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1. Introduction 

1.1. Microscopy for life-science research 

1.1.1. A valuable tool, a diversity of techniques 

As the idiom “seeing is believing” reads, microscopy offers an incredibly powerful tool to shed light on 

complex microscopic structures and phenomena. With resolutions in the range of few nanometres for 

electron microscopes and around half a micrometre for light microscopes, these technologies are well 

adapted to the observation of biological objects such as individual cells. Light-microscopy is particularly 

popular in life-science research, thanks to its flexibility and accessibility. It allows the observation of 

living or fixed cells, tissues or microscopic organisms at various scales, or following dynamic processes 

over time, in a single image plane or in 3D. Especially using fluorescence labelling, specific molecular 

targets can be highlighted, even within living organisms. While the resolution with such imaging 

systems is still limited by the diffraction of the light (Abbe 1873), recent techniques relying on image-

reconstruction or stimulated emission are able to generate super-resolved images, beyond the 

diffraction limit.  

One implication to keep in mind with light-microscopy is the trade-off between the different aspects 

of the acquisition: the spatial resolution, the temporal resolution (or speed), the signal sensitivity, and 

the phototoxicity (i.e. sample health) often represented as a pyramid (Figure 1) (Scherf and Huisken 

2015). For a given imaging system, this trade-off is fixed such that emphasizing one aspect will 

systematically impact the others. Widefield and confocal microscopy are widely used in life-science 

research for the imaging of cells or small organisms. These systems are compatible with high 

throughput and time-lapse imaging, while being affordable compared to more sophisticated setups. 

However, for fluorescence imaging, widefield microscopy suffers from the contribution of out-of-focus 

light, which is partly rejected in confocal microscopy thanks to the pinhole (Minsky 1988). 

Alternatively, deconvolution of the acquired images can improve the signal to noise ratio after 

acquisition (Shaw 1995; Swedlow and Platani 2002). Widefield and confocal microscopy have limited 

penetration depth, due to the diffusion of light in the tissues, and thus are not adapted for the imaging 

of thick samples (Dudko and Weiss 2005). 2-photons microscopy offers a higher penetration depth 

thanks to the longer wavelengths used for the excitation, as well as an increased axial resolution, but 

requires powerful lasers in the near-infrared range, which might be detrimental for the sample (Denk 

et al. 1990). Single-plane illumination microscopy (SPIM also called light-sheet fluorescence 

microscopy - LSFM) relies on a thin plane of excitation light, orthogonal to the optical axis (Santi 2011). 

It achieves enhanced optical sectioning, ideal for the three-dimensional high-resolution imaging of 
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large transparent samples such as fish or drosophila embryos (Huisken 2004). This technique is 

compatible with the time-lapse imaging of live samples and has low photo-toxicity but generates large 

amount of data and is limited in sample throughput.  

All methods previously mentioned have a spatial resolution limited by the diffraction limit to about 

half the excitation wavelength in the lateral direction and about one wavelength along the axial 

direction (Abbe 1873; Stelzer 2002). Novel methods relying on image-reconstruction were proposed 

to find an alternative to the optical resolution limit. With structured illumination microscopy (SIM), a 

sequence of images illuminated with patterned excitation light translated and rotated is acquired in 

widefield, which allows the reconstruction of super-resolved images of about twice the diffraction-

limited resolution, with low phototoxicity (Dougherty and Goodwin 2011; Gustafsson 2000). Using 

single-molecule imaging by photo-activation (PALM (Betzig et al. 2006)) or stochastic fluorescence 

emission (STORM (Rust et al. 2006)) coupled to temporal acquisition, even more resolved images down 

to few dozen nanometres resolution can be reconstructed. Due to the reconstruction process, these 

methods are however limited in their temporal resolution, and thus not optimal for dynamic time-

lapse imaging. Finally, stimulated fluorescence emission (STED (Hell and Wichmann 1994)), also 

achieves super-resolved images in the range of 50 nanometres resolution with biological samples, but 

requires high-intensity lasers for the stimulation-emission-depletion. 

Every microscopy technique offers a different disposition of the acquisition trade-off (Figure 1). Yet, 

with such diversity of imaging modalities, complementary experiments can be carried out to explore 

different problematics. For phenotypic screening for instance, high-throughput imaging at low to 

medium resolution is typically carried out first to identify interesting conditions, which can be further 

explored at higher-resolution or in time-lapse experiments, to better characterise the phenotypic 

response (Neumann et al. 2010). 
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FIGURE REMOVED FOR ONLINE ARCHIVING TO COMPLY WITH FIGURE´s COPYRIGHT 

Figure 1: Trade-off in light-microscopy represented by the summits of a pyramid 

For a given imaging technique, this trade-off is fixed such that emphasizing one aspect will systematically impact 

the others. Reproduced by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 

Nature Biotechnology, The smart and gentle microscope, Sherf Nico et al (2015). 

 

1.1.2. Model systems for microscopy 

In biomedical research studies, simplified model systems are typically used as they offer a controlled 

biological environment, compared to complex organisms with multiple tissues, organs, and variable 

genetic backgrounds. 2D cell cultures are widely used as a starting point for in-vitro studies, and a 

historically well-established model system. They offer multiple experimental advantages including the 

simplicity of handling (Harrison and Rae 1997), the diversity of biomolecular tools (Davis 2012), and 

the availability of multiple immortalized cell lines for various species, including humans. Patient-

derived primary cell lines can also be used for a maximum of fidelity with a particular pathology or 

tissue (Stacey 2001). However, the drawback of in-vitro cell culture as a model system resides in its 

simplicity, which does not reflect the complex micro-environment of the original tissue or organism, 

with e.g. its extra-cellular matrix, and various signalling pathways (Figure 2). These limitations can 

compromise the extrapolation of results from cell cultures to higher organisms like mammals, and thus 

may impact the outcome of biomedical research studies with possible applications to humans e.g. for 

the identification of novel therapeutic compounds. More complex in-vitro systems are thus being 

developed to access higher physiological relevance, such as 3D cell culture systems (Antoni et al. 2015), 

human organoids (Kim et al. 2020; Lehmann et al. 2019) or micro-fluidic devices (Meyvantsson and 

Beebe 2008). While these systems are likely to show higher physiological relevance than flat 2D cell 

cultures, they still lack the complexity of a living organism. Therefore, small organisms are also used as 

in-vivo models, including the nematode Caenorhabditis elegans (Strange 2006), and the fruit fly 

Drosophila melanogaster (Dahmann 2008). Those organisms allow the conduction of more 

sophisticated and realistic experiments (including behavioural studies) than cell cultures while still 

being relatively easy to handle and inexpensive. However, these models are not vertebrates and thus 

are relatively distant from humans (Figure 2). The mouse Mus musculus is the vertebrate model 

organism closest to human (Bronson et al. 1966; Hedrich and Bullock 2004), but it is relatively 

expensive, complex to image using microscopy and limited in terms of experimental throughput. 

Alternatively, small vertebrate organisms such as the zebrafish Danio rerio have emerged as novel 

model systems that are easy to breed, inexpensive and well suited for microscopy imaging (Lieschke 

and Currie 2007). A major advantage of small model organisms is the possibility to observe complex 
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phenotypic responses to genetic or chemical perturbation (Brady et al. 2016; Kaufman et al. 2009), 

providing a better overview of the range of effects on a living organism. Example of phenotypic 

readouts classically reported in phenotypic studies include survival rate, overall or organ-specific 

morphological profiling, cellular and tissue-specific phenotypes, reporter gene expression patterns or 

behavioural response (Cornet et al. 2017; Gehrig et al. 2018; Kokel et al. 2010).  
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FIGURE REMOVED FOR ONLINE ARCHIVING TO COMPLY WITH FIGURE´s COPYRIGHT 

Figure 2: A comparison of model systems compatible with microscopy imaging 

Different model systems are available for biomedical research, with various levels of physiological relevance to humans, and complexity of handling (PDX: Patient-derived 

Xenografts). Relative scores for a set of selected criterium related to the handling of the specimen and the physiological relevance are represented as being the best (dark green 

tick), good (light green tick), partly suitable (yellow tick) and not suitable (red cross). In particular, the zebrafish (D.rerio) offers a good compromise between complexity of 

handling and physiological relevance. Reproduced by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature Reviews Molecular Cell Biology, 

Human organoids: model systems for human biology and medicine, Jihoon Kim et al (2020). 
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1.1.3. Microscopy-based screening: a tool for biomedical research 

With the advent of automation, modern microscopy systems can generate tremendous amounts of 

high-quality images in a relatively short time. Together with multiplexed sample mounting systems e.g. 

microtiter plates, the imaging of several samples and experimental conditions can be streamlined. 

Moreover, thanks to the diversity of fluorescent reporters and transgenic constructs, microscopy-

based screening enables complex phenotypic studies for the characterisation of chemical or genetic 

perturbation in biological systems (Bray et al. 2016; Caicedo et al. 2016; Futamura et al. 2012; Wagner 

and Schreiber 2016). Image-based screening thus offers a powerful tool for the preliminary testing of 

research hypothesis e.g. for drug-discovery (Esner et al. 2018; MacRae and Peterson 2015; Simm et al. 

2018; Zheng et al. 2013) or disease modelling (Bradford et al. 2017; Kim et al. 2020; Lieschke and Currie 

2007), complementing other screening technologies such as sequencing or biochemical assays.  

Classical screening studies include chemical screens with libraries of small molecules for the 

identification of therapeutic compounds, toxic molecules or modulators of signalling pathways (Eggert 

2013; Rennekamp and Peterson 2015; Richter et al. 2017; Saydmohammed et al. 2011; Westhoff et al. 

2020); and genetic screens for the identification of genes involved in specific biological processes such 

as mitosis (Neumann et al. 2010; Rines et al. 2008) or embryogenesis (Driever et al. 1996; Sönnichsen 

et al. 2005). For these genetic studies, the perturbations can be introduced using RNA interference, 

genome-editing tools or mutagenic agents (Kaufman et al. 2009; Neumann et al. 2006; Quwailid et al. 

2004; Sönnichsen et al. 2005). Among the diversity of microscopy techniques, widefield and confocal 

microscopy are the most common modalities for high-throughput imaging of biological objects. They 

provide rapid imaging, with sufficient spatial resolution and signal sensitivity for classical phenotyping 

of cells or small model organisms (Boutros et al. 2015; Perlman 2004; Rennekamp and Peterson 2015). 

Microscopy-based screening has been widely used to image fluorescently-labelled cell cultures with 

various cell lines and assays (Boutros et al. 2015; Bray et al. 2016; Esner et al. 2018; Futamura et al. 

2012; Neumann et al. 2006). High-throughput imaging also has application for histology and digital 

pathology with whole slide imaging (Al-Janabi et al. 2012; Pantanowitz et al. 2011). It is for instance 

used for the identification of intra-cellular parasites (e.g. Malaria) in chemically stained blood samples 

(Li et al. 2019; Loddo et al. 2019). More recently, multi-cellular organoids (Lukonin et al. 2020) as well 

as small organisms such as zebrafish larvae (Pandey et al. 2019; Rennekamp and Peterson 2015; Richter 

et al. 2017; Shah et al. 2020; Westhoff et al. 2020) or medaka embryos (Gierten et al. 2020) have also 

been imaged at high-throughput with both widefield and confocal systems.  
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1.1.4. Challenges of microscopy-based screening with small organisms 

While the imaging of 2D cell culture in petri dish or well-plate is historically well established, alternative 

biological systems such as organoids and small model organisms introduce new experimental 

challenges, in particular for high throughput imaging (Gehrig et al. 2018). First, specimen handling 

should follow legal animal husbandry regulations (Aleström et al. 2020). Then, the experimental 

procedure involves a variety of operations including e.g. for zebrafishes, specimen crossing, collection 

and dechorionation of embryos, experimental treatment (anaesthesia, microinjection) and sample 

mounting (Kaufman et al. 2009; Nusslein-Volhard and Dahm 2002). These are time-consuming 

procedures even for trained experimenters. Automated systems exist for some of these operations 

(Letamendia et al. 2012; Mandrell et al. 2012; Pardo-Martin et al. 2010), still in most laboratories, most 

steps are performed manually.  

At the scale of a microscope, small organisms are large three-dimensional objects, and thus more 

complicated to image than flat cell cultures. In particular, without adapted mounting strategies, these 

specimens will adopt random positions and orientations in wells of microtiter plates, which 

complicates the standardized imaging of tissues or organs of interests at high-throughput (Burns et al. 

2005; Gehrig et al. 2009; Peravali et al. 2011; Spomer et al. 2012). Dedicated sample mounting 

strategies compatible with high-throughput imaging are thus necessary to assure the reliable 

orientation and positioning of specimens (Alessandri et al. 2017; Chang et al. 2012; Fuad et al. 2018; 

Pardo-Martin et al. 2010; Popova et al. 2018; Wittbrodt et al. 2014). Yet, even with optimized specimen 

mounting, the imaging of deeper structure within the organism might still be hampered by the natural 

pigmentation of tissues or by optical aberration resulting from the diffusion of the illumination within 

the tissues and mounting medium (Dudko and Weiss 2005). The pigmentation can sometimes be 

suppressed in pigmentation-mutant transgenic lines, with genetic manipulation or chemical treatment 

(Karlsson et al. 2001; Lischik et al. 2019; Wakamatsu et al. 2001). The optical aberrations can also be 

limited by reducing the refractive index mismatch between the mounting medium and the sample 

(Boothe et al. 2017; Fadero and Maddox 2017) or by actively correcting the aberrations with adaptive 

optics (Booth 2007; Wang et al. 2014). The latter solution requires sophisticated instrumentation 

though, which is usually not compatible with high throughput imaging. 

Another challenge for the imaging of specific tissues or organ in small organisms, is that despite 

adapted mounting systems, the uncertainty in the positioning usually still ranges in the order of few 

hundred micrometres. At the scale of a high magnification objective, this can represent a major 

deviation of the position by the equivalent of several fields of view. Therefore, most small organism 

screening studies to date are limited to low resolution images encompassing the full specimen 
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(Peterson and Fishman 2011; Rennekamp and Peterson 2015), and thus have limited insight into finer 

phenotypes at the tissue or cellular scale. This limitation could be overcome though, using feedback 

microscopy for the targeted high-resolution imaging of regions of interest (ROI) previously localized 

from low-resolution images (see section 1.4). 

With small model organisms, achieving standardized imaging conditions compatible with the 

automated analysis by image-processing workflows involves the optimization of multiple conditions: 

sample mounting, choice of the staining/fluorescent reporter, acquisition parameters, anaesthesia, 

etc. (Lischik et al. 2019). Moreover, microscopy-based screening heavily relies on automated 

acquisition (e.g. autofocus), therefore the scaling-up of an experiment from a few samples, which 

acquisitions were typically optimized on a sample-by-sample basis, to a fully automated protocol 

requires major adaptation efforts. In addition to the challenge of automation, the multi-dimensional 

imaging of numerous samples (3D volume, x channels, y time-points) results in large datasets 

comprising from several dozens of gigabytes to few terabytes depending on the scale of the study. This 

tremendous quantity raises serious challenges for researchers, first to deal with the storage and 

general handling of the data, but also for the visualization and analysis of those datasets. Those 

experimental considerations ultimately limit the complexity of image-based screening studies. While 

these burdens may be overcome by adapted hardware architecture and software tools, most software 

solutions are dedicated to cell-based systems, and often not broadly applicable to alternative biological 

models. Novel solutions dedicated to alternative microscopy specimens such as small model organisms 

and organoids are thus necessary to put off these limitations, and to enable complex screening 

workflows empowering biomedical research in these promising model systems.   
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1.2. Zebrafish as a model organism for microscopy-based screening 

1.2.1. An advantageous model for biomedical research 

The zebrafish Danio rerio offers a number of advantages as a vertebrate model organism. First it shares 

high genetic similarities with humans, with about 70% of its genome containing orthologs to human 

genes, and 86% of known drug targets (Gunnarsson et al. 2008; Howe et al. 2013). Besides, thousands 

of transgenic and mutant lines are available, including models of human diseases (Bradford et al. 2017; 

Geisler et al. 2016; Lieschke and Currie 2007), while classical biomolecular tools (CRISPR, RNA 

interference) can be used to further study genetic profiles (Koster and Sassen 2015; Marques et al. 

2019). These characteristics enable complex in-vivo studies for biomedical research with applications 

for human disease modelling, drug discovery, safety applications, environmental and toxicological 

studies (Brady et al. 2016; MacRae and Peterson 2015). Besides the genetic background, zebrafish 

embryos present additional properties that are ideal for microscopy and high-content screening: rapid 

reproduction and large number of offspring, small sizes compatible with wells of microtiter plates, 

optical transparency, ex-utero development, and rapid organogenesis (Kaufman et al. 2009). Thanks 

to their external embryonic development and optical transparency in the first stages, zebrafishes are 

a model of choice for developmental research (Cha and Weinstein 2007; Hocking et al. 2013; Kimmel 

et al. 1995; Nüsslein-Volhard 2012; Rieger et al. 2011; Zhou et al. 2010) (Figure 3.B). With the 

availability of model diseases and transgenic lines, zebrafish larvae have also been extensively used to 

study multiple tissues, organs and related pathologies (Figure 3.A) such as cardiovascular development 

and diseases (Bakkers 2011; Nguyen et al. 2008), liver cancer and diseases (Jang et al. 2012; Lam and 

Gong 2006), kidney development and diseases (Gehrig et al. 2018; Hostetter et al. 2003; Pandey et al. 

2019), infectious diseases (Masud et al. 2017), oncology (Langenau et al. 2003; White et al. 2013; White 

2015) but also regeneration (Marques et al. 2019; Petrie et al. 2014; Zhou et al. 2010). Finally, under 

the current legislation, zebrafish embryos comply with the 3R principle (Replacement, Reduction and 

Refinement) for the more ethical use of animals in research testing (Ball et al. 2014; Kirk 2018; Russell 

1995) 
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Figure 3: Zebrafish as a model organism for vertebrate development and human diseases 

A) Example of tissues and organs for which zebrafish is used as a model. B) Ex-utero developmental stages of 

zebrafish embryos during the first 24 hours post-fertilization. Reproduced from (Koster and Sassen 2015) under 

the terms of the Creative Commons Attribution - Non Commercial (unported, v3.0) License, licenced by Dove 

Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php.  

  

https://www.dovepress.com/terms.php
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1.2.2. Zebrafish for microscopy-based screening  

Thanks to their advantageous genetic and physical properties, zebrafish larvae and embryos have 

become a model of choice for chemical and genetic microscopy-based screening (Brady et al. 2016; 

Kaufman et al. 2009; Rennekamp and Peterson 2015). Previous chemical screening with libraries of 

small molecules in zebrafish lead to the identification of regulators of vertebrate development 

(Peterson et al. 2000; Richter et al. 2017), modulators of heart rate (Burns et al. 2005), neuro-active 

molecules (Copmans et al. 2016; Jenkins and Urban 2010; Kokel et al. 2010), compounds impairing 

kidney development (Westhoff et al. 2020) or affecting cyst formation in the developing kidney 

(Pandey et al. 2019). Genetic screens in zebrafish similarly identified genes involved in embryogenesis 

(Driever et al. 1996), in the integrity of the glomerular filtration barrier (Hanke et al. 2013; Hentschel 

et al. 2007) or in the formation of cysts in the kidney (Sun et al. 2004). To tackle the experimental 

challenges associated with the high-throughput imaging of zebrafish larvae (see section 1.1.4), 

previous researches reported the development of dedicated mounting systems for the reliable 

positioning and orientation of zebrafish larvae or embryos, using micro-fabrication (Alessandri et al. 

2017; Popova et al. 2018; Wittbrodt et al. 2014) or sophisticated microfluidic systems (Chang et al. 

2012; Fuad et al. 2018; Pardo-Martin et al. 2010). A number of custom software solutions were also 

described to automate specific phenotypic readouts (Mikut et al. 2013; Xia et al. 2013) including the 

quantification of heartbeat (Fink et al. 2009; Gierten et al. 2020; Pylatiuk et al. 2014; Sampurna et al. 

2018; Spomer et al. 2012), the morphological profiling of bone and cartilage (Stern et al. 2011b; Stern 

et al. 2011a; Tarasco et al. 2020), the quantification of organ pigmentation (Schutera et al. 2016; 

Tarasco et al. 2020), the segmentation and morphological profiling of tissues and organs (Annila et al. 

2013; Gehrig et al. 2009; Teixidó et al. 2018), the quantification of specimen motion (Kato et al. 2004; 

Lischik et al. 2019; Marcato et al. 2015) and the identification of fertilization state (Shang et al. 2019). 

By combining such image-processing solutions with automated microscopes, feedback microscopy was 

also applied for the automated imaging of the heart (Spomer et al. 2012) and kidney (Pandey et al. 

2019) in zebrafish larvae. Finally, standard assays have been proposed as references to study specific 

tissues and associated signalling pathways, such as the tail-fin amputation and related wound assay to 

study regeneration and the immune response (Marques et al. 2019; Renshaw et al. 2006), the “eye-

assays” to identify disruption of the glomerular filtration barrier by monitoring the level of a heavy 

molecular weight fluorescent reporter in the blood circulation (Hanke et al. 2015), the photomotor 

response (PMR) assay, applicable to identify neuroactive agents (Kokel et al. 2010) or the combination 

of organ-specific assays to quantify overall compounds toxicity (Cornet et al. 2017). 
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1.3. Image-analysis for microscopy (Bioimage Analysis) 

1.3.1. Digital image-analysis 

Image-analysis, or image-processing share similarities with signal processing, with common operations 

such as the application of filters, signal deconvolution or arithmetic operations. However, with image-

processing, one must deal with more than 1 dimension, typically the 2 dimensions of an image-frame 

but potentially more when working with time-lapse or volumetric data. In digital images, the original 

signal from a sensor is stored as a discrete 2-dimensional array of values, the pixels, arranged following 

a grid, the image-matrix. For many applications including microscopy, the sensor is a camera collecting 

photons and the pixels are related to the individual detectors composing the camera sensor. For other 

applications like medical imaging, the image is not obtained by the collection of photons but by another 

physical process (ultrasound, X-rays). The sensor is therefore not a conventional camera, but the result 

is still a digital image with similar characteristic than a microscopy image. Digital image-analysis has 

thus applications in multiple fields, from so-called computer vision for daily-life scenarios such as face 

recognition or autonomous driving, medical solutions with image-based diagnostic to various research 

fields such as microscopy and astronomy. While every field has its own specific practices, there is often 

some overlap and thus common tools between disciplines. 

In practice, image-analysis is typically built as workflows or pipelines (Michael R. Berthold et al. 2009; 

Carpenter et al. 2006) which are a succession of simple operations such as image pre-processing with 

special filters, binarization, morphological operations, etc. Image-analysis workflows are ultimately 

designed to derive some information about the content of an image. It can be some qualitative 

information such as reporting the presence of an object or structure, an indicator of image-quality or 

assigning an image to a category, or quantitative such as the position or count of objects, their 

morphological profiling or the measurement of a signal intensity. Designing robust image-analysis 

workflows requires some technical skills but has the potential to drastically reduce the need for manual 

inspection of the images, thus saving time and improving reproducibility, especially for large datasets. 

1.3.2. Bioimage analysis: when image-analysis meets microscopy 

Modern biomedical microscopy studies typically involve image-analysis to derive information about 

the biological system. Published workflows span from fully automated pipelines to interactive 

solutions requesting input from the user at multiple steps of the process. Classical applications for 

biological studies are the segmentation of objects and the measurement of an intensity (fluorescence, 

pigmentation), a count or morphological profiling of objects or structures (Aung et al. 2019; Carpenter 

et al. 2006; Legland et al. 2016; Mi-Sun Kang et al. 2016; Wagner and Lipinski 2013), the tracking of 
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object-positions over time (Aaron et al. 2019; Amat et al. 2014; Gallois 2018; Tinevez et al. 2017) or 

the quantification of colocalization between different objects (Cordelières and Bolte 2014; Costes et 

al. 2004; Lagache et al. 2015). Often biological samples are labelled using chemical dyes or fluorescent 

reporters, therefore intensity-based segmentation (i.e. thresholding) is usually employed to isolate the 

objects and ROIs in the images. This approach is routinely applied for the segmentation of fluorescent 

cells and nuclei in microscopy images (Bray et al. 2015; Caicedo et al. 2017; Carpenter et al. 2006; Ljosa 

and Carpenter 2009; Neumann et al. 2006). However, those segmentation workflows typically involve 

several intermediate steps for the pre-processing of the images (background subtraction (Caicedo et 

al. 2017; Model and Burkhardt 2001; Singh et al. 2014), denoising (Meiniel et al. 2018)), and the post-

processing of the segmentation mask (e.g. morphological operations (Aaron et al. 2019; Legland et al. 

2016)). This results in a multiplicity of parameters which render those workflows very application-

specific, ultimately preventing their broad applicability to new sets of images. Besides, for other types 

of samples like small model organisms or organoids, these approaches might not be applicable, in 

particular for the identification of specific tissues or organs due to a lack of contrast with the 

background or with the rest of the organism (Figure 5.B).  

Computer vision, meanwhile, benefited from years of research on these problematics of pattern and 

object-recognition. Recently even, some deep learning solutions have been successfully re-purposed 

from the detection of objects in real-life scenes to microscopic objects such as macromolecular crystals 

(Bruno et al. 2018) and cell cultures (Waithe et al. 2020). Beyond deep-learning, computer vision could 

benefit bioimage analysis in many more ways. However, those methods were originally addressed to 

computer vision experts and targeted to completely different imaging modalities. Therefore, major 

efforts are required for their benchmarking with concrete biomedical imaging applications, and for 

their adaptation to a broader audience of non-expert users, such as life science researchers. 

1.3.3. Image-based profiling 

Images are large multidimensional grid of pixels, which represent a huge amount of numbers. Typical 

image-frame may range from 200 x 200 to 2000 x 2000 pixels respectively corresponding to 40 

thousand and 4 million pixel-values. Therefore, most image-analysis workflow first condense the raw 

pixel information from images to a fewer number of descriptive figures, the features, providing a more 

succinct and informative image-profile, compatible with automated analysis (Caicedo et al. 2017). Such 

features may include morphological descriptors describing the shape of individual objects e.g. after 

segmentation (Futamura et al. 2012; Legland et al. 2016; Wagner and Lipinski 2013), intensity features 

related to the intensity distribution of an image or image-region (Papageorgiou et al. 1998; Viola and 

Jones 2004) or more complex intensity features such as image-moments (Khotanzad and Hong 1990; 
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Ming-Kuei Hu 1962; Teague 1980) or texture (Haralick and Shanmugam 1973; Heilbronner 1992). By 

combining different feature types, a very descriptive feature set can be generated. For their 

CellPainting assay, (Bray et al. 2016) thus reported 1000 features related to the morphology, intensity, 

texture and adjacency of the cell body, nuclei and cytoplasm of each segmented cell. In comparison, 

(Caie et al. 2010) used only 150 features to describe the phenotype of cancer cells after drug treatment. 

While it still seems like a large number, it is much smaller than the original number of pixels. Pre-

trained deep learning models can also be used to extract image-features, by using only the “base” of 

the network containing the convolutional layers (Kumar et al. 2015; Pawlowski et al. 2016; Spanhol et 

al. 2017). Often only a fraction of the computed features is relevant for a given classification problem, 

therefore reducing the number of features to the most discriminative ones can help the subsequent 

classification steps. This can be achieved by filtering redundant features showing high correlation, 

using an iterative search to identify the most discriminative features or eliminating uninformative 

features (Caicedo et al. 2017; Loo et al. 2007; Neumann et al. 2006). Dimensionality reduction using 

e.g. PCA can also be used to reduce the number of features but has the drawback to lose the 

interpretability of the features and to introduce some approximations. 

In rare cases, typically with small images, raw pixel intensities can be directly used as features by 

flattening the 2D images to 1D vectors. This was demonstrated for the classification of 28x28 pixels 

grayscale images of hand-written digits (Y. Lecun et al. 1998) and of 20x20 pixels image-patches of cell 

nuclei (Han et al. 2012) by directly passing the 1D vector of pixel values to a classifier. 

1.3.4. Supervised and unsupervised classification 

Given a large dataset of images or samples, a classical application is the identification of samples with 

similar profiles or phenotypic responses. This is used for instance in pharmacological studies to identify 

compounds with similar molecular targets or modes of action, based on the phenotypic profiles of the 

treated cells or specimens (Caicedo et al. 2016; Caie et al. 2010; Futamura et al. 2012; Ljosa et al. 2013; 

Loo et al. 2007; Perlman 2004; Young et al. 2008). There are 2 solutions to classify samples: the 

supervised and unsupervised approaches, both relying on descriptive features for each sample. With 

the supervised approach, the samples are classified into predefined categories, whose characteristics 

are known (e.g. wild-type phenotype vs a known mutant phenotype). A simple approach to classify an 

unknown sample is to look for the most similar sample(s) of known category (k-nearest neighbour 

search (Dhanabal and Chandramathi 2011)). Another popular approach is to rely on a classifier, 

previously trained on a set of example samples for which the target categories are known (Kotsiantis 

et al. 2007; Lakhmi Prasanna et al. 2017). Widespread classifier algorithms are decision trees and 

random forests (Breiman et al. 1984; Ho 1995; Liaw and Wiener 2002; Safavian and Landgrebe 1991), 



26 
 

support vector machines (SVM) (Cortes and Vapnik 1995; Noble 2006) and artificial neural networks 

(Lippmann 1989; Ou and Murphey 2007). SVM were previously used to identify mitotic cells and other 

cell states (Conrad et al. 2011; Neumann et al. 2006) or for the localization of cell nuclei by classifying 

image-patches (Han et al. 2012). The supervised approach is a rather top-down approach starting from 

known categories down to the samples. The unsupervised way (also called clustering) is inversely 

bottom-up, starting from the samples and forming groups (or clusters) of similar samples de-novo by 

aggregating similar samples one after the other, according to a measure of distance between the 

growing clusters and the remaining samples (Jain et al. 1999; Olaode et al. 2014; Saxena et al. 2017). 

This distance metric is again based on the sample features. With clustering, neither the categories nor 

the typical characteristics of the final clusters are known beforehand. The clusters are thus often simply 

denoted by integer indexes (cluster 1 to N). Classical clustering algorithms includes the k-mean 

algorithm (Teknomo 2006; VanderPlas 2016), the hierarchical clustering and density-based clustering 

(DBSCAN (Ester et al. 1996)).  

In both the supervised and unsupervised algorithms, all samples of a dataset end up in one of the 

predefined categories, or in one of the clusters. While the unsupervised way can be applied right away 

to a dataset without previously labelling example samples and training a classifier, in practice it 

requires additional efforts to characterize the clusters and to verify that the partitioning of the samples 

is coherent with the scientific problematic. 

1.3.5. Comprehensive visualization with dimensionality reduction 

When exploring datasets composed of multiple samples each described by several numerical features, 

it is always informative to visualize the distribution of the data, before experimenting with supervised 

or unsupervised classification. While it is relatively straightforward to observe the distribution of the 

values for one specific feature across the dataset (e.g. with a histogram of values), this solution only 

provides a limited view of the available information. Therefore, one classical way to have a quick 

overview of a large quantitative dataset is to use dimensionality reduction to further condense the 

information from multiple sample features (morphological descriptors, expression levels for a set of 

genes) to fewer pseudo-coordinates that can be used for 2D or 3D visualization. Dimensionality 

reduction has thus been extensively used in life science to represent gene expression profiles of 

different cell populations (Butler et al. 2018; Shah et al. 2020; Stuart et al. 2019) or to visualize image-

based phenotypic features (Caicedo et al. 2017; Caie et al. 2010; Lukonin et al. 2020). There are 

multiple dimensionality reduction methods, among the most popular are the t-distributed Stochastic 

Neighbour Embedding (t-SNE)(Maaten and Hinton 2008; Wattenberg et al. 2016), Principal Component 

Analysis (PCA) (Abdi and Williams 2010; Wold et al. 1987) and Uniform Manifold Approximation and 
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Projection (UMAP) (McInnes et al. 2020). PCA is historically widely used, along other applications than 

dimensionality reduction, for instance to derive pseudo-faces (eigenfaces) from databases of human 

faces (Turk and Pentland 1991). Compared to the other methods, PCA has the advantage to be 

parameter-free. Besides, it is available for many software platforms and programming libraries 

including KNIME (Michael R. Berthold et al. 2009), the python package scikit-learn (Pedregosa et al. 

2011), OpenCV (OpenCV contributors 2000), Orange (Demšar et al. 2013) as well as web applications 

such as the embedding projector of Tensorflow (Martín Abadi et al. 2015) or SleepWalk (Ovchinnikova 

and Anders 2019). More technical information about PCA and dimensionality reduction is reported in 

section 2.9.3 (see also the chapter about PCA in the python data-science handbook (VanderPlas 2016)). 

A simple example of dimensionality reduction is shown in Figure 4 using UMAP for the visualization of 

colour encoding from an array of 4 values (R, G, B, Transparency) reduced to 2 XY-coordinates suitable 

for visualization as a scatter plot. Each dot in this scatter plot corresponds to a different combination 

of these 4 components, i.e. to a different colour (used to render the individual dots). As can be seen 

from the colour coding, similar colours tend to localize in similar area of the plot (i.e. similar X,Y values), 

meaning that the dimensionality reduction efficiently condensed the information while preserving 

most of the dataset characteristics.  

 

Figure 4: Example of 2D visualization after dimensionality reduction using UMAP 

Each point in this 2D point cloud corresponds to a different colour originally encoded as a vector of 4 values (R, 

G, B, Alpha) corresponding to the 3 RGB colour components and Alpha the transparency. Using UMAP for 

dimensionality reduction, the colour encoding was reduced from 4 values to 2 components, which are used as 

X,Y coordinates for the data points. As it can be seen from the plot, similar colours tend to localize in similar areas 

of the plot, meaning that most of the colour information was conserved after the transformation. Reproduced 

based on the UMAP online documentation (McInnes 2018).  
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1.4. Using image-analysis for automated microscopy 

1.4.1. Principle of feedback microscopy 

The principle of feedback microscopy, also called smart imaging, computer-aided microscopy or 

adaptive imaging (Scherf and Huisken 2015; Tischer et al. 2014), is to couple the acquisition with image-

analysis “on the fly” to perform complex acquisitions, e.g. for the targeted imaging of automatically 

localized regions of interest, the tracking of moving objects, or the detection of rare events triggering 

a specific acquisition sequence. Typically, a feedback microscopy protocol involves 3 steps (Conrad et 

al. 2011; Stuurman 2012). The first step is the acquisition of an overview image following a relatively 

simple pre-scanning protocol (low resolution overview image, coarse Z-stack, short time lapse). The 

overview image is then quantified by a dedicated image-analysis routine that will look for some ROIs 

(e.g. cells, tissues) or evaluate the quality of the image. Finally depending on the outcome of the 

analysis (the feedback), a new sequence of events can be executed (displacement of the objective, 

high-resolution acquisition, adjustment of the illumination). This procedure can then be repeated for 

multiple samples e.g. for the automated imaging of a full well plate (Pandey et al. 2019; Peravali et al. 

2011; Spomer et al. 2012), or iteratively for the same specimen to adapt the acquisition over time 

(Wang et al. 2014). A widespread example of feedback microscopy is the autofocus, traditionally 

available on most commercial microscopes.  

Feedback microscopy has been previously used in life science for the targeted imaging of ROIs at high-

resolution, previously localized from low-resolution images. This approach was applied for the 

targeted imaging of HeLa cells, individually localized by intensity-thresholding of the overview images, 

and subsequently imaged at higher-resolution (Gunkel et al. 2017) or by super-resolution imaging using 

single-molecule localization microscopy (Eberle et al. 2017). (Conrad et al. 2011) used a similar 

approach completed by image-classification for the identification and exclusive imaging of HeLa cells 

in a specific mitotic stage, which represents a small fraction of the cell population. Besides cell cultures, 

organoids (Lukonin et al. 2020) and small organisms such as zebrafish larvae have also been imaged at 

high-resolution with high-throughput, thanks to feedback microscopy with such a prescan/rescan 

strategy. (Peravali et al. 2011) thus demonstrated the imaging of the zebrafish head region detected 

by template matching, (Pandey et al. 2019) described the high-resolution acquisition of the 

fluorescently-labelled kidney in the Tg(wt1b:EGFP) transgenic line, localized by centre of mass, while 

(Spomer et al. 2012) used intensity-based thresholding to identify and image the heart-region. 

The targeted imaging of previously localized regions of interest is one application of feedback 

microscopy. Another promising application is adaptive microscopy, for which the feedback provides 
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information about the sample in order to optimize the acquisition parameters (e.g. exposure time, 

illumination intensity) or to perform a specific acquisition sequence. This approach was used to correct 

optical aberrations in real time using adaptive optics (Wang et al. 2014), while (Rabut and Ellenberg 

2004) kept migrating cells in focus and in the field of view of the objective for time-lapse acquisition, 

by tracking cells and correcting the microscope stage position accordingly. Finally, in addition to 

imaging, feedback microscopy has also been demonstrated for active photomanipulation such as 

optogenetics, laser ablation, photobleaching or photoactivation. (Leifer et al. 2011; Stirman et al. 2011) 

thus reported the targeted activation of neurons by optogenetic in freely moving Caenorhabditis 

elegans, while (Conrad et al. 2011) performed FRAP (Fluorescence Recovery After Photobleaching) 

experiments in the nuclei of CBX1-EGFP cells previously identified as being in interphase or prophase 

by the feedback routine. 

While feedback microscopy has the potential to automate complex acquisition protocols, which would 

otherwise require time-consuming manual interventions, the analysis routine used to evaluate the 

images and to return the feedback is a critical component for the success of the procedure. It must be 

robust to the variability of the sample, while still being specific to the expected phenotype. Besides, in 

addition to a robust image-analysis pipeline, feedback microscopy requires a controllable microscope 

setup, which typically involves hardware interfacing and custom script development to allow the 

communication between the image-analysis and the microscope control. Implementing feedback 

microscopy on a setup thus requires technical skills which are not at the core of life-science research. 

Although commercial and open source solutions exist to enable smart microscopy applications 

(ACQUIFER 2017a; Conrad et al. 2011; Edelstein et al. 2010; PYME contributors 2020; Rhode 2015; 

Schorb and Sieckmann 2017), no standard protocols currently exist.  

1.4.2. Applications to small-organisms microscopy screening 

One practical application of feedback microscopy is the targeted high-magnification imaging of ROIs, 

identified from lower magnification images. While the resolution increases with the magnification of 

the objective, the size of the field of view is inversely reduced. For samples like dense cell cultures 

which are usually homogeneously spread over the field of view, this is not an issue, except that a fewer 

number of cells can be imaged within the smaller field of view of a high-magnification objective. In this 

case, the high-magnification imaging is usually performed by selecting random image patches within 

the low-magnification image. Thus, feedback microscopy is usually not necessary with dense cell 
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cultures, unless a specific cellular phenotype or event is researched, e.g. a specific mitotic stage 

(Conrad et al. 2011). 

For more “localized” samples (e.g. low-density cell cultures, organoids, microscopic and larger 

organisms), which only occupy a small fraction of the field of view at low magnification, automated 

high-magnification imaging without feedback microscopy is more challenging. To some extent, it might 

still be possible when the positions of the samples are known a priori. This can be achieved thanks to 

adapted sample mounting, that helps positioning the sample in a specific position, like the centre of a 

well in a 96-well plate (Alessandri et al. 2017; Popova et al. 2018; Wittbrodt et al. 2014). For a large 

majority of these mounting systems though, the precision of the positioning will still be in the order of 

a few hundred micrometres. At the scale of a high-magnification objective, this can represent a major 

deviation of the position by the equivalent of several fields of view. Therefore, even with regular 

sample positioning, high-resolution imaging following the expected sample coordinates provided by 

the mounting system will likely result in missing the ROI in most cases (Figure 5). Using feedback 

microscopy instead, the positions of the ROIs are extracted from low-magnification images thanks to 

a dedicated pattern recognition algorithm. The algorithm yields the positions of the ROI with a 

precision of few low-resolution pixels, which allows more accurate positioning for high-magnification 

imaging. It can also improve the reproducibility of the imaging as the detected regions are likely to 

occupy a similar position in the field of view for the successive samples, which effectively spares the 

need for additional alignment of the imaged regions in post-processing. 
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Figure 5: Slight positional shifts prevent the automated imaging of regions of interest 

A) View of zebrafish larvae mounted in wells of a 96-well plate, using pre-formed agarose cavities for the reliable 

dorsal orientation of the specimen (Wittbrodt et al. 2014). Despite the consistent positioning of the specimen in 

the wells, a slight positional difference of less than a millimetre prevents the automated high-resolution imaging 

of the region of interest when identical coordinates are used. The images outlined in blue are cropped from the 

original full well images, according to a rectangular region positioned in the centre of the well. The green 

rectangle corresponds to the expected size of the field of view for a 20X high-magnification objective, and is 

positioned at fixed coordinates relative to the centre of the wells. B) Using intensity-thresholding allows isolating 

the full specimens but remains challenging to localize a specific organ-region (e.g. the head region). 

1.4.3. “On-the-fly” processing 

Image-processing can also be coupled to the imaging to perform analysis “on the fly”: while the 

acquisition is still running. This saves time especially for computationally expensive workflows like 

deconvolution, or if some image-reconstruction is needed (structured illumination, super-resolution 

etc.). It can also be used to reduce the size of the dataset, by automatically identifying the interesting 

fractions of the dataset e.g. by cropping ROI or isolating interesting time points (Pandey et al. 2019; 

Scherf and Huisken 2015). 
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1.5. Introduction to object-detection  

1.5.1. Applications of object-detectors 

Object-detectors originate mostly from the field of computer vision for use-cases such as face and 

pedestrian recognition (Dalal and Triggs 2005; Rowley et al. 1998), character recognition (Y. Lecun et 

al. 1998) or autonomous driving (Grigorescu et al. 2020). With the availability of large annotated 

datasets representing various object-classes and associated challenges for object-detection and 

classification (Deng et al. 2009; Everingham et al. 2010; Yann Lecun et al. 1998; Russakovsky et al. 

2015), the field gained major interest and keeps drawing attention to develop better and faster 

algorithms. Some of those algorithms have been re-purposed for life science applications, such as the 

classification of macromolecular crystals (Bruno et al. 2018), cells and nuclei detection or segmentation 

(Han et al. 2012; Ronneberger et al. 2015; Waithe et al. 2020), plankton detection and classification 

(Luo et al. 2018) or identification of breast cancer or microcalcification in mammography images 

(Dembrower et al. 2020; El-Naqa et al. 2002).  Object detectors can be applied for object-tracking too, 

by running the detection on the successive frames of a video. Many of these algorithms were optimised 

for this purpose to run the detection in real-time, which is a critical requirement for dynamic 

applications e.g. autonomous driving. The latest innovations in the field now aim at analysing not only 

a single image but short video sequences, to recognize specific behaviour or actions (Mobahi et al. 

2009; Wu et al. 2015). 

1.5.2. Distinction between localization and recognition 

By object-detection, one usually implies both the localization of objects within an image and the 

recognition of the objects’ categories. Therefore, object-detectors typically combine 2 relatively 

independent mechanisms: one for the proposal of possible object-regions, a second for their 

consecutive recognition. Classical strategies for the generation of candidate image-regions include 

intensity-based thresholding (Neumann et al. 2006; Spomer et al. 2012), brute-force search with 

rectangular sliding windows (Gallego et al. 2018; Han et al. 2012; Vaillant 1994; Viola and Jones 2004), 

dedicated region proposal algorithms (Girshick et al. 2016; Uijlings et al. 2013; Zitnick and Dollár 2014) 

or bounding boxes (anchors) randomly distributed within the image (Liu et al. 2016; Redmon et al. 

2016). To identify genuine image-regions from the pool of candidates, the recognition process typically 

relies on a set of descriptive image-features for each region. The features for a given image-region are 

then evaluated by a decision mechanism, responsible for the distinction between actual vs erroneous 

object-regions or the assignment to a specific object-category. Classifier algorithms are routinely used 
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for the decision task, as they can handle multiple input features and output object-classes. Object-

locations are ultimately given by the position of the image-regions classified as containing the object. 

1.5.3. Classifiers in computer vision 

Classifiers are mathematical models used for the prediction of sample categories, provided a set of 

descriptive sample features (see the classification of iris flowers species based on morphological 

measurements (Fisher 1936)). A well-trained classifier should assign samples with similar features to 

the same category. Classifiers have multiple applications in computer vision such as image-

classification (Conrad et al. 2011; Kumar et al. 2015; Neumann et al. 2006; Shang et al. 2019) and pixel-

classification. Pixel-classifiers are mainly used for segmentation (Arganda-Carreras et al. 2017; Berg et 

al. 2019) and key points detection (Stern et al. 2011a). For image-classification, a sample is an individual 

image, or for object-detection a subregion of an image (patch), while for pixel-classification a sample 

is a single pixel of an image. In both cases, there are at least 2 classification outputs, e.g. object vs 

background for object-detection, foreground vs background for binary pixel classification. With more 

than 2 categories, multiple image classes can be predicted, while for pixel-classifiers segmentation of 

an image in various domains is possible. 

A classical workflow for image-classification with 2 categories (binary) is illustrated in Figure 6. First, 

image-instances are turned into a more succinct set of descriptive features. The features are then 

evaluated by a pre-trained classifier that will return a probability for the image-instance to belong to 

the expected category (positive). Finally, depending on a user-defined threshold on the probability, 

the image-instances are separated between positive and negative. The probability threshold allows 

tuning the detection selectivity for a given classifier: a high threshold yields a selective classification, 

with almost no false positive detection but with a higher risk to miss actual positive instances (false 

negative). Inversely decreasing the threshold allows a more permissive detection process (Figure 7A, 

(Chou 2019)). In the context of object-detection, a false positive detection is any image-region 

erroneously reported as containing the object of interest. Similarly, a false negative is an actual object 

not detected. A true positive is an object correctly detected and a true negative is any background 

region correctly undetected (Figure 8). With more than 2 classification outputs i.e. not only 

positive/negative, the principle is identical except that the classifier will return for each image-

instance, the probability associated with each category. The probabilities over the different categories 

sum up to 1, such that a given image-instance is normally assigned to a single category, which obtained 

the highest probability. For microscopy applications, binary classification was previously used for the 

localization of cells and nuclei by classifying image-patches as belonging to the object-class or to the 

background, based on edge features (Han et al. 2012) or similarly for the identification of glomerulus 
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in kidney tissue segments using features extracted by a convolutional neural network (Gallego et al. 

2018). Multi-class classifiers have been used to identify the mitotic state of cells, based on intensity 

and shape features after segmentation (Conrad et al. 2011; Neumann et al. 2006). 

 

 

Figure 6: General scheme for binary image-classification 

First the image to classify is described with a few key figures, the image-features. The number of features (X) 

describing the image is typically much smaller than the initial image size (N x M) in order to condense the 

information and facilitate the classification. The features are then passed to a pre-trained classifier, calculating 

the probability for the image to belong to the expected category (positive), based on the extracted features. In 

the last step, the dataset is split between positive and negative images according to a user-defined threshold on 

the probability. For a multi-class classifier (more than 2 outputs), the scheme is identical except that the classifier 

will return a set of probabilities distributed over the different output categories, such that they sum up to 1. 

(Own contribution, reproduction allowed under a CC-BY license).
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A B 

 
Figure 7: Tuning the classification threshold for a binary classifier 

A) Each dot represents a sample belonging to the positive group (blue) or negative group (red). The samples are 

ordered by probability to be positive, as returned by a binary-classifier discriminating between positive/negative 

(blue/red) samples. Because classifiers are not perfect, the predicted probability for some positive samples is 

lower than for some negative and vice-versa. Given this classifier, the selectivity of the classification can be tuned 

by adjusting the threshold on the probability (dashed line). Samples on the right side of the threshold are 

classified as positive, and as negative on the left side. Reproduced with permission from (Chou 2019). B) 

Expression of the True Positive Rate (TPR), which is the fraction of positive samples (P) correctly classified (the 

True Positive - TP), and False Positive Rate (FPR) which is the fraction of negative samples (N) erroneously 

classified as Positive (False Positive - FP). FN: False Negative, TN: True Negative. 

 

 

Figure 8: False positive and false negative with object-detectors 

Above are some hypothetical localizations from a detector supposed to identify the eyes of the cat. The eye on 

the left is correctly detected, it is a true positive detection (bounding box 1 in yellow). The eye on the right is not 

detected, it is a false negative detection. Finally, the bounding box 2 in red is incorrectly reported by the detector, 

it is a false positive detection. All other image regions are true-negative, they belong to the background class and 

were indeed not reported by the detector. Example image “Chelsea the cat” available via the scikit-image library 

(skimage.data.chelsea), public domain (CC0 license). 
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1.5.4. Non-Maxima Suppression (NMS) 

A given object is likely to be predicted multiple times by overlapping bounding-boxes or similar shapes 

used to outline the detected objects. To keep a single optimal detection per object, non-maxima 

suppression (NMS) is typically performed after detection. The degree of overlap between neighbouring 

detections is often used as a criterium for this procedure, and is calculated as the ratio of the 

intersection and union area (intersection over union - IoU) between the rectangular bounding-boxes 

(Alexe et al. 2012; Felzenszwalb et al. 2010; NG 2018; Rosebrock 2014b; Rothe et al. 2015) or circles 

(Yang et al. 2020) predicting the object-locations. Highly overlapping detections most likely depict the 

location of the same object, while bounding boxes with no or small overlap correspond respectively to 

distant objects or to neighbouring objects. This ratio is equal to 1 if the bounding boxes fully overlap 

and 0 if they do not overlap at all. Overlap-based NMS works by setting a threshold on the IoU, which 

is equivalent to choosing a maximum degree of overlap allowed between pairs of bounding-boxes. 
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1.6. Object-detection with template matching 

1.6.1. Principle 

Template matching is a relatively intuitive algorithm, relying on the previously mentioned sliding-

window search (see section 1.5.2). In this case, a small template image representing the object of 

interest is used as a sliding window, translated over the image in which the objects should be localized. 

For successive positions of the sliding-window (X,Y corresponding to the position of its top left corner 

in the coordinates of the image), the algorithm compares the pixel values between corresponding 

pixels of the current image patch and template image. The resulting correlation (or difference) score 

for this X,Y-position of the sliding window is stored in the pixel at position X,Y in a new image matrix 

called score map. The computation of the score map is illustrated in Figure 9, for the localization of the 

head-region in zebrafish larvae. Once the sliding window search completed, the most probable object-

positions are given by the coordinates of the extrema in the score map (local minima if a difference 

score is used, local maxima if a correlation score is used). The associated object-locations are predicted 

for each extremum as a bounding-box of dimensions identical to the template image, with its top left 

corner positioned at the coordinates of the extrema. The detection score is provided by the value of 

the extrema. In a way, template matching is thus a binary object-detector (object vs background) 

relying on a sliding-window with a single feature: the similarity of pixel values with the template image. 

A threshold on this similarity score can be used to tune the detection selectivity. 

1.6.2. Previous applications 

Template matching has been previously used for the automated inspection of manufactured parts (e.g. 

printed circuit boards (Crispin and Rankov 2007)), for the detection of fruits and vegetables (Bao et al. 

2016; Oke et al. 1995). It has also been used in life-sciences for cell detection (including the use of 

artificial template images (Young et al. 1998)), for the localization of specific geometric shapes in gels 

(Tseng et al. 2011), for head detection in zebrafish larvae (Peravali et al. 2011) or more recently for the 

localization of unhatched zebrafish embryos in well plates (Shang et al. 2019). (Cole et al. 2004) also 

proposed a complex object-recognition pipeline using multiple template images, illustrated with the 

recognition of various LEGO blocks. 
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Figure 9: Computation of the score map using template matching 

A small template image (T) is used as a sliding search window translated over the target image (I). For every 

position (x, y) of the template image (position of the top left pixel), the intensity correlation between the 

overlapping pixels of the template (green) and the image (blue) is computed. This yields a score between 0 and 

1, stored in the corresponding pixel at position (x,y) of the score map (R). The sum over x’,y’ corresponds to the 

sum over the pixels of the template. T(x’, y’) and I(x’, y’) correspond to the pixel value of respectively the template 

and image-patch at position x’, y’. Own contribution – Redistribution allowed under a CC-BY license. 
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1.6.3. Advantages and limitations of single-template matching 

Template matching is a relatively simple object-detection solution, easy to understand and to 

experiment with. It has almost no parameters (the score threshold) and does not require any image 

pre-processing. Besides, using a normalised score for the computation of the score map, the search is 

robust to variations of illumination between the template and the image. Despite this simple principle 

and a history of successful applications, template matching is not widely used in the bioimage analysis 

community. One reason might be the lack of flexible implementation in popular image-analysis 

software. The implementations in image-analysis libraries such as OpenCV (OpenCV contributors 2000) 

or Scikit-image (van der Walt et al. 2014) are limited to the computation of the score map, while the 

rest of the detection pipeline is left to the user. Other limiting factors might be the intrinsic limitations 

of a template matching search with a single template. The first limitation, which is common to other 

sliding window approaches, is that a given object might be detected multiple times at slightly shifted 

locations. This can be explained by the probability to have multiple local extrema in a neighbourhood 

of the score map. Non-maxima suppression (NMS) could be applied to yield a single detection per 

object but is typically not available with existing implementations of template matching. The second 

limitation, specific to template matching, is that the sliding window search uses only the fixed intensity 

pattern of the provided template image. Therefore, if the objects of interest show some variability in 

the images (change of perspective, rotation, morphological deformation), single-template matching 

will likely fail to localize all objects. A solution is to repeat the search with multiple template images 

representing the expected object states (Bao et al. 2016; Cole et al. 2004; Young et al. 1998). Again, a 

given object might be detected multiple times, but this time also by different templates, and thus NMS 

should also be applied here to assure a single optimal detection per object. The resulting object-

detections are thus not a simple sum of the individual template searches. Although such a multi-

template search is promising, no widely available implementation was previously available.  
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1.7. Object-detection with cascade detectors 

1.7.1. Introduction 

Cascade detectors (also called cascade classifiers) were first reported by (Viola and Jones 2001) as fast 

object-detectors for real-time face detection in grayscale images. Cascade detectors belong to the 

machine-learning detectors using a sliding window search and recognizing a single object-category 

(e.g. human faces). There are thus binary detectors (object vs background). While mostly applied to 

face and pedestrian detection, cascade detectors were also previously used for the localization of 

biological objects in tissues, including cell nuclei (Han et al. 2008), Chagas parasites (Uc-Cetina et al. 

2015) or white blood cells (Maulana Budiman et al. 2016). Nowadays, cascade detectors tend to be 

overcome by deep-learning detectors, however they are still a widely available alternative for object-

detection. 

1.7.2. Principle for the detection 

There are several components in cascade detectors, which were explained individually in more details 

in section 1.5.2. First those detectors rely on a sliding window search for the localization of objects. 

Then to describe image patches at every location of the sliding window, specific image-features are 

used: the so-called Haar-like features, representing patterns of intensity as occurring within an image-

patch as in Figure 10.A. Finally, the discrimination between image-patches containing the object and 

other non-object patches is performed by a succession of binary decision-tree classifiers. The decision 

trees are arranged successively (hence the name cascade) such that the next tree in the cascade 

evaluates the positive detections from the previous tree but with more features, to refine the 

classification by eliminating false positive detections from the previous cascade stages (Figure 11).  

Cascade detectors showed improved detection speed compared to previous sliding-window object 

detectors thanks to two novel subtleties. The first one is the use of Haar-like patterns for the 

recognition of objects and the use of integral images for their efficient computation. The second 

innovation is the cascading scheme which limits the computation of features, and thus the 

computation time for obvious non-object regions, which are typically a majority of all the image-

regions the sliding-window search will evaluate. Those regions get quickly discarded by the first stages 

of the cascade, while only image-regions with a high probability to contain an object manage to pass 

the cascade of classifiers, and to eventually get classified as an object-region.  

In a cascade, every stage is supposed to virtually return all object-regions (high True Positive rate), 

while still discarding a good amount of non-object regions (True Negatives), using only few features to 
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assure a rapid classification. Therefore, a low probability threshold is typically used for the binary 

classification at every stage, which often translates to a high False Positive rate (see section 1.5.3). Yet, 

the cascading scheme genuinely compensates for this apparent weakness. Indeed, the overall cascade 

false positive rate is equivalent to the product of the individual classifiers’ false positive rate (Viola and 

Jones 2001). Therefore, the more stages in the cascade, the lower the overall false positive rate of the 

detector. On the other hand, the rule is also valid for the overall true positive rate1: it decreases with 

the number of stages, as with every classification round a few object-regions might get erroneously 

discarded (False Negative). Therefore, the individual classifiers should have a high true positive rate. 

Typical values for the individual classifiers are 0.99 for the True Positive rate and 0.5 for the False 

Positive rate. This means that for every stage, almost all genuine object-regions should be reported as 

positive (TP), while about a half of the non-object regions passing that stage will erroneously be 

classified as containing an object (FP), and the other half correctly discarded (TN).  

1.7.3. Haar-like features 

Haar-like features represent greyscale intensity patterns occurring within an image-patch as in Figure 

10.A. Using those features, (Viola and Jones 2001) reported the robust detection of faces for white 

individuals with only 2 features as shown in Figure 10.B, reflecting natural intensity patterns for white 

faces. The major advantage of such features is their rapid computation using integral images, which 

further contributes to the rapidity of the detection process. Although the patterns apparently provide 

coarse image-representations, evaluating several of them for a given image-patch allows the 

representation of complex intensity distributions representing objects, at a still low computational 

cost. For a given image-patch, there are various Haar-features corresponding to different patterns, but 

also to different locations or scales of a pattern within the detection window. The subset of patterns 

relevant for the detection of a particular object is selected during the training of the cascade detector. 

Haar-like features provide an additional advantage for the detections of objects at multiple scales. 

Indeed, the patterns can be rescaled to cover the detection of objects of various sizes, which is more 

efficient than generating an image-pyramid and running a fixed-size detector for each level of the 

pyramid. Nowadays, the default solution to train and use cascade detectors is via the OpenCV library 

(OpenCV contributors 2000; OpenCV contributors 2018). However, contrary to the original publication 

this implementation still relies on image-pyramids for multiscale detection. 

  

 

1 Denoted as Detection rate in the original publication 
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Figure 10: Example of Haar-like features for a given detection window  

A) Haar-like features are depicted as patterns of grey and white rectangles, illustrating possible intensity patterns 

occurring within a detection window (represented by the outer square). For each pattern, the feature value is 

calculated in 2-step. First the sum of the pixel intensities for the image-region underlying the grey and white 

regions are calculated separately. Then the feature value is given by the difference between the sum for the grey 

and white region. B) First 2 features retained during the training of a cascade classifier for face-detection, overlaid 

on an example face-image at the resolution used for detection. The features reflect the natural intensity pattern 

occurring for white faces: the eye-region is darker than the nose-region both along the horizontal and vertical. 

Figures from (Viola and Jones 2001). 

 

 

 
Figure 11: Classification with a trained cascade classifier 

Here the cascade contains 3 classifiers (or stages). A candidate image-region as generated by the sliding-window 

enters the cascade on the left. For every stage, Haar-like features are computed and evaluated by the 

corresponding classifier. If the image-region is classified as potentially containing the object of interest, it is 

passed to the next classifier for finer evaluation, otherwise it is discarded, and the next image-region enters the 

cascade.  Abbreviations: P: classified as Positive - N: classified as Negative – TP: True Positive – FP: False Positive, 

TN: True Negative, FN: False Negative. (Own contribution). 
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1.7.4. Training a cascade detector 

Like any machine-learning method, cascade detectors are trained using a collection of labelled image-

examples (training set). With cascade detectors, the localization is assured by a sliding-window and 

thus is not part of the model prediction, only the class (object/non-object) of the image-patches is 

predicted. Therefore, the training set is ultimately composed of cropped images representing the 

object for the positive instances, and cropped images representative of a range of non-object image-

regions for the negative instances. Before the actual training of the model, the training image-instances 

are downscaled to a small size defined as a parameter of the training and corresponding to the 

dimensions of the detection window. The size of the detection window determines the total number 

of Haar-features available, for instance a classical 24 x 24 pixels window as in Figure 10.B, offers 162 

336 Haar-like features corresponding to different intensity-patterns, and multiple shifted positions of 

a given pattern within the detection window. Like for the training images, the bounding-boxes 

predicting object-regions always have an aspect-ratio identical to the detection window used for 

training, however the bounding-boxes dimensions can cover a range of scales. For example, a cascade 

trained with a detection window of 30 x 10 pixels (width x height) will always predict object-location 

with bounding-boxes of 3:1 aspect-ratio. The window-size can be adapted for any aspect-ratio or to 

account for objects which would not be distinguishable if downscaled to a few dozen pixels. It is 

however advised to keep a small detection window to limit the number of features available and thus 

facilitate the training process. 

For cascade classifiers, the training always generates a new model architecture de-novo, such that the 

number of decision trees forming the cascade, their structure and the features used for the 

classification depend on the training set, and on the parameters used for the training. The training of 

a cascade is an iterative process in which the stage classifiers are trained consecutively, until each of 

them reaches the minimum requirements defined as parameters of the training (minimum True 

Positive rate and maximum False Positive rate2). To improve these rates with minimal computational 

cost for the detection, optimal features selected using a variant of the AdaBoost learning strategy 

(Viola and Jones 2001) are progressively added for each stage. Once a stage classifier reaches the 

minimal requirement, its training stops, and a new classification stage is added on top of the current 

one, hence extending the cascade. The only difference for classifiers further in the cascade is that the 

available training set is exclusively composed of image-instances classified as positive by the classifiers 

of the previous stages. This “reduced” training set contains both ground-truth positives image-

 
2 Respectively denoted as minHitRate and maxFalseAlarmRate in OpenCV 
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instances (true positive detections from the previous classifiers) and ground-truth negative image-

instances (the false positive detections from the previous classifiers). Meanwhile, all image-instances 

previously predicted as negative are never evaluated by the following classifiers. Therefore, as more 

classifiers are appended to the cascade, the training set reduces in size, in particularly for the negative 

ground-truth instances as every new classifier tends to eliminate a large fraction of them. The number 

of positive ground-truth instances in the training set also decreases along the training as some positive 

instances get misclassified as negative, but more slowly than the negative fraction. Therefore, the 

number of negative ground-truth images in the training set is usually higher than the number of 

positive images (e.g. 2 to 5 folds).  

The training and thus the growth of the cascade stops either when the “available” training set runs out 

of ground-truth images (most likely negative ones), when the overall false positive rate for the cascade 

reaches the minimum rate defined in the training parameters, or when the overall true positive rate 

for the cascade drops below the minimum rate, meaning that adding more stages will be detrimental 

to the detection of actual objects. 

Finally, provided the individual false positive and true positive rates for the individual classifiers as well 

as the number of stages, the overall cascade rate, and the number of ground-truth positive and 

negative images available at every stage can be estimated. This can be used to evaluate if the size of 

the training set is sufficient. An excel sheet performing those estimations is provided as supplementary 

data to this thesis (Thomas 2020a). 

  



45 
 

1.8. Object-detection with deep-learning detectors 

1.8.1. Deep-learning models 

Deep-learning belongs to machine-learning methods and have recently gained a new interest for its 

powerful capacities when applied to speech-recognition, image classification and other data-science 

tasks. Deep learning designates mostly 2 types of models: fully connected neural networks (also called 

dense neural networks or multi-layer perceptrons) and convolutional neural networks (CNN).  

Fully connected neural networks have been used as other machine-learning methods to perform 

classification or regression tasks, provided 1-dimensional feature vectors (Lippmann 1989; Ou and 

Murphey 2007). A fully-connected network is made of stacked layers (hence the name deep) each 

containing multiple units called neurons, receiving as inputs, the outputs of some or all neurons of the 

previous layer (Figure 12). Each neuron performs a simple linear combination of its input values, with 

different weights (Wn in Figure 13) and a global offset. The result of this linear combination then goes 

through a non-linearity function (also called activation function) which finally yields the output of the 

neuron (Figure 13). The weights and offset for each neuron are adapted as part of the overall model 

training. With multiple layers and multiple neurons in each layers, such fully connected networks have 

multiple parameters and connections that give them the capacity to account for complex 

mathematical relations between the input of the network (typically a list of feature numbers describing 

a sample) and the output of the network (a category index or quantitative value). Artificial neural 

networks are thus particularly powerful for tasks such as classification or mathematical regression 

(Lakhmi Prasanna et al. 2017). 

With images, the pixel values are first turned into descriptive features to be classified by fully 

connected neural networks (unless the images are sufficiently small – see (Y. Lecun et al. 1998)). This 

is not the case anymore for the second type of deep-learning models, the Convolutional Neural 

Network (CNN), which directly take 2D images as input. The novelty and strength of those modern 

models is the introduction of convolutional layers, replacing individual neurons, which have the 

capacity to derive optimal recognition features directly from the images. These layers perform 

convolution operations, between an input array of pixels, and a layer-specific kernel whose coefficients 

are adjusted during the training (Bouvrie 2006; Moen et al. 2019)(Figure 14). The various kernels 

composing the model are the actual features derived from the training data, and correspond to visual 

patterns, used to describe image-content. The input array that is convolved with those kernels is either 

the input image for the first layer, or the so-called feature map resulting from the convolution 

operation of the previous layer (Gu et al. 2017). Again, by stacking multiple layers, the model can 
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distinguish multiple patterns and combinations of those, which in turns allow the recognition of various 

object classes. Finally, while the convolutional layers are used to extract features, the last layers of 

such CNN models are almost always fully connected layers like the fully connected models introduced 

before. Those layers take as input a long 1-dimensional feature vector, resulting from the consecutive 

convolution operations and an ultimate flattening operation of the final feature volume (Figure 14). 

The fully connected layers process this long feature vector to yield the output of the network, typically 

a class index or some quantitative values (probabilities, etc.). In those models, the succession of 

convolution operations is used to condensate the original image information into a feature vector, 

suitable for classification or regression tasks. These models were initially demonstrated for character 

recognition (Y. Lecun et al. 1998) and later were expanded to classification of images from real-life 

scenes in 1000 different classes (Simonyan and Zisserman 2015). 

Other CNN architectures exist for instance to regenerate an image from the feature vector, such that 

the output of the network is not a class or a set of values but another image (Moen et al. 2019). Those 

models have applications for segmentation (Caicedo et al. 2019; Falk et al. 2018; Ronneberger et al. 

2015), image-restoration (Weigert et al. 2018), denoising (Krull et al. 2019) or artistic style transfer 

(Gatys et al. 2016). The model architecture is often depicted by a characteristic U-shape or hour-glass 

shape (Newell et al. 2016; Ronneberger et al. 2015), representing the encoding of the original image 

into a more succinct array of features, then decoded to a new image (also called encoder-decoder 

architectures). 

A major advantage of CNN models compared to previous classifiers is that they can learn optimal 

features for a given prediction task directly from the training dataset. They thus have a high degree of 

adaptability, contrary to manually selected feature sets which might not perform equally well on new 

datasets or different prediction tasks. For any machine-learning task related to images or sounds, CNN 

models have thus often become the default solution. However, training such models from scratch 

require a large amount of ground-truth annotated data, powerful hardware like graphic cards, some 

programming knowledge and time. Using transfer learning, it is possible to limit this burden by 

retraining a pre-trained network, to perform a task similar to the one it was originally trained for (e.g. 

classification) but for a different dataset (Moen et al. 2019). By doing so, the features learned on the 

original dataset are reused and eventually adapted to the new training set. This effectively reduces 

both the training time and the number of ground-truth data required to train a model. 

  



47 
 

 
Figure 12: Scheme of a simple fully connected neural network  

On the left are 3 inputs features. The hidden layer contains 3 neurons and the output layer 2 neurons. The 

network has thus 2 outputs, which can correspond for a classification task to the probabilities for 2 classes. With 

a fully connected network, all neurons of a layer receive inputs from all units of the previous layer. Figure under 

CC-BY-SA license from (Burgmer 2018). 

 

Figure 13: Scheme of single neuron, also called perceptron  

The neuron performs a linear combination (weighted sum) of the inputs (x1,…xn) using variable weights (Wn) 

and a bias (not represented here). The result of the sum then goes through a so-called activation function for 

normalisation, which yields the output of the neuron y. The weights Wn and bias are adapted during the training 

to find the optimal combination, that would best predict the output provided the input features x. Figure from 

(Pirvu 2019) - public domain. 
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Figure 14: Architecture of LeNet-5, one of the first CNN model published for hand-written character 

recognition 

Reproduced from (Y. Lecun et al. 1998). The network takes as input a 32x32 pixel image, which goes through 

multiple convolutions to extract features. In the first convolutional layer (C1), 6 convolutions are performed, 

using 6 different kernels. Each convolution of the image with a kernel results in an output image called feature 

map. By the process of convolution, one pixel of the feature map depicts the response to a specific pattern for a 

neighbourhood of the original image, corresponding to the size of the kernel (typically 3x3 or 5x5 pixels, depicted 

by black squares on the figure). In this model, subsampling layers are used to further condensate the information. 

Deeper in the network, the convolutions are done between a 3D volume made of multiple feature maps and 3D 

kernels (ex: 3 feature maps of dimensions NxN with a 5x5x3 kernel). Towards the end of the network (right side), 

the fully connected layers process large 1D feature vectors resulting from the successive convolutions (from 120 

features to a final 10 features output). 

1.8.2. Object-detection with Convolutional Neural Networks 

The previous section describes classical architectures for deep-learning models, with a particular focus 

on convolutional neural networks (CNN) for image-classification. CNN have also been used for object-

detection, originally coupled to a sliding-window approach like previous classifier-based object-

detectors. This method was demonstrated for application such as face-detection (Rowley et al. 1998), 

more recently for mitosis detection in histology images of breast cancer (Cireşan et al. 2013) or for 

glomerulus detection in kidney tissue-section (Gallego et al. 2018). Modern CNN object-detectors 

abandoned the sliding-window search for more efficient localization strategies. Those methods include 

region-proposal as popularized by the Region-based CNN (R-CNN) (Girshick et al. 2016), or regression 

of bounding-boxes positions and dimensions (Szegedy et al. 2013) as in YOLO (Redmon et al. 2016), 

SSD (Liu et al. 2016) and RetinaNet (Lin et al. 2018). The principle remains identical, the image-patches 

generated from the region-proposal are passed to the CNN for feature extraction and classification. 

For the models performing bounding-box regression, the positions and dimensions of the bounding 

boxes are also part of the model prediction, in addition to the object-classes. 
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1.9. Aim of the work 

Zebrafish is increasingly used in microscopy-based screening due to its various experimental 

advantages. As a vertebrate organism, it offers a physiological complexity that is highly relevant for 

translational studies in human. This is complemented by the availability of a wide repertoire of genetic 

and biochemical tools. Zebrafish are ideal for microscopic imaging applications, including large-scale 

studies using automated imaging systems, for e.g. toxicology or drug discovery research. However, 

their complex three-dimensional nature requires novel methodologies tackling the handling, imaging 

and analysis of thousands of zebrafish embryos. Furthermore, as most imaging and software solutions 

target cell-based assays, there is a lack of dedicated tools to fully exploit the potential of the zebrafish 

embryo in biomedical screening scenarios. 

Therefore, the aim of this PhD project was to establish a flexible toolbox addressing the specific 

requirements of whole-organism screening assays. Using techniques from computer vision and data-

science, novel scientific software and protocols for automated acquisition and analysis of large image 

datasets were developed. This also involved exploration, benchmarking, adaptation, and 

documentation of these methods for application on microscopy datasets.  

The developed tools cover various steps of the image-based screening workflow: smart microscopy, 

(semi-)automated image acquisition, manual and automated annotations of regions of interest, image-

classification, and data-exploration. Object-detection methods with various complexity and 

performance were implemented for the detection of specific tissues and organs in small organisms. 

For the scoring of specific phenotypes, supervised classification methods were implemented based on 

state of the art deep-learning models. Manual annotations tools were also developed to facilitate the 

systematic manual annotations of regions of interest in large image datasets, or to generate ground-

truth annotations required for the training of supervised machine-learning algorithms. Finally, 

dimensionality reduction and adapted data-visualization platforms were illustrated for the exploration 

of large quantitative screening datasets.  

In addition to the tools, extensive documentation has been established in the form of online wiki 

guides and video tutorials. The tools were designed to be of general applicability and are particularly 

adapted to phenotypic screening studies in small model organisms. They were illustrated for the 

acquisition and analysis of microscopy images of zebrafish and medaka embryos, both using brightfield 

and fluorescent channels. They have the potential to streamline the experimental workflow by 

drastically reducing the burden associated with manual annotation, exploration, and analysis of large 

datasets. Finally, the tools are open-source and can be adapted for the development of custom 

solutions.  
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2. Material and Methods 

2.1. Hardware and software requirements 

2.1.1. General remarks 

All software solutions presented in this thesis rely on free open-source projects running identically on 

major operating systems (Windows, Mac, Linux). No special hardware requirements are necessary, 

except for the training of deep-learning models for which a NVIDIA CUDA-capable GPU is advised. From 

our experience, a simple consumer graphic card (e.g. 2 GB RAM) is sufficient for the task of training a 

model for image-classification, however for object-detection a more powerful GPU was necessary (5 

GB or more). 

2.1.2. Hardware configuration 

Although no specific hardware requirement is necessary to run the presented software, a list of the 

hardware configurations used for this project is included below.  

• Laptop 

- Operating System: Windows 10 64-bit 
- Model: Lenovo ThinkPad T570 
- Motherboard: LENOVO 20H90017GE 
- CPU: Intel Core I7-7500U 2.7 GHz 
- RAM: 16 GB 

• Workstation1 

- Operating System: Windows 10 Professional 64-bit 
- Motherboard: SuperMicro X8DT3 
- CPU: Intel Xeon X5660 2.8 GHz (2x) 
- RAM: 64 GB 
- GPU: Nvidia RTX 2080 Ti 
 

• Workstation2 (ACQUIFER HIVE) 

- Operating System: Windows Server 2016 64-bit 
- Motherboard: SuperMicro X9SRA/X9SRA-3 
- CPU: Intel Xeon E5 1650 3.2 GHz 
- RAM: 128 GB 
- GPU: NVIDIA GTX760 
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2.1.3. Fiji 

This research project resulted in novel plugins and functionalities for ImageJ/Fiji (Rueden et al. 2017: 

2; Schindelin et al. 2012; Schneider et al. 2012), a user-oriented cross-platform software for scientific 

image analysis written in Java. Fiji is built on top of ImageJ and provides additional functionalities 

(script editor, updater…) and libraries. Most plugins reported here require some of these libraries and 

thus are not compatible with ImageJ unless specifically indicated in the dedicated method section. The 

plugins make extensive use of functions from the ImageJ API (Rasband and ImageJ contributors n.d.).  

The plugins were tested on multiple versions of Fiji with ImageJ at its core. The latest tested version 

being Fiji 2.1.0 with ImageJ 1.53f. The latest version of Fiji can be downloaded as a zip from 

https://fiji.sc/ . The ImageJ core can be update or rolled backed to older versions within Fiji via the 

menu Help > Update ImageJ. 

The plugins presented here can be installed by activating the dedicated update sites (Menu Help > 

Update… then Manage update sites and ticking the corresponding sites). Fiji should be restarted after 

activating the update sites. 

2.1.4. KNIME 

The Konstanz Information Miner (KNIME analytics platform) (Michael R. Berthold et al. 2009; Michael 

R Berthold et al. 2009) is an open-source graphical data-analysis environment written in Java and built 

on top of Eclipse (eclipse.org). It allows building complex data-processing workflows by linking single 

processing units called nodes. KNIME is particularly well adapted to process large tabular data or 

collections of images. Workflows can be saved to a .knwf file or shared publicly via the online KNIME 

Hub (hub.knime.com). The latest version of KNIME can be downloaded for the most common 

operating systems at knime.com/downloads. The workflow reported in this dissertation were last 

tested with KNIME 4.2.2. 

2.1.5. Python 

The solution presented here were tested on Python 3.6 but should work with any Python 3.x version 

unless mentioned differently in the concerned chapter. Python was installed with the free Anaconda 

individual python distribution available at https://www.anaconda.com/products/individual. For the 

installation of packages, either pip or anaconda was used (see dedicated sections). 

  

https://fiji.sc/
https://www.eclipse.org/
https://hub.knime.com/
https://www.knime.com/downloads
https://www.anaconda.com/products/individual
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2.1.6. OpenCV 

This project relies heavily on the programming library OpenCV (OpenCV contributors 2000), which 

provides functions for classical image-processing operations (reading image files, applying filters, etc.). 

OpenCV has the advantage to be available for multiple programming languages, which facilitates 

porting code from one software to the other (e.g. from python to Fiji). In this project, the python and 

java bindings were used. While some of the presented software were also tested functional with later 

versions of OpenCV, the reader can take version 3.4.2 as reference version for this project. In python, 

the OpenCV library can be installed via pip, using the following command in a terminal: 

pip install opencv-python to install the latest version 

pip install opencv-python==3.4.2 to install this specific version 

The opencv-python package was briefly tested on Unix systems via Binder (Forde et al. 2018) running 

a docker image (Forde et al. 2018). On Unix systems, the opencv-python package might trigger some 

errors du to incompatible GUI framework, which prevents the execution of the code. The headless 

version of the package can be installed instead. 

pip install opencv-python-headless 

In Fiji, functions from the OpenCV library can be accessed by any scripting language after activating 

the IJ-OpenCV update site (Domínguez et al. 2017). This update site also provides converter classes 

between the ImageJ and OpenCV objects, including image and ROI converters. The plugins reported 

here were tested with IJ-OpenCV 1.2.1. Source codes for the IJ-OpenCV project is available on GitHub: 

https://github.com/joheras/IJ-OpenCV.  

Finally, for the training of cascade detectors, the program executables can be downloaded with 

OpenCV releases (OpenCV team 2020) up to version 3.4. The command line executables are then 

located in the subfolder \opencv\build\x64\vc14\bin and can be called by opening a command line in 

this directory and typing the name of the executable file. 

2.1.7. GluonCV/MXNET 

For the training of a deep-learning object-detector (see section 2.6 and 3.5), the python libraries 

GluonCV (Guo et al. 2020) and MXNET (Chen et al. 2015) were installed with GPU support using pip. 

Additionally, a system wide CUDA installation is necessary for GPU support (see section 2.1.9). It is 

https://github.com/joheras/IJ-OpenCV
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important to use the correct version of CUDA according to the MXNET package, see the MXNET 

documentation at https://mxnet.apache.org/versions/1.7.0/get_started.  

In the present case, we used the following configuration and hardware: 

- Graphic card NVIDIA GeForce RTX 2080 Ti 
- CUDA 9.2 
- cuDNN 7.6.2 
- mxnet-cu92mkl 1.5.0 (via pip) 
- gluoncv 0.4.0 (via pip) 

2.1.8. TensorFlow and Keras 

The TensorFlow (Martín Abadi et al. 2015) and Keras (Chollet and others 2015) python libraries were 

used for image-classification via the integration in KNIME (see sections 2.8.2, 2.8.3). GPU support for 

these libraries relies on CUDA which is automatically installed with the GPU-version of the python 

packages. The following package versions were used: 

- python 3.6.9 or 3.6.10 
- tensorflow (or tensorfow-gpu) 1.12.0 (not above!) 
- keras (or keras-gpu) 2.2.4 
- pandas 0.24.5 

2.1.9. CUDA 

CUDA is a proprietary software library for hardware acceleration on CUDA-capable NVIDIA graphic 

cards (GPU) and is necessary for some deep learning workflows presented in this thesis (refer to the 

dedicated method sections for the CUDA version). For the section 3.6.2 involving the Keras and 

TensorFlow python packages, CUDA can be easily installed like a regular python package via the 

Anaconda python distribution. Installing tensorflow-gpu will automatically install the required versions 

of the CUDA toolkit and the cuDNN libraries, using this command in an anaconda prompt 

conda install tensorflow-gpu 

For the project involving object-detection with MXNET, a system-wide installation of CUDA and cuDNN 

is necessary in addition to the MXNET python package. Installers for CUDA and the complementary 

files for cuDNN can be downloaded from the NVIDIA website. In this case, it is important to download 

the right version of CUDA and cuDNN depending on the version of the MXNET package that will be 

https://mxnet.apache.org/versions/1.7.0/get_started
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used (see section about MXNET). Once installed for the full system using an installer, the version of the 

CUDA compiler can be verified by calling the following command in a terminal. 

nvcc –version 

 

2.2. Image-datasets 

Benchmarks were carried out on previously acquired datasets, imaged using a widefield high-content 

screening microscope (IM04) from ACQUIFER using brightfield or fluorescent channels. 

2.2.1. Medaka embryos 

Randomly positioned and oriented unhatched medaka embryos in wells of 96-welll plate, imaged at 

2X magnification in brightfield. The dataset originates from (Gierten et al. 2020) and is hosted on 

Zenodo (Gierten and Gehrig 2019). 

2.2.2. Zebrafish larvae 

Zebrafish larvae dorsally oriented within agarose cavities in wells of 96-well plate, imaged at 2X 

magnification in brightfield. Dataset available on Zenodo (Gehrig 2019).  

2.2.3. Zebrafish pronephroi 

Transgenic Tg(wt1b:EGFP) zebrafish larvae expressing GFP in the pronephroi, dorsally oriented in 

agarose cavities of wells of a 96-well plate. Images of the GFP channel at 4X and 10X magnification 

from previous screening studies were used (Pandey et al. 2019; Westhoff et al. 2020). A set of 10X 

magnification images is available on Zenodo (Pandey et al. 2020).  
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2.3. Interactive annotation tools 

2.3.1. Roi 1-click tools 

The source code for the 1-click toolset is contained in a single ImageJ macro-language file (.ijm) 

compatible with both ImageJ and Fiji. In Fiji, the toolset can be installed by activating the Roi 1-click-

tools update site. In ImageJ, the toolset can be installed by copying the ijm file to the directory 

ImageJ\macros\toolsets. The toolbar can then be activated by clicking the >> on the right side of the 

ImageJ/Fiji window and selecting the Roi 1-click tool entry. Double-clicking the tool icons displays the 

configuration window. 

Source code and documentations are hosted on GitHub (Thomas 2020k). Video tutorials are available 

on YouTube (Thomas 2020l). 

2.3.2. Qualitative annotation plugins 

The plugins are contained in a set of jython codes for Fiji, they are not compatible with a sole ImageJ 

installation. In particular, the addButton method from the GenericDialogPlus class of Fiji is needed. The 

plugins are installed in Fiji by activating the Qualitative annotations update site. Source code and 

documentations are hosted on GitHub (Thomas 2020j). Video tutorials are available on YouTube 

(Thomas 2020d).  
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2.4. Object-detection with Multi-Template Matching (MTM) 

2.4.1. Installation in Fiji 

The multi-template matching plugins can be installed in Fiji by activating the IJ-OpenCV and Multi-

Template-Matching update sites. The plugins are listed in the entry Multi-Template-Matching at the 

bottom of the Plugin menu list. Preconfigured Fiji bundles for windows with dependencies and pre-

installed plugins are archived on Zenodo at http://doi.org/10.5281/zenodo.3994247.  Source code and 

documentation are available at https://github.com/multi-template-

matching/MultiTemplateMatching-Fiji. Video tutorials are available on YouTube (Thomas 2019b).  

2.4.2. Installation in python 

The Multi-Template-Matching python package can be installed using pip. See 

https://pypi.org/project/Multi-Template-Matching/ for a list of available versions. 

pip install Multi-Template-Matching will install the latest version (the name is case-sensitive) 

pip install Multi-Template-Matching==1.5.3 will install a specific version, here 1.5.3  

pip install Multi-Template-Matching --no-deps will install the package without its dependencies. 

The pip installer verifies the dependencies versions to make sure the configuration is compatible if 

some dependencies are already installed. Currently Multi-Template-Matching does not require any 

specific version of its dependencies. As a reference, here is a list of dependencies and associated 

versions for a working configuration. 

- Multi-Template-Matching == 1.5.1 
- numpy == 1.16.4 (Harris et al. 2020) 
- opencv-python-headless == 4.1.0.25 
- scikit-image == 0.15.0 (van der Walt et al. 2014) 
- scipy == 1.3.0 (SciPy 1.0 Contributors et al. 2020) 
- pandas == 0.25.0 (McKinney 2010) 
  

http://doi.org/10.5281/zenodo.3994247
https://github.com/multi-template-matching/MultiTemplateMatching-Fiji
https://github.com/multi-template-matching/MultiTemplateMatching-Fiji
https://pypi.org/project/Multi-Template-Matching/
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The package was tested on Windows and Unix system via Binder (Forde et al. 2018). Source codes, 

documentation and example jupyter notebooks are available on the following GitHub repository: 

https://github.com/multi-template-matching/MultiTemplateMatching-Python.   

Since the publication of this dissertation, an alternative python implementation of multi-template 

matching relying on the packages scikit-image and shapely (but not OpenCV) was published, see 

https://pypi.org/project/mtm/ . It is more object-oriented than the original implementation. 

2.4.3. Installation in KNIME 

To install Multi-Template-Matching in KNIME, a KNIME and python installation with Multi-Template-

Matching 1.5.1 is necessary. The python installation should be set up in KNIME as explained in the 

KNIME documentation (KNIME n.d.). The workflow file can be downloaded from the KNIME Hub 

(Thomas 2020i). Opening the workflow will automatically download the necessary KNIME extensions 

(KNIME Image Processing etc.). The workflow was last tested with KNIME 4.2.0. 

2.4.4. Generating a template image 

A template image can be generated by cropping a rectangular image region outlining an object of 

interest. In ImageJ/Fiji, this can be achieved by drawing a bounding box with the rectangle ROI tool 

and using one of the command Image > Crop or Image > Duplicate, or respectively the keyboard 

shortcuts shift + x or shift + d. The resulting image can be saved to a file. 

For python and other programming languages, a 2D image array representing the template can be 

“cropped” from an image by slicing the image array along columns and rows. In pseudo-code, with w 

and h the width and height of the template and i, j the row and column index of the top left pixel of 

the bounding box outlining the template region, the corresponding template slice from an original 

image is template = image[i + h - 1 ; j + w - 1]. 

  

https://github.com/multi-template-matching/MultiTemplateMatching-Python
https://pypi.org/project/mtm/
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2.4.5. Template pre-processing 

In Fiji, the plugins propose the generation of additional template images by rotation or flipping of the 

provided template(s). This is achieved thanks to the rotation and flipping functions of the 

ImageProcessor class of the ImageJ1 API. 

In python, the template pre-processing is not part of the package and is left at the choice of the user, 

using any image-processing python library. 

2.4.6. Computation of the score map and local extrema detection 

Provided a template and an image to search, the function matchTemplate from OpenCV is used to 

compute the score map, using one of the normalised score methods. (1/TM_SQDIFF_NORMED: 

normalised-square difference, 3/TM_CCORR_NORMED: normalised cross-correlation, 

5/TM_CCOEFF_NORMED: 0-mean normalised cross-correlation). Once the score map computed, 

candidate object-locations are localized as maxima of the score map when a correlation-score is used, 

and score minima when a difference-score is used.  

If a single object is expected in the image, the global score maxima or minima is localised in the score 

map using the minMaxLoc function from OpenCV. If multiple objects are expected in the image, local 

score extrema are localised as follow. For the Fiji plugin, the local score maxima in the resulting score 

map are localised using the MaximumFinder class of the ImageJ1 API (ij.plugin.filter) with a tolerance 

of 0 and a user-defined threshold between 0 and 1.  

For the python implementation, the local score maxima are localised using the peak_local_max 

function from the scikit-image package (van der Walt et al. 2014). ). The local extrema detection can 

be adjusted by a user-defined score threshold to tune the detection sensitivity (as explained in section 

1.5.3), here with a score threshold instead of the probability score. Local score minima are localised 

similarly, as the local maxima of the inverted score map (invert = 1-score_map) and the score threshold 

is also inverted accordingly (max_threshold = 1 – min_threshold). For every local extremum, a 

bounding-box of dimensions identical to the template used for the computation of the score map is 

associated, with its top left corner localised at the position of the extremum. The score for this 

candidate detection is the value of the extrema.  

2.4.7. Non-Maxima Suppression (NMS) 

To yield a set S’ of N non-redundant detections from the initial set of candidate object-locations S, a 

custom NMS procedure was implemented. The procedure is initialized by sorting the extrema in S by 
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descending score (from most to least confident detections), and by adding the most confident 

detection (first one in the sorted set) to S’. Then an iterative process loops over the remaining extrema 

in S. For a given iteration, with the selected extremum, the intersection over union (IoU) between its 

associated bounding-box and the bounding-boxes of the previously collected extrema in S’ are 

computed. If the list of IoU are all below the overlap threshold, which means that the current maximum 

is not substantially overlapping with any extrema of higher score in S’, then the tested extremum is 

added to S’ otherwise it is discarded and the iteration continues with the next extremum in S, until we 

have collected N extrema in S’ or until there are no more extrema available to test in S. Once the 

iteration terminated, the final object locations are provided by the extrema in S´ (Figure 29). In practice 

N is the expected number of objects in the image, defined by the user, and the final set S’ might contain 

N or less final detections. Initially, a custom implementation of NMS was written in python, but in the 

latest versions of the Multi-Template-Matching python package, it was replaced with the OpenCV 

equivalent (cv2.dnn.NMSBoxes). 

2.4.8. Eye and lens detection in zebrafish 

A 2-step template matching approach was used for the detection and segmentation of eye and lens in 

laterally oriented zebrafish larvae (see section 3.3.8). The images were acquired at the 4X 

magnification with the brightfield channel on an ACQUIFER IM04. The detection pipeline is 

implemented as a KNIME workflow. The workflow starts with a first template matching search with a 

single template, for the localization of the head region. The result was visualized as a mask image in 

KNIME, which is used to crop the head region using the segment cropper node. Within the cropped 

head region, a second template matching with a single eye template was carried out to localize and 

crop the eye region. For both these template searches, a normalised cross-correlation score was used 

for the detection of a single object per image.  

For the segmentation of the eye-lens, a Canny edge detection filter (low threshold: 30 – high threshold: 

50 – sigma: 3 pixels) was first applied on the image of the eye region via the scikit image python library. 

A circle enclosing the lens was finally localized from this edge map by applying the Hough circle 

transform of the scikit image library (minimum radius: 30 pixels, maximum radius: 40 pixels, 1 expected 

circle, step size: 1 pixel).  

For the segmentation of the eye, background subtraction was first performed on the image of the eye 

region, by subtracting a blurred version of the image (gaussian convolution node – sigma: 30 pixels). 

The background-subtracted image was then thresholded (global thresholder node using Otsu method). 

The resulting binary image was then eroded 3 times and dilated back 3 times to remove smaller 

element (morphological image operation node). The binary image was converted to a KNIME labeling 
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using the connected component analysis node. Segment smaller than 2000 pixels were removed using 

the labeling filter node. Finally, in a custom script embedded in a python node, the contour of the 

labeling was extracted using the OpenCV function findCountour and an ellipse was fit on the resulting 

contours using the OpencCV function fitEllipse. Scikit-image version 0.15.0 and OpenCV version 3.4.2 

were used.  
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2.5. Object-detection with cascade detectors 

The OpenCV command line executables to train cascades and visualize the features can be downloaded 

with OpenCV releases up to version 3.4, from the official website (OpenCV team 2020). The command 

line executables are then located in the subfolder \opencv\build\x64\vc14\bin. The executables can be 

called by opening a command line in this directory. 

2.5.1. Fiji plugins for training set generation 

The plugins (unreleased) are a collection of .py scripts which can be dragged and dropped on the main 

Fiji window to open them in the script editor, then clicking the run button will execute the plugin. To 

use the plugin, the object-regions should be first outlined as rectangular regions of interest in Fiji, 

stored in the ROI manager. This can be done for a collection of images opened as a stack. While 

outlining object-regions manually with the mouse in ImageJ/Fiji, pressing “t” on the keyboard will store 

the current ROI in the ROI manager. It is important that the outlined object-regions have an aspect-

ratio close to the dimensions chosen for the cascade training, to prevent any deformation of the object 

as the training images are downscaled. For this purpose, pressing “alt” while resizing a rectangular ROI 

will maintain the aspect-ratio. For ROIs already stored in the ROI Manager, the dimensions (and 

position) can be manually set via the menu More>Specify… When annotating objects of similar sizes, 

using a fixed-sized reference ROI allows to facilitate the annotation process. This can be achieved by 

dragging a reference ROI and pressing “t” successively for every new location. Alternatively, the ROI 1-

click tools can be used to quickly generate ROIs of predefined dimensions (see section 3.2.2).  

2.5.2. Cascade training 

Cascade detectors can be trained using the graphical user interface by (Ahmadi 2017), which can be 

downloaded from his personal website (see URL in reference). The parameters are identical to the 

ones available via the OpenCV command line utility. For the training images, one can simply put 

cropped images of the objects, and full-size background images in separate directories respectively 

named p and n (for positive and negative). 

As an alternative to the GUI program, the executable opencv_traincascade.exe can be used to train a 

cascade via the command line. This command takes as arguments the location of the training set 

(info.dat or train.vec for the positive instances, bg.txt for the negative instances) and a number of 
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arguments for the cascade training, including the maximal number of stages in the cascade, etc. See 

the online documentation (OpenCV contributors 2018) for details about the parameters and training.  

For the positive training instances (the objects) the image file paths and object-location should be 

reported in a text file info.dat, which is then converted to a .vec file, containing both the training images 

and the object-locations. The structure of the info.dat is described in the OpenCV documentation 

(OpenCV contributors 2018).  

The .vec file is then generated from the file info.dat with the following command 

opencv_createsamples.exe -info info.dat -vec output.vec -h 24 -w 24 

w and h are the target dimensions in pixels for the downscaling of the training images. They should 

correspond to the dimensions used for the training of the cascade, and thus impact the total number 

of Haar-features available for training (the larger the window, the higher the possible number of 

features, but the longer the training). 

For the negative training instances, a simple text file (bg.txt) containing the file-paths to the full-size 

background images is sufficient. 

2.5.3. Visualisation of the cascade features 

After the training, the Haar-features can be visualized overlaid on a training image, using the 

executable opencv_visualisation.exe (see Figure 37). The overlay images can be saved to disk by 

precising the argument d (output directory).  

opencv_visualisation.exe -m="yourPath\trainedCascade.xml" -i="yourPath\image.png" 

-d="SomeOutPath\filename” 

2.5.4. Cascade detection plugin for Fiji 

The detection plugin is contained in a single jython script (.py, unpublished). The IJ-OpenCV update site 

should be activated in Fiji to provide the OpenCV dependencies and converter functions. For the 

detection with the cascade, the images should be opened in Fiji as a single image window or as a stack. 

Upon execution of the plugin, the images are first internally converted to 8-bit, using the 

imageProcessor.convertToByte(True) method of the ImageJ1 API and then converted to OpenCV Mat 

images using IJ-OpenCV. A CascadeClassifier instance is initialized from the xml file of the trained 

cascade provided in the plugin’s GUI. The detection is then run on the image using the 

detectMultiScale3 method signature with the parameters minNeighbors=1, outputRejectLevels=True 

and the scaleFactor, min/maxSize as chosen in the plugin’s GUI. The set of detections returned as then 
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passed to the function cv2.dnn.NMSBoxes with the chosen score threshold and maxIoU specified in the 

GUI. If a specific number of object (Nobject) is expected, then only up to Nobject are returned. 

Otherwise, all the detections passing the NMS are returned and rendered as rectangular ROIs in Fiji. 

For the benchmarks, the time reported corresponds for each image to the fraction of the code from 

the detection with detectMultiScale3 until the NMS with cv2.dnn.NMSBoxes. 

2.5.5. Training of a zebrafish larvae detector 

A custom cascade detector was trained for the detection of zebrafish larvae, dorsally oriented within 

wells of a 96-well plate, as imaged with the Acquifer imaging machine at the lowest magnification (2X) 

(see section 2.2.2). Using the plugin described in section 3.4.1, zebrafish larvae from 60 training images 

were outlined as positive training instances and downscaled to the chosen detector dimensions (width 

x height: 113 x 23 pixels). The corresponding 60 artificial background images were generated, and 29 

additional negative regions were also manually outlined and downscaled to the detector’s dimensions 

(Figure 36). The training was done via the GUI software of (Ahmadi 2017) with the laptop configuration 

(see section 2.1.2). From the pool of negative images, the training utility was configured to generate 

300 negative images. For the positive instances, the training was set to use 90% of the initial training 

instances, the 10% remaining being used to replace misclassified positive instances, which are “lost” 

over the training. The training was set to reach a maximum of 5 stages, with a maximal false positive 

rate per stage of 0.35 (maxFalseAlarmRate) and a minimum true positive rate per stage of 0.99 

(minHitRate). The detection window was set to sampleWidth x sampleHeight: 113 x 23 pixels, 

corresponding to a pool of 3 275 676 possible Haar-features. The memory buffer for the precalculated 

feature values and indexes were both set to 4 GB. All other parameters were left to default 

(acceptanceRatioBreakValue: -1, stageType: BOOST, featureType: HAAR, boostType: GAB, 

weightTrimRate: 0.95, maxDepth: 1, maxWeakCount: 100, mode: BASIC). The training terminated after 

completing 2 stages in 5 min on the laptop configuration, as the number of negative training images 

was exhausted. 
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2.5.6. Detection with the Zebrafish larvae detector 

For the detection of zebrafish larvae with the trained cascade, a separate test set of 33 full resolution 

images were used (2048 x 2048 pixels, see section 2.2.2). The detection was done in Fiji with the 

custom Fiji detection script (see section 2.5.4) with the following parameters: 

Detection 
scale factor: 1.1 
min/max width: 1000 – 1500 
min/max height: 200 – 350 
 
NMS 
minScore: 1 
maxIoU: 0.3  
 

2.5.7. Training of medaka embryos detector 

For the training of a medaka embryo detector, embryos were outlined with square ROIs using the ROI 

1-click tools, and the plugin described in section 3.4.1 was used to cropped the image regions. Besides, 

rotation and flipping were selected in the plugin GUI, which yielded 288 unique positive training 

images. The corresponding artificial background images were generated by the plugin. The training 

was done via the GUI software of (Ahmadi 2017) with the workstation 1 (see section 2.1.2). The training 

configuration was set to use 90% of the positive training images and to generate 1000 negative images 

by random cropping. The training was set to reach a maximum number of 3 stages, using an individual 

false positive rate per stage of 0.02 (maxFalseAlarmRate) and a minimum true positive rate of 0.99 

(minHitRate). The detection window dimensions were sampleWidth x sampleHeight 24x24 pixels 

corresponding to a pool of 162 336 possible features. Within a stage, the maximal depth of a decision 

tree (maxDepth) was set to 3 (instead of the default of 1). The memory buffer for the precalculated 

feature values and indexes were both set to 3 GB. All other parameters were left to default 

(acceptanceRatioBreakValue:-1, stageType: BOOST, featureType:HAAR, boostType:GAB, 

weightTrimRate: 0.95, maxWeakCount: 100, mode: BASIC). The training lasted 1 min 42 secs on the 

workstation 1 and resulted in a 3-stage cascade. 
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2.5.8. Detection with the medaka embryo detector 

For the detection of medaka embryos from section 2.2.1, 10 full resolution images (2048 x 2048 pixels) 

each containing 4 embryos randomly positioned and oriented in well of 96-well plates were used. The 

detection was done with a custom detection script in Fiji for Figure 40.A-B and with the plugin 

described in section 2.5.4 for Figure 40.C-D. The parameters for Figure 39 and Figure 40 were as 

following: 

Detection 
scale factor: 1.1 
min/max width: 300 – 500 
min/max height: 300 – 500 

 

The NMS-specific parameters are indicated in the figure. minNeighbors corresponds to the 

parameter for the cascade.detectMultiScale OpenCV function. The minScore and maxIoU (or 

maxOverlap) value were passed to the function cv2.dnn.NMSBoxes. 
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2.6. Object-detection with deep-learning detectors 

The methods described in this section require the GluonCV and MXNET libraries in python (see section 

2.1.7). 

2.6.1. Generating training set 

For the training of an object-detector, one needs to provide both the location of objects in the training 

image as bounding-boxes and the associated object-category for each bounding-box. For GluonCV, this 

information is stored either in a text file (.lst) or a as a binary record file, as indicated in the GluonCV 

documentation (GluonCV Contributors 2020a). The lst file has one row per image, with all bounding-

boxes of this image reported in this line. For each bounding-box, the corresponding object-category is 

reported as an integer (Figure 16). The binary record file is then generated from the lst file and the 

image files, using a command line utility im2rec.py available with GluonCV. This record file contains 

both the annotations and downscaled versions of the training images.  

At the time of this project, no user-oriented software was available to generate this kind of file, so a 

custom workflow using Fiji for the object annotations, and KNIME for the conversion of the annotations 

was developed. The Fiji script should be executed after outlining object-regions with rectangular ROIs 

stored in Fiji’s ROI Manager for a given class exclusively. Upon execution, the script iterates over the 

ROI and for each of them, reports the normalised ROI coordinates (xmin, ymin, xmax, ymax) to an 

output csv file (Figure 15). This was repeated for every object-classes. Then the KNIME workflow 

concatenates the set of csv-files to a single lst-file, and further converts it to a record file.  

 
Figure 15: Encoding object-location as bounding-boxes 

Here the object of interest is the head region of the zebrafish larvae outlined by the red bounding-boxes. For 

MXNET, the bounding boxes are encoded using the image row and column indexes corresponding to the position 

of the 4 bounding-box edges (xmin, xmax, ymin, ymax). 
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Figure 16: Example of lst-file 

This example file contains the ground-truth annotations for 2 images including the object categories (class) and 

the object-locations (Xmin, Ymin, Xmax, Ymax: bounding-boxes coordinates). The bounding-boxes coordinates 

are expressed relative to the image dimensions, which are expressed in pixels. Here both images contain each 2 

objects, of class 0 and 1, but there can be a different number of objects in each image. In practice the file does 

not include the column headers, which are shown here for clarity. 

2.6.2. Finetuning of an object-detector on custom dataset 

Once a dataset has been annotated and the corresponding lst-file or rec file has been generated, the 

training of the convolutional neural network (CNN) can be started. Here we adapted a tutorial from 

the GluonCV documentation for the training of a custom object-detector by finetuning (GluonCV 

Contributors n.d.). A single-shot detector, using a MobileNet base for features extraction and class-

prediction was finetuned. The model was initially trained on the VOC dataset for real-life objects 

detection. The original python script for the model finetuning was integrated in a KNIME workflow via 

a python scripting node, to facilitate operations like file inputs, the visualization of the error metrics 

over time, etc. The python node was embedded in a component node which contains additional nodes 

(input configuration nodes, former Quickform nodes) for the generation of a custom graphical user-

interface for the setting of the training parameters (location of the training set, number of epochs,  

batch size, name for the output model). The model is trained for a number of epochs decided by the 

user. The progress of the training is reported to the command line, including the duration for each 

epoch. After the training, the weights for the trained model are exported to a file (.params extension), 

to use for object-detection on new images. A text file containing the names of the object-categories is 

also saved and is necesary to recover the category names from the predicted category index. The 

python script is configured to return the value of the error metrics for the training (class predictions 

and bounding-box positions). These values can then be visualized with a line plot node connected to 

the central component node. 

2.6.3. Detection 

Once a CNN model trained, it can be used to localize the objects in new images. A custom python script 

for model prediction was embedded in a KNIME workflow. The python script is configured to first load 

the model architecture used for the training (here the SSD with MobileNet base) using the function 

model=gcv.model_zoo.get_model() with the argument pretrained=False and the custom object-classes 

read from the text file generated by the training. Then the configuration for the trained model is loaded 

Index Constant Constant Image Width Image Height Class Xmin Ymin Xmax Ymax Class Xmin Ymin Xmax Ymax Image name

0 4 5 2048 2048 0 0.31 0.43 0.41 0.53 1 0.4 0.43 0.48 0.52 Image1.tif

1 4 5 2048 2048 0 0.6 0.12 0.72 0.73 1 0.25 0.35 0.36 0.42 Image2.tif
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from the .params file using the function model.load_parameters(“myConfig.params”). The images on 

which the detection should be run were loaded using a KNIME image reader node and recovered as 

numpy arrays within the python node. The images are then pre-processed using the load_test() 

function from the pre-processing module corresponding to the model architecture (here for the SSD 

model, from gluoncv.data.transforms.presets.ssd). This pre-processing downscales the images to 

dimensions compatible with the model and normalizes the intensity values. To visualize the detections 

as bounding-boxes overlaid on the original scale images, the function gcv.utils.viz.plot_bbox is used. 

To generate a mask image compatible for further processing in KNIME, the python script creates an 8-

bit numpy array of dimensions identical to the original image and containing only 0 (black mask image). 

Then the bounding-boxes are re-scaled to the original image dimensions after detection by the model, 

using the function gluoncv.data.transforms.bbox.resize(BBoxes, (smallWidth, smallHeight),  

(originalWidth, originalHeight )) with smallWidth/Height the dimensions of the downscaled images 

used by the model and originalWidth/Height the original image dimensions. The resulting bounding 

boxes are then drawn as plain rectangles on the mask image, using the category index as pixel value. 

After the python node, the image to labelling node converts this mask image to a mask object in 

KNIME, compatible with the overlay view of the interactive segmentation view node.  

 

2.7. Automated microscopy 

2.7.1. Feedback microscopy with the Acquifer Imaging Machine 

Feedback microscopy was demonstrated on the Acquifer Imaging Machine (IM04) for the targeted 

high-resolution imaging of ROIs, in multiple samples mounted in 96-well plates. The IM04 supports 

feedback microscopy in parallel of a running acquisition, by regularly checking for the presence of 

custom machine commands, contained in newly created text files (.job extension) saved in a specific 

directory on disk (e.g. "D:\IMAGING-DATA\JOBS"). These text files can be written by any external 

process (python script, KNIME workflow etc.) which should interact with the acquisition. Examples of 

machine commands are shown in Figure 17. If such text files are present in the designated directory, 

the machine will pause the initial acquisition, execute the machine commands contained in those text 

files, delete the text files after execution and finally continue with the initial acquisition. The interval 

at which the machine checks for newly created files can be setup in the acquisition software. For 
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instance, when imaging well plates, the verification can happen after imaging a specified number of 

wells, or after imaging the full plate with the current acquisition protocol.  

For the targeted imaging of ROIs, the running acquisition is typically an overview experiment 

generating low magnification images. The low magnification images are saved on disk and analysed on 

the fly by an external ROI detection routine (e.g. a Fiji macro). For each image, the custom detection 

routine should identify the position of the ROI, convert the pixel coordinates of the ROI centre to 

machine axis coordinates for the positioning of the objective, and write the text file containing the 

custom machine commands to be executed by the microscope for these coordinates. The pixel size for 

the low magnification images, and the original XY position of the objective are both extracted by 

parsing the image filename, which contains the acquisition metadata. The text file with the custom 

microscope commands is initialised as a .tmp file, and once all commands have been written to the file 

it is finally renamed to a .job file, which is automatically recognized by the acquisition software of the 

Imaging Machine at the next verification.  

In addition to a ROI-detection algorithm, a folder-watching routine is necessary to monitor image files, 

newly created by the overview experiment. This routine is responsible for calling the ROI-detection 

algorithm for every new overview image. It should be started either before the overview experiment 

or shortly after the start of the acquisition. However, the image directory to watch is not actually 

existing before the start of the acquisition. A new directory is systematically created by the acquisition 

software of the microscope for every new acquisition, to prevent overwriting existing data. The name 

of this directory includes a unique timestamp which is not known in advance. Therefore, the acquisition 

software of the microscope is writing at the beginning of the acquisition a small text file at a known 

location ("D:\IMAGING-DATA\JOBS\Image_Location.pth"), which contains a single line of text with the 

image directory for this acquisition. The folder watching routine should thus be initialised to first read 

this Image_Location.pth file to know which directory to actively watch for the rest of the acquisition. 

The folder watching is typically implemented as a while loop, running forever until stopped by the user. 

It could also be configured to stop once a certain number of images have been found. 

The full workflow is thus as follow: the acquisition is started and the image_location.pth file is written 

to disk shortly after the first image acquisition. The folder watching is started, checks for the presence 

of the image_location.pth file. If it is not found, the procedure is paused for a few seconds before 

checking for the file presence again. Once it is found, the image directory is read from the content of 

the image_location.pth, and the directory watching is started. Any image present in the directory is 

processed for ROI detection. As the overview acquisition progresses, new images are saved to this 

directory and will be similarly processed for ROI-detection. For every image, the detection routine 

verifies that the image corresponds to the expected channel or Z-slice. If the image is as expected, the 
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detection routine is run and a text file with the custom machine commands for the targeted imaging 

of the detected ROIs is written to disk as described above. This text files will be picked up by the 

Imaging Machine and executed at the next verification.  

 

 
Figure 17: Example of a custom script with machine commands for the control of the ACQUIFER 

Imaging Machine 

Example of job file containing custom commands for the acquisition at a particular location, here the well A3. 2 

consecutive autofocus are carried out (coarse and fine) followed by the imaging with 2 different channels 

(SetLight + Acquire). Reproduced from (Pandey et al. 2019) 

2.7.2. PlateViewer plugins for semi-automated acquisition 

The visualization software of ACQUIFER (the PlateViewer (ACQUIFER 2017b)) is compatible with 

custom image-analysis by external programs in headless mode (e.g. Fiji, python) via a plugin 

mechanism relying on command-line calls and a convention for the input/output in the form of text 

files. With the current version of the PlateViewer (1.7.3), ROI-detection plugins should return the 

coordinates of a single rectangular ROI per image following the following protocol. A first csv file 

containing the file paths of the images selected by the user in the PlateViewer interface is saved to disk 

(input-table). This file may also contain the coordinates in pixels of an optional search region defined 

by the user in the PlateViewer. The csv file is a small table with one row per selected image. The 

external program (e.g. python or ImageJ) is then called by the PlateViewer with this input csv file as 

argument, and the predefined detection script. The detection script should be configured to open the 

input csv file, and to run the detection for every image listed. This can be achieved using a for-loop to 

process each line of the csv file successively. For each loop iteration, the image file should be loaded 

in memory, if a search region is defined the image can be cropped or only the delimited region can be 

loaded in memory and finally the detection should be run for this image. The results of the successive 

detections should be written to a new output csv file with a similar tabular structure, saved to a 
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predefined directory on disk. It should contain one row per processed image with 1 column for the 

image path, 4 columns with the coordinates in pixels of the bounding-box for the detected image-

region (X, Y, Width, Height, with X,Y the coordinates of the top left pixel of the bounding box) and one 

column for an optional string argument (e.g. a detection score). 

Once the detection script terminates, the PlateViewer automatically reads the newly generated output 

csv file and the detections are rendered as rectangular ROIs on the images, in the PlateViewer 

interface. The ROIs can be ultimately refined if necessary, before updating the acquisition protocol. 

2.7.3. Single-template matching PlateViewer plugin 

For the template matching PlateViewer plugin, the ROI-detection is assured by a custom jython script 

in Fiji. The script reads the input table generated by the PlateViewer, which contains the file paths of 

the selected images, the coordinates for the search region as well the path of the image containing the 

template and the coordinates of the bounding-box outlining the template. The first step of the 

detection script is thus to crop the image containing the template. Once the template cropped, the 

script loops over the list of image files, loads the images one by one in memory and runs the template 

search on the successive images. Finally, for each image, the coordinates of the detected bounding-

box are stored to a new line of an output csv file (x, y, width, height) together with the template 

matching score. 

2.8. Image-classification 

2.8.1. Classification using template-matching 

A KNIME workflow was designed for image-classification using template matching, based on a set of 

template images representing distinct classes. The workflow relies on the multi-template-matching 

python package (version 1.6.1) but differs from the multi-template-matching KNIME workflow. Indeed, 

with this workflow, separate single template matching searches with a single object expected per 

image are carried out to derive the score for each template. Especially here there is no non-maxima 

suppression since the goal is not to localize but to classify. The resulting detections are collected and 

the score for each template are represented as a histogram, together with the user-defined score 

threshold (Figure 45). The image is assigned the category of the template which returned the highest 

score, provided it is above the user-defined threshold. If no score is above the threshold, the image is 
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classified as an outlier. The KNIME workflow is available on GitHub (Thomas 2019a) or via the KNIME 

Hub (Thomas 2020b). 

For the binary classification of kidney morphologies, the template and images were first cropped from 

full-resolution images, by defining a bounding box centred on the centre of mass of the organ as 

explained in (Pandey et al. 2019). The wild type template was generated by an average projection of 

15 images from different specimens, to compensate for the variable fluorescence intensity within the 

organ. For the multi-class classification, the same wild type template was used than for binary 

classification, while for the long and cystic phenotypes, an average projection of 5 images was done to 

yield the templates.  

2.8.2. Classification with deep learning - Requirements 

KNIME workflows for the training of a CNN model for image-classification and for the prediction of 

image classes provided a trained model were developed. Those are available with documentation 

README.md files in the subdirectory KNIMEworkflows of the GitHub repository (Thomas 2020j). 

The workflows were last tested with KNIME 4.2.2. All required KNIME extensions are automatically 

installed when opening the KNIME workflows for the first time (including the KNIME python extension), 

except for the KNIME Image Processing - Deep Learning extension. Click here to install it.  In addition 

to KNIME and its python extension, a python environment with the required dependencies should be 

set up (e.g. in Anaconda, see section 2.1.8). Finally, KNIME should be set up to use the correct python 

environment (File > Preferences > KNIME > Python), but if Anaconda is used, KNIME can also 

automatically create a new preconfigured environment.  

It is advised to have a CUDA-compatible NVIDIA GPU to speed up the training (2Gb GPU memory should 

be enough, but more is better). The GPU is automatically recognized by the Keras nodes in KNIME if 

the “gpu” versions of the TensorFlow and Keras python packages have been installed. 

Images of fluorescently labelled pronephroi in transgenic Tg(wt1b:EGFP) zebrafish larvae used for the 

training and validation of the deep learning model for classification are available on Zenodo, with 

ground-truth category annotations and a pretrained model at: 

http://doi.org/10.5281/zenodo.3997728 . These files are available under a Creative Commons 

Attribution 4.0 International License (CC-BY). Finally, video tutorials about the workflows are available 

on YouTube. 

  

https://hub.knime.com/BioML-Konstanz/extensions/org.knime.knip.dl.feature/latest
http://doi.org/10.5281/zenodo.3997728
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.youtube.com/playlist?list=PLbBgXlYof3_YVqR80jhFPCkc0M3GQMAq4
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2.8.3. Classification with deep learning - Workflow and CNN model 

The KNIME workflows for the training of a deep-learning model for image classification perform the 

data pre-processing, the preparation of a custom model architecture and the training of this model. 

For the model architecture, a VGG16 base (Simonyan and Zisserman 2015) pretrained on the ImageNet 

dataset (Deng et al. 2009) is fetched from the internet using the Keras library and its weights are frozen. 

The output of the base network is flattened to a 1D vector (Keras Flatten layer). A fully connected layer 

(also called dense layer) with 64 neurons (also called units) with a ReLU activation function is added 

on top. Dropout with a probability of 0.5 is applied on the output from this 64-neuron layer (Keras 

Dropout Layer).  

For the binary classification workflow, a last Keras dense layer containing a single neuron with a 

sigmoid activation is added on top of the 64-neurons dense layer. The output of the network is thus a 

single numerical value corresponding to the probability for the first class (p1). The probability for the 

second class is simply p2 = 1-p1. For the training, a binary cross-entropy is used for the computation 

of the loss.   

For the workflow with 2 or more categories, the last layer added on top of the 64-unit dense layer is a 

fully connected layer with as many units as categories. Softmax is used as activation function for this 

layer. The output of the network is thus an array of the probabilities for each possible category. Finally, 

for the training, a categorical cross-entropy is used for the calculation of the loss. 

For both training workflows, the default parameters for the training are 5 epochs with batch sizes of 8 

images. For the rest of the parameters, the default values from the example workflow are used: 

RMSprop optimizer, learning rate: 10-4, Rho: 0.9, Epsilon: 10-8, learning rate decay: 0. As part of the 

pre-processing the images are automatically downscaled to 224 x 224 pixels and their intensity is 

normalized to the range [0-1]. The dimensions for downscaling can be adapted within a range of 

dimensions supported by the VGG16 architecture (minimum 32 x 32 pixels). 
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2.9. Interactive visualisation of multiple quantitative features 

2.9.1. Interactive visualization in KNIME 

The interactive visualisation of a multi-dimensional feature set is contained in a single KNIME workflow 

and does not require any other software except a local installation of the KNIME analytics platform. 

The workflow can be downloaded from the KNIME-Hub (Thomas 2020h). A video tutorial describing 

how to operate the workflow is available on YouTube (Thomas 2020g). Downloading the workflow and 

double clicking the knwf file will automatically open the workflow in KNIME and download the required 

KNIME extensions. The KNIME workflow takes as input an excel file, that should contain along the rows 

a list of samples, each of them described by multiple feature columns (Figure 18 – top table). Originally, 

the workflow was designed for the visualization of morphological kidney features in zebrafish embryos 

(Westhoff et al. 2020), but it can be adapted to other quantitative datasets. The original data table 

from the paper (FeatureTable.xlsx) can be downloaded from the associated OSF repository (Thomas, 

Laurent et al. 2020). 

The feature used for colour coding of the data points (respectively lines) can be selected in the colour 

manager node. The features displayed in the PCA and parallel coordinates plot should also be specified 

in the configuration of these nodes. 

For the parallel coordinates plot, each feature selected for the plot is represented by a vertical axis, 

and the axis range is automatically adapted for each feature separately. It is thus not centred on 0 

contrary to some other plotting solutions offering this type of plot. The different features axis can also 

be interactively reordered by dragging them with the mouse.  

2.9.2. Interactive visualization in the TensorFlow embedding projector 

The platform is accessible at http://projector.tensorflow.org/ . A custom dataset can be loaded by 

uploading 2 text files (csv), with samples ordered along the rows. One file should contain the feature 

values and the second the corresponding metadata (labels, sample category…). Custom data from a 

previous zebrafish screening study (Westhoff et al. 2020) to generate Figure 55 is hosted on GitHub 

(Thomas 2020c). The repository also contains the link to directly open the dataset in the platform. 

  

http://projector.tensorflow.org/
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2.9.3. Dimensionality reduction using Principal Component Analysis (PCA) 

To visualize a dataset described by multiple quantitative features (n-dimensions) as a 3D point cloud, 

PCA was used for dimensionality reduction, to convert the n-features for each sample to 3 pseudo-

features. Those 3 features are then used as x,y,z-coordinates for the 3D point cloud, in which each 

point corresponds to a sample. Samples with similar feature values localize in similar regions of the 

point cloud. It is thus more intuitive to visually identify clusters of similar samples. PCA is a statistical 

method which derives from the original feature space (n dimensions), a related n-dimensional space 

(PCA-space). The 2 spaces are related, similar to a change of origin, therefore the axis of the PCA space 

can be expressed relative to the original feature space axis. These axes are also called dimensions or 

eigenvectors. Similarly, it is possible to derive coordinates for the samples in this PCA space, by 

projecting the original feature values of each sample along those eigenvectors (see Figure 18). The 

advantage of the PCA space, is that the axes are ordered according to the dispersion of the data, 

meaning that the dataset is mostly spread along the 1st PCA axis and the least dispersed along the last 

PCA axis. The dispersion along an axis is given by the eigenvalue of each eigenvector (or axis). 

Once the data projected into the PCA space, one can approximate the data by using only a fraction of 

the PCA axis for each sample. This is the so-called dimensionality reduction step. Using 3 dimensions, 

one can thus represent the original n-features in a 3D space using for each sample the values for the 

first 3 PCA axis only. This is similar to setting the other coordinates to 0 for each sample, instead of the 

original values (see Figure 19). Dimensionality reduction yields an approximation of the original data, 

as the information from the PCA axis of higher order is lost. Using more PCA dimensions allows to have 

a more precise description of the original data, ultimately using all PCA dimensions no approximation 

of the data is done. The degree of approximation can be calculated by deriving the fraction of the 

original data variance, actually represented after dimensionality reduction. The higher the represented 

variance, the more representative of the true distribution is the dimensionality reduced dataset, and 

the more faithful the 3D scatter plot. For the original paper, dimensionality reduction from 10 

morphological features down to 3 PCA dimensions corresponded to representing 76% of the original 

data variance. PCA and dimensionality reduction are further detailed the dedicated chapter of the 

python data science handbook by (VanderPlas 2016), freely available online (see link in reference). 
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Figure 18: Principal Component Analysis (PCA) applied to data 

At the top is the original table of the dataset, with one sample per row, and a set of 10 feature columns (original 

feature space), here corresponding to morphological feature measurements. Using PCA, one can derive the 

corresponding 10 eigenvectors composing the PCA space, with their coordinates in the original feature space and 

eigenvalues, corresponding to the spread of the dataset along this particular PCA-axis. Finally, the original 

samples can be projected in the PCA space, such that each sample is represented by 10 coordinates in this PCA-

space. Own contribution, reproduction and redistribution allowed under a CC-BY license. 
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Figure 19: PCA for dimensionality reduction and 3D visualization 

After projection in the PCA-space, one can visualize the distribution of the samples, using only a fraction of the 

PCA components. Using the 3 first principal components for each sample, one can visualize the data distribution 

as a 3D cloud of points. Own contribution, reproduction and redistribution allowed under a CC-BY license.  
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3. Results 

3.1. Overview 

The table below provides an overview of the publications and other outcomes of this research. 

Name Reference 

Roi 1-click tools  

- Journal publication (Laurent S.V. Thomas and Gehrig 2020) 

- Source codes and documentation (Thomas 2020k) 

- Video tutorials (Thomas 2020l) 

  

Qualitative annotation plugins  

- Journal publication (Thomas et al. 2020) 

- Source codes, documentation and workflows (Thomas 2020j) 

- Video tutorials (Thomas 2020d) 

  

Multi-Template Matching  

- Journal publication (Laurent S. V. Thomas and Gehrig 2020) 

- Source codes, documentation and workflows (Thomas 2019a) 

- Video tutorials (Thomas 2019b) 

  

Interactive exploration of phenotypic datasets  

- Journal publication (Westhoff et al. 2020) 

- KNIME exploration dashboard (Thomas 2020h) 

- Preconfigured tensorflow embedding projector (Thomas 2020c) 

- Video tutorial (Thomas 2020g) 
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3.2. Interactive annotation tools 

This section describes the development and application of novel functionalities and annotation tools 

for the popular scientific image-analysis software ImageJ (Schneider et al. 2012) and Fiji (Rueden et al. 

2017: 2; Schindelin et al. 2012). The tools facilitate the annotations of image or image-regions with 

applications for routine image evaluation or the training of supervised classification algorithms. The 

tools are described in more details in the associated publications (Thomas et al. 2020; Laurent S.V. 

Thomas and Gehrig 2020) and available in Fiji by activating the corresponding update sites (Roi 1-click 

tools and Qualitative image annotations).  

3.2.1. Implementing ROI category annotation in ImageJ/Fiji 

ImageJ/Fiji is a popular scientific image-analysis software with powerful visualization, processing, and 

analysis functionality. Regions of interest (ROI) (e.g. cells) can be outlined in images using one of the 

mouse-selection tools (see ImageJ documentation (Rasband and Ferreira 2012)). The ROI can then be 

used for further processing, for instance to limit the application of a filter or a quantitative 

measurement to this specific image-region, or to crop the image-region. However, at the time of this 

project, no built-in functionality existed to help users annotate ROI for different categories e.g. dead 

vs alive cells or different body-parts of small organisms. ImageJ being an open-source project, 

contributions to the source code can be publicly made on its GitHub code repository (ImageJ 

contributors 2005). Therefore, I contributed to the source code, by implementing a category index 

associated to ROI objects (Thomas 2020e), the so-called “group” attribute. ROIs with the same index 

belong to the same category. The category index can range from 0 (default, no category) to 255 and 

each index value is associated to a predefined colour, such that ROIs of different categories are shown 

with different colours (Figure 20.A). The index can be edited at any time via the ROI Manager (Figure 

20.B) and is saved with the ROI object when exported to disk. Finally, the indexes and associated 

category names are reported in the result table with the quantitative measurements (Figure 20.C). The 

functionality is available from ImageJ version 1.52t and is similarly available for Fiji. More details about 

the functionality is available in the following presentation (Thomas 2020m).  
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Figure 20: Annotating different tissues using the ROI-group in ImageJ/Fiji 

A) The ROI group attribute was used to annotate different body parts in this zebrafish larvae (brightfield channel, 

2X magnification). Each ROI has a specific category index associated to a colour. The colour indexes are as 

following: yellow: 0, blue:1, green:3, pink:5, index 2 and 4 were not used, as the colour were not ideal for display. 

B) The group attribute can be edited individually for each ROI via the Properties menu of the ROI Manager. C) 

The group index and associated names are reported in the result table with other quantitative measurements. 

The head-region was outlined with the group 0 (default) for which no name is allowed. Own contribution, 

reproduction allowed under a CC-BY licence. 

3.2.2. Roi-1-click tools 

Manually outlining image-regions with a mouse-selection tool is still a time-consuming task when 

repeated for numerous images. To streamline these annotations for large datasets or large number of 

objects, we developed a new set of selection tools, extending the built-in ImageJ ROI tools (Rasband 

and Ferreira 2012) by offering more automated options (Laurent S.V. Thomas and Gehrig 2020)(Figure 

21.A). With the so-called Roi 1-click tools, a single click generates a ROI of predefined dimensions, 

centred on the clicked pixel, while optional commands can be simultaneously executed. These 

commands include the addition of the newly drawn ROI to the ROI Manager, the reporting of 

quantitative measurements for the outlined image-region, the execution of a custom macro-command 

(e.g. cropping) and the display of the next image slice for image-stacks. The optional commands as well 

as the group associated to the newly drawn ROI are specified via the configuration dialog of the tools 

(Figure 21.B). The tools were illustrated for the annotation and quantification of bands in 

electrophoresis gels (Figure 21.C), and dot blots (not shown). They were also used to outline and crop 

objects of interest, which can be directly saved as a stack or collection of images with standardized 

dimensions (Figure 21.D).   
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Figure 21: Rapid annotation of standard shapes with the Roi 1-click tools for ImageJ/Fiji 

A) The 1-click ROI toolset in the Fiji toolbar. Double-clicking the tool icon displays (B) the associated option window to set the ROI shapes and custom actions to execute upon 

clicking (here for the rectangle tool). C) Using the rectangle 1-click tool for the quantification of bands intensity in electrophoresis gels. D) Using the rectangle 1-click tool to 

annotate specimen position. Using a custom command (as in B), the annotated regions are automatically cropped. Reproduced from (Laurent S.V. Thomas and Gehrig 2020) 

under the term of a CC-BY licence.
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3.2.3. Qualitative image annotations plugins 

To tackle the lack of widespread solution for the qualitative annotations of images with descriptive 

keywords, we developed a set of interactive annotations plugins for Fiji (Thomas et al. 2020). The 

plugins provide a tailored graphical user interface (GUI) with buttons, checkboxes, or dropdown menus 

for the assignment of the keywords, previously defined by the user. Categories or descriptive keywords 

can be assigned to images, or images-regions outlined by ROIs. The selected keywords are reported in 

a result table, together with the image or ROI identifier. The table is automatically updated as the user 

progresses with the annotation of new image instances. Besides qualitative annotations, any 

quantitative measurement as selected in the ImageJ menu Analyze > Set Measurements can also be 

reported if the run Measure option is selected. This option allows both a quantitative and qualitative 

description of the image-instance. Three plugins are provided which differ in their GUI to account for 

different annotation scenarios (Figure 22-Figure 24).  

The single-class (buttons) plugin allows the assignment of a single keyword per image by clicking the 

corresponding button, as illustrated in Figure 22 for the annotation of the mitotic state of dividing cells. 

With this plugin, the user decides if the result table should contain a single category column with the 

clicked category keyword for each image, or one column per category with a binary code (0/1) 

depicting the assignment. The latter option is particularly adapted to the training of supervised 

classification algorithms, which typically expect for their training an array of probabilities with 1 for the 

actual image-category and 0 for all other categories (also called 1-hot encoding, see (Müller and Guido 

2016)).  

The multi-class (checkboxes) plugin allows multiple keywords per image, which are selected via 

associated checkboxes. It is illustrated in Figure 23 for the annotation of organ-specific phenotypes in 

transgenic zebrafish larvae. This plugin yields a result table with one column per keyword, and a 0/1 

code if the keywords apply or not. The table structure is thus similar than with the single-class (buttons) 

plugin except that multiple keywords might be selected for a given image (i.e. multiple 1 for a given 

table row, as in row 1 of Figure 23).  

The multi-class (dropdown) plugin allows choosing keywords from several lists of choices using 

dropdown menus. This plugin is convenient if multiple image features should be reported with several 

options for each feature. It is illustrated in Figure 24 for the phenotypic description of multi-cellular 

embryos outline by ROIs, with the annotation of the pigmentation, shape and texture.  

  



83 
 

The plugins are open-source and available by activating the Qualitative Annotations update site within 

Fiji. The source codes, example of analysis pipelines and example image data were also released 

together with the plugins (Pandey et al. 2020; Thomas 2020j). Additionally, video tutorials are available 

on YouTube (Thomas 2020d).  

3.2.4. Generic workflows for the exploitation of qualitative annotations 

To illustrate potential applications of the qualitative annotations generated using the plugins described 

above, generic KNIME example workflows were developed and are available via the KNIME Hub 

(Thomas 2020f). Example data and associated annotations to test the workflows are available on 

Zenodo (Pandey et al. 2020) and on the GitHub repository (Thomas 2020j). One of these workflows 

was developed for the visualization of the feature distribution as a sunburst chart, illustrated in Figure 

25 for the phenotyping of multi-cellular embryos as in Figure 24. The workflow first enumerates the 

occurrence of given combinations of feature values (Figure 25.A) in the original annotation table and 

represents this information as a sunburst chart (Figure 25.B). This type of visualization is particularly 

adapted for qualitative features, to identify trends between features. A second workflow was adapted 

for the training of a deep learning model for image-classification, described in details in section 3.6.2. 

The example workflows take as input one of the tables generated by the annotation plugins and can 

be readily executed without major adaptation.  
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Figure 22: The single-class (buttons) qualitative annotation plugin 

At the top is the graphical interface of the plugin. As the plugin’s name suggests, it allows the assignment of a 

single category per image or image-region by clicking the associated button. Here the plugin is illustrated for the 

annotation of the mitotic stage of dividing cells (ImageJ example image “mitosis” – credits NIH). Below the user-

interface is the resulting result table, with either a single category column (middle) or multiple category column 

with binary encoding (bottom), depending on the initial plugin configuration. Own contribution – licenced under 

CC-BY. 
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Figure 23: Annotation of multiple categories using the multi-class (checkboxes) plugin 

(A) Example images of transgenic zebrafish larvae of the Tg(wt1b:egfp) transgenic line after injection with control 

morpholino (upper panel) or with ift172 morpholino (lower panel) inducing pronephric cysts. In this illustration, 

the plugin is used to score overall morphology and cyst formation. It could also be used to mark erroneous images 

(such as out-of-focus or empty wells). Images are from (Pandey et al. 2019).  

(B) Graphical interface of the checkbox annotation plugin configured with 2 checkboxes for overall morphology, 

2 checkboxes for presence of pronephric cysts, and checkboxes to report out-of-focus and empty wells. Contrary 

to the single class (button) plugin, multiple categories can be assigned to a given image.  

(C) Resulting multi-category classification table with binary encoding of the annotations (True/False).  
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Figure 24: Qualitative and quantitative annotations of image regions using the multi-class 

(dropdown) plugin 

(A) ImageJ’s sample image “embryos” after conversion to grayscale using the command Image > Type > 32-bit. 

The embryos outlined with yellow regions of interest were annotated using the “multi-class (dropdown)” plugin. 

The insets at the top shows the annotation of overlapping ROIs, here corresponding to embryos with phenotype 

granular texture, dark pigmentation and elliptic shape. The inset at the bottom shows other embryos with 

different phenotypes (10: smooth/clear/circular, 12: granular/clear/elliptic, 14: smooth/dark/circular). (B) 

Graphical interface of the multi-class (dropdown) plugin. Three exemplary features are scored for each embryo: 

texture (granular, smooth), shape (circle, ellipse) and pigmentation (dark, clear). Quantitative measurements as 

selected in the Analyze > set Measurements menu (here Mean, Min and Max grey level) are also reported for 

each embryo, when the run Measure option is ticked. (C) ROI Manager with ROIs corresponding to annotated 

regions. (D) Resulting classification table with the selected features, qualitative measurements, and associated 

ROI identifiers for the outlined embryos.  
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Figure 25: Visualizing qualitative data-distribution using sunburst charts in KNIME  

(A) Summary table derived by the workflow from the annotation table (Figure 24.D), reporting the occurrence 

for each combination of qualitative features occurring in the dataset. The number of samples with a particular 

combination of features is reported in the column “Sum”. (B) Resulting sunburst chart with each qualitative 

feature represented as a concentric circle. The concentric order of the feature circles (inner to outer) can be 

adapted by the user. The sunburst chart allows the comparison of data-distribution for qualitative features, and 

to identify trends between features. For instance, the highlighted portion shows that all specimens with smooth 

appearance also have a circular shape, and most of them a rather dark pigmentation.  
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3.3. Object detection with Multi-Template-Matching 

This section describes a novel implementation and benchmarking of multi-template-matching for 

object-detection, with enhanced detection capacities compared to the existing single-template 

matching. Part of the results described here are also detailled in the associated publication (Laurent S. 

V. Thomas and Gehrig 2020) and online YouTube tutorials (Thomas 2019b). The method was 

benchmarked for the localization of small organisms such as unhatched medaka embryos, as well as 

specific organs in zebrafish larvae. The workflow reported in section 3.3.8: “Application to eye and lens 

segmentation in zebrafish” was implemented by Alexandre Jeanne, master student at the time of a 2-

month internship at ACQUIFER, under supervision of Laurent Thomas and Jochen Gehrig. 

3.3.1. Implementation 

To overcome the limitations of object-recognition with single-template matching (see section 1.6.3), a 

novel multi-template matching (MTM) was implemented as plugins in Fiji (Figure 26) and as a python 

package. Using the python implementation, a KNIME workflow was also developed (Figure 27). The 

implementation allows the search with multiple template images, corresponding to rotations or other 

transformations of the object. The core functionalities of MTM are the computation of the score map 

for each template, the detection of local score extrema from the set of score maps, and finally the 

filtering of overlapping detections via a custom non-maxima suppression strategy (Figure 29 and 

method section 2.4). A flowchart summarizing the implemented Multi-Template-Matching is depicted 

in Figure 28. A graphical user-interface (GUI) in Fiji and KNIME allows the setting of the template pre-

processing (optional flipping and rotation) and detection parameters (Figure 26, Figure 27). In the 

plugins’ GUI, only flipping and rotations of the templates are proposed as possible transformations, 

which are the most common transformations expected for objects in microscopy images. If flipping 

and rotation are selected, both the initial and flipped templates are rotated. Scaling of the templates 

would be a possible supplementary transformation, it is however not proposed in the interface, as in 

the context of microscopy, objects are expected to lie in the same size-range for a given objective 

magnification. However, template images representing objects of different scales can still be provided 

as a list of files. The Fiji plugins are macro-recordable to allow their integration in custom analysis 

workflows. Besides, extensive documentation and tutorials are available on the GitHub repositories 

(Thomas 2019a). 
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3.3.2. Execution of the search 

The execution of the algorithm is relatively straightforward: the template (or templates) and target 

images are provided via the built-in image loading functionalities of Fiji, python or KNIME. For batch-

processing in Fiji, list of files or a folder containing the images can be used as input too. To generate 

additional artificial templates, geometric transformations of the provided templates can be selected 

via checkboxes for flipping, and a list of angles can be entered for rotation by discrete angles. A 

rectangular region of interest can be provided to limit the search to a portion of the image, which has 

the advantage to speed up the search (Figure 30.C). Then the user should set up the detection 

parameters, namely the type of score for the computation of the score map, the expected number of 

objects (if known) and the score and overlap thresholds. The parameters are saved in memory for the 

next execution. After execution, the plugins return either rectangular ROIs in Fiji (Figure 26.B), a mask 

image in KNIME (Figure 27.C) and a list of detections with bounding-box coordinates and scores in 

python. The proposed implementation is fully integrated within the executing software architecture, 

such that the ROIs or mask images can be exploited for further analysis in Fiji and KNIME respectively. 

Besides, the Fiji plugin is macro-recordable, to facilitate its reutilization in custom image-processing 

workflows. Finally, the result table containing the template names and scores can be used for 

classification or ranking of the detections. 
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Figure 26: The Multi-Template Matching Fiji plugin 

A) Graphical user-interface for the plugin “Template Matching Image” with: (1) Dropdown menu to select the 

template image of the object of interest. The template must be smaller than the image specified in 2, (2) 

dropdown menu to select an image (or stack of images) in which to search for the template, (3) tick-boxes to 

optionally generate additional templates by horizontal/vertical flipping of the initial template, (4) input field for 

rotation angles to generate additional templates by rotations of the initial and, if selected, flipped templates. 

The angles are specified in degrees with clockwise orientation and must be separated by commas, (5) dropdown 

menu to choose the score used for the computation of the score map (normalised square-difference, normalised 

cross-correlation or 0-mean normalised cross-correlation), (6) input field to specify the number of objects 

expected in the image, (7) input field to enter a score-threshold in the range 0-1. If the normalised square-

difference is selected, only local minima with values below the threshold are returned. While for cross-

correlation scores, maxima above this value are returned, (8) input field to specify the maximum value in range 

0-1 for the intersection over union (IoU) between a pair of overlapping bounding boxes (Non-Maxima 

Suppression), (9) tick-box to select if the detected Regions Of Interest (ROI) should be added to Fiji ROI Manager, 

(10) tick-box to specify if the result table should be displayed at the end of the execution. Parameters 7 and 8 are 

only required if several objects are expected in each image.  

B) Outputs of the plugin with (1) result table with each row containing the names of the image and template, the 

prediction score and coordinates of the top left corner and centre of the predicted bounding box, and (2) the 

detected ROI appended to the ROI Manager and highlighted on the image (yellow). 

  



91 
 

 

Figure 27: Multi-Template-Matching in KNIME 

A) Screenshot of the KNIME workflow. The template and images are provided in the Image Reader nodes on the 

left side, the processing happens in the central component node called ‘Multi-Template Matching’ containing a 

python node calling the python implementation. The parameters for multi-template matching can be configured 

via a graphical user-interface (see B) by right clicking on the node. The predicted locations can be visualised in 

the Interactive Segmentation View node on the right side (as shown in C). A result table containing the bounding 

box position, dimensions and correlation score is also returned (Table view node, output not shown). B) Graphical 

user-interface of the central “Multi-Template Matching” component node for the configuration of the detection 

parameters, similarly to the Fiji implementation. C) Predicted locations as viewed in the Interactive Segmentation 

View node. The predicted locations are composed into a mask and overlaid on the image.  
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Figure 28: Flowchart of the implemented Multi-Template-Matching 

The chart illustrates the execution sequence when a correlation score was selected. For difference-based score, 

the pipeline is identical except that a difference map is computed, minima are detected instead of maxima and 

the lowest minima are returned. (IoU: Intersection over Union) 
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3.3.3. Overlap-based Non-Maxima Suppression 

Like other sliding-window search algorithms, template matching is likely to detect a single-object 

several times at slightly shifted locations. Redundant detections are even more probable when using 

multiple templates, which are likely to match similar image-regions (Figure 29.C). The predicted object-

positions are thus not a simple sum of the detections from each template. To remove redundant 

detections, an overlap-based non-maxima suppression (NMS) strategy was adopted (see section 1.5.3 

for introduction about NMS and section 2.4.7 for the implementation). The NMS is executed after the 

detections from the individual template searches are collected, and remove detections overlapping 

above a user-defined threshold with higher-score detections. The overlap is computed between pairs 

of bounding-boxes as the ratio between the intersection and union area of the bounding-boxes 

(Intersection over Union – IoU). Figure 29.E-D illustrates the intersection and union area for a pair of 

overlapping bounding-box. From the bounding-box coordinates, the corners of the rectangle 

corresponding to the intersection can be derived and the corresponding area calculated. The union 

area is then calculated as Union = Area_BBox1 + Area_BBox2 – Intersection. The overlap threshold 

(max IoU) is a parameter of the detection, a default value of 0.5 is proposed. The NMS can be executed 

until a given number of objects are localized or for the full set of candidate bounding-boxes.  
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Figure 29: Multi-template matching and Non-Maxima Suppression for the detection of randomly 

oriented and positioned medaka embryos 

A) Image in which the search is performed (2048x2048 pixels - scale bar: 1mm) and template as inset (400x414 

pixels). B) One of the derived correlation maps from A: red crosses indicate possible local maxima before Non-

Maxima Suppression (NMS). C) Bounding boxes associated to the maxima shown in B and overlaid on the 

searched image. Colours are highlighting overlapping bounding boxes. The bounding box dimensions are 

identical to the dimensions of the template used for the search. D) Intersection area (in blue) between 2 

overlapping bounding boxes. Each bounding box is associated to a detection score. E) Area of the union between 

the overlapping bounding boxes. F) Resulting object detections after NMS with a maximal intersection over union 

(IoU) of 0.25, to return the N_objects=4 best detections. 
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3.3.4. Optional search-region 

By default, the sliding-window search covers the full image. When the object is known to be localized 

within a fraction of the image, the search can be limited to this area. A simple approach would be to 

crop the image before running the search, however the resulting detections would there have pixel 

coordinates relative to the cropped image, which differ by a fixed offset from the coordinates in the 

original image. This might impact feedback microscopy applications which have to translate the 

original image coordinates to stage or objective coordinates. Therefore, to spare the need for 

additional calculations, the implemented template matching supports the definition of a rectangular 

search area. In Fiji, this is achieved by drawing a rectangular ROI before running the plugin, while in 

python an optional argument corresponding to the position and dimensions of the rectangular search 

region in the image (x, y, width height) can be provided. In those cases, the image is internally cropped, 

and the detections are automatically recalculated for the original image dimensions. Providing a search 

region has two benefits: it speeds up the search compared to the full-size image (Figure 30.C) and 

reduces the risk of false-positive detections of background regions. 

3.3.5. Detection with a single template 

For simple cases, object-detection can readily be achieved with a single-template. The implemented 

multi-template matching allows the search with a single template image when no template pre-

processing is selected (no rotation nor flipping). This approach was successfully applied for the 

detection of the head region in microscopy images of dorsally oriented zebrafish larvae (see datasets 

section 2.2.2 - Figure 30). The head region was successfully detected in all cases, even upon slight 

morphological changes (Figure 30.B, e.g. well C7), altered specimen orientation (Figure 30.B, e.g. well 

B8) or partial occlusion (Figure 30.B, e.g. well E10). The detection with the Fiji implementation takes 

about half a second on a full resolution 2048x2048 pixels image (Figure 30.C). Thanks to the mounting 

of the specimen in agarose gel, the search can be limited to a fraction of the image, which noticeably 

reduces the time for the search (Figure 30.C).  
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Figure 30: Single template matching for head region detection in zebrafish larvae 

(A) Searched image (2048x2048 pixels, scale bar: 1mm) with template as inset (188x194 pixels), optional search 

region in orange (1820x452 pixels). (B) Montage of the detected head regions within a 96-well plate (100% 

detection success with or without search region). (C) Mean computation time per image (error bars show 

standard deviation – N=96 images) using the Fiji implementation of MTM on the laptop configuration. Prior 

information about the position of the sample within the field of view (e.g. provided a standardized sample 

mounting) can be used to specify a search region, drastically accelerating the computation and reducing the 

chance of incorrect predictions 
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3.3.6. Detection with multiple templates 

The real advantage of multi-template matching is the detection with multiple template images, which 

enhances the range of detectable patterns compared to a single-template search. This improved 

capacity is demonstrated in Figure 31 for the detection of unhatched medaka embryos (see dataset 

section 2.2.1), which, due to their spherical shapes, adopt random positions and orientations in wells 

of microtiter plates. Using MTM with a single template, the embryos are localized but with a major 

offset in Figure 31.A (yellow). While on a dataset of 10 images, half of the embryos are not found at all 

(Figure 31.B). Using additional templates generated by rotation and flipping of the original template 

image, all embryos are correctly localized and enclosed within the predicted bounding-boxes for the 

image in Figure 31.A (green). For the dataset of 10 images, the results are also improved: all embryos 

were localized and almost all of them are fully enclosed within the bounding-boxes (Figure 31.B, D). 

However, the search with multiple templates increases the computation time linearly (Figure 31.C : 

0.25 sec x 12 templates = 3 secs). 

3.3.7. Robustness to noise and occlusion 

It was shown in Figure 30, that template matching performs relatively robustly in presence of 

experimental variability which degrades the expected object-intensity signature, such as mild 

specimen morphology changes, altered specimen orientation or partial occlusion. The impact of noise 

on the detection was also investigated. To do so, the results of MTM was compared between an image 

and a noise-corrupted version of the image, using the same template and parameters for the search 

(Figure 32 A,B). The resulting detections have almost identical positions in both cases, and the same 

template image matched a given object in both images (Figure 32 C,D). The template matching score 

is however reduced when the image is corrupted with noise, which is expected as the noise increases 

the divergence with the reference template intensities. 
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Figure 31: Multi-template matching for the localization of randomly oriented and positioned medaka 

embryos 

(A) Initial template (410x420 pixels) and one of the images in which the search is performed (2048x2048 pixels, 

scale bar of 1 mm). The yellow bounding boxes indicate predicted locations when only the original template in A 

is used for the search, the green boxes indicate predicted locations when using a set of 12 templates (original, 

horizontal and vertical flipping, rotation of the original and flipped templates by 0°, 90°,180° and 270°). 

Parameters for the detection: score type: 0-mean normalized cross-correlation, N=4 expected objects per image, 

score threshold:0.35, maximal overlap between bounding boxes:0.25. (B) Result of the detections for 10 images 

each containing 4 embryos (i.e. 40 embryos in total). The objects are either predicted as fully enclosed within the 

detected Roi (full), partially enclosed (partial) or not detected (None). See detected region in D. (C) Mean 

computation time per image (error bars show standard deviation) for the different conditions using the laptop 

configuration. The computation time for each image scales with the number of templates. (D) Montage of the 

detected regions for 10 images as in A, each containing 4 embryos (1 column/image). The montage corresponds 

to the benchmark “1 Template+transformations” as in B and C. Yellow bounding boxes indicate the 2 detections 

classified as Partial in B.  
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Figure 32: Benchmarking effect of noise on the template matching search 

(A) Original image (2048x2048 pixels). (B) Image as in A corrupted with artificial noise (normally distributed 

random noise – mean:0, standard deviation:50). (C, D) Result of multi-template matching for respectively A and 

B. The template used is a crop of the specimen in the middle of image A (hence a correlation score of 1 for the 

first row of table C). Parameters for the detection: rotation of the template: 90,180° - score type: 0-mean 

normalised cross-correlation - N=4 expected objects per image – score threshold: 0.3 – maximal overlap between 

bounding boxes: 0.3. The python code to reproduce the figure is available as a jupyter notebook on the GitHub 

repository https://github.com/multi-template-matching/MultiTemplateMatching-

Python/blob/master/tutorials/NoiseBenchmark.ipynb . 

  

https://github.com/multi-template-matching/MultiTemplateMatching-Python/blob/master/tutorials/NoiseBenchmark.ipynb
https://github.com/multi-template-matching/MultiTemplateMatching-Python/blob/master/tutorials/NoiseBenchmark.ipynb
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3.3.8. Application to eye and lens segmentation in zebrafish 

Single and multi-template matching have potential applications in image-analysis workflows as a 

generic pre-processing step to localize the regions of interest. This was demonstrated for the detection 

of the eye and lens in zebrafish larvae with a custom workflow performing a 2-step template matching 

for the robust localization of the eye, followed by edge detection and segmentation (Figure 33 – see 

method in section 2.4.8). This workflow could be used to automate fluorescence intensity 

measurements in the eye-region, as done for the “eye-assays” (Hanke et al. 2015) (see section 1.2.2). 

The results of the lens and eye detection are shown in Figure 34, with a test set of 24 images. The 1st 

template matching successfully localized the head in all except 1 image. The second template matching 

for the identification of the eye within the detected head region was successful for all 23 images. The 

lens was then outlined by edge detection with the Canny edge detector followed by circle detection 

from the edge map using the Hough circle transform. The lens was correctly outlined in 22 images out 

of 23 images and localized with a slight offset in 1 image. The eye was segmented by thresholding and 

ellipse-fitting on the resulting mask which was successful for 22 out of 23 images. 

3.3.9. Integration in the ACQUIFER PlateViewer 

To facilitate the application of template matching and the visualization of the results for large datasets, 

object-detection by template matching was also implemented as a plugin in the visualization software 

of the Acquifer microscope, the PlateViewer (see section 3.7.2, Figure 50, Figure 51). Together with 

the built-in functionality of the Plate Viewer, the plugin allows the localization and semi-automated 

imaging of a user-defined ROI automatically for each sample of the plate. This functionality is 

particularly adapted for the targeted imaging of specific tissues or organs in model organisms.  
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Figure 33: Using template matching in image-analysis workflows: eye and lens segmentation in zebrafish larvae 

The eye-region is first localized in the image using a 2-step template matching. A first template search is used to localize the head region. A second template matching localizes 

the eye-region within the detected head-region. The eye and lens are finally segmented using classical image-processing methods, for instance segmentation and ellipse fitting. 

Zebrafish larvae were laterally oriented in wells of 96 well plate as in (Wittbrodt et al. 2014), and imaged at 4X magnification with the brightfield channel on an ACQUIFER IM04. 

This workflow and figure were contributed by Alexandre Jeanne, during his internship at ACQUIFER under supervision of Laurent Thomas and Jochen Gehrig. 
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Figure 34: Results of the eye and lens segmentation in zebrafish using the custom 2-step template 

matching workflow 

The detection was carried out with the workflow as in Figure 33 with N=24 zebrafish larvae, imaged at 4X 

magnification with the brightfield channel on an ACQUIFER IM04. The 4th image from the left in the top raw 

corresponds to a false-positive detection by the first template matching search. A) View of the segmented lens 

region as detected by canny edge detection and Hough circle transform overlaid on the eye-region detected after 

2-step template matching. B) View of the outline of the eye as detected by intensity thresholding and ellipse 

fitting, overlaid on the eye region as in A. C) Sum up of the outcome for each detection step. 
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3.4. Object-detection with cascade detectors 

This section describes the development of interactive annotations tools to generate ground-truth data 

compatible with the training of cascade detectors, and the implementation of a Fiji plugin for the 

detection with pre-trained cascade, customised to benefit from overlap-based non-maxima 

suppression. Finally, custom cascade detectors for zebrafish larvae and medaka embryos are also 

illustrated. The initial plugin version was implemented by Alexandre Jeanne under supervision of 

Laurent Thomas, and further developed with e.g. non-maxima suppression by Laurent Thomas.  

3.4.1. Fiji-plugin for positive training set generation 

While OpenCV releases (OpenCV team 2020) come with an interactive annotation tool to generate the 

positive training set for cascade detectors, this tool is not very convenient to annotate large amounts 

of images, neither is the display adapted for 16-bit grayscale images. Therefore, to facilitate ground-

truth annotations for the training of cascade detectors with scientific images, a dedicated Fiji plugin 

was developed. The plugin should be executed after outlining the object of interest with rectangular 

ROIs, stored in the ROI Manager (see section 2.5.1 for help with the annotation). The ROIs should have 

aspect ratios close to the dimensions that will be used for the training, to prevent any deformation of 

the object upon downscaling (see section 1.7.4). Alternatively, the ROI 1-click tools can be used to 

quickly generate ROIs of predefined dimensions (see section 3.2.2). 

Once all object regions are annotated for the current image or image-stack, the plugin can be executed. 

For each object-region outlined by a ROI, the plugin will first verify that the aspect-ratio matches the 

dimensions that will be used for the cascade training. When this is the case, the outlined image-region 

is cropped, downscaled to those dimensions, and saved as an image file to a designated folder on disk. 

If the aspect-ratio does not match the training dimensions, a window is prompted requesting the user 

to either skip the ROI or to proceed as such. Data-augmentation by flipping and/or rotation of the 

outline image-regions is also proposed in the GUI of the Fiji plugin to generate additional training 

images. Besides the training images, a pre-formatted text file (info.dat) with the file-paths to the 

training images can be generated, which is necessary when training a cascade directly via the 

command-line. The resulting image files can then be used to train a cascade with the GUI-based 

cascade training software of (Ahmadi 2017) or using the OpenCV command line training executable.  
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3.4.2. Generation of artificial background images 

For the training of cascade detector, the negative training set is composed of images representing the 

background, which are randomly cropped by the OpenCV cascade training executable to generate 

negative training instances. Obviously, those large images should not contain any object, to make sure 

the randomly cropped image-regions are free of the object-of-interest. For microscopy, if the samples 

are mounted in 96-well plates, these would correspond to images of empty wells (or filled with the 

medium), imaged with the same acquisition parameters than the experiment. In practice it is not very 

convenient to spare several wells of a plate to image the background exclusively. Therefore, the Fiji 

plugin was designed to provide an alternative to easily generate artificial background images suitable 

for the OpenCV random cropping routine. To do so, once the positive image-regions have been 

annotated and saved to disk, the outlined object-regions are replaced by the most common grey value 

of the image, and the resulting full-size image is saved to disk. A companion file bg.txt containing the 

file paths to the artificial images is also created, which is necessary when training with the command 

line utility. Examples of such background images are shown in Figure 35 and Figure 36. Although such 

artificial background images are not realistic, they still contain all possible non-object regions a sliding-

window search could come across. This approach is suitable if the outlined object-regions do not 

represent a large fraction of the image area, to prevent the artificially filled area to have a major 

contribution to the actual training-set.  
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3.4.3. Generating hard negative training instances 

When training cascade detectors, it was often observed that the model converges quickly during the 

training but performs poorly with lots of false-positive detections on test images. This suggests some 

divergence between the training set and the test set. While the positive training samples are manually 

outlined, the negative training instances are generated by the cropping routine of the OpenCV training 

executable. While the routine is convenient to yield a high number of negative training instances from 

a limited set of large negative images, there is little control of what the negative training set finally 

contains. We came with the hypothesis that the cropping routine may yield mostly background regions 

that are relatively straightforward to distinguish from the object. This could explain the rapid 

convergence of the training, as those regions are rapidly rejected within a few stages, but the poor 

performance on real images which contains a diversity of non-object regions which were not 

represented in the negative training set. This is likely to happen when the background images contain 

mostly uniform areas (e.g. the bottom of a well). 

To prevent this behaviour, one can enforce challenging negative training instances by manually 

outlining background image-regions (bubbles, shadows, edges…). A second Fiji plugin, similar to the 

plugin for the positive training set, was thus developed for the annotation of negative image-regions. 

Again, rectangular Rois of identical aspect-ratio than the detection window should be used for the 

annotation of background regions. The outlined regions are also downscaled to the expected detector 

dimensions, which should effectively bypass further cropping by the OpenCV routine. 



106 
 

 

Figure 35: Custom Fiji plugin to generate the training set for cascade detectors 

See legend next page.
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Figure 35: Custom Fiji plugin to generate the training set for cascade detectors 

On the left is an example of image containing the objects of interest outlined with rectangular regions of interest. 

Upon execution of the custom plugin, a dialog window (middle) requests the dimensions expected for the 

cascade training and used to downscale the outlined regions, the output directory to save the positive training 

instances and the optional outputs. On the right are the outputs after execution. At the top are the positive 

training instances which are downscaled versions of the outlined regions. These are saved to the designated 

directory on disk. In the middle is the artificial background image, generated by replacing the outlined object 

regions with the most common grey value of the image. At the bottom, the txt and bat files contain informations 

about the image file-path and the locations of the objects in the image. Those files are necessary for the training 

via the OpenCV command line executable. 

3.4.4. Zebrafish larvae detector 

A custom cascade detector was trained for the detection of zebrafish larvae, dorsally oriented within 

wells of a 96-well plate, imaged with the Acquifer Imaging Machine at the lowest magnification (2X) 

(see method section 2.5.5). Figure 36.A shows example of positive object-annotations (specimen 

outlined in yellow), negative background annotations (red). The resulting training images after 

cropping and downscaling by the plugin are shown in Figure 36.C,D, while the artificial background 

image is shown in Figure 36.B. In total, 60 zebrafish larvae were outlined for the positive training set, 

and the corresponding 60 artificial background images were generated with the Fiji plugin. 29 

additional negative regions were also manually outlined. From the 89 negative images, the training 

utility was configured to generate 300 negative images by random cropping. The training was set to 

reach a maximum of 5 stages, with a maximal false positive rate per stage of 0.35 and a minimum true 

positive rate per stage of 0.99. The training terminated after completing 2 stages in 5 min on the laptop 

configuration, as the number of negative training images was exhausted. 

In the resulting trained cascade, the classifiers of both stages rely on 2 Haar-like features, which can 

be visualized overlaid on a training image in Figure 37. On a test set of 33 images, when the highest-

score detection is retained, the larvae were correctly localized in 24 images, localized with a slight 

offset in 7 images, and not found in 2 images (Figure 39.A). The average detection time per image was 

around 40 milliseconds per image (Figure 39.C).  When the expected number of object is not 

mentioned and only NMS is used, the previously undetected specimens are found but a false positive 

detection is also returned in addition to the specimen for 5 images (Figure 39.A). 
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Figure 36: Ground truth annotations for the training of a zebrafish cascade detector 

A) Example of image used to generate some training instances. The object of interest is outlined in yellow, and 

background regions annotated to force negative training instances are outlined in red. B) Artificial full-size 

negative image, generated by replacing the outlined object with the most common grey value of the original 

image. This image is used by the OpenCV training executable to generate negative training instances by multiple 

cropping at random locations. C) Corresponding training instances after cropping and downscaling to the 

detector size (113 x 23 pixels) with the positive annotation plugin in Fiji. D) Corresponding negative training 

instances, after cropping and downscaling with the negative annotation plugin. Those images are used for the 

negative training set in addition to the artificial image in C. 
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Figure 37: Haar-like patterns retained during the training of a zebrafish larvae detector 

The patterns are overlaid on a training image, scaled to the dimension used for the training (113 x 23 pixels). The 

cascade contains 2 stages, each of them relying on 2 Haar-like features. The intensity patterns potentially 

represented by the Haar-like pattern is indicated below the images. The overlay was generated by the 

opencv_visualisation.exe executable see method section 2.5.3. 

 

 

Figure 38: Graphical user interface of the cascade detection plugin in Fiji 

The graphical user-interface allows selecting a custom cascade classifier for the detection of images in Fiji. The 

rest of the parameters concern the detection (downscaling factor and bounding-boxes dimensions), non-maxima 

suppression (min score, max IoU) and filtering of the list of detections (top-N detections). 
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3.4.5. Fiji-plugin for detection with trained cascade 

Once a cascade trained for the detection of a particular object, the resulting xml file containing the 

detector structure allows the detection of objects in any grayscale image. To do so, the xml file can be 

loaded in custom scripts via the OpenCV library or in python scripts via the scikit-image python library 

(van der Walt et al. 2014). The graphical user-interface program from (Ahmadi 2017) also provides 

functionalities for the detection, however it is limited to a preview of the detections as bounding-boxes 

overlaid on the images, and thus cannot be included in larger image-analysis workflows. To provide an 

end-user solution for the detection with cascades, and to facilitate the integration of these detectors 

in custom image-processing pipelines, an additional Fiji plugin with graphical user-interface and 

compatibility with macro-recording was thus developed (Figure 38). It relies on the OpenCV library via 

the conversion utilities of the IJ-OpenCV package (Domínguez et al. 2017), similar to the Multi-

Template-Matching plugins. The plugin can perform the detection on any image or image-stack opened 

in Fiji, provided the xml file of the cascade only. The GUI for the detection plugin contains parameters 

for the cascade, as well as for non-maxima suppression. The parameters related to the detection with 

the cascade include the minimal and maximal bounding boxes dimensions as well as the relative step-

size for the image-pyramid generation. A smaller step-size yields a higher number of images in the 

pyramid and so a longer detection time. The minimal and maximal bounding-boxes dimensions 

likewise influence the range of scales covered by the image-pyramid, as for a given image-scale the 

cascade detector yields bounding-boxes of constant dimensions. The parameters for the NMS are 

unchanged compared to the Multi-Template Matching and include the minimum score to retain a 

potential detection and the maximum overlap between 2 candidate bounding-boxes. The outcome of 

the detection is similar than with the Multi-Template-Matching plugins. Predicted object-locations are 

returned as rectangular ROIs stored in the ROI manager. The resulting ROIs can thus directly be used 

for further processing. A result table with the detections coordinates and scores is also returned.  

3.4.6. Medaka embryos detector 

A cascade detector was similarly trained for the detection of medaka embryos in wells of 96 well plate 

(see method in section 2.5.7). The training lasted 1 min 42 secs and resulted in a 3-stage cascade. The 

results of the detections are detailed in section 3.4.7 and in Figure 39.B. When NMS is used and the 

number of expected object is mentioned, the cascade correctly localized 37 embryos, 1 embryo was 

localized with a slight offset and 2 embryos were not found (Figure 39.B - rightmost). The average 

detection time per image was 16 milliseconds with these settings (Figure 39.C).  
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Figure 39: Benchmarking cascade detectors for microscopy 

A) Localization of zebrafish larvae for 33 test images containing each 1 larva as in Figure 36. For A and B, the 

detections are reported as either fully enclosing the object (included) or partially enclosing the object (offset). 

Specimens not found are reported as “missed” detections, while “False Positive” corresponds to background 

detections. B) Localization of medaka embryos for 10 images containing 4 embryos each (40 embryos in total). 

The histogram reports the number of detections for different NMS strategy as in Figure 40. The 2 rightmost 

conditions (NMS) correspond to results with the proposed Fiji implementation. C) Individual detection times per 

image in Fiji using the laptop configuration on full resolution images (2048 x 2048 pixels). For zebrafish, the times 

corresponding to Nexpected=1 as in panel A are reported. For medaka, the times for the condition NMS – 

Nexpected=4 as in panel B are reported. The cross-shaped datapoints correspond to the average value. 
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3.4.7. Overlap-based NMS improves state-of-the-art cascade detectors  

Object-detectors relying on sliding-windows typically yield overlapping detections, which require a 

non-maxima suppression (NMS) strategy to yield the most significative detections (see section 1.5.4). 

The cascade detection utility of OpenCV comes with a built-in NMS, relying on a single parameter: the 

minimum number of candidate bounding-boxes overlapping above 50% to return one genuine 

detection (minNeighbors). This approach is not ideal as it does not take into account the individual 

score of each bounding-box, such that multiple low-score candidates could yield a hit detection when 

highly overlapping, while a single high-score bounding-box might be discarded if not other bounding-

box sufficiently overlaps. Besides, redundant detections overlapping by less than 50% will still be 

returned, and deciding on a value for the minNeighbors parameter is not intuitive. Figure 40-A,B 

illustrates the results with 2 different values for the minNeighbors parameter (3 and 5 respectively) for 

the detection of medaka embryos. With 3 neighbours most specimens are detected but multiple 

overlapping detections are returned. Increasing to 5 effectively prevents overlapping detections but 

results in missing several specimens (see also Figure 39.B). The overlap-based NMS presented for 

multi-template matching (see section 2.4.7) is generic by design and can thus be applied to any pool 

of bounding-boxes, provided a score for each detection. Therefore, the Fiji plugin for the detection 

with cascades was designed to bypass the built-in NMS of OpenCV by setting minNeighbors to 1 (i.e. 

no overlapping bounding-box needed) such that all potential object-locations are initially returned. 

The pool of detections is then passed to the more reliable overlap-based NMS which yields the final 

set of genuine detections. The result with this strategy is illustrated in Figure 40-C,D. With a minimum 

score of 1 and maximum overlap of 30% most specimens are correctly localized with almost no 

overlapping detections. Decreasing the score threshold (e.g 0.5) could potentially help detecting the 

undetected specimens. Ultimately, when the number of objects is known in advance, this information 

can be used by the NMS procedure to further avoid unexpected detections (Figure 40.D, leftmost 

image and Figure 39.B). 
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Figure 40: Comparison of non-maxima suppression methods for cascade classifiers 

Results with a custom medaka detector, for a set of selected images. A,B) Using the built-in OpenCV NMS, with 

no minimum score, C) Using overlap-based NMS and D) Using overlap-based NMS and indicating the expected 

number of objects. 
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3.5. Object detection with deep-learning detectors 

This section describes the development of user oriented KNIME workflows using the python libraries 

MXNET/GluonCV, for the training of a deep learning object detector with custom images, and its 

subsequent application for detection. We also propose here a strategy for the annotation of ground-

truth object-locations in Fiji, and present benchmarks of training time with different settings. The 

workflows were illustrated for the detection of head and yolk regions in zebrafish larvae.  

3.5.1. Ground-truth annotations in Fiji 

At the time of this project, no graphical interface solution existed for the annotation of object-locations 

and corresponding classes in images, that would propose the encoding as a .lst or .rec files as advised 

by the GluonCV documentation for the training of custom object detector (GluonCV Contributors 

2020a) (Figure 15, Figure 16). Therefore, to facilitate ground-truth bounding-box annotations for the 

training of custom object-detectors with GluonCV/MXNET, a dedicated Fiji script was developed to 

take advantage of the annotation functionalities offered by ROIs in Fiji (see section 2.6.1). Similarly 

than for the cascade detector plugin (section 3.4.1) the objects should be previously outlined with 

rectangular ROI stored in the ROI Manager of ImageJ/Fiji. Again, this can be rapidly achieved with the 

ROI 1-click tools when the objects have similar sizes (see section 3.2.2). The script extracts the 

coordinates of object-regions outlined by rectangular ROIs and saves them to a pre-formatted csv file. 

This first step of annotation should be repeated for every object classes, such that one csv file contains 

the coordinates of all bounding-boxes for one class of object. Once all object-classes have been 

annotated, there should be as many csv files as object-classes.  The collection of csv files is then 

transformed to a single .lst file. This is achieved by a first KNIME workflow, which also performs the 

conversion from the .lst to .rec format for faster training. Once the .lst file and/or .rec file generated, 

the data is ready to be used for training. 

3.5.2. Custom model training in KNIME 

The GluonCV documentation contains a tutorial for the training of a custom object-detector (GluonCV 

Contributors n.d.), by fine-tuning of a model previously trained for the detection of real-life objects, 

here a SSD detector (Liu et al. 2016) pretrained on the VOC dataset (Everingham et al. 2010). This 

tutorial consists in a collection of python source codes and associated explanations. To provide a more 

accessible solution than raw source code, the python script for the model training was adapted to work 

within a second KNIME workflow, via a python scripting node (Figure 41). The workflow provides a GUI 

for the configuration of the main training parameters (location of .rec file for the training set, number 

of epochs, batch-size, filename for the output trained model - Figure 41.A). After training, the model 
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configuration is saved to a file (.params extension) for prediction on new images. The name of the 

object-classes is also saved to a text file, which is necessary to recover the class names from the 

predicted category indexes. Besides, the line plot node allows the visualization of the error-metrics on 

the training set (cross-entropy for the class predictions, and loss for the bounding-box positions - Figure 

41.C). The training automatically runs on GPU when available and when the GPU version of the MXNET 

python package have been installed (see section 2.1.7). 

3.5.3. Prediction with custom object detector 

Once a custom model trained for object-detection with MXNET, it can be used to predict object-

localization and classes in new images. A third KNIME workflow was thus designed to facilitate the 

detection and the visualization of the prediction with list of images (Figure 42.A). It is similar to the 

training workflow, except that the images are loaded using the image-processing functionalities of 

KNIME and then passed to a central processing node embedding the python script for the prediction. 

Additionally, the central nodes was designed to offer a custom GUI for the selection of the trained 

model, the selection of the text file containing the class names and the setting of the score threshold 

(Figure 42.B). Besides the detection, the python script performs the image pre- and post-processing 

before/after the detection with the model. This includes respectively downscaling the images before 

passing them to the neural-network and rescaling of the bounding-boxes to the original image size 

after detection. The detected regions are rendered as a mask image in KNIME so they can be visualized 

as an overlay on the original images (Interactive Segmentation View node and Figure 42.C), and further 

processed using the built-in image-processing functionalities of KNIME. The coordinates and 

dimensions of the bounding-boxes as well the associated scores for each image are also returned as a 

result table (Image Viewer “Bboxes table” node and Figure 42.D). 
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Figure 41: KNIME workflow for the training of a custom deep learning object-detector 

A) KNIME workflow for the training of a deep learning object-detector using the MXNET library in python. The 

component node (in grey) contains the central python node with the script for the model training, and a few 

nodes to generate the configuration window (see B). B) Custom configuration window for the setting of the main 

training parameters (location of the training data, number of epochs, batch size). It is shown by right-clicking on 

the component node. C) Visualization from the line plot node showing the error metrics (cross-entropy for the 

class predictions, and loss for the bounding-box positions) on the training set for the successive training iterations 

(epochs). The error-metrics have a typical exponential decay profile for a training that converges on the training 

set. However, without a validation set, one cannot predict if the model will generalize well on new data. Own 

contribution. Licensed under CC-BY. 
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Figure 42: KNIME workflow for object-detection with a custom deep-learning model 

View of the KNIME workflow. The test images are loaded with the built-in image-processing functionality of 

KNIME. The detection is done via a python scripting node, embedded in the Detection component node (in grey). 

The component node also contains nodes to generate the graphical interface (B) used to set up the detection 

parameters (location of the classes.txt, trained model and score threshold). C) Detected head and yolk regions 

viewed as an overlay on the original image in KNIME. D) Result table with bounding-boxes coordinates, 

dimensions and classes for each detection. Own contribution. Licensed under CC-BY. 
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3.5.4. Head and yolk detection in zebrafish larvae 

Using the training workflow, a model was trained for the detection of both the head and yolk regions 

in zebrafish larvae oriented dorsally in wells of a 96-well plate (Figure 42). The training was carried out 

for 10 epochs with 60 training images. The duration of the training was compared between GPU/CPU 

and input format of the training set (lst vs rec file) on the workstation 1 (Figure 43). The training was 

most efficient when running on GPU and using a .rec file for the training set. Using a .lst file, the training 

on GPU did not converge due to memory overflowing after 1 epoch. The error metrics (loss and 

entropy) can be visualized for the course of the training in Figure 41.C. Both metrics decrease and 

stabilize which indicates that the model manages to predict both the object-locations and classes 

correctly for most training images. The model performance was then evaluated on a separate test set 

of 58 images, with a minimum score of 0.5 for individual detections. The model achieves good 

performances even on more challenging images (out of focus, disrupted specimen, bubbles, etc.). Both 

the head and yolk regions are correctly detected for almost all the 58 test images. Except for 5 images, 

for which only 1 of the 2 regions was correctly found. In another image, an additional false positive 

detection was returned in addition to the head and yolk. The python node takes 39 seconds to process 

the 58 images (0.7 sec/image), when the detection is run on the GPU.  

 

Figure 43: Computation time per epoch for different training configuration 

The computation time per training iteration (epoch) was compared when running on GPU or CPU, and when 

loading the training set from a .rec file or from the information contained in a .lst file. The training was run with 

60 training images and a batch size of 2 on the workstation 1. Time axis with logarithmic scale. 
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3.6. Image-classification 

3.6.1. Classifying zebrafish kidney morphologies with template matching 

Single and multi-template matching can be used for image-classification too. When the template and 

target images have identical dimensions, then the result of the template matching is a single score 

value. Provided a single template, a threshold on this score can be used to perform binary classification 

(Figure 7). Images thus get classified as corresponding to the category of the template or not, 

depending on their correlation-score or difference-score with the reference template. Figure 44 thus 

illustrates the classification of fluorescently-labelled kidney morphologies (Figure 44.B) in transgenic 

Tg(wt1b:EGFP) zebrafishes as observed in a previously published toxicity screening study (Pandey et 

al. 2019) (see dataset section 2.2.3), using a single template representative of the wild type 

morphology (Figure 44.A). Images from the dataset were previously annotated as belonging to the 

wild-type or cystic category (1240 annotated kidney images: 840 normal, 400 cystic). A fraction of the 

annotated dataset (25% - 310 images: 214 normal, 96 cystic) was used to derive an optimal score 

threshold for the classification, similarly than with a training fraction for machine learning. This was 

done by visualizing the distribution of the template matching scores with the reference wild-type 

template for the 2 classes (Figure 44.C). From this distribution, a correlation-score of 0.7 with the 

reference template was chosen as threshold to classify the rest of the dataset (test fraction). Using this 

threshold, the classification reaches an accuracy of 95% with 930 test images (Figure 44.D). Only 4% of 

normal specimens were classified as impaired and 5% of impaired were classified as normal. This 

template-based classification pipeline was implemented as a KNIME workflow relying on the multi-

template-matching python package (see method section 2.8.1). 

The classification can also be completed with multiple templates each representing a different object-

category. In this case, the image is classified as the category of the template returning the highest 

score. A score threshold can also be applied, such that if none of the templates return a score above 

the threshold, the image is classified as outlier. Multi-class classification with template matching is 

illustrated for the recognition of more than 2 zebrafish kidney morphologies in Figure 45 (see method 

section 2.8.1). However, the classification accuracy is lower than binary classification, due to similar 

intensity distributions between the reference templates, which are not easily distinguished by 

template matching. 
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Figure 44: Binary image-classification using single template matching  

Single-template matching used for the binary classification of kidney morphology (normal vs impaired 

phenotype) in the Tg(wt1b:EGFP) transgenic zebrafish line, expressing the green fluorescent protein (GFP) in the 

pronephroi (1240 annotated kidney images: 840 normal, 400 impaired. Images are from a previously published 

toxicity study (Westhoff et al. 2020). (A) Reference template image representing the normal kidney morphology. 

The image is an average projection of 15 images after registration using centre of mass, to compensate for 

variability in the fluorescent signal. (B) Example of images representing the 2 morphology classes for the 

classification: normal on the left, and impaired on the right. (C) Distribution of the correlation-score with the 

reference template for the 2 classes, with 25% of the manually annotated dataset (310 images: 214 normal, 96 

impaired). The red dashed line indicates the value of 0.7, used as a threshold for the classification of new images. 

(D) Confusion matrix depicting the accuracy of the classification for the remaining 75% of the annotated dataset 

(930 images: 626 normal, 304 impaired) using the 0.7 score-threshold. The accuracy of the classification is quite 

high (95%), with such a simple classifier. Only about 4% of normal specimen were classified as impaired and 5% 

of impaired were classified as normal. Own contribution, reproduction allowed according to CC-BY licence. 
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Figure 45: Template matching for multiple class classification 

A) Template images representing 3 zebrafish kidney morphologies as observed in a previously published toxicity 

screening (Westhoff et al. 2020). B) Example of test image and score for each template. The image is assigned 

the category of the template with the highest score, here the Cystic category (correct). The difference of score 

between the classes is relatively low though, as the templates present similar pixel intensity distributions. C) 

Result of the classification for a test set of 167 annotated images (50 normal, 52 cystic, 65 long). Images for which 

none of the template score is above 0.5 were classified as outliers. The cystic and normal kidney are well 

recognized, however the long phenotype is often mis-predicted as cystic. 
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3.6.2. KNIME workflows for the training of deep learning image-classifiers 

The previously described Fiji annotation plugins (see section 3.2.3) are particularly adapted to generate 

the ground-truth category annotations for the training of image-classifiers. Therefore, to illustrate an 

example of such application and to simplify the access of deep-learning for image-classification to non-

experts, a set of KNIME workflows were developed (Figure 48, Figure 46.A), which are available and 

documented on the GitHub repository (Thomas 2020j). The workflows are adapted from an existing 

KNIME example workflow (Dietz 2020) and from guidelines from an online tutorial (Rosebrock 2014a). 

They rely on the Keras library (Chollet and others 2015), which is fully integrated in KNIME, and thus 

do not require coding. The workflows were designed to directly take as input annotation tables as 

generated by the single class (button) plugin of the Qualitative annotation plugins presented in section 

3.2.3. The workflows are configured with sensible default parameters and thus can be executed 

without major adaptation. Advanced users can still tune the parameters for the model training via the 

configuration window of the Keras network learner node (Figure 46.B). 2 workflows are provided for 

the training of custom deep-learning models for image-classification with custom images and classes. 

Both workflows generate a hybrid model made of a pre-trained VGG16 base (Simonyan and Zisserman 

2015) for feature extraction, completed by newly appended fully-connected layers for the 

classification with custom classes (see section 1.8.1: “Deep-learning models”). Only the newly 

initialized layers are trained, while the VGG16 base pre-trained on the ImageNet dataset (Deng et al. 

2009) stays untouched (frozen). By doing so, the various features previously learned by the VGG16 

base to distinguish the various real-life objects from the original training set are reused to distinguish 

novel object-classes. This strategy known as transfer-learning effectively reduces the need for large 

training set and the time to train a model (Zhu et al. 2011). The 2 training workflows differ slightly in 

the structure of the classification layers (see method section 2.8.3). One workflow is designed for 

binary classification exclusively, meaning that images are assigned to 1 category out of 2 possible 

categories. Therefore, the annotated training set can only contain 2 categories (e.g. positive vs 

negative). The classifier in this model returns a single probability as in Figure 6. The second workflow 

can be used for classification with 2 or more categories and returns for each image the probabilities 

for each category. Images are thus assigned to a single top-score category. 

Provided the annotation table, the workflows load the images and associated category labels in 

memory, pre-process the images (downscaling and intensity normalization) and finally train the model. 

The annotated dataset is automatically partitioned into training, validation and test set. For the 

training and validation set, the error metrics for the model (accuracy or loss) can be monitored in real 

time along the training (Figure 47.B). For the test set, the accuracy of the classification is automatically 

computed and can be visualized as a confusion matrix (Figure 47.C).  
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Finally, the trained model can be exported to disk for prediction on new images. Dedicated workflows 

for the prediction are also provided.  

 

Figure 46: KNIME workflow for the training of a deep learning model for image classification 

A) Screenshot of the KNIME workflow for the training of the model. A subset of the annotated data (training and 

validation set) is used for the model training (upper part of the workflow outlined in yellow). The remainder of 

the annotated data (test set) is used for the evaluation of the model performance after training (lower part of 

the workflow, outlined in blue). B) Configuration window of the Keras network learner node for the setting of the 

training parameters. 
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3.6.3. Classifying zebrafish kidney morphologies with deep learning 

The KNIME workflow presented in the previous section was used to train a model for the identification 

of two distinct morphological phenotypes of fluorescently-labelled pronephroi, as previously with 

template matching (normal vs impaired/cystic, Figure 44). With that same dataset of about 1000 

images, a first model was trained with about half of the images (see partitioning of the data in Figure 

47.A). The model was trained for 5 epochs with a batch size of 8 images, which took about 4 min 30 

secs on a HIVE server with a 2 GB GPU (see section 2.1.2: “Hardware configuration”). The loss for the 

validation set was already low after 1 epoch (0.13), suggesting that the models readily classify correctly 

unseen images after a single training iteration. The loss is further reduced after 5 epochs, depicting 

further improvement of the classification (0.10, see Figure 47.B). On a separate test set of about 600 

images, the model correctly classified almost all images. Only 2 images representing the impaired 

phenotypes (cystic) were misclassified as normal (see confusion matrix in Figure 47.C). A similar 

training was carried out with fewer images of the same object but imaged at higher resolution (116 

training images: 57 normal, 59 cystic, Figure 48). The training also converged but started overfitting 

the training set, as it can be seen by the increasing error on the validation set after the batch 45 (Figure 

48.B), potentially due to the smaller training set. Still, the trained model achieved high classification 

accuracy (>99%), with a single misclassified image on a test set of 145 images (69 normal, 76 cystic) 

after training for only 5 epochs (Figure 48.C). 

A last model was trained with the second KNIME training workflow for the identification of more than 

2 kidney morphologies, similarly than with template matching in Figure 45. Only 20 training images per 

class were used (see dataset partitioning Figure 49.A). The model was thus trained for a few more 

iterations to achieve satisfying performance for both the training and validation fractions (15 epochs, 

Figure 49.B). On a separate test set of 84 images, the resulting model performs quite well again, with 

more than 90% overall accuracy as well as satisfying class-specific metrics (Figure 49.C). 
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Figure 47: Binary classification of zebrafish kidney morphologies using deep learning (low resolution) 

A) Distribution of the annotated images between training, validation and test fraction. The row ID corresponds 

to the category index (here 0=Impaired, 1=Normal. B) View of the Learning monitor panel of the Keras network 

learner node, showing the value of the loss for the training and validation batches along the training (red and 

blue respectively). This plot is used to estimate the progress of the model in real-time. C) Confusion matrix 

depicting the accuracy of the model on the test fraction. See Figure 48.A for example images of the kidney 

morphologies classified. 
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Figure 48: Binary classification of zebrafish kidney morphologies using deep learning (high 

resolution) 

A) Example images representing the two classes the deep-learning model was trained to recognize. The images 

show fluorescently-labelled pronephroi in larvae of the Tg(wt1b:EGFP) transgenic zebrafish line showing 2 

common morphologies (Left: Normal, Right: Cystic), observed in a previously published chemical screen (Pandey 

et al. 2019). B) View of the Learning monitor panel of the Keras network learner node. The training and validation 

losses decrease until about batch 45. From there the validation loss increases, suggesting the overfitting of the 

model on the training set. C) Confusion matrix as shown by the Scorer node depicting the accuracy of the 

classification by the trained model on a separate test set. After training for only 5 epochs with 116 training images 

the model achieved already a very good classification accuracy with only 1 image misclassified, out of 145 test 

images. 
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Figure 49: Classification of multiple zebrafish kidney morphologies using deep learning 

A) Distribution of the annotated images between training, validation and test fraction. B) View of the model loss 

for the train and validation fraction along the training (15 epochs). The loss is rather stable for the first half of 

the training but finally decreases. C) Confusion matrix depicting the accuracy of the model on the test fraction. 

See Figure 45.A for example images of the kidney morphologies classified. 
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3.7. Automated microscopy 

3.7.1. Feedback microscopy for targeted high-resolution imaging of regions of interest 

Feedback microscopy was demonstrated with single template matching on the ACQUIFER IM04, for 

the targeted high-resolution imaging of regions of interest, from samples mounted in 96-well plates. 

A folder-watching routine was implemented in Fiji using the jython scripting language. This routine 

should be started together with an overview acquisition protocol on the microscope. The overview 

acquisition protocol was configured to image each well of the plate using the low magnification 

objective (2X), such that the field of view encloses the full well. The folder-watching routine is scanning 

at regular time interval (ex: every 2 seconds) the directory in which the low magnification images are 

saved, and reports for every iteration the list of newly created images. For each of these images, a 

custom single-template-matching code is executed within Fiji with a predefined template. As part of 

the detection process, the centre of the localized image region is converted from pixel coordinates to 

the corresponding XY objective coordinates, taking into account the pixel size for this magnification, 

and the original XY position of the objective for the low-resolution image (typically corresponding to 

the centre of the well). This information is automatically extracted from the image filename, which 

contains the metadata for the acquisition. Finally, a text file (.tmp) is created on disk with pre-defined 

machine commands to execute, targeted to the localized sample region. The text file is named 

according to the image currently processed, to avoid overwriting any existing file generated for a 

previous image. The machine commands include the positioning of the objective to the calculated 

coordinates, the change from the low-resolution to the high-resolution objective, the autofocus 

commands and finally the commands related to the acquisition (illumination settings, number of Z-

slices, etc., see section 2.7.1 for details about the implementation).  

This implementation of single template matching for feedback microscopy works with any imaging 

channel including fluorescent ones, provided the object can be reliably localized. It was tested for the 

automated high-resolution imaging of the head region in zebrafish larvae from low resolution images 

as in Figure 30. To detect other tissues or organs, the template image should be updated accordingly, 

and the commands to execute for the localized regions should also be adapted to the new sample 

properties. The custom single-template-matching commands and the targeted microscope commands 

reported here are hard coded as part of the folder watching routine. Additional efforts would be 

necessary to adapt the pipeline to any generic ROI-detection algorithm, and to customizable 

microscope commands.  

  



129 
 

3.7.2. Semi-automated acquisition using PlateViewer plugins 

In addition to the visualization of the data as an intuitive plate layout, the ACQUIFER PlateViewer 

(ACQUIFER 2017b) allows the configuration of semi-automated acquisition protocols. ROIs can be 

interactively defined for targeted acquisition, either by clicking on image-regions, or via external ROI-

detection algorithms (e.g. Fiji macro) configured as PlateViewer plugins. The positions of the outlined 

regions may be used to automatically update the objective coordinates from an existing acquisition 

protocol, which is then executed by the acquisition software of the microscope. This simple in-place 

replacement of objective-coordinates facilitates the semi-automated targeted acquisition of specific 

ROIs, for multiple samples.  

Using the plugin functionality of the PlateViewer, single template matching was implemented using Fiji 

as an external program (see section 2.7.2, 2.7.3). From the PlateViewer interface, the template used 

for the search is defined by the user by outlining a rectangular image-region in one of the plate images. 

Additionally, the user has the possibility to set a rectangular search-region to limit the template 

matching search to a fraction of the images. This search region is propagated to all images. Finally, the 

user should select the images for which the plugin will be executed. Upon execution of the PlateViewer 

plugin, Fiji is called in headless mode with a custom single template matching script for the localization 

of a single object, using a 0-mean normalized cross-correlation score by default. Once the search 

terminated, the results can be viewed in the PlateViewer as illustrated in Figure 50, together with a 

preview of the field of view for an objective of higher resolution centred on the detected region. Finally, 

the outlined ROIs can be manually refined if necessary, before updating the objective positions from 

an existing acquisition protocol, to perform a semi-automated targeted acquisition. The result of such 

acquisition is shown in Figure 51. 

The single-template matching plugin is now provided by default with the PlateViewer as an example 

plugin and routinely used by collaborators and customers. Besides the imaging of previously 

demonstrated zebrafish head and yolk, it was used for the targeted imaging of the heart in laterally 

oriented zebrafish larvae for the screening of compound affecting epicardium development (Lupi et al. 

2017) or for the localization of the tail region with application for the monitoring of the immune 

response over time after tail-fin amputation (unpublished).
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Figure 50: View of the ACQUIFER PlateViewer after execution of a ROI detection plugin 

See legend page 132. 
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Figure 51: View of the ACQUIFER PlateViewer after execution of the semi-automated acquisition 

See legends page 132.
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Figure 50: View of the ACQUIFER PlateViewer after execution of a ROI detection plugin 

On the left are the images from an overview acquisition (brightfield, 2X magnification) with zebrafish larvae 

mounted in a 96-well plate using preformed agarose gel (Wittbrodt et al. 2014). For each thumbnail, 2 bounding-

boxes can be seen, resulting from the execution of the single-template-matching plugin. The inner bounding-box 

is the detected region. The outer bounding-box is aligned with the inner bounding-box and shows a preview of 

the field of view for the higher-magnification objective. The image on the right is the currently selected image 

(A1), which contains the image-region used as template (outlined in red) here corresponding to the yolk region. 

As it can be seen in the thumbnails, the search was successful for all selected wells (in dash yellow).  

 

Figure 51: View of the ACQUIFER PlateViewer after execution of the semi-automated acquisition 

Using the PlateViewer, an existing acquisition protocol for the imaging at high magnification can be updated to 

specifically image the regions previously outlined either manually or using a plugin. Here the image shows the 

result for the imaging using the 20X magnification objective, from the regions localized in Figure 50. Only the 

wells previously selected for the ROI-detection with the plugin were imaged at high magnification. 
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3.8. Interactive exploration of a quantitative dataset 

3.8.1. A generic feature exploration dashboard in KNIME 

To facilitate the exploration of large datasets of multiple samples each described by numerous 

quantitative features (measurements, statistical quantity, image features, etc.) an interactive 

exploration dashboard was designed in KNIME. The workflow takes as input a data table with samples 

along the rows and features along the columns. The dashboard is generated by a single KNIME 

workflow, relying on javascript view nodes for the visualization. 3 panels are included in the dashboard: 

a 3D scatter plot of the data-distribution, a parallel coordinates plot and the original data table (Figure 

52). Sliders to adjust the axes range of the 3D scatter plot are also part of the dashboard. In the parallel 

coordinates plot, each line depicts the original feature values for a given sample. Similarly, for the 3D 

scatter plot, every point corresponds to a sample. The x,y,z-coordinates of the samples in this 3D space, 

are obtained by dimensionality reduction of the normalized sample features using principal 

component analysis (PCA), and using the first 3 components as coordinates. The dimensionality 

reduction allows to approximate the dataset distribution by reducing the initial n-sample features to 3 

related PCA-coordinates (see introduction section 1.3.5 and method section 2.9.3). Samples with 

similar features will have similar line profiles in the parallel coordinates plot and similar positions in 

the 3D scatter plot. The 3D scatter plot is complementary of the parallel line plot. It allows the 

identification of cluster of similar samples more easily and offers a less crowded representation. The 

fidelity of the approximate representation provided by the 3D scatter plot is expressed by the fraction 

of explained variance for the original dataset. It is automatically calculated by the workflow and should 

be sufficient (>65-70%). The panels are interactive and inter-connected such that selecting one or 

multiple samples in one panel will highlight the corresponding items in the other panels, while the 

scatter plot can be rotated, magnified or cropped to highlight a fraction of samples. 

 



134 
 

 

Figure 52: View of the interactive feature exploration dashboard 

See legend on next page. 
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Figure 52: View of the interactive feature exploration dashboard 

The dashboard contains a 3D scatter plot (top left), a parallel coordinates plot (top right), 3 sliders to adjust the 

range of the scatter plot axes, and the original result table (bottom). One sample of the dataset corresponds to 

one table row, one point of the scatter plot and one line of the parallel coordinates plot. To illustrate the 

interactivity of the panel in the figure above, a few samples in dark pink are highlighted in the scatter plot and 

parallel coordinates plot, while the other items are greyed out. Hovering the mouse over the scatter plot displays 

the name and coordinates of the corresponding sample. The panel above shows the distribution of morphological 

organ features, in a toxicity screening assay (see section 3.8.2). Each sample corresponds to the average feature 

profile for a particular chemical compound, and the colour code represents another readout for that compound: 

the proportion of treated specimen that showed a normal kidney morphology. (green: 100% - all specimens with 

normal morphologies – dark pink: 0% - all abnormal morphologies). Own contribution, reuse allowed according 

to the CC-BY license. See (Westhoff et al. 2020) for a similar panel. 

3.8.2. Application to a toxicity screening dataset 

The exploration dashboard was used for the visualization of quantitative features from a toxicity 

screening in zebrafish (Westhoff et al. 2020). In this study, the toxicity of drugs from a library of 

compounds approved for clinical use in human (Prestwick  Chemical  Library®, Prestwick  Chemical, 

D’Illkirch, France), was tested in developing zebrafish larvae of the transgenic line Tg(wt1b:EGFP). The 

study focuses especially on the toxicity on the developing kidney, which is fluorescently labelled in this 

transgenic line. From the microscopy images of both the larvae and the fluorescent kidney, multiple 

phenotypes were scored including 10 morphological measurements describing the kidney for each 

embryo exposed to a compound (Figure 53). This morphological profiling was repeated for 10-12 

replicate specimen for each compound, to derive an average morphological profile response per 

compound. In total, 4.2 TB of data corresponding to >15,000 embryos treated with 1,280 compounds 

were acquired and processed. Identifying compounds with similar toxicity responses is challenging 

with such large datasets but can be facilitated by adapted visualization solutions such as the interactive 

dashboard presented in the previous section. With this dataset, the parallel line plot shows the average 

morphological features response for each compound (1 line = 1 compound) in fold-changes compared 

to the control specimens (Figure 52). The colour code was chosen to represent for each compound the 

proportion of specimens with a normal kidney morphology after treatment (green: 100% - all 

specimens with normal morphologies – dark pink: 0% - all abnormal morphologies). From this parallel 

line plot, one can notice a cluster of “green” compounds which morphological profiles are indeed close 

to the control profile (fold-change value close 1). This cluster can also be seen in the 3D scatter plot 

(see Figure 52, colours greyed out due to highlighting of some compounds). Other compounds show 

noticeable impact on the morphology of the developing kidney, with some features such as the 

glomerular separation reaching up to 7 times the control value for some compounds (Figure 54).  
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Among impaired phenotypes, one morphology was more common, with rather elongated pronephroi 

such as in B-E, H, J-L in Figure 54, with typically higher values than the control for the first 5 features 

and lower values for the last 5 features, as can be seen in the parallel coordinates plot. 

 

Figure 53: Images of the fluorescently labelled kidney in zebrafish of the transgenic Tg(wt1b:EGFP) 

line with manually scored phenotypes 

10 morphological measurements were reported for each specimen, by manually localizing reference points as in 

(A). B) Corresponding distance and angle measurements derived from the reference points (1: pronephric angle 

- left side 2: tubular distance, 3: glomerular height - right side, 4: glomerular separation, 5: glomerular width - 

left side, 6: tubular diameter - right  side). Except for distances 2 and 4, each measurement was reported for both 

side of the organ, but only one side is depicted for clarity. Reproduced from (Westhoff et al. 2020). 
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Figure 54: Selection of compounds impacting the morphology of the developing kidney 

See legend on next page.  
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Figure 54: Selection of compounds impacting the morphology of the developing kidney 

Illustrative examples of drug-induced phenotypic changes for several compound classes. For each compound a 

thumbnail image, a heatmap visualization (below thumbnail) and a parallel coordinates plot of quantitative 

morphological features are shown. For the parallel coordinates plots, features are expressed in fold-change 

compared to the controls, while for the heatmap the Z-score of this ratio is represented. In the parallel coordinate 

plots, thick lines indicate the compound of interest and thin lines represent all other compound treatments.; 

colour code as in with 0% (red, all abnormal) to 100% (green, all normal). Reproduced from (Westhoff et al. 

2020). 

3.8.3. Similar visualization using the TensorFlow embedding projector 

A similar visualization was achieved using the TensorFlow embedding-projector platform, freely 

available online (https://projector.TensorFlow.org/ ). The data can be uploaded to the platform in the 

form of text files and is automatically rendered in the browser as an interactive point cloud using 

dimensionality reduction. Compared to the KNIME dashboard, the platform offers in addition to PCA, 

alternative methods for dimensionality reduction such as t-SNE and UMAP, which can provide a better 

discrimination of the data-distribution with some datasets. Figure 55 shows the TensorFlow projector 

platform when visualizing the same dataset than in Figure 52, also using PCA for dimensionality 

reduction. As expected, the cloud of points is comparable to the related panel in Figure 52. Individual 

samples can also be rendered using their identifier (here compound name) instead of spheres (not 

shown here for clarity). Moreover, the platform has a built-in nearest-neighbour search functionality, 

to help identifying samples with similar features. This functionality is illustrated in Figure 55 with the 

compound Ibuprofen for the identification of the 20 closest compounds. 

 

Figure 55: View of the TensorFlow embedding projector interface 

(see Figure next page) - The same toxicity dataset than in Figure 52 is shown here, such that each point 

corresponds to a chemical compound. Compounds with similar feature-profiles are localized in similar area of 

the point cloud. The visualization is interactive and allows rotation, translation and zooming. Using the built-in 

nearest-neighbour search, the 20 compounds (in violet) with closest response to the selected compound 

Ibuprofen (in red) are shown here. The list of neighbour compounds is also shown on the right side, together 

with the cosine distance between the original feature vectors of the neighbour compounds and Ibuprofen. 

Reproduced from (Westhoff et al. 2020). The interactive figure can be directly accessed online at the following 

link: http://projector.TensorFlow.org/?config=https://raw.githubusercontent.com/LauLauThom/interactive-

embedding-kidney/main/configTFvis.json 

https://projector.tensorflow.org/
http://projector.tensorflow.org/?config=https://raw.githubusercontent.com/LauLauThom/interactive-embedding-kidney/main/configTFvis.json
http://projector.tensorflow.org/?config=https://raw.githubusercontent.com/LauLauThom/interactive-embedding-kidney/main/configTFvis.json
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Figure 55: View of the TensorFlow embedding projector interface 

See legend on previous page.
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4. Discussion 

4.1. Annotation tools 

This section describes the benefits and novel usages enabled by the ImageJ ROI-group functionality 

and the Fiji annotation plugins resulting from this project. It also discusses the limitations of previously 

available solutions, and possible perspectives of development.   

4.1.1. The ROI category index 

This original contribution enables novel usage of ROI objects in ImageJ/Fiji. ROIs category indexes can 

be used to annotate different populations of objects such as cells (dead vs alive, normal vs aberrant) 

or subparts of larger objects (organs, etc.). These annotations can then be turned into ground-truth 

information to train supervised object-detection frameworks, segmentation models or image-

classification algorithms. While dedicated solutions for such ground-truth annotations exist, they are 

usually not adapted to scientific images, and not easily extensible. The group attribute is part of the 

ImageJ1 API, and thus accessible by any scripting language or plugin, hence allowing its reuse for 

custom applications in both ImageJ and Fiji. This new functionality does not only benefit plugin 

developers, it greatly facilitates routine image annotations. In particular, the category index of ROI is 

reported in the result table of ImageJ/Fiji together with quantitative measurements, which facilitates 

the aggregation of the results into statistical estimates for each category.   

4.1.2. Roi 1-click tools 

With the Roi 1-click tools a single-click is sufficient to execute a set of commands that would typically 

require multiple clicks or keyboard shortcuts, which quickly become time-consuming when repeated 

for each ROI. The annotation process is thus dramatically simplified, especially for large datasets or 

large number of objects. The tools have broad applicability where standard shapes should be outlined, 

or when a rough outline of objects is sufficient. They were initially motivated by the need for a semi-

automated solution for the “eye-assays” in zebrafish larvae (see section 1.2.2 (Hanke et al. 2015; 

Hentschel et al. 2007)), to rapidly outline the eye-region and quantify the signal of a fluorescent 

reporter in this region. Yet the tools have various applications, such as the annotation of ground-truth 

object-locations with rectangular bounding-boxes or circles, and associated categories when combined 

with the ROI-group attribute (see 3.2.1). For instance, the tools were used to generate rectangular 

ROIs of fixed aspect ratio for the training of cascade detectors (see section 3.4.1). The tools can also 

be used as a pre-processing step to crop interesting image-regions according to standard dimensions, 
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thus reducing the size of the dataset. Working with predefined image-dimensions is often beneficial 

when processing large amounts of data in batch. For instance, with deep learning models a classical 

pre-processing is the resizing of the images to fixed dimensions, which may deform the objects if the 

original images vary in sizes. 

4.1.3. Qualitative image-annotations 

Describing images with a few keywords is a fundamental need in many disciplines involving imaging, 

for instance in biomedical research for the categorization of samples or the description of complex 

phenotypes, in clinical imaging for image-based diagnostics, or in manufacturing for the description of 

object-properties. These qualifiers may report the presence or discrete count of features, describe a 

morphology, evaluate quality criteria, or assign images to non-exclusive categories. Automated image-

classification methods exist, but they are usually designed to assign images to a single exclusive 

category, besides requiring substantial efforts for their implementation and validation (Lakhmi 

Prasanna et al. 2017; Olaode et al. 2014). Especially, any supervised classification method requires 

manual ground-truth annotations in the first place. For small datasets of a few dozen images, image 

identifier and qualitative descriptors can be reported in a simple spreadsheet. However, for larger 

datasets or large number of descriptors, this becomes quickly overwhelming and error prone as one 

needs to inspect a multitude of images while appending information to increasingly complex tables. 

Although software tools for such manual qualitative annotations and compatible with large datasets 

have been proposed (Wagner and Gehrig 2019; Westhoff et al. 2020), there was so far no widespread 

solution available in common user-oriented image analysis software. The qualitative annotation 

plugins for Fiji reported here, facilitate and standardize routine image annotations, with descriptive 

keywords. The plugins have various applications, from simple image evaluation to ground-truth 

category annotations for the training of supervised machine learning algorithms. The results table have 

standard structures, compatible with automated analysis by custom pipelines as illustrated with the 

KNIME example workflows. These example workflows should help non-expert users applying advanced 

visualization and analysis methods on their dataset, while more advanced users can further customize 

the workflows to their needs. 
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4.1.4. Addressing the lack of scientific image-annotation tools 

Although machine-learning is getting more popular for scientific image-analysis, there is a lack of 

broadly applicable annotation tools for the generation of ground-truth data. Existing tools are usually 

designed to annotate real life photographs and not scientific images, which raises issues such as 

incompatible file format or display range (ex: 8-bit only images). Moreover, they are not easily 

extensible and support a limited set of annotation formats. 

Using existing scientific image-analysis software such as ImageJ/Fiji for image annotations has several 

benefits. First those software are well established in the community, with a large pool of users who 

feel comfortable with this familiar software environment. Then these software support multiple 

image-formats, display options and functionalities to explore the dataset. Moreover, the annotations 

can be part of larger workflows (e.g. image pre-processing before annotating). With Fiji for instance, 

the multi-template-matching plugins can be used to quickly provide ground-truth bounding-boxes 

which positions can be manually refined if necessary. Finally, the software can be extended with 

custom scripts or plugins thanks to publicly available API (Application Programming Interface), thus 

allowing any standard or custom ground-truth format to be encoded. 
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4.2. Object-detection 

While various object-detectors are available and have been described in this dissertation, they often 

rely on similar mechanisms. This section details such mechanisms, common practices and alternatives 

to the presented solutions. 

4.2.1. Localization strategies 

The object-detection algorithms presented here rely on different localization strategies. Template 

matching and cascade detectors rely on sliding windows, while the deep learning detectors use more 

efficient region-proposal methods or anchor boxes. The sliding window search was historically widely 

used and is one of the most reliable way to precisely localize objects that can be located anywhere in 

an image. However, it is a brute-force approach that can become quickly computationally expensive if 

lots of features are computed for each position of the sliding window. Another drawback is that the 

size of the sliding window is fixed, therefore to detect object of various sizes, either the search is 

repeated with artificially scaled versions of the image (pyramid), or multiple search with sliding-

windows covering a range of sizes are carried out. In both cases, this further increases the computation 

time. Modern object-detectors completely abandoned the sliding-window approach for more efficient 

solutions such as region proposal algorithms. This strategy was popularized by the Region-based 

Convolutional Neural Network – RCNN by (Girshick et al. 2016). Another alternative is to predict the 

bounding box position and dimensions as part of the detector output, in addition to prediction of the 

object-classes. These detectors contrast with the previous proposals for which the localization and 

classification were always two distinct stages. The advantage of such single-stage detectors is an even 

faster detection speed, with comparable to slightly worse detection accuracy compared to the 2-stage 

detectors depending on the implementation (Zhou et al. 2019b). The most popular 1-stage detectors 

include YOLO (Redmon et al. 2016), SSD (Liu et al. 2016) and RetinaNet (Lin et al. 2018). 

For biomedical applications, the number of object classes is typically way smaller than the hundreds 

of classes those detectors were initially demonstrated with, therefore the difference of detection 

accuracy between the 1-stage and 2-stage detectors is likely not noticeable for such applications. 

Besides, real-time detection is in a majority of cases not a requirement, e.g. for feedback microscopy 

the time-limiting factor is usually the multi-dimensional acquisition for a given position of the stage. 
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4.2.2. Beyond bounding boxes 

Most object-detectors predict object-locations with rectangular bounding-boxes, aligned with the axis 

of the image. Rectangular bounding-boxes are generic and convenient for the manual annotation of 

objects which can differ in shapes and sizes. They are also easy to handle from a programming point 

of view. However, for cells or other round structures as often encountered in life-science for instance, 

rectangles are not ideal, and will typically include a significant portion of background regions. 

Therefore, post-processing such as segmentation within the detected bounding-box is necessary to 

recover the object-shape (He et al. 2017). Using encoder-decoder deep learning architectures, 

alternative object-detection solutions have been proposed, following a bottom-up approach to 

construct the outline of objects, rather than a top-down selection strategy from a pool of candidate 

rectangular regions. For instance, the outline of objects can be constructed from a set of key points, 

predicted by the model using methods similar to pose-estimation (Zhou et al. 2019a; Zhou et al. 

2019b). This strategy was applied to the detection of glomerulus in histology images of kidney tissues, 

by predicting the centre and radius of circles outlining glomerulus (Yang et al. 2020), or for the 

detection of cells with unregular shapes (Jiang et al. 2020). Novel segmentation models have also been 

proposed to outline the object of interest such as CellPose (Stringer et al. 2020), or StarDist (Schmidt 

et al. 2018; Weigert et al. 2020) which extends on the segmentation network U-Net (Ronneberger et 

al. 2015).  

4.2.3. Data-augmentation 

Data-augmentation is often proposed as a straightforward solution to improve the robustness of 

machine-learning models when the availability of ground-truth data is limiting (Shorten and 

Khoshgoftaar 2019). With cascade detectors, the Fiji plugin for the generation of the training set 

reported here has an option to generate additional images by rotation and flipping of the annotated 

regions. While this can indeed improve the diversity of the training set, the type of transformations 

applied to the data should be carefully selected to reflect realistic transformations. For instance, 

performing rotations of the training images is not adapted if the object is known to have a fixed 

orientation. In such cases, data-augmentation might even hamper the training process and slow down 

the convergence, by virtually creating a more complex classification problem than the reality. 
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4.2.4. About scale and rotation 

Most object-detectors are by design rotation and scale sensitive, meaning that they do not recognize 

the same way an object appearing at different scales or angles. Indeed, the visual patterns used for 

the recognition have fixed scales and orientations. This is valid for all the object-detectors reported 

here (template matching, cascade detectors, deep-learning detectors). With machine learning 

detectors, robustness to scale and rotation is typically achieved by having object at various scales and 

angles in the training set, to force the model to learn different features. Similarly, for template 

matching, rotated and scaled objects can be detected by using templates representing a discrete set 

of angles and scales. Cascade detectors are however scale-invariant thanks to the features which can 

be resized. Novel CNN architectures have also been proposed to learn features at multiscale 

automatically from a single image (Godinez et al. 2017). Still in most cases, reducing the experimental 

object variability facilitates the detection by algorithms. 

 

4.3. Comparison of the presented methods 

In this document, 3 object-detection methods are reported: multi-template-matching, cascade 

detectors and CNN object-detectors. Those methods have different advantages and drawbacks, 

especially when considering detection capacities, ease-of-use and compatibility.  

4.3.1. Accessibility 

One major limitation for computer vision methods is the technical burden associated with the 

installation of specific libraries or software, and the number of parameters that should be optimized 

for a specific use-case. The multi-template-matching implementation proposed here was designed to 

be easy to install, with a limited set of parameters to facilitate its usability. It is thus very 

straightforward to apply on custom data, especially compared to machine learning solutions which 

first require the annotation of ground truth data and the training of a model. The cascade detectors 

do not raise major installation issue neither, however they come with a multiplicity of parameters both 

for the training and the detection, which are not intuitive for non-initiated users. Deep learning 

methods often require specific hardware and the installation of multiple libraries (CUDA, TensorFlow, 

Keras, MXNET). The training of deep learning models also involves multiple parameters (number of 

epochs, batch size, learning rate, etc.), yet these are well documented and conserved between 

implementations. Besides, for the detection, only a score threshold is often required.  
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4.3.2. Accuracy 

Multi-template matching is limited to a discrete number of recognition patterns represented by the 

templates, and therefore offers less flexibility than machine learning detectors which can typically 

account for a wide diversity of patterns, with little additional computational cost. Still the pixel 

intensity signature used by template matching was shown to be robust to variation of the object 

intensity due to change of illumination, noise or other sources of experimental variability. Yet, for 

classification this robustness results in a limited capacity to distinguish subtle variations of intensity 

patterns. Cascade detectors have access to a larger set of recognition patterns, however, the Haar-like 

features represent rectangular intensity patterns which might not respond well to unregular shapes 

observed in biology. Alternative features such as local binary patterns adapted to the distinction of 

textures are available with these detectors and could be explored. Still, the complexity of the cascade 

is often limited by the size of the training set, it is thus usual to observe a non-negligible amount of 

false positive detections with small to medium size training sets at first attempts with these detectors. 

Training the convolutional layers of deep learning detectors allows the recognition of patterns specific 

to the training images. Yet, training a model from scratch is time consuming and requires many images, 

but we showed that transfer learning or fine tuning with pre-trained models efficiently reduces this 

burden while still resulting in highly efficient image-classifiers and object-detectors. 
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4.3.3. Speed 

It is challenging to achieve comparable benchmarks between the detection methods since the 

execution time depends on a lot of factors, including the programming language, the execution 

environment, the libraries used etc. Here the most comparable benchmarks are between the Fiji 

implementation of multi-template matching and cascade detectors, which rely on the same OpenCV 

libraries, converter functions and are executed in the same environment. For the detection of medaka 

embryos, the search with a single template is about one order of magnitude slower than with a cascade 

detector with full resolution images (250 ms and 25 ms respectively – see medaka detection Figure 31 

and Figure 39). However, with template matching, multiple templates are often necessary to achieve 

comparable detection capacity than the cascade detectors, which further increases the detection time. 

Although, the detection with a cascade likely depends on its structure (number of stages, and features 

per stage), cascade detectors clearly offer higher detection speed than template matching with full 

resolution images. This was observed with the Fiji plugins for all the datasets benchmarked here. This 

difference might be explained by the nature of the features (costly normalised cross-correlation vs 

Haar-patterns computed by integral images) and the optimized cascading scheme. Nevertheless, the 

template matching search also scales with the size of the image and template, therefore a search at 

lower resolution would provide a speed up (see section 4.4.4). According to the literature, deep 

learning detectors are also expected to run in real-time. Here the detection is embedded in a python 

node within a KNIME workflow, which is not ideal as the images are serialized between java on the 

KNIME side and python. We reported the execution time for the full python node (0.7 secs/image, see 

section 3.5.4) which includes pre-processing the images and generating the output (mask image, etc.), 

and therefore is not truly indicative of the model detection speed. 
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4.4. Multi-Template Matching 

A major outcome of this research is a versatile implementation of multi-template matching for object-

detection. This section discusses the advantages of this method especially compared to the previously 

available single-template matching, the trade-off between detection capacity and speed, and options 

to optimize the method.   

4.4.1. Advantages 

Multi-Template Matching is an object-detection method particularly adapted to non-expert users. It is 

straightforward to use and benchmark, with a limited set of parameters (score threshold, overlap 

threshold, and if know the expected number of objects). The implementation reported here is well 

integrated into scientific image-analysis software, is easy to install and well documented. Although 

there is no need for data pre-processing, classical filters could be applied to potentially improve the 

detection (denoising, background subtraction). Multi-template matching method was shown to be 

efficient for the detection of objects in microscopy images, especially when the objects have fixed scale 

and limited changes of orientation, which can be achieved with dedicated sample mounting. Besides, 

using a normalized score for the computation of the score map, the template matching search is 

relatively robust to changes of illumination between the reference template and the image. This 

object-detection method is generic by design and was successfully applied with different imaging 

modalities (see 4.4.7: “Adoption by the community”). 

4.4.2. Comparison with single-template matching 

Single-template matching is limited to searching for a single intensity pattern, rendering it particularly 

sensitive to changes in orientation or perspective of objects. In comparison, multi-template matching 

has enhanced detection capacities by combining results from multiple template images to increase the 

range of detectable intensity patterns. A critical parameter for the success of the detection is thus the 

choice of the templates, which must be representative of the objects to localize. Besides, all pixels of 

the template image contribute equally to the similarity score, including pixels from the background 

regions. A small fraction of background around the object in the template image can however help 

improving the selectivity of the detection pattern. Instead of an exhaustive search with multiple 

templates, possibly more efficient methods for rotation and scale invariant template matching have 

been reported (Choi and Kim 2002; Fredriksson et al. 2007; Kim and De Araújo 2007; Marimon and 
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Ebrahimi 2007); however, no implementation is publicly available, and their complexity limits their 

usability by non-experts. 

4.4.3. Capacity vs time 

The search with multiple templates effectively improves the range of detectable patterns but it also 

comes at a proportional increase of computational time, as the iterative sliding-window search is 

repeated for each template. Only a discrete set of template images can be used for the search, 

representing a fraction of the infinite possible object states. Therefore, a trade-off should be found 

between the expected variability of the object and the number of templates. For microscopy 

application, sample mounting strategies can help reducing object-variability (e.g. standardized 

orientation (Wittbrodt et al. 2014)) and thus the need for additional templates. Additionally, mounting 

systems can constrain the samples and thus the template matching search to a limited image region, 

hence speeding up execution (Figure 30.C) and reducing the probability of false positive detections 

compared to the search with the full-field image. 

4.4.4. Faster detections by downscaling 

An alternative to speed up the execution of multi-template matching is to perform the search with 

down-scaled versions of the templates and images, and to rescale the detected bounding-boxes to the 

original image size. This strategy is employed by many deep-learning detection architectures that takes 

small size images as input to reduce memory consumption. In the present implementation of multi-

template matching, this option is not proposed as it increases the complexity of the solution, besides 

reducing the position accuracy of detected bounding-boxes and possibly leading to false positive 

detections as the downscaling degrades the searched intensity pattern. However, advanced users can 

refer to the online tutorial3 of the python implementation for an example of how to use downscaling 

to accelerate the detection.  

4.4.5. Template matching with normalised score 

For the computation of the score map, the described Multi-Template-Matching implementation 

provides access to the normalized template matching scores exclusively (normalized square-

difference, normalized cross-correlation and 0-mean normalized cross-correlation). Normalization 

offers multiple advantages: first it offers better detection results when the template and image show 

 
3 https://github.com/multi-template-matching/MultiTemplateMatching-Python/blob/master/tutorials/Tutorial3-

SpeedingUp.ipynb 

https://github.com/multi-template-matching/MultiTemplateMatching-Python/blob/master/tutorials/Tutorial3-SpeedingUp.ipynb
https://github.com/multi-template-matching/MultiTemplateMatching-Python/blob/master/tutorials/Tutorial3-SpeedingUp.ipynb
https://github.com/multi-template-matching/MultiTemplateMatching-Python/blob/master/tutorials/Tutorial3-SpeedingUp.ipynb
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shifted illuminations which is likely to happen in microscopy if different illumination intensities are 

used. Secondly, it assures that the score ranges from 0 and 1, while the non-normalized score are not 

bound to a finite range. This bounded range enables the comparison of scores resulting from different 

templates on the same image, independently of the size or intensity of the templates. Finally, having 

a bounded score makes it easier for users to define a score-threshold, and to propose a default 

threshold for the implementation. 

4.4.6. With multi-dimensional images 

The template matching search is only defined for 2-dimensional grayscale images. With multi-channel 

images, there are 2 options: either projecting the multiple channels to a single grayscale image (e.g. 

projection from RGB to grayscale) or selecting one channel for the detection. Similarly, there is no 

support for 3D template, however the search can be executed with a 2D template individually for each 

slice of a volume. 

4.4.7. Adoption by the community 

Less than a year after its publication in the journal BMC Bioinformatics and a bit more than a year after 

its publication as a Biorxiv preprint, the Multi-Template-Matching implementation seems to have been 

adopted by the international scientific community. The first citations of Multi-Template-Matching 

reports applications to different fields than life-science including monitoring 3D-printing (Petsiuk and 

Pearce 2020), and digitalization of medical records (Rho et al. 2020). While this may be unexpected, it 

also shows the robustness and generic potential of this object-detection method. It is virtually 

impossible to know how many people use the Fiji implementation, however the python 

implementation was bookmarked on GitHub at this day (02/09/2020) by 40 different users from 

various places in the world, including Germany, France, India, China, Taiwan, USA and Mexico. Besides, 

the YouTube tutorials count a bit more than 600 views. While this project was presented at several 

occasions as a poster or short-talks at international conferences in Europe, a major proportion of users 

seems to have discovered the project online via the referencing of the GitHub repositories, the ImageJ 

wiki page, the BMC Bioinformatics journal or the YouTube tutorials. 
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4.5. Cascade detectors 

Cascade detectors are a promising alternative for object-detection and this project proposed a novel 

implementation of this method in bioimage analysis software. The major difficulty with such detector 

is the optimization of the model training, especially with small datasets. This section thus reviews 

critical parameters for the training of a model on custom data, and discuss advantages and drawbacks 

compared to other object-detection methods. 

4.5.1. Advantages and drawbacks 

Cascade detectors are widely available object-detectors thanks to their implementation in the OpenCV 

library, which is even compatible with mobile devices such as smartphones. Neither the training nor 

the detection requires particularly powerful hardware, and a trained cascade is contained in a 

lightweight xml file. The training is relatively fast on CPU with medium size dataset, thanks to the 

readily available Haar-patterns. Moreover, the detection can be performed in real-time on 

conventional cameras. On microscopy images, we also reported high-detection speed on full 

resolution images (20-50 ms per image with 2048 x 2048 pixel images). However, cascade classifiers 

did not benefit from major developments in the last years and tend to be replaced by more robust 

deep-learning solutions. The training of cascade detectors is also relatively complex with multiple 

parameters and little documentation available. Here we mostly experimented with the true positive 

rate, false positive rate and number of stages, while other parameters could be adjusted to influence 

the structure of the cascade, such as the maximum number of weak classifiers per stage but also the 

choice of alternative feature sets such as local binary patterns instead of Haar-like patterns (Liao et al. 

2007). We often observed a non-negligible number of false positive detections on test sets and 

supposed that the automatic generation of the negative training set is not particularly efficient and 

should be completed by manually annotated “harder” negative training instances. Finally, cascade 

detectors only work for grayscale images, and with a single class at a time, although simultaneous 

detection of multiple object-classes can be achieved by running the detection with dedicated cascade 

detectors in parallel.  
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4.5.2. Training a custom detector with small training sets 

In the original paper (Viola and Jones 2001), the author reports a cascade face-detector containing 32 

stages, that was trained with about 5000 faces and 10000 non-faces images. For microscopy 

applications, generating such large training sets is often not achievable, some dozens to a few hundred 

images is a more reasonable number depending on the setup. Consequently, with such size of training 

set, the number of stages in the cascade is usually much more limited, as the training quickly runs out 

of training images. Indeed, with a false positive rate of 50% for the individual classifiers, the number 

of ground-truth negative instances is reduced by about a half at every stage. Meanwhile, multiple 

stages would be necessary to compensate for the high false positive rate of the individual classifiers. 

For instance, a 5-stage cascade with 0.5 false positive rate for each classifier would yield a cascade 

detector with 0.55 = 0.03 false positive rate, meaning that starting with 100 negative instances, after 5 

stages the number of negative instances available for training is given by 100 x 0.55 = 100 x 0.03 ~ 3 

images. A more efficient strategy with small training set is thus to aim for fewer cascade stages (3 to 

5), and lower false positive rates for the individual classifiers (e.g. 0.1 instead of 0.5). This results in 

using more features for the individual classifiers and thus a slightly slower detection but better 

accuracy. 

4.5.3. Importance of the negative training set  

The cascade-training implementation available with OpenCV automatically generates a high number 

of negative image instances by randomly cropping background images multiple times. While this is 

convenient to automatically generate negative ground-truth data, in practice the resulting training 

instances seems not challenging enough. For instance, in microscopy images, this routine may yield a 

majority of plain background regions. As a result, the model training converges quickly, as the negative 

instances are rapidly discarded by the first classifiers but the detection on test images yields a lot of 

false-positive hits. It is thus advised to manually annotate challenging negative image regions (e.g. 

bubbles, edges…) in addition to the automated cropping routine. This should improve the diversity of 

the negative training set and in-fine the performance of the model. 
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4.6. Deep learning models 

Deep learning was used in this project for image-classification and object-detection. This section 

reviews the advantages and limitations of deep learning methods for such tasks, the implications of 

transfer learning compared to de-novo model training and the choice of a model architecture. The 

performance of the MXNET/GluonCV library is also briefly discussed and possible alternatives are 

introduced. 

4.6.1. Advantages 

Deep learning models have been employed for multiple applications of computer vision with 

impressive results. One advantage is the flexibility of these models, which architectures can be adapted 

to the characteristic of the dataset and to custom prediction task. Indeed, while most models were 

originally designed for RGB colour images, custom architectures can be engineered to work with 

grayscale, multi-channels or 3-dimensional images (Çiçek et al. 2016). Besides the architecture, optimal 

features for a given task are directly derived from the training set when a model is trained de-novo. 

This allows the adaptation to new datasets, without having to adjust the parameters for every step of 

the workflow as in conventional image-processing. Moreover, these features can account for complex 

image patterns, and thus provide more flexibility than predefined image-features (Pawlowski et al. 

2016). Finally for classification, a single deep learning model can be trained to recognize a very large 

number of classes (Simonyan and Zisserman 2015).      

4.6.2. Accessibility 

While many programming libraries are available for deep-learning, there is no gold-standard solution 

when it comes to training a custom deep learning model on original data. Some implementations might 

be limited to a single network architecture (e.g. YOLO). Others might support multiple architectures 

but require more efforts to adapt the code or vary in the amount of documentation. For this project, 

the MXNET (Chen et al. 2015) and GluonCV (Guo et al. 2020) libraries were used in python, as they 

offer flexibility, good performance, and are well documented. Still with those libraries, training a deep-

learning object-detector on custom data required adapting a significant amount of code. By adapting 

this code to work within KNIME workflows we reduced the complexity of the code to a simpler visual 

workflow with intuitive graphical user-interfaces. Besides, the workflows facilitate the execution of the 

program with custom data and offer advanced image-visualization functionalities particularly 

convenient for large datasets. However, the workflows are only exposing a fraction of selected 

parameters (number of epochs, batch size…), which should be adapted to new datasets. Other 

parameters such as learning rate and regularization parameters are set to default values expected to 
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provide satisfactory results in most cases. Advanced users can modify these values in the python code 

embedded in the workflow or by adapting the workflow to expose these parameters. 

However, the lack of dedicated ground-truth annotation tool adapted for the training with 

GluonCV/MXNET did not facilitate the benchmarking of this framework. We reported here a rather 

convoluted workflow for the generation of the training set which involves several annotation rounds, 

intermediate steps and software (Fiji and KNIME). This complexity was partly due to the lack of support 

for the annotations of different object-categories in ImageJ/Fiji. However, using the novel ROI-group 

attribute (see section 3.2.1), the generation of the .lst-file could be achieved using a single Fiji script, 

after annotating all object-classes in a unique annotation round. Finally, one limitation with the object-

detection tutorial available for GluonCV (GluonCV Contributors n.d.) is that the model training does 

not include the evaluation of the model performance on a validation set. Therefore, no indications 

about the performance of the model on unseen images is provided along the training. Having a 

validation set is helpful to adjust the training parameters, and to rapidly identify issues with the training 

such as overfitting on the training set (Shorten and Khoshgoftaar 2019). 

4.6.3. Performance 

The training of deep-learning models requires loading and processing several images. There are thus 2 

potential bottlenecks for the model training: first the access to the data on disk and then the 

computational power. For the latter, GPU are classically used as they provide large amount of 

dedicated memory and a pool of specialized and highly parallelized computation threads. Here we 

indeed observed faster model training on GPU compared to the CPU. However, a major speed-up (16x 

on CPU and 6x on GPU) was also achieved when using the binary rec format (Figure 43). The rec-file 

contains both the ground-truth annotations and down-scaled versions of the training images, stored 

as contiguous memory blocks on disk (GluonCV Contributors 2020a). This promotes a highly optimized 

access to the training data. In comparison, the lst-file is a text file containing the paths to the original 

full resolution images, which occupy various locations on disk and are costly to load in memory due to 

their large sizes. Therefore, even with a powerful GPU, the training will noticeably run slower with the 

lst format due to the data-access bottleneck. The access to full resolution images, might explain why 

the training on GPU with the lst file raises an “Out of memory error”. The rec format is however less 

convenient as it requires an additional conversion step from the lst file and is not human-readable 

contrary to a simple text file like the lst format. 
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4.6.4. Transfer learning and fine-tuning 

There are different options when working with deep learning: the choice of the model architecture, 

and the training strategy. While designing a custom model architecture allows full flexibility about the 

model input, output, and intermediate operations, additional benchmarking is necessary to validate 

the model. Besides, the training must be started from scratch and thus requires substantial ground-

truth data. Using pre-existing model architectures validated for specific purposes allows to save this 

effort and to potentially reuse pre-trained models with custom data by transfer learning/finetuning 

(Zhu et al. 2011), thus reducing the training time and the ground-truth  annotation effort. Here we 

adopted this strategy both for the training of an object-detector (section 3.5.2), and of an image-

classifier (section 3.6.2). The resulting models showed high-detection and classification accuracy even 

with small amount of ground-truth data. Especially for classification, the pre-trained model base for 

feature extraction was frozen, meaning that the pre-existing recognition patterns were not adapted to 

the custom dataset (transfer learning exclusively). Only the newly added fully connected layers for 

classification were trained, which still offered high accuracy. Training the model base to further adapt 

the convolutional layers to custom data (fine-tuning) is possible though and may improve the 

classification accuracy (Dietz 2020; Rosebrock 2014a). 

4.6.5. Model architectures 

In terms of architecture, larger models can account for more complex relationships between the model 

inputs and outputs but are more at risk of overfitting. For the training of a deep learning object 

detector, only a single model architecture was evaluated (SSD with MobileNet), although the 

GluonCV/MXNET library supports a diversity of models which can be exchanged almost transparently, 

provided the image pre-processing is adapted accordingly (see model zoo - GluonCV Contributors n.d.). 

The SSD architecture tested offered very satisfying results therefore there was no real interest in 

testing other architectures. Most models supported by GluonCV/MXNET were published with high 

detection accuracy (>90%) for the detection of various real-life objects classes from standard datasets 

(Deng et al. 2009; Everingham et al. 2010). They mostly differ in the execution speed and memory 

footprint, although most of them run in real-time or close to real-time on standard computers. 

Therefore, one could expect similar performances between those models for object-detection in 

microscopy images. For instance, (Waithe et al. 2020) reported similar performances for the detection 

of cells when using either YOLO, Faster-RCNN or RetinaNet. Similarly for the classification of 

macromolecular crystals, (Bruno et al. 2018) reported little difference between the Inception-v3, 

Inception-ResNet-v2 and variant of the NASNet architectures. 
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One important parameter is the input image dimensions expected by the network. Indeed, the pre-

processing typically involves downscaling the original images to comply with the model requirements, 

which depending on the original dimensions might be detrimental, especially for small objects or 

structures. An alternative when this happens might be to divide the input image in patches that are 

processed separately. 

4.6.6. Alternatives 

The ImageAI library (Moses and Olafenwa 2018) was briefly tested as an alternative to 

MXNET/GluonCV for object-detection. This library is well documented too and allows the training of a 

custom YOLO object-detector (Redmon et al. 2016) with just a few lines of code. However, the training 

time was slower than with GluonCV/MXNET, most likely due to less efficient data-loading. More 

recently, the Auto-Gluon library was released (Erickson et al. 2020), with the goal to make classical 

deep-learning tasks more accessible, by reducing the need to adapt standard code. As it builds up on 

MXNET and GluonCV, it could potentially simplify the work reported here. 

For the ground-truth annotations of object-position and category, other standard file formats such as 

the PASCAL VOC format (Everingham et al. 2010) are used instead of the .lst or .rec reported here. 

Graphical user interfaces readily exist to annotate object-regions in images and generate the 

corresponding VOC file (Tzutalin 2015; Wada 2016). This format is compatible with GluonCV/MXNET 

too, however it requires formatting the dataset accordingly (GluonCV Contributors 2020b) and some 

modifications of the training code. 
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4.7. Automated microscopy 

Automated microscopy has a central role for high-throughput imaging. This section reports important 

experimental considerations before implementing automated acquisition methods and discusses 

possible perspectives to generalize their applicability to various imaging setups. 

4.7.1. Feedback microscopy vs semi-automated acquisition 

While feedback microscopy has a great potential to streamline complex acquisition protocols of large 

sample collections, full automation also means that not intervention from the user is possible to 

correct false-positive detections for instance. Therefore, it is primordial to have well calibrated 

detection algorithms and to systematically control that the acquisition is imaging the right objects. One 

possibility for feedback microscopy is thus to put a high score-threshold for object-detection or 

classification to force a selective process and make sure that most imaged regions are correct. If the 

objects are scarce or variable, it might be necessary to decrease this threshold though to avoid missing 

some objects. Another risk is a selection bias from the detection algorithm, which might better 

recognize some phenotypes than others and thus alter the perception of the real object-distribution. 

Such biases have been observed with CNN face-detectors showing variable performances depending 

on the skin colour or age (Nagpal et al. 2019). Those risk can be reduced by thoroughly benchmarking 

the detection algorithms on previously acquired datasets, to confirm that they work as expected for 

these specific objects and imaging conditions. Indeed, despite extensive benchmarking reported in the 

literature, one can never reliably predict the behaviour of an existing object-detectors for novel 

imaging modalities and objects. Notably, for machine-learning algorithms, it is important for the 

training set to be representative of the effective object variability. 

Semi-automated acquisition therefore offers a safer alternative, by giving the user a chance to quickly 

review the results of the detection before starting a potentially voluminous acquisition. Despite the 

discontinuous acquisition flow, semi-automated acquisition still has the potential to reduce the user’s 

intervention, by saving the need to manually indicate regions of interest in each image. In the 

ACQUIFER PlateViewer, semi-automated acquisition is also easier than feedback microscopy, as the 

PlateViewer takes care of converting pixel coordinates in machine coordinates. 

  



158 
 

4.7.2. Toward standard protocols 

One difficulty which is probably limiting the spread of feedback microscopy is the technical barrier 

associated to hardware interfacing, and its coupling with image-analysis solutions. Using the ACQUIFER 

Imaging Machine (IM), writing text files to communicate with the microscope is relatively accessible, 

but does not allow to have a fine chronological control of the sequence of events, namely because the 

acquisition software is the master controller. An alternative available with the IM and other 

commercial systems is to rely on a communication protocol to actively control the system, often 

programmatically via an API. Classical communication protocols work through a TCP/IP interface (like 

for the IM) or a COM port. These communication protocols require some technical knowledge though, 

and differ from one microscope system to the other, which hinder the dissemination of generic 

feedback microscopy protocols. Therefore, some open-source initiatives such as Micro-Manager 

(Edelstein et al. 2010) or PyME (PYME contributors 2020) aim at facilitating these communication 

protocols by providing pre-configured hardware adapters, a standardized API of common functions 

and an intuitive graphical user interface. Thanks to the hardware adapters and the standardized 

function API, acquisition protocols could be exchanged between systems, provided equivalent 

hardware components are available. As an example, those packages would provide a single universal 

function to move the microscope stage or the objective to a specific position. As part of the standard 

API, this function would forward this request to the equivalent system-specific function from the API 

of the microscope manufacturer, according to the hardware configured in the open-source software. 

Micro-Manager readily allows feedback microscopy experiments with dedicated modules for on-the-

fly image-processing and targeted acquisition (Figure 56),(Stuurman 2012). While this module is 

limited to detection scripts available for ImageJ, the project is open to contributions, and the 

underlying design could be promoted to a community standard. 
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Figure 56: MicroManager module for targeted acquisition using feedback microscopy 

The module requires to pre-configure a first acquisition protocol (“Exploration” in the GUI above) for the 

overview of the sample. The images from this first acquisition are then analysed by the Analysis Macro, for the 

detection of ROIs. The detected regions are then imaged according to a second acquisition protocol (“Imaging” 

in the GUI above). Reproduced from the Micro-Manager documentation (Stuurman 2012).  



160 
 

4.8. Image-classification 

Two strategies were proposed for image-classification: template-matching and deep learning. This 

section reviews the advantages, drawbacks and critical parameters when applying these methods on 

custom image-datasets. 

4.8.1. Classification with template matching 

We demonstrated binary image classification by comparing the images to classify with a single 

reference template image, and by setting a threshold on the template matching score. Images get 

either classified as matching the category of the reference template or not. We showed that this 

strategy allows the identification of organ-morphologies that deviate from a reference morphology. 

By comparing with multiple templates representative of different classes, multiple class classification 

can be achieved. We illustrate this second option for the recognition of different organ-morphologies, 

however for this particular dataset the accuracy of the classification was not as good as the binary 

classification, since the morphologies only differed slightly in terms of pixel intensity distribution, 

resulting in similar score between the different classes (Figure 45.B).   

This classification strategy effectively corresponds to a nearest-neighbor search (Dhanabal and 

Chandramathi 2011), as the image is assigned to the class of the most similar template. To account for 

the variability within a class, here mostly due to variable fluorescence expression within the kidney 

tissues, the templates were generated by intensity projection from a set of reference images, 

previously aligned using center of mass. (Cole et al. 2004) applied a similar classification strategy to 

recognize Lego blocks. As pre-processing they also centered the Lego blocks based on the center of 

mass and aligned the major axis of the blocks to a fixed orientation. Alternatively to account for more 

diversity within a class, multiple templates could be provided for each class, and the classification could 

be formulated as a k-nearest neighbors (with k typically ranging from 3 to 10), for which the k-top 

matching templates are returned and a majority vote from the represented classes is used to finally 

classify the image. 

For nearest-neighbor searches, the search time is proportional to the number of neighbors (here 

templates), and the size of the template and images. (Cole et al. 2004) proposed an optimized search 

strategy using clustering of similar images to avoid the comparison with every single template. Still, 

like for template matching, the choice of the templates and the variability of the object within a class 

will greatly influence the outcome of the classification with this method. Importantly, while template 

matching is advantageous for localization thanks to its robustness to morphological changes (shown 

with the head region in zebrafish larvae, see section 3.3.5), inversely it is not particularly efficient at 
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distinguishing objects with similar intensity signatures as observed with the long and cystic kidney 

morphologies (see Figure 45.C). 

4.8.2. Classification with deep learning 

Deep learning models are particularly efficient at distinguishing multiple object classes (Simonyan and 

Zisserman 2015). Here we used transfer-learning to re-purpose a model initially trained for real-life  

photographs classification, to the classification of organ morphology in microscopy images (see section 

3.6.3). Despite the high variability of morphology or fluorescence expression within the organ over the 

dataset, the classification accuracy was close to 100%. Moreover, we did not consider the number of 

training images when annotating the different classes, which resulted in an imbalanced dataset for the 

training set, with more images representing the normal phenotype than the cystic phenotype. 

Although, this distribution could be representative of the reality, with the proposed workflow, it may 

result in models that are more biased towards predicting one class (Ramyachitra and Manikandan 

2014). Indeed, here the misclassified instances are cystic phenotypes classified as normal. It is rather 

advised to use comparable number of images for each class, either by reducing the size of the over-

represented class or by increasing the number of images in the minority classes e.g. using data-

augmentation (Rocca 2019; Shorten and Khoshgoftaar 2019). However, data-augmentation can also 

introduce artifacts (see section 4.2.3). When training instances for a class are scarce (e.g. rare events), 

a more complex but efficient solution consists in increasing the penalty for misclassification of images 

belonging to this class (Ramyachitra and Manikandan 2014; Rocca 2019). 

Importantly with supervised learning methods, the training set should be representative of the 

expected samples’ characteristics. With images, this means using similar acquisition modalities and 

pre-processing between the ground-truth images and images that will be classified. While pre-trained 

models for specific applications can be found (segmentation, denoising), it might be preferable to 

retrain or finetune the model on custom data to avoid any artifacts (Weigert et al. 2018).  
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4.9. Interactive data exploration 

This project demonstrated interactive visualization using dimensionality reduction in KNIME and with 

the TensorFlow embedding projector interface. This section briefly reports the advantage of such 

visualization methods and the limitations of PCA for this task.   

4.9.1. Exploration dashboards 

The KNIME workflow generating the dashboard was designed as a generic tool for the exploration of 

quantitative datasets. It can be executed with any tabular dataset with minimum adaptation. Only for 

the PCA, the features should cover similar value ranges to avoid bias toward one feature. This can be 

achieved using normalization, here Z-score normalisation was used. The TensorFlow embedding 

projector platform offers similar visualization functionalities. It has the advantage that it does not 

require any installation, and that the visualization can be directly accessed via a web-URL when the 

data is hosted in a public repository like GitHub (see Figure 55). However, the platform displays less 

information than the KNIME interactive dashboard, in particular it does not show the original feature 

values nor the data table.  

These interactive visualization solutions greatly facilitate the exploration of large quantitative datasets 

by biomedical researchers. They can help identifying similar samples or guide following classification 

strategies. Moreover, they allow the relation between the quantitative phenotypic information and 

the qualitative metadata such as the name of a chemical compound, a chemical class or molecular 

target. Other user-oriented platforms are available for the exploration of data using dimensionality 

reduction such as Orange (Demšar et al. 2013) or Sleepwalk (Ovchinnikova and Anders 2019), but were 

not explored here.  
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4.9.2. PCA for dimensionality reduction 

Dimensionality reduction is a great method to get a visual overview of complex datasets. However, in 

some cases it can be misleading. For instance, when comparing a dataset between reduction to 2D and 

3D, 2 datapoints might seem close to each other’s in 2D but actually more distant when adding the 3rd 

dimension. This consecutively applies to the following higher dimensions. One reason for that is that 

dimensionality reduction is an approximation of the original dataset distribution and that there is an 

intrinsic mathematical difficulty to render the original distances from N-dimensions to only 2 to 3 

dimensions (Kuo and Sloan 2005). 

In this report, only PCA was explored mostly because it is historically widely used, it is free of any 

parameters and from a theoretical point of view is simpler than other dimensionality reduction 

methods such as t-SNE or UMAP. However, according to (Maaten and Hinton 2008) PCA is among the 

“linear techniques that focus on keeping the low-dimensional representations of dissimilar datapoints 

far apart. For high-dimensional data that lies on or near a low-dimensional, non-linear manifold it is 

usually more important to keep the low-dimensional representations of very similar datapoints close 

together, which is typically not possible with a linear mapping”. It is thus wise to compare the 

visualization after PCA with other non-linear dimensionality reduction methods such as t-SNE and 

UMAP. This is possible with the TensorFlow embedding projector web interface (Figure 55), or using 

the Sleepwalk web app (Ovchinnikova and Anders 2019), which was explicitly developed to compare 

different visualizations and combinations of parameters. Importantly, those 2 platforms make the 

relation between the dimension-reduced visualization and the original pairwise sample-distances in 

the original feature space, which helps identifying when the visualization is locally representative of 

the original data-distribution. When using PCA, the percentage of the original dataset variance 

represented by the low-dimension encoding is also an indicator of reliability. 

Finally, it is important to pre-process the data before dimensionality reduction including for instance 

normalization of the feature values such that they cover similar ranges, to avoid having one feature 

dominating the low-dimension encoding. 
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4.10. Benefits for microscopy-based screening of small organisms  

The software solutions presented in this dissertation can benefit microscopy-based screening of small 

organisms at several steps of the experimental workflow and interplay well together. First the ROI-

detection algorithms are data-driven, either in the form of user-provided templates or labelled training 

images. This results in an improved adaptability and versatility towards new image-sets compared to 

classical image-processing workflows and to a better tolerance to object-variability. Moreover, the 

selectivity of a given detector can be simply tuned using the score-threshold. These detectors can be 

used for automated microscopy protocols, or as a pre-processing step in custom analysis workflows. 

Especially, they facilitate the localization of sub-regions of large specimens such as a specific organ or 

tissue, which is particularly challenging with intensity-based methods when no specific labelling is 

available, e.g. in brightfield images of whole organisms.   

The annotation tools enable the manual handling, inspection and scoring of image-datasets acquired 

by screening microscopy. The tools have potential applications in multiple image-analysis scenarios: 

from ground-truth category annotations for supervised classification of specific phenotypes, to 

quantitative and qualitative measurements of images or ROIs. They provide a valuable tool set for the 

straightforward analysis of even large data collections. Finally, the annotations can be exploited for 

data-exploration and image-classification, to identify samples with similar phenotypes or with deviant 

responses, and to relate phenotypic scores with the underlying biology, such as the mode of action of 

a compound or a signalling pathway.   

Although illustrated on datasets from zebrafish and medaka embryos, the tools are generic and 

applicable to various image-datasets including cell cultures. Finally, they provide access to complex 

computer vision or data-science methods in common user-oriented image-analysis software and 

enable their reusability in custom workflows. 
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5. Conclusion 

This dissertation reports the design, development and benchmarking of novel research software 

inspired by the field of computer vision and data-science. The aim was to create versatile and robust 

solutions tailored to the requirements of microscopy-based phenotypic screening studies in small 

model organisms. The resulting software tools address various steps of the screening workflow, from 

manual ground-truth annotations, automated detection of regions of interest, targeted imaging of 

specific tissues or organs using feedback microscopy, image-classification, and interactive data 

exploration. Importantly, the tools are generic by design and were benchmarked on several 

microscopy datasets of zebrafish larvae and medaka embryos. They are particularly suitable for 

phenotypic screening studies at the tissue- and organ specific level. The software is easy-to-use and 

readily accessible to biomedical researchers with little to no prior knowledge of computer vision or 

image-processing. The tools are integrated in common scientific image-analysis packages and 

accompanied by extensive documentation in the form of articles in academic journals, readme files 

accompanying the source codes and online video tutorials. To foster their distribution and the 

inspiration of derived work, most of the underlying source code is available online in open-source 

repositories. This project demonstrates the translation of methods originating from the field of 

computer vision into bioimage analysis solutions. Computer vision has the potential to provide more 

robust alternatives to classical image-processing workflows based on e.g. intensity thresholding.  

I propose here innovative software solutions to tackle previously unaddressed limitations of 

microscopy-based screening studies with small model organisms. The resulting toolsets and 

documentations will empower biomedical researchers to conduct complex imaging workflows and to 

extract novel knowledge from phenotypic screening studies.   

For this research, only a fraction of the multitude of resources offered by the field of computer vision 

has been explored. Especially, further development could address segmentation methods to 

complement the rough localization by rectangular bounding boxes, the tracking of object over time or 

the detection of object in three-dimensional volumes. Finally, by providing widely available 

implementations of complex methods from the fields of computer vision in user-oriented software, 

this research also fosters similar interdisciplinary innovations which could benefit biomedical imaging.    
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6. Zusammenfassung  

Das Thema dieser Dissertation ist das Design, die Entwicklung und das Benchmarking neuartiger 

wissenschaftlicher Software, welche durch die Fachbereiche Computer Vision und Data-science 

inspiriert wurde. Das Ziel war das Entwickeln von vielseitigen und robusten Lösungsansätzen, die auf 

die Anforderungen von mikroskopiebasierten, phänotypischen Screeningstudien in kleinen 

Modellorganismen zugeschnitten sind. Die hierbei entstandenen Softwares adressieren verschiedene 

Arbeitsschritte von Screening-Experimenten: die manuelle Ground-Truth-Annotation, die 

automatische Erkennung von Zielregionen (ROI), gezieltes Mikroskopieren von spezifischen Geweben 

und Organen mittels Feedback-Mikroskopie, Bildklassifikation and interaktive Datenexploration. Die 

Methoden wurden dabei generisch designed, an verschiedenen Mikroskopiedatensätzen von 

Zebrafisch- und Medakaembryonen getestet und sind insbesondere für das gewebe- und 

organspezifische phänotypische Screening geeignet. Die Software ist benutzerfreundlich und für 

biomedizinische Forscher mit wenig Programmiervorkenntnissen leicht zugänglich. Sie wurde in 

gängige wissenschaftliche Bildanalyse-Software integriert, und eine umfassende Dokumentation in 

Form von wissenschaftlichen Veröffentlichungen, quellcodebegleitenden Nutzungsanleitungen und 

Online-Video-Tutorials wurde erstellt. Um die Verbreitung der entstandenen Software und ihre 

Verwendung in neuen Projekten zu erleichtern, ist der gesamte Quellcode in Open-Source-

Repositorien hinterlegt. Die hier entwickelte Lösung demonstriert die Methoden der Computer Vision 

in softwarebasierten BioImaging-Anwendungen. Computer Vision Methoden stellen potentiell 

robustere Alternativen zu klassischen Bildverarbeitungswerkzeugen dar, z.B. als intensitätsbasiertes 

Thresholding. In dieser Arbeit werden innovative Softwarelösungsansätze für bisher unbearbeitete 

methodische Limitierungen im Bereich des mikroskopiebasierten Screening von alternativen 

Modellorganismen vorgestellt. Die entstandenen Werkzeuge und Dokumentationen ermöglichen 

biomedizinischen Wissenschaftlern neuartige, komplexe Mikroskopie-Workflows durchzuführen und 

neues Wissen aus phänotypischen Screeningstudien abzuleiten.  In dieser Forschungsarbeit wurde nur 

ein Bruchteil der vielfältigen Ressourcen aus dem Bereich der Computer Vision untersucht. 

Insbesondere die Nutzung von Segmentierungsmethoden, welche die relativ grobe Lokalisierung 

mittels Bounding Boxen ergänzen, das zeitliche Nachverfolgen (Tracking) von Objekten oder die 

Detektion von Objekten in dreidimensionalen Volumina könnten weiterführende und aufbauende 

Arbeiten darstellen. Schlussendlich fördert das Bereitstellen von leicht einsetzbaren 

Implementierungen von nun gekapselten, komplexen Methoden aus dem Bereich der Computer 

Vision, weitere interdisziplinäre Innovationen im Bereich des biomedizinischen Imaging.  
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