
Johannes Daub
Matriculation Number: 3145320

Tool Support for the Automatic
Analysis of Natural Language User
Statements

Master Thesis

Winter Semester 20/21 - Summer Semester 21
Supervisors: Prof. Dr. Barbara Paech, Michael Anders
Faculty of Mathematics and Computer Science
Ruprecht-Karls-University Heidelberg

September 17, 2021

Abstract

[Context & Motivation] Developers need to learn about the requirements of software users,
who give their feedback mostly in form of natural language statements. Processing these state-
ments through manual coding, however, is an elaborate task and makes it unsuitable for big
datasets. By extracting concepts from these statements, developers can get insights about the
point of view of the software user. A software tool that provides automatic processing can help
with this process.

[Contributions] This thesis explores the state-of-the-art topic modeling methods for user fo-
rums and applies suitable methods in the context of concept detection to a manually collected
and annotated interview dataset. A software tool for automatic language processing, named
"Feed.UVL" is created and the selected methods are integrated into this tool. The created
software tool provides dataset management, which means that datasets can be stored, reviewed
and deleted with the software. The implemented methods can be used to analyze these datasets
for concepts. With the result visualization, the analysis results can be reviewed and the per-
formance can be evaluated via the F1-score on a ground truth. Feed.UVL uses a micro-service
architecture, which means it can be extended easily with new methods or functions. The inte-
grated methods are then evaluated for the task of concept detection. A set of quality assurance
measures, including static code analysis, component and system tests, have also been performed
on the created tool.

[Conclusion] The main part of the thesis was the creation of a novel tool for natural language
processing. The tool has a clean and user-friendly design and supports researchers in their
analysis. Automatic analysis tasks can be handled and the user interface provides a rich display
of results, including the metrics false positives, false negatives, precision, recall and F1-score.
The current design and micro-service architecture ensures that the tool can be extended easily
for further analysis methods and future research goals. At the moment, two state-of-the-art
topic modeling methods (LDA and SeaNMF) are integrated, which were adapted for the use in
concept detection. The evaluation has shown that while their precision is relatively high (0.84
for LDA and 0.83 for SeaNMF), their recall is rather low compared to a manually annotated
ground truth for use in concept detection, which leaves space for improvements and future
works.

Zusammenfassung

Werkzeugunterstützung zur automatischen Analyse von
natürlichsprachlichen Nutzeräußerungen

[Kontext & Motivation] Entwickler müssen die Anforderungen von Software-Nutzern, die
ihr Feedback meist in Form von Aussagen in natürlicher Sprache geben, kennenlernen. Die Ver-
arbeitung dieser Aussagen durch manuelle Kodierung ist jedoch eine aufwändige Aufgabe und
für große Datenmengen ungeeignet. Durch die Extraktion von Konzepten aus diesen Aussagen
können Entwickler Einblicke in die Sichtweise der Software-Nutzer gewinnen. Ein Software-
Werkzeug, das eine automatische Verarbeitung ermöglicht, kann bei diesem Prozess helfen.

[Beiträge] Diese Arbeit untersucht den Stand der Technik von Methoden zur Themenmodel-
lierung für Benutzerforen und wendet geeignete Methoden im Kontext der Konzepterkennung
auf einen manuell erhobenen und annotierten Interviewdatensatz an. Es wird ein Software-
Werkzeug zur automatischen Sprachverarbeitung mit dem Namen "Feed.UVL" erstellt und die
ausgewählten Methoden in dieses Werkzeug integriert. Das erstellte Software-Werkzeug bie-
tet eine Datensatzverwaltung, d. h. Datensätze können mit der Software gespeichert, über-
prüft und gelöscht werden. Mit den implementierten Methoden können diese Datensätze auf
Konzepte hin analysiert werden. Mit der Ergebnisvisualisierung können die Analyseergeb-
nisse überprüft und die Leistung über den F1-Score auf einer Ground Truth bewertet werden.
Feed.UVL verwendet eine Microservice-Architektur, d. h. es kann leicht um neue Methoden
oder Funktionen erweitert werden. Die integrierten Methoden werden dann für die Aufgabe der
Konzepterkennung evaluiert. Eine Reihe von Qualitätssicherungsmaßnahmen, einschließlich
statischer Code-Analyse, Komponenten- und Systemtests, wurden ebenfalls mit dem erstellten
Werkzeug durchgeführt.

[Schlussfolgerungen]Der Hauptteil der Arbeit war die Entwicklung eines neuartigenWerkzeugs
für die Verarbeitung natürlicher Sprache. Das Werkzeug hat ein klares und benutzerfreundliches
Design und unterstützt Forscher bei ihrer Analyse. Es können automatische Analyseaufgaben
durchgeführt werden, und die Benutzeroberfläche bietet eine umfangreiche Ergebnisanzeige,
einschließlich der Metriken false positives, false-negatives, Precision, Recall und F1-Score. Das
aktuelle Design und die Microservice-Architektur stellen sicher, dass das Werkzeug leicht für
weitere Analysemethoden und zukünftige Forschungsziele erweitert werden kann. Derzeit sind
zwei moderne Methoden zur Themenmodellierung (LDA und SeaNMF) integriert, die für die
Verwendung in der Konzepterkennung angepasst wurden. Die Evaluierung hat gezeigt, dass
ihre Präzision zwar relativ hoch ist (0,84 für LDA und 0,83 für SeaNMF), ihr Recall im Ver-
gleich zu einer manuell annotierten Ground Truth für den Einsatz in der Konzepterkennung
jedoch eher gering ist, was Raum für Verbesserungen und zukünftige Arbeiten lässt.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Overview . 3

2 Fundamentals 4
2.1 Coding . 4
2.2 Micro-service Architecture . 5
2.3 Docker . 6
2.4 Feed.ai . 7
2.5 Topic Modeling . 9
2.6 Latent Dirichlet Allocation . 10
2.7 Non-negative Matrix Factorization . 11

3 Literature Review 12
3.1 Research Questions . 12
3.2 Methodology . 13

3.2.1 Criteria of Relevance . 13
3.2.2 Search Term Based Research . 13
3.2.3 Snowballing . 14

3.3 Review Results . 16
3.4 Synthesis . 22
3.5 Review Summary . 28

4 Requirements 30
4.1 Coarse Requirements . 30
4.2 Personae . 32
4.3 Domain Data . 33
4.4 Functional Requirements . 33

4.4.1 User Tasks and Subtasks . 34
4.4.2 System Functions . 35

4.5 Non-Functional Requirements . 42
4.5.1 Functionality . 43
4.5.2 Performance Efficiency . 43
4.5.3 Maintainability . 44

4.6 Workspaces . 46
4.7 Mock-ups . 47

5 Design and Implementation 51
5.1 Micro-Service Architecture . 51
5.2 Data Classes . 53
5.3 Backend Services . 54

5.3.1 Storage Service . 54
5.3.2 Orchestration Service . 55
5.3.3 LDA Method Service . 55
5.3.4 SeaNMF Method Service . 56

5.4 Frontend . 58
5.4.1 Navigation View . 59
5.4.2 Upload Dataset View . 61
5.4.3 Dataset View . 62
5.4.4 Start Analysis View . 63
5.4.5 Detection Result View . 66
5.4.6 Document View . 71

6 Quality Assurance 72
6.1 Test Concept . 72
6.2 Static Code Tests . 73
6.3 Component Tests . 74
6.4 System Tests . 74

7 Evaluation 87
7.1 Evaluation Methodology . 87
7.2 Parameter Analysis . 88

7.2.1 LDA Parameter . 89
7.2.2 SeaNMF Parameter . 92

7.3 Metric Comparison . 94
7.4 Method Comparison and Discussion . 96

8 Conclusion 98
8.1 Summary . 98
8.2 Discussion and Future Work . 99

9 Bibliography 101

Glossary 107

Acronyms 109

List of Figures 112

List of Tables 114

1 Introduction

In this chapter, an overview of this thesis is presented. Section 1.1 motivates the
benefits of tool support for the automatic analysis of natural language user statements.
Subsequently, Section 1.2 lists and explains the goals of the thesis. Finally, Section 1.3
presents the structure of this thesis.

1.1 Motivation

When developers are creating software applications, they try to fit the applications to
the needs of the user. These needs are captured as requirements of the software by
the developers. Having precise and correct requirements is a key element in building
successful software applications that are accepted by the user. Requirements can be
collected from user feedback, which can have various forms. The feedback can be in the
form of interviews or surveys, where specific information is gathered, or it can be more
unspecific like in app store reviews, where any software property can be addressed.
Software users are also talking about software in social media, websites or user forums,
which can also be valuable sources for feedback. Those feedback sources share one
thing in common: User feedback usually occurs in form of natural language.
To extract requirements from natural language statements, the statements have to be
processed. One way of processing is the extraction of concepts from these statements,
which provide information about what element of the application a user is discussing.
The extraction of concepts can be done with coding and is usually done manually,
which is a very labor-intensive work. For example, the Corona-Warn-App has more
than sixty thousand app reviews in the Apple App Store1, of which analysis would
result in high cost if done in a reasonable amount of time. In the work of Nelson et al.
[28], the researchers are only coding about 15% of about 8,500 news articles, stating
this as a well-known limitation of coding methods.
A software tool to automatically process natural language user statements with methods

1Apple App Store: https://apps.apple.com/de/app/corona-warn-app/id1512595757 Last ac-
cessed: 23.08.2021

1

https://apps.apple.com/de/app/corona-warn-app/id1512595757

from machine learning or natural language processing (NLP), would reduce the time
needed to analyze user feedback. User feedback can be collected as a dataset and be
managed inside an application. Within the application, the datasets can be analyzed
with different machine learning methods and the results are visualized. This can help
researchers with annotating the data. As a result, the feedback loop could be much
smaller, and requirements can be more precise and up to date with the current needs
of a user.

1.2 Goals

The main goal of this thesis is to create a software tool that does support the automatic
processing of natural language user statements. The tool is going to be integrated into
feed.ai (Section 2.4) which is an existing tool, providing functionalities for Twitter and
app store analysis. As feed.ai is a web-based application with a micro-service architec-
ture, this structure is kept for this tool, which is named "Feed.UVL". The user interface
(UI) of feed.ai is extended by everything that is needed for Feed.UVL and both parts
share the same look and feel, which means that Feed.UVL is adapted accordingly to
the style of feed.ai.
The focus of this thesis lies on the tool creation and the integration of topic modeling
methods that have been applied to user forums. For this, a literature review is per-
formed and appropriate methods are selected for implementation. These methods are
evaluated on the task of concept detection with a given dataset. Different parameters
are tested for those methods and the results are compared to a ground truth.
A set of requirements is compiled for the implementation. The tool allows the selec-
tion of different methods in the graphical user interface (GUI), along with the method
parameters. After an analysis run has been performed, the tool user is able to view
and verify the results. The analysis results are visualized by the tool, according to the
applied method, and presented to the tool user. To compare the analysis results with
manually extracted concepts, the tool also supports the comparison with this ground
truth. A measurement of precision, recall and F1-score is helpful for the tool user to
evaluate the performance of the applied method. The tool also makes it suitable for
the tool user to manage datasets, which can be uploaded, viewed and deleted. The
dataset contents are pre-processed to the requirements of the implemented methods,
which is also part of the automatic processing of Feed.UVL. To enable analysis of fur-
ther methods, the tool is designed in a way, such that it can be easily extended and
changed, according to future needs. The resulting tool is tested to ensure code quality
and functionality.

2

1.3 Overview

Following this chapter, the fundamentals, which are necessary for understanding this
thesis, are introduced in Chapter 2. A research part follows in Chapter 3, where a liter-
ature review has been performed based on predefined research questions. Afterwards,
the requirements for Feed.UVL are provided in Chapter 4. Next, Chapter 5 describes
the design and the implementation of Feed.UVL. Within Chapter 6, the tests that are
performed to ensure the quality of the tool, are presented. Chapter 7 explains how the
work is evaluated. Finally, Chapter 8 summarizes and discusses the thesis, and gives
an outlook on future improvements.

3

2 Fundamentals

The fundamentals chapter describes the concepts, methods and technologies on which
this thesis is built upon. Section 2.1 explains the coding of natural language. The
implementation of this thesis uses a micro-service architecture, which is explained in
Section 2.2. The containerization platform Docker that is used to implement the micro-
service architecture is described in Section 2.3. The software platform feed.ai that this
thesis is built upon is introduced in Section 2.4. The following Section 2.5 gives a short
introduction to topic modeling and related areas. Latent Dirichlet Allocation and non-
negative matrix factorization are both methods that are used in the implementation of
this thesis. These are both explained in Sections 2.6 and 2.7 respectively.

2.1 Coding

Coding refers to assigning tags to segments of text. This can be used to analyze natural
language texts as part of a Qualitative Content Analysis (QCA) [20], which is a research
method for analyzing qualitative data. Codes can be different types of categories (also
called coding frames), e.g. topics, concepts or sentiment. A segment of text is at
least a single word, as it is the smallest semantic unit of natural language. Coding is
usually performed manually, which means that the text segments have to be selected
and codes have to be defined and assigned by a human. However, there are approaches
that perform coding with machine learning [28]. Alternatively, software tools such as
MAXQDA1, Nvivo2, Inception3, Gate4 can be used to support manual coding.

1MAXQDA: https://www.maxqda.com/ Last accessed: 13.08.2021
2Nvivo: https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

Last accessed: 17.08.2021
3Inception: https://inception-project.github.io/ Last accessed: 17.08.2021
4Gate: https://gate.ac.uk/ Last accessed: 17.08.2021

4

https://www.maxqda.com/
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
https://inception-project.github.io/
https://gate.ac.uk/

2.2 Micro-service Architecture

The micro-service architecture [37] offers an alternative to monolithic software applica-
tions. Instead of building one huge monolithic application with many components, the
software functions are split into multiple services with their own code. Micro-services
often contain only a single function. The communication between micro-services is
often handled with a technology-agnostic protocol as HTTP, which means that they
are deployed in a network- or cloud-environment. Figure 2.1 shows an example micro-
service architecture.

Fig. 2.1: Example of the Micro-service Architecture 5

The usage of this architecture has many benefits. When changes to the code have to
be made, the monolithic application has to be rebuilt at once to deploy the changes.
With the micro-service architecture, only the service containing the changes needs to
be rebuilt, the rest of the system remains stable.
Micro-services can be replaced and are independent of their programming language as
long as function and the application programming interface (API) are preserved. This
also means a micro-service can use different kinds of technologies or databases than the
other services. Testing and deployment are also done on the micro-service level, which
makes it easier to maintain them.
The system also becomes more resilient to software crashes. When a micro-service
crashes, the rest of the system usually remains intact, only losing a part of its func-

5https://microservices.io/patterns/microservices.html Last accessed: 12.08.2021

5

https://microservices.io/patterns/microservices.html

tionality, whereas in a monolith, the whole system crashes, leading to a full outage.
Afterwards, it is also easier to track down the error, as the crashed micro-service also
indicates the source of failure.
When the system has to deal with high load, it may be necessary to scale it. A micro-
service that encounters high load, can be replicated and spread across multiple servers
as needed. For a monolith, the whole system has to be replicated, which creates un-
necessary redundancy for functions that do not encounter higher load, and which is
much slower due to the application size. Figure 2.2 shows an example of replication
and scaling for both architectures.

Fig. 2.2: Scaling for Monolithic Software and Micro-services6

2.3 Docker

Docker7 is an open source platform for building, deploying, and managing containerized
applications. With Docker, applications can be containerized, which means packaging
the application together with operating system libraries and dependencies. A container
can be run independently of the host operating system. Containerization can be seen
as a lightweight alternative to deployment with virtual machines, which require more
resources to run an operating system. See Figure 2.3 for the difference in overhead
needed by virtual machines and docker containers. A Docker container can be used
to deploy a micro-service as part of a micro-service architecture (Section 2.2). Those
containers can then be connected via a network to enable their communication.

6https://martinfowler.com/articles/microservices.html Last accessed: 12.08.2021
7Docker: https://www.docker.com Last accessed: 12.08.2021

6

https://martinfowler.com/articles/microservices.html
https://www.docker.com

Fig. 2.3: Virtual Machine Setup compared to Docker Container Setup8

2.4 Feed.ai

Feed.ai [38] is an open-source software tool9 developed by Christoph Stanik in his
doctoral thesis as part of the OpenReq project10. Some basic functions of feed.ai are
the collection, analysis and visualization of tweets that contain user feedback. Feed.ai
is built with a micro-service architecture (Section 2.2), which means functions are split
into different services. Those services are deployed with Docker (Section 2.3) and are
connected in a network. The communication between services is done via HTTP-based
web API requests. The full stack for the tweet data domain is depicted in Figure 2.4.
Its components are described as follows:

• Tweet Data Storage. This micro-service is responsible for saving and loading
data from tweets and classifications. It is connected to a database and offers an
API to read and write data.

• Tweet Collector. A micro-service that pools configured Twitter accounts regu-
larly for new tweets, which are then sent to the tweet data storage.

• Tweet Orchestrator. The tweet orchestrator periodically checks the storage for
new unprocessed tweets and retrieves them. Those new tweets will then be sent
to the data analytics layer for processing. Classified tweets are then sent back to
the storage.

8https://techglimpse.com/docker-installation-tutorial-centos/ Last accessed: 12.08.2021
9Feed.ai GitHub: https://github.com/openreqeu Last accessed: 16.09.2021

10OpenReq: https://openreq.eu/ Last accessed: 31.08.2021

7

https://techglimpse.com/docker-installation-tutorial-centos/
https://github.com/openreqeu
https://openreq.eu/

• Tweet Sentiment Classification/Tweet Intention Classification. Tweets
that this micro-service receives are processed with machine learning techniques
to classify their sentiment and intention. The results are sent back to the orches-
trator.

• Data Visualization. The visualization micro-service provides an interface of
the data for the user. The data can be accessed via a web application that has
various visualizations for the tweets and their date and time of posting, for the
classified sentiment and intention, and for the settings of the collector.

Fig. 2.4: Feed.ai Micro-service Structure for Tweet Data [38]

8

2.5 Topic Modeling

Topic modeling is the unsupervised classification of documents into topics. This can be
compared to clustering on numeric data, where data is grouped based on certain criteria.
In mathematical terms, a topic model is a probabilistic generative model, which models
the distribution of topics in a set of documents. Topic models are used to organize,
understand and summarize large collections of textual information. Furthermore, a
topic model can reveal hidden topic patterns, e.g. the topics discussed in forum threads
might not represent the forum category structure. Topic models are often used to
analyze news and social media. Besides topic modeling, there are two areas that are
closely connected:

Topic labeling [40] is the process of generating or finding appropriate labels to topics,
that were found by topic modeling. It can be seen as the next step of processing, as
topic labels have to be found manually otherwise.

Topic detection and tracking (TDT) [1] is the process of finding topics and tracking
them over a time period. This can be relevant for tracking topics in news, social media,
or web forums, as the topics may change over time. A topic model can be used for
TDT if the topic model supports adaption to new data.

For topic modeling, the following terms are defined and will also be used during this
thesis [6]:

• A word is the basic unit of discrete data, defined to be an item from a vocabulary,
indexed by 1, ..., V . Words are represented as unit-basis vectors that have a single
component equal to one and all other components equal to zero.

• A document is a sequence of N words, denoted by W = (w1, w2, ..., wN), where
wn is the nth word in the sequence.

• A corpus is a collection of M documents denoted by D = w1, w2, ..., wM .

• A dataset contains a corpus and may contain additional information (metadata).
For example, a forum post dataset may include post structure, timestamps, and
author information.

• A topic consists of words of the corpus. The number of words in a topic can be
either fixed to some value or be based on a threshold of some score, depending
on the method.

9

2.6 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) by Blei et al. [6] is a method used for topic modeling.
It is explained here, as it has been encountered in Chapter 3 very often. Documents are
represented as random mixtures over latent topics, where each topic is characterized by
a distribution over words. The occurrence of a topic in a document (topic prevalence)
is described with a Dirichlet distribution as a prior probability. An approximation
of this distribution can be calculated via Gibbs Sampling, an algorithm for statistical
inference. Topics are the x most probable words for a distribution, which are then
called topic words. The top words of a topic are then presented to the human user to
determine the topic label (see Section 2.5, topic labeling). Table 2.1 shows an example
output of topic words, along with the topic description by a human annotator. The
number of topics k is a parameter that is chosen before using the method. To apply
the method, the following steps are performed [5]:

• Assign each word in each document one of k topics, the distribution is drawn
from a Dirichlet distribution.

• For each document d and each word w, compute:

p(topic t | document d): the proportion of words in d that are assigned to
topic t, except current word w.

p(word w | topic t): the proportion of assignments to topic t that come from
word w.

• Update the probability of word w belonging to topic t:

p(word w with topic t) = p(topic t | document d) ∗ p(word w | topic t)

If a lot of words from document d belong to topic t, it is also more probable that word w

belongs to t. Since a document can contain multiple topics, if w has a high probability
of being in topic t, documents containing w become more strongly associated with t.
The application of LDA is not limited to topic modeling [6], which makes it a very ver-
satile and popular method. It has been extended for many different applications [16].

10

Table 2.1: Example LDA Topic Word Output and Annotated Topic Description [17].

Top LDA Words Description
problem error bug fix version time chang line miss build
wrong solv open messag expect

Bugs and errors

diagram model creat editor uml select view element menu
open add click explor packag show

Graphical editor issues mostly related to Pa-
pyrus and UML2 (e.g., hyperlinks between two
models)

uml model implement metamodel specif extend gener lan-
guag instanc provid custom understand read time tool

Extending UML tools

uml ecor gener model code emf genmodel convert creat eclips
metamodel project import map transform

UML code generation and related transforma-
tions from Ecore to UML

papyru eclips model plugin version code project sysml camil
custom extens provid palett instal mart

Papyrus related issues, including installation
and compatibility with Eclipse versions and
source code

model project eclips uml tool emf code tutori creat develop
vlad plugin inform revers start

Requests for tutorials and documentation

eclips instal updat uml featur site download tool depend
build sdk version requir emf plugin

Update site issues and plugin dependency prob-
lems

profil stereotyp appli uml model defin creat static editor load
problem applic packag definit save

UML profile and stereotype issues

2.7 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is a matrix factorization method that requires
all matrix entries to be either zero or positive. A matrix A with m rows and n columns
can be factorized into two matrices W and H of size m×k and k×n, so that A ≈WH

The entries of W and H also have to be positive or zero. The value k has to be
k <= min(m, n) and can be selected by the user. The matrices W and H can be found
by minimizing the Frobenius norm ||A −WH||2, which can be achieved by applying
a block coordinate descent optimization algorithm. NMF can be applied to various
problems, as long as the matrix A is non-negative. As a result of Chapter 3, NMF has
also been applied to topic modeling.
When applied to topic modeling. The matrix A is the word-document matrix and W
and H can be seen as word-topic and topic-document matrices, where k is the number
of topics, selected by the user. With this, each word can be assigned a probability to
belong to a topic and each document has a probability to belong to a topic.

11

3 Literature Review

To get an overview about the scientific state of the art with regard to the research
questions, a systematic literature review was conducted. Chapter 3.1 presents the
research questions that define the goals of the literature review. Chapter 3.2 describes
the methodology for finding relevant research papers and criteria to narrow down the
search results. In Chapter 3.3 the found works will be displayed in detail. In Chapter
3.4 the search results will be compared according to certain criteria. Finally, Chapter
3.5 summarizes the results.

3.1 Research Questions

The research questions are used as a starting point for the literature review. From those
questions, search terms and criteria are derived to efficiently find relevant literature.
The main question RQ1 is designed to get an overview of topic modeling approaches
that are used in the context of online forums. The sub-questions are looking more de-
tailed at these approaches in terms of methods, automation, domain-specificity, prob-
lems and their handling. With this overview, suitable approaches and requirements can
be selected for this work. The questions are shown in Table 3.1.

Table 3.1: Research Questions for the Literature Review

Name Research Question
RQ1 Which approaches for fully or semi-automatic topic modeling of

natural language user statements in online forums exist and what
are their characteristics?

RQ1.1 Which machine learning or natural language processing methods are used
by the approaches for which steps of the classification process?

RQ1.2 What topics are identified by these methods?
RQ1.3 What problems arise when using data from online forums (e.g., domain

dependency, short texts, syntactical errors, etc.)?
RQ1.4 How do the approaches deal with these problems?

12

3.2 Methodology

To ensure the reproducibility of the literature review each step is documented exten-
sively. The first part of the literature review is search term based. The selection of
relevant works is done by defining criteria of relevance based on the research ques-
tions and checking the search results against them. Afterwards, a snowballing based
approach is used to find further relevant works.

3.2.1 Criteria of Relevance

To distinguish relevant from irrelevant works, the criteria of relevance are specified.
At first, it is important that the approaches are properly researched and scientifically
sound (CoR3). Also, they need to be accessible (CoR2) and comprehensible (CoR1).
Title and abstract of a paper are checked to get an overview on whether it appears to
be initially relevant (CoR4). Both title and abstract are taken into account, as the title
alone did not offer enough information about relevancy for many works. After that,
the remaining works are checked thoroughly (CoR5-6). The criteria of relevancy are
shown in Table 3.2.

Table 3.2: Criteria of Relevance

Name Criterion
CoR1 The paper is written in either English or German
CoR2 The paper needs to be available for free or with University’s access
CoR3 The paper has been peer reviewed
CoR4 Title and abstract show relevance to the research topic
CoR5 The presented approach is using a method for topic modeling in online

forums
CoR6 The paper offers sufficient new content to the research topic

3.2.2 Search Term Based Research

The search term based approach is using search queries on online publication databases.
To ensure the quality of the publications, the search is performed on the digital libraries
of the Institute of Electrical and Electronics Engineers (IEEE)1 and the Association
for Computing Machinery (ACM)2. The search terms were chosen based on the main

1IEEExplore: https://ieeexplore.ieee.org/ Last accessed: 17.02.2021
2ACM Digital Library: https://dl.acm.org/ Last accessed: 17.02.2021

13

https://ieeexplore.ieee.org/
https://dl.acm.org/

research question, which focuses on topic modeling, but this term did not cover the
research area alone. As a result, more search terms, like topic detection or topic la-
beling (as seen in Section 2.5) have been selected for broader coverage of the research
field. The term forum was used to focus the search on forum related works only, thus
limiting the amount of unrelated works. The term discussion has been found to be
used synonymously to forum, which has been discovered during reading abstracts of
search results. The term BBS stands for bulletin board system and is also a synonym
for forum, although it only influenced the amount of search results for the IEEE search.
The search terms are limited to the title, because it offers a narrow context for those
terms. Without the limitation, the words can occur in any context in the text, leading
to thousands of search results. The search terms are displayed in Table 3.3. Note that
title in the search term refers to Title in the ACM search and to Document Title in the
IEEE search.

Table 3.3: Search Terms for the Literature Search

Name Search Term
ST1 [Title: topic] AND [Title: modeling] AND [[Title: forum] OR [Title: dis-

cussion] OR [Title: bbs]]
ST2 [Title: topic] AND [Title: detection] AND [[Title: forum] OR [Title: dis-

cussion] OR [Title: bbs]]
ST3 [Title: topic] AND [Title: labeling] AND [[Title: forum] OR [Title: discus-

sion] OR [Title: bbs]]

There have been some problems with the search term based research. A keyword search
was tested, as some works have keywords like topic detection defined, but yielded search
results that did not contain the keywords. The abstract has also been used for the
search, but this led to many irrelevant search results, as the terms were used in a dif-
ferent context. The results of the search term based research with applied criteria for
initial relevancy are shown in Table 3.4. Four works have been found in both databases
[9], [26], [43], [50].

3.2.3 Snowballing

Snowballing refers to checking citations of works for further relevant approaches. Back-
ward snowballing analyzes the papers a work has cited, which ought to be older. For-
ward snowballing is looking at papers that have cited a work. Digital libraries like
ACM, IEEE and others have built-in support for the snowballing process, which makes
it easier to find relevant works. Table 3.5 shows a complete overview of the search and

14

Table 3.4: Search Term Based Research results

Library Term Results Initially Relevant References
ACM ST1 17 9 [4], [12], [46], [9], [14], [41],

[30], [17], [10]
ACM ST2 4 3 [50], [26], [43]
ACM ST3 3 3 [2], [3], [10]
IEEE ST1 15 10 [25], [45], [34], [18], [23], [24],

[9], [44], [39], [19]
IEEE ST2 14 12 [29], [13], [48], [21], [47], [26],

[43], [42], [49], [50], [8], [22]
IEEE ST3 1 1 [40]

snowballing results. There were not many relevant approaches found by snowballing.
This is due to multiple reasons. Many are citing topic modeling methods, but those
have not been applied to forums (CoR5). Some of them are using the same method for
forum analysis, which would lead to redundant information (CoR6). Most papers are
not about topic modeling and refer to another aspect related with the relevant papers
(CoR4).

Table 3.5: Results of Search Term Based Approach and Snowballing

Author Ref. Title Process Library
Atapattu et al. [2] A Framework for Topic Generation and Labeling from

MOOC Discussions
Search Term ACM

Athira et al. [3] Multi-label Topic Classification of Patient Generated Con-
tent in a Breast-cancer Community Forum

Search Term ACM

Chen et al. [8] Topic Detection over Online Forum Search Term IEEE
Cheng et al. [9] Linked Topic and Interest Model for Web Forums Search Term ACM&IEEE
Hsiao et al. [14] Topic Facet Modeling Semantic Visual Analytics for Online

Discussion Forums
Search Term ACM

Kahani et al. [17] The Problems with Eclipse Modeling Tools: A Topic Analy-
sis of Eclipse Forums

Search Term ACM

Li et al. [21] Forum topic detection based on hierarchical clustering Search Term IEEE
Liu et al. [23] Analyzing Topics of JUUL Discussions on Social Media Us-

ing a Semantics-assisted NMF model
Search Term IEEE

Reich et al. [31] Computer-Assisted Reading and Discovery for Student-
Generated Text in Massive Open Online Courses

Snowballing [2] SoLAR3

Tang et al. [40] A Topic Label Extraction Method for the University BBS Search Term IEEE
Vytasek et al. [41] Topic Models to Support Instructors in MOOC Forums Search Term ACM
Wu et al. [43] Topic Detection in Online Discussion using Non-Negative

Matrix Factorization
Search Term ACM&IEEE

Zhang et al. [48] Document similarity measure for topic detection in BBS Search Term IEEE

3Journal of Learning Analytics: https://learning-analytics.info/ Last accessed: 15.09.2021

15

https://learning-analytics.info/

3.3 Review Results

A very practical work is done by Kahani et al. [17], who focus on gaining insight through
topic analysis of forums. Their goal was to find issues with the Eclipse modeling tools4,
and forums are usually a reference point for users who encounter issues. The method
they are using to extract topics from various Eclipse forums is called Latent Dirichlet
Allocation (LDA). This method is also used in most other works that are following.
Other works are more theoretical and are extending LDA for better performance by
including forum-related information or by complementing it with other methods. As
the work by Kahani et al. is very practical, they are very detailed with its usage,
explaining parameters of LDA and providing reference values. The provided values are
referenced from papers which are also using LDA, though not in the context of web
forums. Their approach uses the MALLET framework5, which is a NLP framework
written in Java. Table 2.1 shows an example output of topic words.
Another work that uses LDA is done by Cheng et al. [9]. In their work, the goal is
to improve the performance of LDA by including author information of posts into the
algorithm. This is done by adding another set of hidden variables for authors. So this
model can not only determine the topics of forum posts, but also the topics related to
authors, which they refer to as author interest. For their evaluation, they are using the
perplexity metric and are reporting better performance than standard LDA.
The work of Hsiao et al. [14] presents a different approach, where they introduce a
Topic Facet Model (TFM). They are using Sequential LDA (SLDA) as a base, which
also takes the positions of words into account, and have modified it to also determine
topic facets. Their assumption is that all words in a single sentence are generated from
one topic facet, which means topic facets offer more specificity. Additionally, they have
created a web interface for viewing the forum threads and their analytics.
The paper by Vytasek et al. [41] has a focus on forums of Massive Open Online Courses
(MOOC), which can be overwhelming with their content because of the huge amount of
participants. Topic models can help instructors getting an overview of ongoing discus-
sion topics and can categorize individual posts into topics. The authors are using the
MALLET framework for topic modeling. In total, they are using four different models.
The first approach uses a 20-topic model, which makes it difficult to navigate through
posts, because each topic still has a huge amount of posts. For the second approach,
they classified the posts into content/non-content related posts beforehand and then
used those with a 10-topic classifier. This helped to give context to organizational

4Eclipse modeling tools: https://www.eclipse.org/downloads/packages/release/2020-12/r/
eclipse-modeling-tools Last accessed: 08.03.2021

5McCallum, Andrew Kachites. "Mallet: A machine learning for language toolkit": http://mallet.
cs.umass.edu, 2002. Last accessed: 08.04.2021

16

https://www.eclipse.org/downloads/packages/release/2020-12/r/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/2020-12/r/eclipse-modeling-tools
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu

questions in those forums. Model three and four explored ways to organize topics into
subtopics to reduce the number of post per topic, where just increasing the number of
total topics would be more difficult for the instructors as they need to organize those
topics. As this work is only a short paper, there is not much detail given on the used
models.
The publication of Atapattu et al. [2], which is marked as work in progress, is also
working with MOOC forums. In their approach, a set of candidate topic labels (key
terms) is extracted from the course materials. The forum posts are classified with a
Naive Bayes classifier into course weeks using the key terms. Candidate topic labels
are generated by measuring the similarity between the topic terms of discussions and
the extracted key terms of the corresponding week.
The regular LDA approach only yields a set of words that belong to a topic, but the
topic label itself needs to be determined manually. The approach of Tang et al. [40]
adds a topic label extraction process to LDA. After regular LDA clustering, a keyword
extraction is applied, which will pick a keyword for each topic set. The keywords are
selected by their tf − idf and their correlation to other topics, where a low correlation
means that these keywords are representing a particular topic better. The topic label
is then selected by taking the keyword that has the highest probability to be suitable.
Additionally, an artificial feedback mechanism is applied, where the user can modify
the results, giving a certain label a higher weight. This information will be saved for
later uses where this feedback will be applied again. In their evaluation, the algorithm
shows an improvement in performance regarding the needs of the user over time. This
is evaluated by asking the users about their agreement about the generated topic labels,
which improves in subsequent iterations. Figure 3.1 displays the complete process.

Fig. 3.1: Topic label extraction process by Tang et al. [40].

17

An approach that does not use LDA is presented by Wu et al. [43]. Their topic de-
tection uses the user participation and non-negative matrix factorization (NMF). A
n×m Matrix denotes that n discussions are participated by m users. Instead of term
frequency-inverse document frequency (tf − idf) a procedure that uses participation
frequency (pf) of users instead is used, which is then called participation frequency-
inverse document frequency (pf − idf). After applying NMF, the resulting matrices
indicate cluster membership. In addition, a word-discussion matrix is created, which
can also be clustered with NMF. This will result in a list of words, which each represent
a cluster. Both matrices are then combined and a joint-factorization is applied. In the
end, each cluster from the first matrix corresponds to a word of the second matrix,
indicating the topic of that cluster. Their experiments show useful results, and a pu-
rity measure shows that the joint factorization works better for clustering than a single
matrix.
In [23], Liu et al. are presenting a semantics assisted NMF (SeaNMF) approach. In
their paper, they are stating that LDA is not optimal for short, informal, and noisy
texts that their dataset contains. Given their dataset, there are N posts and M unique
words. Assuming K topics, a M ×K matrix W and a N ×K matrix H are created.
A word-context matrix S is approximated by applying the Skip-Gram algorithm to W

and W T
c where W T

c is the context matrix based on W . The resulting semantics are
merged with the conventional NMF model and a Block Coordinate Descent algorithm
is adopted for optimization. In their results, Lui et al. are reporting a higher topic
coherence than LDA. Similar to LDA, topics are represented by topic keywords.
The work by Athira et al. [3] presents a multi-label semi-supervised topic classification
using a support-vector-machine (SVM). For their approach, they collected a total of
11,000 posts from a breast cancer community forum, from which they manually labeled
1,000 posts. After a number of pre-processing steps, a vector representation of posts is
created with the use of Doc2vec. The vectors give the posts a representation in space,
which can then be used to create clusters. For that, the labeled posts are used as
cluster centers and unlabeled posts are assigned to the nearest clusters using Euclidean
distance. It is also stated that not every post may end up in a cluster, as they limited
the proximity. These unlabeled posts can be used to find new labels that are not rep-
resented by the other labels. Afterwards, they select the most relevant labels for each
post with fuzzy logic and a set of keywords that have been extracted of the manually
labeled posts. Figure 3.2 shows the complete framework.

18

Fig. 3.2: Multi-label Framework as proposed by Athira et al [3]

Zhang et al. [48] are presenting an improved approach based on tf − idf . In their
context, td − idf is used to measure the document similarity, which says that similar
documents are about the same topic. It is not stated whether a document stands for a
post or a thread in their context, although they are stating that those texts can be very
short, which could mean that they are working with posts as documents. Their focus
lies on the big variance of text size in forums, which can affect the traditional tf − idf

measure. To overcome this, they divide the words of the texts into five feature classes,
from which they will generate feature weights. In contrast to previous feature selection
strategies, they are selecting the top m weights for each class. As they state, m has
to be selected carefully. If m is too big, there will be a difference for texts of different
sizes and if m is too small, important information will be lost. They are reporting a
performance improvement compared to the traditional tf−idf measure, but are stating
that this is still not enough for practical use.
Li et al. [21] are using a classical clustering approach using agglomerative hierarchical
clustering (AHC). A document will be represented as a vector in the feature space.
For calculating their feature weights, they are using term frequency of tf − idf and
information gain based on the principle of maximum entropy. Information gain g(j, i)
can be described as the difference of the empirical entropy H(j) of a document j and
the conditional entropy H(j|i) of the document and a feature word i. The clustering
algorithm then groups up posts into clusters based on a similarity measure of the

19

feature vectors. If the similarity between clusters is below the threshold, the algorithm
will stop. The performance is measured with the precision and recall metrics and the
authors are reporting an improvement on these metrics for their new weight calculation.
Another clustering approach is done by Chen et al. [8]. First, they are creating custom
features. The features are differentiated by local and global features. Local features
are term frequency and term integrity. Global features are inverse document frequency
and burst, which tracks a topic appearance over a time span. The features are then
used with single pass incremental clustering. Their evaluation is reporting a better
performance than LDA and the topics can be described with the keyword that received
the highest weight for a topic.
Reich et al. [31] propose the use of the structural topic model (STM) for forum analysis.
The STM by Roberts et al. [32] is incorporating meta-data into the detection process.
This way, meta-data is used for estimating topic prevalence and topic content. The
authors state that this model explicitly models topic correlation, which LDA does not.
The topic output is given with topic words that resemble a label and a number of
topic words, like the LDA output. It is also stated that STM has better predictive and
qualitative interpretability than LDA. Figure 3.3 shows the top ten topics of student
responses about their motivation to register for an online learning course as an example
and the top topic words.
Two different topic modeling metrics are mentioned in the literature. The perplexity
metric is a statistical measure of how well a probabilistic model predicts a sample. It
is used to determine the optimal number of topics. The lower the perplexity score, the
better the number of topics is chosen. However, this metric does not guarantee that the
topic words of a topic are interpretable by a human [7]. The topic coherence measure
is better suitable to optimize for human interpretability. It measures the semantic
similarity between the topic words of a single topic. A higher similarity results in a
higher topic coherence score, which changes with the number of topics. The optimal
number of topics for a dataset is found, when the topic coherence metric has the highest
score.

20

Fig. 3.3: Example Topics and Topic Words for STM [31].

21

3.4 Synthesis

In the synthesis, the found approaches are compared and the most suitable ones are
selected for the implementation. For this, additional characteristics, which refine the
research questions of Section 3.1, are taken into account. These additional characteris-
tics are necessary, as the selected methods have to be implemented in this thesis and
have to be applicable to concept detection. In the following, the characteristics are
explained and extracted from the approaches. Afterwards, Table 3.11 at the end of the
chapter is providing an overview of the synthesis.

Which method has been used in the approach?
The first characteristic is important for an overview of methods, especially since some
approaches are using similar methods or are using the same base method. It is based
on RQ1.1, but only takes the main processing part of topic modeling into account. Pre-
processing methods are not considered. Table 3.6 gives an overview of the methods.
LDA is the most used method and often mentioned by other approaches that use
different methods.

Table 3.6: Approaches and their Methods

Ref Method
[17] LDA
[2] LDA + naive Bayes
[40] LDA + feedback mechanism
[9] LDA modified with metadata
[14] Modified SLDA
[43] NMF
[23] SeaNMF
[48] Document similarity clustering
[8] Single pass incremental clustering
[21] AHC
[3] SVM+doc2vec
[31] STM
[41] Topic model, classifier, not described in detail

Which additional data beyond documents is required for the approach?
This is an addition to RQ1 as it is not covered by the other sub-questions. For different
datasets, not all information may be available for certain approaches. Approaches that
are including more data generally report an improvement in performance. On the other
hand, approaches that are using text only are more versatile for different applications.
For the implementation of this thesis, it is not assumed that datasets only contain

22

documents from forums or have specific forum metadata available for analysis. This
makes all approaches that use additional data unsuitable for implementation. Table
3.7 shows the approaches and the data that is needed.

Table 3.7: Approaches and the Additional Data needed

Ref Data
[14], [17], [21], [23], [41] Text only
[2] MOOC course information
[40] User feedback
[9], [43] Post author
[48] Post title (optional)
[8] Date and time of post
[3] Manually annotated posts
[31] All metadata available (e.g. user age, gender, time)

What is the topic output format of this approach?
This characteristic is a refinement to RQ1.2 because not only the kind of topics are
important, but also the way they are presented, as an automatic concept extraction is
planned. Most methods return topic words, which are the words that are most likely
to be part of that topic and thus are describing this topic. These topic words can be
considered as concept words for the task of concept extraction in this thesis. Other
approaches are just returning a cluster of posts, where the user then has to read posts of
a cluster to determine the label, which is not useful as the output cannot be interpreted
as concept words. Three approaches are assigning labels to the topics, but require user
input. Table 3.8 is listing the approaches and their output.

Table 3.8: Approaches and their Output

Ref Output
[8], [9], [17], [23], [31], [41], [48] Topic words
[14] Topic words and topic facet
[2], [40] Topic words and proposed topic label
[3] Posts with topic labels
[43] Post cluster
[21] Not described (should be a cluster)

How is the method performance compared to others?
This characteristic is a refinement of RQ1, as it is not covered by other sub-questions.
As the approach is going to be implemented, it should have a state-of-the-art perfor-
mance. When methods are compared to other methods, there could be a ranking that

23

covers all methods. Table 3.9 is listing the approaches and their performance compari-
son. Some approaches are only comparing themselves to a baseline method, e.g. when
they made some improvements to a method. Other approaches are only providing a
qualitative evaluation that has been performed by humans, e.g. they looked at the
topic word output and checked whether it is understandable. This makes it harder
to compare them to other methods. A comparison by a metric (e.g. topic coherence)
with a common dataset would make the different approaches more comparable. LDA
is often used as a baseline, also for approaches that use other methods. There is no
global ranking recognizable.

Table 3.9: Approaches and Performance Comparison

Ref Comparison
[17] LDA is very popular and a comparison for other approaches
[2] Not compared to others
[40] Better performance than LDA (qualitative)
[9] Better performance than LDA (perplexity metric)
[14] Better performance than LDA (qualitative)
[43] Better performance than baseline, not compared to other methods
[23] Better performance than LDA (topic coherence)
[48] Better performance than baseline, not compared to other methods
[8] Better performance than LDA (NMI metric)
[21] Better performance than baseline
[3] Only compared to other variants in this paper
[31] Better interpretability than LDA (qualitative)
[41] No evaluation given

Is there an implementation of the approach available (e.g. with open source
libraries)?
This is a very practical characteristic. It is necessary as the approaches will be imple-
mented as part of this thesis. A paper that is more detailed on their implementation
could be preferable, since the reproduction will be easier. Table 3.10 shows what can
be derived from the information given by the papers. For some approaches, there are
only implementations of the baseline methods available, but not of their improvements.
Some approaches are very detailed, offering information about the parameterization of
the method, while others do not have any implementation details. This makes it hard
to recreate these approaches. An implementation that is already tested is preferable,
as it reduces the chance of being incorrect.

24

Table 3.10: Approaches and Implementation Details

Ref Implementation
[17] Many frameworks available, detailed parameters for usage
[2] Base methods available, no implementation details
[40] Base method available, label proposition and feedback mechanism not available
[9] Base method available, modification not detailed enough for implementation
[14] SLDA implementation available, no details on their modifications
[43] NMF implementation available, no details on their modifications
[23] SeaNMF implementation available
[48] No implementation details
[8] No implementation details
[21] Base method available, no implementation details
[3] Base method available, no implementation details
[31] Framework available
[41] No implementation details

Which approach should be selected for the implementation in this thesis?
For this question, the following criteria are specified, based on the aforementioned
characteristics of the approaches:

• The approach only needs documents as data

• The output of the approach is in form of topic words

• There is an implementation of the method of the approach available

The performance characteristic is not used as criterion, as there is no global performance
ranking recognizable.
Based on these criteria, at least one suitable method is selected. The approaches [2],
[40], [9], [43], [48], [8], [3], [31] are not suitable, as they require additional data besides
documents.
Of the remaining approaches ([14], [17], [21], [23], [41]) , [21] has not specified their
output, while the others have at least topic words as an output. Only [17] (LDA) and
[23] (SeaNMF) have an implementation of their methods in use available. [41] is not
offering any implementation details and for [14], there is only the base method without
their modifications available, which makes those two methods obsolete for use in this
thesis.
Finally, there is [17] (LDA) and [23] (SeaNMF) remaining. LDA is widely used as a
topic modeling method and is not only used in the context of user forums, but also
for other social media platforms [27]. It only requires documents as data, which makes

25

it flexible and independent of special metadata (e.g. forum metadata). The output is
in form of topic words, which can be used to label a topic. This output is sufficient,
as the topic words can be used as concept words, when applied to concept detection.
Although some approaches are achieving some form of better performance, mostly by
incorporating additional data, which makes them less flexible, LDA is still a state-
of-the-art topic modeling method. This explains its wide distribution and its many
implementations that are available.
SeaNMF is an improvement over NMF, which is performing better than LDA on short
and noisy texts. It uses the same data and output format as LDA, making it also
very flexible. There is an implementation available that is also very detailed on the
parameter use, which makes it easy to use in this thesis.
Both LDA and SeaNMF are being implemented as part of this thesis. To compare the
methods’ performance in topic modeling, the topic coherence metric is computed as it
is done by Shi et al. [35]. It is not known whether the topic coherence metric can be
applied for concept detection. This will be part of the evaluation in Chapter 7.

26

Table 3.11: Synthesis Overview

Ref Method Data Output Comparison Implementation Selected

[17] LDA Text only Topic words Popular method Framework, very detailed Yes

[2] LDA + naive Bayes MOOC course data Topic words, label Not compared to other methods Base methods, no details No

[40] LDA + feedback mechanism User feedback Topic words, label Better than LDA (qualitative) Base method, no details No

[9] LDA modified with metadata Post author Topic words Better than LDA (perplexity) Base method, few details No

[14] Modified SLDA Text only Topic words, facet Better than LDA (qualitative) Base method, no details No

[43] NMF Post Author Post clusters Not compared to other methods Base method, no details No

[23] SeaNMF Text only Topic words Better than LDA (topic coherence) Available Yes

[48] Document similarity clustering Post title Topic words Not compared to other methods No details No

[8] Single pass incremental clustering Date & time of post Topic words Better than LDA (NMI) No details No

[21] AHC Text only not described Not compared to other methods Base method, no details No

[3] SVM+doc2vec Annotated posts Posts with labels Not compared to other methods Base method, no details No

[31] STM All metadata Topic words Better than LDA (qualitative) Framework No

[41] No details Text only Topic words No evaluation given No details No

27

3.5 Review Summary

This chapter summarizes the reviewed works based on the research questions.

RQ1: Which approaches for fully or semi-automatic topic modeling of
natural language user statements in online forums exist and what are
their characteristics?

RQ1.1: Which machine learning or natural language processing methods
are used by the approaches for which steps of the classification process?
The approaches are either unsupervised clustering methods [8], [22], [23], [43], [48] or
topic models [2], [9], [14], [17], [40], [41], which means, that a topic cluster needs to
be labeled manually. Some approaches try to generate topic labels, but they require
additional input in form of feedback [40]. [3] is using a SVM classifier, which requires
some annotated posts. Vitasek et al. [41] are not explicitly mentioning the methods
they used for topic modeling, although they are using the Mallet framework, which is
used by [17] for LDA. LDA is a very popular topic modeling method used by many
approaches. These are extending the method to improve its performance [2], [9], [14],
[40], or using it in a practical approach for forum analysis [17]. An overview of the
methods can be seen in Table 3.6. Additionally, [3] is using doc2vec for their docu-
ment representation and [2] is using naive Bayes to classify their posts and [23] uses
Skip-Gram for word-level representation, all three methods are applied before the main
topic detection method.

RQ1.2: What topics are identified by these methods?
The LDA-based approaches are discovering latent topics in the available data. The
topics are in most cases presented as topic words, that require manual labeling, which
means that the topic is interpreted by the user. Since the topic words are part of the
forum texts, the topics can be arbitrary, based on the contents discussed in the forum.
Although it is possible to classify forum posts beforehand into content/non-content
posts, which will then result in content-related topics and non-content (e.g. organiza-
tional) topics [2]. The artificial feedback mechanism of [40] will adjust proposed topic
labels to the preferences of the user. The topics seem to be in the forum context, e.g.
a digital camera forum will yield camera-related topics [9]. Except for [8], where they
mention to only detect hot topics, there is no restriction in topics mentioned.

28

RQ1.3: What problems arise when using data from online forums (e.g., do-
main dependency, short texts, syntactical errors, etc.)?
The reviewed papers are not talking in much detail about problems with forum data.
Forum data is described as having an imprecise, terse and conversational style of writ-
ing [43]; being of varying length from very short to long texts [48]. [21] reports sparse
and short forum texts, [23] short, informal and noisy forum posts and [2] the brevity
of posts. [9] states that their dataset contains a lot of abbreviated words, misspelled
words and unorganized contents. In most cases, this is described as the nature of forum
data, which is not further addressed.

RQ1.4: How do the approaches deal with these problems?
Not all papers are mentioning that pre-processing steps are done because of the issues
mentioned in RQ1.3, they are describing them as part of their procedure. [31] is doing
stop word removal and stemming as pre-processing. [17] is doing the same, but since
they are working with a software forum, they are also removing code snippets from
forum texts. [14] parsed out program codes, but did not mention additional steps. [40]
is removing emoticons and other nonsense syllables. Three papers are dealing with
short texts: [2] is merging posts into threads. [48] is specifically developed to deal
with forum texts of varying size. [23] is using word-level information additionally to
post-level information, because of short texts.

29

4 Requirements

This chapter contains all requirements for the created software tool. Section 4.1 de-
scribes the initial coarse requirements from which features were derived. Section 4.2
depicts a typical tool user persona. In Section 4.3 the domain data for this thesis is
introduced. Next, Section 4.4 describes the functional requirements, which include user
tasks, subtasks and system functions. Afterwards, the relevant non-functional require-
ments are described in Section 4.5. Section 4.6 introduces the workspaces that are part
of the tool, followed by the mock-ups in Section 4.7.

4.1 Coarse Requirements

The implementation of Feed.UVL is based on the following coarse requirements, with
the ultimate goal of providing support to the researcher during the analysis of natural
language. The functionalities derived from the coarse requirements are divided logically
into different workspaces, which focus on certain tasks of the researcher.

R1: Feed.UVL allows different methods to be selected for the analysis of natural lan-
guage. These methods are suitably parameterized. A given data set is used to perform
analysis with the help of several methods.

R2: Feed.UVL accepts at least two different file formats for the input of data (csv,
xlsx, etc.) and supports the pre-processing of this data according to the requirements
of the chosen methods. Data consists of user statements and can be manually fed in
via Feed.UVL’s user interface. Input data contains the ground truth and the data to
be analyzed itself.

30

R3: The results generated by Feed.UVL are visualized for easy analysis. On the
one hand, basic statistics such as precision and recall of the method are displayed,
on the other hand, the results can be compared in detail with the previously defined
ground truth. In addition, Feed.UVL supports the analysis of false positives or false
negatives. The visualization of the data takes place via the individual widgets used by
Feed.UVL.

R4: The interface of Feed.UVL is easy to use. Within Feed.UVL, the existing data
formats and infrastructures of feed.ai are retained.

R5: The integration of new methods or visualizations should be easy to implement
within Feed.UVL. In particular, Feed.UVL should not be bound to a single analysis
target, but remain universally usable for different targets.

R6: Feed.UVL offers methods for fully or semi-automatic topic modeling on individual
statements. Appropriate methods are found through the literature review and imple-
mented in Feed.UVL.

31

4.2 Personae

The main user of the software tool is a researcher as depicted in Table 4.1 who analyzes
natural language user statements for language features like concepts to get information
about the user’s view on software. The tools functionalities focus on the needs of the
researcher, which should increase the efficiency of their tasks. At the same time, the
tool should not be confusing or complex, which may decrease the tool usability for the
researcher.

Table 4.1: Persona: Researcher

Field Value
Job Researcher
Biography Age 34, doctoral degree in Computer Science, currently research-

ing the user view on software applications. Has previously fin-
ished other research projects regarding requirements from software
users.

Knowledge Experience with using evaluation software for natural language
texts and using coding tools

Needs A tool for concept analysis of natural language user statements
that is easy to use, configurable and error-free.

Frustrations Software crashes or has unexpected errors. The data displayed by
a software application does not match the actual data. Confusing
or unclear software.

Ideal Features Result visualization, which gives an overview of detected concepts.
Evaluation metrics to check performance of applied methods with
a ground truth.
Compare detected concepts to a ground truth.
Clarity about runs and method micro-services. There should be a
status indicator.
There should be an overview over results.
Datasets should be manageable inside the application.

32

4.3 Domain Data

The domain data for Feed.UVL is depicted in Figure 4.1. A result is based on one
method applied on one dataset. A dataset contains at least one document and can
have an optional ground truth, which consists of at least one truth element.

Fig. 4.1: Domain Data Model for Feed.UVL

4.4 Functional Requirements

The functionalities of Feed.UVL are described in this section. The researcher, as defined
in Section 4.2 has one central user task, which contains several subtasks, as described
in Section 4.4.1. From those subtasks, the system functions are derived and listed in
Section 4.4.2.

33

4.4.1 User Tasks and Subtasks

UT1: Analyze Natural Language User Statements
The researcher analyzes user statements with different kinds of methods. Metrics and
visualization techniques are used to evaluate those methods and draw conclusions from
the results. The researcher applies different methods for different tasks and needs to
be able to select the correct one for each task. The datasets that are analyzed as well
as any analysis result need to be stored and managed.

ST1.1: Manage Datasets
The researcher needs to have an overview over existing datasets. A dataset should be
storable within the application. The contents of a dataset have to be reviewed to decide
whether the dataset is still needed. If the dataset is no longer needed, the researcher
can remove it or in case there is a fault within the data, the dataset can be updated. For
some datasets, there may be a ground truth that is used for evaluation. This ground
truth needs to be stored with the dataset it belongs to. Ground truth data should also
be reviewable when reviewing the dataset.

ST1.2: Analyze Datasets with different Methods
The researcher selects a method to analyze a specific dataset. Methods that have pa-
rameters are configured accordingly. Afterwards, the analysis run is started.

ST1.3: Analyze Results
The researcher takes an analysis result and uses appropriate visualization methods.
The results can be made visible in the dataset directly. Also, metrics suitable to the
method are applied to check the performance. The applied parameters are also con-
sulted again. Afterwards, the researcher draws conclusions from the results.

ST1.4: Manage Results
After analyzing a result, the researcher may delete it because it is obsolete, or assign a
name to it to make it easier to recognize again. The researcher may filter stored results
by method to look for specific ones.

34

4.4.2 System Functions

The system functions (SF) are derived from the user subtasks and describe the tool
features from a system point of view. Each system function is fully described with their
conditions, inputs, outputs, exceptions and rules along with the subtasks it supports.
A user story is added to every system function to underline the role and motivation of
the user.

SF1: Navigate between workspaces

As a researcher, I want to be able to navigate between the views of the software, so
I can accomplish my tasks. It has to be clear, in which part of the software I am
currently.

Table 4.2: SF: Navigate between workspaces

Field Value
Preconditions None
Input W1: Navigation View, one of W2-W6
Postconditions None
Output W1, one of W2-W6
Exceptions None
Rules (R1) Theme matches workspace domain
Supports Subtask 1.1, 1.3

35

SF2: Upload dataset

As a researcher, I want to add my datasets into the application. Usually, my datasets
are xlsx or csv files.

Table 4.3: SF: Upload dataset

Field Value
Preconditions File f exists
Input W4: Upload Dataset View, f
Postconditions Data in f is added to storage and is ready to use
Output W4, tooltip displayed
Exceptions (E1) f is corrupt, is too large, IO Exception occurs, or other error

occurs
(E2) f is of the wrong type or format
(E3) User cancels operation

Rules (R1) Allowed file types are: xlsx, csv, txt
(R2) The dataset will be saved by its filename without ending.

Supports Subtask 1.1

SF3: Show dataset

As a researcher, I want to view my dataset in the application, so I do not have to check
the files manually.

Table 4.4: SF: Show dataset

Field Value
Preconditions Dataset d exists in storage
Input W4: Upload Dataset View or W6: Dataset View, d
Postconditions None
Output W6, documents of d are shown
Exceptions None
Rules None
Supports Subtask 1.1

36

SF4: Filter dataset contents

As a researcher, I want to be able to search my dataset for a specific word, this word
should be highlighted in the containing documents.

Table 4.5: SF: Filter dataset contents

Field Value
Preconditions Result r with dataset d exists
Input W5: Document View, r selected, filter string (optional)
Postconditions None
Output W5, list of documents which contain the filter string
Exceptions None
Rules (R1) Order of documents is kept
Supports Subtask 1.1

SF5: Delete dataset

As a researcher, I want to remove my old dataset from the application, so it does not
get messy.

Table 4.6: SF: Delete dataset

Field Value
Preconditions Dataset d exists in storage
Input W4: Upload Dataset View or W6: Dataset View, d
Postconditions Dataset d removed from storage
Output W4 or W6, tooltip showing message about deletion or failure sta-

tus
Exceptions (E1) User cancels operation
Rules None
Supports Subtask 1.1

37

SF6: Upload ground truth

As a researcher, I want to add a ground truth to a dataset in the application. This
helps with managing the data.

Table 4.7: SF: Upload ground truth

Field Value
Preconditions File f exists, dataset d exists
Input W4: Upload Dataset View, f
Postconditions Data in f is added to d in storage
Output W4, tooltip message displayed
Exceptions (E1) f is corrupt, is too large, IO Exception occurs, or other error

occurs
(E2) f is of the wrong type or format
(E3) User cancels operation

Rules (R1) Allowed file types are: xlsx, csv, txt
Supports Subtask 1.1

SF7: Highlight ground truth

As a researcher, I want to be able to know, which segments of the documents of my
dataset are part of the ground truth. With this, I can review and verify the data, or
use it for further analysis.

Table 4.8: SF: Highlight ground truth

Field Value
Preconditions Dataset d with ground truth g exists in storage
Input W6: Dataset View, d, g
Postconditions None
Output W6, g is highlighted in documents of d
Exceptions None
Rules None
Supports Subtask 1.1

38

SF8: Start analysis run

As a researcher, I want to be able to perform analysis runs with some method on my
datasets in the application.

Table 4.9: SF: Start analysis run

Field Value
Preconditions Dataset d exists, method m exists and is applicable to the dataset
Input W2: Start Concept Detection View, d, a, parameters
Postconditions Result r is stored in database
Output W2, tooltip message displayed
Exceptions (E1) Error with contacting backend

(E2) Error while retrieving dataset from storage
(E3) Error while parsing file or executing method

Rules (R1) Output is dependend on method
(R2) Some methods may have parameters

Supports Subtask 1.2

SF9: Filter run results

As a researcher, I want to filter my results by method, so I can find and compare data
from one method more easily.

Table 4.10: SF: Filter run results

Field Value
Preconditions Method m exists
Input W3: Detection Results View or W5: Document View
Postconditions None
Output W3 or W5, m selected, only results of m are displayed
Exceptions None
Rules (R1) Only finished results are displayed
Supports Subtask 1.4

39

SF10: Display run result

As a researcher, I want to see the results from an analysis run inside the application
with appropriate visualization methods.

Table 4.11: SF: Display run result

Field Value
Preconditions A result r of method m is stored in storage
Input W2: Start Concept Detection View or W3: Detection Results

View, r
Postconditions None
Output W3, a visualization of r is shown in the UI
Exceptions None
Rules (R1) Visualization of r is based on m
Supports Subtask 1.3

SF11: Match concepts with documents

As a researcher, I want to see all concepts of a result that belong to a certain document.
This shows me the context of the concept.

Table 4.12: SF: Match concepts with documents

Field Value
Preconditions Result r with dataset d exists
Input W5: Document View, r
Postconditions None
Output W5, concepts of r are listed beside documents of d
Exceptions None
Rules (R1) Only concepts that are in current document are shown be-

sides
Supports Subtask 1.3

40

SF12: Rename run result

As a researcher, I want to be able to give a name to a run result, so I can mark certain
runs and I am able to find them again easier.

Table 4.13: SF: Rename run result

Field Value
Preconditions Result r exists in storage
Input W2: Start Concept Detection View or W3: Detection Results

View, r
Postconditions Name of r is changed in storage
Output Tooltip alterting user about success or failure, UI displays new

name
Exceptions (E1) User cancels operation
Rules None
Supports Subtask 1.4

SF13: Download run result

As a researcher, I want to extract the raw result data from the application, so that I
can perform other analyses on my own outside of the software, or that I can share the
data with other researchers.

Table 4.14: SF: Download run result

Field Value
Preconditions Result r exists in storage
Input W3: Detection Results View, r
Postconditions None
Output r is offered as download
Exceptions None
Rules (R1) The file to download is a json file

(R2) Only finished run results can be downloaded
Supports Subtask 1.4

41

SF14: Delete run result

As a researcher, I want to remove old and irrelevant run results.

Table 4.15: SF: Delete run result

Field Value
Preconditions Result r exists in storage
Input W2: Start Concept Detection View or W3: Detection Results

View, r
Postconditions Result r removed from storage
Output Tooltip alerting user to deletion or failure status
Exceptions (E1) User cancels operation
Rules None
Supports Subtask 1.4

4.5 Non-Functional Requirements

Non-functional requirements (NFRs) are system attributes that are not described in
system functions. Those attributes can be system-related, like maintainability or user-
related, like functionality. The ISO / IEC 25010 [15] quality model defines a standard
for NFRs. In the model, eight different NFRs are defined, of which three were selected
as most important for this thesis. Those NFRs are subdivided into more specific re-
quirements. An important factor of NFRs is, that they have to be measurable, so that
it is clearly possible to identify, whether they have been fulfilled. The three NFRs
that have been selected are functionality, performance efficiency and maintainability,
and are described in Sections 4.5.1, 4.5.2 and 4.5.3 respectively. The descriptions and
the definition are taken from the standard1, the metrics were defined to measure the
fulfillment.

1ISO/IEC 25010 Standard: https://iso25000.com/index.php/en/iso-25000-standards/
iso-25010 Last accessed: 27.08.2021

42

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

4.5.1 Functionality

This characteristic represents the degree to which a product or system provides func-
tions that meet stated and implied needs when used under specified conditions.

Functional completeness

Definition: Degree to which the set of functions covers all the specified tasks and user
objectives.

Metrics:

• System function coverage. The system functions are covering all the user tasks
and subtasks. User tasks and subtasks are based on the coarse requirements. The
System functions are derived from the subtasks, thus they can be traced back to
them. Each subtask has at least one system function that supports it.

Functional correctness

Definition: Degree to which a product or system provides the correct results with the
needed degree of precision.

Metrics:

• Detection method code review. Detection methods are implemented with
reviewed code bases. The software packages used for the implementation can be
tracked back to a code repository, which has indicators that the packages have
passed some form of review.

• System function correctness. Every system functions’ correctness is verified
with system tests. If all system tests pass for a system function, it indicates its
correctness.

4.5.2 Performance Efficiency

This characteristic represents the performance relative to the amount of resources used
under stated conditions.

43

Time behavior

Definition: Degree to which the response and processing times and throughput rates of
a product or system, when performing its functions, meet requirements.

Metrics:

• View load time. Views are loaded in less than 2 seconds. A stopwatch tool is
used to track the time needed to load a view.

• Result visualization time. Result visualization takes less than 10 seconds
for results where documents × concepts < 100, 000. This is tested with a big
enough dataset, whose analysis result yields enough concepts. This result is then
visualized and the time is measured with a stopwatch tool.

• Computational complexity of methods. Implemented detection methods
have a maximal computational complexity of O(n2). The complexity of most
methods is found in the literature. Otherwise, this can be verified mathematically.

4.5.3 Maintainability

This characteristic represents the degree of effectiveness and efficiency with which a
product or system can be modified to improve it, correct it or adapt it to changes in
environment, and in requirements. This characteristic is composed of the following
sub-characteristics:

Modularity

Definition: Degree to which a system or computer program is composed of discrete com-
ponents such that a change to one component has minimal impact on other components.

Metrics:

• Micro-service architecture. New backend components are implemented using
a micro-service architecture realized as docker containers. At least database ac-
cess, analysis methods, and user interface service should be in different containers.

44

Modifiability

Definition: Degree to which a product or system can be effectively and efficiently mod-
ified without introducing defects or degrading existing product quality.

Metrics:

• Micro-service resilience. Stopping a method micro-service does not cause
other micro-services to crash. This is tested by shutting down a method micro-
service and performing all the system tests. Only system tests related to analysis
runs are allowed to differ from expected behavior. An analysis micro-service can
also be shut down during analysis to check if any other micro-service crashes.

• Maintainability issues. Code issues that affect maintainability are detected
and resolved. An appropriate static analysis tool that can check code for main-
tainability issues is applied and the found issues are resolved afterwards. In the
end, the tool detects no more maintainability issues.

Testability

Definition: Degree of effectiveness and efficiency with which test criteria can be estab-
lished for a system, product or component and tests can be performed to determine
whether those criteria have been met.

Metrics:

• System function behavior. All system functions have an expected output.
Section 4.4.2 shows the expected output for each system function, this can be
used for testing.

• System function coverage. All criteria are tested with system tests. For each
system function, there is one test that checks for the expected behavior.

• Component test coverage. A code coverage of at least 85% is achieved with
component tests for all relevant components. A software tool is used to measure
the code coverage that is achieved during the test execution.

45

4.6 Workspaces

Workspaces (W) define logical work areas of the software, which contain system func-
tions. In this thesis, Feed.UVL introduces several workspaces. The navigation view
(W1) is the central unit to navigate between the other workspaces. W2 depicts the
view where a new concept detection run can be parameterized and started. In the
future, it can be used not only for concept detection but also for other analysis targets.
An analysis run result can be displayed in W3, which will contain proper visualization
for concept detection results. W4 is used to upload new datasets to the software as well
as to upload a ground truth for a dataset. Next, W5 is also related to run results and
provides the function to match detected concepts with documents. Lastly, the dataset
view (W6) can display the documents of a dataset and highlight the ground truth in
the documents, if available. The workspaces and their connections are shown in Figure
4.2.

Fig. 4.2: UI-Structure Diagram of all Feed.UVL Workspaces

46

4.7 Mock-ups

The mock-ups introduced in this section are based on the previously described workspaces
(Section 4.6). Note that the mock-ups are only a first realization idea, which changed
during the implementation process.

Figure 4.3 shows the mock-up for the navigation view. The top part shows the naviga-
tion elements of feed.ai. A horizontal line is introduced as separator for the navigation
elements of Feed.UVL, which are at the bottom part.

Fig. 4.3: Navigation Mock-up

In Figure 4.4, the upload dataset view (W4) is shown. It mainly contains form elements
for a file upload, which will be the dataset file and hints about the file format.

Fig. 4.4: File Upload Mock-up

47

Next, Figure 4.5 displays the dataset view (W6). A dataset can be selected via a drop-
down and the documents of the dataset will be listed as a table. There is also a button
for the deletion of the dataset and a confirmation checkbox for security.

Fig. 4.5: Dataset View Mock-up

48

Figure 4.6 shows the start concept detection view (W2). The method and dataset can
be selected via a dropdown. Parameter input fields are shown according to the selected
method. The green button can be pressed to start the detection run. Below, the last
runs are listed in form of a table. This helps to get an overview of past runs without
switching the view.

Fig. 4.6: Start Detection Mock-up

49

In Figure 4.7, the mock-up for the detection results view is shown. In the top left corner,
a method can be selected, which will filter the finished runs for the selected method
ind the dropdown in the top right corner. Below, the parameters of the selected run
are shown, followed by example visualizations of the methods metrics and detection
output.

Fig. 4.7: Detection Result Mock-up

Lastly, Figure 4.8 shows the mock-up for the document view (W5). The top dropdowns
work the same as for Figure 4.7. Below, the documents of the dataset of the selected
run are displayed along with the detection result of this document.

Fig. 4.8: Document-centered Result Mock-up

50

5 Design and Implementation

In this chapter, the design and implementation are described in detail. Firstly, Section
5.1 explains the micro-service architecture that is deployed. Next, Section 5.2 describes
the data classes that are based on the domain data. Finally, Sections 5.3 and 5.4
specify the backend and frontend micro-services respectively. Service and micro-service
are used synonymously. The class diagrams of specific services show their repository
name in brackets. The implementation is completely open-source and can be found on
GitHub1.

5.1 Micro-Service Architecture

As it is defined in the NFRs in Section 4.5.3, a micro-service architecture is used.
The data visualization micro-service of feed.ai is kept and extended to new views for
Feed.UVL. An orchestration micro-service handles the data upload and manages the
analysis runs. The analyses are done by method micro-services in the data analytics
layer. There is one service for LDA and one for SeaNMF. The data is stored in a
MongoDB2 which is only accessed by the storage micro-service. The whole structure
can be seen in Figure 5.1. The data collection layer that is present in feed.ai (Figure
2.4) is not adopted, as there is no data collection service needed. Datasets are added
by the user via the data visualization service, processed by the orchestrator and stored
via the storage service.
Because each micro-service is separated from the others, their implementations can be
completely different. Storage and orchestrator are implemented in the Go programming
language, which is adopted from the corresponding services of feed.ai, while the method
micro-services are using Python, because there are implementations for the methods
in Python. The visualization service is the same as for feed.ai and is implemented in
JavaScript using the VueJS Framework3.

1Feed.UVL GitHub: https://github.com/feeduvl Last accessed: 16.09.2021
2MongoDB: https://www.mongodb.com/ Last accessed: 14.09.2021
3VueJS Framework: https://vuejs.org/ Last accessed: 14.09.2021

51

https://github.com/feeduvl
https://www.mongodb.com/
https://vuejs.org/

Each micro-service is managed in its own code repository. When a new version is
commited to a repository, Jenkins4, a tool for continuous integration and deployment,
builds the service and sends it to the Docker daemon (Section 2.3) for deployment.
Docker then manages the services in containers. Those containers are connected in a
network, so the services can communicate with each other through their APIs.

Fig. 5.1: Feed.UVL Micro-service Structure

4Jenkins: https://www.jenkins.io/ Last accessed: 14.09.2021

52

https://www.jenkins.io/

5.2 Data Classes

All micro-services use the same data classes, which were derived from the domain data
in Section 4.3. Figure 5.2 shows these data classes. The classes Dataset and Result are
used by all micro-services, except for their validate function, which is only needed in the
storage service. The Run class is used in the communication between the orchestrator
and the method services. It is an intermediate object that contains the method name,
dataset and parameters and is used to start the analysis run. After the analysis has
finished, the result is saved in the Result class. The implementation of these classes
depend on the programming language of the micro-service.

Fig. 5.2: Data Classes of the Micro-services (all repositories)

53

5.3 Backend Services

This section describes all the micro-services that are part of the backend. Sections
5.3.1 and Section 5.3.2 are describing the storage service and orchestration service
respectively, followed by the LDA in Section 5.3.3 and SeaNMF in Section 5.3.4. Each
service is depicted with a class diagram. Note that the Go programming language does
not feature classes, which means that the class diagrams of the storage and orchestration
service are abstracted from their actual structure.

5.3.1 Storage Service

This service is the connection between the MongoDB and other micro-services. The
data can be managed via an API. Those API functions are handled by the router class
as seen in Figure 5.3, which makes use of the MongoHandler class that defines the
functions to access the MongoDB.

Fig. 5.3: Class Diagram for the Storage Service (uvl-storage-concepts)

54

5.3.2 Orchestration Service

The orchestration service has a similar structure as the storage. A router handles the
API functions that are available. Instead of a database handler, there is a RestHandler,
which manages outgoing API calls to other services. Figure 5.4 shows the class diagram
for the orchestrator.

Fig. 5.4: Class Diagram for the Orchestration Service (uvl-orchestration-concepts)

5.3.3 LDA Method Service

This micro-service handles the analysis of datasets using LDA. The method is imple-
mented using Gensim5, a library for topic modeling. There is one API function for
analysis and one that returns the status of the service. This is used by the visualiza-
tion service to show the user whether the method service is online or not. Figure 5.5
shows the class diagram for this micro-service. The method parameters are listed and
explained next:

• chunksize: Number of documents to be used in each training chunk. Default:
2,000

• passes: Number of passes through the corpus during training. Default: 1

• iterations: Maximum number of iterations through the corpus when inferring
the topic distribution of a corpus. Default: 500

5Gensim Topic Modeling: https://radimrehurek.com/gensim/ Last accessed: 14.09.2021

55

https://radimrehurek.com/gensim/

• n_topics: The number of topics that shall be detected. Higher topic coherence
indicates a better n_topics. Can be any number > 0. Default: 10

• stemming: Include stemming in preprocessing. Default: False

• fix_random: Set to true to fix random seed to 0. This will make the results
reproducible. Default: false

Fig. 5.5: Class Diagram for the LDA Method Service (uvl-analytics-concepts-lda)

5.3.4 SeaNMF Method Service

The class structure of this micro-service is similar to the LDA method service. The
method implementation is from the original method authors [35]. Figure 5.6 shows
the class diagram for this micro-service. The parameters of the method are listed and
described next:

• alpha: Factorization weight for word-semantic correlations, higher alpha may
increase coherence, but reduce interpretability of topics. Can be in (0,1] range.
Default: 0.1

• beta: Sparsity factor, increase beta (e.g. 0.1) for SparseSeaNMF (SSeaNMF),
for normal SeaNMF this parameter is not needed (=0). Can be in [0,1] range.
Default: 0

• n_topics: The number of topics that shall be detected. Higher topic coherence
indicates a better n_topics. Can be any number > 0. Default: 10

56

• max_iter: Maximum number of iterations that will be performed. Default: 500

• max_err: Error threshold. The processing will stop when the error is smaller
than max_err or max_iter is reached. Default: 0.1

• fix_random: Set to true to fix random seed to ‘0‘. This will make the results
reproducible. Default: false

• vocab_min_count: Only words that occur at least vocab_min_count times
will be added to vocabulary, if the dataset is small and the vocab_min_count to
high, the processing will fail. Default: 3

Fig. 5.6: Class Diagram for the SeaNMF Service (uvl-analytics-concepts-seanmf)

57

5.4 Frontend

The visualization micro-service is the frontend of the software tool, which means it is
the part of the application visible to the tool user. The following sections are presenting
the different views of the tool, with screenshots of the final result and class diagrams
describing the class structure. Since a complete class diagram is too big to display, each
class diagram only shows a part of the whole application. As the frontend is extending
the implementation of feed.ai, only new classes are described. The implemented views
are based on the mock-ups that were created (Section 4.7). However, there are differ-
ences in the final result, which will be mentioned.
As already stated, the frontend is implemented in JavaScript using the VueJS Frame-
work. GUI elements are implemented with Vue components, which can be nested. This
provides some form of modularity. One central part of the frontend is the Vuex Storage.
It is a central storage class that can be accessed by Vue components. When the con-
tained data changes, all components using this data are notified and can change their
data display accordingly. The class diagram in Figure 5.7 shows the Vuex Storage and
all the classes that are accessing it. A blue colored class is a data related class. Yellow
classes are the main views, while orange classes are subcomponents. Grey classes are
external components.
The tooltips mentioned in the following view descriptions are new components that
were not present in feed.ai. It did not feature any kind of notification for the user. As
it was needed for the implementation, it has been decided to use tooltips for displaying
messages to the tool user. As an alternative, dialog messages have been considered, but
it was decided against them because they can be very intrusive and disrupt a smooth
workflow.

Fig. 5.7: Class Diagram for the Vuex Store (ri-visualization)

58

5.4.1 Navigation View

The navigation view implements workspace W1 (Figure 4.2) and is used to navigate
between different views. It is displayed in Figure 5.8. There is a line to separate the
navigation elements of Feed.UVL (bottom side) from the ones of feed.ai (top side). A
headline was added to clearly indicate the domain of the navigation elements, which
is a change compared to the mock-up in Figure 4.3. The class diagram related to
the navigation view can be seen in Figure 5.9. The TopNavigationDrawer class is
the navigation view. It holds the ViewInfo for each view it links to, which contains
the display icon, name and theme. The displayed view is changed by manipulating the
Routes class, which contains a Route class that loads the corresponding Vue component
for each view.

Fig. 5.8: Navigation View

59

Fig. 5.9: Class Diagram for the Navigation View (ri-visualization)

60

5.4.2 Upload Dataset View

In this view, the user can upload datasets and manage them as planned in W4 (Figure
4.2). Figure 5.10 shows the upload dataset view. The top part is used to upload a
dataset. The dataset file can be selected and uploaded via two buttons. There is a
text that describes the allowed file types and formats. It is possible to upload xlsx, csv
and txt files as specified in SF2: Upload dataset (Section 4.4.2). After an upload, a
tooltip will be displayed to inform the user about success or failure. On the bottom
part, the uploaded datasets can be seen. There are buttons for each dataset that allow
further actions (add a ground truth, show dataset, delete dataset) to be performed.
This bottom section was not yet part of the mock-up in Figure 4.4.

Fig. 5.10: Upload Dataset View

61

5.4.3 Dataset View

In the dataset view, the documents of a dataset can be displayed. This view implements
the workspace W6 (Figure 4.2). First, a dataset is selected via the dropdown. The
dataset is loaded from the storage service and its documents are displayed in the table
below. Figure 5.11 shows the dataset view with a dataset selected. The left column
shows the IDs of the documents, while the right column contains the documents. If the
dataset has a ground truth, there is a button, which when pressed will cause the ground
truth to be highlighted in the documents. There is also a button for dataset deletion.
This can be used by the tool user to review a dataset and delete it, in case it is no
longer needed. The implementation only differs slightly optically from the mock-up in
Figure 4.5. There is no more confirmation checkbox, as the confirmation of the deletion
is handled with a tooltip. Therefore, there is a button for displaying the ground truth,
which is not in the mock-up.

Fig. 5.11: Dataset View

62

5.4.4 Start Analysis View

Based on W2 (Figure 4.2) and a mock-up (Figure 4.6), this view as shown in Figure
5.12 is used to start a new run. On the top side, a method can be selected. The middle
part below will load the parameter component of this method. Allowing to customize
the parameters of this method. There are hints about the default parameter values
and special hints will be displayed, when the parameter input is invalid. There is also
a button to reset the parameters to default. A status field besides the method drop
down indicates the service status of the current method. It can either be running or
be offline. On the top left side, the dataset that is going to be analyzed is selected.
On the bottom side, there is a table listing the last runs that were started. It can
give the tool user an overview about what has already been done. When a method is
selected on the top side, the last runs are filtered by this method. The runs are shown
with their parameters, name and status. Optional there is a score field that can be
used. In this case, it shows the topic coherence score, as SeaNMF is a topic modeling
method. The status of a run can be started, when the analysis is still ongoing, finished,
or failed, in case there was some kind of error and the run could not finish properly.
Small icons indicate actions that can be done with a run (view result, rename, delete).
Lastly, there is a search bar, which can be used to filter for a specific run name, that
was previously given to a run. The class diagram of this view can be seen in Figure
5.13. The StartAnalysisHome class has access to the Methods class, which contains
the individual Method objects. The classes LdaParameter and SeanmfParameter are
loaded when the corresponding method is selected.

63

Fig. 5.12: Start Analysis View

64

Fig. 5.13: Class Diagram for the Start Analysis View (ri-visualization)

65

5.4.5 Detection Result View

In this view, which implements workspace W3 (4.2), the results are visualized. It is
designed in a way that it can be used for visualization of any methods’ result. Initially,
when no method is selected, it looks as shown in Figure 5.14. The Vue component that
is used to visualize a specific method is loaded as soon as the method is selected. That
way, each method can have their own visualization. However, for LDA and SeaNMF
visualization, the same component is used, as their results share the same format. The
exact visualization display is different from the mock-up (Figure 4.7), as the visualiza-
tion options were not yet known. When a result is selected, the view updates with the
result data as seen in Figure 5.15. There is a section, where the method parameters are
displayed for review. It adapts the display on the parameters as they are stored in the
result. That way, it can be used for LDA and SeaNMF, although they have different
parameters. There are also buttons to perform further actions with the result (rename,
download, delete). Below the parameter display, there is another section with a word-
cloud as seen in Figure 5.16. It displays concept words in different sizes, where a bigger
size indicates that the concept word appeared more often in the dataset. This gives
the user a first overview over the results. Afterwards, all concept words are listed in a
column, as seen in Figure 5.17. If there is a ground truth, its elements will be displayed
in a column beside the concept words. A color coding is applied to the concepts and
ground truth elements to indicate a match. The legend can be clicked to show only
matching or non-matching concept words or ground truth elements. The next section
as shown in Figure 5.18 is related to this one, as it shows metrics about the concept
words and ground truth matching. The amount of unique concepts detected is listed,
together with the amount of unique ground truth elements, true positives, false posi-
tives and false negatives. Below, there is precision, recall and F1-score displayed. This
is also shown visually with gauges. This allows a quick evaluation of the performance
of the method on concept detection. Lastly, there is a heatmap, showing the distri-
bution of the concept words and documents as displayed in Figure 5.19. Documents
are listed with their IDs. This heatmap can give the user hints, as to which concept
should be evaluated further. Figure 5.20 shows the class diagram for the result view.
The ResultsHome class is mainly the container of the individual result visualizations.
It uses the UvlFilterToolbar component, which contains the dropdown for method and
run selection, as seen in Figure 5.14.

66

The main visualization component is the TopicDetectionResult class for both LDA and
SeaNMF. It contains the GroundTruthComparison class, which is the implementation
of the ground truth comparison widget as shown in Figure 5.18. Furthermore it also
contains a WordToDocumentHeatmap class for the heatmap component (Figure 5.19),
which is based on the EChart class, and a Cloud class for the wordcloud component
(Figure 5.16).

Fig. 5.14: Empty Result View

Fig. 5.15: Parameter Display of the Result View

67

Fig. 5.16: Wordcloud of the Result View

Fig. 5.17: Concept Word and Ground Truth Display of the Result View

Fig. 5.18: Ground Truth Comparison Widget

68

Fig. 5.19: Word-to-Document Heatmap

69

Fig. 5.20: Class Diagram for the Result View (ri-visualization)

70

5.4.6 Document View

This view is also used for result display, but centered around the documents of the
dataset. It resembles the workspace W5 (Figure 4.2). As the result view can be very
large, depending on method visualization, this view has been separated from it. The
top bar as shown in Figure 5.21 is the same as in the result view. When a method
or result has been selected in one view, it will also be updated in the other. Which
means that when the user was viewing a result in the result view, the same result will
already be selected in this view, when the user switches the view. The documents of the
dataset that was analyzed are displayed similar to the dataset view but there is another
column, where the concepts of the result that are part of the document, are shown. By
clicking on a concept, it will be entered into the search bar, which will trigger the filter
function. Only documents that contain the concept are shown, and the concept will be
highlighted blue in the documents. This makes reviewing the context of the concept
word easier.
Initially, the idea was to show the topics of a document with their probability (see
the mock-up in Figure 4.8), as returned by the implemented topic modeling methods,
but this was not useful for concept detection. Topics are not displayed, only the topic
words, which are considered as concept words in this thesis. This was necessary to
transfer the topic modeling methods for concept detection.

Fig. 5.21: Document View

71

6 Quality Assurance

In this chapter, the quality assurance process for the created software tool is described.
Firstly, Section 6.1 introduces the test structure and measures that have been per-
formed. Next, Section 6.2 presents the static code testing of the development process.
Component testing is then explained in Section 6.3. Afterwards, the system tests are
described in Section 6.4.

6.1 Test Concept

Due to the micro-service architecture, the different parts of the tool are divided into
their own code repositories. This allows the testing of each repository on its own. The
code repositories themselves are managed via Git and hosted on GitHub, which makes
the integration of different testing tools possible.
The static code analysis has been employed with Codefactor1, which is set up to ana-
lyze the code base after each commit. One benefit of Codefactor is, that it supports all
programming languages that are used in this project, so all repositories can be checked.
The detected issues are categorized into style issues and maintainability issues. Style
issues refer to the way the code is written, like formatting issues, but do not affect
functionality. On the other hand, maintainability issues include unused variables or
import statements and code smells, which would make later code editing more diffi-
cult. Those issues are very relevant for fulfilling NFR: Modifiability (see Section 4.5.3).
Fixing those issues improves overall code quality and readability and resolves problems
before component or system tests are executed.
The component tests are used to test the micro-services that are part of the backend of
Feed.UVL, namely storage and orchestrator. The tests are implemented in the native
Go environment, which features code coverage reporting, and are part of the respective
code repository. Component testing is declared as successful when the code coverage is
above the specified 85% for all relevant methods, which is required for NFR: Testability
(see Section 4.5.3), and all the tests are passing.

1Codefactor: https://www.codefactor.io/ Last accessed: 26.08.2021

72

https://www.codefactor.io/

System tests use a specified scheme with an expected outcome and a step-by-step pro-
cedure for each test. When the outcome deviates from what is expected, a bug report
is issued, which will be investigated further. The system tests are declared success-
ful when each test results in the expected outcome. The testing has been performed
during the development process and especially when an implementation task has been
finished.

6.2 Static Code Tests

The static code testing with Codefactor has been performed on all code repositories
at the end of the development phase. Codefactor reported two types of issues: Style
issues, which refer to code formatting and styling rules, that can affect readability,
and maintainability issues, which can impair later code editing. Every issue, that has
been found, has been fixed afterwards. Table 6.1 lists the repositories along with the
detected style and maintainability issues.

Table 6.1: Result of Static Code Testing

Repository Style Issues Maintainability Issues Total Issues
ri-visualization 3 11 14
uvl-analytics-concepts-lda 0 3 3
uvl-analytics-concepts-seanmf 0 3 3
uvl-orchestration-concepts 0 0 0
uvl-storage-concepts 0 0 0

73

6.3 Component Tests

Due to dependency issues that occurred when using Jenkins for testing, the tests were
run on a local machine before a commit is made and the code coverage report was
included in the repository. This way, it was made sure that bugs are detected before
a new version got deployed. The coverage is measured with the native Go tool cover
and is defined as the percentage of code lines that have been reached at least once
during test execution. Testing constraints are satisfied when a minimum coverage of
85% is achieved. Table 6.2 lists all relevant files for the backend micro-services and
their coverage. Since Go does not feature classes, the coverage is reported per file.

Table 6.2: Component Test Coverage

Repository File Coverage
uvl-orchestration-concepts starter.go 91.8%

rest_handler.go 89.0%
uvl-storage-concepts starter.go 90.6%

model.go 93.3%
mongodb.go 89.8%

Average 90.07%

6.4 System Tests

This section describes the system tests (TCS) that were performed in order to check
the functionality of all system functions as listed in Section 4.4.2. All the steps and
conditions have been fully documented. If there is no workspace in the expected GUI
result listed, then it remains unchanged.

74

SF1: Navigate between workspaces

The tests for SF1 are listed in Table 6.3. Their focus lies on the correct display of the
UI elements and the display of the correct workspace.

Table 6.3: System Tests SF1: Navigate between workspaces

Field Value
ID TCS1.1
Preconditions None
Preconditions GUI W1: Navigation View
Test Steps 1. Go to non-Feed.UVL workspace

2. Go back to W1
Expected Result GUI W1 correctly loaded. Correct display of Feed.UVL headline

and logo
Expected Exception None
Postcondition System None
ID TCS1.2
Preconditions None
Preconditions GUI W1: Navigation View
Test Steps 1. Go to W2: Start Concept Detection View
Expected Result GUI W2 has been loaded, Feed.UVL theme and headline of W2

is shown
Expected Exception None
Postcondition System None

75

SF2: Upload dataset

Table 6.4 lists the tests for SF2. These tests are checking the correct behavior for
different input files and storage states.

Table 6.4: System Tests SF2: Upload dataset

Field Value
ID TCS2.1
Preconditions File f with dataset exists, file type is csv, xlsx or txt
Preconditions GUI W4: Upload Dataset View
Test Steps 1. Select file f for upload

2. Attempt upload
Expected Result GUI Tooltip indicating upload success is shown
Expected Exception None
Postcondition System Dataset from f is stored
ID TCS2.2
Preconditions File f with dataset exists, file type is neither csv, xlsx nor

txt
Preconditions GUI W4: Upload Dataset View
Test Steps 1. Select file f for upload

2. Attempt upload
Expected Result GUI Tooltip indicating that this file type is not allowed
Expected Exception File is not uploaded
Postcondition System None
ID TCS2.3
Preconditions Invalid file f exists, file type is csv, xlsx or txt
Preconditions GUI W4: Upload Dataset View
Test Steps 1. Select file f for upload

2. Attempt upload
Expected Result GUI Tooltip error that dataset could not be uploaded
Expected Exception File is not uploaded
Postcondition System None
ID TCS2.4
Preconditions Dataset d1 with name n is in database, file f with dataset d

and name n exists
Preconditions GUI W4: Upload Dataset View
Test Steps 1. Select file f for upload

2. Attempt upload
Expected Result GUI Tooltip indicating upload success is shown
Expected Exception None
Postcondition System Dataset d1 is replaced with dataset d in storage

76

SF3: Show dataset

The test in Table 6.5 checks the correct display of a dataset. The test is performed on
both workspaces from the precondition GUI. The GUI result is always W6.

Table 6.5: System Tests SF3: Show dataset

Field Value
ID TCS3.1
Preconditions At least one dataset d exists
Preconditions GUI W4: Upload Dataset View or W6: Dataset View
Test Steps 1. If in W4, click "show dataset" button from d, else if in

W6 select dataset d from dropdown
Expected Result GUI W6, dataset d displayed
Expected Exception None
Postcondition System None

77

SF4: Filter dataset contents

The tests for SF4 are listed in Table 6.6. The tests focus on different input values and
the correct outputs for the filtering.

Table 6.6: System Tests SF4: Filter dataset contents

Field Value
ID TCS4.1
Preconditions Dataset d with result r exists
Preconditions GUI W5: Document View, r selected
Test Steps 1. Enter an empty string into the search field
Expected Result GUI All documents are displayed
Expected Exception None
Postcondition System None
ID TCS4.2
Preconditions Dataset d with result r exists
Preconditions GUI W5: Document View, r selected
Test Steps 1. Enter a string into the search field, that does exist in at

least one document, but not in all documents
Expected Result GUI Only documents that contain the string are displayed. The

string is marked blue in the texts.
Expected Exception None
Postcondition System None
ID TCS4.3
Preconditions Dataset d with result r exists
Preconditions GUI W5: Document View, r selected
Test Steps 1. Enter a string into the search field, that does not exist in

any document
Expected Result GUI No document is displayed
Expected Exception None
Postcondition System None

78

SF5: Delete dataset

Table 6.7 lists the test for SF5. There is only one test as there are no variations of data
or inputs.

Table 6.7: System Tests SF5: Delete dataset

Field Value
ID TCS5.1
Preconditions At least one dataset d exists
Preconditions GUI W6: Dataset View or W4: Upload Dataset View
Test Steps 1. Select dataset d (W6 only)

2. Press "Delete Dataset" (W6) or "Delete" for d (W4)
3. Confirm deletion

Expected Result GUI Tooltip shows message that dataset d has been deleted
Expected Exception None
Postcondition System Dataset d is deleted

79

SF6: Upload ground truth

The tests for SF6, which are listed in 6.8, are analogous to the tests of SF2. Details on
file type and file content were omitted when it is expected to be valid.

Table 6.8: System Tests SF6: Upload ground truth

Field Value
ID TCS6.1
Preconditions Dataset d exists, file f with ground truth g exists
Preconditions GUI W4: Upload Dataset View
Test Steps 1. Click "Add ground truth" button from d

2. Select file f for upload
3. Attempt upload

Expected Result GUI Tooltip indicating upload success
Expected Exception None
Postcondition System Ground truth g is stored with dataset d
ID TCS6.2
Preconditions Dataset d exists, file f with ground truth but invalid file type

exists
Preconditions GUI W4: Upload Dataset View
Test Steps 1. Click "Add ground truth" button from d

2. Select file f for upload
3. Attempt upload

Expected Result GUI Tooltip indicating that this file type is not allowed
Expected Exception File is not uploaded
Postcondition System None
ID TCS6.3
Preconditions Dataset d exists, file f with invalid file contents exists
Preconditions GUI W4: Upload Dataset View
Test Steps 1. Click "Add ground truth" button from d

2. Select file f for upload
3. Attempt upload

Expected Result GUI Tooltip error that ground truth could not be uploaded
Expected Exception File is not uploaded
Postcondition System None
ID TCS6.4
Preconditions Dataset d exists, file f with ground truth g exists
Preconditions GUI W4: Upload Dataset View
Test Steps 1. Click "Add ground truth" button from d

2. Select file f for upload
3. Attempt upload

Expected Result GUI Tooltip indicating upload success
Expected Exception None
Postcondition System Ground truth from dataset d is replaced with g

80

SF7: Highlight ground truth

The tests for SF7 check whether the GUI shows correct behavior based on the existence
of a ground truth, and are listed in Table 6.9.

Table 6.9: System Tests SF7: Highlight ground truth

Field Value
ID TCS7.1
Preconditions Dataset d with ground truth g exists
Preconditions GUI W6: Dataset View
Test Steps 1. Select d

2. Click button "Show"
Expected Result GUI Ground truth from dataset is marked blue in displayed doc-

uments.
Expected Exception None
Postcondition System None
ID TCS7.2
Preconditions Dataset d without ground truth exists
Preconditions GUI W6: Dataset View
Test Steps 1. Select d
Expected Result GUI Hint is displayed that no ground truth is available
Expected Exception None
Postcondition System None

SF8: Start analysis run

Table 6.10 lists the system tests for SF8 and focuses on different UI inputs and a special
case where the method micro-service is offline.

81

Table 6.10: System Tests SF8: Start analysis run

Field Value
ID TCS8.1
Preconditions None
Preconditions GUI W2: Start Concept Detection View
Test Steps 1. Choose a method

2. Select a dataset
3. Attempt run

Expected Result GUI Tooltip message indicating that run has been started
Expected Exception None
Postcondition System Run result saved in storage
ID TCS8.2
Preconditions None
Preconditions GUI W2: Start Concept Detection View
Test Steps 1. Choose a method

2. Attempt run
Expected Result GUI Tooltip error that dataset should be selected
Expected Exception Run is not started
Postcondition System None
ID TCS8.3
Preconditions None
Preconditions GUI W2: Start Concept Detection View
Test Steps 1. Choose a method

2. Delete default parameter
3. Select dataset
4. Attempt run

Expected Result GUI Invalid parameter fields are marked red, with parameter
hint. Tooltip message "Please validate your parameter in-
puts!" is shown.

Expected Exception Run is not started
Postcondition System None
ID TCS8.4
Preconditions Service of selected method is offline
Preconditions GUI W2: Start Concept Detection View
Test Steps 1. Choose a method

2. Select dataset
3. Attempt run

Expected Result GUI Tooltip message "Could not contact backend!", Status field
shows "offline"

Expected Exception Run is not started
Postcondition System None

82

SF9: Filter run results

The tests in Table 6.11 test correct behavior of the result filter toolbar, which is present
in workspaces W3 and W5.

Table 6.11: System Tests SF9: Filter run results

Field Value
ID TCS9.1
Preconditions At least two methods exist, at least one result for each

method exists
Preconditions GUI W3: Detection Results View or W5: Document View
Test Steps 1. Select one of the methods from the method dropdown

2. Open the result dropdown
Expected Result GUI The result dropdown only shows the results from the selected

method
Expected Exception None
Postcondition System None
ID TCS9.2
Preconditions At least one run that has failed exists
Preconditions GUI W3: Detection Results View or W5: Document View
Test Steps 1. Open the result dropdown
Expected Result GUI The result dropdown does not show any failed run
Expected Exception None
Postcondition System None

83

SF10: Display run result

SF 10 is tested by the test in Table 6.12, which checks correct UI display of the results.

Table 6.12: System Tests SF10: Display run result

Field Value
ID TCS10.1
Preconditions At least one result exists
Preconditions GUI W2: Start Concept Detection View or W3: Detection Re-

sults View
Test Steps 1. Choose method of result

2. Choose run result (if in W2 -> select "show")
Expected Result GUI W3, correct result displayed, correct method selected in

method dropdown, correct result selected in result dropdown
Expected Exception None
Postcondition System None

SF11: Match concepts with documents

Table 6.13 lists the test for SF11, there is only one test as there are no variances in
data or behavior expected.

Table 6.13: System Tests SF11: Match concepts with documents

Field Value
ID TCS11.1
Preconditions At least one result exists
Preconditions GUI W5: Document View
Test Steps 1. Choose result in result dropdown
Expected Result GUI The dataset from the result is shown along with the detected

concepts
Expected Exception None
Postcondition System None

84

SF12: Rename run result

The test for SF12, listed in Table 6.14 is executed for both workspaces listed in the
precondition GUI.

Table 6.14: System Tests SF12: Rename run result

Field Value
ID TCS12.1
Preconditions At least one result exists
Preconditions GUI W2: Start Concept Detection View or W3: Detection Re-

sults View, result is selected
Test Steps 1. Click "Edit Name" Icon (W2) or click "Rename" Button

(W3)
2. Enter a new name
3. Click "Edit" button

Expected Result GUI Tooltip indicating that result has been renamed. Displayed
name of result has changed.

Expected Exception None
Postcondition System Name of result changed in storage

SF13: Download run result

Table 6.15 lists the test for SF13. There is only one test as there are no variances in
data or behavior expected.

Table 6.15: System Tests SF13: Download run result

Field Value
ID TCS13.1
Preconditions At least one result exists
Preconditions GUI W3: Detection Results View
Test Steps 1. Select result from dropdown

2. Click "Download" Button
Expected Result GUI A download is shown in the browser, the downloaded file is

in json format and contains the correct result data
Expected Exception None
Postcondition System None

85

SF14: Delete run result

Table 6.16 lists the test for SF14. There is only one test as there are no variances in data
or behavior expected. However, the test is executed for both workspaces mentioned in
precondition GUI.

Table 6.16: System Tests SF14: Delete run result

Field Value
ID TCS14.1
Preconditions At least one result exists
Preconditions GUI W2: Start Concept Detection View or W3: Detection Re-

sults View, result is selected
Test Steps 1. Click "Delete Result" Icon (W2) or "Delete" Button (W3)

2. Confirm deletion
Expected Result GUI Tooltip indicating that result has been deleted. Result is

not displayed anymore in W2 or W3.
Expected Exception None
Postcondition System Result is removed from storage

86

7 Evaluation

This chapter describes the evaluation process of the implemented topic detection meth-
ods LDA and SeaNMF on the task of concept detection. First, the evaluation concept
is presented in Section 7.1 and relevant metrics are explained. Section 7.2 displays the
results of the parameter analysis. Afterwards, the comparison of topic coherence and
F1-score can be seen in 7.3. Lastly, the evaluation results are discussed and summarized
in Section 7.4.

7.1 Evaluation Methodology

The evaluation process has multiple steps that are performed. Both methods are tested
with a given dataset and the outputs are compared to a ground truth. The test dataset
contains 34 documents, of which 24 documents are about the Moodle e-learning plat-
form and the remaining 10 are about the Stud.IP platform. Each ground truth element
is a natural language element of any length manually annotated in the dataset. Typi-
cally, it consists of 1-3 words. There are around 900 unique ground truth elements for
this dataset. The topic detection methods return topic words which describe a topic
(10 words per topic). This means, for 10 topics, there are 100 topic words returned.
The same word can appear as a topic word for multiple topics, so the number of unique
words returned may be lower. For this calculation, the topic words are regarded as
concept words. A match (true positive) is found, when for a ground truth element,
there is at least one concept word that is contained in the segment. This is because
ground truth elements can have more than one word and a direct match cannot be
made then, even though its meaning matches. As performance metric, precision, recall
and F1-Score [36] are calculated as is standard in most algorithm evaluation. Precision
is the ratio of correctly detected concepts among all detected concepts, while recall is
the ratio of correctly detected concepts among all correct concepts. Their calculation
is based on true positives (TP), false positives (FP) and false negatives (FN).

87

The formulas are as follows:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

The F1-score is the weighted average of precision and recall:

F1-score = 2 ∗ (recall ∗ precision)/(recall + precision)

Parameters are considered optimal, when the F1-score is the highest among all tested
combinations. A search grid is created for one parameter by choosing different values
among the valid range as dictated by the authors. A single parameter is changed at a
time, while the other parameters remain fixed and the F1-score is measured for those
runs. The parameter that yielded the best score is used when other parameters are
checked.
Both methods have a metric used in their original publication, which is used for eval-
uating the performance on topic modeling: Topic coherence [33]. This metric and the
F1-score are checked for a correlation of their values for both methods. Correlation
measures the linear relationship of two variables. It can be expressed with the Pearson
correlation coefficient r and is calculated as follows [11]:

r =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2(yi − ȳ)2

where xi and yi are the values for variables x and y, and where x̄ and ȳ are the mean of
the values for x and y respectively. A value > 0 indicates a positive correlation, while
r = 1 indicates a perfect linear correlation. On the other side, a negative value stands
for an inverse correlation and r = −1 means a perfect inverse correlation. Values close
to zero are indicating weak to no relationship between two variables.

7.2 Parameter Analysis

This section is divided into two subsections, of which Section 7.2.1 is for the LDA
parameters and Section 7.2.2 is for SeaNMF parameters. The random seed will be
fixed for both methods, as this makes the results reproducible. For details about the
individual parameters, see Chapter 5.

88

7.2.1 LDA Parameter

For LDA, there is no direct learning rate parameter, instead it is auto-learned during
the run. Stemming will be disabled, as the method output then contains the stemmed
words and those words cannot be directly compared to the ground truth anymore,
which will lead to a lower score.
The chunksize parameter declares how many documents are used at one time during
processing. This does not affect the results of LDA, only the speed of processing. Since
the dataset only has 34 documents, setting the chunksize to any higher value will make
no change. After training, the topic distribution is inferred over iterations times. When
enough iterations have passed, the result does not change anymore. Setting iterations
to 5,000 is sufficient for this. Passes determines how many times the dataset is pro-
cessed. Increasing it will change the result up to a certain point, where all documents
are fully processed.
For the first analysis runs, chunksize is set to 200 and iterations is set to 5,000 as de-
scribed before. This leaves the number of topics and passes as the two main parameters
of interest. Passes is left to the default value of 1. The number of topics is increased
and the F1-score is reported in Figure 7.1.

Fig. 7.1: Relation of F1-score and Number of Topics for LDA

89

The F1-score first rises with the number of topics, but after 300 topics, it drops again
slightly. Increasing the number can lead to more words that are taken from the dataset
as topic words, but there seems to be a limit, which words will be considered. For the
further analysis, the number of topics is set to 300 as it yields the best result with a
F1-score of 0.2797.
Next, the number of passes is analyzed and different values are tested. Figure 7.2 shows
the relation of passes and F1-score.

Fig. 7.2: Relation of F1-score and Passes for LDA

The F1-score remains stable at around 0.28, but seems to lower at around 150 passes.
Interestingly, after 150 passes, the F1-score and result (as listed in Table 7.1) stays
the same, indicating some form of convergence. The full list of parameters that were
applied, and their results can be seen in Table 7.1. Best values are marked.
For parameter optimization, passes and the number of topics seem to have an interme-
diate peak, which means that it may be necessary to test different values to find the
optimal one. Chunksize can be adjusted to contain the dataset documents or to a value
that is possible for the computer memory. Iterations affects the processing time, which
may be an issue with big datasets. Otherwise, it can be increased until the result does
not change anymore.

90

Table 7.1: Parameter and Scores for LDA

Passes Topics Coherence Concepts Precision Recall F1-score
10 1 0.6591 56 0.9107 0.0556 0.1049
25 1 1.3043 105 0.838 0.096 0.1723
50 1 1.56 134 0.8507 0.1244 0.2171

100 1 1.8364 144 0.8819 0.1386 0.2396
150 1 1.9567 165 0.8606 0.155 0.2627
200 1 2.0584 167 0.8622 0.1572 0.2659
250 1 2.0347 175 0.8228 0.1572 0.2639
300 1 2.0922 185 0.8324 0.1681 0.2797
400 1 2.1522 177 0.8079 0.1561 0.2616
500 1 2.1492 171 0.8187 0.1528 0.2575
300 1 2.0922 185 0.8324 0.1681 0.2797
300 10 2.095 188 0.8297 0.1703 0.2826
300 25 2.0928 185 0.8378 0.1692 0.2815
300 50 2.09 179 0.8491 0.1659 0.2776
300 100 2.0949 178 0.8483 0.1648 0.276
300 150 2.1343 165 0.8363 0.1506 0.2553
300 200 2.1343 165 0.8363 0.1506 0.2553
10 10 0.7609 57 0.8947 0.0556 0.1048
25 10 1.3533 107 0.8317 0.0971 0.1739
50 10 1.5738 135 0.8518 0.1255 0.2188

100 10 1.8465 144 0.8958 0.1408 0.2433
150 10 1.9638 170 0.8588 0.1593 0.2688
200 10 2.0581 166 0.8614 0.1561 0.2643
250 10 2.0369 176 0.8352 0.1604 0.2692
350 10 2.1155 183 0.8196 0.1637 0.2739
400 10 2.1511 176 0.8181 0.1572 0.2637
450 10 2.1642 160 0.8437 0.1473 0.2509
500 10 2.1506 175 0.8171 0.1561 0.2621

91

7.2.2 SeaNMF Parameter

SeaNMF has a weight factorization parameter alpha, which can be tuned. It can
influence the topic coherence score, but the effect on concept detection is not known.
The beta parameter refers to sparse SeaNMF, which is a variant of SeaNMF. Therefore,
beta is not considered relevant.
Iterations and stopping criterion are training related parameters. The training will
stop either when the number of iterations reaches its value or when the internal error
difference is below the threshold of stopping criterion. As the test dataset is small,
stopping criterion is set below the standard value to 0.001 and iterations is set to
50,000. This may increase the analysis time but may yield a bit more accurate result.
For first runs, alpha is set to the default value and the number of topics is increased
step wise to see its effect on F1-score. Figure 7.3 shows the relation of F1-score and
number of topics.

Fig. 7.3: Relation of F1-score and Number of Topics for SeaNMF

The F1-score rises as the number of topics rises until around 150 topics, where it levels
off at around 0.46. This is due to an increase of detected concepts, which cause the
recall to increase, while precision rests at about 0.83 as seen in Table 7.2. For further
runs, the number of topics is set to 200, which is sufficiently high to get the best results
encountered so far.

92

The alpha parameter is now set to different values, and the F1-score is reported for
those runs. Figure 7.4 shows the relation of alpha and F1-score.

Fig. 7.4: Relation of F1-score and Alpha for SeaNMF

For alpha <= 0.001 the reported F1-score is below 0.46 while for alpha >= 0.1 the
F1-score is slightly above 0.46, with the highest values at alpha = 0.01 and alpha = 1.
Overall, the score difference is small. This seems to be the maximum that is possible
for SeaNMF. Table 7.2 lists the relevant parameters and the reported scores for all
performed SeaNMF analysis runs, the best values are marked.
For big datasets with more than 1,000 documents, it may not be possible to set iterations
very high and stop criterion below default, as this will increase processing time. For
alpha, there is not much difference in the resulting score, so it can be left with the
default of 0.1. The number of topics can be increased until it levels off.

93

Table 7.2: Parameter and Scores for SeaNMF

Alpha Topics Coherence Concepts Precision Recall F1-score
0.1 10 1.9879 97 0.8247 0.0873 0.1579
0.1 25 1.9964 216 0.8194 0.1932 0.3127
0.1 50 1.4762 278 0.8273 0.251 0.3852
0.1 100 1.4443 327 0.8318 0.2969 0.4376
0.1 150 1.4124 350 0.8342 0.3187 0.4612
0.1 200 1.3669 351 0.8376 0.3209 0.464
0.1 250 1.1345 350 0.8371 0.3198 0.4628
0.1 300 0.9569 351 0.8347 0.3198 0.4625
0.1 350 0.8915 350 0.8342 0.3187 0.4612
0.1 400 0.8061 351 0.8347 0.3198 0.4625
0.1 450 0.6917 350 0.8342 0.3187 0.4612
0.1 500 0.7207 352 0.8347 0.3209 0.4637

0.0001 200 1.1454 344 0.8343 0.3133 0.4555
0.001 200 1.1247 347 0.8357 0.3165 0.4592
0.01 200 1.242 352 0.8352 0.3209 0.4637
0.2 200 1.429 351 0.8347 0.3198 0.4625
0.3 200 1.4072 351 0.8347 0.3198 0.4625
0.4 200 1.4726 351 0.8347 0.3198 0.4625
0.5 200 1.4397 352 0.8352 0.3209 0.4637
0.6 200 1.414 350 0.8342 0.3187 0.4612
0.7 200 1.4686 350 0.8342 0.3187 0.4612
0.8 200 1.4376 351 0.8347 0.3198 0.4625
0.9 200 1.4411 350 0.8371 0.3198 0.4628
1 200 1.4457 351 0.8376 0.3209 0.464

7.3 Metric Comparison

In this section, the relation of F1-score and topic coherence is analyzed. Figure 7.5
shows the before mentioned relation for LDA. The number of passes was set to 10 for
this comparison, as it yielded the best performance for F1-score. Interestingly, the
topic coherence score is slightly increasing with the number of topic, although it seems
unlikely that a dataset with only 34 documents contains about 450 topics. The F1-score
first rises with the number of topics and has a peak with a score of 0.2826 at 300 topics,
but stays about the same level. The Pearson correlation coefficient (Section 7.1) for
those results is ≈ 0.97, which indicates a very strong correlation of those metrics for
these results.

94

Fig. 7.5: Relation of F1-score and Topic Coherence for LDA

The relation of F1-score and topic coherence for the SeaNMF method can be seen in
Figure 7.6. The topic coherence score is relatively high at 10 and 25 topics, which
indicates that the optimal number of topics for topic detection is around this value.
Afterwards, the topic coherence score drops, while the F1-score rises. However, topic
coherence continues dropping after 150 topics, while F1-score keeps its level. The
coherence score is falling, as a higher number of topics means moving away from the
optimal number of topics. For a bigger dataset, the optimal number of topics may be
higher, resulting in a different topic coherence curve. The correlation coefficient r is
≈ −0.78 for these results, indicating a strong inverse correlation of those metrics.

95

Fig. 7.6: Relation of F1-score and Topic Coherence for SeaNMF

7.4 Method Comparison and Discussion

The F1-score for both methods with their best parameters and for a different number
of topics can be seen in Figure 7.7.
LDA has a lower F1-score for each number of topics, which is related to a lower overall
recall (as listed in Table 7.1), while precision is on average nearly the same (≈ 0.84 for
LDA and ≈ 0.83 for SeaNMF). This means that LDA takes a lesser number of unique
words of the dataset into account. Overall, SeaNMF shows a better performance and
parameter tuning is easier, as increasing the number of topics should be sufficient to
find the best results.

96

Fig. 7.7: F1-score for SeaNMF and LDA

While SeaNMF performs better than LDA, both methods seem to have a limit, which
words are taken into account as topic words, and thus concept words. In the pre-
processing of both methods, stop-word removal is performed, which reduces the number
of words in the dataset, but it only removes words as "the" or "I", which are very
common in the English language and may not indicate a special topic or concept. Both
methods have a F1-score below 0.5, which is a considerably low performance for concept
detection. The main issue is, that with the limited amount of unique concept words
returned, the recall is very low in both cases. Precision is above 0.8 in for both methods,
which means that the amount of false positive is relatively low and that sorting out
false positives can be done fairly fast manually afterwards.
The topic coherence score shows a very strong positive correlation with the F1-score
for LDA and a strong inverse correlation for SeaNMF. As it is the opposite for both
methods, this means that the topic coherence metric cannot be used to determine
which topic modeling method may be suited for concept detection in general. The
correlation should be analyzed further with different datasets until conclusions can be
made. As topic modeling methods have a different goal than concept detection, the
topic coherence metric also measures different result properties. As a conclusion, it
cannot be transferred for concept detection, and topic modeling methods with a good
topic coherence score in benchmarks might not essentially be good at concept detection
tasks.

97

8 Conclusion

In this chapter, Section 8.1 summarizes the thesis and Section 8.2 will give a discussion
and a lookout for future improvements.

8.1 Summary

Coding of natural language is usually still performed manually, which requires a lot
of work. Automatic processing would simplify this process, especially for big datasets.
This thesis provides a software tool that can be used as a starting point for automatic
processing of natural language. Different methods can be selected for analysis and the
tool can be easily extended with more methods. The method results can then be visu-
alized and reviewed to select an appropriate method for the task at hand. For concept
extraction, a literature review of topic modeling methods on forum data has been per-
formed and the two most suitable methods have been implemented and evaluated. LDA
is a very widely used topic modeling method that can be applied to many use cases.
SeaNMF is an improvement over NMF, which showed increased performance over LDA
for short documents. Many other methods are very specific to forums and take forum
metadata into account for improving their results. The implemented methods can be
configured and analyses can be started via a web interface, which is integrated into the
feed.ai platform. After a method finishes work, the results can also be seen in the web
interface. SeaNMF and LDA share a single result view, as both are topic modeling
methods and share the same output. In the result view, the applied parameters can be
reviewed. The topic modeling output is interpreted for concept detection. A word cloud
gives an overview of words identified by those methods. Concept words are then listed
along with the ground truth, if available. A color coding indicates, which elements
are matching and which are not. The performance of the applied method is evaluated
with the ground truth comparison widget, which provides scores as precision, recall
and F1-score. Lastly, a heat map indicates, which of the found words are contained in
which document. An evaluation of the implemented methods on the task of concept
detection has shown that both methods have a good precision score (≈ 0.84 for LDA

98

and ≈ 0.83 for SeaNMF on average). Recall, however, is rather low (≈ 0.17 and ≈
0.31 for SeaNMF). The topic coherence and F1-score metrics have been checked for a
correlation. There is a very strong correlation between these metrics for LDA and a
strong inverse correlation for SeaNMF. However, this should be analyzed further with
different datasets until conclusions can be made. The tool has been tested thoroughly
and is fully integrated into feed.ai, sharing the same software architecture and user
interface design, which provides a unified look and feel throughout the tool.

8.2 Discussion and Future Work

The evaluation has shown that the topic modeling algorithms have a moderate to low
performance for concept detection. While precision is high, the amount of concept
words is low, which results in a low recall and thus in a low F1-score. However, the
design of the tool makes it easy to implement new methods, which then can be eval-
uated. The implementation of more methods could be one of the future tasks for the
tool. These methods should possibly not be topic modeling methods, as they might
report a similar low recall as LDA and SeaNMF.
While a word-to-document relation heat map can provide an overview of concepts and
their distribution in documents, the information gain is low. Other visualizations, like
a concept relationship graph, could provide more insights for concepts in documents, or
concepts in general, which is a research area that could be part of a further literature
review.
Currently, the ground truth can be uploaded via the user interface, which means, it
has to be created outside the tool. Coding the documents of a dataset inside the tool
for the creation of a ground truth could be a future functionality, as well as integrating
the concept detection results as suggestions for annotations to the user.
On the technical side, pre-processing is performed in each method micro-service, which
will lead to redundancy when more methods are added. A pre-processing micro-service
can reduce this redundancy, as long as it has all pre-processing capabilities required by
the methods in use.
Furthermore, the tooltip system can be improved in the future. Currently, when the
tool user deletes multiple results or datasets in a row, the tooltips are displayed on top
of each other, blocking the tooltip below.
In the future, a progress indicator of a run could be useful, because right now, there is
only information that the run has been started or has been finished. It is not known to
the tool user, how long processing will take. However, this feature may not be possible
for all methods, as not every method may return a progress indicator.

99

Additionally, there could be a load indicator for method services. This can show the
user how many runs there are currently running on a method service. With this knowl-
edge, the tool user can decide to start another run later, when other runs have finished.
This might be especially useful, when there are multiple users working with the tool at
the same time.

100

9 Bibliography

[1] J. Allan, J. G. Carbonell, G. Doddington, J. Yamron, & Y. Yang, “Topic detection
and tracking pilot study final report,” Journal Contribution, Jun. 2018. doi:
10.1184/R1/6626252.v1.

[2] T. Atapattu & K. Falkner, “A Framework for Topic Generation and Labeling
from MOOC Discussions,” in Proceedings of the Third (2016) ACM Conference
on Learning @ Scale, New York, NY, USA: ACM, April 2016, pp. 201–204. doi:
10.1145/2876034.2893414.

[3] B. Athira, S. M. Idicula, & J. Jones, “Multi-label Topic Classification of Patient
Generated Content in a Breast-cancer Community Forum,” in Proceedings of the
4th International Conference on Medical and Health Informatics, New York, NY,
USA: ACM, August 2020, pp. 266–274. doi: 10.1145/3418094.3418132.

[4] V. G. Bertalan & E. E. S. Ruiz, “Using topic modeling to find main discussion
topics in brazilian political websites,” in Proceedings of the 25th Brazillian Sym-
posium on Multimedia and the Web, New York, NY, USA: ACM, October 2019,
pp. 245–248. doi: 10.1145/3323503.3360644.

[5] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[6] D. Blei, A. Ng, & M. Jordan, “Latent dirichlet allocation,” Journal of Machine
Learning Research, vol. 3, pp. 993–1022, May 2003. doi: 10.1162/jmlr.2003.

3.4-5.993.

[7] J. Chang, J. Boyd-Graber, S. Gerrish, C. Wang, & D. Blei, “Reading tea leaves:
How humans interpret topic models,” Neural Information Processing Systems,
vol. 32, pp. 288–296, January 2009.

[8] F. Chen, J. Du, W. Qian, & A. Zhou, “Topic Detection over Online Forum,”
in 2012 Ninth Web Information Systems and Applications Conference, IEEE,
November 2012, pp. 235–240. doi: 10.1109/WISA.2012.15.

[9] V. Cheng & C. H. Li, “Linked Topic and Interest Model for Web Forums,” in 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, IEEE, December 2008, pp. 279–284. doi: 10.1109/WIIAT.

2008.227.

101

https://doi.org/10.1184/R1/6626252.v1
https://doi.org/10.1145/2876034.2893414
https://doi.org/10.1145/3418094.3418132
https://doi.org/10.1145/3323503.3360644
https://doi.org/10.1162/jmlr.2003.3.4-5.993
https://doi.org/10.1162/jmlr.2003.3.4-5.993
https://doi.org/10.1109/WISA.2012.15
https://doi.org/10.1109/WIIAT.2008.227
https://doi.org/10.1109/WIIAT.2008.227

[10] D. Ganguly & G. J. Jones, “Partially Labeled Supervised Topic Models for Re-
trievingSimilar Questions in CQA Forums,” in Proceedings of the 2015 Interna-
tional Conference on The Theory of Information Retrieval, New York, NY, USA:
ACM, Sep. 2015, pp. 161–170. doi: 10.1145/2808194.2809460.

[11] A. Garcia Asuero, A. Sayago, & G. González, “The correlation coefficient: An
overview,” Critical Reviews in Analytical Chemistry - CRIT REV ANAL CHEM,
vol. 36, pp. 41–59, January 2006. doi: 10.1080/10408340500526766.

[12] K. Halder, M.-Y. Kan, & K. Sugiyama, “Health Forum Thread Recommenda-
tion Using an Interest Aware Topic Model,” in Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, New York, NY, USA:
ACM, November 2017, pp. 1589–1598. doi: 10.1145/3132847.3132946.

[13] X. Hao & Y. Hu, “Topic detection and tracking oriented to BBS,” in 2010 In-
ternational Conference on Computer, Mechatronics, Control and Electronic En-
gineering, IEEE, August 2010, pp. 154–157. doi: 10.1109/CMCE.2010.5610205.

[14] I.-H. Hsiao & P. Awasthi, “Topic facet modeling,” in Proceedings of the Fifth
International Conference on Learning Analytics And Knowledge, New York, NY,
USA: ACM, March 2015, pp. 231–235. doi: 10.1145/2723576.2723613.

[15] ISO / IEC, “Iso / iec 25010 system and software quality models,” Tech. Rep.,
2010. doi: 10.3403/30215101.

[16] H. Jelodar, Y. Wang, C. Yuan, X. Feng, X. Jiang, Y. Li, & L. Zhao, “Latent
dirichlet allocation (lda) and topic modeling: Models, applications, a survey,”
Multimedia Tools Appl., vol. 78, no. 11, pp. 15 169–15 211, Jun. 2019. doi: 10.

1007/s11042-018-6894-4.

[17] N. Kahani, M. Bagherzadeh, J. Dingel, & J. R. Cordy, “The problems with eclipse
modeling tools,” in Proceedings of the ACM/IEEE 19th International Confer-
ence on Model Driven Engineering Languages and Systems, New York, NY, USA:
ACM, October 2016, pp. 227–237. doi: 10.1145/2976767.2976773.

[18] S.-H. Kim, H. Tak, & H.-G. Cho, “Polarized Topic Modeling for User Characte-
ristics in Online Discussion Community,” in 2019 IEEE International Conference
on Big Data and Smart Computing (BigComp), IEEE, February 2019, pp. 1–4.
doi: 10.1109/BIGCOMP.2019.8679489.

[19] J. Krishnamani, Y. Zhao, & R. Sunderraman, “Forum Summarization Using
Topic Models and Content-Metadata Sensitive Clustering,” in 2013 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), IEEE, November 2013, pp. 195–198. doi: 10 . 1109 / WI -

IAT.2013.182.

102

https://doi.org/10.1145/2808194.2809460
https://doi.org/10.1080/10408340500526766
https://doi.org/10.1145/3132847.3132946
https://doi.org/10.1109/CMCE.2010.5610205
https://doi.org/10.1145/2723576.2723613
https://doi.org/10.3403/30215101
https://doi.org/10.1007/s11042-018-6894-4
https://doi.org/10.1007/s11042-018-6894-4
https://doi.org/10.1145/2976767.2976773
https://doi.org/10.1109/BIGCOMP.2019.8679489
https://doi.org/10.1109/WI-IAT.2013.182
https://doi.org/10.1109/WI-IAT.2013.182

[20] U. Kuckartz, “Qualitative text analysis: A systematic approach,” in Compendium
for Early Career Researchers in Mathematics Education. Cham: Springer Inter-
national Publishing, 2019, pp. 181–197. doi: 10.1007/978-3-030-15636-7_8.

[21] H. Li & Q. Li, “Forum topic detection based on hierarchical clustering,” in 2016
International Conference on Audio, Language and Image Processing (ICALIP),
IEEE, Jul. 2016, pp. 529–533. doi: 10.1109/ICALIP.2016.7846583.

[22] X. Li, G. Dai, S. Lai, & H. Dai, “Hot topic detection in Chinese web forum using
statistics approach,” in 2011 IEEE International Conference on Signal Process-
ing, Communications and Computing (ICSPCC), IEEE, Sep. 2011, pp. 1–4. doi:
10.1109/ICSPCC.2011.6061621.

[23] H. Liu, Q. Li, R. Yao, & D. D. Zeng, “Analyzing Topics of JUUL Discussions
on Social Media Using a Semantics-assisted NMF model,” in 2019 IEEE Inter-
national Conference on Intelligence and Security Informatics (ISI 2019), Piscat-
away, NJ: IEEE, 2019, pp. 212–214. doi: 10.1109/ISI.2019.8823541.

[24] Z. Liu, S. Rudian, C. Yang, J. Sun, & S. Liu, “Tracking the Dynamics of SPOC
Discussion Forums: A Temporal Emotion-Topic Modeling Approach,” in 2018
Seventh International Conference of Educational Innovation through Technology
(EITT), IEEE, December 2018, pp. 174–179. doi: 10.1109/EITT.2018.00042.

[25] Z. Liu, T. Wang, N. Pinkwart, S. Liu, & L. Kang, “An Emotion Oriented Topic
Modeling Approach to Discover What Students are Concerned about in Course
Forums,” in 2018 IEEE 18th International Conference on Advanced Learning
Technologies (ICALT), IEEE, Jul. 2018, pp. 170–172. doi: 10 . 1109 / ICALT .

2018.00047.

[26] M. Zhu, W. Hu, & O. Wu, “Topic Detection for Discussion Threads with Domain
Knowledge,” in 2010 IEEE/WIC/ACM International Conference on Web Intel-
ligence and Intelligent Agent Technology, IEEE, August 2010, pp. 545–548. doi:
10.1109/WI-IAT.2010.68.

[27] R. Mehrotra, S. Sanner, W. Buntine, & L. Xie, “Improving lda topic models
for microblogs via tweet pooling and automatic labeling,” in Proceedings of the
36th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, ser. SIGIR ’13, Dublin, Ireland: Association for Computing
Machinery, 2013, pp. 889–892. doi: 10.1145/2484028.2484166.

[28] L. K. Nelson, D. Burk, M. L. Knudsen, & L. McCall, “The future of coding: A
comparison of hand-coding and three types of computer-assisted text analysis
methods,” Sociological Methods & Research, vol. 50, pp. 202–237, May 2018. doi:
10.1177/0049124118769114.

103

https://doi.org/10.1007/978-3-030-15636-7_8
https://doi.org/10.1109/ICALIP.2016.7846583
https://doi.org/10.1109/ICSPCC.2011.6061621
https://doi.org/10.1109/ISI.2019.8823541
https://doi.org/10.1109/EITT.2018.00042
https://doi.org/10.1109/ICALT.2018.00047
https://doi.org/10.1109/ICALT.2018.00047
https://doi.org/10.1109/WI-IAT.2010.68
https://doi.org/10.1145/2484028.2484166
https://doi.org/10.1177/0049124118769114

[29] Z. Nie, “Research on algorithm of Chinese BBS topic detection based on content
analysis,” in 2011 IEEE International Conference on Computer Science and Au-
tomation Engineering, IEEE, Jun. 2011, pp. 512–516. doi: 10.1109/CSAE.2011.

5952730.

[30] M. Paul & R. Girju, “Cross-cultural analysis of blogs and forums with mixed-
collection topic models,” in Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing Volume 3 - EMNLP ’09, Morristown,
NJ, USA: Association for Computational Linguistics, 2009, p. 1408. doi: 10.

3115/1699648.1699687.

[31] J. Reich, D. Tingley, J. Leder-Luis, M. E. Roberts, & B. Stewart, “Computer-
assisted reading and discovery for student generated text in massive open online
courses,” Journal of Learning Analytics, vol. 2, no. 1, pp. 156–184, November
2014. doi: 10.18608/jla.2015.21.8.

[32] M. E. Roberts, B. M. Stewart, D. Tingley, E. M. Airoldi, et al., “The struc-
tural topic model and applied social science,” in Advances in neural information
processing systems workshop on topic models: computation, application, and eval-
uation, Harrahs & Harveys, Lake Tahoe, vol. 4, 2013, pp. 1–20.

[33] M. Röder, A. Both, & A. Hinneburg, “Exploring the space of topic coherence
measures,” in Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, ser. WSDM ’15, Shanghai, China: Association for Com-
puting Machinery, 2015, pp. 399–408. doi: 10.1145/2684822.2685324.

[34] V. Rolim, R. Ferreira Leite de Mello, M. Ferreira, A. Pinheiro Cavalcanti, & R.
Lima, “Identifying Students’ Weaknesses and Strengths Based on Online Dis-
cussion using Topic Modeling,” in 2019 IEEE 19th International Conference
on Advanced Learning Technologies (ICALT), IEEE, Jul. 2019, pp. 63–65. doi:
10.1109/ICALT.2019.00020.

[35] T. Shi, K. Kang, J. Choo, & C. K. Reddy, “Short-text topic modeling via non-
negative matrix factorization enriched with local word-context correlations,” in
Proceedings of the 2018 World Wide Web Conference, ser. WWW ’18, Lyon,
France: International World Wide Web Conferences Steering Committee, 2018,
pp. 1105–1114. doi: 10.1145/3178876.3186009.

[36] M. Sokolova, N. Japkowicz, & S. Szpakowicz, “Beyond accuracy, f-score and roc: A
family of discriminant measures for performance evaluation,” vol. 4304, January
2006, pp. 1015–1021. doi: 10.1007/11941439_114.

[37] I. Sommerville, Modernes Software-Engineering: Entwurf und Entwicklung von
Softwareprodukten, ser. Pearson. Hallbergmoos: Pearson, 2020, vol. 4396.

104

https://doi.org/10.1109/CSAE.2011.5952730
https://doi.org/10.1109/CSAE.2011.5952730
https://doi.org/10.3115/1699648.1699687
https://doi.org/10.3115/1699648.1699687
https://doi.org/10.18608/jla.2015.21.8
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1109/ICALT.2019.00020
https://doi.org/10.1145/3178876.3186009
https://doi.org/10.1007/11941439_114

[38] C. Stanik, “Requirements intelligence: On the analysis of user feedback,” Ph.D.
dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky, 2020.

[39] Y. Sun, K. Loparo, & R. Kolacinski, “Conversational Structure Aware and Con-
text Sensitive Topic Model for Online Discussions,” in 2020 IEEE 14th Interna-
tional Conference on Semantic Computing (ICSC), IEEE, February 2020, pp. 85–
92. doi: 10.1109/ICSC.2020.00019.

[40] W. Tang, X. Wu, Y. Li, & J. Xu, “A Topic Label Extraction Method for the
University BBS,” in 2016 IEEE First International Conference on Data Science
in Cyberspace (DSC), IEEE, Jun. 2016, pp. 678–682. doi: 10.1109/DSC.2016.16.

[41] J. M. Vytasek, A. F. Wise, & S. Woloshen, “Topic models to support instructors
in MOOC forums,” in Proceedings of the Seventh International Learning Analytics
& Knowledge Conference, New York, NY, USA: ACM, March 2017, pp. 610–611.
doi: 10.1145/3027385.3029486.

[42] G. K. W. Wong, S. Y. K. Li, & E. W. Y. Wong, “Analyzing academic discus-
sion forum data with topic detection and data visualization,” in 2016 IEEE In-
ternational Conference on Teaching, Assessment, and Learning for Engineering
(TALE), IEEE, December 2016, pp. 109–115. doi: 10.1109/TALE.2016.7851779.

[43] Z.-L. Wu & C.-h. Li, “Topic Detection in Online Discussion Using Non-negative
Matrix Factorization,” in 2007 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology - Workshops, IEEE, November
2007, pp. 272–275. doi: 10.1109/WI-IATW.2007.117.

[44] C. Yang, H. Zhang, & D. Shi, “An on-line adaptive topic evolution model in
web discussions,” in 2013 10th International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), IEEE, Jul. 2013, pp. 847–852. doi: 10.1109/

FSKD.2013.6816312.

[45] S. Yang, T. Fan, & I. Chen, “Adding semantic retrieving concept model into
the discussion board of learning community by using topic maps,” in Fifth IEEE
International Conference on Advanced Learning Technologies (ICALT’05), IEEE,
2005, pp. 122–126. doi: 10.1109/ICALT.2005.43.

[46] T. Zarra, R. Chiheb, R. Faizi, & A. El Afia, “Student Interactions in Online
Discussion Forums,” in Proceedings of the International Conference on Learning
and Optimization Algorithms: Theory and Applications - LOPAL ’18, New York,
New York, USA: ACM Press, 2018, pp. 1–5. doi: 10.1145/3230905.3230920.

[47] Y. Zhang & H. Zhang, “Social Topic Detection for Web Forum,” in 2012 Interna-
tional Conference on Computer Science and Service System, IEEE, August 2012,
pp. 955–959. doi: 10.1109/CSSS.2012.242.

105

https://doi.org/10.1109/ICSC.2020.00019
https://doi.org/10.1109/DSC.2016.16
https://doi.org/10.1145/3027385.3029486
https://doi.org/10.1109/TALE.2016.7851779
https://doi.org/10.1109/WI-IATW.2007.117
https://doi.org/10.1109/FSKD.2013.6816312
https://doi.org/10.1109/FSKD.2013.6816312
https://doi.org/10.1109/ICALT.2005.43
https://doi.org/10.1145/3230905.3230920
https://doi.org/10.1109/CSSS.2012.242

[48] Z. Zhang & B. Wu, “Document similarity measure for topic detection in BBS,”
in 2010 Seventh International Conference on Fuzzy Systems and Knowledge Dis-
covery, IEEE, August 2010, pp. 2354–2357. doi: 10.1109/FSKD.2010.5569864.

[49] Y. Zhao & J. Xu, “A novel method of topic detection and tracking for BBS,” in
2011 IEEE 3rd International Conference on Communication Software and Net-
works (ICCSN 2011), Piscataway, NJ: IEEE, 2011, pp. 453–457. doi: 10.1109/

ICCSN.2011.6014309.

[50] M. Zhu, W. Hu, & O. Wu, “Topic Detection and Tracking for Threaded Discus-
sion Communities,” in 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, IEEE, December 2008, pp. 77–83.
doi: 10.1109/WIIAT.2008.50.

106

https://doi.org/10.1109/FSKD.2010.5569864
https://doi.org/10.1109/ICCSN.2011.6014309
https://doi.org/10.1109/ICCSN.2011.6014309
https://doi.org/10.1109/WIIAT.2008.50

Glossary

Backend Aspects of the software that concern calculations and server-side processes.
39, 44, 51, 54, 72, 74

Backward Snowballing Using the references of a given paper to find older, related
articles. 14

Bug Defect within the code, causing unwanted behavior. 73, 74

Code Smell Characteristic within source code indicating a deeper problem or flaw. 72

Containerization The packaging of software code with just the operating system li-
braries and dependencies required to run the code to create a single lightweight
executable — called a container — that runs consistently on any infrastructure..
4, 6

Continuous Deployment A software release process that uses automated testing to
validate if changes to a codebase are correct and stable for immediate autonomous
deployment to a production environment.. 52

Continuous Integration Refers to a process of agile software development in which the
system is continuously assembled from individual components. 52

Forward Snowballing Identifying related articles that cite a reviewed paper in their
references. 14

Frontend Aspects of the software that concern elements seen and used by the user
directly, like the user interface. 51, 58

Full Stack Refers to all parts of a software application, from frontend to the backend
and database. 7

Ground Truth Information that is known to be real or true. 2, 30, 32–34, 46, 87, 98

107

Monolithic Software A single-tiered software application in which the user interface
and data access code are combined into a single program from a single platform..
5

Open-Source Designates software with public source code. 7, 51

108

Acronyms

ACM Association for Computing Machinery. 13

AHC Agglomerative Hierarchical Clustering. 19

API application programming interface. 5, 7, 52, 54, 55

BBS Bulletin Board System. 14

GUI Graphical User Interface. 2, 58, 74

IEEE Institute of Electrical and Electronics Engineers. 13

LDA Latent Dirichlet Allocation. 10, 16, 51, 87, 98

MOOC Massive Open Online Course. 16, 17

NFR Non-functional requirement. 42, 51, 72

NLP Natural Language Processing. 2, 16

NMF Non-negative Matrix Factorization. 11, 18, 98

SeaNMF Semantics Assisted Non-negative Matrix Factorization. 18, 51, 87, 98

SF System Function. 35, 61, 75

SLDA Sequential Latent Dirichlet Allocation. 16

STM Structural Topic Model. 20, 21

SVM Support Vector Machine. 18

109

TCS Test Case System. 74

TDT Topic Detection and Tracking. 9

TFM Topic Facet Model. 16

UI User Interface. 2, 46, 75

W workspace. 46

110

List of Figures

2.1 Micro-service Architecture . 5
2.2 Scaling for Monolithic Software and Micro-services 6
2.3 Virtual Machine and Docker Container Setup 7
2.4 Feed.ai Micro-service Structure for Tweet Data 8

3.1 Topic label extraction process . 17
3.2 Multi-label Framework by Athira et al. 19
3.3 Example Topics and Topic Words for STM 21

4.1 Domain Data Model for Feed.UVL . 33
4.2 UI-Structure Diagram of all Feed.UVL Workspaces 46
4.3 Navigation Mock-up . 47
4.4 File Upload Mock-up . 47
4.5 Dataset View Mock-up . 48
4.6 Start Detection Mock-up . 49
4.7 Detection Result Mock-up . 50
4.8 Document-centered Result Mock-up . 50

5.1 Feed.UVL Micro-service Structure . 52
5.2 Data Classes of the Micro-services (all repositories) 53
5.3 Class Diagram for the Storage Service (uvl-storage-concepts) 54
5.4 Class Diagram for the Orchestration Service (uvl-orchestration-concepts) 55
5.5 Class Diagram for the LDA Method Service (uvl-analytics-concepts-lda) 56
5.6 Class Diagram for the SeaNMF Service (uvl-analytics-concepts-seanmf) 57
5.7 Class Diagram for the Vuex Store (ri-visualization) 58
5.8 Navigation View . 59
5.9 Class Diagram for the Navigation View (ri-visualization) 60
5.10 Upload Dataset View . 61
5.11 Dataset View . 62
5.12 Start Analysis View . 64
5.13 Class Diagram for the Start Analysis View (ri-visualization) 65
5.14 Empty Result View . 67

111

5.15 Parameter Display of the Result View 67
5.16 Wordcloud of the Result View . 68
5.17 Concept Word and Ground Truth Display of the Result View 68
5.18 Ground Truth Comparison Widget . 68
5.19 Word-to-Document Heatmap . 69
5.20 Class Diagram for the Result View (ri-visualization) 70
5.21 Document View . 71

7.1 Relation of F1-score and Number of Topics for LDA 89
7.2 Relation of F1-score and Passes for LDA 90
7.3 Relation of F1-score and Number of Topics for SeaNMF 92
7.4 Relation of F1-score and Alpha for SeaNMF 93
7.5 Relation of F1-score and Topic Coherence for LDA 95
7.6 Relation of F1-score and Topic Coherence for SeaNMF 96
7.7 F1-score for SeaNMF and LDA . 97

112

List of Tables

2.1 Example LDA Topic Word Output . 11

3.1 Research Questions for the Literature Review 12
3.2 Criteria of Relevance . 13
3.3 Search Terms for the Literature Search 14
3.4 Search Term Based Research results . 15
3.5 Results of Search Term Based Approach and Snowballing 15
3.6 Approaches and their Methods . 22
3.7 Approaches and the Data needed . 23
3.8 Approaches and their Outputs . 23
3.9 Approaches and Performance Comparison 24
3.10 Approaches and Implementation Details 25
3.11 Synthesis Overview . 27

4.1 Persona: Researcher . 32
4.2 SF: Navigate between workspaces . 35
4.3 SF: Upload dataset . 36
4.4 SF: Show dataset . 36
4.5 SF: Filter dataset contents . 37
4.6 SF: Delete dataset . 37
4.7 SF: Upload ground truth . 38
4.8 SF: Highlight ground truth . 38
4.9 SF: Start analysis run . 39
4.10 SF: Filter run results . 39
4.11 SF: Display run result . 40
4.12 SF: Match concepts with documents . 40
4.13 SF: Rename run result . 41
4.14 SF: Download run result . 41
4.15 SF: Delete run result . 42

6.1 Result of Static Code Testing . 73
6.2 Component Test Coverage . 74

113

6.3 System Tests SF1: Navigate between workspaces 75
6.4 System Tests SF2: Upload dataset . 76
6.5 System Tests SF3: Show dataset . 77
6.6 System Tests SF4: Filter dataset contents 78
6.7 System Tests SF5: Delete dataset . 79
6.8 System Tests SF6: Upload ground truth 80
6.9 System Tests SF7: Highlight ground truth 81
6.10 System Tests SF8: Start analysis run . 82
6.11 System Tests SF9: Filter run results . 83
6.12 System Tests SF10: Display run result 84
6.13 System Tests SF11: Match concepts with documents 84
6.14 System Tests SF12: Rename run result 85
6.15 System Tests SF13: Download run result 85
6.16 System Tests SF14: Delete run result . 86

7.1 Parameter and Scores for LDA . 91
7.2 Parameter and Scores for SeaNMF . 94

114

Eidesstaatliche Erklärung zur Masterarbeit

Ich versichere, dass ich diese Master-Arbeit selbstständig verfasst und nur die angegebe-
nen Quellen und Hilfsmittel verwendet habe.

Ich habe die Grundsätze und Empfehlungen “Verantwortung in der Wissenschaft” der
Universität Heidelberg gelesen und befolgt.

Die Arbeit habe ich bisher keinem anderen Prüfungsamt in gleicher oder vergleichbarer
Form vorgelegt. Sie wurde bisher nicht veröffentlicht.

Abgabedatum: 17. September 2021

	Introduction
	Motivation
	Goals
	Overview

	Fundamentals
	Coding
	Micro-service Architecture
	Docker
	Feed.ai
	Topic Modeling
	Latent Dirichlet Allocation
	Non-negative Matrix Factorization

	Literature Review
	Research Questions
	Methodology
	Criteria of Relevance
	Search Term Based Research
	Snowballing

	Review Results
	Synthesis
	Review Summary

	Requirements
	Coarse Requirements
	Personae
	Domain Data
	Functional Requirements
	User Tasks and Subtasks
	System Functions

	Non-Functional Requirements
	Functionality
	Performance Efficiency
	Maintainability

	Workspaces
	Mock-ups

	Design and Implementation
	Micro-Service Architecture
	Data Classes
	Backend Services
	Storage Service
	Orchestration Service
	LDA Method Service
	SeaNMF Method Service

	Frontend
	Navigation View
	Upload Dataset View
	Dataset View
	Start Analysis View
	Detection Result View
	Document View

	Quality Assurance
	Test Concept
	Static Code Tests
	Component Tests
	System Tests

	Evaluation
	Evaluation Methodology
	Parameter Analysis
	LDA Parameter
	SeaNMF Parameter

	Metric Comparison
	Method Comparison and Discussion

	Conclusion
	Summary
	Discussion and Future Work

	Bibliography
	Glossary
	Acronyms
	List of Figures
	List of Tables

