
Dissertation
submitted to the

Combined Faculties of the Natural Sciences and Mathematics
of the Ruperto-Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Lukas Kades
born in: Werneck, Germany

Oral examination: November 2nd, 2021

Deep Learning and Neuromorphic
Computing in Quantum

Chromodynamics and Beyond

Referees: Prof. Dr. Jan M. Pawlowski
Prof. Dr. Manfred Salmhofer

Deep Learning and Neuromorphic Computing in Quantum Chromodynamics
and Beyond

Accompanied by the fast evolution of graphical processing units, there is a rapid development of
deep learning methods with applications in almost all natural and applied sciences. Simultaneously,
a growing interest is emerging around alternative, more energy- and time-efficient computing devices.
Driven by these developments, we propose in this thesis several possible directions in the field of
quantum chromodynamics and beyond. We start with the exploration of novel frontiers to perform
scientific computing tasks on the spike-based BrainScaleS neuromorphic device. This includes
numerical computations in statistical physics and the representation of entangled quantum states.
We continue by establishing a new mathematical framework to tackle the so-called sign problem
impeding a statistical analysis of many physical systems, including quantum chromodynamics at
finite density. Dealing with the same problem, a machine learning-driven algorithm is proposed in
the subsequent part of the thesis. Utilizing deep neural networks to recognize undiscovered structures
and to get novel insights into physical data is a further direction pursued by employing methods from
explainable machine learning and by proposing a new unsupervised training algorithm for generating
lower-dimensional representations. The thesis concludes with a supervised learning framework for
approaching the inverse problem of reconstructing spectral functions from Euclidean propagators.

Deep Learning und neuromorphes Rechnen in der Quantenchromodynamik
und verwandten Anwendungsgebieten

Deep Learning Methoden wurden in den letzten Jahren durch die schnelle Entwicklung von
Grafikkarten und der dadurch erhöhten Rechenleistung enorm vorangetrieben und finden in nahezu
allen Bereichen sinnvolle Anwendungen. Gleichzeitig wächst das Interesse an alternativen, energetisch
effizienteren sowie schnelleren Rechensystemen. An die Entwicklungen anknüpfend, beschäftigt sich
diese Arbeit mit vielversprechenden Anwendungen im Bereich der Quantenchromodynamik und
verwandten Gebieten. Die Arbeit beginnt mit der Untersuchung möglicher numerischer Berech-
nungen von physikalischen Systemen sowie der Darstellung von verschränkten Quantenzuständen
in einem feuernden neuronalen Netz auf dem spike-basierten neuromorphen BrainScaleS System.
Der zweite Teil der Arbeit stellt einen neuen mathematischen Formalismus für die Entwicklung
numerischer Methoden für eine mögliche Lösung vorzeichenbehafteter Probleme vor. Das sogenannte
Vorzeichenproblem behindert die Berechnung von vielen physikalischen Systemen, wie zum Beispiel
Quantenchromodynamik bei endlicher Dichte. Im Anschluss an eine weitere Machine Learning-
basierten Methode zur Behandlung dieses Problems, wird ein unüberwachter Trainingsalgorithmus
für die Erstellung niedrigdimensionaler Darstellungen eingeführt. Ziel ist es, unter anderem mit
der Hilfe von Explainable Machine Learning-Methoden, verborgene Strukturen in physikalischen
Daten zu erkennen, um so ein besseres Verständnis des zugrundeliegenden Systems zu erlangen. Die
Arbeit endet mit einem überwachtem Trainingsansatz, welcher das Ziel hat, das inverse Problem der
spektralen Rekonstruktion von Euklidischen Propagatordaten zu lösen.

Table of Contents

Table of Contents i

1 Introduction 1
1.1 Motivation and structure . 1
1.2 Publications . 10

2 Background 13
2.1 The sign problem, stochastic quantization and complex Langevin dynamics 13

2.1.1 The sign problem for a toy model . 13
2.1.2 Real Langevin dynamics . 14
2.1.3 Complex Langevin dynamics . 15

2.2 Markov chain Monte Carlo sampling and Langevin dynamics 16
2.2.1 Master equation, equilibrium and detailed balance 16
2.2.2 Langevin dynamics as a Markov chain Monte Carlo algorithm 17

2.3 LIF sampling and neuromorphic computing . 17
2.3.1 Spiking neural networks by LIF sampling . 18
2.3.2 Representing and training Boltzmann machines and other distributions 20
2.3.3 Neuromorphic computing: BrainScaleS-2 . 22
2.3.4 Hagen mode . 23

3 Langevin dynamics for discrete systems 25
3.1 General definition . 26
3.2 Application: q-state clock model . 28
3.3 Deriving Langevin dynamics in the limit of infinitesimal step sizes 30
3.4 Deriving Complex Langevin dynamics for complex actions 33

4 Spiking neural networks on neuromorphic hardware 37
4.1 Hardware Abstractions . 39

4.1.1 Ornstein-Uhlenbeck process with spiking character 40
4.1.2 Discrete Langevin machine . 40
4.1.3 Mappings between different levels of abstractions 41

4.2 Representing Boltzmann machines . 41
4.2.1 Dynamics in continuous states . 43
4.2.2 Dynamics in discrete states . 44

4.3 Representing Boltzmann machines by self-interacting neurons 45
4.3.1 Sign-dependent discrete Langevin machine . 45
4.3.2 Sign-dependent Ornstein-Uhlenbeck process 47

4.4 Refractory mechanism . 49
4.5 Numerical results: neuromorphic hardware versus Langevin machine 50

4.5.1 Free membrane potential . 51

i

ii Table of Contents

4.5.2 Refractory mechanism . 54
4.5.3 Interacting systems . 55

4.6 Relations to further stochastic processes . 57
4.7 Summary and outlook . 59

5 Towards implementing Langevin dynamics on neuromorphic hardware (non-
spiking) 61
5.1 Langevin dynamics as a set of ordinary differential equations 61
5.2 Langevin dynamics in neurons . 62

5.2.1 An abstract model . 62
5.2.2 Conceptional restrictions . 63
5.2.3 Current hardware restrictions . 64

5.3 Langevin dynamics in synaptic weights . 64
5.4 Summary . 66

6 Learning entangled quantum states on a spiking neuromorphic chip 67
6.1 Neuromorphic encoding of quantum states . 67
6.2 Encoding an entangled Bell state . 69
6.3 Learning performance . 71
6.4 Deep and partially restricted networks . 73
6.5 Summary . 74

7 Towards sampling complex actions 77
7.1 Summary of main results . 77

7.1.1 Motivation . 77
7.1.2 Key insights . 78
7.1.3 Key results . 80

7.2 Markov chain Monte Carlo sampling in auxiliary dimensions 81
7.2.1 Extended state space . 81
7.2.2 Master equation and detailed balance . 82
7.2.3 Complex Langevin versus HMC / RBM . 83

7.3 Substitution sampling . 84
7.3.1 General definition . 84
7.3.2 Complex Langevin as a substitution sampling algorithm 86
7.3.3 Constructing substitution sampling algorithms 89

7.4 Complex Langevin-type algorithms . 90
7.4.1 Second-order complex Langevin . 91
7.4.2 Complex hat function algorithm . 91
7.4.3 Uniform complex Langevin . 92
7.4.4 Metropolis-like sampling . 93

7.5 Substitution Hamiltonian Monte Carlo sampling in auxiliary dimensions 93
7.6 Numerical results . 95
7.7 Summary and outlook . 97

8 Complex Langevin-type sampling by compensation 101
8.1 Complex Langevin dynamics by compensation . 101
8.2 Systematic derivation . 103

8.2.1 Setting up a Markov chain Monte Carlo algorithm 103
8.2.2 Extending the representation space . 105

iii

8.2.3 The acceptance probability . 106
8.2.4 Symmetries . 107
8.2.5 Deriving T (v′|v, w) . 107
8.2.6 Deriving g(w′|v′, v, w) . 109

8.3 Implications . 110
8.4 Measure for accuracy . 111

9 Self-consistent sampling of complex actions 113
9.1 Standard reweighting . 113
9.2 Reweighting in the complex plane . 114
9.3 Step-wise reweighting criterion for correctness . 115
9.4 Stabilized complex Langevin dynamics . 117
9.5 Summary and future work . 120

10 Unsupervised neural graph embedding 121
10.1 Neural adversarial embedding . 123
10.2 Information-theoretic insights . 126
10.3 Preliminary results . 127
10.4 Summary . 129

11 Towards novel insights in lattice field theory with explainable machine learning131
11.1 Supervised representation learning . 132
11.2 Unsupervised representation learning . 135

12 Spectral reconstruction with deep neural networks 137
12.1 Spectral reconstruction and potential advantages . 138

12.1.1 Defining the problem . 138
12.1.2 Existing methods . 139
12.1.3 Advantages of neural networks . 140

12.2 A neural network based reconstruction . 141
12.2.1 Design of the neural networks . 141
12.2.2 Training strategy . 142

12.3 Numerical results . 144
12.3.1 Reconstruction with neural networks . 144
12.3.2 Benchmarking and discussion . 152

12.4 Summary . 152

13 Conclusion 155

A Langevin dynamics and discrete systems 159
A.1 Transition probability of the Langevin equation . 159
A.2 Relations between the cumulative normal distribution and the exponential function . 160
A.3 Statistical properties of the sign-dependent Ornstein-Uhlenbeck process 163
A.4 Derivation of the dynamics of the Langevin machine 165

B Detailed-balance equation in multiple variables for different algorithms 167
B.1 Hamiltonian Monte Carlo . 167
B.2 Restricted Boltzmann machine . 168

iv Table of Contents

C Complex Langevin-type sampling by compensation algorithms 171
C.1 Complex Langevin dynamics . 171
C.2 Second order complex Langevin . 172
C.3 Complex hat function algorithm . 173
C.4 Uniform complex Langevin . 175
C.5 Absorbing the imaginary contribution . 176

D Entangled quantum states and learning on the spiking neuromorphic chip 177
D.1 Representation of the Bell state . 177
D.2 Training algorithm . 179
D.3 Potential applications in quantum many-body physics 181
D.4 Implementation details of BrainScaleS-2 . 182
D.5 Computation time benchmark for sampling from neural networks 183

E Unsupervised neural graph embedding 187

F Spectral reconstruction 189
F.1 BR method . 189
F.2 GrHMC method . 190
F.3 Mock data, training set and training procedure . 190

Acknowledgements 201

Bibliography 203

CHAPTER 1

Introduction

1.1 Motivation and structure

Physicists aim to describe and understand the fundamental principles of nature. This includes our
immediate environment and everything related to the world and the universe. Physical models,
which are mostly simplified, abstract representations of nature, are utilized to reach this goal. To
be able to develop such models as well as for a possible exchange and discussion about them, a
framework is required, allowing for a decent and clear description of the respective physical theory.
Mathematics represents such a framework. It possesses necessary properties facilitating a formulation
and quantification of observations and phenomena in physics and other fields in terms of relations
and numbers. Given theories are, if possible, verified and also motivated by experimental results.

Quantum chromodynamics (QCD) is the theory of strong interaction and describes the interplay
of quarks and gluons within the Standard Model of particle physics. It is one of the four known
fundamental interactions; besides gravity, the electromagnetic interaction and the weak interaction.
Different scales in temperature and density of the particles are studied in the QCD phase diagram.
It comprises a rich structure with respect to different phenomena and phases of matter such as
the quark-gluon plasma, neutron stars, as well as the early universe and experiments of heavy-ion
collisions or the confined phase where quarks are binding to hadrons.

The physical motivation of this work can be embedded into the computation of statistical properties
in strongly correlated systems and beyond, or, more specifically, into an exploration of the phase
diagram of quantum chromodynamics. This thesis discusses several approaches and novel methods
to tackle problems related to the numerical computation of named systems.

The quantum statistical properties of a physical system are described by its partition function Z. In
particular, observables and correlation functions can be computed according to the path integral

〈O(φ)〉 =
1

Z

∫
DφO(φ) exp(−S(φ)) , (1.1)

where S(φ) denotes the Euclidean action of the considered system. The field φ := φ(x) describes
the state of the system in Euclidean spacetime x. In lattice physics, spacetime is discretized
and the fields live on a d+1-dimensional hybercubic lattice, allowing a numerical computation of
observables [12, 13].

1

2 Introduction

If S(φ) is real-valued, the weight Z−1 exp(−S(φ)) can be interpreted as a probability measure.
This analogy enables a numerical computation of correlation functions based on standard Monte
Carlo techniques. Therefore, the computation of a Euclidean quantum field theory turns into a
simulation of a statistical system coupled to a heat bath. Its properties can be accessed by computing
expectation values of a stationary distribution generated by a stochastic process in some fictitious
time. This approach is referred to as stochastic quantization [13–16].

Computing observables based on Eq. (1.1) comes with certain analytical as well as numerical chal-
lenges. The statistical representation of the path integral (1.1) becomes soon very high-dimensional
for lattices and can, therefore, mostly only be accessed by numerical methods. In addition, the actual
physics can only be observed in the continuum limit, obtained by an extrapolation of results of
repeated computations at different lattice spacings. This entails a potentially very high computational
cost for simulating a theory. A numerical evaluation of the Eq. (1.1) is additionally hindered by the
so-called sign problem in many physical systems, as in QCD at finite baryon density, for example.
The sign problem prevents an application of most of the existing numerical methods.

The high dimensionality combined with the complexity of such systems demonstrates the need for
numerical computations and respective computing devices. Using computers in scientific computing
dates probably back to the first computer itself. Since then, plenty of research areas emerged where
numerical computations are used as a supportive tool or as the main approach to study the problem
at hand with applications ranging from physics to biology, chemistry, engineering, computer vision,
medicine and economics. Research in scientific computing is boosted by the accompanied development
of numerical methods and the broad field of machine learning such as Monte Carlo methods which
enable us to numerically study high-dimensional probability distributions. In particular, the field of
deep learning has benefited from a constant improvement of the performance of graphic processing
units (GPUs) within the last decades.

Besides GPUs, a large research frontier has formed with the goal to develop other computing
devices, as von-Neumann computers are rapidly approaching fundamental physical limitations of
conventional semiconductor technology. A strong focus is on an increased computational power,
mostly achieved by parallel computing units. Therefore, research on alternative devices to GPUs
and CPUs is also motivated by the on-going increasing demand for more efficient computing devices
regarding computation time, energy consumption and scalability. A number of alternative computing
architectures are currently being explored. Among them, neuromorphic devices [17–19], which take
inspiration from the way the human brain works, hold promise to have a wide range of applications, in
particular in machine learning and artificial intelligence [20–28]. Possible applications range from an
effective implementation of artificial neural networks and further machine learning methods [29–34]
over a better understanding of biological processes in our brains [35, 36] to the computation of
interesting physical and stochastic systems [37–41].

The need for more efficient computing devices can also be accommodated by devices tailored
to the numerical method in use. Respective tailored computing devices can resolve the high
structural overhead resulting from the desired general usability of von-Neumann architectures and,
instead, be optimized for the specific computing task. Bearing in mind the current occupancy rates
of the world’s largest super computers, lattice computations and neural networks represent two
prominent candidates motivating a development of such tailored devices. In both cases, an on-chip
implementation of the underlying algorithm results in an expected high-performance boost with
respect to the computational efficiency. A strong focus on the implementation of neural networks on
tailored devices is justified by its usefulness in almost every setting; not only in research, but also in
industry, ranging from applications in self-driving cars, in the field of natural language processing

Motivation and structure 3

and computer vision, or, possibly, in smartphones for a fast analysis of image and text data. Tensor
Processing Units (TPUs) are an example for such tailored devices. Specialized for neural networks,
they are designed for an efficient computation of large matrix multiplications. The training of neural
networks is based on this kind of computations and can be implemented in parallel, resulting in a
highly improved and more efficient training.

In the first part of this work, we discuss potential implementations of numerical methods in the
context of lattice field theories and neural networks on the spike-based BrainScaleS neuromorphic
computing device [28, 42, 43]. The chip realizes fast analog dynamics with the potential to boost
computationally expensive tasks. Hereby, our focus is on studying to what extent the neuromorphic
system is tailored to scientific computations of physical systems. Besides an in-depth analysis of
underlying dynamics, we investigate the capability of the neuromorphic chip to represent probability
distributions in a reliable and numerically exact manner from both a theoretical as well as an
experimental point of view.

Apart from a computation of physical systems on the BrainScaleS system, in the second part of the
thesis, we present novel insights and numerical methods to overcome or milder the sign problem.
The remainder of the thesis covers further approaches and pathways related to numerical problems
in lattice physics and beyond, with a strong focus on the utilization of deep learning algorithms.

The thesis is structured based on the following main building blocks:

• A short reminder of important concepts of numerical methods in statistical physics and stochas-
tic quantization as well as an introduction to the BrainScaleS hardware system (Chapter 2).

• Exploring interrelations and differences between the dynamics of numerical methods and of
the neuromorphic computing devices BrainScaleS/BrainScaleS-2 to utilize the computational
power of a parallel processing architecture for a more energy-efficient simulation on large scales
(Chapters 3, 5, 4 and 6).

• Understanding and developing new numerical methods in order to tackle the sign problem,
preventing a computation of the path integral (1.1) for complex actions by standard numerical
methods in QCD and beyond. (Chapters 7, 8 and 9).

• Representation learning and the generation of embeddings of physical systems to gain a better
understanding of the systems themselves and to discover uncovered structures in the underlying
data supporting the development of new, more efficient, algorithms and approaches to easing
lattice simulations and to overcome the sign problem (Chapters 10 and 11).

• Investigating the inverse problem of spectral reconstruction with deep neural networks as a
black box universal inverse transformation tool (Chapter 12).

The common ground of these building blocks is their focus on method development and novel
tools, in particular, also related to the BrainScaleS neuromorphic hardware device, for approaching
mathematical and numerical challenges originating from the studied physical systems of interest. The
utilized mathematical and statistical tools range from statistical physics to techniques of machine
learning and deep learning. In the following, we give a more detailed introduction to the different
approaches studied in this thesis by pointing out important concepts and by embedding the main
building blocks into a broader context.

4 Introduction

The human brain, neurormorphic computing and statistical physics

In comparison to human-made computing devices, the human brain has been developed, optimized
and perfected by nature over the course of hundreds of thousands years of evolution. With a power
consumption of 20W [44], it still outperforms all existing computing devices by order of magnitudes
in terms of its computational power to energy consumption ratio.

Also with respect to its dynamics, the human brain works entirely different to von-Neumann
architectures regarding memory as well as in the way information is transmitted, via action potentials,
so-called spikes, in a neural network consisting of synapses and neurons. Inspired by the astonishing
efficiency of the human brain and the accompanying high level of intelligence, artificial neural
networks (ANNs) have been developed as a possible abstraction of a neural network in the brain.
Signals are transmitted between neurons via trainable synaptic weights, introducing the concept of
neural plasticity, and processed by an aggregation and a non-linear activation in each neuron [45–49].

A closer look at the comparison of ANNs and the neural networks in the human brain reveals that
the two systems bear some significant differences. This concerns in particular the absence of spikes in
ANNs. It raises the question whether there are even more effective abstractions of neural networks,
incorporating similar learning techniques and the same computation power and energy-efficiency
as the human brain. Spiking neural networks represent a possible answer to this question as the
third generation of neural network models [50–58]. In contrast to ANNs, information exchange
between neurons takes place via spikes, which are crucial for communication in the neural system of
the human brain. The way information is represented via spikes is subject to the research area of
neural coding [59]. Several neural coding schemes of spike patterns have been studied together with
concepts of neural plasticity, the ability of the nervous system to reorganize and modify itself [60–62].
Examples are, rate coding, where information is encoded in the firing rate of a neuron or time coding,
where information is transmitted by individual spikes; for more details see Refs. [51, 63–70].

Neuromorphic computing devices, such as the BrainScaleS project, help to unveil the potential
of spiking neural networks for being the most effective abstraction of the human brain from an
experimental point of view [18, 19, 71–73]. With respect to their implementation based on electric
circuits instead of biological substrates, an illustrative analogy to neuromorphic computing devices is
the construction of airplanes. The wing shape of birds has been identified as the most important and
easiest to copy feature for a human-engineered prototype. The example demonstrates that certain
key features of a working system can be sufficient to rebuild a system with similar properties with
the advantage of a simpler and better realizable setup. Similarly, the spiking mechanism and the
resulting neural representation in spike patterns might correspond to the essential feature of spiking
neural networks. Therefore, spike-based neuromorphic devices have the potential for paving the way
to get full access to the computational power of the human brain, but also, for supporting medical
research with respect to the treatment of cognitive diseases or physical traumata.

In terms of its computational power and energy-efficiency, the BrainScaleS device [28] represents
a perfectly tailored substrate for spiking neural networks and respective computational tasks in
scientific computing based on this type of neural networks. In this work, we pursue a different
direction by analysing to what extent the BrainScaleS device can be used for other kinds of scientific
computations. We study this subject to a possible tailoring of already existing algorithms to the
dynamics of the system, which is in strong contrast to the construction of a tailored device for a
given algorithm. In particular, we focus on utilizing the BrainScaleS-2 chip [28], developed in the
context of Europe’s Human Brain Project [74], as a physical substrate to implement numerical
computations. Besides the low energy consumption, this is motivated by the fast analog dynamics of

Motivation and structure 5

the chip which can be used to boost computationally expensive tasks. With respect to its biological
counterpart, the time constants on the chip are smaller by a factor of thousand, resulting in an
impressive speed-up for analysing neural dynamics [28].

The BrainScaleS-2 chip, inspired by structural and dynamical properties of the biological brain,
emulates networks consisting of leaky integrate-and-fire (LIF) neurons, which are, in general, suitable
for representing probability distribution [75–77]. The mixed-signal neuromorphic platform is centered
around an analog core: neuro-synaptic states are represented as voltages and currents in integrated
electronic circuits and evolve in continuous time. Its configurable connectivity of neurons allows
us to explore various different network topologies, including shallow, as well as deep and densely
connected ones. As a parallel computing platform, the chip in the long run has the potential to
simulate large physical systems in a very energy-efficient way and, thus, to facilitate the analysis of
problems that cannot be solved by existing other devices.

Due to the fixed physical structure and dynamics of a neuromorphic computing device, there are,
in principle, two possible pathways for performing scientific computations. The first one refers to
utilizing the given device for numerical computations where the dynamics of the underlying numerical
method is incorporated in a one-to-one correspondence by the neuromorphic system. In this case,
the realized algorithm and the hardware are fully compatible in the sense that the dynamics of
the neuromorphic device implements the numerical method itself. The other pathway consists of
investigating possible ways to either translate existing numerical methods on the neuromorphic
hardware in a reasonable way or to look for dynamics of algorithms that are adjustable or at least
partially related to the dynamics of the hardware. A drawback of the latter pathway is that one
might introduce certain cumbersome routines or workarounds affecting the numerical and energetic
efficiency of the device. Nevertheless, the benefits of a parallel computing platform with an overall
low energy consumption are, in both cases, a good reason to evaluate the limits of these approaches.
Both pathways have been studied in this thesis and are discussed in more detail in the following.

Concerning the first pathway for scientific computations on neuromorphic hardware devices, Chapter 3,
Chapter 4 and Chapter 5 are motivated by the similarity of Langevin dynamics [78] and leaky
integrate-and-fire (LIF) neurons for performing stochastic inference [77]. Indeed, the fundamental
dynamics of LIF neurons is governed by Langevin dynamics. Apart from its obvious relevance for
the description of stochastic processes, the Langevin equation [78] can also be used for simulating
quantum field theories with stochastic quantization [12–14]. The Euclidean path integral measure is
obtained in this approach as the stationary distribution of a stochastic process. This paves the way
to the heuristic approach of using complex Langevin dynamics as a potential method for accessing
real time dynamics and sign problems. The latter problem is, e.g. prominent in QCD at finite
chemical potential [79–81]. A further interesting application of the Langevin equation can be found
in Ref. [82]. Here, Langevin dynamics is combined with a stochastic gradient descent algorithm to
perform Bayesian learning which enables an uncertainty estimation of resulting parameters.

The BrainScaleS-2 chip features different use cases. In the following, we distinguish between a
spiking mode and a non-spiking mode. In the spiking-based framework, spikes are the carriers for
synaptic signals and information and are used by the neurons to communicate with each other in
the neural network. They are generated by stimuli of other neurons or noise. If a neuron is in the
firing mode, spikes are emitted. The emission of several spikes in a certain time span is a so-called
spike train. The firing and the non-firing mode of a neuron allows the distinction of two possible
states, which we will also refer to as an active or an inactive state. A system of N neurons can
be interpreted in this case effectively as a discrete system with 2N possible configurations. We
want to point out once more that, despite the seemingly simple nature of spikes, there exist many

6 Introduction

different ways to transfer information, as studied in the research area of neural coding [59]. Another
important aspect is the non-linearity of the synaptic-potentials that are used to transmit spikes.
The superposition of respective non-linear signals results in an even larger pool of possible ways for
encoding information.

Because of the discrete nature of the resulting network of spiking neurons, a straightforward
implementation of Langevin dynamics is not possible in the spiking mode. Chapter 3 focuses on
an application of Langevin dynamics in discrete systems as a possible workaround. Therefore, it
pursues the path to adapt the algorithm to be in concordance with the natural dynamics of the
neuromorphic device. The resulting dynamics simplifies on a neural network system and proposes
the Langevin machine as a novel network architecture which implements Boltzmann statistics. In
Chapter 4, we compare the properties of the Langevin machine with an alternative approach for
emulating Boltzmann statistics on the hardware. Besides a detailed introduction of the different
dynamics, simplified models of the neuromorphic hardware are studied with a focus on controlling
emerging sources of errors.

Apart from the spiking-based framework, the chip also enables a constant synaptic input from
external sources. Reading out the membrane voltage of a neuron and re-injecting it as a synaptic
input facilitates a communication without spikes. The system of neurons corresponds to a continuous
system in the sense that each neuron is represented by a continuous value, given by the membrane
potential of the neuron. This non-spiking framework is realized by the Hagen mode [83, 84], explained
in more detail in Sec. 2.3. Possible applications for the implementation of Langevin dynamics in the
non-spiking mode are elaborated in detail in Chapter 5.

Chapter 6 follows the second pathway to perform scientific computations by utilizing the hardware
as a sampling device for Boltzmann distributed statistics. More specifically, we take advantage of a
possible realization of restricted Boltzmann machines on the BrainScaleS-2 chip [28] by networks of
LIF neurons. The chapter focuses on using this implementation to emulate measurement outcomes in
quantum physics [85], which are inherently probabilistic in nature. We demonstrate an approximate
representation of quantum states with spiking neural networks on BrainScaleS-2 that is sufficiently
precise for encoding genuine quantum correlations. Since any quantum state can be mapped to a
probability distribution [86, 87], it can in turn, also be represented by the generated probability
distribution of the neuromorphic hardware device. The accelerated analog circuit dynamics and the
inherently parallel nature of the neuromorphic substrate enable a rapid generation of samples which
carries the potential of scaling benefits as compared to von-Neumann devices.

Lattice QCD and the numerical sign problem

In many physical theories, the measure exp(−S(φ)) in Eq. (1.1) turns out to be complex. Besides
real-time dynamics [88–91], this is, for example, the case for the Hubbard model [92–97], for spin-
or mass-imbalanced systems [98–102] and graphene [103–105] or for quantum chromo-dynamics
at finite density [79, 106–116]. In these theories, the fermionic part of the system contributes a
multiplicative fermion determinant to the path integral measure in Eq. (1.1). The determinant can
be complex, resulting in an oscillating behavior of the integrand. This makes a direct application of
stochastic techniques infeasible since the integral weight no longer represents a probability measure.
Due to a possible cancellation of negative and positive contributions in the integral, almost every
configuration is equally important. As a result, configurations with a small or negative Boltzmann
weight are as important as samples with a large weight. To get numerical results with small errors

Motivation and structure 7

the entire configuration space needs to be covered by the simulation method, which is infeasible for
high-dimensional systems. This limitation is referred to as the sign problem [15, 97, 115, 117, 118].

Complex Langevin dynamics is considered as a promising numerical method for computing observables
for systems that are subject to a sign problem [15, 117]. However, two major problems of the method
are numerical instabilities, such as, runaway trajectories, and a possible convergence to an unphysical
solution [79, 80, 97, 119–121].

Applying complex Langevin dynamics, to models plagued by a sign problem is an active area of
research, see Refs. [116, 122] for recent reviews. In Refs. [97, 115] an overview of other methods
tackling the sign problem is given, such as reweighting or a deformation of the integration contour
into the complex plane.

In Chapter 7, we introduce a framework that generalizes complex Langevin dynamics and allows
deriving the algorithm from first principles. The framework comprises an interpretation of complex
Langevin dynamics as a standard Markov chain Monte Carlo algorithm. This point of view opens up
perspectives on making use of knowledge from several decades in research on Monte Carlo algorithms.
Beyond providing a foundation for complex Langevin dynamics, the framework serves as a basis for
deriving new algorithms for theories with and without a sign problem. We open up a perspective
that has the potential to facilitate the development and improvement of novel algorithms and to
better evaluate and understand existing approaches to tackling the sign problem.

Complex Langevin-type sampling by compensation is one method developed within this framework.
The method allows deriving sampling algorithms with similar properties as complex Langevin
dynamics and is presented in detail in Chapter 8.

In Chapter 9, we propose a further approach for tackling the sign problem. The new approach
utilizes reweighting for the training of a machine learning algorithm to stabilize complex Langevin
dynamics and to prevent a convergence to unphysical solutions of the sampling process.

Representation learning

Machine Learning (ML) has been applied to a variety of problems in the natural sciences. For
example, it is regularly deployed in the interpretation of data from high-energy physics detectors
[123, 124]. Algorithms based on learning have shown to be highly versatile, with their use extending
far beyond the original design purpose. In particular, deep neural networks have demonstrated
unprecedented levels of prediction and generalisation performance, for reviews see e.g. Refs. [49, 125].
These networks have proven to be capable of efficiently identifying high-level features in a broad
range of data types—in many cases, such as speech or image recognition, with spectacular success
[126–129].

Accordingly, there is growing interest to harness the capabilities of these algorithms in the lattice
community, both for high energy physics and condensed matter systems, and in theoretical physics,
in general. Applications include predictive objectives, such as detecting phase transitions, the
identification of order parameters from lattice configurations as well as generative modelling to
accelerate and support lattice simulations [2, 3, 38, 130–162]. We recommend Ref. [163] as an
introduction to ML for physicists and Ref. [164] as a general review for ML applications in physics.

The high dimensionality of lattice configurations render machine learning, and, in particular, deep
learning algorithms perfectly suited tools to gain more insights into the physics of a considered

8 Introduction

system. Lattice configurations, drawn by Monte Carlo sampling algorithms, provide a representative
ensemble of the probability distribution of the considered physical system. Thus, they give implicit
access to study and explore correlations and hidden structures of lattice quantum field theories.
Besides valuable information about hidden structures, the retrieved knowledge might also be used
in a second step for the development of novel simulation algorithms or other techniques to tackle
model-specific problems related to the sign problem and beyond, such as specific expansion schemes,
for example.

A straightforward way to access structures in lattice configurations is given by the possibility to
formulate objective functions for the training of deep learning algorithms. The architecture of neural
networks allows for a successive layer-wise reduction of the dimensionality of a single configuration.
This can be realized in both a supervised learning framework, based on a simple classification
task, for example, and an unsupervised learning approach. In the latter case, no labeled data is
needed. Instead, the algorithm is trained based on an objective for generating a compact latent
representation.

Finding expressive lower-dimensional representations belongs to the research area of representation
and feature learning, respectively, see Ref. [165] for a comprehensive review. Many representation
learning algorithms were developed from an information-theoretic point of view or can be interpreted
as such [166–180]. Thereby, a particular focus is on representation learning by maximizing the
mutual information between the input data and the compressed, latent representation [181–183].
A notorious problem with this approach is that mutual information is generally intractable for
continuous variables if the exact probability distribution is unknown, rendering an exact computation
of the entropy and the partition sum infeasible [183–188]. The problem can be circumvented by
defining lower bounds for the mutual information term, as proposed, for example, in Ref. [186], or
by rewriting the maximization objective. These approaches lead to a successful integration of the
concept of mutual information maximization in many different representation algorithms ranging
from unsupervised learning of representations [189, 190] to applications in generative adversarial
networks [191, 192], autoencoders [179], variational autoencoders [170, 193–195] and graph neural
networks [196].

In Chapter 10, we follow a slightly different approach by implicitly optimizing the entropy of the
embedded data. We propose a novel unsupervised representation learning method called neural
adversarial embedding algorithms. The algorithm is motivated by the goal to embed graph-structured
data into a lower-dimensional representation space. We refer to an optimization of the entropy
instead of the mutual information since an estimation of the mutual information is non-trivial due
to the different geometric structure of the input space and the embedded space. Graphs, used in
many domains to represent data, have a non-Euclidean, discrete structure. Due to these properties,
an application of standard deep learning algorithms is more challenging compared to other data
representations as images or lattice configurations, as will be discussed in more detail [197–204].

Having an expressive lower-dimensional representation allows for the application of various learn-
ing tasks such as clustering, a notion for a distance and similarity, classification and regression.
Furthermore, tools from explainable and interpretable machine learning can help to understand
and comprehend the way data is processed by the algorithm and to interpret learned representa-
tions [205–207]. Explainable artificial intelligence addresses the fact that available algorithms, in
particular those based on deep learning, often demonstrate remarkable performance in the search for
previously unidentified features, but tend to lack transparency if applied naively. In Chapter 11,
the analysis of lattice configurations for a possible detection of hidden structures is studied in the
light of explainable machine learning. In the first part, we summarize the findings of Ref. [3]. In

Motivation and structure 9

this work representation learning is proposed in combination with interpretability methods as a
framework for the identification of observables based on a supervised representation learning task.
In the second part, we review a possible application of unsupervised learning methods with a focus
on the proposed method in Chapter 10. In particular, we relate the generation of graph embeddings
to other unsupervised learning techniques and point out possible advantages and drawbacks for an
application on lattice configurations.

Spectral reconstruction and inverse problems

Ill-conditioned inverse problems lie at the heart of some of the most challenging tasks in modern
theoretical physics. One pertinent example is the computation of real-time properties of strongly
correlated quantum systems. Take e.g. the phenomenon of energy and charge transport, which
so far has defied a quantitative understanding from first principles. This universal phenomenon is
relevant to systems at vastly different energy scales, ranging from ultracold quantum gases created
with optical traps to the quark-gluon plasma born out of relativistic heavy-ion collisions.

While static properties of strongly correlated quantum systems are by now well understood and
routinely computed from first principles, a similar understanding of real-time properties is still subject
to ongoing research. The thermodynamics of strongly coupled systems, such as the quark gluon
plasma, has been explored using the combined strength of different non-perturbative approaches,
such as functional renormalisation group methods and lattice field theory calculations. There
are two limitations affecting most of these approaches: Firstly, in order to carry out quantitative
computations, time has to be analytically continued into the complex plane, to so-called Euclidean
time. Secondly, explicit computations are either fully numerical or at least involve intermediate
numerical steps.

This leaves us with the need to eventually undo the analytic continuation of Euclidean correlation
functions, which are known only approximately. The most relevant examples are two-point functions,
the so-called Euclidean propagators. The spectral representation of quantum field theory relates the
propagators, be they in Minkowski or Euclidean time, to a single function encoding their physics, the
so-called spectral function. The number of different structures contributing to a spectral function
are in general quite limited and consist of poles and cuts. If we can extract from the Euclidean
two-point correlator its spectral function, we may immediately compute the corresponding real-time
propagator.

If we know the Euclidean propagator analytically, this information allows us in principle to recover
the corresponding Minkowski time information. In practice, however, the limitation of having to
approximate correlator data (e.g. through simulations) turns the computation of spectral functions
into an ill-conditioned problem. The most common approach to give meaning to such inverse
problems is Bayesian inference. It incorporates additional prior domain knowledge we possess on the
shape of the spectral function to regularise the inversion task. The positivity of hadronic spectral
functions is one prominent example. The Bayesian approach has seen continuous improvement over
the past two decades in the context of spectral function reconstructions. While originally it was
restricted to maximum a posteriori estimates for the most probable spectral function given Euclidean
data and prior information [208–210], in its most modern form it amounts to exploring the full
posterior distribution [211]. An important aspect of the work is to develop appropriate mock data
tests to benchmark the reconstruction performance before applying it to actual data. Generally, the
success of a reconstruction method stands or falls with its performance on physical data. While this

10 Introduction

seems evident, it was in fact a hard lesson learned in the history of Bayesian reconstruction methods,
a lesson which we want to heed.

Inverse problems of this type have also drawn quite some attention in the machine learning community
[212–215]. In Chapter 12, we explore artificial neural networks as a tool for the reconstruction of
spectral functions from imaginary time Green’s functions, a classic ill-conditioned inverse problem.
Our approach is based on a supervised learning framework in which prior knowledge is encoded
in the training data and the inverse transformation manifold is explicitly parameterized through
a neural network. We systematically investigate this novel reconstruction approach, providing a
detailed analysis of its performance on physically motivated mock data, and compare it to established
methods of Bayesian inference. The reconstruction accuracy is found to be at least comparable, and
potentially superior in particular at larger noise levels. We argue that the use of labeled training
data in a supervised setting and the freedom in defining an optimization objective are inherent
advantages of the present approach and may lead to significant improvements over state-of-the-art
methods in the future. Potential directions for further research are discussed in detail.

1.2 Publications

While the thesis has been written solely by the author, many of the results were obtained in joint
work with collaborators from different fields. Large parts of this work are already published or in
preparation. Text and figures taken from the articles are not marked explicitly. In addition to the
list below, we refer at the beginning of each chapter to used content of respective articles:

[1] Discrete langevin machine: Bridging the gap between thermodynamic and neuro-
morphic systems
L. Kades and J. M. Pawlowski
Published in Phys. Rev. E 101, 063304 (2020)
E-Print: arXiv:1901.05214 [cs.NE]
Comment: Chapter 3, Chapter 4 and App. A as well as parts of Chapter 1 and Chapter 2.

[2] Spectral reconstruction with deep neural networks
L. Kades, J. M. Pawlowski, A. Rothkopf, M. Scherzer, J. M. Urban, S. J. Wetzel, N. Wink,
and F. P. G. Ziegler
Published in Phys. Rev. D 102, 096001 (2020)
E-Print: arXiv:1905.04305 [physics.comp-ph]
Comment: Chapter 12, App. F and parts of Chapter 1.

[3] Towards novel insights in lattice field theory with explainable machine learning
S. Blücher, L. Kades, J. M. Pawlowski, N. Strodthoff, and J. M. Urban
Published in Phys. Rev. D 101, 094507 (2020)
E-Print: arXiv:2003.01504 [hep-lat]
Comment: Parts of Chapter 1 and Chapter 11.

[4] Spiking neuromorphic chip learns entangled quantum states
S. Czischek, A. Baumbach, S. Billaudelle, B. Cramer, L. Kades, J. M. Pawlowski, M. K.
Oberthaler, J. Schemmel, M. A. Petrovici, T. Gasenzer, and M. Gärttner
E-Print: arXiv:2008.01039 [cs.ET] (waiting to be published)
Comment: Chapter 6, App. D and parts of Chapter 1 and Chapter 2.

https://arxiv.org/abs/1901.05214
https://arxiv.org/abs/1905.04305
https://arxiv.org/abs/2003.01504
https://arxiv.org/abs/2008.01039

Publications 11

[5] Towards sampling complex actions
L. Kades, T. Gasenzer, M. Gärttner, J. M. Pawlowski
E-Print: arXiv:2106.09367 [hep-lat] (submitted to Phys. Rev. E)
Comment: Chapter 7, Chapter 8, App. B and App. C as well as parts of Chapter 1 and 2.

In addition, content of so far unpublished work is incorporated in the thesis:

[6] Complex Langevin dynamics on a neuromorphic device
A. Baumbach, L. Kades, J. M. Pawlowski, M. A. Petrovici and J. Schemmel
Comment: Chapter 5.

[7] Unsupervised neural graph embedding
L. Kades and K. Shmilovich
Comment: Chapter 10 and parts of Chapter 11.

[8] Step-wise reweighting criterion for correctness of complex Langevin dynamics
A. Hosak, L. Kades and J. M. Pawlowski
Comment: Parts of Chapter 9.

[9] Self-consistent sampling of complex actions
M. Bauer, L. Kades and J. M. Pawlowski
Comment: Chapter 9.

Moreover, two software frameworks that are not further discussed and not published yet were
developed in the course of this thesis:

[10] An easy to use Markov chain Monte Carlo sampling framework for lattice field
theories
L. Kades, J. M. Pawlowski
URL: https://github.com/statphysandml
Comment: A set of different repositories that simplifies setting up, running and evaluating
Markov chain Monte Carlo simulations. The modular structure of the framework allows for
the implementation of systems and models at different levels complexity. Many of the results
in this thesis were obtained based on this framework.

[11] Visualizing the functional renormalization group - Finding fixed points in high-
dimensional spaces
K. Höfling, L. Kades, M. Reichert, J. M. Pawlowski and F. Sadlo
URL: https://github.com/statphysandml/ODEVisualisation
Comment: Software framework for finding fixed points, for instance, in the context of
asymptotically-safe quantum gravity or tensor models for quantum gravity by means of
the functional renormalization group. The framework has been developed in combination with
my Master in Applied Computer Science.

https://arxiv.org/abs/2106.09367
https://github.com/statphysandml
https://github.com/statphysandml/ODEVisualisation

CHAPTER 2

Background

This chapter is in parts based on Refs. [1, 4, 5].

We start with a brief review of the sign problem as well as important concept of numerical methods
in statistical physics and lattice field theory in Secs. 2.1 and 2.2. Sec. 2.3 provides an introduction
to LIF sampling and details to the design and the different functionalities of the BrainScaleS-2
neuromorphic chip.

2.1 The sign problem, stochastic quantization and complex
Langevin dynamics

The objective of this section is to introduce the basics of stochastic quantization, the sign problem
and, specifically, complex Langevin dynamics.

2.1.1 The sign problem for a toy model

To illustrate how the sign problem appears in this context, we choose a toy model, which we
will use in Chapter 7 for comparison of different algorithms. The zero-dimensional polynomial
model [119, 216, 217] is defined by the action

S(φ) =
1

2
(σRe + iσIm)φ2 +

λ

4
φ4 , (2.1)

a function depending on the real-valued scalar field φ ∈ R and real-valued couplings (λ, σRe, σIm)1.

The objective is to compute observables over φ:

〈O(φ)〉 =

∫ ∞

−∞
dφO(φ)ρ(φ) , (2.2)

1This toy model is widely used in studying the sign problem. It is one of the simplest non-trivial quantum mechanical
models [119] and describes, e.g., a single-mode relativistic interacting Bose gas at nonzero chemical potential
µ ∝ σIm [216, 218].

13

14 Background

with equilibrium Boltzmann measure

ρ(φ) =
1

Z
exp (−S(φ)) , (2.3)

which is normalized by the partition function

Z =

∫ ∞

−∞
dφ exp(−S(φ)) , (2.4)

and where the usual energy divided by temperature, βE, is upgraded, in quantum theory, to the
Euclidean action S.

Standard Monte Carlo methods rely on sampling from a probability distribution. Since the action (2.1)
is complex, these methods are, at first sight, inapplicable here.

2.1.2 Real Langevin dynamics

The Langevin equation, originally formulated to model Brownian motion [78], is central to the
stochastic quantization approach to quantum field theory [13–16]. In the simplest case, it describes
the evolution of a real, scalar field φ(x), governed by a real Euclidean action S(φ), in an additional,
fictitious time dimension, the Langevin time τ . It reads

∂

∂τ
φ(τ) = − δS

δφ(τ)
+ η(τ) , (2.5)

where we suppress the dependence of φ and η on x for brevity.

Similar to thermal fluctuations in a thermodynamic system with energy E, the noise term η emulates
quantum fluctuations in the case of a Euclidean quantum field theory. The distribution of the noise
term η is usually taken to be centred at zero,

〈η(τ) η(τ ′)〉η = 2δ(τ ′ − τ) , 〈η(τ)〉η = 0 , (2.6)

where 〈·〉η denotes the expectation value with respect to the noise distribution. A common choice
for this distribution is Gaussian white noise. Under these conditions, the τ -dependent distribution
of φ is subject to the Fokker-Planck equation [13, 14, 97],

∂ρ(φ, τ)

∂τ
=

∫
ddx

δ

δφ(τ)

(
δS

δφ(τ)
+

δ

δφ(τ)

)
ρ(φ, τ) . (2.7)

Its stationary solution is the Boltzmann distribution (2.3),

lim
τ→∞

ρ(φ, τ) = ρ(φ) . (2.8)

For the case of a real-valued action S(φ) considered here, it can be shown that the Langevin evolution
converges, in the limit τ →∞, to the desired equilibrium distribution as a stationary solution and
that the convergence is exponentially fast [13]. After an equilibration period of time τ̄ , observables
can be evaluated by

〈O(φ)〉ρ '
1

T

∫ τ̄+T

τ̄
dτ O(φ(τ)) , (2.9)

The sign problem, stochastic quantization and complex Langevin dynamics 15

where T is a suitable time to correctly estimate equilibrium expectation values through temporal
averaging. Hence, by discretizing both x and τ , the Langevin equation provides a means to sample
lattice quantum field theories, as long as the accumulation of numerical errors caused by the
discretization is controllable.

2.1.3 Complex Langevin dynamics

A generalization of stochastic quantization to complex distributions ρ(φ) has been proposed as a
means to numerically access observables of systems with a sign problem [13, 15, 117]. For a complex
action S(φ), the Langevin equation (2.5) in general describes an evolution leading to complex values
for φ = φx + iφy. The real and imaginary components are then commonly evolved according to the
equations

∂

∂τ
φx(τ) = −Re

[
δS

δφ(τ)

∣∣∣∣
φx+iφy

]
+ ηx(τ) ,

∂

∂τ
φy(τ) = −Im

[
δS

δφ(τ)

∣∣∣∣
φx+iφy

]
, (2.10)

where only the equation for φx is of the Langevin form with, commonly, white noise ηx, while the
equation for φy describes a pure drift. A noise term in the imaginary part can introduce stability
problems which is why the evolution is usually driven by purely real noise [216, 219]. We will show
in Chapter 7 that the missing imaginary noise term is also justified on formal grounds.

The stochastic process converges to solutions governed by a real-valued steady-state distribution
P (φx, φy) = lim

τ→∞
P (φx, φy, τ) in the φx-φy-plane. Observables

〈O(φx + iφy)〉p =

∫
dφx

∫
dφyO(φx + iφy)P (φx, φy, τ) (2.11)

can be numerically computed by sampling from the resulting distribution. The expectation values
coincide under certain constraints with the expectation values with respect to the original complex
distribution ρ(φ, τ),

〈O(φx + iφy)〉P = 〈O(φ)〉ρ . (2.12)

In the standard approach to analysing the convergence of complex Langevin, one compares two
independent time-dependent stochastic processes (2.10), namely, the evolutions of the distribution
P (φx, φy, τ), and of the underlying complex distribution ρ(φ, τ) by means of their respective Fokker-
Planck equations [97, 122, 219]. Details about the existence and the properties of a stationary
distribution P (φx, φy), which satisfies Eq. (2.12), can be found, for example, in Ref. [220].

An issue with the complex Langevin ansatz is the absence of a guaranteed convergence to the correct
equilibrium distribution, which, in most cases, can only be verified a posteriori. As pointed out, a
correct convergence is ensured only under certain conditions that have been elaborated in the past,
see, for example Refs. [16, 122, 216, 217, 219–225].

Besides the requirement of ergodicity, model actions and distributions should ideally be holomorphic.
Studying models with meromorphic poles is, in principle, also possible, but more care has to be
taken to ensure convergence [226]. Lastly, the numerically sampled distributions of the observables
need to decay fast enough in the imaginary direction [217, 223].

16 Background

There exist different ways for checking if these criteria are fulfilled. One important way involves
computing boundary terms by considering the derivative of a quantity FO(t, τ) with respect to the
Langevin time τ [219, 221, 224, 227]. The function FO(t, τ) interpolates between the two observables
in Eq. (2.12). Other approaches are based, for example, on an analysis of the decay of the sampled
probability distribution [217, 223, 228].

2.2 Markov chain Monte Carlo sampling and Langevin dynamics

2.2.1 Master equation, equilibrium and detailed balance

The time evolution of a distribution ρ(x, τ) of a stochastic state variable x, subject to transition
probabilities W (x→ x′), can in general be described by a master equation [229]:

dρ(x, τ)

dτ
=
∑

x′

[
ρ(x′, τ)W (x′ → x)− ρ(x, τ)W (x→ x′)

]
. (2.13)

The right-hand side of the equation contains gain and loss terms for the state x to go over to x′ and
vice versa.

The standard work flow for setting up Markov chain Monte Carlo (MCMC) algorithms is to choose
transition probabilities in such a way that the evolution converges, in the infinite-time limit, to an
equilibrium distribution. The equilibrium distribution is expected to coincide with the probability
distribution of interest. In our case, we aim at sampling from an explicitly given distribution ρ(x).

The system is defined to be in equilibrium if its state distribution does not change anymore over
time. This is the case when the sum on the right-hand side of the master equation (2.13) evaluates
to zero. This translates into the equilibrium condition

ρ(x′, τ)
!

=
∑

x

ρ(x, τ)W (x→ x′) , (2.14)

as can be derived by using the normalization of W (x→ x′) in the second term on the right-hand
side of Eq. (2.13) and a respective renaming of x and x′. However, it needs to be taken into account
that the above condition does not guarantee a correct sampling from the desired distribution due to
possible limit cycles occurring in the Markov chain [229].

A more restrictive equilibrium condition is that the transition probabilities satisfy the detailed-balance
equation:

ρ(x)W (x→ x′) = ρ(x′)W (x′ → x) . (2.15)

Detailed balance implies that the sum on the right-hand side of the master equation (2.13) vanishes
separately for every summand and that the process thus samples from the equilibrium distribution.

The transition probabilities introduced above are used in a Markov chain to draw samples from the
equilibrium distribution. Observables, as defined in Eq. (1.1), are then numerically accessible by
computing expectation values according to:

〈O(x)〉 =
1

N

N∑

i=1

O(xi) , (2.16)

LIF sampling and neuromorphic computing 17

where the sum runs over the drawn samples.

Besides a time-independent state distribution, it is important that further necessary conditions, like
ergodicity, are fulfilled, for more details see, for example, Ref. [229].

2.2.2 Langevin dynamics as a Markov chain Monte Carlo algorithm

This section shows that Langevin dynamics can be assigned to the class of Markov chain Monte
Carlo algorithm. The considerations are in concordance with the former comparisons of Langevin
dynamics and Monte Carlo algorithms [230–232]. In particular, we demonstrate that the transition
probabilities of Langevin dynamics satisfy the detailed-balance equation (2.15).

The transition probability W (φ→ φ′) for Langevin dynamics is derived in App. A.1. It is computed
based on a discrete form of the Langevin equation where an infinitesimal update step of a field
φ := φ(τ) to a field φ′ := φ(τ + ε) is considered. The resulting transition probability can be rewritten
as

W (φ→ φ′) ∝ 1√
2ε
ϕ

(
φ′ − φ√

2ε

)
exp

[
−S(φ′)− S(φ)

2

]
. (2.17)

The first factor can be interpreted as the selection probability and the second term as the acceptance
probability for the proposed field φ′.

A correct sampling of the Boltzmann distribution ρ(φ) ∝ exp(−S(φ)) can be verified by inserting
the transition probability into the detailed-balance equation (2.15). The selection probability is
symmetric with respect to an exchange of φ′ and φ. It drops out, resulting in a satisfaction of the
detailed-balance equation.

The continuous formulation of Langevin dynamics can be restored in the limit of ε→ 0. The limit
results in a correct normalization of the transition probability, as can be seen by identifying the
selection probability as a representation of the delta distribution,

∫ ∞

−∞
dφ′W (φ→ φ′) =

∫ ∞

−∞
dφ′δ(φ′ − φ) exp

[
−S(φ′)− S(φ)

2

]
= 1 . (2.18)

Hence, the step size between the current field and the proposal field becomes infinitesimally small.

We conclude that the Langevin equation (2.5) can be interpreted as a standard Monte Carlo algorithm
with a Gaussian distribution as selection probability. The proposal state is chosen implicitly by
an absorption of the acceptance probability into the selection probability and by a corresponding
sampling with Gaussian noise. Since the nearest neighbor sites can be assumed to be nearly constant
in one Monte Carlo step, it is possible to switch from a random sequential update formalism to
a parallel update of the entire lattice. The Langevin time is introduced as a temporal measure
for a lattice update. In principle, the delta distribution can be exchanged by any other positive
representation.

2.3 LIF sampling and neuromorphic computing

This section reviews the dynamics of leaky integrate-and-fire (LIF) neurons and provides an intro-
duction to the BrainScaleS-2 chip [28]. It is shown how the neuromorphic hardware system can be

18 Background

used to perform stochastic inference with spiking neurons in the high-conductance state [28, 76, 77].
In this state, the LIF neurons receive a strong synaptic stimulus, in this case, Poisson stimulus,
leading to accelerated, stochastic membrane dynamics [233]. The section ends with an introduction
of the so-called Hagen mode, a non-spiking working mode of the neuromorphic hardware facilitating
vector matrix-multiplications.

2.3.1 Spiking neural networks by LIF sampling

Simplified LIF dynamics

The spikey neuromorphic system of the BrainScaleS project emulates spiking neural networks with
physical models of neurons and synapses implemented in mixed-signal microelectronics [43, 77]. With
the help of Poisson-driven leaky integrate-and-fire (LIF) neurons, it is possible to obtain stochastic
inference with deterministic spiking neurons. The dynamics of the free membrane potential ueff(t) of
a neuron can be approximated in the resulting high-conductance state by an Ornstein-Uhlenbeck
process,

dueff(t)

dt
= θ [µ− ueff(t)] + ση̃(t) . (2.19)

In Eq.(2.19), θ determines the strength of the attractive force towards the mean value µ = µleak +
µaverage noise. The mean value consists of some leak potential and an additional averaged noise
contribution. The stochasticity required for sampling is induced by adding a random component
to the generation of spikes; for LIF networks, this can be ensured by sufficiently noisy membrane
potentials [75, 77]. For the Ornstein-Uhlenbeck process (2.19), the Gaussian noise term η̃(t),
characterized by a zero mean and a unit variance,

〈η̃(t) η̃(t′)〉η̃ = δ(t′ − t) , 〈η̃(t)〉η̃ = 0 , (2.20)

is emulated by the synaptic input of additive Possion process. Hence, the parameter σ depends on
the Poisson background [77].

Inspired by a biological neuron [234], the neuron emits a neural spike (action potential) when the
membrane potential exceeds a certain threshold ϑ. It is active and is reset to % for a refractory
time τref afterwards, otherwise the neuron is considered as inactive. This is also sketched in Fig. 2.1.
One has to distinguish between the effective membrane potential ueff(t) (red curve), referring to the
instantaneous target voltage, given by the current state of the synaptic input, and the real membrane
potential u(t) (blue curve). In the high-conductance state, the convergence of u(t) from % to ueff(t)
takes place in a negligible time after the finite refractory time has elapsed [77].

Communication in a network of LIF neurons is realized via neural spikes. In this case, the mean
value µ depends in addition on an additive interaction term µinteraction. Whenever the membrane
potential of a neuron, which is the result of a leaky integration of the synaptic input, exceeds a
threshold, it sends a spike to the neurons connected to it. The way the other neurons receive the
signal of the spike is determined by the so called post-synaptic potential (PSP). The shape of this
potential is in general non-linear. In the theoretical considerations in Chapter 4, we simplify the
interaction by a rectangular PSP shape.

In a spike-based sampling framework, the refractory period τref following a spike can be interpreted
to encode a state z = 1 (the neuron is active), while z = 0 at all other times (the neuron is inactive).

LIF sampling and neuromorphic computing 19

Figure 2.1: Example evolution of the free membrane potential (red) and the actual membrane potential (blue).
After the membrane potential crosses the threshold ϑ, a spike is emitted and the potential is set
to a reset potential %. If the effective membrane potential is still above ϑ after the refractory
period τref, the neuron spikes again. At the end of a "burst" of n spikes the free and the actual
membrane potential converge in negligible time (scheme taken from Ref. [234]).

Accordingly, neural spikes are used to mark transitions between discrete states (active and inactive
neurons) and thereby effectively carry out a sampling process in discrete states.

Activation function

An implicit expression for the neural activation function of LIF neurons in the high-conductance
state is derived for the neuromorphic hardware system in Ref. [77]:

P (z = 1) =

∑
n Pnnτref∑

n Pn

(
nτref +

∑n−1
k=1 τ

b
k + Tn

) . (2.21)

Here, the burst length n refers to the number of consecutive spikes. The respective occurrence
probability of a burst with length n is given by Pn. Similarly, the mean time interval, starting
from the endpoint of the last refractory period after a burst with length n and ending at the next
spike, is denoted as Tn. Lastly, τ bk corresponds to the average time after the k-th refractory period
within a burst that it takes for the effective membrane potential to drift from the resting potential
ρ to the threshold potential Θ. More details on the computation of Pn, Tn and τ bk by means of
the transfer function p(ui+1|ui) of the Ornstein-Uhlenbeck process and by taking into account the
spiking mechanism of the neurons can be found in Refs. [77, 234].

Interactions

Interactions between neurons in a spiking neural network, see also Sec. 2.3, are non-trivial. The
so-called postsynaptic potential (PSP) refers to the input potential of a connected neuron in case
of firing. As shown in Ref. [77], the interaction term, utilized, for example, in Eq. (4.1), can be
implemented by

µi(t)
interaction =

∑

syn j

∑

spk s

Aijκ(t, ts,j) , (2.22)

with Aij =
wij(Erev

ij −〈ueff〉)
〈gtot〉 and where ts,j is the time of the last spike. The interaction kernel κ(t, ts,j)

describes the PSP shape and depends in general on the time constants: τref, τsyn and τeff.

20 Background

The actual PSP shape in a network of LIF neurons is of the following form [77]:

κ(t, ts,j) =
exp

[
− t−ts,i

τeff

]
− exp

[
− t−ts,j

τsyn

]

τeff − τsyn
. (2.23)

A possible approach to translate weights Wij onto the neuromorphic system is to assume that the
area under a PSP shape is equal to Wijτrefα, where α represents a scaling factor,

Wijτrefα =

∫ τref

0
Aijκ(t, ts,j) dt . (2.24)

In a simplified description, the PSP shape has a rectangular form,

κ(t, ts,j)
rect = Θ [t− ts,j]−Θ [t− ts,j − τref] . (2.25)

For τref → 0, the neuron j is in the active state zj = 1 as long as uj(t) > ϑj and the interaction term
turns to

µi(t)
interaction =

∑

synj

AijΘ [uj(t)− ϑj] . (2.26)

The findings in Chapter 4 are with respect to rectangular PSP shapes, as simplified abstractions of
interactions on neuromorphic systems.

2.3.2 Representing and training Boltzmann machines and other distributions

In classical machine learning, generative models based on artificial neural networks are used to
encode and sample from probability distributions [235]. Similarly, spiking neural networks can be
viewed as approximating Markov-chain Monte-Carlo sampling, albeit with dynamics that differ
fundamentally from standard statistical methods [234].

Following the distinction of a neuron to be active or inactive, we restrict ourselves in the following
to a sampling of discrete states. A network of n spiking neurons spans an n dimensional state space
resulting in 2n possible configurations. In Chapter 5, we go beyond this and discuss a sampling
scheme in an abstract model description of a coupled set of LIF neurons. In this scheme, the
membrane potentials are utilized as continuous, microscopic states of the system.

Samples from the system of discrete states can be drawn, for example, by observing the activity of the
neurons in regular time intervals. Collecting these samples results in a probability distribution which
we denote as p(~z; θ), where θ refers to a given configuration of hyperparameters of the LIF dynamics
and the hardware, respectively. The distribution is inherently related to the neuromorphic device and
the respective underlying dynamics. There exists no closed expression for this distribution due to
the complexity of the dynamics and hardware-related noise in the system parameters. Nevertheless,
the neuromorphic hardware system is not a black box. Based on the fundamental dynamics of a
single neuron, one can derive model descriptions for the system. An example is given by the derived
activation function of a single neuron in Eq. (2.21) with LIF dynamics in the high-conductance state
as a starting point [77, 236].

Model descriptions allow an in-depth understanding of the neuromorphic device. Corresponding
models can be helpful in scientific computing tasks in statistics and machine learning, such as
Bayesian inference and sampling or the implementation of generative models. In the following, we

LIF sampling and neuromorphic computing 21

focus on emulation of Boltzmann machines by means of hierarchical spiking neural networks [77, 237].
From a practical point of view, this is motivated by the binary nature of the given distribution and
the similarity of the activation function (2.21) of LIF neurons in the high-conductance state and
the one of a Boltzmann machine. Furthermore, Boltzmann distributed systems have a wide field of
application in machine learning and physics [34, 38, 238–242].

A Boltzmann machine [243] is a neural network consisting of neurons ~z = (z1, . . . , zN) following the
Boltzmann distribution

p(~z) =
1

Z
exp(−E(~z)) (2.27)

with the partition function
Z =

∑

z1,...,zn

exp(−E(~z)) . (2.28)

The sum runs over all possible configurations of the neuron states zi ∈ {0, 1}. The energy function
E(~z) is defined in the common way as

E(~z) = −
∑

i<j

Wijzizj −
∑

i

bizi , (2.29)

where Wij are symmetric, synaptic weights between the neurons i and j and bi is an additional bias.

Boltzmann distributed statistics can be sampled by a sequential update scheme of the neurons with
the logistic distribution as activation function,

P (zi = 1) =
1

1 + exp
[
−∑jWijzj − bi

] , (2.30)

where the sum runs over all synaptic connections of the neuron i to other neurons j. The activation
function can be derived, for example, by rewriting the Boltzmann distribution as a conditional
distribution defined by zi and ~z\zi , where the latter corresponds to the set of neurons without the
neuron zi.

P (zi = 1) := p(zi = 1|~z\zi) =
p(zi = 1, ~z\zi)

p(zi = 0, ~z\zi) + p(zi = 1, ~z\zi)
. (2.31)

In a detailed computation one finds that all terms in the energy function that are independent of zi
drop out and arrives at Eq. (2.30), cf. Refs. [244, 245].

In the so-called spike-based sampling scheme, the hardware generates samples distributed closely to
a Boltzmann distribution, see Refs. [77, 234, 237] for a detailed quantitative analysis. We analyse
emerging sources for errors in more detail based on several simplified models of the hardware in
Sec. 4.2.

In a restricted Boltzmann machine (RBM), an additional distinction between visible and hidden
layers allows the representation and training of a wider class of distributions obtained by employing
the marginal distribution over the set of visible neurons. The neurons are ordered on a bipartite
graph and the represented probability distribution is defined as a function of the neurons in the
visible layer. The latent code in the hidden layers and the respective increased number of weights is
the reason for a higher representational power towards Boltzmann machine.

The weights and the biases can be adapted by respective parameters of the neuromorphic system,
cf. Sec. 2.3.3. These parameters affect the emulated probability distribution and can be trained

22 Background

in an unsupervised or supervised training framework. The presence of a decent, explicit model for
the sampled distribution brings several benefits. In particular, it allows a well-defined sampling
of the respective distribution as well as a direct utilization in standard training algorithms and
loss functions of machine learning. In Chapter 6, we make use of the possible model description as
a restricted Boltzmann machine for an optimization of the so-called Kullback-Leibler divergence,
an asymmetric measure between probability distributions. It is used to the represent entangled
quantum states on the neuromorphic hardware device.

In the following, we want to go into more detail with respect to advantages and drawbacks of
model description. Firstly, we want to emphasize that the analytic expression of the Boltzmann
distribution (2.27) is only a model description and, therefore, an approximation of the system
for emulating Boltzmann machines. This can be resolved by estimating errors in the represented
distribution. Secondly, it also means that a change in the weights or biases in the model distribution
does not necessarily affect the sampled distribution on the neuromorphic hardware device in the same
manner. This also implies that there needs to be a sufficient overlap between the model description
and the dynamics of the hardware for a successful training. It is furthermore interesting to note that
this overlap implicitly determines an upper (in the case of a maximization) or a lower bound (in the
case of a minimization) for the optimization of the loss function.

A possible way to overcome this restriction is a training framework which does not need an explicit
expression for the represented probability distribution. Due to a lack of this expression, it is non-
trivial to infer the impact of single system parameters on the observed distribution in an optimization
step. Approaches into this direction are presented in Refs. [246, 247].

Another possible approach is to choose more complicated model distributions. For example, a promis-
ing ansatz for reconstructing more complicated graphical models of arbitrary binary distributions in
terms of an effective action is proposed in Refs. [248, 249]. However, also in this case, it might be
difficult to define reliable correlations between system-related and model-dependent parameters. In
an optimal setting, these dependencies are optimized, for example, by a machine learning algorithm.

Lastly, we want to point out that there is also great progress in the development of novel training
algorithms designed specifically for spiking neural networks [19, 61, 62, 246, 247, 250]. Introduced
alternatives to gradient-based optimization algorithms do not rely on an explicit model distribution.
For example, a training framework based on surrogate stochastic gradients has been proposed
recently in Ref. [246]. Superior to the discussed representation of Boltzmann machines, loss functions
can be formulated based on both the membrane potential and the spiking activity. In addition,
the presented in-the-loop training framework automatically takes into account analog hardware
imperfections through self-calibration [246]. Respective training algorithms on the level of spikes
are closer to the dynamics of the neuromorphic hardware device resulting in a potentially higher
performance regarding computational power and energy-efficiency.

2.3.3 Neuromorphic computing: BrainScaleS-2

The BrainScaleS-2 system is a mixed-signal neuromorphic platform. Its analog core is composed of
neuron and synapse circuits with inherent time constants of the order of microseconds. An application-
specific integrated circuit (ASIC) for the BrainScaleS-2 system features 512 neuron circuits, which
emulate the adaptive exponential integrate-and-fire model. These individual compartments can be
wired to resemble more complex structured neurons. An on-chip analog parameter memory as well
as integrated static random-access memory (SRAM) cells allow us to individually configure and

LIF sampling and neuromorphic computing 23

optimize the dynamics of each circuit. Each neuron integrates input from 256 dedicated synapses,
which carry a 6-bit weight and can be either excitatory or inhibitory [28].

The analog core of the BrainScaleS-2 chip is accompanied by supporting logic, including circuitry for
communication and configuration. Further functionality is provided by high-bandwidth spike sources,
which can emit either regular or Poissonian spike trains of configurable frequency. These on-chip
sources can be used to generate the Gaussian noise contribution necessary for the implementation of
LIF neurons in the high-conductance state according to Eq. (2.19). A routing module allows mixing
these spikes with external stimuli and recurrent events. It allows, in combination with in-synapse
event filtering, the implementation of arbitrary network topologies.

A custom embedded processor allows the modification of the entire configuration space during the
runtime of an experiment [251, 252]. Tightly coupled to the synaptic arrays, they allow the efficient
and flexible implementation of learning rules based on observables such as neuronal potentials, firing
rates, and synaptic correlations.

The respective weight (6-bit) matrix and an additional (10-bit) bias vector are configurable and
determine together with the stochastic input the probability distribution the network is sampling
from. Based on the model description in the previous section, these can be related to the weights
and the biases of the Boltzmann machine, facilitating the definition of a training algorithm. Inherent
properties of LIF sampling and of the hardware system can be the origin for possible deviations
between the actually emulated probability distribution and the Boltzmann distribution as an
approximated model distribution. Respective properties are, for example, non-linear post-synaptic
potentials for the interaction with spikes and a finite calibration accuracy of configurable hardware-
related parameters.

As an experimental result, the BrainScaleS-2 chip returns a list of all spike times and associated
neuron IDs. This information is sufficient to reconstruct the network state at any point in time. The
distribution, sampled by the network, is estimated by observing its state at regular intervals. To
ensure an optimal estimate, the observation frequency needs to be at least (τref/2)−1 (cf. App. D.4).
Using (τref/5)−1 guarantees a large safety margin. The resulting binary configurations are collected
in a histogram. This can be used, for example, for the numerical evaluation of the Kullback-Leibler
divergence or other observables and statistics, cf. Chapters 4 and 6. Further details for implementing
a sampling spiking network on BrainScaleS-2, utilized in Chapter 6, can be found in App. D.4.

2.3.4 Hagen mode

The Ornstein-Uhlenbeck process defined in Eq. (2.19) for the description of LIF neurons in the
high-conductance state is not the only dynamics that the BrainScaleS-2 chip can implement. In
dependence of further system parameters, in particular, time constants, the dynamics can also
fundamentally differ from the described one. In particular, the dynamics is usually without any
external noise sources. This translates the system into a deterministic one, while inherent noise of
the hardware stays as the only source for non-determinism.

In this section, we want to give a brief introduction of the so-called Hagen mode, which allows a
different kind of usage of the hardware [83, 84]. Simply put, the mode allows the computation of
multiply-accumlate (MAC) operations. With respect to the topology of the hardware, this can be
understood as the computation of the following matrix-vector multiplication with additional additive
contributions

yi =
∑

Wijxj (2.32)

24 Background

where the weight matrix is related again to the configurable weight matrix on the BrainScaleS-2
chip [28]. The multiplication is emulated by an utilization of the synaptic weight matrix as an
integrator of a current I over a time interval ∆t,

Q = I∆t , (2.33)

where ∆t encodes the input value x and I is proportional to the synaptic weight. The charge Q result
in a change of the output membrane voltage which is identified with the outcome y. In addition,
external inputs, and also external noise can be added to the membrane potential.

As discussed in more detail in Refs. [83, 84], one has to take into account a finite read-and write
precision for the weights and biases a well as for the input and output vectors. Furthermore, the
linearity of the operation cannot always be guaranteed and highly depends on the value regimes of the
different factors. Fixed pattern noise sources and trial-to-trial variations entail further perturbations
in the computation of the matrix-vector multiplication.

Despite these obstacles, scientific computations can benefit from an utilization of the Hagen mode
due to a promising high energy efficiency on the BrainScaleS-2 chip for this kind of matrix-vector
multiplications. The mode is designed specifically for hybrid computations of fast and energy-efficient
evaluations of matrix-vector multiplications on the neuromorphic chip and additional computations
on a digital computer. It can be supportive in applications with a heavy workload on inference tasks
based on feed-forward networks by an energy-efficient and fast computation of the forward pass
within the different layers. Such a high-performance is required, for example, in real-time industrial
settings as autonomous driving.

A possible integration of the Hagen mode into the parallel sampling process of (complex) Langevin
dynamics is discussed in Chapter 5. The integration is motivated by the high energy efficiency of
the neuromorphic chip and a potential scalability to computations of larger physical systems, closer
to the continuum limit and, therefore the actual physics.

CHAPTER 3

Langevin dynamics for discrete systems

This chapter is in parts based on Ref. [1].

We introduce in this chapter a formulation of Langevin dynamics that can be applied on discrete
systems. This new kind of dynamics is motivated by the similarity of the underlying dynamics of the
BrainScaleS-2 chip and Langevin dynamics and the accompanied discrete nature of a spike-based
sampling framework on a neuromorphic hardware system.

This similarity suggests the formulation of a discrete analog to continuous Langevin dynamics. In
this chapter, we show that a formulation of Langevin dynamics for discrete systems leads to a class
of a generic stochastic process, namely, the Langevin equation for discrete systems,

φ′ = φ+ (ν − φ) Θ

[
−1− ε

2λε
∆S(ν, φ) +

√
εη̃

]
, (3.1)

where φ is the current state and φ′ the updated state. The process is driven by a Gaussian noise
term η̃. The parameter ε has an impact on the acceptance probability of the proposed state ν and
should be chosen small, with ε > 0. The term ∆S(ν, φ) := S(ν)− S(φ) measures the change of the
action S of the system under a transition from state φ to the proposed state ν. Θ(x) represents the
Heaviside function. The dynamics leads in the limit of ε→ 0 to Boltzmann distributed states. The
limit can be realized by an extrapolation of observables for several simulations with small values of ε.
The additional scaling factor λε, defined in Eq. (3.5), supports a faster convergence of the process to
a Boltzmann distribution for finite values of ε.

A more detailed derivation of Eq. (3.1) including a discussion of its properties is given in Sec. 3.1.
Numerical results of the new dynamics are presented based on the q-state clock model in Sec. 3.2.
Furthermore, we analyze the dynamics with respect to its applicability and compatibility with
spiking neural networks in Chapter 4.

The Langevin equation for discrete systems can also be applied on systems with continuous states.
Interestingly, the Langevin equation for discrete systems converges in a certain limit to continuous
Langevin dynamics. This limit is given by an infinitesimally small distance between the proposed
state ν and the current state φ. We derive Langevin dynamics in this limit in Sec. 3.3, and complex
Langevin dynamics in Sec. 3.4. The respective equivalence of the two dynamics confirms that
Eq. (3.1) indeed represents an analog of Langevin dynamics for a possible application on discrete
systems.

25

26 Langevin dynamics for discrete systems

3.1 General definition

The formulation of the Langevin equation for discrete systems is inspired by the interpretation of
Langevin dynamics as a Markov chain Monte Carlo algorithm and a respective satisfaction of a
detailed balance equation, cf. Sec. 2.2.2. Following this interpretation, the here presented general
formulation of a Langevin equation for discrete systems is also a Markov chain Monte Carlo algorithm.
The process is driven by a Gaussian noise contribution, similar to Langevin dynamics. The transition
probability to a proposed state can be regulated by replacing the Gaussian noise term by truncating
Gaussian noise, cf. Eq. (3.10). It is shown that the accuracy of the process strongly depends on the
intrinsic parameter ε and the scale of the energy contribution.

Certain necessary properties of a possible Langevin equation for discrete systems can be stated
beforehand based on properties of the transition probability of Langevin dynamics studied in
Sec. 2.2.2. An infinitesimal change of the microscopic state/field is not possible in a discrete system.
Therefore, one has to switch from a parallel to a random sequential update mechanism. The proposal
field has to be chosen from a discrete distribution. One may select the proposal field according to
some distribution around the current field. However, since a parallelization is not possible, a uniform
selection probability can be used.

Assuming the same acceptance probability as in the continuous case, a starting point is the following
proportionality of the transition probability W (φ→ φ′):

W (φ→ φ′) ∝ exp

[
−S(φ′)− S(φ)

2

]
. (3.2)

The transition probability from a state φ to a proposed state φ′ can be rewritten with the help of
the following relation between the cumulative Gaussian distribution

Φ(x) =

∫ x

−∞
dt

1√
2π

exp

(
− t

2

2

)
=

1

2

[
1 + erf

(
x√
2

)]
(3.3)

and the exponential function:

lim
ε→0

Φ
(
− 1√

ε
+
√
ε xλε

)

Φ(− 1√
ε
)

= exp(x) +O(εx2) . (3.4)

The scaling factor λε is defined as

λε =

√
ε ϕ
(
− 1√

ε

)

Φ
(
− 1√

ε

) . (3.5)

with the Gaussian distribution

ϕ(x) =
1√
2π

exp

(
−x

2

2

)
. (3.6)

The relation is derived in App. A.2.

General definition 27

With this relation and ∆S(φ′, φ) = S(φ′)− S(φ), the transition probability turns for small values of
ε into:

W (φ→ φ′) ∝ Φ

(
− 1√

ε
−
√
ε

2λε
∆S(φ′, φ)

)

= P

(
η̃ ≤ − 1√

ε
−
√
ε

2λε
∆S(φ′, φ)

)
, (3.7)

where the Gaussian noise contribution η̃ is uncorrelated and has variance of one,

〈η̃, η̃′〉η̃ = δ(t′ − t) , 〈η̃i〉η̃ = 0 . (3.8)

Here, t′ and t refer to different points in time in the sampling process and 〈·〉η̃ to the expectation
value with respect to the Gaussian distribution. The second line in the above equation (3.7) for
the transition probability reflects the property of a cumulative Gaussian distribution to account for
samples smaller or equal to the given argument.

Taking the current state φ into account, one can transform the sampling from the cumulative normal
distribution into a general stochastic update rule with Gaussian noise η̃ and a proposal state ν. This
leads us to (3.1), which was already presented at the beginning of this chapter,

φ′ = φ+ (ν − φ) Θ

[
−1− ε

2λε
∆S(ν, φ) +

√
εη̃

]
, (3.9)

where ε needs to be chosen sufficiently small and Θ(x) is the Heaviside function.

The update formalism corresponds to a single spin flip Monte Carlo algorithm with a random
sequential update mechanism, driven by Gaussian noise. It can be immediately seen within the
present form that a flip to a proposed field gets the more unlikely the smaller ε. Adaptations of the
Gaussian noise term to truncated Gaussian noise can help to improve the dynamics, i.e., to increase
the probability of a spin flip. In principle, this corresponds to a rescaling of the transition probability
term. This is similar to a maximization of the spin flip probability in a Metropolis algorithm [253].

The truncated Gaussian noise term can be expressed by the following parametrization:

η̃T ∈
[

1√
ε

+ α,∞
]
, (3.10)

where α is in the range of

−∞ ≤ α ≤ −
√
ε

2λε
∆max , with ∆max = |∆S(ν, φ)| . (3.11)

The improved update rule is

φ′ = φ+ (ν − φ) Θ

[
−1− ε

2λε
∆S(ν, φ) +

√
εη̃T
]
. (3.12)

For α→ −∞ this reduces to the update formalism (3.9) and for α = −
√
ε

2λε
∆max one obtains spin

flip probabilities up to 1. This can be seen under consideration of the explicit transition probability

28 Langevin dynamics for discrete systems

of the update rule (3.12),

W (φ→ ν) =
Φ
(
− 1√

ε
−
√
ε

2λε
∆S(ν, φ)

)

Φ
(
− 1√

ε
− α

) . (3.13)

Transition probabilities of several standard Monte Carlo algorithms can be emulated by other choices
of α. Note that for a uniform random number r ∈ [0, 1[and a proposal field ν, an equivalent
formulation to (3.12) can be stated for the transition probability defined in Eq. (3.2),

φ′ = φ+ (ν − φ)Θ

[
exp

(
−S(ν)− S(φ) + ∆max

2

)
− r
]
. (3.14)

Processes with a different value of α, i.e., a different rescaling of the transition probability, can always
be mapped onto each other by a respective rescaling of the time. Given a transition probability
W (φ→ µ) and a scaling factor a, the following relation holds:

W (φ→ µ)→ aW (φ→ µ) ⇔ t→ t

a
. (3.15)

Most of the existing single spin flip algorithms can be reformulated into a Langevin equation for
discrete systems with the same derivation, as presented in this section. In general, it holds for the
presented dynamics that

lim
ε→0

Peq(φ) ∝ exp [−S(φ)] , (3.16)

since the detailed balance equation (2.15) for a Markov chain Monte Carlo algorithm is satisfied
in the limit ε→ 0. The fulfilment is self-explanatory as we used the transition probability (3.2) as
starting point for deriving the novel algorithm.

The update formalism (3.12) represents a Langevin-like equivalent for discrete systems to Langevin
dynamics of continuous systems. As for continuous systems, the dynamics depends on Gaussian
noise and is based on a rather simple expression. The algorithms can also be applied to continuous
systems due to the equivalence to standard Monte Carlo algorithms in the limit ε→ 0.

3.2 Application: q-state clock model

The q-state clock model [254, 255] describes spins θi = 2πn
q with q different states which are

parametrised by n ∈ {1, 2, . . . , q}. It is used to numerically verify the Langevin equation for discrete
systems, as a first example. The model has the following Hamiltonian:

Hc = −Jc
∑

〈i,j〉
cos (θi − θj) , (3.17)

with Jc representing a coupling constant determining the interaction strength. The sum runs over
all nearest neighbor spin pairs 〈i, j〉 on a rectangular lattice. In a complex plane one can interpret
the spin states as equally distributed states on an unit circle. The common Potts model [256] can be
derived from this initial model. For q = 2 the model corresponds to the Ising model and in the limit
of q →∞, it describes the continuous XY model.

Application: q-state clock model 29

0.6 0.7 0.8 0.9 1.0 1.1 1.2

β

0.2

0.4

0.6

0.8

1.0

〈m
〉

(a)

Standard MC
ε = 0.2

ε = 0.5

ε = 1.0

ε = 1.5

ε = 2.0

0.6 0.7 0.8 0.9 1.0 1.1 1.2

β

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

c

(b) Standard MC
ε = 0.2

ε = 0.5

ε = 1.0

ε = 1.5

ε = 2.0

Figure 3.1: Comparison of the magnetization (a) and the specific heat (b) obtained by a standard Monte
Carlo algorithm and by the Langevin equation for discrete systems for the 4-state clock model
on a 16 × 16 lattice. The results converge for ε → 0 to the results of the standard Monte
Carlo algorithm. Relative deviations of the inverse critical temperatures in dependence of ε are
illustrated in Fig. 3.2.

The clock model exhibits a second order phase transition for q ≤ 4. For q = 4, an exact solution of
the inverse critical temperature exists [257]:

Jcβ
q=4
c = 2Jcβ

q=2
c , (3.18)

where the Boltzmann constant kb has been set to 1. In this case, the system emulates two independent
Ising models.

An appropriate order parameter for the q-state clock model is the average magnetization per spin
defined as

m =
1

N

∣∣∣∣
N∑

k=1

e
i2πnk
q

∣∣∣∣ , (3.19)

where the sum runs over all spins nk of a lattice with N sites. The specific heat capacity c per spin
is considered as a further observable and is defined by means of the energy E of the system,

c =
β2

N

(
〈E2〉 − 〈E〉2

)
, (3.20)

where 〈·〉 denotes the expectation value with respect to sampled lattice configurations [229].

Numerical results for the expectation value of the magnetization and the specific heat are illustrated
in dependence on the inverse temperature β and on different values of ε in Fig. 3.1. Results of the
Metropolis algorithm as a standard Monte Carlo algorithm (MC) serve as benchmark [253]. The
inverse critical temperature can be read off from the maximum of the specific heat. In Fig. 3.2,
the relative deviations of the inverse critical temperature to the inverse critical temperature of the
Metropolis algorithm are plotted against ε.

The resulting deviations for finite values of ε can be explained by a detailed error analysis of the
transition probabilities of the Langevin equation for discrete systems. For this purpose, one has to
check the compliance of the detailed balance equation, cf. Eq. (2.15), resulting in

W (θ → θ′)
W (θ′ → θ)

[
1 +O

(
ε∆Hc(θ

′, θ)3
)]

=
PMC(θ′)
PMC(θ)

. (3.21)

30 Langevin dynamics for discrete systems

0.2 0.5 1.0 1.5 2.0
ε

10−1

100

101

102

103

R
el

at
iv

e
de

vi
at

io
n

[%
]

LM2, 4-state clock model

LM2, Ising model

OU2, Ising model

Figure 3.2: Relative deviations of the obtained inverse critical temperatures for finite values of ε to the
inverse critical temperature of a standard Monte Carlo algorithm. Here, LM2 refers to results
based on the Langevin equation for discrete systems, see also Sec. 4.3.1 and OU2 to the so-called
sign-dependent Ornstein-Uhlenbeck process introduced in Sec. 4.3.2.

The deviation can be traced back to the approximation of the transition probability W (θ → θ′) in
terms of the cumulative Gaussian distribution in Eq. (3.7) for finite values of ε and a respective error
propagation in the fraction of the transition probabilities. The analysis reflects that the sampling
process is only exact in the limit of ε→ 0.

The observed shift of the magnetization and the specific heat to lower values of the inverse temperature
in Fig. 3.1 can be explained by taking a closer look at the properties of relation (3.4). In the left
part of Fig. A.1, it can be seen that the absolute error of the cumulative Gaussian distribution is
asymmetric around x = 0. This imbalance leads to a shift of the effective fraction of transition
probabilities and therefore to a change of the equilibrium distribution of the spin states. The strength
of this shift grows for larger values of x, which corresponds to larger values of β∆Hc, and larger
values of ε. The effect can be nicely observed in the change of the specific heat in the right part of
Fig. 3.1 with growing β. In general, it holds: the larger |β∆Hc|, the worse is the compliance of the
detailed balance equation and the larger is the resulting shift of the equilibrium distribution.

3.3 Deriving Langevin dynamics in the limit of infinitesimal step
sizes

In the following, we show that the Langevin equation for discrete systems, cf. Eq. (3.1), converges in
the limit of infinitesimally small step sizes in the field φ to Langevin dynamics, cf. Eq. (2.5). The
derivation reveals the similarities between the two dynamics from a pure mathematical point of view.

We start be introducing the following notation for the Langevin equation for discrete systems:

φ′ = φ+ (ν − φ)Θ

[
−1− ε

2λε
∆S(ν, φ) +

√
εη̃

]

≡ φ+ (ν − φ)A(ν, φ) , (3.22)

Deriving Langevin dynamics in the limit of infinitesimal step sizes 31

with
〈η̃, η̃′〉η̃ = δ(t′ − t) , 〈η̃〉η̃ = 0 . (3.23)

Note again that, in contrast to Langevin dynamics, the Gaussian distribution has a variance equal
to one.

The acceptance term A(ν, φ), given by the Heaviside function, can be rewritten in terms of the
following approximation of the Heaviside function:

Θ [x] = lim
k→0

1

2

[
1 + erf

(x
k

)]
= lim

k→0
Φ

[√
2x

k

]
, (3.24)

where Φ[·] refers again to the cumulative Gaussian distribution. This leads to a smooth representation
of the acceptance term, denoted as Ã(ν, φ):

Ã(ν, φ) = lim
k→0

Φ

[
−1

k
− ε

2kλε
∆S(ν, φ) +

√
ε

k
η̃

]
, (3.25)

where we absorbed the factor of
√

2 in k. As discussed in the previous section, the Langevin equation
for discrete systems samples only in the limit of ε→ 0 from the Boltzmann distribution. We combine
the two limits in k and ε while keeping ε/k2 equal to one. The acceptance term then reads:

Ã(ν, φ) = lim
ε→0

Φ

[
−1

ε
− ε

2λ(ε)
∆S(ν, φ) + η̃

]
, (3.26)

where we have replaced k by ε. Note that, because of this, the scaling factor has changed from λε, cf.
Eq. (3.5), to λ(ε) defined as,

λε2 ≡ λ(ε) =
ε ϕ
(
−1
ε

)

Φ
(
−1
ε

) . (3.27)

Next, we aim to expand Ã(ν, φ) around small values of ∆S(ν, φ). This can be achieved by making
use of another relation between the cumulative Gaussian distribution and the exponential function,

lim
ε→0

Φ
[
−1
ε + ε

λ(ε,η̃) x+ η̃
]

Φ
[
−1
ε + η̃

] = exp(x) , (3.28)

with

λ(ε, η̃) =
ε ϕ
(
−1
ε + η̃

)

Φ
(
−1
ε + η̃

) . (3.29)

The relation can be derived in the same manner as Eq. (3.4), cf. App. A.2. By using additionally
that

lim
ε→0

λ(ε, η) = lim
ε→0

λ(ε) , (3.30)

we find with the help of Eq. (3.28) the following expression for the acceptance term (3.26):

Ã(ν, φ) = lim
ε→0

Φ

[
−1

ε
+ η̃

]
exp

(
−∆S(ν, φ)

2

)
. (3.31)

The transition from the Heaviside function to its continuous approximation has certain implications
on the update rule (3.22). Firstly, one needs to correctly normalize the transition probability to
new states φ′. In contrast to the original formulation, a proposed state ν is no longer accepted or

32 Langevin dynamics for discrete systems

rejected. Instead, the novel state φ′ is defined by,

φ′ = φ+ (ν − φ)
Ã(ν, φ)

N
, (3.32)

and can take arbitrary continuous values. The problem is formally resolved in the above update rule
by introducing a normalization factor N . Secondly, using the expansion (3.28) is only valid for small
values of ∆S(ν, φ). This is taken into account by proposing states ν that are in an infinitesimal
small distance δφ to the current state φ. We define the following proposal probability

q(φ→ ν) =
1√
2ε
ϕ

(
ν − φ√

2ε

)
. (3.33)

Infinitesimally small step sizes can be implemented by the limit ε→ 0.

Next, we approximate the difference between the proposed state ν = φ+ δφ and the current state φ
in the action according to the finite difference method by

∆S(φ+ δφ, φ) = S(φ+ δφ)− S(φ) ' δφδS
δφ

. (3.34)

The update rule (3.32) turns with the above changes into

φ′ = φ+ δφ
Ã(φ+ δφ, φ)

N

= φ+ δφ
lim
ε→0

Φ
[
−1
ε + η̃

]

N
exp

(
−δφ

2

δS

δφ

)

= φ+ Ñ−1

[
δφ− (δφ)2

2

δS

δφ
+O

(
(δφ)2

)]
. (3.35)

In the last line, we expanded the exponential distribution around zero and introduced

Ñ−1 :=
lim
ε→0

Φ
[
−1
ε + η̃

]

N
(3.36)

for better readability. Proposal states can be sampled by

ν = φ+
√

2εη . (3.37)

This can be derived based on a transformation of the probability density of the proposal distri-
bution (3.33) (similar to Eq. (C.7)). According to the above sampling of proposal states, we can
replace δφ by

√
2ε and (δφ)2 by its expectation value of 2ε. After reordering the terms, the update

rule (3.35) simplifies to:

φ′ = φ− Ñ−1

[
ε
δS

δφ
+
√

2εη

]
, (3.38)

which corresponds with the exception of the additional normalization factor to the discretised update
rule for Langevin dynamics (A.1),

φ′ = φ− ε δS
δφx

+
√
εη . (3.39)

Deriving Complex Langevin dynamics for complex actions 33

This implies that the dynamics is correctly normalized by Ñ−1 = 1.

3.4 Deriving Complex Langevin dynamics for complex actions

Complex Langevin dynamics can be derived based on a similar way as Langevin dynamics. The first
steps of the derivation follow the same reasoning as the one in the previous section. We continue
here starting from the intermediate update rule (3.32) and consider complex actions S(φ), where φ
is still real-valued.

As a preparation step, we replace φ by complex-valued states:

φ→ φx + iφy (3.40)

and refer to the complex action as S(φx, φy) = SRe(φx, φy) + iSIm(φx, φy) = SRe + iSIm. It is
assumed that a proposed state can only differ from the previous state in the real direction. This
assumption can be justified by the fact that also in the first place, changes are only considered in
real-valued fields in the intermediate update dynamics (3.32). The complexification is therefore a
result of the first update step based on a complex action, but not directly related to the action
difference.

For a complex action S(φx, φy), the acceptance term (3.31) turns into

Ã (ν + iφy, φx + iφy)) = lim
ε→0

Φ

[
−1

ε
+ η̃

]
× exp

(
−∆SRe(φ

′, φ)

2

)

×
[
cos

(
∆SIm(φ′, φ)

2

)
− i sin

(
∆SIm(φ′, φ)

2

)]
, (3.41)

with ∆S(φ′, φ) = S(ν, φy) − S(φx, φy). In concordance with the above arguments, the proposed
state refers to a change in the real part of the field. The complex acceptance term leads together
with Eq. (3.32) to update dynamics for the complex field. These can be specified separately for the
real and the imaginary part. For the real part, we obtain

φ′x = φx +
(ν − φx)

N
exp

(
−∆SRe(φ

′, φ)

2

)
cos

(
∆SIm(φ′, φ)

2

)
, (3.42)

and for the imaginary part

φ′y = φy +
(ν − φx)

N
exp

(
−∆SRe(φ

′, φ)

2

)
sin

(
∆SIm(φ′, φ)

2

)
. (3.43)

The normalization factor N turns out to be one. This can be again justified at the end of the
derivation by a correct normalization of complex Langevin dynamics itself. As before, we assume
that this update dynamics is only correct for proposal distributions with an infinitesimal small step
size.

34 Langevin dynamics for discrete systems

The change in the action for infinitesimally small step sizes δφx entails simplifications resulting from
the following Taylor expansions. The action difference can be written as

∆S := S(ν, φy)− S(φx, φy)

= S(φx + δφx, φy)− S(φx, φy) ' δφx
δS(φx, φy)

δφx

= δφx
δSRe(φx, φy)

δφx
+ iδφx

δSIm(φx, φy)

δφx
. (3.44)

The exponential function in Eqs. (3.42) and (3.43) simplifies to

exp

(
−∆SRe(φ

′, φ)

2

)
= 1− δφx

2

δSRe(φx, φy)

δφx
+O

(
(δφx)2

)
. (3.45)

Additionally, we obtain from an expansion of the sine and the cosine function,

cos

(
∆SIm(φ′, φ)

2

)
= 1 +O

(
(δφx)2

)
,

sin

(
∆SIm(φ′, φ)

2

)
= δφx

δSIm(φx, φy)

δφx
+O

(
(δφx)2

)
. (3.46)

Putting all the different pieces together, the above update rules (3.42) and (3.43) turn into

φ′x = φx + δφx −
(δφx)2

2

δSRe(φx, φy)

δφx
+O

(
(δφx)3

)
,

φ′y = φy −
(δφx)2

2

δSIm(φx, φy)

δφx
+O

(
(δφx)3

)
. (3.47)

By replacing the δφx terms in the same manner as for Langevin dynamics, we finally obtain

φ′x = φx − ε
δSRe(φx, φy)

δφx
+
√

2εη ,

φ′y = φy − ε
δSIm(φx, φy)

δφx
. (3.48)

The dynamics coincides in the limit of ε→ 0 and with the identifications

δSRe
δφx

= Re

[
δS

δφ

∣∣∣∣
φx+iφy

]
,

δSIm
δφx

= Im

[
δS

δφ

∣∣∣∣
φx+iφy

]
. (3.49)

with complex Langevin dynamics, cf. Eq. (2.10). Interestingly, we can derive complex Langevin
dynamics without any necessary further assumptions on the dynamics.

Deriving Complex Langevin dynamics for complex actions 35

The normalization can again be obtained by a comparison to complex Langevin dynamics and a
respective consideration of the transition probability of the update equation of the real part of the
field.

CHAPTER 4

Spiking neural networks on neuromorphic hardware

This chapter is based on Ref. [1].

The present chapter concentrates on the potential of Langevin dynamics for discrete systems, cf.
Chapter 3, for a more accurate implementation of Boltzmann distributed systems on the neuromorphic
hardware. Due to the spiking character of the system, the focus is on a successful implementation of
the statistics of discrete systems with two possible states per neuron. Numerical results are studied
for the Boltzmann machine and the Ising model. The term spiking character refers to an effective
mapping of the continuous membrane potential to an active or an inactive state of a neuron states
in an interacting system.

For scientific computations on neuromorphic hardware systems, an exact representation of the
activation function of the Boltzmann machine is necessary to obtain accurate statistics. In the
present chapter we show in a detailed numerical analysis that small deviations in the activation
function of a neuron propagate if a rectangular refractory mechanism of the neurons or interactions
between neurons are taken into account. These small deviations have a large impact on the resulting
correlation functions and observables. The numerical results demonstrate that a reliable estimation,
an understanding and a control of different sources of errors are essential to correctly compute
Boltzmann distributed systems in the future.

Following up on the discussion in Sec. 2.3.1, a finite accuracy for the representation of Boltzmann
machines can be and even is sufficient for most of the applications. This is in particular the case
for applications in the field of deep learning, cf. Chapter 6. In contrast to this, the focus of this
chapter is on performing scientific computations on neuromorphic hardware systems implementing
LIF dynamics. For this kind of application, it is important to reach a certain accuracy, to know
about possible systematic errors and to be able to reliably estimate error bars for the sampled
statistics.

Non-linear interaction kernels between the neurons and the spiking character of the single neurons
introduce a high complexity to the membrane dynamics on the BrainScaleS-2 chip. Because of this,
deriving a closed form for the outcome of simulations with LIF dynamics is infeasible, cf. Sec 2.3.
An accurate qualitative and quantitative analysis of Langevin dynamics for discrete systems on the
neuromorphic device turns out to be difficult. To overcome this difficulty, we study simplified model
descriptions of LIF sampling. This allows us to analyze the impact of particular hardware related
properties and sources of resulting errors on different levels of abstraction.

37

38 Spiking neural networks on neuromorphic hardware

uz

uzz

z

Network structure

zi, b
′
i

zj , b′j
zk, b′k

zm, b′m

zl, b
′
l

LM1 OU1

OU2LM2

Discrete
Langevin machine

Ornstein-Uhlenbeck
process with spiking
character

discrete system

uncorrelated noise
zi ∈ {0, 1}

continuous system:

autocorrelated noise
u ∈ R ⇔ z = Θ[u]

W ′
ik

W ′
km

W ′
kl

W ′
jl

W ′
mm

W ′
jj

W ′
ll

W ′
kk

W ′
ii

zi, bi
zj , bj

zk, bk

zm, bm

zl, bl

Wik

Wkm

Wkl
Wjl

T
H
E
R
M

O
D
Y
N
A
M

IC
S
Y
S
T
E
M

N
E
U
R
O
M

O
R
P
H
IC

S
Y
S
T
E
M

Figure 4.1: Comparison of the commonly used network structure (upper row) and the presented architecture
with a self-interacting contribution (lower row). Both network structures can be considered as
systems of two discrete states with an uncorrelated noise contribution, which corresponds to
different implementations of the discrete Langevin machine. Their continuous counterpart is
represented by an Ornstein-Uhlenbeck process with spiking character. The dynamics is based on
the temporal evolution of a membrane potential u := ueff(t). The interaction of neurons relies
on a projection of the potential onto two states and enables a comparison with the Langevin
machine. The processes on the right-hand side are already very close to the fundamental dynamics
of LIF sampling. The different types of dynamics will be introduced throughout this chapter, see
Eqs. (4.19) and (4.22) for the LM2 and the OU2 process and Eqs. (4.16) and (4.14) for the LM1

and the OU1 process, the standard Ornstein-Uhlenbeck process.

The implementation of Langevin dynamics for discrete systems leads to an architecture of neurons
based on a self-interacting contribution. The self-interacting term manifestly changes the dynamics of
the neural network. For simplified models, this results in activation functions which are much closer
to a logistic distribution, the activation function of a Boltzmann machine, than existing approaches.
The architecture can be applied to both, discrete two-state systems and neuromorphic hardware
systems with a continuous membrane potential and a spiking character. The dynamics differ in their
kind of noise contribution that is uncorrelated in the former case and autocorrelated in the latter
case. Throughout this chapter, the term autocorrelated noise refers to additive noise contributions
to a stochastic process whereas uncorrelated noise is used in the update dynamics but not directly
contributing to the updated state. Fig. 4.1 compares the different network structures and gives an
overview over existing dynamics and novel dynamics introduced in this chapter.

We start in Sec. 4.1 with a detailed specification of simplified model descriptions for implementing
Boltzmann distributed systems by means of LIF dynamics. Sec. 4.2 reviews standard implementations
for emulating Boltzmann machines by means of these model descriptions. In Sec. 4.3, we introduce
two new sampling processes for the representation of Boltzmann machines by utilizing the Langevin
equation for discrete systems. After a short discussion about a possible integration of the refractory
mechanism of spiking neural networks in Sec. 4.4, we present in Sec. 4.5 numerical results of the
different dynamics introduced in this chapter. The chapter ends with a discussion of related stochastic
processes in Sec. 4.6 and a summary in Sec. 4.7.

Hardware Abstractions 39

Thermodynamic system

(a) Transition to a two-state system ⇔ (restricted) Boltzmann
machine (BM)

(b)
Generating stochasticity by
uncorrelated Gaussian noise

⇔
sign-dependent discrete

Langevin machine
(LM2) / LM1F

(c)

Transition to a continuous
membrane potential with spiking
character, real time evolution and

correlated noise

⇔
sign-dependent

Ornstein-Uhlenbeck
process (OU2) / OU1F

(d)
Introducing a refractory

mechanism with a rectangular
interaction kernel

⇔ OU2 /OU1F with finite
refractory times

(e)
Considering non-trivial

(exponential) PSP shapes
⇔ LIF sampling

Neuromorphic system

Figure 4.2: Illustration of a step-by-step approach to map thermodynamic systems on a neuromorphic
hardware system. The dashed line indicates the progress of the paper. The paper proposes
dynamics which have the potential to exactly preserve the properties of the Boltzmann machine
up to this line.

4.1 Hardware Abstractions

Several mechanisms of the BrainScaleS-2 chip can be neglected to simplify the underlying dynamics.
Having the initial motivation to simulate physical models in mind, we analyze a stepwise mapping
of a thermodynamic, Boltzmann distributed system onto the neuromorphic system, as indicated
in Fig. 4.2. We choose a step-by-step approach to have control over introduced sources of errors
for each of the mechanisms. Each step describes a different level of abstraction of a neuromorphic
system. Note that the chosen mechanisms and their order is not the only possible approach for such
a projection.

The choice of the different levels was made based on the following properties of LIF sampling:

(1) A description of the microscopic state of a neuron by a continuous membrane potential,

(2) An autocorrelated noise contribution to the membrane potential,

(3) A spiking system with a refractory mechanism and

(4) Non-trivial and nonconstant interaction kernels between neurons.

40 Spiking neural networks on neuromorphic hardware

Inspired by the first two properties of LIF sampling, we distinguish between the so-called discrete
Langevin machine and an Ornstein-Uhlenbeck process with spiking character. The two kinds of
dynamics differ in their microscopic representation and their noise contribution, cf. Fig. 4.1. Their
characteristics are used throughout the chapter as a basis for comparing approaches to represent
Boltzmann machines at the different levels of abstraction of LIF dynamics.

4.1.1 Ornstein-Uhlenbeck process with spiking character

Ornstein-Uhlenbeck processes with a spiking character represent the first kind of simplified dynamics.
In Fig. 4.2, they refer to the levels of abstraction (c) and (d). The dynamics of the membrane
potential of a neuron i is the same as for LIF dynamics in the high-conductance state, cf. Sec. 2.3.1,

dui,eff(t)

dt
= θ [µi(t)− ui,eff(t)] + ση̃i(t) , (4.1)

with hardware-related parameters θ and σ and with a time-dependent mean value µi(t) = µleaki +

µaverage noise
i + µinteractioni (t), incorporating synaptic interactions of the neural network. The noise is

uncorrelated and has zero mean and unit variance

〈η̃i(t) η̃j(t′)〉η̃ = δ(t′ − t)δ(j − i) , 〈η̃i(t)〉η̃ = 0 , (4.2)

If the refractory mechanism of neurons is neglected, a neuron i can be interpreted as active (zi = 1)
if the effective membrane potential is above a certain threshold, and as inactive (zi = 0) otherwise:

zi(t) := Θ [ui, eff(t)− ϑ] , (4.3)

where ϑ refers to the threshold above which the neuron spikes and Θ [·] denotes the Heaviside
function. The resulting dynamics corresponds to the level of abstraction (c) in Fig. 4.2. For a finite
refactory time τref, the neuron is considered to be active within this time span, covered by the level of
abstraction (d). Different types of this dynamics are depicted on the right-hand side of Fig. 4.1. To
preserve the spiking character of the system, interactions between the neurons are also implemented
on the basis of the projected neuron states instead of their actual effective continuous membrane
potential.

4.1.2 Discrete Langevin machine

The so-called discrete Langevin machine, introduced in the following, can be interpreted as a discrete
counterpart to the spiking systems discussed in the previous section. The noise is uncorrelated
and the dynamics takes place within the two possible discrete states of each neuron. The discrete
Langevin machine implements dynamics in the discrete states zi,

z′i = Θ [µi + η̃i] , (4.4)

with a Gaussian noise term η̃i and where µi is determined again by interacting contributions and a
possible scalar offset. In the flow diagram in Fig. 4.2, this corresponds to dynamics at the level of
abstraction (b). The studied dynamics of this kind are shown on the left-hand side of Fig. 4.1. The
time scale of the dynamics is given by the computer time. The term Langevin machine is chosen
because of the respective Gaussian noise term, characteristic for Langevin dynamics, and the latter

Representing Boltzmann machines 41

observed similar properties of the Langevin equation for discrete systems with a Boltzmann machine,
cf. Sec. 4.3. The adjective discrete is added to avoid confusion with the Langevin machine presented
in Ref. [258].

4.1.3 Mappings between different levels of abstractions

Dynamics of the different levels of abstractions can be mapped onto each other. We will discuss this
for different realisations of network architectures for the implementation of Boltzmann distributed
systems. In particular, we focus on a mapping of continuous dynamics of the membrane potential,
cf. Eq. (4.1), onto dynamics in discrete states, cf. Eq. (4.4) and vice versa.

Denoting the neuromorphic hardware system as HW(p), with parameters p = {Wij , bi, zi, zj , ε}, and
the discrete Langevin machine as LM(h), with h := h(p), we suggest the important relation,

{LM(h(p))} = {HW(p)} , (4.5)

i.e., we assume that there exists a discrete two-state system for each set of parameters p of the
hardware which emulates the dynamics of the spiking system in a discrete space.

In terms of update dynamics this corresponds to the mapping of the dynamics

dui,eff(t)

dt
= θ [µi(p)− ui,eff(t)] + ση̃i(t) , (4.6)

and zi(t) = Θ [ui,eff(t)− ϑ], onto dynamics in discrete neuron states zi ∈ {0, 1}

z′i = Θ [µi(h(p)) + η̃i] , (4.7)

for all realisations of p. The information about the network of neurons, parametrized by p is encoded
in the mean values µi(p) and µi(h(p)).

Relation (4.5) and the formal introduction of the discrete Langevin machine represent a theoretical
framework for describing dynamics at different levels of abstractions of LIF sampling. For an exact
mapping h(p), the magnitudes of the sources of error have to be matched. Tab. 4.1 gives an overview
of the now presented theoretical models for an implementation of Boltzmann distribution systems at
different levels of abstractions. Respective systems are given by the Boltzmann machine and the
Ising model, whereas the latter can be obtained by a rescaling of the neuron states to spins [259].

In the following, we neglect the finiteness of the refractory time. Therefore, we consider mostly
simplified theoretical models of the hardware system at the level of abstractions (b) and (c). A
discussion with respect to a refractory mechanism, as a process of the level of abstraction (d), is
given in Sec. 4.4.

4.2 Representing Boltzmann machines

In this section, we discuss the implementation of Boltzmann machines (BM) at different levels
of abstraction of the neuromorphic hardware. The consideration are similar to the studies in
Refs. [77, 234, 259]. A short reminder on Boltzmann machines is given in Sec. 2.3.2. Samples from

42 Spiking neural networks on neuromorphic hardware

Gibbs
sampling
(BM)

LM1F LM2 OU1F OU2 LM1 OU1

Activation
function

Logistic
distribu-
tion

≈
Logistic
distribu-
tion

≈
Logistic
distribu-
tion

≈
Logistic
distribu-
tion

≈
Logistic
distribu-
tion

Cumulative
Gaussian
distribu-
tion

Cumulative
Gaussian
distribu-
tion

Microscopic
representation

Discrete Discrete Discrete Continuous Continuous Discrete Continuous

Timescale Computer
time

Computer
time

Computer
time

Real
time

Real
time

Computer
time

Real time

Deviations
(free case)

Exact Small Small Small Small Exact Exact

Extrapolation
to exact solu-
tion?

- No Yes No Yes - -

Deviations
(interacting
case)

Exact Medium Small Large Small Exact Exact

Extrapolation
to exact solu-
tion?

- No Yes No Yes - -

Control of a re-
fractory mecha-
nism

Exact [260] Constant
shift
τ(τ ′)

Constant
shift
τ(τ ′)

Constant
shift
τ(τ ′)

Constant
shift
τ(τ ′)

Nontrivial
shift
τ(τ ′,Wij , bi)

Nontrivial
shift
τ(τ ′,Wij , bi)

Table 4.1: Comparison of the different analysed dynamics throughout this chapter. An extrapolation to the
exact solution and, therefore, a control of sources of errors is possible for the LM2 and the OU2

for both with and without a refractory mechanism.

Representing Boltzmann machines 43

the Boltzmann distribution, cf. Eq. (2.27),

p(~z) =
1

Z
exp(−E(~z)) (4.8)

with a partition function Z and

E(~z) = −
∑

i<j

Wijzizj −
∑

i

bizi , (4.9)

can be drawn by means of a logistic distribution as activation function and an accurate implementation
of interactions between neurons,

P (zi = 1) = σ

∑

j

Wijzj + bi

 (4.10)

where σ(·) denotes the sigmoid function σ(x) = [1 + exp(−x)]−1.

4.2.1 Dynamics in continuous states

We start by considering a mapping onto an Ornstein-Uhlenbeck process with spiking character, cf.
Eq. (4.1), as a simplified model at the level of abstraction (c) in Fig. 4.2.

The activation function of the free (without interactions) membrane potential can be computed by
means of the equilibrium distribution Peq of the Ornstein-Uhlenbeck process

Peq(ui,eff) =

√
θ

πσ2
exp

(
−θ(ui,eff − µi)

2

σ2

)
. (4.11)

It refers to the probability of the membrane potential to be above the threshold and can be expressed
in terms of a cumulative Gaussian distribution Φ(·),

Peq(zi = 1) =

∫ ∞

ϑ
Peq(ui,eff)dui,eff = Φ

(√
2θ

σ
(µi − ϑ)

)
, (4.12)

Fitting the activation function (4.12) to the logistic distribution represents a possible approach to
sample Boltzmann distributed neuron states. This approximation can be implemented by a scaling
parameter r and a shifting parameter µ0 according to Peq(zi = 1) = Φ

(√
2θ
σ

µi−µ0
r

)
[33, 77, 234, 259,

261]. Interactions are taken into account by absorbing their contributions into the mean value µi
of the Ornstein-Uhlbenbeck process according to: µi → µi + µinteractioni . To be able to make use of
this approximation in a network of interacting neurons, we assume that the time to equilibrium is
negligible after a change of an interacting neuron.

Note that the more accurate expression of the activation function, defined in Eq. (2.21), takes the
finite refractory time into account. The actually measured activation function is somewhere between
a logistic distribution and the cumulative Gaussian distribution [259].

44 Spiking neural networks on neuromorphic hardware

A mapping of the Boltzmann machine can be performed straightforwardly by the following identifi-
cations:

µaverage noise
i = 0 ,

µleaki = bi ,

µinteractioni =
∑

synj

Wijzj(t) , (4.13)

i.e., by setting the average noise contribution to zero, adjusting the leak potential to bi, and by
taking the interacting contributions into account. Then, based on the dynamics of equation (4.1),
the following Ornstein-Uhlenbeck process with spiking character is considered:

dui,eff(t)

dt
=

θ

r2

∑

synj

Wijzj(t) + bi − µ0
i − ui,eff(t)

+ ση̃i(t) , (4.14)

with zj(t) = Θ [uj,eff(t)− ϑ] and where Wij =
Aij
α . For simplicity, the threshold potential ϑ is set to

zero in further considerations. The weights need to be adjusted by a scaling factor α in dependence
on a certain hardware related interaction factor Aij , as discussed in more detail in Sec. 2.3.1. With
simplified parameters, σ =

√
2, θ = 1, one obtains the following activation function:

POU1F(zi = 1) = Φ

(∑
synjWijzj + bi − µ0

i

r

)
. (4.15)

The process is abbreviated in the following by OU1F. The "1" in the exponent indicates that the
process takes place in one regime, i.e., the process does not fluctuate between two fundamental
dynamics as it is the case for the sign-dependent processes discussed in Sec. 4.3. The fitting of
the activation function to the logistic distribution is indicated by the additional "F". The process
without any fitting parameters (r = 1, µ0

i = 0) is denoted as OU1.

4.2.2 Dynamics in discrete states

We can also formulate an update rule with the same activation function as in the previous section
for a discrete two-state system, i.e., a system without a membrane potential and dynamics in the
neurons states zi. Therefore, the system is built upon an immediate representation of the neuron
states. The dynamics represents a possible realisation of a discrete Langevin machine, cf. Sec. 4.1.2.
The resulting process corresponds to a transition from the level of abstraction (c) to the level (b)
and is driven by uncorrelated Gaussian noise.

The update rule for the level of abstraction (b) is given by,

z′i = Θ

[∑
synjWijzj + bi − µ0

i

r
+ η̃

]
, (4.16)

Representing Boltzmann machines by self-interacting neurons 45

where the updates take place in computer time and with zi ∈ {0, 1}. The corresponding transition
probability reads,

WLM1F(zi → 1) = Φ

(∑
synjWijzj + bi − µ0

i

r

)
. (4.17)

The update rule is studied in Ref. [262] in more detail and introduced in Ref. [31] as an approximation
of the so-called Synaptic Sampling Machine. In compliance with the OU1 process, we use the
abbreviation LM1 for the process with r = 1 and µ0

i = 0. When the activation function is fitted to
the logistic distribution, LM1F is the corresponding acronym. In the latter case, sources of errors are
resulting deviations due to an imperfect fit and finite times to equilibrium if an interacting neuron
changes its macroscopic state [262].

Properties and similarities of the two presented processes, i.e., the Ornstein-Uhlenbeck process with
spiking character, given in this case by OU1 / OU1F, cf. Eq. (4.14), and the discrete Langevin
machine, given by LM1 / LM1F, cf. Eq. (4.16), are numerically investigated in Sec. 4.5.

4.3 Representing Boltzmann machines by self-interacting neurons

As already pointed out several times, the introduction of a Langevin equation for discrete systems,
cf. Chapter 3 was motivated by the similarity of Langevin dynamics and the underlying dynamics of
the neuromorphic hardware of the BrainScaleS-2 chip. Finally, we are able to analyse a possible
implementation of this kind of dynamics. Similar to the previous section, we investigate models
at different levels of abstraction of the neuromorphic hardware system. We focus again on an
implementation of the statistics of a Boltzmann distributed system with two possible states per
neuron.

4.3.1 Sign-dependent discrete Langevin machine

The Langevin equation for discrete systems (3.12) turns into a rather simple expression for a two-state
system. The resulting dynamics is introduced in the following as sign-dependent discrete Langevin
machine (LM2) and represents a particular realisation of the discrete Langevin machine, cf. Sec. 4.1.2.
The LM2 is implemented by an architecture with the characteristic feature of self-interacting neurons,
see also Fig. 4.3. The derived network structure results in dynamics with different weights and
biases compared to the Boltzmann machine. It has the unique property that the equilibrium
distribution converges in the limit ε→ 0 to a logistic distribution which is the activation function of
the Boltzmann machine.

We start our derivation by considering the energy function of the Boltzmann machine

E(~z) = −
∑

i<j

Wijzizj −
∑

i

bizi , (4.18)

with symmetric weights Wij and biases bi.

For applying the generalized update rule (3.12) of Langevin dynamics for discrete systems, we need
the following identifications: S → E and φi → zi. As discussed in App. A.4, the following simplified

46 Spiking neural networks on neuromorphic hardware

zi, bi
zj , bj

zk, bk

zm, bm

zl, bl

Wik

Wkm

Wkl
Wjl

(a)
zi, b

′
i

zj , b′j
zk, b′k

zm, b′m

zl, b
′
l

W ′
ik

W ′
km

W ′
kl

W ′
jl

W ′
mm

W ′
jj

W ′
ll

W ′
kk

Wii(b)

Figure 4.3: Comparison of the structure of a Boltzmann machine (a) and that of the sign-dependent discrete
Langevin machine (b). The LM2 has a self-interacting term and rescaled weights and biases.
Nevertheless the dynamics leads in equilibrium to a Boltzmann distribution.

update rule can be derived for the LM2:

z′i = Θ

W ′iizi +

∑

j

W ′ijzj + b′i + η̃T

 , (4.19)

where the transformed parameters are defined as follows: W ′ii = 2√
ε
, W ′ij =

√
ε

2λε
Wij , and b′i =(√

ε
2λε
bi − 1√

ε

)
. Fig. 4.3 illustrates a comparison between the structure of the Boltzmann machine

and the novel update dynamics. The activation function of the LM2 is given in the limit of ε→ 0 by
the logistic distribution,

lim
ε→0

PLM2(zi = 1) =
1

1 + exp
[
−∑jWijzj − bi

] . (4.20)

This holds since the equilibrium distribution of Langevin dynamics for discrete sytsems is represented
by the Boltzmann distribution, the equilibrium distribution of the Boltzmann machine, cf. Eqs. (4.8)
and (4.10).

The noise term in the dynamics can be chosen according to equation (3.10), i.e., it can be a Gaussian
noise or a truncated Gaussian noise. The self-interaction term W ′ii ∈ {0, 2/

√
ε} and the contribution

−1/
√
ε of the bias b′i lead in dependency of the state of the neuron for small values of ε to a

strong shift of the mean value into a positive or negative direction. Respectively, the neuron stays
very long in an active regime or in an inactive regime in the case of Gaussian noise. The process
fluctuates between two different fundamental descriptions. We emphasize this property by the term
sign-dependent in the name of dynamics. The exponent "2" in the abbreviation LM2 indicates the
fluctuation between the two regimes.

Instead of performing an implicit update, it is also possible to explicitly compute the probability for
an activation of the neuron in the next step. This probability is given by

WLM2(zi → 1) = Φ

W ′iizi +

∑

j

W ′ijzj + b′i

 . (4.21)

In contrast to the Boltzmann machine, the transition probability is not the same probability as the
activation function (4.20). However, the functional from is the same as for the LM1 and the OU1

process, which is of advantage for an implementation of Boltzmann distributed statistics on the
neuromorphic device, as we will discuss in the next section.

Representing Boltzmann machines by self-interacting neurons 47

The LM2 exhibits a totally different dynamics than the Boltzmann machine. The dynamics is
characterised by a Gaussian noise term as stochastic input, a self-interacting term and its simplicity
in terms of utilized mathematical functions. Transition probabilities and correlation times can be
easily controlled by usage of truncated Gaussian noise, cf. Sec. 3.1. As discussed in Chapter 3, finite
values of ε lead to small deviations in numerically computed observables for the Langevin dynamics
for discrete systems. This issue can be resolved by performing simulations for several finite values of
ε and a subsequent extrapolation of the observables to ε→ 0, as verified numerically in Sec. 4.5.

4.3.2 Sign-dependent Ornstein-Uhlenbeck process

Similar to Sec. 4.2, a mapping of the LM2 can be performed onto an Ornstein-Uhlenbeck process
with spiking character, i.e., from the level of abstraction (b) to (c). The resulting process represents
a continuous counterpart to the sign-dependent discrete Langevin machine and is referred to as sign-
dependent Ornstein-Uhlbenbeck process (OU2). The activation function of the OU2 process converges
in the limit ε → 0 also to a logistic distribution, allowing a sampling of Boltzmann distributed
statistics. As illustrated in Fig. 4.1, the two processes differ in their microscopic representation and
their timescales. The LM2 corresponds to a process with two discrete states and the computer time
as timescale. In contrast, the OU2 process describes the temporal evolution of a membrane potential
in real time, whereas interactions between neurons are again implemented by spikes, referring here
to the information whether the interacting neuron is active or inactive.

The mean value of the Ornstein-Uhlenbeck process in Sec. 4.2.1 is exchanged for a mapping by the
associated mean of the sign-dependent discrete Langevin machine: W ′iizi +

∑
jW

′
ijzj + b′i. This leads

to the following dynamics:

dui,eff(t)

dt
= θ

W ′iizi(t) +

∑

synj

W ′ijzj(t) + b′i − ui,eff(t)

+ ση̃(t) , (4.22)

with zi(t) = Θ [ui,eff(t)− ϑ]. The additional scaling factor of λε is omitted since the dynamics
implements the activation function of a Boltzmann machine in a slightly different way, as discussed
further below. Accordingly, it holds: W ′ii = 2√

ε
, W ′ij =

√
ε

2 Wij , and b′i =
(√

ε
2 bi − 1√

ε

)
. The term

sign-dependent in the name of the process reflects again the property of the neuron to stay very long
in an active regime ("+"), or in an inactive regime ("−"), as can be observed in the trajectories of
the dynamics in the lower parts of Fig. 4.4. If the membrane potential randomly crosses the threshold
ϑ = 0, it perceives a strong drift towards the other regime, due to the changing mean value of the
process, i.e., due to the transition zi = 0→ zi = 1. An immediate return to its initial regime gets
rather unlikely because of the dependence of the mean value on 1√

ε
. Therefore, the self-interaction

term in the OU2 process has significant impact on the resulting equilibrium distribution.

The equilibrium distribution of the process is derived in App. A.3. It is given by

Peq(ui,eff) ∝ exp [K(ui,eff)] , (4.23)

with

K(ui,eff) =
|ui,eff|√

ε
+

√
ε

2

∑

synj

Wijzj + bi

ui,eff −

u2
i,eff

2
. (4.24)

48 Spiking neural networks on neuromorphic hardware

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
ui,eff

0.0

0.1

0.2

0.3

0.4

0.5

P
eq
(u
i,
eff
)

OU1

OU2
, ε = 0.2

OU2
, ε = 0.5

Peq(ui,eff), ε = 0.2

Peq(ui,eff), ε = 0.5

−5
0
5

u
i,
eff

0 5 10 15 20 25 30
t

0

1

z i

(a)

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
ui,eff

0.0

0.1

0.2

0.3

0.4

0.5

P
eq
(u
i,
eff
)

OU2

OU2
, τref = 8

P
+
eq(ui,eff), τref = 8

P
−
eq(ui,eff), τref = 8

−5
0
5

u
i,
eff

0 5 10 15 20 25 30
t

0

1

z i

(b)

Figure 4.4: Upper plots: Comparison of equilibrium distributions Peq(ui,eff) for the continuous processes
for the free case with bias b = 0.8 without a refractory mechanism (a) and with a refractory
mechanism with refractory time τref = 8 (b). Lower plots: Corresponding example trajectories of
the OU2 processes with and without a refractory mechanism for ε = 0.2. The timescale of the
lower plot is rescaled according to the transition probabilities to coincide. The threshold ϑ = 0 is
indicated by the dashed horizontal gray line.

The exponent K(ui,eff) contains the absolute value of the effective potential. This property causes
a change of the sign of the otherwise Gaussian distribution in dependence of the sign of ui,eff.
Therefore, the equilibrium distribution can be considered as the concatenation of two Gaussian
distributions P+

eq(ui,eff) and P−eq(ui,eff) with different mean values. In the active regime, the resulting

mean value is µ+
i (t) = − 1√

ε
−
√
ε

2

(∑
synjWijzj(t) + bi

)
and in the inactive regime, it holds µ−i (t) =

− 1√
ε

+
√
ε

2

(∑
synjWijzj(t) + bi

)
. The two distribution are weighted implicitly by the dynamics,

resulting in the observed stationary probability distribution. The left part of Fig. 4.4 compares
numerically found stationary distributions with the analytically found probability distribution
of Eq. (4.23).

The stationary distribution of the process as a function of zi can be obtained by an integration of
Peq(ui,eff) over ui,eff with respect ot the threshold ϑ. As derived in App. A.3, this results in the
following activation function of the sign-dependent Ornstein-Uhlenbeck process,

POU2(zi = 1) =
1

1 + exp [αε(mi)×mi]
, (4.25)

with αε(mi) being a correction factor. Here, mi := −∑synjWijzj(t)− bi corresponds to the total
input of the neuron. Since lim

ε→0
αε(mi) = 1, the activation function converges in the limit of ε→ 0 to

the logistic distribution,

lim
ε→0

POU2(zi = 1) =
1

1 + exp
[
−∑synjWijzj − bi

] , (4.26)

the activation function of the Boltzmann machine. The correction factor αε(mi) is different to the
scaling factor λε of the LM2 since the convergence to the logistic distribution is caused by different
characteristics for the two processes. Fig. 4.5 compares numerically found scaling and correction

Refractory mechanism 49

factors of the LM2 and OU2 process with the theoretical factors λε and αε(mi) for different biases b
in the free case, i.e., for the activation function without interacting neurons.

0.0 0.2 0.4 0.6 0.8 1.0√
ε

1.0

1.1

1.2

1.3

1.4

1.5

1.6

λ
ε

(a)

Num. shift b = 1

Num. shift b = 2

Num. shift b = 3

Num. shift b = 4

λε

0.0 0.2 0.4 0.6 0.8 1.0
ε

1.0

1.1

1.2

1.3

1.4

1.5

1.6

α
ε

(b)

Num. shift b = 1

Num. shift b = 2

Num. shift b = 3

Num. shift b = 4

αε(b = 1)

αε(b = 1)

αε(b = 1)

αε(b = 1)

Figure 4.5: Comparison of scaling and correction factors for the sign-dependent processes for a better
convergence to the logistic distribution: (a) The numerical and the analytic scaling factor
λε = λ (

√
ε) for the sign-dependent Langevin machine. (b) The numerical and analytic correction

factors αε for the sign-dependent Ornstein-Uhlenbeck process.

The overlap of the tails of the two shifted Gaussian distributions is the reason for necessity of a
correction factor. The two distributions do not overlap at all in the limit of ε → 0. Hence, the
activation function corresponds to the logistic distribution only in this case. For larger values of ε,
the distributions are closer together and crossings between the active and the inactive state take
place more often. This property results in the observed deviations to the logistic distribution.

An advantage of the sign-dependent Ornstein-Uhlenbeck process is the possibility to extrapolate
results for different values of ε to the limit of ε→ 0, i.e., to exact results of the Boltzmann machine.
A disadvantage of the process is that smaller values of ε lead to larger correlation times and therefore
to a higher simulation cost. This results from the limitation that it is not possible to accelerate
the dynamics by an adaptation of the noise source, as it is the case for the LM2. From another
perspective, this property might even help to straighten out problems related to the hardware, like
nontrivial postsynaptic shapes, for example.

4.4 Refractory mechanism

A possible further step towards LIF sampling is to take into account a refractory mechanism of the
neurons, as indicated by the level of abstraction (d) in Fig. 4.2.

Beyond that, a refractory mechanism can also be considered for dynamics in a discrete system, for
example, for a standard implementation of a Markov chain Monte Carlo algorithm for a Boltzmann
machine, as discussed in Ref. [260]: A neuron stays active for the refractory time τref, after it got
activated, whereby the refractory time is measured by the number of Monte Carlo sweeps. The
introduced refractory mechanism causes an imbalance between the active and the inactive state. The
resulting asymmetry can be compensated by reducing the transition probability to become active by
a factor of 1/τref, cf. Ref. [260]. The factor can be absorbed into the membrane potential by a shift
of the activation function by log (τref), i.e., by bi → bi − log (τref). The Markov chain Monte Carlo
algorithm performs updates based on the logistic distribution (4.10) as activation function.

50 Spiking neural networks on neuromorphic hardware

−4 −2 0 2 4

Bias b

0.0

0.2

0.4

0.6

0.8

1.0

P
(z
i
=

1
)

LM1

OU1

LM1
, τ = 8

OU1
, τ = 8

−4 0 4
Bias b

0.02

0.00

−0.02

−0.04

A
bs

.
de

v.
[-
]

Figure 4.6: Illustration of the nonsymmetric deformation of the LM1 and the OU1 process for larger refractory
times. The activation functions are shifted to comply: P (zi = 1)

∣∣
b=0

= 0.5. The small plot
contains the absolute deviation to the cumulative Gaussian distribution.

In light of this approach, we want to point out that such a compensation no longer works for the
LM1 and the OU1 process. By following the proof for the case of a logistic distribution in Ref. [260],
it is easy to see that such an absorption of the refractory time is non-trivial or not possible at all for
the cumulative Gaussian distribution. Instead, the activation function with a finite refractory time
is deformed, as shown in Fig. 4.6. The deformation gets larger for larger refractory times.

The impact of the refractory mechanism on possible approximations of the activation function of the
Boltzmann machine is analysed for the proposed dynamics in more detail in Sec. 4.5.2.

For completeness, we want to shortly comment the last level of abstraction of Fig. 4.2. At this
level, interactions between neurons are in general not constant. The interaction is governed by the
postsynaptic potential (PSP), the received input signal of an interacting neuron [77], cf. Sec. 2.3.1.
In Sec. 2.3.1, the relation between a correct implementation of the weights based on a non-linear
interaction kernel is discussed in more detail. Non-linear PSP shape induce further complexity to
the system of neurons. An investigation of exponential PSP shapes is postponed to future work. A
similar analysis with respect to the dynamics presented in Ref. [260] can be found in Ref. [259].

4.5 Numerical results: neuromorphic hardware versus Langevin
machine

Numerical results are discussed for the introduced representation of Boltzmann distributed systems at
different levels of abstraction of the neuromorphic hardware system. In Secs. 4.5.1 and 4.5.2, we start
with a comparison of the dynamics and equilibrium distributions of the free membrane potential for
the discrete Langevin machine and for abstractions of the neuromorphic hardware system, according
to Fig. 4.2 and Tab. 4.1. The focus is on a correct implementation of the logistic distribution of
the Boltzmann machine and on a detailed analysis of the impact of different sources of errors. The
systems are considered with and without an asymmetric refractory mechanism with a rectangular
postsynaptic shape. The section ends with a computation of the Ising model by a projection of the
model on the Boltzmann machine and with a numerical investigation of a Boltzmann machine with
three neurons in Sec. 4.5.3. Both models serve as a benchmark for Boltzmann distributed systems
with interacting neurons.

Numerical results: neuromorphic hardware versus Langevin machine 51

4.5.1 Free membrane potential

0.0

0.5

1.0

P
(z
i
=

1
)

−4 −2 0 2 4

Bias b

−0.06

−0.04

−0.02

0.00

0.02

A
bs

.
de

v.
[-]

(a)

BM
LM1F

LM2, ε = 0.2

OU1F
OU2, ε = 0.2

0.0

0.5

1.0

P
(z
i
=

1
)

−4 −2 0 2 4

Bias b

−0.06

−0.04

−0.02

0.00

0.02

A
bs

.
de

v.
[-]

(b)

BM
LM1F

LM2, ε = 0.2

OU1F
OU2, ε = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
ε

0.00

0.02

0.04

0.06

A
bs

ol
ut

e
de

vi
at

io
n

[-]

(c)
LM2

LM2
, τref = 8

OU2

OU2
, τref = 8

0 5 10 15 20
τref

−0.03

−0.02

−0.01

0.00

0.01

0.02

A
bs

ol
ut

e
D

ev
ia

ti
on

[-]

(d)

ε = 0.2, b = −1

ε = 0.5, b = −1

ε = 0.2, b = 0

ε = 0.5, b = 0

ε = 0.2, b = 1

ε = 0.5, b = 1

Figure 4.7: Comparison of different properties of the activation function for the different processes with and
without a refractory mechanism: (a) Activation function and absolute deviation to the logistic
distribution without a refractory mechanism. (b) The same as in (a), but with a refractory
mechanism with refractory time τ = 8. (c) Absolute deviation of the exact results of the activation
for b = 1 for the sign-dependent processes in dependence of ε. The deviation converges in the
limit ε → 0 for all processes to zero, with and without a refractory mechanism. (d) Absolute
deviation of the results for the OU2 process without a refractory mechanism to the results with a
refractory mechanism and different values of τref. The deviations are compared for b = {−1, 0, 1}.

We numerically analyze the mapping between dynamics of the discrete Langevin machine and the
continuous dynamics according to relation (4.5) by an explicit consideration of transition probabilities.
It is discussed the impact of deviations in the transition probabilities as well as a mapping of the
temporal evolution of the different processes onto each other.

Differences of the two dynamics which are given by construction are illustrated in Fig. 4.1. The
processes correspond to the levels of abstraction (b) and (c) of a neurmorphic hardware system
in Fig. 4.2. The essential differences are the source of noise, which is for the Langevin machine
uncorrelated and for the Ornstein-Uhlenbeck process correlated, as well as the representation of a
microscopic state. The dynamics is described in the former case by two discrete states in computer
time and in the latter one by the evolution of a continuous membrane potential with spiking

52 Spiking neural networks on neuromorphic hardware

character in real time. In particular, we analyze deviations to the expected logistic distribution for
the sign-dependent and for the fitted processes: LM2, OU2, LM1F, and OU1F.

Activation function

Fig. 4.6 and the upper left part of Fig. 4.7 compare numerical results of the activation functions of
the free membrane potential in dependency of the bias b in the network for the different presented
dynamics. The results of the LM1 and the OU1 process in Fig. 4.6 coincide exactly and their
deviation to the cumulative Gaussian distribution emerges from numerical errors. In concordance
to these observations, the fitted LM1F and OU1F process have the same deviations to the logistic
distribution, cf. Fig. 4.7. In the case of the LM2 and the OU2 process, the observed deviations
mirror the theoretically derived errors for finite values of ε. As shown in the lower left part of Fig. 4.7,
both activation functions converge in the limit of ε → 0 to the expected probability. The rate of
convergence of the OU2 process is much smaller than the one of the LM2 for equal values of ε. This
can be reasoned by the different sources of errors for the two processes, as discussed in detail at the
end of Sec. 3.2 for the Langevin equation for discrete systems and at the end of Sec. 4.3.2 for the
sign-dependent Ornstein-Uhlenbeck process. In contrast to the LM1F and OU1F, the only limiting
factor for deviations to the logistic distribution are resulting larger correlation times for smaller
values of ε for the OU2 process. For the LM2, these can be suppressed by truncated Gaussian noise,
cf. Sec. 3.1.

Dynamics: time evolution

0

1

z iLM1

0

1

z iOU1

0

1

z iBM

0

1

z iLM2
ε=0.5

0 5 10 15 20 25 30

t

0

1

z iOU2
ε=0.5

−5
0
5

u
i,
eff

−5
0
5

u
i,
eff

Figure 4.8: Trajectories of the neuron state and the membrane potential in computer time for the different
processes with a uniform timescale.

It has been found numerically that the computer time and the real time coincide for the LM1 and
the Ornstein-Uhlenbeck process. All simulations in real time are performed with finite time steps
of 0.02. All processes in computer time are computed with a random sequential update formalism
and in real time by a parallel update scheme. The timescale in all figures are chosen in units of the
computer time.

Fig. 4.8 compares trajectories of the different discussed processes with respect to a uniform timescale.
It can be observed in the evolution of the membrane potentials that there occur fast changes if the

Numerical results: neuromorphic hardware versus Langevin machine 53

WBM(0→ 1) WLM2(0→ 1) WOU2(0→ 1)

τref = 1 σ(−mi) Φ
(
− 1√

ε
−
√
ε

2λε
mi

)
ϕ
(
− 1√

ε
−
√
ε

2 mi

)

τref > 1 σ(− (mi + log(τref))) Φ
(
− 1√

ε
−
√
ε

2λε
(mi + log(τref))

)
ϕ
(
− 1√

ε
−
√
ε

2 (mi + log(τref))
)

Table 4.2: Transition probabilities from an inactive state to an active state for the different considered
dynamics with (τref > 1) and without (τref = 1) a refractory time. mi corresponds to the total
input for a neuron i, according to App. A.4.

membrane potential is close to the threshold value ϑ = 0. These perturbations seem to have no
influence on the time evolution and the equilibrium distribution.

As discussed in Sec. 3.1, a scaling factor a can be found for a correct mapping of the temporal
evolution of two processes A and B if both processes exhibit the same equilibrium distribution.
According to Eq. (3.15), the scaling factor can be computed by means of the transition probabilities

a =
WA(0→ 1)

WB(0→ 1)
. (4.27)

Analytic expressions for the transition probabilities of the considered sign-dependent processes
are given in Tab. 4.2. The given transition probabilities have been validated numerically. For
that purpose we have mapped the temporal ensemble evolution of the different dynamics onto the
evolution of the Boltzmann machine with respect to the computed scaling factors. A scaling factor
a 6= 1 reflects an increase/decrease of the correlation time for processes with different transition
probabilities. In Fig. 4.9, the dependency of the scaling factor a on ε is plotted for the sign-dependent
processes.

10−1 2× 10−1 3× 10−1 5× 10−1 100

ε

100

101

102

103

a

LM2

OU2

LM2
, τref = 8

OU2
, τref = 8

Figure 4.9: Scaling factors a in dependence of ε for a mapping of the transition probabilities of the sign-
dependent processes onto the transition probability of the Boltzmann machine and, hence, of the
temporal evolution on the computer time. The scaling factors are computed for the free case with
a bias b = 0.

The considerations of the time evolution reinforce that the relation (4.5) corresponds to an exact
mapping of the dynamics of a discrete system with uncorrelated noise to a continuous system with
correlated noise. This property is not self-evident. However, the dependency h(p) is in some cases
non-trivial, due to different occurring sources of errors of the considered models.

54 Spiking neural networks on neuromorphic hardware

4.5.2 Refractory mechanism

In this section we investigate the impact of a refractory mechanism of a neuromorphic system with a
rectangular PSP shape, cf. Sec. 4.4.

For an analysis of the activation functions of the self-interacting processes, it is important to keep in
mind what kind of impact the refractory mechanism has on the dynamics. Firstly, it corresponds to
the property of the neuron to stay active for a certain refractory time after a spike was triggered
and, secondly, it has in impact on the synaptic input to a connected neuron. The latter needs only
to be taken into account if interactions between neurons are considered. In particular, this entails
for the free case that only the activation functions of the sign-dependent processes are affected by
the PSP shape, due to their self-interacting contribution.

In the following, we analyse how the logistic function can be correctly represented with a refractory
mechanism for the presented dynamics to sample Boltzmann distributed statistics. The upper right
part of Fig. 4.7 compares the impact of a refractory mechanism on the different dynamics regarding
their deviations to the logistic distribution.

As discussed in Sec. 4.4, the imbalance between the inactive and the active state can in general
not be compensated entirely by a trivial shift of the bias by log (τref) for the cumulative Gaussian
distribution. However, as long as the activation function is sufficiently close to a logistic distribution,
a shift of the bias according to

bi → bi − log(τ ′ref) (4.28)

can still be used to compensate the refractory mechanism in the activation function. The optimal
value for τ ′ref of the activation function is determined by a numerical simulation based on the
constraint that p(zi = 1)

∣∣
b=0

= 0.5. We introduced a further time constant τ ′ref to distinguish
clearly between the refractory time τref of a neuron and the resulting optimal shift log(τ ′ref) for an
approximation of the logistic distribution. Ideally, one can derive a dependency τ ′ref(τref) to obtain a
consistent approximation of the activation function for different refractory times.

For the LM1F and the OU1F process, the resulting shifts log(τ ′ref) are slightly different to log(τref) as
a consequence of a non-symmetric deformation of the cumulative Gaussian distribution for larger
refractory times, cf. Fig. 4.6 and the discussion in Sec. 4.4. Resulting deviations in the activation
function of the LM1 and the OU1 process can be compensated to a certain extent by an adaptation
of the variance, i.e., of the scaling parameter r, cf. upper right part of Fig. 4.7. By contrast, it
holds for the LM2 process that τref ' τ ′ref since the deviation of the activation function to the logistic
distribution is nearly symmetric around b = 0. Nevertheless, the shift amplifies deviations of the
transition probability for finite values of ε, leading to a worse statistics, as discussed below.

The numerical results in the upper right part of Fig. 4.7 show that deviations of the LM2 and the
OU2 process have increased, as expected by the introduced asymmetry of the refractory mechanism.
Nevertheless, the error vanishes for ε→ 0, as illustrated in the lower left part of Fig. 4.7. Furthermore,
the lower right part of Fig. 4.7 shows that a further increase of the refractory time has a very low
impact on the deviations which encourages an applicability for large refractory times, in practice.

For the OU2 process, the shift of the bias by log (τ ′ref) is much larger than log (τref). Fig. 4.10
illustrates numerically found relations τ ′ref(τref) and τ

′
ref(ε). The large differences in τref and in τ ′ref can

be traced back to a differing impact of the refractory mechanism on the dynamics of the membrane
potential, caused by the self-interacting term in the process. This can be explained as follows.

Numerical results: neuromorphic hardware versus Langevin machine 55

0 10 20
τref

0

50

100

τ
′ re

f

(a)
ε = 0.2

ε = 0.5

0.2 0.5 1.0
ε

20

40

τ
′ re

f

(b)
τref = 8

Figure 4.10: τ ′ref in dependence on: (a) the refractory time τref for ε = 0.2 and ε = 0.5 and (b) ε for τref = 8
for the OU2 process. Both dependencies obey a power law.

In contrast to the OU1 process, the dynamics of the OU2 process fluctuates between the active and
the inactivate regime as a result of the self-interacting contribution. By integrating a refractory
mechanism, changes from the active to the inactive regime are suppressed as long as the neuron
is captured in its refractory mode. This can be seen in the lower right plot of Fig. 4.4, where the
membrane potential crosses from time to time the threshold ϑ = 0 while the neuron stays active.
Consequently, the tails of two Gaussian distributions, P+

eq(ui,eff) and P−eq(ui,eff), have a dissimilar
impact around the threshold on the resulting distribution of P (ui,eff). The refractory time biases the
lower tail distribution of P+

eq(ui), i.e., the part of the distribution for ui,eff < ϑ, within the refractory
time. In contrast, the upper tail distribution of P−eq(ui,eff) does not affect P (ui,eff), since the dynamics
always changes for ui,eff > ϑ from the inactive to the active regime. The local minimum of P (ui,eff)
around ui,eff = ϑ as well as the entire distribution P (zi) are shifted to smaller values, as a result
of this asymmetry, illustrated in the upper right part of Fig. 4.4. Furthermore, the absolute value
of the minimum is larger than the one for the process without a refractory mechanism. We will
see that this imbalance between P+

eq(ui,eff) and P−eq(ui,eff) is the reason for larger deviations of the
activation function for the OU2 process with a refractory mechanism.

Note that the underlying dynamics of the OU1F process is not affected by the refractory mode due
to the absence of a self-interacting term. Therefore, in this case, the only purpose of the shift by
log τ ′ref is to fix the transition probabilities to correctly compensate the emerging asymmetry of the
refractory mechanism.

4.5.3 Interacting systems

The Ising model [263] and the Boltzmann machine [243] are suitable systems to investigate the
presented abstractions of a neuromorphic hardware system with interactions between neurons. The
Ising model can be easily mapped onto the Boltzmann machine. A numerical analysis can be
understood as a proof of concept that the presented processes also work in a more complex network
setup. As a second model, we study a Boltzmann machine with three neurons. We compare the
results for all presented models with and without a refractory mechanism with a rectangular PSP
shape.

The Ising model describes a two-state spin system. The spin states are si ∈ {−1,+1}, which are
likewise also referred to as spin up and spin down si ∈ {↓, ↑}. The Hamiltonian is defined as

H = −J
∑

〈i,j〉
sisj − h

∑

i

si . (4.29)

56 Spiking neural networks on neuromorphic hardware

The external magnetic field h is set to zero in the following numerical analysis and J = 1 is the
coupling constant for interacting term. For this particular case, we can consider the averaged absolute
value of the magnetization per spin as an order parameter, given by

m =
1

N

∣∣∣∣
N∑

i

si

∣∣∣∣ , (4.30)

where the sum runs over all spins of the lattice for a given configuration. From theoretical considera-
tions, an exact expression for the inverse critical temperature βc of the model can be obtained in the
case of a vanishing external field [264],

Jβc =
ln
(
1 +
√

2
)

2
. (4.31)

For a computation with the presented algorithms, we need a mapping between the Boltzmann machine
and the Ising model onto the correct domain of definition. The mapping of si = −1→ zi = 0 and
si = 1→ zi = 1 can be obtained by the following identifications between J and h and the weights
Wij and biases bi of a Boltzmann machine [234, 265]:

Wij = 4J ,

bi = 2h− 2Jd , (4.32)

where d corresponds to the dimension of the system. The spin state can be computed by si = 2zi− 1.

The Boltzmann machine can have an arbitrarily complex network structure. Particular implementa-
tions like the restricted Boltzmann machine turn the Boltzmann machine to an interesting class of
networks, which has many applications in different areas of research; see, e.g., Refs. [37–39, 266]. To
study the impact of systems with a higher possible variability, we consider a Boltzmann machine with
three neurons and different weights and biases around zero. The Kullback-Leibler divergence [267]
serves as a measure to numerically classify the quality of the presented processes. We compute the
Kullback-Leibler divergence based on the history of a process, starting from a random initial state
according to

DKL (PBM||PAM) = −
∑

c∈Ω

PBM(c) log
PAM(c)

PBM(c)
. (4.33)

The index BM indicates the exact probability distribution of the Boltzmann machine and the AM
refers to the resulting approximated probability distribution of the presented dynamics. The sum
runs over all possible neuron configurations c. The probabilities are approximated by respective
histograms of the history of the trajectory in the configuration space.

The upper row in Fig. 4.12 shows the absolute value of the magnetization for the Ising model with
a vanishing external magnetic field for the dynamics without and with a refractory mechanism.
The absolute magnetization is computed for the LM2 and the OU2 process for different values of
ε as well as for the LM1F and the OU1F process. In addition, the deviation of the derived inverse
critical temperatures is plotted as a function of ε for the processes without a refractory mechanism
in Fig. 3.2. Fig. 4.11 confirms a convergence of the considered processes for vanishing values of ε.
The deviations for finite values of ε show that errors in the representation of the activation function
affect the dynamics of interacting systems in a similar, or even worse, way as in the free case.

Relations to further stochastic processes 57

0.2 0.4 0.6 0.8 1.0
ε

0.000

0.025

0.050

0.075

0.100

0.125

0.150

A
bs

ol
ut

e
de

vi
at

io
n

[-]

LM2

LM2
, τref = 8

OU2

OU2
, τref = 8

Figure 4.11: Absolute deviation of the exact results of the Ising model for the absolute magnetization m at
the inverse critical temperature for the sign-dependent processes in dependence of ε. The curves
converge for all methods and all dynamics for smaller values of ε to the results of the Metropolis
algorithm. The rate of convergence differs and signifies dependencies on the properties of the
model, the intrinsic parameters and the update dynamics. Minor differences of the OU2 process
occur due to finite time steps in the simulation.

The comparison of the Kullback-Leibler divergence of the different processes in the lower row in
Fig. 4.12 reinforces the better representation of the logistic distribution by the sign-dependent
processes and illustrates again the dependency on ε.

Finally, it is interesting to note that the deviations in the magnetization show for the sign-dependent
processes the same tendency as the results for the 4-state clock model. The equilibrium distributions
are shifted to smaller values of β as described in the discussion of Sec. 3.2. As before, the shift grows
with larger values of β and of ε. The similar behavior of the OU2 process can be justified by the
similar trend in the deviation of the activation functions of the two processes. The higher rate of
convergence of the LM2 process is a result of a different source of errors.

4.6 Relations to further stochastic processes

Due to its novelty, there are plenty of open questions regarding the fundamental properties and
characteristic of the proposed sign-dependent dynamics. These concern, for example, investigating
different kinds of sources for noise or inspecting a transferability on other underlying neuron models.
Another important aspect is the integration and embedding of the introduced dynamics into similar
existing dynamics, also with respect to other areas of applications. This allows a deeper understanding
of interrelations and similarities of the developed dynamics with regard to systems of stochastic
differential equations, in general. The modelling of population dynamics represents one of such
areas of application. Multiplicative noise sources are often introduced in those models to imitate the
stochastic impact of the environment. For example, the Verhulst model is considered in Ref. [268] as
a Langevin equation with a model-related drift term and multiplicative noise. In Refs. [269–271],
noisy systems of Lotka-Volterra equations are studied in a time-discrete description on a coupled
map lattice as well as in their continuous form in time. Counterintuitive and interesting phenomena
originate from the additional noise sources that range from the formation of spatiotemporal patterns
of species to noise delayed spatial extinction [269–271] and noise-induced phase transitions [268].

58 Spiking neural networks on neuromorphic hardware

0.1 0.2 0.3 0.4 0.5 0.6 0.7

β

0.2

0.4

0.6

0.8

1.0

〈m
〉

(a)

Standard MC

LM2
, ε = 0.2

LM2
, ε = 0.5

OU2
, ε = 0.2

OU2
, ε = 0.5

LM1F

OU1F

0.1 0.2 0.3 0.4 0.5 0.6 0.7

β

0.2

0.4

0.6

0.8

1.0

〈m
〉

(b)

Standard MC

LM2
, ε = 0.2

LM2
, ε = 0.5

OU2
, ε = 0.2

OU2
, ε = 0.5

LM1F

OU1F

102 104 106 108 1010

t

10−8

10−6

10−4

10−2

100

D
K

L
(P

B
M
||P

A
M
)

(c)

BM

LM2
, ε = 0.2

LM2
, ε = 0.5

OU2
, ε = 0.2

OU2
, ε = 0.5

LM1F

OU1F

102 104 106 108 1010

t

10−8

10−6

10−4

10−2

100

D
K

L
(P

B
M
||P

A
M
)

(d)

BM, τ = 8

LM2
, ε = 0.2, τ = 8

LM2
, ε = 0.5, τ = 8

OU2
, ε = 0.2, τ = 8

OU2
, ε = 0.5, τ = 8

LM1F
, τ = 8

OU1F
, τ = 8

Figure 4.12: Comparison of numerical results for the different models without a refractory mechanism (left
column) and with a rectangular PSP shape: (a) Ising model without a refractory mechanism
(4×4 lattice). (b) Ising model with a rectangular PSP (τ = 8, 4×4 lattice). (c) Kullback-Leibler
divergence without a refractory mechanism. (d) Kullback-Leibler divergence with a rectangular
PSP (τ = 8). (a), (b): The absolute magnetization of the Ising model is plotted against the
inverse temperature β. The deviations of the different models mirror the observed deviations of
the activation function. The results show that small deviations in the activation function can
have a large impact on the resulting observables. (c), (d): Illustration of the evolution of the
Kullback-Leibler divergence for a Boltzmann machine with three neurons based on their history.
In contrast to other plots, the time is not rescaled with respect to the transition probabilities,
i.e., the correlation times. This causes a shift of the curves of the sign-dependent processes
to larger times. The observed levels of convergence of the Kullback-Leibler divergence of the
different models are in concordance to the results of the Ising model. The different levels of
convergence for the fitted processes indicates are large dependency of the accuracy of resulting
correlation functions on errors in the representation of the activation function and respectively
on corresponding weights and biases within the network.

Summary and outlook 59

Furthermore, the mathematical structure behind coupled map lattices is very similar to the evolution
of the membrane potential of LIF neurons in discrete time with additional non-trivial interacting
terms, which are based on the interactions of different neurons (see Eqs. (4.14) and (4.22)). Coupled
map lattices [272] describe a dynamical system in discrete space and discrete time, but with a
continuous state variable. In future work, we want to analyze whether there exist similar mappings
as derived in this work (see Eq. (4.5)) for the dynamics of coupled map lattices. It might also be
possible to transfer findings from these research areas onto the here considered dynamics and vice
versa. A brief history of excitable map-based neurons and neural networks is given in Ref. [273],
for example. Analogies might also be found in more related dynamics like the FitzHugh-Nagumo
neuron model [274, 275] with an additional stochastic noise source. A representation of LIF neurons
based on a stochastic Fitzhugo-Nagumo neural model is considered in Ref. [276]. In Ref. [277],
collective dynamics of a noisy FitzHugh-Nagumo oscillator are studied. Critical phenomena and
noise-induced phase transitions on classical random networks are provoked by shot noise in Ref. [278].
We expect that a detailed analysis of all these approaches together with the derived dynamics in
this work will result in many interesting phenomena. This holds for simulations as well as for actual
implementations on the neuromorhic hardware system.

4.7 Summary and outlook

In this chapter, we introduced the sign-dependent discrete Langevin machine (4.19) and the sign-
dependent Ornstein-Uhlenbeck process (4.22). We studied their properties in the context of imple-
menting Boltzmann statistics on the BrainScaleS systems with respect to possible mappings between
dynamics with different underlying representations.

The numerical results of different abstractions of a LIF network in Sec. 4.5 demonstrate that the
network architecture of the sign-dependent discrete Langevin machine (LM2) and the OU2 process
is suitable for emulating Boltzmann distributed systems. This applies to both, a discrete two-state
system with uncorrelated noise and a continuous system with autocorrelated noise. The numerical
results show that an exact implementation of the logistic distribution or at least a correct estimation
of errors is crucial to obtain quantitative exact observables.

It remains to be seen whether this statement is also sufficient and valid for nontrivial PSP shapes, as
a last step towards LIF sampling. In particular, one has to analyze the impact of marginal deviations
to the activation function on observables of larger and more complex systems than the one considered
in this work. Moreover, one may ask whether an exact representation of an activation function with
a self-interacting term is sufficient to also obtain reliable and accurate results for interacting neurons.
In other words: Is it possible to extend findings for a single self-interacting neuron to a general
complex interacting system. These questions are postponed to future work. Either way, we expect
that the existence of a self-interacting contribution in the OU2 process helps to better compensate
arising non-linearities of the neuromorphic hardware.

Currently, the considered dynamics are restricted to additive Gaussian noise and are built upon
sampling with leaky integrate-and-fire neurons as a neuron model. This applies also to the discussed
mapping of a process with a discrete state space onto a system with continuous dynamics, as discussed
in Sec. 4.1.3. An approach for sampling-based Bayesian spiking inference has been introduced recently
in Ref. [75]. The proposed sampling algorithm works without any source of external noise but is
driven instead by activities of neighboring sampling spiking neurons. It is interesting whether similar

60 Spiking neural networks on neuromorphic hardware

results can be observed for Bayesian inference based on the introduced sign-dependent dynamics in
this work.

So far, the statistical properties of the introduced sign-dependent processes rely on an exact
implementation of the underlying equations on a neuromorphic hardware system. Further, the sign-
dependent Ornstein-Uhlenbeck process might suffer from large correlation times. These properties
limit a broad application of the discovered processes in a wider class of models in biology and further
stochastic dynamics at first sight. Furthermore, it is unclear which impact additional non-linearities
have on the characteristics of the processes. These non-linearities include, for example, non-trivial
PSP shapes or a different kind of noise. Therefore, it is subject to future work to study properties of
the introduced dynamics also with respect to a wider class of stochastic processes, see also Sec. 4.6.

In summary, the presented dynamics and the studied abstractions of LIF sampling offer novel tools
for bridging the gap between thermodynamics and neuromorphic systems. The potentially more
accurate implementation of Boltzmann machines by the dynamics (4.19) and (4.22) represents a
further step towards an integrating of deep learning in neuroscience [30, 33, 55].

CHAPTER 5

Towards implementing Langevin dynamics on neuromorphic hardware
(non-spiking)

This chapter refers to Ref. [6].

The Hagen mode, see Sec. 2.3.4, allows an implementation of Langevin dynamics on the BrainScaleS-
2 chip, different to the ones discussed so far. Designed for a fast computation of matrix-vector
multiplications, the non-spiking operation mode can be used for hybrid computations by means of
regular read and write operations from a digital computer. For this case, the chip runs without
the spiking formalism of neurons. Accordingly, in contrast to the previous chapter, the membrane
potential of the neuron can be interpreted to represent a continuous state. We discuss in this
chapter limitations and potential properties of a one-to-one implementation of Langevin dynamics
in the Hagen mode. In Sec. 5.2, we suggest a path way for such an implementation and point out
possible improvements for an easier, more effective implementation. Furthermore, we discuss several
hardware-related as well as conceptional restrictions of the BrainScaleS-2 chip. Sec. 5.3 presents
another possible implementation of Langevin dynamics. In this implementation, the dynamics takes
place in the synaptic weights.

5.1 Langevin dynamics as a set of ordinary differential equations

As a reminder, we start by specifying in more detail what kind of dynamics we aim to implement.
The overall goal is to sample field configurations (φ1, . . . , φn)i of the Boltzmann distribution

p(φ1, . . . , φn) ∝ e−S(φ1,...,φn) . (5.1)

The action S(φ1, . . . , φn) depends on the simulated system and can, in principle, contain arbitrary
mathematical relations. Often, it consists of an interaction term and an additional potential. Both
terms are often represented by polynomials of linear or higher order. The sampled configurations are
used in a second step to numerically compute observables of the type given in Eq. (1.1).

As described in more detail in Sec. 2.1.2, Langevin dynamics is a numerical method to sample such
field configurations. In contrast to most of the Markov chain Monte Carlo algorithms, samples are
drawn based on a continuous evolution of the fields (φ1, . . . , φn). The similarity to the evolution of
a membrane potential renders a potential implementation on a neuromorphic hardware system very
appealing. As discussed in the introduction, it motivated several chapters of this work.

61

62 Towards implementing Langevin dynamics on neuromorphic hardware (non-spiking)

Restricting ourselves to scalar fields, the sampling process is given by the following set of coupled
stochastic differential equations

dφ1(t)

dt
= −∂S(φ1, . . . , φn)

∂φ1
+ η1(t) ,

...
dφi(t)
dt

= −∂S(φ1, . . . , φn)

∂φi
+ ηi(t) ,

...
dφn(t)

dt
= −∂S(φ1, . . . , φn)

∂φn
+ ηn(t) , (5.2)

where ηi is again Gaussian white noise,

〈ηi(t), ηj(t′)〉η = 2δ(t′ − t)δ(j − i) , 〈ηi(t)〉η = 0 (5.3)

and 〈·〉η represents the expectation value with respect to the Gaussian distribution

ϕ(η) =
1√
2π

exp

(
−η

2

2

)
. (5.4)

5.2 Langevin dynamics in neurons

5.2.1 An abstract model

In the following, we introduce an idealized model of LIF dynamics, see Sec. 2.3.1, in a non-spiking
mode and point out conceptional restrictions of this idealized model. In particular, it is assumed
that interacting signals can be transferred by means of the membrane potential instead of spikes.
The simplification is motivated by other neurmorphic computing devices or newly developed chips
designed specifically for fast matrix-vector multiplications. The BrainScaleS chips do not feature
this property. In Sec. 5.2.3, current hardware-related restrictions of the chip as well as possible
improvements are discussed with respect to an implementation in the Hagen mode.

We start by defining a directed graph G = (V,E) of neurons/vertices V and synapses/edges E.
Every neuron i has a membrane potential ui. The neurons represent LIF neurons that do not spike.
They can be approximated by an Ornstein-Uhlenbeck process, cf. Eq. (2.19) in Sec. 2.3.1:

dui(t)
dt

= θ (µi(t)− ui(t)) + σiη(t) , (5.5)

with time-independent parameters θ and σi. The additive Gaussian noise contribution can be
generated by Poisson noise from multiple other neurons or by an external current, see Sec. 2.3.

The time-dependent mean value µi(t) consists of the following terms:

µi(t) = µleak + µavg. noise + µext.i + fi
(
µinteractioni (t) + bi

)
. (5.6)

The first two terms are hardware-related. The potential µext. facilitates a calibration of the membrane
potential by means of an external source. The interaction potential µinteractioni (t) and the bias bi are

Langevin dynamics in neurons 63

defined as the input to an activation function fi. The bias can be changed during training. The
interaction potential µinteractioni (t), defined as

µinteractioni (t) =
∑

Eij

Wijuj(t) , (5.7)

captures interactions between neuron i and connected neurons j defined by edges of the considered
graph G. They represent the synapses of the neural network. The sum in Eq. (5.7) runs over all
edges Eij , accumulating the incoming signals of all neurons j connected with neuron i.

In summary, the dynamics of n neurons V can be described by the following set of coupled non-linear
ordinary differential equations:

du1(t)

dt
= θ

µleak + µavg. noise + µext.1 + f1

∑

E1j

W1ju1(t) + b1

− u1(t)

+ σ1η(t) ,

...

dui(t)
dt

= θ

µleak + µavg. noise + µext.i + fi

∑

Eij

Wijuj(t) + bi

− ui(t)

+ σiη(t) ,

...

dun(t)

dt
= θ

µleak + µavg. noise + µext.n + fn

∑

Enj

Wnjuj(t) + bn

− un(t)

+ σnη(t) . (5.8)

The synaptic weights Wij and the biases bj represent trainable or configurable parameters. The
activation functions fi and the noise parameter σi can be partly tweaked. The remaining parameters
are fixed during calibration of the hardware. Hardware effects can be partially imitated by sampling
the system parameters around a mean value.

5.2.2 Conceptional restrictions

A comparison of Langevin dynamics (5.2) and the simplified model description of LIF dynamics (5.8)
shows that there are certain conceptional restrictions. These concern, in particular, a successful
implementation of the drift term ∂S(φ1, . . . , φn)/∂φi.

First, the activation functions fi might introduce non-linear dependencies that do not coincide with
the functional form of the drift term. Second, an implementation of higher-order polynomials in ui
is not possible, or, at least, non-trivial.

We want to illustrate the second restriction based on the simple example of a feed-forward network.
For simplicity, the activation function is assumed to be the identity map and the biases are set to
zero. In this case, neural input propagates according to

ui =
∑

Eij

Wijuj , (5.9)

64 Towards implementing Langevin dynamics on neuromorphic hardware (non-spiking)

where all the uj ’s are in the input layer and the ui’s in the output layer. A composition of an
additional layer results in

uk =
∑

Eki

Wki

∑

Eij

Wijuj

 =

∑

Eki

∑

Eij

WkiWijuj . (5.10)

As can be seen, the expression is still only linear in uj and can interpreted as one linear layer by
a redefinition of the weights. This is also the reason why artificial neural networks are built with
non-linear activation functions. The introduced non-linearity allows a representation of a wide
variety of functional dependencies [279, 280],

uk = fk

∑

Eki

Wkifi

∑

Eij

Wijuj

 . (5.11)

However, the resulting composition of several layers is hard to interpret in terms of polynomials,
making an implementation of specific higher-order polynomials very difficult.

This restriction also applies to the dynamics of the neuromorphic hardware in Eq. (5.8). We conclude
that a simulation of Langevin dynamics based on LIF dynamics is only non-trivial if the drift term
of the action contains only zero- or first-order polynomials and if the activation is given by a linear
function. The latter restriction also holds for other alternative computing devices optimized for the
evaluation of matrix-vector multiplications.

5.2.3 Current hardware restrictions

The dynamics in Eq. (5.8) is not yet realized completely on the BrainScaleS chip, as pointed out in
Sec. 5.2.1. In concordance with the human brain, interactions between neurons take place via spikes.
Therefore, a transmission of a continuous constant signal between two neurons is not feasible.

A possible workaround is to limit the utilization of the hardware to computing matrix-vector
multiplications between weights and input neurons. Especially large systems can benefit from
a respective energy-efficient and highly parallelized implementation in the Hagen mode, see also
Sec. 2.3.4. A drawback of this approach is that intermediate neuron states need be stored externally.
Furthermore, the notion of time changes. The simulation of Eq. (5.8) takes no longer place in real
time, but is determined by a discretization of the update scheme in time. Additionally, ones needs to
take into account a finite precision for reading and writing signals and weights as well as hardware
effects like possible non-linearities in certain regimes and further sources for perturbations.

5.3 Langevin dynamics in synaptic weights

Implementing Langevin dynamics in the weights of the network is a possible approach to resolve
the difficulty of a feed-forward multilayer neural network to represent higher-order polynomials
based solely on its underlying mathematical operation. The approach is inspired by the functional
form of relation (5.10). It is perfectly suited for devices designed for a fast computation and
update of feed-forward multilayer neural networks. The approach is another possible way to use the
BrainScaleS-2 chip in the non-spiking operation mode.

Langevin dynamics in synaptic weights 65

The weights are considered as dynamical quantities of a feed-forward network. The input of the
feed-forward network are the prefactors of the monomials of the action. In this setting, the output
can be identified with the action of the system for the current set of weights. Higher-order terms
in the weights can be realized by choosing linear activation functions and the same weight for
consecutive layers in the network, cf. Eq. (5.10).

α

β

γ

W1 = x1

W2 = x2

W3 = x1

W5 = x1 W6 = x1

W
7
=
x 1

W4
=
x2

δ

S(x1, x2)

Figure 5.1: Network architecture computing the action (5.12) for implementing Langevin dynamics in the
weights of a feed-forward neural network.

As an example, we consider a simple toy model with two state variables x1 and x2 and an action of
the form,

S(x1, x2) = αx1 + βx2 + γx1x2 + δx3
1 . (5.12)

The resulting feed-forward neural network is shown in Fig. 5.1.All the weights are defined according
to the action by the two state variables. The input is given by the prefactors and stays constant. The
Hagen mode of the BrainScaleS2-chip is perfectly suited for this kind of task since the computation
only involves matrix-vector multiplications.

The drift term ∂S/∂xi of Langevin dynamics can be computed by backpropagation. It is given by
the sum of all gradients related to the same state variable xi:

∂S

∂xi
=

∑

j,∀j (Wj↔xi)

∂S

∂Wj
. (5.13)

Afterwards, the weights are updated according to an update step of Langevin dynamics in discrete
time, cf. Eq. (A.1):

W ′j = Wj − ε
∂S

∂xi
+
√

2εηj , ∀j (Wj ↔ xi) , (5.14)

where ε denotes a finite time increment in Langevin time and ηj is Gaussian white noise, cf. Eq. (5.3).

In an alternative setup, the feed-forward network is used to compute the drift term, instead of the
action. In this case, a larger network is required since the drift needs to be computed for every state
xi. The presented way for implementing Langevin dynamics can also be applied to any other device
allowing the computation of feed-forward networks and featuring backpropagation in the described
manner.

Similar to the approach of the previous section, the Langevin time cannot be identified with the
real time of evolution of the membrane potential in this kind of implementation. Instead, time is
again discrete and the neuromorphic hardware is used as a parallel computing device for matrix-
vector multiplications. An advantage towards the sampling based on dynamics in the neurons

66 Towards implementing Langevin dynamics on neuromorphic hardware (non-spiking)

is that polynomials of higher-order can be realized. A drawback is the necessity to perform the
backpropagation step and to explicitly update the weights.

5.4 Summary

In Sec. 5.2, we analyse an implementation of Langevin dynamics by identifying the membrane
potential with the physical state variables of the considered model. Two important limitations are
pointed out. The first one is the limitation to a restricted set of interaction terms, namely, zero or
first-order terms in the drift. The second limitation refers to the property that on-chip interactions
between neurons are only possible via spikes, prohibiting a direct transfer of a continuous, constant
signal between neurons. The later limitation entails that a reasonable implementation of Langevin
dynamics is only feasible if the dynamics is discrete in the Langevin time. In the Hagen mode,
the states are updated based on a computation of the drift term on the neuromorphic device and
a subsequent Langevin update on a digital computer. Implementing Langevin dynamics in the
weights of the neural network, cf. Sec. 5.3, comes with the benefit of a possible implementation of
higher-order polynomials. However, the dynamics still needs to be considered in a discrete Langevin
time.

We conclude that a one-to-one identification of the membrane potentials and the physical state
variables, i.e., a mapping between the dynamics in Eqs. (5.2) and (5.8), is not feasible given the
current properties of the hardware. However, a computation based on the other two methods might
still profit from a low energy consumption and a fast evaluation of the action or the drift term in
the Hagen mode. A successful integration allows the computation of large physical systems in a
parallel computing scheme.

CHAPTER 6

Learning entangled quantum states on a spiking neuromorphic chip

This chapter is based on Ref. [4].

The approximation of quantum states with artificial neural networks has gained a lot of attention
during the last years [37–39, 87, 242]. Meanwhile, analog neuromorphic chips show a high energy
efficiency in running artificial neural-network architectures for the profit of generative applications [17–
19, 30, 33, 250]. This encourages employing such hardware systems as platforms for simulations of
quantum systems or quantum state tomography. Here we report on the realization of a prototype
using the BrainScaleS hardware. The approximate, probabilistic representation of quantum states is
achieved through Bayesian sampling by the spiking neurons, see Sec. 2.3 for a brief introduction to
the emulation of Boltzmann distributed statistics. The all-or-nothing nature of spikes represents a
blessing in disguise. On the one hand, it does have an apparent drawback by making the computation
of gradients – and thus, training – more demanding than in classical deep neural networks [19].
However, it also allows us to use a spiking neuromorphic substrate in the first place, the speed-up of
which we harness for efficient Hebbian learning [235].

We show in this chapter that high fidelities can be reached by training the hardware-encoded network
to represent maximally entangled quantum states of up to four qubits. Extracted Bell correlations
for pure and mixed two-qubit states convey that non-classical features are captured by the analog
hardware, demonstrating the feasibility of and an important building block for simulating quantum
systems with spiking neuromorphic chips.

The chapter starts with a description of the utilized set-up for an encoding of quantum states on a
neuromorphic device in Sec. 6.1. We continue with the encoding of a pure and noisy Bell states as
an example for the representation of entangled quantum states with the help of a spiking neural
network in Sec. 6.2. In Sec. 6.3, we provide more details about the representation accuracy. After a
short discussion of extended network architectures in Sec. 6.4, we conclude with a summary of the
results in Sec. 6.5.

6.1 Neuromorphic encoding of quantum states

Here, we encode quantum states by using the hierarchical spiking network architecture, illustrated
in Fig. 6.1a, for emulating a restricted Boltzmann machine on the BrainScaleS-2 system, depicted
in Fig. 6.1b. The network consists of N visible and M hidden leaky integrate-and-fire neurons
arranged in a bipartite graph with a symmetric connectivity matrix. Such a network can be tuned

67

68 Learning entangled quantum states on a spiking neuromorphic chip

0 50 100
Time [µs]

12

10

8

6

4

3

2

1

N
eu

ro
n

ID

240

340

V
ol

ta
ge

1

c Spiking neurons

...

v1

v2

v3

v4

h1

h2

hM−1

hM

Wi,j

bj
di

Hidden layer

Visible layer

a Network structure

b Neuromorphic chip

↓↓ ↓↑ ↑↓ ↑↑ ↓↓↓↑
↑↓↑↑
−0.1

0.0
0.1
0.2
0.3

↓↓ ↓↑ ↑↓ ↑↑ ↓↓↓↑
↑↓↑↑
−0.1

0.0
0.1
0.2
0.3

Im (ρ)Re (ρ)

|Ψi 〉 = c↑↑i |↑↑ 〉+ c↓↓i |↓↓ 〉

+ c↑↓i |↑↓ 〉+ c↓↑i |↓↑ 〉

ρ =
∑

i qi |Ψi 〉〈Ψi |
=

∑
{a1 ,a2}

P (a1, a2)Qa1 ,a2

e Quantum spin state

(0,
0)

(0,
3)

(3,
3)

(
a1 , a2

)
0.00

0.05

0.10

0.15

P
(a

1
,a

2
)

a1 = 0

a2 = 3

0

0

1

1

d POVM representation

a = 3

a = 2

a = 0

a = 1

POVM basis

Figure 6.1: Neuromorphic representation of quantum states. a, Two-layer spiking network architecture
with weight parameters Wi,j between the visible (orange) and hidden (green) neurons and biases
di (bj) for the binary visible (hidden) neurons. b, Photograph of the BrainScaleS-2 chip used as a
substrate for the experiments in this work [28]. c, Dynamical evolution of the spiking network.
Upper panel: membrane potential evolution of a single LIF neuron integrating synaptic input.
Whenever the potential crosses a threshold a spike is generated and the potential is clamped to
prevent immediate refiring (refractory period). Lower panels: Spikes (solid lines) for 4 visible
(orange) and 8 hidden (green) neurons with associated z = 1 time frames (shaded regions). The
network state is observed periodically (gray lines showing only every fifth observation time for
visibility reasons). Each observation results in a binary vector corresponding to a sample drawn
from the underlying distribution. d, The 4-state positive-operator-valued measure (POVM)
representation of a qubit state can be encoded by a pair of visible neurons. A combination of N
such neuron pairs thus serves to represent an N -qubit system. The frequency of occurrence of
neuron configurations drawn from a trained network encodes the POVM probability distribution
of a quantum state (lower panel). e, Any quantum state can be represented as a density matrix ρ,
which can be a statistical mixture of states |Ψi〉. For the example of two qubits shown here, the
complex-valued entries of ρ can be reconstructed linearly from the sampled probabilities P (a1, a2).
For the definition of the operators Qa1,a2 , see App. D.1.

to approximate the probability of the visible neurons to be in state ~v = (v1, . . . , vN), vi ∈ {0, 1}, as
the marginal

p (~v;W) =
1

Z (W)

∑

{~h}
exp

[
−E

(
~v,~h;W

)]
, (6.1)

over all hidden states ~h = (h1, . . . , hM), where hj ∈ {0, 1}, of the joint Boltzmann distribution
p(~v,~h;W) = exp[−E(~v,~h;W)] [234, 237]. The network energy E(~v,~h;W) = −∑i,j viWi,jhj −∑

i vidi −
∑

j hjbj depends on the set of network parameters W = (W,~b, ~d) including the weights
Wi,j and biases bj and di. The partition sum Z(W) =

∑
{~v,~h} p(~v,~h;W) ensures normalization.

Note that the network represents a particular implementation of the Boltzmann machine discussed in
Sec. 2.3.2 characterized by the respective constraints on the network connectivity and a distinction
of visible and hidden neurons. Statistical samples are collected in a histogram by observing the state
of each neuron at regular time intervals, as visualized in Fig. 6.1c and Fig. 6.1d; see also Sec. 2.3.3
for more details.

A pure quantum state is described by a vector in Hilbert space and can be represented by a hermitian
density matrix with complex entries. Density matrices can also encode mixed states and thus

Encoding an entangled Bell state 69

account for a possible coupling to an environment, which is relevant for a realistic description of
experiments. Fig. 6.1e shows an example of a density matrix for a system of two spin-1/2 degrees of
freedom (qubits) corresponding to a Hilbert-space dimension d = 4. The corresponding probability
distribution which we encode in our network is obtained from a so-called tomographically complete
measurement [86]. Such a measurement has d2 possible outcomes. Mathematically, these outcomes
are represented by a set of operators {M~a}~a, forming a so-called positive-operator-valued measure
(POVM). A detailed description of the encoding of Bell states by means of POVM probability
distribution and the subsequent representation in a spiking neural network is provided in App. D.
Here, we continue with a summary of the method and of the utilized training algorithm.

Based on our approach, the density matrix can be reconstructed uniquely as ρ =
∑
{~a} P (~a)Q~a from

probabilities P (~a) = Tr [ρM~a] for obtaining outcome ~a according to Born’s rule. The operators
Q~a are given by Q~a =

∑
{~a′} T

−1
~a,~a′M~a′ , with T~a,~a′ = Tr [M~aM~a′] [87]. In our two-qubit example

(Fig. 6.1d) we chose M~a = Ma1 ⊗Ma2 , where Mai (ai = 0, . . . , 3) are projection operators onto the
single-qubit states represented as the four corners of a tetrahedron on the Bloch sphere. As each
ai can take four different values, the encoding of the probabilities P (~a) by a spiking network is
realized by representing each qubit by a pair of binary neurons in the visible layer, defined over the
neuron states ~v (cf. gray shadings in Fig. 6.1a). This results in the distribution p∗(~v) over the visible
neurons, see App. D.1 for more details.

To approximate p∗(~v) through spike-based sampling, the parameters of the spiking network were
adjusted in an iterative training procedure. We used the Kullback-Leibler divergence

DKL (p∗‖p) =
∑

{~v}
p∗(~v)ln

[
p∗(~v)

p(~v;W)

]
(6.2)

to measure the quality of the sampled marginal p(~v;W). In each training epoch, the synaptic weights
were updated along the gradient of the DKL, see also App. D.2:

∆Wi,j ∝ 〈vihj〉target − 〈vihj〉model . (6.3)

Pairwise correlations 〈vihj〉model in the network were directly estimated from the sampled distribution
p(~v,~h;W). Target correlations were also obtained from the sampled distribution by renormalization
to the target marginal distribution:

〈vihj〉target =

〈
p∗(~v)

p(~v;W)
vihj

〉

p(~v,~h;W)

. (6.4)

A similar scheme was used for the neuronal biases bj and di. This otherwise prohibitively compute-
intensive method was made possible by the accelerated hardware dynamics and allows a much
better approximation of the DKL gradient than the more conventional contrastive divergence update
scheme [235]. Moreover, it does not rely on layer-wise conditional independence, allowing the
exploration of network topologies other than bipartite graphs.

6.2 Encoding an entangled Bell state

To demonstrate that a spiking neural network can learn to represent entangled quantum states
we focus on a maximally entangled two-qubit state, the Bell state |Ψ+〉 = (|↑↑〉+ |↓↓〉) /

√
2. This

70 Learning entangled quantum states on a spiking neuromorphic chip

0.0 0.2 0.4 0.6 0.8 1.0
1− r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
(π
/

4
)

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π
Θ

−3

−2

−1

0

1

2

3

B
(Θ

) 0 1000 2000
Training epochs

0

2

B
(π
/

4
)

Entangled Separable

Classical limitPure Bell state

Noisy Bell state
1− r = 0.7

Classical regime

Quantum regime

a b cViolation of the classical bound Effects of white noiseMeasurement setup

Source oror

Comparison

Eα,β = 〈Sα
1
S
β
2
〉 − 〈Sα

1
〉〈Sβ

2
〉

Sα = cos (α)σz + sin (α)σx

B (Θ) = E0,Θ + E0,−Θ + E2Θ,Θ − E2Θ,−Θ

Basis choice
β = Θ

β′ = −Θ

Detection

Basis choice
α = 0

α′ = 2Θ

Detection

Party 1 Party 2

Figure 6.2: Encoding Bell states and Werner states. a, Illustration of a typical Bell-test scenario.
Two correlated qubits emerging from a source are distributed between two parties. Each of the
parties is allowed to choose between two different measurements each characterized by a single
common angle Θ. The measurement outcomes indicate genuine quantum correlations if the
combination B(Θ) of the correlations violates the inequality |B(Θ)| ≤ 2 obeyed by classical states.
b, Observable B(Θ) evaluated on the learned encoding of the Bell state ρB = |Ψ+〉〈Ψ+| on the
neuromorphic hardware, with M = 20 hidden neurons. Red symbols depict the observable for
different angles Θ, averaged over the last 200 training epochs, where errorbars here and in the
following denote the standard deviation. Note that these data points have been obtained from
the same trained network and the same set of neuron states sampled from it by evaluating the
observable for different angles Θ on this sample set. Werner states ρW = rρB + (1− r) 1/4 are
obtained by adding white noise to the pure Bell state. Green points correspond to r = 0.3. In
both cases, the data capture the exact values (black lines) well, including the violation of the
classical bound in the pure case r = 1. The inset shows the evolution of the Bell-correlation
witness B(Θ = π/4) during training (red line) and the convergence towards the expected value
(black dashed line). c, Bell-correlation witness B(Θ = π/4) for a Werner state as a function of
the noise strength 1− r. The exact solution (black line) is captured well for both entangled and
separable states.

Learning performance 71

state is a prototypical example exhibiting quantum mechanical correlations [281, 282]. We trained
a network of four visible and 20 hidden neurons to encode the POVM probability distribution
corresponding to ρB = |Ψ+〉〈Ψ+|. For calculating the weight updates in each epoch of the training
procedure, as well as for evaluating expectation values, we drew 125000 samples of neuron states.
This number is sufficient for the saturation of the DKL as can be seen in Fig. 6.3b and was used for
all experiments, if not specified otherwise.

To characterize the learned quantum state, we used the observable B(Θ), which can signal genuine
quantum correlations and is experimentally accessible via measurements as illustrated and defined
in Fig. 6.2a: The two qubits are distributed to two parties who independently perform one of two
possible measurements on their respective qubit. We choose the standard parametrization of the
different measurements by a single angle Θ. For a Bell state this procedure yields correlations
violating the inequality |B(Θ)| ≤ 2, which is obeyed by classical systems [282]. At Θ = π/4 this
inequality is maximally violated for the Bell state ρB and thus yields an experimentally accessible
witness for Bell correlations [281, 283].

The correlations encoded by the trained spiking network clearly exceed the classicality bound
|B(Θ)| = 2 (red points in Fig. 6.2b) and are in agreement with their exact Θ-dependence (black
line). The inset shows how the Bell correlation witness B(Θ = π/4) develops during the training,
converging after less than 1000 iterations.

To illustrate the generality of our neuromorphic encoding scheme we consider mixed quantum states
by adding white noise to the pure Bell state resulting in the Werner state ρW = rρB + (1− r) 1/4
with noise strength 0 ≤ 1−r ≤ 1 [284]. Increasing the noise reduces |B(Θ)| and eventually confines it
within the classical regime (cf. green data in Fig. 6.2b). For 1−r > 1/

√
2 the Bell correlation witness

fails to detect entanglement, and for 1− r > 2/3 the state becomes separable (unentangled). The
resulting mixed states are faithfully represented by our system for any value of r as shown in Fig. 6.2c.
The fluctuations in the experimental data decrease with increasing noise contribution, allowing a
more accurate learning of mixed states. This counterintuitive effect is due to additional noise leading
to an increase in entropy, which is synonymous with sampling from more uniform distributions.
These, in turn, are realized by weaker weights, thus decreasing the influence of imperfect synaptic
interactions in the neuromorphic substrate.

6.3 Learning performance

We analyzed in detail the convergence of the learning algorithm using the classical Kullback-Leibler
divergence DKL as defined in (6.2). In addition, we use the quantum fidelity

F(ρB, ρN) = Tr

[√√
ρBρN

√
ρB

]
, (6.5)

to quantify the distance between the target state ρB and the network-encoded state ρN, which, for
pure states, reduces to the state overlap. As shown in Fig. 6.3a, the learning converges after 1000
training epochs. Increasing the number of hidden neurons we find that the fidelity reaches ≈ 98%
(correspondingly DKL . 10−2) for M & 20 hidden neurons. The limited reachable fidelity is a
result of many different factors of the physical implementation of the spiking neural network on the
BrainScaleS-2 platform. The synaptic connections are implemented with 6-bit resolution, limiting the
achievable precision of approximating the probability distribution. Also, uncontrolled environmental
changes such as temperature variations or host-to-system effects influence the performance of the

72 Learning entangled quantum states on a spiking neuromorphic chip

103 104 105

Samples S

10−2

10−1

D
K
L
` p
∗ ‖
p
´

20 40 60
Hidden Neurons M

0.6

0.8

1.0

F
id

el
ity

0 1000 2000
Training epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
id

el
ity

0 2000
Training epochs

10−1

10−2

10−3

D
K
L

Hidden neurons M
5

10
15
20
25
30

N = 2

N = 3

N = 4

a Training process b Sampling behavior

c Multiple spins

Figure 6.3: Training performance. a, Dynamics of the learning procedure for the pure Bell state ρB. The
quality of the network-encoded state is measured by the quantum fidelity, (6.5) (main frame),
and by the Kullback-Leibler divergence, (6.2) (inset), for different numbers of hidden neurons.
For better visibility, the running average over 50 epochs is shown in the inset as solid lines,
with the shaded areas indicating the corresponding standard deviation. b, Kullback-Leibler
divergence in a fixed trained network with M = 20 hidden neurons as a function of the number of
samples drawn. The dashed line shows the expected trend for exact sampling from the target
distribution. c, Quantum fidelity as a function of the number of hidden neurons for GHZ states
|Ψ〉 = (|↑〉⊗N + |↓〉⊗N)/

√
2 with N = 2 (Bell state), 3, and 4 qubits. We show the averages over

200 training epochs after convergence (gray shaded area in a). The dashed line shows the bound
for genuine N -partite entanglement.

Deep and partially restricted networks 73

hardware. This manifests itself in the jumps of fidelity occurring during learning, as well as in strong
noise in the fidelity after the learning process has saturated, as can be seen in Fig. 6.3a. These
instabilities exceed the anticipated noise level due to finite sample statistics used for evaluating
observables and calculating gradients in each epoch. These factors degrade the correspondence
between the model assumption underlying the employed learning rule and the actual dynamics of
the hardware. Many of the issues mentioned above can be resolved in future hardware generations.

To ensure that the learning performance is not limited by finite sample statistics, we evaluated the
Kullback-Leibler divergence as a function of the number of samples in a trained network with fixed
network parameters. Fig. 6.3b shows the expected convergence towards a minimum value determined
by the quality with which the spiking network approximates the POVM distribution. Typically,
for >105 samples the statistical error is negligible compared to the errors due to hardware noise
and limited representational power of the network, causing the saturation of the DKL observed in
Figure 6.3b. This justifies our choice of training with 125000 samples per epoch.

Having demonstrated high-fidelity emulation of two-qubit entangled states, we investigated whether
states of multiple qubits can also be encoded by our spiking sampling network. Fig. 6.3c shows
the fidelity achieved in learning Greenberger-Horne-Zeilinger (GHZ) states [285], i. e. N -qubit
generalizations of a Bell state, as a function of the number of hidden neurons M . The underlying
probability distribution covers a larger state space of the visible neurons, requiring us to increase
the number of samples to 225000 to reach convergence in the DKL. In all cases the fidelity of the
learned state to the perfect GHZ state increases with M , reaching values of close to 90% and about
70% for three and four qubits, respectively. As layered network architectures are known to require a
large number of neurons for representing GHZ states [87], we assume that larger chip sizes will allow
to increase these values further. Note that a GHZ-state fidelity above F = 1/

√
2 ≈ 70% means that

the state exhibits genuine N -partite entanglement (cf. dashed line in Fig. 6.3c) [286].

6.4 Deep and partially restricted networks

Our flexible learning scheme allows the training of network architectures beyond simple bipartite
graphs. To explore network architectures with potentially larger representational power we added
connections between the visible neurons, resulting in a more densely connected network. Figure 6.4a
shows that a Bell state can be encoded successfully with this architecture, reaching similar fidelities
as the two-layer fully restricted spiking network. We also explored deeper network architectures by
adding an additional hidden layer, see Fig. 6.4b. Again, the Bell state was learned successfully reaching
similar fidelities as in the bipartite case. We note that the learning performance is not monotonic at
small M for M2 = 10 neurons in the second hidden layer. This is expected, since the intermediate
layer constitutes an information bottleneck towards the visible layer, which makes learning more
difficult. Therefore, the greater representational power offered by additional depth [287] does not
necessarily translate into a higher fidelity for M < M2. The overall non-monotonic dependence of
the fidelity on the number of hidden neurons is caused by hardware noise leading to fluctuating
training performance.

The fact that the learning performance does not improve when using different architectures indicates
that the reachable fidelity is currently limited by technical imperfections rather than the representa-
tional power of the ansatz. Larger-scale systems may be able to exploit the greater representational
power of these deeper and more complex architectures.

74 Learning entangled quantum states on a spiking neuromorphic chip

5 10 15 20 25 30
Hidden neurons M

0.7

0.8

0.9

1.0

F
id

el
ity

5 10 15 20 25 30
Hidden neurons M

0.6

0.8

1.0

F
id

el
ity

a Partially-layered network

b Deep network structure

··· ···

······
M2 M N

M2 = 0

M2 = 5

M2 = 10

Figure 6.4: Extending the network architecture. a, Fidelity between network-encoded and perfect Bell
state, Eq. (6.5), as a function of the number of hidden neurons for strictly layered network (blue)
and an architecture with additional connections between the visible neurons (orange). b, Quantum
fidelity for states encoded in a deep network architecture with a second hidden layer containing 5
(orange) and 10 (green) neurons compared to the restricted two-layer network (blue).

6.5 Summary

We have shown that a spiking neural network implemented on a neuromorphic chip can approximate
entangled quantum states of few particles with high quantum fidelity. In particular non-classical
Bell correlations can be encoded faithfully, demonstrating that intrinsic quantum features can be
captured by a classical spiking network.

The fidelities and system sizes achieved in this first study on neuromorphic quantum state encoding
should be regarded as a proof of principle. The experienced restrictions are only technical in nature
and can be improved in future generations of spiking neuromorphic devices. Specifically for the
BrainScaleS-2 system, both the hardware and its surrounding software framework are in an ongoing
maturation process. The size and fidelity of the approximated quantum states can be significantly
improved upon by optimizing the usage of hardware real-estate, the signal-to-noise ratio of the
analog circuitry and the calibration of the chip. Judging from the current pace of progress in
neuromorphic engineering, significantly larger systems, both digital and analog, can be expected to
become available in the near future [18].

Furthermore, runtime improvements are anticipated, as the current bottleneck is the calculation of
the weight updates of the network parameters, which is done “offline” on a conventional computer,
and only the sampling itself is performed on the chip, see also App. D.4. Using the on-chip plasticity
processor to update synaptic weights has the potential of drastically reducing the training time by
removing the cumbersome chip-host loop [252].

One key advantage of this neuromorphic system as compared with simulated generative models is
that scaling to larger network sizes does not increase the time needed to collect a desired number
of samples. We illustrate this property by comparing the sampling time on the neuromorphic chip
with a CPU implementation, see App. D.5, showing a gain through neuromorphic sampling already
at moderate system sizes. Given the efficient learnability [288] and representability of important

Summary 75

classes of quantum states [38, 242, 289], and the availability of sampling schemes for neuromorphic
devices [1, 290], we thus expect favorable scaling properties for our approach, see also App. D.3. Thus
our work opens up a path towards applications of neuromorphic hardware in quantum many-body
physics.

CHAPTER 7

Towards sampling complex actions

This chapter is based on Ref. [5].

Path integrals with complex actions are encountered in many physical systems, including spin- or
mass-imbalanced atomic gases, graphene, as well as quantum chromo-dynamics at finite density and
the non-equilibrium evolution of quantum systems [79, 88, 92, 94, 99, 102, 103, 106, 109, 111], see
also Chapter 1. Many computational approaches have been developed for tackling the sign problem
emerging for complex actions [97, 115, 116, 118]. Among these, complex Langevin dynamics has the
appeal of general applicability [15, 117]. One of its key challenges is the potential convergence of the
dynamics to unphysical fixed points. The statistical sampling process at such a fixed point is not
based on the physical action and hence leads to wrong predictions [80, 119–121, 225]. Moreover, its
unphysical nature is hard to detect due to the implicit nature of the process.

In the present chapter we set up a general approach based on a Markov chain Monte Carlo scheme in
an extended state space. In this approach we derive an explicit real sampling process for generalized
complex Langevin dynamics. Subject to a set of constraints, this sampling process is the physical one.
These constraints originate from the detailed-balance equations satisfied by the Monte Carlo scheme.
This allows us to re-derive complex Langevin dynamics from a new perspective and establishes a
framework for the explicit construction of new sampling schemes for complex actions. The resulting
framework rests on a reformulation of the path integral (1.1) as a one-dimensional1 stochastic integral
in the complex plane. The approach is sketched together with an outline of the chapter in Sec. 7.1.

7.1 Summary of main results

7.1.1 Motivation

The standard approach in formulating complex Langevin dynamics consists of inserting the complex
action into the Langevin equation and proving the validity of the solutions by a comparison with
the associated Fokker-Planck equations, cf. Eq. (2.7) in Sec. 2.1 for the case of real Langevin. Here,
we take a different route and derive complex Langevin dynamics from first principles.

1One dimensional here refers to the important fact that, even if the integration variable φ is allowed to become complex,
one still integrates over φ only. This in contrast to, e.g., a coherent-state path integral ∼

∫
dφ dφ? exp(−S),

which, in that sense, is two dimensional.

77

78 Towards sampling complex actions

Langevin

Complex

Langevin

Standard

Monte Carlo

Continuous / e−S(φ) ∈ R≥0

Finite Steps / e−S(φ) ∈ C

Finite Steps / e−S(φ) ∈ R≥0

Continuous / e−S(φ) ∈ C

Limit of

infinitesimally

small step sizes

GeneralizationA
p
p
ro

a
ch

N
e
w

P
e
rs
p
e
c
ti
v
e

S
ta

n
d
a
rd

Figure 7.1: Comparison of the standard approach to deriving complex Langevin dynamics and of the per-
spective provided in this work. By taking the limit of infinitesimally small step sizes, the Markov
chain turns into a continuous evolution in state space. This kind of dynamics corresponds to the
left-hand side of the graphics. We pursue the goal to generalize complex Langevin dynamics as a
Monte Carlo algorithm for complex measures that also works with finite step sizes in configuration
space.

While complex Langevin dynamics is thus identified as a valid means for evaluating Eq. (1.1)
for complex-valued actions S, it nevertheless still suffers from the numerical problem of runaway
processes as well as convergence to unphysical solutions [97, 116, 217, 220, 222–225, 227, 228, 291, 292].
Moreover, the continuous evolution of Eq. (2.10) cannot be straightforwardly applied to models of
discrete-valued fields φ such as of spin systems.

With the framework introduced in the following, we aim to pave the way for two long-term goals:

• A generalization of complex Langevin dynamics that allows developing numerically more stable
sampling algorithms.

• A numerical computation of expectation values for discrete systems with a sign problem which
does not rely on reweighting but entails sampling in an extended state space.

In Fig. 7.1, we relate known techniques and their derivations with the chosen path of our approach
to achieve these two goals.

7.1.2 Key insights

Our central task is to evaluate expectation values of observables O(φ) with respect to the complex
distribution ρ(φ) defined in Eq. (2.3), depending, for the first, on a real-valued field φ,

〈O(φ)〉ρ =

∫ b

a
dφO(φ)ρ(φ) , (7.1)

with integral boundaries a and b.

We substitute the field variable φ by

φ = φ(φx) = φx + iφy , dφ = dφx , (7.2)

Summary of main results 79

where the integration variable is now the real field φx, and φy is, for the moment, just a constant.
The integral turns into

〈O(φ)〉ρ =

∫ b−iφy

a−iφy
dφxO(φx + iφy)ρ(φx + iφy) . (7.3)

If the integral is invariant with respect to a shift of its boundaries by iφy, we can reset the integral
bounds back to a and b, such that the integral reads

〈O(φ)〉ρ =

∫ b

a
dφxO(φx + iφy)ρ(φx + iφy) (7.4)

and, as a result, becomes independent of φy. We will later identify φy with the imaginary part of
the field in the complex Langevin evolution. Under these conditions, we can express the expectation
value as the mean over multiple, arbitrary values of φy,

〈O(φ)〉ρ =
1

N

N∑

i=1

∫ b

a
dφxO(φx + iφy;i)ρ(φx + iφy;i) , (7.5)

and it will be sufficient to assume that the above invariance holds for the range of values of φy
appearing in this sum. We furthermore assume that there exists a numerical method for sampling
φx from ρ. In this case, we can express the integral on the right-hand side as the mean value

〈O(φ)〉ρ =
1

N

N∑

i=1

1

M

M∑

j=1

O(φx;ij + iφy;i) . (7.6)

Note that φx depends on both i and j, meaning that one draws the samples {φx;ij} for a fixed φy;i.

In the last step, we argue that we can mix φx;ij ’s belonging to different values of φy;i as long as
changes in φy;i do not introduce further correlations between the updated φy and the sampled φx,
as will be discussed in more detail below. This can be implemented by allowing only infinitesimally
small changes in φy, independent of the sampling probability for φx.

Under the above condition, we can keep the sampling index i as the only one in the sum over, still,
MN samples, implying that we no longer consider separate evolutions for a fixed φy;i, but smoothly
mix the respective evolutions in φx. So the index i counts the combined update step of both φx and
φy, performed, e.g., in complex Langevin dynamics,

〈O(φ)〉ρ =
1

MN

MN∑

i=1

O(φx;i + iφy;i) . (7.7)

This expression is eventually to be understood as a numerical expectation value determined from
samples (φx, φy) which a stochastic process generated according to the complex distribution ρ(φx +
iφy), i.e.:

〈O(φx + iφy)〉ρ =
1

MN

MN∑

i=1

O(φx;i + iφy;i) . (7.8)

We conclude that we can reinterpret the computation of the integral in Eq. (7.1) as that of the
expectation value of a combined process in φx and φy, where it needs to be guaranteed that stochastic
changes according to some transition probability take place only in the φx direction. This ensures

80 Towards sampling complex actions

that we independently compute a mean value with respect to the imaginary part of the field. As a
result, the expectation value in the extended state space of complex φ still reflects the degrees of
freedom of the integral (7.1).

In summary, we can write
〈O(φ)〉ρ = 〈O(φx + iφy)〉ρ , (7.9)

as long as the invariance of the integral (7.1) under imaginary shifts of the boundaries holds and
the underlying stochastic process has a vanishing variance along the φy direction. Note that the
expectation value on the right-hand side is considered to be computed by means of a Markov chain
Monte Carlo algorithm with respect to ρ(φx + iφy), but constrained by the conditions provided
above.

These conditions imply that the eventually obtained higher-dimensional probability distribution,
denoted as P (φx, φy), is different from ρ(φx+iφy). This point of view is in strong contrast to standard
considerations of complex Langevin dynamics where a Fokker-Planck equation in both φx and φy and,
therefore, an expectation value with respect to a distribution P (φx, φy) is analysed [97, 122, 219].
Furthermore, the restriction to an infinitesimal step size in the φy direction underscores findings of a
higher numerical stability for vanishing imaginary noise [216, 219]. It also corroborates the finding
that a distribution P (φx, φy) which decays sufficiently fast in the imaginary direction ensures correct
convergence [217, 223].

Due to the restrictions discussed above, we can compute the expectation value on the right-hand side
of Eq. (7.9) only by an extrapolation to a vanishing change in φy. In practice, this can be achieved
by performing multiple simulations with small step sizes and an extrapolation of the resulting
observables.

At first sight, evaluating an expectation value with respect to the complex distribution ρ(φx + iφy)
over complex fields instead of ρ(φ) over real φ does not improve a numerical sampling due to
difficulties in defining real-valued transition probabilities. However, the imaginary part φy of the
field introduces an additional degree of freedom. In contrast to that of the real part φx, the dynamics
of φy is only constraint by the proposed restriction to an infinitesimally small update. We point out
once more that this is the reason for a different distribution P (φx, φy) observed after sampling.

Hence, it is important to understand that there is a difference between sampling from a higher-
dimensional probability distribution defined in φx and φy and a sampling of the complex distribution
ρ(φx + iφy) subject to the above restrictions. In this work, we refer only to the latter case and
discuss how to set up a Markov chain Monte Carlo algorithm with respect to this numerical sampling
procedure.

7.1.3 Key results

We will show that, in the case of complex Langevin dynamics, the introduced additional degree of
freedom can be used to render the transition probabilities of a corresponding Markov chain Monte
Carlo algorithm real and positive. As a result numerical sampling from the complex distribution
ρ(φx + iφy) becomes possible.

In the following sections,

• we set the ideas laid out in Sec. 7.1.2 on firm grounds and compare a numerical sampling of
the expectation value in Eq. (7.5) with other algorithms (Restricted Boltzmann machine and

Markov chain Monte Carlo sampling in auxiliary dimensions 81

Hamiltonian Monte Carlo algorithm) where the underlying dynamics also takes place in an
extended higher-dimensional state space, cf. Sec. 7.2.3;

• we give a reminder on general aspects of Monte Carlo sampling in higher dimensions, cf.
Sec. 7.2;

• we introduce Substitution Sampling as a possible approach to constructing transition probabil-
ities of a Markov chain Monte Carlo algorithm from first principles, which allows sampling
from the equilibrium distribution subject to the constraints given above, cf. Sec. 7.3;

• we show that complex Langevin dynamics satisfies these first principles, cf. Sec. 7.3.2;

• we provide numerical evidence in support of our approach by use of other algorithms that are
built on the same first principles as complex Langevin dynamics, for the cases of a complex
action and a real action, cf. Secs 7.4 and 7.5 for the derived algorithms and Sec. 7.6 for
numerical results.

Furthermore, a systematic approach for the derivation of substitution sampling algorithms is presented
in Chapter 8. The algorithms in Sec. 7.4 are derived based on this approach.

Our work provides a framework for deriving Markov chain Monte Carlo algorithms that are, in
principle, suitable to sample from a distribution given in terms of a complex action. We expect the
framework to be useful for developing new algorithms for theories with a sign problem.

7.2 Markov chain Monte Carlo sampling in auxiliary dimensions

In this section, we introduce a formal framework for developing Monte Carlo sampling algorithms
on state spaces including additional auxiliary dimensions. By this we mean algorithms that work
in a higher-dimensional representation space while sampling from a lower dimensional probability
distribution. In Sec. 7.2.3, we generalize and embed the perspective on computing observables given
in the previous section into this framework.

7.2.1 Extended state space

Examples of algorithms, in which the dimension of the state space is extended by additional auxiliary
dimensions include the Hamiltonian Monte Carlo algorithm (HMC) [293], introducing momenta for
each state, or the restricted Boltzmann machine (RBM) [294], with a distinction between visible
and hidden layers of neurons. Both algorithms are recapitulated in App. B. In the case of the
Hamiltonian Monte Carlo algorithm, the extra dimensions lead to a faster exploration of the original
state space. For the restricted Boltzmann machine, the introduced hidden layers are essential for the
representation of a larger class of in general non-Gaussian probability distributions.

Complex Langevin dynamics can also be attributed to this class of algorithms. The state space is
complexified and the imaginary part represents an auxiliary variable, cf. Sec. 7.1.2.

Inspired by the RBM, we introduce auxiliary dimensions by distinguishing visible state variables
v and hidden state variables w. For RBMs, the visible variables are given by the neuron states
in the visible layer and the hidden variables by the ones in the hidden layer. Fig. 7.2 depicts the
distinction of visible (red) and hidden (blue) variables for the different algorithms. In the case of the

82 Towards sampling complex actions

p(x)

p(x, p)

p(v)

p(v, h)

p (φ)

p (φx, φy)

φ

φx

φy

Hamiltonian Monte Carlo Restricted Boltzmann Machine Complex Langevin Dynamics

visible
hidden

O
ri
gi
n
a
l

E
x
te
n
d
ed

x2
x3

x1

x2
x3

x1
p1

p3
p2

v1 v2 v3

v1 v2 v3

h1 h2 h3 h4

Figure 7.2: Comparison of different algorithms that all make use of the introduction of additional hidden
variables / auxiliary dimensions. The respective Markov chain is realized in a new set of visible
and hidden variables (v, w). The target distribution of the different algorithms is indicated in the
upper row. In the lower row, the newly introduced hidden variables are marked in blue and the
visible variables in red. The probability distributions are functions of this new set of variables.
In the case of complex Langevin dynamics, the field φ is promoted to a complex field where the
visible variable is given by the real part φx and the hidden variable by the imaginary part φy.
Accordingly, the field φ is parametrized by φx + iφy. Observables in the original set of variables
can be obtained for the Hamiltonian Monte Carlo algorithm and the restricted Boltzmann machine
by marginalizing the higher-dimensional distributions. This is different for complex Langevin
dynamics, where observables are expressed according to Eq. (7.16) in terms of the hidden and
visible variables. Details on the algorithms can be found in different sections of this work and in
the appendix.

HMC algorithm the variables x are considered as visible and the momenta p as hidden variables.
For complex Langevin dynamics, the higher-dimensional representation is given by the complex field.
The real part of the field is identified as the visible and the imaginary part as the hidden variable.

The distinction between visible and hidden variables can be formally understood as follows: The
original distribution ρ(x) is defined over a set of variables x. Therefore, expectation values need to
be computed by integrating over x. The visible variables encode the probabilistic nature of this set
of original variables. Accordingly, v has the same dimension as x, and the subspace, spanned by
the visible variables, reflects the degrees of freedom of the original state space. The hidden state
variables are used to improve the sampling procedure itself. The diversity of the discussed algorithms
demonstrates the flexibility that originates from the introduction of additional auxiliary dimensions.

7.2.2 Master equation and detailed balance

A master equation, see Sec. 2.2.1, can be formulated for the set of visible and hidden variables
introduced in the previous section in the same manner as for x in Eq. (2.13):

dp(v, w, τ)

dτ
=
∑

v′,w′

[
p(v′, w′, τ)W (v′, w′ → v, w)− p(v, w, τ)W (v, w → v′, w′)

]
. (7.10)

In contrast to the original state x, the evolution is governed by transition probabilities W (v, w →
v′, w′). They determine how the probability distribution p(v, w, τ), defined over the higher-
dimensional representation space, evolves in time.

Markov chain Monte Carlo sampling in auxiliary dimensions 83

In the higher-dimensional state space, the condition for equilibrium reads

p(v′, w′, τ)
!

=
∑

v,w

p(v, w, τ)W (v, w → v′, w′) . (7.11)

In App. B.2, we provide an example of how this relation is fulfilled by the equilibrium distribution
of the restricted Boltzmann machine. The detailed-balance equation

p(v, w)W (v, w → v′, w′) = p(v′, w′)W (v′, w′ → v, w) . (7.12)

represents again a stronger condition preventing the occurrence of limit cycles, cf. Sec. 2.2.1. The
Hamiltonian Monte Carlo algorithm is discussed as an example for satisfying this condition in
App. B.1.

7.2.3 Complex Langevin versus HMC / RBM

At this point, it is interesting to have a closer look at the use of auxiliary dimensions in the different
algorithms in more detail. We will, in particular, point out differences between complex Langevin
dynamics, the Hamiltonian Monte Carlo algorithm, and the restricted Boltzmann machine.

For the latter two algorithms, the visible state v can be identified with the state x in the originally
considered problem. This is an important property since it allows the numerical computation of
observables in x by considering just the visible states v. Therefore, v = x and thus

〈O(x)〉ρ = 〈O(v)〉p =
1

N

N∑

i

O(vi) . (7.13)

The auxiliary, hidden variables can be ignored for the computation of observables. The mathematical
argument behind this is a possible marginalization of the joint probability distribution p(x,w)
according to

ρ(x) =

∫
dw p(x,w) . (7.14)

This is, however, different for complex Langevin dynamics, which we show by generalizing the way
expectation values are computed for this kind of dynamics.

Following the line of arguments in Sec. 7.1.2, the visible states v are no longer identified with the
original state x, but are related to them through a linear shift by the hidden variable, cf. Eq. (7.2).
The original integral is effectively computed for different substitutions v → v + wi in terms of the
hidden state variables,

〈O(x)〉ρ =
1

N

N∑

i=1

∫ b

a
dvO(v + wi)ρ(v + wi) , (7.15)

where it is assumed that the integral is invariant under the linear shifts of the integral bounds by −wi.
This allows using the same integral bounds a and b for all different values of the hidden variables wi.

84 Towards sampling complex actions

As a result, the auxiliary variables contribute to the numerical computation of observables, in which
it is summed over samples vi instead of the continuous integrals,

〈O(x)〉ρ = 〈O(v, w)〉ρ =
1

MN

MN∑

i=1

O(vi, wi) . (7.16)

In the case of complex Langevin dynamics, one may identify vi with φx;i and wi with iφy;i, cf.
Eq. (7.8).

This a valid approach since we demand that the hidden variables w do not undergo any stochastic
evolution. In the case of complex Langevin dynamics, this is realized by a missing noise term and an
extrapolation to a vanishing step size in the direction of the hidden states. Therefore, Eq. (7.16)
does not compute the expectation value of a joint distribution of both the visible and the hidden
states,

〈O(v, w)〉ρ 6=
∫

dv
∫

dw p(v, w)O(v, w) . (7.17)

Instead, only the visible states incorporate the degrees of freedom of the originally considered
expectation value.

We note that, mathematically, this is clear in the case of complex Langevin dynamics for a single
complex field φ = φx + iφy. The original integral over φ is one-dimensional rather than a two-
dimensional surface integral over the complex plane. As a result, the sum in Eq. (7.16) returns the
mean of the integral for different values of the hidden variables and thus an expectation value with
respect to the original distribution ρ(x).

This computation of expectation values with auxiliary variables differs significantly from existing
ones. We emphasise that v = x does not hold and a marginalization over w is absent. In the
following, we discuss, besides complex Langevin dynamics, several algorithms that implement the
above principles and satisfy all of the given constraints for this approach. Keeping all the constraints
in mind, one can make use of general relations and methods for sampling from high-dimensional
probability distributions, such as Markov chain Monte Carlo methods.

7.3 Substitution sampling

In this section, we formulate in Sec. 7.3.1 the general constraints a sampling algorithm needs to fulfil
which serve to compute expectation values of the kind defined in Eq. (7.16). We will refer to this
kind of sampling algorithm as Substitution Sampling to reflect that it is built on the key insights in
Sec. 7.1.2. Additionally, we identify complex Langevin dynamics as such an algorithm and provide a
guide for constructing substitution sampling algorithms in Sec. 7.3.3.

7.3.1 General definition

The proposed substitution sampling algorithm generates dynamics in the set of variables (v, w) as a
Markov process with transition probabilities W (v, w → v′, w′). It distinguishes between an update
step that only affects the visible variables and one that only changes the hidden variables. This is
implemented by splitting the transition probability into conditional probabilities T and g for visible
and hidden states, respectively. The splitting can be done in two ways, with an update first of the

Substitution sampling 85

Original Extended

v v′

w

w′
W (x′|x)

g(w′|v′, v, w)

T (v′|v, w)

1○

2○

x x′

Figure 7.3: Schematic illustration of the transition probabilities (left) in the original and (right) the extended
representation space. The visible variables v are updated according to the transition probability
T (v′|v, w). The new hidden states w′ are obtained in a second step, involving the transition
probability g(w′|v′, v, w).

visible variables, followed by a conditional update of the hidden ones,

W (v, w → v′, w′) = g(w′|v′, v, w)T (v′|v, w) , (7.18)

or vice versa,
W (v, w → v′, w′) = T (v′|v, w′, w)g(w′|, v, w) . (7.19)

In the following, we will only use the first splitting, although both variants are possible. The
differences between an update step in the original state space and one in the higher-dimensional
state space are schematically shown in Fig. 7.3. One update step consists of a sequential update of
the visible and the hidden states.

A substitution sampling algorithm needs to satisfy, in the large-time limit, the following constraints:

1. Satisfaction of the following detailed-balance equation for a fixed hidden state w:

p(v, w)g(w′|v′, v, w)T (v′|v, w) = p(v′, w)g(w′|v, v′, w)T (v|v′, w) . (7.20)

2. The hidden states w are updated with an infinitesimal step size.

3. The mean values (7.15) are invariant under shifts of the boundaries a and b by any of the
sampled hidden state variables wi. This is satisfied, for example, if p(v, w) converges sufficiently
fast to zero near the integral boundaries.

4. The distribution p(v, w) and the transition probabilities T and g need to satisfy the constraint,
cf. Eq. (7.11),

p(v′, w′, τ)
!

=

∫
dv
∫

dw p(v, w, τ) g(w′|v′, v, w)T (v′|v, w) . (7.21)

The first two constraints ensure that the hidden states do not introduce any stochastic behaviour
with respect to the distribution p(v, w) and that only the visible states incorporate the degrees of
freedom of the originally considered expectation value. In numerical simulations, it can also be
sufficient if the stochastic behaviour in the visible direction dominates the one in the hidden direction.
This is, for example, the case for complex Langevin dynamics with imaginary noise [216, 219] and
for the algorithms discussed in Sec. 7.4.3 and Sec. 7.5.

86 Towards sampling complex actions

The last constraint enforces that the substitution sampling algorithm, at long times, formally, samples
from the equilibrium distribution p(v, w). As pointed out above, it is feasible to make use of the
condition (7.21) since relations of Monte Carlo sampling algorithms in higher dimensions can be used
for a computation of observables according to Eq. (7.16) as long as the hidden variables introduce
no stochastic contribution to the computed expectation value. Because of this, the actually observed
distribution differs from p(v, w). Instead, numerical observables coincide with expectation values
with respect to the underlying distribution ρ(x):

〈O(x)〉ρ = 〈O(v + w)〉p . (7.22)

In the case of a complex probability measure p(v, w) the transition probabilities T and g need to
be real-valued and positive to allow an actual sampling. In the next section, we show how this is
implemented for complex Langevin dynamics.

7.3.2 Complex Langevin as a substitution sampling algorithm

We show in this section that complex Langevin dynamics can be attributed to the class of substitution
sampling algorithms. But before that, we want to point out that the complex Langevin equations
can also be systematically derived by imposing the respective constraints for complex actions, as
worked out explicitly in Chapter 8. The algorithms discussed in Sec. 7.4 are derived in the same way.

The approach allows deriving transition probabilities for complex Langevin dynamics. We use these
transition probabilities in the following to prove a satisfaction of constraints no. 1 to no. 4.

Transition probabilities

In concordance with the discussion in Sec. 7.1 and in the previous section, our goal is to show that
complex Langevin dynamics, formally, samples from the complex distribution

ρ(φx + iφy) ∝ exp(−S(φx + iφy)) (7.23)

while satisfying the constraints no. 1 to no. 4 as required for a substitution sampling algorithm. The
constraints demand that the stochastic contribution in the φy direction vanishes in a certain limit.
In the following, we will specify this limit for the case of complex Langevin dynamics for which it is
reached with an evolution in the continuous Langevin time τ .

We thereby assume that constraint no. 3, namely an invariance under simultaneous shifts of the
integration boundaries, is satisfied by the considered observables, which holds independently of the
transition probabilities.

Driven by the motivation to view complex Langevin dynamics from the perspective of a Markov
chain Monte Carlo algorithm, we start with a discretization of the Langevin time in Eq. (2.10),

φ′x = φx − εRe
[
δS(φ)

δφ

∣∣∣∣
φx+iφy

]
+
√

2εη ,

φ′y = φy − ε Im
[
δS(φ)

δφ

∣∣∣∣
φx+iφy

]
, (7.24)

Substitution sampling 87

where ε = ∆τ is the time step in which φx and φy evolve to φ′x and φ′y. This formulation allows a
numerical implementation of the evolution. The continuous limit in the Langevin time (ε→ 0) is
evaluated by extrapolating the results of repeated simulations for different values of ε.

The update rule for the real part in Eq. (7.24) can be obtained by means of an expansion of the
real part of the action difference ∆SRe(φ

′, φ) = SRe(φ
′
x + iφy) − SRe(φx + iφy) in the transition

probability,

T (φ′x|φx, φy) ∝ ϕ
(
φ′x − φx√

2ε

)
exp

(
−∆SRe(φ

′, φ)

2

)
. (7.25)

This expression for the transition probability is derived in Chapter 8, cf. Eq. (8.27). Here, ϕ denotes
the Gaussian distribution

ϕ(x) =
1√
2π

exp

(
−x

2

2

)
. (7.26)

Hence, the transition probability T is given by the product of a proposal distribution ϕ for the new
field value φ′x and an acceptance probability that depends on the action difference ∆SRe(φ

′, φ).

Analogously, the update equation for the imaginary part of complex Langevin dynamics, see Eq. (7.24),
involves the imaginary part of the action difference ∆SIm(φ′, φ) = SIm(φ′x + iφy)− SIm(φx + iφy),
cf. Eq. (8.32),

φ′y = φy − ε
∆SIm(φ′, φ)

φ′x − φx
. (7.27)

Since it does not contain any noise term, the respective conditional transition probability is a
delta-distribution,

g(φ′y|φ′x, φx, φy) = δ

(
φ′y − φy + ε

∆SIm(φ′, φ)

φ′x − φx

)
. (7.28)

The transition probability g defines the update rule for φ′y, where we use that x = φ, v = φx and
w = iφy. An expansion of the action difference to first order yields the update equation of the
imaginary part of complex Langevin dynamics. In the limit ε→ 0, constraint no. 2, demanding an
infinitesimal step size into the φy direction, is thus obeyed.

Note that, in the derivation of both update rules, the action difference involves a change in φx only.
This is in accordance with the condition that only the visible variables represent the degrees of
freedom of the initially considered expectation value over x.

The derivation of the discrete update equations (7.24) is performed explicitly in App. C.1, starting
from the transition probabilities (7.25) and (7.28).

Langevin symmetry

We point out that the transition probability (7.28) for the imaginary part is invariant under an
exchange of φ′x and φx,

g(φ′y|φ′x, φx, φy) = g(φ′y|φx, φ′x, φy) . (7.29)

We will refer to this symmetry as Langevin symmetry, which will be a key ingredient for the
construction of substitution sampling algorithms. See Fig. 7.4 for an illustration of the symmetry.

If the Langevin symmetry holds, constraint no. 1 reduces to

p(φx, φy)T (φ′x|φx, φy)
!

= p(φ′x, φy)T (φx|φ′x, φy) , (7.30)

88 Towards sampling complex actions

forward
backwardv v′

w

w′
g(w′|v′, v, w)

T (v′|v, w)

g(w′|v, v′, w)

T (v|v′, w)

Figure 7.4: Illustration of the Langevin symmetry defined in Eqs. (7.29) and (7.36). The transition probabilities
for the visible variables in the forward and the backward directions of the adapted detailed-balance
equation (7.37) are different. In contrast, the transition probability for the hidden state w is
invariant under an exchange of v′ and v.

where p(φx, φy) = ρ(φx + iφy), cf. Eq. (7.23).

In fact, the transition probability T , defined in Eq. (7.25), violates this modified detailed-balance
equation, since:

p(φx, φy)T (φ′x|φx, φy) = p(φ′x, φy)T (φx|φ′x, φy) exp(−i∆SIm(φ, φ′)) . (7.31)

However, Eq. (7.31) is satisfied if the step size into the φx direction is also chosen to be infinitesimal.
This is ensured in the limit ε→ 0 since the proposal distribution converges to a delta-distribution
around φx,

lim
ε→0

1√
2ε
ϕ

(
φ′x − φx√

2ε

)
= δ(φ′x − φx) . (7.32)

The infinitesimal step size in the φx direction justifies the previously performed expansion in the
action difference and ensures constraint no. 4 to be fulfilled:

p(φ′x, φ
′
y, τ)

!
=

∫
dφx

∫
dφy p(φx, φy, τ) g(φ′y|φ′x, φx, φy)T (φ′x|φx, φy) . (7.33)

This is proven as follows. We start by inserting relation (7.31) into Eq. (7.33). We then make use of
the symmetry (7.29) and finally expand the action difference ∆SIm(φ, φ′) to first order around φ′x,
which gives

p(φ′x, φ
′
y, τ)

!
=

∫
dφx

∫
dφy p(φ′x, φy, τ) g(φ′y|φ′x, φy)

× T (φx|φ′x, φy) exp

(
−i(φx − φ′x)

δSIm(φ′x + iφy)

∂φ′x

)
. (7.34)

Here, g(φ′y|φ′x, φy) ≡ g(φ′y|φx, φ′x, φy), i.e., the φx-dependence of the transition probability g can be
dropped due to the expansion of ∆SIm(φ, φ′) to first order around φ′x. The expansion is justified in
the limit ε → 0, where also φx changes by infinitesimal amounts only. In this limit, it is possible
to absorb the exponential function in Eq. (7.34) into the transition probability T (φx|φ′x, φy). See
App. C.5 for further details.

We can now integrate over φx since the transition probability on the right-hand side is the only
distribution depending on φx and, using its normalization, we are left with

p(φ′x, φ
′
y, τ)

!
=

∫
dφy p(φ′x, φy, τ) g(φ′y|φ′x, φy) . (7.35)

Substitution sampling 89

As a last step, we take the limit ε→ 0. In this limit, by the definition of the conditional transition
probability g, Eq. (7.35) is indeed satisfied by p(φx, φy) = lim

τ→∞
p(φx, φy, τ). This completes the

proof.

We conclude that the step sizes in configuration space need to be infinitesimal in both the φx and
the φy directions in order to fulfil the constraints no. 1 to no. 4 required for a substitution sampling
algorithm. Hence, for ε → 0, the transition probabilities (7.25) and (7.28) are equivalent to the
discretized update rules (7.24) and thus to complex Langevin dynamics.

7.3.3 Constructing substitution sampling algorithms

In the following, we generalize the key concepts of complex Langevin dynamics discussed in the
previous section to the case of general visible and hidden variables and thus also to finite step sizes
in the visible direction. This generalization provides a possible approach to constructing transition
probabilities that satisfy all of the constraints a substitution sampling algorithm must fulfil.

We start again by demanding that the transition probability for the hidden variables obeys the
Langevin symmetry (see also Fig. 7.4)

g(w′|v′, v, w) = g(w′|v, v′, w) . (7.36)

With this symmetry, the detailed-balance equation (7.20) can be written as

g(w′|v′, v, w)×
[
p(v, w)T (v′|v, w)− p(v′, w)T (v|v′, w)

] !
= 0 . (7.37)

For non-vanishing g, the term in square brackets, referred to as adapted detailed-balance equation,
must vanish, which constrains the transition probabilities T (v′|v, w).

The meaning of the adapted detailed-balance equation becomes clearer when one takes a closer look
at the equation: It can be viewed as a detailed-balance equation of a Markov chain that allows
changes in the visible state variables v only, whereby w is fixed. The process is unaware of any
dependence on the additional auxiliary variables w. Nevertheless, w will be updated based on
g(w′|v′, v, w). This entails a transformation of the environment for the Markov chain in v after each
update step since the action depends on w.

The above interpretation mirrors the important concept of the substitution sampling algorithm for
computing observables by means of an integration over the visible variables only. In contrast, the
hidden variables give rise to a continuous set of different substitutions of the dynamical variables in
the originally considered integral and carry no stochastic behaviour, cf. Eq. (7.15).

It remains to derive transition probabilities g for the hidden states that are in concordance with the
constraints no. 2 to no. 4.

In the following, we point out possible implications that result from constraint no. 4, Eq. (7.21). We
insert the detailed-balance equation (7.20) into the right-hand side of Eq. (7.21),

p(v′, w′, τ) =

∫
dv
∫

dw g(w′|v′, v, w)T (v′|v, w)p(v, w, τ)

=

∫
dv
∫

dw g(w′|v, v′, w)T (v|v′, w)p(v′, w, τ) . (7.38)

90 Towards sampling complex actions

Inspired by the first-order expansion (7.34) in the case of complex Langevin dynamics, we here
demand that g does not depend on v,

g(w′|v, v′, w) ≡ g(w′|v′, w) . (7.39)

As for complex Langevin dynamics, this allows performing the integration over v in Eq. (7.38),
resulting in

p(v′, w′, τ)
!

=

∫
dw g(w′|v′, w)p(v′, w, τ) . (7.40)

Next, we make use of constraint no. 2, which suggests that g is of the form

g(w′|v′, w) = δ
(
w′ − h(v′, w; ε)

)
, (7.41)

where δ(·) represents the delta-distribution and the function h(v′, w; ε) has the property that

lim
ε→0

h(v′, w; ε) = w . (7.42)

Here, the parameter ε parametrizes the step size in the update process of the hidden states. With
the above assumptions on g, one can take the limit ε → 0 and integrate over w, which confirms
constraint (7.40) to hold and therefore constraint no. 4, cf. Eq. (7.21).

Note that for a transition from (v, w)→ (v′, w′), one needs to replace v′ by v in Eq. (7.41),

g(w′|v, w) = δ
(
w′ − h(v, w; ε)

)
. (7.43)

Complex Langevin dynamics deviates from this construction in the sense that the adapted detailed-
balance equation (7.37) is only warranted when step sizes into the visible direction are infinitesimal,
too.

In the next chapter, we introduce examples of algorithms that are constructed based on the same
principles as complex Langevin dynamics. Sec. 7.5 then provides an example of an algorithm that
satisfies the constraints of a substitution sampling algorithm in a different way.

7.4 Complex Langevin-type algorithms

The analysis of complex Langevin dynamics and the above guide for constructing substitution sam-
pling algorithms can be combined to define a systematic approach to deriving transition probabilities
T and g. The resulting algorithms differ in their proposal distributions and satisfy the constraints of
substitution sampling in the same manner as complex Langevin dynamics.

This systematic approach is described in detail in Chapter 8. It is inspired by an alternative derivation
of complex Langevin dynamics which recovers known results from a different point of view. The core
concepts of the derivation are: an extension of the transition probabilities of Langevin dynamics to a
higher-dimensional state space and a compensation of certain (here imaginary) contributions in the
action by terms that emerge in the transition to the extended state space. The approach is built on
the requirement that the Langevin symmetry as well as constraints no. 1 to no. 4 stated in Sec. 7.3.1
are obeyed. It then leads to the transition probabilities of, e.g., complex Langevin dynamics, cf.
Eqs. (7.25) and (7.28).

Complex Langevin-type algorithms 91

The cancellation of imaginary contributions of the action is a crucial step in this derivation, cf.
Eqs. (8.6) and (8.7) in Chapter 8. In the case of complex Langevin dynamics, the update of φ′y of the
imaginary field φy is used for this. This compensation leads to well-defined, real-valued transition
probabilities and, therefore, allows an actual sampling of problems with a sign problem.

In the following, we present several algorithms resulting from the systematic approach. Detailed
derivations of these algorithms are given in App. C.

7.4.1 Second-order complex Langevin

Second-order complex Langevin dynamics results as a refinement of complex Langevin dynamics.
For this, also the second-order term of the Taylor expansion, cf. Eq. (C.3), of the action difference
around φx is taken into account. The resulting update rule for the real part of the field is

φ′x = φx −
(
ε
δSRe
δφx

+
√

2εη

)/(
1 +

ε

2

δ2SRe
δφ2

x

)
, (7.44)

and, for the imaginary part,

φ′y = φy − ε
δSIm
δφx

− ε

2

(
φ′x − φx

) δ2SIm
δφ2

x

, (7.45)

where we defined SRe := SRe(φx+ iφy) and SIm := SIm(φx+ iφy). As before, the update rule samples
from the desired equilibrium distribution in the limit of ε → 0 since detailed balance is satisfied
only in this limit. Details on the derivation can be found in App. C.2. A numerical comparison to
complex Langevin dynamics will be presented in Sec. 7.6.

7.4.2 Complex hat function algorithm

Complex Langevin dynamics uses a Gaussian distribution ϕ, cf. Eq. (7.26), in proposing states φ′.
We demonstrate, in this section, that the systematic derivation of Langevin-type sampling algorithms
does also work for other types of proposal distributions. In particular, we consider the triangular
hat function,

ηε(φ
′ − φ) =

1

ε

1− φ′−φ
ε for 0 ≤ φ′ − φ < ε ,

1 + φ′−φ
ε for − ε < φ′ − φ < 0 ,

0 otherwise.
(7.46)

as a proposal distribution. The limit ε→ 0 facilitates the implementation of an infinitesimal step
size in configuration space. This is a necessary condition to satisfy the constraints of the substitution
algorithm, as worked out in Chapter 8.

We assume again a complex action, as defined for the polynomial model in Eq. (2.1), and define an
update scheme that allows sampling despite a sign problem. The respective update rules for φx and
φy are derived with the help of the systematic derivation in App. C.3.

The update rule for the imaginary field φy is given by:

φ′y = φy +
[ε
s
−
(
φ′x − φx

)]
tan

(
−∆SIm(φ′, φ)

2

)
, (7.47)

92 Towards sampling complex actions

where
s = sign(φ′x − φx) . (7.48)

The update rule is invariant under an exchange of φ′x and φx and thus possesses the Langevin
symmetry, Eq. (7.36).

The update rule compensates the contributions from the imaginary part of the action as it is also the
case for complex Langevin dynamics. This compensation leads to a real-valued transition probability
for the real part of the field φx, namely,

T (φ′x|φx, φy) =
1

εN(φ)
exp

(
−∆SRe(φ

′, φ)

2

)(
1− sφ

′
x − φx
ε

)
cos−1

(
−∆SIm(φ′, φ)

2

)
. (7.49)

In contrast to complex Langevin dynamics, it is not trivial to translate this transition probability
in an update rule for φx. Instead, we sample a new state φ′x implicitly by numerically solving the
transformation of the transition probability to a uniform distribution,

∫ φ′x

−∞
dφ̃x T (φ̃x|φx, φy) !

=

∫ r

0
dr̃ = r . (7.50)

In practice, one samples r from the uniform distribution and numerically solves the expression on
the left-hand side for φ′x, so that the equality is satisfied for the sampled r. It is important that the
transition probability T represents a probability distribution. In the limit of ε→ 0 this is indeed the
case.

7.4.3 Uniform complex Langevin

A substitution sampling algorithm can also be formulated for a uniform proposal distribution. We
achieve this by defining the proposal distribution by means of an integrated delta-distribution

q(φ→ φ′) =

∫ l

−l

dr
2l
δ
(
φ′ − (φ+ r)

)
=

1

2l

[
Θ
(
φ′ − φ+ l

)
−Θ

(
φ′ − φ− l)

)]
, (7.51)

and implement it by sampling r uniformly from the interval [−l, l].

The resulting update rules are

T (φ′x|φx, φy) ∝
∫ l

−l

dr
2l
δ
(
φ′x − (φx + r)

)

× exp

(
−∆SRe(φ

′, φ)

2

)
cos−1

(
−∆SIm(φ′, φ)

2

)
(7.52)

for the real part φx and

φ′y = φy +
(
φ̃′x − (φx + r)

)
tan

(
−∆SIm(φ′, φ)

2

)
(7.53)

for the imaginary part φy of the field. Sampling a state φ′x works in the same manner as for the
complex hat function algorithm by a transformation of the transition probability, cf. Eq. (7.50). In
contrast to the other approaches, two proposal states, φ′x and φ̃′x are sampled. This entails a finite

Substitution Hamiltonian Monte Carlo sampling in auxiliary dimensions 93

step size for φy. The algorithm satisfies all constraint of a substitution algorithm in the limit of
l→ 0, see Chapter 8 for details.

In principle, any other proposal distribution can be used as long as constraint (7.41) for the imaginary
update rule is satisfied and potentially introduced noise in the imaginary direction is dominated, in
numerical simulations, by the noise in the real direction in the limit of infinitesimally small step
sizes.

7.4.4 Metropolis-like sampling

In principle, it is also possible to define a Metropolis [253] accept/reject step based on the adapted
detailed-balance equation (7.30). The acceptance probability is approximated by

A(φ′x|φx, φy) = min
[
1, exp

(
−(SRe(φ

′
x + iφy)− SRe(φx + iφy)

)]
. (7.54)

where a respective transition probability T is defined as the product of a symmetric proposal
distribution for φ′x and the acceptance probability according to:

T (φ′x|φx, φy) = q(φ′x|φx)A(φ′x|φx, φy) . (7.55)

The adapted detailed-balance equation is violated by this definition in the same way as for complex
Langevin dynamics and the other complex Langevin-type algorithms in this section, cf. Eq. (7.31).
Accordingly, the sampling algorithm works also only in the limit of infinitesimally small step sizes
in φx. The imaginary part φy is updated based on the associated update equation g of the used
proposal distribution, independent of an acceptance or a rejection of the proposed state.

7.5 Substitution Hamiltonian Monte Carlo sampling in auxiliary
dimensions

We present, in this section, as a proof of concept, an alternative algorithm satisfying constraints
no. 1 to no. 4 of a substitution sampling algorithm defined in Sec. 7.3.1. We call the algorithm
Substitution Hamiltonian Monte Carlo Sampling (SHMCS). The algorithm is not derived within
the systematic approach introduced in Chapter 8. Instead, it makes use of the basic idea of the
Hamiltonian Monte Carlo algorithm to introduce an additional momentum as an auxiliary dimension.
The SHMCS algorithm only works for real actions and cannot be applied to problems with a sign
problem. However, it serves as a good example and provides numerical evidence in support of the
general framework introduced in this work.

We consider a (real) probability distribution ρ(x) and want to design an algorithm for computing
observables according to Eq. (7.16),

〈O(x)〉 = 〈O(v + w)〉 =
1

MN

MN∑

i=1

O(vi + wi) . (7.56)

In contrast to complex Langevin dynamics, the hidden variables w are taken to be real and introduced
by the substitution

x = x(v) = v + w , dx = dv . (7.57)

94 Towards sampling complex actions

We assume that the probability distribution p(v + w) satisfies the necessary constraints for a valid
computation of expectation values by Eq. (7.56).

In addition, we introduce momenta π as further hidden variables. Similar to the Hamiltonian Monte
Carlo algorithm, the momenta are related to the visible variables v through an energy function

H(v, w, π) := S(v + w) +
π2

2m
. (7.58)

Next, we split the action into two contributions:

S(v + w) = S1(v + w) + S2(v + w) . (7.59)

This step is similar to the distinction between the real and the imaginary part of a complex action.
For a real action, however, the splitting is arbitrary.

In contrast to the HMC algorithm, we demand

H̃(v, π) := S2(v + w) +
π2

2m
(7.60)

to stay constant during the Monte Carlo evolution which is implemented by updating v and π
according to the differential equations

dv
dt

=
∂H̃(v, π)

∂π
,

dπ
dt

= −∂H̃(v, π)

∂v
. (7.61)

which is assumed to be possible in a numerically exact manner. The remaining contribution S1(x) is
taken into account through the acceptance term

A(v′|v, w) = min
[
1, exp

(
−
(
S1(v′ + w)− S1(v + w)

))]
. (7.62)

This approach satisfies, so far, the detailed-balance equation of a substitution sampling algorithm,
cf. Eq. (7.20). Therefore, we are free to choose an update rule for the transition probability of the
hidden state w as long as the constraints defined in Sec. 7.3.1 are satisfied. We define the transition
probability g as a Langevin process with finite step size,

g(w′|w) = ϕ

(
w′ − w√

2ε
+

√
ε

2
θw

)
, (7.63)

with the Gaussian distribution ϕ, cf. Eq. (7.26). The transition probability translates in the limit
ε→ 0 in the Langevin evolution

dw
dt

= −θw + η , (7.64)

with Gaussian noise η.

Numerical results 95

Putting everything together, the SHMCS algorithm is defined based on the following transition
probabilities

T (v′|v, w, π) ∝ δ
(
v′ −RΦv(v, w, π)

)

×min
[
1, exp

(
−(S1(v′ + w)− S1(v + w))

)]
,

g(π′|v, w, π) = δ
(
π′ −RΦπ(v, w, π)

)
,

g(w′|w) = ϕ

(
w′ − w√

2ε
+

√
ε

2
θw

)
. (7.65)

The functions Φv(v, w, π) and Φπ(v, w, π) encode the end point of an evolution according to the
differential equations (7.61) for a finite amount of time. The operator R negates the momenta π
after the evolution. Similar to the HMC algorithm, this ensures reversibility.

The transition probabilities satisfy all constraints of a substitution sampling algorithm. According
to the fourth constraint, the SHMCS algorithm formally samples from the equilibrium distribution

p(v, w, π) ∝ exp (−H(v, w, π)) . (7.66)

As for complex Langevin dynamics, the actually observed steady-state distribution differs, due to
the properties of the substitution sampling algorithm, from this distribution. The difference results
from the required vanishing stochastic contribution in the direction of the hidden variables. In the
case of the SHMCS algorithm, this requirement is violated by the Gaussian noise distribution in the
transition probability g. However, these stochastic contributions are dominated in the limit of ε→ 0
by finite correlations in the visible variables, resolving a violation of the requirement. In practice,
this can be ensured by choosing θ sufficiently large.

7.6 Numerical results

In the remainder of this work, we briefly examine the applicability of our approach and the algorithms
derived with it by a numerical evaluation for the polynomial model defined in Eq. (2.1) in Sec. 2.1.1,

S(φ) =
1

2
(σRe + iσIm)φ2 +

λ

4
φ4 . (7.67)

Expectation values for benchmarking are analytically accessible for the chosen set of parameters, cf.
Ref. [216].

For the complex Langevin-type algorithms, we compare, in Fig. 7.5, the impact of finite step sizes
on a possible extrapolation to the continuous limit and the performance for a fixed step size but a
different severity of the sign problem, i.e., a more oscillating measure. The considered algorithms
are defined in Tab. 7.1. The dependence of the measured average step size 〈φx〉 in the real direction
and on the chosen step size parameter ε is shown in Fig. 7.6.

The results in Fig. 7.5 show that none of the studied algorithms entails a significant difference to
complex Langevin dynamics, with the exception of the Metropolis-like algorithms. The deviations
can be traced back to the asymmetry between the accept and reject step for the real field variable and
the independent update step of the imaginary field. The slightly worse convergence of second-order
complex Langevin dynamics is likely related to an asymmetry in the adapted detailed-balance

96 Towards sampling complex actions

0.03 0.05 0.10
〈∆φx〉

0.428

0.430

0.432

0.434

0.436

〈φ
2
〉 R

e

(a)

0.03 0.05 0.10
〈∆φx〉

−0.155

−0.150

−0.145

〈φ
2
〉 I

m

(b)

0.03 0.05 0.10
〈∆φx〉

0.00

0.01

0.02

0.03

0.04

0.05

κ
(φ

′ x
,
φ
x
,
φ
y
)

(c)

0.0 0.5 1.0 1.5 2.0
σIm

−0.006

−0.004

−0.002

0.000

0.002

〈φ
2
〉 R

e
−
〈φ

2
〉E

x
a
ct

R
e

(d)

0.0 0.5 1.0 1.5 2.0
σIm

−0.020

−0.015

−0.010

−0.005

0.000

0.005

〈φ
2
〉 I

m
−
〈φ

2
〉E

x
a
ct

Im

(e)

0.0 0.5 1.0 1.5 2.0
σIm

0.00

0.02

0.04

0.06

κ
(φ

′ x
,
φ
x
,
φ
y
)

(f)

Exact
CLE

2ndCLE
ImplGauss

MetrGauss
ImplHat

ImplUniHat
ImplUniUni

MetrUniGauss

Figure 7.5: Comparison of numerical results for different complex Langevin-type sampling algorithms for the
polynomial model (7.67). Details about the algorithms are given in Tab. 7.1. (a)-(c) Results for
λ = σRe = σIm = 1 and a varying average step size 〈∆φx〉 in the real direction of the representation
space. (d)-(f) Results for λ = σRe = 1 and a varying σIm. To get an appropriate comparison,
the step sizes in the real direction were chosen to be equal for all algorithms. The plots (c) and
(f) measure the violation of the adapted detailed-balance equation (7.30) based on the measure
κ(φ′x, φx, φy) defined in Eq. (8.37) in Chapter 8. In concordance with Sec. 7.3.2, the measure
increases with the real step size and with the magnitude of the imaginary contribution, regulated
by σIm.

equation and the Langevin symmetry, cf. Eqs. (7.29) and (7.30), introduced by the second order
term of the Taylor expansion around φx, cf. Eq. (C.9).

The SHMCS algorithm is tested in a similar way. In this case, we compare the results with those
from a real Langevin equation with one hidden variable. The algorithm is derived in the same
manner as complex Langevin, but with a substitution φ = v +w. Recall that the resulting Langevin
equation with one hidden variable only works for real actions. We split the action according to

S(v + w) = S1(v + w) + S2(v + w) , (7.68)

with

S1(v + w) =
σRe
2
w2 +

λ

4

(
v4 + 6v2w2 + 4vw3

)
,

S2(v + w) =
σRe
2

(
v2 + 2vw

)
+
λ

4

(
4v3w + w4

)
. (7.69)

The numerical results in Fig. 7.7 support the theoretical framework presented in this work. In
particular, the SHMCS algorithm allows larger step sizes in the visible direction due to an exact
satisfaction of the detailed-balance equation (7.20). As pointed out at the end of Sec. 7.5, an
infinitesimally small step size in the direction of the hidden variables is implemented by taking the
limit ε→ 0. The numerical results confirm the discussed restriction that stochastic contributions
in the hidden variables need to be dominated by correlations in the visible variables. If the step
size into the hidden direction is not small enough, compared to that in the visible direction, this

Summary and outlook 97

0.01 0.03 0.05 0.10 0.30

〈∆φx〉

10
−3

10
−2

10
−1

10
0

ε

CLE
2ndCLE
ImplGauss
MetrGauss
ImplHat
ImplUniHat
ImplUniUni
MetrUniGauss

Figure 7.6: Relation between the parameter ε and the actually observed step size 〈∆φx〉 in real direction for
the different implemented complex Langevin-type algorithms.

domination does no longer hold. This can be observed in Fig. 7.7 for large values of ε and small step
sizes in the real direction.

7.7 Summary and outlook

We embed complex Langevin dynamics into a generalized framework. The framework is built on the
idea to substitute the integration variable in the integrals for the computation of correlations and
expectation values of observables. Auxiliary parameters which are introduced by this substitution
are utilized to define a Markov chain Monte Carlo algorithm that operates in a higher-dimensional
state space. This space is spanned by the original representation of the state and the introduced
auxiliary, hidden state variables. The sampling algorithm smoothly interpolates between different
transformations of the integration variable and allows a computation of observables based on samples
drawn in the Markov process. The sign problem can be circumvented in this way by a smart choice
of the transition probabilities of the Markov process. Complex Langevin dynamics is derived as one
possible example for such an algorithm.

The introduced substitution sampling algorithm formalizes the approach as a more general algorithm
that computes observables based on this idea. We provide the necessary constraints any such
algorithm must be subject to. Furthermore, the algorithms derived indicate possible directions to go
within the given framework.

We anticipate that the presented derivation of complex Langevin dynamics provides the possibility
for the development of novel algorithms and for the understanding of existing ones for simulating
theories with a sign problem. For example, one might analyse a replacement of the substitution
of the integral for the observables by a non-linear transformation, similar to the work in Ref. [80]
or investigate further (existing) Markov chain Monte Carlo methods in auxiliary dimensions for a
possible adaptation to complex measures. Furthermore, distributions sampled by means of a process
in a real extended representation space might have overlap with a distribution sampled by complex
Langevin dynamics. This property makes an application of reweighting in the extended space appear
attractive. The approach is similar to reweighting in the complex plane, studied in Ref. [295]. Lastly,
the provided mathematical constraints enable an integration of machine learning algorithms into the
sampling procedure since the constraints allow the formulation of objective functions for training.

98 Towards sampling complex actions

10
−2

10
−1

〈∆v〉

10
−5

10
−4

10
−3

10
−2

〈∆
w
〉

(a)

10
−2

10
−1

〈∆v〉

0.47

0.48

0.49

0.50

〈φ
2
〉

(b) Exact
Langevin

ε = 7 × 10
−8

ε = 7 × 10
−6

ε = 7 × 10
−4

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
v

−0.2

0.0

0.2

w

Real Langevin

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
v

SHMCS

0

1 × 10
−3

2 × 10
−3

3 × 10
−3

4 × 10
−3

5 × 10
−3

6 × 10
−3

P
(v
,
w
)

(c)

ρ(v + w) ρ(v + w)

Figure 7.7: Comparison of the SHMCS algorithm, for θ = 100, and the real Langevin equation in one auxiliary
dimension for the polynomial model (7.67) with λ = σRe = 1 and σIm = 0. The step size of
the SHMCS algorithm in the visible direction is regulated by the evolution time with respect
to the Hamilton’s equations (7.61) and the one in the hidden direction by the parameter ε, cf.
Eq. (7.63). (a) Interrelationship between the step sizes in the visible and the hidden dimension.
Inherent to the SHMCS algorithm, the step size in the hidden direction is independent of the
real one but changes in dependence of ε. For real Langevin dynamics, the step sizes are related
to each other. (b) Convergence of the algorithms to the analytical result of the observable 〈φ2〉
as a function of the step size in the visible direction. In contrast to the real Langevin equation,
exact results are obtained for the SHMCs algorithm also for large visible step sizes. This is
an important observation since it shows that the provided theoretical framework in this work
is correct. Furthermore, it demonstrates that, in principle, sampling from distributions with a
complex contribution with larger step sizes in the visible direction is possible. The numerical
results deviate for larger values of ε and smaller step sizes into the real direction. This property
can be traced back to the constraint that the considered correlations in the visible direction need
to be dominant, which is no longer the case in this limit. (c) Distribution P (v, w) of the two
algorithms in the higher-dimensional representation space. The histograms in the smaller plots
confirm that the algorithms sample in both cases from the target distribution ρ(φ) = p(v + w),
which is indicated by the dashed black line.

Summary and outlook 99

Name Transition probabilities Proposal distribu-
tion

Action differ-
ence expansion

Real update

CLE Gaussian (Eq. (7.24)) Gaussian 1st order Explicit
2ndCLE Gaussian (Eqs. (7.44)

and (7.45))
Gaussian 2nd order Explicit

ImplGauss Gaussian (Eqs. (7.25)
and (7.27))

Gaussian Exact Implicit

MetrGauss Gaussian (Eqs. (7.25)
and (7.27))

Gaussian Exact Metropolis

ImplHat Hat Function (Eqs. (7.47)
and (7.49))

Hat Function Exact Implicit

ImplUniHat Uniform (Eqs. (7.52)
and (7.53))

Hat Function Exact Implicit

ImplUniUni Uniform (Eqs. (7.52)
and (7.53))

Uniform Exact Implicit

MetrUniGauss Uniform (Eqs. (7.52)
and (7.53))

Gaussian Exact Metropolis

Table 7.1: Details about the different studied algorithms in Fig. 7.5 and Fig. 7.6. The algorithms differ in
their utilized transition probabilities. For the uniform transition probability, different proposal
distributions are considered. The last column indicates how the update of the real part φx is
implemented. For complex Langevin dynamics and the second order complex Langevin algorithm,
an explicit update rule can be formulated. The implicit update is performed based on a transfor-
mation of the probability density, cf. Eqs. (7.50) and (C.7). The Metropolis update accepts or
rejects a proposal state based on Eq. (7.54).

CHAPTER 8

Complex Langevin-type sampling by compensation

This chapter is based on Ref. [5].

In this chapter, we present a systematic approach to deriving an implementation of a substitution
sampling algorithm, see Sec. 7.3. The algorithm represents a generalization of complex Langevin
dynamics and is based on the idea to consider different proposal distributions in a respective Markov
chain. We refer to the algorithm as Langevin sampling by compensation.

Our approach has two key ingredients: The first one is the reformulation of the transition probabilities
of Langevin dynamics as functions of a set of visible and hidden variables. This leads to dynamics
in a higher-dimensional state space. As pointed out in Sec. 7.2, the visible and hidden variables
correspond, for complex Langevin, to the real and the imaginary parts of the field.

The second key ingredient is a compensation of certain contributions to the transition probabilities
by terms which arise from the hidden variables. This feature is unique to the approach. In particular,
it is useful for problems with a complex action where the imaginary part prevents an application of
standard Monte Carlo algorithms. In these cases, the imaginary part can be compensated by the
introduced imaginary part of the field. Initially complex transition probabilities can be adapted to
get real-valued. The property is utilized in the complex Langevin-type algorithms, presented already
in the previous chapter in Sec. 7.4, which are all derived based on the here presented systematic
derivation.

8.1 Complex Langevin dynamics by compensation

We begin with a slightly simplified derivation of complex Langevin dynamics, while using the two
mentioned key ingredients. As a reminder, this corresponds in Fig. 7.1 in Chapter 7 to the transition
from a real-valued action to a complex action, depicted by the golden arrow on the left-hand side.
The line of arguments of this derivation is different from the standard derivation and provides a
good understanding of the key ingredients. The derivation was the initial impulse for the results of
this and of the previous chapter. A generalization is discussed in the next section.

Consider the real Langevin equation, cf. Eq. (2.5) in Sec. 2.1.2, discretized in the Langevin time τ :

φ′ = φ− εδS(φ)

δφ
+
√

2εη , (8.1)

101

102 Complex Langevin-type sampling by compensation

where φ′ = φ(τ + ε) and φ = φ(τ), and thus ε denotes a finite time step. The transition probability
from state φ to φ′ is given by

W (φ→ φ′) =
1√
2ε
ϕ

(
φ′ − φ√

2ε
+

√
ε

2

δS(φ)

δφ

)
, (8.2)

where
ϕ(η) =

1√
2π

exp
(
−η2/2

)
(8.3)

is a normalized Gaussian distribution. ϕ(η) is the probability with which a value η of the noise is
drawn and thus φ is updated to φ′ according to the relation

η =
φ′ − φ√

2ε
+

√
ε

2

δS(φ)

δφ
. (8.4)

As part of the sign problem, an accept/reject step is not possible for this transition probability if the
action S(φ) is complex. We will show that it is possible to resolve this sampling problem by two
mathematical tricks.

In the first step, an additional variable φ′y is introduced by choosing φ′ to be complex-valued,

φ′ → φ′x + iφ′y . (8.5)

The imaginary part φ′y of the field has no physical meaning. The field φ′ now lives in two dimensions
that are spanned by its real and imaginary parts. The field φ→ φx + iφy will also be complex after
the first update step. The argument of the Gaussian transition probability (8.2) can be written, in
terms of real and imaginary parts, as

φ′x + iφ′y − φx − iφy√
2ε

+

√
ε

2

(
δSRe
δφx

+ i
δSIm
δφx

)
, (8.6)

where we define SRe := SRe(φx + iφy) and SIm := SIm(φx + iφy). Here, we write the functional
derivative of S(φx + iφy) with respect to the physical field variable φx since our initial field φ is
identified with φx, whereas φy represents an additional variable. This in concordance with the
introduction of a complex field in Sec. 7.1.2 and Sec. 7.2.3.

The second important step is to choose the free variable φ′y in such a way that it compensates all
imaginary contributions in the argument (8.6) in the transition probability, which arises from the
imaginary part of the action. This is accomplished by setting

φ′y = φy − ε
δSIm
δφx

. (8.7)

As a result of this, despite a complex action S, the function ϕ in the transition probability has a real
argument and thus represents a valid probability distribution for the Langevin update, cf. Eq. (8.2).
Sampling from this distribution is achieved by the Langevin update rule (8.1) for φx,

φ′x = φx − ε
δSRe
δφx

+
√

2εη . (8.8)

Systematic derivation 103

The update equations (8.7) and (8.8) are equivalent to the discretized update rules of complex
Langevin dynamics (7.24) since, for holomorphic actions,

δSRe
δφx

= Re

[
δS

δφ

∣∣∣∣
φx+iφy

]
,

δSIm
δφx

= Im

[
δS

δφ

∣∣∣∣
φx+iφy

]
. (8.9)

8.2 Systematic derivation

We continue with a generalization of this derivation that permits the usage of different kinds of
proposal distributions. The systematic step-by-step approach provides transition probabilities T
and g for the visible and hidden variables. These are constructed to satisfy the constraints of a
substitution algorithm that were pointed out at the beginning of Sec. 7.3. This is achieved by
aiming at an implementation of the Langevin symmetry (7.36) and of the adapted detailed-balance
equation (7.37).

The systematic approach starts with the definition of a standard Monte Carlo algorithm and continues
with an application to a complex action. Accordingly, the derivation follows, in contrast to the
previous derivation, the directions of the red arrows in Fig. 7.1.

Similar to complex Langevin dynamics, the necessary constraints are fulfilled, by definition, only in
the limit of infinitesimally small step sizes in configuration space. A reliable estimation of observables
is only feasible for an extrapolation to infinitesimally small step sizes.

For comparison, we state, in parallel to the general approach, the specific equations for the case
of complex Langevin. The different steps of the derivation are sketched, for the case of complex
Langevin, in Fig. 8.1. For the more general derivation, we keep the notation in terms of visible and
hidden variables. For complex Langevin dynamics these correspond to the real and imaginary parts
of the field. The field φ is represented by x.

Our derivation consists of the following steps: We start with a given proposal distribution and
acceptance probability for a Markov chain Monte Carlo algorithm. Next, the representation of the
state as well as these distributions are extended by auxiliary dimensions based on the substitution
x = v + w. Following the provided theoretical framework for the substitution sampling algorithm,
the dynamics is extended to take place in both the visible variables v and the hidden variables
w. This introduces the constraints no. 1 to no. 4 on the algorithm to be taken into account, as
defined in Sec. 7.3.1. An identification of symmetric and non-symmetric terms with respect to
an exchange of v′ and v will allow defining transition probabilities g(w′|v′, v, w) that satisfy the
Langevin symmetry (7.36).

8.2.1 Setting up a Markov chain Monte Carlo algorithm

In a Markov chain Monte Carlo (MCMC) algorithm, a new state x′ is proposed according to a
distribution q(x→ x′) for a given state x. We restrict ourselves to symmetric proposal distributions

104 Complex Langevin-type sampling by compensation

visible

hidden

T
ra

n
si

ti
o
n

P
ro

b
a
b

il
it

y Symm. proposal
distribution

Acceptance

probability

e −
∆S
2

Legend:
Proposal distribution: Action difference:

∆S = Sproposal − Scurrent

qs

qs q̄2s

e −
(

∆ST
2 +

∆S2
2 + ... + ∆Sn

2

)

q̄ns qinv

. . .

e −
∆ST

2

e −
∆S2

2

e −
∆Sn

2

T (v′|v, w)

g(w′|v′, v, w)

q̄2s

qinv

q̄ns

qs

qs q̄s qinvsymm. under v′ ↔ v non-symm. under v′ ↔ v invariant under v′ ↔ v

Original

Drops out in the

detailed-balance equation

(x)

(b)

Extended

(a)

(v, w)

(c)

(d)

(e)

C
o
m

p
en

sa
te

d
R

em
a
in

s
D

ro
p

s

Figure 8.1: Step by step illustration of the systematic derivation of a Langevin sampling by compensation
algorithm in Sec. 8.2. We consider an initial transition probability in the original representation
space that can be written as product of a symmetric proposal distribution for x′ and an acceptance
probability that depends on the change in the action, cf. Eqs. (8.10) and (8.13). After a transition
to the extended representation space defined in (v, w) (see Eq. (8.14)), symmetric, non-symmetric
and invariant parts of the proposal distribution can be extracted. The scheme illustrates the
case where the proposal distribution can be decomposed into a product of symmetric and non-
symmetric terms, cf. Eq. (8.17). This kind of decomposition is also used for a derivation
of complex Langevin dynamics. In the next step, different action contributions, defined in
Eq. (8.20), are assigned to the different terms of the proposal distribution. This matching allows
a definition of the transition probabilities for the visible and the hidden variables as illustrated
on the right-hand side. The update of the hidden variables is based on the idea to utilise the
updated hidden variables w′ to compensate the associated action contributions, cf. Eqs. (8.29)
and (8.30). Furthermore, the invariant term in the proposal distribution drops out in the adapted
detailed-balance equation (8.15).

Systematic derivation 105

with
q(x→ x′) = q(x′ → x) . (8.10)

It will turn out that the adapted detailed-balance equation (7.37) can be satisfied for this algorithm
only in the limit of infinitesimally small differences between the proposed state and the current
state. The proposal distribution is constrained by this restriction. Hence, representations of the
delta-distribution are applicable proposal distributions under these conditions. Recall that for
complex Langevin dynamics, the proposal distribution is a Gaussian distribution,

q(φ→ φ′) =
1√
2ε
ϕ

(
φ′ − φ√

2ε

)
. (8.11)

The transition probability W (x→ x′) for x→ x′ is commonly expressed as a product of the proposal
probability q(x→ x′) and an acceptance probability A(x→ x′),

W (x→ x′) = q(x→ x′)A(x→ x′) , (8.12)

see step (a) in Fig. 8.1. If the acceptance probability is written in the exponential form

A(x→ x′) ∝ exp

(
−∆S(x′, x),

2

)
, (8.13)

with ∆S(x′, x) = S(x′)− S(x), the resulting transition probability W satisfies the detailed-balance
equation (2.15), with ρ(x) = Z−1 exp (−S(x)). This is the standard procedure in any Metropolis-
Hastings algorithm.

8.2.2 Extending the representation space

In the following we extend the procedure to a higher-dimensional representation space. This is
achieved by the substitution x = v + w, where the higher-dimensional space is spanned by the set
(v, w) of visible and hidden variables and where v has the same dimension as x. The purpose of this
is to use the state variables in the resulting auxiliary dimensions to compensate certain contributions
of the action, as shown below. For the example of a complex action, we define φ = φx + iφy and aim
to compensate the imaginary contribution of the action by the imaginary part of the field.

Next, we replace x in the steady-state distribution and in the transition probability by its higher-
dimensional representation

x→ v + w ,

ρ(x)→ ρ(v + w) =: p(v, w) ,

q(x→ x′)→ q(v, w → v′, w′) ,

A(x→ x′)→ A(v, w → v′, w′) , (8.14)

as is also indicated in step (b) in Fig. 8.1. The resulting distributions in general do not satisfy
the constraints a substitution algorithm is subject to. It may, in practice, be impossible to sample
from a given proposal distribution and to evaluate the acceptance probability of a proposed state.
This is, for example, the case for complex Langevin dynamics, where the action is complex and
thus w becomes imaginary. Accordingly, all the distributions are complex and represent no longer

106 Complex Langevin-type sampling by compensation

v v′
w

w′

ST (v, w)

v v′
w

w′

S2(v, w)

1○ 2○

T (v′|v, w)

g(w′|v′, v, w)

Figure 8.2: Dependence of the action on the transition probabilities for the Langevin sampling by compensation
algorithm. Only the first part of the update step on the left-hand side is stochastic. The transition
probability T (v′|v, w) depends on the action difference ST (v′, w) − ST (v, w). In contrast, the
second part of the update step is deterministic. The updated hidden variable w′ is determined by
g(w′|v′, v, w) and depends on the action difference S2(v′, w)− S2(v, w). It is important to note
that in both cases w is fixed and the action difference is calculated with respect to a change in
the visible variable v. This is emphasized by the golden double arrow in both illustrations.

probability distributions. However, as in the special case of complex Langevin dynamics, there is a
way around these problems that allows defining transition probabilities g(w′|v′, v, w) and T (v′|v, w).

8.2.3 The acceptance probability

We start by considering the acceptance probability in the higher-dimensional space. Based on the
substitutions in Eq. (8.14), it determines the likelihood of a proposed state (v′, w′). This implies a
change in both, v and w. However, we aim to define a transition probability T (v′|v, w) that ensures
that in the long-time limit the adapted detailed-balance equation (7.37) is fulfilled, by satisfying

p(v, w)T (v′|v, w) = p(v′, w)T (v|v′, w) . (8.15)

Note that the steady-state distribution p is evaluated on both sides of the equation at the same
hidden state w. Hence, also the acceptance probability needs to account for changes in v only.
Therefore, we define

A(v → v′|w) ∝ exp

(
−S(v′, w)− S(v, w)

2

)
, (8.16)

where S(v, w) := S(v + w). This choice reflects the property of the substitution sampling algorithm
to incorporate a (dominant) stochastic contribution only into the direction of the visible variables,
cf. Sec. 7.3.3. In the case of complex Langevin dynamics, the imaginary part φy of the field is kept
constant and a change of the real part reflects the expectation value with respect to the original
field φ.

We want to construct the transition probability T in v as a product of a proposal distribution
and an acceptance probability. The acceptance probability (8.16) already satisfies the adapted
detailed-balance equation (8.15) for a given transition v → v′ as long as (i) the proposal distribution
is symmetric under an exchange of v′ and v and (ii) the transition probabilities refer to the same
hidden variable w as starting point for the next update. The latter condition is depicted in Fig. 7.4
and by the golden double arrow in the first part of the update step in Fig. 8.2.

Systematic derivation 107

8.2.4 Symmetries

A suitable proposal distribution for T as well as a definition for the transition probability g are derived
in the following by a distinction of symmetric and non-symmetric terms in the higher-dimensional
distributions in Eq. (8.14). The procedure is also sketched in part (b) in Fig. 8.1.

We distinguish different terms in the proposal distribution q(v, w → v′, w′). Terms that are symmetric
under an exchange of v′ and v are denoted as qs whereas non-symmetric terms are referred to as q̄s.
Factors that do not depend on the visible variables are denoted as qinv. The actual relation between
these terms depends on the proposal distribution. For example, the terms form a product for a
Gaussian proposal distribution,

q(v, w → v′, w′) = qs × q̄2
s × · · · × q̄ns × qinv. . (8.17)

For complex Langevin dynamics, the following factors can be identified in the proposal distribu-
tion (8.11) after a substitution of φ by φx + iφy:

qs =
1√
4πε

exp

(
−(φ′x − φx)2

2ε

)
,

q̄2
s = exp

(
− i

2

[
(φ′x − φx)(φ′y − φy)

ε

])
,

qinv = exp

(
(φ′y − φy)2

2ε

)
. (8.18)

In the case of the complex hat function algorithm, presented in App. C.3, the proposal distribution
can be expressed as a sum

q(v, w → v′, w′) = qs + q̄s . (8.19)

The total number of terms depends on the number of auxiliary variables.

Recall that we want to define the transition probability as a product of a proposal distribution and
the acceptance probability (8.16). Keeping this in mind, the following findings are an important
result of the above distinction.

On the one hand, the non-symmetric terms need to vanish in the proposal distribution for a fulfilment
of the detailed-balance equation (8.15), at least in the statistical mean. On the other hand, we want
to compensate certain contributions, such as the imaginary ones in the case of complex Langevin
dynamics, in the action difference in the acceptance probability (8.16) that make it otherwise
infeasible to sample. This is the main motivation of the entire approach.

8.2.5 Deriving T (v′|v, w)

We prepare the desired compensation of certain action terms by a decomposition of the acceptance
probability into symmetric and non-symmetric terms and by matching these with the terms of the
proposal distribution. First, we decompose the action S(v, w) into n terms,

S(v, w) = ST (v, w) + S2(v, w) + . . .+ Sn(v, w) , (8.20)

108 Complex Langevin-type sampling by compensation

where ST is used to the define the transition probability T . The terms S2, . . . , Sn will be compensated
by use of the hidden variables w′.

For a complex action the above corresponds to a separation of the real and imaginary parts. We
define, for this case,

ST (φx, φy) = SRe(φx + iφy) ,

S2(φx, φy) = iSIm(φx + iφy) . (8.21)

We associate the real part of the action with the update of φx and the imaginary part with that of
φy.

Next, we analogously decompose the acceptance probability. The actual decomposition is dictated
by the form of the proposal distribution. In the case of the product (8.17), one defines

A(v → v′|w) ∝ exp

(
−ST (v′, w)− ST (v, w)

2

)
× Ā2

s × · · · × Āns . (8.22)

For a sum, such as Eq. (8.19), a possible decomposition is

A(v → v′|w) ∝ exp

(
−ST (v′, w)− ST (v, w)

2

)
×
[
A2
s + Ā2

s + . . .+Ans + Āns
]
. (8.23)

As derived before, a change in the action is only considered in the visible direction. At this point, it
is sufficient to focus on the symmetric and non-symmetric terms, Ais and Āis. This allows, in the
following step, a definition of T and g.

For our example of a complex action, the mathematical operation is a product and the non-symmetric
term Ā2

s is given by

Ā2
s = exp

(
−i SIm(φ′x + iφy)− SIm(φx + iφy)

2

)
. (8.24)

We continue by considering the product of the decomposed proposal and acceptance probabilities,
namely:

q(v, w → v′, w′)×A(v → v′|w) , (8.25)

collecting all terms symmetric with respect to an exchange of v′ and v, to define the transition
probability T . For example, for the product form (8.17), the transition probability is defined as

T (v′|v, w) ∝ qs × exp

(
−ST (v′, w)− ST (v, w)

2

)
. (8.26)

The right-hand side consists of a product of the symmetric term qs in Eq. (8.17) and of the first
factor of the acceptance probability in Eq. (8.22). For the example of complex Langevin dynamics,
this combination of symmetric terms is shown in step (c) in Fig. 8.1. In this case, the transition
probability for the real part of the field, with the Gaussian qs ∼ ϕ, reads

T (φ′x|φx, φy) ∝
1√
2ε
ϕ

(
φ′x − φx√

2ε

)
exp

(
−∆SRe(φ

′, φ)

2

)
, (8.27)

where ∆SRe(φ
′, φ) = SRe(φ

′
x + iφy)− SRe(φx + iφy).

Systematic derivation 109

We will study, in Sec. 8.3, under which conditions the transition probability satisfies the adapted
detailed-balance equation (8.15).

8.2.6 Deriving g(w′|v′, v, w)

It remains to determine a transition probability g(w′|v′, v, w), which satisfies the Langevin symme-
try (7.36),

g(w′|v′, v, w)
!

= g(w′|v, v′, w) , (8.28)

as suggested for a substitution sampling algorithm, cf. Sec. 7.3.3.

The above distinction of symmetric and non-symmetric terms allows determining the transition
probability g by compensating the remaining terms in the above discussed product of the proposal
distribution and the acceptance probability. More specifically, all terms of the product (8.25) that
do not contribute to the transition probability (8.26) are supposed to cancel each other, for which
we will use the updated hidden variables w′.

Considering first again the case of the product form (8.17) of the proposal distribution, this translates
into

q̄2
s× · · · × q̄ns × Ā2

s × · · · × Āns
!

= 1

⇔ w′ − h(v′, v, w)
!

= 0 , (8.29)

with
g(w′|v′, v, w) = δ

(
w′ − h(v′, w, w)

)
. (8.30)

The matching of the remaining terms is illustrated in step (d) in Fig. 8.1. Following Sec. 7.3.3, the
function h(v′, v, w) defines the updated value of w′. The invariant term qinv has been neglected as it
can be cancelled in the adapted detailed-balance equation.

This is always possible since the updated state w′ can be chosen arbitrarily as long as the update
rule satisfies the Langevin symmetry. As a result of the symmetric properties of the remaining terms,
the resulting transition probability indeed bears this symmetry.

In the case of complex Langevin, Eq. (8.29) can be simplified to

(φ′x − φx)(φ′y − φy)
ε

+ ∆SIm(φ′, φ)
!

= 0 , (8.31)

with ∆SIm(φ′, φ) = SIm(φ′x + iφy)− SIm(φx + iφy). Consequently, the update rule for the hidden
state is

φ′y = φy − ε
∆SIm(φ′, φ)

φ′x − φx
. (8.32)

As intended, the updated imaginary part of the field compensates imaginary contributions arising in
the product (8.25) of the proposal distribution and the acceptance probability. The compensation
has the same effect as in complex Langevin dynamics in the previous section, namely, resulting in a
real-valued transition probability T (φ′x|φx, φy) for the real part of the field.

The compensation is either exact or satisfied in a stochastic way through h(v′, v, w). An example for
a stochastic update of the hidden variable w is given by complex Langevin with imaginary noise, see,

110 Complex Langevin-type sampling by compensation

for example, Ref. [219]. Thereby, it is however important that the stochastic behaviour in the visible
direction is dominant. This restriction is reflected by the constraints on a substitution sampling
algorithm, defined in Sec. 7.3.1.

8.3 Implications

The derived transition probabilities do not yet satisfy all of the constraints a substitution sampling
algorithm is subject to. In the following, we derive further restrictions which ensure this, analogous
to the discussion for complex Langevin in Sec. 7.3.2.

The adapted detailed-balance equation (8.15) is violated for the transition probabilities T (v′|v, w),
resulting in

p(v, w)T (v′|v, w) = p(v′, w)T (v|v′, w) exp

(
−

n∑

i=2

(Si(v, w)− Si(v′, w))

)
, (8.33)

where p(v, w) = ρ(v+w). This is the same discrepancy as for the transition probability T (φ′x|φx, φy)
of complex Langevin in Sec. 7.3.2, cf. Eq. (7.31). It can be traced back to the restriction to the
terms ST in the action difference, cf. Eqs. (8.20) and (8.26).

The discrepancy can be resolved by imposing

exp

(
−

n∑

i=2

(Si(v, w)− Si(v′, w))

)
!

= 1 . (8.34)

This can be reached with infinitesimal stepping in updating the visible variable v. The proposal
distribution needs to allow implementing this limit. As pointed out previously, representations of
delta-distributions are examples for appropriate proposal distributions. Since an infinitesimally small
sampling step is not meaningful algorithmically, we resort to an extrapolation towards zero step size.

We conclude that the restriction to an infinitesimal step size in the visible direction entails a
satisfaction of the adapted detailed-balance equation, cf. Eqs. (7.37) and (8.15). Recalling that the
transition probability g of the hidden variables implements the Langevin symmetry by construction,
we find that constraint no. 1 for a substitution sampling algorithm is fulfilled.

Constraint no. 2 requires that the step size in the direction of the hidden variables is infinitesimal.
As the transition probabilities T and g are derived from the same proposal distribution, the step
size of the hidden variables is already reduced simultaneously with the one in the visible direction.

Constraint no. 3 depends on the considered model.

It remains an analysis of constraint no. 4. It is not possible to show that this is generally fulfilled
for arbitrary proposal distributions. For the case of complex Langevin dynamics it is proven in
Sec. 7.3.2. We assume that the proof is also valid for other proposal distributions as long as these
coincide in the limit of infinitesimally small step sizes with a delta-distribution. This assumption is
supported by the numerical results in Sec. 7.6.

Measure for accuracy 111

Keeping this in mind, the restrictions on g, in constructing substitution sampling algorithms, cf.
Eq. (7.43), can be relaxed to

g(w′|v′, v, w) = δ
(
w′ − h(v′, v, w; ε)

)
, (8.35)

where the parameter ε and the function h ensure, as before, an infinitesimal step size in the hidden
direction:

lim
ε→0

h(v′, v, w; ε) = w . (8.36)

More specifically, we reinserted a dependence of the transition probability on the updated visible
state v′. This relaxation is, for example, utilized in the complex hat function algorithm in Sec. 7.4.2.

The derivation of the discretized update equations for complex Langevin dynamics is completed in
App. C.1.

8.4 Measure for accuracy

In the previous section, it has been shown that the detailed-balance equation is violated for simulations
with a finite step size in the visible states v. One can define a measure κ for the accuracy of the
Langevin sampling by compensation algorithm based on Eq. (8.34),

κ(v′, v, w) =

∣∣∣∣
n∑

i=2

Si(v
′, w)−

n∑

i=2

Si(v, w)

∣∣∣∣ . (8.37)

It measures the violation of the detailed-balance equation in dependence on the step size in v. A
simulation satisfies the detailed-balance equation if κ(v′, v, w) = 0. Our numerical results in Sec. 7.6
confirm that κ represents a reasonable measure in analysing the Langevin sampling by compensation
algorithm for finite step sizes.

The measure is in accordance with an improved numerical stability of complex Langevin dynamics
by introducing an adaptive step size [79, 120]. This adaptation prevents too large step sizes, leading
to small measures of κ(v′, v, w).

CHAPTER 9

Self-consistent sampling of complex actions

This chapter refers to Refs. [8, 9].

The here presented self-consistent sampling algorithm aims to solve two main problems of complex
Langevin dynamics: A convergence to unphysical fixed points and numerical instabilities, cf. Chap-
ter 1 and Sec. 2.1. The herein presented approach concentrates again on a successful computation of
observables with a complex action S(φ), cf. Eq. (1.1).

It is inspired by a sequential application of a special form of reweighting and complex Langevin
dynamics. A successive application of both methods allows the exploration of various complex action
problems. The idea is to use these two methods to mutually verify the correctness of computed
expectation values. We will show that this can be translated into a new, model-independent criterion
for correctness of complex Langevin dynamics, cf. Sec. 9.3. Furthermore, the criterion allows to
derive an optimization algorithm that converges to the physically correct solutions, cf. Sec. 9.4. The
self-consistent sampling process enforces correctness based on an educated training of a stabilizing
potential within the Langevin sampling process, resulting in a teacher-student training algorithm.
The student is represented by a stabilized complex Langevin dynamics and the teacher by an adapted
form of reweighting in the complex plane.

9.1 Standard reweighting

Monte Carlo samples, drawn from a Boltzmann distribution Z−1 exp(−S(φ)), are used in standard
reweighting to compute expectation values of a target distribution Z̃−1 exp(−S̃(φ)) [296]. The
original distribution of samples is reweighted to the target distribution. The reweighting formula
can be derived by inserting a one into the originally considered expectation value,

〈O(φ)〉S =
1

Z

∫
DφO(φ)e−S(φ)

=
Z̃

Z

1

Z̃

∫
DφO(φ)e−(S(φ)−S̃(φ))e−S̃(φ)

=
Z̃

Z
〈O(φ)e−(S(φ)−S̃(φ))〉S̃ . (9.1)

113

114 Self-consistent sampling of complex actions

The fraction Z̃
Z remains to be determined. By using 〈1〉S = 1,

〈1〉S = 1
!

=
Z̃

Z
〈e−(S(φ)−S̃(φ))〉S̃ , (9.2)

one finds
Z̃

Z
=

1

〈e−(S(φ)−S̃(φ))〉S̃
. (9.3)

Finally, this results in the following formula for reweighting:

〈O(φ)〉S =
〈O(φ)e−(S(φ)−S̃(φ))〉S̃
〈e−(S(φ)−S̃(φ))〉S̃

. (9.4)

Reweighting only works if the original distribution and the target distribution have a sufficient
overlap. The statistical error of the computed expectation value increases with a decreasing overlap.
The reason for that is a missing support of samples with a high Boltzmann weight in the reweighted
distribution. This problem is also referred to as overlap problem [297]. In QCD, it prohibits a full
exploration of the QCD phase diagram. For problems with a sign problem, the method is only
applicable if the complex phase in the denominator, introduced in QCD by a finite chemical potential,
is sufficiently small.

9.2 Reweighting in the complex plane

As proposed in Refs. [295, 298], it is possible to combine complex Langevin dynamics and reweighting.
In this approach, complex Langevin dynamics is used to generate samples φx,i+ iφy,i of a distribution
Z−1 exp(−S(φ)) in the complex plane. The fields φ turn in this kind of sampling process into complex
fields and expectation values can be numerically accessed by

〈O(φ)〉ρ = 〈O(φx + iφy)〉P (φx,φy) =
1

N

N∑

i

O(φx,i + iφy,i) , (9.5)

where the probability distribution P (φx, φy) is defined as the distribution over φx and φy in the
complex plane, see also Sec. 2.1.

The standard reweighting formula can be also applied for reweighting sampled distributions P (φx, φy)
in the complex plane. One finds

〈O(φx + iφy)〉P =
〈O(φx + iφy)e

−(S(φx+iφy)−S̃(φx+iφy))〉P̃
〈e−(S(φx+iφy)−S̃(φx+iφy))〉P̃

, (9.6)

by making use of the first identity in Eq. (9.5) and by proceeding in the same way as for standard
reweighting. This kind of reweighting exhibits the same properties as standard reweighting. In
particular, the overlap of the respective distributions determines the statistical error of the computed
expectation values.

Step-wise reweighting criterion for correctness 115

9.3 Step-wise reweighting criterion for correctness

With the reweighting in the complex plane approach and complex Langevin dynamics, we have two
methods to compute expectation values for a given target distribution Z̃−1 exp(−S̃(φ)). This offers
the advantage of allowing a verification of computed expectation values using the respectively other
method.

We exploit this in the so-called step-wise reweighting criterion for correctness, which has also been
studied in Ref. [299]. This criterion represents a new method to verify the correctness of complex
Langevin dynamics, which we present based on the example of the polynomial model with an
imaginary external field,

S(φ;λ, σ, hIm) = λφ4 + σφ2 + ihImφ , (9.7)

with λ, σ, hIm ∈ R. The goal is to verify if complex Langevin dynamics converges to the correct
expectation values for a target action S̃ := S(φ;λ, σ, h̃Im). In a first step, we assume that there exists
an action S(φ) where it is known that sampling results in the correct solutions. In our example, this
is given by S(φ;λ, σ, hIm = 0). The action has no sign problem and can be sampled via a standard
Monte Carlo approach.

Next, we define a smooth line in the action parameter space θ := {λ, σ, hIm} connecting the
parameters of the initial action and of the target action. For the action in Eq. (9.7), this line can be
parametrized, for example, by

hIm(α) = αhIm , (9.8)

with θ(α) := {λ, σ, hIm(α)} and α ∈ [0, 1], allowing a smooth transition between the initial and the
target action.

To mitigate the overlap problem, we define a grid

α = (α1 = 0, . . . , αk, αk+1, . . . , αn = 1)↔ hIm(α) = (0, . . . , ..., hkIm, h
k+1
Im , . . . , h̃Im) (9.9)

that is supposed to ensure a sufficient overlap between the distributions of two successive values αk
and αk+1. The approach is illustrated also in Fig. 9.2a.

The criterion for correctness is built upon simulations at the different values αk and a subsequent
verification of the computed expectation values by reweighting in the complex plane. A divergent
behaviour of the expectation values indicates that at least one of the methods fails. In the case
of complex Langevin dynamics, such a failure can be caused, for example, by a convergence of
the dynamics to unphysical fixed points. For reweighting, an already divergent source distribution
enforces failures in the reweighted expectation values.

A respective criterion can be defined, for example, as

M(αk, αk+1) =

√√√√
N∑

j=0

(
〈Osource (φx + iφy; θ (αk,j))〉Pαk − 〈Otarget (φx + iφy; θ (αk,j))〉Pαk+1

)2
,

(9.10)
with

αk,j = αk + j
αk+1 − αk

N
, (9.11)

116 Self-consistent sampling of complex actions

0.0 0.2 0.4 0.6 0.8 1.0
αk

10
−3

10
−2

10
−1

M
(α

k
,
α

k
+

1
)

Sa
Sb
Sc

0.0 0.2 0.4 0.6 0.8 1.0
αk

0.1

0.2

0.3

0.4

0.5

0.6

0.7

〈R
e(
x
2
)〉

(a) (b)

Sa, exact
Sb, exact
Sc, exact
Sa, CL
Sb, CL
Sc, CL

Figure 9.1: Numerical results for testing the step-wise reweighting criterion for correctness, cf. Eq. (9.10), on
the example of different parametrizations of the action of the polynomial model (9.7). See Tab. 9.1,
for a definition of the considered actions and their dependency on the parameter α ∈ [0, 1]. (a)
The step-wise reweighting criterion for correctness M(αk, αk+1) for N = 2 and with the real part
of the second moment 〈φ2〉 as considered observable. The horizontal dashed black line marks a
possible threshold for an application of the criterion. Either reweighting or complex Langevin
dynamics leads to wrong results for the target action parameter αk+1 if the criterion is above this
threshold. (b) Comparison of the exact result and sampled expectation value for the real part of
the second moment 〈φ2〉. The observed transition to higher values of M(αk, αk+1) in part (a)
correctly detect the failure of complex Langevin dynamics for the actions Sb and Sc for larger
values of α. The different paths in parameter space are also depicted in Fig. 9.2a.

and N being an integer defining the number of compared reweighted expectation values between the
parameters αk and αk+1. The first expectation value in the above expression

〈Osource (φx + iφy; θ (αk,j))〉Pαk (9.12)

denotes the expectation value with respect to the action S(φ; θ(αk,j) obtained by reweighting the
sampled distribution of a complex Langevin process with S(φ; θ(αk)). Similarly, the expectation
value

〈Otarget (φx + iφy; θ (αk,j))〉Pαk+1
(9.13)

refers to the reweighted observable from a simulation based on the action S(φ; θ(αk+1)). If the
expectation values for the different sets of parameters coincide, the criterion M(αk, αk+1) vanishes
and complex Langevin dynamics converges to the correct solutions. Finite values of M(αk, αk+1)
indicate that either reweighting or complex Langevin dynamics leads to wrong observables. In this
case, varying the step size in parameter space can help. In addition to the criterion defined Eq. 9.10,
we recommend furthermore to also consider similar types of criteria, for example taking into account
several simulations.

In Fig. 9.1, we apply the criterion for correctness (9.10) on different paths through the action
parameters space of the polynomial model in Eq. (9.7), see Tab. 9.1 for the different chosen
parametrizations. The considered paths in the space of actions are also schematically shown in
Fig. 9.2a. The numerical results show that the criterion correctly uncovers regions in the parameters
space where complex Langevin dynamics fails.

Stabilized complex Langevin dynamics 117

Name λ σ hIm

Sa 1 + i1 1 + iαk × 4 0
Sb 1 0 αk × 0.9
Sc 1 1 αk × 1.5

Table 9.1: Chosen parametrizations for testing the step-wise reweighting criterion for correctness (9.10) based
on the action of the polynomial model with an imaginary external field, cf. Eq. (9.7). The criterion
is applied for different values of αk ∈ [0, 1]. Numerical results for the different actions are shown
in Fig. 9.1.

9.4 Stabilized complex Langevin dynamics

The existence of two methods for computing expectation values of complex actions can be exploited
to formulate an optimization algorithm which stabilizes the dynamics of complex Langevin to ensure
a correct convergence. The approach is inspired by the step-wise reweighting criterion for correctness.

We use reweighting in the complex plane to train a stabilized version of complex Langevin dynamics
by minimizing deviations in the expectation values of the two methods. A successive exploration
of the parameter space is feasible by applying this teacher-student training algorithm in the same
step-wise manner as in the previous section. Due to the successive consistency checks and the
self-supervised learning approach, we denote the algorithm as self-consistent sampling algorithms.

A possible approach to stabilize complex Langevin dynamics for a given action S(φ; θ) with action
parameters θ is the introduction of an auxiliary potential ξ(φ;ψ), parametrized by ψ. The stabilized
process is defined by an extension of complex Langevin dynamics

dφx
dτ

= −δSRe(φ; θ)

δφ

∣∣∣∣
φx+iφy

+ η ,

dφy
dτ

= −δSIm(φ; θ)

δφ

∣∣∣∣
φx+iφy

, (9.14)

in terms of an auxiliary drift term derived from ξ(φ;ψ)

dφx
dτ

= −δSRe(φ; θ)

δφ

∣∣∣∣
φx+iφy

− δξRe(φ;ψ)

δφ

∣∣∣∣
φx+iφy

+ η ,

dφy
dτ

= −δSIm(φ; θ)

δφ

∣∣∣∣
φx+iφy

− δξIm(φ;ψ)

δφ

∣∣∣∣
φx+iφy

. (9.15)

The auxiliary drift is expected to vanish if complex Langevin dynamics samples from the correct
physical fixed points. Otherwise, the numerically computed expectation values by the dynamics (9.14)
can no longer be associated with the expectation values of the given action S(φ; θ). In particular,
this implies that, cf. Eq. (9.5):

〈O(φ)〉ρ 6= 〈O(φx + iφy)〉P (φx,φy), (9.16)

i.e., the sampling process converges to wrong results. The sampled probability distribution P (φx, φy)
and therefore complex Langevin dynamics cannot be related anymore with the original distribution of
interest ρ(φ), as a sampling process. The idea of self-consistent sampling is to resolve this discrepancy
by introducing the auxiliary potential ξ(φ;ψ).

118 Self-consistent sampling of complex actions

CL works CL fails

Action space

Sb

S̃b

Sa
S̃a

Sc

S̃c

(a)

Sb(φ; θk)

Sb(φ; θk) + ξb(φ;ψk)

(b)

CL works CL fails

Action space

Sb

S̃b

Figure 9.2: Schematic illustrations of the space of action for the polynomial model. In the green area,
complex Langevin dynamics samples the correct expectation values. In the red area, the dynamics
converges to unphysical fixed points, resulting in wrong expectation values. The solid straight
lines represent possible paths through the space of actions by different parametrizations of the
action parameters in terms of αk, cf. Eq. (9.9) and Tab. 9.1. The step-size of changes in αk is
indicated by the blue dots on the respective lines. (a) Possible interpretation of the numerical
results for the step-wise reweighting criterion for correctness in Fig. 9.1. The criterion correctly
detects the failure of complex Langevin dynamics for larger values of the imaginary external
field hIm in the polynomial model (9.7). (b) Possible paths (in blue) for the extended actions
S(φ; θ) + ξ(φ;ψ) of the self-consistent sampling algorithms. After convergence of the training
algorithm for an auxiliary potential ξ(φ;ψk), the respective stabilized complex Langevin dynamics,
cf. Eq. (9.15), samples in a region of the action space where the expectation values refer to the
physically correct ones. The algorithms can be successfully applied as long as the overlap of
the effectively sampled distribution and the target distribution Sb(φ; θk) is sufficiently high with
respect to a reasonable error estimation.

With respect to the inequality (9.16), there are two possible interpretations of the auxiliary potential.
The first one refers to it as a stabilizer to resolve the inequality. In this case, the samples in the
complex plane are supposed to be distributed according to a probability distribution P̃ (φx, φy)
leading, based on Eq. (9.5), to the correct expectation values of S(φ; θ). Accordingly, the dynamics
in Eq. (9.15) can be related to the distribution ρ(φ) ∝ exp(−S(φ; θ)),

〈O(φ)〉ρ = 〈O(φx + iφy)〉P̃ . (9.17)

Note that, in this case, the auxiliary drift term is a pure stabilizer of the dynamics resolving the
failure of complex Langevin dynamics.

The second interpretation assumes that the stabilizing potential allows a correct identification of the
original formulation of complex Langevin dynamics (9.15), implemented in terms of the extended
action S(φ; θ) + ξ(φ;ψ), with the distribution ρS+ξ(φ) ∝ exp(−(S(φ; θ) + ξ(φ;ψ))). In particular,
this entails that it holds, in contrast to the first interpretation,

〈O(φ)〉ρS+ξ = 〈O(φx + iφy)〉PS+ξ(φx,φy). (9.18)

Expectation values of the action S(φ; θ) can be extracted subsequently by reweighting in the complex
plane,

〈O(φ)〉stabilized CLE := 〈O(φ)〉ρ = 〈O(φx + iφy)〉P =

=
〈O(φx + iφy)e

ξ(φx+iφy ;ψ)〉PS+ξ(φx,φy)

〈eξ(φx+iφy ;ψ)〉PS+ξ(φx,φy)

. (9.19)

Stabilized complex Langevin dynamics 119

The equality in Eq. (9.18) implies that we aim to modify the original action such that complex
Langevin dynamics does not suffer from a convergence to unphysical fixed point any longer. Instead,
the dynamics samples the correct physical solution to the stabilized action. This property makes the
definition of a loss function based on expectation values feasible. For this reason, we focus in the
following on the second interpretation for utilizing an auxiliary potential. Concerning the overlap
problem of reweighting, the stabilizing potential is supposed to converge within the training to a
probability distribution PS+ξ(φx, φx) which is as close as possible to the correct distribution of the
original action. A possible training outcome is illustrated in Fig. 9.2. We discuss implications and
limitations related to a potential remaining overlap problem in more detail in Sec. 9.5 and continue
with more details on the training algorithms.

We parameterize the auxiliary potential by a neural network. The neural network is trained based
on a loss function derived in the following. Similar to step-wise reweigthing, a correct sampling of a
target action can be realized in a step-wise manner by a successive sampling of actions between an
initial and a target action in the action parameter space. In concordance with Eqs. (9.8) and (9.9),
we introduce the following notation for the corresponding path in the parameter space

θ(α1 = 0), . . . , θ(αk), θ(αk+1), . . . , θ(αn = 1) ≡ θ1, . . . , θk, θk+1, . . . , θ̃ . (9.20)

Instead of applying this for the presented criterion of correctness of complex Langevin dynamics, we
aim to use it as a tool to stabilize the dynamics in case of a convergence to wrong solutions.

We assume that complex Langevin dynamics is correct for given set of parameters θk and an auxiliary
potential ξ(φ;ψk). In this case, reweighting can be applied for computing expectation values of the
action defined in terms of the subsequent action parameters θk+1,

〈O(φ)〉reweighted target = 〈O(φx + iφy)〉reweighted target =

=
〈O(φx + iφy)e

−(S(φx+iφy ;θk+1)−(S(φx+iφy ;θk)+ξ(φx+iφy ;ψk)))〉PS+ξ
〈e−(S(φx+iφy ;θk+1)−(S(φx+iφy ;θk)+ξ(φx+iφy ;ψk)))〉PS+ξ

. (9.21)

In line with the step-wise reweighting criterion for correctness, the latter expectation value is assumed
to be the correct one for a sufficient overlap of the support of S(φ; θk+1) and S(φ; θk) + ξ(φ;ψk).
We expect that this can be achieved by choosing θk and θk+1 close enough. Note that the auxiliary
potential is supposed to vanish for the initial action, defined in terms of θ1, since the respective
sampling algorithm is expected to work for a successive step-wise exploration of the parameter space.

The expectation values in Eqs. (9.19) and (9.21) allow the definition of a loss function for the training
of the auxiliary potential ξ(φ;ψk+1),

L(ψk+1) =
∑

j

‖ 〈Oj(φ)〉reweighted target − 〈Oj(φ)〉stabilized CLE ‖22 +Further regularizing terms .

(9.22)
The sum runs over different considered observables Oj(φ) of interest. We replace θ by θk+1 and ψ by
ψk+1 for the computation of observables with respect to the stabilized complex Langevin dynamics
defined in Eq. (9.19). Within the training, the expectation values are approximated based on a
batch-wise evaluation. The auxiliary potential is trained based on a minimization of the loss function
with respect to the parameters ψk+1:

ψ∗k+1 = argmin
ψk+1

L(ψk+1) . (9.23)

120 Self-consistent sampling of complex actions

Additional regularizing terms might be helpful to stabilize the training. In particular, a minimization
of the complex phase factor of the denominator in Eq. (9.19) by

Lphase(ψk+1) = arg

(〈
eξ(φx+iφy ;ψk+1)

〉
PS+ξ(φx,φy)

)
(9.24)

is useful to mitigate a potential overlap problem. Further regularizing terms can help to prevent
numerical instabilities.

A drawback of the approach is that the generation of samples is expensive since the samples can
only be drawn if the dynamics is in equilibrium. The simulation time can be decreased by starting
the evolution for updated parameters ψk+1 with the samples from the last evolution. A benefit is
that the loss function does not rely on the history of the complex Langevin dynamics but instead
on the statistics of multiple processes. This makes backpropagation, i.e., an optimization of the
parameters ψk+1, feasible. This is the reason why our approach focuses on the second interpretation
for utilizing an auxiliary potential.

Putting everything together, a single training step consists of the following steps

1. Sample a set of configurations based on stabilized Langevin dynamics (9.15) with the stabilizing
potential ξ(φ;ψk+1).

2. Compute reweighted observables 〈Oj(φ)〉stabilized CLE .

3. Compute the loss L(φk+1) and update ψk+1 based on backpropagation.

A successful application of the training for each of the parameters θk results in a correct computation
of observables for a given target action S(φ; θ?).

9.5 Summary and future work

We introduced the step-wise reweighting criterion for correctness as an effective and easy to compute
criterion for verifying whether or not complex Langevin dynamics converges to the physically correct
fixed points in the complex plane. An application to more complicated models as well as a thorough
comparison to existing criteria is subject to future work.

In the second part of this chapter, we proposed to stabilize the dynamics of complex Langevin by
means of an auxiliary potential which is trained with the help of the novel criterion for correctness.
The training algorithm enforces that the obtained expectation values are always in compliance with
the utilized action of the stabilized dynamics, cf. Fig. 9.2. In inaccessible regions in the action space,
the algorithm relies on a sufficient overlap of the sampled distribution and the target distribution for
reweighting to work. It remains to be seen in future work and by first numerical results to which
extent the algorithm is capable of resolving these areas in the action space.

CHAPTER 10

Unsupervised neural graph embedding

This chapter refers to Ref. [7].

There has been an explosion of interest surrounding the development and application of deep learning
methods on graph-structured data. Graph neural networks (GNNs) [200, 300–302] have recently
gained traction as a powerful machine learning building block due to their demonstrated success in a
number of domains. See Refs. [197–199, 202–204, 303, 304] for comprehensive reviews of different
application domains such as graph matching and graph similarity algorithms.

Generating lower-dimensional representations in a continuous domain is a prominent use case of
respective machine learning and deep learning tools acting on graphs [201, 203, 305–307]. The
generation of graph embeddings and the processing of graph-structured data in a deep learning
framework is different and more challenging due to the discrete and non-Euclidean structure of
graphs, a possibly varying number of nodes in each graph and the absence of a fixed ordering or
numbering of nodes. The latter property relates to the graph isomorphism problem (also referred
to as exact graph matching problem) determining whether there exists a mapping between two
graphs which preserves the edge connectivity [204, 308–310]. Ideally, all graphs belonging to the
same isomorphic class lead to the same continuous representation.

In general, one has to distinguish different kinds of graph embedding [203]. In the following, we refer
to network embeddings if each node of a network is embedded. The goal is to correctly preserve and
embed important properties between nodes such as preserving a similar node connectivity [303, 311–
315], for example. By contrast, for whole-graph embeddings the objective is to represent each graph
by one vector in a lower-dimensional representation space [316–320]. In the approach presented here,
we focus on the generation of whole-graph embeddings.

The representation of a set of graphs in a fixed-size lower-dimensional vector space allows one to get a
notion for distances and similarity measures between graphs and to apply further downstream tasks,
such as regression and clustering tasks, cf. Chapter 1. The appeal of performing deep representational
learning lies on their ability to produce continuous permutationally invariant graph-level embeddings
facilitating a well-suited representation for the mentioned operations on graph data. Therefore, the
mapping to a different topology by means of graph neural networks represents a possible way to
evade the graph matching problem and the related problem of determining similarities between
graphs with algorithm operating directly on the graphs, as the graph-edit distance [204, 321–323],
for example.

121

122 Unsupervised neural graph embedding

htv

mt+1
v =

∑
w∈N(v)Mt (h

t
v, h

t
w, evw)

ht+1
v = Ut

(
htv,m

t+1
v

)

v

evw

w

htw
v

Message passing phase Readout phase

Node

features y = R
(
{hTv |v ∈ G

)
=

Input graph G

Graph embedding

Node aggregation

Hidden layer representations

Message functions

Vertex update functions
Permutation-invariant readout function

Mt

Ut
R

v

Figure 10.1: Scheme of a message passing neural network based on the example of a graph G consisting of
edges evw and nodes v, w with (hidden) feature vectors htv and htw. The upper index t refers to
the respective layer of the graph neural network. In the message passing phase, a message mt+1

v

is computed for each node v with respect to a message function Mt depending on the feature
vectors htv and htw as well as the edges evw. In this example, the message is obtained by a sum
over neighboring nodes w ∈ N(v). In the second step, node feature vectors in the subsequent
layer are computed in terms of a vertex update function Ut. Depending on the number of layers,
information can be passed going beyond neighboring nodes, as indicated by a change in the line
width of the edges and the blue color of the nodes on the example of the node with subscript v.
In the readout phase, the hidden node feature vectors are aggregated by the readout function R.
If the function is invariant to a permutation of nodes and vertices, the embedded feature vector
y is invariant to graph isomorphisms. In a machine learning framework, the parameterized
functions Mt, Ut and R are differentiable and can be optimized. Note that the readout function
can also be relatively simple like the mean over all node feature vectors, for example [197].

An inherently built-in permutation invariance with respect to vertices and associated edges of graphs
can be implemented, for example, by using message passing neural networks [197]. The embedding is
generated by a message passing phase and a subsequent read-out phase, also illustrated in Fig. 10.1.
In the message passing phase, information of neighboring nodes is accumulated at each node by
trainable mappings and thus propagates through the network. The scope of incorporated information
with respect to two nodes on the graph is determined by the node connectivity and the number
of consecutive graph neural network layers. The resulting hidden representations at each node
are an accumulated and condensed version of the node itself and its neighborhood. The readout
phase consists of a subsequent aggregation of all nodes resulting in a fixed-size continuous latent
lower-dimensional representation. A permutation invariance with respect to a different numbering of
the nodes and edges of the input graph can be obtained by an appropriate pooling operation, as, for
example, the mean over all hidden feature vectors of the respective nodes.

There has been a large body of work focused on integrating graph neural networks into encoder-
decoder architecture, such as variational autoencoders. While purposing generic graph neural
networks for encoding is fairly straightforward, devising a graph decoder capable of performing graph
reconstruction has proven a major challenge due to the difficulty of accounting for the permutational
invariance in the reconstruction loss [197]. In Ref. [324] the GraphVAE architecture is introduced as
a solution for small graphs that uses approximate graph matching with soft discretization.

Here, we present preliminary work on an information-theoretic approach for the generation of graph
embeddings. The proposed neural adversarial embedding algorithm works without the need of directly
reconstructing embedded samples. The idea is to reduce the dimensionality of the input space while

Neural adversarial embedding 123

Fψ(x) qφ(z|y) pθ(y|z)x y z ỹ

Input

Featurizer Encoder Decoder

Feature Latent

Graph data Lattice data

Image data
Reconstructed

...other...

space space space feature space

Neural adversarial embedding

Figure 10.2: Architecture of the proposed neural adversarial embedding algorithm. The featurizer’s Fψ(x)
objective is to increase the reconstruction loss of the imitator. The imitator, implemented by
the encoder qφ(z|y) and the decoder qθ(y|z), is trained based on the InfoVAE objective [195]
and, therefore, aims to reduce the reconstruction loss, resulting in a zero-sum game between the
featurizer and the imitator. During training, the entropy in the feature space increases, as shown
in Sec. 10.2, implying a higher amount of information in the feature space. Compared to other
algorithms for generating embeddings, the architecture has the advantage that a reconstruction
of the input space is not necessary. This is, in particular, helpful if the embedding is supposed
to be invariant to certain transformation of the input data and if this invariance is explicitly
implemented in the featurizer. In this case, a direct comparison between a reconstructed sample
and the input sample turns out to be difficult. Due to the desired invariance, there are multiple
possible reconstructions that refer to the same embedded input sample. For example, for graph-
structured data, an invariance with respect to a permutation of the nodes can be implemented
by message passing neural networks by a computation of the mean over all hidden node feature
vectors in the readout phase, cf. Fig. 10.1. A respective reconstruction of the input graph
is hindered by the graph-matching problem. As another example, an application on lattice
configurations exhibiting for most systems a translation and rotation invariance will be discussed
in greater detail in Sec. 11.2.

maintaining relevant and meaningful information by entropy optimization in the latent representation
space. The resulting embedding enables the definition of a distance metric and provides a condensed
and structured representation of the input dataset.

The optimization is implemented by a zero-sum game of a so-called featurizer, generating the
embedding, and an opponent, aiming at a reconstruction of the embedded data. The architecture is
illustrated in Fig. 10.2. We refer to an optimization of the entropy instead of the mutual information
since the latter is hard to estimate for graph-structured input data. Furthermore, the entropy of the
embedded distribution can be directly related to the reconstruction loss of the opponent rendering a
respective optimization straightforward, as will be shown in the following section. Note that the
proposed method is not restricted to graph-structured data, but can be applied to other modalities
of data. We discuss a potential application in the domain of physical systems in the next chapter
and concentrate here on the embedding of graph-structured data, as molecules, for example.

10.1 Neural adversarial embedding

The goal is to embed an input data set {x(i)}Nn=1 with N samples by a mapping Fψ(x) into a lower
dimensional latent space {y(i)}Nn=1, which we will refer to as feature space, with dimension Dfeature:

y := Fψ(x) . (10.1)

124 Unsupervised neural graph embedding

The resulting embedding is meant to contain a compressed representation of the high-dimensional
input data space while important properties are preserved and a notion of distance and similarity
between different input samples is feasible. From an information-theoretic point of view, the mutual
information between the input and the feature space is expected to be high while the dimension is
reduced.

We aim to achieve this by optimizing the entropy over the embedded data set in the feature space.
From a information-theoretic point of view, this is a natural choice to obtain good representations
since entropy relates to the amount of information present in the embedding. On the other hand, a
too high entropy suggests a poor compression of correlations in the input data set. In the worst
case, an increase of the entropy encourages an amplification of noise in the input data space while
important correlations within the different samples are neglected. Therefore, a correct trade-off
between a too high and a too little entropy of the feature space is crucial for the generation of
meaningful embeddings. In particular, it is important to be able to control which kind of information
is preserved by the mapping Fψ(x) of the input data set into the embedded space y. A thorough
understanding of these issues is at this point still lacking and will be analysed in greater detail in
future work. In addition, we want to point out that one has to take into account a finite number of
samples in the input data set with regard to the notion of entropy and a probability distribution in
the feature space.

A direct optimization of the entropy in the feature space turns out be difficult since the quantity is
in most cases hard to estimate due to a missing explicit expression of the underlying probability
distribution. Additionally, utilizing existing methods with tractable probability distributions, such as
normalizing flows [215], is limited due to the goal to embed graph-structured data and a respective
implementation by means of message passing neural networks.

Here, we introduce an algorithm called neural adversarial embedding algorithm resolving the problem
of entropy optimization by an implicit maximization based on a zero-sum game between the featurizer
and an opponent, see also Fig. 10.2. While the featurizer generates lower-dimensional representations
of the input data, the opponent’s objective is to imitate the featurizer. The opponent encodes
the embedded representation into a latent space and subsequently tries to reconstruct the original
feature space representation. The quality of the reconstructions is regulated by a bottleneck in the
lower-dimensional latent space. The opponent, denoted in the following as imitator, is represented
in the easiest setting by a variational autoencoder (VAE). The strength of the featurizer can be
adjusted by the expressiveness of the mapping Fψ(x) and additional regularizers in the feature space.

The featurizer tries to fool the imitator by generating more complicated representations implemented
by the objective to maximize the reconstruction error of the opponent. The training set-up is a
zero-sum game since the imitator is trained to minimize the reconstruction loss. Therefore, an
improvement of the featurizer implies a loss for the imitator and vice versa. We will show in the
next section that for the case of a variational autoencoder a respective increase of the reconstruction
error can be related to a higher entropy in the feature space. Accordingly, the algorithm utilizes the
interrelation between the reconstruction accuracy of the variational autoencoder and the complexity
of the embedding. Competition between the two opponents within the training results in an implicit
generation of entropy in the feature space.

The algorithm results in the following training set-up, cf. Fig. 10.2. The imitator consists of an
encoder qφ(z|y) and a decoder pθ(y, z) with trainable parameters φ and θ. The VAE latent space is

Neural adversarial embedding 125

denoted as z. The featurizer is trained based on the following objective

ψ∗ = argmax
ψ

LF(ψ) , (10.2)

with
LF(ψ) = LRec(ψ) + LReg(ψ) , (10.3)

and where the reconstruction error refers to the expectation value of the negative log-likelihood of
the decoder, cf. Ref. [170]:

LRec = Epψ(y)

[
−Eqφ(z|y) [log pθ(y|z)]

]
. (10.4)

A maximization can be accomplished by changing the underlying data distribution in the feature
space in dependence on the featurizer parameters ψ. An additional regularization loss LReg,

LReg(ψ) = γ Epψ(y)

[
‖ y ‖22

]
+ κDKL (pψ(y) ‖ N (0, I)) . (10.5)

ensures that the feature space does not spread to infinity, which is implemented by the first
regularization term. The second term supports the featurizer, in particular at the beginning of the
training, to generate a distribution in the feature space with a finite variance in each dimension.

In turn, the imitator aims to minimize the respective reconstruction loss

θ∗, φ∗ = argmin
θ,φ

LIm(θ, φ) , (10.6)

with

LIm(θ, φ) = LRec(θ, φ) + (1− α) Epψ(y)DKL (qφ(z|y) ‖ p(z)) (10.7)

+ (α+ λ− 1)DKL (qφ(z) ‖ p(z)) ,

referring to the loss function of the InfoVAE [195]. The loss provides better control over the trade-off
between the quality of reconstructions and generated samples. In addition to the standard variational
autoencoder, it takes into account the mutual information between the feature space and the latent
space which is regulated in the above loss by the parameter α. The featurizer and the imitator are
trained in an alternating way and the loss functions are approximated batch-wise, i.e., by small
subsets of the training data. We recommend to choose a slightly higher learning rate for the imitator.
Furthermore, it is helpful to perform several training steps for the imitator after each update of the
featurizer to ensure that the variational autoencoder is close to convergence during training. This
stabilizes the mutual training and facilitates the featurizer to correctly deduce necessary changes in
the feature space for complicating reconstructions of the imitator.

After training, the imitator is most likely too weak to generate reasonable embeddings in the latent
space. For this reason, it is recommended to train another more powerful embedding algorithm on
the respective data set in the feature space. This algorithm is supposed to better capture the relevant
information in the feature space entailing more meaningful lower-dimensional representations in the
latent space.

126 Unsupervised neural graph embedding

10.2 Information-theoretic insights

In the following, we want to elaborate why the training set-up entails a successive increase of the
entropy in the feature space. We start by rewriting the reconstruction loss

LRec = Epψ(y)

[
−Eqφ(z|y) [log pθ(y|z)]

]

= Eqψ,φ(y,z)

[
− log

pθ(y, z)

pθ(y)p(z)

]
− Epψ(y) [log pθ(y)] , (10.8)

where we make use of
pθ(y|z) =

pθ(y, z)

p(z)

pθ(y)

pθ(y)
=

pθ(y, z)

pθ(y)p(z)
pθ(y) . (10.9)

The last term in Eq. (10.8) can be expressed as:

− Epψ(y) [log pθ(y)] = DKL(pψ(y) ‖ pθ(y)) +H(pψ(y)) . (10.10)

Therefore, the loss term can be rewritten,

LRec(ψ) = −Iqψ,φ(y,z)‖pθ(y,z) (y; z) +DKL (pψ(y) ‖ pφ(y)) +H(pψ(y)) . (10.11)

We refer to the first term as mutual cross-information, cf. Ref. [180],

Iqψ,φ(y,z)‖pθ(y,z) (y; z) = Eqψ,φ(y,z)

[
log

pθ(y, z)

pθ(y)p(z)

]
. (10.12)

In contrast to the work in Ref. [180], the expectation value is evaluated with respect to the
modeled distribution qψ,φ(y, z) and the logarithm depends on the true distributions. The mutual
cross-information coincides with mutual information if qψ,φ(y, z) = pφ(y, z). Since qψ,φ(y, z) =
qφ(z)qφ(y|z) and pφ(y, z) = p(z)pφ(y|z), this can be achieved by learning the correct likelihood
qφ(y|z) and by matching the prior in the latent space, qφ(z) = p(z).

The reformulation of the reconstruction error in Eq. (10.11), allows for a better understanding of the
mutual training of the featurizer and the imitator. For the imitator, targeting a minimization of the
reconstruction loss, the loss function has a lower bound given by

LRec ≥ −Iqψ,φ(y,z)‖pθ(y,z) (y; z) +H(pψ(y)) = 0 , (10.13)

where we make of the property of the KL-divergence to be non-negative, i.e., DKL (pψ(y) ‖ pφ(y)) ≥ 0.
This relation indicates that in case of an equality all information about the feature space is preserved
by the encoder and the decoder. From an information-theoretic point of view, the mutual information
term indicates that knowing z implies full knowledge over y. The mutual information coincides for
this case with the entropy of the feature space.

The inequality in Eq. (10.13) suggests that the lower bound can be increased by using an imperfect
encoder/decoder pair not having the capacity to preserve all information and by employing the
respective regularizations on the latent space. On the other hand, this statement implies that for
a given fixed expressivity of the imitator, the featurizer can increase the reconstruction loss by an
increase of the entropy in the feature space. According to Eq. (10.11), this is the only quantity the
featurizer has exclusive access to since the entropy only depends on the distribution of the feature

Preliminary results 127

space while the other two terms change based on the response of the imitator to variations of the
entropy. Therefore, the mutual training can be interpreted as a source for entropy generation in the
feature space.

The above observation entails that there is a dependency between the entropy of the feature space,
the reconstruction accuracy and the quality of the embedding in the latent space. In the case where
a low amount of information is encoded in the feature space, the reconstruction error is very small,
resulting in a latent space representing the same information as the feature space. Increasing the
amount information entails a higher entropy in the feature space. Despite a higher reconstruction
loss, this leads to a more meaningful compressed representation in the latent space depending only
on the most significant features of the feature space. This holds since significant features represent
the kind of information which support a better reconstruction and can be passed more easily through
the networks. At a certain point, in dependence on the properties of the imitator, determined by
the parameters of the loss function (10.7), either the latent space or the reconstructed space will no
longer contain meaningful information and the training diverges. A possible way to prevent this
breakdown is the proposed introduction of regularizers for the training of the featurizer. Limiting the
expressiveness of the featurizer represents a further approach to restrict the entropy of the feature
space. Alternatively, the training can be stopped at certain point.

Defining an appropriate upper limit for the entropy of the feature space is generally not easy in the
proposed unsupervised training framework since it largely depends on the distribution of the input
dataset. In general, it is difficult to define measures for a ’good’ embedding as this is subject to the
specific application task. A possible indicator can be, for example, the performance on downstream
tasks such as classification or regression which are related to the desired properties of the embedding.
Testing the neural adversarial embedding algorithm in the light of this discussion in greater detail is
subject to future work. This also holds for a thorough analysis of the meaningfulness of embeddings
generated solely based on entropy optimization. In contrast to most of the embedding algorithms, a
feedback loop to the input data is missing, rendering a reasonable compression more difficult and
raising several open questions. It needs to be analysed what kind of information the mapping of the
featurizer preserves and to what extent this depends on properties inherent to the input data set.
Furthermore, we expect the encoder/decoder pair to have a high impact on the feature space and,
because of the adversarial training, the featurizer favors embedded distributions that are not easily
representable by a variational autoencoder.

10.3 Preliminary results

In the following, we report on preliminary results obtained for a graph-structured data set and a
downsampled dataset of FashionMNIST [325]. The samples of the FashionMNIST dataset have been
downsampled to a size of 10× 10. Details on the hyperparameters for training and on the utilized
network architectures can be found in App. E in Tab. E.1 and Tab. E.2.

The loss curves for the neural adversarial embedding algorithm are shown in Fig.10.3. The constantly
increasing reconstruction error illustrates that the training algorithms works. Towards the end of the
training, the imitator was no longer able to produce good reconstructions which is when we stopped
the training. Following the information-theoretic insights of the previous section, the reconstruction
error and the entropy of the feature space are correlated. In dependence on the desired compression
of the input dataset, a good embedding is expected to correspond to a specific reconstruction error
during training.

128 Unsupervised neural graph embedding

0 50 100 150 200

Epoch

10
−2

10
−1

L
os

s
F
as

hi
on

M
N

IS
T

LF
LIm
LRec

0 20 40 60 80 100

Epoch

10
−1

L
os

s
G

ra
ph

D
at

a

LF
LIm
LRec

Figure 10.3: Loss curves of the neural adversarial embedding algorithm for the downsampled FashionMNIST
data (left) and the mock graph dataset (right). The respective loss terms are defined in
Eqs. (10.3), (10.7) and (10.4). During training, the reconstruction error constantly increases for
both datasets resulting in embeddings with a growing entropy. Embeddings at different training
stages, indicated by the dashed gray vertical lines, are compared in Figs. 10.4 and 10.6.

−2 0 2

−2

0

2
10

−2 0 2

−2

0

2
30

−2 0 2

−2

0

2
50

−2 0 2

−2

0

2
DKL

−2 0 2

−2

0

2
100

−2 0 2

−2

0

2
150

−2 0 2

−2

0

2
200

−2 0 2

−2

0

2
InfoVAE

0

1

2

3

4

5

6

7

8

9

Figure 10.4: Two-dimensional latent space representations of the downsampled FashionMNIST dataset for
the neural adversarial embeddings algorithm and a standard InfoVAE. The embeddings are
generated by a training of several InfoVAEs based on feature space representations at different
stages during training. The numbers in the small boxes refer to the respective epoch. The upper
right plot refers to a training based solely on the regularization loss of the neural adversarial
embeddings, cf. Eq. (10.5). The lower right plot shows the embedding of the standard InfoVAE.
A comparison with the neural adversarial embedings entails that the algorithm is capable of
inferring a meaningful representation of the input dataset. The increasing sparsity at larger
epoch is in concordance with the expected higher entropy in the feature space.

Summary 129

0 0 0 0 1 1 1 1

2 2 2 2 3 3 3 3

Figure 10.5: Samples of the different classes of the mock graph data set for testing the neural adversarial
embedding algorithm. The data is generated with respect to varying probabilities for the shape
and the color of nodes, the node connectivity and the total number of nodes per graph. A
one-hot vector representation with six entries is computed for each node based on its color and
its shape.

Fig. 10.4 shows embeddings of the FashionMNIST [325] dataset for the neural adversarial embedding
algorithm at several epochs related to different reconstruction errors. The embeddings refer to the
two-dimensional latent space of a stronger InfoVAE trained based on feature space embeddings at
the respective epochs. The numbers in the small boxes of the subplots refer to the considered epochs
which are also indicated by the dashed gray vertical lines in Fig. 10.3. In addition, we trained for
comparison a standard InfoVAE on the dataset and the neural adversarial embedding based solely
on the regularization loss. In the letter case, the imitator is not utilized at all. Instead, the feature
space distribution is trained based on the DKL loss to be Gaussian distributed, cf. Eq. (10.5).

The similarity of the embeddings in Fig. 10.4 implies that the feature space contains a meaningful
representation of the input data set. For higher reconstruction errors of the imitator, one can observe
larger deviations to a Gaussian distribution in the latent space. This can be directly related to the
expected higher entropy in the feature space. For a higher entropy, the InfoVAE needs to put more
effort into the reconstructions which entails a higher necessary expressive power in the latent space.

In a similar training set-up, we tested the algorithm on a mock graph-structured dataset, cf. Fig. 10.5
and Fig. 10.6. The dataset consists of graphs with a varying number of nodes whereby each node is
characterized by a specific color and shape. The different classes in the graph data set are constructed
based on varying class-dependent probabilities for the shape and the color of the nodes as well as
for the node connectivity and the total number of nodes. Therefore, a finite overlap of the classes
is expected since a single graph can, in principle, be generated by each of the classes, as can be
observed in Fig. 10.6.

10.4 Summary

The chapter introduces the neural adversarial embedding algorithm as a novel algorithm for generating
lower-dimensional representations. The algorithm works without the need for reconstructing input
data rendering it a powerful tool for input data exhibiting invariances with respect to certain
transformations. We applied the algorithm on graph-structured data. In dependence on the
generation of the feature vector representation, reconstructions can be difficult due to the graph
matching problem related to the absence of a fixed numeration of nodes in a graph. Additionally,
embeddings of the downsampled FashionMNIST dataset are considered for a possible comparison to
a standard InfoVAE.

130 Unsupervised neural graph embedding

−2 0 2

−2

0

2
5

−2 0 2

−2

0

2
15

−2 0 2

−2

0

2
25

−2 0 2

−2

0

2
DKL

−2 0 2

−2

0

2
50

−2 0 2

−2

0

2
75

−2 0 2

−2

0

2
100

0

1

2

3

Figure 10.6: Neural adversarial graph embeddings for the mock graph data set. Similar to Fig. 10.4, the
subplots show two-dimensional latent space representations obtained by InfoVAEs that were
trained on feature space embeddings at different training stages. The increased sparsity matches
with the observations for the FashionMNIST dataset. The partial mixing of the different classes
indicates a varying overlap for a sampling of certain type of graphs. This can be traced to the
probabilistic generation of the graphs for each class.

The algorithm maps the input data distribution in a feature space and is trained to optimize the
entropy of the respective embedding by means of a zero-sum game. The results demonstrate that
an increase of the entropy in the feature space can be sufficient for generating informative and
meaningful lower-dimensional representations.

In future work, we want to apply the algorithm on real-world datasets and benchmark its applicability
on molecular property prediction for the QM9 data set [197, 326]. An application on lattice
configurations and related potential benefits will be discussed in Sec. 11.2. Furthermore, we want to
analyse relations between the input distribution and the embedded distribution in more detail. This
includes, for example, an estimation of the mutual entropy between the input space and the feature
space at different stages during training with MINE [186]. Another aspect relates to evaluating
properties of the embedding with regard to a distance metric and similarity measures of embedded
samples. For these cases, the latent space of an InfoVAE and an Euclidean space might not be
optimal. Instead, a mapping on other topologies or by other embedding algorithms is expected to be
more appropriate.

In general, the featurizer looks for weaknesses of the imitator. This needs to be kept in mind for a
suitable definition of regularization terms. For example, in the case of the variational autoencoder,
the regularization terms keep the feature space embedding distribution in a regime which is recon-
structable by the imitator. On the other hand, there might be applications where the specialization
of the featurizer on weaknesses of its opponent can be utilized to support the training of a different
algorithm.

Lastly, we want to point out that the architecture can be extended by replacing the reconstruction
error by a discriminative network, similar to a generative adversarial neural network [191]. The
task of the discriminator is to distinguish whether a sample originated from the featurizer or the
imitator. The featurizer tries to support the discriminator by generating embeddings with a higher
information content leading to worse reconstructions of the imitator. The imitator is trained to
fool the discriminator accomplished by generating better reconstructions. Overall, the amount of
information in all latent spaces increases.

CHAPTER 11

Towards novel insights in lattice field theory with explainable machine learning

This chapter is in parts based on Ref. [3] and refers to Ref. [7].

Lattice simulations of quantum field theories have proven essential for the theoretical understanding
of fundamental interactions from first principles, perhaps most prominently so in quantum chromo-
dynamics. However, an in-depth understanding of the emergent dynamics is often difficult. In cases
where such an understanding remains elusive, it may be instructive to search for so far unidentified
structures in the data to better characterise the dynamics.

One ansatz for the identification of relevant observables from lattice data is through representation
learning, i.e. by training on a pretext task. The rationale behind this approach is that the ML
algorithm learns to recognise patterns which can be leveraged to construct observables from low-level
features that characterise different phases. However, solving a given task does by itself not lead to
physical insights, since the inner structure of the algorithm typically remains opaque. This issue
can at least partially be resolved by the use of “explainable AI” techniques, which have recently
attracted considerable interest in the ML community and beyond.

Simple methods from statistics and ML often lack the capability to model complex data, whereas
sophisticated algorithms typically tend to be less transparent. A commonly used example is principal
component analysis (PCA). It has been successfully applied to the extraction of (albeit already
known) order parameters for various systems [130, 133, 137]. However, its linear structure prohibits
the identification of complex non-linear features, e.g. Wilson loops in gauge theories. Hence, we
require tools capable of modeling non-linearities, such as deep neural networks [141]. They allow for
a more comprehensive treatment of complex systems, which has been demonstrated e.g. for fermionic
theories in Refs. [131, 136]. The approach also enables novel procedures, such as learning by confusion
and similar techniques, to locate phase transitions in a semi-supervised manner [139, 159]. For lattice
QCD, action parameters can be extracted from field configurations [149]. Overall, deep learning
tools seem particularly well-suited to grasp relevant information about quantum field dynamics in a
completely data-driven approach by learning abstract internal representations of relevant features.

However, their lack of transparency is frequently a major drawback of using such methods which
prohibits access to and comprehension of these representations. A unified understanding of how and
what these architectures learn, and why it seems to work so well in a wide range of applications is
still pending. To better understand the processes behind neural network-driven phase detection in
lattice models, multiple proposals have been made, such as pruning [114, 134, 150], utilising (kernel)
support vector machines [140, 157], and saliency maps [158]. Interpretability is also investigated for
other applications in theoretical physics, e.g. by employing twin neural networks [327].

131

132 Towards novel insights in lattice field theory with explainable machine learning

Figure 11.1: Sketch of LRP through the last two layers of a classification network that predicts one-hot
vectors. Relevance is indicated by arrow width. The conservation law requires the sum of widths
to remain constant during backpropagation. Diagram adapted from Ref. [335].

Also, in the broader scope of ML research, there has been growing interest in interpretability
approaches, most of them focusing on post-hoc explanations for trained models. So-called attribution
methods typically assign a relevance score to each of the input features that quantifies which features
the classifier was particularly sensitive to, or influenced the algorithm towards/against an individual
classification decision. In the domain of image recognition, such attribution maps are typically
visualised as heatmaps overlaying the input image. The development of attribution algorithms is
a very active field of research in the ML community. Therefore, we refer to dedicated research
articles for more in-depth treatments [328, 329]. Very broadly, the most important types of such
local interpretability methods can be categorised as: 1. Gradient-based, such as saliency maps [330]
obtained by computing the derivative of a particular class score with respect to the input features
or integrated gradients [331]. 2. Decomposition-based, such as layer-wise relevance propagation
(LRP) [332] or DeepLift [333]. 3. Perturbation-based, as in Ref. [334], investigating the change in
class scores when occluding parts of the input features.

In Sec. 11.1, we give a brief overview of an approach, presented in Ref. [3], for identifying observables
of the scalar Yukawa model (2+1)d by combining a supervised representation learning task with
interpretability methods. We continue in Sec. 11.2 with a short outlook on using the proposed
neural adversarial embedding algorithm, cf. Chapter 10, as an alternative, unsupervised approach
for finding expressive observables of physical systems.

11.1 Supervised representation learning

Following Ref. [3], we focus on utilizing layer-wise relevance propagation (LPR) [332] for the
identification of the most important observables depending on the different phases of the considered
theory. We utilize action parameter regression as a pretext task for a subsequent investigation using
LPR.

Layer-wise relevance propagation is one of several popular post-hoc attribution methods that
propagate the prediction of neural network back to the input domain, thereby highlighting features
that influence the algorithm towards/against a particular classification decision. The method is a
particular variant of decomposition-based attribution methods, which has been successfully applied
to other problems in physics and chemistry, e.g. in the context of atomistic systems [336]. The
general idea of LRP is to start from a relevance assignment in the output layer and subsequently
propagate this relevance back to the input using certain propagation rules, see the sketch in Fig. 11.1.
In this way, the method assigns a relevance score to each neuron, where positive (negative) entries
strongly influence the classifier towards (against) a particular classification decision. In the work
in Ref. [3], LPR correctly assigns relevances to observables in the different phases that agree with

Supervised representation learning 133

Configurations
	Action	para-	

	meters

Physics
�

−�[�]

MLP

CNN

Interpretation

{ }�
� {�,�,…}

{⟨�⟩,⟨ ⟩,…}�2

Observables Approach	A

Approach	B

Figure 11.2: Sketch of the followed strategies in Ref. [3] to learn meaningful structures from simulation data
by analysing the networks trained for action parameter inference. Field configurations used
for training are either preprocessed into observables for the MLP (Approach A) or directly
operated upon with a CNN (Approach B). Obtaining accurate predictions for the parameters
indicates approximate cycle consistency in the above diagram, which supports the notion that
the networks have successfully identified characteristic features. These can then be extracted in
a subsequent interpretation step using LRP.

physical expectations and allows for the construction of observables based on the convolutional
filters, as discussed in more detail in the following.

We tested this approach in the context of Yukawa theory in (2+1) dimensions. As a pretext task,
we trained a multilayer perceptron (MLP) and a convolutional neural network (CNN) to infer the
associated hopping parameter κ from a set of known observables (Approach A), as well as solely
from the raw field configurations (Approach B), akin to Ref. [149]. Both variants are sketched in
Fig. 11.2. In the first case, without providing any prior knowledge of the phase boundaries, LRP
managed to reveal the underlying phase structure, cf. Fig. 11.3, and returns a phase-dependent
importance hierarchy of the observables. The obtained relevance for the different observables in the
respective phases is in accordance with physical expert knowledge, see also Ref. [3] for more details.
In the second case, by calculating the relevances of the learned filters of the CNN, we could associate
each of them with one of the physical phases and thereby extract the known order parameters, cf.
Fig. 11.3. Moreover, it facilitated the construction of an observable that characterises the symmetric,
parametric phase, derived by the convolutional filters in Fig. 11.4.

Following Ref. [3], this section reviewed the application of interpretability methods to deep neural
network classifiers as a general-purpose framework for the identification of physical features from
lattice data. The approach facilitates an interpretation of a network’s predictions, permitting a
quantitative understanding of the internal representations that the network learns in order to solve
a pretext task—in this case, inference of action parameters. This culminates in the extraction
of relevant observables from the data, leading to insights about the phase structure. The results
demonstrate that due to its broad applicability, attribution methods such as LRP could prove a
useful and versatile tool in our search for new physical insights.

134 Towards novel insights in lattice field theory with explainable machine learning

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

κ

0.0

0.2

0.4

0.6

0.8

1.0

|O
| /

m
a
x
|O
|

AFM

〈Ms〉
FM

〈M〉
OPM

OsPM

Figure 11.3: Slice of the phase diagram of the Yukawa model in terms of normalized values of the magnetization
〈M〉, the so-called staggered magnetization 〈Ms〉 and of observables reconstructed from learned
convolutional filters. Phase transitions are highlighted by the shaded bars. We distinguish
an antiferromagnetic (AFM), a paramagnetic (PM) and a ferromagnetic (FM) phase. The
reconstructed filters AFM and FM can be associated with the observables 〈M〉 and 〈Ms〉 and
describe the FM and AFM phase. OPM and OsPM are related by the so-called staggered symmetry
and exhibit an approximate mirror symmetry around κ = 0. The latter reconstructed observables
are well-suited for characterizing the symmetric phase and demonstrates the usefulness of
applying LPR in the context of lattice configurations. The respective convolutional filters are
illustrated in Fig. 11.4. See Ref. [3] for more details.

Figure 11.4: Convolutional filters corresponding to the observable OPM (left) and its corresponding staggered
counterpart OsPM (right).

Unsupervised representation learning 135

11.2 Unsupervised representation learning

Encouraged by the results of the previous section, we want to discuss a possible utilization of the
neural adversarial embedding algorithm, cf. Chapter 10, for the task of finding novel observables
and structures in physical systems by analysing sampled lattice configurations. The algorithm is
an unsupervised representation learning entailing the advantage that the learned lower-dimensional
representations are not biased by a pretext task. However, as discussed in Chapter 10, it still needs
to be evaluated what kind of information the mapping of the featurizer preserves. Combining the
evaluation of physical systems with the expert knowledge about the respective physical properties
can also help in this task.

Compared to other unsupervised learning approaches trained on a reconstruction of the input, the
neural adversarial embedding algorithm has certain advantages. Invariances of the input data,
which are directly related to the action of the physical system, can be explicitly implemented into
the function mapping the lattice configurations into a lower-dimensional representation. These
invariances are usually reflected in the observables of the given system. Lattice data often exhibit a
translation and rotation invariance. In this case, observables are mostly computed by a mean over
local properties of the lattice.

Unsupervised training algorithms relying on a reconstruction of the input data exhibit for this
type of observables similar problems as encountered for the reconstruction of graphs, discussed in
Chapter 10. Because of an often seen translational and rotational invariance of the lattice, many
different lattice configurations can lead to the same observable, rendering a correct reconstruction
infeasible. Depending on the observable, an even higher number of configurations can yield the same
observables. For example, in case of the magnetization of the Ising model, an additional permutation
invariance with respect to the lattice sites needs to be taken into account. These properties hamper
a successful training of unsupervised training algorithms where a reconstruction is necessary.

Due to these properties, we want to study the generation of embeddings by means of the neural
adversarial embedding algorithm in future work in greater detail and compare obtained results with
other unsupervised approaches relying on a reconstruction, as studied, for example, in Ref. [133]. More
specifically, we want to employ the same approach for computing lower-dimensional representations
as proposed for graph-structured data in Chapter 10 by means of message passing neural networks.
The computation of potential observables is implemented in the message passing phase whereas
invariances of the lattice configurations are taken into account in the readout phase by computing
the mean over all hidden representations of the lattice sites.

With respect to representation learning, this approach bears the advantage that the applied functions
in the message passing phase can be directly interpreted as possible observables. A combination
with other interpretable methods as layer-wise relevance propagation is feasible. Furthermore, we
want to point that the approach also allows for studying observables going beyond a computation of
local properties. The graph formed by the lattice can be replaced by any other graph that takes into
account longer distances on the lattice. Applying the neural adversarial embedding algorithms on
this representation allows for capturing global correlations on the lattice in respective observables.
This can be, for example, beneficial in fermionic systems exhibiting global structures. A detailed
analysis of this approach is postponed to future work.

CHAPTER 12

Spectral reconstruction with deep neural networks

This chapter is based on Ref. [2].

In this chapter, we build upon both the recent progress in the field of ML, particularly deep
learning, as well as results and structural information gathered in the past decades from Bayesian
reconstruction methods for tackling the problem of spectral reconstruction. We set out to isolate
a property of neural networks that holds the potential to improve upon the standard Bayesian
methods, while retaining their advantages, utilising the already gathered insight in their study.

Consider a feed-forward deep neural network that takes Euclidean propagator data as input and
outputs a prediction of the associated spectral function. Although the reasoning behind this ansatz is
rather different, one can draw parallels to more traditional methods. In the Bayesian approach, prior
information is explicitly encoded in a prior probability functional and the optimisation objective is
the precise recovery of the given propagator data from the predicted spectral function. In contrast,
the neural network based reconstruction is conditioned through supervised learning with appropriate
training data. This corresponds to implicitly imposing a prior distribution on the set of possible
predictions, which, as in the Bayesian case, regularises the reconstruction problem. Optimisation
objectives are now expressed in terms of loss functions, allowing for greater flexibility. In fact, we
can explicitly provide pairs of correlator and spectral function data during the training. Hence, not
only can we aim for the recovery of the input data from the predictions as in the Bayesian approach,
but we are now also able to formulate a loss directly on the spectral functions themselves. This
constitutes a much stronger restriction on potential solutions for individual propagators, which could
provide a significant advantage over other methods. The possibility to access all information of
a given sample with respect to its different representations also allows the exploration of a much
broader set of loss functions, which could benefit not only the neural network based reconstruction,
but also lead to a better understanding and circumvention of obstacles related to the inverse problem
itself. Such an obstacle is given, for example, by the varying severity of the problem within the space
of considered spectral functions. By employing adaptive losses, inhomogeneities of this type could
be neutralised.

Similar approaches concerning spectral functions that consist of normalised sums of Gaussian peaks
have already been discussed in Refs. [337, 338]. In this chapter, we investigate the performance of such
an approach using mock data of physical resonances motivated by quantum field theory, and compare
it to state-of-the-art Bayesian methods. The data are given in the form of linear combinations of
unnormalised Breit-Wigner peaks, whose distinctive tail structures introduce additional difficulties
(see Fig. 12.1 for an example reconstruction). Using only a rather naive implementation, the
performance of our ansatz is demonstrated to be at least comparable and potentially superior,

137

138 Spectral reconstruction with deep neural networks

0 2 4 6
ω

0.00

0.25

0.50

0.75

ρ
(ω

)

1 BW

0 2 4 6
ω

0.0

0.5

1.0

ρ
(ω

)

2 BW

0 2 4 6
ω

0

1

ρ
(ω

)

3 BW

10−4

10−3

10−2

10−1

1

P
ro

ba
bi

lit
y

Original
Mean Recon

Figure 12.1: Examples of mock spectral functions reconstructed via our neural network approach for the
cases of one, two and three Breit-Wigner peaks. The chosen functions mirror the desired locality
of suggested reconstructions around the original function (red line). Additive, Gaussian noise of
width 10−3 is added to the discretised analytic form of the associated propagator of the same
original spectral function multiple times. The shaded area depicts for each frequency ω the
distribution of resulting outcomes, while the dashed green line corresponds to the mean. The
results are obtained from the FC parameter network optimised with the parameter loss. The
network is trained on the largest defined parameter space which corresponds to the volume Vol
O. The uncertainty for reconstructions decreases for smaller volumes as illustrated in Fig. 12.4.
A detailed discussion on the properties and problems of a neural network based reconstruction is
given in Sec. 12.3.1.

particularly for large noise levels. We then discuss potential improvements of the architecture,
which in the future could establish neural networks to a state-of-the-art approach for accurate
reconstructions with a reliable estimation of errors.

The chapter is organised as follows. The spectral reconstruction problem is defined in Sec. 12.1.1.
State-of-the-art Bayesian reconstruction methods are summarised in Sec. 12.1.2. In Sec. 12.1.3 we
discuss the application of neural networks and potential advantages. Sec. 12.2 contains details on
the design of the networks and defines the optimisation procedure. Numerical results are presented
and compared to Bayesian methods in Sec. 12.3. We summarise our findings and discuss future work
in Sec. 12.4.

12.1 Spectral reconstruction and potential advantages

12.1.1 Defining the problem

Typically, correlation functions in equilibrium quantum field theories are computed in imaginary
time after a Wick rotation t→ it ≡ τ , which facilitates both analytical and numerical computations.
In strongly correlated systems, a numerical treatment is in most cases inevitable. Such a setup leaves
us with the task to reconstruct relevant information, such as the spectrum of the theory, or genuine
real-time quantities such as transport coefficients, from the Euclidean data.

The information we want to access is encoded in the associated spectral function ρ. For this purpose
it is most convenient to work in momentum space both for ρ and the corresponding propagator G.
The relation between the Euclidean propagator and the spectral function is given by the well known
Källen-Lehmann spectral representation,

G(p) =

∫ ∞

0

dω

π

ω ρ(ω)

ω2 + p2
≡
∫ ∞

0
dωK(p, ω)ρ(ω) , (12.1)

Spectral reconstruction and potential advantages 139

which defines the corresponding Källen-Lehmann kernel. The propagator is usually only available
in the form of numerical data, with finite statistical and systematic uncertainties, on a discrete
set of Np points, which we abbreviate as Gi = G(pi). The most commonly used approach is to
work directly with a discretised version of (12.1). We utilise the same abbreviation for the spectral
function, i.e. ρi = ρ(ωi), discretised on Nω points. This lets us state the discrete form of (12.1) as

Gi =

Nω∑

j=1

Kij ρj , (12.2)

where Kij = K(pi, ωj)∆ωj . This amounts to a classic ill-conditioned inverse problem, similar in
nature to those encountered in many other fields, such as medical imaging or the calibration of
option pricing methods. Typical errors on the input data G(pi) are on the order of 10−2 to 10−5

when the propagator at zero momentum is of the order of unity.

To appreciate the problems arising in such a reconstruction more clearly, let us assume we have a
suggestion for the spectral function ρsug and its corresponding propagator Gsug. The difference to
the measured data is encoded in

‖G(p)−Gsug(p)‖ =

∥∥∥∥
∫ ∞

0

dω

π

ω

ω2 + p2

[
ρ(ω)− ρsug(ω)

]∥∥∥∥ , (12.3)

with a suitable norm ‖.‖. Evidently, even if this expression vanishes point-wise, i.e. ‖G(pi) −
Gsug(pi)‖ = 0 for all pi, the spectral function is not uniquely fixed. Experience has shown that with
typical numerical errors on the input data, qualitatively very different spectral functions can lead to
in this sense equivalent propagators. This situation can often be improved on by taking more prior
knowledge into account, cf. the discussion in Ref. [339]. This includes properties such as:

1. Normalisation and positivity of spectral functions of asymptotic states. For gauge theories, this
may reduce to just the normalisation to zero, expressed in terms of the Oehme-Zimmermann
superconvergence [340, 341].

2. Asymptotic behaviour of the spectral function at low and high frequencies.

3. The absence of clearly unphysical features, such as drastic oscillations in the spectral function
and the propagator.

Additionally, the parametrisation of the spectral function in terms of frequency bins is just one
particular basis. In order to make reconstructions more feasible, other choices, and in particular
physically motivated ones, may be beneficial, cf. again the discussion in Ref. [339]. In this work, we
consider a basis formulated in terms of physical resonances, i.e. Breit-Wigner peaks.

12.1.2 Existing methods

The inverse problem as defined in (12.1) has an exact solution in the case of exactly known, discrete
correlator data [342]. However, as soon as noisy inputs are considered, this approach turns out to
be impractical [343]. Therefore, the most common strategy to treat this problem is via Bayesian
inference. This approach is based on Bayes’ theorem, which states that the posterior probability is
essentially given by two terms, the likelihood function and prior probability:

P (ρ|D, I) ∝ P (D|ρ, I)P (ρ|I) . (12.4)

140 Spectral reconstruction with deep neural networks

It explicitly includes additionally available prior information on the spectral function in order to
regularise the inversion task. The likelihood P (D|ρ) encodes the probability for the input data D to
have arisen from the test spectral function ρ, while P (ρ) quantifies how well this test function agrees
with the available prior information. The two probabilities fully specify the posterior distribution
in principle, however they may be known only implicitly. In order to gain access to the full
distribution, one may sample from the posterior, e.g. through a Markov Chain Monte Carlo process
in the parameter space of the spectral function. However, in practice one is often content with the
maximum a posteriori (MAP) solution. Given a uniform prior, the Maximum Likelihood Estimate
(MLE) corresponds to an estimate of the MAP.

12.1.3 Advantages of neural networks

In order to make genuine progress, we set out in this study to explore methods in which our prior
knowledge of the analytic structure can be encoded in different ways. To this end, our focus lies
on the use of Machine Learning in the form of artificial neural networks. These feature a high
flexibility in the encoding of information by learning abstract internal representation. They possess
the advantageous properties that prior information can be explicitly provided through the training
data, and that the solution space can be regularised by choosing appropriate loss functions.

Minimising (12.3), while respecting the constraints discussed in Sec. 12.1.1, can be formulated as
minimising the propagator loss

LG(ρsug) = ‖G[ρsug]−G[ρ]‖ . (12.5)

This corresponds to indirectly working on a norm or loss function for ρ, the spectral function loss

Lρ(ρsug) = ‖ρsug − ρ‖ . (12.6)

Of course, the optimisation problem as given by (12.6) is intractable, since it requires the knowledge
of the true spectral function ρ. Minimising Lρ(ρsug) for a given set of {ρsug} also minimises LG,
since the Källén–Lehmann representation (12.1) is a linear map. In turn, however, minimising LG
does not uniquely determine the spectral function, as has already been mentioned. Accordingly, the
key to optimise the spectral reconstruction is the ideal use of all known constraints on ρ, in order
to better condition the problem. The latter aspect has fueled many developments in the area of
spectral reconstructions in the past decades.

Given the complexity of the problem, as well as the interrelation of the constraints, this calls, in our
opinion, for an application of supervised machine learning algorithms for an optimal utilisation of
constraints. To demonstrate our reasoning, we generate a training set of known pairs of spectral
functions and propagators and train a neural network to reconstruct ρ from G by minimising a
suitable norm, utilising both LG and Lρ during the training. When the network has converged, it
can be applied to measured propagator data G for which the corresponding ρ is unknown.

Estimators learning from labelled data provide a potentially significant advantage due to the employed
supervision, because the loss function is minimised a priori for a whole range of possible input/output
pairs. Accordingly, a neural network aims to learn the entire set of inverse transformations for a
given set of spectral functions. After this mapping has been approximated to a sufficient degree,
the network can be used to make predictions. This is in contrast to standard Bayesian methods,
where the posterior distribution is explored on a case by case basis. Both approaches may also

A neural network based reconstruction 141

be combined, e.g. by employing a neural network to suggest a solution ρsug, which is then further
optimised using a traditional algorithm.

The given setup forces the network to regularise the ill-conditioned problem by reproducing the
correct training spectrum in accord with our criteria for a successful reconstruction. It is the inclusion
of the training data and the free choice of loss functions that allows the network to fully absorb all
relevant prior information. This ability is an outstanding property of supervised learning methods,
which could yield potentially significant improvements over existing frameworks. for such constraints
are the analytic structure of the propagator, asymptotic behaviors and normalisation constraints.

The parametrisation of an infinite set or manifold of inverse transformations by the neural network
also enables the discovery of new loss functions which may be more appropriate for a reliable
reconstruction. This includes, for example, the exploration of correlation matrices with adapted
elements, in order to define a suitable norm for the given and suggested propagators. Existing,
iterative methods may also benefit from the application of such adaptive loss functions. These may
include parameters, point-like representations and arbitrary other characteristics of a given training
sample.

Formulated in a Bayesian language, we set out to explicitly train the neural network to predict MAP
estimates for each possible input propagator, given the training data as prior information. By salting
the input data with noise, the network learns to return a denoised representation of the associated
spectral functions.

12.2 A neural network based reconstruction

Neural networks provide high flexibility with regard to their structure and the information they can
process. They are capable of learning complex internal representations which allow them to extract
the relevant features from a given input. A variety of network architectures and loss functions can
be implemented in a straightforward manner using modern Machine Learning frameworks. Prior
information can be explicitly provided through a systematic selection of the training data. The data
itself provides, in addition to the loss function, a regularisation of possible suggestions. Accordingly,
the proposed solutions have the advantage to be similar to the ones in the training data.

The section starts with notes on the design of the neural networks we employ and ends with a
detailed introduction of the training procedure and the utilised loss functions.

12.2.1 Design of the neural networks

We construct two different types of deep feed-forward neural networks. The input layer is fed with
the noisy propagator data G(p). The output for the first type is an estimate of the parameters of the
associated ρ in the chosen basis, which we denote as parameter net (PaNet). For the second type, the
network is trained directly on the discretised representation of the spectral function. This network
will be referred to as point net (PoNet). A consideration of a variable number of Breit-Wigners is
feasible per construction by the point-like representation of the spectral function within the output
layer. This kind of network will in the following be abbreviated by PoNetVar. See Fig.12.2 for
a schematic illustration of our strategy. Note that in all cases a basis for the spectral function is
provided either explicitly through the structure of the network or implicitly through the choice of

142 Spectral reconstruction with deep neural networks

PaNet

PoNet

Parameters
{ , , }�� �� Γ�

Data	Points
{�()}��

Propagator
{�()}��

(a)

(b)

Figure 12.2: Sketch of our strategy for reconstructing (a) the parameters using the PaNet and (b) the
discretised data points using the PoNet (and by extension also the PoNetVar). Details on the
architectures are given in Sec. F.3.

the training data. If not stated otherwise, the numerical results presented in the following always
correspond to results from the PaNet.

We compare the performance of fully-connected (FC) and convolutional (Conv) layers as well as
the impact of their depth and width. In general, choosing the numbers of layers and neurons is
a trade-off between the expressive power of the network, the available memory and the issue of
overfitting. The latter strongly depends on the number of available training samples w.r.t. the
expressivity. For fully parametrised spectral functions, new samples can be generated very efficiently
for each training epoch, which implies an, in principle, infinite supply of data. Therefore, in this
case, the risk of overfitting is practically non-existent. The specific dimensions and hyperparameters
used for this work are provided in Sec. F.3. Numerical results can be found in Sec. 12.3.

12.2.2 Training strategy

The neural network is trained with appropriately labelled input data in a supervised manner. This
approach allows to implicitly impose a prior distribution in the Bayesian sense. The challenge lies in
constructing a training dataset that is exhaustive enough to contain the relevant structures that
may constitute the actual spectral functions in practical applications.

From our past experience with hadronic spectral functions in lattice QCD and the functional
renormalisation group, the most relevant structures are peaks of the Breit-Wigner type, as well as
thresholds. The former present a challenge from the point of view of inverse problems, as they contain
significant tail contributions, contrary e.g. to Gaussian peaks, which approach zero exponentially fast.
Thresholds on the other hand set in at finite frequencies, often involving a non-analytic kink behavior.
In this work, we only consider Breit-Wigner type structures as a first step for the application of
neural networks to this family of problems.

Mock spectral functions are constructed using a superposed collection of Breit-Wigner peaks based
on a parametrisation obtained directly from one-loop perturbative quantum field theory. Each
individual Breit-Wigner is given by

ρ(BW)(ω) =
4AΓω

(M2 + Γ2 − ω2)2 + 4Γ2ω2
. (12.7)

A neural network based reconstruction 143

Here, M denotes the mass of the corresponding state, Γ its width and A amounts to a positive
normalisation constant.

Spectral functions for the training and test set are constructed from a combination of at most
NBW = 3 different Breit-Wigner peaks. Depending on which type of network is considered, the
Euclidean propagator is obtained either by inserting the discretised spectral function into (12.2),
or by a computation of the propagator’s analytic representation from the given parameters. The
propagators are salted both for the training and test set with additive, Gaussian noise

Gnoisy
i = Gi + ε . (12.8)

This is a generic choice which allows to quantify the performance of our method at different noise
levels.

The advantage of neural networks to have direct access to different representations of a spectral
function implies a free choice of objective functions in the solution space. We consider three simple
loss functions and combinations thereof. The (pure) propagator loss LG(ρsug) defined in (12.5)
represents the most straightforward approach. This objective function is accessible also in already
existing frameworks, such as Bayesian Reconstruction (BR) or Hamiltonian Monte Carlo (HMC)
methods, in particular the GrHMC framework (referring to the retarded propagator Gr) developed in
Ref. [339]. It is implemented in this work to facilitate a quantitative comparison. In contrast, the loss
functions that follow are only accessible in the neural network based reconstruction framework. This
unique property is owed to the possibility that a neural network can be trained in advance on a dataset
of known input and output pairs. As pointed out in Sec. 12.1.3, a loss function can e.g. be defined
directly on a discretised representation of the spectral function ρ. This approach is implemented
through Lρ(ρsug), see (12.6). The optimisation of the parameters θ = {Ai,Mi,Γi | 0 ≤ i < NBW} of
our chosen basis is an even more direct approach. In principle, the space of all possible choices of
parameters is R3·NBW

+ , assuming they are all positive definite. Of course, only finite subvolumes of
this space ever need to be considered as target spaces for reconstruction methods. Therefore, we will
often refer to a finite target volume simply as the parameter space for a specific setting. Accordingly,
in addition to the propagator and spectral function losses defined in Eqs. (12.5) and (12.6), the
respective parameter loss in this space is given by:

Lθ(θsug) = ‖θsug − θ‖ . (12.9)

All losses are evaluated using the 2-norm. In the case of the parameter net, we have ρsug ≡ ρ(θsug).
Apart from the three given loss functions, we also investigate a combination of the propagator and
the spectral function loss,

LG,ρ(ρsug, α) = Lρ(ρsug) + αLG(ρsug) , (12.10)

where the parameter α determines the relative importance of the two losses. In our experiments, we
have chosen it such as to roughly balance differences in the scales of the respective loss functions.
The type of loss function that is employed as well as the selection of the training data have major
impact on the resulting performance of the neural network. Given this observation, it seems likely
that a further optimisation regarding the choice of the loss function can significantly enhance the
prediction quality. However, for the time being, we content ourselves with the types given above and
postpone the exploration of more suitable training objectives to future work.

144 Spectral reconstruction with deep neural networks

0.0

0.1

0.2Spectral
function loss

0.00

0.01

0.02
Propagator

loss

10−5 10−3

Noise width σ

0.0

0.1

0.2Parameter
loss

(a)

Conv
Straight FC

Deep FC
FC

Narrow Deep FC
Conv PP

0.0

0.2

0.4Spectral
function loss

0.000

0.004

0.008Propagator
loss

10−5 10−3

Noise width σ

0.0
0.1
0.2
0.3
0.4Parameter

loss

(b)

Lθ

Lρ

Lα=150
G,ρ

Lα=600
G,ρ

Lα=3000
G,ρ

LG

Figure 12.3: The performance of different net architectures and loss functions of a parameter net is compared
for additive Gaussian noise with widths of 10−3 and 10−5 on the given input propagator: (a)
Comparison of different net architecures. All networks are trained based on the parameter loss.
The associated architectures can be found in Tab. F.2. (b) Comparison of different loss functions.
Details on the loss functions are described at the end of Sec. 12.2.2. All results are based on
networks with the architecture Conv. To (a) and (b): Shown here are the respective losses
for the predicted parameters, for the discretised reconstructed spectral function and for the
reconstructed propagator to the true, noise-free propagator. Both figures use the largest volume
in parameter space, Vol O. The definitions of the performance measures are given at the end of
Sec. F.3. The results on the left hand side imply that for larger errors, the choice of a specific
network architecture has negligible impact on the quality of the reconstructions. All performance
measures can be lowered for the given noise widths by applying a post-processing procedure on
the suggested parameters of the network. In particular, the propagator loss can be minimised.
The comparison on the right hand side shows that the choice of the loss function has major
impact on the resulting performance of the network. The results underpin the importance of an
appropriate loss function and support our argument of potential advantages of neural networks
compared to existing approaches in Sec. 12.1.3. Contour plots in parameter space are illustrated
for the respective measures in Fig. F.1 and Fig. F.2.

12.3 Numerical results

In this section we present numerical results for the neural network based reconstruction and validate
the discussed potential advantages by comparing to existing methods. Details on the training
procedure as well as the training and test datasets can be found in Tab. 12.1 and Sec. F.3, together
with an introduction to the used performance measures. We start now with a brief summary of the
main findings for our approach. Furthermore, a detailed numerical analysis and discussion of different
network setups w.r.t performance differences are provided. Subsequently, additional post-processing
methods for an improvement of the neural network predictions are covered. The section ends with
a discussion of results from the PoNet. Readers who are interested in a comparison of the neural
network based reconstruction to existing methods may proceed directly with Sec. 12.3.2.

12.3.1 Reconstruction with neural networks

Our findings concerning the optimal setup of a feed-forward network can be summarised as follows.
As pointed out in Sec. 12.1.3, the network aims to learn an approximate parametrisation of a manifold
of (matrix) inverses of the discretised Källén-Lehmann transformations. The inverse problem grows
more severe if the propagator values are afflicted with noise. In Bayesian terms, this is caused by

Numerical results 145

a wider posterior distribution for larger noise. The network needs to have sufficient expressivity,
i.e. an adequate number of hyperparameters, to be able to learn a large enough set of inverse
transformations. We assume that for larger noise widths a smaller number of hyperparameters is
necessary to learn satisfactory transformations, since the available information content about the
actual inverse transformation decreases for a respective exact reconstruction. A varying severity of
the inverse problem within the parameter space leads to an optimisation of the spectral reconstruction
in regions where the problem is less severe. This effect occurs naturally, since there the network
can minimise the loss more easily than in regions where the problem is more severe. Besides the
severity of the inverse problem, the form of the loss function has a large impact on global optima
within the landscape of the solution space. Based on these observations, an appropriate training of
the network is non-trivial and demands a careful numerical analysis of the inverse problem itself,
and of different setups of the optimisation procedure. A sensible definition of the loss function or
a non-uniform selection of the training data are possible approaches to address the disparity in
the severity of the inverse problem. A more straightforward approach is to iteratively reduce the
covered parameter ranges within the learning process, based on previous suggested outcomes. This
amounts to successively increasing the prediction accuracy by restricting the network to smaller and
smaller subvolumes of the original solution space. However, one should be aware that this approach
is only sensible if the reconstructions for different noise samples on the original propagator data are
sufficiently close to each other in the solution space. A successive optimisation of the prediction
accuracy in such a way can also be applied to existing methods. All approaches ultimately aim at a
more homogeneous reconstruction loss within the solution space. This allows for a reliable control of
systematic errors, as well as an accurate estimation of statistical errors. The desired outcome for a
generic set of Breit-Wigner parameters is illustrated and discussed in Fig. 12.1.

The quality and reliability of reconstructions heavily depend on the following details of the training
procedure and the inverse problem itself, with varying levels of impact given a specific situation:

• local differences in the severity of the inverse problem

• information loss in the forward pass and due to statistical noise

• loss function / prior information

• complexity / expressivity of the network architecture

In essence, we wish to emphasise that a reliable reconstruction is a multifactorial problem whose
facets need to be disentangled in order to understand all contributions to systematic errors.

The impact of the net architecture and the loss function on the overall performance within the
parameter space is illustrated in Fig. 12.3. Associated contour plots can be found in the appendix,
see Fig. F.1 and Fig. F.2. These plots demonstrate that the minima in the loss landscape highly
depend on the employed loss function. In turn, this leads to different performance measures. This
observation confirms our previous discussion and the necessity of an appropriate definition of the
loss function. It also reinforces our arguments regarding potential advantages of neural networks in
comparison to other approaches for spectral reconstruction. The comparison of different feed-forward
network architectures shows that the specific details of the network structure are rather irrelevant,
provided that the expressivity is sufficient.

Differences in the performance of the networks that are trained with the same loss function become
less visible for larger noise. This is illustrated by a comparison of contour plots with different noise
widths, see e.g. Fig. F.1. The severity of the inverse problem grows with the noise and the information

146 Spectral reconstruction with deep neural networks

0 2 4 6
ω

0

1

2

3

4

ρ
(ω

)

Vol O

0 2 4 6
ω

Vol A

0 2 4 6
ω

Vol B

0 2 4 6
ω

Vol C

0 2 4 6
ω

Vol D

10−4

10−3

10−2

10−1

1

Original
Mean Recon

Figure 12.4: The uncertainties of reconstructions of spectral functions on the same original propagator are
illustrated in the same manner as described in Fig. 12.1 for different volumes of the parameter
space, again using a noise width of 10−3. The plots demonstrate how the quality of the
reconstruction improves if the parameter space which the network has to learn is decreased. The
volumes of the corresponding parameter spaces are listed in Tab. 12.1. The results are computed
from the Conv PaNet. The systematic deviation of the distribution of reconstructions for
large volumes shows that the network has not captured the manifold of inverse transformations
completely for the entire parameter space. This is in concordance with the results discussed in
Fig. F.1 and Fig. F.3.

10−3 10−2 10−1

Volθ

10−2

10−1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

10−3 10−2 10−1

Volθ

10−5

10−4

10−3

P
ro

pa
ga

to
r

lo
ss

10−3 10−2 10−1

Volθ

10−2

10−1

P
ar

am
et

er
lo

ss

σ = 10
−2

σ = 10
−3

σ = 10
−4

σ = 10
−5

Conv
Conv PP
GrHMC

Figure 12.5: The plots in this figure quantify the impact of the parameter space volume used for the training
on the performance of the parameter network. The performance measures are computed based
on the test set of the smallest volume, Vol D. The parameter ranges in the training set are
gradually reduced to analyse different levels of complexity of the problem. Separate networks
are trained for each volume, which are listed in Tab. 12.1. The results demonstrate the potential
advantage of an iterative restriction of the parameter ranges of possible solutions. The contour
plots in Fig. F.3 depict changes of the performance measures within the parameter space. More
strongly peaked prior distributions lead to better reconstructions. The comparison with results
of the GrHMC approach illustrates the improvement of the performance of neural networks
for larger errors and smaller volumes. These observations confirm the discussions of Fig. 12.4
and Fig. 12.8. Adding a post-processing step leads in particular for the propagator loss and
for smaller noise widths to an improvement of the reconstruction, as has also been discussed in
Fig. 12.3.

Numerical results 147

10−3 10−2 10−1

Volθ

10−2

10−1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

10−3 10−2 10−1

Volθ

10−4

10−3

10−2

P
ro

pa
ga

to
r

lo
ss

10−3 10−2 10−1

Volθ

10−2

10−1

100

P
ar

am
et

er
lo

ss

σ = 10
−2

σ = 10
−3

σ = 10
−4

σ = 10
−5

Conv

Figure 12.6: Comparison of reconstruction errors of the Conv PaNet trained only on the smallest Vol D
for different noise levels, evaluated with test volumes which are also larger than D. The test
datasets are equivalent to the ones used for the other tasks described in this paper. In contrast
to Fig. 12.5, which shows the prediction quality as a function of the training volume with a fixed
test volume Vol D, here the performance is evaluated as a function of the test volume using a
fixed training volume.

10−4 10−2

Noise width σ

10−3

10−2

10−1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

10−4 10−2

Noise width σ

10−5

10−4

10−3

P
ro

pa
ga

to
r

lo
ss

1BW
2BW
3BW

FC PaNet
FC PoNet
FC PoNetVar

Figure 12.7: Comparison of reconstruction errors of the PaNet and the PoNet for the FC architecture. The
performance measures are computed based on the test set of the largest parameter space volume
Vol O for one, two and three Breit-Wigners. All networks are trained based on the parameter
ranges of Vol O. Loss functions are the parameter loss Lθ for the PaNet and the spectral function
loss Lρ for both PoNets. The overall smaller losses for the point nets are due to the large number
of degrees of freedom for the point-like representation of the spectral function. The partly
competitive performance of the PoNetVar compared to the results of the PoNet encourage the
further investigation of networks that are trained using a more exhaustive set of basis functions
to describe physical structures in the spectral functions.

148 Spectral reconstruction with deep neural networks

0 2 4 6
ω

0

1

2

3

4

ρ
(ω

)

σ = 10
−5

0 2 4 6
ω

σ = 10
−4

0 2 4 6
ω

σ = 10
−3

0 2 4 6
ω

σ = 10
−2

10−4

10−3

10−2

10−1

1

Original
Conv
GrHMC

Figure 12.8: The quality of the reconstruction of two Breit-Wigner peaks is compared for different strength
of additive noise on the same propagator. The labels indicate the noise width on the original
propagator. It can be seen that the reconstructed spectral function of the neural network
exhibits in particular for larger errors a lower deviation to the original spectral function than
the GrHMC method. This mirrors the in general observable better performance of the neural
network for larger errors, as can be seen in Fig. 12.5 and in Fig. 12.9. The green and the red
curve correspond to reconstructions of the Conv PaNet and the GrHMC method for the same
given noisy propagator. The prior is in both cases given by the parameter range of volume
Vol B. The uncertainty of the reconstructions for the neural network is depicted by the grey
shaded areas as described in Fig. 12.1. For small errors, this area is covered by the corresponding
reconstructed spectral functions.

10−4 10−2

Noise width σ

10−4

10−3

10−2

10−1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

10−4 10−2

Noise width σ

10−6

10−5

10−4

10−3

10−2

P
ro

pa
ga

to
r

lo
ss

10−4 10−2

Noise width σ

10−4

10−3

10−2

10−1

P
ar

am
et

er
lo

ss

1BW
2BW
3BW

FC
FC PP
GrHMC

Figure 12.9: The performance of the reconstruction of spectral functions is benchmarked for the parameter
network, which is trained with Lθ, by a comparison to results of the GrHMC method. The
parameter network is in particular for large noise widths competitive. The worse performance for
smaller noise widths is a result of an inappropriate training procedure and a too low expressive
power of the neural network. The problems are caused by a varying severity of the inverse
problem and by a too large parameter space that needs to be covered by the neural network, as
discussed in Sec. 12.3.1. The error bars of the results for the FC network are representative for
typical errors within all methods and plots of this kind.

Numerical results 149

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

FC GrHMC

3 × 10−3

10−2

3 × 10−2

10−1

3 × 10−1

1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

FC GrHMC

3 × 10−5

10−4

3 × 10−4

10−3

3 × 10−3

10−2

3 × 10−2

P
ro

pa
ga

to
r

lo
ss

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

FC

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

GrHMC

3 × 10−3

10−2

3 × 10−2

10−1

3 × 10−1

1

P
ar

am
et

er
lo

ss

Figure 12.10: Comparison of performance measures for the reconstruction of two Breit-Wigners of the FC
parameter network with the GrHMC method for input propagators with noise width 10−3

within the parameter space volume Vol O. The similar loss landscape emphasises the high
impact of variations of the severity of the inverse problem within the parameter space on the
quality of reconstructions. Contrary to expectations, the parameter network mimics, despite
an optimisation based on the parameter loss Lθ, the reconstruction of the GrHMC method
which relies on an optimisation of the propagator loss LG with respect to the parameters. A
reconstruction resulting in an averaged peak with the other parameter set effectively removed,
as outlined in Ref. [339], results in the spiking parameter losses for the GrHMC reconstructions
with large errors.

content about the actual matrix transformation decreases. These properties lead to the observation
of a generally worse performance for larger noise widths, as can be inferred from Fig. 12.4, as well
as Figs. 12.8 and 12.9, which are discussed later. They also imply that for specific noise widths,
the neural network possesses enough hyperparameters to learn a sufficient parametrisation of the
inverse transformation manifold. Furthermore, the local optima into which the network converges
are mainly determined by differences in the local severity of the inverse problem. Hence, the issue
remains that generic loss functions are inappropriate to address the varying local severity of the
inverse problem. This issue implies the existence of systematic errors for particular regions within
the parameter space, as can be seen e.g. in the left plot of Fig. 12.4.

The results shown in Figs.12.4 and 12.5 as well as Fig. F.3 in the appendix confirm our discussion
regarding the expressive power of the network w.r.t. the complexity of the solution space and the
decreasing information content for larger errors. The parameter space is gradually reduced, effectively
increasing the expressivity of the network relative to the severity of the problem and improving the

150 Spectral reconstruction with deep neural networks

Vol A M Γ ∆M

O [0.1, 1.0] [0.5, 3.0] [0.1, 0.4] [0.0, 2.5]
A [0.3, 0.7] [0.5, 3.0] [0.1, 0.3] [0.25, 1.75]
B [0.4, 0.6] [0.5, 3.0] [0.1, 0.2] [0.5, 1.5]
C [0.45, 0.55] [0.5, 3.0] [0.1, 0.15] [0.75, 1.25]
D [0.475, 0.525] [0.5, 3.0] [0.1125, 0.1375] [0.875, 1.125]

Table 12.1: Parameter ranges of the different volumes in parameter space used for training. Parameters are
sampled uniformly based on the given bounds for the training and test sets. For the case of two
and three Breit-Wigner functions, the difference in mass ∆M = M2 −M1 is limited to restrict
the minimum possible distance between two peaks. The volumes Vθ are computed based on these
parameter ranges.

behavior of the loss function for a given fixed parameter space. The respective volumes are listed
in Tab. 12.1. Shrinking the parameter space leads to a more homogeneous loss landscape due to
the increased locality, thereby mitigating the issue of inappropriate loss functions. The necessary
number of hyperparameters decreases for larger noise widths and smaller parameter ranges in the
training and test dataset. The arguments above imply a better performance of the network for
smaller parameter spaces. A reduction of the parameter space effectively corresponds to a sharpening
of the prior information, which also has positive effects on the spread of the posterior distribution.
More detailed discussions on the impact of different elements of the training procedure can be found
in the captions of the respective figures.

Since increasing the expressivity of the network is limited by the computational demand required
for the training, one can also apply post-processing methods to improve the suggested outcome
w.r.t. the initially given, noisy propagator. These methods are motivated by the in some cases large
observed root-mean-square deviation of the reconstructed suggested propagator to the input, see
for example again Fig. 12.3. The application of standard optimisation methods on the suggested
results of the network represents one possible approach to address this problem. Here, the network’s
prediction is interpreted as a guess of the MAP estimate, which is presumed to be close to the true
solution. For the PaNet, we minimise the propagator loss a posteriori with respect to the following
loss function:

min
θsug

LPP[θsug] = min
θsug
‖Gnoisy −G [ρ (θsug)]‖ . (12.11)

This ensures that suggestions for the reconstructed spectral functions are in concordance with the
given input propagator. Results obtained with an additional post-processing are marked by the
attachment PP in this work. The numerical results in Figs. 12.4 and 12.9 show that the finite size
of the neural network can be partially compensated for small errors. The resulting low propagator
losses are noteworthy, and are close to state-of-the-art spectral reconstruction approaches. One
reason for this similarity is the shared underlying objective function. However, the situation is
different for larger noise widths. For our choice of hyperparameters, the algorithm quickly converges
into a local minimum. For large noise widths, the optimisation procedure may even lead to worse
results than the initially suggested reconstruction. This is due to the already mentioned systematic
deviations which are caused by the inappropriate choice of the loss function for large parameter
spaces. This kind of post-processing should therefore be applied with caution, since it may cancel out
the potential advantages of neural networks w.r.t. the freedom in the definition of the loss function.

Numerical results 151

0.0 2.5 5.0
ω

0

1

2

3

4

ρ
(ω

)

1BW

0 5
ω

0.0

0.5

1.0

1.5
2BWa

0.0 2.5 5.0
ω

0

10

20

2BWb

0 10
ω

0.0

0.5

1.0

1.5
3BW Original

Conv
GrHMC
BR

Figure 12.11: Reconstructions of one, two and three Breit-Wigners are compared for our proposed neural
network approach, the GrHMC method and the BR method. The reconstructions of the first
two methods are based on a single sample with noise width 10−3, while the results of the BR
method are obtained from multiple samples with larger errors, but an average noise width of
10−3 as well. In contrast to the previous plots, the neural network and the GrHMC method
now use different priors for each case in order to allow for a reasonable comparison with the
BR method, see Tab. F.1. We observe that all approaches qualitatively capture the features in
the spectral function. Due to the comparably large error on the input data, all methods are
expected to face difficulties in finding an accurate solution. The reconstructions of the neural
network approach and the GrHMC method are comparable, whereas the BR method struggles
in particular with thin peaks and the three Breit-Wigner case. The results demonstrate that,
generally, using suitable basis functions and incorporating prior information lead to a superior
reconstruction performance.

The following alternative post-processing approach preserves the potential advantages of neural
networks while nevertheless minimising the propagator loss. The idea is to include the network into
the optimisation process through the following objective:

min
Ginput

Linput[Ginput] = min
Ginput

‖Gnoisy −G [ρ (θsug)]‖ , (12.12)

where Ginput corresponds to the input propagator of the neural network and θsug to the associated
outcome. This facilitates a compensation of badly distributed noise samples and allows a more accu-
rate error estimation. The approach is only sensible if no systematic errors exist for reconstructions
within the parameter space, and if the network’s suggestions are already somewhat reliable. We
postpone a numerical analysis of this optimisation method together with the exploration of more
appropriate loss functions and improved training strategies to future work, due to a currently lacking
setup to train such a network.

Figs. 12.6 and F.4 serve to quantify the generalization capability of our neural network approach
with regard to data that lie outside of the training volume. Fig. 12.6 shows a comparison of error
metrics obtained with the Conv PaNet trained only on the smallest Vol D when applied to larger
parameter volumes, at a few different noise levels. As we expect, the performance decreases with
larger test volumes, but loss values notably remain in the same orders of magnitude that are observed
for larger training volumes, indicating that the generalization capability of the network has at first
only a rather weak dependence on the ratio between test and training volume, which only grows
more severe if the test volume becomes much larger. This is further illustrated by Fig. F.4, showing
a rather flat loss landscape in the immediate vicinity of the training volume boundaries without
sharp transitions, and gradual worsening of the prediction quality as one moves further away. We
conclude that our approach is moderately robust against deviations of the true solution from the
considered training volume and only fails at larger distances.

152 Spectral reconstruction with deep neural networks

In Figs. 12.7 and F.5, results of the PoNet and the PaNet are compared. We observe that spectral
reconstructions based on the PoNet structure suffer from similar problems as the PaNet. The
point-like representation of the spectral function introduces a large number of degrees of freedom for
the solution space. The training procedure implicitly regularises this problem, however, a visual
analysis of individual reconstructions shows that in some cases the network struggles with common
issues known from existing methods, such as partly non-Breit-Wigner like structures and wiggles.
An application of the proposed post-processing methods serves as a possible approach to circumvent
such problems. An inclusion of further regulator terms into the loss function, concerning e.g. the
smoothness of the reconstruction, is also possible.

12.3.2 Benchmarking and discussion

Lastly, we want to emphasise differences of our proposed neural network approach to existing
methods. Our arguments are supported by an in-depth numerical comparison.

Within all approaches the aim is to map out, or at least to find the maximum of, the posterior
distribution P (ρ|G) for a given noisy propagator G. The BR and GrHMC methods represent iterative
approaches to accomplish this goal. The algorithms are designed to find the maximum for each
propagator on a case-by-case basis. The GrHMC method additionally provides the possibility to
implement constraints on the functional basis of the spectral function in a straightforward manner. In
contrast, a neural network aims to learn the full manifold of inverse Källen-Lehman transformations
for any noisy propagator (at least within the chosen parameter space). In this sense, it needs to
propose for each given propagator an estimate of the maximum of P (ρ|D). A complex parametrisation,
as given by the network, an exhaustive training dataset and the optimisation procedure itself are
essential features of this approach for tackling this tough challenge. The computational effort to find
a solution in an iterative approach is therefore shifted to the training process as well as the memory
demand of the network. Accordingly, the neural network based reconstruction can be performed
much faster after training has been completed, which is in particular advantageous when large sets
of input propagators are considered. In our experiments, the time required for running the GrHMC
algorithm and training the networks was roughly similar, generally being of the order of a few hours.
A quantitative comparison is difficult due to the use of completely distinct software packages and
different utilisation of hardware accelerators. However, we emphasise again that one run of the
GrHMC can only provide a prediction for one specific propagator, whereas the trained network can
be evaluated quickly on large datasets and additionally allows fast retraining when different data are
expected, without having to start from scratch.

The numerical results in Fig. 12.5 and Fig. 12.8 to Fig. 12.11 demonstrate that the formal arguments
of Sec. 12.1.3 apply, particularly for comparably large noise widths as well as smaller parameter
ranges. For both cases, the network successfully approximates the required inverse transformation
manifold. Smaller noise widths and a larger set of possible spectral functions can be addressed by
increasing the number of hyperparameters and through the exploration of more appropriate loss
functions, as was already discussed previously.

12.4 Summary

In this chapter we have explored artificial neural networks as a tool to deal with the ill-conditioned
inverse problem of reconstructing spectral functions from noisy Euclidean propagator data. We

Summary 153

systematically investigated the performance of this approach on physically motivated mock data
and compared our results with existing methods. Our findings demonstrate the importance of
understanding the implications of the inverse problem itself on the optimisation procedure as well as
on the resulting predictions.

The crucial advantage of the presented ansatz is the superior flexibility in the choice of the objective
function. As a result, it can outperform state-of-the-art methods if the network is trained appro-
priately and exhibits sufficient expressivity to approximate the inverse transformation manifold.
The numerical results demonstrate that defining an appropriate loss function grows increasingly
important for an increased variability of considered spectral functions and of the severity of the
inverse problem.

In future work, we aim to further exploit the advantage of neural networks that local variations in
the severity of the inverse problem can be systematically compensated. The goal is to eliminate
systematic errors in the predictions in order to facilitate a reliable reconstruction with an accurate
error estimation. This can be realised by finding more appropriate loss functions with the help of
implicit and explicit approaches [344, 345]. A utilisation of these loss functions in existing methods
is also possible if they are directly accessible. Varying the prior distribution will also be investigated,
by sampling non-uniformly over the parameter space during the creation of the training data.
Furthermore, we aim at a better understanding of the posterior distribution through the application
of invertible neural networks [215]. This novel architecture provides a reliable estimation of errors
by mapping out the entire posterior distribution by construction.

In conclusion, we believe that the suggested improvements will boost the performance of the proposed
method to an as of yet unprecedented level and that neural networks will eventually replace existing
state-of-the-art methods for spectral reconstruction.

CHAPTER 13

Conclusion

In this thesis, we approached several problems in quantum chromodynamics and statistical physics
by bringing together state-of-the-art techniques from different disciplines. Novel insights, originating
from the interdisciplinary nature of this work, unveil starting points for tackling unsolved problems of
numerical, conceptional and mathematical nature in multiple domains. We established foundations
for employing methods and tools ranging from deep learning, statistics and neuromorphic computing
to eventually discover new physics in the long run. The derived methods and approaches are built
upon leveraging well-established tools such as probability theory, stochastic processes and Markov
chain Monte Carlo algorithms.

Driven by the similarity of Langevin dynamics and LIF dynamics, we explored in Chapter 4 and 5
the BrainScaleS-2 chip as an alternative more-energy efficient and scalable computing device for the
numerical computation of physical systems by means of Langevin dynamics. A direct implementation
of the dynamics turned out to be difficult due to hardware-related restrictions. This concerns
in particular the inherent interaction on the hardware via spikes and related non-linearities in
transmitted signals. The former property renders the system of neurons in the spiking-mode
effectively a discrete system.

Bearing these limitations in mind, we derived in Chapter 3 the Langevin equation for discrete
systems. The algorithm is shown to be equivalent to Langevin dynamics in the limit of infinitesimally
small step sizes in configuration space, thus, establishing the algorithm as the complement to
Langevin dynamics for a discrete system. While complex Langevin dynamics was derived in the
same limit, the formulation of a respective algorithm for discrete systems with a complex action
remains unsolved. A possible approach to tackle this problem is provided by the novel insights on
complex Langevin dynamics in Chapter 7, stating important mathematical foundations for sampling
algorithms extending their dynamics to the complex plane.

In Chapter 4, we studied a numerically exact implementation of a Boltzmann machine and the Ising
model by means of the Langevin equation for discrete systems based on simplified model descriptions
of LIF dynamics. A comparison with the standard way to implement these systems shows that
the new kind of dynamics has the potential to integrate Boltzmann-distributed systems in a more
appropriate way. An actual implementation on the BrainScaleS-2 chip is subject to future work.

Taking into account current hardware-related restrictions, we continued in Chapter 5 with a discussion
of necessary properties of potential alternative computing devices. Thereby, we point out a natural
restriction of neural network-inspired devices to linear or non-trivial non-linear interactions. The
proposed shift of the dynamics into the weights of a neural network provides a solution allowing at

155

156 Conclusion

least partially an implementation of Langevin dynamics on neuromorphic hardware systems. The
BrainScaleS-2 chip features such an implementation in the non-spiking mode based on a hybrid
setup. In the long run, we expect this to foster the implementation of comparably large physical
systems built upon a fast and energy-efficient evaluation of computationally expensive subtasks
within the update rules of Langevin dynamics.

We continued in Chapter 6 with a machine learning task on the BrainScaleS-2 chip. The hardware
emulates restricted Boltzmann machines which, in turn, represent entangled quantum states. The
successful encoding of non-classical Bell correlations and the obtained high quantum fidelities
demonstrate that the accuracy of the neuromorphic system is well-suited for representing and
training Boltzmann distributed systems in a machine learning framework. Thus, the results open up
new perspectives for simulating quantum many-body systems with spiking neuromorphic devices.

Chapters 7 to 9 constitute the second main building block of this work. The proposed sampling
frameworks aim to solve the problem of an often observed convergence of complex Langevin dynamics
to unphysical solutions. Starting from first principles, we established in Chapter 7 constraints on
sampling processes facilitating a sampling of the physically correct solutions. The constraints are
built on firm grounds by techniques of Markov chain Monte Carlo methods which warrant, as opposed
to complex Langevin dynamics, explicit control of the underlying sampling process of complex action
problems. Thereby, we avoided the standard comparison with a Fokker-Planck equation and provide
a mathematically well-founded derivation in terms of the proposed framework, cf. Chapter 8. The
presented framework represents a fundamental paradigm shift and opens a path for the systematic
development of tailor-made sampling schemes for tackling the sign problem of complex quantum
systems. While several new samples schemes were derived as a proof of concept of the provided
framework, no algorithm with properties being significantly different to complex Langevin dynamics
has been found yet. A respective search is subject of future work.

The appeal of such a Markov chain Monte Carlo framework for complex action problems emerges
from the following benefits: The explicit construction of transition probabilities might be the key for
a potential solution to the problem of wrong convergence. In contrast to complex Langevin dynamics,
this allows the implementation of sampling processes with finite step sizes in the configuration space.
Thus, the process does no longer rely on the drift term and the respective classical flow field. Instead,
it is driven directly by the action of the considered model. This might resolve problems of possible
runaway trajectories within the sampling process and supports a faster and a full exploration of the
configuration space combined with a lower autocorrelation time. Lastly, we want to point out that
there is the possibility for improving the theoretical framework. A respective deeper understanding
of the framework can lead to less restrictive constraints simplifying the search for novel Markov
chain Monte Carlo sampling algorithms for complex action problems.

Chapter 9 follows a different approach for dealing with a wrong convergence of complex Langevin
dynamics. The machine learning-driven ansatz explores in a self-supervised learning framework the
space of actions by a mutual application of complex Langevin dynamics and reweighting in the
complex plane. In a step-by-step manner, it aims to find an auxiliary action for which complex
Langevin dynamics samples the correct expectation values and where reweighting to the desired
action is feasible. The self-consistent sampling algorithm makes use of the step-wise reweighting
criterion for correctness. The novel criterion provides an easy-to-compute measure for verifying
whether complex Langevin dynamics samples from the physically correct distribution. Utilizing the
criterion in a machine learning framework is not restricted to the presented one. We expect that
there are versatile applications of the presented set-up, also with respect to other algorithms tackling
the sign problem, as Lefschetz thimbles, for example.

157

In the third main building block of the thesis, consisting of Chapter 10 and Chapter 11, we approach
the sign problem from a different perspective relying on an analysis of the physics and the properties
of the given model itself by machine learning tools. Extracting information about hidden structures
and correlations in large data sets supports the discovery of new observables and of yet unnoticed
perspectives on the data itself. Besides the gained insights into the considered physical system,
respective findings can be used in a second step for developing and improving simulation algorithms
allowing an exploration of hitherto unsolved problems in quantum chromo-dynamics and beyond.
In future work, we aim to investigate the proposed approaches by interpretable and explainable
machine learning methods in more depth, cf. Chapter 11.

The presented approach for learning lower-dimensional representations in Chapter 10 reveals many
possible applications in different areas, going beyond the proposed embedding of graph-structured
data and lattice configurations. This concerns in particular the generic idea of a mutual training of two
opponents in a zero-sum game based on the same loss term. The resulting implicit maximization of
the respective loss term is expected to have versatile applicability in semi-supervised and unsupervised
training frameworks.

We continued in Chapter 12 with a further application of deep learning. We proposed a solution to
the ill-conditioned problem of spectral reconstruction by means of a supervised training framework.
The observed large variations in the severity of the inverse problems leave room for more sophisticated
Bayesian frameworks such as invertible neural networks [215] and Gaussian processes, as proposed
recently in Ref. [346], and for potential improvements by loss functions optimized for the specific
problem at hand [344, 345].

All in all, this thesis covers several topics and approaches related to the simulation and interpretation
of physical systems that constitute a fertile ground for future developments in various areas of
research. This includes the theoretical and numerical evaluation of enhanced and more-energy efficient
sampling algorithms on neuromorphic computing devices as well as promising developments centered
around an exploration of the QCD phase diagram and further problems ranging from spectral
reconstruction to the embedding of graph-structured data. The omnipresence of deep learning and
machine learning algorithms throughout this work reinforces the still growing importance of these
tools in today’s research. Furthermore, the potential of interdisciplinary research to deliver significant
contributions in various domains is underpinned by parallels and similarities found despite the high
diversity of problems studied in this thesis.

APPENDIX A

Langevin dynamics and discrete systems

This appendix is based on Ref. [1].

A.1 Transition probability of the Langevin equation

In the following, we derive transition probabilities of the discrete Langevin equation. These are used
in Sec. 2.2.2 for an interpretation of the dynamics as a standard Monte Carlo algorithm. Starting
from the discrete Langevin equation

φ′ = φ− ε δS
δφx

+
√
εη , (A.1)

with: φ := φ(τ) and φ′ := φ(τ + ε), it is straightforward to compute the transition probabilities of
an infinitesimal change,

W (φ→ φ′) =
1√
2ε
ϕ

(
φ′ − φ√

2ε
+

√
ε

2

δS

δφ

)
. (A.2)

By inserting the standard normal distribution ϕ(x) = 1√
2π

exp
[
−x2

2

]
and by computing the square

in the exponent, one obtains

W (φ→ φ′) =
1√
4πε

exp

[
−1

2

(
φ′ − φ√

2ε
+

√
ε

2

δS

δφ

)2
]

= ϕ

(
φ′ − φ√

2ε

)
exp

[
−φ
′ − φ
2

δS

δφ
+O(ε)

]
. (A.3)

With the identifications δφ ' φ′ − φ and δS ' S(φ′)− S(φ), this can be further simplified to

W (φ→ φ′) =
1√
2ε
ϕ

(
φ′ − φ√

2ε

)
exp

[
−S(φ′)− S(φ)

2
+O(ε)

]
. (A.4)

Apparently, the transition probability satisfies the detailed-balance equation (2.15) since the first
factor is symmetric to an exchange of φ′ and φ,

W (φ→ φ′)
W (φ′ → φ)

= exp
[
−(S(φ′)− S(φ))

]
. (A.5)

159

160 Langevin dynamics and discrete systems

A.2 Relations between the cumulative normal distribution and the
exponential function

A relation between the exponential function of the transition probability and the cumulative normal
distribution is needed in order to define an update formalism in terms of a Heaviside function and a
Gaussian noise term. It is needed to be able to accept or reject a proposal state, see Sec. 3.1. Such a
relation exists and is given by

lim
ε→0

nε,0(x) = lim
ε→0

Φ
(
− 1√

ε
+
√
ε xλε

)

Φ(− 1√
ε
)

= exp(x) +O(εx2) , (A.6)

with a scaling factor

λε =

√
εϕ
(
− 1√

ε

)

Φ
(
− 1√

ε

) , (A.7)

and where Φ(·) denotes the cumulative Gaussian distribution

Φ(x) =

∫ x

−∞
dt

1√
2π

exp

[
− t

2

2

]
. (A.8)

The relation can be extended to the m-th derivative of the cumulative distribution with m > 0,
according to

lim
ε→0

nε,m(x) = lim
ε→0

∂m

∂tmΦ
(
− 1√

ε
+
√
εt
) ∣∣∣∣

t=x/σm,ε
∂m

∂tmΦ(− 1√
ε

+
√
εt)
∣∣
t=0

= exp(x) +O(εx2) , (A.9)

where the scaling factor σm,ε is defined as

σm,ε = −
√
εHem

(
− 1√

ε

)

Hem−1

(
− 1√

ε

) , (A.10)

and where Hem(x) denote the m-th probabilists’ Hermite polynomials. Fig. A.1 illustrates the
dependence of the two relations (A.6) and (A.9) on the parameter ε and on x.

For m = 1, the scaling factor σm,ε evaluates to one and the relation (A.9) simplifies to

lim
ε→0

nε,1(x) = lim
ε→0

ϕ
(
− 1√

ε
+
√
εx
)

ϕ
(
− 1√

ε

) = exp(x) +O(εx2) , (A.11)

which can also be derived by a similar computation as in App. A.1.

In the following, we provide a detailed derivation of the relations (A.6) and (A.9). For reasons of
readability,

√
ε is abbreviated by ε and the shorthand notation ∂n

∂xn = ∂n is used in the following.

Relations between the cumulative normal distribution and the exponential function 161

−2 −1 0 1 2
x

10−2

10−1

100

n
ε
,m

(x
)

(a)

exp(x)

m = 0, ε = 0.3

m = 0, ε = 1.0

m = 1, ε = 0.3

m = 1, ε = 1.0

0.1 0.2 0.5 1.0 2.0
x

10−3

10−1

101

|n
ε
,m

(x
)
−

ex
p
(x
)|

∼ x
2

∼ x
2

(b)

m = 0, ε = 0.7

m = 1, ε = 0.7

0.02 0.1 1.0 10.0 200.0
ε

10−2

10−1

100

|n
ε
,m

(x
)
−

ex
p
(x
)|

∼ ε

(c)

m = 0, x = 0.8

m = 1, x = 0.8

Figure A.1: Illustrations regarding the limit lim
ε→0

nε,m(x) of relations (A.6) and (A.9) for m = 0 and m =

1: (a) Comparison to the exponential function. (b) Dependency on x for a fixed ε = 0.7.
(c) Dependency on ε for a fixed value of x = 0.8. (a)-(c): The vertical lines in (b) and (c) indicate
the respective fixed value of ε and x. In general, the limit of the cumulative Gaussian distribution
(m = 0) has a lower deviation for equal values of ε then the limit of the Gaussian distribution
(m = 1) for ε→ 0.

We start with a Taylor series around x = 0 of the m-th derivative of the cumulative Gaussian
contribution,

∂mΦ

(
−1

ε
+ εx

)
=
∞∑

n=0

1

n!
∂n+mΦ

(
−1

ε
+ εx

) ∣∣∣∣
x=0

xn . (A.12)

The following important identity between the cumulative Gaussian distribution Φ(x) and the
probabilists’ Hermite polynomials Hen(x) is useful for an evaluation of the Taylor expansion:

∂n+mΦ

(
−1

ε
+ εx

)
= (−ε)n+m−1Hen+m−1

(
−1

ε
+ εx

)
∂Φ

(
−1

ε
+ εx

)
, (A.13)

for n > 0. Since this relation holds only for n > 0, the cases for m = 0 and m > 0 have to be treated
separately, leading eventually to the relations (A.6) and (A.9).

Evaluation for m = 0

By inserting relation (A.13) into the Taylor expansion (A.12) and setting m = 0, one yields

Φ

(
−1

ε
+ εx

)

= Φ

(
−1

ε

)
+
∞∑

n=1

1

n!
(−ε)n−1Hen−1

(
−1

ε
+ εx

) ∣∣∣∣
x=0

∂Φ

(
−1

ε
+ εx

) ∣∣∣∣
x=0

xn

= Φ

(
−1

ε

)
+
∞∑

n=1

1

n!
(−1)n−1εnHen−1

(
−1

ε

)
ϕ

(
−1

ε

)
xn . (A.14)

A comparison with the Taylor expansion of exp(x) = 1 + x+O(x2) shows that the first two terms in
the above expression can be fixed by a division of the entire equation by Φ

(
−1
ε

)
and an additional

rescaling of x by

λ(ε) =
εϕ
(
−1
ε

)

Φ
(
−1
ε

) . (A.15)

162 Langevin dynamics and discrete systems

This gives
Φ
(
−1
ε + ε x

λ(ε)

)

Φ
(
−1
ε

) = 1 + x+
∞∑

n=2

1

n!

(−1)n−1εn−1Hen−1

(
−1
ε

)

λ(ε)n−1
xn . (A.16)

It remains to be shown that the fractional factor converges to 1 for ε→ 0 and for arbitrary values
of n. This is done in two steps. First, we argue that lim

ε→0
λ(ε) = 1 +O(ε2) and, second, a limit is

derived for the fractional factor.

The limit of lim
ε→0

λ(ε) can be derived by showing the identity lim
ε→0

Φ
(

1
ε

)
= lim

ε→0
ϕ
(

1
ε

)
. By the

substitution u := 1
x and a subsequent partial integration, one finds that a second order term in

x = 1
u vanishes and arrives directly at the identity, which entails that

lim
ε→0

λ(ε) = 1 +O(ε2) . (A.17)

Since the highest order term of the n-th probabilists’ Hermite polynomial equals xn, it can be
directly concluded that

lim
ε→0

εnHen
(
−1

ε

)
= (−1)n +O(εn) . (A.18)

Using the Taylor expansion

1

(1 + x)n−1 = 1− (n− 1)x+O(x2) , (A.19)

and inserting the two limits (A.17) and (A.18), one arrives at the following limit for the fractional
factor:

lim
ε→0

(−1)n−1εn−1Hen−1

(
−1
ε

)

λ(ε)n−1
= 1 +O(ε2) . (A.20)

The final limit between the cumulative normal distribution and the exponential function can be
stated with the corresponding order of accuracy,

nε2,0(x) =
Φ
(
−1
ε + ε x

λ(ε)

)

Φ
(
−1
ε

) = exp(x) +O(ε2x2) . (A.21)

The relation can also be proven by applying L’Hôpital’s rule to relation (A.11) as shown in [347].

Evaluation for m > 0

Proceeding similarly as for the case of m = 0, the Taylor expansion can be written as

∂mΦ

(
−1

ε
+ εx

)

= ∂mΦ

(
−1

ε
+ εx

) ∣∣∣∣
x=0

+

∞∑

n=1

1

n!
(−1)n+m−1εn+mHen+m−1

(
−1

ε

)
ϕ

(
−1

ε

)
xn . (A.22)

Statistical properties of the sign-dependent Ornstein-Uhlenbeck process 163

Fixing the first two order terms of the exponential function leads to

∂mΦ
(
−1
ε + εx

) ∣∣
x=x/σm(ε)

∂mΦ
(
−1
ε + εx

) ∣∣
x=0

= 1 + x+

∞∑

n=2

1

n!

(−1)n+m−1εn+mHen+m−1

(
−1
ε

)
ϕ
(
−1
ε

)

(−1)m−1εmHem−1

(
−1
ε

)
ϕ
(
−1
ε

)
σm(ε)n

xn

= 1 + x+
∞∑

n=2

1

n!

(−1)nεnHen+m−1

(
−1
ε

)

Hem−1

(
−1
ε

)
σm(ε)n

xn , (A.23)

where we have evaluated the expression ∂mΦ
(
−1
ε + εx

) ∣∣∣∣
x=0

on the right-hand side and where the

scaling factor σm(ε) is given by

σm(ε) = − εHem
(
−1
ε

)

Hem−1

(
−1
ε

) . (A.24)

Again, the asymptotic behavior of the fractional factor has to be computed for ε → 0. From the
highest order term of the probabilists’ Hermite polynomial, it can be deduced that

lim
ε→0

εnHen+m−1

(
−1
ε

)

Hem−1

(
−1
ε

) = (−1)n +O(εn) . (A.25)

For n = 1, this corresponds to (−1) times the scaling factor σ(ε), therefore,

lim
ε→0

σ(ε) = 1 +O(εn) . (A.26)

It can be derived with the same arguments as for the case of m = 0, that the fractional factor
converges to 1 and that the limit with its order of accuracy is given by

nε2,m =
∂mΦ

(
−1
ε + εx

) ∣∣
x=x/σm(ε)

∂mΦ
(
−1
ε + εx

) ∣∣
x=0

= exp(x) +O(ε2x2) . (A.27)

A.3 Statistical properties of the sign-dependent
Ornstein-Uhlenbeck process

The transition probability of the sign-dependent Ornstein-Uhlenbeck process, defined in Eq. (4.22)
in Chapter 4, can be derived in the same manner as for Langevin dynamics in App. A.1. We start
by considering the process with discrete time steps,

u′i = ui + ε

sign(ui)√

ε
+

√
ε

2

∑

synj

Wijzj + bi

− ui

+
√

2εη̃ , (A.28)

with θ = 1 and σ =
√

2. The t-dependency is hidden for simplicity by introducing ui := ui,eff(t) and
u′i := ui,eff(t+ ε) as well as zj := zj(t). We define the term in the squared brackets as

∂K(ui)

∂ui
:=

sign(ui)√
ε

+

√
ε

2

∑

synj

Wijzj + bi

− ui . (A.29)

164 Langevin dynamics and discrete systems

This definition allows a one-to-one comparison between the discrete update equation (A.28) and the
discretized Langevine equation (A.1). The transition probability for the sign-dependent Ornstein-
Uhlenbeck process can be expressed based on this comparison by

W (ui → u′i) =
1√
2ε
ϕ

(
u′i − ui√

2ε

)
exp

[
K(u′i)−K(ui)

2
+O(ε)

]
, (A.30)

with

K(ui) =
|ui|√
ε

+

√
ε

2

∑

synj

Wijzj + bi

ui −

u2
i

2
. (A.31)

The equilibrium distribution can be inferred from the detailed-balance equation and is given by

Peq(ui,eff) ∝ exp [K(ui)] . (A.32)

The distribution facilitates a derivation of the probability distributions of POU2(zi = 1) and
POU2(zi = −1), where we use that zi = Θ [ui,eff]. One obtains for the distributions

POU2(zi = 1) =

∫ ∞

0
Peq(ui,eff)dui,eff ∝ exp

[
(εmi − 2)2

8ε

]
Φ

[
1√
ε
−
√
ε

2
mi

]
(A.33)

and

POU2(zi = −1) =

∫ 0

−∞
Peq(ui,eff)dui,eff ∝ exp

[
(εmi + 2)2

8ε

]
Φ

[
1√
ε

+

√
ε

2
mi

]
, (A.34)

where we defined the total input of a neuron i as

mi := −
∑

synj

Wijzj − bi . (A.35)

Since we consider only two states for zi, POU2(zi = 1) can be normalized based on the two previous
definitions, leading to

POU2(zi = 1) =
1

1 + exp [αε(mi)×mi]
. (A.36)

The correction factor α(mi) is given by

α(mi) := 1 +
1

mi
log

Φ
(

1√
ε

+
√
ε

2 mi

)

Φ
(

1√
ε
−
√
ε

2 mi

)

 . (A.37)

It converges in the limit of ε→ 0 to one,

lim
ε→0

αε(mi) = 1 . (A.38)

Derivation of the dynamics of the Langevin machine 165

A.4 Derivation of the dynamics of the Langevin machine

We show that the Langevin equation for discrete systems (3.1), defined in Sec. 3.1, can be rewritten
for the simulation of a Boltzmann machine, resulting in the simplified update rule (4.19), introduced
in Chapter 4.

We start by considering the energy of the Boltzmann machine

E(~z) = −
∑

i<j

Wijzizj −
∑

i

bizi , (A.39)

with a total input mi := −∑jWijzj − bi for a neuron i. The possible resulting energy differences
for a change of the state of the neuron are given by

∆E(z′i = 1, zi = 0) = mi ,

∆E(z′i = 0, zi = 1) = −mi . (A.40)

The proposed state for a two-state system always corresponds to the other state. This results in the
following two update rules for a transition from zi = 0→ 1 and zi = 1→ 0:

z′i = Θ

[
−1− ε

2λε
mi +

√
εη̃i

T

]
, for zi = 0→ 1 ,

z′i = Θ

[
1− ε

2λε
mi +

√
εη̃i

T

]
, for zi = 1→ 0 . (A.41)

Taking the current state into account, the relations can be merged into a common update rule,

z′i = Θ

[
(2zi − 1)− ε

2λε
mi +

√
εη̃i

T

]
. (A.42)

After a division by
√
ε and a rearranging of the summands, one arrives at the following update rule

for the Langevin machine,

z′i = Θ

 2√

ε
zi +

∑

j

√
ε

2λε
Wijzj +

√
ε

2λε
bi −

1√
ε

+ η̃i
T

 . (A.43)

By the identifications

W ′ii =
2√
ε
, W ′ij =

√
ε

2λε
Wij , b′i =

(√
ε

2λε
bi −

1√
ε

)
, (A.44)

the update rule can be written as, cf. Eq. (4.19),

z′i = Θ

W ′iizi +

∑

j

W ′ijzj + b′i + η̃T

 . (A.45)

APPENDIX B

Detailed-balance equation in multiple variables for different algorithms

This appendix is based on Ref. [5].

B.1 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) algorithm assigns a momentum π to each state x of a
considered system with probability distribution ρ(x) ∝ exp(−S(x)) [293]. Therefore, it can be
considered as a Monte Carlo algorithm in auxiliary dimensions, see Sec. 7.2. The state x and the
momentum π can be identified with the variables v and w. This appendix briefly demonstrates how
the algorithm samples, in equilibrium, from the desired distribution ρ(x). A thorough introduction
to the HMC algorithm can be found, for example, in Refs. [348, 349].

A common implementation of the HMC algorithm consists of the following steps:

1. Sample a momentum π from a Gaussian distribution according to q(π) = ϕ(π), with

ϕ(x) =
1√
2π

exp

(
−x

2

2

)
. (B.1)

2. Perform an integration of Hamilton’s equations

dx
dt

=
∂H

∂π
,

dπ
dt

= −∂H
∂x

(B.2)

for a finite amount of time and negate the proposed momentum. We refer to the proposed
state and momentum as

x′ = RΦx(x, π) , π′ = RΦp(x, π) , (B.3)

where Φ represents the outcome of the integration and R negates the resulting proposed
momentum.

3. Accept or reject the proposed state with probability

min
[
1, exp

(
−(H(x′, π′)−H(x, π))

)]
. (B.4)

167

168 Detailed-balance equation in multiple variables for different algorithms

The Hamiltonian is defined by

H(x, π) = S(x) +
π2

2m
, (B.5)

where S(x) represents the action or energy function one wants to sample from.

The algorithm implements the transition probability:

W (x, π → x′, π′) ∝ ϕ(π) δ
(
x′ −RΦx(x, π)

)
δ
(
π′ −RΦπ(x, π)

)

× min
[
1, exp

(
−(H(x′, π′)−H(x, π))

)]
. (B.6)

The resulting equilibrium distribution in the higher-dimensional state space is given by

p(x, π) ∝ exp (−H(x, π)) . (B.7)

The Metropolis accept/reject step takes into account numerical errors in the integration scheme for
x and π. Otherwise, the proposal state can be always accepted since it holds H(x′, π′) = H(x, π), as
a result of Hamilton’s equations.

The transition probability is designed to satisfy a detailed-balance equation in the higher-dimensional
state space, cf. Eq. (7.12) in Chapter 7:

p(x, π)W (x, π → x′, π′) = p(x′, π′)W (x′, π′ → x, π) . (B.8)

Detailed balance is ensured since the evolution of x and π is time-reversible and volume-preserving.

Due to the statistical independence of x and π, the target distribution ρ(x) can be obtained by a
marginalization of the joint distribution p(x, π):

ρ(x) =

∫
dπ p(x, π) . (B.9)

Hence, the sampled momenta π can be ignored in a numerical computation of observables O(x).

B.2 Restricted Boltzmann machine

Restricted Boltzmann machines (RBMs) are stochastic and generative neural networks [243, 294, 350]
typically used to parametrize probability distributions over a set of input samples. New samples can
be drawn in equilibrium by Gibbs sampling. In contrast to the Hamiltonian Monte Carlo algorithm,
a detailed-balance equation is only fulfilled in subsampling steps, but not for the entire update. The
detailed-balance equation (7.12) is not satisfied. Instead, the transition probabilities satisfy the more
general constraint (7.11) to sample correctly from the desired equilibrium distribution, as we will
show in the following. Before that, we provide a short reminder of the algorithm.

The restricted Boltzmann machine consists of visible and hidden neurons, denoted as v and w. They
form a visible and a hidden layer. Each neuron can be either active or inactive. This is implemented
by a binary state space, vi ∈ {0, 1} and wj ∈ {0, 1}.

Restricted Boltzmann machine 169

An energy function can be defined in dependence of a given configuration (v, w),

E(v, w) = −
∑

i

bivi −
∑

j

cjwj −
∑

i,j

Wijviwj . (B.10)

The neural network parameters are given by the set {~b,~c,W}. In contrast to the Boltzmann machine,
the weight matrix is restricted to connections between single neurons of the visible and of the hidden
layer. The resulting probability distributions for the RBM is defined as

p(v, w) =
1

Z
exp (−E(v, w)) , (B.11)

with Z being the partition sum,
Z =

∑

v,w

exp (−E(v, w)) . (B.12)

In general, one aims to learn a probability distribution that is defined over the visible neurons v. It
is given by the marginal distribution

ρ(v) =
1

Z

∑

w

exp (−E(v, w)) , (B.13)

where the sum runs over all possible configurations of w. The hidden neurons correspond to latent
variables that increase the expressibility of the represented distribution.

One possible approach to train the restricted Boltzmann machine is by contrastive divergence.
The network parameters are adapted by a step-wise training procedure to best approximate the
distribution of a training set over samples v. For more details, see Refs. [243, 266], for example.

The trained restricted Boltzmann machine can be used as a generative model to draw samples from
a parametrized distribution of the training set. This is realised by an update of the visible and
hidden neurons based on the conditional distributions

p(v′|w) =
exp (−E(v′, w))∑
v exp (−E(v, w))

(B.14)

and
p(w′|v) =

exp (−E(v, w′))∑
w exp (−E(v, w))

. (B.15)

The sums in the denominator run again over all possible configurations of v or w, respectively.

The transition probabilities define a Markov process for the restricted Boltzmann machine. With
the above definitions we are now able to analyse how the RBM samples in equilibrium from the
desired distribution p(v, w), namely, by satisfying the constraint (7.11)

p(v′, w′) !
=
∑

v,w

p(v, w)W (v, w → v′, w′) . (B.16)

The time-dependence has been dropped since we assume the distribution to be in equilibrium.

A full update step is implemented by a consecutive sampling from the conditional distributions in
Eqs. (B.14) and (B.15), resulting in the transition probability

W (v, w → v′, w′) = p(v′|w′) p(w′|v) . (B.17)

170 Detailed-balance equation in multiple variables for different algorithms

After inserting this into Eq. (B.16), one obtains for the right-hand side
∑

v,w

p(v, w) p(v′|w′) p(w′|v) =
∑

v,w

p(v, w′) p(v′|w′) p(w|v) , (B.18)

where we used in the second line that the transition probability p(w′|v) satisfies, for a fixed v, the
detailed-balance equation

p(w′|v) p(v, w) = p(w′, w, v) = p(w|v) p(v, w′) . (B.19)

We can now perform the sum over w and are left with

p(v′, w′) !
=
∑

v

p(v, w′) p(v′|w′) . (B.20)

After replacing w′ by w and factoring out the transition probability, it is easy to see that the
constraint matches with the transition probability of the visible variable in Eq. (B.14).

APPENDIX C

Complex Langevin-type sampling by compensation algorithms

This appendix is based on Ref. [5].

C.1 Complex Langevin dynamics

For completeness, the discretized update equations of complex Langevin dynamics, see Eq. (7.24) in
Chapter 7, are derived explicitly from the transition probabilities for complex actions, defined in
Sec. 8.2:

T (φ′x|φx, φy) ∝
1√
2ε
ϕ

(
φ′x − φx√

2ε

)
exp

(
−∆SRe(φ

′, φ)

2

)
, (C.1)

and
φ′y = φy − ε

∆SIm(φ′, φ)

φ′x − φx
. (C.2)

The action difference ∆S(φ′, φ) can be expanded around φx since the step sizes in the real direction
are constraint to be infinitesimally small:

∆S(φ′, φ) = S(φx + δφx + iφy)− S(φx + iφy)

' δφx
δS(φx + iφy)

δφx
= δφx

[
δS(φ)

δφ

∣∣∣∣
φx+iφy

]
, (C.3)

where

S(φx + iφy) = SRe(φx + iφy) + iSIm(φx + iφy)

≡ SRe + iSIm . (C.4)

The expansion simplifies the update rule (C.2) of the imaginary part φy, resulting in

φ′y = φy − ε
δSIm
δφx

, (C.5)

the discrete update dynamics of the imaginary field φy in complex Langevin dynamics.

171

172 Complex Langevin-type sampling by compensation algorithms

The transition probability (C.1) turns, with this expansion, into

T (φ′x|φx, φy) =
1√
2ε
ϕ

(
φ′x − φx√

2ε
+

√
ε

2

δSRe
δφx

)
. (C.6)

The absorption of the action term into the Gaussian distribution can be shown by expanding the
argument of the exponential function in Eq. (C.1) with a first order term in ε. The first Gaussian
distribution and the exponential term are contracted by completing the square in the exponent. The
computation is equivalent to the one in App. A.1.

An explicit update rule for φx can be derived by a transformation of the transition probability, by
demanding ∫ φ′x

−∞
dφ̃x T (φ̃x|φx, φy) !

=

∫ η

−∞
dη̃ ϕ(η̃) . (C.7)

Evaluating both integrals and solving for φ′x results in the discrete update rule:

φ′x = φx − ε
δSRe
δφx

+
√

2εη . (C.8)

By using the relations in Eq. (8.9) in Chaper 8, the derived update rules coincide with the ones of
complex Langevin dynamics, Eq. (7.24).

C.2 Second order complex Langevin

It is possible to formulate a discrete second order complex Langevin equation. The derivation follows
the same line of argumentation as in the previous section, and the name refers to the second order
terms in the expansion of the action difference for infinitesimally small step sizes. We keep this term
in the expansion in Eq. (C.3),

∆S(φ′, φ) = S(φx + δφx + iφy)− S(φx + iφy)

' δφx
δS(φx + iφy)

δφx
+
δφ2

x

2

δ2S(φx + iφy)

δφ2
x

. (C.9)

The second order expansion of the action difference in the imaginary part can be inserted into
Eq. (C.2), the update rule of the imaginary field φy. This results in

φ′y = φy − ε
δSIm
δφx

− ε

2

(
φ′x − φx

) δ2SIm
δφ2

x

, (C.10)

where we used φ′x − φx = δφx. The update rule again compensates the imaginary contributions in
the transition probability.

An update rule for the real part of the field can be derived in the same manner as for the Langevin
equation. We complete the exponent of the product of the first Gaussian distribution and of the
exponential function in Eq. (C.1) by

ε

2

[
δSRe
δφx

+
φ′x − φx

2

δ2SRe
δφ2

x

]
. (C.11)

Complex hat function algorithm 173

The argument of the Gaussian distribution in the transition probability (C.6) now reads

φ′x − φx√
2ε

+

√
ε

2

[
δSRe
δφx

+
φ′x − φx

2

δ2SRe
δφ2

x

]
=
φ′x − φx√

2ε

[
1 +

ε

2

δ2SRe
δφ2

x

]
+

√
ε

2

δSRe
δφx

. (C.12)

Because of the additional second order term, the normalization factor of the transition probability
needs to be adjusted by the factor

1 +
ε

2

δ2SRe
δφ2

x

. (C.13)

An explicit update rule can be derived again by performing a transformation of the probability
density, cf. Eq. (C.7) for more details. We finally arrive at

φ′x = φx −
(
ε
δSRe
δφx

+
√

2εη

)/(
1 +

ε

2

δ2SRe
δφ2

x

)
. (C.14)

The update rule of the imaginary part now depends on the outcome of the real part. Accordingly,
one has to update at first φx and then φy.

C.3 Complex hat function algorithm

We derive a Langevin sampling by compensation algorithm for a different representation of the
delta-distribution, namely, the triangular hat function. We consider again a complex action S(φ),
as given, for example, in Eq. (2.1) for the polynomial model. The derivation is in line with the
systematic derivation in Sec. 8.2.

The hat function is given by

ηε(x) =
1

ε

1− x
ε for 0 ≤ x < ε ,

1 + x
ε for − ε < x < 0 ,

0 otherwise.
(C.15)

We rewrite this, for simplicity, as

ηε(x) =
1

ε

[
1− sx

ε

]
for − ε < x < ε , (C.16)

where s := sign (x). Similar to the Gaussian distribution, the hat function converges, in the limit of
ε→ 0, to the delta-distribution.

The corresponding transition probability is

W (φ→ φ′) =
1

N

[
1− sφ

′ − φ
ε

]
× exp

(
−∆S

2

)
, (C.17)

with N being a normalization factor.

With the same substitution as for complex Langevin dynamics,

φ→ φx + iφy , (C.18)

we identify the imaginary part φy as hidden dimension.

174 Complex Langevin-type sampling by compensation algorithms

After replacing φ by (C.18) in the transition probability (C.17), we identify

qs =
1

ε

[
1− signφ′x−φx

φ′x − φx
ε

]
,

q̄s =
i

ε

[
signφ′x−φx

φ′y − φy
ε

]
, (C.19)

which are summed according to Eq. (8.19) and continue by decomposing the acceptance probability,

A(φ′, φ) ∝ exp

(
−∆SRe(φ

′, φ)

2

)
×
[
cos

(
−∆SIm(φ′, φ)

2

)
+ i sin

(
−∆SIm(φ′, φ)

2

)]

= exp

(
−∆SRe(φ

′, φ)

2

)
×
[
As + Ās

]
, (C.20)

with the action given by S(φx, φy) = SRe(φx, φy) + iSRe(φx, φy). This allows distinguishing con-
tributions that have no impact on detailed balance and contributions that need to vanish. The
term As is symmetric with respect to an exchange of φ′x and φx whereas Ās is antisymmetric.
Expanding the product of the proposal distribution and the acceptance probability gives a proposal
distribution which is symmetric under an exchange of φ′x and φx, and which will drop out in the
detailed-balance equation. Based on this, the transition probability for the real field φx is defined up
to a normalisation factor as

T (φ′x|φx, φy) ∝ exp

(
−∆SRe(φ

′, φ)

2

)
×
[
qsAs + q̄sĀs

]
. (C.21)

The remaining terms must vanish,

h(φ′y|φ′x, φx, φy) = exp

(
−∆SRe(φ

′, φ)

2

)
×
[
qsĀs + q̄sAs

] !
= 0 , (C.22)

for the not yet assigned parameter φ′y. This defines the update rule for φy:

φ′y = φy +
[ε
s
−
(
φ′x − φx

)]
tan

(
−∆SIm(φ′, φ)

2

)
, (C.23)

and thus g(φ′y|φ′x, φx, φy). Because of the distinction of symmetric and antisymmetric parts, the
transition probability g posses Langevin symmetry

g(φ′y|φ′x, φx, φy) = g(φ′y|φx, φ′x, φy) . (C.24)

The update rule of the imaginary part can be used to further simplify the transition probability. We
can solve the update rule (C.23) for q̄s and insert the result into the transition probability to obtain

T (φ′x|φx, φy) ∝ exp

(
−∆SRe(φ

′, φ)

2

)
× qs

[
As −

Ā2
s

As

]
. (C.25)

The resulting transition probability T leads to the same violation of the adapted detailed-balance
equation (7.30) as for complex Langevin dynamics. The algorithm samples from the correct
distribution only for ε→ 0.

Uniform complex Langevin 175

C.4 Uniform complex Langevin

Utilizing the results of the previous appendix, we define a sampling algorithm that uses a centred
uniform distribution to propose states φ′x.

This leads to the following ansatz for the transition probability W (φ→ φ′):

W (φ→ φ′)
∫ l

−l

dr
2l
δ
(
φ′ − (φ+ r)

)
× exp

(
−∆S(φ′, φ)

2

)
, (C.26)

where, in practice, r is sampled from a uniform distribution in the interval [−l, l]. Replacing the
delta-distribution by the triangular hat function (C.15), gives

W (φ→ φ′) ∝
∫ l

−l

dr
2l

1

ε

[
1− s̃φ

′ − (φ+ r)

ε

]
× exp

(
−∆S(φ′, φ)

2

)
, (C.27)

with
s̃ = sign

(
φ′ − (φ+ r)

)
. (C.28)

Performing the same steps as for the complex hat function algorithm, this yields the update rule of
the imaginary part,

φ′y = φy +
[ε
s̃
−
(
φ′x − (φx + r)

)]
tan

(
−∆SIm(φ′, φ)

2

)
. (C.29)

To restore the original uniform distribution, we take the limit ε→ 0. The update rule simplifies to

φ′y = φy +
(
φ′x − (φx + r)

)
tan

(
−∆SIm(φ′, φ)

2

)
. (C.30)

Following the same approach for the transition probability T (φ′x|φx, φy), one arrives at

T (φ′x|φx, φy) ∝
∫ l

−l

dr
2l
δ
(
φ′x − (φx + r)

)

× exp

(
−∆SRe(φ

′, φ)

2

)
cos−1

(
−∆SIm(φ′, φ)

2

)
. (C.31)

According to the proposal distribution, the second term of the update rule (C.30) of the imaginary
part vanishes, resulting in φ′y = φy. To prevent this, we draw, in each update, two proposal states,
φ′x and φ̃′x, and adapt the update rule of the imaginary part:

φ′y = φy +
(
φ̃′x − (φx + r)

)
tan

(
−∆SIm(φ′, φ)

2

)
. (C.32)

Similar to the complex hat function algorithm, the derived algorithm satisfies the constraints of
the substitution algorithm only in the limit of infinitesimally small step sizes into the φ′x direction.
Based on the proposal distribution this can be implemented by considering the limit l→ 0.

176 Complex Langevin-type sampling by compensation algorithms

C.5 Absorbing the imaginary contribution

We start by considering

T (φx|φ′x, φy) exp
(
−i∆SIm(φ, φ′)

)

∝ ϕ
(
φx − φ′x√

2ε

)
exp

(
−∆SRe(φ, φ

′)
2

)
exp

(
−i∆SIm(φ, φ′)

)
, (C.33)

with the goal to express the transition probability in terms of a Gaussian distribution.

Expanding ∆SRe and ∆SIm around φ′x, one obtains

T (φx|φ′x, φy) exp
(
−i∆SIm(φ, φ′)

)

∝ exp

(
−1

2

(
φx − φ′x√

2ε

)2

− φx − φ′x
2

(
δSRe(φ

′
x + iφy)

∂φ′x
+ 2i

δSIm(φ′x + iφy)

∂φ′x

))
. (C.34)

Next, we complete the square in the exponent,

T (φx|φ′x, φy) exp
(
−i∆SIm(φ, φ′)

)

∝ ϕ
(
φx − φ′x√

2ε
+

√
ε

2

(
δSRe(φ

′
x + iφy)

∂φ′x
+ 2i

δSIm(φ′x + iφy)

∂φ′x

))
. (C.35)

We insert this expression into constraint (7.34) in Chapter 7. As a result, an integration over φx is
possible since the dependence on φx in the action was eliminated by the expansion around φ′x.

APPENDIX D

Entangled quantum states and learning on the spiking neuromorphic chip

This appendix is based on Ref. [4].

D.1 Representation of the Bell state

The Bell state, |Ψ+〉 = 1/
√

2 (|↑↑〉+ |↓↓〉), is described by the density matrix

ρB =
1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

in the standard basis. To encode this state in a spiking neural network, we map it to a POVM
probability distribution.

While several choices of POVM representations are possible, we here focus on the tetrahedral
representation, where each measurement projects a single qubit onto one corner of a tetrahedron
in the Bloch sphere [87]. The POVM elements Mai for each qubit i can hence be expressed
in the form Mai = (1 + ~saiσ) /4, with Pauli operators σ = (σx, σy, σz) and sai=0 = (0, 0, 1),
sai=1 = 1/3

(
2
√

2, 0,−1
)
, sai=2 = 1/3

(
−
√

2,
√

6,−1
)
, sai=3 = 1/3

(
−
√

2,−
√

6,−1
)
. The POVM

elements thus take the form

Mai=0 =
1

2

[
1 0
0 0

]
, Mai=1 =

1

6

[
1
√

2√
2 2

]
,

Mai=2 =
1

12

[
2 −

√
2− i
√

6

−
√

2 + i
√

6 4

]
,

Mai=3 =
1

12

[
2 −

√
2 + i
√

6

−
√

2− i
√

6 4

]
. (D.1)

177

178 Entangled quantum states and learning on the spiking neuromorphic chip

With this, the POVM probability distribution of the Bell state, PB (a1, a2) = Tr [ρBMa1 ⊗Ma2],
evaluates to

PB =
1

8

1 1/3 1/3 1/3
1/3 1 1/3 1/3
1/3 1/3 1/3 1
1/3 1/3 1 1/3

 , (D.2)

where columns correspond to the index a1 and rows to the index a2.

To reconstruct the density matrix from this probability distribution, the inverse of the full-system
overlap matrix T is needed, which can be constructed as the product of the single-qubit overlap
matrices, T = T1⊗T2. Each single-qubit overlap matrix consists of the elements Tai,a′i = Tr

[
MaiMa′i

]
.

For the tetrahedral POVM the inverse T−1
i of the single-qubit overlap matrix takes the form

T−1
i =

5 −1 −1 −1
−1 5 −1 −1
−1 −1 5 −1
−1 −1 −1 5

 . (D.3)

The density matrix can then be reconstructed linearly as ρ =
∑
{a1,a2} P (a1, a2)Qa1,a2 , with

operators Qa1,a2 =
∑
{a′1,a′2}(T

−1
a1,a′1

⊗ T−1
a2,a′2

)(Ma′1
⊗Ma′2

).

Furthermore, expectation values of general operators O can be rewritten in terms of the probability
distribution P (a1, a2),

〈O〉 = Tr [ρO]

=
∑

{a1,a2}
QOa1,a2P (a1, a2) , (D.4)

with QOa1,a2 =
∑
{a′1,a′2}Tr

[
OMa′1

⊗Ma′2

]
T−1
a1,a′1

⊗ T−1
a2,a′2

. This enables an efficient evaluation of
expectation values by sampling configurations from P (a1, a2) in the POVM representation, where
the density matrix does not need to be calculated explicitly. The POVM representations of important
classes of quantum states can be approximated well and in a scalable way by generative modelling
approaches [87]. The computational bottleneck of these methods is the generation of samples from
the model distribution, see App. D.3, and can potentially be alleviated using neuromorphic devices.

The Bell state is encoded in a sampling spiking network as follows. The visible neurons ~v are
identified with the qubits ~a in the POVM representation. The network parameters are trained
such that the distribution PB (a1, a2) is represented by the network. To achieve this, we need to
translate the variables a1, a2, which can take four possible values each, into binary neurons ~v, where
each neuron can take the values 0 or 1. The mapping to four binary visible neurons v1, . . . , v4 is
accomplished by defining

a1 = 2v1 + v2, a2 = 2v3 + v4. (D.5)

From this we can derive the distribution p∗B (~v) over the states of the visible neurons and have all
ingredients to encode the Bell state in our spiking network.

Training algorithm 179

Analogously, the probability distribution for the two-qubit Werner state with noise contribution r
can be derived from its density matrix [284, 351],

ρW =
1

4

1 + r 0 0 2r
0 1− r 0 0
0 0 1− r 0
2r 0 0 1 + r

 . (D.6)

The same is true for Greenberger-Horne-Zeilinger (GHZ) states of more than two qubits, described
by the density matrices [285],

ρGHZ =
1

2

1 0 . . . 0 1
0 0
... 0 ...
0 0
1 0 . . . 0 1

. (D.7)

We can then approximate the corresponding probability distributions by a spiking sampling network.

D.2 Training algorithm

Our goal is to approximate a target distribution p∗ (~v) by the model distribution p (~v;W) encoded
by the spiking neuromorphic hardware. The distance between the two distributions is quantified by
the Kullback-Leibler divergence,

DKL (p∗‖p) =
∑

{~v}
p∗ (~v) ln

[
p∗ (~v)

p (~v;W)

]

=
∑

{~v}
p∗ (~v)

(
ln [p∗ (~v)]− ln [p̃ (~v;W)] + ln [Z (W)]

)
.

Here we assumed that p (~v;W) is well described by the marginal of a Boltzmann distribution and in-
troduced the unnormalized probability distribution p̃ (~v;W) =

∑
{~h} exp

[
−E

(
~v,~h;W

)]
as the expo-

nential of the negative network energy, as well as the partition sum Z (W) =
∑
{~v,~h} exp

[
−E

(
~v,~h;W

)]
,

which allows us to replace p (~v;W) = p̃ (~v;W) /Z (W) in the second line of Eq. (D.8).

180 Entangled quantum states and learning on the spiking neuromorphic chip

The gradient of the Kullback-Leibler divergence with respect to a general connecting weight Wi,j is
given by

∂DKL

∂Wi,j
=
∑

{~v}
p∗ (~v)

[
− 1

p̃ (~v;W)

∂p̃ (~v;W)

∂Wi,j
+

1

Z (W)

∂Z (W)

∂Wi,j

]

=
∑

{~v}
p∗ (~v)

− 1

p̃ (~v;W)

∑

{~h}
vihje

−E(~v,~h;W)

 +

1

Z (W)

∑

{~v′,~h}
v′ihje

−E(~v′,~h;W)

= −
∑

{~v,~h}

p∗ (~v)

p (~v;W)
vihj

e−E(~v,~h;W)

Z (W)
+
∑

{~v′,~h}
v′ihj

e−E(~v′,~h;W)

Z (W)

=
∑

{~v,~h}

[
1− p∗ (~v)

p (~v;W)

]
vihj

exp
[
−E

(
~v,~h;W

)]

Z (W)

=

〈[
1− p∗ (~v)

p (~v;W)

]
vihj

〉

p(~v,~h;W)
. (D.8)

Thus, the weight updates are calculated by drawing a sample set of network states, evaluating the
probability p (~v;W) underlying the configurations in the set, and calculating the expectation value
of the product of the two connected neurons, weighted with 1− p∗ (~v) /p (~v;W). When using the
spiking network on the BrainScaleS-2 system, we draw these sample states by observing the network
at regular points in time spaced by 2 µs (for a refractory time of about 10 µs, see App. D.4).

The weight update in training epoch t then reads

W t
i,j = W t−1

i,j − η
〈[

1− p∗ (~v)

p (~v;W)

]
vihj

〉

p(~v,~h;W)
, (D.9)

with learning rate η. Analogously, updates for the biases can be derived,

btj = bt−1
j − η

〈[
1− p∗ (~v)

p (~v;W)

]
hj

〉

p(~v,~h;W)
,

dti = dt−1
i − η

〈[
1− p∗ (~v)

p (~v;W)

]
vi

〉

p(~v,~h;W)
. (D.10)

If connections between the visible neurons exist in the network structure, the updates for those
connecting weights are analogous to Eq. (D.9), where the weighted expectation value of the product
of the corresponding visible neurons is evaluated. This learning scheme is a modified version of
wake-sleep learning [235].

Since this training algorithm is based on a gradient-descent ansatz, we can apply further modifications
which lead to better convergence, such as a momentum approach to avoid getting stuck at a local
minimum. In our simulations, we apply the Adam optimizer scheme. This scheme combines a
momentum approach with an adaptive learning rate which is chosen for each network parameter

Potential applications in quantum many-body physics 181

individually. The update for a general network parameter Wk is given, in the Adam optimizer, by

mt
k = β1m

t−1
k + (1− β1)

∂DKL (p∗‖p)
∂Wk

,

vtk = β2v
t−1
k + (1− β2)

[
∂DKL (p∗‖p)

∂Wk

]2

,

m̂t
k =

mt
k

1− βt1
, v̂tk =

vtk
1− βt2

,

Wt
k =Wt−1

k − η m̂t
k√

v̂tk + ε
, (D.11)

where mk acts as a momentum and vk sets the adaptive learning rate. Here we follow the common
choice and set the hyper-parameters to β1 = 0.9, β2 = 0.999, and ε = 10−8, [352]. We additionally
multiply the adaptive learning rate with an exponentially decaying factor η (t) from an initial value
of ηinit = 1 to a minimum value of ηmin = 0.001,

η (t) = max (ηinitexp [−0.001t] , ηmin) , (D.12)

where t counts the training epochs. Note that this learning rate is a hyper-parameter that needs to
be chosen accordingly and requires a special form for the discrete-valued weights and biases on the
neuromorphic hardware. With the exponentially decaying factor we ensure that the learning rate is
large enough to cause changes in the weights at short time scales, but is small enough to enable
convergence at later times.

In general, Hebbian training algorithms are based on minimizing the correlation mismatch between
data and model distributions. The traditional way for estimating this mismatch is contrastive
divergence [34, 235], where the target and model distributions are approximated by a single layer-
wise network update (CD-1). This method can only be used to obtain an update of the network
parameters for layer-wise connected networks and essentially represents a performance optimization
with respect to sampling from the complete distributions. For physical neuromorphic systems, the
notion of a "single network update" becomes meaningless and the performance characteristics make
the actual sampling run cheaply as compared with the start-up cost. We take advantage of this
difference by using the full model distribution for calculating updates. We thus reconstruct the target
visible distribution from the model distribution by reweighting as described above. The advantage of
this strategy is that arbitrary network architectures including partially restricted and deep networks
can be used.

D.3 Potential applications in quantum many-body physics

Our suggested neuromorphic sampling scheme finds many possible applications in the field of
quantum many-body physics. This potential is connected to recent developements in the field of
neural network quantum states (NQS), which we briefly outline in the following. It has been shown
that important and physically relevant classes of quantum many-body states can be approximated
well using neural-network inspired variational wave functions [38, 87, 164, 242, 353, 354]. A large
variety of different network architectures, including networks with real and complex parameters, and
encoding pure and general mixed quantum states have been explored in this context.

182 Entangled quantum states and learning on the spiking neuromorphic chip

NQS have been shown to approximate important classes of quantum states faithfully using a
number of variational parameters that scales polynomially in the system size [38, 242, 353, 354].
For training and evaluation of observables, Monte-Carlo sampling techniques are used [38, 87].
Applications include the determination of ground and excited states of many-body problems (relevant
to condensed matter physics and quantum chemistry [164, 242, 353, 354]) and simulation of quantum
dynamics [353], as well as efficient methods for quantum state tomography [87, 242, 354].

In Chapter 6 we apply similar variational wave functions and replace the creation of Monte Carlo
samples in software by a fast and energy efficient sampling procedure on the neuromorphic devices.
By demonstrating the learnability of paradigmatic entangled quantum states on the spiking hardware
we provide an important first step towards employing these devices for applications in quantum
many-body problems. Using the neuromorphic device we expect a similar behavior to software NQS
concerning the scalability to large system sizes while gaining a speed-up in the creation of Monte
Carlo samples during training and evaluation of observables.

D.4 Implementation details of BrainScaleS-2

A network of leaky integrate-and-fire (LIF) neurons can implement a sampling spiking network (SSN)
if the neurons are under stochastic noise influence, their membrane time constant is sufficiently small
and the synaptic and refractory time constants roughly match [77], see also Sec. 2.3. A system-specific
calibration is required to configure the analog core of BrainScaleS-2, shown in Fig. D.1a according
to these requirements. For ease of implementation we use a simple routing scheme in which the
on-chip network looks like 128 unique sources which can be arbitrarily connected. This allows the
association of each of the 128 synapse drivers with one spike source while using the double line to
implement signed synapses (cf. Fig. D.1b).

The stochastic input spikes are generated via two of the eight on-chip linear shift registers (LSFRs).
We assign the spike source IDs 0-63 to the network neurons and split the spike trains from the
LSFRs among the IDs 64-127. For networks smaller than 64 neurons, the upper part of (0-63)
remains unused. Again simplifying the implementation we use the first half of the noise IDs (64-95)
as excitatory and the second half (96-127) as inhibitory sources (cf. Fig. D.1c lower part). This
scheme allows in principle all-to-all connectivity within the network. Choosing to use a layered
network structure results in a block structure of the upper part of the synapse array (cf. Fig. D.1c).

Each sampling neuron is connected to 5 randomly chosen excitatory and 5 randomly chosen inhibitory
noise sources. This introduces correlations between neurons even without synaptic connections, but
in general does not hinder training [75, 265]. Synaptic connections on BrainScaleS-2 are 6-bit-valued
circuits. The dynamical impact of a single network spike (used to mediate the stochastic response
of the receiving sampling unit) onto another neuron is given by its own strength relative to the
total strength of the input provided by the background sources. The latter defines the transfer
function and thereby the excitability of the neurons (cf. Fig. D.1g). Choosing the noise parameters
(weight and number of sources) is done such as to attain the competing goals of allowing the network
neurons to drive each other significantly while allowing for small weight changes within the 6-bit
resolution limit. The particular choice is, in general, problem dependent.

Having chosen the noise parameters, the sampling interface of BrainScaleS-2 becomes a black box
that requires a weight (6-bit) matrix and a (10-bit) bias vector and returns a set of spike trains.
Neurons are assigned a state of z = 1 at time t if they emitted a spike within their effective refractory
period τ eff

ref prior to t (cf. Fig. 6.1c in Sec. 6.1). We determine τ eff
ref by setting the leak potential of the

Computation time benchmark for sampling from neural networks 183

neurons to its maximum value and measuring the resulting inter-spike intervals (cf. Fig. D.1e). The
effective refractory time consists of the clamped part which is digitally driven and therefore does not
vary between different neurons and the drift part back to the spiking threshold in the end. Due to
the circuit variability (e.g. different membrane time constants) of the analog circuits we see some
modest variation in τ eff

ref (cf. Fig. D.1f). Using the measured τ eff
ref we assign a state every 2 µs and use

the set of these states for the evaluation and the update calculation (cf. App. D.2).

Fig. D.1h demonstrates the correctness of an approximated distribution for a simulated sampling
spiking network (using [355]) as a function of the number of samples for different state assign times dt
(cf. Fig. 6.1 in Sec. 6.1). For more than two samples per refractory period τref the number of samples
required to achieve a given performance level increases due to the correlated states as expected
from the Nyquist-Shannon theorem. Both the noise parameters and the sample frequency were
chosen such that they enable sufficiently accurate sampling, but without performing an exhaustive
optimization.

As discussed above, a chip-specific calibration is required but can be reused for each training. For
each experiment the chip needs to be initialized (blue period in Fig. D.1d) once. This ensures that
the correct calibration is loaded and the routing is configured correctly before the training iterations
(orange period in Fig. D.1d) can start. After the initialization only the synapse array (weights)
and the leak potentials of the neurons (biases) are reconfigured once per epoch (green period in
Fig. D.1d). Each training epoch consists of 26 sampling runs (red section in Fig. D.1d) and a single
calculation of the parameter update (purple in Fig. D.1d). In each hardware run we build a program
for the FPGA to execute (dark red in Fig. D.1d), transfer it to the FPGA with some initial buffering
(yellow in Fig. D.1d) in order to compensate for network latencies, perform the actual execution on
chip (light blue in Fig. D.1d) and transfer the spikes back to the host computer (grey in Fig. D.1d).

In total, an epoch takes about 1.9 s of which roughly half is spent in the sampling and the other half
is used to calculate the parameter updates. While some time was spent to improve performance,
both parts can still be optimized. For example the gradient calculation is implemented in Python
and most of the sampling time is spent buffering and reading back the results. The actual hardware
runtime is only 30 % of the time marked as HW-run in Fig. D.1d. Using a more complex routing
setup an increase to at least 256-spike sources is possible and since BrainScaleS-2 is a physical system
the runtime of the hardware part is not affected by the network size.

D.5 Computation time benchmark for sampling from neural
networks

In this appendix, we provide a speed comparison between the BrainScaleS-2 neuromorphic chip
and a C++-implemented software solution to the sampling from binary Boltzmann machines. The
software implements standard Gibbs sampling, i.e. it sequentially calculates the “membrane potential"
ui = bi +

∑
iWkizi for each neuron and assigns a new state zi = 1 with probability σ(ui) = 1

1+exp−ui
and zi = 0 otherwise. This implementation, while fairly optimized in single-thread performance,
does not take into account the potential parallelism of a layered structure. Since the simulator is
optimized for large-scale systems it drops all terms with Wki = 0, at the price of an additional
indirection. The sum now runs over a list of indices which is harder to optimize than a simple
sequential iteration. We executed this on the bwForCluster NEMO cluster [356] which uses Intel
Xeon E5-2630v4 (Broadwell) CPUs.

184 Entangled quantum states and learning on the spiking neuromorphic chip

SynapsesSynapse drivers

Neurons

0 1 2 3

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Spike source
(LSFR)

Signed synapse

0 1 2 3

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Spike source
(LSFR)

Signed synapse

0 50

Target ID

0

20

40

60

80

100

120

S
o

u
rc

e
ID

Network

Exc. Noise

Inh. Noise

−
6
0

0
6
0

H
W

w
ei

g
h

t
[l

sb
]

Ti
m

e
[s]

0

5

10

Ch
ip

in
it.

Ep
oc

h
1

Ep
oc

h
2

0

1

2

3

4

Ca
lcu

la
te

∆
W

26
×

H
W

-ru
n

0.00

0.01

0.02

0.03

In
Ch

ip
O

ut

220 230 240 250 260 270 280

Time [µs]

200

400

M
em

.
vo

lt
.

[l
sb

]

τ eff
ref

10.4 10.6 10.8

τeff
ref [µs]

F
re

q
u

en
cy

[a
u

]

200 400 600 800 1000

HW bias [lsb]

0

500

1000

O
u

tp
u

t
ra

te
[k

H
z]

102 103 104 105 106

Number of samples

10−1

100
D

K
L

1.0τref

0.7τref

0.5τref

0.3τref

0.1τref

a b

c d

e

f

g

h

Figure D.1: Details of the BrainScaleS-2 neuromorphic chip. a, Photograph of the BrainScaleS-2
chip with circuits of 4×128 AdEx-LIF neurons (green), 2×2×128 synapse drivers (white) and 4
synapse arrays with 256×128 synapses (yellow). b, Routing schematic used to implement the
sampling spiking network. Each synapse driver projects to two synapse rows in order to allow
signed synapses. c, Utilized logical connectivity matrix projecting onto the 64 neurons used.
Network (neuron-to-neuron) connections are truncated at index 24 (4 visible and 20 hidden)
and intra-layer connections are not used. Each neuron receives noise input from 5 excitatory
(64-95) and 5 inhibitory (96-127) sources, generated by one on-chip LSFR each. Each connection
selects the appropriate synapse row depending on its sign (cf. b) d, Time usage across a training
experiment. The initial configuration (blue) of the chip is comparable to a single epoch (orange).
Each epoch consists of a parameter update (green), 26 sampling runs (red) and the update
calculation (purple). Each hardware run consist of the construction of the playback program
(ruby), the initial buffering on the FPGA (brown), the actual chip runtime (turquoise) and the
readout to the host (grey). e, Membrane trace of an exemplary neuron at the high-bias end. τ eff

ref

is the inter spike interval. f, Histogram of measured τ eff
ref . Variations are due to the analog nature

of the system. g, Activation functions as a function of the leak potential under noise input of the
64 neurons used. τ eff

ref is estimated by the output frequency at the high-bias end. h, Sampling
performance as a number of samples, rather than execution time for different sampling time
deltas dt. More than two samples per refractory time τ eff

ref ≈ 10 µs increase the Kullback-Leibler
divergence as the samples are not independent.

Computation time benchmark for sampling from neural networks 185

0 1000 2000 3000 4000

number of synapses

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ti
m

e
[s

]

n=2

n=4

n=6

n=8 n=10

Time for generating 106 samples

HX

size limit for 6 qbits

size limit for 10 qbits

CPU measured @1.2GHz

CPU limit @1.2GHz

Figure D.2: Measured (dots) and estimated (crosses) sampling times for the generation of a million samples,
for different quantum system size (N = 2, 4, 6, 8, 10 spins, colours) and hidden layer sizes
(M = 20, 40, 60, 80, 100, 120, 140, 160, 180, 200) on a Intel Xeon E5-2630v4 compared to the
constant runtime of the BrainScaleS-2 system (horizontal line). The software time estimation
assumes one FLOP per clock cycle and one FLOP required per synaptic interaction, bias and state
assignment (see text). The number of neurons on BrainScaleS-2 is limited to (2N) +M < 256
which limits the implementable system size (vertical lines, for 6 spins and 244 hidden neurons
and 10 spins and 236 hidden neurons).

Generating a new state requires the update of all neurons, and each update of a single neuron
requires the calculation of ui plus a comparison with a random number for the probabilistic update.
For the architecture used in Chapter 6, i.e. layered networks with 2N visible and M hidden neurons
and assuming a perfect implementation without additional cost for memory accesses, generating a
new update takes 2(2N)M evaluations and additions of the term Wkizi, besides (2N) +M additions
of bi, and (2N) +M comparisons to a random number. Assuming further that each of these steps
takes one clock cycle, we can estimate the expected time required.

In order to reduce the impact of the initialization of the software sampler (loading of the network
configuration and initialization) we measure the time to generate 106 samples. We note that the
number of operations per update is dominated by the number of connections (synapses) 2(2N)M .
As such, the time required scales linearly in the number of hidden units only for a fixed number of
visible units, which is given by the size of the physical system (cf. Fig. D.2).

On the other hand, the BrainScaleS-2 implementation, due to its inherently parallel architecture,
requires a sample generation time that is independent of the size of the sampled network. With
τref/2 = 5µs per sample (cf. Fig. D.1h), this leads to a constant time of 5 s. This constant scaling
is only true if the network fits onto the system (up to 256 sampling neurons). Since the number
of visible neurons is given by the size of the physical system that is represented (N spins), larger
physical systems give a greater speedup. Already for the case of 8 spins (16 visible units and 180
hidden units) the fixed runtime of the BrainScaleS-2 system is exceeded by our estimation from the
idealized software estimate (cf. Fig. D.2). Larger system sizes will skew this comparison further
to favor of BrainScaleS-2, which can even implement more densely connected network topologies
without incurring a performance penalty. We also note that the BrainScaleS-2 chip requires less
than 500mW [69, 246], while the Intel Xeon E5-2630v4 has a thermal design power (TDP) of 85W
for 10 cores. As such BrainScaleS-2 is using comparable energy even for the smallest systems we

186 Entangled quantum states and learning on the spiking neuromorphic chip

implemented in the prototype system used in the main manuscript. While the system size at which
the BrainScaleS-2 chip outperforms CPU implementations may shift to larger values when comparing
to the fastest currently available CPUs, the fundamental difference in scaling behavior, i.e. constant
v.s. linear, persists.

APPENDIX E

Unsupervised neural graph embedding

187

188 Unsupervised neural graph embedding

Name CenterModule Number of
parameters

MNIST Fea-
turizer

Conv2D(1, 16, 3, 1, 1) ⇒ ReLU ⇒ Conv2D(16, 32, 3, 2, 1) ⇒ Tanh
⇒ FC(800, 128) ⇒ ReLU ⇒ FC(128, 16)

109× 103

Graph Data
Featurizer

GCNConv(6, 32) ⇒ ReLU ⇒ GCNConv(32, 6) ⇒ Global mean
pooling ⇒ ReLU ⇒ FC(16, 64) ⇒ ReLU ⇒ FC(64, 16)

2.9× 103

Imitator FC(16, 12) ⇒ ReLU ⇒ µ: FC(12, 2); log σ2: FC(12, 2) ⇒ FC(2,
12) ⇒ ReLU ⇒ FC(12, 16)

500

PostTrain
InfoVAE

FC(16, 64)⇒ ReLU⇒FC(64, 128)⇒ µ: FC(128, 2); log σ2: FC(128,
2) ⇒ FC(2, 128) ⇒ ReLU ⇒ FC(128, 64) ⇒ ReLU ⇒ FC(64, 16)

19.6× 103

MNIST
VAE

Conv2D(1, 16, 3, 1, 1) ⇒ ReLU ⇒ Conv2D(16, 32, 3, 2, 1) ⇒ Tanh
⇒ FC(800, 64)⇒ ReLU⇒ µ: FC(64, 2); log σ2: FC(64, 2)⇒ FC(2,
64) ⇒ ReLU ⇒ FC(64, 800) ⇒ ReLU ⇒ ConvTranspose2D(32, 16,
3, 2, 1, 1) ⇒ ReLU ⇒ ConvTranspose2D(16, 1, 3, 1, 1)

113× 103

Table E.1: Details on the implemented network architectures for the generation of embeddings. The argu-
ments of FC denote the number of input and output neurons of a fully-connected feed-forward
network. The terminology for the remaining layers is adopted from PyTorch [357] and PyTorch
Geometric [358].

Simulation MNIST NAE MNIST NAE
PostTrain

MNIST Info-
VAE

Graph NAE Graph NAE
PostTrain

γ 0.0625 - - 0.0625 -
κ 0.1 - - 0.1 -
α 0.001 0.001 0.001 0.001 0.001
λ 0.9999 0.9999 0.9999 0.9999 0.9999
Ratio NIm/NF 29/1 - - 29/1 -
Learning rate LF 2× 10−4 - - 5× 10−3 -
Learning rate LIm
/ LInfoVAE

5× 10−3 5× 10−4 5× 10−4 5× 10−3 5× 10−4

Table E.2: Hyperparameters for training the different networks for analysing neural adversarial graph embed-
dings.

APPENDIX F

Spectral reconstruction

This appendix is based on Ref. [2].

F.1 BR method

Different Bayesian methods propose different prior probabilities, i.e. they encode different types of
prior information. The well-known Maximum Entropy Method e.g. features the Shannon-Jaynes
entropy

SSJ =

∫
dω
(
ρ(ω)−m(ω)− ρ(ω)log

[ρ(ω)

m(ω)

])
, (F.1)

while the more recent BR method uses a variant of the gamma distribution

SBR =

∫
dω
(
1− ρ(ω)

m(ω)
+ log

[ρ(ω)

m(ω)

])
. (F.2)

Both methods e.g. encode the fact that physical spectral functions are necessarily positive definite
but are otherwise based on different assumptions.

As Bayesian methods they have in common that the prior information has to be encoded in the
functional form of the regulator and the supplied default model m(ω). Note that discretising ρ
by choosing a particular functional basis also introduces a selection of possible outcomes. The
dependence of the most probable spectral function, given input data and prior information, on the
choice of S, m(ω) and the discretised basis comprises the systematic uncertainty of the method.

One major limitation to Bayesian approaches is the need to formulate our prior knowledge in the
form of an optimisation functional. The reason is that while many of the correlation functions
relevant in theoretical physics have very well defined analytic properties it has not been possible
to formulate these as a closed regulator functional S. Take as an example the retarded propagator
(for a more comprehensive discussion see [339]). Its analytic structure in the imaginary frequency
plane splits into two parts, an analytic half-plane, where the Euclidean input data is located, and
a meromorphic half-plane which contains all structures contributing to the real-time dynamics.
Encoding this information in an appropriate regulator functional has not yet been achieved.

189

190 Spectral reconstruction

Instead the MEM and the BR method rather use concepts unspecific to the analytic structure, such
as smoothness, to derive their regulators. Among others this e.g. manifests itself in the presence of
artificial ringing, which is related to unphysical poles contributing to the real-time propagator, which
however should be suppressed by a regulator functional aware of the physical analytic properties.

F.2 GrHMC method

The main idea of the setup is already stated in the main text in Sec. 12.1 and was first introduced
in [339]. Nevertheless, for completeness we outline the entire reconstruction process here. The
approach is based on formulating the basis expansion in terms of the retarded propagator. The
resulting set of basis coefficients are then determined via Bayesian inference. This leaves us with
two objects to specify in the reconstruction process, the choice of a basis/ansatz for the retarded
propagator and suitable priors for the inference.

Once a basis has been chosen it is straightforward to write down the corresponding regression
model. As in the reconstruction with neural nets we use a fixed number of Breit-Wigner structures,
c.f. (12.7), corresponding to simple poles in the analytically continued retarded propagator. The
logarithm of all parameters is used in the model in order to enforce positivity of all parameters. The
uniqueness of the parameters is ensured by using an ordered representation of the logarithmic mass
parameters.

The other crucial point is the choice of priors, which are of great importance to tame the ill-
conditioning practically and should therefore be chosen as restrictive as possible. For comparability
to the neural net reconstruction, the priors are matched to the training volume in parameter space.
However, it is more convenient to work with a continuous distribution. Hence the priors of the
logarithmic parameters are chosen as normal distributions where we have fixed the parameters by the
condition that the mean of the distribution is the mean of the training volume and the probability
at the boundaries of the trainings volume is equal. Details on the training volume in parameter
space can be found in Tab. 12.1 and Sec. F.3.

All calculations for the GrHMC method are carried out using the python interface [359] of Stan [360].

F.3 Mock data, training set and training procedure

We consider three different levels of difficulty for the reconstruction of spectral functions to analyse
and compare the performance of the approaches in this work. These levels differ by the number
of Breit-Wigners that need to be extracted based on the given information of the propagator. We
distinguish between training and test sets with one, two and three Breit-Wigners. A variable number
of Breit-Wigners within a test set entails the task to determine the correct number of present
structures. This can be done a priori or a posteriori based either on the propagator or on the
quality of the reconstruction. While it is straightforward to implement this for the PoNet, it is not
completely clear how one should proceed for the PaNet. We postpone this problem to future work.

The training set is constructed by sampling parameters uniformly within a given range for each
parameter. The ranges for the parameters of a Breit-Wigner function of (12.7) are as follows:
M ∈ [0.5, 3.0], Γ ∈ [0.1, 0.4] and A ∈ [0.1, 1.0]. In addition, we investigate the impact of the size of
the parameter space on the performance of the network for the case of two Breit-Wigner functions.

Mock data, training set and training procedure 191

BR Comparison A M Γ

1BW [0.1, 1.0] [0.5, 3.0] [0.1, 0.4]
2BWa [0.2, 1.8] [0.8, 3.8] [0.2, 1.0]
2BWb [0.3, 1.2] [0.8, 3.8] [0.002, 0.02]
3BW [0.2, 1.8] [1.0, 6.0] [0.2, 1.0]

Table F.1: Parameter ranges for the training of the neural networks for the comparison in Fig. 12.11.

This is done by decreasing the ranges of the parameters Γ and A gradually. We proceed differently for
the two masses to guarantee a certain finite distance between the two Breit-Wigner peaks. Instead of
decreasing the mass range, the minimum and maximum distance of the peaks is restricted. Details
on the different parameter spaces were stated in Tab. 12.1. The propagator function is parametrised
by Np = 100 data points that are evaluated on a uniform grid within the interval ω ∈ [0, 10]. For
a training of the point net, the spectral function is discretised by Nω = 500 data points on the
same interval. Details about the training procedure can be found at the end of the section. The
parameter ranges deviate for the comparison of the neural network approach with existing methods.
The corresponding ranges are listed in Tab. F.1. To avoid any confusion, Tab. F.3 provides a
comprehensive list of all figures with the associated model details and parameter ranges.

The different approaches are compared by a test set for each number of Breit-Wigners consisting
of 1000 random samples within the parameter space. Another test set is constructed for two
Breit-Wigners with a fixed scaling A1 = A2 = 0.5, a fixed mass M1 = 1 and equally chosen widths
Γ := Γ1 = Γ2. The mass M2 and the width Γ are varied according to a regular grid in parameter
space. This test set allows the analysis of contour plots of different loss measures. It provides more
insights into the minima of the loss functions of the trained networks and into the severity of the
inverse problem. The contour plots are averaged over 10 samples for the noise width of 10−3 (except
for Fig. 12.10).

We investigate three different performance measures and different setups of the neural network for a
comparison to existing methods. The root-mean-square-deviation of the predicted parameters in
parameter space, of the reconstructed spectral function and of the reconstructed propagator are
considered. For the latter case, the error is computed based on the original propagator without
noise. The spectral function loss and the propagator loss are computed based on the discretised
representations on the uniform grid. Representative error bars for all methods are depicted in
Fig. 12.9.

The training procedure for the neural networks in this work is as follows. A separate neural network
is trained for each training set, i.e., for each error and for each range of parameters. The learning
rates are between 10−5 and 10−7. The batch size is between 128 and 500 and the number of generated
training samples per epoch is around 6 × 105. Depending on the kind of network, the nets are
trained for 80 to 160 epochs. The used loss functions are described at the end of Sec. 12.2.2. The
implemented net architectures are provided in Tab. F.2. Details about the training of the different
networks and about the respective utilized test set for the evaluation can be found in Tab. F.3 for
each figure.

192 Spectral reconstruction

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

FC Deep FC Narrow Deep FC Straight FC Conv

10−3

3 × 10−3

10−2

3 × 10−2

10−1

3 × 10−1

1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

FC Deep FC Narrow Deep FC Straight FC Conv

10−5
3 × 10−5
10−4
3 × 10−4
10−3
3 × 10−3
10−2
3 × 10−2
10−1

P
ro

pa
ga

to
r

lo
ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

FC Deep FC Narrow Deep FC Straight FC Conv

3 × 10−3

10−2

3 × 10−2

10−1

3 × 10−1

P
ar

am
et

er
lo

ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

FC Deep FC Narrow Deep FC Straight FC Conv

10−2

3 × 10−2

10−1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

FC Deep FC Narrow Deep FC Straight FC Conv

3 × 10−4

10−3

3 × 10−3

10−2

3 × 10−1

P
ro

pa
ga

to
r

lo
ss

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

FC

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

Deep FC

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

Narrow Deep FC

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

Straight FC

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

Conv

3 × 10−2

10−1
P
ar

am
et

er
lo

ss

Figure F.1: Comparison of network architectures - Contour plots of loss measures are shown for
different net architectures. The upper three rows correspond to reconstructions of propagators
with a noise width of 10−5, the lower ones with 10−3. The plots illustrate the loss measures in a
hyperplane within the parameter space whose properties are described in Sec. F.3. The networks
are trained with the parameter loss on the training set of volume Vol O. The contour plots show
that the local minima are slightly different for small noise widths, whereas the global structures
remain similar for all network architectures. These differences are caused by a slightly differing
utilization of the limited number of hyperparameters. The differences between the network
architectures become less visible for larger errors due to the growing severity of the inverse
problem and a decreasing knowledge about the correct inverse transformations. Interestingly, the
loss landscape of the convolutional neural network, which intrinsically operates on local structures,
and of the fully connected networks are almost equal. The non-locality of the inverse integral
transformation represents a possible reason for why the specific choice of the network structure is
largely irrelevant. We conclude that the actual architecture is rather negligible in comparison to
other attributes of the learning process, such as the selection of training data and the choice of
the loss function.

Mock data, training set and training procedure 193

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Lθ Lρ L
α=600
G,ρ L

α=3000
G,ρ

LG

10−3

3 × 10−3

10−2

3 × 10−2

10−1

3 × 10−1

1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Lθ Lρ L
α=600
G,ρ L

α=3000
G,ρ

LG

10−5
3 × 10−5

10−4
3 × 10−4

10−3
3 × 10−3

10−2
3 × 10−2

10−1

P
ro

pa
ga

to
r

lo
ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Lθ Lρ L
α=600
G,ρ L

α=3000
G,ρ

LG

3 × 10−3

10−2

3 × 10−2

10−1

3 × 10−1

P
ar

am
et

er
lo

ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Lθ Lρ L
α=600
G,ρ L

α=3000
G,ρ

LG

3 × 10−3

10−2

3 × 10−2

10−1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Lθ Lρ L
α=600
G,ρ L

α=3000
G,ρ

LG

10−4

3 × 10−4

10−3

3 × 10−3

10−2

P
ro

pa
ga

to
r

lo
ss

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Lθ

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

Lρ

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

L
α=600
G,ρ

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

L
α=3000
G,ρ

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

LG

3 × 10−2

10−1

3 × 10−1

P
ar

am
et

er
lo

ss

Figure F.2: Comparison of loss functions - Contour plots of loss measures are illustrated in the same
manner as in Fig. F.1, but with a comparison o different loss functions. The considered loss
functions are introduced in Sec. 12.2.2. The results are based on the Conv PaNet that is trained
on volume Vol O. The optima in the loss function differ and, consequently, lead to different
mean squared errors for the different measures. It is interesting that the network with the
pure propagator loss function leads to a rather homogeneous propagator loss distribution. In
contrast, the networks with the pure parameter and the pure spectral function loss do not result
in homogeneous distributions for their corresponding loss function. The large set of nearly equal
propagators for different parameters explains this observation. It confirms also once more the
necessity of approaches that can be trained using loss functions with access to more information
than just the reconstructed propagator.

194 Spectral reconstruction

0.115

0.125

0.135

Γ
=

Γ
1

=
Γ
2

Vol O Vol A Vol B Vol C Vol D

10−3

3 × 10−3

10−2

3 × 10−2

10−1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.115

0.125

0.135

Γ
=

Γ
1

=
Γ
2

Vol O Vol A Vol B Vol C Vol D

3 × 10−5

10−4

3 × 10−4

10−3

3 × 10−3

P
ro

pa
ga

to
r

lo
ss

0.115

0.125

0.135

Γ
=

Γ
1

=
Γ
2

Vol O Vol A Vol B Vol C Vol D

3 × 10−4

10−3

3 × 10−2

10−2

3 × 10−2

10−1

P
ar

am
et

er
lo

ss

0.115

0.125

0.135

Γ
=

Γ
1

=
Γ
2

Vol O Vol A Vol B Vol C Vol D

10−2

3 × 10−2

10−1

3 × 10−1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.115

0.125

0.135

Γ
=

Γ
1

=
Γ
2

Vol O Vol A Vol B Vol C Vol D

10−4

3 × 10−4

10−3

3 × 10−3

P
ro

pa
ga

to
r

lo
ss

0.9 1.0 1.1

M2 −M1 = M2 − 1

0.115

0.125

0.135

Γ
=

Γ
1

=
Γ
2

Vol O

0.9 1.0 1.1

M2 −M1 = M2 − 1

Vol A

0.9 1.0 1.1

M2 −M1 = M2 − 1

Vol B

0.9 1.0 1.1

M2 −M1 = M2 − 1

Vol C

0.9 1.0 1.1

M2 −M1 = M2 − 1

Vol D

3 × 10−3

10−2

3 × 10−2

10−1

P
ar

am
et

er
lo

ss

Figure F.3: Analysis of prior information (parameter space of the training data) and of local
differences in the severity of the inverse problem - The evolution of the landscape of
different loss measures is shown for Conv PaNets that are trained on different parameter spaces.
All contour plots are based on the same section of the parameter space, namely the range that is
spanned by volume D. The upper three and lower rows correspond again to reconstructions of
propagators with noise widths 10−5 and 10−3. The gradual reduction of the parameter space
allows the analysis of different levels of complexity of the problem. A general improvement of
performance can be observed besides a shift of the global optima. The more homogeneous loss
landscape demonstrates that the problem of a different severity of the inverse problem is still
present, but damped.

Mock data, training set and training procedure 195

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Vol A
Vol B
Vol C
Vol D

3 × 10−3

10−2

3 × 10−2

10−1

3 × 10−1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Vol A
Vol B
Vol C
Vol D

3 × 10−2

10−1

3 × 10−1

1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Vol A
Vol B
Vol C
Vol D

3 × 10−5

10−4

3 × 10−4

10−3

3 × 10−3

10−2

3 × 10−2

P
ro

pa
ga

to
r

lo
ss

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

0.1

0.2

0.3

0.4
Γ

=
Γ
1

=
Γ
2

Vol A
Vol B
Vol C
Vol D

10−4

3 × 10−4

10−3

3 × 10−3

10−2

3 × 10−2

P
ro

pa
ga

to
r

lo
ss

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Vol A
Vol B
Vol C
Vol D

10−3

3 × 10−2

10−2

3 × 10−2

10−1

P
ar

am
et

er
lo

ss

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Vol A
Vol B
Vol C
Vol D

10−2

3 × 10−2

10−1

3 × 10−1

P
ar

am
et

er
lo

ss

Figure F.4: Performance outside of the training region - Performance of the Conv PaNet trained on
the smallest volume Vol D for data that lies outside of the training region with a noise width of
10−5 (left column) and a noise width of 10−3 (right column). As expected, the prediction quality
decreases with distance from the boundaries of Vol D. However, we emphasise that there is no
immediate sharp transition at the boundary. Instead, we observe at first only a gradual decrease
of the prediction quality, indicating that the network can generalise slightly beyond the trained
region to varying degrees, depending on which parameters and error metrics are considered.

196 Spectral reconstruction

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Conv - LG - PaNet Conv - Lρ - PaNet FC - Lθ - PaNet FC - Lρ - PoNet FC - Lρ - PoNetVar

3 × 10−3

10−2

3 × 10−2

10−1

3 × 10−1

1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Conv - LG - PaNet Conv - Lρ - PaNet FC - Lθ - PaNet FC - Lρ - PoNet FC - Lρ - PoNetVar

10−5
3 × 10−5

10−4
3 × 10−4

10−3
3 × 10−3

10−2
3 × 10−2

10−1

P
ro

pa
ga

to
r

lo
ss

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Conv - LG - PaNet Conv - Lρ - PaNet FC - Lθ - PaNet FC - Lρ - PoNet FC - Lρ - PoNetVar

3 × 10−2

10−1

3 × 10−1

Sp
ec

tr
al

fu
nc

ti
on

lo
ss

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

0.1

0.2

0.3

0.4

Γ
=

Γ
1

=
Γ
2

Conv - LG - PaNet

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

Conv - Lρ - PaNet

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

FC - Lθ - PaNet

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

FC - Lρ - PoNet

0.0 0.5 1.0 1.5

M2 −M1 = M2 − 1

FC - Lρ - PoNetVar

3 × 10−4

10−3

3 × 10−3

10−2

3 × 10−2

P
ro

pa
ga

to
r

lo
ss

Figure F.5: Comparison of the parameter net and the point net - Root-mean-squared-deviations
are compared between the parameter net and the point net, trained on two Breit-Wigner like
structures (PoNet) and trained on a variable number of Breit-Wigners (PoNetVar), with respect
to different loss functions. The two upper rows correspond to results from input propagators with
a noise width of 10−5 and the two lower ones with a noise width of 10−3. Problems concerning a
varying severity of the inverse problem and concerning an information loss caused by the additive
noise remain independent of the chosen basis for the representation of the spectral function.

Mock data, training set and training procedure 197

Name CenterModule Number of pa-
rameters

FC FC(6700) ⇒ ReLU ⇒ FC(12168) ⇒ ReLU ⇒ FC(1024) 95× 106

Deep
FC

FC(512) ⇒ ReLU ⇒ FC(1024) ⇒ ReLU ⇒ (FC(4056) ⇒
ReLU)3 ⇒ (FC(2056) ⇒ ReLU)2

50× 106

Narrow
Deep
FC

FC(512) ⇒ ReLU ⇒ (FC(1024) ⇒ ReLU)3 ⇒ (FC(2056) ⇒
ReLU)5 ⇒ (FC(1024) ⇒ ReLU)3 ⇒ FC(512) ⇒ ReLU ⇒
FC(256)

96× 106

Straight
FC

(FC(4112) ⇒ BatchNorm1D ⇒ ReLU ⇒ Dropout(0.2))7 102× 106

Conv Conv(64, 10)⇒ ReLU⇒ Conv(256, 10)⇒ ReLU⇒ (FC(4096)
⇒ ReLU)2 ⇒ FC(1024)

41× 106

Table F.2: Details on the implemented network architectures. The argument of FC denotes the number of
output neurons. The numbers in the argument of Conv correspond to the number of output
channels and to the kernel size. The general setup is: Input(100) ⇒ ReLU ⇒ CenterModule ⇒
ReLU ⇒ FC(3/6/9/500) ⇒ Output, where the CenterModule is given along with the associated
name in the table. The size of the output layer is determined by the use of a parameter net or a
point net and the considered number of Breit-Wigners.

198 Spectral reconstruction

Figure Network
type

Architecture Loss func-
tion

Training
set

Test set Noise width Number
of BWs

Fig. 12.1 PaNet FC Lθ Vol O Noise
samples on
same prop-
agator

10−3 1-3

Fig. 12.3 PaNet Various (a)
/ Conv (b)

Lθ (a) /
Various (b)

Vol O Vol O 10−3 / 10−5 2

Fig. 12.4 PaNet Conv Lθ Various Noise
samples on
same prop-
agator

10−3 2

Fig. 12.5 PaNet Conv /
Conv PP

Lθ Various Vol D Various 2

Fig. 12.6 PaNet Conv Lθ Vol D Various Various 2
Fig. 12.7 Various FC Various Vol O Vol O Various 1-3
Fig. 12.8 PaNet Conv Lθ Vol B Noise

samples on
same prop-
agator

Various 2

Fig. 12.9 PaNet FC / FC
PP

Lθ Vol O Vol O Various 1-3

Fig. 12.10 PaNet FC Lθ Vol O Contour -
Vol O

10−3 2

Fig. 12.11 PaNet Conv Lθ See Tab. F.1Specific
sets

10−3 1-3

Fig. F.1 PaNet Various Lθ Vol O Contour -
Vol O

10−3 / 10−5 2

Fig. F.2 PaNet Conv Various Vol O Contour -
Vol O

10−3 / 10−5 2

Fig. F.3 PaNet Conv Lθ Various Contour -
Vol D

10−3 / 10−5 2

Fig. F.4 PaNet Conv Lθ Vol D Contour -
Vol O

10−3 / 10−5 2

Fig. F.5 Various Conv / FC Various Vol O Contour -
Vol O

10−3 / 10−5 2

Table F.3: List of figures that contains details about the training of the different networks and about the
dataset used for evaluation/validation.

Acknowledgements

First of all, I want to thank my supervisor Jan M. Pawlowski. The freedom he gave me to follow
my own and our shared research interests is truly appreciated. He always guided me into the right
directions by his expertise and astonishing understanding of physics and by his ability to quickly
enter and comprehend new topics and related problems.

I am grateful to Prof. Dr. Manfred Salmhofer for being my second referee.

I would like to thank the people of the Electronic Visions group, in particular, Andreas Baumbach and
Mihai M. Petrovici, for their great support and insightful discussions about the BrainScaleS system.
Furthermore, I would also like to thank my collaborators Stefanie Czischek, Thomas Gasenzer,
Martin Gärttner and all the other members of CP5 for long and interesting meetings about quantum
systems, complex Langevin dynamics and neuromorphic systems.

I would like to thank the members of the machine learning and the lattice meeting group, including
Stefan Blücher and Nils Strodthoff, for insightful and versatile discussions.

I would like to thank Ulrich Köthe, Manfred Salmhofer, Julian Urban and Jan M. Pawlowski for
enjoyable discussions about machine learning and the renormalization group in the garden of the
institute.

I would like to thank the Institute for Pure and Applied Mathematics, UCLA, and the organisers of
the long program "Machine Learning for Physics and the Physics of Learning" for giving me the
opportunity to spend time in a great environment and to have inspiring discussions with people from
all over the world.

I would like to thank all the people in the group of Jan M. Pawlowski for the interesting talks during
the coffee breaks, the barbecue evenings at the institute and for making my time in the roof chamber
of the Philosophenweg 16 enjoyable.

I am grateful to Andreas Baumbach, Marc Bauer, Bruno Faigle-Cedzich, Konstantin Gerbig, Jan
Horak, Markus Heller, Moritz Hoffmann, Klaus Kades, Daniela Moratscheck, Eric Müller, Coralie
Schneider, Kirill Shmilovich and Nicolas Wink for proofreading my thesis. Special thanks go to
Johannes Lumma for giving valuable feedback on the introduction, the abstract and the conclusion.

I would like to thank Kirill Shmilovich and Marc Stieffenhofer for being great flatmates during our
stay in Los Angeles.

Lastly, I want to thank my family, all my friends and my girlfriend for their endless support.

201

Bibliography

[1] L. Kades and J. M. Pawlowski, Discrete langevin machine: Bridging the gap between thermo-
dynamic and neuromorphic systems, Phys. Rev. E 101, 063304 (2020).

[2] L. Kades, J. M. Pawlowski, A. Rothkopf, M. Scherzer, J. M. Urban, S. J. Wetzel, N. Wink,
and F. P. G. Ziegler, Spectral reconstruction with deep neural networks, Phys. Rev. D 102,
096001 (2020).

[3] S. Blücher, L. Kades, J. M. Pawlowski, N. Strodthoff, and J. M. Urban, Towards novel insights
in lattice field theory with explainable machine learning, Phys. Rev. D 101, 094507 (2020).

[4] S. Czischek, A. Baumbach, S. Billaudelle, B. Cramer, L. Kades, J. M. Pawlowski, M. K.
Oberthaler, J. Schemmel, M. A. Petrovici, T. Gasenzer, and M. Gärttner, Spiking neuromorphic
chip learns entangled quantum states (2021), arXiv:2008.01039 [cs.ET] .

[5] L. Kades, M. Gärttner, T. Gasenzer, and J. M. Pawlowski, Towards sampling complex actions
(2021), arXiv:2106.09367 [hep-lat] .

[6] A. Baumbach, L. Kades, J. M. Pawlowski, M. A. Petrovici, and J. Schemmel, Complex Langevin
dynamics on a neuromorphic device, (in preparation).

[7] L. Kades and K. Shmilovich, Unsupervised neural graph embedding, (in preparation).

[8] A. Hosak, L. Kades, and J. M. Pawlowski, Step-wise reweighting criterion for correctness of
complex Langevin dynamics, (in preparation).

[9] M. Bauer, L. Kades, and J. M. Pawlowski, Self-consistent sampling of complex actions, (in
preparation).

[10] L. Kades and J. M. Pawlowski, An easy to use Markov chain Monte Carlo sampling framework
for lattice field theories, (in preparation).

[11] K. Höfling, L. Kades, M. Reichert, J. M. Pawlowski, and F. Sadlo, Visualizing the functional
renormalization group - Finding fixed points in high-dimensional spaces, (in preparation).

[12] G. G. Batrouni, G. R. Katz, A. S. Kronfeld, G. P. Lepage, B. Svetitsky, and K. G. Wilson,
Langevin simulations of lattice field theories, Phys. Rev. D 32, 2736–2747 (1985).

[13] P. H. Damgaard and H. Huffel, Stochastic quantization, Phys. Rept. 152, 227 (1987).

[14] G. Parisi and Y.-S. Wu, Perturbation theory without gauge fixing, Sci. Sin. 24, 483–496 (1981).

[15] J. R. Klauder, Stochastic quantization, in Recent Developments in High-Energy Physics, edited
by H. Mitter and C. B. Lang (Springer Vienna, Vienna, 1983) pp. 251–281.

203

https://doi.org/10.1103/PhysRevE.101.063304
https://doi.org/10.1103/PhysRevD.102.096001
https://doi.org/10.1103/PhysRevD.102.096001
https://doi.org/10.1103/PhysRevD.101.094507
https://arxiv.org/abs/2008.01039
https://arxiv.org/abs/2106.09367
https://doi.org/10.1103/PhysRevD.32.2736
https://doi.org/10.1016/0370-1573(87)90144-X
http://engine.scichina.com/publisher/Science China Press/journal/Scientia Sinica/24/4/10.1360/ya1981-24-4-483

204 Bibliography

[16] M. Namiki, Stochastic quantization, Lecture Notes in Physics Monographs (Springer-Verlag
Berlin Heidelberg, 1992).

[17] S. Furber, Large-scale neuromorphic computing systems, Journal of Neural Engineering 13,
051001 (2016).

[18] C. S. Thakur, J. L. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar, N. Qiao, J. Schemmel,
R. Wang, E. Chicca, J. Olson Hasler, J. Seo, S. Yu, Y. Cao, A. van Schaik, and R. Etienne-
Cummings, Large-scale neuromorphic spiking array processors: A quest to mimic the brain,
Front. Neurosci. 12, 891 (2018).

[19] K. Roy, A. Jaiswal, and P. Panda, Towards spike-based machine intelligence with neuromorphic
computing, Nature 575, 607–617 (2019).

[20] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain, et al., Loihi: A neuromorphic manycore processor with on-chip learning,
IEEE Micro 38, 82–99 (2018).

[21] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L.
Jackson, N. Imam, C. Guo, Y. Nakamura, et al., A million spiking-neuron integrated circuit
with a scalable communication network and interface, Science 345, 668–673 (2014).

[22] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang, Z. Zou, Z. Wu, W. He,
et al., Towards artificial general intelligence with hybrid Tianjic chip architecture, Nature 572,
106–111 (2019).

[23] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, and W. D. Lu,
A fully integrated reprogrammable memristor–cmos system for efficient multiply–accumulate
operations, Nature Electronics 2, 290–299 (2019).

[24] I. Boybat, M. Le Gallo, S. Nandakumar, T. Moraitis, T. Parnell, T. Tuma, B. Rajendran,
Y. Leblebici, A. Sebastian, and E. Eleftheriou, Neuromorphic computing with multi-memristive
synapses, Nature communications 9, 1–12 (2018).

[25] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, A scalable multicore architecture with het-
erogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs),
IEEE transactions on biomedical circuits and systems 12, 106–122 (2017).

[26] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, The Spinnaker project, Proceedings of
the IEEE 102, 652–665 (2014).

[27] M. A. Petrovici, S. Schmitt, J. Klähn, D. Stöckel, A. Schroeder, G. Bellec, J. Bill, O. Breitwieser,
I. Bytschok, A. Grübl, et al., Pattern representation and recognition with accelerated analog
neuromorphic systems, in 2017 IEEE International Symposium on Circuits and Systems
(ISCAS) (IEEE, 2017) pp. 1–4.

[28] S. Billaudelle, Y. Stradmann, K. Schreiber, B. Cramer, A. Baumbach, D. Dold, J. Göltz, A. F.
Kungl, T. C. Wunderlich, A. Hartel, et al., Versatile emulation of spiking neural networks on
an accelerated neuromorphic substrate, in 2020 IEEE International Symposium on Circuits
and Systems (ISCAS) (IEEE, 2020) pp. 1–5.

[29] W. Maass, Noise as a resource for computation and learning in networks of spiking neurons,
Proceedings of the IEEE 102, 860–880 (2014).

https://doi.org/10.1007/978-3-540-47217-9
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1126/science.1254642
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1038/s41467-018-04933-y
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/ISCAS.2017.8050530
https://doi.org/10.1109/ISCAS.2017.8050530
https://doi.org/10.1109/ISCAS45731.2020.9180741
https://doi.org/10.1109/ISCAS45731.2020.9180741
https://doi.org/10.1109/JPROC.2014.2310593

205

[30] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs, Event-driven
contrastive divergence for spiking neuromorphic systems, Frontiers in Neuroscience 7, 272
(2014).

[31] E. O. Neftci, B. U. Pedroni, S. Joshi, M. Al-Shedivat, and G. Cauwenberghs, Stochastic
synapses enable efficient brain-inspired learning machines, Frontiers in Neuroscience 10, 241
(2016).

[32] B. U. Pedroni, S. Das, E. Neftci, K. Kreutz-Delgado, and G. Cauwenberghs, Neuromor-
phic adaptations of restricted Boltzmann machines and deep belief networks, in The 2013
International Joint Conference on Neural Networks (IJCNN) (2013) pp. 1–6.

[33] L. Leng, R. Martel, O. Breitwieser, I. Bytschok, W. Senn, J. Schemmel, K. Meier, and
M. A. Petrovici, Spiking neurons with short-term synaptic plasticity form superior generative
networks, Scientific Reports 8, 10651 (2018).

[34] G. E. Hinton, Training products of experts by minimizing contrastive divergence, Neural
Comput. 14, 1771–1800 (2002).

[35] D. Pecevski, L. Buesing, and W. Maass, Probabilistic inference in general graphical models
through sampling in stochastic networks of spiking neurons, PLOS Computational Biology 7,
1–25 (2011).

[36] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, Bayesian computation emerges in generic
cortical microcircuits through spike-timing-dependent plasticity, PLOS Computational Biology
9, 1–30 (2013).

[37] S. Czischek, M. Gärttner, and T. Gasenzer, Quenches near ising quantum criticality as a
challenge for artificial neural networks, Phys. Rev. B 98, 024311 (2018).

[38] G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural
networks, Science 355, 602–606 (2017).

[39] X. Gao and L.-M. Duan, Efficient representation of quantum many-body states with deep
neural networks, Nature Communications 8, 662 (2017).

[40] W. Severa, R. Lehoucq, O. Parekh, and J. B. Aimone, Spiking neural algorithms for markov
process random walk (2018), arXiv:1805.00509 [cs.NE] .

[41] J. D. Smith, W. Severa, A. J. Hill, L. Reeder, B. Franke, R. B. Lehoucq, O. D. Parekh, and
J. B. Aimone, Solving a steady-state pde using spiking networks and neuromorphic hardware,
in International Conference on Neuromorphic Systems 2020 , ICONS 2020 (Association for
Computing Machinery, New York, NY, USA, 2020).

[42] J. Schemmel, J. Fieres, and K. Meier, Wafer-scale integration of analog neural networks, in
2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence) (2008) pp. 431–438.

[43] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner, A wafer-scale
neuromorphic hardware system for large-scale neural modeling, in 2010 IEEE International
Symposium on Circuits and Systems (ISCAS) (2010) pp. 1947–1950.

[44] D. Drubach, The brain explained (Prentice Hall Health, Upper Saddle River, N.J, 2000).

https://doi.org/10.3389/fnins.2013.00272
https://doi.org/10.3389/fnins.2013.00272
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.1109/IJCNN.2013.6707067
https://doi.org/10.1109/IJCNN.2013.6707067
https://doi.org/10.1038/s41598-018-28999-2
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1371/journal.pcbi.1002294
https://doi.org/10.1371/journal.pcbi.1002294
https://doi.org/10.1371/journal.pcbi.1003037
https://doi.org/10.1371/journal.pcbi.1003037
https://doi.org/10.1103/PhysRevB.98.024311
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1038/s41467-017-00705-2
https://arxiv.org/abs/1805.00509
https://doi.org/10.1145/3407197.3407202
https://doi.org/10.1109/IJCNN.2008.4633828
https://doi.org/10.1109/IJCNN.2008.4633828

206 Bibliography

[45] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity,
The bulletin of mathematical biophysics 5, 115–133 (1943).

[46] D. O. Hebb, The organization of behavior: A neuropsychological theory (Wiley, New York,
1949).

[47] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization
in the brain., Psychological Review 65, 386–408 (1958).

[48] P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences, Ph.D. thesis, Harvard University (1974).

[49] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61, 85–117
(2015).

[50] W. Maass, Networks of spiking neurons: The third generation of neural network models, Neural
Networks 10, 1659 – 1671 (1997).

[51] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity
(Cambridge University Press, 2002).

[52] Y. Huang and R. P. N. Rao, Neurons as Monte Carlo samplers: Bayesian inference and
learning in spiking networks, in Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14 (MIT Press, Cambridge, MA, USA, 2014)
p. 1943–1951.

[53] D. Jimenez Rezende and W. Gerstner, Stochastic variational learning in recurrent spiking
networks, Frontiers in Computational Neuroscience 8, 38 (2014).

[54] V. Kornijcuk, H. Lim, J. Y. Seok, G. Kim, S. K. Kim, I. Kim, B. J. Choi, and D. S. Jeong, Leaky
integrate-and-fire neuron circuit based on floating-gate integrator, Frontiers in Neuroscience
10, 212 (2016).

[55] A. H. Marblestone, G. Wayne, and K. P. Kording, Toward an integration of deep learning and
neuroscience, Frontiers in Computational Neuroscience 10, 94 (2016).

[56] W. Gerstner, H. Sprekeler, and G. Deco, Theory and simulation in neuroscience, Science 338,
60–65 (2012).

[57] W. Severa, O. Parekh, K. D. Carlson, C. D. James, and J. B. Aimone, Spiking network
algorithms for scientific computing, in 2016 IEEE International Conference on Rebooting
Computing (ICRC) (2016) pp. 1–8.

[58] J. Kwisthout and N. Donselaar, On the computational power and complexity of spiking neural
networks, in Proceedings of the Neuro-Inspired Computational Elements Workshop, NICE ’20
(Association for Computing Machinery, New York, NY, USA, 2020).

[59] W. Gerstner, A. K. Kreiter, H. Markram, and A. V. M. Herz, Neural codes: Firing rates and
beyond, Proceedings of the National Academy of Sciences 94, 12740–12741 (1997).

[60] E. Fuchs and G. Flügge, Adult neuroplasticity: more than 40 years of research, Neural plasticity
2014, 541870–541870 (2014), 24883212[pmid].

[61] M. Pfeiffer and T. Pfeil, Deep learning with spiking neurons: Opportunities and challenges,
Frontiers in Neuroscience 12, 774 (2018).

https://doi.org/10.1007/BF02478259
https://doi.org/10.1037/h0042519
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.3389/fncom.2014.00038
https://doi.org/10.3389/fnins.2016.00212
https://doi.org/10.3389/fnins.2016.00212
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.1126/science.1227356
https://doi.org/10.1126/science.1227356
https://doi.org/10.1109/ICRC.2016.7738681
https://doi.org/10.1109/ICRC.2016.7738681
https://doi.org/10.1145/3381755.3381760
https://doi.org/10.1073/pnas.94.24.12740
https://doi.org/10.1155/2014/541870
https://doi.org/10.1155/2014/541870
https://doi.org/10.3389/fnins.2018.00774

207

[62] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, Deep learning
in spiking neural networks, Neural Networks 111, 47–63 (2019).

[63] R. Brette, Philosophy of the spike: Rate-based vs. spike-based theories of the brain, Frontiers
in Systems Neuroscience 9, 151 (2015).

[64] M. Li and J. Z. Tsien, Neural code—neural self-information theory on how cell-assembly code
rises from spike time and neuronal variability, Frontiers in Cellular Neuroscience 11, 236
(2017).

[65] H. Wen, J. Shi, Y. Zhang, K.-H. Lu, J. Cao, and Z. Liu, Neural Encoding and Decoding with
Deep Learning for Dynamic Natural Vision, Cerebral Cortex 28, 4136–4160 (2017).

[66] A. Azarfar, N. Calcini, C. Huang, F. Zeldenrust, and T. Celikel, Neural coding: A single
neuron’s perspective, Neuroscience & Biobehavioral Reviews 94, 238–247 (2018).

[67] A. Almomani, M. Alauthman, M. Alweshah, O. Dorgham, and F. Albalas, A comparative
study on spiking neural network encoding schema: implemented with cloud computing, Cluster
Computing 22, 419–433 (2019).

[68] R. Brette, Is coding a relevant metaphor for the brain?, Behavioral and Brain Sciences 42,
e215 (2019).

[69] J. Göltz, A. Baumbach, S. Billaudelle, A. F. Kungl, O. Breitwieser, K. Meier, J. Schemmel,
L. Kriener, and M. A. Petrovici, Fast and deep neuromorphic learning with first-spike coding, in
Proceedings of the Neuro-Inspired Computational Elements Workshop, NICE ’20 (Association
for Computing Machinery, New York, NY, USA, 2020).

[70] W. Guo, M. E. Fouda, A. M. Eltawil, and K. N. Salama, Neural coding in spiking neural
networks: A comparative study for robust neuromorphic systems, Frontiers in Neuroscience
15, 212 (2021).

[71] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, and J. S.
Plank, A survey of neuromorphic computing and neural networks in hardware, arXiv:1705.06963
.

[72] J. Zhu, T. Zhang, Y. Yang, and R. Huang, A comprehensive review on emerging artificial
neuromorphic devices, Applied Physics Reviews 7, 011312 (2020).

[73] D. V. Christensen, R. Dittmann, B. Linares-Barranco, A. Sebastian, M. L. Gallo, A. Redaelli,
S. Slesazeck, T. Mikolajick, S. Spiga, S. Menzel, I. Valov, G. Milano, C. Ricciardi, S.-J. Liang,
F. Miao, M. Lanza, T. J. Quill, S. T. Keene, A. Salleo, J. Grollier, D. Marković, A. Mizrahi,
P. Yao, J. J. Yang, G. Indiveri, J. P. Strachan, S. Datta, E. Vianello, A. Valentian, J. Feldmann,
X. Li, W. H. P. Pernice, H. Bhaskaran, E. Neftci, S. Ramaswamy, J. Tapson, F. Scherr,
W. Maass, P. Panda, Y. Kim, G. Tanaka, S. Thorpe, C. Bartolozzi, T. A. Cleland, C. Posch,
S.-C. Liu, A. N. Mazumder, M. Hosseini, T. Mohsenin, E. Donati, S. Tolu, R. Galeazzi, M. E.
Christensen, S. Holm, D. Ielmini, and N. Pryds, 2021 roadmap on neuromorphic computing
and engineering (2021), arXiv:2105.05956 [cs.ET] .

[74] H. Markram, The human brain project, Scientific American 306, 50–55 (2012).

[75] D. Dold, I. Bytschok, A. F. Kungl, A. Baumbach, O. Breitwieser, W. Senn, J. Schemmel,
K. Meier, and M. A. Petrovici, Stochasticity from function — Why the Bayesian brain may
need no noise, Neural Networks 119, 200 – 213 (2019).

https://doi.org/https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.3389/fnsys.2015.00151
https://doi.org/10.3389/fnsys.2015.00151
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.3389/fncel.2017.00236
https://doi.org/10.1093/cercor/bhx268
https://doi.org/https://doi.org/10.1016/j.neubiorev.2018.09.007
https://doi.org/10.1007/s10586-018-02891-0
https://doi.org/10.1007/s10586-018-02891-0
https://doi.org/10.1017/S0140525X19000049
https://doi.org/10.1017/S0140525X19000049
https://doi.org/10.1145/3381755.3381770
https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.3389/fnins.2021.638474
https://arxiv.org/abs/1705.06963
https://doi.org/10.1063/1.5118217
https://arxiv.org/abs/2105.05956
https://doi.org/https://doi.org/10.1016/j.neunet.2019.08.002

208 Bibliography

[76] A. F. Kungl, S. Schmitt, J. Klähn, P. Müller, A. Baumbach, D. Dold, A. Kugele, E. Müller,
C. Koke, M. Kleider, C. Mauch, O. Breitwieser, L. Leng, N. Gürtler, M. Güttler, D. Husmann,
K. Husmann, A. Hartel, V. Karasenko, A. Grübl, J. Schemmel, K. Meier, and M. A. Petrovici,
Accelerated physical emulation of bayesian inference in spiking neural networks, Front. Neurosci.
13, 1201 (2019).

[77] M. A. Petrovici, J. Bill, I. Bytschok, J. Schemmel, and K. Meier, Stochastic inference with
spiking neurons in the high-conductance state, Phys. Rev. E 94, 042312 (2016).

[78] D. S. Lemons and A. Gythiel, Paul Langevin’s 1908 paper “On the Theory of Brownian Motion”
[“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530-533 (1908)], Am.
J. Phys. 65, 1079–1081 (1997).

[79] G. Aarts and I.-O. Stamatescu, Stochastic quantization at finite chemical potential, J. High
Energ. Phys. 2008, 018–018 (2008).

[80] G. Aarts, F. A. James, J. M. Pawlowski, E. Seiler, D. Sexty, and I.-O. Stamatescu, Stability of
complex Langevin dynamics in effective models, J. High Energ. Phys. 2013, 73 (2013).

[81] G. Aarts, Complex Langevin dynamics and other approaches at finite chemical potential,
Proceedings of the 30th International Symposium on Lattice Field Theory (Lattice 2012):
Cairns, Australia, June 24-29, 2012, PoS LATTICE2012, 017 (2012).

[82] M. Welling and Y. W. Teh, Bayesian learning via stochastic gradient langevin dynamics, in
Proceedings of the 28th International Conference on International Conference on Machine
Learning, ICML’11 (Omnipress, Madison, WI, USA, 2011) p. 681–688.

[83] J. Weis, P. Spilger, S. Billaudelle, Y. Stradmann, A. Emmel, E. Müller, O. Breitwieser, A. Grübl,
J. Ilmberger, V. Karasenko, M. Kleider, C. Mauch, K. Schreiber, and J. Schemmel, Inference
with artificial neural networks on analog neuromorphic hardware, in IoT Streams for Data-
Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning,
edited by J. Gama, S. Pashami, A. Bifet, M. Sayed-Mouchawe, H. Fröning, F. Pernkopf,
G. Schiele, and M. Blott (Springer International Publishing, Cham, 2020) pp. 201–212.

[84] P. Spilger, E. Müller, A. Emmel, A. Leibfried, C. Mauch, C. Pehle, J. Weis, O. Breitwieser,
S. Billaudelle, S. Schmitt, T. C. Wunderlich, Y. Stradmann, and J. Schemmel, hxtorch: Pytorch
for brainscales-2 – perceptrons on analog neuromorphic hardware (2020), arXiv:2006.13138
[cs.NE] .

[85] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467–488 (1982).

[86] A. Peres, Quantum Theory: Concepts and Methods (Springer, Dordrecht, 2002).

[87] J. Carrasquilla, G. Torlai, R. G. Melko, and L. Aolita, Reconstructing quantum states with
generative models, Nat. Mach. Intell. 1, 155–161 (2019).

[88] J. Berges, S. Borsányi, D. Sexty, and I.-O. Stamatescu, Lattice simulations of real-time quantum
fields, Phys. Rev. D 75, 045007 (2007).

[89] G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis, Taming the dynamical sign problem in
real-time evolution of quantum many-body problems, Phys. Rev. Lett. 115, 266802 (2015).

[90] A. Alexandru, G. m. c. Başar, P. F. Bedaque, S. Vartak, and N. C. Warrington, Monte Carlo
study of real time dynamics on the lattice, Phys. Rev. Lett. 117, 081602 (2016).

https://doi.org/10.3389/fnins.2019.01201
https://doi.org/10.3389/fnins.2019.01201
https://doi.org/10.1103/PhysRevE.94.042312
https://doi.org/10.1119/1.18725
https://doi.org/10.1119/1.18725
https://doi.org/10.1088/1126-6708/2008/09/018
https://doi.org/10.1088/1126-6708/2008/09/018
https://doi.org/10.1007/JHEP03(2013)073
https://arxiv.org/abs/2006.13138
https://arxiv.org/abs/2006.13138
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/0-306-47120-5
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1103/PhysRevD.75.045007
https://doi.org/10.1103/PhysRevLett.115.266802
https://doi.org/10.1103/PhysRevLett.117.081602

209

[91] G. Kanwar and M. L. Wagman, Real-time lattice gauge theory actions: unitarity, convergence,
and path integral contour deformations (2021), arXiv:2103.02602 [hep-lat] .

[92] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L. Sugar, Sign
problem in the numerical simulation of many-electron systems, Phys. Rev. B 41, 9301–9307
(1990).

[93] D. J. Scalapino, Numerical studies of the 2D Hubbard model, in Handbook of High-Temperature
Superconductivity: Theory and Experiment , edited by J. R. Schrieffer and J. S. Brooks (Springer
New York, New York, NY, 2007) pp. 495–526.

[94] J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L. Chan, C.-M. Chung, Y. Deng,
M. Ferrero, T. M. Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis, N. V.
Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov, L. F. Tocchio, I. S. Tupitsyn,
S. R. White, S. Zhang, B.-X. Zheng, Z. Zhu, and E. Gull (Simons Collaboration on the
Many-Electron Problem), Solutions of the two-dimensional Hubbard model: benchmarks and
results from a wide range of numerical algorithms, Phys. Rev. X 5, 041041 (2015).

[95] M. Ulybyshev, C. Winterowd, and S. Zafeiropoulos, Taming the sign problem of the finite
density Hubbard model via Lefschetz thimbles (2019), arXiv:1906.02726 [cond-mat.str-el] .

[96] M. V. Ulybyshev, V. I. Dorozhinskii, and O. V. Pavlovskii, The use of neural networks to solve
the sign problem in physical models, Phys. Part. Nuclei 51, 363–379 (2020).

[97] C. Berger, L. Rammelmüller, A. Loheac, F. Ehmann, J. Braun, and J. Drut, Complex Langevin
and other approaches to the sign problem in quantum many-body physics, Phys. Rept. 892,
1–54 (2021).

[98] J. Braun, J.-W. Chen, J. Deng, J. E. Drut, B. Friman, C.-T. Ma, and Y.-D. Tsai, Imaginary
polarization as a way to surmount the sign problem in ab initio calculations of spin-imbalanced
Fermi gases, Phys. Rev. Lett. 110, 130404 (2013).

[99] K. Gubbels and H. Stoof, Imbalanced Fermi gases at unitarity, Phys. Rept. 525, 255–313
(2013).

[100] L. Rammelmüller, W. J. Porter, J. E. Drut, and J. Braun, Surmounting the sign problem in
nonrelativistic calculations: A case study with mass-imbalanced fermions, Phys. Rev. D 96,
094506 (2017).

[101] A. Alexandru, P. F. Bedaque, and N. C. Warrington, Spin polarized nonrelativistic fermions
in 1 + 1 dimensions, Phys. Rev. D 98, 054514 (2018).

[102] L. Rammelmüller, J. E. Drut, and J. Braun, Pairing patterns in one-dimensional spin- and
mass-imbalanced Fermi gases, SciPost Phys. 9, 14 (2020).

[103] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic
properties of graphene, Rev. Mod. Phys. 81, 109–162 (2009).

[104] M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, and M. I. Polikarpov, Monte Carlo study
of the semimetal-insulator phase transition in monolayer graphene with a realistic interelectron
interaction potential, Phys. Rev. Lett. 111, 056801 (2013).

[105] D. Smith and L. von Smekal, Monte Carlo simulation of the tight-binding model of graphene
with partially screened Coulomb interactions, Phys. Rev. B 89, 195429 (2014).

https://arxiv.org/abs/2103.02602
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1007/978-0-387-68734-6_13
https://doi.org/10.1007/978-0-387-68734-6_13
https://doi.org/10.1103/PhysRevX.5.041041
https://arxiv.org/abs/1906.02726
https://doi.org/10.1134/S1063779620030314
https://doi.org/https://doi.org/10.1016/j.physrep.2020.09.002
https://doi.org/https://doi.org/10.1016/j.physrep.2020.09.002
https://doi.org/10.1103/PhysRevLett.110.130404
https://doi.org/https://doi.org/10.1016/j.physrep.2012.11.004
https://doi.org/https://doi.org/10.1016/j.physrep.2012.11.004
https://doi.org/10.1103/PhysRevD.96.094506
https://doi.org/10.1103/PhysRevD.96.094506
https://doi.org/10.1103/PhysRevD.98.054514
https://doi.org/10.21468/SciPostPhys.9.1.014
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevLett.111.056801
https://doi.org/10.1103/PhysRevB.89.195429

210 Bibliography

[106] A. Hasenfratz and D. Toussaint, Canonical ensembles and nonzero density quantum chromo-
dynamics, Nucl. Phys. B 371, 539–549 (1992).

[107] S. Muroya, A. Nakamura, C. Nonaka, and T. Takaishi, Lattice QCD at finite density: an
introductory review, Prog. Theor. Phys. 110, 615–668 (2003).

[108] M. Stephanov, QCD phase diagram: an overview, PoS LAT2006, 024 (2006).

[109] P. de Forcrand, Simulating QCD at finite density, PoS LAT2009, 010 (2010).

[110] E. Seiler, D. Sexty, and I.-O. Stamatescu, Gauge cooling in complex Langevin for lattice QCD
with heavy quarks, Phys. Lett. B 723, 213–216 (2013).

[111] D. Sexty, Simulating full QCD at nonzero density using the complex Langevin equation, Phys.
Lett. B 729, 108 – 111 (2014).

[112] Y. Mori, K. Kashiwa, and A. Ohnishi, Application of a neural network to the sign problem via
the path optimization method, Prog. Theor. Exp. Phys. 2018, 023B04 (2018).

[113] A. Joseph and A. Kumar, Complex Langevin simulations of zero-dimensional supersymmetric
quantum field theories, Phys. Rev. D 100, 074507 (2019).

[114] K. Kashiwa, Y. Mori, and A. Ohnishi, Controlling the model sign problem via the path
optimization method: Monte Carlo approach to a QCD effective model with Polyakov loop,
Phys. Rev. D 99, 014033 (2019).

[115] A. Alexandru, G. Basar, P. F. Bedaque, and N. C. Warrington, Complex paths around the
sign problem, (2020), arXiv:2007.05436 [hep-lat] .

[116] F. Attanasio, B. Jäger, and F. P. G. Ziegler, Complex Langevin simulations and the QCD
phase diagram: recent developments, Eur. Phys. J. A 56, 251 (2020).

[117] G. Parisi, On complex probabilities, Phys. Lett. B 131, 393–395 (1983).

[118] M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic
quantum Monte Carlo simulations, Phys. Rev. Lett. 94, 170201 (2005).

[119] J. Ambjørn and S.-K. Yang, Numerical problems in applying the Langevin equation to complex
effective actions, Phys. Lett. B 165, 140–146 (1985).

[120] G. Aarts, F. A. James, E. Seiler, and I.-O. Stamatescu, Adaptive stepsize and instabilities in
complex Langevin dynamics, Phys. Lett. B 687, 154 – 159 (2010).

[121] F. Attanasio and B. Jäger, Dynamical stabilisation of complex Langevin simulations of QCD,
Eur. Phys. J. C 79, 16 (2019).

[122] E. Seiler, Status of complex Langevin, EPJ Web Conf. 175, 01019 (2018).

[123] D. Guest, K. Cranmer, and D. Whiteson, Deep Learning and its Application to LHC Physics,
Ann. Rev. Nucl. Part. Sci. 68, 161–181 (2018), arXiv:1806.11484 [hep-ex] .

[124] A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A. Aurisano,
K. Terao, and T. Wongjirad, Machine learning at the energy and intensity frontiers of particle
physics, Nature 560, 41–48 (2018).

[125] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436–444 (2015).

https://doi.org/https://doi.org/10.1016/0550-3213(92)90247-9
https://doi.org/10.1143/PTP.110.615
https://doi.org/10.22323/1.032.0024
https://doi.org/10.22323/1.091.0010
https://doi.org/https://doi.org/10.1016/j.physletb.2013.04.062
https://doi.org/https://doi.org/10.1016/j.physletb.2014.01.019
https://doi.org/https://doi.org/10.1016/j.physletb.2014.01.019
https://doi.org/10.1093/ptep/ptx191
https://doi.org/10.1103/PhysRevD.100.074507
https://doi.org/10.1103/PhysRevD.99.014033
https://arxiv.org/abs/2007.05436
https://doi.org/10.1140/epja/s10050-020-00256-z
https://doi.org/10.1016/0370-2693(83)90525-7
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/https://doi.org/10.1016/0370-2693(85)90708-7
https://doi.org/https://doi.org/10.1016/j.physletb.2010.03.012
https://doi.org/10.1140/epjc/s10052-018-6512-7
https://doi.org/10.1051/epjconf/201817501019
https://doi.org/10.1146/annurev-nucl-101917-021019
https://arxiv.org/abs/1806.11484
https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1038/nature14539

211

[126] A. Graves, A.-r. Mohamed, and G. Hinton, Speech recognition with deep recurrent neural
networks, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(2013) pp. 6645–6649.

[127] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional
neural networks, in Advances in Neural Information Processing Systems, Vol. 25, edited by
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Inc., 2012).

[128] S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detection with
region proposal networks, in Advances in Neural Information Processing Systems, Vol. 28,
edited by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Curran Associates,
Inc., 2015).

[129] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) pp. 770–778.

[130] L. Wang, Discovering phase transitions with unsupervised learning, Phys. Rev. B 94, 195105
(2016).

[131] P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst, Machine learning quantum phases of
matter beyond the fermion sign problem, Scientific Reports 7, 8823 (2017).

[132] L.-G. Pang, K. Zhou, N. Su, H. Petersen, H. Stöcker, and X.-N. Wang, An equation-of-state-
meter of qcd transition from deep learning, (2016), arXiv:1612.04262 [hep-ph] .

[133] S. J. Wetzel, Unsupervised learning of phase transitions: From principal component analysis
to variational autoencoders, Phys. Rev. E 96, 022140 (2017).

[134] S. J. Wetzel and M. Scherzer, Machine learning of explicit order parameters: From the ising
model to su(2) lattice gauge theory, Phys. Rev. B 96, 184410 (2017).

[135] M. Cristoforetti, G. Jurman, A. I. Nardelli, and C. Furlanello, Towards meaningful physics
from generative models, (2017), arXiv:1705.09524 [hep-lat] .

[136] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, Machine learning phases of strongly
correlated fermions, Phys. Rev. X 7, 031038 (2017).

[137] W. Hu, R. R. P. Singh, and R. T. Scalettar, Discovering phases, phase transitions, and
crossovers through unsupervised machine learning: A critical examination, Phys. Rev. E 95,
062122 (2017).

[138] Z. Liu, S. P. Rodrigues, and W. Cai, Simulating the ising model with a deep convolutional
generative adversarial network, (2017), arXiv:1710.04987 [cond-mat.dis-nn] .

[139] E. P. L. van Nieuwenburg, Y.-H. Liu, and S. D. Huber, Learning phase transitions by confusion,
Nature Physics 13, 435–439 (2017).

[140] P. Ponte and R. G. Melko, Kernel methods for interpretable machine learning of order
parameters, Phys. Rev. B 96, 205146 (2017).

[141] J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nature Physics 13,
431–434 (2017).

[142] A. Morningstar and R. G. Melko, Deep learning the ising model near criticality, J. Mach.
Learn. Res. 18, 5975–5991 (2017).

https://doi.org/10.1109/ICASSP.2013.6638947
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1038/s41598-017-09098-0
https://arxiv.org/abs/1612.04262
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.1103/PhysRevB.96.184410
https://arxiv.org/abs/1705.09524
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevE.95.062122
https://doi.org/10.1103/PhysRevE.95.062122
https://arxiv.org/abs/1710.04987
https://doi.org/10.1038/nphys4037
https://doi.org/10.1103/PhysRevB.96.205146
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035

212 Bibliography

[143] A. Tanaka and A. Tomiya, Towards reduction of autocorrelation in HMC by machine learning,
(2017), arXiv:1712.03893 [hep-lat] .

[144] A. Tanaka and A. Tomiya, Detection of phase transition via convolutional neural networks,
Journal of the Physical Society of Japan 86, 063001 (2017).

[145] L. Huang and L. Wang, Accelerated monte carlo simulations with restricted boltzmann
machines, Phys. Rev. B 95, 035105 (2017).

[146] J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Self-learning monte carlo method, Phys. Rev. B 95,
041101 (2017).

[147] D. Wu, L. Wang, and P. Zhang, Solving statistical mechanics using variational autoregressive
networks, Phys. Rev. Lett. 122, 080602 (2019).

[148] K. Zhou, G. Endrődi, L.-G. Pang, and H. Stöcker, Regressive and generative neural networks
for scalar field theory, Phys. Rev. D 100, 011501 (2019).

[149] P. E. Shanahan, D. Trewartha, and W. Detmold, Machine learning action parameters in lattice
quantum chromodynamics, Phys. Rev. D 97, 094506 (2018).

[150] P. Suchsland and S. Wessel, Parameter diagnostics of phases and phase transition learning by
neural networks, Phys. Rev. B 97, 174435 (2018).

[151] J. M. Pawlowski and J. M. Urban, Reducing autocorrelation times in lattice simulations with
generative adversarial networks, Machine Learning: Science and Technology 1, 045011 (2020).

[152] J. Karpie, K. Orginos, A. Rothkopf, and S. Zafeiropoulos, Reconstructing parton distribution
functions from ioffe time data: from bayesian methods to neural networks, Journal of High
Energy Physics 2019, 57 (2019).

[153] F. Noé, S. Olsson, J. Köhler, and H. Wu, Boltzmann generators: Sampling equilibrium states
of many-body systems with deep learning, Science 365, eaaw1147 (2019).

[154] K. Nicoli, P. Kessel, N. Strodthoff, W. Samek, K.-R. Müller, and S. Nakajima, Comment
on "Solving Statistical Mechanics Using VANs": Introducing saVANt - VANs Enhanced by
Importance and MCMC Sampling, (2019), arXiv:1903.11048 [cond-mat.stat-mech] .

[155] M. S. Albergo, G. Kanwar, and P. E. Shanahan, Flow-based generative models for markov
chain monte carlo in lattice field theory, Phys. Rev. D 100, 034515 (2019).

[156] K. Kashiwa, Y. Kikuchi, and A. Tomiya, Phase transition encoded in neural network, Progress
of Theoretical and Experimental Physics 2019, 10.1093/ptep/ptz082 (2019), 083A04.

[157] K. Liu, J. Greitemann, and L. Pollet, Learning multiple order parameters with interpretable
machines, Phys. Rev. B 99, 104410 (2019).

[158] C. Casert, T. Vieijra, J. Nys, and J. Ryckebusch, Interpretable machine learning for inferring
the phase boundaries in a nonequilibrium system, Phys. Rev. E 99, 023304 (2019).

[159] W. Rządkowski, N. Defenu, S. Chiacchiera, A. Trombettoni, and G. Bighin, Detecting composite
orders in layered models via machine learning, New Journal of Physics 22, 093026 (2020).

[160] K. A. Nicoli, S. Nakajima, N. Strodthoff, W. Samek, K.-R. Müller, and P. Kessel, Asymptotically
unbiased estimation of physical observables with neural samplers, Phys. Rev. E 101, 023304
(2020).

https://arxiv.org/abs/1712.03893
https://doi.org/10.7566/JPSJ.86.063001
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevLett.122.080602
https://doi.org/10.1103/PhysRevD.100.011501
https://doi.org/10.1103/PhysRevD.97.094506
https://doi.org/10.1103/PhysRevB.97.174435
https://doi.org/10.1088/2632-2153/abae73
https://doi.org/10.1007/JHEP04(2019)057
https://doi.org/10.1007/JHEP04(2019)057
https://doi.org/10.1126/science.aaw1147
https://arxiv.org/abs/1903.11048
https://doi.org/10.1103/PhysRevD.100.034515
https://doi.org/10.1093/ptep/ptz082
https://doi.org/10.1103/PhysRevB.99.104410
https://doi.org/10.1103/PhysRevE.99.023304
https://doi.org/10.1088/1367-2630/abae44
https://doi.org/10.1103/PhysRevE.101.023304
https://doi.org/10.1103/PhysRevE.101.023304

213

[161] E. Greplova, A. Valenti, G. Boschung, F. Schäfer, N. Lörch, and S. D. Huber, Unsupervised
identification of topological phase transitions using predictive models, New Journal of Physics
22, 045003 (2020).

[162] J. Shlomi, P. Battaglia, and J.-R. Vlimant, Graph neural networks in particle physics, Machine
Learning: Science and Technology 2, 021001 (2021).

[163] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher, and D. J. Schwab,
A high-bias, low-variance introduction to machine learning for physicists, Phys. Rept. 810,
1–124 (2019).

[164] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and
L. Zdeborová, Machine learning and the physical sciences, Rev. Mod. Phys. 91, 045002 (2019).

[165] Y. Bengio, A. Courville, and P. Vincent, Representation learning: A review and new per-
spectives, IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1798–1828
(2013).

[166] N. Tishby, F. C. Pereira, and W. Bialek, The information bottleneck method, in Proc. of
the 37-th Annual Allerton Conference on Communication, Control and Computing (1999) pp.
368–377.

[167] T.-W. Lee, M. Girolami, A. Bell, and T. Sejnowski, A unifying information-theoretic framework
for independent component analysis, Computers & Mathematics with Applications 39, 1–21
(2000).

[168] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, Information-theoretic metric learning, in
Proceedings of the 24th International Conference on Machine Learning , ICML ’07 (Association
for Computing Machinery, New York, NY, USA, 2007) p. 209–216.

[169] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, Extracting and composing robust
features with denoising autoencoders, in Proceedings of the 25th International Conference on
Machine Learning , ICML ’08 (Association for Computing Machinery, New York, NY, USA,
2008) p. 1096–1103.

[170] D. P. Kingma and M. Welling, Auto-encoding variational bayes, in 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, edited by Y. Bengio and Y. LeCun (2014).

[171] N. Tishby and N. Zaslavsky, Deep learning and the information bottleneck principle, in 2015
IEEE Information Theory Workshop (ITW) (2015) pp. 1–5.

[172] M. D. Hoffmann and M. J. Johnson, Elbo surgery: yet another way to carve up the variational
evidence lower bound, in NIPS 2016 Workshop on Advances in Approximate Bayesian Inference
(2016).

[173] A. A. Alemi, B. Poole, I. Fischer, J. V. Dillon, R. A. Saurous, and K. Murphy, An
information-theoretic analysis of deep latent-variable models, CoRR abs/1711.00464 (2017),
arXiv:1711.00464 .

[174] A. Alemi, B. Poole, I. Fischer, J. Dillon, R. A. Saurous, and K. Murphy, Fixing a broken
ELBO, in Proceedings of the 35th International Conference on Machine Learning , Proceedings
of Machine Learning Research, Vol. 80, edited by J. Dy and A. Krause (PMLR, 2018) pp.
159–168.

https://doi.org/10.1088/1367-2630/ab7771
https://doi.org/10.1088/1367-2630/ab7771
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/physics/0004057
https://doi.org/https://doi.org/10.1016/S0898-1221(00)00101-2
https://doi.org/https://doi.org/10.1016/S0898-1221(00)00101-2
https://doi.org/10.1145/1273496.1273523
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1109/ITW.2015.7133169
http://arxiv.org/abs/1711.00464
https://arxiv.org/abs/1711.00464
http://proceedings.mlr.press/v80/alemi18a.html

214 Bibliography

[175] R. Shwartz-Ziv and N. Tishby, Opening the black box of deep neural networks via information,
CoRR abs/1703.00810 (2017), arXiv:1703.00810 .

[176] M. Gabrié, A. Manoel, C. Luneau, J. Barbier, N. Macris, F. Krzakala, and L. Zdeborová,
Entropy and mutual information in models of deep neural networks, in NeurIPS (2018) pp.
1826–1836.

[177] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey, and D. D. Cox, On
the information bottleneck theory of deep learning, Journal of Statistical Mechanics: Theory
and Experiment 2019, 124020 (2019).

[178] A. Kolchinsky, B. D. Tracey, and D. H. Wolpert, Nonlinear information bottleneck, Entropy
21, 10.3390/e21121181 (2019).

[179] V. Crescimanna and B. Graham, An information theoretic approach to the autoencoder, in
Recent Advances in Big Data and Deep Learning, edited by L. Oneto, N. Navarin, A. Sperduti,
and D. Anguita (Springer International Publishing, Cham, 2020) pp. 99–108.

[180] L. Ardizzone, R. Mackowiak, C. Rother, and U. Köthe, Training normalizing flows with
the information bottleneck for competitive generative classification, in Advances in Neural
Information Processing Systems, Vol. 33, edited by H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (Curran Associates, Inc., 2020) pp. 7828–7840.

[181] R. Linsker, Self-organization in a perceptual network, Computer 21, 105–117 (1988).

[182] A. J. Bell and T. J. Sejnowski, An Information-Maximization Approach to Blind Separation
and Blind Deconvolution, Neural Computation 7, 1129–1159 (1995).

[183] D. Barber and F. Agakov, Information maximization in noisy channels : A variational approach,
in Advances in Neural Information Processing Systems, Vol. 16, edited by S. Thrun, L. Saul,
and B. Schölkopf (MIT Press, 2004).

[184] L. Paninski, Estimation of entropy and mutual information, Neural Comput. 15, 1191–1253
(2003).

[185] A. Kraskov, H. Stögbauer, and P. Grassberger, Estimating mutual information, Phys. Rev. E
69, 066138 (2004).

[186] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, A. Courville, and D. Hjelm,
Mutual information neural estimation, in Proceedings of the 35th International Conference on
Machine Learning , Proceedings of Machine Learning Research, Vol. 80, edited by J. Dy and
A. Krause (PMLR, 2018) pp. 531–540.

[187] Z. Goldfeld, E. Van Den Berg, K. Greenewald, I. Melnyk, N. Nguyen, B. Kingsbury, and
Y. Polyanskiy, Estimating information flow in deep neural networks, in Proceedings of the 36th
International Conference on Machine Learning , Proceedings of Machine Learning Research,
Vol. 97, edited by K. Chaudhuri and R. Salakhutdinov (PMLR, 2019) pp. 2299–2308.

[188] D. McAllester and K. Stratos, Formal limitations on the measurement of mutual information,
in Proceedings of the Twenty Third International Conference on Artificial Intelligence and
Statistics, Proceedings of Machine Learning Research, Vol. 108, edited by S. Chiappa and
R. Calandra (PMLR, 2020) pp. 875–884.

http://arxiv.org/abs/1703.00810
https://arxiv.org/abs/1703.00810
https://proceedings.neurips.cc/paper/2018/hash/6d0f846348a856321729a2f36734d1a7-Abstract.html
https://doi.org/10.1088/1742-5468/ab3985
https://doi.org/10.1088/1742-5468/ab3985
https://doi.org/10.3390/e21121181
https://proceedings.neurips.cc/paper/2020/file/593906af0d138e69f49d251d3e7cbed0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/593906af0d138e69f49d251d3e7cbed0-Paper.pdf
https://doi.org/10.1109/2.36
https://doi.org/10.1162/neco.1995.7.6.1129
https://proceedings.neurips.cc/paper/2003/file/a6ea8471c120fe8cc35a2954c9b9c595-Paper.pdf
https://doi.org/10.1162/089976603321780272
https://doi.org/10.1162/089976603321780272
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
http://proceedings.mlr.press/v80/belghazi18a.html
http://proceedings.mlr.press/v80/belghazi18a.html
http://proceedings.mlr.press/v97/goldfeld19a.html
http://proceedings.mlr.press/v97/goldfeld19a.html
http://proceedings.mlr.press/v108/mcallester20a.html
http://proceedings.mlr.press/v108/mcallester20a.html

215

[189] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and
Y. Bengio, Learning deep representations by mutual information estimation and maximization,
in International Conference on Learning Representations (2019).

[190] P. Bachman, R. D. Hjelm, and W. Buchwalter, Learning representations by maximizing mutual
information across views, in Advances in Neural Information Processing Systems, Vol. 32,
edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Curran Associates, Inc., 2019).

[191] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, Generative adversarial nets, in Advances in Neural Information Processing
Systems, Vol. 27, edited by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger (Curran Associates, Inc., 2014).

[192] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, Infogan: Inter-
pretable representation learning by information maximizing generative adversarial nets, in
Advances in Neural Information Processing Systems, Vol. 29, edited by D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett (Curran Associates, Inc., 2016).

[193] D. J. Rezende, S. Mohamed, and D. Wierstra, Stochastic backpropagation and approximate
inference in deep generative models, in Proceedings of the 31st International Conference on
Machine Learning , Proceedings of Machine Learning Research, Vol. 32, edited by E. P. Xing
and T. Jebara (PMLR, Bejing, China, 2014) pp. 1278–1286.

[194] D. Qian and W. K. Cheung, Enhancing variational autoencoders with mutual information
neural estimation for text generation, in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP) (Association for Computational Linguistics, Hong
Kong, China, 2019) pp. 4047–4057.

[195] S. Zhao, J. Song, and S. Ermon, Infovae: Balancing learning and inference in variational
autoencoders, Proceedings of the AAAI Conference on Artificial Intelligence 33, 5885–5892
(2019).

[196] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, Deep graph
infomax, in International Conference on Learning Representations (2019).

[197] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, Neural message passing for
quantum chemistry, in Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17 (JMLR.org, 2017) p. 1263–1272.

[198] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, Geometric deep
learning: Going beyond euclidean data, IEEE Signal Processing Magazine 34, 18–42 (2017).

[199] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, Graph neural
networks: A review of methods and applications (2018), arXiv:1812.08434 [cs.LG] .

[200] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,
M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, Relational inductive biases, deep learning,
and graph networks (2018), arXiv:1806.01261 [cs.LG] .

https://openreview.net/forum?id=Bklr3j0cKX
https://proceedings.neurips.cc/paper/2019/file/ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Paper.pdf
http://proceedings.mlr.press/v32/rezende14.html
http://proceedings.mlr.press/v32/rezende14.html
https://doi.org/10.18653/v1/D19-1416
https://doi.org/10.18653/v1/D19-1416
https://doi.org/10.18653/v1/D19-1416
https://doi.org/10.1609/aaai.v33i01.33015885
https://doi.org/10.1609/aaai.v33i01.33015885
https://openreview.net/forum?id=rklz9iAcKQ
https://doi.org/10.1109/msp.2017.2693418
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1806.01261

216 Bibliography

[201] H. Cai, V. W. Zheng, and K. Chang, A comprehensive survey of graph embedding: Problems,
techniques, and applications, IEEE Transactions on Knowledge & Data Engineering 30,
1616–1637 (2018).

[202] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, A comprehensive survey on graph
neural networks, IEEE Transactions on Neural Networks and Learning Systems , 1–21 (2020).

[203] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, Machine learning on graphs: A
model and comprehensive taxonomy (2020), arXiv:2005.03675 [cs.LG] .

[204] G. Ma, N. K. Ahmed, T. L. Willke, and P. S. Yu, Deep graph similarity learning: a survey,
Data Mining and Knowledge Discovery 35, 688–725 (2021).

[205] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, Explaining explanations:
An overview of interpretability of machine learning, in 2018 IEEE 5th International Conference
on Data Science and Advanced Analytics (DSAA) (2018) pp. 80–89.

[206] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia,
S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera, Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai,
Information Fusion 58, 82–115 (2020).

[207] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, Explainable ai: A review of machine
learning interpretability methods, Entropy 23, 10.3390/e23010018 (2021).

[208] M. Jarrell and J. E. Gubernatis, Bayesian inference and the analytic continuation of imaginary-
time quantum Monte Carlo data, Phys. Rept. 269, 133–195 (1996).

[209] M. Asakawa, Y. Nakahara, and T. Hatsuda, Maximum entropy analysis of the spectral functions
in lattice qcd, Progress in Particle and Nuclear Physics 46, 459–508 (2001).

[210] Y. Burnier and A. Rothkopf, Bayesian approach to spectral function reconstruction for euclidean
quantum field theories, Phys. Rev. Lett. 111, 182003 (2013).

[211] A. Rothkopf, Bayesian techniques and applications to QCD, in Proceedings of XIII Quark
Confinement and the Hadron Spectrum — PoS(Confinement2018), Vol. 336 (2019) p. 026.

[212] V. Shah and C. Hegde, Solving linear inverse problems using gan priors: An algorithm with
provable guarantees, in 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2018) pp. 4609–4613.

[213] H. Li, J. Schwab, S. Antholzer, and M. Haltmeier, NETT: solving inverse problems with deep
neural networks, Inverse Problems 36, 065005 (2020).

[214] R. Anirudh, J. J. Thiagarajan, B. Kailkhura, and T. Bremer, An unsupervised approach
to solving inverse problems using generative adversarial networks, CoRR abs/1805.07281
(2018).

[215] L. Ardizzone, J. Kruse, C. Rother, and U. Köthe, Analyzing inverse problems with invertible
neural networks, in International Conference on Learning Representations (2019).

[216] G. Aarts, P. Giudice, and E. Seiler, Localised distributions and criteria for correctness in
complex Langevin dynamics, Ann. Phys. (N. Y.) 337, 238–260 (2013).

https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/tnnls.2020.2978386
https://arxiv.org/abs/2005.03675
https://doi.org/10.1007/s10618-020-00733-5
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.3390/e23010018
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/https://doi.org/10.1016/S0146-6410(01)00150-8
https://doi.org/10.1103/PhysRevLett.111.182003
https://doi.org/10.22323/1.336.0026
https://doi.org/10.22323/1.336.0026
https://doi.org/10.1109/ICASSP.2018.8462233
https://doi.org/10.1109/ICASSP.2018.8462233
https://doi.org/10.1088/1361-6420/ab6d57
http://arxiv.org/abs/1805.07281
http://arxiv.org/abs/1805.07281
https://openreview.net/forum?id=rJed6j0cKX
https://doi.org/https://doi.org/10.1016/j.aop.2013.06.019

217

[217] K. Nagata, J. Nishimura, and S. Shimasaki, Argument for justification of the complex Langevin
method and the condition for correct convergence, Phys. Rev. D 94, 114515 (2016).

[218] G. Aarts, Can stochastic quantization evade the sign problem? The relativistic Bose gas at
finite chemical potential, Phys. Rev. Lett. 102, 131601 (2009).

[219] G. Aarts, E. Seiler, and I.-O. Stamatescu, Complex Langevin method: when can it be trusted?,
Phys. Rev. D 81, 054508 (2010).

[220] L. L. Salcedo, Does the complex Langevin method give unbiased results?, Phys. Rev. D 94,
114505 (2016).

[221] G. Aarts, F. A. James, E. Seiler, and I.-O. Stamatescu, Complex Langevin: etiology and
diagnostics of its main problem, Eur. Phys. J. C 71, 1756 (2011).

[222] G. Aarts, K. Boguslavski, M. Scherzer, E. Seiler, D. Sexty, and I.-O. Stamatescu, Getting even
with CLE, EPJ Web Conf. 175, 14007 (2018).

[223] K. Nagata, J. Nishimura, and S. Shimasaki, Testing the criterion for correct convergence in
the complex Langevin method, J. High Energ. Phys. 2018, 4 (2018).

[224] M. Scherzer, E. Seiler, D. Sexty, and I.-O. Stamatescu, Complex Langevin and boundary terms,
Phys. Rev. D 99, 014512 (2019).

[225] E. Seiler, Complex Langevin: boundary terms at poles, Phys. Rev. D 102, 094507 (2020).

[226] G. Aarts, E. Seiler, D. Sexty, and I.-O. Stamatescu, Complex Langevin dynamics and zeroes
of the fermion determinant, J. High Energ. Phys. 2017, 44 (2017).

[227] M. Scherzer, E. Seiler, D. Sexty, and I.-O. Stamatescu, Controlling complex Langevin simula-
tions of lattice models by boundary term analysis, Phys. Rev. D 101, 014501 (2020).

[228] J. Nishimura and S. Shimasaki, New insights into the problem with a singular drift term in
the complex Langevin method, Phys. Rev. D 92, 011501 (2015).

[229] M. E. J. Newman and G. T. Barkema, Monte Carlo methods in statistical physics (Clarendon
Press, Oxford, 1999).

[230] C. F. Baillie and D. A. Johnston, Metropolis and langevin time, Phys. Rev. D 39, 1246–1248
(1989).

[231] P. Meakin, H. Metiu, R. G. Petschek, and D. J. Scalapino, The simulation of spinodal
decomposition in two dimensions: A comparison of Monte Carlo and Langevin dynamics, J.
Chem. Phys. 79, 1948–1954 (1983).

[232] R. Ettelaie and M. A. Moore, Comparison of langevin and monte carlo dynamics, Journal of
Physics A: Mathematical and General 17, 3505 (1984).

[233] A. Destexhe, M. Rudolph, and D. Paré, The high-conductance state of neocortical neurons in
vivo, Nature Reviews Neuroscience 4, 739–751 (2003).

[234] M. A. Petrovici, Form versus function: Theory and models for neuronal substrates (Springer
International Publishing, Cham, 2016).

[235] G. Hinton, P. Dayan, B. Frey, and R. Neal, The "wake-sleep" algorithm for unsupervised
neural networks, Science 268, 1158–1161 (1995).

https://doi.org/10.1103/PhysRevD.94.114515
https://doi.org/10.1103/PhysRevLett.102.131601
https://doi.org/10.1103/PhysRevD.81.054508
https://doi.org/10.1103/PhysRevD.94.114505
https://doi.org/10.1103/PhysRevD.94.114505
https://doi.org/10.1140/epjc/s10052-011-1756-5
https://doi.org/10.1051/epjconf/201817514007
https://doi.org/10.1007/jhep05(2018)004
https://doi.org/10.1103/PhysRevD.99.014512
https://doi.org/10.1103/PhysRevD.102.094507
https://doi.org/10.1007/JHEP05(2017)044
https://doi.org/10.1103/PhysRevD.101.014501
https://doi.org/10.1103/PhysRevD.92.011501
https://doi.org/10.1103/PhysRevD.39.1246
https://doi.org/10.1103/PhysRevD.39.1246
https://doi.org/10.1063/1.445975
https://doi.org/10.1063/1.445975
http://stacks.iop.org/0305-4470/17/i=18/a=020
http://stacks.iop.org/0305-4470/17/i=18/a=020
https://doi.org/10.1038/nrn1198
https://doi.org/10.1007/978-3-319-39552-4
https://doi.org/10.1126/science.7761831

218 Bibliography

[236] N. Gürtler, A Markovian Model of LIF Networks, Masterarbeit, Universität Heidelberg (2018).

[237] M. A. Petrovici, A. Schroeder, O. Breitwieser, A. Grübl, J. Schemmel, and K. Meier, Robustness
from structure: Inference with hierarchical spiking networks on analog neuromorphic hardware,
in 2017 International Joint Conference on Neural Networks (IJCNN) (2017) pp. 2209–2216.

[238] G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural
networks, Science 313, 504–507 (2006).

[239] R. Salakhutdinov, A. Mnih, and G. Hinton, Restricted boltzmann machines for collaborative
filtering, in Proceedings of the 24th International Conference on Machine Learning , ICML ’07
(Association for Computing Machinery, New York, NY, USA, 2007) p. 791–798.

[240] N. Le Roux and Y. Bengio, Representational Power of Restricted Boltzmann Machines and
Deep Belief Networks, Neural Computation 20, 1631–1649 (2008).

[241] G. Torlai and R. G. Melko, Learning thermodynamics with boltzmann machines, Phys. Rev.
B 94, 165134 (2016).

[242] R. G. Melko, G. Carleo, J. Carrasquilla, and J. I. Cirac, Restricted boltzmann machines in
quantum physics, Nature Physics 15, 887–892 (2019).

[243] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning algorithm for Boltzmann machines,
Cogn. Sci. 9, 147–169 (1985).

[244] A. Fischer and C. Igel, An introduction to restricted boltzmann machines, in Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applications, edited by L. Alvarez,
M. Mejail, L. Gomez, and J. Jacobo (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012) pp.
14–36.

[245] A. Baumbach, Magnetic Phenomena in Spiking Neural Networks, Masterarbeit, Universität
Heidelberg (2016).

[246] B. Cramer, S. Billaudelle, S. Kanya, A. Leibfried, A. Grübl, V. Karasenko, C. Pehle,
K. Schreiber, Y. Stradmann, J. Weis, J. Schemmel, and F. Zenke, Surrogate gradients for
analog neuromorphic computing (2021), arXiv:2006.07239 [cs.NE] .

[247] T. C. Wunderlich and C. Pehle, Event-based backpropagation can compute exact gradients for
spiking neural networks, Scientific Reports 11, 12829 (2021).

[248] M. Vuffray, S. Misra, and A. Lokhov, Efficient learning of discrete graphical models, in Advances
in Neural Information Processing Systems, Vol. 33, edited by H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (Curran Associates, Inc., 2020) pp. 13575–13585.

[249] A. Jayakumar, A. Lokhov, S. Misra, and M. Vuffray, Learning of discrete graphical models
with neural networks, in Advances in Neural Information Processing Systems, Vol. 33, edited
by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Curran Associates, Inc.,
2020) pp. 5610–5620.

[250] E. O. Neftci, H. Mostafa, and F. Zenke, Surrogate gradient learning in spiking neural networks:
Bringing the power of gradient-based optimization to spiking neural networks, IEEE Signal
Processing Magazine 36, 51–63 (2019).

https://doi.org/10.1109/IJCNN.2017.7966123
https://doi.org/10.1126/science.1127647
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1162/neco.2008.04-07-510
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1038/s41567-019-0545-1
https://doi.org/10.1207/s15516709cog0901_7
https://arxiv.org/abs/2006.07239
https://doi.org/10.1038/s41598-021-91786-z
https://proceedings.neurips.cc/paper/2020/file/9d702ffd99ad9c70ac37e506facc8c38-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9d702ffd99ad9c70ac37e506facc8c38-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3cc697419ea18cc98d525999665cb94a-Paper.pdf
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/MSP.2019.2931595

219

[251] S. Billaudelle, B. Cramer, M. A. Petrovici, K. Schreiber, D. Kappel, J. Schemmel, and K. Meier,
Structural plasticity on an accelerated analog neuromorphic hardware system, Neural Networks
133, 11–20 (2021).

[252] T. Wunderlich, A. F. Kungl, E. Müller, A. Hartel, Y. Stradmann, S. A. Aamir, A. Grübl,
A. Heimbrecht, K. Schreiber, D. Stöckel, C. Pehle, S. Billaudelle, G. Kiene, C. Mauch,
J. Schemmel, K. Meier, and M. A. Petrovici, Demonstrating advantages of neuromorphic
computation: A pilot study, Front. Neurosci. 13, 260 (2019).

[253] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of
State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087–1092 (1953).

[254] R. B. Potts, The mathematical investigation of some cooperative phenomena, Ph.D. thesis
(1951).

[255] R. B. Potts, Some generalized order - disorder transformations, Proc. Cambridge Phil. Soc.
48, 106–109 (1952).

[256] F. Y. Wu, The Potts model, Rev. Mod. Phys. 54, 235–268 (1982).

[257] C. M. Lapilli, P. Pfeifer, and C. Wexler, Universality away from critical points in two-
dimensional phase transitions, Phys. Rev. Lett. 96, 140603 (2006).

[258] P. S. Neelakanta, R. Sudhakar, and D. Degroff, Langevin machine: A neural network based on
stochastically justifiable sigmoidal function, Biol. Cybern. 65, 331–338 (1991).

[259] A. Baumbach, From microscopic dynamics to ensemble behavior in spiking neural networks,
Ph.D. thesis, Universität Heidelberg (2021).

[260] L. Buesing, J. Bill, B. Nessler, and W. Maass, Neural dynamics as sampling: A model for
stochastic computation in recurrent networks of spiking neurons, PLOS Computational Biology
7, 1–22 (2011).

[261] D. Probst, M. A. Petrovici, I. Bytschok, J. Bill, D. Pecevski, J. Schemmel, and K. Meier,
Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons,
Frontiers in Computational Neuroscience 9, 13 (2015).

[262] J. Jordan, M. A. Petrovici, O. Breitwieser, J. Schemmel, K. Meier, M. Diesmann, and T. Tetzlaff,
Deterministic networks for probabilistic computing, Scientific Reports 9, 18303 (2019).

[263] E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschrift für Physik 31, 253–258 (1925).

[264] L. Onsager, Crystal statistics. 1. A Two-dimensional model with an order disorder transition,
Phys. Rev. 65, 117–149 (1944).

[265] I. Bytschok, D. Dold, J. Schemmel, K. Meier, and M. A. Petrovici, Spike-based probabilis-
tic inference with correlated noise, in BMC Neuroscience 2017, Vol. 18 (Organization for
Computational Neurosciences, 2017) p. 200.

[266] G. Montúfar, Restricted Boltzmann machines: introduction and review, in Information Geom-
etry and Its Applications, edited by N. Ay, P. Gibilisco, and F. Matúš (Springer International
Publishing, Cham, 2018) pp. 75–115.

[267] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statist. 22, 79–86
(1951).

https://doi.org/https://doi.org/10.1016/j.neunet.2020.09.024
https://doi.org/https://doi.org/10.1016/j.neunet.2020.09.024
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.1063/1.1699114
https://doi.org/10.1017/S0305004100027419
https://doi.org/10.1017/S0305004100027419
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/PhysRevLett.96.140603
https://doi.org/10.1007/BF00216966
https://doi.org/10.1371/journal.pcbi.1002211
https://doi.org/10.1371/journal.pcbi.1002211
https://doi.org/10.3389/fncom.2015.00013
https://doi.org/10.1038/s41598-019-54137-7
https://doi.org/10.1007/BF02980577
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694

220 Bibliography

[268] Y. Hamada, Dynamics of the noise-induced phase transition of the verhulst model, Progress of
Theoretical Physics 65, 850–860 (1981).

[269] A. L. Barbera and B. Spagnolo, Spatio-temporal patterns in population dynamics, Physica A:
Statistical Mechanics and its Applications 314, 120 – 124 (2002).

[270] D. Valenti, A. Fiasconaro, and B. Spagnolo, Pattern formation and spatial correlation induced
by the noise in two competing species, Acta Physica Polonica B 35, 1481 – 1489 (2004).

[271] A. Fiasconaro, D. Valenti, and B. Spagnolo, Nonmonotonic behavior of spatiotemporal pattern
formation in a noisy Lotka-Volterra system, Acta Physica Polonica B 35, 1491 – 1500 (2004).

[272] K. Kaneko, Overview of coupled map lattices, Chaos: An Interdisciplinary Journal of Nonlinear
Science 2, 279–282 (1992).

[273] M. Girardi-Schappo, M. Tragtenberg, and O. Kinouchi, A brief history of excitable map-based
neurons and neural networks, Journal of Neuroscience Methods 220, 116 – 130 (2013).

[274] R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, The
bulletin of mathematical biophysics 17, 257 (1955).

[275] J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve
axon, Proceedings of the IRE 50, 2061 (1962).

[276] M. E. Yamakou, T. D. Tran, L. H. Duc, and J. Jost, The stochastic Fitzhugh-Nagumo neuron
model in the excitable regime embeds a leaky integrate-and-fire model, Journal of mathematical
biology 79, 509 (2019).

[277] M. A. Zaks, X. Sailer, L. Schimansky-Geier, and A. B. Neiman, Noise induced complexity: From
subthreshold oscillations to spiking in coupled excitable systems, Chaos: An Interdisciplinary
Journal of Nonlinear Science 15, 026117 (2005).

[278] K.-E. Lee, M. A. Lopes, J. F. F. Mendes, and A. V. Goltsev, Critical phenomena and noise-
induced phase transitions in neuronal networks, Phys. Rev. E 89, 012701 (2014).

[279] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal
approximators, Neural Networks 2, 359–366 (1989).

[280] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4,
251–257 (1991).

[281] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum
Philosophy , 2nd ed. (Cambridge University Press, 2004).

[282] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local
hidden-variable theories, Phys. Rev. Lett. 23, 880–884 (1969).

[283] A. Aspect, P. Grangier, and G. Roger, Experimental tests of realistic local theories via Bell’s
theorem, Phys. Rev. Lett. 47, 460–463 (1981).

[284] A. Cabello, A. Feito, and A. Lamas-Linares, Bell’s inequalities with realistic noise for
polarization-entangled photons, Phys. Rev. A 72, 052112 (2005).

[285] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond Bell’s theorem, in Bell’s
Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos (Springer
Netherlands, Dordrecht, 1989) pp. 69–72.

https://doi.org/10.1143/PTP.65.850
https://doi.org/10.1143/PTP.65.850
https://doi.org/https://doi.org/10.1016/S0378-4371(02)01173-1
https://doi.org/https://doi.org/10.1016/S0378-4371(02)01173-1
https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=35&page=1481
https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=35&page=1491
https://doi.org/10.1063/1.165869
https://doi.org/10.1063/1.165869
https://doi.org/https://doi.org/10.1016/j.jneumeth.2013.07.014
https://doi.org/10.1007/BF02477753
https://doi.org/10.1007/BF02477753
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1007/s00285-019-01366-z
https://doi.org/10.1007/s00285-019-01366-z
https://doi.org/10.1063/1.1886386
https://doi.org/10.1063/1.1886386
https://doi.org/10.1103/PhysRevE.89.012701
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1017/CBO9780511815676
https://doi.org/10.1017/CBO9780511815676
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.47.460
https://doi.org/10.1103/PhysRevA.72.052112
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/10.1007/978-94-017-0849-4_10

221

[286] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume,
W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, Creation of a
six-atom ‘Schrödinger cat’ state, Nature 438, 639–642 (2005).

[287] N. Le Roux and Y. Bengio, Representational power of restricted Boltzmann machines and
deep belief networks, Neural Comput. 20, 1631–1649 (2008).

[288] S. Aaronson, The learnability of quantum states, P. Roy. Soc. A-Math. Phy. 463, 3089–3114
(2007).

[289] C. Wetterich, Quantum computing with classical bits, Nucl. Phys. B 948, 114776 (2019).

[290] S. Czischek, J. M. Pawlowski, T. Gasenzer, and M. Gärttner, Sampling scheme for neuromorphic
simulation of entangled quantum systems, Phys. Rev. B 100, 195120 (2019).

[291] S. Bluecher, J. M. Pawlowski, M. Scherzer, M. Schlosser, I.-O. Stamatescu, S. Syrkowski, and
F. P. G. Ziegler, Reweighting Lefschetz thimbles, SciPost Phys. 5, 44 (2018).

[292] D. Alvestad, R. Larsen, and A. Rothkopf, Stable solvers for real-time complex Langevin (2021),
arXiv:2105.02735 [hep-lat] .

[293] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B
195, 216 – 222 (1987).

[294] P. Smolensky, Information processing in dynamical systems: Foundations of harmony theory,
in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1:
Foundations (MIT Press, Cambridge, MA, USA, 1986) p. 194–281.

[295] J. Bloch, Reweighting complex Langevin trajectories, Phys. Rev. D 95, 054509 (2017).

[296] A. M. Ferrenberg and R. H. Swendsen, New monte carlo technique for studying phase transitions,
Phys. Rev. Lett. 61, 2635–2638 (1988).

[297] R. Iwami, S. Ejiri, K. Kanaya, Y. Nakagawa, D. Yamamoto, and T. Umeda (WHOT-QCD
Collaboration), Multipoint reweighting method and its applications to lattice qcd, Phys. Rev.
D 92, 094507 (2015).

[298] Bloch, Jacques, Glesaaen, Jonas, Philipsen, Owe, Verbaarschot, Jacobus, and Zafeiropoulos,
Savvas, Complex langevin simulations of a finite density matrix model for qcd, EPJ Web Conf.
137, 07030 (2017).

[299] A. Hosak, Examining the one link SU3 model using complex Langevin and reweighting, Bache-
lor’s thesis, Universität Heidelberg (2021).

[300] M. Gori, G. Monfardini, and F. Scarselli, A new model for learning in graph domains, in
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., Vol. 2
(2005) pp. 729–734 vol. 2.

[301] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, Gated graph sequence neural networks,
in 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings , edited by Y. Bengio and Y. LeCun (2016).

[302] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, The graph neural
network model, IEEE Transactions on Neural Networks 20, 61–80 (2009).

https://doi.org/10.1038/nature04251
https://doi.org/10.1162/neco.2008.04-07-510
https://doi.org/10.1098/rspa.2007.0113
https://doi.org/10.1098/rspa.2007.0113
https://doi.org/10.1016/j.nuclphysb.2019.114776
https://doi.org/10.1103/PhysRevB.100.195120
https://doi.org/10.21468/SciPostPhys.5.5.044
https://arxiv.org/abs/2105.02735
https://doi.org/https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1103/PhysRevD.95.054509
https://doi.org/10.1103/PhysRevLett.61.2635
https://doi.org/10.1103/PhysRevD.92.094507
https://doi.org/10.1103/PhysRevD.92.094507
https://doi.org/10.1051/epjconf/201713707030
https://doi.org/10.1051/epjconf/201713707030
https://doi.org/10.1109/IJCNN.2005.1555942
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://doi.org/10.1109/TNN.2008.2005605

222 Bibliography

[303] T. N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks,
in Proceedings of the 5th International Conference on Learning Representations, ICLR ’17
(2017).

[304] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, Graph convolutional networks: a comprehensive
review, Computational Social Networks 6, 11 (2019).

[305] W. L. Hamilton, R. Ying, and J. Leskovec, Representation learning on graphs: Methods and
applications, IEEE Data Eng. Bull. 40, 52–74 (2017).

[306] P. Goyal and E. Ferrara, Graph embedding techniques, applications, and performance: A
survey, Knowledge-Based Systems 151, 78–94 (2018).

[307] B. Li and D. Pi, Network representation learning: a systematic literature review, Neural
Computing and Applications 32, 16647–16679 (2020).

[308] S. Berretti, A. Del Bimbo, and E. Vicario, Efficient matching and indexing of graph models in
content-based retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence 23,
1089–1105 (2001).

[309] E. Bengoetxea, Inexact Graph Matching Using Estimation of Distribution Algorithms, Ph.D.
thesis, Ecole Nationale Supérieure des Télécommunications, Paris, France (2002).

[310] R. Dijkman, M. Dumas, and L. García-Bañuelos, Graph matching algorithms for business
process model similarity search, in Business Process Management, edited by U. Dayal, J. Eder,
J. Koehler, and H. A. Reijers (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009) pp. 48–63.

[311] J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,
Psychometrika 29, 1–27 (1964).

[312] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, A global geometric framework for nonlinear
dimensionality reduction, Science 290, 2319–2323 (2000).

[313] B. Perozzi, R. Al-Rfou, and S. Skiena, Deepwalk: Online learning of social representations, in
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining , KDD ’14 (Association for Computing Machinery, New York, NY, USA, 2014) p.
701–710.

[314] D. Wang, P. Cui, and W. Zhu, Structural deep network embedding, in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , KDD ’16
(Association for Computing Machinery, New York, NY, USA, 2016) p. 1225–1234.

[315] I. Chami, Z. Ying, C. Ré, and J. Leskovec, Hyperbolic graph convolutional neural net-
works, in Advances in Neural Information Processing Systems, Vol. 32, edited by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Curran Associates,
Inc., 2019).

[316] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik,
and R. P. Adams, Convolutional networks on graphs for learning molecular fingerprints, in
Advances in Neural Information Processing Systems , Vol. 28, edited by C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (Curran Associates, Inc., 2015).

https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1186/s40649-019-0069-y
http://sites.computer.org/debull/A17sept/p52.pdf
https://doi.org/https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1007/s00521-020-04908-5
https://doi.org/10.1007/s00521-020-04908-5
https://doi.org/10.1109/34.954600
https://doi.org/10.1109/34.954600
https://doi.org/10.1007/BF02289565
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
https://proceedings.neurips.cc/paper/2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf

223

[317] Q. Liu, M. Allamanis, M. Brockschmidt, and A. Gaunt, Constrained graph variational autoen-
coders for molecule design, in Advances in Neural Information Processing Systems, Vol. 31,
edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Curran Associates, Inc., 2018).

[318] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, Simgnn: A neural network approach to
fast graph similarity computation, in Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining , WSDM ’19 (Association for Computing Machinery, New
York, NY, USA, 2019) p. 384–392.

[319] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, Graph matching networks for learning the
similarity of graph structured objects, in Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, Proceedings of
Machine Learning Research, Vol. 97, edited by K. Chaudhuri and R. Salakhutdinov (PMLR,
2019) pp. 3835–3845.

[320] R. Al-Rfou, D. Zelle, and B. Perozzi, Ddgk: Learning graph representations for deep divergence
graph kernels, in Proceedings of the 2019 World Wide Web Conference on World Wide Web
(2019).

[321] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou, Comparing stars: On approximating
graph edit distance, Proc. VLDB Endow. 2, 25–36 (2009).

[322] K. Riesen and H. Bunke, Approximate graph edit distance computation by means of bipartite
graph matching, Image and Vision Computing 27, 950–959 (2009), 7th IAPR-TC15 Workshop
on Graph-based Representations (GbR 2007).

[323] X. Gao, B. Xiao, D. Tao, and X. Li, A survey of graph edit distance, Pattern Analysis and
Applications 13, 113–129 (2010).

[324] M. Simonovsky and N. Komodakis, Graphvae: Towards generation of small graphs using
variational autoencoders, in Artificial Neural Networks and Machine Learning – ICANN 2018,
edited by V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and I. Maglogiannis (Springer
International Publishing, Cham, 2018) pp. 412–422.

[325] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms (2017), cs.LG/1708.07747 .

[326] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld, Quantum chemistry structures
and properties of 134 kilo molecules, Scientific Data 1, 140022 (2014).

[327] S. J. Wetzel, R. G. Melko, J. Scott, M. Panju, and V. Ganesh, Discovering symmetry invariants
and conserved quantities by interpreting siamese neural networks, Phys. Rev. Research 2,
033499 (2020).

[328] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, Towards better understanding of gradient-
based attribution methods for deep neural networks, in 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings (OpenReview.net, 2018).

[329] G. Montavon, W. Samek, and K.-R. Müller, Methods for interpreting and understanding deep
neural networks, Digital Signal Processing 73, 1–15 (2018).

https://proceedings.neurips.cc/paper/2018/file/b8a03c5c15fcfa8dae0b03351eb1742f-Paper.pdf
https://doi.org/10.1145/3289600.3290967
https://doi.org/10.1145/3289600.3290967
http://proceedings.mlr.press/v97/li19d.html
http://proceedings.mlr.press/v97/li19d.html
https://doi.org/10.14778/1687627.1687631
https://doi.org/https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1007/s10044-008-0141-y
https://arxiv.org/abs/cs.LG/1708.07747
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1103/PhysRevResearch.2.033499
https://doi.org/10.1103/PhysRevResearch.2.033499
https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=Sy21R9JAW
https://doi.org/https://doi.org/10.1016/j.dsp.2017.10.011

224 Bibliography

[330] K. Simonyan, A. Vedaldi, and A. Zisserman, Deep inside convolutional networks: Visualising
image classification models and saliency maps, in 2nd International Conference on Learn-
ing Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track
Proceedings, edited by Y. Bengio and Y. LeCun (2014).

[331] M. Sundararajan, A. Taly, and Q. Yan, Axiomatic attribution for deep networks, in Proceedings
of the 34th International Conference on Machine Learning - Volume 70, ICML’17 (JMLR.org,
2017) p. 3319–3328.

[332] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation, PLOS ONE
10, 1–46 (2015).

[333] A. Shrikumar, P. Greenside, and A. Kundaje, Learning important features through propagating
activation differences, in Proceedings of the 34th International Conference on Machine Learning ,
Proceedings of Machine Learning Research, Vol. 70, edited by D. Precup and Y. W. Teh
(PMLR, 2017) pp. 3145–3153.

[334] M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, in Computer
Vision – ECCV 2014, edited by D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars (Springer
International Publishing, Cham, 2014) pp. 818–833.

[335] Fraunhofer HHI and TU Berlin, Heatmapping, accessed: 2021-08-23.

[336] K. A. Nicoli, P. Kessel, M. Gastegger, and K. T. Schütt, Analysis of atomistic representations
using weighted skip-connections (2018), arXiv:1810.09751 [physics.comp-ph] .

[337] R. Fournier, L. Wang, O. V. Yazyev, and Q. Wu, An Artificial Neural Network Approach to
the Analytic Continuation Problem, arXiv:1810.00913 [physics.comp-ph] .

[338] H. Yoon, J.-H. Sim, and M. J. Han, Analytic continuation via domain knowledge free machine
learning, Phys. Rev. B 98, 245101 (2018).

[339] A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, and N. Wink, Reconstructing the gluon, SciPost
Phys. 5, 65 (2018).

[340] R. Oehme and W. Zimmermann, Gauge Field Propagator and the Number of Fermion Fields,
Phys. Rev. D21, 1661 (1980).

[341] R. Oehme, On superconvergence relations in quantum chromodynamics, Phys. Lett. B252,
641–646 (1990).

[342] G. Cuniberti, E. De Micheli, and G. A. Viano, Reconstructing the thermal green functions
at real times from those at imaginary times, Communications in Mathematical Physics 216,
59–83 (2001).

[343] Y. Burnier, M. Laine, and L. Mether, A test on analytic continuation of thermal imaginary-time
data, The European Physical Journal C 71, 1619 (2011).

[344] C. N. dos Santos, K. Wadhawan, and B. Zhou, Learning loss functions for semi-supervised
learning via discriminative adversarial networks (2017), arXiv:1707.02198 [cs.LG] .

[345] L. Wu, F. Tian, Y. Xia, Y. Fan, T. Qin, J. Lai, and T.-Y. Liu, Learning to Teach with Dynamic
Loss Functions, arXiv:1810.12081 [cs.LG] .

http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
http://proceedings.mlr.press/v70/shrikumar17a.html
http://heatmapping.org/
https://arxiv.org/abs/1810.09751
https://arxiv.org/abs/1810.00913
https://doi.org/10.1103/PhysRevB.98.245101
https://doi.org/10.21468/SciPostPhys.5.6.065
https://doi.org/10.21468/SciPostPhys.5.6.065
https://doi.org/10.1103/PhysRevD.21.1661
https://doi.org/10.1016/0370-2693(90)90499-V
https://doi.org/10.1016/0370-2693(90)90499-V
https://doi.org/10.1007/s002200000324
https://doi.org/10.1007/s002200000324
https://doi.org/10.1140/epjc/s10052-011-1619-0
https://arxiv.org/abs/1707.02198
https://arxiv.org/abs/1810.12081

225

[346] J. Horak, J. M. Pawlowski, J. Rodríguez-Quintero, J. Turnwald, J. M. Urban, N. Wink, and
S. Zafeiropoulos, Reconstructing QCD Spectral Functions with Gaussian Processes (2021),
arXiv:2107.13464 [hep-ph] .

[347] C. Yi, On the first passage time distribution of an Ornstein–Uhlenbeck process, Quantitative
Finance 10, 957–960 (2010).

[348] R. M. Neal, MCMC using Hamiltonian dynamics, Handbook of Markov Chain Monte Carlo
54, 113–162 (2010).

[349] M. Betancourt, A Conceptual Introduction to Hamiltonian Monte Carlo (2018),
arXiv:1701.02434 [stat.ME] .

[350] Y. Freund and D. Haussler, Unsupervised learning of distributions on binary vectors using
two layer networks, in Proceedings of the 4th International Conference on Neural Information
Processing Systems, NIPS’91 (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1991) p. 912–919.

[351] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-
variable model, Phys. Rev. A 40, 4277–4281 (1989).

[352] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, edited by Y. Bengio and Y. LeCun (2015).

[353] J. Carrasquilla, Machine learning for quantum matter, Advances in Physics: X 5, 1797528
(2020).

[354] G. Torlai and R. G. Melko, Machine-learning quantum states in the nisq era, Annual Review
of Condensed Matter Physics 11, 325–344 (2020).

[355] O. Breitwieser, A. Baumbach, A. Korcsak-Gorzo, J. Klähn, M. Brixner, and M. Petrovici, sbs:
Spike-based sampling (v1.8.2) (2020), This open source software code was developed in part
in the Human Brain Project, funded from the European Union’s Horizon 2020 Framework
Programme for Research and Innovation under the Specific Grant Agreement No. 720270
(HBP SGA1) and 785907 (HBP SGA2).

[356] D. von Suchodoletz, B. Wiebelt, K. Meier, and M. Janczyk, Flexible hpc: bwforcluster nemo,
Proceedings of the 3rd bwHPCSymposium: Heidelberg (2016).

[357] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: An imperative style,
high-performance deep learning library, in Advances in Neural Information Processing Sys-
tems 32 , edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (Curran Associates, Inc., 2019) pp. 8024–8035.

[358] M. Fey and J. E. Lenssen, Fast graph representation learning with PyTorch Geometric, in
ICLR Workshop on Representation Learning on Graphs and Manifolds (2019).

[359] Stan Development Team, Pystan: the python interface to stan, version 2.17.1.0, http://
mc-stan.org (2018).

https://arxiv.org/abs/2107.13464
https://doi.org/10.1080/14697680903373684
https://doi.org/10.1080/14697680903373684
https://arxiv.org/abs/1701.02434
https://doi.org/10.1103/PhysRevA.40.4277
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1146/annurev-conmatphys-031119-050651
https://doi.org/10.1146/annurev-conmatphys-031119-050651
https://doi.org/10.5281/zenodo.3686015
https://doi.org/10.5281/zenodo.3686015
https://www.semanticscholar.org/paper/Flexible-HPC-%3A-bwForCluster-NEMO-Wiebelt-Meier/f1b3ba7a0a9ecaf9bdb5695e9534ce35f1b4cbd1
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://mc-stan.org
http://mc-stan.org

226 Bibliography

[360] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker,
J. Guo, P. Li, and A. Riddell, Stan: A probabilistic programming language, Journal of statistical
software 76 (2017).

	Table of Contents
	Introduction
	Motivation and structure
	Publications

	Background
	The sign problem, stochastic quantization and complex Langevin dynamics
	The sign problem for a toy model
	Real Langevin dynamics
	Complex Langevin dynamics

	Markov chain Monte Carlo sampling and Langevin dynamics
	Master equation, equilibrium and detailed balance
	Langevin dynamics as a Markov chain Monte Carlo algorithm

	LIF sampling and neuromorphic computing
	Spiking neural networks by LIF sampling
	Representing and training Boltzmann machines and other distributions
	Neuromorphic computing: BrainScaleS-2
	Hagen mode

	Langevin dynamics for discrete systems
	General definition
	Application: q-state clock model
	Deriving Langevin dynamics in the limit of infinitesimal step sizes
	Deriving Complex Langevin dynamics for complex actions

	Spiking neural networks on neuromorphic hardware
	Hardware Abstractions
	Ornstein-Uhlenbeck process with spiking character
	Discrete Langevin machine
	Mappings between different levels of abstractions

	Representing Boltzmann machines
	Dynamics in continuous states
	Dynamics in discrete states

	Representing Boltzmann machines by self-interacting neurons
	Sign-dependent discrete Langevin machine
	Sign-dependent Ornstein-Uhlenbeck process

	Refractory mechanism
	Numerical results: neuromorphic hardware versus Langevin machine
	Free membrane potential
	Refractory mechanism
	Interacting systems

	Relations to further stochastic processes
	Summary and outlook

	Towards implementing Langevin dynamics on neuromorphic hardware (non-spiking)
	Langevin dynamics as a set of ordinary differential equations
	Langevin dynamics in neurons
	An abstract model
	Conceptional restrictions
	Current hardware restrictions

	Langevin dynamics in synaptic weights
	Summary

	Learning entangled quantum states on a spiking neuromorphic chip
	Neuromorphic encoding of quantum states
	Encoding an entangled Bell state
	Learning performance
	Deep and partially restricted networks
	Summary

	Towards sampling complex actions
	Summary of main results
	Motivation
	Key insights
	Key results

	Markov chain Monte Carlo sampling in auxiliary dimensions
	Extended state space
	Master equation and detailed balance
	Complex Langevin versus HMC / RBM

	Substitution sampling
	General definition
	Complex Langevin as a substitution sampling algorithm
	Constructing substitution sampling algorithms

	Complex Langevin-type algorithms
	Second-order complex Langevin
	Complex hat function algorithm
	Uniform complex Langevin
	Metropolis-like sampling

	Substitution Hamiltonian Monte Carlo sampling in auxiliary dimensions
	Numerical results
	Summary and outlook

	Complex Langevin-type sampling by compensation
	Complex Langevin dynamics by compensation
	Systematic derivation
	Setting up a Markov chain Monte Carlo algorithm
	Extending the representation space
	The acceptance probability
	Symmetries
	Deriving T(v'|v, w)
	Deriving g(w'|v', v, w)

	Implications
	Measure for accuracy

	Self-consistent sampling of complex actions
	Standard reweighting
	Reweighting in the complex plane
	Step-wise reweighting criterion for correctness
	Stabilized complex Langevin dynamics
	Summary and future work

	Unsupervised neural graph embedding
	Neural adversarial embedding
	Information-theoretic insights
	Preliminary results
	Summary

	Towards novel insights in lattice field theory with explainable machine learning
	Supervised representation learning
	Unsupervised representation learning

	Spectral reconstruction with deep neural networks
	Spectral reconstruction and potential advantages
	Defining the problem
	Existing methods
	Advantages of neural networks

	A neural network based reconstruction
	Design of the neural networks
	Training strategy

	Numerical results
	Reconstruction with neural networks
	Benchmarking and discussion

	Summary

	Conclusion
	Langevin dynamics and discrete systems
	Transition probability of the Langevin equation
	Relations between the cumulative normal distribution and the exponential function
	Statistical properties of the sign-dependent Ornstein-Uhlenbeck process
	Derivation of the dynamics of the Langevin machine

	Detailed-balance equation in multiple variables for different algorithms
	Hamiltonian Monte Carlo
	Restricted Boltzmann machine

	Complex Langevin-type sampling by compensation algorithms
	Complex Langevin dynamics
	Second order complex Langevin
	Complex hat function algorithm
	Uniform complex Langevin
	Absorbing the imaginary contribution

	Entangled quantum states and learning on the spiking neuromorphic chip
	Representation of the Bell state
	Training algorithm
	Potential applications in quantum many-body physics
	Implementation details of BrainScaleS-2
	Computation time benchmark for sampling from neural networks

	Unsupervised neural graph embedding
	Spectral reconstruction
	BR method
	GrHMC method
	Mock data, training set and training procedure

	Acknowledgements
	Bibliography

