identified 

 

Since age is one of the common confounders in cancer, especially to incidence, survival and 

severity of cancer, I further checked the age distribution between the groups before confirming 

the methylation classification of astrocytoma. There was no statistical difference in age 

distributions between the 7 clusters (Kruskali-wallis test P- value > 0.05). The average age 

between the groups ranged from 35-40 yrs.  

 

3.4 Distribution of WHO grades in each cluster and methylation classes 

 

I further observed differences in frequencies of both WHO grades in each cluster as shown in 

figure 3.11. All samples belonged to the family glioma IDH mutant. Majority of the samples 

belonged to subclass astrocytoma_ IDH mutant (A_IDH) with some classified as A_IDH_High 

grade glioma (A_IDH_HG) and also few were 1q/19p co-deletion oligodendroglioma based on 

methylation classifier. The A_IDH_HG had differential frequencies besides occurring as in 

mixed classification with astrocytoma within the clusters. The CNV profiles were also different 

but similar based on how close the clusters were in the survival curves. In summary, cluster 1 

(C1) was dominated by astrocytoma sub-class (100%), in cluster 2 (C2), two samples (15.4%) 

had mixed classification with astrocytoma having higher methylation score of 0.62 and 0.72 

against subclass high grade astrocytoma at 0.36 and 0.27 respectively. Astrocytoma subclass 

with >= 0.94 calibration score consisted of 74.6% of C2. Details of each individual sample's 

calibrated score are provided in supplementary table 1.  Cluster 3 (C3) had the highest number 

of subject data (n=56). 8.9 % (n=5) were mixed with a higher astrocytoma score than high 

grade astrocytoma. 7.1% (n=4) were also mixed classification with high astrocytoma HG 
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calibration score while an additional sample was classified as A_IDH_HG with calibration 

score of 0.98. The rest 82.1% were classified as A_IDH. Cluster 4 (C4) had 40% (n= 4) high 

grade astrocytoma. Though 2 samples were mixed, they had A_IDH_HG higher calibration 

score than the astrocytoma subclass. We observed that the 60% subclass astrocytoma had a 

slightly low calibration score of >= 0.91. Cluster 5 (C5) was dominated by subclass 

A_IDH_HG with 64.3% (n=9) having been classified as A_IDH_HG or mixed. Two samples 

of the 9 had low A_IDH_HG subclass compared to astrocytoma class. The remaining 33.7% 

belonged to class astrocytoma. Cluster6 (C6) had 20% A_IDH_HG and 20% A_IDH_HG with 

bias to higher astrocytoma classes based on the score. The remaining 60% were all subclass 

astrocytoma majorly classified as WHO grade III. Cluster7 (C7) was the only class dominated 

by subclass 1q/19p codeleted oligodendroglioma at 50% (n=4). One sample belonged to 

A_IDH_HG subclass and 37.5% (n=3) were subclass astrocytoma. Two of which were WHO 

grade III astrocytoma and one grade II astrocytoma. 

 

 

 

Figure 3.12 Distribution of the WHO grades after clustering the data based on copy number 

alteration log-intensity values. 

Blue bars indicate grade II and orange bars indicate grade III in each cluster. Cluster 1 was 

dominated by WHO grade II (60%) with all samples being A_IDH subclass. Cluster 2 was 

dominated by WHO grade III (64%) with 2 of the 13 cases characterised as high-grade 

astrocytoma though at a methylation classifier score of 0.36 and 0.27. Cluster 3 was dominated 
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by grade III (59%) with 7 samples (13%) classified as being A_IDH_ HG. Cluster 4 was 

dominated by WHO grade III (60%). Cluster 5 was also dominated by WHO grade III (71%). 

Cluster 6 samples were A_IDH with 7 of 10 samples among this cluster being grade III (70%). 

Grade 7 was also dominated by WHO grade III (63%). 

 

 As compared to the slope there was no clear observable pattern between the survival slopes 

and the distribution of the WHO grade classes for example cluster 1 had a poor survival and I 

expected WHO grade III to dominate. However, the distribution of the methylation classes i.e. 

A_IDH, A_IDH-HG and codeletions at 1p/19q and oligodendroglioma classes were 

differential enriched in each group for example cluster 7 had 50% oligodendroglioma. It is 

therefore promising to have improved classification with a combination of methylome and 

copy number alterations. 

 

3.5 Distribution of CNV between and within clusters in the class A_IDH_HG 

 

There was a difference in CNV alterations among the A_IDH_HG within clusters (figure 3.12). 

we noticed common similar alterations and common deletion at cluster level. Cluster 5 had 

A_IDH_HG characterised by presence of Chr13p/q deletion (figure 3.12). 
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Figure 3.13 Difference in copy number alterations in selected clusters with blue text showing 

29 genes commonly associated with brain tumour. 

From the left top, cluster 3 had a clear gain in chr9 and a loss in chr19q while cluster 4 had 

gain in chr1 &11 with a loss in chr 12. Cluster 5 had a gain at chr4p with multiple consistent 

loss in chr3q chr4q and chr13. Cluster 7 had multiple loss at chr6q, chr10q, chr14q, chr18 and 

19q 
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Figure 3.14 Difference in copy number alteration within cluster 5 with blue text showing 29 

genes commonly associated with brain tumour 

A unique common deletion at Chr13q/p was observed in the four-group member classified as 

A_IDH_HG. 

 

3.6 Identification of CNV status in the 29-brain cancer associated genes per cluster 

 

The groups with poor survival outcome which was determined earlier formed the clusters C1, 

C2, C3 and C5. They were characterised by co-deletion on CDKND2A/B, MYB1 and RB1 

(figure 3.14; C1, C2, C3 and C4). The groups with better survival consisted of C4, C6 and C7. 

All had low frequencies of co-deletion on CDKND2A/B and RB1 as compared to the group 

with poor survival. In addition, C4 and C6 had chromosomal gain in gene CCND2. However, 

C7 had a unique C19MC deletion beside having around 60% co-deletion MYB1 and RB1 gene 

.Supplementary figure 1 shows all the 29 genes selected per cluster. 
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Figure 3.15 Distribution of 29 commonly brain tumour genes from for the first four clusters 

with their respective alteration. 

The red dotted lines show the threshold for gain (0.1) the top red dotted line and loss threshold 

(-0.1) below 0 red dotted line. Patients in C1, C2, C3 and C5 had poorer survival outcomes 

than C4, C6 and C7. Consistent co-deletion were found in CDKND2A/B, MYB1 and RB1 genes 

in C1, C2, C3 and C5. This also occurred at C4 and C6 but at low frequencies beside the 

common gain on CCND2 in these groups. C7 had a unique deletion on C19MC, MYB1 and 

RB1. 
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3.6.1 Glioblastoma multiforme signalling pathways associated with the altered regions 

Several pathways were associated with the altered regions. We therefore considered the most 

relevant pathways associated with glioma carcinogenesis based on literature, ratio of > 0.01 of 

enriched molecules in the pathway and overlap of pathway in at least 3 of the seven clustered 

altered regions. Moreover, we considered small P values of molecules in order to ensure that 

the molecules are not randomly enriched by chance. Using this approach, we identified a total 

of 35 pathways which were associated with angiogenesis, cell cycle, apoptosis regulation and 

growth factor receptor signaling for example Cell Cycle: G1/S Checkpoint Regulation, 

glioblastoma multiforme Signaling, ERK/MAPK signaling and VEGF signaling. The 

molecules are shown in figure 3.15. The pathways with high ratio of altered molecules in 

canonical pathways selected include; Retinoate Biosynthesis II (0.75), Spermidine 

Biosynthesis 1 (0.5), IL-3 signaling (0.3), Glioma Invasiveness signaling (0.3), p53 signaling 

(0.2) and axonal guidance signaling (0.2). Supplementary table 2 shows the enriched pathways 

and their associated molecules. In-addition, figure4 below shows the molecules enriched in 

glioblastoma multiforme. It was enriched in group 4.  

 

Figure 3.16 Molecules enriched in glioma multiforme signalling pathways in the majority of 

clusters. 

The green circled genes were found in our data set. A complete list of altered genes and 

intensity values are attached as supplementary table 2. 
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3.7.1 Specific aims in phase III  

 

In this phase, I proposed to Identify the genomic landscape of the brain tumour subgroups 

including copy number alterations and point mutations (missense, nonsense, frameshift 

deletion and frameshift insertions). I further aimed to Identify unique copy number patterns in 

primary, recurrent or metastasis tumours as compared to normal blood controls (BDN) in 

glioblastoma and lower grade glioma in large cohorts. Below are the results of the analysis. 

 

3.7.2 Genomic landscape in glioblastoma and low-grade glioma  

 

After testing my workflow, I analysed the genomic landscape in glioblastoma (n=597), as 

shown in figure 3.16 below. Based on our analysis, glioblastoma can be characterized by 

missense mutation in 98% of the chromosomes with chromosome 3, 7, 9 and 12 having only 

missense point mutations while Chromosome 8 was mainly dominated by nonsense mutations. 

Nonsense mutation with frameshift deletion and missense mutations was observed in 

chromosome 1, 10, 13, 15 and 17.  Nonsense mutations were observed in Chromosomes 1, 2, 

4, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19 and 20. Frameshift deletions were observed in 

chromosome 1, 10, 13, 15 and 17. Frameshift insertions were only present in chromosomes 3, 

6 and 10. Unlike the low-grade glioma subtype, the glioblastoma landscape was observed to 

have gene amplification on chromosome  
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Figure 3.17 Genomic copy number variations in glioblastoma. 

Red shades indicate the amplification and green shades stand for deletion. Dots indicate point 

mutation i.e blue dot is a missense, green is nonsense, red is a frameshift deletion and orange 

is a frameshift insertion. 

 

I observed recurrent alterations in specific parts of the chromosomes especially chromosome 

1, 3, 4, 7, 12, 13, 17 and 19 were characterized by amplification. I further observed deletions 

at chromosomes 1, 6, 9, 10, 11, 13, 15, 17 and 19.  

Both analyses showed that LGG was characterised by gene amplification at chromosomes 1, 

3, 4, 7, 12, 13, 17 and 19 while gene deletions were observed at chromosomes 1, 2, 4, 6, 9, 10, 

11, 14, 19 and 22. Although such alterations are events, the mechanisms underlying the 

development and tumour progression is not well known. It is further important to determine 

the possible mechanisms that may explain the disease progression or malignancy. This could 

partly be shown through ingenuity pathway analysis of genes involved along with functional 

validation assay. I highly recommend such experiments.  
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3.7.3.1 Hierarchical clustering of low grade glioma primary tumour (LGG-PT)  

 

We further conducted pearson- ward D2 hierarchical clustering as shown in the dendrogram in 

figure 3.17 below. 

 

Figure 3.18.Three groups obtained after pearson-ward. D2 hierarchical clustering in low grade 

glioma -primary tumour (LGG-PT). 

This was obtained after clustering n=586 samples of low-grade glioma. 

 

3.7.3.2 Frequency copy number variations of the identified 3 cluster groups in LGG-PT 
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Figure 3.19 CNV frequencies in LGG-PT sub-groups identified. 

Cluster 1, low grade glioma-primary tumour (LGG_PT1, n=277), cluster 2 (LGG_PT2, 

n=162), cluster 3(LGG_PT3, n=60) and low grade glioma normal blood control (LGG-BDN 

(n=472) from left to right respectively. 
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3.7.3.3 Heat- map analysis of the identified 3 cluster groups in LGG-PT 
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Figure 3.20 CNV profiles pattern in LGG-PT groups 1-3 (n=497) and LGG-BDN (n=479). 

From left to right respectively. The LGG-PT group1 (n=277) would be characterized by 

chromosomal 7 gain. Group 2 (n=162) would be characterized by chromosomal 1 loss, 

chromosomal 4q and major chromosomal 19 loss. Group 3 was characterized by chromosomal 

gain at chromosome 7p/q and chromosomal loss at 10p/q and 9 q. 
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3.7.4 Glioblastoma primary tumour clusters (n=583) 

 

For the 583 glioblastoma primary tumours (GBM-PT), we obtained 4 main sub-groups with 

different numbers of cases after clustering. GBM-PT group 1 (n=65), group 2 (n=264), group 

3 (n=131) and group 4 (n=123). Figure 3.20 below shows the cluster groups. 

 

 

 

Figure 3.21.Hierarchical clustering (Pearson-ward. D2) of glioblastoma primary tumour 

n=583. 

Four distinct groups were observed based on copy number variations log intensity values. The 

glioblastoma recurrent tumours (GBM-RT n=14) were divided into two subgroups. Due to the 

low number of samples in the GBM-RT cluster, I  interpreted the data with cautions. 

  



 66 

3.7.5 Copy number variations profiles in the five GBM-PT sub-groups 
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Figure 3.22 CNV frequencies in glioblastoma primary tumour sub-groups (GBM-PT). 

Groups 1-4 from right to left respectively along the genome chromosome 1 to 24 in an alternate 

manner. The CNV frequencies were compared to glioblastoma blood normal control (GBM-

BDN control). The primary tumours were characterised by common gain (red bar) with highest 

frequency at chr 7, deletion/loss (blue bar) at chr 9p, 10p/q and 22q. These regions are enriched 

with cell survival and apoptotic genes such as CDK2A/B, MDM2, EGFR and PTEN which are 

common in high grade glioma. 

 

To identify common alterations, I checked for deletions or gains at high frequency in at least 

two of the clusters. We observed common amplifications at chromosomes 7p/q, 9q,12p/q, 

18p/q, 19p/q and 20p/q. Common deletions were observed in chromosomes 9p, 10p/q, 13q, 
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14q, 15q, 16p/q and 22q. Deletions at chromosomes 6p/q were evident in group 1, 2 and 4 

while gain at chromosome 1p/q was evident in group 2 and 3. Consequently, I investigated the 

GBM-RT two groups along with the 479 case GBM-blood normal control (BDN). Figure 5 

shows the CNV frequency. We observed minor alterations at chromosome 4p, 6p , 13q, 19p in 

GBM-BDN but in <1% of the total samples analysed (n=479). 
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Figure 3.23 CNV profiles patterns following heat map analysis of each sample case in each of 

the GBM-PT four clusters. 

Clustering was done using the log-intensity value cut-off (-0.1, 0.1) as loss and gain 

respectively. The profiles were compared to the GBM-BDN controls (n=479). 
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Using heat map analysis, we could establish key CNV profile patterns that occurred in high 

frequency beside the side of the log intensity value i.e dark blue means a deletion, dark red is 

a gain while a log intensity value close to loss or gain will have light blue and red respectively. 

Dark nuisance means a neutral log intensity value i.e log intensity value of equal or close to 0. 

Using this analysis, we could clearly see that clusters 1, 2 and 4 of glioblastoma multiforme 

would be characterized by gain of chromosome 7, major loss of chromosome 10 p/q with or 

without loss of chromosome 9q. Cluster 3 n=65 had a unique pattern characterized by 

chromosome 1q gain with or without loss of chromosome 13q. We also noted that group 2, 3 

and 4 had high frequency of chromosomal 13 q losses. Note that the loss in chromosome 24 

was seen in blood control as shown in the figure 3.23 below and thus we could not make 

significant conclusions with such loss. 
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Figure 3.24 Alteration in GBM recurrent tumour (GBM-RT) cluster 1/2 (RT1/RT2) and their 

respective profile heatmap profiles in group1 and group2. 

Cluster 1 is on the top and group 2 is on the bottom. We observed common gain of 

chromosomes 2p, 3q, 7p/q, 9q, 17p/q, 19p/q, 20q and 22 p while common loss of chromosome 

was highly observed at chromosomes 10p/q and 13q. Other common losses at low frequencies 

were observed at chromosome 9p/q, 8q, 15q, 16q and 22 q. Group 1 had unique gain at 

chromosomes 1pq, 3p, 4 p/q, 5q, 6p/q, 8q ,9p, 11q, 14q, 15q ,16p, 18p, 20q and 21q. The unique 

chromosome loss was found at 1p, 2p/q, 3p, 4p/q, 5p, 6p/q, 8p, 11q, 14q, 15q, 16p, 17p, 18p/q, 

19p/q and 20p. Group 2 had unique chromosome loss at 12p and 21q while unique gain was 

only observed at chromosome 20p. Based on the heatmap profile, the GBM-RT groups could 

be characterized by gain of chromosome 7 and chromosome 10 deletion. Group 1q could be 

differentiated by having deletion at chromosome 13 while group 2 had unique deletion at 

chromosome 9. 
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4.0 Discussion  

4.0.1 Epic 450K/850K data is reliable in CNV identification like aCGH  

 

In this study, for the first time I demonstrated that copy number profiles could be determined 

from methylation data with moderate to substantial accuracy like the aCGH data. These 

findings are important since efforts of in-cooperating methylation data and copy number 

alterations in grading brain tumour entity is under way if supportive evidence comes to our 

knowledge.  

 

I used a circular binary segmentation approach to determine change points in the aCGH data. 

This approach has been reported earlier by Olshen and Venkatraman (2002) 97. The model 

detects change-points which corresponds to positions where the underlying DNA copy number 

has changed. Change points can therefore be used to detect regions of copy number alterations 

(gain and loss)107. Our approach to determine the cut-offs for the CGH data was highly efficient 

since 94% of balanced segments data were closer to log2 (R/T) of zero. 

 

Overlaps in chromosomal segments were removed using the genomic range package and 

disjoin function. At the end of this analysis, I was able to come up with similar chromosomal 

regions within the two data set which we could compare. This approach ensured fewer false 

positives if any. To determine if the two methods produced essential similar results in calling 

the CNA, we calculated the percent agreement, and observed 85.8% agreement in CNA calls 

between the two methods. Usual percent agreements below 61% are seen as problematic and 

most clinical studies have recommend higher percent agreement. On average agreement above 

79.5% (80) are highly recommended especially for clinical applicable routine 

methods103,109,11010 samples had a percent agreement of <61%. Our limitation of 4 of this set 

of samples was to establish the baseline cut-off values for calling the segments as gain or losses 

in either of the data sets and this could explain the high level of disagreement of around 40%. 

The remaining six could be attributed to failed bisulfite conversion during the methylation 

experiment. Moreover, I observed that the mean segment values of segments called balance 

were not close to zero as compared to the other samples plateau segments. However, this was 

reported as a common problem observed in calling segments as gain or losses107. 
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To test extent of agreement observed, I computed kappa statistics in the three categories of 

responses (balance, gain and loss) as guided elsewhere110,111. I observed a high percent 

agreement of 80 and a lower k of 0.57 upon the kappa calculation. The discrepancy can be 

explained in the fact that kappa value is known to significantly decrease if response categories 

are more than two93,114,115.  It should also be noted that the kappa value is squared for 

interpretation since the correlation coefficient cannot be directly interpreted but a squared 

correlation called coefficient of determination (COD) is used directly. It is therefore 

recommended to interpret the kappa value with caution. I accepted 0.40 to 0.60 kappa value as 

“moderate” which implied that, 0.40 is an adequate agreement in our case. A kappa value of 

0.41 with a good percent agreement is acceptable in most health studies103,110. To confirm the 

test we further used intraclass correlation coefficient (ICC) which is known to be similar to 

weighted kappa especially when we have numerical data109,110. Interestingly both weighted 

kappa, unweighted kappa and the ICC values were similar k=0.574 with 95% confidence 

interval (C.I) of 0.54-0.61. These findings represent a widely applicable resource for the 

methylation data that can be used in copy number analysis. Search CNA results will find wide 

application not only in brain tumour but possible to other entities too112 

 

4.1.0 WHO astrocytoma grade II and III had no significance difference in survival 

 

I had grade II and III astrocytoma samples in our analysis. Grade II were considered as 

infiltrative tumours with ability to progress into chronic stage. Grade III are lesions with 

histological signs of malignancy. Grade III mainly included anaplastic astrocytoma which 

means intermediate however in reality it is maximal malignancy. Patients with grade III usually 

receive chemotherapy and often adjuvant radiations113,114. Grade III are usually associated with 

recurrence while grade IV are malignant neoplasm which are mitotically active and have fatal 

outcome114. In the glioma family, glioblastoma are grade IV neoplasm. Despite this 

classification in WHO grade, there was no difference in survival between the patients classified 

as grade II and III as shown in figure 4.2a (P> 0.05). This could be attributed to the fact that 

grade II astrocytoma which were mainly pilomyxoid astrocytoma, pleomorphic astrocytoma, 

xanthoastrocytoma and diffuse astrocytoma were revised and included in grade III55,79. In brief 

the revision led to diffuse gliomas to include both WHO grade II and III and leaving out both 

pilomyxoid astrocytoma and pleomorphic astrocytoma due to lack of IDH alteration but rather 

have BRAF alterations112. This group of astrocytoma are known to have similar phenotypes 
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and genetic similarities which may explain the similar survival outcome observed beside 

diffuse astrocytoma have ability to progress to anaplastic astrocytoma and glioblastoma55,114. 

The ability of the astrocytoma to progress to high grade tumour could explain the observed 

unique mixed methylation classes between astrocytoma and high-grade astrocytoma. Our data 

also provide evidence that the WHO grades may not accurately predict the severity of disease 

and more efforts are required to stratify patients with brain tumours for precise management. 

 

4.1.1. Hierarchical cluster based on CNV log2 intensity value 

 

Genomic DNA regions are frequently lost or gained during the tumour progression process. 

The lost regions have been shown to include some tumour suppressor genes while amplified 

regions sometimes harbour oncogenes115. This would ultimately contribute to pathogenesis and 

outcome of disease. I therefore opted to test whether the CNVs would cluster well based on 

severity of the WHO grade II and III. After conducting clustering, we obtained 7 distinct 

clusters (figure 4.2). I also found out that the group had a significant difference in survival 

(figure 4.2b). We closely observed the survival curve and discovered that they could be 

grouped as poor and better survival. I further checked the frequencies alteration in this group 

and indeed found increased alteration in the so-called poor survival group as compared to the 

better survival group as shown in figure 4.3a and 4.3b. This indicates that CNVs can aid as a 

prognostic factor. Similar findings were recently reported116.  

 

4.1.2 Classifier 

 

All samples belonged to the glioma family, majority in Anaplastic (A)_IDH class, subclass 

astrocytoma and some clusters especially in clusters 3, 4, 5 and cluster 7 had some samples 

classified as A_IDH high grade (HG) subclass. I could not rule out the presence of 

oligodendroglioma due to presence of chr1p/19q co-deletion in some samples which were 

majorly enriched in cluster 7 (C7). Other samples were classified as A_IDH. Some samples 

could not be compared to reference well (score <= 0.9) however they were classified based on 

maximum score between the tumours as A_IDH. This is a common challenge as reported in 

earlier study50. 

 

I further found out that there was a mixed distribution of WHO grades. In specific clusters 1, 

2, 4 and 7 were dominated almost equally by each grade. Cluster 3, 5 and 6 were dominated 
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by WHO grade III. Although WHO categorized the majority of samples as grade III, some 

were classified as methylation profiling subclass A_IDH_HG subclass and some as A_IDH. 

These results provide a possibility to use CNVs in reclassification of these WHO grades as 

more supportive clinical data becomes available. 

  

Moreover, I also observed common and unique CNV alteration patterns among the 29 common 

genes. Genes differed in alterations between clusters but to an extent similar within each cluster 

sample. This indicates that the cases within a cluster have similar CNV profiles with minor 

differences in alterations. The common genes altered between clusters e.g CDKN2A/B in 

cluster 3 and 4 may indicate possible role of the gene leading to early events or progression of 

tumour to glioma but may or may not play a significant role in severity of the disease. We 

hypothesize that unique genes in each cluster may be usefully contributing to the 

outcome/severity of the disease of a specific cluster which may influence survival too. Detailed 

analysis in the distribution of the alterations and genes in each cohort will give more insight 

into how we could apply copy number alteration in further classification and grading of brain 

tumour, an aspect which I am working for at the moment. 

 

4.1.3 CDKN2A/B, RB1 and MYB1 losses combination was associated with poor survival 

4.1.3.1 Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) loss 

  

CDKN2A gene is located in Chr9p21. CDKN2A and CDKN2B encode p16 INK4a (cyclin-

dependent kinase inhibitor 2A) and p15 INK4b which acts as tumour suppressors. p16 INKA 

inhibits cyclin‐dependent kinase 4 (CDK4) and p15 cyclin‐dependent kinase 5 (CDK5). CDK4 

and CDK5 play an important role in different cell functions and regeneration117. Several genetic 

polymorphisms have been suggested in the upstream of CDKN2A/B, which might influence 

the expression of these genes and thereby cell cycle118. Moreover a deletion of CDKN2A gene 

may result to cell cycle acceleration and cancer through production of non-functional p16 

which is key in suppressing multiple tumours119. The oncogenic process resulting from 

Chr9p21 deletion may also result due to dysregulation of apoptotic pathway120. WHO grade II-

III have varied clinical presentations with anaplasia depending much on mitotic activity which 

is associated with CDKN2A loss. The loss of CDKN2A in-turn affects cell cycle and has also 

been implicated in poor survival in astrocytoma patients121. This could partly explain the poor 

survival observed in C1, C2, C3 and C5. In summary CDKN2A is associated with poor survival 

in gliomas but not in oligodendroglioma121. Astrocytoma are generally known to have less 
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mitotic activity than oligodendroglioma thus it is promising to use CDKN2A in molecular 

grading of WHO grade II and III. Further advantage of CDKN2A is the ability to predict poor 

survival in patients which would be helpful in-patient management too. 

 

4.1.3.2 Retinoblastoma (RB1) loss 

 

RB1 gene codes for RB1 protein which is a tumor suppressor used in determining therapeutic 

efficacy. It also plays a crucial role in the transition of cells from C1 to S phase. It has been 

shown that cyclin dependent kinases (CDK4 and CDK6) and D-type cyclin leads to RB1 

phosphorylation which in turn releases the elongation factor 2 (EF2) transcription factor which 

results in activation of genes involved in G1 to S phase transition122. In our data set the deletion 

of this RB1 gene was evident in C1, C2, C3 and C5 clusters. 

 

The relative genetic simplicity of retinoblastoma, however, belies the significant functional 

complexity of the RB1 encoded protein (pRb). The first cellular function described for pRb, 

and the most thoroughly studied, is as a negative regulator of the cell cycle 123. Loss of pRb-

mediated cell cycle control is frequently observed in cancer124. As cancer is a disease of 

abnormal cell proliferation, it makes intuitive sense that the key function underlying pRb 

mediated tumor suppression is cell cycle regulation. However, pRb loss also has profound 

effects on many other cellular processes relevant to cancer including differentiation, survival, 

senescence and genome stability125. This functional complexity is mirrored by the variety of 

molecular interactions involving pRb. Rb1 protein interacts with a large and steadily growing 

list of cellular proteins, and an even greater number of genes. Deriving satisfying general 

cancer principles from the study of pRb thus remains elusive125–127 

 

4.1.3.3 MYB gain and loss 

 

Studies of high-grade glioma in pediatrics also found no amplification of the MYB gene but 

rather a loss of MYB in a few cases (6/54) was detected in high grade gliomas128. However, in 

low grade glioma copy number gains in MYB at chromosome band 6q23 were observed in 2 of 

14 samples studied128. This suggests that MYB upregulation may be modulated by alternate 

mechanisms, in addition to copy number alterations. These results partly correspond with our 

observation of MYB alteration in our data set. I recommend more studies of MYB gene 

distribution in glioma in large cohorts. 
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4.1.3.4 Pathways and molecules associated with astrocytoma sub-classes 

 

To get more insight about the altered genes, I selected the genes that are located within the 

altered regions and conducted ingenuity pathway analysis. I was able to identify the canonical 

pathways associated with each group “altered genes”. I selected the most relevant pathway 

such as the glioma signalling pathway to identify known and unknown genes that may be 

attributed to the risk of brain tumor. The list of this pathway and associated molecules are listed 

in supplementary table 2. I observed fairly unique patterns in each group with different 

pathways associated with the disease.  

 

Notably, PTEN, ERK/MAPK, P53, IL-3, glioblastoma multiforme, glioma invasiveness and 

axonal guidance signaling which are associated with glioma formation featured in most clusters 

and were associated with altered adenomatous polyposis coli (APC) which is a tumor 

suppressor gene. Studies have shown that individuals with mutations in APC at chr 5q21 have 

increased risk of brain tumours129. The Glycogen synthase kinase 3 beta (GSK-3β) which 

affects cell proliferation was also altered within the pathways. Inhibition of GSK-3β has been 

associated with glioma death and poor proliferation of glioma cells130. Other molecules altered 

in the pathways was Retinoblastoma (Rb) codes for a tumor suppressor rb protein, Platelet-

derived growth factor (PDGF) which do regulate cell growth, Phosphoinositide 3-kinases 

(P13K) which regulate cell growth and other cellular functions, Transcription factors that affect 

cell cycle (E2F) were also lost, a proto-oncogene Rat sarcoma (Ras), WNT, Son of sevenless 

(SOS), Auditory processing deficit (APD) and Beta catenin (CTNNB1a).  

Over activation of Wnt/beta-catenin/Tcf pathway affects several cancer types however 

constitutive activation of Wnt/beta-catenin/Tcf signaling pathway in specific was strongly 

associated with astrocytic tumors131.  

 

Cluster 4 was associated with poor survival. The presence of the GSK3 beta and AXIN 

complexes alteration may indicate the ability of the tumour to progress to astrocytoma. GSK3 

beta has been shown to regulate different cellular activity ranging from cell growth to 

apoptosis132. 

 

Low expression of BDNF would be associated with alzheimer disease while mature BDNF has 

been shown in vitro to inhibit C6 glioma cell apoptosis and leads to cell growth132,133. 
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Moreover, upregulation of BDNF is usually evident in gliomas134. The presence of altered 

BDNF in our data set may therefore signify the ability of the astrocytoma cases to progress to 

other chronic glioma malignant forms. 

 

PPFIA2 gene is known to encodes a member of LAR protein-tyrosine phosphatase-interacting 

protein (liprin) family, which plays a role in axon guidance and neuronal synapse development 

by recruiting LAR protein-tyrosine phosphatases to the plasma membrane beside known to be 

regulated by cannabis to bring about neuropsychological functions135. Alterations may interfere 

with axonal guidance hence may contribute to neurological sequelae observed.  

 

The other pathways that had a high ratio of molecules from our data (> 0.2) in the canonical 

pathways include axonal guidance signaling. Molecules such as netrins and semaphorins found 

in axonal guidance pathways have been associated with neuronal migration and survival 

control through repulsion or attractions towards growing axons136–138. Other studies have also 

associated the axonal guidance molecules such as ephrin with pathological processes including 

cancer by enhancing angiogenesis process137,139–141.  

 

Molecules on MAPK/ ERK pathways were also altered at high ratio. The MAP/ ERK signaling 

molecules under normal circumstances are highly expressed in brain and aid in memory 

formation, pain perception, induction of cortical neurogenesis, midbrain and cerebellum 

development140,142–145. Beside this role altered ERK has been associated with pathogenesis of 

higher-grade astrocytoma143. In our data set we observed gain of PDGFR and EGFR among 

cluster members though at an average frequency of 28%. Previous studies have associated 

amplification of this genes to the constitutive activation of MAPK/ERK thus contribute to the 

pathogenesis143,146–149. In specific deletion of 1 Mb microdeletion on chromosome 22q11.2 

which harbour MAPK1/ERK2 genes was associated with proliferation and differentiation 

anomalies due to reduced level of ERK2 protein levels143,146–149. Moreover, the reduced ERK2 

level was also associated with clinical exhibition of microcephaly, impaired cognition, and 

developmental delay observed143,146–149.  
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4.2.0 Common and unique profiles in identified sub-groups of low grade glioblastoma 

primary tumour and high grade glioblastoma primary tumour 

 

Chromosome 7p/q amplifications involves EGFR gene amplification at chr7p11.2. EGFR 

overexpression is commonly observed in glioblastoma patients and it’s a current target in 

precision medicine approaches150,151. Chromosomes 9 deletions involved loss of CDKN2A/B 

at chr9p21.3, MTAP gene at chr9p21.3 and SMARCA2 at chr9p24.3. The alterations of the 

genes has been previously associated with primary glioma and likely absent in IDH-mutation 

glioblastoma18. Combined with chromosomal 10 loss, this alteration would be relevant to 

distinguish lower grade glioma and high-grade glioma in patients. 

 

Hierarchical clustering of the samples resulted in identification of clusters with distinct copy 

number alterations. Similar studies also showed reliability of hierarchical clustering in 

classification of glioma, however they did not use hclust and pearson ward correlations in the 

analysis as we did18,152. I hereby showed that Pearson-ward D2 agglomerative approach as one 

of the best methods in clustering of tumours based on copy number alterations. 

 

We further noted that C3 LGG- PT (n=60) had similar chromosomal patterns like GBM-PT 

three groups. Some secondary glioblastoma cases which progress from low grade glioma are 

often encountered in misdiagnosis and we could not rule out this possibility153 
.. The common 

alterations observed were chromosomal gain at chromosome 7p/q and chromosomal loss at 

10p/q and 9 q. This would be a possible misclassification of these patients into LGG glioma 

during diagnosis which would have been captured if combined CNV and other parameters were 

in place. Mis-diagnosis would probably result in mismanagement of patients especially during 

drug administration therefore different phenotypic makers and approaches would be helpful in 

glioblastoma management153. Following the chromosomal alteration profiles, it is promising to 

precisely classify patients into subgroups for better management. This would possibly increase 

the cure rate of the glioblastoma patients. 
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5. 0 Summary 

Brain tumour’s range from benign neoplasm such as pilocytic astrocytoma to malignant ones 

e.g glioblastoma. Histopathological diagnosis of these entities is frequently challenged with 

inter-observer variability. Moreover, the used genome wide methylation patterns cannot grade 

tumour severity which is key in patient management. Although specific copy number variation 

(CNV) profiles such as 1p/19q co-deletions is known to characterise oligodendroglioma and 

joint gain of chr 7 and loss of chr 10 characterise glioblastoma, other CNV profiles have not 

been well integrated in brain tumour diagnosis.  Therefore, it seems promising to achieve 

improvements in methylation-based diagnostics and disease prognosis by establishing an 

approach to systematically include CNV information in classification of brain tumours. With 

the aim of addressing this issue, in the first phase of my study, I evaluated whether 

methylation data (450K and 850K epic) could inform about the presence of CNVs. I used 61 

paired data sets processed from microarray based comparative genomic hybridization (aCGH) 

and Epic 450K/850K methylation arrays respectively. Copy number plots of the methylation 

data set were generated from the “conumee” R-package while aCGH data set plots were 

inferred from the “DNA copy” package. I observed >80% percent agreement between the two 

methods. To rule out chance agreement and check the extent agreement, I calculated Kappa 

statistics. I observed moderate (0.54) to substantial (0.61) Kappa statistic values.  In conclusion 

I provided evidence that the methylation data is reliable in determining CNVs. 

 

In the second phase, I evaluated the CNV profiles and survival times using Kaplan Meier 

analysis between WHO classified astrocytoma grade II and III data (n=117) obtained from the 

cancer genome atlas (TCGA). Before clustering, I observed no significant difference in 

survival in WHO grade II and III. After hierarchical clustering (Pearson coefficient correlation 

ward linkage) using the log2 CNV values, I was able to identify 7 clusters which had different 

survival rates. The clusters had both unique and shared alteration between them. For example, 

cluster 4 (n=10) showed better survival with deletions at Chr3q, 4q, 5p/q, 11p, 12q, 13q and 

gain in Chr12p. These regions carry genes such as ANO2, CD4, LRRC23, VWF and GALNT8 

genes. Cluster 3 had poor survival and increased deletions at chr 1q, 2q, 3q, 4q, 5p/q, 6q, 7q, 

11p, 13q and chr gain at 9p (n=54). Some key genes altered in these loci, included C2orf88, 

CDKN2A/B, RB1, SORBS2, POLD1, MYBPC2 and TP63. These genes play critical roles in 
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cell cycle regulation, growth and tumour suppressions. Cluster 7 had losses at chr 4p/q, 13p/q 

and 19q (n=8) which contained genes like LRBA, FBXW7, MARCHF1, SPOCK3, MTUS2 and 

RFC3. Moreover, CDH12 gene and Long noncoding RNA (LINC005) regulating CCND2 at 

5p and 13q respectively were also deleted in >75% of samples. I further noticed that 

glioblastoma recurrent cases and primary tumor could be differentiated by presence of chr7p/q 

gain, 9p, 10p/q and 13p/q deletions using a total of n= 1500 cases and n= 1400 controls data 

set retrieved from TCGA. The 9p and 10p/q loci are already known to encode cell survival and 

apoptotic genes such as CDK2A/B, MDM2, EGFR and PTEN which are common in high grade 

glioma. These results therefore promise better tumour diagnosis and patients stratification 

approach which would help in both patient management and treatment outcomes predictions 

by use of CNV profiles.  

 

In the third phase of my study, I evaluated the methylation classes and pathways associated 

with genes in the altered regions. I observed a different frequency in the distribution of 

Isocitrate dehydrogenase (IDH) mutation and the 06- methylguanine DNA methyltransferase 

(MGMT) in the 7 clusters. In specific clusters 1 and 6 were A_IDH 100% and 70% respectively.  

A_IDH_HG dominated the other clusters as follows: cluster 5 (50%), cluster 4 (33%), cluster 

3 (13%) and cluster 7 (12%). This indicates that methylome classes can be aligned with the 

CNV profiles. Using ingenuity pathway-based knowledge, I was able to identify canonical 

pathways associated with altered genes per group. I observed that fairly unique signaling 

pathways were associated with the disease. Notably, PTEN, ERK/MAPK, P53, IL-3, 

Glioblastoma multiforme, glioma invasiveness and axonal guidance signaling which are 

associated with glioma formation are featured in most clusters. Key altered genes included 

adenomatous polyposis coli which is a tumor suppressor, Glycogen synthase kinase 3 beta 

(GSK-3β) which affects cell proliferation, retinoblastoma (Rb,) which codes a tumor 

suppressor rb protein while Platelet-derived growth factor (PDGF) and Phosphoinositide 3-

kinases (P13K) both regulate cell growth and other cellular functions. Proto-oncogen Rat 

sarcoma (Ras), WNT, Son of Sevenless (SOS), Auditory processing deficit (APD) and beta 

catenin (CTNNB1) were also lost. The WNT pathway activation aids in cellular differentiation 

which promotes brain tumour formation while Ras /PI3K/RTK pathway contributes to tumour 

growth deregulation. These findings show that multiple pathways dysregulated by CNVs can 

help in establishing novel brain tumour stratification, diagnostics and consequently 

identification of novel drug targets. 
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6.0 Zusammenfassung 

 

Hirntumore reichen von gutartigen Neubildungen wie dem pilozytischen Astrozytom bis hin 

zu bösartigen Neubildungen wie dem Glioblastom. Die histopathologische Diagnose dieser 

Entitäten wird häufig durch die Variabilität zwischen den Beobachtern erschwert. Darüber 

hinaus können die verwendeten genomweiten Methylierungsmuster nicht den Schweregrad des 

Tumors einstufen, der für das Patientenmanagement entscheidend ist. Obwohl spezifische 

Kopienzahlvariationen (CNV), wie z.B. 1p/19q Co-Deletionen, bekannt sind, um das 

Oligodendrogliom zu charakterisieren, und der gemeinsame Gewinn von chr 7 und der Verlust 

von chr 10 das Glioblastom kennzeichnen, sind andere CNV-Profile nicht gut in die 

Hirntumordiagnose integriert worden. Daher scheint es vielversprechend, Verbesserungen in 

der methylierungsbasierten Diagnostik und Krankheitsprognose zu erreichen, indem ein 

Ansatz zur systematischen Einbeziehung von CNV-Informationen in die Klassifikation von 

Hirntumoren etabliert wird. Auf dieses Ziel habe ich hingearbeitet. In der ersten Phase meiner 

Studie evaluierte ich, ob Methylierungsdaten (450K und 850K epic) über das Vorhandensein 

von CNV informieren können. Ich verwendete 61 gepaarte Datensätze, die aus der Mikroarray-

basierten vergleichenden genomischen Hybridisierung (aCGH) bzw. dem Epic 450K/850K 

Methylierungsarray verarbeitet wurden. Die Kopienzahlplots der Methylierungsdatensätze 

wurden aus dem "conumee" R-Paket in bioconductor mit kleinen Modifikationen generiert. 

Für den aCGH-Datensatz wurden CNV-Plots aus dem "DNA copy"-Paket abgeleitet. Ich 

beobachtete >80% prozentuale Übereinstimmung zwischen den beiden Methoden.  Um eine 

zufällige Übereinstimmung auszuschließen und das Ausmaß der Übereinstimmung zu 

überprüfen, habe ich die Kappa-Statistik berechnet. Ich beobachtete mäßige (0,54) bis 

erhebliche (0,61) Kappa-Statistikwerte.  Zusammenfassend habe ich den Nachweis erbracht, 

dass die Methylierungsdaten bei der Bestimmung von CNV zuverlässig sind. 

 

In der zweiten Phase bewertete ich die CNV-Profile und Überlebenszeiten mittels Kaplan-

Meier-Analyse zwischen den WHO-klassifizierten Astrozytomen Grad II und III der 

Krebsgenom-Atlas (TCGA)-Daten (n=117).  Vor dem Clustering beobachtete ich keinen 

signifikanten Unterschied im Überleben zwischen WHO-Grad II und III. Nach dem 

hierarchischen Clustering (Pearson coefficient correlation ward linkage) unter Verwendung der 

log2 CNV-Werte konnte ich 7 Cluster/Untergruppen identifizieren, die ein unterschiedliches 
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Überleben hatten. Die Cluster hatten sowohl einzigartige als auch gemeinsame Veränderungen 

zwischen ihnen. Zum Beispiel zeigte Cluster 4 (n=10) ein besseres Überleben mit Deletionen 

an 3q,4q,5p/q,11p,12q,13q und Gain in chr 12p. Diese Regionen tragen Gene wie ANO2, CD4, 

LRRC23, VWF und GALNT8 Gene. Cluster 3 hatte ein schlechtes Überleben und erhöhte 

Deletionen in chr 1q,2q,3q,4q,5p/q,6q,7q,11p,13q und Gain in chr 9p (n=54). Einige 

Schlüsselgene, die an diesen Loci verändert waren, waren C2orf88, CDKN2A/B, RB1, 

SORBS2, POLD1, MYBPC2 und TP63. Diese Gene spielen eine entscheidende Rolle bei der 

Zellzyklusregulation, dem Wachstum und der Tumorsuppression. Cluster 7 hatte Verlust an 

chr 4p/q, 13p/q und 19q (n=8), die Gene wie LRBA, FBXW7, MARCHF1, SPOCK3, MTUS2 

und RFC3 enthielten. Darüber hinaus waren auch das CDH12-Gen und die lange nicht-

kodierende RNA (LINC005), die CCND2 auf 5p bzw. 13q reguliert, in >75% der Proben 

deletiert. Des Weiteren konnte ich feststellen, dass Glioblastom-Rezidivfälle und Primärtumor 

durch das Vorhandensein von chr7p/q gain, 9p, 10p/q und 13p/q-Deletionen unterschieden 

werden konnten, wobei ich insgesamt n= 1500 Fälle und n= 1400 Kontrollen aus dem TCGA-

Datensatz verwendete.  Die 9p- und 10p/q-Loci sind bereits dafür bekannt, dass sie für 

Zellüberlebens- und apoptotische Gene wie CDK2A/B, MDM2, EGFR und PTEN kodieren, 

die bei hochgradigen Gliomen häufig vorkommen. Diese Ergebnisse versprechen daher eine 

bessere Tumordiagnose und einen Ansatz zur Patientenstratifizierung, der sowohl beim 

Patientenmanagement als auch bei der Vorhersage von Behandlungsergebnissen durch die 

Verwendung von CNV-Profilen helfen würde.  

 

In der dritten Phase meiner Studie untersuchte ich die Methylierungsklassen und -pfade, die 

mit Genen in den veränderten Regionen assoziiert sind. Ich beobachtete eine unterschiedliche 

Häufigkeit in der Verteilung der Isocitrat-Dehydrogenase (IDH)-Mutation und der 06-Methyl-

Guanin-DNA-Methyl-Transferase (MGMT) in den 7 Untergruppen. In den spezifischen 

Clustern 1 und 6 waren A_IDH 100% bzw. 70%. In den anderen Clustern dominierte 

A_IDH_HG wie folgt: Cluster 5 (50%), Cluster 4 (33%), Cluster 3 (13%) und Cluster 7 (12%). 

Dies zeigt, dass Methylom-Klassen mit den CNV-Profilen abgeglichen werden können. Mit 

Hilfe von ingenuity pathway-based knowledge konnte ich kanonische Signalwege 

identifizieren, die mit veränderten Genen pro Gruppe assoziiert sind. Ich beobachtete, dass 

ziemlich einzigartige Signalwege mit der Krankheit assoziiert waren. Insbesondere PTEN, 

ERK/MAPK, P53, IL-3, Glioblastoma multiforme, Gliom-Invasivität und Axonal Guidance 

Signaling, die mit der Gliombildung assoziiert sind, traten in den meisten Gruppen auf. Zu den 

wichtigsten veränderten Genen gehörten die adenomatöse Polyposis coli, die ein 
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Tumorsuppressor ist, die Glykogensynthasekinase 3 beta (GSK-3β), die die Zellproliferation 

beeinflusst, das Retinoblastom (Rb,), das ein Tumorsuppressor-Rb-Protein kodiert, während 

der Platelet-derived growth factor (PDGF) und die Phosphoinositid-3-Kinasen (P13K) beide 

das Zellwachstum und andere zelluläre Funktionen regulieren. Proto-Onkogen Ratten-Sarkom 

(Ras), WNT, Son of Sevenless (SOS), Auditory processing deficit und beta-Catenin wurden 

ebenfalls verloren. Die Aktivierung des WNT-Signalwegs hilft bei der zellulären 

Differenzierung, die die Bildung von Hirntumoren fördert, während der Ras /PI3K/RTK-

Signalweg zur Deregulation des Tumorwachstums beiträgt. Diese Ergebnisse zeigen, dass 

mehrere durch CNV dysregulierte Signalwege bei der Etablierung einer neuartigen 

Stratifizierung von Hirntumoren, bei der Diagnostik und folglich bei der Identifizierung neuer 

medikamentöser Angriffspunkte helfen können. 
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Supplementary figure 1 Distribution of the 29 common brain tumour genes from cluster1-7. 

The Red dotted line shows the Thresh-hold for gain (0.1) the top (above 0) red dotted line and 

loss threshold (-0.1) below 0 red dotted line. Patients in cluster; figure C1, C2, C3 and C5 had 

poorer survival outcomes than C4, C6 and C7. The groups with poor survival were 

characterised by co-deletion on CDKND2A/B, MYB1 and RB1. The groups with better 

survival had around 60% deletion on CDKND2A/B and RB1. In addition, the group had 

chromosomal gain in gene CCND2 (Figure C4 and C6). However, C7 had a unique C19MC 

deletion beside having around 60% co-deletion MYB1 and RB1 gene.
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Supplementary table 1. Distribution of identified cluster along with Methylation classes, WHO grades and calibration scores 

Cluster ID TCGA ID Methylation class  Methylation subclass WHO 

Grade 

class cal-score subclass cal-

score 

Gender 

C1 TCGA-CS-4938-01B-11D-1894-05 Glioma IDH mutant Astrocytoma II 0.99 0.98 F 

C1 TCGA-HW-7490-01A-11D-2025-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C1 TCGA-HW-7493-01A-11D-2025-06 Glioma IDH mutant Astrocytoma II 0.99 0.99 F 

C1 TCGA-FG-7636-01A-11D-2087-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C1 TCGA-HT-7601-01A-11D-2087-06 Glioma IDH mutant Astrocytoma III 0.99 0.99 F 

        

C2 TCGA-CS-4944-01A-01D-1467-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C2 TCGA-CS-6667-01A-11D-1894-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 F 

C2 TCGA-P5-A5EZ-01A-11D-A27L-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.62/0.36 M 

C2 TCGA-DB-A4XF-01A-11D-A27L-06 Glioma IDH mutant Astrocytoma III 0.99 0.98 F 

C2 TCGA-DH-A66B-01A-11D-A29T-05 Glioma IDH mutant Astrocytoma III 0.99 0.96 M 

C2 TCGA-S9-A6TZ-01A-21D-A32C-05 Glioma IDH mutant Astrocytoma II 0.99 0.97 F 

C2 TCGA-HT-A5RB-01A-11D-A28N-05 Glioma IDH mutant Astrocytoma II 0.99 0.96 F 

C2 TCGA-S9-A6U6-01A-12-D-A33U-05 Glioma IDH mutant Astrocytoma III 0.99 0.94 M 

C2 TCGA-S9-A7R8-01A-11D-A34K-05 Glioma IDH mutant Astrocytoma III 0.99 0.98 F 

C2 TCGA-DU-A7TC-01A-21D-A34K-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C2 TCGA-S9-A7R3-01A-11D-A34K-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 F 

C2 TCGA-VV-A86M-01A-11D-A368-05 Glioma IDH mutant Astrocytoma III 0.99 0.96 F 

C2 TCGA-DB-A64X-01A-11D-A29T-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.72/0.27 F 
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C3 TCGA-CS-6290-01A-11D-1706-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C3 TCGA-CS-4942-01A-01D-1467-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 F 

C3 TCGA-HT-7884-01B-11D-2399-05 Glioma IDH mutant Astrocytoma II 0.99 0.94 F 

C3 TCGA-HT-8563-01A-11D-2399-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.59/0.4 F 

C3 TCGA-HT-7858-01A-11D-2399-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C3 TCGA-HT-7855-01A-11D-2399-05 Glioma IDH mutant Astrocytoma III 0.99 0.93 M 

C3 TCGA-HW-8320-01A-11D-2399-05 Glioma IDH mutant Astrocytoma III 0.99 0.98 M 

C3 TCGA-HW-8321-01A-11D-2399-05 Glioma IDH mutant Astrocytoma III 0.99 0.97 M 

C3 TCGA-HT-8106-01A-11D-2399-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.22/0.76 M 

C3 TCGA-DB-A4XB-01A-11D-A26N-05 Glioma IDH mutant Astrocytoma III 0.99 0.98 M 

C3 TCGA-FG-A60L-01A-12D-A31M-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 F 

C3 TCGA-FG-A6J3-01A-11D-A31M-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 F 

C3 TCGA-DH-A66D-01A-11D-A31M-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 F 

C3 TCGA-DB-A4XD-01A-11D-A27L-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C3 TCGA-HW-A5KL-01A-11D-A27L-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C3 TCGA-P5-A5EU-01A-11D-A27L-05 Glioma IDH mutant Subclass HG Astrocytoma III 0.99 0.99 M 

C3 TCGA-HW-A5KM-01A-11D-A27L-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C3 TCGA-P5-A5EW-01A-11D-A27L-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 F 

C3 TCGA-TM-A7C4-01A-11DA32C-05 Glioma IDH mutant Astrocytoma II 0.93 0.92 F 

C3 TCGA-S9-A6TU-01A-12D-A32C-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C3 TCGA-P5-A72X-01A-11D-A32C-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C3 TCGA-P5-A733-01A-11D-A32C-05 Glioma IDH mutant Astrocytoma II 0.99 0.97 F 



 104 

C3 TCGA-TM-A7CF-02A-11D-A32C-05 Glioma IDH mutant Astrocytoma II 0.99 0.97 F 

C3 TCGA-DB-A750-01A-11D-A32C-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C3 TCGA-DU-A6S7-01A-21D-A32C-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.88/0.1 F 

C3 TCGA-DU-A76O-01A-11D-A32C-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C3 TCGA-S9-A6U9-01A-11D-A32C-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C3 TCGA-HT-A74O-01A-11D-A32C-05 Glioma IDH mutant Astrocytoma III 0.99 0.97 M 

C3 TCGA-P5-A72W-01A-11D-A32C-05 Glioma IDH mutant Astrocytoma III 0.99 0.98 M 

C3 TCGA-DB-A75L-01A-11D-A32C-05 Glioma IDH mutant Astrocytoma III 0.99 0.92 F 

C3 TCGA-DU-A5TP-01A-11D-A28N-05 Glioma IDH mutant Astrocytoma III 0.99 0.98 M 

C3 TCGA-P5-A5F1-01A-11D-A28N-05 Glioma IDH mutant Astrocytoma II 0.99 0.96 M 

C3 TCGA-S9-A6WL-01A-21D-A33U-05 Glioma IDH mutant Subclass Astro/1q/19p codeleted 

oligodendroglioma 

III 0.99 0.99 M 

C3 TCGA-S9-A6TS-01A-12D-A33U-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.16/0.83 F 

C3 TCGA-TM-A7CA-01A-21D-A33U-05 Glioma IDH mutant Astrocytoma II 0.99 0.89 M 

C3 TCGA-S9-A6U1-01A-21D-A33U-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 F 

C3 TCGA-S9-A6U8-01A-21D-A33U-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C3 TCGA-S9-A6WG-01A-11D-A33U-05 Glioma IDH mutant Astrocytoma III 0.99 0.98 M 

C3 TCGA-S9-A7QW-01A-11D-A34D-05 Glioma IDH mutant Astrocytoma III 0.98 0.9 F 

C3 TCGA-S9-A7QX-01A-11D-A34D-05 Glioma IDH mutant Astrocytoma III 0.99 0.97 F 

C3 TCGA-DH-A7UV-01A-12D-A34D-05 Glioma IDH mutant Astrocytoma III 0.99 0.94 M 

C3 TCGA-S9-A71S-01A-11D-A34D-05 Glioma IDH mutant Subclass HG Astrocytoma III 0.99 0.99 F 

C3 TCGA-S9-A6WO-01A-21D-A34D-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C3 TCGA-S9-A71Z-01A-11D-A34D-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.63/0.36 F 
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C3 TCGA-S9-A7R4-01A-12D-A34K-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C3 TCGA-E1-A7Z6-01A-12D-A34K-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 F 

C3 TCGA-WH-A86K-01A-11D-A368-05 Glioma IDH mutant Astrocytoma/HG Astro II 0.99 0.79/0.2 M 

C3 TCGA-F6-A804-01A-11D-A368-05 Glioma IDH mutant Astrocytoma III 0.99 0.96 F 

C3 TCGA-VM-A8CH-01A-12D-A368-05 Glioma IDH mutant Astrocytoma II 0.99 0.98 F 

C3 TCGA-TM-A84Q-01A-12D-A368-05 Glioma IDH mutant Astrocytoma II 0.99 0.98 M 

C3 TCGA-WY-A85A-01A-21D-A368-05 Glioma IDH mutant Astrocytoma II 0.99 0.98 M 

C3 TCGA-TM-A84F-01A-11D-A368-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.98 0.43/0.53 M 

C3 TCGA-WY-A858-01A-11D-A368-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.86/0.13 F 

C3 TCGA-DU-A5TU-01A-11D-A28N-05 Glioma IDH mutant Astrocytoma/HG Astro II 0.99 0.39/0.6 F 

C3 TCGA-DB-A75M-01A-11D-A32C-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C3 TCGA-FG-A4MX-01A-11D-A26N-05 Glioma IDH mutant Astrocytoma II 0.99 0.98 M 

        

C4 TCGA-CS-5393-01A-01D-1467-05 Glioma IDH mutant Astrocytoma III 0.99 0.92 M 

C4 TCGA-DB-5277-01A-01D-1467-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.12/0.86 M 

C4 TCGA-E1-5304-01A-01D-1467-05 Glioma IDH mutant Subclass HG Astrocytoma III 0.99 0.97 M 

C4 TCGA-DB-5273-01A-01D-1467-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C4 TCGA-HT-7686-01A-11D-2254-05 Glioma IDH mutant Astrocytoma III 0.99 0.91 F 

C4 TCGA-DU-7007-01A-11D-2025-05 Glioma IDH mutant Astrocytoma II 0.99 0.98 M 

C4 TCGA-HT-7478-01A-11D-2025-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C4 TCGA-HT-7604-01A-11D-2087-05 Glioma IDH mutant Astrocytoma II 0.99 0.93 F 

C4 TCGA-DU-A5TU-01A-11D-A28N-05 Glioma IDH mutant Astrocytoma/HG Astro II 0.99 0.39/0.6 F 

C4 TCGA-TM-A841-01A-11D-A368-05 Glioma IDH mutant Subclass HG Astrocytoma III 0.99 0.99 M 
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C5 TCGA-FG-6689-01A-11D-1894-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C5 TCGA-DU-7010-01A-11D-2025-05 Glioma IDH mutant Subclass HG Astrocytoma III 0.99 0.99 F 

C5 TCGA-CS-6665-01A-11D-1894-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.25/0.74 F 

C5 TCGA-HW-8319-01A-11D-2399-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.32/0.67 F 

C5 TCGA-HT-A61B-01A-11D-A29T-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.76/0.23 M 

C5 TCGA-HT-A616-01A-11D-A29T-05 Glioma IDH mutant Astrocytoma II 0.99 0.98 F 

C5 TCGA-HT-A618-01A-11D-A29T-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.49/0.5 F 

C5 TCGA-HT-A5R7-01A-11D-A28N-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.17/0.15 M 

C5 TCGA-HT-7477-01B-11D-A28N-05 Glioma IDH mutant Subclass HG Astrocytoma III 0.99 0.98 M 

C5 TCGA-DH-A7UT-01A-12D-A34D-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C5 TCGA-S9-A7R7-01A-11D-A34K-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C5 TCGA-DH-A7UU-01A-12D-A34D-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.53/0.45 M 

C5 TCGA-WY-A859-01A-12D-A368-05 Glioma IDH mutant Astrocytoma II 0.99 0.96 F 

C5 TCGA-S9-A89Z-01A-11D-A368-05 Glioma IDH mutant Subclass HG Astrocytoma III 0.99 0.94 M 

        

C6 TCGA-E1-5303-01A-01D-1467-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C6 TCGA-CS-4943-01A-01D-1467-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.79/0.15 M 

C6 TCGA-FG-6691-01A-11D-1894-05 Glioma IDH mutant Astrocytoma II 0.99 0.94 F 

C6 TCGA-E1-5307-01A-01D-1894-05 Glioma IDH mutant Astrocytoma III 0.99 0.96 F 

C6 TCGA-CS-6666-01A-11D-1894-05 Glioma IDH mutant Astrocytoma/HG Astro III 0.99 0.38/0.6 M 

C6 TCGA-FG-8185-01A-11D-2254-05 Glioma IDH mutant Astrocytoma III 0.99 0.98 M 

C6 TCGA-HT-7479-01A-11D-2025-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 
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C6 TCGA-HT-7478-01A-11D-2025-05 Glioma IDH mutant Astrocytoma/HG Astro II 0.98 0.64/0.31 M 

C6 TCGA-HT-7485-01A-11D-2025-05 Glioma IDH mutant Astrocytoma II 0.99 0.99 M 

C6 TCGA-DU-7299-01A-21D-2025-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

        

C7 TCGA-E1-5302-01A-01D-1467-05 Glioma IDH mutant Astrocytoma III 0.99 0.99 M 

C7 TCGA-DH-5142-01A-01D-1467-05 Glioma IDH mutant Astrocytoma III 0.99 0.96 M 

C7 TCGA-CS-5394-01A-01D-1467-05 Glioma IDH mutant Subclass Astro/1q/19p codeleted 

oligodendroglioma 

III 0.99 0.99 M 

C7 TCGA-DU-7296-01A-11D-2025-05 Glioma IDH mutant Subclass Astro/1q/19p codeleted 

oligodendroglioma 

III 0.99 0.84/0.13 F 

C7 TCGA-E1-5305-01A-01D-1894-05 Glioma IDH mutant Subclass Astro/1q/19p codeleted 

oligodendroglioma 

III 0.99 0.85/0.1 M 

C7 TCGA-HT-7606-01A-11D-2087-05 Glioma IDH mutant Subclass HG Astrocytoma II 0.99 0.99 F 

C7 TCGA-P5--A5EV-01A-11D-A27L-05 Glioma IDH mutant Astrocytoma II 0.99 0.98 M 

C7 TCGA-S9-A6U5-01A-12D-A33U-05 Glioma IDH mutant Subclass Astro/1q/19p codeleted 

oligodendroglioma 

II 0.99 0.98 M 
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Supplementary table 2.Molecules associated with altered regions in more than three clusters and their associated pathways. 

Ingenuity Canonical Pathways  -log(p-

value) 

Ratio Molecules associated with altered region and pathway 

Axonal Guidance Signaling 5,79 0,224 ABLIM1,ABLIM3,ADAM19,ADAM20,ADAM21,ADAM23,ADAMTS15,ADAMTS16,ADAMTS19,ADAMT

S2,ADAMTS8, 

ARPC2,BDNF,BMP10,CFL1,CRKL,CXCR4,DPYSL5,ECE2,EFNA5,EFNB2,EPHA3,EPHA4,EPHA6,EP

HB3,FARP2,FZD4, 

FZD5,FZD7,GDF7,GLI2,GNB1L,GNB3,GNB4,GNG2,ITGA4,KALRN,LNPEP,MAPK1,MME,MMP10,M

MP12,MMP13, 

MMP20,MMP21,MMP26,MMP27,MMP3,MMP7,MYL1,MYL3,NCK1,NGEF,NTF3,PAK2,PDGFB,PFN3

,PIK3C2A, 

PIK3CA,PIK3CB,PIK3R1,PIK3R4,PLCD1,PLCD4,PLCH1,PLCL2,PLXNA1,PLXNB1,PLXNB2,PLXND

1,PPP3R1,PRKAR2A, 

PRKCE,PRKCH,PRKCI,PRKD1,PRKD3,PSMD14,RAC2,RALB,RAP2A,RAP2B,RASD2,RHOA,RHOD,R

OBO1,ROBO2,ROBO3, 

ROCK2,RRAS2,RTN4R,SEMA3F,SEMA3G,SEMA4C,SEMA5A,SHANK2,SOS1,TUBA3C/TUBA3D,TUBA

3E,UNC5A,VEGFC, 

WNT10A,WNT11,WNT5B,WNT6,WNT7A,WNT7B 

Cell Cycle: G1/S Checkpoint 

Regulation 

0,754 0,0455 FOXO1,RB1,TFDP1,TGFB3, CCNE2, MYC 

Chondroitin Sulfate Biosynthesis 1,56 0,118 HS3ST5,SULT1B1,SULT1E1,SULT2A1,SULT2B1,UST 

Chondroitin Sulfate Biosynthesis 

(Late Stages) 

1,9 0,14 HS3ST5,SULT1B1,SULT1E1,SULT2A1,SULT2B1,UST 
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Coagulation System 3,14 0,206 F11,F13B,FGA,FGG,PLG,PROS1,TFPI,BDKRB1,PLAUR,PLG,SERPINA5 

Dermatan Sulfate Biosynthesis 1,97 0,13 DSE,HS3ST5,SULT1B1,SULT1E1,SULT2A1,SULT2B1,UST 

Dermatan Sulfate Biosynthesis (Late 

Stages) 

2,64 0,171 DSE,HS3ST5,SULT1B1,SULT1E1,SULT2A1,SULT2B1,UST 

ERK/MAPK Signaling 1,08 0,182 CRKL,DUSP1,DUSP2,ELF1,ETS1,HSPB3,ITGA4,MAPK1,MYCN,PAK2,PIK3C2A,PIK3CA,PIK3CB,PI

K3R1,PIK3R4,PLA2G3, 

PPARG,PPM1L,PPP1CA,PPP1CB,PPP1R14B,PPP1R7,PPP2CA,PPP2R5B,PRKAR2A,PRKCE,PRKCI,

RAC2,RALB,RAP2A, 

RAP2B,RASD2,RRAS2,SOS1,YWHAQ 

ERK5 Signaling 1,01 0,0857 FOXO3,NGF,NRAS,RAP1A,RRAS,SGK1 

Glioblastoma Multiforme Signaling 3,32 0,244 APC,CCND1,CDKN1B,CTNNB1,E2F8,FOXO1,FZD4,FZD5,FZD7,MAPK1,PDGFB,PIK3C2A,PIK3CA,

PIK3CB, 

PIK3R1,PIK3R4,PLCD1,PLCD4,PLCH1,PLCL2,RAC2,RALB,RAP2A,RAP2B,RASD2,RB1,RHOA,RHO

B,RHOD, 

RHOG,RHOJ,RHOQ,RRAS2,SOS1,WNT10A,WNT11,WNT5B,WNT6,WNT7A,WNT7B 

Glioma Invasiveness Signaling 2,55 0,274 F2R,ITGB5,MAPK1,PIK3C2A,PIK3CA,PIK3CB,PIK3R1,PIK3R4,RAC2,RALB,RAP2A,RAP2B,RASD2,R

HOA, 

RHOB,RHOD,RHOG,RHOJ,RHOQ,RRAS2 

Glioma Signaling 0,363 0,0273 RAP2A,RB1,TFDP1,CALM1,IGF2R,PRKCH,RB1,RRAS 

Heparan Sulfate Biosynthesis 1,15 0,0938 HS3ST5,SULT1B1,SULT1E1,SULT2A1,SULT2B1,UST 

Heparan Sulfate Biosynthesis (Late 

Stages) 

1,36 0,105 HS3ST5,SULT1B1,SULT1E1,SULT2A1,SULT2B1,UST 
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Hepatic-Fibrosis/Hepatic-Stellate 

cell Activation 

1,29 0,0432 COL4A1,COL4A2,CXCL3,CXCL8,CXCL9,FGF2,FLT1,VEGFC 

IL-12 Signaling and Production in 

Macrophages 

1,88 0,0985 APOE,IFNA1/IFNA13,IFNA2,IFNA21,IFNA4,IFNA5,IFNA6,IFNA8,LPA,NFKBIB,PRKCH,TGFB1,TGF

B3 

IL-15 Production 1,19 0,0847 FLT1,FLT3LG,FRK,FYN,IFNA1/IFNA13,IFNA21,IFNA5,IFNB1,JAK2,LMTK3 

IL-17 Signaling 1,01 0,05 CXCL5,CXCL8,MAPK10,RAP2A 

IL-17A Signaling in Airway Cells 1,29 0,0625 CXCL3,CXCL5,CXCL6,MAPK10 

IL-3 Signaling 3,66 0,304 CRKL,CSF2RB,FOXO1,GAB2,IL3,JAK2,MAPK1,PIK3C2A,PIK3CA,PIK3CB,PIK3R1,PIK3R4,PPP3R1,

PRKCE,PRKCH,PRKCI, 

PRKD1,PRKD3,RALB,RAP2A,RAP2B,RASD2,RRAS2,SOS1 

NF-κB Signaling 0,455 0,0281 BMPR1B,FLT1,RAP2A,TLR3,TNFSF11 

p53 Signaling 0,967 0,194 ATR,CCND1,CCND2,CCNG1,CHEK1,CTNNB1,EP300,JMY,KAT2B,PIK3C2A,PIK3CA,PIK3CB,PIK3R

1 

PIK3R4,RB1,RPRM,TIGAR,TOPBP1,TP53AIP1 

PI3K Signaling in B Lymphocytes 0 0,0455 CALM1 (includes others),FOXO3,FYN,NRAS,RAP1A,RRAS 

PI3K Signaling in B Lymphocytes 0 0,0145 IRS2,RAP2A 

PI3K/AKT Signaling 0,491 0,0606 FOXO1,FOXO3,GSK3A,HSP90AA1,JAK2,NFKBIB,NFKBID,RRAS 

Protein Kinase A Signaling 0 0,0483 ACP4,AKAP11,AKAP12,AKAP7,CALM1,GSK3A,KDELR1,NFKBIB,NFKBID,PDE7B,PPP1R14C,PRKC

H,PTP4A1,PTPN21,TGFB1,TGFB3,TNNI3,TULP2,VASP 

PTEN Signaling 0,304 0,0484 FOXO3,FOXO1,IGF2R,ITGA4,NRAS,RAP1A,RAP2A,FLT1,RRAS,GSK3A,IGF2R 

Retinoate Biosynthesis I 0,77 0,0588 ADH1C,ADH7,RDH12,RDH13 

Retinoate Biosynthesis II 1,97 0,75 RBP1,RBP2,RBP5 

STAT3 Pathway 0,893 0,037 BMPR1B,FGF2,JAK2,MAPK10,MYC,FLT1,IGF2R,JAK2,MAP3K10,RRAS,TGFB1 
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Spermidine Biosynthesis  1,05 0,5 AMD1 

VEGF Signaling 0,445 0,0606 EIF2B2,EIF2S1,FLT1,FOXO1,FOXO3,RRAS,RAP2A,VEGFC,MAPK1,PIK3C2A,PIK3CA,PIK3CB,PIK3

R1,PIK3R4 

Wnt/β-catenin Signaling 0,593 0,0289 CDH12,DKK2,FZD6,MYC,SFRP2 

Xenobiotic Metabolism Signaling 1,07 0,0654 CITED2,FTL,GSTM2,GSTM5,HS3ST5,NRAS,PPM1J,RAP1A,RRAS,SULT1B1,SULT1E1,SULT2A1,SUL

T2B1,UGT2B11,UGT2B15, 

UGT2B4,UST 
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WORK EXPERIENCE 

 
 

01/06/2017 – CURRENT – Heidelberg, Germany 

POSTGRADUATE UNDER GERMAN ACADEMIC EXCHANGE SERVICE (DAAD) – UNIVERSITAT 

HEIDELBERG 

 

◦ Analysis of copy number variation profiles in brain tumors in the context of a methylation based classifier. 

◦ Using genome wide sequencing approach to identify germline predisposing variants in familial cancers. 

◦ Molecular prevention and genotoxicity research Heidelberg, Germany 

 

15/06/2020 – CURRENT – Freiburg, Germany 

GUEST PHD RESEARCH SCIENTIST – UNIVERSITATSKLINIKUM FREIBURG-MOLECULAR 

PREVENTIVE MEDICINE 

 

◦ In vitro and in vivo genotoxicity assessments of chromosomal anomalies using human cell lines and 

predictive cancer biomarkers e.g Micronucleus and nuclear buds. 

 

01/01/2018 – 01/01/2020 – Heidelberg, Germany 

DOCTORAL RESEARCHER – GERMAN CANCER RESEARCH CENTER-DKFZ 

 

1. Helmholtz international graduate school for cancer research PhD student training 

2. Germline mutation screening in familial cancers with focus to neuroendocrine tumours and multiple 

myeloma 

3. Brain tumour screening/methylome diagnosis using illumina epic 450k and 850K arrays. 

4. Identification of copy number alteration profiles and their roles in grading of brain tumour 

 

06/04/2012 – CURRENT 

PART-TIME LECTURER-DEPARTMENT OF PURE AND APPLIED SCIENCES – TECHNICAL 

UNIVERSITY OF MOMBASA AND PWANI UNIVERSITY 

 

◦ lecturing medical microbiology, molecular biology, epidemiology and introduction to bioinformatics units 

in both medical and applied sciences departments. 

◦ I participate in review of curriculum and set exams. Mombasa, Kenya 

 

06/01/2013 – 01/01/2015 

   

Bidii Stephen Ngalah-Curriculum vitae 

Date of birth: 02/06/1987 Nationality: Kenyan Gender Male (+49) 1632266075 

stephenbidii@gmail.com Im Neuenheimer Feld 135, 69120, Heidelberg, Germany 
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POSTGRADUATE TRAINEE – DEPARTMENT OF EMERGING INFECTIOUS DISEASES,GLOBAL 

EMERGING INFECTIOUS SURVEILLANCE(DEID-GEIS) AND R 

I completed a clinical trial-based project entitled " major Genome region underlying artemisinin resistance in 

malaria parasite isolates from Kisumu county, western Kenya". General objective: To determine Plasmodium 

falciparum genetic polymorphism from uncomplicated malaria subjects with distinct clearance after 

artemisinin administration and parasite before introduction of artemisinin. 

 

10/02/2011 – 20/12/2011 

LABORATORY IN-INCHARGE COAST PROVINCE- MICRONUTRIENT NATIONAL SURVEY – 

KENYA MEDICAL RESEARCH INSTITUTE(KEMRI)- CENTER OF PUBLIC HEALTH RESEARCH 

 

Responsible for a field and laboratory-based epidemiology study aimed in identification of micro-nutrient 

deficiencies burden in Kenya05/05/2010 – 05/05/2011 

INTERNSHIP – UNIVERSITY OF WASHINGTON PARTNER IN PREVENTION CLINICAL TRIALS 

AT KENYATTA NATIONAL HOSPITAL 

◦ I worked under a clinical trial project to determine efficacy of Truvada and Tenofovir HIV 

prophylactic drugs in discordant couples. 

Nairobi, Kenya 

06/06/2006 – 14/06/2007 

EPIDEMIOLOGY DEPARTMENT, RTS,S VACCINE CLINICAL TRIAL, FIELD OFFICER – KEMRI-

WELLCOME TRUST KILIFI 

◦ Conducting pre and post vaccination follow ups 

◦ Rapid test for malaria in children below 5 years 

◦ Collection of blood sample for the lab 

◦ Reporting cases to study clinician for incidence and prevalence estimation 

◦ Conducting both active and passive case detections Mombasa, Kenya 

 

EDUCATION AND TRAINING 

 
01/04/2012 – 08/06/2015 – Nairobi, Kenya 

MSC. MOLECULAR MEDICINE – Jomokenyatta University, College of health sciences-Institute of Tropical 

Medicine and infectious diseases 

Thesis: Major genome region underlying artemisinin resistance in malaria parasite isolates from Kisumu 

County, Western Kenya. 

 

05/05/2007 – 20/12/2010 – Nairobi, Kenya 

BSC. MEDICAL MICROBIOLOGY- FIRST CLASS HONORS – Jomokenyatta university of agriculture and 

Technology.  

Fourth year research project : Isolation of Streptococcus pneumoniae serotypes in patients attending Kilifi 

district hospital.
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    LANGUAGE SKILLS 

 
 

Mother tongue(s): ENGLISH AND SWAHILI 

Other language(s): 

 

 UNDERSTANDING SPEAKING WRITING 

 Listening Reading Spoken production Spoken 

interaction 

 

GERMAN B1 B1 B1 B1 B1 

Levels: A1 and A2: Basic user; B1 and B2: Independent user; C1 and C2: Proficient user 

ORGANISATIONAL SKILLS 

 
Organisational skills 

Good organisation skills gained during project management in my career. 

 

COMMUNICATION AND INTERPERSONAL SKILLS 

 
Communication and interpersonal skills 

Good communication skills gained in my scientific and lecturing career 

JOB-RELATED SKILLS 

 
Job-related skills 

 

◦ Molecular biology techniques e.g PCR, qPCR , sanger sequencing and western-blot 

◦ Sequenome MassArray for genotyping single nucleotide polymorphism 

◦ Whole genome sequence analysis, mutation, polymorphisms and gene alteration screening . 

◦ Copy number alteration profiles identification and survival analysis 

◦ Ingenuity pathway analysis to identify the pathways affected by altered genes. 

◦ Culture technique and cloning of genes 

◦ Site directed Mutagenesis and beginner in trans-infections experiments. 

◦ Good background in clinical pathogen diagnosis 

◦ Conducting epidemiology studies on infectious diseases 

◦ Intermediate R-user 

◦ Intermediate Bioinformatic skills 

◦ Advanced Biostatistics analysis skills
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