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1 Introduction

What I cannot create, I do not understand.
— Richard Feynman

Mathematical models are becoming increasingly important for describing, explaining, and pre-
dicting human behavior in terms of underlying mechanisms and systems of mechanisms. Al-
though the ontology of such mechanisms remains largely unknown, their epistemic value and in-
ferential power are now widely acknowledged throughout the behavioral sciences. Broadly speak-
ing, whenever an assumed mechanism transforms information into behavior, it is referred to as
a cognitive process. Cognitive processes are the conceptual fabric used to �ll the explanatory gap
between the mysterious �ring of neurons and the mundane recognition of a long-forgotten ac-
quaintance in the morning train. Consequently, modelers of cognitive processes earn their liveli-
hood in an attempt to make the “ghost in a machine” tractable by replacing the ghost with hidden
parameters embedded in an abstract functional framework.

The purpose of such parametric models is twofold. On the one hand, they can be viewed as
formal expedients for understanding the messy and noisy human data in much the same way as
the models physicists employ to make sense of the data coming from spiral galaxies and interstellar
clouds. On the other hand, parametric models can be viewed as behavioral simulators and used to
mimic the output of cognitive processes by generating synthetic behavior. Interestingly, there is
a strange asymmetry in the challenges surrounding these two goals. Simulating behavior requires
only specifying a cognitive model as a computer program and running the program with a de-
sired parameter con�guration. It is thus a generative process mainly constrained by the creativity
and imagination of individual modelers. Di�erently, reverse engineering human data to recover
hidden parameters is hampered by two external factors: the resolution and abundance of data
and the availability of universal and e�cient inferential methods. As for the latter, behavioral sci-
entists have often sacri�ced �delity and complexity in order to adjust their models not to reality
but to the limitations of existing inferential methods. Such a strategy is de�nitely viable in the
early (often linear and beguilingly clear) stages of scienti�c inquiry, but it does not live up to the
challenges and questions posed by later (often non-linear and disconcertingly fuzzy) stages.

The main argument of this thesis is that questions of inferential tractability are of secondary im-
portance for enhancing our understanding of the processes under study. Accordingly, the core pur-
pose of this thesis is to develop frameworks which leave such questions to specialized “black-box”
arti�cial neural networks and enable researchers to focus on developing and validating faithful
“white-box” models of cognition. Instead of a ready-made solution, the thesis explores a begin-
ning of a solution. It presents a potentially fruitful coupling between human and arti�cial intel-
ligence, an approach which is expected to gain more and more momentum as the world �lls with
arti�cial agents. Ultimately, this thesis strives to increase creativity by embracing complexity.
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1 Introduction

1.1 Motivation and Scope

This thesis is motivated by the question of how to o�oad parameter estimation and model com-
parison onto specialized neural network architectures. Undoubtedly, parameter estimation and
model comparison are two of the most common and most challenging tasks in model-based be-
havioral sciences. Accordingly, for each of the two tasks, we will o�er a general framework for
composing neural networks capable of bootstrapping a wide range of inference tasks. The main
principle will be to utilize prior domain expertise and guide these networks through simulations
to become “experts” in inferring hidden parameters from data or selecting between plausible mod-
els of the data. The proposed frameworks are themselves embedded into the meta-framework of
Bayesian inference which embraces probability theory as the logic of science [77].

Why probability theory? Simply put, a probabilistic approach to inference is appealing, as it
provides consistent equations and principled methods for quantifying and communicating un-
certainty [22]. Correspondingly, doing Bayesian inference and data analysis is nothing but ap-
plying the basic rules1 of probability theory to amount of information gained through empirical
inquiry. Curiously, it is primarily in the behavioral sciences that researchers applying probability
theory are given the cultist label Bayesians and often seen as representatives of a statistical oppo-
sition against traditional (the cultist label being frequentist) methods. Accordingly, whenever the
reader encounters the term Bayesian in this thesis, it should be read as using the rules of probability
theory to express uncertainty, update beliefs, revise knowledge, and inform scientific conclusions.

Probabilistic reasoning is hard and time-consuming. It was not until general-purpose comput-
ers had shrunk considerably in size that Bayesian inference became useful for handling non-trivial
practical problems. Until then, practitioners could leverage only a limited subset of the tools prob-
ability theory had to o�er. Moreover, this restricted inference was further constrained by the abil-
ity to solve complicated integrals, or, as David MacKay puts it: “...a macho activity enjoyed by
those who are �uent in de�nite integration" [103, p. 319].

With the advent of high-performance computing2, Monte Carlo methods came to the rescue
of probabilistic inference, the most prominent algorithmic family being Markov chain Monte
Carlo (MCMC) methods [109]. Initially, MCMC proved instrumental in approximating the
unimaginable integrals which had been thwarting the solution of relevant problems in chemical
physics [141]. Today, the heirs of those rather crude grandfather sampling methods have become
the Bayesian gold standard across the sciences, with novel and interesting modi�cations spawning
in scienti�c journals on a regular basis. The behavioral sciences are no exception to this trend,
being a �eld of both active application and development of novel Bayesian methods.

Notwithstanding the major contributions of MCMC methods to large-scale inference prob-
lems, they remain notoriously slow and sequential in nature [12]. These drawbacks can render
inference with highly complex models practically infeasible, but they also transfer to applications
of relatively simple models to big data where relevant computations need to be repeated for each
observation. Consequently, it is not uncommon for researchers to wait a week or two for estima-
tion algorithms to �nish, only to notice afterwards that critical adjustments to the algorithm or the

1Even though the rules of probability theory themselves are basic and intuitive, the application of these rules in prac-
tice can be anything but basic.

2The term high-performance having, of course, only a temporal meaning within the context of a computing genera-
tion.
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1.2 Contributions

model necessitate rerunning the entire loop from scratch. The inferential matters become even
worse, when the model itself cannot be speci�ed in a nicely closed, analytic form, but is only avail-
able as a Monte Carlo simulator program. The latter can often leave potentially relevant modeling
territories vastly unexplored and con�ne certain model classes to a purely Platonic playground.
Our goal is to provide an e�cient and scalable framework for designing and testing solutions to
precisely those challenging situations encountered frequently by behavioral scientists. Moreover,
we believe that our ideas can positively impact computational modeling in research areas not solely
con�ned to the behavioral sciences. At a high level, our framework is purely simulation-based and
leverages the representational power of deep learning methods to build reusable estimators for two
of the most important constructs in Bayesian inference: the posterior distribution and the evidence.
Further, it utilizes the concept of amortized inference to increase the inferential e�ciency of these
estimators at every modeling step, from model development, to model selection. Importantly,
our framework includes methods for self-diagnosis of miscalibrated inference due to algorithmic
errors, which is an essential precondition for computational faithfulness in any Bayesian data anal-
ysis pipeline.

Beyond the development of a novel Bayesian framework for simulation-based inference, this
thesis presents some concrete applications to relevant research questions in cognitive modeling
and beyond. These applications demonstrate the utility of the framework for tackling challenging
cognitive models dealing with both simple (typically independent and identically distributed, or
i.i.d.) and more complex probabilistic structure (typically exhibiting temporal dependencies, or
non-i.i.d.). Moreover, the models considered in these applications are themselves novel and serve
the purpose to inspire further research and exploration in the corresponding areas.

Finally, the thesis includes a starter Python library for building own estimation or model com-
parison networks with minimal programming skills.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

• Chapter 3 provides the necessary background and conceptual machinery for understand-
ing uncertainty quanti�cation in the context of Bayesian inference. It then discusses the
challenges faced by standard Bayesian methods when applied to complex models and how
these a�ect the �eld of cognitive modeling in particular. We introduce the concepts of
simulation-based and amortized inference with neural samplers and set the stage for pre-
senting our BayesFlow framework.

• Chapter 5 introduces our general BayesFlow framework for solving the task of amortized
Bayesian parameter estimation. We demonstrate how to perform inference on data sets
with di�erent sizes and probabilistic structure by using specialized network architectures
which preserve the probabilistic symmetry of the target Bayesian posterior. We formally
derive a training procedure which ensures that neural networks in our framework recover
the true target posteriors under perfect convergence of the optimization algorithm. We end
the chapter with a simulation-study demonstrating the utility of our method.

5



1 Introduction

• Chapter 6 introduces our Dirichlet evidence network for solving the task of amortized
Bayesian model comparison. We explore a method to quantify absolute evidence as com-
pared to relative evidence through a speci�c form of regularization in a meta-probabilistic
framework. As in chapter 5, we show how to deal with variable numbers of observations
and di�erent model/data types. We also derive a simulation-based training method which
ensures that evidential networks in our framework recover the true model probabilities
under perfect convergence of the optimization algorithm. We end the chapter with two
simulation studies using complex computational models from cognitive science and neu-
roscience.

• Chapter 7 introduces a visionary approach towards meta-amortized inference. It combines
both parameter estimation and model comparison into a single unifying framework and
presents initial conceptual results.

• Chapter 8 presents applications of the proposed Bayesian frameworks for model-based in-
ference on real data. It starts with a direct estimation of an information-theoretic model of
adaptive performance inspired by the Bayesian Brain Theory (BBT). Then, we describe a
parameter estimation study concerned with a set of novel models of decision making. This
is followed by an application of a custom di�usion model to a massive data set of human re-
sponse times to disentangle questions of cognitive aging. Finally, we present an application
to Covid-19 outbreak modeling with a version of BayesFlow for dynamic models.

1.3 List of Scientific Publications of the Publication-Based
Dissertation

The central ideas put forward in this thesis have been explored in the following publications by
the author and his cooperators:

• S. T. Radev, U. K. Mertens, A. Voss, L. Ardizzone, and U. Köthe. “BayesFlow: Learning complex
stochastic models with invertible neural networks”. IEEE Transactions on Neural Networks and
Learning Systems, 2020, pp. 1–15. doi: 10.1109/TNNLS.2020.3042395

• S. T. Radev, M. D’Alessandro, P.-C. Bürkner, U. K. Mertens, A. Voss, and U. Köthe. “Amortized
Bayesian model comparison with evidential deep learning”, Manuscript submitted for publication
in IEEE Transactions on Neural Networks and Learning Systems

• S. T. Radev, A. Voss, E. M. Wieschen, and P.-C. Bürkner. “Amortized Bayesian inference for models
of cognition”. International Conference on Cognitive Modelling (ICCM) Conference Proceedings,
2020

• M. D’Alessandro, S. T. Radev, A. Voss, and L. Lombardi. “A Bayesian brain model of adaptive
behavior: an application to the Wisconsin Card Sorting Task”. PeerJ 8, 2020, e10316

The author also contributed to the following publications which are related to the core topics of
the current thesis:
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1.4 Notes on Notation

• M. von Krause, S. T. Radev, and A. Voss. “Processing speed is high until age 60: insights from
Bayesian modeling in a one million sample (with a little help of deep learning)”, Manuscript sub-
mitted for publication

• S. T. Radev, U. K. Mertens, A. Voss, and U. Köthe. “Towards end-to-end likelihood-free inference
with convolutional neural networks”. British Journal of Mathematical and Statistical Psychology
73:1, 2020, pp. 23–43

• E. M. Wieschen, A. Voss, and S. Radev. “Jumping to conclusion? a lévy �ight model of decision
making”. TQMP 16:2, 2020, pp. 120–132

• S. T. Radev, F. Graw, S. Chen, N. Mutters, V. Eichel, T. Bärnighausen, and U. Köthe. “Model-based
Bayesian inference of disease outbreak with invertible neural networks”. arXiv preprint arXiv:2010.00300,
2020

• S. Bieringer, A. Butter, T. Heimel, S. Höche, U. Köthe, T. Plehn, and S. T. Radev. “Measuring
QCD splittings with invertible networks”. arXiv preprint arXiv:2012.09873, 2020

• L. Konicar, S. Radev, K. Prillinger, M. Klöbl, R. Diehm, N. Birbaumer, R. Lanzenberger, P. Plener,
and L. Poustka. “Volitional modi�cation of brain activity in adolescents with Autism Spectrum
Disorder: A Bayesian analysis of Slow Cortical Potential neurofeedback”. NeuroImage: Clinical,
2021, p. 102557

• U. K. Mertens, A. Voss, and S. Radev. “ABrox—A user-friendly Python module for approximate
Bayesian computation with a focus on model comparison”. PloS one 13:3, 2018, e0193981

1.4 Notes onNotation

Throughout this thesis, we will follow some simple conventions for consistent mathematical no-
tation. We will denote scalar variables by lowercase italic, e.g., x, y, z, vectors by lowercase bold
italic, e.g., x,y, z, and matrices by uppercase bold italic letters, e.g., X,Y ,Z . Data sets com-
prising multiple observations (e.g., multivariate responses of a single participant to a particular
task) will be denoted as {xn}Nn=1 = {x1,x2, ...,xN} ≡ x1:N , whereN indicates the number
of observations. Occasionally, and when possible, we might stack all observations comprising a
data set row-wise into a matrix, {xn}Nn=1 ≡ X . Whenever the observations are assumed to be
time-dependent, we will use T to denote the total number of observations in the resulting (multi-
variate) time-series x1:T . Occasionally, we will include the superscript obs to denote an actually
observed data set, in contrast to a simulated one (i.e., x(obs)

1:N vs. x1:N ).
We will always collect the parameters of a mathematical model into a vectorθ = (θ1, θ2, ..., θD),

and reserve the letterD for the dimensions of the parameter space. Finally, we will collectively refer
to all trainable parameters of a neural network (e.g., weight matrices, biases, activation function
parameters) as a vector (e.g., φ,ψ, ...) even though these might be distributed across di�erent
functional components or layers of the network. Importantly, neural network parameters are not
to be confused with the parameters of the mathematical model of interest, as the former are unin-
terpretable and high-dimensional, whereas the latter are carriers of theoretical value and usually
low-dimensional.
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1 Introduction

Table 1.1: Table of important symbols and their corresponding description

Notation (Symbol) Meaning

x,x1:N observed or simulated data point, data set
θ,ω parameters of a mathematical model (simulator)
z latent variable learned by a (deep) generative model
XN ,Θ,Ξ data space, parameter space, noise space
M,Mj candidate model set, model index
g generative (forward) model / simulator
p, q probability density (mass) functions
φ,ψ trainable parameters of neural networks
fφ, hψ functions parameterized via neural networks
E[·] expected value of a random variable (vector)
KL[p || q] Kullback-Leibler divergence between densities p and q
N number of observations in a (simulated) data set
D number of parameters / dimensions of the parameter space
B number of simulations per training step / batch size

For the most part of this thesis, we will be concerned with (absolutely) continuous random
vectors and their associated probability density functions (pdfs). For the sake of readability, the
latter will be denoted by p even when they refer to pdfs of di�erent random vectors de�ned on
di�erent spaces, which will be clear from the function arguments. For instance, we will write p(θ)
for the (prior) probability density of the parameter vector θ ∈ Θ instead of pΘ(θ). Additionally,
each pdf of interest will be implicitly associated with a corresponding probability measure P .
Throughout the text, we will use density and distribution interchangeably.

By means of a slight abuse of notation, when a density function is approximated via a neural
network with trainable parametersφ, we will often write qφ(θ) ≡ q(θ |φ), or, for a conditional
density, qφ(θ |x) ≡ q(θ |x,φ). In this way, (i) we align our notation to the predominant no-
tation in the literature on deep generative modeling; (ii) implicitly denote the dependence of the
approximate density on the neural network parameters; (iii) make it immediately clear which is
the density being approximated, e.g., qφ(θ |x) approximates p(θ |x) by means of neural net-
work parametersφ.

The most important symbols and notation used throughout the text are summarized in Table
1.1.
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2 Models of Cognition
Murky thoughts, like murky waters, can serve two purposes only: to hide what lies be-
neath, which is our ignorance, or to make the shallow seem deep.
— Giulio Tononi

Reasoning with models of empirical phenomena lies at the very heart of science. Models abstract
away irrelevant details and focus attention on the theoretically relevant aspects of complex sys-
tems. Ideally, they simplify, but do not oversimplify reality. The importance of models for scien-
ti�c progress is twofold. On the one hand, theories can be systematically instantiated and tested
by specifying a mathematical model and inferring its hidden properties from data. On the other
hand, competing theories can be tested against one another via formal model comparison. Thus,
model-based reasoning complements verbal reasoning insofar as it reduces ambiguity and trans-
lates “murky” statements into precise and directly quanti�able hypotheses. Whether the latent
properties of cognitive models represent faithful descriptors of the unobservable causes of behav-
ior remains an open question whose surface we will only scratch here. The main purpose of this
chapter is to establish the notion of a cognitive model, �x a useful notation, and introduce the
concept of a likelihood function.

2.1 Cognition and Computation

Cognitive models exist to help cognitive scientists make sense of observed behavioral data in terms
of unobservable (latent) cognitive processes, such as attention, memory decay, evidence accumu-
lation, or belief updating, to name just a few [45]. Such models have been around for centuries
(see Figure 2.1), with the most notable modern twists being a shift in contextualization (i.e., in the
reference theoretical framework) and an increase in mathematical formalism. Whether cognitive
processes actually exist as functional entities or simply represent useful metaphors psychologists
live by, is a question that currently extends from philosophy down to single-cell neuroscience.

In the year 1994, Francis Crick, essentially reinventing naturalism, formulated his astonishing
hypothesis in a rather �owery way:

The Astonishing Hypothesis is that “You”, your joys and your sorrows, your mem-
ories and your ambitions, your sense of personal identity and free will, are in fact
no more than the behavior of a vast assembly of nerve cells and their associated
molecules. As Lewis Carroll’s Alice might have phrased it: “You’re nothing but a
pack of neurons”. [28, p. 3]

At the time of writing, hardly any cognitive scientist would �nd the relationship between brain,
cognition, and behavior alien or astonishing. In fact, this relationship is the explicit or implicit
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Figure 2.1: Robert Fludd’s “model” of a mind in the world from 1619 [15]. The diagram can be seen as an
early predecessor of modern cognitive architectures incorporating cognitive functions such as
perception, memory as well as an explicit �ow of information between the mind and the world.
Cognitive functions are localized in the head, even though neurons are yet to be discovered.

working hypothesis behind some of the most prominent cognitive architectures and model classes
[91, 153, 162]. However, few would contend that even a complete description of all microtubules
in each and every neuron in the brain will ever be su�cient to explain why a grandmaster under
time pressure failed to spot an obvious checkmate in a crucial game of chess. Invoking such an
explanation appears to require more than just a description of the behavior of molecules and neu-
rons. In other words, the “no more” and the “nothing but” parts of the astonishing hypothesis are
what provokes a certain theoretical dissatisfaction. Perhaps going up to a complete understand-
ing of neural �ring patterns would resolve the dissatisfaction. But how far up should one climb
the reductionist ladder until a satisfactory level of analysis for cognition is reached? This is an ex-
ample of the so called bottom-up problem, starting from the small and tractable constituents of a
presumably complex process and building up towards its synthesis.
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In contrast, one may start with a handy catalogue of cognitive processes inherited from the dic-
tionary of psychology and look down for the “neural correlates” of these processes. Necessarily,
such an approach rests on the assumption that there will be a serendipitous one-to-one corre-
spondence between cognitive and neural processes. This is an example of the top-down problem,
starting from the processes and analysing them in terms of their constituents.

Undoubtedly, both approaches bear obvious risks. Following a purely bottom-up research
agenda, we might run into the problem of being unable to reconstruct the entire list of assumed
cognitive processes. Following a purely top-down approach, we might not end up discovering
the neatly corresponding constituents we are looking for, leaving us with a list of substance-free
metaphors.

It is perhaps no coincidence, that neuroscientists favor a predominantly bottom-up approach.
For instance, György Buzsáki [18] outlines the three missing pieces for a purportedly complete un-
derstanding of how the brain generates behavior. These are the understanding of (i) the dynamical
structural organization of the brain; (ii) the physiological functions of its constituents; (iii) and
the computational mode of operation that enables the neurons in a given anatomical hardware to
execute actions [18, p. 24]. The eventual synthesis of this knowledge is expected to provide a sat-
isfactory explanation for all kinds of behavior in terms of underlying neural mechanisms. In the
process of studying and systematizing these mechanisms, only the neurophysiologically plausible
cognitive constructs would therefore stand the test of rigorous empirical veri�cation.

Cognitive scientists, on the other hand, prefer Marr’s interpretative framework for talking about
cognitive processes [106]. Its starting point is the basic concept of information processing, that is,
the detectable (i.e., the di�erence that makes a di�erence) transformation of information (e.g.,
wavelengths becoming cone cell responses or the ringing of the phone becoming an increase in
heart-rate variability). It then distinguishes three levels of analysis for understanding any infor-
mation processing system: (i) computational theory - concerning the goals (the why) of the system
and its computational logic; (ii) representation and algorithm - concerning the representation of
input and output as well as the step-by-step instructions for carrying out the input-output trans-
formation (the how); (iii) hardware implementation - concerning the physical realization of the
algorithm [106, p. 25].

Accordingly, we can equate cognitive processes with the algorithms transforming neural repre-
sentations into observed behavior (or into further representations), without committing to a par-
ticular physical ontology. Thus, computational models of cognition (cognitive models, for short)
are our best instruments to learn something about these algorithms from behavioral data alone,
without resorting to the expensive methods of neuroscience. Ideally, the functional form and pa-
rameters of cognitive models would capture the most important algorithmic and representational
characteristics of the system under study. At the same time, the assumed hardware underpinnings
of a cognitive process should impose a number of parametric and functional constraints (e.g., the
maximal speed of information processing), if a model of the process is to be taken seriously by
substantive neuroscientists.

Cognitive models are occasionally termed computational models, highlighting their algorithmic
essence and their conceptual relatedness with notions borrowed from computer science. Even
though neurophysiological plausibility seems to be a prerequisite for the ultimate validation of
any cognitive model, it is often ignored in favor of a strong embedding in the nomological nexus
of psychology. Accordingly, as long as the parameters of a cognitive model are interpretable with
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a reference to an overarching psychological theory, the actual neuroanatomical hardware becomes
of secondary importance. In addition, neurophysiological plausibility becomes even less impor-
tant if the presumed cognitive processes are eventually to be implemented by goal-directed arti�-
cial agents. In the latter case, an arti�cial agent may perfectly mimic human or animal behavior
without the need or physical possibility to invoke any neural representations. As a consequence,
the concept of a cognitive process may become decoupled from its neural realization and thus be-
come synonymous to an algorithm, which is per de�nition independent of its implementation.
Nevertheless, for those striving to infer something about real brains from real behavioral data,
the hope remains that their models are at least able to tap into the distant echo of neural system
parameters within a coherent “neurocognitive” framework.

Future theoretical developments may also see phenomenological plausibility come as an addi-
tional criterion for models representing cognitive processes which are experienced in some way
(e.g., the experience of coming to a decision as compared to all non-experienced factors that con-
tributed to the decision). However, the fact that information processing is experienced in a partic-
ular way seems less important for cognitive modelers than the functional task of describing how
information is transformed in a way that ultimately leads to manifest behavior. And even though
simulating experience appears to be unimaginably hard (except perhaps for the brain), we can eas-
ily “build” abstract machines which simulate behavior in various experimental and observational
contexts by executing a series of well-de�ned computational steps. It is this property which makes
model building a creative process and cognitive models generative in nature.

2.2 Behavioral Simulators

Formally, we can represent a cognitive model as a function g : Θ × Ξ → X which generates
observable quantities x ∈ X from a particular con�guration of the hidden parameters θ ∈ Θ
and an independent source of noise ξ ∈ Ξ. The function is typically realized as a Monte Carlo
computer simulation which mimics quanti�able manifestations of actual behavior. Simulation
programs involving random number generation are also known as Monte Carlo engines or prob-
abilistic programs.

Since humans rarely behave the same way even when provided with the same information, the
stochastic component ξ in the model formulation ensures that g is non-deterministic given the
same time-invariant parameter con�guration θ. Ideally, the noise in a cognitive model should
capture all non-modeled factors which nevertheless in�uence the generation of behavior, but it
may also re�ect inherent randomness of the cognitive system under study. In the latter case, the
noise distribution might itself contain learnable parameters which are part of θ, so it should be
denoted as p(ξ |θ). Thus, the general functional form of a (stochastic) cognitive model is:

xn = g(θ, ξn) with ξn ∼ p∗(ξ) (2.1)

where the subscript n indicates that the simulator can be run repeatedly with the same parame-
ter vector to yield an entire data set {xn}Nn=1 ∈ XN and p∗ denotes the true underlying noise
distribution. Usually, this distribution is unknown and its form needs to be either theoretically
deduced or approximated ad hoc via a simpler distribution p from which random samples can
easily be obtained (e.g., Gaussian, Poisson).
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The model form in Equation 2.1 represents a memoryless or a stateless process: each run of
the simulator with a �xed parameter combination is independent of the previous runs and does
not in�uence future runs. As we will show later, such models generate data sets consisting of
independent and identically distributed (iid) observations. More complex models involving some
form of memory can be formulated by a recursive dependence of the simulator on the previous
observation:

xn = g(xn−1,θ, ξn) with ξn ∼ p∗(ξ) (2.2)

or by introducing a persistent memory variable ωn which is updated after each simulation run
and may itself be unobserved and treated as a time-varying parameter:

(xn,ωn) = g(ωn−1,θ, ξn) with ξn ∼ p∗(ξ) (2.3)

Importantly, such stateful models give rise to more complex sets of observations which are no-
longer i.i.d. and thus need to be tackled di�erently than i.i.d. observations. Accordingly, a major
aim of this thesis is to develop and validate a framework for performing model-based inference on
both i.i.d. and non-i.i.d. observations. In anticipation of future modeling challenges including
joint models of neural and behavioral data as well as more unstructured data such as graphs, text,
or motion time-series, we will ensure that our framework is extendable to incorporate these future
challenges. We further anticipate that our ideas will be potentially useful in di�erent �elds having
embraced model-based reasoning and inference.

Scienti�cally useful cognitive models should work both forward and backward. Given a set of
parameters, researchers should be able to generate arti�cial observations and data sets which are
indistinguishable from their real counterparts even when scrutinized by expert observers or sub-
jected to rigorous statistical tests. Conversely, given only a set of observations, researchers should
be able to recover the hidden data-generating parameters which are seen as epistemically valuable
explanans of the data. We call this the inverse inference problem.

As already brie�y mentioned in the introduction, the two tasks are notably asymmetric with
respect to the computational and epistemic burden they carry. To further appreciate this asymme-
try, consider the example of an ice cube left at room temperature to eventually become a puddle
of water [154, p. 196]. Having a model of the process of fusion, one can feasibly simulate how
an arbitrary ice cube transitions into a puddle over time (forward inference). However, suppose
that you are presented with only a puddle and tasked to recover an unobserved cube (inverse in-
ference). Even though you can infer something about the volume or the density of the ice cube,
the task as a whole appears insurmountable, since there are di�erent cubes that could have melted
into the same puddle, which presents a case of inherent non-identi�ability. What is more, there
is uncertainty about the model of the ice cube itself, since there is a multitude of ice forms, not
necessarily cubic, that could have resulted in the same puddle.

Researchers striving to understand and model how “the mind can occur in a physical universe”
[2] face a similarly tough challenge. When it comes to modeling cognition and behavior, this
challenge is further aggravated by the possibility that there could have been no ice cube to begin
with, but an entirely di�erent puddle-generating process.

In short, forward inference is easy, whereas inverse inference is hard. Forward inference requires
“only” the ability to write down the model as a simulator program in a programming language and
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run the simulation with the desired set of parameters. It also requires creativity and theoretical
insight (as well as acceptance by the community of other modelers). Inverse inference, on the
other hand, requires invoking additional estimation procedures, largely external to the model or
the modelers themselves. Further, it implies facing a large portion of epistemic uncertainty. In
addition, estimation procedures are impeded by the following properties of complex simulators:

1. The simulator is typically non-deterministic, so that there is intrinsic uncertainty about the
true value of θ.

2. The simulator is typically not information-preserving, so that there is ambiguity among
possible values of θ.

3. The simulator is typically too complex to admit a closed-form mathematical expression for
evaluating the likelihood of θ.

A multitude of inference frameworks with a varying degree of generality have been proposed for
addressing problems of inverse inference. The most prominent among these are manual tun-
ing, parameter search methods, kernel methods, optimization methods, maximum likelihood,
maximum-a-posteriori (MAP inference), variational inference, fully Bayesian inference, approxi-
mate Bayesian computation (ABC), machine learning approaches as well as various hybrid meth-
ods [12, 29, 52, 105, 123, 136, 140, 142, 150]. A comprehensive review of the multiverse of methods
for inverse inference is beyond the scope of this work (but see Chapter 4 or the excellent review by
[27] for a broad classi�cation). Essentially, all approaches for inverse inference optimize a trade-o�
between e�ciency, scalability, accuracy, and practical utility. As there is no free lunch in capital
markets, there is no silver bullet in statistical inference. Put di�erently, there is no method or
framework that simultaneously maximizes all of the above criteria and the best method will be
application-dependent.

This thesis focuses on scaling and utilizing fully Bayesian inference for very complex (often
deemed intractable) models exhibiting all three inferential predicaments. In the next chapter, we
will see why such models necessitate a simulation-based approach to Bayesian inference. Before
we conclude this chapter, however, a word on the concept of likelihood seems warranted.

2.3 The Likelihood

When looked upon through a probabilistic lens, the outputs of a cognitive model can be associated
with some (potentially very complex) probability distribution. This distribution is referred to as
the likelihood and denoted as p(x |θ). Loosely speaking, when evaluated, the likelihood returns
the relative probability of an observation x given a set of parameters θ. When the parameters are
systematically varied, the likelihood can be used to quantify how well each model instantiation
�ts the data.

If the likelihood has a known distributional form (e.g., Gaussian, Laplace, Dirichlet), the model
in Equation 2.1 can be formulated entirely in terms of the likelihood. Moreover, in these simple
cases, the likelihood can be evaluated analytically or numerically for any pair (x,θ). In a sense, all
stochastic models have a dual generative representation:

xn ∼ p(x |θ) ⇐⇒ xn = g(θ, ξn) with ξn ∼ p(ξ) (2.4)
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where the likelihood function p(x |θ), being a probability distribution itself, naturally captures
the e�ects of the extrinsic stochastic factor ξ. Note, that this representation can be trivially ex-
tended to incorporate models with memory (Equations 2.2 and 2.3). In fact, each stochastic
model viewed as a Monte Carlo simulator de�nes an implicit likelihood given by the relationship:

p(x |θ) =

∫

Ξ
δ(x− g(θ, ξ)) p(ξ |θ) dξ (2.5)

where δ(·) is the Dirac delta function and the integral runs over all possible execution paths of
the stochastic simulation for a �xed θ. For most complex models, this integral is analytically in-
tractable or too expensive to approximate numerically, so it is much easier to specify the model
directly in terms of the simulation program g instead of using the likelihood. However, according
to Equation 2.4, we can still sample from the likelihood by running the simulator with di�erent
Monte Carlo realizations of ξ.

It is at this point where likelihood-based and simulation-based inference methods diverge. The
former require the ability to evaluate the likelihood for any pair (x,θ). The latter require only
the ability to sample (simulate) arbitrary pairs (x,θ) from the likelihood1. In the next chapter, we
will see how the inability to evaluate or derive the likelihood prohibits standard Bayesian meth-
ods. We will then brie�y peruse the frontier of simulation-based inference before introducing our
frameworks for parameter estimation and model comparison.

1Although the literature has adopted the term likelihood-free inference, we will completely avoid it in this text, since
it incorrectly implies the absence of a likelihood, even though the likelihood is implicitly de�ned via the action of
the simulation program. It is the calculation of its actual numerical value for simulated or real observations which
is impossible. We will therefore prefer the term simulation-based inference, since it unambiguously captures the
essence of the task.
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3 Bayesian Inference
It is an extraordinary feature of science that the most diverse, seemingly un-
related, phenomena can be described with the same mathematical tools.
— Benoit Mandelbrot

Probability theory is the language for describing uncertainty with mathematical objects. Uncer-
tainty is not merely a philosophical phantasm or a convenient excuse for the erroneous forecasts
of meteorologists, but rather a fundamental epistemic basis for decision making in an incomplete
universe. Scientists face uncertainty both in their academic and private lives. Finite data, approx-
imation errors, noisy measurements, and inherently stochastic models are the common culprits
for cultivating the habit of reporting some con�dence measures alongside point estimates. But
also everyday questions such as "Will it rain tomorrow?", "Which party is likely to win the elec-
tion?", or "What is the likelihood of encountering a dragon in the park tonight?" call for reasoning
with a varying degree of con�dence. Since the core topic of this thesis is model-based inference, we
will see in this chapter how Bayesian methods provide a self-consistent framework for uncertainty
quanti�cation and communication when trying to extract cognitive models from behavioral data.
Apart from the parlor of behavioral sciences, Bayesian methods have been employed for tasks as di-
verse as predicting global equity indices [73], inferring latent infectious disease dynamics [42], and
evaluating forensic DNA pro�les [9]. Henceforth, we will assume the utility of Bayesian methods
as given and proceed to the conceptual and mathematical details of Bayesian inference.

3.1 From Prior to Posterior

The core mathematical workhorse in Bayesian probabilistic reasoning is the famous Bayes’ rule
[52], which speci�es how to update prior knowledge about a given quantity upon making an in-
formative observation. In cognitive modeling, the quantities of interest are the parameters of a
cognitive model, which capture relevant computational characteristics of the process under sci-
enti�c scrutiny. Thus, when collecting behavioral data, we ultimately strive to increase our knowl-
edge about these parameters as a proxy for understanding the assumed cognitive processes.

The point of departure in Bayesian inference is the prior distribution (or just prior1, for short),
denoted as p(θ). Ideally, the prior is supposed to capture both what we already (believe to) know
about the parameters, but also what we still do not (believe to) know. Knowledge is expressed
through a reasonable domain and concentration of probability density (i.e., our “best” guess).
Lack of knowledge is expressed through the spread of probability density over the domain (i.e.,

1Whenever a model has a multi-dimensional parameter space, one speaks of a joint prior highlighting the fact that the
the distribution p extends over multiple parameters (dimensions). Correspondingly, one speaks of a joint posterior
when referring to the updated distribution of multiple parameters.
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our uncertainty about the “best” guess). To make this idea concrete, Figure 3.1 depicts three one-
dimensional priors with the same average value of zero but di�erent allocations of uncertainty and
belief.

Even though the prior is typically de�ned as an unconditional density, this de�nition is merely
an aesthetic consideration, since knowledge and uncertainty are fundamentally contextual. Thus,
p(θ) is really a shorthand for p(θ |C), where C is a placeholder for all contextual information,
such as previous research, theoretical constraints, model assumptions, and cultural preferences.
Indeed, one of the greatest appeals (and, perhaps, at the same time, greatest deterrents) of Bayesian
inference is that it allows to systematically and explicitly incorporate contextual information.

In a sense, Bayesian inference does away with the illusion of objectivity by allowing subjectivity
to be expressed explicitly and transparently. Accordingly, one might question the speci�cation of
p(θ |C) on empirical or theoretical grounds and propose p(θ |C ′) as an alternative. In this case,
the di�erence in contextual information leads to di�erent epistemic states prior to observing any
new data and potentially di�erent conclusions after observing some data2.

The process of knowledge updating in Bayesian inference essentially consists in transforming
the prior into the posterior according to the well known Bayes’ rule:

p(θ |x) =
p(x |θ) p(θ)

p(x)
=

p(θ,x)

Ep(θ)[p(x |θ)]
(3.1)

where p(x |θ) denotes the likelihood function, as discussed in the last chapter, and p(θ |x) de-
notes the posterior given some observation x. In the context of model-based inference, attain-
ing the posterior corresponds to Bayesian parameter estimation and is sometimes referred to as
inverting the likelihood, due to the re�ection of the arguments across the | symbol. The denom-
inator p(x) in the second term of Equation 3.1 is known as the evidence and represents a nor-
malizing constant for the posterior. The equivalent denominator in the third term rephrases the
evidence as the expectation of the likelihood with respect to the prior, that is, Ep(θ)[p(x |θ)] =∫

Θ p(x |θ)p(θ)dθ. The latter de�nition underlines the useful interpretation of the evidence as
an average over all possible θ or, equivalently, as a marginal likelihood. Even though the marginal
likelihood is usually bypassed in parameter estimation tasks due to the obvious proportionality

p(θ |x) ∝ p(x |θ) p(θ), (3.2)

it becomes a key object in the context of Bayesian model comparison.
Importantly, all distributions in Equation 3.1 are implicitly conditioned on a given generative

model g, in addition to unspeci�ed contextual information C . Looking at the computational
de�nition of the posterior, another consequence of Bayesian inference stands out, namely, that
di�erent observations will lead to di�erent updated epistemic states. Thus, observingx′ will gen-
erally elicit a di�erent change in knowledge, that is, p(θ |x) 6= p(θ |x′), and, again, a poten-
tially di�erent conclusion based on that modi�ed knowledge3. This property seems desirable, as

2The in�uence of di�erent prior speci�cations on model-based inference and model-derived decisions can be system-
atically investigated and quanti�ed via prior sensitivity analysis [7]. More on this in Chapter 7.

3However, if the observations are equally informative or equally uninformative, the two posteriors may be the same.
In general, the information gained by observing di�erent states of the world will be di�erent.
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Figure 3.1: Three di�erent ways to express prior knowledge and uncertainty about a single parameter θ in
a probabilistic way. The left panel depicts a uniform prior around 0 which assigns constant
density to values within the interval [−6, 6] and treats all values outside this interval as literally
impossible. The middle and right panel depict symmetric stable priors [179] around 0 which
assign highest density to the central value of 0 and exponentially decaying density to values di-
verging from the center. Note, that the distribution in the right panel appears shorter than its
normal counterpart in the middle panel, since it has thicker tails and treats values farther from
0 as less improbable.

it captures the (rather trivial) intuition that two learners presented with di�erent facts will learn
di�erent things.

A further desirable property of Bayesian inference is that it allows the simultaneous or sequen-
tial integration of all available information (i.e., yesterday’s posteriors become today’s priors).
Provided that information does not decay between sequential updates, both simultaneous and
sequential updating should lead to the same endpoint posterior. The latter method is especially
useful when data are collected at di�erent points in time or arrive as a stream of observations.
Curiously, even though often cited as a crucial asset of Bayesian inference, sequential updating is
largely underutilized in behavioral research4.

3.2 Uncertainty Reduction and Bayesian Surprise

The transition from prior to posterior essentially conveys a reduction in uncertainty brought about
by observing reality. Equivalently, it can be seen as communicating the gain in information achieved
by querying nature through an empirical endeavor. Accordingly, we expect the posterior to be
narrower or sharper than the prior, as the opposite would imply a loss of information through
observation - a scenario which appears rather paradoxical. However, it is reasonable to expect cir-
cumstances when the posterior will exactly equal the prior, namely, whenever the data carry no
information about the parameters of interest.

The concept of posterior contraction formalizes the idea that the posterior should get sharper
as the number N of available observations increases. In the simplest case, the posterior variance
should decrease at rate 1/N , but a more nuanced behavior can occur for more complex models in-
ducing, for example, multi-modal or asymmetric posteriors. In general, the posterior contraction
(PC) for multivariate posteriors can be formally expressed as a ratio between generalized variances:

4And for good reasons, since updating turns out to be technically hard if the posterior is represented only as random
draws (e.g., as provided by MCMC algorithms).
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PC[θ |x] = 1− det(Cov[θ |x])

det(Cov[θ])
(3.3)

where Cov[θ |x] and Cov[θ] denote the posterior and prior covariance matrices, respectively.
Posterior contraction near zero indicates that the data contribute little to nothing to reducing
prior uncertainty about θ. Posterior contraction near one indicates a large reduction in prior
uncertainty after accounting for the data [144]. Note, that Equation 3.3 provides local (i.e., per-
observation) information about information gain. If one is interested about global (i.e., in expec-
tation over all possible observations) information gain for a particular model, then the expected
posterior contraction (EPC) should be considered:

EPC[θ |x] = 1− Ep(x)

[
det(Cov[θ |x])

det(Cov[θ])

]
(3.4)

Accordingly, di�erent model parameterizations can be compared with respect to their expected
information gain by computing the corresponding EPCs. However, the EPC will usually be in-
tractable for complex models, so it needs to be approximated via its empirical mean over a suf-
�ciently large number of di�erent observations. For most non-trivial models, this will only be
feasible in an amortized inference setting (to be discussed in the next chapter) which makes infer-
ence globally e�cient.

Notably, posterior contraction only considers the variance, that is, the second moments of the
prior and posterior distributions. However, other di�erences between prior and posterior may
manifest themselves in di�erences between higher-moments of the distributions. A concept for
quantifying arbitrary di�erences between prior and posterior is the Bayesian surprise, which can
be de�ned as the Kullback-Leibler (KL) divergence between the two densities:

B = KL[p(θ |x) || p(θ)] (3.5)

=

∫

Θ
p(θ |x) log

(
p(θ |x)

p(θ)

)
dθ (3.6)

Importantly, the Bayesian surprise is non-negative and equals zero if and only if the two densities
are equal. In information theory, this quantity is termed the relative entropy, which, in a Bayesian
context, represents the information gained by replacing the prior with the posterior. The units
of information are then determined by the base of the logarithm. The expected Bayesian surprise
(EBS) then encodes the average information gained from applying a particular model to the entire
data space. If evaluation of the prior and posterior densities is analytically tractable, the empirical
approximation of the EBS can therefore be used to quantify the impact of the data on Bayesian
updating5.

Global information gain and uncertainty reduction are especially useful in the model develop-
ment phase, since they can inform researchers about the general utility of a computational model.
Accordingly, a researcher may experiment with di�erent theoretically plausible parameterizations
of a model and prune those which result in a poor information gain. Such an approach involves

5In cases where even approximating the (expected) Bayesian surprise is infeasible, an integral metric such as the max-
imum mean discrepancy (MMD, [61]) can be used to de�ne Bayesian surprise as well.
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performing repeated simulations from each model and then obtaining a posterior for each single
simulation and model6. Notably, this approach can quickly become practically infeasible even for
a few simulations if estimating the posterior is computationally demanding. Again, we will see in
later sections why e�cient amortized inference is particularly helpful for such undertakings.

3.3 Types of Uncertainty

The notion of uncertainty is central to scienti�c and daily life. However, in most research con-
texts dealing with probabilistic matters, it is often useful to introduce a taxonomy of uncertainties.
A canonical approach in predictive modeling draws a distinction between aleatoric (sometimes
called ontic) and epistemic uncertainty [74, 82].

Broadly speaking, aleatoric uncertainty is caused by intrinsic randomness, whereas epistemic
uncertainty is brought about by ignorance. To illustrate this distinction with a (rather trivial)
example [74], consider a coin-�ipping game taking place in Bulgaria. A probabilistic model of
the coin-�ipping process could inform us about the likelihood of obtaining head or tail on any
given toss. Further, assuming our probabilistic model is calibrated to reality, we can derive from it
the expected value of the coin-�ipping game and use decision theory to select certain actions (i.e.,
whether to bet my watch on the next toss). However, our model cannot foretell the concrete fu-
ture outcome due to aleatoric reasons (matters of statistical physics aside), so there is uncertainty
regarding the future possession of my watch. Di�erently, one might be equally uncertain about
the meaning of the word “ezi” in Bulgarian. Yet the possible answers (and corresponding proba-
bilities) are the same as before: head or tail. In this case, the ensuing uncertainty is caused purely
by our lack of linguistic knowledge (i.e., epistemic uncertainty).

It has been argued that distinguishing between aleatoric and epistemic uncertainty constitutes a
so-called distinction without a di�erence [154], that is, one without any practical consequences for
decision makers. However, since ignorance (as opposed to intrinsic randomness) can in principle
be reduced or even removed with additional information, it appears that pinpointing the source
of uncertainty implies di�erent handling of uncertainty. Thus, in our coin-�ipping game, one can
easily get rid of the epistemic uncertainty surrounding the word “ezi” by means of a dictionary.
No need to set up a probabilistic model. Accordingly, epistemic uncertainty is generally treated
as reducible; aleatoric uncertainty is generally treated as irreducible.

Note, however, that the irreducibility of aleatoric uncertainty is, in most cases, rather a practical
decision than an ontological necessity. For instance, even in the coin-�ipping game (the all-time
favorite example of probability textbooks), knowledge of the initial conditions and of all forces
acting on the coin at all times would, in principle, render the system deterministic. To further
illustrate this point, consider the following (deterministic) linear model with two covariates, x1,
x2, and one outcome y:

yi = β0 + β1x1i + β2x2i (3.7)

6Despite being self-consistent, such an approach does not guarantee the utility of a model when applied to real data.
A potential simulation-gap between simulation and reality can be detected in later modeling stages with di�erent
tools.
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Figure 3.2: An illustrative example of the contextual irreducibility of aleatoric uncertainty. Left panel: hav-
ing limited access to the relevant data (onlyx1) induces aleatoric variability which cannot be re-
duced with further observations of the same kind. The deterministic model appears stochastic.
Right panel: having access to the full data (both x1 and x2) makes the uncertainty disappear,
since the true model is deterministic.

with all x ∼ N (0, 1). If one were to �t a proverbial simple linear regression on a reduced data set
D = {x1i, yi}N=30

i=1 generated from the model, with x2 treated as unknown to the modeler, the
data would behave as if they had been generated via the well-known:

yi = β0 + β1x1i + ξi (3.8)

with ξ ∼ N (0, σ), where σ is aleatoric Gaussian noise dependent on the unknown β2 and x2.
The data set and the resulting best-line �t are depicted in the left panel of Figure 3.2. In this

simple regression scenario, epistemic and aleatoric uncertainty are seemingly separable. Due to
the �nite N , there is epistemic uncertainty about the precise values of β0 and β1, which might
change if a di�erent set of 30 observations was generated from the model. In a Bayesian setting
this uncertainty would be captured via the posterior distribution p(β0, β1 |D), which will get
narrower asN increases. Note also, that the epistemic uncertainty in β0 and β1 results in uncer-
tainty in the best-line �t, as depicted by the multiple shaded lines. However, regardless of how
largeN gets, the aleatoric factor ξ will cause the points to vary unsystematically around the line,
and, correspondingly, there will be irreducible predictive uncertainty about the true outcome of
an upcoming observationx1i′ . On the other hand, if we could augment our original data set with
(the previously hidden) x2, that is, if we useD′ = {x1i, x2i, yi}N=30

i=1 in a multiple regression
model, all previous aleatoric uncertainty disappears, since the additional information of x2 ren-
ders all points to perfectly lie on the best-�tting plane (cf. Figure 3.2, right panel). Thus, what
we ultimately treat as irreducible uncertainty might depend on the particular modeling context
instead of referring to an absolute notion.

When performing Bayesian inverse inference with Monte Carlo simulators, we typically want
to mimic the real-world randomness, regardless of its source, via the stochastic component p(ξ)
involved in forward inference:

xn = g(θ, ξn) with ξn ∼ p(ξ) (3.9)
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Since we are dependent on computer-based random number generation, we typically need to as-
sume a parametric form for p(ξ) in order to make forward inference tractable in the �rst place.
Even though in some applications (mostly experiments in physics), the precise source and form
of the data-corruption process might be known in advance, most cognitive models are con�ned
to a convenient form of uncertainty (i.e., one which we can easily simulate or write down math-
ematically). Thus, there is uncertainty about the chosen form of randomness, which, along with
the uncertainty about the generative capabilities of the simulator, would fall under the rubric
of model uncertainty, generally considered as another (sub-)type of epistemic uncertainty [74].
However, since the true data generator in areas reserved for the behavioral sciences is almost never
transparent, model uncertainty is almost always practically irreducible. Accordingly, the reducible
uncertainty encoded by the Bayesian posterior p(θ |x1:N ) is immersed into an ocean of poten-
tially irreducible uncertainty and the sought-after Bayesian surprise is only guaranteed when the
observed data are informative for the target parameters θ.

3.4 Exchangeable Observations

In the previous chapter, we brie�y touched upon the idea of a memoryless probabilistic program.
Running a memoryless simulation means that each run of the simulator is not a�ected by any of
the previous runs and will, in turn, not a�ect any of the future runs. But on what grounds can we
assume that such models can even remotely do justice to the noisy vicissitude of reality?

The answer is simplicity. Consider an observed sequence of N data points x1:N , that is, a
data set obtained from an experiment or in an observational study, waiting to be analyzed by an
eager scientist. Without a model in mind, the data set can be assumed to arise from an unknown
random process p∗(x1,x2, ...,xN ), also known to statisticians as the data-generating process.
Generally, it will be beyond our intellectual reach to provide a complete description of how even
a single observation in a given behavioral data set has come about7. Thus, we often need to leverage
some probabilistic symmetry imposed onp∗which renders the data describable with compact and
interpretable models. One such symmetry, tirelessly assumed in the Bayesian modeling literature,
is exchangeability.

To illustrate exchangeability, imagine a scenario, in which researcher A, for whatever reasons,
conspired to shu�e the observations in a data set collected by their colleague B. Under the assump-
tion of exchangeability, the mischievous researcher A would be wasting their time - the ordering
of the data points does not matter at all to researcher B. Formally speaking, researcher B views the
sequence of data points as invariant under all permutations of the data points and plans to build
a memoryless model of the data conforming to this view.

Exchangeable observations may come in various forms, for instance, patients entering a hos-
pital, psychology students participating in a response time experiment, or raw response times
recorded from a single participant. Exchangeable observations are not only conceptually simple to
work with, but also admit a particularly useful probabilistic treatment. According to de Finetti’s

7Just try to think of all possible factors a�ecting a single response time of a drunk participant in a reaction time study.
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representation theorem [33, 116], an exchangeable data-generating distribution p∗ has the follow-
ing integral decomposition:

p∗(x1,x2, ...,xN ) =

∫

Υ
p∗(υ)

N∏

n=1

p∗(xn |υ) dυ (3.10)

with υ ∈ Υ being an (potentially in�nitely dimensional) absolutely continuous random vector.
Even though the representation theorem does not provide any clues on how to actually �nd the
correct integral decomposition, it motivates the formulation of Bayesian models of the form

p(θ,x1, . . . ,xN ) = p(θ)
N∏

n=1

p(xn |θ) (3.11)

as useful approximations of the unknown “parameter vector”υ and densitiesp∗(υ) andp∗(x |υ).
Note also, that Equation 3.11 represents the numerator of Bayes’ rule for multiple i.i.d. observa-
tions. Essentially, this equation represents a statement of conditional independence and speci�es
a generative recipe for simulating synthetic observations: �rst, obtain a random sample from the
prior p(θ) and run the simulator N times with the corresponding sample to obtain a simulated
tuple (θ,x1, . . . ,xN ).

Exchangeable observations impose a symmetry on the posterior as well. As a consequence
of the assumption, the resulting posterior p(θ |x1:N ) should also be invariant with respect to
the ordering of the individual observations xn. In other words, if the function SN (x1:N ) =
(xπ(1), . . . ,xπ(N)) represents an arbitrary permutation of N elements, the following should
hold for the posterior:

p(θ |x1:N ) = p(θ | SN (x1:N )) (3.12)

The same applies to any (su�cient) summary statistic of the data h(x1:N ):

p(θ |h(x1:N )) = p(θ |h(SN (x1:N ))) (3.13)

and, by extension, to any estimator of the posterior which is a function of the raw data. In
later chapters, we will elaborate on why the preservation of posterior symmetry poses a chal-
lenge to standard neural network estimators. We will further discuss and describe how to em-
ploy specialized symmetry-preserving networks for addressing this challenge [13]. Albeit common,
memoryless models are not ubiquitous throughout the behavioral sciences. Thus, our inference
frameworks will incorporate di�erent choices of neural architectures for stateful models and non-
exchangeable distributions.

3.5 BayesianModel Comparison

Our discussion on Bayesian inference so far has concentrated on a single abstract model. In fact,
we have even treated the model as an invisible part of the unspeci�ed context C implicit to all
distributions involved in the computation of Bayes’ rule (Equation 3.1). However, this simpli�ed
setting is rather rare in the behavioral sciences. In most model-rich research areas, such as decision
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making, attention, judgement formation, risk-taking, and memory, there is a multitude of models
and model parameterizations competing to account for a given behavior. Moreover, in a Bayesian
context, di�erent models can be de�ned not only via di�erent generative mechanisms, but also by
di�erent priors (e.g., as in prior sensitivity analysis, [163]), or by di�erent data processing pipelines
(e.g., as in multiverse analysis, [149]). Thus, researchers often �nd themselves in a scenario calling
for formal model comparison, model selection, or model averaging.

In order to extend our discussion and formal notation to multiple models, consider a collec-
tion of J candidate modelsM = {M1, ...,MJ} and corresponding parameter spaces H =
{Θ1, . . . ,ΘJ}. We assume that each model is realizable via a generative algorithm and a simula-
tion program, such that gj(θj , ξj) realizesMj for each j. Thus, in order to perform Bayesian
parameter estimation for each model given an observationx, we need to compute J posteriors of
the form

p(θj | x,Mj) =
p(x |θj ,Mj) p(θj |Mj)

p(x |Mj)
(3.14)

with the prior, posterior, likelihood, and marginal likelihood explicitly written as dependent on
the particular modelMj .

How does one assign preferences to competing models using a probabilistic toolkit? Assuming
that all quantities in Equation 3.14 are tractably computable, Bayesian methods for model selec-
tion revolve around two key concepts: prior predictive measures and posterior predictive measures
[52]. Prior predictive and posterior predictive approaches to model comparison answer somewhat
di�erent questions, so asking “which one is better” for a speci�c modeling problem is rarely expe-
dient. Moreover, their answers can occasionally diverge, so oftentimes, it is informative to explore
both approaches in order to obtain a more nuanced picture of the candidate models’ performance.
The most commonly faced obstacle in practice is feasibility: both approaches are computationally
expensive (sometimes intractable) for complex models and can thus bene�t from our proposed
frameworks. We now brie�y discuss each approach.

3.5.1 The Prior Predictive andOccam’s Razor

The canonical measure of prior predictive performance is the already encountered evidence, which
is the denominator in Bayes’ rule:

p(x |Mj) =

∫

Θj

p(x |θj ,Mj) p(θj |Mj) dθj (3.15)

Note, that the integral runs over the prior space of each modelMj and thus represents the ex-
pected likelihood with respect to each model’s prior. The evidence thus penalizes prior complex-
ity, that is, the inelegance, of a model, since the prior acts as a weight on the likelihood. It also
induces a well-known and widely appreciated source of intractability in Bayesian inference, since
it typically involves a multi-dimensional integral over potentially unbounded parameter spaces.
For most non-trivial models, this integral cannot be computed in closed-form or approximated
numerically. Sophisticated algorithms for e�ciently approximating the evidence have been pro-
posed in the Bayesian universe, such as bridge sampling and path sampling [54, 62]. However,
these methods still depend on the ability to evaluate the likelihood p(x |θj ,Mj) for each candi-
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Figure 3.3: An illustrative example of Bayesian Occam’s razor. The �gure depicts the hypothetical evidence
(marginal likelihood) of a simple modelM1 vs. that of a more complex modelM2. The com-
plex model has a larger generative scope and thus accounts for a broader range of observations by
spreading its marginal likelihood to cover the whole range. It does so at the cost of diminished
sharpness. Even though observation x1 is well within its generative scope, the simpler model
M1 yields a higher evidence and is therefore favored. In contrast, observation x0 has a higher
evidence under modelM2, as it is very unlikely to be generated by the simpler model.

date model. If the likelihood itself is intractable, as is the case with complex simulators, the task
becomes increasingly hopeless even with the most e�cient current methods.

Provided that the marginal likelihood can be reliably approximated, one can compute the ratio
of marginal likelihoods for two modelsMj andMk

BFjk =
p(x |Mj)

p(x |Mk)
(3.16)

This famous ratio is called a Bayes factor (BF) and is used in Bayesian settings for quantifying
relative model preference. Thus, a BF > 1 indicates preference for model j over model k, tak-
ing observation x into account. Alternatively, one can directly focus on the (marginal) posterior
probability of a modelMj

p(Mj |x) ∝ p(x |Mj) p(Mj) (3.17)

which equips the model space itself with a multinomial prior distribution p(M) encoding poten-
tial prior beliefs on the plausibility of each model before collecting any data. Such a prior might be
useful if a model embodies extraordinary claims (e.g., psychokinesis) and thus requires extraordi-
nary evidence supporting it. However, if no prior reasons can be given for favoring some models
over others (i.e., one prefers not to prefer), a uniform model prior p(Mj) = 1/J can be assigned.

The ratio of posterior model probabilities is called the posterior odds and is connected to the
Bayes factor via the corresponding model priors:

p(Mj |x)

p(Mk |x)
=
p(x |Mj)

p(x |Mk)
× p(Mj)

p(Mk)
(3.18)
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If both models are deemed equally likely a priori, that is, p(Mj) = p(Mk), the posterior odds
are identical to the Bayes factor. In this case, if the Bayes factor, or, equivalently, the posterior
odds equal one, the observed data provide no evidence for favoring one of the models over the
other. Importantly, a relative evidence of one does not distinguish whether the data are equally
likely or equally unlikely under both models, as this is a question of absolute evidence. It simply
means that the observations are not informative to the question of model comparison8.

It follows from our discussion so far, that, from a prior predictive perspective, model complex-
ity is determined by (i) the prior of a model and (ii) the likelihood function of a model. Together,
these two quantities establish the generative scope of a model and dictate how to select between
two hypothetical cognitive models which both provide a reasonable account of some behavioral
manifestations.

Thus, a complex model gj with a large generative scope can generate a larger variety of behav-
iors, and so the density of p(x |Mj) must spread over a larger portion of the observation space
X . On the other hand, a simpler model gk with a smaller generative score can generate a limited
range of behaviors, so its density will be restricted to a smaller portion ofX , and thus more peaked
(cf. Figure 3.3). This is the reason why a marginal likelihood is said to automatically embody a
fundamental trade-o� between a model’s complexity (an antonym of scienti�c elegance) and its
ability to convincingly account for a wide variety of empirical phenomena. Indeed, this trade-o�
is sometimes embraced as a probabilistic version of the famous Occam’s razor.

From a generative perspective, simpler simulators will tend to produce synthetic observations
which are more similar to each other compared to those generated via more complex simulators.
Indeed, this is the most important property of Bayesian models that we will later leverage in or-
der to perform e�cient model comparison between complex cognitive simulators. Essentially,
by approximating Equation 3.17 directly, we will be circumventing two common sources of in-
tractability: the marginal likelihood and the likelihood function itself.

3.5.2 The Posterior Predictive and Fortuna’s Knife

Prior predictive measures such as the Bayes factor do not utilize the posterior when comparing
models (cf. Equation 3.15). In contrast, posterior predictive methods quantify the ability of mod-
els to forecast new observations which have not been used for Bayesian updating. In other words,
if the posterior of each model represents a modi�ed state of knowledge upon integrating observa-
tionx, one tests which form of modi�ed knowledge can “best” predict an unseen observationx′.
The most straightforward way to perform such an operation consists in computing the posterior
predictive distribution:

p(x′ |x,Mj) =

∫

Θj

p(x′ |θj ,x,Mj) p(θj |x,Mj) dθj (3.19)

where the likelihood p(x′ |θj ,x,Mj) simpli�es to p(x′ |θj ,Mj) when working with memo-
ryless models. The main di�erence now is that integration is performed with respect to the pos-
terior distribution of each model. Intuitively, the posterior predictive uses all information gained

8Unless one assumes that the model setMprovides an exhaustive description of reality, in which case relative evidence
is absolute evidence.
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through previous observation(s) to provide an uncertainty-aware forecast for the new query x′,
where the parameter posterior p(θj |x,Mj) acts as a weight on the likelihood. Thus, the prob-
ability of an upcoming observation under a modelMj is a weighted average over its probabilities
under all plausible parameter con�gurations θj . Thereby, epistemic uncertainty, as captured by
the parameter posterior, is essentially “averaged out” in the posterior predictive.

The canonical approach for Bayesian posterior predictive comparisons are cross-validation (CV)
methods [166]. Examples for widely applied methods that fall into this category are approximate
cross-validation methods using Pareto-smoothed importance sampling (PSIS-CV) [17, 165], in-
formation criterion measures, such as the widely applicable information criterion (WAIC; [171]),
or stacking of posterior predictive distributions [176]. All of these methods require not only the
ability to evaluate the likelihood of each model for each observation during parameter estimation,
but also for new observations during prediction.

What is more, if application of exact CV methods is required because approximations are in-
su�cient or unavailable, models need to be estimated several times based on di�erent data sets or
subsets of the original data set. This renders such methods practically infeasible when working
with complex simulators for which posterior inference is already computationally demanding.
Thus, even a single intractable model in the candidate model set su�ces to disproportionately
increase the di�cultly of performing posterior predictive model comparison.

Posterior predictive measures based on evaluating the likelihood of new data points provide
information about the relative performance of models. For certain applications, one can replace
the likelihood in Equation 3.19 with a scoring function S : X → R and arrive at a measure of
model predictive performance with respect to the scoring function:

sj =

∫

Θj

∫

Ξj

S(x′, gj(θj , ξj)) p(ξj |θj) p(θj |x,Mj) dξj dθj (3.20)

where the integrals are typically approximated via Monte Carlo samples from the corresponding
posterior and noise distributions. If the scoring function is well aligned with the particular goals
of an inference task, it can serve as a useful proxy for quantifying both absolute and relative per-
formance of the models under scrutiny. Moreover, it replaces the dependence on the likelihood,
at least during prediction. Still, the estimation of each posterior and its repeated re-estimation for
di�erent data sets when using variants of exact LOO-CV remain as potential bottlenecks. These
bottlenecks become even more challenging to overcome when doing simulation-based inference
even with a single model of interest.

Note, that oftentimes researchers use the term predict when they are actually referring to a
model’s ability to reproduce the data used to inform the estimation of model parameters [177].
Formally, this amounts to replacing the new observation x′ in the previous two equations with
the observationx (or set of observationsx1:N ) used to condition the posterior. Such a procedure
is indeed useful, since it can be indicative of a model’s generative performance [120] and can thus
help in diagnosing model misspecifaction or a simulation gap. However, generative performance
is generally not indicative of a model’s predictive performance [53, 177], so we �nd it important to
highlight and keep the distinction as clear and explicit as possible.

At this point, there is an important distinction to be made when it comes to predicting new
observations. Suppose that each observation in a data set was generated by the unknown process
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p∗ of which we formulate a parametric model pθ . If we now make the model “blind” to certain
observations in the original data set (as in CV) and use these observations to assess predictive per-
formance, we are essentially testing the model’s ability to perform induction about the statistical
regularities of the process. In such a scenario, however, we are not assessing the model’s ability to
faithfully forecast the future, since the observations are new only from the relative perspective of
model �tting. An attempt to forecast future behavior with a static cognitive model will only be
meaningful, if the process p∗ is stationary (i.e., its regularities are invariant with respect to time)
or if the model somehow explicitly incorporates a potential time-dependent change inherent to
the generator. Since such changes are extremely hard to know in advance (otherwise they would
have been predicted and incorporated into the model’s equations), a model which claims time-
invariant performance should regularly be subjected to the falsi�cation of time.

Finally, note that the probabilistic Occam’s razor from prior predictive approaches does not
automatically show up in posterior predictive approaches. Di�erently, from a posterior predic-
tive perspective, a model’s quality should be judged based on how well it generalizes to unseen
instances it is supposed to accurately predict. In other words, a model has to withstand the sharp
challenges of its future, and models which fail to do so, are discarded. However, one might still
anticipate that overly complex models would overfit the data at hand and fail dramatically at pre-
dicting new data, again being implicitly subjected to some form of Occam’s razor. Indeed, such
an anticipation has been formally framed under the so called bias-variance dilemma [47] which
bounds the generalization error of supervised learning algorithms. However, the practical conse-
quences of such a dilemma have recently been called into question by the achievements of “black-
box” neural networks having billions of parameters and still being able to generalize beyond their
training data [111]. It remains therefore unclear to what extent Occam’s razor is implicitly encoded
in posterior predictive measures when applied to “white-box” models of cognition.

3.5.3 BayesianModel Averaging andWisdom of the Crowd

A rather disparate approach to model selection is that of not selecting a single model but instead
averaging across the predictions of all candidate models. However, in a Bayesian model averaging
(BMA) setting, models are not created equal, and thus not weighted with indi�erence to their per-
formance or elegance. Instead, posterior model probabilities are used as weights in the aggregate
prediction:

p(x′ |x) =
J∑

j=1

p(x′ |x,Mj) p(Mj |x) (3.21)

Crucially, BMA depends on the marginal likelihoods of the di�erent models, as well as on their
likelihood functions. Naturally, BMA can also be used for averaging over scoring functions in-
stead of posterior predictive distributions, when a proxy of absolute performance is needed. BMA
is particularly useful when predictive performance matters and predictions of a single model are
expected to be unstable. In fact, model averaging generally yields superior predictive results in
expectation compared to those obtained by model selection [126]. Broadly speaking, it can be
regarded as the Bayesian embodiment of the well-known wisdom of the crowd, or vox populi, sta-
tistical phenomenon [50].
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Clearly, BMA is of limited use when the goal of inference is to compare competing theories
instantiated by formal models and subsequently choose the most plausible among all (in a prob-
abilistic sense). However, BMA might still come in handy for selecting between model classes,
where the performance of single model instances is not crucial or when competing models might
admit di�erent plausible parameterizations.

Consider, for example, a class of mathematical modelsA = {MAj }Jj=1, having propertyA in
common, and another class of modelsB = {MBj }Jj=1, having propertyB in common. Applying
Equation 3.21 to the models in each class, we can obtain two model-averaged posterior predictive
distributions p(x′ |x,A) and p(x′ |x,B). Subsequently, we can use these to quantify and com-
pare the bulk predictive performance of the two model classes.

Performing BMA for selecting between model classes featuring complex models (e.g., memo-
ryless vs. stateful models) is, however, even more computationally demanding, which makes it
a highly underutilized approach in the behavioral sciences. It also presents a challenge we con-
sider worthy of future investigation in the context of frameworks for simulation-based Bayesian
inference.

3.6 Bayesian Simulation-Based Inference

We have seen that all central objects in Bayesian inference, from the Bayesian parameter poste-
rior to the Bayesian model-averaged predictive distribution, depend on the likelihood function.
Thus, we reiterate, when the likelihood cannot be e�ciently evaluated or is not available in closed-
form, standard Bayesian methods relying on the central proportionality p(θ |x) ∝ p(x |θ)p(θ)
do not apply. This includes both the less e�cient but asymptotically appealing MCMC and the
more e�cient but asymptotically less winsome variational methods. Moreover, a potential in-
tractable likelihood can also appear on top of the well-known intractability of the marginal like-
lihood, which is necessary for model comparison in a prior predictive context. In fact, this is not
just a theoretical hardship, but a real practical predicament faced by researchers working with var-
ious complex models [27]. Complexity is usually a direct consequence of the desire to build high-
�delity models of cognitive processes, sometimes coupled with a modicum of neurophysiological
realism.

In such cases, not all is lost. Instead of simplifying the model ad hoc, one can still retain the ad-
vantages (and disadvantages) of Bayesian inference by “simply” performing repeated simulations
and using them to guide the process of inference. Such an approach is known as simulation-based
inference. When the resulting quantities still represent the reduction of prior uncertainty by con-
ditioning on data, we are essentially doing the same Bayesian inference as before, only with the
likelihood implicitly involved in the process. All Bayesian simulation-based methods repeatedly
go through the following three steps, given informally by:

1. Obtain a random sample from the prior.

2. Simulate an arti�cial data set with the sampled parameters.

3. Do something with the simulated pair of parameters and data.
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Figure 3.4: An abstract overview of the central idea underlying our proposed solutions to Bayesian inverse
inference.

The essential di�erence between most Bayesian simulation-based methods lies in the particular
implementation of step number three. Our frameworks are no exception to this pattern. A com-
mon theme will be to use the cognitive model as a trainer for a specialized neural network, which is
driven through a number of simulations towards the Bayesian answer to an estimation or a model
comparison problem (cf. Figure 3.4. The next chapter will provide a brief and very broad survey
of the related work on simulation-based inference. Before we move on, however, we shortly dis-
cuss the idea of samplers, as it is central to our developed methods and probabilistic modeling as
a whole.

3.7 Samplers andNeural Samplers

It is important to note, that the posterior distribution itself is hardly ever available as a known
density function which can be analytically calculated. In the typical textbook cases where the like-
lihood belongs to a known family of probability distributions and the prior is chosen to be conju-
gate to the likelihood, then the posterior must belong to the same distribution family as the prior.
However, such mathematical convenience has proven insu�cient for addressing most unidealized
real-world problems, as it leaves little room for �exible or high-�delity modeling. Thus, researchers
and statistical software developers have resorted to MCMC methods.

MCMC methods, such as the Metropolis-Hastings algorithm [66], Gibbs sampling [51], Hamil-
tonian Monte Carlo [112] or its extension to No-U-Turn sampling [71], approximate the posterior
in the form of random samples from the target posterior. MCMC methods belong to a family of
stateful algorithms which generate a sequence of correlated samples that converge in distribution
to a target equilibrium distribution (i.e., the posterior, in a Bayesian setting).
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The idea of approximating a complicated distribution via dependent random samples, albeit
rather straightforward in hindsight, has gradually transformed and shaped the �eld of Bayesian
inference. Moreover, it forms the main logic behind major probabilistic programming languages
such as JAGS [127] or Stan [19], which return posterior estimates in the form of random samples.
A sampler is thus a program which uses computer-generated randomness to “draw” samples from
a distribution instead of deriving or estimating its algebraic form.

Recently, the idea of random sampling has entered the rapidly expanding �eld of deep learn-
ing under the umbrella term deep generative modeling. As a consequence, the concept of neural
samplers has emerged [72, 87, 113, 114]. Neural samplers emulate sampling from a distribution
via neural networks that transform a random input vector into a sample from a target proba-
bility distribution de�ned by the network weights. The random input vector is typically drawn
from a simple distribution (e.g., uniform or Gaussian) which is computationally cheap and easy
to sample from. The expressive transformation of simple inputs creates diversity and �exibility.
Accordingly, the network weights de�ning the transformation are optimized in a way to ensure
that the subsequently generated samples are actually representative of the target distribution.

Neural samplers have so far shown tremendous success in computer vision and natural language
processing. Our inference frameworks also make extensive use of neural samplers. However, our
neural networks are trained to approximate the Bayesian posterior induced by a particular model
given a set of observations and thus generate posterior samples in a way similar to MCMC. More-
over, we will utilize the important fact that neural samplers distil global information about a par-
ticular model family into their trainable parameters (e.g., network weights). Thus, once trained,
neural samplers are easy to store on a computer or a server (a couple of megabytes memory de-
mand) and re-use across multiple applications of the same model family to many data sets of po-
tentially variable size. This property gives rise to amortized inference, a concept we will repeatedly
encounter in later chapters.
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As with any new and rapidly expanding �eld, it is nearly impossible to manage a comprehensive
review of the existing literature, since new methods would have emerged upon the review’s com-
pletion. Indeed, this is exactly what happened during the (rather expeditious) completion of this
thesis. Thus, this chapter attempts to provide a cursory glance upon the landscape of simulation-
based inference with a special focus on deep learning methods. For a more detailed review of
recent developments, see, for example, [27]. For a collection of classical methods with a focus on
cognitive science, see, for example, [119].

There are multiple ways to devise a taxonomy for members of the zoo of simulation-based infer-
ence. For the purpose of this thesis, we can classify methods as amortized vs. non-amortized, with
di�erent degrees of amortization possible (see Chapters 5 and 7). The main di�erence between the
two methodological endpoints is this. Non-amortized methods require a repetition of the same
computations for each model application, that is, estimation starts from scratch for each observed
data set x(obs)

1:N . In contrast, amortized methods involve an upfront optimization/training phase
which ensures that subsequent applications of the model to any observed data set are very cheap
(i.e., the cost of the optimization phase amortizes over multiple inferences).

The standard non-amortized solution to intractable modeling problems is o�ered by approxi-
mate Bayesian computation (ABC) methods [29, 150]. ABC methods approximate the posterior
by repeatedly sampling parameters from a proposal (prior) distributionθ(l) ∼ p(θ) and then sim-
ulating a synthetic data set by running forward inference, xn ∼ p(x |θ(l)) for n = 1, . . . , N ,
with the sampled parameters. If the simulated data set is su�ciently similar to an actually observed
data set (as measured by a user-de�ned distance function), the corresponding parameter con�gu-
ration θ(l) is retained as a random draw from the desired posterior, otherwise rejected. However,
in practice, ABC methods are notoriously ine�cient and su�er from various problems, such as
the curse of dimensionality or curse of inefficiency [104], to name the most severe.

More e�cient and sophisticated methods, such as sequential Monte Carlo algorithms (ABC-
SMC) or Markov chain Monte Carlo with implicit likelihoods (ABC-MCMC), employ di�erent
creative techniques to optimize sampling or correct potential biases [65, 90, 107, 119, 123, 157, 158,
160]. Currently, the gold-standard in cognitive science and mathematical psychology appears to be
non-amortized ABC-MCMC with kernel density estimation (KDE) [44, 160, 161]. This method
has the advantage of doing away with hand-crafted summary statistics and distance functions,
since each (simulated or actual) observation xn enters the KDE computation at each MCMC
step. However, the application of KDE-based MCMC to stateful models yielding non-i.i.d. ob-
servations is not at all straightforward, since KDE methods typically assume i.i.d. observations.
Furthermore, every non-amortized method becomes infeasible in data-rich settings which require
the estimation of the same model hundreds or even thousands of times (or even more than one
million times, as was the case in [94]), unless a researcher has access to a high-end computing clus-
ter with countless cores.
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Recently, machine learning and deep learning innovations have permeated the �eld of simulation-
based inference with the goal of scaling up standard ABC methods. Most of these innovations
yield amortized methods, since they involve an expressive machine learning approximator (e.g.,
random forests or neural networks) trained on simulations from the Monte Carlo engine which
emulates the behavior of the analytically intractable model. These approximators are either only
able to return summaries of the full posterior (e.g., posterior means, variances, or quantiles) or
capable of performing fully Bayesian inference. We now discuss each of the two approaches in
turn.

Perhaps the most straightforward inference method has been to cast the problem of parameter
estimation as a supervised regression task [14, 79, 136, 140]. In this setting, the simulator is run
repeatedly to create a large dataset of the formD = {(h(x

(m)
1:N ),θ(m))}Mm=1, also referred to as

a reference table in the ABC literature [150]. Typically, the dimensionality of the simulated data
is reduced by computing summary statistics with a �xed summary function h(x1:N ) (but see
[136]). Then, the reference tableD is used as training data for a supervised learning algorithm (e.g.,
random forest [140], or a convolutional neural network [136]). The learning algorithm is trained to
output an estimate of the true data-generating parameters and an optional uncertainty estimate
(e.g., the posterior variance [14, 136] or quantiles [140]). Thus, supervised methods attempt to
approximate the intractable inverse model directly and globally via non-linear regression θ̂ =
f(h(x1:N )). Importantly, the trained algorithms can be cheaply stored and re-used for estimation
on an arbitrary number of observed data sets or integrated into an ABC routine [79].

A severe shortcoming of supervised approaches is that they provide only limited information
about the full posterior or impose overly restrictive assumptions on its distributional form (e.g.,
Gaussian). This is especially problematic when the true posterior is acutely skewed or multi-
modal, in which case the mean or the variance are not particularly representative of its relevant
characteristics.

To address this shortcoming, neural density estimation (NDE) methods employ specialized
neural networks capable of performing fully Bayesian inference (i.e., returning full posteriors).
NDE methods approximate di�erent components of the intractable joint Bayesian model, that
is, p(θ,x1:N ) = p(θ)p(x1:N |θ).

Sequential neural posterior estimation (SNPE) methods iteratively re�ne a proposal distribu-
tion via specialized neural networks (e.g., mixture density networks, autoregressive or normalizing
�ows) to generate parameter samples which closely match a particular observed data set [60, 101,
121]. Even though these methods also entail a relatively expensive learning phase and a cheap in-
ference phase, they are capable of amortized inference only when operating in a non-sequential
manner (i.e., the prior is used as a proposal throughout every optimization step). Otherwise, a
separate neural density estimator has to be trained for each observed data set, which quickly be-
comes infeasible when working with many data sets. The main feature of SNPE methods is that
they avoid MCMC sampling altogether and are able to sample from the true posterior given per-
fect convergence. This is in contrast to variational methods which optimize a lower-bound on the
posterior [87, 89], and oftentimes need to assume Gaussian approximate posteriors through the
reconstruction error.

The sequential neural likelihood (SNL, [122]) method and the method of emulated likelihoods
[100] propose to learn the likelihood instead of the posterior. In this way, the trained neural ap-
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proximators can be integrated into standard Bayesian pipelines and can be re-used across changes
in the prior modelp(θ), as long as the likelihood remains invariant. Sequential neural ratio (SNR)
methods [40, 68], on the other hand, propose to train a classi�er to approximate density ratios.
These density ratios can then be used to sample from the posterior via standard MCMC meth-
ods. Of course, the computational time of SNL and SNR methods will still be dominated by
the non-amortized components (e.g., MCMC or alternative sampling schemes) when faced with
more than a few data sets. The same will be true for inference compilation approaches, which cali-
brate specialized neural networks through simulations in order to improve proposal distributions
within (non-amortized) sequential Monte Carlo [117].

An interesting approach for amortized inference which does not rely on neural networks is the
pre-paid estimation method without likelihoods [108]. This method memorizes a large database
of pre-computed summary statistics for fast nearest-neighbor inference, aided by advanced inter-
polation methods. Even though the pre-paid method is very powerful and applicable to all kinds
of models, it still crucially depends on the ability to (heuristically) select good summary statistics.
Thus, in a future work, it seems worthwhile to explore the possibility of combining the pre-paid
method with a neural network capable of learning maximally informative summary vectors (as
proposed in our frameworks).

Ideas for direct posterior estimation via NDE are closely related to the concept of optimal trans-
port maps and its application in Bayesian inference [11, 23, 36, 125]. A transport map de�nes a
transformation between (probability) measures which can be constructed in a way to warp a sim-
ple probability distribution into a more complex one. In the context of Bayesian inference, trans-
port maps have been applied to accelerate MCMC sampling [125], to perform sequential inference
[36], and to solve inference problems via direct optimization [11]. In fact, our BayesFlow frame-
work can be loosely viewed as a parameterization of invertible transport maps via invertible neural
networks. An important distinction from this line of research is that NDE methods do not re-
quire an explicit likelihood function for approximating the target posteriors and are capable of
amortized inference.

Curiously, throughout the advancement of amortized NDE methods, the task of simulation-
based Bayesian model comparison appears to have taken a backseat. With certain caveats, neural
density estimators can be adapted for posterior/prior predictive Bayesian model comparison by
post-processing the samples from an approximate posterior/likelihood over each model’s param-
eters. However, such an approach will involve training a separate neural estimator for each model
in the candidate setM and has not yet been systematically investigated. In addition, most NDE
methods also rely on �xed summary statistics [121, 122]) as inputs to the networks and few appli-
cations using raw data directly exist [60].

Alongside advancements in simulation-based inference, there has been an upsurge in the de-
velopment of methods for uncertainty quanti�cation in deep learning applications [74]. For in-
stance, much work has been done on the e�cient estimation of Bayesian neural networks [69, 96,
99] since the pioneering work of [102]. Parallel to the establishment of novel variational methods
[85, 86], the drive for representing uncertainty has paved the way towards more interpretable and
trustworthy neural network applications. Moreover, the need for distinguishing between di�er-
ent sources of uncertainty and the overcon�dence of deep neural networks in both classi�cation
and regression tasks has been demonstrated quite e�ectively in recent works [82, 145].
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Our frameworks are inspired by recent methods for deep probabilistic modeling [38, 88] and
uncertainty representation in classi�cation tasks [145, 156]. However, our goal is to e�ciently
approximate Bayesian posteriors and posterior odds between competing mechanistic models us-
ing non-Bayesian neural networks, not to estimate neural network parameters (e.g., weights) via
Bayesian methods. Indeed, the incorporation of Bayesian neural networks into our frameworks
appears to be an interesting avenue for future research. Moreover, our frameworks combine some
of the latest ideas from simulation-based inference and uncertainty quanti�cation for training ef-
�cient and uncertainty-aware estimators capable of amortized Bayesian parameter estimation and
model comparison.

Accordingly, we propose to solve each task globally, that is, over the entire range of plausible
parameters, data sets, and models. For parameter estimation, we will employ invertible neural
networks (INN, [3, 4, 37, 38]). Previously, INNs have been successfully employed to tackle inverse
problems in astrophysics and medicine [3]. We will adapt these �ow-based INN architectures to
suit the task of Bayesian parameter estimation in the context of various intractable model and data
types. As for model comparison, we will employ evidential neural networks, which have previously
been convincingly employed for uncertainty-aware classi�cation [145].

Finally, by introducing our frameworks, we will further discuss many open questions, such as
end-to-end estimation of various model classes (e.g., memoryless models, stateful models, joint
models) via algorithmic alignment, model validation, Bayes factor approximation, and ideas for
meta-amortized inference.
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5 Amortized Parameter Estimationwith
BayesFlow

Let reality be reality. Let things flow naturally forward in whatever way they
like.
— Laozi

Estimating the parameters of cognitive models is a crucial task in behavioral and cognitive model-
ing. However, the task can prove notably di�cult or even impossible when a model can faithfully
simulate behavior but the probabilistic form (i.e., the likelihood) of its outputs cannot be de-
scribed analytically. In this chapter, we introduce our framework for amortized Bayesian parame-
ter estimation which we coined BayesFlow. It comprises a new Bayesian solution to the simulation-
only setting in terms of invertible neural networks and the theory of normalizing flows. The main
idea behind BayesFlow is to split Bayesian analysis into a potentially expensive upfront training
phase, followed by a much cheaper inference phase. The goal of the upfront training phase is
to train a neural sampler that yields well-calibrated posteriors for any observed data set from the
generative scope of a model. Subsequently, applying the neural sampler to speci�c observations
during inference is very fast and can easily be performed in parallel, so that the training e�ort amor-
tizes over repeated evaluations. The following chapter describes the mathematical details behind
BayesFlow and discusses its strengths, limitations and future enhancements.

5.1 Desiderata

We have seen in the previous chapter that simulation-based methods need to optimize multiple,
often con�icting, requirements concerning their performance. We therefore commence this chap-
ter by stating the concrete desiderata for the utility of our framework:

1. Fully Bayesian estimation without framework-imposed restrictions on the type of priors,
simulators, and posteriors amenable for inverse inference

2. Automatic extraction of maximally informative data representations instead of reliance on
potentially suboptimal hand-crafted summary statistics

3. Scalability to high-dimensional problems (regarding both the data spaceX and the param-
eter space Θ) via algorithmic alignment and considerations on probabilistic symmetry

4. Full amortization over multiple empirical data sets and data set sizes

5. Parallel computing and GPU acceleration applicable to forward inference (simulations),
training, and inverse inference
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5 Amortized Parameter Estimation with BayesFlow

6. Low memory demands, both during training (i.e., through online learning and on-the-�y
simulations) and after training (i.e., no need to store large grids, reference tables or param-
eter databases)

7. A theoretical guarantee for convergence of the approximate posterior to the true posterior
under certain optimal conditions

Throughout this chapter, we will gradually introduce our BayesFlow framework and discuss how
it addresses each desideratum. Along the way, we will point out unexplored conceptual or empir-
ical territories and lay out ideas for potential future improvements and applications.

5.2 Background

5.2.1 Deep GenerativeModeling

As previously mentioned, BayesFlow draws on major advances in modern deep generative model-
ing, also referred to as deep probabilistic modeling. The core idea behind deep generative model-
ing is to represent a complicated target distribution as a non-linear transformation of some simpler
latent distribution (e.g., Gaussian or uniform), a so called pushforward. Density estimation of the
target distribution, a very complex task, is thus reduced to learning a non-linear transformation,
a task that is ideally suited for gradient-based neural network training via standard backpropa-
gation. Typically, deep generative models approximate the target distribution by sampling from
the simpler latent distribution and applying the (inverse) transformation learned during gradient-
based optimization. Consequently, we will train our neural networks to sample from intractable
posterior distribution over the parameters of complex (behavioral) simulators.

Deep generative methods have demonstrated tremendous successes in applications dealing with
very high-dimensional data, such as images, texts, or videos [88, 170, 175]. To draw an equivalent
between these applications and simulation-based inference, consider a prototypical generative task
in computer vision. In this context, the target distribution runs over the pixels of an image, and
estimating a generative model of this distribution poses a major challenge. Conditional image
generation, an even more challenging task, involves modeling the distribution over pixels contin-
gent on additional information, such as image categories and descriptions (captions). Notably, the
same ideas can be seamlessly transferred to model-based Bayesian inference, where the associated
challenge is estimating the distribution over model parameters contingent on some observed data.
Moreover, recent work demonstrating excellent generative performance with high-resolution im-
ages [88] suggests that deep generative models might be excellent candidates for overcoming the
curse of dimensionality from which standard simulation-based methods notoriously su�er [27].

5.2.2 Forward Inference

BayesFlow depends on the ability to (e�ciently) perform forward inference, that is, simulate ar-
ti�cial data sets given possible parameter con�gurations. Moreover, in order to use the simulator
as a calibrator for the neural networks involved in BayesFlow, we need to simulate multiple data
sets from the Bayesian joint distribution p(θ,x1:N ) = p(θ) p(x1:N |θ), which, for memoryless
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models, decomposes further into p(θ)
∏N
n=1 p(xn |θ). As already mentioned, the decomposi-

tion of the joint distribution is essentially a generative receipt, which can be carried out with or
without an explicit likelihood (due to Equation 2.4).

Corresponding to the previous description, Algorithm 1 describes the steps for generating a
batch of synthetic data sets using simulations from a memoryless model and a randomly drawn
data size N for each batch. The data-set size will typically be drawn from a discrete uniform dis-
tribution, p(N) = U(Nmin, Nmax), but �xed sizes or di�erent distributions are possible (and
reasonable for certain applications). Note also, that the algorithm is trivially extendable to state-
ful models by including memory variables or an explicit dependence of the simulator on previous
outputs.

Algorithm 1 Monte Carlo generation ofB synthetic data sets

Require: g(θ, ξ) - stochastic model simulator, p(θ) - prior over model parameters, p(ξ) - noise
distribution, p(N) - distribution over data set sizes,B - number of data sets to generate.

1: Draw data set size: N ∼ p(N).
2: for b = 1, ..., B do
3: Draw model parameters from prior: θ(b) ∼ p(θ).
4: for n = 1, ..., N do
5: Sample noise instance: ξn ∼ p(ξ).
6: Run simulator to obtain n-th synthetic observation: xn = g(θ(b), ξn).
7: end for
8: Store pair (θ(b),x

(b)
1:N ).

9: end for
10: Return mini-batchD(B)

N := {θ(b),x
(b)
1:N )}Bb=1.

Importantly, the e�ciency of Algorithm 1 depends highly on its actual implementation. The
naive complexity of the data-generation algorithm is at least O(N ∗ B ∗ G), where G denotes
the cost of executing the simulator once to obtain a single synthetic observation xn. Thus, the
algorithm can bene�t from three levels of parallelism: i) over the number of data sets (B); ii)
over the number of observations in each data set (N ); iii) and over the computational steps of the
simulator itself (G). In the ideal case where all levels can be executed in parallel, the computational
complexity reduces to O(1). For some applications, even parallelizing the most costly level can
bring about a signi�cant speedup in practice. Notably, the parallelization of data generation with
stateful models is generally not immediately obvious due to the sequential dependence of each
output on previous outputs (the loop over N ), but multiple data sets from a stateful model can
still be readily generated in parallel (the loop overB).

5.2.3 Normalizing Flows

In order to perform neural density estimation, we will implement a normalizing flow via an in-
vertible neural network (INN, [37, 38]). A normalizing �ow represents a transformation of a sim-
ple probability density (e.g., Gaussian) into a more complex (unknown) density by a sequence of
invertible and di�erentiable mappings [38]. In contrast to variational methods [12], �ow-based
methods can perform asymptotically exact inference by using lossless compression. Additionally,
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they scale favourably from simple low-dimensional problems to (potentially intractable) high-
dimensional distributions with complex dependencies [4, 88].

To set the stage, let z ∈ RD be a random variable with a known (simple) probability density
and θ ∈ RD a random variable with an unknown (complicated) probability density. Let f :
RD → RD be an invertible, di�erentiable function such that z = f(θ) and θ = f−1(z).
By using the change of variable rule of probability theory, the density of the variable θ can be
computed as:

p(θ) = p(z = f(θ))

∣∣∣∣det

(
∂f(θ)

∂θ

)∣∣∣∣ (5.1)

In our framework, we use a unit Gaussian as a base distribution, p(z) = ND(z |0, I), and the
pushforward density will be the posterior p(θ |x) over model parameters θ given a single (for
now) observation x. Thus, our aim is to learn an approximate posterior q which matches the
pushforward posterior. Accordingly, we reparameterize the approximate posterior in terms of a
conditional invertible neural network (cINN) estimator fφwhich implements a normalizing �ow
between θ and z given observation x:

qφ(θ |x) = p(z = fφ(θ;x))

∣∣∣∣det

(
∂fφ(θ;x)

∂θ

)∣∣∣∣ (5.2)

Accordingly, sampling from the approximate posterior involves sampling from the base density
and transforming the sample via the inverse operation of the cINN into the pushforward poste-
rior:

θ ∼ qφ(θ |x)⇐⇒ θ = f−1
φ (z;x) with z ∼ ND(z |0, I) (5.3)

Thus, our solution to the task of simulation-based parameter estimation is to train a cINN which
approximates the true posterior for all possible observations x arising from a given modelMj

as accurately as possible. There are many ways to implement a cINN in practice, and we will il-
lustrate our preferred architecture below based on coupling �ows. Note, however, that the �eld
of deep generative modeling is rapidly expanding, with novel architectures emerging almost on
a daily basis. Thus, it is likely that the concrete cINN architecture proposed in this work might
be supplanted by a better candidate in the not-so-distant future. In any case, the problem of in-
verse inference in science is here to stay, so the BayesFlow framework could easily be adapted to
incorporate a di�erent neural sampler fφ.

5.2.4 Coupling Flows

Coupling �ows are one of the most widely used invertible architectures [92] because they are i)
conceptually simple; ii) easily invertible; and iii) able to represent highly expressive transformation
with tractable Jacobian determinants [88]. A coupling �ow Cφ : RD → RD with trainable
parameters φ between θ ∈ RD and z ∈ RD can be realized as follows. Consider a disjoint
partition of the input parameters θ ∈ RD into two subspaces: (θA,θB) ∈ Rd × RD−d. Input
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partitioning is required by most coupling �ows to ensure invertibility [92]. The invertible forward
transformation of a coupling �ow can be de�ned as:

zA = C1(θA; Ω1(θB)) (5.4)

zB = C2(θB; Ω2(zA)) (5.5)

z = (zA, zB) (5.6)

whereC1 andC2 are invertible functions and Ω1 and Ω2 are called conditioners. The conditioners
can be realized via arbitrarily complex functions (e.g., deep neural networks) which themselves
need not be invertible, as long as C1 and C2 are (easily) invertible. Correspondingly, the inverse
transformationC−1

φ of a coupling �ow is de�ned as:

θB = C−1
2 (zB; Ω2(zA)) (5.7)

θA = C−1
1 (zA; Ω1(θB)) (5.8)

θ = (θA,θB) (5.9)

Note, that there are many viable ways to parameterize a coupling �ow [92]. Our BayesFlow
method uses a composition of conditional a�ne coupling layers (cACLs). A single cACL per-
forms the following bijective mapping on its split input

zA = θA � exp(S1(θB;x)) + T1(θB;x) (5.10)

zB = θB � exp(S2(zA;x)) + T2(zA;x) (5.11)

z = (zA, zB) (5.12)

where� denotes element-wise multiplication and the functions S1, S2, T1, T2 are implemented
as fully connected (FC) neural networks with x passed through an additional input head. By
construction, this bijection works independently of the form of the functions s and t, which
themselves are never inverted. The inverse transformation of the cACL is thus given by:

θB = (zB − T2(zA;x))� exp(−S2(zA;x)) (5.13)

θA = (zA − T1(θB;x))� exp(−S1(θB;x)) (5.14)

θ = (θA,θB) (5.15)

The Jacobian of the forward coupling transformation is a product of two triangular matrices

∂Cφ(θ;x)

∂θ
=

[
diag(exp(S1(θB;x)) �nite

0 1

][
1 0

�nite diag(exp(S2(zA;x))

]
, (5.16)

so its determinant is easy to compute and given by

detJCφ = exp

(
d∑

i=1

S1(θB;x)i) +
D−d∑

i=1

S2(zA;x)i

)
, (5.17)
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where we have abbreviated the Jacobian of the cACL asJCφ . In section 5.3.1, we will show how to
compose multiple cACLs into an invertible network and discuss some additional features for im-
proving the basic design introduced here. Before we introduce our complete Bayesian framework
for amortized inference, we brie�y peruse the concepts of distribution matching and amortized
inference.

5.2.5 DistributionMatching and Amortization

The term amortized inference refers to an approach which reduces the cost of inference by casting
some or all inferential phases as an optimization task. In particular, for a given simulator, one
can approximate an unknown ground-truth posterior distribution p(θ |x) via a parameterized
distribution qφ(θ |x) by minimizing some f -divergence between the two distributions:

φ∗ = arg min
φ

Df (p(θ |x) || qφ(θ |x)) (5.18)

= arg min
φ

∫

Θ
qφ(θ |x) f

(
p(θ |x)

qφ(θ |x)

)
dθ (5.19)

where f is a convex function. Usually, the Kullback-Leibler (KL) divergence is chosen, so the
objective becomes:

φ∗ = arg min
φ

∫

Θ
p(θ |x) log

p(θ |x)

qφ(θ |x)
dθ (5.20)

= arg min
φ

Ep(θ |x)[− log qφ(θ |x)]−H[p(θ |x)] (5.21)

= arg min
φ

Ep(θ |x)[− log qφ(θ |x)] (5.22)

where H[p(θ |x)] in Equation 5.21 is the Shannon entropy of the true posterior and can be
dropped from the optimization objective since it does not depend onφ. We will now di�erentiate
between three types of amortized inference, which all leverage the fact that we can generate syn-
thetic datasets via a scienti�c simulator. We believe that such an explicit distinction is important,
given the current abundance of neural network methods for Bayesian inference.
Case-wise amortization In case-wise amortized inference, we perform an optimization loop for
each individual observation x (e.g., as in sequential neural posterior estimation, [40, 60]). Thus,
in expectation over all possible observations, the criterion can be expressed as:

Ep∗(x)

[
min
φx

Ep(θ |x)[− log qφ(θ |x)]

]
(5.23)

and inference is only amortized in the context of individual observations and models. This implies
that di�erent neural network parametersφ∗x are found for each approximate posterior de�ned by
a particular observation x and a particular modelMj . Crucially, the fact that the minimization
objective is inside the outer expectation can render inference infeasible when multiple observa-
tions and models are available.
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Model-wise amortization In the model-wise amortized scenario, optimization is performed glob-
ally for the entire range of plausible observations, which involves pulling the minimum operator
(min) out of the outer expectation:

min
φ

Ep∗(x)

[
Ep(θ |x)[− log qφ(θ |x)]

]
(5.24)

In this case, the training e�ort amortizes over the entire data range for a given model. This is the
main approach taken in the BayesFlow method. The training (optimization) phase in the model-
wise amortized setting is considerably longer than the training phase in the case-wise amortized
setting. However, once optimization has converged to an approximator ofφ∗, the resulting neu-
ral estimator fφ∗ can be reused for arbitrarily many observations assumed to arise from a given
modelMj . In some cases, the break-even in terms of e�ciency between case-wise and model-
wise amortized inference occurs even after a few observations, without noticeable accuracy degra-
dation [133]. However, when multiple candidate models should be estimated and compared, the
training e�ort can become prohibitively large, since a separate set of neural network parameters
needs to be learned for each model.
Meta-amortization In the meta-amortized setting, optimization is performed over all possible
models simultaneously, introducing one more expectation into the objective:

min
φM

Ep(M)

[
Ep∗(x)

[
Ep(θ |x,M)[− log qφ(θ |x,M)]

]]
(5.25)

In this way, an estimator with parametersφ∗M (the subscript denoting amortization over the entire
model setM) can be reused for inference on multiple observations with an arbitrary number of
competing models from a particular research domain or model class. Importantly, such setting can
only be useful if the latent parameter spaces are allowed to vary across the models, as competing
models in various domains can have widely di�erent parameterizations. Note also, that both the
model-wise and meta-amortized setting can employ amortization over di�erent dataset sizesN (to
be discussed shortly) as long as the dimensionality of the data summary statistic stays the same, a
property which can be of great utility in practice.

Nevertheless, each further amortization step might introduce an amortization gap. The issue
has been discussed in the context of variational inference [25] and refers to a potential drop in
performance as a consequence of optimizing neural network parameters in expectation as opposed
to optimizing for each individual observation. However, a potential amortization gap has not
been investigated outside the context of variational inference and warrants an empirical assessment
in a meta-amortized context.

In a later chapter, we will show how to make the meta-amortized objective tractable by using
ideas from the literature on normalizing �ows and multi-task learning. For now, however, we
focus on model-wise amortization with BayesFlow.

5.3 BayesFlow: Building Amortized Neural Samplers

At a high level, BayesFlow [133] incorporates a summary network h and an inference network f
to jointly invert a generative Bayesian model. The summary network h(x1:N ) reduces data sets
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Figure 5.1: Both phases of the BayesFlow framework. Left panel: During the training phase of our
BayesFlow method, a summary (h) and an inference network (f ) are trained jointly with ran-
dom draws from the prior and synthetic data from the simulator; Right panel: During the in-
ference phase, BayesFlow works entirely in a feed-forward manner, that is, no training or op-
timization happens in this phase. The upfront training e�ort amortizes over arbitrary many
observations and data sets from a research domain working on the same model family.

of arbitrary size to �xed-size vector representations. The inference network samples from an ap-
proximate posterior q via a conditional invertible neural network (cINN) f which implements
a normalizing �ow between θ and a normally distributed z given the outputs of the summary
network:

q(θ |x1:N ) = p(z = f(θ;h(x1:N )))

∣∣∣∣det

(
∂f(θ;h(x1:N ))

∂θ

)∣∣∣∣ (5.26)

where the dependence on all neural network parameters is implicit and has been omitted for clar-
ity. The introduction of a summary network whose structure is aligned to the structure of the
simulator (i.e., stateless vs. stateful) frees our framework from a restriction to a particular model
class or data type. Moreover, the summary network itself does not have to be invertible, since
its output is concatenated with θ and fed to each coupling layer, but not directly mapped to z.
Figure 5.1 illustrates the di�erent components and phases of our BayesFlow framework.

5.3.1 Composing Invertible Networks

In this section, we describe how to stack multiple coupling layers to obtain a deep invertible net-
work. For now, consider the case when raw simulated datax1:N of sizeN = 1 is entered directly
into the invertible network without using a summary network. In order to ensure that our archi-
tecture is expressive enough to encode complex posterior distributions, we chain multiple ACLs,
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so that the output of each ACL becomes the input to the next one. In this way, the whole network
remains invertible from the �rst input to the last output and can be viewed as a single bijective
function. Such chaining of operations is possible, since a composition of invertible functions is
itself invertible and its Jacobian determinant is the product of the Jacobian determinants of the
individual coupling blocks. Therefore, we refer to a cINN as a composition of K conditional
ACLs.

z = fφ(θ;x) ≡ CφK
◦ CφK−1

◦ · · · ◦ Cφ1
(θ;x) (5.27)

with trainable parametersφ = (φ1, . . . ,φK) and inverse:

θ = f−1
φ (z;x) ≡ C−1

φ1
◦ C−1

φ2
◦ · · · ◦ C−1

φK
(z;x) (5.28)

Note, that the observationx (or a transformation thereof) is fed unchanged to each coupling layer
Cφk

. In our applications, the input to the �rst ACL is the parameter vector θ, and the output
of the �nal ACL is a D-dimensional vector z representing the non-linear transformation of the
parameters into z-space. Shortly, we will show how to ensure that z follows a unit Gaussian dis-
tribution through optimization, that is, we will enforce p(z) = ND(z | 0, I). We also use �xed
permutation matrices before each ACL to ensure that each axis of the transformed parameter
space z encodes information from all components of θ, in order to capture posterior dependen-
cies (e.g., posterior covariance). In addition, we apply soft clamping of the exponential outputs
in each ACL for numerical stability.

Intuitively, our cINN realizes the following process: the forward pass maps data-generating
parameters θ to z-space using conditional information from the observationx, while the inverse
pass maps data points from z-space to the data-generating parameters of interest using the same
conditional information.

5.3.2 Summary Networks

Since the number of observations might vary in practical scenarios (e.g., di�erent number of tri-
als or time points) or measurements might arrive in streams, we need to perform some form of
dimensionality reduction on the data before feeding it to the cINN. As previously mentioned,
we want to avoid information loss through restrictive hand-crafted summary statistics and, in-
stead, learn the most informative �nite summary vectors directly from data. Therefore, instead
of feeding the raw simulated or observed data to the cINN, we pass the data through an auxiliary
summary network to obtain a �xed-sized vector representation x̃ = hψ(x1:N ).

As already alluded to in previous sections, the architecture of the summary network should
match the probabilistic symmetry of the observed data (which, in turn, is dictated by the simula-
tor), a property we refer to as algorithmic alignment [174]. In other words, di�erent network ar-
chitectures are needed for exchangeable (generated by memoryless models) and non-exchangeable
(generated by stateful models) data. In the following, we illustrate three common scenarios in
model-based inference.
Memoryless Models Memoryless models typically generate i.i.d. observations, which imply ex-
changeability and induce permutation invariant posteriors. In other words, changing (permut-
ing) the order of individual elements should not change the associated likelihood or posterior (see

45



5 Amortized Parameter Estimation with BayesFlow

Section 3.4). Memoryless models abide in the cognitive sciences [39, 43, 138, 162], mainly due to
their convenient simplicity, but also due to the computational limitations of existing methods
for Bayesian estimation. Following [13], we encode probabilistic permutation invariance through
functional permutation invariance realized by a deep invariant network. Such a network is capa-
ble of learning expressive permutation invariant functions through a combination of equivariant
and invariant transformations.

First, we can obtain a permutation invariant function via an invariant module ΣI which per-
forms an equivariant non-linear transformation h1 followed by a pooling operator (e.g., sum or
max) and another non-linear transformation h2:

x̃ = ΣI(x1:N ) = h1

(
N∑

n=1

h2(xn)

)
(5.29)

where h1 and h2 can be arbitrarily complex neural networks (cf. Figure 5.2, lower left panel).
Second, in order to increase the capacity of the invariant transformation, we can stack together
multiple equivariant modules ΣE . Each equivariant module implements a learnable equivariant
transformation by performing the following operations for each input element xn:

yn = ΣE(xn, x̃) = h3(xn, x̃) for n = 1, . . . , N, (5.30)

so that ΣE is a combination of element-wise (equivariant) and invariant transforms (cf. Figure 5.1,
lower middle panel). Again, the internal function h3 can be parameterized via an arbitrary feed-
forward neural network. Importantly, each equivariant module also contains a separate invariant
model whose output is concatenated with each observation in order to increase the expressiveness
of the learned transformation.

Finally, we can stack multiple equivariant modules followed by an invariant module, in order
to obtain a deep invariant summary network hψ : XN → RS :

x̃ = hψ(x1:N ) = (ΣI ◦ Σ
(K)
E ◦ Σ

(K−1)
E ◦ · · · ◦ Σ

(1)
E )(x1:N ), (5.31)

whereψ denotes the vector of all learnable neural network parameters and S denotes the dimen-
sionality of the output layer of the last invariant module ΣI . The complete inference phase of
BayesFlow using a deep invariant summary network is depicted in Figure 5.1.
Stateful Models Stateful models incorporate some form of memory and are thus capable of gen-
erating observations with complex dependencies. A prime example are dynamic models, which
typically describe the evolution trajectory of a system or a process, such as an infectious disease,
over time [81]. Observations generated from such models are usually the solution of a stochastic
di�erential equation (SDE) and imply a more complex probabilistic symmetry than those gener-
ated from memoryless models.

In a recent application of the BayesFlow framework for estimating key epidemiological pa-
rameters [135], we have proposed a set-up speci�cally designed to tackle dynamic models with
simulation-based inference. Our BayesFlow architecture comprises three sub-networks: (i) a con-
volutional filtering network performing noise reduction and feature extraction on the raw time-
series data; (ii) a recurrent summary network reducing pre-processed time-series of varying length
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Figure 5.2: Inference with BayesFlow on i.i.d. data from a memoryless model using a deep permutation in-
variant summary network. The summary network is composed of a sequence of �exible equiv-
ariant neural modules followed by an invariant neural module. In this way, i.i.d. data (sets) of
varying length are embedded into �xed-size vector representations which carry maximal infor-
mation for posterior inference with a memoryless model.

to statistical summaries of fixed size; (iii) a cINN inference network performing Bayesian parame-
ter inference given the learned summary vectors of the observations. Figure 5.2 depicts the archi-
tecture of this composite network.

The design of the convolutional network is inspired by that of the Inception neural architec-
ture which has demonstrated tremendous success in a wide variety of computer vision tasks [152].
In particular, our network is implemented as a deep fully convolutional network which applies
adjustable one-dimensional �lters of di�erent size at each level (cf. Figure 5.3, lower left panel).
The intuition behind this design is that �lters of di�erent size might capture patterns at di�erent
temporal scales. For instance, if t = 1, . . . , T is measured in days, a �lter of size one will capture
daily �uctuations whereas a �lter of size seven will capture weekly dynamics. This, in turn, should
ease the task of extracting informative temporal features for Bayesian updating.

The output of the convolutional network is a multivariate sequence containing the �ltered
time-seriesx1:T . In order to reduce the �ltered sequence to a �xed-size vector, we pass it through
a long-short term memory (LSTM) recurrent network [57]. Importantly, the LSTM network
(see Figure 5.3, lower right panel) can deal with sequences of varying length, which enables online
learning (i.e., Bayesian updating when new observations become available) and makes the same
inference network applicable to settings with di�erent degrees of data availability. Compared to
a �xed pooling operation (e.g., mean or max), our many-to-one recurrent network performs a
learnable pooling operation which respects the sequential probabilistic symmetry of the data. In
this way, the composite summary network learns to �lter and extract the most informative fea-

47



5 Amortized Parameter Estimation with BayesFlow

Figure 5.3: Inference on multivariate time-series data arising from a stateful model using a composite sum-
mary network architecture. The summary network is composed of an inception-like 1D fully
convolutional network, followed by a many-to-one recurrent LSTM network. In this way, time-
series of varying length are embedded into �xed-size vector representations which carry maximal
information for posterior inference with a stateful model.

tures from the noisy observations in an end-to-end manner, such that no manual (and potentially
suboptimal) selection of hand-crafted data features is required from the user at any point.

More formally, let us denote the functions represented by the �ltering and summary networks
as hc and hr. Then, the convolutional �ltering network yields a �ltered time-series x̃1:T ′ =
hc(x1:T ) from observed data x1:T , where the number of time steps T may vary according to
data availability. The recurrent summary network turns the outputs of the �ltering network into
�xed-size vectors x̃ = hr(x̃1:T ′). The cINN thus generates samples θ ∼ qφ(θ | x̃) from the
parameter posterior by computing θ = f−1

φ (z, x̃) with normally distributed random vectors
z ∼ ND(0, I). The complete inference phase of BayesFlow using a deep sequence network is
depicted in Figure 5.3.
Joint Models Joint models are an attempt to account for di�erent processes (e.g., neural and
cognitive) within a single composite model [30, 118, 159]. Thus, joint models integrate di�erent
sources and types of data and require more complex summary architectures. A hypothetical sce-
nario with three data sources (e.g., behavioral data, neural data, and eye-tracking data) is depicted
in Figure 5.4. In this case, a separate processor network, each aligned to the particular data type,
reduces a separate set of observations from a given source. The outputs of the individual pro-
cessor networks are then concatenated and fed through an integrator network, which combines
the information from all processor networks into a single vector representation. In this way, the
main cINN architecture can remain the same as in the previous examples and utilize the modular-
ity of neural network. Since the application of integrative joint models is still in its infancy, such
composite BayesFlow architectures are yet to prove their usefulness.
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Figure 5.4: Inference on di�erent data sources from a joint model using an ensemble of summary networks
and an integrator network. The di�erent data sets, potentially of varying size and structure, are
processed by separate algorithmically aligned summary networks. The outputs of all summary
networks are then combined into a �xed-size vector representations by the integrator network,
which informs the inference network about the joint posterior over all model parameters.

Regardless of the summary network’s concrete design, its parametersψ are optimized jointly with
those of the cINN via backpropagation. Thus, the training phase remains completely end-to-
end, and BayesFlow learns to generalize to data sets of di�erent sizes by suitably varyingN during
training (see Algorithm 1).

5.3.3 Optimization Objective

For any given (simulated or observed) dataset x1:N , our framework needs to ensure that the in-
verse transformation of the trained cINN, θ = f−1

φ (z;hψ(x1:N )) with z ∼ ND(z | 0, I),
yields samples from the true posterior p(θ |x1:N ). To achieve this, we resort to the concept of
distribution matching introduced earlier and minimize the expected KL divergence between the
true and the approximate posterior for all possible observations within the generative scope of a
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Monte Carlo simulator. For clarity, we �rst derive our optimization objective with N = 1 and
no summary network,

φ∗ = arg min
φ

Ep∗(x)[KL(p(θ |x) || qφ(θ |x))] (5.32)

= arg min
φ

Ep∗(x)

[
Ep(θ |x)[log p(θ |x)− log qφ(θ |x)]

]
(5.33)

= arg min
φ

Ep∗(x)

[
Ep(θ |x)[− log qφ(θ |x)]

]
(5.34)

= arg min
φ

−
∫

X
p∗(x)

∫

Θ
p(θ |x) log qφ(θ |x)dθ dx (5.35)

which corresponds to model-wise amortization, as de�ned earlier. To render optimization of this
criterion tractable, we �rst apply the change of variable rule to qφ(θ |x) as given in Equation 5.2
to obtain:

φ∗ = arg min
φ

−
∫

X

∫

Θ
p∗(x)p(θ |x)

(
log p(fφ(θ;x)) + log

∣∣detJfφ
∣∣)dθ dx (5.36)

where we have abbreviated ∂fφ(θ;x)/∂θ (the Jacobian of the entire cINN fφ evaluated at θ
and x) as Jfφ and moved p∗(x) inside the inner expectation, as it does not depend on θ. Since
Equation 5.36 de�nes an expectation over the true and unknown data-generating distribution,
we replace it with the Bayesian joint model p(θ,x) from which we can obtain Monte Carlo sam-
ples (e.g., by using Algorithm 1). Accordingly, for a batch of B parameters and corresponding
synthetic data setsD(B) = {(θ(b),x(b))}Bb=1, we can de�ne the following loss function

L(φ) =
1

B

B∑

b=1

(
− log p

(
fφ(θ(b);x(b))

)
− log

∣∣∣detJ
(b)
fφ

∣∣∣
)

(5.37)

=
1

B

B∑

b=1




∥∥∥fφ
(
θ(b);x(b)

)∥∥∥
2

2

2
−

K∑

k=1

log
∣∣∣detJ

(b)
Cφk

∣∣∣


, (5.38)

which we minimize using standard backpropagation to arrive at an unbiased estimate φ̂ of φ∗.
The �rst term follows from Equation 5.36 due to the fact that we have prescribed a unit Gaussian
distribution to z. It represents the negative log ofND(z | 0, I) ∝ exp(

∥∥−1
2z
∥∥2

2
). The second

term follows from Equation 5.27 and controls the rate of volume change induced by the non-
linear transformation from θ to z learned by fφ. Thus, minimizing Equation 5.38 ensures that
z follows the prescribed unit Gaussian and that fφ∗ is a model-wise amortized neural sampler
which yields independent samples from the true posterior under perfect convergence [133].

When the number of observations varies during inference, we need to vary it during training
as well, in order to achieve amortization over data sets x1:N with di�erent sizes (if required by
the application). Thus, we introduce a suitable summary network hψ which renders the cINN
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independent ofN and learns to extract maximally informative statistics from the (raw) simulated
data in an end-to-end manner. Our modi�ed criterion then becomes:

φ∗,ψ∗ = arg min
φ,ψ

Ep(N,θ,x)[− log qφ(θ |hψ(x1:N ))] (5.39)

Accordingly, our modi�ed loss function for a batchD(B)
N = {(θ(b),x

(b)
1:N )}Bb=1 simulated from

the Bayesian model p(N,θ,x) becomes:

L(φ,ψ) =
1

B

B∑

b=1




∥∥∥fφ
(
θ(b);hψ(x

(b)
1:N )

)∥∥∥
2

2

2
−

K∑

k=1

log
∣∣∣detJ

(b)
Cφk

∣∣∣


, (5.40)

which corresponds to a trivial change that simply sets the conditioning vector of the cINN to the
output of the summary network. Again, we can use backpropagation with any gradient-based
optimization method to obtain unbiased estimates φ̂, ψ̂ of the optimal neural network parame-
ters φ∗,ψ∗ from Equation 5.39. Note, that minimizing the above loss function leads to a self-
consistent criterion which recovers the true posterior p(θ |x1:N ) over allx andN under perfect
convergence of both networks [133]. However, perfect convergence is often a chimera in prac-
tice, so, in a later section, we will discuss the potential sources of errors and respective remedies
in detail. Having formulated our optimization criterion, we now describe the di�erent training
regimes of BayesFlow.

5.4 Training Phase

The training phase of the BayesFlow framework (left panel of Figure 5.1) can be implemented
in di�erent ways, depending on the modeling scenario and the modelers’ computational budget.
The starting point of all Bayesian analysis is the observed data itself. If a single observed data set
x1:N should be analyzed with a complex model that is custom-tailored for this and only this data
set, it is worth considering a case-wise amortized approach, such as SNPE [60, 122]. The speed
break-even point between case-wise and model-wise amortized inference is application-dependent
and currently being investigated [133]. However, at present, a systematic quantitative comparison
between di�erent model classes and network architectures is missing from the literature, so mod-
elers need to base their decisions on empirical considerations or pilot simulation studies. Be that
as it may, we now present and discuss three viable simulation-based training approaches in the
context of model-wise amortization with BayesFlow.
O�ine learning The starting point of traditional simulation-based approaches has been the so-
called reference tableD(S), which is simply a large data structure containingS pairs of parameters
and summary statistics of synthetic observations [29, 150]. Indeed, initial machine learning ap-
proaches have already recognized the potential of using the reference table as training data for
learning algorithms, such as quantile random forests [140] or deep neural networks [79], [136]. In
this way, the problem of inverse inference becomes a supervised learning task which can easily be
tackled with expressive learning algorithms. With BayesFlow, we can take a similar approach, as
outlined in Algorithm 2.
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Algorithm 2 BayesFlow training phase using o�ine learning
Require: fφ - invertible inference network, hψ - algorithmically aligned summary network, S -

total number of simulations,B - number of simulations per batch (batch size).
1: Generate a large reference tableD(S)

N := {θ(s),x
(s)
1:N )}Ss=1 using Algorithm 1.

2: repeat
3: Sample a mini-batch: D(B)

N ∼ D(S)
N .

4: Pass each synthetic data set through the summary network: x̃(b) = hψ(x
(b)
1:N ).

5: Pass each pair (θ(b), x̃(b)) through the inference network: z(b) = fφ(θ(b), x̃(b)).
6: Compute loss according to Equation 5.40 from the training batch.
7: Update neural network parametersφ,ψ via backpropagation.
8: until convergence to φ̂, ψ̂
9: Return trained inference and summary networks f

φ̂
, h
ψ̂

.

A few points regarding Algorithm 2 are worth mentioning. First, it involves a single call to
Algorithm 1 to generate the entire reference table (step 1), which will return data sets with the
same size N if called only once1. Thus, if we want to vary N during o�ine learning, we need to
create the reference table via multiple calls to Algorithm 1 and make sure that we have an e�cient
data structure to store entries with di�erent sizes. Second, steps 3− 7 can be executed with GPU
parallelization leading to a considerable speed-up in convergence. Third, the convergence criterion
can be chosen as in standard deep learning application. For instance, we can establish a pre-de�ned
number of epochs (i.e., loops through the entire training data) or an early stopping condition (i.e.,
if the loss does not improve in some number of consecutive epochs).

The o�ine learning regime is particularly useful when active calls to the simulator are compu-
tationally expensive, since data generation and training are clearly separated. It also has the ad-
vantage of reusing the simulated data and being closest to standard applications of deep learning.
Obvious drawbacks of the o�ine learning regime are the memory demands for storing potentially
large and heterogeneous data structures as well as the need to address potential over�tting.
Online learning An alternative to the o�ine learning regime utilizes the possibility to generate
a theoretically limitless number of synthetic data sets on-the-�y. In this way, the networks never
“experience” the same inputs (simulated parameters and data sets) twice, since simulations are dis-
carded after each backpropagation update. Moreover, since classical over�tting is nearly impos-
sible in an online learning regime, training can continue as long as the networks keep improving
(i.e., the loss keeps decreasing).

Algorithm 3 outlines the online learning regime with BayesFlow. Note, that the key di�erence
to o�ine training is the fact that learning and data generation are tightly intertwined when per-
forming online learning. The most prominent advantage of online learning is also its most notable
disadvantage: since simulations are not reused, the simulator needs to work actively and presents
a potential bottleneck. Note also, that this detail presents less of a problem if simulations are com-
putationally cheap or implemented e�ciently (e.g., by utilizing di�erent forms of parallelism as
discussed in section 5.2.2).

1Mathematically, the �xed N scenario is simply a special case where p(N) reduces to a point mass distribution.
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Algorithm 3 BayesFlow training phase using online learning
Require: fφ - invertible inference network, hψ - algorithmically aligned summary network,B -

number of simulations per iteration (batch size).
1: repeat
2: Generate a mini-batchD(B)

N := {θ(b),x
(b)
1:N )}Bb=1 using Algorithm 1.

3: Pass each simulated data set through the summary network: x̃(b) = hψ(x
(b)
1:N ).

4: Pass each pair (θ(b), x̃(b)) through the inference network: z(b) = fφ(θ(b), x̃(b)).
5: Compute loss according to Equation 5.40 from the training batch.
6: Update neural network parametersφ,ψ via backpropagation.
7: until convergence to φ̂, ψ̂
8: Return trained inference and summary networks f

φ̂
, h
ψ̂

.

Hybrid learning O�ine and online learning represent the two endpoints on a hypothetical con-
tinuum of training strategies. However, various hybrid learning approaches appear viable for op-
timizing the total simulation budget available for a given modeling problem. For instance, we can
use a technique used widely in reinforcement learning called experience replay [98, 148]. Experience
replay is a hybrid learning approach aimed at balancing data usage and computational e�ciency.
It uses a data structure called a circular bu�er which keeps past simulations in main memory and
discards the oldest once its capacity has been exceeded. We outline this type of hybrid learning in
Algorithm 4.

Algorithm 4 BayesFlow training phase using hybrid learning with experience replay
Require: fφ - invertible inference network, hψ - algorithmically aligned summary network, S -

memory capacity,F - replay memory bu�er,B - number of simulations per iteration (batch
size).

1: Initialize replay memory bu�erF with capacity S.
2: repeat
3: Generate a mini-batchD(B)

N := {θ(b),x
(b)
1:N )}Bb=1 using Algorithm 1.

4: Store mini-batchD(B)
N in memory bu�erF .

5: Sample a mini-batch D̃(B)
N randomly fromF .

6: Pass each pair (θ(b), x̃(b)) through the inference network: z(b) = fφ(θ(b), x̃(b)).
7: Compute loss according to Equation 5.40 from the sampled batch.
8: Update neural network parametersφ,ψ via backpropagation.
9: until convergence to φ̂, ψ̂

10: Return trained inference and summary networks f
φ̂
, h
ψ̂

.

To further increase the e�ciency when using experience replay, we can introduce a dummy
parameter α ∈ [0, 1] which controls the probability of creating new simulations by executing
Algorithm 1. In other words, if α = 0.5, new parameters and synthetic observations will be
generated in roughly every other pass through lines 3 − 8, thus reducing the overall number of
simulations by a half.
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Another hybrid learning approach utilizes a round-based strategy inspired from SNPE meth-
ods [40, 60]. Accordingly, the training phase moves through a progression of rounds and each
round introduces its own simulation phase. In this way, we keep a reference table in main mem-
ory and augment it in a step-wise manner for a pre-de�ned number of rounds R. Thereby, each
round becomes potentially longer but also reuses simulations from all previous rounds. This ap-
proach appears preferable to pure o�ine learning, especially when it is di�cult to estimate the
required number of simulations in advance. Moreover, an early stopping criterion can be grafted
in-between rounds, in case further training is not conductive to the networks’ performance. Al-
gorithm 5 lays out the essential steps of the round-based approach.

Algorithm 5 BayesFlow training phase using round-based hybrid learning
Require: fφ - invertible inference network, hψ - algorithmically aligned summary network,R -

number of rounds, S - number of simulations per round,B - batch size.
1: Initialize reference tableD(R×S) := {}.
2: for r = 1, ..., R do
3: Generate synthetic dataD(S)

r := {θ(s),x
(s)
1:N )}Ss=1 using Algorithm 1.

4: Aggregate data: D(R×S) := D(R×S) ∪ D(S)
r .

5: repeat
6: Sample a mini-batch: D(B)

N ∼ D(R×S).
7: Pass each synthetic data set through the summary network: x̃(b) = hψ(x

(b)
1:N ).

8: Pass each (θ(b), x̃(b)) through the inference network: z(b) = fφ(θ(b), x̃(b)).
9: Compute loss according to Equation 5.40 from the sampled batch.

10: Update neural network parametersφ,ψ via backpropagation.
11: until convergence to φ̂r, ψ̂r
12: end for
13: Return trained inference and summary networks f

φ̂R
, h
ψ̂R

.

To sum up, one should keep an open mind regarding alternative training regimes which go be-
yond the ones discussed in this section. The �eld of neural Bayesian inference is new and, despite
being an area of active research, systematic analyses of key practical issues are currently missing
from the literature. As we saw in this section, there are various ways to implement the training
phase of BayesFlow in practice, each coming with its own advantages and disadvantages. Ideally,
the training phase should be structured so as to maximize the performance of the networks while
minimizing the number of simulations. Albeit not always easy to achieve in practice, the attain-
ment of this (informal) criterion can greatly bene�t from prior considerations on computational
resources and domain knowledge of the modeling problem.

5.5 Inference Phase

Once the training phase has completed, the converged BayesFlow networks can be stored on any
computer and used for e�cient amortized inference on any upcoming data set from the genera-
tive scope of the simulator. In other words, the summary and the inference networks have become
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“domain experts” for Bayesian inference with a particular model family. Moreover, since the price
of inference has been pre-paid during the upfront training phase, uncertainty-aware model in-
version is now extremely e�cient using the pre-trained networks. Indeed, we have extensively
demonstrated the e�ciency bene�ts of amortized inference with BayesFlow in our main paper
[133]. Throughout the examples considered there, we have shown that we can obtain thousands
of samples on hundreds of data sets for a couple of seconds. Algorithm 6 describes the inference
phase of BayesFlow (see also Figure 5.1, right panel) on a list of I observed data sets.

Algorithm 6 BayesFlow inference phase with pre-trained networks
Require: f

φ̂
- pre-trained invertible inference network, h

ψ̂
- pre-trained summary network,

{x(i,obs)
1:Ni

}Ii=1 - list of observed data sets for inference,L - number of posterior samples.
1: for i = 1, ..., I do
2: Pass the i-th data set through the summary network: x̃(i,obs) = h

ψ̂
(x

(i,obs)
1:Ni

).
3: for l = 1, ..., L do
4: Sample a latent variable instance: z(i)

l ∼ ND(z | 0, I).
5: Evaluate the inference network in reverse: θ(i)

l = f−1

φ̂
(z

(i)
l ; x̃(i,obs)).

6: end for
7: Store {θ(i)

l }Ll=1 as samples from the i-th posterior p(θ |x1:N = x
(i,obs)
1:Ni

).
8: end for

Note, that all components of Algorithm 6 can also bene�t from a tremendous speed-up with
the aid of GPU acceleration. In particular, both loops over I and L can be performed in parallel
using a GPU. Thus, it seems evident that every step of a BayesFlow analysis pipeline is amenable
to modern parallel computing, from Monte Carlo simulations to inference on real data (and also
validation, as we will discuss shortly). The correctness of Algorithm 6 is guaranteed under the
conditions of perfect convergence and self-consistency, that is:

f−1
φ∗ (z;hψ∗(x1:N )) ∼ p(θ | x1:N ) with z ∼ ND(z | 0, I)) (5.41)

whereφ∗,ψ∗ are global minimizers of the modi�ed criterion (Equation 5.39) and the simulation
gap induced by modeling p∗(x1, . . . ,xN ) via p(x1, . . . ,xN ) =

∫
Θ p(x1, . . . ,xN |θ)p(θ)dθ

is negligible (see [133] for a detailed proof). Moreover, the samples obtained by perfectly converged
BayesFlow networks are fully independent, in contrast to MCMC and other stateful Bayesian
methods which sometimes induce severe auto-correlation among successive samples. In practice,
however, it is important to be aware of potential de�ciencies in computational faithfulness, to
which we turn next.

5.6 Sources of Error

Computational faithfulness refers to the adequacy or the ability of a Bayesian method to recover
the correct target posterior in a particular (simulated or real-world) modeling scenario. Thus, com-
putational faithfulness is not just a nice-to-have extra, but a crucial prerequisite for trustworthy
model-based inference. No Bayesian method is exempt from the privilege of occasionally leading
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modelers and decision makers astray. Therefore, even though each method will eventually err in
some (inevitably unexpected) situation, it seems important to at least have a handy catalogue of
errors, listed together with their potential causes and �xes. Such a catalogue does not have to be
static, but can dynamically grow as a particular method is continuously used in novel applications
or integrated in existing analysis pipelines. In the following, we discuss �ve prominent sources of
error which can potentially compromise faithful Bayesian inference with BayesFlow.

The �rst source of error is the simulation gap which can occur under model misspeci�cation or
when the observed data are contaminated in ways not covered by the stochastic component ξ of
the simulator. Despite being an issue which needs to be addressed via prior predictive checks, that
is, before doing inference, errors due to model misspeci�cation will result in incorrect posteriors
that might be hard to detect in practice. In some cases, model misspeci�cation might manifest
itself in posteriors which are incompatible with the prior (e.g., posterior samples having 0 density
under the prior), but more complex misbehavior is also possible. In other cases, researchers might
anticipate how data will be contaminated (e.g., inattention by participants in an experiment or
guesswork during a performance test) and explicitly model the contaminants2. However, in most
cases, model misspeci�cation will be far from obvious (otherwise one would have taken steps to
eliminate it), so its potential to bias subsequent inference remains a real issue. This underlines the
importance of domain expertise consistency when setting up a model and highlights the fact, that
all steps in a Bayesian work�ow are inter-dependent, with errors inherent in initial phases tacitly
propagating to further phases of data analysis.

The second source is the Monte Carlo error introduced by necessarily using a �nite number of
simulations from the joint model p(N,θ,x) to approximate the expectation in Equation 5.39.
This source is also referred to as approximation error and is a widely accepted concomitant of all
Monte-Carlo methods. It is also relatively easy to mitigate in an online learning regime, since, in
principle, we can run the simulator as long as we can a�ord and thus generate a potentially in�nite
amount of training data. In this respect, neural simulation-based inference is in a better position
to exploit the capacity of data-hungry deep neural networks than more prototypical deep learning
applications operating a limited-data regime.

The third source is the amortization gap which refers to a potential de�ciency in the inference
phase due to the use of a single set of summary and inference networks parameters (ψ̂, φ̂) to per-
form inverse inference globally (i.e., to obtain model-wise amortization). An amortization gap can
be elusive and non-trivial to detect with certainty in practical scenarios unless one performs case-
wise inference alongside (which would be wasteful in practice) and quanti�es the quality of both
analyses. Sometimes, an amortization gap can be detected via probabilistic calibration methods
(e.g., simulation-based calibration, SBC, [155]), although the reasons for miscalibrated inference
might be obscure at �rst. The more severe problem with this approach, however, is that miscali-
brated inference might have di�erent and overlapping causes, and thus not be directly attributable
to an amortization gap. To make matters worse, perfectly calibrated inference on the basis of sim-
ulations might still be perfectly miscalibrated when transferred to real data, so, detrimentally, an
amortization gap can manifest e�ects similar to a simulation gap. Thus, proper posterior model
checking is needed to ensure a model’s generative and predictive performance meet the modeler’s
needs. In the case of a determinable amortization gap, moving to case-wise amortization might be

2In fact, this is what we did in our application of BayesFlow to Covid-19 modeling [135]
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a viable option when dealing with complex models. Alternatively, increasing the expressiveness of
the summary and inference networks could also ameliorate amortization-related problems (to be
discussed shortly).

The fourth source is due to a summary network which may not fully capture the relevant in-
formation in the data or when su�cient summary statistics do not exist. All things being equal,
not capitalizing on the information contained in the data will result in incorrect inference, usu-
ally in the form of overdispersed or otherwise miscalibrated posteriors [133]. Thus, the choice of
summary network is a crucial proviso for the overall performance of a BayesFlow application. In-
deed, the design and architecture of optimal summary networks is a subject of ongoing research.
And even though concrete guidelines for optimal summary network design are currently lacking,
there are at least two wells of guidance. On the one hand, recent work on probabilistic symme-
try [13] and algorithmic alignment [174] can provide theoretical ideas on how to select a suitable
summary architecture for a particular problem. On the other hand, recent simulation-based appli-
cations using the BayesFlow framework to tackle complex stochastic models in di�erent research
domains can provide viable empirical hints for aligning the summary network to the data at hand.
Currently, the BayesFlow method has been employed to perform inference on complex models
from psychology [172], cognitive science [137], computational psychiatry [31], epidemiology [135],
mathematical �nance [147], and physics [10]. Nevertheless, more theoretical and empirical work
is needed for de�nite recommendations at the current stage of development.

The �fth source is due to an inference network which does not accurately transform the true
posterior into the prescribed (Gaussian) latent space. This error can be easily detected by pass-
ing multiple simulations through the networks and exploring the structure of the latent space
p(z). Industrious modelers might even consider computing a formal metric between the desired
latent space (e.g., Gaussian) and the one obtained by the networks. In the presence of a mismatch,
increasing the capacity of the inference network should be the �rst step to take before further in-
vestigations into the problem. Accordingly, both the depth (number of coupling layers) of the
cINN as well as the design of the coupling layers themselves could be tuned to increase the expres-
siveness of the learned transformation from θ-space to z-space. The bene�ts of neural network
depth have been con�rmed both in theory and in practice [5, 97], so one should expect better per-
formance in complex settings with increasing network depth. However, one should also bear in
mind, that an underexpressive summary network could also be responsible for a de�cient transfor-
mation, since summary and inference network are optimized jointly during the training phase of
BayesFlow. Thus, an exclusive focus on the inference network might not be conductive to solving
all possible transformation errors. In any case, visualizing the learned latent space and inspecting
it for deviations from the desired one (i.e., as prescribed by the optimization criterion) is integral
to any application of BayesFlow.

To sum up, as in any Bayesian framework, care should be taken to ensure computational faith-
fulness as a basis for reliable amortized inference with BayesFlow. Fortunately, we can address
model misspeci�cation (error 1) with standard Bayesian prior/posterior predictive checks [52, 56,
144]. Moreover, we can establish de�ciencies in self-consistency (errors 2-5) by simply visualizing
the latent space obtained in any application of BayesFlow, which provides us with a self-diagnostic
method. Naturally, using this method does not help us pinpoint the exact source of error, but
only indicates its potential presence. As previously discussed, certain heuristics can be applied
for a more detailed error checking in particular applications. In addition, future research should
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take steps towards a more �ne-grained theoretical error analysis, elucidating the consequences of
imperfect convergence and investigating error bounds.

5.7 A BayesianWorkflowwith BayesFlow

We will now brie�y discuss the place of BayesFlow in a principled Bayesian work�ow with a focus
on cognitive modeling [144]. In the context of a single cognitive model, a principled Bayesian
work�ow proposed by [144] goes through the following steps:

1. Prior predictive checks

2. Computational faithfulness checks

3. Model sensitivity checks

4. Posterior predictive checks

Prior predictive checks are designed to test whether a model is consistent with the relevant
domain expertise. Computational faithfulness refers to the accuracy of the estimation method.
Model sensitivity asks whether the parameters of a model can be recovered given the model’s prior
speci�cation, generative scope, and algorithmic from. Finally, posterior predictive checks assess
whether the model captures the relevant structure of the assumed true data generating process.
Needless to say, these steps are all computationally intensive and associated with their own spe-
ci�c challenges. In the following, we describe the signi�cant role of amortized inference with
BayesFlow at each step of the Bayesian work�ow.

5.7.1 Prior Consistency

Since no inference happens at the (pre-data) stage of ensuring consistency with domain expertise,
there is little room for amortized inference either. However, prior predictive checks should be an
integral part of any Bayesian (simulation-based) analysis. Inconsistent models can require either a
modi�cation of the prior p(θ) or/and the simulator g(θ, ξ), in order to resolve con�icts with self-
evident domain expertise. Ideally, cognitive models should (re-)produce meaningful patterns of
human behavior and not harness pathological patterns in their generative scope (e.g., superhuman
reaction times or �awless memory). The easiest way to control for inconsistent model behavior is
to constrain the priors to meaningful domains (numerical ranges). In other cases, incorporating
certain constraints into the simulator and extensive exploration of the data space (e.g., via prior
pushforward checks) might be necessary.

5.7.2 Computational Faithfulness

Computational faithfulness is best ensured when performing Bayesian inference with methods
capable of self-diagnosis. For example, convergence issues in MCMC sampling methods in gen-
eral can be detected by inspecting the Gelman-Rubin (R̂) metric [55] or speci�c problems with
Hamiltonian Monte Carlo (HMC) can be indicated by divergent transitions [8].
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5.7 A Bayesian Workflow with BayesFlow

Figure 5.5: Simulation-based calibration (SBC) results for a Lévy �ight model with 8 parameters at N =
800 trials as a validation check for computational faithfulness. The histograms indicate no sys-
tematic deviations from uniformity across marginal posteriors.

A natural self-diagnostic of BayesFlow can be derived by inspecting its the ability to correctly
transform p(θ |x) into p(z) for any x. To ensure this, one can simulate a set of pairs (θ,x),
pass them through a converged BayesFlow con�guration and inspect the resulting latent space
for deviations from the prescribed latent space (a spherical Gaussian in our case). This can be
done either visually, or numerically, by computing, for instance, the maximum mean discrepancy
(MMD, [61]). Note, that this procedure is very fast, since it requires only simulations and forward
evaluations of the network, which can all be performed in parallel and furthered through GPU
acceleration.

Alternatively, one can resort to calibration algorithms, which can reveal systematic biases in the
approximate posteriors. One such approach is simulation-based calibration (SBC, [155]), which
is a variant of probabilistic calibration [58] speci�cally tailored for generative Bayesian models.
SBC can be used to validate the inferential correctness of a Bayesian sampling method without
knowing the true posterior distribution, which makes it a very powerful diagnostic tool.

However, SBC is extremely time-intensive with standard Bayesian methods, since the compu-
tational model needs to be estimated repeatedly, potentially hundreds of times, on di�erent simu-
lated data sets. In addition, the obtained posterior samples should be independent for SBC to yield
reliable results, which further increases the required computing time to eliminate auto-correlation
via thinning while still retaining enough posterior samples afterwards [155]. These requirements
often render SBC practically infeasible for non-amortized Bayesian methods.

Within the BayesFlow framework, SBC can be performed with extreme e�ciency once the
training phase is over. It simply requires running Algorithm 6 repeatedly with simulated data
sets instead of actual observations. Amortized inference ensures that these runs are very e�cient.
In addition, a perfectly converged BayesFlow con�guration yields independent samples from the
posterior. Using GPU acceleration, SBC with BayesFlow typically takes a couple of seconds, as-
suming that the synthetic observations have already been simulated. Thus, we advise the routine
and automated use of SBC when doing amortized Bayesian inference.
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5.7.3 Model Sensitivity

Model sensitivity, or model adequacy, refers to the feasibility of inverse inference. In other word,
it asks about the amount of information gained through Bayesian updating, assuming compu-
tational faithfulness of the inferential method and self-consistency of the Bayesian simulator. A
straightforward way to obtain a measure of model sensitivity is to compute the expected Bayesian
surprise (see Section 3.2), which can also be used for model comparison in a pre-data stage. How-
ever, since Bayesian surprise could be hard to interpret in practical terms and without reference
to information-theoretic notions, one can resort to other proxies of information gain, such as
posterior contraction or posterior z-score [144].

Posterior contraction is a measure of sharpness achieved by Bayesian updating and can be com-
puted for both marginal as well as joint distributions (see Section 3.2). Higher values indicate a
high degree of uncertainty reduction and, equivalently, a noticeable posterior sharpness. Likewise,
the posterior z-score is a measure of accuracy computed as the di�erence between the posterior
mean (expected value) and the true parameter con�guration of a simulated data set, standard-
ized by the posterior variance. Accordingly, smaller values suggest that the posterior concentrates
strongly around the true parameter (i.e., the posterior mean is a reasonable representation of the
full posterior) while larger values suggest a posterior that concentrates in other parts of the prior
domain.

In order to avail themselves of posterior contraction and posterior z-score as useful measures
of model sensitivity, modelers need to simulate multiple data sets from the generative model,
perform inverse inference on all of them, and compute the corresponding metrics. Similarly to
SBC, the feasibility of this procedure depends heavily on the e�ciency of the Bayesian estimation
method. Thus, evaluating model sensitivity with non-amortized methods might turn out to be
prohibitively slow, whereas it becomes trivial when doing amortized inference with a pre-trained
BayesFlow con�guration. The same would be true for any measure of model sensitivity requiring
repeated inverse inference on multiple simulated data sets, so model sensitivity is another step of
a principled Bayesian work�ow which can massively pro�t from amortized inference.

5.7.4 Posterior Predictive Checks

Posterior predictive checks are vital for evaluating a computational model on actually observed
data with respect to the model’s generative and predictive performance. Moreover, posterior pre-
dictive metrics, such as cross-validation or Bayesian information criteria, can be used for subse-
quent model comparison and selection in a multi-model setting. As already discussed in Sec-
tion 3.5, posterior predictive checks comprise a serious computational bottleneck in Bayesian
pipelines, even more so when dealing with intractable models.

For instance, k-fold or leave-one-out (LOO) cross-validation (CV) require re-estimating the
same model on multiple sub-sets of the original data set in order to approximate out-of-sample
predictive performance. When multiple data sets are to be modeled, the computational load in-
creases in a multiplicative manner with the number of data setsB, so extensive posterior predictive
checks with standard Bayesian methods quickly become too costly to perform. Once again, amor-
tized inference with BayesFlow o�ers considerable e�ciency gains, since repeated applications of
the same model simply involve running the pre-trained networks in a feed-forward mode with
di�erent (sub)-sets of the full data.
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Figure 5.6: The left panel depicts parameter recovery of the four drift rate parameters as a function of trial
numbersN using theR2 metric between true and estimated values. The right panel depicts re-
covery of the other four parameters. Posterior means are used as summaries of the full posteriors
and shaded regions represent bootstrap 95% con�dence intervals.

5.8 A Quick Demonstration

As an illustrative example, we present an application of BayesFlow to a recent intractable evidence
accumulation model (EAM). Further applications to models from di�erent research domains are
described in Chapter 8 or in applied works [10, 31, 135, 147]. EAMs are a popular class of mech-
anistic models in psychology and cognitive science, since they enable a principled model-based
analysis of human response time (RT) data obtainable in controlled experimental environments.

For this example, we focus on a Lévy �ight model (LFM) with a non-Gaussian noise assump-
tion [169, 172]. The Lévy �ight process is driven by the following stochastic ordinary di�erential
equation (ODE):

dxc = vdtc + ξdt1/α (5.42)
ξ ∼ AlphaStable(α, 0, 1, 0) (5.43)

where dxc denotes accumulated cognitive evidence in condition c ∈ {1, 2, 3, 4}, vc denotes the
average speed of information processing (drift) in condition c, andα controls the heaviness of the
noise distribution’s tails (i.e., smaller values increase the probability of outliers in the accumula-
tion process).

Consider �rst a simple question of optimal experimental design. A behavioral researcher wants
to conduct a response times (RT) experiment with four conditions and model performance via the
Lévy �ight model. How many trials are needed for accurate parameter recovery? To answer these
questions, we can simulate multiple experiments with varying number of trials N per synthetic
participant and then compute some practically relevant discrepancy between ground-truth pa-
rameters and their estimates. Afterwards, we can quantify computational faithfulness and model
sensitivity with the particular number of trials N collected in the experiment. Note, that the
mandatory prior predictive and posterior predictive checks are left out for conciseness of exposi-
tion.
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Figure 5.7: Parameter recovery (true vs. estimated) values forN = 800 simulated trials. Normalized root-
mean-square error (NRMSE) and the coe�cient of determination (R2) are used to quantify
discrepancy between posterior means and true parameter values.

Since the Lévy �ight model is analytically intractable, such a simulation scenario is not feasible
with non-amortized methods, which would need weeks on standard machines [169]. However,
using a BayesFlow architecture, we can obtain an amortized neural sampler capable of working
with variable number of trials (i.e., by using a permutation invariant summary network). The on-
line training phase with Algorithm 3 took approximately one day on a standard laptop equipped
with an NVIDIA® GTX1060 graphics card. Subsequent inference is then extremely e�cient, as
amortized Bayesian estimation on 500 simulated participants takes less than two seconds [137].

We visualize the results by plotting the average R2 metric obtained from estimating the Lévy
�ight model on 300 simulated participants withN varying between 50 and 1000 (cf. Figure 5.6.
Notably, recovery of the ground-truth parameters via posterior means is nearly perfect at higher
trial numbers, and resembles a logarithmic function of N 3. A similar plot can be created for
posterior contraction as a function ofN (see Ricker example in [133]).

Further, we can now apply the same network from the previous simulation example for execut-
ing fully Bayesian inference on real data. For this illustrative example, we estimate the Lévy �ight
model from eleven participants performing a long lexical decision task with N = 800 trials per
condition [137]. Since the task had a 2× 2 design, with a factor for difficulty (hard vs. easy), and
a factor for stimulus type (word vs. non-word), we assume a di�erent drift rate vc for each design
cell c ∈ {1, 2, 3, 4}.

Before performing inference on actually observed data, we compute SBC and evaluate parame-
ter recovery using simulations withN = 800 trials per condition (aligned to the particular exper-
imental design) in order to become a rough sense of computational faithfulness and model sen-
sitivity. Importantly, these checks were performed within seconds with amortized inference and

3Strictly speaking, one should also ensure that inference is calibrated for each N , a step which is no more computa-
tionally expensive with BayesFlow and which we omit here for brevity.
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Figure 5.8: Individual bivariate posteriors obtained from data of one example participant in the lexical de-
cision task.
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would have been intractable with standard methods. Accordingly, marginal SBC and parameter
recovery plots are depicted in Figures Figure 5.5 and Figure 5.7, respectively. The SBC histograms
suggest no systematic biases across the approximate marginal posteriors for each parameters (e.g.,
no under- or overdispersion of the true posterior). Likewise, the recovery plots indicate excellent
parameter recovery using posterior means as summaries of the full posteriors, a result which is also
evident from the earlier Figure 5.6.

Thus, we can interpret the results from these pre-data checks as hints of intact self-consistency
and proceed to applying BayesFlow to real data. A typical output from applying BayesFlow to
a single data set is depicted in Figure 5.8, which presents marginal and bivariate posteriors. The
latter allows us to visually inspect posterior correlations as indicators of disentanglement (linear
independence) between the individual model parameters [137].

5.9 Concluding Remarks

This chapter introduced the building blocks of our BayesFlow framework and discussed its math-
ematical and algorithmic formulation at a relatively high level. More details regarding perfect con-
vergence, training, and hyperparameter choice (e.g., learning rate, optimizer settings) can be found
in our methodological work [133] as well as in the applied works [10, 31, 135, 147]. Details regard-
ing implementation as well as templates for parameter estimation are also available at the corre-
sponding code repository (https://github.com/stefanradev93/BayesFlow). Whereas a multitude
of features and potential improvements remain to be explored in future research, our results from
initial simulations and applications appear highly promising. Thus, we hope that our framework
will accelerate model-based inference in a variety of scienti�c �elds and prove its utility beyond
the current applications.

64

https://github.com/stefanradev93/BayesFlow


6 AmortizedModel Comparison
When you have eliminated the impossible, whatever remains, however im-
probable, must be the truth.
— Arthur Conan Doyle

Researchers from various scienti�c �elds face the task of selecting the most plausible theory for an
empirical phenomenon among multiple competing theories. Theories in the cognitive and behav-
ioral sciences are also not exempt from being subject to a relentless selection process. As already
discussed, rigorous theories are often instantiated as formal models which describe how observ-
able quantities arise from unobservable parameters in the language of mathematics. Focusing on
the level of mathematical models, the problem of theory selection then becomes one of model
selection.

For instance, neuroscientists might be interested in comparing di�erent models describing the
spiking patterns revealed by in vivo recordings of neural activity [76]. Epidemiologists, on the
other hand, might consider di�erent dynamic models for predicting the transmission rate or other
characteristics of an unfolding infectious disease [167]. Crucially, the preference for one model
over alternative models in these examples can have important consequences for research projects
or social policies.

Accounting for complex natural phenomena often requires specifying complex models which
entail some degree of randomness. Inherent stochasticity, incomplete description, or epistemic
ignorance all call for some form of uncertainty awareness. As a further complication, empirical
data on which models are �t are necessarily �nite and can only be acquired with �nite precision.
Finally, the plausibility of many non-trivial models throughout various branches of science can
be assessed only approximately, through rather costly simulation-based methods [26, 35, 76, 104,
139, 161].

Our evidential method aims to amortize Bayesian model comparison by combining latest ideas
from simulation-based inference and uncertainty quanti�cation for building e�cient and uncertainty-
aware neural classi�ers. As such, it is intended to complement the toolbox of simulation-based
methods for parameter estimation with crucial model comparison capabilities. Moreover, it in-
corporates a unique feature for estimation of higher-order uncertainty, which goes beyond the
scope of standard ABC methods.

6.1 Desiderata

In the previous chapter, we introduced the nuts and bolts of our BayesFlow method for simulation-
based Bayesian parameter estimation. This chapter will present our complementary framework
for simulation-based Bayesian model comparison. The next chapter will discuss the potential and
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challenges inherent in combining both frameworks into a single meta-framework. As with pa-
rameter estimation, we begin by stating our desiderata for building a useful model comparison
method:

1. Estimated model probabilities should be, at least in theory, calibrated to the true model
probabilities induced by an empirical problem

2. Estimated model probabilities should be accurate even for �nite or small sample sizes

3. Preference for simpler models (i.e., the probabilistic Occam’s razor) should be encoded by
the estimated model probabilities

4. The method should be applicable to complex models with implicit likelihoods within rea-
sonable time limits

5. The method should enable full amortization over arbitrarily many models, data sets, and
varying data set sizes

6. The method should automatically extract maximal information from the raw data and
avoid information loss through insu�cient summary statistics of the data

Evidently, the desiderata for model comparison are somewhat overlapping with those stated earlier
for parameter estimation. Indeed, in this chapter, we will reuse many of the previous concepts for
building algorithmically aligned summary networks in the BayesFlow framework.

6.2 Background

The following section will brie�y rehearse some of the core concepts related to Bayesian model
comparison (see also Chapter 3), thereby setting the stage for the derivation of our evidential
framework.

6.2.1 BayesianModel Comparison

In Bayesian modeling, we typically start with a collection of J competing generative models,
which we denoted asM = {M1,M2, . . . ,MJ}. Each abstract model indexMj is associ-
ated with a generative mechanism gj , typically realized as a Monte Carlo simulation program,
and a corresponding parameter space Θj equipped with a prior distribution p(θj |Mj). Ideally,
each gj represents a theoretically plausible stochastic mechanism by which observable behaviorx
arises from hidden time-invariant parameters θj and independent noise ξ:

xn = gj(θj , ξn) with θj ∈ Θj (6.1)

where Θj is the corresponding parameter space of model gj and the subscript j explicates that
each model might be speci�ed over a di�erent parameter space1. We assume that the functional or
algorithmic form of each gj is known and that we have a sample (data set) {xi}Ni=1 := x1:N ofN

1Also the noise distribution p(ξ) and noise space Ξ might di�er for each model, but we will keep this possibility
implicit.
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(multivariate) observations generated from an unknown process p∗. The task of Bayesian model
comparison is to assign a plausibility score (e.g., a posterior probability) to each of the models in
M. The task of Bayesian model selection is then to choose the model inM that best describes the
observed data by balancing simplicity (sparsity) and predictive performance.

As already discussed in Chapter 3, Bayesian methods for model comparison can be categorized
as either posterior predictive or prior predictive approaches [52], with our method falling into the
latter category. Posterior predictive approaches are concerned with predicting upcoming observa-
tions using models extracted from the available data. In prior predictive approaches, models are
conditioned only on prior information but not on the available data. Accordingly, all available
data counts as new data for the purpose of prior predictive methods.

To recapitulate, the canonical measure of prior predictive performance is the marginal likeli-
hood:

p(x1:N |Mj) =

∫

Θj

p(x1:N |θj ,Mj) p(θj |Mj) dθj (6.2)

which forms the basis for the computation of Bayes factors and posterior odds between pairs of
competing models. If two models are equally likely a priori, the posterior odds equal the Bayes
factor. Furthermore, if the Bayes factor, or, equivalently, the posterior odds equal one, the ob-
served data provide no decisive evidence for one of the models over the other. However, a relative
evidence of one does not distinguish whether the data are equally likely or equally unlikely under
both models, as this is a question of absolute evidence. Needless to say, the distinction between
relative and absolute evidence is of paramount importance for model comparison, so we address
it in the next section on model comparison frameworks.

6.2.2 M-Frameworks

Closely related to the distinction between relative and absolute evidence is the distinction between
M-closed andM-complete frameworks [176]. Under anM-closed framework, the true model
is assumed to be in the prede�ned set of competing modelsM, so relative evidence is identical to
absolute evidence. Under anM-complete framework, a true model is assumed to exist but is not
necessarily assumed to be a member ofM. However, one still focuses on the models inM due
to computational or conceptual limitations2.

Deciding on the particularM-framework under which a model comparison problem is tackled
is often a matter of prior theoretical considerations. However, since in most non-trivial research
scenariosM is a �nite set and candidate models inM are often simpler approximations to the
true model, there will be uncertainty as to whether the observed data could have been generated
by one of these models. In the following, we will refer to this uncertainty as epistemic uncertainty.
Our method utilizes a data-driven way to calibrate its epistemic uncertainty in addition to the
model probabilities through simulations under anM-closed framework.

Consequently, given real observed data, a researcher can obtain a measure of uncertainty with
regard to whether the generative model of the data is likely to be inM or not. From this perspec-
tive, our method lies somewhere in the middle ground betweenM-closed and anM-complete
framework as it provides information from both viewpoints.

2See also [176] for discussion of an M-open framework, in which no true model is assumed to exist.
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6.2.3 Model Selection as Classification

In line with previous simulation-based approaches to model comparison (e.g., ABC), we will uti-
lize the fact that we can simulate arbitrary amounts of data from each simulator gj (to be described
shortly). Following previous machine learning approaches to model selection [104, 132], we re-
interpret the problem of model comparison as a probabilistic classi�cation task. In other words,
we seek to learn a mapping f : XN → ∆J from an arbitrary data space XN to a probability
simplex ∆J containing the multinomial posterior model probability p(M|x1:N ). Previously,
di�erent learning algorithms, such as random forests have been employed to tackle model com-
parison as classi�cation [104]. Reusing the ideas from algorithmic alignment and probabilistic
symmetry incorporated into the BayesFlow framework, our method parameterizes fη via a spe-
cialized neural network with trainable parametersηwhich is aligned to the probabilistic structure
of the generative models (i.e., a permutation invariant network for memoryless models or a recur-
rent network for stateful models).

In addition, our method di�ers from previous classi�cation approaches to model comparison
in the following aspects. First, it requires no hand-crafted summary statistics, since the most in-
formative summary statistics are learned directly from data. Second, it can make use of online
learning (i.e., on-the-�y simulations) which requires no storage of large reference tables or data
grids. Third, the addition of new competing models does not require changing the architecture
or re-training the network from scratch, since the underlying data domain remains the same. In
line with the transfer learning literature, only the last layer of a pre-trained network needs to be
changed and training can be resumed from where it had stopped. Last, our method is uncertainty-
aware, as it returns a higher-order distribution over posterior model probabilities. From this dis-
tribution, one can extract both absolute and relative evidences, as well as quantify the model se-
lection uncertainty implied by the observed data (more on this distinction later).

Intuitively, a converged evidential network encodes the probabilistic relationship between data
and models through the network’s weights. Thus, once trained, the evidential network can be
reused to perform instant model comparison on multiple real observations. As mentioned above,
the addition of new models requires simply adjusting the pre-trained network, which requires
much less time than re-training the network from scratch.

6.2.4 Multi-Model Forward Inference

Our evidential methods requires the ability to implement each candidate model as a simulator and
e�ciently generate synthetic observations from each model. This process amounts to performing
forward inference in a multi-model context and is described in detail in Algorithm 7. Since we
only need the simulated data sets and the corresponding model indices, we can run Algorithm 7
repeatedly to construct training batches of the formD(B)

N := {(m(b),x
(b)
1:N )}Bb=1 withB simu-

lated data sets of sizeN andB corresponding one-hot encoded model indices. We can then feed
each batch to a specialized neural network which takes as input simulated data with variable sizes
and returns a distribution over posterior model probabilities. Note, that similar considerations
regarding computational e�ciency and parallelism apply as previously discussed in the context of
parameter estimation with BayesFlow.
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Algorithm 7 Monte Carlo generation of synthetic data sets for model comparison

Require: p(M) - prior over models, {p(θ |Mj)} - list of priors over model parameters, {gj} -
list of stochastic simulators, p(ξ) - noise distribution, p(N) - distribution over data set sizes,
B - number of data sets to generate per iteration (batch size).

1: Draw data set size: N ∼ p(N).
2: for b = 1, ..., B do
3: Draw model index from model prior:M(b)

j ∼ p(M).
4: Draw model parameters from prior: θ(b)

j ∼ p(θj |M
(b)
j ).

5: for n = 1, ..., N do
6: Sample noise instance: ξn ∼ p(ξ).
7: Run simulator j to obtain n-th synthetic observation: xn = gj(θ

(b)
j , ξn).

8: end for
9: Encode model index as a one-hot-encoded vector:m(b) = OneHotEncode(M(b)

j ).
10: Store pair (m(b),x

(b)
1:N ) in data structureD(B)

N .
11: end for
12: Return mini-batchD(B)

N := {m(b),x
(b)
1:N )}Bb=1.

6.3 Training Amortized Evidence Approximators

In our model comparison framework, evidential neural networks learn a higher-order uncertainty
representation over the model posterior p(M|x1:N ) in a simulation-based manner. As we did
in the BayesFlow framework, we split model comparison into two phases: an expensive train-
ing/simulation phase, in which neural network parameters are optimized via standard backprop-
agation; and a cheap inference phase, in which a pre-trained evidential network is applied to an
arbitrary amount of real data sets x(obs)

1:N . The output of an evidential network is a higher-order
distribution, from which we can obtain a vector of probabilities pη(m |x(obs)

1:N ) which approx-
imates the true model posterior p(M|x(obs)

1:N ) for any observable x(obs)
1:N . In addition, we can

obtain local uncertainty information which serves as a proxy for absolute evidence.

6.3.1 Evidence Representation

How can we obtain a measure of absolute evidence by considering only a �nite number of com-
peting models? Indeed, such an undertaking has the appearance of an ill-posed problem from
the very o�set. Our approach will be to re-frame the problem as teaching a neural network to
respond with I don’t know when faced with data which could not have been generated by one of
the models (i.e., has not been experienced during the simulation-based training phase). In general,
however, a purely probabilistic approach is not well-suited for representing a lack of knowledge
[74], since even the uniform distribution encodes the belief in equally likely events. In contrast,
meta-probabilistic approaches propose to use second-order probabilities [80, 146] for representing
the absence of any de�nite knowledge. In a Bayesian setting, we typically lack knowledge regard-
ing the misspeci�cation degree of the candidate models. Thus, our framework can also be viewed
as an approach to quantifying model misspeci�catin via higher-order uncertainty. In this way,
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Figure 6.1: Both phases of our evidential model comparison framework. Left panel: During the training
phase, an algorithmically aligned evidential network is trained jointly with random draws from
the joint prior p(M,θ) and synthetic data from the simulator; Right panel: During the in-
ference phase, no training or optimization happens in this phase. The upfront training e�ort
amortizes over an arbitrary number of models, observations and data sets from a research do-
main working on the same model class.

our approach di�ers from likelihood-tempering methods, which require an explicit evaluation of
a tilted likelihood (raised to a power 0 < t < 1) in order to prevent overcon�dent Bayesian
updating [63].

In terms of the theory of subjective logic (SL, [80]), we can model second-order probabilities
by placing a Dirichlet distribution over the estimated posterior model probabilities [145]. These
second-order probabilities represent an uncertainty measure over quantities which are themselves
probabilities. We use the second-order probabilities to capture epistemic uncertainty about whether
the observed data has been generated by one of the candidate models considered during training.

The probability density function (PDF) of a Dirichlet distribution is given by:

Dir(π |α) =
1

B(α)

J∏

j=J

π
αj−1
j (6.3)

where π belongs to the unit J − 1 simplex (i.e., π ∈ ∆J := {π | ∑J
j=1 πj = 1} and B(α)

is the multivariate beta function [131]. The Dirichlet density is parameterized by a vector of con-
centration parametersα ∈ RJ+ which can be interpreted as evidences in the ST framework [80].
The sum of the individual evidence components α0 =

∑J
j=1 αj is referred to as the Dirichlet

strength, and it a�ects the precision of the higher-order distribution in terms of its variance. Intu-
itively, the Dirichlet strength governs the peakedness of the distribution, with larger values leading
to more peaked densities (i.e., most of the density being concentrated in a smaller region of the
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Figure 6.2: Three di�erent hypothetical model comparison scenarios with di�erent observations. The �rst
column depicts observing a data set which is equally probable under all models. The second
column depicts a data set which is beyond the generative scope of all models. The third column
illustrates an observed data set which is most probable under model 2.

simplex). We can use the mean of the Dirichlet distribution, which is a vector of probabilities
given by:

Eπ∼Dir(α)[π] =
α

α0
(6.4)

to approximate the posterior model probabilities p(m |x1:N ), as will become clearer later in this
section. A crucial advantage of such a Dirichlet representation is that it allows to look beyond
model probabilities by inspecting the vector of computed evidences. For instance, imagine a sce-
nario with three possible models. Ifα = (5, 5, 5), the data provides equally strong evidence for
all models (Figure 6.2, �rst column) – all models explain the data well. If, on the other hand,
α = (1, 1, 1), then the Dirichlet distribution reduces to a uniform on the simplex indicating no
evidence for any of the models (Figure 6.2, second column) – no model explains the observations
well. Note that in either case one cannot select a model on the basis of the data, because posterior
model probabilities are equal, yet the interpretation of the two outcomes is very di�erent: The
second-order Dirichlet distribution allows one to distinguish between equally likely (�rst case)
and equally unlikely (second case) models. The last column of Figure 6.2 illustrates a scenario
with α = (2, 7, 3) in which case one can distinguish between all models. Later, we will also
demonstrate a scenario with data simulated from an actual model.

71



6 Amortized Model Comparison

We can further quantify this distinction by computing an uncertainty score given by:

u =
J

α0
(6.5)

where J is the number of candidate models. This uncertainty score ranges between 0 (total cer-
tainty) and 1 (total uncertainty) and has a straightforward interpretation. Accordingly, total un-
certainty is given when α0 = J , which would mean that the data provide no evidence for any of
theJ candidate models. On the other hand,u << 1 implies a large Dirichlet strengthα0 >> J ,
which would read that the data provide plenty of evidence for one or more models in question.
The uncertainty score corresponds to the concept of vacuity (i.e., epistemic uncertainty) in the
terminology of SL [80]. We argue that epistemic uncertainty should be a crucial aspect in model
selection, as it quanti�es the strength of evidence, and, consequently, the strength of the theoret-
ical conclusions we can draw given the observed data.

Consequently, model comparison in our framework consists in inferring the concentration
parameters of a Dirichlet distribution given an observed or simulated data set. The problem of
inferring posterior model probabilities can thus be reparameterized as:

p(M|x1:N ) ≈ qη(m |x1:N ) = Eπ∼Dir(fη(x1:N ))[π] (6.6)

where fη is a neural network with positive outputs greater than one, that is, fη : XN → [1,∞]J .
Additionally, we can also obtain a measure of absolute model evidence by considering the uncer-
tainty encoded by the full Dirichlet distribution (Eq.6.5). Before elaborating on the latter point,
we discuss the main concepts for learning relative evidence, since they form the backbone for fur-
ther developments.

6.3.2 Learning Evidence in anM-Closed Framework

How do we ensure that the outputs of the neural network match the true unknown model pos-
terior probabilities? As per Algorithm 7, we have unlimited access to samples (simulations) from
the joint model p(M,x) =

∫
p(M,θ,x)dθ. Consider, for ease of exposition, a data set with a

single observation, that isN = 1 such thatx1:N = x. We use the mean of the Dirichlet distribu-
tion qη(m |x) parameterized by an evidential neural network with parametersη to approximate
p(M|x). To optimize the parameters of the neural network, we can minimize some loss L in
expectation over all possible data sets:

η∗ = arg min
η

Ep(M,x)[L(qη(m |x),m)] (6.7)

= arg min
η

Ep(x)

[
Ep(M|x)[L(qη(m |x),m)]

]
(6.8)

wherem is a one-hot encoded vector of the true model indexMj . We also require that L be a
strictly proper loss [59]. According to [59], a loss function in the context of simulation-based model
comparison is strictly proper if and only if it attains its minimum when qη(m |x) = p(M|x).
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When we choose the Shannon entropy H(qη(m |x)) = −∑j qη(m |x)j log qη(m |x)j
forL, we obtain the strictly proper logarithmic loss:

L(qη(m |x),m) = −
J∑

j=1

mj log qη(m |x)j (6.9)

= −
J∑

j=1

mj log

(
fη(x)j∑J
j′=1 fη(x)j′

)
(6.10)

wheremj = 1 when j is the true model index and 0 otherwise (i.e., standard one-hot encoding).
Thus, in order to estimateφ, we can minimize the expected logarithmic loss over all simulated data
sets where fη(x)j denotes the j-th component of the Dirichlet density given by the evidential
neural network. Since we use a strictly proper loss, the evidential network yields the true model
posterior probabilities over all possible data sets when perfectly converged.

Intuitively, the logarithmic loss encourages high evidence for the true model and low evidences
for the alternative models. Correspondingly, if a data set with certain characteristics can be gener-
ated by di�erent models, evidence for these models will jointly increase. Additionally, the model
which generates these characteristics most frequently will accumulate the most evidence and thus
be preferred. However, we also require low evidence, or, equivalently, high epistemic uncertainty,
for data sets which are implausible under all models. We address this problem in the next section.

6.3.3 Learning Absolute Evidence through Regularization

We now propose a way to address the scenario in which no model explains the observed data well.
In this case, we want the evidential network to estimate low evidence for all models in the can-
didate set. In order to attenuate evidence for data sets which are implausible under all models
considered, we incorporate a Kullback-Leibler (KL) divergence into the criterion in Eq.6.9. We
compute the KL divergence between the Dirichlet density generated by the neural network and a
uniform Dirichlet density implying total uncertainty. Thus, the KL shrinks evidences which do
not contribute to correct model assignments during training, so an implausible data set encoun-
tered in the inference phase will lead to low evidence under all models. This type of regularization
has been used for capturing out-of-distribution (OOD) uncertainty in image classi�cation tasks
[145]. Curiously, the task of OOD detection closely resembles that of diagnosing model misspec-
i�cation, so future developments in one of the areas would most likely bene�t the other and vice
versa.

Adding the KL regularization penalty, our modi�ed optimization criterion becomes:

η∗ = arg min
η

Ep(M,x)[L(qη(m |x),m) + λΩ(α̃)] (6.11)

with Ω(α̃) = KL[Dir(α̃) ||Dir(1)]. The term α̃ = m+(1−m)�α represents the estimated
evidence vector after removing the evidence for the true model. This is possible, because we know
the true model index sampled from the model prior p(M) during the simulation-based training
phase. During the inference phase, knowing the ground truth is not required anymore, since η̂
has already been obtained at this point.
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The KL regularizer penalizes evidences for the false models and drives these evidences towards
unity. Equivalently, it acts as a ground-truth preserving prior on the higher-order Dirichlet distri-
bution which preserves evidence for the true model and attenuates misleading evidences for the
false models. The hyperparameter λ controls the regularization weight and encodes the tolerance
of the algorithm to accept implausible (out-of-distribution) data sets during inference. With large
values of λ, it becomes possible to detect cases where all models are de�cient (i.e., misspeci�ed);
with λ = 0, only relative evidence can be generated. Note, that in the latter case, we recover
our original proper criterion without penalization. The KL weight λ should be selected through
prior empirical considerations on how well the simulations cover the plausible set of real-world
data sets.

Importantly, the introduction of the KL regularizer renders the loss no longer strictly proper.
Therefore, a large regularization weight λ would lead to poorer calibration of the approximate
model posteriors, as the regularized loss is no longer minimized by the true model posterior. How-
ever, since the KL prior is ground-truth preserving, the accuracy of recovering the true model
should not be a�ected. Indeed, we observe this behavior across a number of simulated experi-
ments. More analytical research is needed on the rate of miscalibration induced by a particular
choice of λ.

To make optimization of Equation 6.11 tractable in practice, we utilize the fact that we can
easily simulate batches of the formD(B)

N = {(m(b),x
(b)
1:N )}Bb=1 via Algorithm 7 and approximate

Eq.6.11 via standard backpropagation by minimizing the following loss:

L(η) =
1

B

B∑

b=1


−

J∑

j=1

m
(b)
j log

(
fη(x

(b)
1:N )j∑J

j′=1 fη(x
(b)
1:N )j′

)
+ λΩ(α̃(b))


 (6.12)

over multiple batches to converge at a Monte Carlo estimator η̂ of the optimal neural network
parameters η∗. In practice, convergence can be determined as the point at which the loss stops
decreasing, a criterion similar to early stopping. Alternatively, the network can be trained for a
pre-de�ned number of epochs. Note, that, at least in principle, we can train the network arbi-
trarily long, since we assume that we can access the full joint Bayesian distribution p(M,x, N)
through simulation (cf. Figure 6.1, left panel). In practice, early stopping seems to work reason-
ably well, since it requires no prior considerations on the (most likely unknown) optimal number
of simulations or interventions during training.

6.3.4 Implicit Preference for SimplerModels

Perfect convergence of the evidential network for a given model comparison problem implies
qη(m |x1:N ) ∝ p(x1:N |M)p(M). Thus, a perfectly converged evidential network automati-
cally encodes a preference for simpler models (Bayesian Occam’s razor). This is due to the fact that
we are approximating an expectation over all possible data sets, parameters, and models (i.e., the
full Bayesian distribution). Accordingly, a simple model has a narrow generative scope, so data sets
generated by a simpler model will tend to be more similar compared to those from a more com-
plex competitor. Therefore, during training, certain data sets which are plausible under multiple
models will be generated most often by the simplest model. Thus, a perfectly converged evidential

74



6.3 Training Amortized Evidence Approximators

network will capture this behavior by assigning higher posterior probability to the simplest model
(assuming equal prior probabilities). Therefore, at least in theory, our method captures complex-
ity di�erences arising purely from the generative behavior of the models and does not presuppose
an ad hoc measure of complexity (e.g., number of parameters).

6.3.5 Training and Inference

Algorithm 8 (Online) Training phase and inference phase for amortized Bayesian model com-
parison with regularization-based uncertainty estimation.

Require: fη - evidential neural network, {x(obs)
1:Ni
}Ii=1 - list of observed data sets for inference, λ

- regularization weight,B - number of simulations at each iteration (batch size).
1: Simulation-based training phase:
2: repeat
3: Generate a training batchD(B)

N = {(m(b),x
(b)
1:N )}Bb=1 via Algorithm 7.

4: Compute evidences for each simulated data set inD(B)
N : α(b) = fη(x

(b)
1:N ).

5: Compute loss according to Equation 6.12.
6: Update neural network parameters η via backpropagation.
7: until convergence to η̂
8: Amortized inference phase:
9: for i = 1, ..., I do

10: Compute model evidencesα(obs)
i = fη̂(x

(obs)
1:Ni

).
11: Compute uncertainty ui = J/

∑J
j=1 α

(obs)
i,j .

12: Approximate true model posterior probabilities p(M|x(obs)
1:Ni

) via qη(m |x1:Ni) =

α
(obs)
i /

∑J
j=1 α

(obs)
i,j .

13: end for
14: Choose further actions.

The training phase in our evidential framework can be carried out using the same ideas and
considerations explored in the context of BayesFlow. Accordingly, one can choose between on-
line, o�ine, or a hybrid learning regime, depending on the computational resources available, the
complexity of the candidate models and the simulation budget allocated for performing model
comparison. Thus, in order to avoid repetition, Algorithm 8 summarizes both the training and
inference phase with our evidential method using online learning during training. Note, that steps
2-7 and 9-13 can be executed in parallel and with GPU support in order to dramatically accelerate
convergence and inference. Importantly, if the priors over model parameters change or additional
models need to be considered, the parameters η of a pre-trained network can be augmented to
η′ by adding additional output nodes for the new models. Training can then be resumed from
where it had previously stopped without optimizing η′ from scratch.
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6.3.6 Sources of Error

Since our evidential framework embodies some of the principles implemented in the BayesFlow
framework (simulation-based training, amortized inference), it also inherits some of the error
sources described in Section 5.6, namely, simulation gap, amortization gap, and approximation
error. Most notably, our regularization approach to model misspeci�cation is precisely designed
to detect the presence of simulation gaps. Since our evidential networks distils global knowledge
about the models’ generative scopes, it is supposed to assign low evidences to models which en-
counter a simulation gap during inference. However, whenever an evidential network is trained
to minimize Equation 6.12 with λ = 0 (i.e., no regularization is applied), simulations gaps re-
main an undetectable issue, at least until posterior predictive checks are performed. In any case,
errors due to an amortization gap (i.e., learning a global neural estimator) and Monte Carlo ap-
proximation (i.e., estimating an expectation) remain something to be aware of when performing
amortized neural model comparison.

Another source of error is an underexpressive evidential network which is unable to properly
encode the probabilistic relationship between data and models. In this case, the evidential net-
work will be poorly calibrated, that is, its outputs would not represent the true posterior distribu-
tion p(M|x). Fortunately, due to amortized inference, we can easily estimate and visualize the
expected calibration error (ECE, [64]) of an evidential network over multiple simulations from
p(M,θ,x). Accordingly, ECE values close to 0 indicate proper calibration of the network. Some
model comparison scenarios may prioritize di�erent metrics, such as accuracy or precision/recall
ratios, common to classi�cation tasks in machine learning applications.

6.4 A Simulated Experiment

As a brief illustrative example (described in detail in [134]), we applied our evidential method to
distinguish between complex nested spiking neuron models describing the properties of biological
cells in the nervous system. The purpose of this experiment was twofold. On the one hand, we
wanted to assess the ability of our method to classify models deploying a variety of neural patterns
accounting for di�erent cortical and sub-cortical neuronal activity. On the other hand, we wanted
to investigate the network’s ability to detect biologically implausible data patterns, as indexed by
our measure of epistemic uncertainty. To this aim, we rely on a renowned computational model
of biological neural dynamics.

6.4.1 Model Comparison Setting

In computational neuroscience, mathematical models of neuronal electrical dynamics serve as a
basis to explain the functional organization of the brain from both single neuron and large-scale
neuronal networks processing perspectives [1, 16, 70, 75]. A multitude of di�erent neuron mod-
els have been proposed during the last decades, ranging from completely abstract to biologically
plausible models. The former o�er a simpli�ed mathematical representation which takes the main
functional properties of spiking neurons into account. The latter provide a detailed analogy be-
tween models’ state variables and ion channels in biological neurons [129]. Importantly, these
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Figure 6.3: Three simulated �ring patterns, corresponding estimated Dirichlet densities and model poste-
riors [134]. Each row represents a di�erent value of the parameter ḡK , ḡK = 0.1, ḡK = 0.5,
and ḡK = 0.75, respectively. An increase in the parameter ḡK is accompanied by a decrease in
epistemic uncertainty (as measured via Eq.6.5). An implausible value of ḡk (�rst row) results
in a �at Dirichlet density as an index of total epistemic uncertainty (uniform green areas). As
the parameter value surpasses the plausibility boundary (second and third rows), the Dirichlet
simplex becomes peaked towards the lower left edge encodingM1.

computational models di�er in their capability to reproduce �ring patterns observed in real cor-
tical neurons [76].

For this simulated experiment, we consider a Hodgkin-Huxley stateful model of cortical and
thalamic neurons [70, 130]. The forward model is formulated as a set of �ve ordinary di�erential
equations (ODEs) describing how the neuron membrane potential V (t) changes over time as a
function of the injected current Iinj(t) and of various ion channels properties (see [134] for more
details regarding the forward model).

To set up the model comparison problem, we treat di�erent types of conductance, gL, ḡNa, ḡK
and ḡM , as free parameters, and de�ne di�erent neural models based on di�erent parameter spec-
i�cations. In particular, we formulate three modelsM = {M1,M2,M3} de�ned by the pa-
rameter setsθ1 = (ḡNa, ḡK), θ2 = (ḡNa, ḡK , ḡM ), andθ1 = (ḡNa, ḡK , ḡM , gL), respectively.

In order to evaluate performance, we train an unregularized recurrent evidential network for
60 epochs resulting in 60000 backpropagation updates. At each iteration, we draw a random
input current duration T ∼ UD(100, 400) (in units of milliseconds), keeping a constant input
current, Iinj . T re�ects the physical time window in which biological spiking patterns can occur.
Since the sampling rate of membrane potential is �xed (dt = 0.2), T a�ects both the span of
observable spiking behavior and the number of simulated data points.
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6.4.2 Validation Results

The entire training phase using online learning (Algorithm 8) took approximately 2.5 hours of
wall-clock time. On the other hand, model comparison on 5000 neural time-series simulated for
validation took approximately 0.7 seconds, which is a remarkable e�ciency gain.

Regarding model selection performance, the network exhibited accuracies above 0.92 across all
T s, with no gains in accuracy for increasing T . This result highlights the fact that even short in-
put currents are su�cient for reliably distinguishing between these complex models. Further, we
observed good calibration for all three models, with all ECEs less than 0.1. Notably, we observed
no overcon�dence for all three models.

In order to assess how well we can detect biologically implausible patterns, we train an identical
recurrent evidential network with a gradually increasing regularization weight up toλ = 1.0. We
then �x the parameter ḡNa = 4.0 of modelM1 and gradually increase its second parameter ḡK
from 0.1 to 2.0. Since spiking patterns observed with low values of ḡK are quite implausible and
have not been encountered during training, we expect uncertainty to gradually decrease. Indeed,
Figure 6.3 shows this pattern. On the other hand, changing the sign of the output membrane
potential, which also results in biologically implausible patterns, leads to a trivial selection ofM3.
This is contrary to expectations, and shows that absolute evidence is also relative to the model
knowledge the evidential network has learned during training. Future research should therefore
focus on making the latent space of the evidential network interpretable, in order to make the
conceptual visualization from Figure 6.2 tractable.

6.5 Concluding Remarks

This chapter introduced the building blocks of our evidential framework for Bayesian model com-
parison and discussed its mathematical and algorithmic formulation. In contrast to BayesFlow,
applications of our amortization approach to real-world model comparison/selection problems
are still underway. One reason for this is that recent developments in the �eld of simulation-based
statistical inference have focused predominantly on parameter estimation and model compari-
son has often played a secondary role (or has been too costly to perform). Thus, we hope that
our framework (or underlying ideas) can enhance and enrich model-based analysis and inference
in many �elds dealing with competing computational models of complex natural processes. We
leave it to future research to investigate whether there are more elegant ways to quantify absolute
evidence or detect model misspeci�cation from a simulation-based perspective. Details regarding
training, hyperparameter choice, and validation metrics can be found in our methodological pa-
per [134]. Further details regarding implementation as well as templates for model comparison are
also available at the code repository (https://github.com/stefanradev93/BayesFlow).
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7 Meta-Amortized Inference
What is now proved was once only imagined.
— William Blake

In this chapter, we explore the idea of a universal neural Bayesian inference architecture for per-
forming simultaneous parameter estimation and model comparison in a purely simulation-based
way. We build on our previous methods by using ideas from multi-task learning [20] and meta-
amortized variational inference [25]. In this way, we propose to enable and amortize all steps of
a Bayesian work�ow within a uni�ed framework involving a single training/optimization phase.
Instead of presenting a ready-made solution, this chapter merely intends to point out towards a
speculative future development aimed at scaling up an entire Bayesian work�ow to complex mod-
els.

7.1 The BayesianHardships

A Bayesian analysis consists of more than just parameter estimation and model comparison. The
big picture of Bayesian inference involves a rather signi�cant allocation of creative, computational,
�nancial, and decision making resources (cf. Figure 7.1 for an illustrative overview). Most recently,
attempts have been made to systematize Bayesian analysis into a principled, step-by-step work�ow
reminiscent of a cooking recipe [49, 56, 144]. Naturally, it is beyond the scope of this chapter to
review these comprehensive works. Thus, we will attempt to extract the most basic elements of a
Bayesian work�ow which can directly bene�t from the notion of amortized inference.

The starting point of our Bayesian work�ow of interest is a collection of observed data sets
D(obs) = {x(obs)

1:Ni
}Ii=1, with I = 1 in the case of a single data set andN = 1 in the case of a single

observation, and a collection of J competing modelsM = {Mj}Jj=1. Most Bayesian pipelines
would go through multiple steps involving, among other things, a considerable computational
burden. These steps are represented by the red-shaded boxes in Figure 7.1 and summarized as
follows:

1. Parameter estimation

2. Evaluation of computational faithfulness

3. Evaluation of model adequacy/sensitivity

4. Posterior predictive checks

5. Model comparison/model aggregation
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Figure 7.1: The basic conceptual steps of a Bayesian analysis pipeline (work�ow) associated with allocation
of di�erent types of resources. White indicates allocation of decisional resources. Blue indicates
allocation of �nancial resources. Green indicates allocation of creative resources. Red indicates
allocation of computational resources. Especially the latter can pro�t to a great extent from
amortization.

As we saw in the previous two chapters, we can tackle parameter estimation as well as checks
of computational faithfulness, model sensitivity, and posterior predictions with our BayesFlow
framework. Furthermore, we can circumvent �tting all models explicitly to each data set inD(obs)

and perform e�cient model comparison with our evidential framework. However, as it currently
stands, these frameworks seem rather disconnected and conceptualized to work on their own.

For instance, in order to perform parameter estimation for all models inM, one has to train and
storeJ neural density estimators. When using BayesFlow for parameter estimation, one might re-
use the same (pre-trained) summary network over all models, thus e�ectively pooling some of the
resources. However, separate inference networks would be still be needed for each of the models.
Needless to say, such an approach does not scale well when J is large and needs the resources of a
computational cluster to be feasible in practice.

In addition, in order to perform (prior predictive) model comparison, a disjoint training phase
for an evidential network needs to be introduced. Researchers then need to ensure that simula-
tions are shared between the parameter estimation steps and the model comparison step, other-
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wise a considerable portion of the simulation budget would be wasted by discarding simulations.
Thus, the need for a framework which amortizes all of the above steps in a Bayesian work�ow
becomes immediately obvious. For such a framework to be useful in practice, it needs to enable,
at least in theory, amortization over an arbitrary number of models, data sets, and observations
(data set sizes).

7.2 Amortized Inference Revisited

In the following, we continue our discussion on di�erent levels of amortization. In Chapter 5, we
introduced three di�erent types of amortized Bayesian inference bootstrapped by neural density
estimation: case-wise, model-wise, and meta-amortized. We further assume, for the sake of our
discussion, that the neural networks employed in these approaches are all capable of fully Bayesian
inference (i.e., return a full posterior distribution) and use the raw simulated or observed data di-
rectly (i.e., do not rely on manual selection of summary statistics). Note, that the di�erent types
of amortization have not been explicitly distinguished in the literature on simulation-based infer-
ence, so our nomenclature is rather non-standard.

Case-wise amortized methods require a separate optimization loop for each observed data set
and model. When case-wise methods incorporate a training phase (e.g., APT in a sequential
regime [60]), it must be repeated for each new data set and model, since the observed data is part of
the optimization criterion. The general form of the case-wise optimization criterion for obtaining
optimal neural network parameters is given by:

ϕ∗i,j = arg min
ϕ

E
p(θj |x(obs)

1:Ni
,Mj)

[− log qϕ(θj |x1:N ,Mj)] (7.1)

where we have a separate set of neural network parameters ϕi,j for each data set i and model j.
The case-wise approach to amortizing Bayesian inference is illustrated in Figure 7.2.

Model-wise amortized methods require a global upfront training phase before any real data are
collected via simulations from each joint Bayesian model p(θj ,x, N |Mj). During inference,
model-wise methods operate entirely in a feed-forward manner, that is, they involve no training or
optimization in this phase. Thus, the upfront training e�ort amortizes over all observed data sets
from the generative scope of modelMj de�ned by its corresponding prior p(θj) and simulator
gj(θj , ξ). However, in the frequent case of multiple candidate models, one still needs to perform
separate optimization loops for each of the models inM. The general form of the model-wise
optimization criterion for obtaining optimal neural network parameters is given by:

ϕ∗j = arg min
ϕ

Ep(θj ,x,N |Mj)[− log qϕ(θj |x1:N ,Mj)] (7.2)

where we only have a separate set of neural network parameters for each model j. This is due to
the fact that the expectation runs over the model-implied joint distributionp(θj ,x, N |Mj) and
the observed data does not enter the optimization phase. The model-wise approach to amortizing
Bayesian inference is illustrated in Figure 7.3.

Finally, a meta-amortized approach requires an even costlier upfront training phase involving
simulations from multiple models (i.e., multi-model forward inference). The resulting bene�t
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7 Meta-Amortized Inference

Figure 7.2: Case-wise amortized Bayesian inference with a generative neural architecture capable of fully
Bayesian inference. The gray-shaded plane indicates the scope of amortization.

Figure 7.3: Model-wise amortized Bayesian inference with a generative neural architecture capable of fully
Bayesian inference. The gray-shaded plane indicates the scope of amortization and, in contrast
to case-wise approaches, includes the entire generative scope of the model.
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manifests itself in the outcome that a single (composite) network is able to account for all models
and all possible data sets arising from the models. Accordingly, the general form of the meta-
amortized optimization criterion is given by:

ϕ∗ = arg min
ϕ

Ep(M,θ,x,N)[− log qϕ(θ,M|x1:N )] (7.3)

where the expectation runs over the full joint model p(θ,x, N,M). The meta-amortized crite-
rion not only opens new possibilities but also brings new challenges to which we turn next.

7.3 Learning aMulti-Model Posterior

In order to approximate the multi-model posterior p(θ,M|x1:N ), we seek neural network pa-
rametersϕwhich minimize our meta-amortized criterion from Equation 7.3. We can expand the
latter as follows:

ϕ∗ = arg min
ϕ

Ep(M)

[
Ep(x,N |M)

[
Ep(θ |x1:N ,M)[− log qϕ(θ,M|x1:N )]

]]
(7.4)

= arg min
ϕ

−
J∑

j=1

∫

X

∫

Θj

p(Mj ,θj ,x1:N ) log qϕ(θj ,Mj |x1:N ) dθj dx (7.5)

which we can approximate via Monte Carlo simulations from p(M,θ,x1:N ) (i.e., multi-model
forward inference):

ϕ̂ = arg min
ϕ

− 1

B

B∑

b=1

log qϕ(θ
(b)
j ,M(b)

j |x
(b)
1:N ) (7.6)

Correspondingly, we can treat Equation 7.6 as a loss function and minimize it with any stochastic
gradient descent method. To derive a tractable criterion, we can further expand Equation 7.6 into:

ϕ̂ = arg min
ϕ

1

B

B∑

b=1

− log qϕ(θ
(b)
j |x

(b)
1:N ,M

(b)
j )− log qϕ(M(b)

j |x
(b)
1:N ) (7.7)

The above formulation has two important components: the (amortized) approximate parameter
posterior qϕ(θ |x1:N ,M) and the (amortized) approximate model posterior qϕ(M|x1:N ). We
will explore an architecture for meta-amortized inference consisting of three neural network com-
ponents: an inference network (parameterized byφ), a summary network (parameterized byψ),
and an evidence network (paramaterized byη). Thus,ϕ represents the collection of all neural net-
work parameters,ϕ = (φ,ψ,η). The inference network is responsible for approximating each
parameter posterior p(θj |x1:N ,Mj). The summary network is responsible for extracting max-
imally informative summary vectors from raw data. Last, the evidence network is responsible for
approximating the model posterior p(M,x1:N ). We now describe how to render optimization
of Equation 7.7 tractable.
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Figure 7.4: Meta-amortized Bayesian inference with a generative neural architecture capable of fully
Bayesian inference. The gray-shaded plane indicates the scope of amortization. In contrast to
case-wise and model-wise approaches, the latter includes the generative scopes of all models in
the model listM.

First, we can represent the (multi-model) parameter posterior via a doubly conditional INN
implementing a normalizing �ow between θj and zj for all j

qφ(θj |x1:N ,Mj) = p(zj = fφ(θj ;hψ(x1:N ),m))

∣∣∣∣det

(
∂fφ(θj ;hψ(x1:N ),m)

∂θj

)∣∣∣∣
(7.8)

where hψ is any (alogrithmically aligned) summary network with trainable parameters ψ and
m is a one-hot encoded vector representation of the abstract model indexMj . Writing Jfφ as
a shorthand for the Jacobian of the learnable transformation, we can derive the following loss
function for a batch ofB simulated model indices, parameters, and data sets:

LKL(φ,ψ) =
1

B

B∑

b=1




∥∥∥fφ
(
θ

(b)
j ;hψ(x

(b)
1:N ),m(b)

)∥∥∥
2

2

2
− log

∣∣∣detJ
(b)
fφ

∣∣∣


, (7.9)

which is a modi�ed version of the BayesFlow criterion (Equation 5.40) with a model index in-
cluded as a further conditioning input for the cINN.

Second, we can represent the model posterior using our evidential formulation

qη(M|x1:N ) = EDir(fη(x1:N ))[π], (7.10)
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Figure 7.5: A possible framework for meta-amortized Bayesian inference connecting together an inference
network (φ), a summary network (ψ), and an evidence network (η). All three networks are
optimized together and trained with an arbitrary number of simulations from the joint Bayesian
model p(M)p(θ |M)p(x |θ,M).

where Dir(fη(x1:N )) denotes a Dirichlet density with concentration parameters provided by an
evidential network fη(x1:N ) with parametersη. Note also, that the evidential network might di-
rectly use the representation provided by the summary networkh as a single input,fη(hψ(x1:N )),
or as an additional input concatenated with the raw data, fη(x1:N , hψ(x1:N )). Moreover, our
evidential formulation allows us to re-use the concepts for learning absolute evidence introduced
in Chapter 6. However, if model misspeci�cation is not considered an issue, one could use any
probabilistically calibrated classi�er for qη(M|x1:N ). Accordingly, we can minimize the follow-
ing (unregularized cross-entropy) loss function:

LCE(η,ψ) =
1

B

B∑

b=1


−

J∑

j=1

m
(b)
j log

(
fη(x

(b)
1:N , hψ(x

(b)
1:N ))j∑J

j′=1 fη(x
(b)
1:N , hψ(x

(b)
1:N ))j′

)
, (7.11)

which assumes that the evidential network processes the output of the summary network, in ad-
dition to the raw simulated data.

Finally, putting the two together, our composite loss for meta-amortized inference becomes

L(φ,ψ,η) = LKL(φ,ψ) + LCE(η,ψ) (7.12)

In this way, multi-model Bayesian inference is amortized through a single set of network parame-
ters ϕ̂ = (φ̂, ψ̂, η̂) obtained via backpropagation through the entire composite architecture. An
example implementation of such an architecture is illustrated in Figure 7.5. The practical utility
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and advantages of such a framework are yet to be demonstrated in simulated experiments and on
observed data in a research context.

7.4 Use Cases and Challenges forMeta-Amortized
Inference

A realization of the imaginable architecture depicted in Figure 7.5 would ensure that the computa-
tional burden of many Bayesian tasks (see red-shaded boxes in Figure 7.1) is attenuated via amor-
tization. During inference, posterior draws from each parameter posterior p(θj |x(obs)

1:N ,Mj)
can be e�ciently obtained by feeding the observed data and the desired model index through
the summary and inference networks. Amortized evaluation of computational faithfulness and
model adequacy as well as posterior predictive checks are all consequences of amortizing multi-
model posterior inference. The model posterior p(M|x1:N ) can be estimated by feeding the
output of the summary network from the previous step together with the observed data to the
evidence network. Thus, model comparison via Bayes factors or model aggregation via Bayesian
model averaging can also be performed e�ciently upon convergence.

However, the actual implementation of the neural architecture depicted in Figure 7.5 is not
as straightforward as its conceptualization. When it comes to the architecture of the network re-
sponsible for parameter inference, it appears necessary to distinguish between three main scenarios
encountered in multi-model inference.

The �rst corresponds to prior sensitivity analysis in which the consequences of di�erent prior
con�gurations for subsequent Bayesian updating are systematically investigated. In this case, the
simulator for eachMj is the same and only the corresponding p(θ |Mj) di�er in their distri-
butional form. Prior sensitivity analysis is perhaps also the easiest case to tackle, since it requires
no essential structural changes to the cINN, which is augmented to accept the one-hot encoded
model index as an additional conditioning variable.

The second corresponds to a setting in which, once again, the simulator remains conceptually
and functionally the same, but some components of θ are treated as �xed and some as varying.
In this case, some parts of the latent space z are shared among all models, whereas others are
missing whenever a subset of the model parameters is treated as �xed. In other words, a complete
parameter vector is reduced from θ ∈ RD to θj ∈ RDj with Dj ≤ D for each model j. Two
potential approaches for performing meta-amortized Bayesian inference in such a setting appear
viable. In the �rst, each reduced parameter space Θj is augmented to Θ′j , with additional dummy
parameters following a simple distribution (e.g., Gaussian), such that each augmented θ′j has the
same dimensionality. A disadvantage of this approach is, that the inference network needs to
learn an identity transformation between the dummy parameters and the corresponding latent
variables, which seems inelegant. In the second approach, missing parameters are encoded with
zeros and the loss function is masked, such that each zj is optimized only from the remaining
parameters. A disadvantage of this approach is that it is less straightforward to implement and
might lead to training instabilities.

The third scenario corresponds to the task of comparing essentially di�erent generative mech-
anisms assumed to account for the same data. In this case, eachMj is implemented as a di�erent
simulator gj and the number of parameters might or might not di�er between the simulators.
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Such a scenario would require learning disjoint latent spaces zj for each simulator. It might even
necessitate separate inference networks (with a shared summary network) for each model inM
or a completely di�erent neural architecture altogether.

As could be gathered from this short exposition, many problems lurking on the path towards
a universal framework for meta-amortized simulation-based inference remain unsolved and many
unsuspected challenges are yet to reveal themselves. However, since meta-amortized inference
appears to be a desirable goal for many scienti�c domains, future research should explore various
promising avenues for actually attaining it.
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This chapter brie�y reviews four concrete applications of our ideas for amortized Bayesian infer-
ence to real-world modeling problems. The details of these modeling scenarios have already been
described in the corresponding papers [31, 94, 135, 172], so the purpose of this chapter is merely to
convey the gist of each particular application and describe how our developed frameworks con-
tributed to solving the problem of inference.

8.1 A Bayesian BrainModel of Adaptive Behavior

In this work1, we proposed and validated a new computational Bayesian model accounting for in-
dividual performance in the Wisconsin Card Sorting Test (WCST), an established clinical tool for
measuring set-shifting and de�cient inhibitory processes on the basis of environmental feedback
[6, 67].

Performance in WCST is usually measured via a rough summary metric such as the number
of correct/incorrect responses or pre-de�ned psychological scoring criteria (see for instance [67]).
These metrics form the basis for inferring the underlying cognitive processes recruited by the task.
However, a major shortcoming of this approach is that it merely assumes the cognitive processes
to be inferred without specifying an explicit process model. Moreover, summary measures do
not utilize the full information present in the data, such as trial-by-trial �uctuations or relevant
agent-environment interactions. For this reason, crude scoring measures are often insu�cient to
disentangle the dynamics of the relevant cognitive components.

To address this shortcoming, we formalized the interaction between the task’s structure, the
received feedback, and the participant’s behavior by building a model of the underlying informa-
tion processing mechanisms used to infer the hidden rules of the task environment. Furthermore,
we embedded the new model within the mathematical framework of the Bayesian Brain Theory
(BBT), according to which beliefs about hidden environmental states are dynamically updated
following the logic of Bayesian inference [48, 91].

The simple controlled setting (environment) realized by the WCST consists of a target and a set
of stimulus cards with geometric �gures which vary according to three perceptual features: color
(red, green, blue, yellow), shape (triangle, star, cross, circle), and number of objects (1, 2, 3, 4).
Participants in the test have to infer the correct classi�cation principle by trial and error using the
examiner’s or computer’s feedback. The feedback carries a positive or a negative signal informing
the participant whether her choice of action was appropriate or not. Moreover, modeling adaptive
behavior in the WCST from a Bayesian perspective is straightforward, since observable actions

1M. D’Alessandro, S. T. Radev, A. Voss, and L. Lombardi. “A Bayesian brain model of adaptive behavior:
an application to the Wisconsin Card Sorting Task”. PeerJ 8, 2020, e10316
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Figure 8.1: Estimated information processing dynamics of two exemplary individuals [31]. (A) Trial-by-
trial information-theoretic measures of an individual with SD characterized by very low �exibil-
ity and very high information loss; (B) Trial-by-trial information-theoretic measures of a healthy
control individual characterized by relatively high �exibility and low information loss. Labels C
and E on the y-axis indicate correct and error responses.
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emerge from the interaction between the internal probabilistic model of the agent and a set of
discrete environmental states.

The main contributions of our modeling work were thus threefold. First, we developed a two-
level model of adaptive agent-environment interaction, consisting of a cognitive and an information-
theoretic component. The cognitive component decomposes performance in the WCST into two
interpretable parameters: flexibility and information loss. The information-theoretic component
transforms the parameters into dynamic measures of belief updating, surprise, and internal model
uncertainty. Second, we performed extensive simulation studies for ensuring reasonable compu-
tational faithfulness and model sensitivity. Third, we applied the model to a sample of individuals
with substance dependence (SD) and a sample of healthy controls to account for (mal)adaptive
task performance in a principled way. For the latter two tasks, we had to resort to amortized infer-
ence with BayesFlow, since the likelihood function of our custom dynamic model is unknown.
Overcoming this intractability with BayesFlow (using a recurrent summary network), we could
perform both simulation-based calibration, parameter recovery, and inference on real data in a
matter of seconds, once training had converged. The entire training phase took approximate 12
hours wall-clock time on a laptop with a graphics card.

Our initial application showed promising results in explaining adaptive behavior in the WCST.
Figure 8.1 depicts the model-derived information processing dynamics of an individual with SD
(upper panel) and a healthy control (lower panel). Indeed, patterns of belief updating (Bayesian
surprise), surprisal (Shannon surprise), and model uncertainty (Entropy) are very di�erent for the
two individuals, highlighting the ability of the model to discriminate between sub-optimal and
nearly-optimal performance via multiple sources of information (see [31] for a detailed interpre-
tation).

8.2 Jumping to Conclusion? A Lévy-FlightModel of
DecisionMaking

In this work2, we formally tested whether a Lévy �ight model, assuming an α-stable noise distri-
bution with a free parameterα can provide a more accurate description of performance in simple
binary decision making tasks than a classical di�usion model, assuming a Gaussian noise distribu-
tion.

Distributions with fat tails, such as the Cauchy distribution or the Lévy distribution, are char-
acterized by an increased probability for extreme events, compared to a Gaussian distribution [95].
Moreover, fat-tailed models incorporating so-called Lévy �ights have been applied in a variety of
research contexts. For instance, such models have proven useful to account for animal foraging
behavior. The Lévy �ight foraging hypothesis states that in certain natural environments, (trun-
cated) Lévy �ights optimize random searches. Accordingly, the hypothesis implies that biological
organisms have evolved to exploit occasional large divergences in their wandering movements dur-
ing foraging, which are best accounted for by Lévy �ights [168].

In our study on human decision making [172], we compared the relative �t of four evidence
accumulation models applied to a color discrimination and a lexical decision task. In the color

2E. M. Wieschen, A. Voss, and S. Radev. “Jumping to conclusion? a lévy �ight model of decision making”.
TQMP 16:2, 2020, pp. 120–132
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discrimination task, participants were tasked to indicate whether there were more orange or more
blue pixels in a set of speci�cally designed stimuli. In the lexical decision task, participants were
tasked to indicate whether a presented string of letters was an existing German word or a mean-
ingless sequence. The candidate models included:M1 - a parsimonious version of the di�usion
model with Gaussian noise;M2 - a model with anα-stable distribution for the noise of evidence
accumulation;M3 a full version of the di�usion model with inter-trial variability for drift, start-
ing point and non-decision time; andM4 a model with alpha as a free parameter and all previous
inter-trial variability parameters. Note, that the all-time favorite Gaussian distribution is a special
case of the stable family with a stability value ofα = 2.0. Lower values ofα imply a higher prob-
ability of extreme events and thus occasional large jumps in the evidence accumulation process.

The inclusion of stable noise in the accumulation process renders numerical evaluation of the
likelihood intractable. Thus, we train a separate BayesFlow network for each of the candidate
models, in order to ensure that all models are comparably estimated within the same Bayesian
framework. The training phase for each model took less than 12 hours on a laptop with GPU
acceleration. In contrast, subsequent parameter recovery, calibration checks, and inference on the
experimental data took a couple of seconds.

Our initial results suggest, in accordance with previous results [169], that the simple Lévy model
(M1) yields a superior �t than the simple di�usion model (M2) for both experimental tasks. In
addition, the complex Lévy model (M4) had a superior �t than the complex di�usion model
(M3). Finally, each of the complex models (including inter-trial variability parameters) exhibited
a superior �t than each of the simpler models. We speculate, that such a result might be explained
by a particular property of the experiments: The longer duration possibly induces larger �uctua-
tions in performance which is best captured by the inter-trial variability parameters (see [172] for
a more in-depth interpretation).

8.3 Insights from BayesianModeling in a OneMillion
Sample

In this work, we applied BayesFlow to elucidate cross-sectional age di�erences in cognitive param-
eters as indexed by the main di�usion model parameters. A large number of studies from the last
decades have reported that processing speed, typically measured as mean response time (RT) in
simple cognitive tasks, signi�cantly slows down in old age and starts to decline in young and mid-
dle adulthood [78, 143]. We challenged this notion by carrying out a comprehensive model-based
analysis on a massive, publicly available data set (M > 1 000 000) collected during the course of
Project Implicit [173]. Notably, this sample was multiple orders of magnitude larger than the data
sets used in all previous di�usion model studies combined. Accordingly, our approach was able to
provide unique and robust �ndings on age-related patterns regarding processing speed, decision
caution, and non-decision components of RTs.

Furthermore, applying Bayesian di�usion modeling to a sample of such magnitude appears
to be a task insurmountable by standard Bayesian (or non-Bayesian, for that matter) methods.
Thus, we resorted to BayesFlow with a deep invariant summary network for e�cient amortized
inference. In this way, fully Bayesian inference with BayesFlow (training and inference phase)
on the entire sample took less than two days on a standard computer. We also estimated, that
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Figure 8.2: Mean correct response times (RTs) and main di�usion model parameters as a function of age.
Black points indicate parameter means computed separately for each age (in years). Bars indicate
standard deviations (only shown for every second year). Red lines denote the Bayesian piece-
wise ridge regression model’s mean predictions, which describe the observed means fairly well.
The shaded red region denotes the uncertainty (standard deviation) of the piece-wise model’s
predictions. The dashed lines indicate the mean change points estimated from the per-age-
group averaged data, with the full posterior distributions (scaled for readability) of the change
points shown at the bottom of each plot. Both the data- and model-implied standard deviations
highlight the great variability within each year of age. Nevertheless, the year-speci�c means sug-
gest a clear and consistent pattern for mean correct RT and each parameter. The �gure depicts
drift rates and boundary separations for the incongruent condition and non-decision times ob-
tained from correct responses.
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applying MCMC for the same number of posterior samples per data set (participant) would have
taken more years than are currently available to any human scientist.

Our analysis pipeline followed the steps advocated by a principled Bayesian work�ow [144]
which ensure a transparent presentation of computational faithfulness and model adequacy. Fol-
lowing parameter estimation, we applied a Bayesian change point regression of each cognitive
estimate (and also mean RT) on age. The results from one of the two experimental conditions
are depicted in Figure 8.2 (parameter estimates in the other condition do not exhibit qualitatively
di�erent age-related patterns).

Importantly, our results suggest a clear non-linear association between drift rate (as an index
of processing speed) and age, which was strikingly di�erent than the one implied by mean RTs
and far more informative than the age di�erences found in previous di�usion model studies (cf.
Figure 8.2). Thus, our model-based analysis suggests a picture of age di�erences in cognitive pa-
rameters yielding a radically di�erent implication than the one based on model-free analysis of
raw RT data.

8.4 OutbreakFlow: Model-Based Bayesian Inference of
Disease Outbreak Dynamics

In this work3, we applied a version of BayesFlow for dynamic (stateful) models to infer important
disease characteristics and transmission dynamics of the Covid-19 pandemic in Germany. Infer-
ence of hidden disease-related parameters is of utmost importance in the case of new outbreaks in
order to forecast their progression and guide e�ective public health measurements. Accordingly,
mathematical models that provide a reliable representation of the processes driving the dynamics
of an epidemic are an essential tool for this task (see for example [81]).

In order to account for the speci�c nature of the initial Covid-19 outbreak in Germany, we
speci�ed a custom compartmental model consisting of three sub-models: a disease model, an ob-
servation model, and an intervention model.

The disease model is represented by a system of non-linear ordinary di�erential equations (ODEs)
comprising six compartments: susceptible (S), exposed (E - infected individuals who do not show
symptoms and are not yet infectious), infected (I - symptomatic cases that are infectious), carrier
(C - infectious individuals who recover without being detected), recovered (R), and dead (D).

The intervention model represents the time-varying transmission rate λ(t). Following [34], we
de�ned three change points encoding an assumed transmission rate reduction in response to pub-
lic health measures (e.g., lockdown, social distancing) imposed by the German authorities. Each
change point is represented by a piece-wise linear function with three degrees of freedom: the
strength of interventions and the time interval (start and end point) for the e�ect to fully mani-
fest itself.

The observation model represents the deviations between o�cially reported case counts and
their true values. It comprises three sources of systematic and unsystematic errors: the reporting

3S. T. Radev, F. Graw, S. Chen, N. Mutters, V. Eichel, T. Bärnighausen, and U. Köthe. “Model-
based Bayesian inference of disease outbreak with invertible neural networks”. arXiv preprint
arXiv:2010.00300, 2020
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Figure 8.3: Marginal posteriors of all 34 model parameters inferred from data from entire Germany along-
side median and MAP summary statistics. Gray lines depict prior distributions for comparison
with the posteriors. Vertical dashed lines indicate posterior medians.

delay, the weekly modulation (since testing and reporting activities are considerably reduced on
weekends), and a symmetric t-distributed noise term describing random �uctuations.

Due to the complexity of this composite model and the need to apply the same model repeat-
edly to di�erent federal states, we resort to e�cient simulation-based inference with BayesFlow
(see [135] for details regarding network architectures). Furthermore, amortized Bayesian infer-
ence appears especially advantageous in epidemiological contexts, where the same model is esti-
mated in multiple populations (countries, cultures) or at di�erent scales (states, regions). Indeed,
in the current application, we were able to demonstrate e�cient amortized inference and excellent
predictive performance with a single architecture applied simultaneously to epidemiological data
from Germany as a whole and all sixteen German federal states.

Marginal parameter posteriors for Germany as a whole are depicted in Figure 8.3. Posterior
predictions and forecasts for new infections, recoveries, and deaths are further depicted in Fig-
ure 8.4. We observe that median predictions of our model follow very closely the reported cumu-
lative number of cases across all federal states. Furthermore, the o�cially reported cases are very
well represented by the uncertainty bounds derived from the parameter posteriors, with predic-
tion uncertainty growing as we move towards the future (cf. predictions after the dotted vertical
lines in Figure 8.4). When interpreting these results, the reader should be aware that mechanistic
models like ours only describe the average behavior of entire compartments, in contrast to agent-
based models. Accordingly, the given CIs quantify our uncertainty about the inferred parameter
averages and cannot be interpreted as a measure of the variability between individual cases.

Our estimates suggest that a considerable number of individuals (a fraction of 60-80 % of cases)
might have gone undetected through the course of the Covid-19 outbreak in Germany, con�rming
results from previous studies in other countries [32, 115, 128]. However, our posteriors also suggest
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8 Applications

Figure 8.4: Model-based predictions and forecasts of new cases obtained by inferring model parameters
from epidemiological data available for reported infected, assumed recovered and deaths by
Covid-19 from entire Germany. Cases to the left of the vertical dashed line were used for pos-
terior checking (model training) and cases to the right for posterior forecasts (predictions) on
upcoming data.

that there is non-negligible uncertainty surrounding this estimate when derived in a purely model-
based manner. Moreover, di�erent summary statistics (e.g., means, medians, MAPs) derived from
non-symmetric posteriors o�er slightly di�erent conclusions. The latter observation highlights
the need to consider the full posteriors and corresponding credibility intervals when aiming to
draw substantive conclusions and possible forecasts for the progression of the epidemic or the
e�ect of speci�c public health interventions.
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9 Outlook

The current thesis presented frameworks and ideas for scaling up many steps of a complete Bayesian
work�ow with a focus on cognitive modeling. A cornerstone notion of this thesis was to employ
generative neural networks for amortized Bayesian parameter inference, model comparison and
validation when working with intractable simulators whose behavior as a whole is too complex to
be described analytically. We presented various frameworks for tackling di�erent types of mod-
els (e.g., stateless vs. stateful) and Bayesian tasks (e.g., parameter estimation, model comparison,
model calibration). A common theme was splitting Bayesian analysis into two conceptual phases:
i) a training phase, in which the networks gradually become domain experts in solving the Bayesian
tasks they are optimized for, and ii) a downstream inference phase, in which the networks are ef-
�ciently applied to extract information from real-world observations about quantities of interest
(e.g., model parameters or model plausibility). Further, we explored potential developments to-
wards meta-amortized Bayesian inference and discussed related challenges standing in the way of
such a generalized framework. Finally, we presented some applications of BayesFlow to a number
of complex estimation problems. In the following, we brie�y go through some further topics left
for future research beyond those mentioned in previous chapters.
Dynamic parameters In this thesis, we have focused exclusively on models de�ned by a �xed
number of parameters θ. However, some dynamic models might incorporate parameters which
are a function of time (or another variable), implying that a di�erent set of parameters θ(t) is
available at each time point t. For instance, realistic spatio-temporal models of disease outbreaks
strive to capture relevant disease characteristics θ(t, s) as a function of time t and space s [24],
introducing yet another dimension to the parameter space. While this setting poses no inherent
problems for our evidential framework for model comparison, it presents a challenge for param-
eter estimation with BayesFlow.

One approach to amortized inference with such models would be to re-parameterize the prob-
lem so that we can estimate a �xed-size set of parameters ω of which the time-varying parameter
vector θ(ω, t) is a deterministic function. This approach is then easily amenable to amortized
inference with BayesFlow, and is the one we followed in [31] for recovering trial-by-trial informa-
tion processing dynamics or in [135] for recovering the time-varying transmission rate of Covid-19
in Germany. However, not all models naturally admit such a re-parameterization, so estimating
the original θ(t) might be inescapable in these cases. Thus, another viable approach is to modify
the summary and inference networks in order to capture the dynamic structure of the problem.
For instance, the inference network can be easily implemented as a generative recurrent network
which outputs a latent embedding z(t) for each θ(t). In this way, it can interact with a recur-
rent summary network in the form of a probabilistic sequence-to-sequence architecture [124, 151]
Transformer networks utilizing neural attention mechanisms [83, 164] appear as another promis-
ing option for tackling dynamic models without recurrent networks.
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9 Outlook

Hyperparameter optimization A common aspect of our frameworks for amortized Bayesian in-
ference is the potentially large number of hyperparameter settings that might require �ne-tuning
by the user for optimal performance on a given Bayesian task. For instance, the most important
hyperparameters for BayesFlow are: optimizer settings (e.g., learning rate, adaptive weights, de-
cay); summary network design (e.g., type of modular architecture, number of layers and neurons
in each module); inference network design (e.g., type of �ow, number of layers, structure of each
internal network); training schedule (e.g., online vs. o�ine learning). This makes general experi-
ence with neural networks highly advantageous when working with our frameworks, to say the
least.

So far, in our simulated experiments and applications, we could empirically ascertain that some
hyperparameters are more important than others. For instance, optimizer settings appear to be
vital for stable training. When working with the Adam optimizer [84], smaller learning rates (i.e.,
α < 0.001) and the inclusion of learning rate decay generally lead to more stable convergence
than larger learning rates and no decay. On the other hand, using larger networks consisting of
3 to 10 coupling layers does not seem to hurt performance or destabilize training, even if the
simulator to be inverted is relatively simple [133]. Based on our results, we expect that a single
architecture should be able to perform well on similar simulators from a given domain (e.g., one
architecture for all EAMs [172] or one architecture for all compartmental models [135]). Future
research should investigate the impact of modern hyperparameter optimization methods, such as
Bayesian optimization [41]. Moreover, Bayesian optimization, or other black-box optimization
methods or search algorithms can easily be integrated into our frameworks (e.g., in a pre-training
phase with utilizing a small number of simulations).

Optimal experimental design Optimal experimental design (OED) in a Bayesian context is a
mathematical framework for making e�cient use of limited experimental resources when per-
forming Bayesian modeling [21, 46, 110]. A majority of OED approaches revolve around the no-
tion of expected information gain (EIG), which quanti�es the expected reduction in entropy (un-
certainty) when replacing the prior with the posterior under the marginal distribution over exper-
imental observations. For instance, in static design optimization (DO), a researcher sets up a sim-
ulation involving di�erent models in di�erent experimental contexts and picks the con�guration
which yields the highest EIG. No further optimization happens during the actual experiment.
Di�erently, in adaptive design optimization (ADO), the EIG is computed (estimated) on each
trial and subsequent trials are chosen in order to maximize the discriminability between candi-
date models or the sharpness of the posterior in a single-model setting.

Unfortunately, obtaining accurate approximations of the EIG even for simpler models is com-
putationally demanding and nearly infeasible with non-amortized methods for Bayesian updat-
ing. Variational OED o�ers a promising approach for amortizing di�erent aspects of OED [46].
Moreover, utilizing neural networks for e�ciently maximizing a lower bound on the EIG (i.e.,
variational autoencoders, VAEs, [87]), variational methods are able to yield considerable e�ciency
gains. However, vanilla VAEs maximizing a lower bound on the actual (intractable) criterion, the
so called ELBO criterion, su�er from some rather consequential problems, as aptly demonstrated
by [178]. Further, in contrast to normalizing �ows realized via invertible neural networks, vanilla
variational methods o�er no theoretical guarantee for learning the correct target posterior when
employed for the task of Bayesian updating.
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Our proposed frameworks for amortized Bayesian parameter estimation and model compar-
ison appear suitable for amortizing OED. For instance, BayesFlow can be adapted for estimat-
ing the EIG in either static DO or ADO. Further, our evidential framework can be employed in
multi-model DO or ADO contexts. Such an integration is possible, since our networks can be
augmented to process arbitrary contextual information. Moreover, we can emulate Bayesian up-
dating by training the networks with a variable number of observationsN (using algorithmically
aligned networks), such that amortization over increasing N is enabled during inference. Thus,
future research should investigate the utility of our frameworks for amortizing OED and compare
them to variational approaches.
Model-aware learning Finally, our frameworks currently operate in a model-agnostic manner,
that is, the neural estimators treat the simulator purely as a black-box data generator. For re-
searchers, on the other hand, the neural networks (in addition to reality itself) are uninterpretable
black-boxes while the simulator serves, at least in theory, as a human-interpretable, white-box com-
putational model. Thus, it is possible that the networks can pro�t from some prior “knowledge”
of the model’s structure (e.g., in the form of gradients or other information) or generative scope in
order to learn even more e�ciently the resulting probabilistic mappings. The networks themselves
could guide the model to produce more realistic arti�cial observations, for instance, by restricting
the generative scope of the simulator.

Sequential neural posterior estimation (SNPE, [60]) methods o�er a neat way to gradually
transform the prior p(θ) into a sharper proposal p̂(θ) (eventually becoming the target poste-
rior) through iterative re�nement. In this way, the generative scope of the joint Bayesian model
p(θ,x) also becomes narrower, concentrating around the actually observed data x(obs). Thus,
SNPE methods implement one promising form of network-simulator interaction. One conse-
quence of this approach, however, is that such an interaction necessarily reduces amortization to
a case-wise level, since the neural density estimator needs to be re-trained for each observed data
set. Needless to say, such repetitions become increasingly computationally taxing in data-rich ap-
plications. Future research should therefore explore other forms of model-aware learning, which
enable model-wise or even meta-amortized Bayesian inference.
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10 Conclusion

Reality is noisy and messy, and there is no grand simulator of things in sight. What is more, our
models can only restrict their scope to increasingly smaller empirical nooks, solving, at best, tiny
fractions of an in�nite jigsaw puzzle. As we, researchers in need of cognition, go through the
process of building new models and discarding old ones, we require the right tools to foster our
epistemic achievements. At the time of writing, deep learning continues to enjoy a vibrant hype,
refurbishing the methodological equipment of many quantitative sciences. The behavioral sci-
ences, despite being more resistant to change than fellow disciplines, are also enjoying their fair
share of the rapidly expanding trend. When it comes to model-based inference, deep learning
innovations are currently transforming the way models are �t to data and employed for draw-
ing substantive conclusions or deriving reliable forecasts. Moreover, uncertainty (an ancient con-
cept) and its quanti�cation are becoming more and more important in deep learning theory and
practice. Bayesian methods, deeply rooted in probability theory, are currently viewed by many
researchers as the gold-standard for uncertainty-aware inference, but other approaches or gener-
alizations might push through in the not-so-distant future. In a way, this thesis ventured into a
discourse between deep learning and scienti�c modeling with a focus on cognitive science and
mathematical psychology. It brought together ideas for dramatically accelerating Bayesian infer-
ence by using non-Bayesian neural networks designed to deal with the data types encountered by
researchers working in various areas of knowledge. The general idea of using black-box estimators
to learn white-box scienti�c models from computer simulations is certainly not new, but is still
largely underutilized in the behavioral and cognitive sciences. Most importantly, future research
should further foster the discourse between deep learning (or artificial intelligence, in marketing
jargon) and the behavioral sciences due to the potential upside of such a creative interaction. In-
deed, human researchers and decision-makers can de�nitely learn something from deep learning
agents surpassing human performance in various real-world tasks. On the other hand, neural net-
works can also learn something from studying the structure of human behavior and cognition.
Luckily, the global connectedness of the modern world makes such mutual learning a rather ef-
fortless endeavor. Finally, models of human behavior and cognition need to come to terms with
the buzzword of the century: complexity. We have begun to realize, that simple models can only
do so much in aiding our understanding of emergent phenomena. On the other hand, we have
grown suspicious of opaque, overparameterized neural networks capable of solving overly speci�c
tasks. It is thus very well possible, that future models of cognition and behavior become more and
more uninterpretable (i.e., more black-boxy) in the pursuit of complexity. On the other hand,
future neural network might become more and more interpretable (i.e., less black-boxy) due to
our need for cognition. As always, predictions are hard, especially about the future.
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BayesFlow: Learning Complex Stochastic Models
with Invertible Neural Networks

Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe

Abstract—Estimating the parameters of mathematical models
is a common problem in almost all branches of science. However,
this problem can prove notably difficult when processes and
model descriptions become increasingly complex and an explicit
likelihood function is not available. With this work, we propose a
novel method for globally amortized Bayesian inference based on
invertible neural networks which we call BayesFlow. The method
uses simulation to learn a global estimator for the probabilistic
mapping from observed data to underlying model parameters. A
neural network pre-trained in this way can then, without addi-
tional training or optimization, infer full posteriors on arbitrary
many real datasets involving the same model family. In addition,
our method incorporates a summary network trained to embed
the observed data into maximally informative summary statistics.
Learning summary statistics from data makes the method appli-
cable to modeling scenarios where standard inference techniques
with hand-crafted summary statistics fail. We demonstrate the
utility of BayesFlow on challenging intractable models from
population dynamics, epidemiology, cognitive science and ecology.
We argue that BayesFlow provides a general framework for
building amortized Bayesian parameter estimation machines for
any forward model from which data can be simulated.

I. INTRODUCTION

THE goal of Bayesian analysis is to infer the underlying
characteristics of some natural process of interest given

observable manifestations x. In a Bayesian setting, we assume
that we already posses sufficient understanding of the forward
problem, that is, a suitable model of the mechanism that
generates observations from a given configuration of the hidden
parameters θ. This forward model can be provided in two
forms: In likelihood-based approaches, the likelihood function
p(x |θ) is explicitly known and can be evaluated analytically
or numerically for any pair (x,θ). In contrast, likelihood-
free approaches only require the ability to sample from the
likelihood. The latter approaches are typically realized by
simulation programs, which generate synthetic observations
by means of a deterministic function g of parameters θ and
independent noise (i.e., random numbers) ξ:

xi ∼ p(x |θ) ⇐⇒ xi = g(θ, ξi) with ξi ∼ p(ξ) (1)

In this case, the likelihood p(x |θ) is only defined implicitly
via the action of the simulation program g, but calculation of
its actual numerical value for a simulated observation xi is
impossible. This, in turn, prohibits standard statistical inference.

Likelihood-free problems arise, for example, when p(x |θ)
is not available in closed-form, or when the forward model is
defined by a stochastic differential equation, a Monte-Carlo
simulation, or a complicated algorithm [27], [49], [47], [51].
In this paper, we propose a new Bayesian solution to the
likelihood-free setting in terms of invertible neural networks.

Bayesian modeling leverages the available knowledge about
the forward model to get the best possible estimate of the
posterior distribution of the inverse model:

p(θ |x1:N ) =
p(x1:N |θ) p(θ)∫
p(x1:N |θ) p(θ) dθ

In Bayesian inference, the posterior encodes all information
about θ obtainable from a set of observations x1:N = {xi}Ni=1.
The observations are assumed to arise from N runs of the
forward model with fixed, but unknown, true parameters θ∗.
Bayesian inverse modeling is challenging for three reasons:

1) The right-hand side of Bayes’ formula above is always
intractable in the likelihood-free case and must be
approximated.

2) The forward model is usually non-deterministic, so that
there is intrinsic uncertainty about the true value of θ.

3) The forward model is typically not information-
preserving, so that there is ambiguity among possible
values of θ.

The standard solution to these problems is offered by approxi-
mate Bayesian computation (ABC) methods [45], [10], [39],
[47]. ABC methods approximate the posterior by repeatedly
sampling parameters from a proposal (prior) distribution
θ(l) ∼ p(θ) and then simulating multiple datasets by running
the forward model xi ∼ p(x |θ(l)) for i = 1...N . If the
resulting dataset is sufficiently similar to the actually observed
dataset xo1:N , the corresponding θ(l) is retained as a sample
from the desired posterior, otherwise rejected. Stricter similarity
criteria lead to more accurate approximations of the desired
posterior at the price of higher and oftentimes prohibitive
rejection rates.

More efficient methods for approximate inference, such as
sequential Monte Carlo (ABC-SMC), Markov-Chain Monte
Carlo variants [44], or the recent neural density estimation
methods [16], [38], [30], optimize sampling from a proposal
distribution in order to balance the speed-accuracy trade-off of
vanilla ABC methods. More details can be found in the section
Related Work and in the excellent review by [9].

All sampling methods described above operate on the level of
individual datasets, that is, for each observation sequence x1:N ,
the entire estimation procedure for the posterior must be run
again from scratch. Therefore, we refer to this approach as case-
based inference. Running estimation for each individual dataset
separately stands in contrast to amortized inference, where
estimation is split into a potentially expensive upfront training
phase, followed by a much cheaper inference phase. The goal of
the upfront training phase is to learn an approximate posterior
p̂(θ |x1:N ) that works well for any observation sequence
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x1:N . Evaluating this model for specific observations xo1:N
is then very fast, so that the training effort amortizes over
repeated evaluations (see Figure 1 for a graphical illustration).
The break-even between case-based and amortized inference
depends on the application and model types, and we will report
comparisons in the experimental section. Our main aim in this
paper, however, is the introduction of a general approach to
amortized Bayesian inference and the demonstration of its
excellent accuracy in posterior estimation for a variety of
popular forward models.

To make amortized inference feasible in practice, it must
work well for arbitrary dataset sizes N . Depending on data
acquisition circumstances, the number of available observations
for a fixed model parameter setting may vary considerably,
ranging from N = 1 to several hundreds and beyond. This
has not only consequences for the required architecture of
our density approximators, but also for their behavior: They
must exhibit correct posterior contraction. Accordingly, the
estimated posterior p̂(θ |x1:N ) should get sharper (i.e., more
peaked) as the number N of available observations increases.
In the simplest case, the posterior variance should decrease at
rate 1/N , but more complex behavior can occur for difficult
(e.g., multi-modal) true posteriors p(θ |x1:N ).

We incorporate these considerations into our method by
integrating two separate deep neural networks modules (detailed
in the Methods section; see also Figure 1), which are trained
jointly on simulated data from the forward model: a summary
network and an inference network.

The summary network is responsible for reducing a set
of observations x1:N of variable size to a fixed-size vector
of learned summary statistics. In traditional likelihood-free
approaches, the method designer is responsible for selecting
suitable statistics for each application a priori [33], [32],
[43], [45]. In contrast, our summary networks learn the most
informative statistics directly from data, and we will show
experimentally (see Experiment 3.7) that these statistics are
superior to manually constructed ones. Summary networks
differ from standard feed-forward networks because they
should be independent of the input size N and respect the
inherent functional and probabilistic symmetries of the data. For
example, permutation invariant networks are required for i.i.d.
observations [6], and recurrent networks [15] or convolutional
networks [29] for data with temporal or spatial dependencies.

The inference network is responsible for learning the true
posterior of model parameters given the summary statistics
of the observed data. Since it sees the data only through
the lens of the summary network, all symmetries captured
by the latter are automatically inherited by the posterior.
We implement the inference network as an invertible neural
network. Invertible neural networks are based on the recent
theory and applications of normalizing flows [3], [25], [18],
[13], [26]. Flow-based methods can perform exact inference
under perfect convergence and scale favourably from simple
low-dimensional problems to high-dimensional distributions
with complex dependencies, for instance, the pixels of an
image [25]. For each application/model of interest, we train
an invertible network jointly with a corresponding summary
network using simulated data from the respective known

forward model with reasonable priors. After convergence of
this forward training, the network’s invertibility ensures that
a model for the inverse model is obtained for free, simply
by running inference through the model backwards. Thus,
our networks can perform fast amortized Bayesian inference
on arbitrary many datasets from a given application domain
without expensive case-based optimization. We call our method
BayesFlow, as it combines ideas from Bayesian inference and
flow-based deep learning.

BayesFlow draws on major advances in modern deep proba-
bilistic modeling, also referred to as deep generative modeling
[6], [25], [2], [24]. A hallmark idea in deep probabilistic
modeling is to represent a complicated target distribution
as a non-linear bijective transformation of some simpler
latent distribution (e.g., Gaussian or uniform), a so called
pushforward. Density estimation of the target distribution, a
very complex problem, is thus reduced to learning a non-linear
transformation, a task that is ideally suited for gradient-based
neural network training via standard backpropagation. During
the inference phase, samples from the target distribution are
obtained by sampling from the simpler latent distribution and
applying the inverse transformation learned during the training
phase (see Figure 1b for a high-level overview). Using this
approach, recent applications of deep probabilistic models have
achieved unprecedented performance on hitherto intractable
high-dimensional problems [6], [25], [18].

In the context of Bayesian inference, the target distribution is
the posterior p(θ |x1:N ) of model parameters given observed
data. We leverage the fact that we can simulate arbitrarily large
amounts of training data from the forward model in order to
ensure that the summary and invertible networks approximate
the true posterior as well as possible. During the inference
phase, our model can either numerically evaluate the posterior
probability of any candidate parameter θ, or can generate a
posterior sample θ(1),θ(2), ...,θ(L) of likely parameters for
the observed data xo1:N . In the Methods section, we show
that our networks indeed sample from the correct posterior
under perfect convergence. In summary, the contributions of
our BayesFlow method are the following:

• Globally amortized approximate Bayesian inference with
invertible neural networks;

• Learning maximally informative summary statistics from
raw datasets with variable number of observations instead
of relying on restrictive hand-crafted summary statistics;

• Theoretical guarantee for sampling from the true posterior
distribution with arbitrary priors and posteriors;

• Parallel computations applicable to both forward simula-
tions and neural network optimization;

To illustrate the utility of BayesFlow, we first apply it to two
toy models with analytically tractable posteriors. The first is
a multivariate Gaussian with a full covariance matrix and a
unimodal posterior. The second is a Gaussian mixture model
with a multimodal posterior. Then, we present applications to
challenging models with intractable likelihoods from population
dynamics, cognitive science, epidemiology, and ecology and
demonstrate the utility of BayesFlow in terms of speed,
accuracy of recovery, and probabilistic calibration. Alongside,
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(a) Case-based inference (b) Globally amortized inference with BayesFlow

Fig. 1: Graphical illustration of the main differences between case-based (neural) density estimation methods and BayesFlow.
(a) Case-based methods require a separate optimization loop for each observed dataset from a given research domain. When
case-based methods incorporate a training phase (e.g., APT), it must be repeated for each new dataset. Summary statistics are
manually selected and may thus be sub-optimal; (b) BayesFlow incorporates a global upfront training (before any real data are
collected) via simulations from the forward model (left panel). Summary and inference network are trained jointly, resulting
in higher accuracy than hand-crafted summary statistics. In the inference phase (right panel), BayesFlow works entirely in a
feed-forward manner, that is, no training or optimization happens in this phase. The upfront training effort is therefore amortized
over arbitrary many observed datasets from a research domain working on the same model family. Note that the solid and
dashed plates are swapped between case-based Bayesian inference and the training phase of BayesFlow.

we introduce several performance validation tools.

A. Related Work

BayesFlow incorporates ideas from previous machine learn-
ing and deep learning approaches to likelihood-free inference
[31], [41], [33], [43], [22]. The most common approach
has been to cast the problem of parameter estimation as a
supervised learning task. In this setting, a large dataset of the
form D = {(h(x

(m)
1:N ),θ(m))}Mm=1 is created by repeatedly

sampling from p(θ) and simulating an artificial datasets x1:N

by running g(θ, ξ) with the sampled parameters. Usually, the
dimensionality of the simulated data is reduced by computing
summary statistics with a fixed summary function h(x1:N ).
Then, a supervised learning algorithm (e.g., random forest
[43], or a neural network [41]) is trained on the summary
statistics of the simulated data to output an estimate of the
true data generating parameters. Thus, an attempt is made
to approximate the intractable inverse model θ = g−1(x, ξ).
A main shortcoming of supervised approaches is that they
provide only limited information about the posterior (e.g.,
point-estimates, quantiles or variance estimates) or impose
overly restrictive distributional assumptions on the shape of
the posterior (e.g., Gaussian).

Our ideas are also closely related to the concept of optimal
transport maps and its application in Bayesian inference [12],
[40], [8], [5]. A transport map defines a transformation between
(probability) measures which can be constructed in a way to
warp a simple probability distribution into a more complex
one. In the context of Bayesian inference, transport maps
have been applied to accelerate MCMC sampling [40], to
perform sequential inference [12], and to solve inference

problems via direct optimization [5]. In fact, BayesFlow can
be viewed as a parameterization of invertible transport maps
via invertible neural networks. An important distinction is that
BayesFlow does not require an explicit likelihood function for
approximating the target posteriors and is capable of amortized
inference.

Similar ideas for likelihood-free inference are incorporated
in the recent automatic posterior transformation (APT) [16],
and the sequential neural likelihood (SNL) [38] methods.
APT iteratively refines a proposal distribution via masked
autoregressive flow (MAF) networks to generate parameter
samples which closely match a particular observed dataset.
SNL, in turn, trains a masked autoencoder density estimator
(MADE) neural network within an MCMC loop to speed-up
convergence to the true posterior. Even though these methods
also entail a relatively expensive learning phase and a cheap
inference phase, posterior inference is amortized only for a
single dataset. Thus, the learning phase needs to be run through
for each individual dataset (see Figure 1a). In contrast, we
propose to learn the posterior globally over the entire range of
plausible parameters and datasets by employing a conditional
invertible neural network (cINN) estimator (see Figure 1b).
Previously, INNs have been successfully employed to model
data from astrophysics and medicine [2]. We adapt the model
to suit the task of parameter estimation in the context of
mathematical modeling and develop a probabilistic architecture
for performing fully Bayesian and globally amortized inference
with complex mathematical models.
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II. METHODS

A. Notation

In the following, the number of parameters of a mathematical
model will be denoted as D, and the number of observations in
a dataset as N . We denote data simulated from the mathematical
model of interest as x1:N = (x1,x2, ...,xN ), where each
individual xi can represent a scalar or a vector. Observed
or test data will be marked with a superscript o (i.e., xo1:N ).
The parameters of a mathematical model are represented as
a vector θ = (θ1, θ2, ..., θD), and all trainable parameters
of the invertible and summary neural networks as φ and ψ,
respectively. When a dataset consists of observations over a
period of time, the number of observations will be denotes as
T .

B. Learning the Posterior

Assume that we have an invertible function fφ : RD → RD,
parameterized by a vector of parameters φ, for which the
inverse f−1φ : RD → RD exists. For now, consider the case
when raw simulated data x1:N of size N = 1 is entered
directly into the invertible network without using a summary
network. Our goal is to train an invertible neural network which
approximates the true posterior as accurately as possible:

pφ(θ |x) ≈ p(θ |x) (2)

for all possible θ and x. We reparameterize the approximate
posterior pφ in terms of a conditional invertible neural network
(cINN) fφ which implements a normalizing flow between θ
and a Gaussian latent variable z:

θ ∼ pφ(θ |x)⇐⇒ θ = f−1φ (z;x) with z ∼ ND(z |0, I)
(3)

Accordingly, we need to ensure that the outputs of f−1φ (z;x)
follow the target posterior p(θ |x). Thus, we seek neural
network parameters φ̂ which minimize the Kullback-Leibler
(KL) divergence between the true and the model-induced
posterior for all possible datasets x. Therefore, our objective
becomes:

φ̂ = argmin
φ

Ep(x) [KL(p(θ |x) || pφ(θ |x))] (4)

= argmin
φ

Ep(x)
[
Ep(θ |x) [log p(θ |x)− log pφ(θ |x)]

]

(5)

= argmax
φ

Ep(x)
[
Ep(θ |x) [log pφ(θ |x)]

]
(6)

= argmax
φ

∫∫
p(x,θ) log pφ(θ |x)dxdθ (7)

Note, that the log posterior density p(θ |x) can be dropped
from the optimization objective in Eq.6, as it does not depend
on the neural network parameters φ. In other words, we seek
neural network parameters φ̂ which maximize the posterior
probability of data-generating parameters θ given observed
data x for all θ and x. Since fφ(θ;x) = z by design, the
change of variable rule of probability yields:

pφ(θ |x) = p(z = fφ(θ;x))

∣∣∣∣det

(
∂fφ(θ;x)

∂θ

)∣∣∣∣ (8)

Thus, we can re-write our objective as:

φ̂ = argmax
φ

∫∫
p(x,θ) log pφ(θ |x)dxdθ (9)

= argmax
φ

∫∫
p(x,θ)

(
log p(fφ(θ;x)) +

log
∣∣detJfφ

∣∣ )dxdθ (10)

where we have abbreviated ∂fφ(θ;x)/∂θ (the Jacobian of fφ
evaluated at θ and x) as Jfφ . Due to the architecture of our
cINN, the log

∣∣detJfφ
∣∣ is easy to compute (see next section

for details).
Utilizing simulations from the forward model (Eq.1), we

can approximate the expectations by minimizing the Monte-
Carlo estimate of the negative of Eq.10. Accordingly, for a
batch of M simulated datasets and data-generating parameters
{(x(m),θ(m))}Mm=1 we have:

φ̂ = argmin
φ

1

M

M∑

m=1

− log pφ(θ(m) |x(m)) (11)

= argmin
φ

1

M

M∑

m=1

(
− log p(fφ(θ(m);x(m)))− log

∣∣∣detJ
(m)
fφ

∣∣∣
)

(12)

= argmin
φ

1

M

M∑

m=1




∥∥∥fφ(θ(m);x(m))
∥∥∥
2

2

2
− log

∣∣∣detJ
(m)
fφ

∣∣∣




(13)

We treat Eq.13 as a loss function L(φ) which can be
minimized with any stochastic gradient descent method. The
first term follows from Eq.12 due to the fact that we have
prescribed a unit Gaussian distribution to z. It represents the
negative log of ND(z |0, I) ∝ exp(

∥∥− 1
2z
∥∥2
2
). The second

term controls the rate of volume change induced by the learned
non-linear transformation from θ to z achieved by fφ. Thus,
minimizing Eq.13 ensures that z follows the prescribed unit
Gaussian.

The correctness of the learned posterior can be guaranteed
in the following way, assuming the network is able to reach the
global minimum of the loss (i.e. under perfect convergence).

Proposition 1. Assume that the cINN architecture and domain
of φ are chosen such that φ̂ is the global minimum of the
objective in Eq.10. Then, the latent output distribution will be
statistically independent of the conditioning data, pφ̂(z | x) ⊥
p(x). As a result, the samples transformed backwards from
p(z) will follow the true posterior, that is:

f−1
φ̂

(z;x) ∼ p(θ | x) with z ∼ ND(z |0, I) (14)

Proof. For short, we denote p(z) := ND(z |0, I), and the
distribution of network outputs as p(fφ̂(θ;x)) := pφ̂(z | x).
Due to KL(·‖·) ≥ 0 (Gibbs’ inequality), the global minimum
of the objective is achieved exactly when the argument in Eq.4
becomes 0. To relate this to the sampling process, we note the
invariance of KL under diffeomorphic transformations, from
which it follows that

KL
(
pφ̂(z | x) ‖ p(z)

)
= 0. (15)
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Considering p(z) ⊥ p(x) and pφ̂(z |x) = p(z) (from Eq.15),
this also implies pφ̂(z |x) ⊥ p(x), which means the latent
output distribution is the same for any fixed x we choose.
This motivates the validity of taking samples from p(z)
and transforming them back using the condition, to generate
samples from the posterior. By definition of the model, the
generated samples f−1

φ̂
(z,x) with z ∼ p(z) follow pφ̂(θ |x).

The proposition therefore holds when the argument in Eq.4 is
zero.

We now generalize our formulation to datasets with arbitrary
numbers of observations. If we let the number of observations
N vary and train a summary network x̃ = hψ(x1:N ) together
with the cINN, our main objective changes to:

φ̂, ψ̂ = argmax
φ,ψ

Ep(x,θ,N) [log pφ(θ |hψ(x1:N ))] (16)

and its Monte Carlo estimate to:

φ̂, ψ̂ = argmin
φ,ψ

1

M

M∑

m=1




∥∥∥fφ(θ(m);hψ(x
(m)
1:N )

∥∥∥
2

2

2

− log
∣∣∣det

(
J

(m)
fφ

)∣∣∣
)

(17)

In order to make the estimation of p(θ |x1:N ) tractable, we
assume that there exists a vector η of sufficient statistics
that captures all information about θ contained in x1:N in a
fixed-size (vector) representation. For hψ(x1:N ) to be a useful
estimator for η, both should convey the same information about
θ, as measured by the mutual information:

MI(θ, hψ(x1:N )) ≈MI(θ,η) (18)

Since we do not know η, we can enforce this requirement
only indirectly by minimizing the Monte Carlo estimate of
Eq.16. The following proposition states that, under perfect
convergence, samples from a cINN still follow the true posterior
given the outputs of a summary networks.

Proposition 2. Assume that we have a perfectly converged
cINN fφ and a perfectly converged summary network hψ.
Assume also, that there exists a vector η of sufficient summary
statistics for x1:N . Then, independently sampling z ∼ p(z)
and applying f−1φ (z;hψ(x1:N )) to each z yields independent
samples from p(θ |x1:N ).

Proof. Perfect convergence of the networks under Eq.16
implies KL(p(θ |x1:N ) || pφ(θ |hψ(x1:N ))) = 0. This, in
turn, implies that MI(θ, hψ(x1:N )) = MI(θ,η), because a
perfect match of the densities would be impossible if hψ(x1:N )
contained less information about θ than η. Therefore, the proof
reduces to that of Proposition 1. Note, that whenever the KL
divergence is driven to a minimum, hψ(x1:N ) is a maximally
informative statistic [11].

In summary, the approximate posteriors obtained by the
BayesFlow method are correct if the summary and invertible
networks are perfectly converged. In practice, however, perfect
convergence is unrealistic and there are three sources of error
which can lead to incorrect posteriors. The first is the Monte
Carlo error introduced by using simulations from g(θ, ξ) to

approximate the expectation in Eq.16. The second is due to
a summary network which may not fully capture the relevant
information in the data or when sufficient summary statistics do
not exist. The third is due to an invertible network which does
not accurately transform the true posterior into the prescribed
Gaussian latent space. Even though we can mitigate the Monte
Carlo error by running the simulator g(θ, ξ) more often, the
latter two can be harder to detect and alleviate in a principled
way. Nevertheless, recent work on probabilistic symmetry [6]
and algorithmic alignment [52] can provide some guidelines
on how to choose the right summary network for a particular
problem. Additionally, the depth as well as the building blocks
(to be explained shortly) of the invertible chain can be tuned to
increase the expressiveness of the learned transformation from
θ-space to z-space. The benefits of neural network depth have
been confirmed both in theory and practice [28], [4], so we
expect better performance in complex settings with increasing
network depth.

C. Composing Invertible Networks

The basic building block of our cINN is the affine coupling
block (ACB) [13]. Each ACB consists of four separate fully con-
nected neural networks denoted as s1(·), s2(·), t1(·), t2(·). An
ACB performs an invertible non-linear transformation, which
means that in addition to a parametric mapping fφ : RD → RD
it also learns the inverse mapping f−1φ : RD → RD for
free. Denoting the input vector of fφ as u and the output
vector as v, it follows that fφ(u) = v and f−1φ (v) = u.
Invertibility is achieved by splitting the input vector into two
parts u = (u1,u2) with u1 = u1:D/2 and u2 = uD/2+1:D

(where D/2 is understood as a floor division) and performing
the following operations on the split input:

v1 = u1 � exp(s1(u2)) + t1(u2) (19)
v2 = u2 � exp(s2(v1)) + t2(v1) (20)

where � denotes element-wise multiplication. The outputs
v = (v1,v2) are then concatenated again and passed to the
next ACB. The inverse operation is given by:

u2 = (v2 − t2(v1))� exp(−s2(v1)) (21)
u1 = (v1 − t1(u2))� exp(−s1(u2)) (22)

This formulation ensures that the Jacobian of the affine
transformation is a strictly upper or a lower triangular matrix
and therefore its determinant is very cheap to compute.
Furthermore, the internal functions s1(·), s2(·), t1(·), t2(·) can
be represented by arbitrarily complex neural networks, which
themselves need not be invertible, since they are only ever
evaluated in the forward direction during both the forward and
the inverse pass through the ACBs. In our applications, we
parameterize the internal functions as fully connected neural
networks with exponential linear units (ELU).

In order to ensure that the neural network architecture is
expressive enough to represent complex distributions, we chain
multiple ACBs, so that the output of each ACB becomes the
input to the next one. In this way, the whole chain remains
invertible from the first input to the last output and can



6

be viewed as a single function parameterized by trainable
parameters φ.

In our applications, the input to the first ACB is the parameter
vector θ, and the output of the final ACB is a d-dimensional
vector z representing the non-linear transformation of the
parameters. As described in the previous section, we ensure that
z follows a unit Gaussian distribution via optimization, that
is, p(z) = ND(z |0, I). Fixed permutation matrices are used
before each ACB to ensure that each axis of the transformed
parameter space z encodes information from all components
of θ.

In order to account for the observed data, we feed the
learned summary vectors into all internal networks of each
ACB (explained shortly). Intuitively, in this way we realize
the following process: the forward pass maps data-generating
parameters θ to z-space using conditional information from
the data x1:N , while the inverse pass maps data points from
z-space to the data-generating parameters of interest using the
same conditional information.

D. Summary Network

Since the number of observations usually varies in practical
scenarios (e.g., different number of measurements or time
points) and since datasets might exhibit various redundancies,
the cINN can profit from some form of dimensionality reduc-
tion. As previously mentioned, we want to avoid information
loss through restrictive hand-crafted summary statistics and,
instead, learn the most informative summary statistics directly
from data. Therefore, instead of feeding the raw simulated
or observed data to each ACB, we pass the data through an
additional summary network to obtain a fixed-sized vector of
learned summary statistics x̃ = hψ(x1:N ).

The architecture of the summary network should be aligned
with the probabilistic symmetry of the observed data. An
obvious choice for time series-data is an LSTM-network
[15], since recurrent networks can naturally deal with long
sequences of variable size. Another choice might be a 1D fully
convolutional network [29], which has already been applied
in the context of likelihood-free inference [41]. A different
architecture is needed when dealing with i.i.d. samples of
variable size. Such data are often referred to as exchangeable,
or permutation invariant, since changing the order of individual
elements does not change the associated likelihood or posterior.
In other words, if SN (·) is an arbitrary permutation of N
elements, the following should hold for the posterior:

p(θ |x1:N ) = p(θ |SN (x1:N )) (23)

Following [6], we encode probabilistic permutation invariance
by implementing a permutation invariant function through an
equivariant non-linear transformation followed by a pooling
operator (e.g., sum or mean) and another non-linear transfor-
mation:

x̃ = hψ1

(
N∑

i=1

hψ2
(xi)

)
(24)

where hψ1
and hψ2

are two different fully connected neural
networks. In practice, we stack multiple equivariant and

invariant functions into an invariant network in order to achieve
higher expressiveness [6].

We optimize the parameters ψ of the summary network
jointly with those of the cINN chain via backpropagation.
Thus, training remains completely end-to-end, and BayesFlow
learns to generalize to datasets of different sizes by suitably
varying N during training of a permutation invariant summary
network or varying sequence length during training of a
recurrent/convolutional network.

To incorporate the observed or simulated data x1:N , each of
the internal networks of each ACB is augmented to take the
learned summary vector x̃ of the data as an additional input.
The output of each ACB then becomes:

v1 = u1 � exp(s1(u2, x̃)) + t1(u2, x̃) (25)
v2 = u2 � exp(s2(v1, x̃)) + t2(v1, x̃) (26)

Thus, a complete pass through the entire conditional invertible
chain can be expressed as fφ(θ; x̃) = z together with the
inverse operation f−1φ (z; x̃) = θ. The inverse transformation
during inference is depicted in Figure 2.

E. Putting It All Together

Algorithm 1 describes the essential steps of the BayesFlow
method using an arbitrary summary network and employing
an online learning approach.

The backpropagation algorithm works by computing the
gradients of the loss function with respect to the parameters
of the neural networks and then adjusting the parameters, so
as to drive the loss function to a minimum. We experienced
no instability or convergence issues during training with the
loss function given by Eq.16. Note, that steps 2-13 and 16-20
of Algorithm 1 can be executed in parallel with GPU support
in order to dramatically accelerate convergence and inference.
Moreover, steps 16-20 can be applied in parallel to an arbitrary
number of observed datasets after convergence of the networks
(see Figure 2 for a full graphical illustration).

In what follows, we apply BayesFlow to two toy models with
a unimodal and multimodal posteriors, respectively, and then
use it to perform Bayesian inference on challenging models
from population dynamics, cognitive science, epidemiology,
and ecology.1 We deem these models suitable for an initial val-
idation, since they differ widely in the generative mechanisms
they implement and the observed data they aim to explain.
Therefore, good performance on these disparate examples
underlines the broad empirical utility of the BayesFlow method.
Details for models’ setup can be found in Appendix C.

III. EXPERIMENTS

A. Training the Networks

We train all invertible and summary networks described
in this paper jointly via backpropagation. For all following
experiments, we use the Adam optimizer with a starter learning
rate of 10−3 and an exponential decay rate of .95. We perform
50 000 to 100 000 iterations (i.e., mini-batch update steps)

1Code and simulation scripts for all current applications are available at
https://github.com/stefanradev93/cINN.
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Algorithm 1 Amortized Bayesian inference with the BayesFlow method

1: Training phase (online learning with batch size M ):
2: repeat
3: Sample number of observations N ∼ U(Nmin, Nmax).
4: for m = 1, ...,M do
5: Sample model parameters from prior: θ(m) ∼ p(θ).
6: for i = 1, ..., N do
7: Sample a noise instance: ξi ∼ p(ξ).
8: Run the simulation (cf. Eq.1) to create a synthetic observation: x(m)

i = g(θ(m), ξi).
9: Pass the dataset x(m)

1:N through the summary network: x̃(m) = hψ(x
(m)
1:N ).

10: Pass (θ(m), x̃(m)) through the inference network in forward direction: z(m) = fφ(θ(m); x̃(m)).
11: Compute loss according to Eq.17 from the training batch

{
(θ(m), x̃(m), z(m))

}M
m=1

.
12: Update neural network parameters φ,ψ via backpropagation.
13: until convergence to φ̂, ψ̂
14:
15: Inference phase (given observed or test data xo1:N ):
16: Pass the observed dataset through the summary network: x̃o = hψ̂(xo1:N ).
17: for l = 1, ..., L do
18: Sample a latent variable instance: z(l) ∼ ND(0, I).
19: Pass (x̃o, z(l)) through the inference network in inverse direction: θ(l) = f−1

φ̂
(z(l); x̃o).

20: Return
{
θ(l)
}L
l=1

as a sample from p(θ |xo1:N )

Fig. 2: Inference with pre-trained summary and inference
networks. The posterior is approximated given real observed
data via independent samples from a learned pushforward
distribution. Thus, knowledge about the mapping between data
and parameters (the inverse model) is compactly encoded within
the weights of the two networks.

for each experiment, and report the results obtained by the
converged networks. Note, that we did not perform an extensive
search for optimal values of network hyperparameters, but use
a default BayesFlow with 5 to 10 ACBs and a summary vector
of size 128 for all examples in this paper (see Appendix C for
more details on summary network architectures). All networks
were implemented in Python using the TensorFlow library [1]
and trained on a single-GPU machine equipped with NVIDIA R©

GTX1060 graphics card.
Regarding the data generation step, we take an approach

which incorporates ideas from online learning [36] where
data are simulated by Eq.1 on demand. Correspondingly, a
dataset x1:N , or a batch of M datasets {x(i)

1:N}Mi=1, is generated

on the fly and then passed through the neural network. This
training approach has the advantage that the network never
experiences the same input data twice. Moreover, training can
continue as long as the network keeps improving (i.e., the loss
keeps decreasing), since overfitting in the classical sense is
nearly impossible. However, if simulations are computationally
expensive and researchers need to experiment with different
networks or training hyperparameters, it might be beneficial to
store and re-use simulations, since simulation and training in
online learning are tightly intertwined.

Once the networks have converged, we store the trained
networks and use them to perform amortized inference on a
separate validation set of datasets. The pre-trained networks can
also be shared among a research community so that multiple
researchers/labs can benefit from the amortization of inference.

B. Performance Validation

To evaluate the performance of BayesFlow in the following
application examples, we consider a number of different
metrics:
• Normalized root mean squared error (NRMSE) - to asses

accuracy of point-estimates in recovering ground-truth
parameter values;

• Coefficient of determination (R2) - to assess the proportion
of variance in ground-truth parameters that is captured by
the point estimates;

• Re-simulation error (Errsim) - to assess the predictive
mismatch between the true data distribution and the data
distribution generated with the estimated parameters (i.e.,
posterior predictive check);

• Calibration error (Errcal, [2]) - to assess the coverage
of the approximate posteriors (i.e., whether credibility
intervals are indeed credible);
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• Simulation-based calibration (SBC, [46]) - to visually
detect systematic biases in the approximate posteriors;

Details for computing all metrics are given in Appendix B.

C. Proof of Concept: Multivariate Normal Distribution
As a proof-of-concept, we apply the BayesFlow method to

recover the posterior mean vector of a toy multivariate normal
(MVN) example. For a single D-dimensional MVN vector, the
forward model is given by:

µ(m) ∼ ND(µ |0, I) (27)

x(m) ∼ ND(x |µ(m),Σ) (28)

where in this illustrative case we assume a single D-
dimensional sample per observation (N = 1). If the covariance
matrix Σ is known, the posterior of the mean vector µ has a
closed-form which is also a MVN p(µ |x,Σ) = Nd(µ |m,Λ)
with posterior precision matrix given by Λ−1 = I + Σ−1 and
posterior mean given by m = ΛΣ−1x [7]. We can thus
generate multiple batches of the form {(x(m),µ(m))}Mm=1 and
pass them directly through an invertible network. Since the
ground-truth posterior is Gaussian, we can compute the KL
divergence as a measure of mismatch between the true and
approximate posteriors in closed form.

We run three experiments with D ∈ {5, 50, 500} where the
size of the ACB blocks was doubled for each successive D.
To asses results, we compute the R2 and NRMSE between
approximate and true means as well as the KL divergence
between approximate and true distributions on 100 test datasets.
To compute the approximate covariance matrix, we draw 5000
samples from the approximate posteriors for D = 5 and D =
50 and 50000 samples for D = 500.

The KL divergence for the 5-D and 50-D MVNs reached
essentially 0 after 2-3 epochs of 1000 iterations indicating that
this is an easy problem for BayesFlow, and almost perfect
recovery of the true posteriors is possible. The KL divergence
for the 500-D MVN model reached 0.37 after 50 epochs, which
represents a negligible increase in entropy relative to the true
posterior (0.05% nats) and indicates decent approximation in
light of the high dimensionality of the problem.

D. Multimodal Posterior - Gaussian Mixture Model
In order to test whether the BayesFlow method can recover

multimodal posteriors, we apply it to a generative Gaussian
mixture model (GMM). Multimodal posteriors arise in practice,
for example, when forward models are defined as mixtures
between different processes, or when models exhibit large
multivariate trade-offs in their parameter space (e.g., there are
multiple separate regions of posterior density with plausible
parameter values). Therefore, it is important to show that our
method is able to capture such behavior and does not suffer
from mode collapse.

Following [2], we construct a scenario in which the observed
data x is a one-hot encoded vector representing one of the hard
labels red, green, blue, or yellow (i.e., a single observation, thus
N = 1). The parameters θ = (θ1, θ2) are the 2D coordinates 2

2Note that this is not the typical GMM setup, as we construct the example
such that the mixture assignments (labels) are observed and the data coordinates
are the latent parameters.

Fig. 3: Results on the GMM toy example with colors indicating
cluster assignments. Approximation of the multimodal posterior
become closer to the ground truth distribution with increasing
depth (number of ACBs) of the conditional invertible network.

of points drawn from a mixture of eight Gaussian clusters with
centers distributed around the origin in a clockwise manner and
unit variance (see Figure 3, upper left). The first four clusters
are assigned the label red, the next two the label green, and the
remaining two the labels blue and yellow. The posterior p(θ |x)
is composed of the clusters indexed by the corresponding label.
We perform the experiment multiple times by increasing the
depth of the BayesFlow starting from 1 ACB block up to 5
ACB blocks. In this way, we can investigate the effects of
cINN depth on the quality of the approximate multimodal
posteriors. We train each BayesFlow for 50 epochs and draw
8000 samples from the approximate posteriors obtained by the
trained models.

Results for all BayesFlows are depicted in Figure 3. We
observe that approximations profit from having a deeper cINN
chain, with cluster separation becoming clearer when using
more ACBs. This confirms that our method is capable of
recovering multimodal posteriors.

E. Stochastic Time-Series Model - The Ricker Model

In the following, we estimate the parameters of a well-
known discrete stochastic population dynamics model [51].
With this example, we are pursuing several goals: First, we
want to demonstrate that the BayesFlow method is able to
accurately recover the parameters of an actual model with
intractable likelihood by learning summary statistics from raw
data. Second, we show that BayesFlow can deal adequately with
parameters that are completely unrelated to the data by reducing
estimates to the corresponding parameters’ prior. Third, we
compare the global performance of the BayesFlow method
to that of related methods capable of amortized likelihood-
free inference. Finally, we demonstrate the desired posterior
contraction and improvement in estimation with increasing
number of observations.

Discrete population dynamics models describe how the
number of individuals in a population changes over discrete
units of time [51]. In particular, the Ricker model describes
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the number of individuals xt in generation t as a function of
the expected number of individuals in the previous generation
by the following non-linear equations:

xt ∼ Pois(ρNt) (29)

ξt ∼ N (0, σ2) (30)

Nt+1 = rNte
−Nt+ξt (31)

for t = 1, ..., T where Nt is the expected number of individuals
at time t, r is the growth rate, ρ is a scaling parameter and ξt is
random Gaussian noise. The likelihood function for the Ricker
model is not available in closed form, and the model is known
to exhibit chaotic behavior [33]. Thus, it is a suitable candidate
for likelihood-free inference. The parameter estimation task
consists of recovering θ = (ρ, r, σ) from the observed one-
dimensional time-series data x1:T where each xt ∈ N.

What if the data does not contain any information about
a particular parameter? In this case, any good estimation
method should detect this, and return the prior of the particular
parameter. To test this, we append a random uniform variable
u ∼ U(0, 1) to the parameter vector θ and train BayesFlow
with this additional dummy parameter. We expect that the
networks ignore this dummy parameter, that is, we assume that
the estimated posterior of u resembles the uniform prior.

We compare the performance of BayesFlow to the following
recent methods capable of amortized likelihood-free inference:
conditional variational autoencoder (cVAE) [35], cVAE with
autoregressive flow (cVAE-IAF) [26], DeepInference with het-
eroscedastic loss [41], approximate Bayesian computation with
an LSTM neural network for learning informative summary
statistics (ABC-NN) [22] and quantile random forest (ABC-RF)
[43]. For training the models, we simulate time-series from the
Ricker model with varying lengths. The number of time points
T is drawn from a uniform distribution T ∼ U(100, 500) at
each training iteration.

All neural network methods were trained for 100 epochs
with 1000 iterations each on simulated data from the Ricker
model. The ABC-RF method was fitted on a reference table
with 200 000 datasets, since the method does not allow for
online learning and increasing the reference table did not seem
to improve performance. In order to avoid using hand-crafted
summary statistics for the ABC-RF method, we input summary
vectors obtained by applying the summary network trained
jointly with the cINN. Thus, the ABC-RF method has the
advantage of using maximally informative statistics as input.
We validate the performance of all methods on an independent
test set of 500 datasets generated with T = 500. We report
performance metrics for each method and each parameter in
Table I.

Parameters r and ρ seem to be well recoverable by all
methods considered here. The σ parameter turns out to be
harder to estimate, with BayesFlow and the ABC-NN method
performing best. Further, BayesFlow performs very well across
all parameters and metrics. Importantly, the calibration error
Errcal obtained by BayesFlow is always low, indicating that
the shape of the approximate posterior closely matches that
of the true posteriors. Variational methods (cVAE, cVAE-
IAF) experience some problems recovering the posterior of σ.

The ABC-NN and ABC-RF methods seem to recover point
estimates with high accuracy but the approximate posteriors
of the former exhibit relatively high calibration error. The
ABC-RF method can only estimate posterior quantiles, so no
comparable calibration metric could be computed.

Further results are depicted in Figure 4. Inspecting the full
posteriors obtained by all methods on an example test dataset,
we note that only BayesFlow and the ABC-NN methods
are able to recover the uninformative posterior distribution
of the dummy noise variable u (Figure 4a). Moreover, the
importance of a Bayesian treatment of the Ricker model
becomes clear when looking at the posteriors of σ. On most
test datasets, the posterior density spreads over the entire prior
range (high posterior variance) indicating large uncertainty in
the obtained estimates. Moreover, the shapes of the marginal
parameter posteriors vary widely across validation datasets,
which highlights the importance of avoiding ad hoc restrictions
on allowed posterior shapes (see Figure S5 for examples).
We also observe that parameter estimation with BayesFlow
becomes increasingly accurate when more time points are
available (Figure 4b). Parameter recovery is especially good
with the maximum number of time points (see Figure 4c).
Finally, (Figure 4d) reveals a notable posterior contraction
across increasing number of time points available to the
summary network.

F. A Model of Perceptual Decision Making - The Lévy-Flight
Model

In the following, we estimate the parameters of a stochastic
differential equation model of human decision making. We
perform the first Bayesian treatment of the recently proposed
Lévy-Flight Model (LFM), as its intractability has so far
rendered traditional non-amortized Bayesian inference methods
prohibitively slow [49].

With this example, we first want to show empirically that
BayesFlow is able to deal with i.i.d. datasets of variable size
arising from N independent runs of a complex stochastic sim-
ulator. For this, we inspect global performance of BayesFlow
over a wide range of dataset sizes. Additionally, we want to
show the advantage of amortized inference compared to case-
based inference in terms of efficiency and recovery. For this,
we apply BayesFlow along with four other recent methods
for likelihood-free inference to a single dataset and show that
in some cases the speed advantage of amortized inference
becomes noticeable even after as few as 5 datasets. Crucially,
researchers often fit the same models to different datasets, so if
a pre-trained model exists, it would present a huge advantage
in terms of efficiency and productivity.

We focus on the family of evidence accumulator models
(EAMs) which describe human decision making by a set
of neurocognitively motivated parameters [42]. EAMs are
most often applied to choice reaction times (RT) data to
obtain an estimate of the underlying processes governing
categorization and (perceptual) decision making. In its most
general formulation, the forward model of EAMs takes the
form of a stochastic ordinary differential equation (ODE):

dx = vdt+ ξ
√
dt (32)
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(a) Full posteriors from all methods for an example Ricker dataset.

(b) Performance over all T s

(c) Parameter recovery (T = 500)

(d) Posterior contraction with increasing T

Fig. 4: Results on the Ricker model. (a) Approximate posteriors obtained by all implemented methods on a single Ricker
dataset. Note that only BayesFlow and ABC-NN are able to approximate the uniform posterior of u; (b) NRMSE and R2

performance metrics over all T s obtained by the BayesFlow method. We observe that parameter estimation remains good over
all T s, and becomes progressively better as more data is available (shaded regions indicate bootstrap 95% CIs); (c) Parameter
recovery with BayesFlow for the maximum number of generations used during training (T = 500); (d) Posterior contraction in
terms of posterior standard deviation for each parameter across increasing number of available generations (shaded regions
indicate bootstrap 95% CIs).

TABLE I: Performance results on the Ricker model across all estimation methods

BayesFlow cVAE cVAE-IAF DeepInference ABC-NN ABC-RF

Errcal r 0.017 ± 0.007 0.014 ± 0.007 0.058 ± 0.017 0.122 ± 0.016 0.164 ± 0.015 -
σ 0.013 ± 0.007 0.419 ± 0.011 0.382 ± 0.013 0.184 ± 0.021 0.119 ± 0.014 -
ρ 0.084 ± 0.018 0.121 ± 0.017 0.188 ± 0.018 0.111 ± 0.019 0.283 ± 0.012 -

NRMSE r 0.041 ± 0.002 0.047 ± 0.004 0.047 ± 0.006 0.052 ± 0.003 0.053 ± 0.003 0.044 ± 0.004
σ 0.077 ± 0.005 0.137 ± 0.004 0.124 ± 0.006 0.108 ± 0.004 0.077 ± 0.004 0.081 ± 0.005
ρ 0.018 ± 0.001 0.016 ± 0.002 0.019 ± 0.002 0.019 ± 0.002 0.033 ± 0.002 0.021 ± 0.001

R2 r 0.980 ± 0.003 0.973 ± 0.005 0.973 ± 0.007 0.968 ± 0.005 0.966 ± 0.004 0.977 ± 0.004
σ 0.919 ± 0.011 0.745 ± 0.020 0.792 ± 0.020 0.841 ± 0.014 0.919 ± 0.010 0.912 ± 0.011
ρ 0.996 ± 0.001 0.997 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.986 ± 0.002 0.994 ± 0.001

Errsim - 0.038 ± 0.001 0.041 ± 0.001 0.042 ± 0.001 0.041 ± 0.001 0.048 ± 0.002 0.041 ± 0.002

Note: For each parameter, bootstrapped means (±1 standard error) of different performance metrics are displayed for all tested methods. For
each metric and each parameter, the best performance across methods is printed in bold font.
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where dx denotes a change in activation of an accumulator, v
denotes the average speed of information accumulation (often
termed the drift rate), and ξ represents a stochastic additive
component, usually modeled as coming from a Gaussian
distribution centered around 0: ξ ∼ N (0, c2).

EAMs are particularly amenable for likelihood-free inference,
since the likelihood of most interesting members of this model
family turn out to be intractable [34]. This intractability has
precluded many interesting applications and empirically driven
model refinements. Here, we apply BayesFlow to estimate
the parameters of the recently proposed Lévy-Flight Model
(LFM) [49]. The LFM assumes an α-stable noise distribution
of the evidence accumulation process which allows to model
discontinuities in the decision process. However, the inclusion
of α-stable noise (instead of the typically assumed Gaussian
noise) leads to a model with intractable likelihood:

dx = vdt+ ξdt1/α (33)
ξ ∼ AlphaStable(α, 0, 1, 0) (34)

where α controls the probability of outliers in the noise
distribution. The LFM has three additional parameters: the
threshold a determining the amount of evidence needed for
the termination of a decision process; a relative starting point,
zr, determining the amount of starting evidence available to
the accumulator before the actual decision alternatives are
presented; and an additive non-decision time t0.

During training of the networks, we simulate response times
data from two experimental conditions with two different drift
rates, since such a design is often encountered in psychological
research. The parameter estimation task is thus to recover the
parameters θ = (v0, v1, a, t0, zr, α) from two-dimensional i.i.d.
RT data x1:N where each xi ∈ R2 represents RTs obtained
in the two conditions. The number of trials is drawn from
a uniform distribution N ∼ U(100, 1000) at each training
iteration. Training the networks took a little less than a day
with the online learning approach. Inference on 1000 datasets
with 2000 posterior samples per parameter took approximately
7.39 seconds.

In order to investigate whether amortized inference is
advantageous for this model, we additionally apply a version of
the SMC-ABC algorithm available in the pyABC package [27]
to a single dataset with N = 500. Since no sufficient summary
statistics are available for EAM data, we apply the maximum
mean discrepancy (MMD) metric as a distance between the full
raw empirical RT distributions, in order to prevent information
loss [39]. Since the MMD is expensive to compute, we use
a GPU implementation to ensure that computation of MMD
is not a bottleneck for the comparison. In order to achieve
good approximation with 2000 samples from the SMC-MMD
approximate posterior, we run the algorithm for 20 populations
with a final rejection threshold ε = 0.04. We also draw 2000
samples from the approximate posterior obtained by applying
our pre-trained BayesFlow networks to the same dataset.

Along SMC-MMD, we apply three recent methods for neural
density estimation, SNPE-A [37], SNPE-B [30], and SNPE-C
([16], also dubbed APT). Since these methods all depend on
summary statistics of the data, we compute the first 6 moments

(a) Joint posteriors from BayesFlow and SMC-MMD

(b) Marginal posteriors from all methods

Fig. 5: Comparison results on the LFM model. (a) Marginal and
bivariate posteriors obtained by BayesFlow and SMC-MMD
on the single validation dataset. We observe markedly better
sharpness in the BayesFlow posteriors; (b) Marginal posteriors
obtained from all methods under comparison.

of each empirical response time distribution as well as the
fractions of correct/wrong responses. We train each method for
a single round with 100 epochs and 5000 simulated datasets,
in order to keep running time at a minimum. Also, we did not
observe improvement in performance when training for more
than one round. For each model, we sample 2000 samples
from the approximate joint posterior to align the number of
samples with those obtained via SMC-MMD.

The comparison results are depicted in Figure 5. We first
focus on the comparison with SMC-MMD on the single dataset.
Figure 5a depicts marginal and bivariate posteriors obtained
by BayesFlow and SMC-MMD. The approximate posteriors of
BayesFlow appear noticeably sharper. Observing the SCB plots
(Figure 6b), we can conclude that the approximate posteriors
of BayesFlow mirror the sharpness of the true posterior, since
otherwise the SCB plots would show marked deviations from
uniformity. Further, Figure 5b depicts the marginal posteriors
obtained from the application of each method. Noticeably,
performance and sharpness varies across the methods and
parameters, with all methods yielding good point-estimate
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(a) Performance over all trial numbers N

(b) Simulation-based calibration (SBC) at N = 1000

Fig. 6: BayesFlow results obtained on the LFM model.

TABLE II: Speed of inference and break-even for amortized
inference for the LFM model

Upfront Training Inference (1 dataset) Inference (500 datasets) Break-even after

BayesFlow 23.2 h 60 ms 3.7 s -
SMC-MMD - 5.5 h 2700 h 5 datasets
SNPE-A - 0.65 h 325 h 37 datasets
SNPE-B - 0.65 h 325 h 37 datasets
SNPE-C - 0.35 h 175 h 75 datasets

Note: Inference times for 500 datasets as well as the number of
datasets for break-even with BayesFlow for the SMC-MMD, SNPE-A,
SNPE-B, and SNPE-C methods are extrapolated from the wall-clock
running time on a single dataset, so these are approximate quantities.

recovery via posterior means in terms of the NRMSE and R2

metrics.
Importantly, Table II summarizes the advantage of amortized

inference for the LFM model in terms of efficiency. For instance,
compared to SMC-MMD, the extra effort of learning a global
BayesFlow model upfront is worthwhile even after as few as
5 datasets, as inference with SMC-MMD would have taken
more than a day to finish. On the other hand, the break-
even for SNPE-C/APT occurs after 75 datasets, so in cases
where only a few dozens of datasets are considered, case-
based inference might be preferable. However, the difficulties
in manually finding meaningful and efficiently computable
summary statistics may eat up possible savings even in this
situation. We acknowledge that our choices in this respect
might be sub-optimal, so performance comparisons should be
treated with some caution.

We note, that after a day of training, the pre-trained networks
of BayesFlow take less than 5 seconds to perform inference on
500 datasets even with maximum number of trials N = 1000.
Using the case-based SMC-MMD algorithm, 500 inference

runs would have taken more than half a year to complete. We
also note, that parallelizing separate inference threads across
multiple cores or across nodes of a (GPU) computing cluster
can dramatically increase the wall-clock speed of the case-
based methods considered here. However, the same applies
to BayesFlow training, since its most expensive part, the
simulation from the forward model, would profit the most
from parallel computing.

The global performance of BayesFlow over all validation
datasets and all trial sizes N is depicted in (Figure 6). First,
we observe excellent recovery of all LFM parameters with
NRMSEs ranging between 0.008 and 0.048 and R2 between
0.972 and 0.99 for the maximum number of trials. Importantly,
estimation remains very good across all trial numbers, and
improves as more trials become available (Figure 6a). The
parameter α appears to be most challenging to estimate,
requiring more data for good estimation, whereas the non-
decision time parameter t0 can be recovered almost perfectly for
all trial sizes. Last, the SCB histograms indicate no systematic
deviations across the marginal posteriors (Figure 6b).

G. Stochastic Differential Equations - The SIR Epidemiology
Model

With this example, we want to further corroborate the
excellent global performance and probabilistic calibration
observed for the LFM model on a non-i.i.d. stochastic ODE
model. For this, we study a compartmental model from epidemi-
ology, whose output comprises variable-sized multidimensional
and inter-dependent time-series. It is therefore of interest to
investigate how our method performs when applied to data
which is the direct output of an ODE simulator.

Compartmental models in epidemiology describe the stochas-
tic dynamics of infectious diseases as they spread over a
population of individuals [23], [20]. The parameters of these
models encode important characteristics of diseases, such
as infection and recovery rates. The stochastic SIR model
describes the transition of N individuals between three discrete
states – susceptible (S), infected (I), and recovered (R) – whose
dynamics follow the equations:

4S = −4NSI (35)
4I = 4NSI −4NIR (36)
4R = 4NIR (37)

4NSI ∼ Binomial(S, 1− exp

(
−β I

N
4t
)

) (38)

4NIR ∼ Binomial(I, 1− exp (−γ4t)) (39)

where S + I + R = N give the number of susceptible,
infected, and recovered individuals, respectively. The parameter
β controls the transition rate from being susceptible to infected,
and γ controls the transition rate from being infected to
recovered. The above listed stochastic system has no analytic
solution and thus requires numerical simulation methods for
recovering parameter values from data. Cast as a parameter
estimation task, the challenge is to recover θ = {β, γ} from
three dimensional time-series data x1:T where each xt ∈ N3

is a triple containing the number of susceptible (S), number
of infected (I), and recovered (R) individuals at time t.
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(a) Parameter recovery (T = 500) (b) Performance over all Ts

(c) Simulation-based calibration (SBC) (d) Posterior contraction over T

Fig. 7: Results obtained on the stochastic SIR model.

During training of the networks, we simulate time-series from
the stochastic SIR model with varying lengths. The number
of time points T is drawn from a uniform distribution T ∼
U(200, 500) at each training iteration. For small T , the system
has not yet reached an equilibrium (i.e., not all individuals have
transitioned from being I to R). It is especially interesting to see
if BayesFlow can recover the rate parameters, while the process
dynamics are still unfolding over time. Training the networks
took approximately two hours with the online learning approach.
Inference on 1000 datasets with 2000 posterior samples per
parameter took approximately 1.1 seconds.

The results on the SIR model are depicted in Figure 7. In line
with the previous examples, we observe very good recovery
of the true parameters, with NRMSE at T = 500 around 0.03,
and R2s around 0.99. We observe decent performance even
at smaller T s and the expected improvements as T increases.
Specifically, the posterior variance shrinks as T increases, The
SCB plots indicate that the approximate posteriors are well
calibrated, with the approximate posterior mean of β slightly
overestimating the true parameter values in the lower range.

H. Learned vs. Hand-Crafted Summaries: The Lotka-Volterra
Population Model

See Appendix A

IV. DISCUSSION

In the current work, we proposed and explored a novel
method which uses invertible neural networks to perform glob-
ally amortized approximate Bayesian inference. The method,
which we named BayesFlow, requires only simulations from

a forward model to learn an efficient probabilistic mapping
between data and parameters. We demonstrated the utility of
BayesFlow by applying it to models and data from various
research domains. Further, we explored an online learning
approach with variable number of observations per iteration.
We demonstrated that this approach leads to excellent parameter
estimation throughout the examples considered in the current
work. In theory, BayesFlow is applicable to any mathematical
forward model which can be implemented as a computer
simulation. In the following, we highlight the main advantages
of BayesFlow.

First, the introduction of separate summary and inference
networks renders the method independent of the shape or the
size of the observed data. The summary network learns a fixed-
size vector representation of the data in an automatic, data-
driven manner. Since the summary network is optimized jointly
with the inference network, the learned data representation
is encouraged to be maximally informative for inferring the
parameters’ posterior. This is particularly useful in settings
where appropriate summary statistics are not known and, as a
consequence, relevant information is lost through the choice of
sub-optimal summary functions. However, if sufficient statistics
are available in a given domain, one might omit the summary
network altogether and feed these statistics directly to the
invertible network.

Second, we showed that BayesFlow generates samples
from the correct posterior under perfect convergence without
distributional assumptions on the shape of the posterior. This is
in contrast to variational methods which optimize a lower-
bound on the posterior [26], [24], and oftentimes assume
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Gaussian approximate posteriors. Additionally, we also showed
throughout all examples that the posterior means generated by
the BayesFlow method are mostly excellent estimates for the
true values. Beyond this, the fact that the BayesFlow method re-
covers the full posterior over parameters does not necessitate the
usage of point estimates or summary statistics of the posterior.
Further, we observe the desired posterior contraction (posterior
variance decreases with increasing number of observations)
and better recovery with increasing number of observations.
These are indispensable properties of any Bayesian parameter
estimation method, since they mirror the decrease in epistemic
uncertainty and the simultaneous increase in information due
to availability of more data.

Third, the largest computational cost of BayesFlow is paid
during the training phase. Once trained, the networks can
efficiently compute the posterior for any observed dataset
arising from the forward model. This is similar to the recently
introduced prepaid method [33]. However, this method mem-
orizes a large database of pre-computed summary statistics
for fast nearest-neighbor inference, whereas a BayesFlow’s
network weights define an abstract representation of the
relationship between data and parameters over the whole space
of hidden parameters. Traditionally, abstract representations
like this only existed for analytically invertible model families,
whereas more complex forward models required case-based
inference, that is, expensive re-training for each observed
dataset. Amortized inference as realized by BayesFlow is thus
especially advantageous for exploring, testing and comparing
competing scientific hypotheses in research domains where
an intractable model needs to be fit to multiple independent
datasets.

Finally, all computations in the BayesFlow method benefit
from a high degree of parallelism and can thus utilize the
advantages of modern GPU acceleration.

These advantages notwithstanding, limitations of the pro-
posed method should also be mentioned. Although we could
provide a theoretical guarantee that BayesFlow samples from
the true joint posterior under perfect convergence, this might
not be achieved in practice. Therefore, is it essential that proper
calibration of point estimates and estimated joint posteriors
is performed for each application of the method. Fortunately,
validating a trained BayesFlow architecture is easy due to
amortized inference. Below, we discuss potential challenges
and limitations of the method.

First, the design of the summary network and inference
networks is a crucial choice for achieving optimal performance
of the method. As already mentioned, the summary network
should be able to represent the observed data without losing
essential information and the invertible network should be
powerful enough to capture the behavior of the forward model
Nevertheless, in some real-world scenarios, there might be
little guidance on how to actually construct suitable summary
networks. Recent work on probabilistic symmetry [6] and algo-
rithmic alignment [52] as well as our current experiments do,
however, provide some insights about the design of summary
networks. For instance, i.i.d. data induce a permutation invariant
distribution which is well modeled with a deep invariant
network [6]. Data with temporal or spatial dependencies are best

modeled with recurrent [21], or convolutional [41] networks.
When pairwise or multi-way relationships are particularly
informative, attention [48] or graph networks [52] appear
as reasonable choices. On the other hand, the depth of the
invertible network should be tailored to the complexity of
the mathematical model of interest. More ACBs will enable
the network to encode more complex distributions but will
increase training time. Very high-dimensional problems might
also require very large networks with millions of parameters,
up to a point where estimation becomes practically unfeasible.
However, most mathematical models in the life sciences
prioritize parsimony and interpretability, so they do not contain
hundreds or thousands of latent parameters. In any case, future
applications might require novel network architectures and
solutions which go beyond our initial recommendations.

Another potential issue is the large number of neural network
and optimization hyperparameters that might require fine-tuning
by the user for optimal performance on a given task. We
observe that excellent performance is often achieved with
default settings. Using larger networks consisting of 5 to 10
ACBs does not seem to hurt performance or destabilize training,
even if the model to be learned is relatively simple. Based on
our results, we expect that a single architecture should be able to
perform well on models from a given domain. Future research
should investigate this question of generality by applying
the method to different or even competing models within
different research domains. Future research should investigate
the impact of modern hyperparameter optimization methods
such as Bayesian optimization [14].

Finally, even though modern deep learning libraries allow
for rapid and relatively straightforward development of various
neural network architectures, the implementational burden
associated with the method is non-trivial. Thus, we are currently
developing a general user-friendly software, which will abstract
away most intricacies from the users of our method.

We hope that the new BayesFlow method will enable
researchers from a variety of fields to accelerate model-based
inference and will further prove its utility beyond the examples
considered in this paper.
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APPENDIX

A. Learned vs. Hand-Crafted Summaries: The Lotka-Volterra
Population Model

With this final example, we want to compare the performance
of our method with an LSTM summary network vs. perfor-
mance obtained with a standard set of hand-crafted summary
statistics. For this, we focus on the well-studied Lotka-Volterra
(LV) model. The LV model describes the dynamics of biological
systems in which a population of predators interacts with a
population of prey [50]. It involves a pair of first order, non-
linear, differential equations given by:

d

dt
= αu− βuv (1)

d

dt
= −γv + δβuv (2)

where u denotes the number of preys, v denotes the number of
predators, and the parameter vector controlling the interaction
between the species is θ = (α, β, γ, δ).

During training of the networks, we set the initial conditions
as u0 = 10 and v0 = 5 and consider an interval IT = 15
of discrete time units with T = 500 time steps (samples) in
between. Each sample xt in each LV time-series x1:T is thus
a 2-dimensional vector containing the number of prey and
predators in the population at time unit t.

We train two invertible neural networks. The first is trained
jointly with an LSTM summary network which outputs a 9-
dimensional learned summary statistic hψ(x1:T ). The second
uses a set of 9 typically used, hand-crafted summary statistics
[37], [38], which include: the mean of the time series; the
log variance of the time-series; the auto-correlation of each
timeseries at lags 0.2 and 0.4 time units; the cross-correlation
between the two time series. The same cINN architecture with
5 ACBs is used for both training scenarios. For each scenario,
we perform the same number of iterations and epochs. Online
learning for each training scenario took approximately 4 hours
in total wall-clock time.

The results obtained on the LV model are depicted in
Figure S1. We observe notably better recovery of the true
parameter estimates when performing inference with the learned
summary statistics. The approximate posteriors are also better
calibrated when conditioned on the set of 9 learned summary
statistics. These results highlight the advantages of using
a summary networks when no sufficient summary statistics
are available. Finally, Figure S1e and Figure S1f depict the
posteriors obtained by the two different INNs on a single
dataset with ground-truth parameters θ = (1, 1, 1, 1). Evidently,
learning the summary statistics leads to much sharper posteriors
and better point-estimate recovery.

B. Computation of Validation Metrics

Normalized Root Mean Squared Error: The normalized
root mean squared error (NRMSE) between a sample of true
parameters {θ(m)}Mm=1 and a sample of estimated parameters
{θ̂(m)}Mm=1 is given by:

NRMSE =

√√√√√
M∑

m=1

(
θ(m) − θ̂(m)

)2

θmax − θmin
(3)

Due to the normalization factor θmax−θmin, the NRMSE is
scale-independent, and thus suitable for comparing the recovery
across parameters with different numerical ranges. The NRMSE
equals zero when the estimates are exactly equal to the true
values.

Coefficient of Determination : The coefficient of determi-
nation R2 measures the proportion of variance in a sample of
true parameters {θ(m)}Mm=1 that is explained by a sample of
estimated parameters {θ̂(m)}Mm=1. It is computed as:

R2 = 1−
M∑

m=1

(
θ(m) − θ̂(m)

)2

(
θ(m) − θ̄(m)

)2 (4)

where θ̄ denotes the mean of the true parameter samples. When
R2 equals 1, the estimates are perfect reconstructions of the
true parameters.

Re-simulation Error: To compute the re-simulation error
Errsim, we first obtain an estimate of the true parameter
value given an observed (validations) dataset xo1:N by com-
puting the mean of the approximate posterior θ̃. Then, we
run the mathematical model to obtain a simulated dataset
xs1:N = g(θ̃, ξ). Finally, we compute the maximum mean
discrepancy (MMD, [17]) between the observed and the
simulated dataset MMD(xo1:N ,x

s
1:N ). The MMD is a kernel-

based metric which estimates the mismatch between two
distributions given samples from the distributions by comparing
all of their moments. It equals zero when the two distributions
are equal almost everywhere [17]). Thus, a low MMD indicates
that the distribution of xs1:N is close to the distribution of xo1:N .
Conversely, a high MMD indicates that the distribution of xs1:N
is far from the distribution of xo1:N . We report the median MMD
computed over all validation datasets.

Calibration Error: The calibration error Errcal quantifies
how well the coverage of an approximate posterior matches
the coverage of an unknown true posterior. Let αθ be the
fraction of true parameter values lying in a corresponding
α-credible interval of the approximate posterior. Thus, for a
perfectly calibrated approximate posterior, αθ should equal α
for all α ∈ (0, 1). We compute the calibration error for each
marginal posterior as the median absolute deviation |αθ − α |
for 100 equally spaced values of α ∈ (0, 1). Therefore, the
calibration error ranges between 0 and 1 with 0 indicating
perfect calibration and 1 indicating complete miscalibration of
the approximate posterior.

Kullback-Leibler Divergence: The Kullback-Leibler diver-
gence (KL) quantifies the increase in entropy incurred by
approximating a target probability distribution P with a
distribution Q. Its general form for absolutely continuous
distributions is given by

KL(P ||Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx (5)
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(a) Parameter recovery with learned summary statistics (b) Calibration with learned summary statistics

(c) Parameter recovery with hand-crafted summary statistics (d) Calibration with hand-crafted summary statistics

(e) Full posterior with learned summary statistics (f) Full posterior with hand-crafted summary statistics

Fig. S1: Comparison of recovery/calibration on the LV model with learned vs. hand-crafted summary statistics (a) Simulation-
based calibration (SBC) with learned summary statistics; (b) Parameter recovery with learned summary statistics; (c) Parameter
recovery with hand-crafted summary statistics; (d) Simulation-based calibration (SBC) with hand-crafted summary statistics; (e)
Example full posteriors obtained on a single dataset with ground-truth rate parameters θ = (1, 1, 1, 1) obtained with learned
summaries; (f) The posterior obtained from the same dataset using hand-crafted summary statistics.

where p and q denote the pdfs of P and Q. In the case
where P and Q are both multivariate Gaussian distributions,
the KL divergence can be computed in closed form [19]:

KL(P ||Q) =
1

2

[
log

det Σq

det Σp
+ Tr(Σ−1q Σp)− d+ (µp−

µq)
TΣ−1q (µp − µq)

]

(6)

where Σp and Σq denote the covariance matrices of p and
q, µp and µq the respective mean vectors, and d the number of
dimensions of the Gaussian. In the case of diagonal Gaussian
distributions, Eq.6 reduces to:

KL(P ||Q) =
d∑

i=1

(
log

σq,i
σp,i

+
σ2
p,i + (µq,i − µp,i)2

2σ2
q,i

− 1

2

)

(7)

Even though the KL divergence is not a proper distance
metric, as it is not symmetric in its arguments, it can be used
to quantify the error of approximation when a closed-form
solution is available.

Simulation-Based Calibration

Simulation-based calibration is a method to detect systematic
biases in any Bayesian posterior sampling method [46]. It is
based on the self-consistency of the Bayesian joint distribution.

Given a sample from the prior distribution θ̃ ∼ p(θ) and a
sample from the forward model x̃ ∼ p(x | θ̃), one can integrate
θ̃ and x̃ out of the joint distribution and recover back the prior
of θ:

p(θ) =

∫
p(θ, θ̃, x̃)dx̃dθ̃ (8)

=

∫
p(θ, x̃ | θ̃)p(θ̃)dx̃dθ̃ (9)

=

∫
p(θ | x̃)p(x̃ | θ̃)p(θ̃)dx̃dθ̃ (10)

If the Bayesian sampling method produces samples from
the exact posterior, the equality implied by Eq.10 should hold
regardless of the particular form of the posterior. Thus, any
violation of this equality indicates some error incurred by the
sampling method. The authors of [46] propose Algorithm 2
for visually detecting such violations:

Algorithm 2 is correct, since Eq.10 implies that the rank
statistic defined in line 5 should be uniformly distributed. Hence,
any deviations from uniformity indicate some interpretable error
in the approximate posterior [46].

C. Model Details

The Ricker Model: Summary Network. We use a bidirectional
long short-term memory (LSTM) recurrent neural network [15]
for the raw Ricker time-series. The LSTM network architecture
is a reasonable choice for this example, as it is able to capture
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Algorithm 2 Simulation-based calibration (SBC) for a single
parameter θ

1: for m = 1, ...,M do
2: Sample θ̃(m) ∼ p(θ)
3: Simulate a dataset x(m)

1:N = g(θ̃(m), ξ)

4: Draw posterior samples {θ(l)}Ll=1 ∼ pφ(θ |x(m)
1:N )

5: Compute rank statistic r(m) =
∑L
l=1 1[θ(l)<θ̃(m)]

6: Store r(m)

7: end for
8: Create a histogram of {r(i)}Mm=1 and inspect it for unifor-

mity

long-term dependencies in datasets with temporal or spatial
autocorrelations. LSTMs can also easily deal with variable-
length time-series.

Simulation. We place the following uniform priors over the
Ricker model parameters:

ρ ∼ U(0, 15) (11)
r ∼ U(1, 90) (12)
σ ∼ U(0.05, 0.7) (13)

These ranges appear to be very broad, as datasets generated
by extreme parameter values appear implausible in real-world
scenarios. Nevertheless, we stick to broad priors for training,
even though parameter recovery might degrade at the extremes.

Figure S2 depicts different simulated Ricker timeseries
generated via draws from the prior.

Fig. S2: Example Ricker datasets generated with different
parameters.

The Lévy-Flight Model: Summary Network. We use a
permutation invariant neural network [6] for the i.i.d. reaction
times (RT) data. Similarly to the toy Regression example, each
response in an RT dataset is assumed to be independent of all
others, so permutations of the dataset must lead to the same
parameter estimates.

Simulation. We place the following uniform priors over the
LFM parameters, since they are broad enough to cover the
range of realistic RT distributions encountered in empirical
choice RT scenarios:

v0 ∼ U(0, 6) (14)
v1 ∼ U(−6, 0) (15)
zr ∼ U(0.3, 0.7) (16)
a ∼ U(0.6, 3) (17)
t0 ∼ U(0.3, 1) (18)
α ∼ U(1, 2) (19)

Figure S3 depitcs different simulated RT distributions
generated via draws from the prior.

Fig. S3: Example RT distributions generated with different
parameters.

The Stochastic SIR Model: Summary Network. We use a
1D fully convolutional neural network [29] for the raw SIR
time-series into fixed-size vectors. Here, we choose a convo-
lutional network architecture over the previously mentioned
LSTM, as convolutional networks are more computationally
efficient. Further, we wanted to underline the utility of 1D
convolutional networks for multidimensional time-series data.
Finally, convolutional networks can also deal with variable
input sizes.

Simulation. We place the following uniform priors over the
two rate parameters of the stochastic SIR model:

β ∼ U(0.01, 1) (20)
γ ∼ U(0.01, β) (21)

These ranges were chosen based on empirical plausibility
of the generated SIR time-series.

Figure S4 depicts different SIR timeseries generated via
draws from the prior.

Fig. S4: Example SIR timeseries generated with different
parameters.

The Lotka-Volterra Model: Summary Network. We use a
bidirectional long short-term memory (LSTM) recurrent neural
network [15] for the raw LV time-series (as in the Ricker
example).
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Simulation. We place the following broad uniform priors
over the LV parameters. Some of the parameter combinations
produced divergent simulations, which we removed during
online learning.

α ∼ U(exp (−2), exp (2)) (22)
β ∼ U(exp (−2), exp (2)) (23)
γ ∼ U(exp (−2), exp (2)) (24)
δ ∼ U(exp (−2), exp (2)) (25)

D. Example Posteriors on Ricker Datasets

Marginal posteriors from ten validation datasets simulated
from the Ricker model are depicted in Figure S5. We observe
widely different posterior shapes, highlighting the importance
of working with arbitrary posterior shapes.

Fig. S5: Ten example Ricker marginal posteriors
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Amortized Bayesian Model Comparison with
Evidential Deep Learning

Stefan T. Radev, Marco D’Alessandro, Ulf K. Mertens, Andreas Voss, Ullrich Köthe, Paul-Christian Bürkner

Abstract—Comparing competing mathematical models of com-
plex natural processes is a shared goal among many branches of
science. The Bayesian probabilistic framework offers a principled
way to perform model comparison and extract useful metrics
for guiding decisions. However, many interesting models are
intractable with standard Bayesian methods, as they lack a closed-
form likelihood function or the likelihood is computationally too
expensive to evaluate. With this work, we propose a novel method
for performing Bayesian model comparison using specialized
deep learning architectures. Our method is purely simulation-
based and circumvents the step of explicitly fitting all alternative
models under consideration to each observed dataset. Moreover,
it requires no hand-crafted summary statistics of the data and is
designed to amortize the cost of simulation over multiple models,
datasets, and dataset sizes. This makes the method especially
effective in scenarios where model fit needs to be assessed
for a large number of datasets, so that case-based inference
is practically infeasible. Finally, we propose a novel way to
measure epistemic uncertainty in model comparison problems.
We demonstrate the utility of our method on toy examples and
simulated data from non-trivial models from cognitive science
and single-cell neuroscience. We show that our method achieves
excellent results in terms of accuracy, calibration, and efficiency
across the examples considered in this work. We argue that our
framework can enhance and enrich model-based analysis and
inference in many fields dealing with computational models of
natural processes. We further argue that the proposed measure
of epistemic uncertainty provides a unique proxy to quantify
absolute evidence even in a framework which assumes that the
true data-generating model is within a finite set of candidate
models.

I. INTRODUCTION

Researchers from various scientific fields face the problem
of selecting the most plausible theory for an empirical phe-
nomenon among multiple alternative theories. These theories
are often formally stated as mathematical models which
describe how observable quantities arise from unobservable
(latent) parameters. Focusing on the level of mathematical
models, the problem of theory selection then becomes one of
model selection.

For instance, neuroscientists might be interested in compar-
ing different models of spiking patterns given in vivo recordings
of neural activity [24]. Epidemiologists, on the other hand,
might consider different models for predicting the spread and
dynamics of an unfolding infectious disease [57]. Crucially,
the preference for one model over alternative models in these
examples can have important consequences for research projects
or social policies.

Accounting for complex natural phenomena often requires
specifying complex models which entail some degree of
randomness. Inherent stochasticity, incomplete description, or
epistemic ignorance all call for some form of uncertainty

awareness. To make matters worse, empirical data on which
models are fit are necessarily finite and can only be acquired
with finite precision. Finally, the plausibility of many non-
trivial models throughout various branches of science can be
assessed only approximately, through expensive simulation-
based methods [46], [9], [53], [37], [24], [8].

Ideally, a method for approximate model comparison should
meet the following desiderata:

1) Theoretical guarantee: Model probability estimates
should be, at least in theory, calibrated to the true model
probabilities induced by an empirical problem;

2) Accurate approximation: Model probability estimates
should be accurate even for finite or small sample sizes;

3) Occam’s razor: Preference for simpler models should be
expressed by the model probability estimates;

4) Scalability: The method should be applicable to complex
models with implicit likelihood within reasonable time
limits;

5) Efficiency: The method should enable fully amortized
inference- over arbitrarily many models, datasets and
different dataset sizes;

6) Maximum data utilization: The method should capitalize
on all information contained in the data and avoid
information loss through insufficient summary statistics
of the data;

In the current work, we address these desiderata with a novel
method for Bayesian model comparison based on evidential
deep neural networks. Our method works in a purely simulation-
based manner and circumvents the step of separately fitting
all alternative models to each dataset. To this end, for any
particular model comparison problem, we propose to train a
specialized expert network which encodes global information
about the generative scope of each model family. In this way,
Bayesian model comparison is amortized over multiple models,
datasets, and dataset sizes, which makes our method applicable
in scenarios where case-based inference is way too costly to
perform with standard methods (cf. Figure 1).

In addition, we propose to avoid hand-crafted summary
statistics (a feature on which standard methods for simulation-
based inference heavily rely) by utilizing novel deep learning
architectures which are aligned to the probabilistic structure of
the raw data (e.g., permutation invariant networks [3], recurrent
networks [14]).

Finally, we explore a novel way to measure epistemic
uncertainty in model comparison problems, following the
pioneering work of [48] on image classification. We argue
that this measure of epistemic uncertainty provides a unique
proxy to quantify absolute evidence even in an M-closed
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framework, which assumes that the true data-generating model
is within the candidate set [61].

II. BACKGROUND

A. Bayesian Inference

A consistent mathematical framework for describing uncertainty
and quantifying model plausibility is offered by the Bayesian
view on probability theory [25]. In a Bayesian setting, we
start with a collection of J competing generative modelsM =
{M1,M2, . . . ,MJ}. EachMj is associated with a generative
mechanism gj , typically realized as a Monte Carlo simulation
program, and a corresponding parameter space Θj . Ideally,
each gj represents a theoretically plausible (potentially noisy)
mechanism by which observable quantities x arise from hidden
parameters θ and independent noise ξ:

x = gj(θj , ξ) with θj ∈ Θj (1)

where Θj is the corresponding parameter space of model
gj and the subscript j explicates that each model might be
specified over a different parameter space. We assume that the
functional or algorithmic form of each gj is known and that we
have a sample (dataset) {xi}Ni=1 := x1:N of N (multivariate)
observations xn ∈ X generated from an unknown process
p∗. The task of Bayesian model selection is to choose the
model inM that best describes the observed data by balancing
simplicity (sparsity) and predictive performance.

B. The Likelihood

A central object in Bayesian inference is the likelihood function,
denoted as p(x |θj ,Mj). Loosely speaking, the likelihood
returns the relative probability of an observation observation
x (or a sequence of observations x1:N ) given a parameter
configuration θj and model assumptions Mj . When the
parameters are systematically varied and the data held constant,
the likelihood can be used to quantify how well each model
instantiation fits the data.

If the likelihood of a generative model can be associated
with a known probability density function (e.g., Gaussian), the
model can be formulated entirely in terms of the likelihood
and the likelihood can be evaluated analytically or numerically
for any pair (x,θ). On the other hand, if the likelihood is
unknown or intractable, as is the case when dealing with
complex models, one can still generate random samples from
the model by running the simulation program with a random
configuration of its parameters.

This is due to the fact that each stochastic model, viewed as
a Monte Carlo simulator, defines an implicit likelihood given
by the relationship:

p(x |θj ,Mj) =

∫

Ξ

δ(x− gj(θj , ξ)) p(ξ |θj) dξ (2)

where δ(·) is the Dirac delta function and the integral runs over
all possible execution paths of the stochastic simulation for a
fixed θj . For most complex models, this integral is analytically
intractable or too expensive to approximate numerically, so
it is much easier to specify the model directly in terms of
the simulation program gj instead of deriving the likelihood

p(x |θj ,Mj). Importantly, we can still sample from the
likelihood by running the simulator with different Monte Carlo
realizations of ξ, that is, for a fixed θj , we have the following
equivalence:

xn ∼ p(x |θj ,Mj)⇐⇒ xn = gj(θj , ξn) with ξn ∼ p(ξ)
(3)

C. Bayes Factors

How does one assign preferences to competing models using
a Bayesian toolkit? The canonical measure of evidence for a
given model is the marginal likelihood:

p(x1:N |Mj) =

∫

Θj

p(x1:N |θj ,Mj) p(θj |Mj) dθj (4)

which is, in general, intractable to compute for non-trivial
models. Importantly, the dependence on the prior over model
Mj’s parameters introduces a probabilistic version of Occam’s
razor, which expresses our preference for a simpler model over
a more complex one when both models can account for the
data equally well. The marginal likelihood thus focuses on
prior predictions and penalizes the prior complexity of a model
(i.e., the prior acts as a weight on the likelihood). This is in
contrast to posterior predictions, which require marginalization
over the parameter posterior p(θj |x1:N ,Mj) and can be used
to select the model which best predicts new data.

Provided that the marginal likelihood can be efficiently ap-
proximated, one can compute the ratio of marginal likelihoods
for two models Mj and Mk via

BFjk =
p(x1:N |Mj)

p(x1:N |Mk)
. (5)

This famous ratio is called a Bayes factor (BF) and is used
in Bayesian settings for quantifying relative model preference.
Thus, a BFjk > 1 indicates preference for model j over model
k, given a set of observations x1:N . Alternatively, one can
directly focus on the (marginal) posterior probability of a
model Mj ,

p(Mj |x1:N ) ∝ p(x1:N |Mj) p(Mj) (6)

which equips the model space itself with a prior distribution
p(M) over the considered model space encoding potential
preferences for certain models before collecting any data. Such
a prior might be useful if a model embodies extraordinary
claims (e.g., telekinesis) and thus requires extraordinary evi-
dence supporting it. However, if no prior reasons can be given
for favoring some models over others (i.e., one prefers not to
prefer), a uniform model prior p(M) = 1/J can be assumed.

The ratio of posterior model probabilities is called the
posterior odds and is connected to the Bayes factor via the
corresponding model priors:

p(Mj |x1:N )

p(Mk |x1:N )
=
p(x1:N |Mj)

p(x1:N |Mk)
× p(Mj)

p(Mk)
(7)

If two models are equally likely a priori, the posterior odds
equal the Bayes factor. In this case, if the Bayes factor, or,
equivalently, the posterior odds equal one, the observed data
provide no decisive evidence for one of the models over the
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other. However, a relative evidence of one does not allow
to distinguish whether the data are equally likely or equally
unlikely under both models, as this is a question of absolute
evidence. Needless to say, the distinction between relative
and absolute evidence is of paramount importance for model
comparison, so we address it in the next section on model
comparison frameworks.

D. M-Frameworks

In Bayesian inference, the relationship between the true
generative process p∗ and the model list M can be classified
into three categories: M-closed, M-complete and M-open
[61]. Closely related to the distinction between relative and
absolute evidence is the distinction between M-closed and
M-complete frameworks. Under an M-closed framework, the
true model is assumed to be in the predefined set of competing
modelsM, so relative evidence is identical to absolute evidence.
Under an M-complete framework, a true model is assumed
to exist but is not necessarily assumed to be a member of
M. However, one still focuses on the models in M due to
computational or conceptual limitations1.

Deciding on the particular M-framework under which a
model comparison problem is tackled is often a matter of prior
theoretical considerations. However, since in most non-trivial
research scenariosM is a finite set and candidate models inM
are often simpler approximations to the true model, there will
be uncertainty as to whether the observed data could have been
generated by one of these models. In the following, we will
refer to this uncertainty as epistemic uncertainty. Our method
utilizes a data-driven way to calibrate its epistemic uncertainty
in addition to the model probabilities through simulations under
an M-closed framework.

Consequently, given real observed data, a researcher can
obtain a measure of uncertainty with regard to whether the
generative model of the data is likely to be in M or not.
From this perspective, our method lies somewhere between
an M-closed and an M-complete framework as it provides
information from both viewpoints. In this way, our approach
to model misspecification differs from likelihood-tempering
methods, which require an explicit evaluation of a tilted
likelihood (raised to a power 0 < t < 1) in order to prevent
overconfident Bayesian updates [18].

III. RELATED WORK

Bayesian methods for model comparison can be categorized
as either posterior predictive or prior predictive approaches
[12], with our method falling into the latter category. Posterior
predictive approaches are concerned with predicting new data
using models trained on the current data. In prior predictive
approaches, models are conditioned only on prior information
but not on the current data. Accordingly, all current data counts
as new data for the purpose of prior predictive methods.

Naturally, cross-validation (CV) procedures are the main
approach for posterior predictive comparisons [56]. Examples

1In this work, we delegate the discussion of whether the concept of a true
model has any ontological meaning to philosophy. See also [61] for discussion
of an M-open framework, in which no true model is assumed to exist.

for widely applied methods that fall into this category are
approximate cross-validation procedures using Pareto-smoothed
importance sampling [55], [6], information criterion approaches
such as the widely applicable information criterion (WAIC;
[59]), or stacking of posterior predictive distributions [61].

All of these methods require not only the ability to evaluate
the likelihood of each model for each observation during
parameter estimation, but also for new observations during
prediction. What is more, if application of exact CV methods is
required because approximations are insufficient or unavailable,
models need to be estimated several times based on different
datasets or subsets of the original dataset. This renders such
methods practically infeasible when working with complex
simulators for which estimating models even once is already
very slow. Thus, even a single intractable model in the model
set suffices to disproportionately increase the difficultly of
performing model comparison.

In contrast, our proposed method circumvents explicit
parameter estimation and focuses directly on the efficient ap-
proximation of Bayes factors (or posterior model probabilities).
Moreover, it overcomes two major sources of intractability that
stand in the way of Bayesian model comparison via Bayes
factors: the likelihood (Eq.3) and the marginal likelihood (Eq.4).

When the likelihood can be computed in closed-form,
sophisticated algorithms for efficiently approximating the
(intractable) marginal likelihood have been proposed in the
Bayesian universe, such as bridge sampling and path sampling
[13], [17]. However, these methods still depend on the ability
to evaluate the likelihood p(x |θj ,Mj) for each candidate
model. If, in addition, the likelihood itself is intractable, as is
the case with complex simulators, researchers need to resort
to expensive simulation-based methods [52], [53], [37], [40].

A standard set of tools for Bayesian simulation-based infer-
ence is offered by approximate Bayesian computation (ABC)
methods [50], [38]. ABC methods approximate the model
posterior by repeatedly sampling parameters from each proposal
(prior) distribution and then simulating multiple datasets by
running each simulator with the sampled parameters. A pre-
defined similarity criterion determines whether a simulated
dataset (or a summary statistic thereof) is sufficiently similar to
the actually observed dataset. The model that most frequently
generates synthetic observations matching those in the observed
dataset is the one favored by ABC model comparison.

Despite being simple and elegant, standard ABC methods
involve a crucial trade-off between accuracy and efficiency.
In other words, stricter similarity criteria yield more accurate
approximations of the desired posteriors at the price of higher
and oftentimes intolerable rejection rates. What is more, most
ABC methods require multiple ad hoc decisions from the
method designer, such as the choice of similarity criterion
or the summary statistics of the data (e.g., moments of
empirical distributions) [37]. However, there is no guarantee
that hand-crafted summaries extract all relevant information
and model comparison with insufficient summary statistics
can dramatically deteriorate the resulting model posteriors [47].
More scalable developments from the ABC family (ABC-SMC,
ABC-MCMC, ABC neural networks and the recently proposed
ABC random forests) offer great efficiency boosts but still rely
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on hand-crafted summary statistics [37], [26], [49].
Recently, a number of promising innovations from the

machine learning and deep learning literature have entered
the field of simulation-based inference [7]. For instance, the
sequential neural likelihood (SNL, [40]), the automatic posterior
transformation (APT, [16]), the amortized ratio estimation [20]
or the BayesFlow method [44] all implement powerful neural
density estimators to overcome the shortcomings of standard
ABC methods. Moreover, these methods involve some degree
of amortization, which ensures extremely efficient inference
after a potentially costly upfront training phase. However,
neural density estimation focuses solely on efficient Bayesian
parameter estimation instead of scaling up Bayesian model
comparison. With certain caveats, neural density estimators can
be adapted for Bayesian model comparison by post-processing
the samples from an approximate posterior/likelihood over each
model’s parameters. However, such an approach will involve
training a separate neural estimator for each model in the
candidate set and has not yet been systematically investigated.
In addition, most of these methods also rely on fixed summary
statistics [40]) and few applications using raw data directly
exist [44], [16].

Alongside advancements in simulation-based inference,
there has been an upsurge in the development of methods
for uncertainty quantification in deep learning applications.
For instance, much work has been done on the efficient
estimation of Bayesian neural networks [21], [33], [35] since
the pioneering work of [36]. Parallel to the establishment
of novel variational methods [30], [29], these ideas have
paved the way towards more interpretable and trustworthy
neural network inference. Moreover, the need for distinguishing
between different sources of uncertainty and the overconfidence
of deep neural networks in classification and regression tasks
has been demonstrated quite effectively [28], [48]. Our current
work draws on recent methods for evidence and uncertainty
representation in classification tasks [48]. However, our goal
is to efficiently approximate Bayes factors between competing
mechanistic models using non-Bayesian neural networks, not to
estimate neural network parameters (e.g., weights) via Bayesian
methods.

Our method combines latest ideas from simulation-based
inference and uncertainty quantification for building efficient
and uncertainty-aware estimators for amortized Bayesian model
comparison. As such, it is intended to complement the toolbox
of simulation-based methods for parameter estimation with
crucial model comparison capabilities and incorporates some
unique features beyond the scope of standard ABC methods. In
the following, we describe the building blocks of our method.

IV. EVIDENTIAL NETWORKS FOR BAYESIAN MODEL
COMPARISON

A. Model Selection as Classification

In line with previous simulation-based approaches to model
selection, we will utilize the fact that we can generate arbitrary
amounts of data via Eq.3 for each considered model Mj .
Following [43], [37], we cast the problem of model comparison
as a probabilistic classification task. In other words, we seek

a parametric mapping fφ : XN → ∆J from an arbitrary
data space XN to a probability simplex ∆J containing
the posterior model probabilities p(M|x1:N ). Previously,
different learning algorithms (e.g., random forests [37]) have
been employed to tackle model comparison as classification.
Following recent developments in algorithmic alignment and
probabilistic symmetry [60], [3], our method parameterizes fφ
via a specialized neural network with trainable parameters φ
which is aligned to the probabilistic structure of the observed
data. See the Network Architectures section in Appendix A
for a detailed description of the employed networks’ structure.

In addition, our method differs from previous classification
approaches to model comparison in the following aspects.
First, it requires no hand-crafted summary statistics, since
the most informative summary statistics are learned directly
from data. Second, it uses online learning (i.e., on-the-fly
simulations) and requires no storage of large reference tables
or data grids. Third, the addition of new competing models does
not require changing the architecture or re-training the network
from scratch, since the underlying data domain remains the
same. In line with the transfer learning literature, only the last
layer of a pre-trained network needs to be changed and training
can be resumed from where it had stopped. Last, our method is
uncertainty-aware, as it returns a higher-order distribution over
posterior model probabilities. From this distribution, one can
extract both absolute and relative evidences, as well as quantify
the model selection uncertainty implied by the observed data.

To set up the model classification task, we run Algo-
rithm 1 repeatedly to construct training batches with B
simulated datasets of size N and B model indices of the
form D(B)

N := {(m(b),x
(b)
1:N )}Bb=1. We then feed each batch

to a neural network which takes as input simulated data with
variable sizes and returns a distribution over posterior model
probabilities. The neural network parameters are optimized via
standard backpropagation. Upon convergence, we can apply
the pre-trained network to arbitrarily many datasets of the form
x

(obs)
1:N to obtain a vector of probabilities pφ(m |x(obs)

1:N ) which
approximates the true model posterior p(M|x(obs)

1:N ).
Note, that this procedure incurs no memory overhead, as

the training batches need not be stored in memory all at
once. Intuitively, the connection between data and models is
encoded in the network’s weights. Once trained, the evidential
network can be reused to perform instant model selection on
multiple real observations. As mentioned above, the addition of
new models requires simply adjusting the pre-trained network,
which requires much less time than re-training the network
from scratch. We now describe how model probabilities and
evidences are represented by the evidential network.

B. Evidence Representation

In order to obtain a measure of absolute evidence by considering
a finite number of competing models, we place a Dirichlet
distribution over the estimated posterior model probabilities
[48]. This corresponds to modeling second-order probabilities
in terms of the theory of subjective logic (SL) [27]. These
second-order probabilities represent an uncertainty measure
over quantities which are themselves probabilities. We use
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Fig. 1: Left panel: The simulation-based training phase of our evidential method. Right panel: The inference phase with real
data and a pre-trained evidential network.

Algorithm 1 Monte Carlo generation of synthetic datasets for model comparison

Require: p(M) - prior over models, {p(θj |Mj)} - list of priors over model parameters, {gj} - list of stochastic simulators,
{pj(ξ)} - list of noise distributions (RNGs), p(N) - distribution over dataset sizes, B - number of datasets to generate
(batch size)

1: Draw dataset size: N ∼ p(N)
2: for b = 1, ..., B do
3: Draw model index from model prior: M(b)

j ∼ p(M)

4: Draw model parameters from prior: θ(b)
j ∼ p(θj |M

(b)
j )

5: for n = 1, ..., N do
6: Sample noise instance: ξn ∼ pj(ξ)

7: Run simulator j to obtain n-th synthetic observation: xn = gj(θ
(b)
j , ξn)

8: end for
9: Encode model index as a one-hot-encoded vector: m(b) = OneHotEncode(M(b)

j )

10: Store pair (m(b),x
(b)
1:N ) in D(B)

N

11: end for
12: return mini-batch D(B)

N := {m(b),x
(b)
1:N )}Bb=1

the second-order probabilities to capture epistemic uncertainty
about whether the observed data has been generated by one of
the candidate models considered during training.

The probability density function (PDF) of a Dirichlet
distribution is given by:

Dir(π |α) =
1

B(α)

J∏

j=J

π
αj−1
j (8)

where π belongs to the unit J − 1 simplex (i.e., π ∈
∆J := {π | ∑J

j=1 πj = 1} and B(α) is the multivariate
beta function. The Dirichlet density is parameterized by a

vector of concentration parameters α ∈ RJ+ which can be
interpreted as evidences in the ST framework [27]. The sum of
the individual evidence components α0 =

∑J
j=1 αj is referred

to as the Dirichlet strength, and it affects the precision of the
higher-order distribution in terms of its variance. Intuitively, the
Dirichlet strength governs the peakedness of the distribution,
with larger values leading to more peaked densities (i.e., most
of the density being concentrated in a smaller region of the
simplex). We can use the mean of the Dirichlet distribution,
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Fig. 2: Three different hypothetical model comparison scenarios with different observations. The first column depicts observing
a dataset which is equally probable under all models. In this case, the best candidate model cannot be selected and the Dirichlet
density peaks in the middle of the simplex. The second column depicts a dataset which is beyond the generative scope of all
models and no model selection decision is possible. The Dirichlet density in this case is flat which indicates total uncertainty.
The third column illustrates an observed dataset which is most probable under model 2, so the Dirichlet simplex is peaked
towards the corner encoding model 2, and the corresponding model posterior for model 2 is highest.

which is a vector of probabilities given by:

Eπ∼Dir(α)[π] =
α

α0
(9)

to approximate the posterior model probabilities p(M|x1:N ),
as will become clearer later in this section. A crucial advantage
of such a Dirichlet representation is that it allows to look beyond
model probabilities by inspecting the vector of computed
evidences. For instance, imagine a scenario with three possible
models. If α = (5, 5, 5), the data provides equally strong
evidence for all models (Figure 2, first column) – all models
explain the data well. If, on the other hand, α = (1, 1, 1),
then the Dirichlet distribution reduces to a uniform on the
simplex indicating no evidence for any of the models (Figure
2, second column) – no model explains the observations well.
Note that in either case one cannot select a model on the basis
of the data, because posterior model probabilities are equal, yet
the interpretation of the two outcomes is very different: The
second-order Dirichlet distribution allows one to distinguish
between equally likely (first case) and equally unlikely (second
case) models. The last column of Figure 2 illustrates a scenario
with α = (2, 7, 3) in which case one can distinguish between
all models (see also Figure 6 for a scenario with data simulated
from an actual model).

We can further quantify this distinction by computing an
uncertainty score given by:

u =
J

α0
(10)

where J is the number of candidate models. Importantly,
in our framework, individual concentration parameters (resp.
neural network outputs) are lower bounded by 1. Thus, the
uncertainty score ranges between 0 (total certainty) and 1
(total uncertainty) and has a straightforward interpretation.
Accordingly, total uncertainty is given when α0 = J , which
would mean that the data provide no evidence for any of the J
candidate models. On the other hand, u << 1 implies a large
Dirichlet strength α0 >> J , which would read that the data
provide plenty of evidence for one or more models in question.
The uncertainty score corresponds to the concept of vacuity
(i.e., epistemic uncertainty) in the terminology of SL [27]. We
argue that epistemic uncertainty should be a crucial aspect in
model selection, as it quantifies the strength of evidence, and,
consequently, the strength of the theoretical conclusions we
can draw given the observed data.

Consequently, model comparison in our framework consists
in inferring the parameters of a Dirichlet distribution given an
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observed dataset. The problem of inferring posterior model
probabilities can be formulated as:

p(M|x1:N ) ≈ pφ(m |x1:N ) = Eπ∼Dir(fφ(x1:N ))[π] (11)

where fφ is a neural network with positive outputs greater than
one, fφ : XN → [1,∞]J . Additionally, we can also obtain
a measure of absolute model evidence by considering the
uncertainty encoded by the full Dirichlet distribution (Eq.10).

C. Learning Evidence in an M-Closed Framework

How do we ensure that the outputs of the neural network
match the true unknown model posterior probabilities? Con-
sider, for illustrational purposes, a dataset with a single
observation, that is N = 1 such that x1:N = x. As per
Algorithm 1, we have unlimited access to training samples
from p(M,x) =

∫
p(M)p(θ |M)p(x |θ,M)dθ. We use the

mean of the Dirichlet distribution pφ(m |x) parameterized by
an evidential neural network with parameters φ to approximate
p(M|x). To optimize the parameters of the neural network,
we can minimize some loss L in expectation over all possible
datasets:

φ∗ = argmin
φ

E(m,x)∼p(M,x) [L(pφ(m |x),m)] (12)

where m is a one-hot encoded vector of the true model
index Mj . We also require that L be a strictly proper
loss [15]. A loss function is strictly proper if and only if
it attains its minimum when pφ(m |x) = p(M|x) [15].
When we choose the Shannon entropy H(pφ(m |x)) =
−∑j pφ(m |x)j log pφ(m |x)j for L, we obtain the strictly
proper logarithmic loss:

L(pφ(m |x),m) = −
J∑

j=1

mj log pφ(m |x)j (13)

= −
J∑

j=1

mj log

(
fφ(x)j∑J

j′=1 fφ(x)j′

)
(14)

where mj = 1 when j is the true model index and 0 otherwise.
Thus, in order to estimate φ, we can minimize the expected
logarithmic loss over all simulated datasets where fφ(x)j
denotes the j-th component of the Dirichlet density given
by the evidential neural network. Since we use a strictly
proper loss, the evidential network yields the true model
posterior probabilities over all possible datasets when perfectly
converged.

Intuitively, the logarithmic loss encourages high evidence for
the true model and low evidences for the alternative models.
Correspondingly, if a dataset with certain characteristics can
be generated by different models, evidence for these models
will jointly increase. Additionally, the model which generates
these characteristics most frequently will accumulate the most
evidence and thus be preferred. However, we also want low
evidence, or, equivalently, high epistemic uncertainty, for
datasets which are implausible under all models. We address
this problem in the next section.

D. Learning Absolute Evidence through Regularization

We now propose a way to address the scenario in which
no model explains the observed data well. In this case, we
want the evidential network to estimate low evidence for all
models in the candidate set. In order to attenuate evidence for
datasets which are implausible under all models considered,
we incorporate a Kullback-Leibler (KL) divergence into the
criterion in Eq.13. We compute the KL divergence between
the Dirichlet density generated by the neural network and
a uniform Dirichlet density implying total uncertainty. Thus,
the KL shrinks evidences which do not contribute to correct
model assignments during training, so an implausible dataset
at inference time will lead to low evidence under all models.
This type of regularization has been used for capturing out-
of-distribution (OOD) uncertainty in image classification [48].
Accordingly, our modified optimization criterion becomes:

φ∗ = argmin
φ

E(m,x)∼p(M,x) [L(pφ(m |x),m) + λΩ(α̃)]

(15)

with Ω(α̃) = KL[Dir(α̃) ||Dir(1)]. The term α̃ = m+ (1−
m)�α represents the estimated evidence vector after removing
the evidence for the true model. This is possible, because we
know the true model during simulation-based training. For
application on real datasets after training, knowing the ground
truth is not required anymore as φ has been obtained already
at this point. The KL penalizes evidences for the false models
and drives these evidences towards unity. Equivalently, the KL
acts as a ground-truth preserving prior on the higher-order
Dirichlet distribution which preserves evidence for the true
model and attenuates misleading evidences for the false models.
The hyperparameter λ controls the weight of regularization and
encodes the tolerance of the algorithm to accept implausible
(out-of-distribution) datasets during inference. With large values
of λ, it becomes possible to detect cases where all models are
deficient; with λ = 0, only relative evidence is generated. Note,
that in the latter case, we recover our original proper criterion
without penalization. The KL weight λ can be selected through
prior empirical considerations on how well the simulations
cover the plausible set of real-world datasets.

Importantly, the introduction of the KL regularizer ren-
ders the loss no longer strictly proper. Therefore, a large
regularization weight λ would lead to poorer calibration of
the approximate model posteriors, as the regularized loss is
no longer minimized by the true model posterior. However,
since the KL prior is ground-truth preserving, the accuracy of
recovering the true model should not be affected. Indeed, we
observe this behavior throughout our experiments.

To make optimization tractable, we utilize the fact that
we can easily simulate batches of the form D(B)

N =

{(m(b),x
(b)
1:N )}Bb=1 via Algorithm 1 and approximate Eq.15

via standard backpropagation by minimizing the following loss:

L(φ) =
1

B

B∑

b=1


−

J∑

j=1

m
(b)
j log

(
fφ(x

(b)
1:N )j∑J

j′=1 fφ(x
(b)
1:N )j′

)
+ λΩ(α̃(b))




(16)
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Algorithm 2 Training phase and inference phase for amortized Bayesian model comparison

Require: fφ - evidential neural network, {x(obs)
1:Ni
}Ii=1 - list of I observed datasets for inference, λ - regularization weight, B -

number of simulations at each iteration (batch size)
1: Training phase:
2: repeat
3: Generate a training batch D(B)

N = {(m(b),x
(b)
1:N )}Bb=1 via Algorithm 1

4: Compute evidences for each simulated dataset in D(B)
N : α(b) = fφ(x

(b)
1:N )

5: Compute loss according to Eq.16
6: Update neural network parameters φ via backpropagation
7: until convergence to φ̂
8: Amortized inference phase:
9: for i = 1, ..., I do

10: Compute model evidences α(obs)
i = fφ̂(x

(obs)
1:Ni

)

11: Compute uncertainty ui = J/
∑J
j=1 α

(obs)
i,j

12: Approximate true model posterior probabilities p(M|x(obs)
1:Ni

) via pφ(m |x1:Ni
) = α

(obs)
i /

∑J
j=1 α

(obs)
i,j

13: end for
14: Choose further actions

over multiple batches to converge at a Monte Carlo estimator
φ̂ of φ∗. In practice, convergence can be determined as the
point at which the loss stops decreasing, a criterion similar to
early stopping. Alternatively, the network can be trained for a
pre-defined number of epochs. Note, that, at least in principle,
the network can be trained arbitrarily long, since we assume
that we can access the joint distribution p(M,x, N) through
simulation (cf. Figure 1, left panel).

E. Implicit Preference for Simpler Models

Remembering that pφ(m |x1:N ) ∝ p(x1:N |M)p(M), we
note that perfect convergence implies that preference for simpler
models (Bayesian Occam’s razor) is automatically encoded by
our method. This is due to the fact that we are approximating an
expectation over all possible datasets, parameters, and models.
Accordingly, datasets generated by a simpler model tend to
be more similar compared to those from a more complex
competitor. Therefore, during training, certain datasets which
are plausible under both models will be generated more often by
the simpler model than by the complex model. Thus, a perfectly
converged evidential network will capture this behavior by
assigning higher posterior probability to the simpler model
(assuming equal prior probabilities). Therefore, at least in
theory, our method captures complexity differences arising
purely from the generative behavior of the models and does
not presuppose an ad hoc measure of complexity (e.g., number
of parameters).

F. Putting it All Together

The essential steps of our evidential method are summarized in
Algorithm 2. Note, that steps 2-7 and 9-13 can be executed in
parallel with GPU support in order to dramatically accelerate
convergence and inference. In sum, we propose to cast the
problem of model selection as evidence estimation and learn a
Dirichlet distribution over posterior model probabilities directly
via simulations from the competing models. To this end, we

train an evidential neural network which approximates poste-
rior model probabilities and further quantifies the epistemic
uncertainty as to whether an observed dataset is within the
generative scope of the candidate models. Moreover, once
trained on simulations from a set of models, the network can
be reused and extended with new models across a research
domain, essentially amortizing the model comparison process.
Accordingly, if the priors over model parameter do not change,
multiple researchers can reuse the same network for multiple
applications. If the priors over model parameters change or
additional models need to be considered, the parameters of a
pre-trained network can be adjusted or the network extended
with additional output nodes for the new models.

V. EXPERIMENTS

In this section, we demonstrate the utility of our method on a toy
example and relevant models from chemistry, cognitive science
and neurobiology. A further toy example with 400 models
as well as details for neural network training, architectures,
performance metrics, and forward models are to be found in
the Appendix.

A. Experiment 1: Beta-Binomial Model with Known Analytical
Marginal Likelihood

As a basic proof-of-concept for our evidential method, we apply
it to a toy model comparison scenario with an analytically
tractable marginal likelihood. Here, we pursue the following
goals. First, we want to demonstrate that the estimated posterior
probabilities closely approximate the analytic model posteriors.
To show this, we compare the analytically computed vs. the
estimated Bayes factors. In addition, we want to show that
accuracy of true model recovery matches closely the accuracy
obtained by the analytic Bayes factors across all N . For this,
we consider the simple beta-binomial model given by:

θ ∼ Beta(α, β) (17)
xj ∼ Bernoulli(θ) for j = 1, ..., N (18)
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(a) Models’ priors (b) True vs. estimated Bayes fac-
tors at N = 100

(c) Calibration curve at N = 100 (d) Accuracy across all N

Fig. 3: (a) Prior densities of the theta parameter for both
models of Experiment 1; (b) True vs. estimated Bayes factors
obtained from the network-induced Dirichlet distribution at
N = 100; (c) Calibration curve at N = 100 indicating very
good calibration (dotted line represents perfect calibration);
(d) Accuracy at all N achieved with both the analytic and
the estimated Bayes factors (the shaded region represents a
95% bootstrap confidence interval around the accuracies of the
evidential network).

The analytical marginal likelihood of the beta-binomial model
is:

p(x1:N ) =

(
N

K

)
Beta(α+K,β +N −K)

Beta(α, β)
(19)

where K denotes the number of successes in the N trials. For
this example, we will consider a model comparison scenario
with two models, one with a flat prior Beta(1, 1) on the
parameter θ, and one with a sharp prior Beta(30, 30). The
two prior densities are depicted in Figure 3a.

We train a small permutation invariant evidential network
with batches of size B = 64 until convergence. For each batch,
we draw the samples size from a discrete uniform distribution
N ∼ UD(1, 100) and input the raw binary data to the network.
We validate the network on 5000 separate validation datasets for
each N . Convergence took approximately 15 minutes, whereas
inference on all 5000 validation datasets took less than 2
seconds.

Our results demonstrate that the estimated Bayes factors
closely approximate the analytic Bayes factors (Figure 3b). We
also observe no systematic under- or overconfidence in the
estimated Bayes factors, which is indicated by the calibration
curve resembling a straight line (Figure 3c). Finally, the
accuracy of recovery achieved with the estimated Bayes factors
closely matches that of the analytic Bayes factors across all
sample sizes N (Figure 3d).

Fig. 4: Observed concentration time-series from both Markov
jump models of Experiment 2 with θ = 2.0.

B. Experiment 2: Markov Jump Process of Stochastic Chemical
Reaction Kinetics

In this experiment, we apply our evidential method to a simple
model of non-exchangeable chemical molecule concentration
data. Further, we demonstrate the efficiency benefits of our
amortized learning method compared to the standard non-
amortized ABC-SMC algorithm.

We define two Markov jump process models M1 and M2

for conversion of (chemical) species z to species y:

M1 : z + y
θ1−→ 2y (20)

M2 : z
θ2−→ y (21)

Each model has a single rate parameter θi. We use the
Gillespie simulator to generate simulated time-series from the
two models with an upper time limit of 0.1 seconds. Both
models start with initial concentrations x0 = 40 and y0 = 3,
so they only differ in terms of their reaction kinetics. The input
time-series x1:N consist of a time vector t1:N as well as two
vectors of molecule concentrations for each species at each
time step, z1:N and y1:N , which we stack together. We place a
wide uniform prior over each rate parameter: θi ∼ U(0, 100).

We train an evidential sequence network for 50 epochs of
1000 mini-batch updates and validate its performance on 500
previously unobserved time-series. Wall-clock training time was
approximately 52.3 minutes. In contrast, wall-clock inference
time on the 500 validation time-series was 254 ms, leading to
dramatic amortization gains. The bootstrap accuracy of recovery
was 0.98 (SD = 0.01) over the entire validation set.

We also apply the ABC-SMC algorithm available from the
pyABC [31] library to a single data-set x(obs)

1:N generated from
model 1 (M1) with rate parameter θ1 = 2.0. Figure 4 depicts
the observed data generated from model 1 (left panel) as well as
observed data generated from model 2 with θ2 = 2.0. Notably,
the differences in the data-generating processes defined by the
two models are subtle and not straightforward to explicitly
quantify.

For the ABC-SMC method, we set the minimum rejection
threshold ε to 0.7 and the maximum number of populations to
15, as these settings lead to perfect recovery of the true model.
As a distance function, we use the L2 norm between the raw
concentration times-series of species z, evaluated at 20 time
points.2

2These settings were picked from the original pyABC documentation avail-
able at https://pyabc.readthedocs.io/en/latest/examples/chemical_reaction.html
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The convergence of the ABC-SMC algorithm on the single
dataset took 12.2 minutes wall-clock time. Thus, inference on
the 500 validation data-sets would have taken more than 4
days to complete. Accordingly, we see that the training effort
with our method is worthwhile even after as few as 5 data-sets.
As for recovery on the single test dataset, ABC-SMC selects
the true model with a probability of 1, whereas our evidential
networks outputs a probability of 0.997 which results in a
negligible difference of 0.003 between the results from two
methods.

C. Experiment 3: Stochastic Models of Decision Making

In this experiment, we apply our evidential method to compare
several non-trivial nested stochastic evidence accumulator
models (EAMs) from the field of human decision making
[54], [45]. With this experiment, we want to demonstrate the
performance of our method in terms of accuracy and posterior
calibration on exchangeable data obtained from complex
cognitive models. Additionally, we want to demonstrate how
our regularization scheme can be used to capture absolute
evidence by artificially rendering the data implausible under
all models.

1) Model Comparison Setting: EAMs describe the dynamics
of decision making via different neurocognitively plausible
parameters (i.e., speed of information processing, decision
threshold, bias/pre-activation, etc.). EAMs are most often ap-
plied to choice reaction times (RT) data to infer neurocognitive
processes underlying generation of RT distributions in cognitive
tasks. The most general form of an EAM is given by a stochastic
differential equation:

dx = vdt+ cdξ (22)

where dx denotes a change in activation of an accumulator, v
denotes the average speed of information accumulation (often
termed the drift rate), and dξ represents a stochastic additive
component with dξ ∼ N (0, c2).

Multiple flavors of the above stated basic EAM form
exist throughout the literature [54], [45], [53], [4]. Moreover,
most EAMs are intractable with standard Bayesian methods
[4], so model selection is usually hard and computationally
cumbersome. With this example, we pursue several goals. First,
we want to demonstrate the utility of our method for performing
model selection on multiple nested models. Second, we want to
empirically show that our method implements Occam’s razor.
Third, we want to show that our method can indeed provide a
proxy for absolute evidence.

To this end, we start with a very basic EAM defined by
four parameters θ = (v1, v2, a, t0) with vi denoting the speed
of information processing (drift rate) for two simulated RT
experimental tasks i ∈ {1, 2}, a denoting the decision threshold,
and t0 denoting an additive constant representing the time
required for non-decisional processes like motor reactions. We
then define five more models with increasing complexity by
successively freeing the parameters zr (bias), α (heavy-taildness
of noise distribution), st0 (variability of non-decision time), sv
(varibaility of drift-rate), and szr (variability of bias). Note, that

the inclusion of non-Gaussian diffusion noise renders an EAM
model intractable, since in this case no closed-form likelihood
is available (see [58] for more details). Table S1 lists the priors
over model parameters as well as fixed parameter values.

The task of model selection is thus to choose among six
nested EAM models M = {M1,M2,M3,M4,M5,M6},
each able to capture increasingly complex behavioral patterns.
Each model j is able to account for all datasets generated
by the previous models i < j, since the previous models are
nested within the j-th model. For instance, model M6 can
generate all datasets possible under the other models at the cost
of increased functional and parametric complexity. Therefore,
we need to show that our method encodes Occam’s razor purely
through the generative behavior of the models.

In order to show that our regularization method can be
used as a proxy to capture absolute evidence, we perform the
following experiment. We define a temporal shifting constant
K ∈ (0, 10) (in units of seconds) and apply the shift to each
response time in each validation dataset. Therefore, as K
increases, each dataset becomes increasingly implausible under
all models considered. For each K, we compute the average
uncertainty over all shifted validation datasets and plot is as a
function of K. Here, we only consider the maximum number
of trials N = 300.

We train three evidential neural networks with different KL
weights: λ ∈ {0.0, 0.1, 1.0} in order to investigate the effects
of λ on accuracy, calibration, and uncertainty. All networks
were trained with variable number of trials N ∼ UD(1, 300)
per batch for a total of 50000 iterations. The training of each
network took approximately half a day on a single computer.
In contrast, performing inference on 5000 datasets with a pre-
trained network took less than 10 seconds.

2) Validation Results: To quantify the global performance of
our method, we compute the accuracy of recovery as a function
of the number of observations (N ) for each of the models.
We also compute the epistemic uncertainty as a function of
N . To this end, we generate 500 new datasets for each N
and compute the accuracy of recovery and average uncertainty.
These results are depicted in Figure 5.

Accuracy. We observe that accuracy of recovery increases
with increasing sample size and begins to flatten out around
N = 100, independently of the regularization weight λ
(Figure 5a). This behavior is desirable, as selecting the
true model should become easier when more information is
available. Further, since the models are nested, perfect recovery
is not possible, as the models exhibit a large shared data space.

Calibration. Figure 5d depicts calibration curves for each
model and each regularization value. The unregularized network
appears to be very well calibrated, whereas the regularized
networks become increasingly underconfident with increasing
regularization weight. This is due to the fact that the regularized
networks are encouraged to generate zero evidence for the
wrong models, so model probabilities become miscalibrated.
Importantly, none of the networks shows overconfidence.

Occam’s Razor. We also test Occam’s razor by generating
500 datasets from each model with N = 300 and compute
the average predicted model posterior probabilities by the
unregularized network. Thus, all datasets generated by model
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(a) Accuracy over all N (b) Epistemic uncertainty over all N (c) Epistemic uncertainty over all K

(d) Calibration curves at N = 300 (e) Occam’s razor at N = 300

Fig. 5: Detailed validation results from Experiment 3.

j are plausible under the remaining models Mi, i > j. These
average model probabilities are depicted in Figure 5e. Even
though data-set generated by the nested simpler models are
plausible under the more complex models, we observe that
Occam’s razor is encoded by the behavior of the network,
which, on average, consistently selects the simpler model when
it is the true data-generating model. We also observe that this
behavior is independent of regularization (results for λ = 0.1
and λ = 1 are not depicted in Figure 5e)

Epistemic uncertainty and absolute evidence. Epistemic
uncertainty over different trial numbers (N ) is zero when no KL
regularization is applied (λ = 0). On the other hand, both small
(λ = 0.1) or large (λ = 1.0) regularization weights lead to non-
zero uncertainty over all possible N (Figure 5b). This pattern
reflects a reduction in epistemic uncertainty with increasing
amount of information and mirrors the inverse of the recovery
curve. Note, that the value at which epistemic uncertainty
begins to flatten out is larger for the highly regularized model,
as it encodes more cautiousness with respect to the challenging
task of selecting a true nested model. Finally, results on shifted
data-sets are depicted in Figure 5c. Indeed, we observe that
the regularized networks are able to detect implausible datasets
and output total uncertainty around K > 4 for all manipulated
datasets. Uncertainty increases faster for high regularization.
On the other hand, the unregularized model does not have any
way of signaling impossibility of a decision, so its uncertainty
remains at 0 over all K.

D. Experiment 4: Stochastic Models of Single-Neuron Activity

In this experiment, we apply our evidential method to complex
nested spiking neuron models describing the properties of
biological cells in the nervous system. The purpose of this
experiment is threefold. First, we want to assess the ability of
our method to classify models deploying a variety of spiking
patterns which might account for different cortical and sub-
cortical neuronal activity. Second, we want to challenge the
network’s ability to detect biologically implausible data patterns
as accounted by epistemic uncertainty. Finally, we compare our
method with other viable neural network architectures that are
able to perform amortized model comparison as classification.
To this aim, we rely on a renowned computational model of
biological neuronal dynamics.

1) Model Comparison Setting: In computational neuro-
science, mathematical modeling of neuroelectric dynamics
serves as a basis to understand the functional organization
of the brain from both single-cell and large-scale network
processing perspectives [22], [5], [23], [2], [10]. A plurality
of different neural models have been proposed during the last
decades, spanning from completely abstract to biologically
detailed models. The former offer a simplified mathematical
representation able to account for the main functional properties
of spiking neurons, the latter provide a detailed analogy
between models’ state variables and ion channels in biological
neurons [41]. Importantly, these computational models differ
in their capability to reproduce firing patterns observed in real
cortical neurons [24].
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Fig. 6: Three simulated firing patterns, corresponding estimated Dirichlet densities and model posteriors. Each row illustrates a
different value of the parameter ḡK : ḡK = 0.1, ḡK = 0.5, and ḡK = 0.75, respectively. An increase in the parameter ḡK is
accompanied by a decrease in epistemic uncertainty (as measured via Eq.10). An implausible value of ḡk (first row) results in a
flat density as an index of total uncertainty (uniform green areas). As the parameter value surpasses the plausible boundary
(second and third rows), the Dirichlet simplex becomes peaked towards the lower left edge encoding M1.

The model family we consider here is a Hodgkin-Huxley
type model of cerebral cortex and thalamic neurons [42], [22].
The forward model is formulated as a set of five ordinary
differential equations (ODEs) describing how the neuron
membrane potential V (t) unfolds in time as a function of
an injected current Iinj(t), and ion channels properties. See
Appendix D for more details regarding the forward simulation
process.

To set up the model comparison problem, we treat different
types of conductance, gL, ḡNa, ḡK and ḡM , as free parameters,
and formulate three neural models based on different param-
eter configurations. In particular, we consider three models
M = {M1,M2,M3} defined by the parameter sets θ1 =
(ḡNa, ḡK), θ2 = (ḡNa, ḡK , ḡM ), and θ3 = (ḡNa, ḡK , ḡM , gL).
When not treated as free parameters, we set ḡM and gL to
default values, such that ḡM = 0.07 and gL = 0.1.

We compare the performance of our evidential method
to the following methods: a standard softmax classifier, a
classifier with Monte Carlo dropout [11], and two variational
classifiers using a Kullback-Leibler [29] and a maximum mean
discrepancy (MMD, [63]) latent space regularizer, respectively.
We also train three evidential networks with λ = 0 (no
regularization), λ = 0.5, and λ = 1.0 to better quantify the
effects of performing regularized model comparison. Here,
we do not consider non-amortized methods, such as ABC or
ABC-MCMC, as implemented in [38], since they would have
taken an infeasible amount of time to validate on hundreds of
datasets.

2) Validation Results: In order to assess performance,
we train an unregularized evidential network for 60 epochs
resulting in 60000 mini-batch updates. For each batch, we draw

TABLE I: Comparison results from Experiment 4

Neural Architecture Accuracy Calibration Error

Evidential (λ = 0) 0.919± 0.004 0.078 ± 0.010
Evidential (λ = 0.5) 0.917± 0.006 0.097± 0.012
Evidential (λ = 1.0) 0.900± 0.006 0.095± 0.011
Softmax classifier 0.913± 0.006 0.105± 0.015
MC Dropout classifier 0.885± 0.005 0.087± 0.009
MMD-VAE classifier 0.906± 0.006 0.091± 0.012
VAE classifier 0.924 ± 0.005 0.096± 0.012

a random input current duration T ∼ UD(100, 400) (in units
of milliseconds), with the same constant input current, Iinj ,
for each dataset simulation. Here, T reflects the physical time
window in which biological spiking patterns can unfold. Since
the sampling rate of membrane potential is fixed (dt = 0.2),
T affects both the span of observable spiking behavior and
the number of simulated data points. The entire training phase
with online learning took approximately 2.5 hours. On the
other hand, model comparison on 5000 validation time series
took approximately 0.7 seconds, which highlights the extreme
efficiency gains obtainable via globally amortized inference.

Regarding model selection, we observe accuracies above
0.92 across all T , with no gains in accuracy for increasing T ,
which shows that even short input currents are sufficient for
performing reliable model selection for these complex models.
Further, mean bootstrap calibration curves and accuracies on
5000 validation datasets are depicted in Figure S4d. We observe
good calibration for all three models, with calibration errors less
than 0.1. Notably, overconfidence was 0 for all three models.
The normalized confusion matrix is depicted in Figure S4b.



13

In order to assess how well we can capture epistemic
uncertainty for biologically implausible firing patterns, we
train another evidential network with a gradually increasing
regularization weight up to λ = 1.0. We then fix the parameter
ḡNa = 4.0 of model M1 and gradually increase its second
parameter ḡK from 0.1 to 2.0. Since spiking patterns observed
with low values of ḡK are quite implausible and have not been
observed during training, we expect uncertainty to gradually
decrease. Indeed, Figure S4c shows this pattern. Three example
firing patterns and the corresponding posterior estimates are
depicted in Figure 6. On the other hand, changing the sign of
the output membrane potential, which results in biologically
implausible firing patterns, leads to a trivial selection of M3.
This is contrary to expectations, and shows that absolute
evidence is also relative to what the evidential network has
learned during training.

Finally, Table I presents the comparison results in terms
of accuracy and calibration error (all methods achieved 0
overconfidence). We train each neural network method for 30
epochs with identical optimizer settings and the same recurrent
network architecture for ease of comparison. We then compute
validation metrics on 3000 simulated neural firing patterns
and report means and standard errors. Our unregularized
evidential network (λ = 0) achieves the lowest calibration error,
followed by the MC dropout classifier. In terms of accuracy,
the KL variational classifier performs slightly better than our
unregularized evidential network (but still within one standard
error). Overall, the performance of all amortized methods
considered in this experiment is similar, which highlights the
viability of the approach to Bayesian model comparison in
general. Note, that training of each method took less than 1.5
hours, and bootstrap validation on 3000 less than a minute.
The latter would have been impossible to achieve within a
reasonable time-frame using non-amortized methods.

VI. DISCUSSION

In the current work, we introduced a novel simulation-based
method for approximate Bayesian model comparison based on
specialized evidential neural networks. We demonstrated that
our method can successfully deal with both exchangeable and
non-exchangeable (time-dependent) sequences with variable
numbers of observations without relying on fixed summary
statistics. Further, we presented a way to amortize the process
of model comparison for a given family of models by splitting
it into a potentially costly global training phase and a cheap
inference phase. In this way, pre-trained evidential networks
can be stored, shared, and reused across multiple datasets and
model comparison applications. Finally, we demonstrated a way
to obtain a measure of absolute evidence in spite of operating
in an M-closed framework during the simulation phase. In the
following, we reiterate the main advantages of our method.

Theoretical guarantee. By using a strictly proper loss [15],
we showed that our method can closely approximate analytic
model posterior probabilities and Bayes factors in theory and
practice. In other words, posterior probability estimates are
perfectly calibrated to the true model posterior probabilities
when the strictly proper logarithmic loss is globally minimized.

Indeed, our experiments confirm that the network outputs are
well calibrated. However, when optimizing the regularized
version of the logarithmic loss, we are no longer working with
a strictly proper loss, so calibration declines at the cost of
capturing implausible datasets. However, we demonstrated that
the accuracy of recovery (i.e., selecting the most plausible
model in the set of considered models) does not suffer when
training with regularization. In any case, perfect convergence
is never guaranteed in finite-sample scenarios, so validation
tools such as calibration and accuracy curves are indispensable
in practical applications.

Amortized inference. Following ideas from inference compi-
lation [32] and pre-paid parameter estimation [39], our method
avoids fitting each candidate model to each dataset separately.
Instead, we cast the problem of model comparison as a
supervised learning of absolute evidence and train a specialized
neural network architecture to assign model evidences to each
possible dataset. This requires only the specification of plausible
priors over each model’s parameters and the corresponding
forward process, from which simulations can be obtained on
the fly. During the upfront training, we use online learning
to avoid storage overhead due to large simulated grids or
reference tables [37], [39]. Importantly, the separation of model
comparison into a costly upfront training phase and a cheap
inference phase ensures that subsequent applications of the
pre-trained networks to multiple observed datasets are very
efficient. Indeed, we showed in our experiments that inference
on thousands of datasets can take less than a second with
our method. Moreover, by sharing and applying a pre-trained
network for inference within a particular research domain,
results will be highly reproducible, since the settings of the
method will be held constant in all applications.

Raw data utilization and variable sample size. The problem
of insufficient summary statistics has plagued the field of
approximate Bayesian computation for a long time, so as to
deserve being dubbed the curse of insufficiency [37]. Using sub-
optimal summary statistics can severely compromise the quality
of posterior approximations and validity of conclusions based
on these approximations [47]. Our method avoids using hand-
crafted summaries by aligning the architecture of the evidential
neural network to the inherent probabilistic symmetry of the
data [3]. Using specialized neural network architectures, such
as permutation invariant networks or a combination of recurrent
and convolutional networks, we also ensure that our method can
deal with datasets containing variable numbers of observations.
Moreover, by minimizing the strictly proper version of the
logarithmic loss, we ensure that perfect convergence implies
maximal data utilization by the network.

Absolute evidence and epistemic uncertainty. Besides point
estimates of model posterior probabilities, our evidential
networks yield a full higher-order probability distribution over
the posterior model probabilities themselves. By choosing a
Dirichlet distribution, we can use the mean of the Dirichlet
distribution as the best approximation of model posterior
probabilities. Beyond that, following ideas from the study
of subjective logic [27] and uncertainty quantification in
classification tasks [48], we can extract a measure of epistemic
uncertainty. We employ epistemic uncertainty to quantify the
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impossibility of making a model selection decision based
on a dataset, which is classified as implausible under all
candidate models. Therefore, the epistemic uncertainty serves
as a proxy to measure absolute evidence, in contrast to relative
evidence, as given by Bayes factors or posterior odds. This is
an important practical advantage, as it allows us to conclude
that all models in the candidate set are a poor approximation
of the data-generating process of interest. Indeed, our initial
experiments confirm that our measure of epistemic uncertainty
increases when datasets no longer lie within the range of the
considered models. However, extensive validation is needed in
order to explore and understand which aspects of an observed
sample lead to model misfit. Further, exploring connections to
approaches using auxiliary probabilistic classifiers for detecting
model misspecifications, such as the recent CARMEN method
[51], seems to be an interesting avenue for future research.

These advantageous properties notwithstanding, our proposed
method has certain limitations. First, our regularized opti-
mization criterion induces a trade-off between calibration and
epistemic uncertainty, as confirmed by our experiments. This
trade-off is due to the fact that we capture epistemic uncertainty
via a special form of Kullback-Leibler (KL) regularization
during the training phase, which renders the optimized loss
function no longer strictly proper. We leave it to future research
to investigate whether this trade-off is fundamental and whether
there are more elegant ways to quantify absolute evidence from
a simulation-based perspective.

Second, our method is intended for model comparison from
a prior predictive (marginal likelihood) perspective. However,
since we do not explicitly fit each model to data, we cannot
perform model comparison/selection based on posterior predic-
tive performance. We note that in certain scenarios, posterior
predictive performance might be a preferable metric for model
comparison, so in this case, simulation-based sampling methods
should be employed (e.g., ABC or neural density estimation,
[8], [40]).

Third, perfect convergence might be hard to achieve in
real-world applications. In this case, approximation error
will propagate into model posterior estimates. Therefore, it
is important to use performance diagnostic tools, such as
calibration curves, accuracy of recovery, and overconfidence
bounds, in order to detect potential estimation problems. Finally,
even though our method exhibits excellent performance on the
domain examples considered in the current work, it might
break down in high-dimensional parameter spaces. Future
research should focus on applications to even more challenging
model comparison scenarios, for instance, hierarchical Bayesian
models with intractable likelihoods, or neural network models.
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APPENDIX

A. Neural Network Architectures

As already discussed, we need specialized neural network
architectures for dealing with datasets with variable numbers
of observations N and different probabilistic symmetries (e.g.,
i.i.d. or temporal ordering). In the following, we describe
the network architectures used to tackle the most common
probabilistic symmetries observed in the social and life sciences,
that is, exchangeable and temporal sequences.

Exchangeable Sequences: The most prominent feature of
i.i.d. sequences is permutation invariance, since changing the
order of individual elements does not change the associated
likelihood function or posterior. Accordingly, if we denote an
arbitrary permutation of N elements as SN (·), the following
should hold for the associated model posteriors:

p(m |x1:N ) = p(m |SN (x1:N )) (1)

We encode probabilistic permutation invariance by enforcing
functional permutation invariance with respect to the outputs
of the evidential network [3]. Following recent work on deep
sets [62] and probabilistic symmetry [3], we implement a
deep invariant network performing a series of equivariant
and invariant transformations. An invariant transformation is
characterized by:

f(SN (x1:N )) = f(x1:N ) (2)

that is, permuting the input elements does not change the
resulting output. Such a transformation is often referred to
as a pooling operation. On the other hand, an equivariant
transformation is characterized by:

f(SN (x1:N )) = SN (f(x1:N )) (3)

that is, permuting the input is equivalent to permuting the output
of the transformation. We parameterize a learnable invariant
function via an invariant module performing a sequence of non-
linear transformations followed by a pooling (sum) operation
and another non-linear transformation:

z̃ = ΣI(x1:N ) = f1

(
N∑

i=1

f2(xi)

)
(4)

where f1 and f2 can be arbitrary (non-linear) functions, which
we parameterize via fully connected (FC) neural networks.
Figure S1 (left panel) presents a graphical illustration of the
invariant module.

We parameterize a learnable equivariant transformation via
an equivariant module performing the following operations for
each input element i:

zi = ΣE(xi, z̃) = f3(xi, z̃) (5)

so that that f3 is a combination of element-wise and invariant
transforms (see Figure S1, center). Again, we parameterize the
internal function f3 via a standard FC neural network. Note,
that an equivariant module also takes as an input the output
of an invariant module, in order to increase the expressiveness
of the learned transformation. Thus, each equivariant module
contains a separate invariant module. Finally, we can stack

multiple equivariant modules followed by an invariant module,
in order to obtain a deep invariant evidential network fφ :
XN → [1,∞)M :

α = fφ(x1:N ) = (ΣI ◦ Σ
(L)
E ◦ Σ

(L−1)
E ◦ · · · ◦ Σ

(1)
E )(x1:N )

(6)

where φ denotes the vector of all learnable neural network
parameters and the final invariant module implements a shifted
ReLU output non-linearity:

α = max
(

1,ΣI(z
(L)
1:N )

)
(7)

in order to represent Dirichlet evidences (0 < α < 1 is
technically possible and valid but not of relevance for our
purposes). The rightmost panel in Figure S1 provides a
graphical illustration of a deep invariant network. We use
this architecture in Experiments 1, 2 and 4.

Non-Exchangeable Sequences: One of the most common
non-exchangeable sequences encountered in practice are time-
series with arbitrarily long temporal dependencies. A natural
choice for time series-data with variable length are LSTM
networks [14], as recurrent networks are designed to deal with
long sequences of variable size. Another reasonable choice
might be 1D fully convolutional networks [34], which can
also process sequences with variable length. A different type
of frequently encountered non-exchangeable data are images,
which have successfully been tackled via 2D convolutional
networks.

Since, in this work, we apply our evidential method to time-
series models, we will describe an architecture for processing
data with temporal dependencies. We use a combination of a
LSTM and a 1D convolutional network to reduce the observed
time-series into fixed-size vector representations. We then
concatenate these vectors and pass them through a standard
fully connected network to obtain the final Dirichlet evidences.
At a high level, our architecture performs the following
operations on an input sequence x1:N . First, a many-to-one
LSTM network reduces the input sequence to a vector u of
pre-defined size. Then, a 1D convolutional network reduces the
input sequence to a matrix V ∈ RN ′xW where N ′ is the length
of the filtered sequence and W is the number of filters in the
final convolutional layer. In this way, only the time dimension
of V depends on the length of the input. A mean pooling
operator is then applied to the time dimension of V to obtain
a fixed-size representation v of size W . Finally, the outputs
of the LSTM and convolutional networks are concatenated
and fed through a FC network f with a shifted ReLU output
non-linearity, which yields the Dirichlet evidences α. Thus,
the computational flow is as follows:

u = LSTM(x1:N ) (8)

v =
1

N ′

N ′∑

i=1

V i,: with V = Conv1D(x1:N ) (9)

z = Concat(u,v) (10)
α = max(1, f(z)) (11)

Figure S2 illustrates the computational flow of a sequence net-
work. This architecture provides us with a powerful estimator
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Fig. S1: The basic building blocks of a deep invariant evidential network encoding exchangeable sequences (adapted after [3]).
The leftmost panel depicts an invariant module implementing an expressive permutation invariant function. The middle panel
depicts an equivariant module implementing an expressive permutation equivariant function with a nested invariant module.
The right panel depicts a deep invariant network consisting of a composition of equivariant modules followed by an invariant
module with a ReLU output activation non-linearity.

for comparing models whose outputs consist of multivariate
time-series. All neural network parameters φ are jointly
optimized during the training phase. We use this architecture
in Experiments 3 and 5.

B. Neural Network Training

We train all neural networks described in this paper via mini-
batch gradient descent3. For all following experiments, we use
the Adam optimizer with a starter learning rate of 10−4 and an
exponential decay rate of .99. We did not perform an extensive
search for optimal values of network hyperparameters. All
networks were implemented in Python using the TensorFlow
library [1] and trained on a single-GPU machine equipped
with NVIDIA® GTX1060 graphics card. See Appendix A for
details on the neural network architectures.

C. Performance Metrics

Throughout the following examples, we use a set of perfor-
mance metrics to assess the overall performance of our method.
To test how well the method is able to recover the true model
(hard assignment of model indices), we compute the accuracy of
recovery as the fraction of correct model assignments over the
total number of test datasets, where model assignments are done

3Code and simulation scripts for all experiments are available at https:
//github.com/stefanradev93/BayesFlow.

by selecting the model with the highest probability. To test how
well the posterior probability estimates of the evidence network
match the true model posteriors, we compute the expected
calibration error (ECE, [19]). The ECE measures the gap
between the confidence and the accuracy of a classifier and is an
unbiased estimate of exact miscalibration [19]. In practice, we
will report calibration curves for each model, as these are easier
to interpret for multi-class classification problems. Finally,
to ensure that the method does not exhibit overconfidence,
we compute an overconfidence metric which is given by
the difference between a high probability threshold T (e.g.,
T = 0.95) and the accuracy of the model above this threshold:
overconfidence = max{0, T − 1

|DT |
∑
i∈DT

1[m̂(i)=m(i)]}
where DT is the set of indices of predicted probabilities
larger than T . Any deviation from zero would be indicative
of overconfidence and thus lack of confidence in the method’s
estimates.

D. Bonus Experiment: 400 Gaussian Mixture Models

With this example, we want to show that our method is
capable of performing model comparison on problems involving
hundreds of competing models. Further, we want to corroborate
the desired improvement in accuracy with increasing number
of observations, as shown in the previous experiment.

To this aim, we construct a setting with 400 2D Gaussian
Mixture Models (GMMs) with 2 mixture components. The
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Fig. S2: The building blocks of an evidential sequence network. An input sequence generated from a model is fed thorough a
number of convolutional layers in a hierarchical manner (left). The output of the final convolutional layer is passed through a
mean pooling operator to obtain a fixed sized vector v. The input sequence is also fed through an LSTM many-to-one recurrent
neural network (right) to obtain another fixed-size vector u. The vectors v and u are then concatenated into a vector z and
passed through a standard fully connected network (upper right) to obtain the final Dirichlet evidences.

construction of the models and data proceeds as follows. We
first specify the 400 mean vectors on two linearly-spaced 20×
20 grids: µ(m)

0 ∈ [−10, 0] × [−10, 0] and µ(m)
1 ∈ [0, 10] ×

[0, 10] for m = 1, . . . , 400. We then generate data from each
GMM model by:

N ∼ UD(1, 250) (12)

π(m) ∼ Beta(30, 30) (13)

k ∼ Bernoulli(π(m)) (14)

x
(m)
j ∼ N (µ

(m)
k , I) for j = 1, . . . , N (15)

where UD denotes the discrete uniform distribution and I the
identity matrix of appropriate dimension. Thus, each dataset
consists of N i.i.d. samples from one of 400 GMMs with
different component mean vectors. Figure S3a depicts simulated
datasets from 9 GMM with linearly increasing X-coordinates
showing that differences between the models are very subtle.

We train an invariant evidential network for 30 epochs for
approximately 1.2 hours wall-clock time. We then validate
the performance of the network on all possible N between
1 and 250 with 5000 previously unseen simulated datasets.
Figure S3b depicts a heatmap of the normalized confusion
matrix obtained on the validation datasets with N = 250.
Importantly, we observe that the main diagonal of the heatmap
indicates that the predicted model indices mostly match the
true model indices, with mistakes occurring mainly between

models with very close means. Bootstrap mean accuracy
at N = 250 was around 0.451 (SD=0.007), which is 180
times better than chance accuracy (0.0025) considering the
dimensionality of the problem. Finally, Figure S3c depicts the
accuracy of recovery over all N considered. Again, we observe
that accuracy improves as more observations become available,
with sub-linear scaling.

E. Priors for Experiment 4

The prior parameter distributions for all models used in
Experiment 4 are listed in Table S1.

F. Details for Experiment 4

The forward model is formulated as a set of five ordinary
differential equations (ODEs) describing how the neuron
membrane potential V (t) unfolds in time as a function of
an injected current Iinj(t), and ion channels properties. The
change in membrane potential is defined by the membrane
ODE:

C
dV

dt
= −IL − INa − IK − IM + Iinj + ση(t) (16)

where C is the specific membrane capacitance, ση(t) the
intrinsic neural noise, and the Ijs are the ionic currents flowing
through channels, such that:
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(a) Example GMM datasets from 9 models
(b) Confusion matrix at N = 250

(c) Accuracy over all N

Fig. S3: Data and results from Experiment 2. (a) 9 example data-sets from 9 different GMM models. The X-coordinates of
both clusters increase linearly left to right, and coordinate differences are very small; (b) Heatmap of the confusion matrix
between true and predicted model indices. Accuracy of recovery is color-coded according to the colorbar depicted at the right.
N = 250; (c) Accuracy of recovery as a function of sample size N .
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TABLE S1: Parameter priors of the free parameters and numerical values of the fixed parameters of the six EAM models
considered in Experiment 4.

v1 v2 a t0 zr α st0 sv szr

M1 U(0, 6) U(−6, 0) U(0.6, 3) U(0.2, 1.5) 0.5 0 0 0 0
M2 U(0, 6) U(−6, 0) U(0.6, 3) U(0.2, 1.5) U(0.3, 0.7) 0 0 0 0
M3 U(0, 6) U(−6, 0) U(0.6, 3) U(0.2, 1.5) U(0.3, 0.7) U(1, 2) 0 0 0
M4 U(0, 6) U(−6, 0) U(0.6, 3) U(0.2, 1.5) U(0.3, 0.7) U(1, 2) U(0, 0.4) 0 0
M5 U(0, 6) U(−6, 0) U(0.6, 3) U(0.2, 1.5) U(0.3, 0.7) U(1, 2) U(0, 0.4) U(0, 2) 0
M6 U(0, 6) U(−6, 0) U(0.6, 3) U(0.2, 1.5) U(0.3, 0.7) U(1, 2) U(0, 0.4) U(0, 2) U(0, 0.6)

IL = gL(V − EL) (17)

INa = ḡNam
3h(V − ENa) (18)

IK = ḡKn
4(V − EK) (19)

IM = ḡMp(V − EM ). (20)

Here, gL is the leak conductance, while ḡNa, ḡK , ḡM are
the sodium, potassium and M-type channel maximum con-
ductances, respectively. EL, ENa and EK denote the leak
equilibrium potential, the sodium and potassium reversal
potentials, respectively. In particular, gL is assumed constant
through time, whilst the other conductances vary over time.
Consistently, (m,h, n, p) indicates the vector of the state
variables accounting for ion channel gating kinetics evolving
according to the following set of ODEs:

di

dt
= αi(V )(1− i)− βi(V )i (21)

dp

dt
=
p∞(V )− p
τp(V )

(22)

where i ∈ {m,h, n}, and αi(V ), βi(V ), p∞(V ) and τp(V )
are nonlinear functions of the membrane potential (see [42]
for details).

In our simulated experiment, we treat conductances
gL, ḡNa, ḡK and ḡM as free parameters, and consider different
neuronal models based on different parameter configurations. It
is also assumed that such configurations allow to affect the span
of the possible firing patterns attainable by each model. In par-
ticular, we consider 3 models M = {M1,M2,M3} defined
by the parameter sets θ1 = (ḡNa, ḡK), θ2 = (ḡNa, ḡK , ḡM )
and θ1 = (ḡNa, ḡK , ḡM , gL). We place the following priors
over the parameters ḡNa and ḡK :

ḡNa ∼ U(1.5, 30) (23)
ḡK ∼ U(0.3, 15) (24)

When not considered as free parameters, ḡM and gL are set to
default values, such that ḡM = 0.07 and gL = 0.1, otherwise
parameters are drawn from the following priors:

ḡM ∼ U(0.005, 0.3) (25)
ḡL ∼ U(0.01, 0.18) (26)

Figure S4a depicts 50 example runs from each model with
respective parameters θ1 = (3.0, 2.0), θ2 = (3.0, 2.0, 0.1),
θ3 = (3.0, 2.0, 0.1, 0.11).
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(a) Example spiking patterns from all three models

(b) Confusion matrix with T = 100
(c) Epistemic uncertainty as a function of ḡK

(d) Calibration at T = 400

Fig. S4: Example Hodgkin-Huxley spiking patterns and validation results from Experiment 5.
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Abstract
As models of cognition grow in complexity and number of pa-
rameters, Bayesian inference with standard methods can be-
come intractable, especially when the data-generating model
is of unknown analytic form. Recent advances in simulation-
based inference using specialized neural network architectures
circumvent many previous problems of approximate Bayesian
computation. Moreover, due to the properties of these spe-
cial neural network estimators, the effort of training the net-
works via simulations amortizes over subsequent evaluations
which can re-use the same network for multiple datasets and
across multiple researchers. However, these methods have
been largely underutilized in cognitive science and psychol-
ogy so far, even though they are well suited for tackling a wide
variety of modeling problems. With this work, we provide a
general introduction to amortized Bayesian parameter estima-
tion and model comparison and demonstrate the applicability
of the proposed methods on a well-known class of intractable
response-time models.
Keywords: Bayesian inference; Neural networks; Cognitive
models; Deep learning; Simulation

Generative Models in Cognitive Science
Mathematical models formalize theories of cognition and
enable the systematic investigation of cognitive processes
through simulations and testable predictions. They enable a
systematic joint analysis of behavioral and neural data, bridg-
ing a crucial gap between cognitive science and neuroscience
(B. M. Turner, Forstmann, Steyvers, et al., 2019). Moreover,
questions demanding a choice among competing cognitive
theories can be resolved at the level of formal model com-
parison.

The generative property of such models arises from the fact
that one can simulate the process of interest and study how it
behaves under various conditions. More formally, consider
a cognitive model M which represents a theoretically plausi-
ble, potentially noisy, process by which observable behavior x
arises from an assumed cognitive system governed by hidden
parameters θ and an independent source of noise ξ∼ p(ξ):

x = M (θ,ξ) (1)

Generative models of this form have been developed in var-
ious domains throughout psychology and cognitive science,
including decision making (Voss, Lerche, Mertens, & Voss,
2019), memory (Myung, Montenegro, & Pitt, 2007), rein-
forcement learning (Fontanesi, Gluth, Spektor, & Rieskamp,
2019), risky behavior (Stout, Busemeyer, Lin, Grant, & Bon-
son, 2004), to name just a few. Once a model (or a set of

models) of some cognitive process of interest has been for-
mulated, the challenge becomes to perform inference on real
data. We will now briefly review the mathematical tools pro-
vided by Bayesian probability theory for parameter estima-
tion and model comparison (Jaynes, 2003). Then, we will
peruse a novel framework for performing Bayesian inference
on models of cognition which are intractable with standard
Bayesian methods.

Bayesian Parameter Estimation
Bayesian parameter estimation leverages prior knowledge
about reasonable parameter ranges and integrates this infor-
mation with the information provided by the data to arrive at
a posterior distribution over parameters. In a Bayesian con-
text, the posterior encodes our updated belief about plausi-
ble parameter ranges conditional on a set of N observations
X := {xn}N

n=1. Bayes’ rule gives us the well known analytical
form of the posterior:

p(θ |X) =
p(X |θ) p(θ)∫
p(X |θ) p(θ)dθ

(2)

where p(X |θ) represents the likelihood of the parameters θ
and p(θ) denotes the prior, that is the distribution of θ be-
fore observing the data. The denominator is a normalizing
constant usually referred to as the marginal likelihood or ev-
idence. Note, that all distributions are also implicitly condi-
tional on the particular generative model M .

Based on the obtained estimate of the posterior distribu-
tion, usually in the form of random draws from the poste-
rior, summary statistics such as posterior means or credible
intervals for each parameter can be obtained. What is more,
the posterior distribution can be further transformed to ob-
tain subsequent quantities of interest, for example, the pos-
terior predictive distribution which can be compared to the
observed data for the purpose of model checking (Lynch &
Western, 2004).

Bayesian Model Comparison
In many research domains, there is not a single model for
a particular process, but whole classes of models instantiat-
ing different and often competing theories. Bayesian model
comparison proceeds by assigning a plausibility value to each
candidate model. These plausibility values (model weights,



model probabilities, model predictions, etc.) can be used to
guide subsequent model selection.

To set the stage, consider a set of J candidate models G =
{M1,M2, . . . ,MJ}. An intuitive way to quantify plausibility
is to consider the marginal likelihood of a model M given by:

p(X |M ) =
∫

p(X |θ,M ) p(θ |M )dθ (3)

which is also the denominator in Eq.2 (with M implicit in
the previous definition). This quantity is also known as ev-
idence, or prior predictive distribution, since the likelihood
is weighted by the prior (in contrast to a posterior predictive
distribution where the likelihood would be weighted by the
posterior). The marginal likelihood penalizes the prior com-
plexity of a model and thus naturally embodies the principle
of Occam’s razor (Jaynes, 2003). To compare two compet-
ing models, one can focus on the ratio between two marginal
likelihoods, called a Bayes factor (BF):

BFi j =
p(X |Mi)

p(X |M j)
(4)

which quantifies the relative evidence of model i over model
j. Alternatively, if prior information about model plausibility
is available, one can consider model posteriors p(M |X) ∝
p(X |M ) p(M ) and compute the posterior odds:

p(Mi |X)

p(M j |X)
=

p(X |Mi)

p(X |M j)

p(Mi)

p(M j)
(5)

which combine the relative evidence given by the BF with
prior information in the form of prior odds.

Model Intractability
In order for cognitive models to be useful in practice, pa-
rameter estimation and model comparison should be feasible
within reasonable time limits. As evident from their defini-
tions, both Bayesian parameter estimation and model com-
parison depend on the likelihood function p(X |θ,M ) which
needs to be evaluated analytically or numerically for any
triplet (M ,θ,X).

When this is possible, standard Bayesian approaches for
obtaining random draws from the posterior, such as Markov
chain Monte Carlo (MCMC), or optimizing an approximate
posterior, such as variational inference (VI), can be readily
applied. However, when the likelihood function is not avail-
able in closed-form or too expensive to evaluate, standard
methods no longer apply.

In fact, many interesting models from a variety of do-
mains in cognitive science and psychology turn out to be in-
tractable (Voss et al., 2019; B. Turner, Sederberg, & McClel-
land, 2016). This has precluded the wide exploration and ap-
plication of these models, as researchers have often traded off
complexity or neurocognitive plausibility for simplicity in or-
der to make these models tractable. In the following, we dis-
cuss the most popular approach to inference with intractable
models.

Simulation-Based Inference
Simulation-based methods leverage the generative property
of mathematical models by treating a particular model as
a scientific simulator from which synthetic data can be ob-
tained given any configuration of the parameters. Simulation-
based inference is common to many domains in science in
general (Cranmer, Brehmer, & Louppe, 2019) and a vari-
ety of different approaches exist. These methods have also
been dubbed likelihood-free, which is somewhat unfortunate,
since the likelihood is implicitly defined by the generative
process and sampling from the likelihood is realized through
the stochastic simulator:

xn ∼ p(x |θ,M )⇐⇒ xn = M (θ,ξn) with ξn ∼ p(ξ) (6)

Different simulation-based methods differ mainly with re-
spect to how they utilize the synthetic data to perform in-
ference on real observed data (Cranmer et al., 2019). The
utility of any simulation-based method depends on multiple
factors, such as asymptotic guarantees, data utilization, effi-
ciency, scalability, and software availability.

Approximate Bayesian computation (ABC) offers a stan-
dard set of theoretically sound methods for performing in-
ference on intractable models (Cranmer et al., 2019). The
core idea of ABC methods is to approximate the posterior by
repeatedly sampling parameters from a proposal (prior) dis-
tribution and then generating a synthetic dataset by running
the simulator with the sampled parameters. If the simulated
dataset is sufficiently similar to an actually observed dataset,
the corresponding parameters are retained as a sample from
the desired posterior, otherwise rejected. However, in prac-
tice, ABC methods are notoriously inefficient and suffer from
various problems, such as the curse of dimensionality or curse
of inefficiency (Marin, Pudlo, Estoup, & Robert, 2018). More
efficient methods employ various techniques to optimize sam-
pling or correct potential biases.

Recently, the scientific repertoire for simulation-based in-
ference has been enhanced with ideas from deep learning and
neural density estimation (NDE) in particular (Greenberg,
Nonnenmacher, & Macke, 2019). These methods employ
specialized neural network architectures which are trained
with simulated data to perform efficient and accurate in-
ference on previously intractable problems (Cranmer et al.,
2019). NDE methods are rapidly developing and still largely
underutilized in cognitive modeling, even though first appli-
cations to simulated (Radev, Mertens, Voss, Ardizzone, &
Köthe, 2020; Radev, D’Alessandro, et al., 2020) as well as
actual data (Wieschen, Voss, & Radev, 2020) exist.

Amortized Inference
The majority of simulation-based methods need to be applied
to each dataset separately. This quickly becomes infeasible
when multiple datasets are to be analysed and multiple can-
didate models are considered, since the expensive inference
procedure needs to be repeated from scratch for each combi-
nation of dataset and model.



(a) Amortized parameter estimation

(b) Amortized model comparison

Figure 1: Graphical illustration of amortized parameter estimation and model comparison with different neural network esti-
mators. (a) Amortized Bayesian parameter estimation with invertible neural networks (Radev, Mertens, et al., 2020). The left
panel depicts the training phase in which the summary ( fη) and the inference network ( fψ) are jointly optimized to approximate
the true target posterior. The right panel depicts inference with already trained networks on observed data; (b) Amortized
Bayesian model comparison with evidential neural networks (Radev, D’Alessandro, et al., 2020). The left panel depicts the
training phase during which the evidential network fφ is optimized to approximate the true model posteriors via a higher-order
Dirichlet distribution. The right panel depicts inference with an already trained evidential network; the upfront training effort
for both inference tasks is amortized over arbitrary numbers of datasets from a research domain.



In contrast, the concept of amortized inference refers to an
approach which minimizes the cost of inference by separating
the process into an expensive training (optimization) phase
and a cheap inference phase which can be easily repeated
for multiple datasets or models without computational over-
head. Thus, the effort of training or optimization amortizes
over repeated applications on multiple datasets or models. In
some cases, the efficiency advantage of amortized inference
becomes noticeable even for a few datasets (Radev, Mertens,
et al., 2020; Radev, D’Alessandro, et al., 2020).

The field of amortized inference is rapidly growing and a
variety of methods and concepts are currently being explored.
For instance, inference compilation involves pre-training a
neural network with simulations from a generative model and
then using the network in combination with a probabilistic
program to optimize sampling from the posterior (Le, Baydin,
& Wood, 2016). The pre-paid estimation method (Mestdagh,
Verdonck, Meers, Loossens, & Tuerlinckx, 2019) proceeds
by creating a large grid of simulations which are reduced
to summary statistics and stored on disk. Subsequent infer-
ence involves computing the nearest neighbors of an observed
dataset in the pre-paid grid and interpolation. Sequential neu-
ral posterior estimation (SNPE) methods employ various iter-
ative refinement schemes to transform a proposal distribution
into the correct target posterior via expressive NDEs trained
over multiple simulation rounds (Greenberg et al., 2019).

In line with these ideas, we recently proposed two general
frameworks for amortized Bayesian parameter estimation and
model comparison based on specialized neural network archi-
tectures (Radev, Mertens, et al., 2020; Radev, D’Alessandro,
et al., 2020). In particular, these frameworks were designed
to implement the following desirable properties:

• Fully amortized Bayesian inference for parameter estima-
tion and model comparison of intractable models

• Asymptotic theoretical guarantees for sampling from the
true parameter and model posteriors

• Learning maximally informative summary statistics di-
rectly from data instead of manual selection

• Scalability to high-dimensional problems through consid-
erations regarding the probabilistic symmetry of the data

• Implicit preference for simpler models based purely on
generative performance

• Online learning eliminating the need for storing large grids
or reference tables

• Parallel computations and GPU acceleration applicable to
both simulations, training/optimization, and inference

In the following, we describe our recently developed meth-
ods parameter estimation and model comparison in turn.

Amortized Parameter Estimation with
Invertible Neural Networks

Recently, we proposed a novel amortization method based
on invertible neural networks (Radev, Mertens, et al., 2020),
which we dubbed BayesFlow. The method relies solely on
simulations from a process model in order to learn and cali-
brate the full posterior over all possible parameter values and
observed data patterns.

The BayesFlow method involves two separate neural net-
works trained jointly. A permutation invariant summary net-
work is responsible for reducing an entire dataset X with a
variable number N of i.i.d. observations1 into a vector of
learned summary statistics. Importantly, permutation invari-
ant networks can deal with i.i.d. sequences of variable size
and preserve their probabilistic symmetry. An inference net-
work, implemented as an invertible neural network (Radev,
Mertens, et al., 2020), is responsible for approximating the
true posterior of model parameters given the output of the
summary network. Invertible networks can perform asymp-
totically exact inference and scale well from simple low-
dimensional problems to high-dimensional distributions with
complex dependencies. During training, model parameters
and synthetic datasets are generated on the fly and neural net-
work parameters are adjusted via joint backpropagation (see
Figure 1a, left panel, for a graphical illustration of the training
phase).

Given a model and a prior over the model parameters, the
goal is thus to train a conditional invertible neural network fψ
with adjustable parameters ψ together with a summary net-
work fη with adjustable parameters η. These networks jointly
learn an approximate posterior pψ(θ | fη(X)) over the relevant
parameters for arbitrary numbers of datasets and dataset sizes
N, as long as they share the same data structure. To achieve
this, the networks minimize the Kullback-Leibler (KL) diver-
gence between the true and the approximate posterior:

min
ψ,η

KL
(

p(θ |X) || pψ(θ | fη(X))
)

(7)

Utilizing the fact that we have access to the joint distribution
p(θ,X) = p(θ)(X |θ) via the simulator, we minimize the KL
divergence in expectation over all possible datasets that can
be generated given the prior and the model, resulting in the
following optimization criterion:

min
ψ,η

Ep(θ,x)
[
− log pψ(θ | fη(X))

]
(8)

In practice, we approximate the criterion via its Monte Carlo
(MC) estimate, since we can simulate theoretically infinite
amounts of data and can easily evaluate pψ(θ | fη(X)) due to
our invertible architecture. In case of perfect convergence of
the networks, the summary network outputs sufficient sum-
mary statistics and the inference network samples from the
true posterior (Radev, Mertens, et al., 2020). Importantly,

1Note, that the i.i.d. assumption is not a necessary condition for
the method to work, but used here only to simplify the discussion.



once the networks have been trained with sufficient amounts
of simulated data, they can be stored and applied for infer-
ence on multiple datasets from a research domain (see Figure
1a, right panel).

Amortized Model Comparison with Evidential
Neural Networks

In another recent work (Radev, D’Alessandro, et al., 2020),
we explored a framework for Bayesian model comparison on
intractable models via evidential neural networks. We pro-
posed to train a permutation invariant classifier network on
simulated data from multiple models. The goal of this net-
work is to approximate posterior model probabilities as accu-
rately as possible. To achieve this, the network is trained to
output the parameters of a higher-order probability distribu-
tion (parameterized as a Dirichlet distribution) over the model
probabilities themselves, which quantifies the uncertainty in
model probability estimates. Thus, for a classifier network
with parameters φ, the higher-order posterior distribution over
model probabilities is given by:

Dir(π |αφ(X)) =
1

B(αφ(X))

J

∏
j=1

παφ(X) j−1 (9)

where αφ(X) denotes the vector of concentration parameters
obtained by the network for a dataset X and B(·) is the multi-
variate beta function. The mean of this Dirichlet distribution
can be used as a best estimate for the posterior model proba-
bilities:

pφ(M |X) =
αφ(X)

∑J
j=1 αφ(X) j

(10)

Additionally, its variance can be interpreted as the epistemic
uncertainty surrounding the actual evidence which the data
provide for model comparison.

For training the network, we again utilize the fact that we
have access to the joint distribution p(M ,θ,X) via simula-
tions (see Figure 1b, left panel). Our optimization criterion
is:

min
φ

Ep(M ,θ,X)

[
L
(

pφ(M |X),M
)]

(11)

where L(·, ·) is a strictly proper loss function (Gneiting &
Raftery, 2007), M is the true model index and the data X
implicitly depend on θ. In practice, we approximate this ex-
pectation via draws from the joint distribution available via
the simulator. Optimization of a strictly proper criterion,
asymptotic convergence implies that the mean of the Dirichlet
distribution represents the true model posteriors. Moreover,
our simulation-based approach implicitly captures a prefer-
ence for simpler models (Occam’s razor), since simpler mod-
els will tend to generate more similar datasets. As a conse-
quence, when such datasets are plausible under multiple mod-
els, the comparably simpler models will be more probable.

As with parameter estimation, once the evidence network
has been trained on simulated data from the candidate mod-
els, it can be applied to multiple upcoming observations from
a research domain (see Figure 1b, right panel).

Example Applications
In the following, we will present two applications of amor-
tized Bayesian parameter estimation to a recently proposed
and intractable evidence accumulation model (EAM). The
first illustrative application is a simulation study aimed at
quantifying parameter recovery as a function of data set size.
Such simulations are especially useful for planing experi-
ments but usually too costly to perform in complex modeling
scenarios. The second application is concerned with param-
eter estimation on real data and serves as an illustration on
how researchers might utilize amortized Bayesian inference
with a pre-trained density estimator in practice.

EAMs are a popular class of models in psychology and
cognitive science, as they allow a model-based analysis of
response time (RT) distributions. Here, we will consider a
Lévy flight model (LFM) with a non-Gaussian noise assump-
tion (Voss et al., 2019; Wieschen et al., 2020) as an example.
The Lévy flight process is driven by the following stochastic
ordinary differential equation (ODE):

dxc = vc dt +ξdt1/α (12)
ξ∼ AlphaStable(α,0,1,0) (13)

where dxc denotes accumulated cognitive evidence in con-
dition c, vc denotes the average speed of information accu-
mulation (drift), and α controls how heavy the tails of the
noise distribution are (i.e., smaller values increase the prob-
ability of outliers in the accumulation process). Further pa-
rameters of the model are: a decision threshold (a) which
reflects the amount of information needed for selecting a re-
sponse; a starting point (zr) indicative of response biases; and
a non-decision time (t0) reflecting additive encoding and mo-
tor process. Since the relationship of the α parameter to the
standard parameters of the classical diffusion model (Ratcliff,
Thapar, Gomez, & McKoon, 2004) has not been previously
investigated, we focus on quantifying posterior correlations
in the real data application.

Simulation Example
As a first example, consider a simulated RT experiment with
four conditions. How many trials are needed for accurate
parameter recovery? To answer this question, we can sim-
ulate multiple experiments with varying number of trials per
participant (N) and then compute some discrepancy between
ground-truth parameters and their estimates. However, since
the model is intractable, such a simulation scenario is not fea-
sible with non-amortized methods, which would need weeks
on standard machines (Voss et al., 2019). However, using
the BayesFlow method (Figure 1a), we can train the networks
with simulated datasets and vary the number of trials during
each simulation. Such a training takes approximately one day
on a standard laptop equipped with an NVIDIA R© GTX1060
graphics card. Subsequent inference is then very cheap, as
amortized parameter estimation on 500 simulated participants
takes less than 2 seconds.



(a) Parameter recovery as a function of trial numbers (N)

(b) Simulation-based calibration

Figure 2: Simulation results. (a) The left panel depicts pa-
rameter recovery of the four drift rate parameters as a function
of trial numbers per participant N. The right panel depicts
recovery of the other four parameters. Posterior means are
used as summaries of the full posteriors and shaded regions
represent bootstrap 95% confidence intervals. (b) The panel
depicts simulation-based calibration (SBC) results at N = 800
as a validation check for the correctness of the full posteriors.

Figure 3: Example full posteriors and bivariate posterior cor-
relations obtained from data of one participant in the long
LDT via amortized Bayesian inference. Dashed lines on the
main diagonal indicate posterior means.

We visualize the results by plotting the average R2 metric
obtained from fitting the LFM model to 300 simulated par-
ticipants at different N between 50 and 1000 (see Figure 2a).
Notably, recovery of the ground-truth parameters via poste-
rior means is nearly perfect at higher trial numbers.

As a validation tool for visually detecting systematic bi-
ases in the approximate posteriors, we can also cheaply ap-
ply simulation-based calibration (SBC) and inspect the rank
statistic of the posterior samples for uniformity (Talts, Be-
tancourt, Simpson, Vehtari, & Gelman, 2018). Results from
applying SBC to 5000 simulated participants at N = 800 are
depicted in Figure 2b. Indeed, we confirm that no pronounced
issues across all marginal posteriors are present.

Real Data Example
We can also apply the same networks from the previous sim-
ulation example for fully Bayesian inference on real data.
Here, we fit the LFM model to previously unpublished data
from eleven participants performing a long (N = 800 per con-
dition) lexical decision task (LDT). Since the task had a 2×2
design, with a factor for difficulty (hard vs. easy), and a fac-
tor for stimulus type (word vs. non-word), we can assume a
different drift rate for each design cell.

Applying the pre-trained networks, we immediately obtain
samples from a full posterior over model parameters for each
participant. Using the estimated posteriors, we can then test
hypotheses about particular parameter values, compute indi-
vidual differences, or compare means between conditions in
a Bayesian way. Furthermore, we can analyze posterior cor-
relations at an individual level and investigate task-dependent
relationships between the α parameter and other parameters
(see Figure 3 for results obtained from a single participant).

Across participants, α displays only small posterior cor-
relations with drift rates as well as small posterior correla-
tions with threshold and non-decision time parameters (mean
r < 0.5 across all parameters of the standard diffusion model).
These results provide first evidence that the α parameter can
indeed be decoupled from other model parameters and possi-
bly indicates a separate decision process.

Since the goal of this application was solely to illustrate
a typical use case for amortized Bayesian inference, future
research should focus on extensive external validation of the
LFM model as well as proposing a neurocognitively plausible
interpretation for the α parameter.

Outlook
The purpose of this work was to introduce the main ideas be-
hind amortized Bayesian inference methods for simulation-
based parameter estimation and model comparison. Although
these methods come with promising theoretical guarantees
and clear practical advantages, their utility for cognitive mod-
eling is just beginning to be explored. Moreover, there are
still many open questions and avenues for future research.

First, a systematic investigation of a potential amortiza-
tion gap in certain practical application seems warranted. An
amortization gap refers to a drop in estimation accuracy due



to the fact that we are relying on a single set of neural net-
work parameters for solving an inference problem globally,
instead of performing per-dataset optimization. Even though
we have not observed such a scenario in our applications and
simulations, this behavior might occur when the neural net-
work estimators are not expressive enough to represent com-
plex posterior distributions.

Second, there are still little systematic guidelines on how
to best design and tune the neural network architectures so
as to perform optimally across a variety of parameter estima-
tion and model comparison tasks. Even though neural den-
sity estimation methods outperform standard ABC methods
on multiple metrics and in various contexts, there is certainly
room for improvement. Black-box optimization methods for
hyperparameter tuning, such as Bayesian optimization or ac-
tive inference (Snoek, Larochelle, & Adams, 2012), might
facilitate additional performance gains and reduce potentially
suboptimal architectural choices.

Finally, user-friendly software for applying Bayesian
amortization methods out-of-the-box is still largely in its in-
fancy. Developing and maintaining such software is a crucial
future goal for increasing the applicability and usability of
novel simulation-based methods.

Conclusion
We hope that the inference architectures discussed in this
work will spur the interest of cognitive modelers from var-
ious domains. We believe that such architectures can greatly
enhance model-based analysis in cognitive science and psy-
chology. By leaving subsidiary tractability considerations to
powerful end-to-end algorithms, researchers can focus more
on the task of model development and evaluation to further
improve our understanding of cognitive processes.
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ABSTRACT
Adaptive behavior emerges through a dynamic interaction between cognitive agents
and changing environmental demands. The investigation of information processing
underlying adaptive behavior relies on controlled experimental settings in which
individuals are asked to accomplish demanding tasks whereby a hidden regularity or
an abstract rule has to be learned dynamically. Although performance in such tasks
is considered as a proxy for measuring high-level cognitive processes, the standard
approach consists in summarizing observed response patterns by simple heuristic
scoring measures. With this work, we propose and validate a new computational
Bayesian model accounting for individual performance in the Wisconsin Card Sorting
Test (WCST), a renowned clinical tool to measure set-shifting and deficient inhibitory
processes on the basis of environmental feedback.We formalize the interaction between
the task’s structure, the received feedback, and the agent’s behavior by building a
model of the information processing mechanisms used to infer the hidden rules of the
task environment. Furthermore, we embed the new model within the mathematical
framework of the Bayesian Brain Theory (BBT), according to which beliefs about
hidden environmental states are dynamically updated following the logic of Bayesian
inference. Our computational model maps distinct cognitive processes into separable,
neurobiologically plausible, information-theoretic constructs underlying observed
response patterns. We assess model identification and expressiveness in accounting for
meaningful humanperformance through extensive simulation studies.We then validate
themodel on real behavioral data in order to highlight the utility of the proposedmodel
in recovering cognitive dynamics at an individual level. We highlight the potentials of
our model in decomposing adaptive behavior in the WCST into several information-
theoretic metrics revealing the trial-by-trial unfolding of information processing by
focusing on two exemplary individuals whose behavior is examined in depth. Finally,
we focus on the theoretical implications of our computational model by discussing
the mapping between BBT constructs and functional neuroanatomical correlates of
task performance. We further discuss the empirical benefit of recovering the assumed
dynamics of information processing for both clinical and research practices, such as
neurological assessment and model-based neuroscience.

Subjects Computational Biology, Neuroscience, Psychiatry and Psychology
Keywords Adaptive behavior, Bayesian brain, Cognitive modeling, Wisconsin card sorting test,
Information processing, Information theory, Belief updating
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INTRODUCTION
Computational models of cognition provide a way to formally describe and empirically
account for mechanistic, process-based theories of adaptive cognitive functioning (Sun,
2009;Cooper et al., 1996; Lee & Wagenmakers, 2014). A foundational theoretical framework
for describing functional characteristics of neurocognitive systems has recently emerged
under the hood of Bayesian brain theories (Knill & Pouget, 2004; Friston, 2010). Bayesian
brain theories owe their name to their core assumption that neural computations resemble
the principles of Bayesian statistical inference.

In a Bayesian theoretical framework, cognitive agents interact with an uncertain
and changeable sensory environment. This requires a cognitive system to infer sensory
contingencies based on an internal generative model of the environment. Such a generative
model represents subjective hypotheses, or beliefs, about the causal structure of events
in the environment (Friston, 2005; Knill & Pouget, 2004) and forms a basis for adaptive
behavior. It is assumed that internal beliefs are constantly updated and refined to match the
current state of the world as new observations become available. The core idea behind the
Bayesian brain hypothesis is that computational mechanisms underlying such an internal
belief updating follow the logic of Bayesian probability theory. In this respect, information
about the external world provided by sensory inputs is represented as a conditional
probability distribution over a set of environmental states. Consequently, the brain relies
on this probabilistic representation of the world to infer the most likely environmental
causes (states) which generate those inputs, and such a process follows the computational
principles of Bayesian inference (Friston & Kiebel, 2009; Friston, 2010; Buckley et al., 2017).

To clarify this concept, consider a simple example of a perceptual task in which a
cognitive agent is required to judge whether an item depicted on a flat plane is concave or
convex. Its judgment is based solely on the basis of a set of observed perceptual features,
such as, shape, orientation, texture and brightness. Here, the concave-to-convex gradient
entails the set of environmental states which must be inferred. The internal generative
model of the agent codifies beliefs about how different degrees of convexity might give rise
to certain configurations of perceptual inputs. From a Bayesian perspective, the problem is
solved by inverting the generative model of the environment in order to turn assumptions
about how environmental states generate sensory inputs into beliefs about the most likely
states (e.g., degree of convexity) given the available sensory information.

Potentially, there are no limitations regarding the complexity of environmental settings
(e.g., items and rules in experimental tasks) and cognitive processes to be described in
light of the Bayesian brain framework. Indeed, the latter has proven to be a consistent
computational modeling paradigm for the investigation of a variety of neurocognitive
mechanisms, such as motor control (Friston et al., 2010), oculomotor dynamics (Friston et
al., 2012), object recognition (Kersten, Mamassian & Yuille, 2004), attention (Feldman
& Friston, 2010), perceptual inference (Petzschner, Glasauer & Stephan, 2015; Knill &
Pouget, 2004), multisensory integration (Körding et al., 2007), as well as for providing
a foundational theoretical account of general neural systems’ functioning (Lee & Mumford,
2003; Friston, 2005; Friston, 2003) and complex clinical scenarios such as Schizophrenia
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(Stephan, Baldeweg & Friston, 2006), and Autistic Spectrum Disorder (Haker, Schneebeli &
Stephan, 2016; Lawson, Rees & Friston, 2014). For this reason, such a modeling approach
might provide a comprehensive and unified framework under which several cognitive
impairments can be measured and understood in the light of a general process-based
theory of neural functioning.

In this work, we address the challenging problem of modeling adaptive behavior
in a dynamic environment. The empirical assessment of adaptive functioning often
relies on dynamic reinforcement learning scenarios which require participants to adapt
their behavior during the unfolding of a (possibly) demanding task. Typically, these
tasks are designed with the aim to figure out how adaptive behavior unfolds through
multiple trials as participants observe certain environmental contingencies, take actions,
and receive feedback based on their actions. From a Bayesian theoretical perspective,
optimal performance in such adaptive experimental paradigms require that agents infer
the probabilistic model underlying the hidden environmental states. Since these models
usually change as the task progresses, agents, in turn, need to adapt their inferred model,
in order to take optimal actions.

Here, we propose and validate a computational Bayesian model which accounts for the
dynamic behavior of cognitive agents in the Wisconsin Card Sorting Test (WCST; Berg,
1948; Heaton, 1981), which is perhaps the most widely adopted neuropsychological setting
employed to investigate adaptive functioning. Due to its structure, the WCST can account
for executive components underlying observed behavior, such as set-shifting, cognitive
flexibility and impulsive response modulation (Bishara et al., 2010; Alvarez & Emory,
2006). For this reason, we consider the WCST as a fundamental paradigm for investigating
adaptive behavior from a Bayesian perspective.

The environment of the WCST consists of a target and a set of stimulus cards with
geometric figures which vary according to three perceptual features. The WCST requires
participants to infer the correct classification rule by trial and error using the examiner’s
feedback. The feedback is thought to carry a positive or negative information signaling the
agent whether the immediate action was appropriate or not. Modeling adaptive behavior in
the WCST from a Bayesian perspective is straightforward, since observable actions emerge
from the interaction between the internal probabilistic model of the agent and a set of
discrete environmental states.

Performance in WCST is usually measured via a rough summary metric such as the
number of correct/incorrect responses or pre-defined psychological scoring criteria (see
for instance Heaton, 1981). These metrics are then used to infer the underlying cognitive
processes involved in the task. A major shortcoming of this approach is that it simply
assumes the cognitive processes to be inferred without specifying an explicit process model.
Moreover, summary measures do not utilize the full information present in the data, such
as trial-by-trial fluctuations or various interesting agent-environment interactions. For
this reason, crude scoring measures are often insufficient to disentangle the dynamics
of the relevant cognitive (sub)processes involved in solving the task. Consequently,
an entanglement between processes at the metric level can prevent us from answering
interesting research questions about aspects of adaptive behavior.
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In our view, a sound computational account for adaptive behavior in the WCST
needs to provide at least a quantitative measure of effective belief updating about the
environmental states at each trial. This measure should be complemented by a measure of
how feedback-related information influences behavior. The first measure should account
for the integration of meaningful information. In other words, it should describe how
prior beliefs about the current environmental state change after an observation has been
made. The second measure should account for signaling the (im)probability of observing
a certain environmental configuration (e.g., an (un)expected feedback given a response)
(Schwartenbeck, FitzGerald & Dolan, 2016).

Indeed, recent studies suggest that the meaningful information content and the pure
unexpectedness of an observation are processed differently at the neural level. Moreover,
such disentanglement appears to be of crucial importance to the understanding of
how new information influences adaptive behavior (Nour et al., 2018; Schwartenbeck,
FitzGerald & Dolan, 2016; O’Reilly et al., 2013). Inspired by these results and previous
computational proposals (Koechlin & Summerfield, 2007), we integrate these different
information processing aspects into the current model from an information-theoretic
perspective.

Our computational cognitive model draws heavily on the mathematical frameworks
of Bayesian probability theory and information theory (Sayood, 2018). First, it provides
a parsimonious description of observed data in the WCST via two neurocognitively
meaningful parameters, namely, flexibility and information loss (to be motivated and
explained in the next section). Moreover, it captures the main response patterns obtainable
in the WCST via different parameter configurations. Second, we formulate a functional
connection between cognitive parameters and underlying information processing
mechanisms related to belief updating and prediction formation. We formalize and
distinguish between Bayesian surprise and Shannon surprise as the main mechanisms for
adaptive belief updating. Moreover, we introduce a third quantity, which we named
predictive Entropy and which quantifies an agent’s subjective uncertainty about the current
internal model. Finally, we propose to measure these quantities on a trial-by-trial basis and
use them as a proxy for formally representing the dynamic interplay between agents and
environments.

The rest of the paper is organized as follows. First, the WCST is described in more
detail and a mathematical representation of the new Bayesian computational model is
provided. Afterwards, we explore the model’s characteristics through simulations and
perform parameter recovery on simulated data using a powerful Bayesian deep neural
network method (Radev et al., 2020). We then apply the model to real behavioral data from
an already published dataset. Finally, we discuss the results as well as the main strengths
and limitations of the proposed model.

THE WISCONSIN CARD SORTING TEST
In a typical WCST (Heaton, 1981; Berg, 1948), participants learn to pay attention and
respond to relevant stimulus features, while ignoring irrelevant ones, as a function of
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Figure 1 Suppose that the current sorting rule is the feature shape. The target card in the first trial (left
box) contains two blue triangles. A correct response requires that the agent matches the target card with
the stimulus card containing the single triangle (arrow represents the correct choice), regardless of the fea-
tures color and number. The same applies for the second trial (right box) in which matching the target
card with the stimulus card containing three yellow crosses is the correct response.

Full-size DOI: 10.7717/peerj.10316/fig-1

experimental feedback. In particular, Individuals are asked to match a target card with one
of four stimulus cards according to a proper sorting principle, or sorting rule. Each card
depicts geometric figures that vary in terms of three features, namely, color (red, green,
blue, yellow), shape (triangle, star, cross, circle) and number of objects (1, 2, 3 and 4). For
each trial, the participant is required to identify the sorting rule which is valid for that trial,
that is, which of the three feature has to be considered as a criterion to matching the target
card with the right stimulus card (see Fig. 1). Notice that both features and sorting rules
refer to the same concept. However, the feature still codifies a property of the card, whilst
the sorting rule refers to the particular feature which is valid for the current trial.

Each response in theWCST is followed by a feedback informing the participant if his/her
response is correct or incorrect. After some fixed number of consecutive responses, the
sorting rule is changed by the experimenter without warning, and participants are required
to infer the new sorting rule. Clearly, the most adaptive response would be to explore
the remaining possible rules. However, participants sometimes would persist responding
according to the old rule and produce what is called a perseverative response.
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METHODS
The model
The core idea behind our computational framework is to encode the concept of belief into
a generative probabilistic model of the environment. Belief updating then corresponds to
recursive Bayesian updating of the internal model based on current and past interactions
between the agent and its environment. Optimal or sub-optimal actions are selected
according to a well specified or a misspecified internal model and, in turn, cause perceptible
changes in the environment.

We assume that the cognitive agent aims to infer the true hidden state of the environment
by processing and integrating sensory information from the environment. Within the
context of the WCST, the hidden environmental states might change as a function of both
the structure of the task and the (often sub-optimal) behavioral dynamics, so the agent
constantly needs to rely on environmental feedback and own actions to infer the current
state. We assume that the agent maintains an internal probability distribution over the
states at each individual trial of the WCST. The agent then updates this distribution upon
making new observations. In particular, the hidden environmental states to be inferred
are the three features, st ∈ {1,2,3}, which refer the three possible sorting rules in the task
environment such that 1: color, 2: shape and 3: number of objects. The posterior probability
of the states depends on an observation vector xt = (at ,ft ), which consists of the pair of
agent’s response at ∈ {1,2,3,4}, codifying the action of choosing deck 1, 2, 3 or 4, and
received feedback ft ∈ {0,1}, referring to the fact that a given response results in a failure
(0) or in a success (1), in a given trial t = 0,...,T . The discrete response at represents the
stimulus card indicator being matched with a target card at trial t . We denote a sequence of
observations as x0:t = (x0,x1,...,xt )= ((a0,f0),(a1,f1),(a2,f2),...,(at ,ft )) and set x0=∅ in
order to indicate that there are no observations at the onset of the task. Thus, trial-by-trial
belief updating is recursively computed according to Bayes’ rule:

p(st |x0:t )=
p(xt |st ,x0:t−1)p(st |x0:t−1)

p(xt |x0:t−1)
. (1)

Accordingly, the agent’s posterior belief about the task-relevant features st after observing
a sequence of response-feedback pairs x0:t is proportional to the product of the likelihood
of observing a particular response-feedback pair and the agent’s prior belief about the
task-relevant feature in the current trial. The likelihood of an observation is computed as
follows:

p(xt |st ,x0:t−1)=
ftp(at |st = i)+ (1− ft )(1−p(at |st = i))

ft
∑

j p(at |st = j)+ (1− ft )
∑

j(1−p(at |st = j))
(2)

where j = 1,2,3 and p(at |st = i) indicates the probability of a matching between the target
and the stimulus card assumed that the current feature is i. Here, we assume the likelihood
of a current observation to be independent from previous observations without loss of
generality, that is:

p(xt |st ,x0:t−1)= p(xt |st ).
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The prior belief for a given trial t is computed based on the posterior belief generated in
the previous trial, p(st−1|x0:t−1), and the agent’s belief about the probability of transitions
between the hidden states, p(st |st−1). The prior belief can also be considered as a predictive
probability over the hidden states. The predictive distribution for an upcoming trial t is
computed according to the Chapman–Kolmogorov equation:

p(st+1= k|x0:t )=
3∑

i=1

p(st+1= k|st = i,0(t ))p(st = i|x0:t ) (3)

where 0(t ) represents a stability matrix describing transitions between the states (to
be explained shortly). Thus, the agent combines information from the updated belief
(posterior distribution) and the belief about the transition properties of the environmental
states to predict the most probable future state. The predictive distribution represents the
internal model of the cognitive agent according to which actions are generated.

The stability matrix 0(t ) encodes the agent’s belief about the probability of states being
stable or likely to change in the next trial. In other words, the stability matrix reflects the
cognitive agent’s internal representation of the dynamic probabilistic model of the task
environment. It is computed on each trial based on the response-feedback pair, xt , and a
matching signal, mt , which are observed.

The matching signal mt is a vector informing the cognitive agent which features are
currently relevant (meaningful), such that m(i)

t = 1 when a positive feedback is associated
with a response implying feature st = i, and m(i)

t = 0 otherwise. Note, that the matching
signal is not a free parameter of the model, but is completely determined by the task
contingencies. The matching signal vector allows the agent to compute the state activation
level ω(i)

t ∈ [0,1] for the hidden state st = i, which provides an internal measure of the
(accumulated) evidence for each hidden state at trial t . Thus, the activation levels of the
hidden states are represented by a vectorωt . The stability matrix is a square and asymmetric
matrix related to hidden state activation levels such that:

0(t )=


ω
(1)
t

1
2
(1−ω(1)

t )
1
2
(1−ω(1)

t )

1
2
(1−ω(2)

t ) ω(2)
t

1
2
(1−ω(2)

t )

1
2
(1−ω(3)

t )
1
2
(1−ω(3)

t ) ω(3)
t

 (4)

where the entries 0ii(t ) in the main diagonal represent the elements of the activation vector
ωt , and the non-diagonal elements are computed so as to ensure that rows sum to 1. The
state activation vector is computed in each trial as follows:ω

(1)
t
ω
(2)
t
ω
(3)
t

= ftωδt−1

m
(1)
t

m(2)
t

m(3)
t

+λ
(1− ft )ωδt−1

1−m
(1)
t

1−m(2)
t

1−m(3)
t



ω

(1)
t−1
ω
(2)
t−1
ω
(3)
t−1

. (5)

This equation reflects the idea that state activations are simultaneously affected by the
observed feedback, ft , and the matching signal vector, mt . However, the matching signal
vector conveys different information based on the current feedback. Matching a target card
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with a stimulus card makes a feature (or a subset of features) informative for a specific
state. The vector mt contributes to increase the activation level of a state if the feature is
informative for that state when a positive feedback is received, as well as to decrease the
activation level when a negative feedback is received.

The parameter λ ∈ [0,1] modulates the efficiency to disengage attention to a given
state-activation configuration when a negative feedback is processed. We therefore term
this parameter flexibility . We also assume that information from the matching signal vector
can degrade by slowing down the rate of evidence accumulation for the hidden states. This
means that the matching signal vector can be re-scaled based on the current state activation
level. The parameter δ ∈ [0,1] is introduced to achieve this re-scaling. When δ= 0, there
is no re-scaling and updating of the state activation levels relies on the entire information
conveyed by mt . On the other extreme, when δ= 1, several trials have to be accomplished
before converging to a given configuration of the state activation levels. Equivalently,
higher values of δ affect the entropy of the distribution over hidden states by decreasing
the probability of sampling of the correct feature. We therefore refer to δ as information
loss.

The free parameters λ and δ are central to our computational model, since they regulate
the rate at which the internal model converges to the true task environmental model. can
be expressed in compact notation as follows:

ωt = ftωδt−1mt +λ
[
(1− ft )ωδt−1(1−mt )

]
ωt−1. (6)

Note that the information loss parameter δ affects the amount of information that a
cognitive agent acquires from environmental contingencies, irrespective of the type of
feedback received. Global information loss thus affects the rate at which the divergence
between the agent’s internal model and the true model is minimized. Figure 2 illustrates
these ideas.

The probabilistic representation of adaptive behaviour provided by our Bayesian
agent model allows us to quantify latent cognitive dynamics by means of meaningful
information-theoretic measures. Information theory has proven to be an effective and
natural mathematical language to account for functional integration of structured cognitive
processes and to relate them to brain activity (Koechlin & Summerfield, 2007; Friston et al.,
2017; Collell & Fauquet, 2015; Strange et al., 2005; Friston, 2003). In particular, we are
interested in three key measures, namely, Bayesian surprise, Bt , Shannon surprise, It , and
entropy, Ht . The subscript t indicates that we can compute each quantity on a trial-by-
trial basis. Each quantity is amenable to a specific interpretation in terms of separate
neurocognitive processes. Bayesian surprise Bt quantifies the magnitude of the update
from prior belief to posterior belief. Shannon surprise It quantifies the improbability of an
observation given an agent’s prior expectation. Finally, entropyHt measures the degree of
epistemic uncertainty regarding the true environmental states. Such measures are thought
to account for the ability of the agent to manage uncertainty as emerging as a function of
competing behavioral affordances (Hirsh, Mar & Peterson, 2012). We expect an adaptive
system to attenuate uncertainty over environmental states (current features) by reducing
the entropy of its internal probabilistic model.
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Figure 2 The figure shows the rate of convergence of the predictive distributions to the true task envi-
ronmental model. The predictive distributions at trial t + 1 depends on the sorting action at (first row)
and the received feedback ft (second row). Two examples of updating a predictive distribution are shown:
one in which information loss is high (δ = 0.7, third row), and one in which information loss is low (δ =
0.3, fifth row). High information loss slows down the convergence of the internal model to the true envi-
ronmental model. The gray bar plots represent the predictive probability distribution over the rules from
which an action is sampled at each trial. Dotted bars represent the updated predictive distribution after the
feedback observation. For each scenario, trial-by-trial information-theoretic measures are shown.

Full-size DOI: 10.7717/peerj.10316/fig-2

Bayesian surprise can be computed as the Kullback–Leibler (KL) divergence between
prior and posterior beliefs about the environmental states. Thus, Bayesian surprise accounts
for the divergence between the predictive model for the current trial and the updated
predictive model for the upcoming trial. It is computed as follows:

Bt =KL[p(st+1|x0:t )||p(st |x0:t−1)]

=

3∑
i=1

[
p(st+1= i|x0:t )log

(
p(st+1= i|x0:t )
p(st = i|x0:t−1)

)]
(7)
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The Shannon surprise of a current observation given a previous one is computed as the
conditional information content of the observation:

It =−logp(xt |x0:t−1)

=−log
3∑

i=1

[
p(xt |st = i)p(st = i|x0:t−1)

]
(8)

Finally, the entropy is computed over the predictive distribution in order to account for
the uncertainty in the internal model of the agent in trial t as follows:

Ht =E
[
−logp(st |x0:t−1)

]
=−

3∑
i=1

p(st = i|x0:t−1)logp(st = i|x0:t−1) (9)

Once the flexibility (λ) and information loss (δ) parameters are estimated from data, the
information-theoretic quantities can be easily computed and visualized for each trial of the
WCST (see Fig. 2). This allows to rephrase standard neurocognitive constructs in terms of
measurable information-theoretic quantities. Moreover, the dynamics of these quantities,
as well as their interactions, can be used for formulating and testing hypotheses about the
neurcognitive underpinnings of adaptive behavior in a principled way, as discussed later in
the paper. A summary of all quantities relevant for our computational model is provided
in Table 1.

Simulations
In this section we evaluate the expressiveness of the model by assessing its ability to
reproducemeaningful behavioral patterns as a function of its two free parameters.We study
how the generative model behaves when performing the WCST in a 2-factorial simulated
Monte Carlo design where flexibility (λ) and information loss (δ) are systematically
varied.

In this simulation, the Heaton version of the task (Heaton, 1981) is administered to the
Bayesian cognitive agent. In this particular version, the sorting rule (true environmental
state) changes after a fixed number of consecutive correct responses. In particular, when
the agent correctly matches the target card in 10 consecutive trials, the sorting rule is
automatically changed. The task ends after completing a maximum of 128 trials.

Generative model
The cognitive agent’s responses are generated at each time step (trial) by processing
the experimental feedback. Its performance depends on the parameters governing
the computation of the relevant quantities. The generative algorithm is outlined in
Algorithm 1.
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Algorithm 1 Bayesian cognitive agent
1: Set parameters θ= (λ,δ).
2: Set initial activation levels ω0= (0.5,0.5,0.5).
3: Set initial observation x0=∅ and p(s1|x0)= p(s1).
4: for t = 1,...,T do
5: Sample feature from prior/predictive internal model st ∼ p(st |x0:t−1).
6: Obtain a new observation x t = (at ,ft ).
7: Compute state posterior p(st |x0:t ).
8: Compute new activation levels ωt .
9: Compute stability matrix 0(t ).
10: Update prior/predictive internal model to p(st+1|x0:t ).
11: end for

Simulation 1: clinical assessment of the Bayesian agent
Ideally, the qualitative performance of the Bayesian cognitive agent will resemble
human performance. To this aim, we adopt a metric which is usually employed in
clinical assessment of test results in neurological and psychiatric patients (Braff et al.,
1991; Zakzanis, 1998; Bechara & Damasio, 2002; Landry & Al-Taie, 2016). Thus, agent
performance is codified according to a neuropsychological criterion (Heaton, 1981;
Flashman, Homer & Freides, 1991) which allows to classify responses into several response
types. These response types provide the scoring measures for the test.

Here, we are interested in: (1) non-perseverative errors (E); (2) perseverative errors
(PE); (3) number of trials to complete the first category (TFC); and (4) number of failures
to maintain set (FMS). Perseverative errors occur when the agent applies a sorting rule
which was valid before the rule has been changed. Usually, detecting a perseveration error
is far from trivial, since several response configurations could be observed when individuals
are required to shift a sorting rule after completing a category (see Flashman, Homer &
Freides (1991) for details). On the other hand, non-perseverative errors refer to all errors
which do not fit the above description, or in other words, do not occur as a function of
changing the sorting rule, such as casual errors.

The number of trials to complete the first category tells us how many trials the agent
needs in order to achieve the first sorting principle, and can be seen as an index of
conceptual ability (Anderson, 2008; Singh, Aich & Bhattarai, 2017). Finally, a failure to
maintain a set occurs when the agent fails to match cards according to the sorting rule after
it can be determined that the agent has acquired the rule. A given sorting rule is assumed
to be acquired when the individual correctly sorts at least five cards in a row (Heaton,
1981; Figueroa & Youmans, 2013). Thus, a failure to maintain a set arises whenever a
participant suddenly changes the sorting strategy in the absence of negative feedback.
Failures to maintain a set are mostly attributed to distractibility. We compute this measure
by counting the occurrences of first errors after the acquisition of a rule.

We run the generative model by varying flexibility across four levels, λ ∈
{0.3,0.5,0.7,0.9}, and information loss across three levels, δ ∈ {0.4,0.7,0.9}. We generate
data from 150 synthetic cognitive agents per parameter combination and compute standard
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Table 1 Descriptive summary of all quantities involved in our model representation.

Expression Name Description

st ∈ {1,2,3} Sorting rule Card feature relevant for the sorting criterion in trial t .
at ∈ {1,2,3,4} Choice action Action of choosing one of the four stimulus cards in trial t .
ft ∈ {0,1} Feedback Indicates whether the action of matching a stimulus to a

target card is correct or not in trial t .
xt = (at ,ft ) Observation Pair of action and feedback which constitutes the agent’s

observation in trial t .
0(t ) Stability matrix Matrix encoding the agent’s beliefs about state transitions

from trial t to the next trial t+1.
λ∈ [0,1] Flexibility Parameter encoding the efficiency to disengage attention

from a currently attended hidden state when signaled by the
environment.

δ ∈ [0,1] Information loss Parameter encoding how efficiently the agent’s internal
model converges to the true environmental model based on
experience.

m(i)
t ∈ {0,1} Matching signal Signal indicating whether feature i is relevant in trial t based

on the feedback received.
ω

(i)
t ∈ [0,1] State activation level Agent’s internal measure of the accrued evidence for the

hidden environmental state i in trial t .
Bt ∈R+ Bayesian surprise Kullback–Leibler divergence between prior and posterior

beliefs about hidden environmental states in trial t .
It ∈R+ Shannon surprise Information-theoretic surprise encoding the improbability

or unexpectedness of an observation in trial t .
Ht ∈R+ Entropy Degree of epistemic uncertainty in the internal model of the

environment in trial t .

scoring measures for each of the agents simulated responses. Results from the simulation
runs are depicted in Table 2 and a graphical representation is provided in Fig. 3.

The simulated performance of our Bayesian cognitive agents demonstrates that different
parameter combinations capture different meaningful behavioral patterns. In other words,
flexibility and information loss seem to interact in a theoretically meaningful way.

First, overall errors increase when flexibility (λ) decreases, which is reflected by the
inverse relation between the number of casual, as well as perseverative, errors and the
values of parameter λ. Moreover, this pattern is consistent across all the levels of parameter
δ. More precisely, information loss (δ) seems to contribute to the characterization of the
casual and the perseverative components of the error in a different way. Perseverative
errors are likely to occur after a sorting rule has changed and reflect the inability of the
agent to use feedback to disengage attention from the currently attended feature. They
therefore result from local cognitive dynamics conditioned on a particular stage of the task
(e.g., after completing a series of correct responses).

Second, information loss does not interact with flexibility when perseverative errors are
considered. This is due to the fact that high information loss affects general performance
by yielding a dysfunctional response strategy which increases the probability of making
an error at any stage of the task. The lack of such interaction provides evidence that our
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Table 2 Mean clinical scoring measures as functions of flexibility (λ) and information loss (δ). Cells show the average scores across simulated
agents (standard deviation is shown in parenthesis).

Scoring measure Info. Loss (δ) Flexibility (λ)

λ= 0.3 λ= 0.5 λ= 0.7 λ= 0.9

Casual Errors (E) δ= 0.4 9.07 (2.68) 7.95 (2.07) 7.50 (2.13) 6.85 (1.75)
δ= 0.7 10.84 (2.35) 9.60 (2.2) 8.25 (2.23) 7.37 (1,74)
δ= 0.9 12.75 (2.96) 11.25 (2.43) 9.12 (2.09) 7.79 (1.73)

Perseverative Errors (PE) δ= 0.4 20.81 (2.27) 18.18 (1.88) 14.99 (1.88) 12.37 (1.12)
δ= 0.7 19.77 (2.55) 17.65 (2.26) 15.42 (1.94) 12.39 (1.47)
δ= 0.9 18.56 (2.76) 16.58 (2.53) 14.49 (2.03) 12.33 (1.44)

Trials to First Category (TFC) δ= 0.4 12.20 (1.46) 11.91 (1.35) 11.83 (1.24) 11.67 (1.04)
δ= 0.7 13.82 (2.76) 13.32 (2.52) 12.97 (2.13) 12.29 (1.53)
δ= 0.9 17.27 (4.21) 16.63 (4.04) 14.39 (3.58) 12.91 (1.91)

Failures to Maintain Set (FMS) δ= 0.4 0.11 (0.31) 0.09 (0.31) 0.05 (0.32) 0.02 (0.14)
δ= 0.7 1.65 (1.4) 1.41 (1.3) 0.84 (0.91) 0.35 (0.69)
δ= 0.9 4.44 (1.96) 3.88 (1.86) 2.79 (1.56) 1.54 (1.25)

computational model can disentangle between error patterns due to perseveration and
those due to general distractibility, according to neuropsychological scoring criteria.

However, in our framework, flexibility (λ) is allowed to yieldmore general and non-local
cognitive dynamics as well. Indeed, λ plays a role whenever belief updating is demanded as
a function of negative feedback. An error classified as non-perseverative (e.g., casual error)
by the scoring criteria might still be processed as a feedback-related evidence for belief
updating. Consistently, the interaction between λ and δ in accounting for causal errors
shows that performance worsens when both flexibility and information loss become less
optimal, and that such pattern becomes more pronounced for lower values of δ.

On the other hand, a specific effect of information loss (δ) can be observed for the scoring
measures related to slow information processing and distractibility. The number of trials
to achieve the first category reflects the efficiency of the agent in arriving at the first true
environmental model. Flexibility does not contribute meaningfully to the accumulation
of errors before completing the first category for some levels of information loss. This is
reflected by the fact that the mean number of trials increases as a function of δ, and do not
change across levels of λ for low and mid values of δ. A similar pattern applies for failures
to maintain a set. Both scoring measures index a deceleration of the process of evidence
accumulation for a specific environmental configuration, although the latter is a more
exhaustive measures of dysfunctional adaptation.

Therefore, an interaction between parameters can be observed when information loss
is high. A slow internal model convergence process increases the amount of errors due to
improper rule sampling from the internal environmental model. However, internal model
convergence also plays a role when a new category has to be accomplished after completing
an older one. On the one hand, compromised flexibility increases the amount of errors
due to inefficient feedback processing. This leads to longer trial windows needed to achieve
the first category. On the other hand, when information loss is high, belief updating upon
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Figure 3 Clinical scoring measures as functions of flexibility (λ) and information loss (δ) - simulated
scenarios. The different cells show the violin plots for the estimated distribution densities of the scor-
ing measures obtained from the group of synthetic individuals, for the levels of λ across different levels
of δ. In particular, they show the distribution of non-perseverative errors (E: A–C), perseverative errors
(PE: D–F), number of trials to complete the first category (TFC: G–I), number of failures to maintain set
(FMS: J–L) obtained from 150 synthetic agent’s response simulations for each cell of the factorial design.

Full-size DOI: 10.7717/peerj.10316/fig-3

negative feedback is compromised due to high internal model uncertainty. At this point, the
probability to err due to distractibility increases, as accounted by the failures to maintain a
set measures.

Finally, the joint effect of δ and λ for high levels of information loss suggests that the
roles played by the two cognitive parameters in accounting for adaptive functioning can
be entangled when neuropsychological scoring criteria are considered.
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Figure 4 Information-theoretic measures varying as a function of flexibility λ and information loss δ
across 128 trials of theWCST. Trajectories depicted in A, D, and G show cognitive dynamics across the
levels of information loss when flexibility is low. B, E, and H show the unfolding of information-theoretic
quantities when flexibility is mildly impaired, whilst C, F, and I refer to an optimal flexibility value. Opti-
mal belief updating and uncertainty reduction are achieved with low information loss and high flexibility
(C).

Full-size DOI: 10.7717/peerj.10316/fig-4

Simulation 2: Information-theoretic analysis of the Bayesian agent
In the following, we explore a different simulation scenario in which information-theoretic
measures are derived to assess performance of the Bayesian cognitive agent. In particular,
we explore the functional relationship between cognitive parameters and the dynamics of
the recovered information-theoretic measures by simulating observed responses by varying
flexibility across three levels, λ ∈ {0.1,0.5,0.9}, and information loss across three levels,
δ ∈ {0.1,0.5,0.9}.

For this simulation scenario, we make no prior assumptions about sub-types of error
classification. Instead, we investigate the dynamic interplay between Bayesian surprise, Bt ,
Shannon surprise, It , and entropy,Ht over the entire course of 128 trials in the WCST.

Figure 4 depicts results from the nine simulation scenarios. Although an exhaustive
discussion on cognitive dynamics should couple information-theoretic measures with
patterns of correct and error responses, we focus solely on the information-theoretic time
series for illustrative purposes. We refer to the ‘Application’ for a more detailed description
of the relation between observed responses and estimated information-theoretic measures
in the context of data from a real experiment.

Again, simulated performance of the Bayesian cognitive agent shows that different
parameter combinations yield different patterns of cognitive dynamics. Observed spikes
and their related magnitudes signal informative task events (e.g., unexpected negative
feedback), as accounted by Shannon surprise, or belief updating, as accounted by Bayesian
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surprise. Finally, entropy encodes the epistemic uncertainty about the environmental
model on a trial-by-trial basis.

In general, low information loss (δ) ensures optimal behavior by speeding up internal
model convergence by decreasing the number of trials needed to minimize uncertainty
about the environmental states. Low uncertainty reflects two main aspects of adaptive
behavior. On the one hand, the probability that a response occurs due to sampling
of improper rules decreases, allowing the agent to prevent random responses due to
distractibility. On the other hand, model convergence entails a peaked Shannon surprise
when a negative feedback occurs, due to the divergence between predicted and actual
observations.

Flexibility (λ) plays a crucial role in integrating feedback information in order to enable
belief updating. The first row depicted in Fig. 4 shows cognitive dynamics related to
low information loss, across the levels of flexibility. As can be noticed, there is a positive
relation between themagnitude of the Bayesian surprise and the level of flexibility, although
unexpectedness yields approximately the same amount of signaling, as accounted by peaked
Shannon surprise. From this perspective, surprise and belief updating can be considered
functionally separable, where the first depends on the particular internal model probability
configuration related to δ, whilst the second depends on flexibility λ.

However, more interesting patterns can be observed when information loss increases.
In particular, model convergence slows down and several trials are needed to minimize
predictive model entropy. Casual errors might occur within trial windows characterized by
high uncertainty, and interactions between entropy and Shannon surprise can be observes
in such cases. In particular, Shannon surprise magnitude increases when model’s entropy
decreases, that is, during task phases in which the internal model has already converged.
As a consequence, negative feedback could be classified as informative or uninformative,
based on the uncertainty in the current internal model. This is reflected by the negative
relation between entropy and Shannon surprise, as can be noticed by inspecting the graphs
depicted in the third row of Fig. 4. Therefore, the magnitude of belief updating depends on
the interplay between entropy and Shannon surprise, and can differ based on the values of
the two measures in a particular task phase.

In sum, both simulation scenarios suggest that the simulated behavior of our generative
model is in accord with theoretical expectations. Moreover, the flexibility and information
loss parameters can account for a wide range of observed response patterns and inferred
dynamics of information processing.

Parameter estimation
In this section, we discuss the computational framework for estimating the parameters of
our model from observed behavioral data. Parameter estimation is essential to inferring the
cognitive dynamics underlying observed behavior in real-world applications of the model.
This section is slightly more technical and can be skipped without significantly affecting
the flow of the text.
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Computational framework
Rendering our cognitive model suitable for application in real-world contexts also entails
accounting for uncertainty about parameter estimates. Indeed, uncertainty quantification
turns out to be a fundamental and challenging goal when first-level quantities, that is,
cognitive parameter estimates, are used to recover (second-level) information-theoretic
measures of cognitive dynamics. The main difficulties arise when model complexity makes
estimation and uncertainty quantification intractable at both analytical and numerical
levels. For instance, in our case, probability distributions for the hidden model are
generated at each trial, and the mapping between hidden states and responses changes
depending on the structure of the task environment.

Identifying such a dynamic mapping is relatively easy from a generative perspective,
but it becomes challenging, and almost impossible, when inverse modeling is required.
Generally, this problem arises when the likelihood function relating model parameters
to the data is not available in closed-form or too complex to be practically evaluated
(Sisson & Fan, 2011). To overcome these limitations, we apply the first version of the
recently developed BayesFlow method (see Radev et al., 2020 for mathematical details).
At a high-level, BayesFlow is a simulation-based method that estimates parameters and
quantifies estimation uncertainty in a unified Bayesian probabilistic framework when
inverting the generative model is intractable. The method is based on recent advances in
deep generative modeling andmakes no assumptions about the shape of the true parameter
posteriors. Thus, our ultimate goal becomes to approximate and analyze the joint posterior
distribution over the model parameters. The parameter posterior is given via an application
of Bayes’ rule:

p(θ|x0:T ,m0:T )=
p(x0:T ,m0:T |θ)p(θ)∫
p(x0:T ,m0:T |θ)p(θ)dθ

(10)

where we set θ= (λ,δ) and stack all observations and matching signals into the vectors
x0:T = (x0,x1,...,xT ) and m0:T = (m0,m1,...,mT ), respectively. The BayesFlow method
uses simulations from the generative model to optimize a neural density estimator which
learns a probabilistic mapping between raw data and parameters. It relies on the fact
that data can easily be simulated by repeatedly running the generative model with
different parameter configurations θ sampled from the prior. During training, the neural
network estimator iteratively minimizes the divergence between the true posterior and
an approximate posterior. Once the network has been trained, we can efficiently obtain
samples from the approximate joint posterior distribution of the cognitive parameters
of interest, which can be further processed in order to extract meaningful summary
statistics (e.g., posterior means, medians, modes, etc.). Importantly, we can apply the same
pre-trained inference network to an arbitrary number of real or simulated data sets (i.e.,
the training effort amortizes over multiple evaluations of the network).

For our purposes of validation and application, we train the network for 50 epochs which
amount to 50000 forward simulations. As a prior, we use a bivariate continuous uniform
distribution p(θ)∼U([0,0],[1,1]). We then validate performance on a separate validation
set of 1000 simulated data sets with known ground-truth parameter values. Training the
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networks took less than a day on a singlemachinewith anNVIDIA
R©
GTX1060 graphics card

(CUDA version 10.0) using TensorFlow (version 1.13.1) (Abadi et al., 2016). In contrast,
obtaining full parameter posteriors from the entire validation set took approximately 1.78 s.
In what follows, we describe and report all performance validation metrics.

Performance metrics and validation results
To assess the accuracy of point estimates, we compute the root mean squared error (RMSE)
and the coefficient of determination (R2) between posterior means and true parameter
values. To assess the quality of the approximate posteriors, we compute a calibration
error (Radev et al., 2020) of the empirical coverage of each marginal posterior Finally,
we implement simulation-based calibration (SBC, Talts et al., 2018) for visually detecting
systematic biases in the approximate posteriors.

Point Estimates. Point estimates obtained by posterior means as well as corresponding
RMSE and R2 metrics are depicted in Figs. 5A–5B. Note, that point estimates do not
have any special status in Bayesian inference, as they could be misleading depending
on the shape of the posteriors. However, they are simple to interpret and useful for
ease-of-comparison. We observe that pointwise recovery of λ is better than that of δ. This
is mainly due to suboptimal pointwise recovery in the lower (0,0.1) range of δ. This pattern
is evident in Figs. 5A–5B and is due to the fact that δ values in this range produce almost
indistinguishable data patterns. Bootstrap estimates yielded an average RMSE of 0.155
(SD= 0.004) and an average R2 of 0.708 (SD= 0.015) for the δ parameter. An average
RMSE of 0.094 (SD= 0.002) and an average R2 of 0.895 (SD= 0.007) were obtained for
the λ parameter. These results suggest good global pointwise recovery but also warrant the
inspection of full posteriors, especially in the low ranges of δ.

Full Posteriors. Average bootstrap calibration error was 0.011 (SD= 0.005) for the
marginal posterior of δ and 0.014 (SD= 0.007) for the marginal posterior of λ. Calibration
error is perhaps the most important metric here, as it measures potential under- or
overconfidence across all confidence intervals of the approximate posterior (i.e., an
α-confidence interval should contain the true posterior with a probability of α, for all
α ∈ (0,1)). Thus, low calibration error indicates a faithful uncertainty representation of
the approximate posteriors. Additionally, SBC-histograms are depicted in Figs. 5C–5D.
As shown by Talts et al. (2018), deviations from the uniformity of the rank statistic (also
know as a PIT histogram) indicate systematic biases in the posterior estimates. A visual
inspection of the histograms reveals that the posterior means slightly overestimate the true
values of δ. This corroborates the pattern seen in Figs. 5A–5B for the lower range of δ.

Finally, Figs. 5E–5H depicts the full marginal posteriors on two example validation sets.
Even on these two data sets, we observe strikingly different posterior shapes. The marginal
posterior of δ obtained from the first data set is slightly left-skewed and has its density
concentrated over the (0.8,1.0) range. On the other hand, the marginal posterior of δ
from the second data set is noticeably right-skewed and peaked across the lower range
of the parameter. The marginal posteriors of λ appear more symmetric and warrant the
use of the posterior mean as a useful summary of the distribution. These two examples
underline the importance of investigating full posterior distributions as a means to encode
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Figure 5 Parameter recovery results on validation data; (A and B) posterior means vs. true parameter
values; (C and D) histograms of the rank statistic used for simulation-based calibration; (E–H) example
full posteriors for two validation data sets; (I and J) example information-theoretic dynamics recovered
from the parameter posteriors.

Full-size DOI: 10.7717/peerj.10316/fig-5

epistemic uncertainty about parameter values. Moreover, they demonstrate the advantage
of imposing no distributional assumptions on the resulting posteriors, as their form and
sharpness can vary widely depending on the concrete data set.

APPLICATION
In this section we fit the Bayesian cognitive model to real clinical data. The aim of this
application is to evaluate the ability of our computational framework to account for
dysfunctional cognitive dynamics of information processing in substance dependent
individuals (SDI) as compared to healthy controls.

Rationale
The advantage of modeling cognitive dynamics in individuals from a clinical population
is that model predictions can be examined in light of available evidence about individual
performance. For instance, SDIs are known to demonstrate inefficient conceptualization
of the task and dysfunctional, error-prone response strategies. This has been attributed to
defective error monitoring and behavior modulation systems, which depend on cingulate
and frontal brain regions functionality (Kübler, Murphy & Garavan, 2005; Willuhn, Sun &
Steiner, 2003). On the other hand, the WCST should be a rather easy and straightforward
task for healthy participants to obtain excellent performance. Therefore, we expect our
model to consistently capture such characteristics. To test these expectations, we estimate
the two relevant parameters λ and δ from both clinical patients and healthy controls from
an already published dataset (Bechara & Damasio, 2002).
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The data
The dataset used in this application consists of responses collected by administering the
standard Heaton version of the WCST (Heaton, 1981) to healthy participants and SDIs. In
this version of the task, the sorting rule changes when a participant collects a series of 10
consecutive correct responses, and the task ends when this happens for 6 times. Participants
in the study consisted of 39 SDIs and 49 healthy individuals. All participants were adults
(>18 years old) and gave their informed consent for inclusion which was approved by the
appropriate human subject committee at the University of Iowa. SDIs were diagnosed as
substance dependent based on the Structured Clinical Interview for DSM-IV criteria (First,
1997).

Model fitting
We fit the Bayesian cognitive agent separately to data from each participant in order to
obtain individual-level posterior distributions. We apply the same BayesFlow network
trained for the previous simulation studies, so obtaining posterior samples for each
participant is almost instant (due to amortized inference).

Results
The means of the joint posterior distributions are depicted for each individual in Fig. 6,
and provide a complete overview of the heterogeneity in cognitive sub-components at both
individual and group levels (individual-level full joint posterior distributions can be found
in the Appendix A1).

The estimates reveal a rather interesting pattern across both healthy and SDI participants.
In particular, in both clinical and control groups, individuals with a poor flexibility (e.g.,
low values of λ) can be detected. However, the group parameter space appears to be
partitioned into two main clusters consisting of individuals with high and low flexibility,
respectively. As can be noticed, the majority of SDIs belongs to the latter cluster, which
suggests that the model is able to capture error-related defective behavior in the clinical
population and attribute it specifically to the flexibility parameter. On the other hand,
individual performance seems hardly separable along the information loss parameter
dimension.

As a further validation, we compare the classification performance of two logistic
regression models. The first uses the estimated parameter means as inputs and the
participants’ binary group assignment (patient vs. control) as an outcome. The second uses
the four standard clinical measures (non-perseverative errors (E), perseverative errors (PE),
number of trials to complete the first category (TFC), number of failures to maintain set
(FMS) computed from the sample as inputs and the same outcome. Since we are interested
solely in classification performance and want to mitigate potential overfitting due to small
sample size, we compute leave-one-out cross-validated (LOO-CV) performance for both
models. Interestingly, both logistic regression models achieve the same accuracy of 0.70,
with a sensitivity of 0.71 and specificity of 0.70. Thus, it appears that our model is able
to differentiate between SDIs and healthy individuals as good as the standard clinical
measures.
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Figure 6 Joint posterior mean coordinates of the cognitive parameters, flexibility (λ) and information
loss (δ), estimated for each individual. We observe a great heterogeneity in the distribution of posterior
means, most pronouncedly for the flexibility parameter. However, a moderate between-subject variability
in information loss can still be observed in both groups.

Full-size DOI: 10.7717/peerj.10316/fig-6

However, as pointed out in the previous sections, estimated parameters serve merely
as a basis to reconstruct cognitive dynamics by means of the trial-by-trial unfolding of
information-theoretic measures. Moreover, cognitive dynamics can only be analysed
and interpreted by relying on the joint contribution of both estimated parameters and
individual-specific observed response patterns.

To further clarify this concept, we investigate the reconstructed time series of
information-theoretic quantities based on the response patterns of two exemplary
individuals (Fig. 7). In particular, Fig. 7A depicts the behavioral outcomes of a SDI with
sub-optimal performance where the information-theoretic trajectories are reconstructed
by taking the corresponding posterior means ([λ̄= 0.07,δ̄ = 0.82]), thus representing
compromised flexibility and high information loss. Differently, Fig. 7B shows the
information-theoretic path related to response dynamics of an optimal control participant,
according to the parameter set [λ̄= 0.60,δ̄= 0.35], representing relatively high flexibility,
and low information loss. Note, that in both cases, the reconstructed information-theoretic
measures are based on the estimated posterior means for ease of comparison (see Appendix
A1 for the full joint posterior densities of the two exemplary individuals and the rest of the
sample).

Results in Fig. 7A account for a typical sub-optimal behavior observed in the SDI
group, where several errors are produced in different phases of the task. The error patterns
produced by such an individual might be induced by a non-trivial interaction between
cognitive sub-components. Lower values of flexibility imply that errors are likely to be
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Figure 7 Recovered cognitive dynamics of two exemplary individuals. (A) Trial-by-trial information-
theoretic measures of a SDI characterized by very low flexibility and very high information loss; (B) trial-
by-trial information-theoretic measures of a healthy individual characterized by relatively high flexibility
and low information loss. Labels C and E in the y-axis indicate correct and error responses.

Full-size DOI: 10.7717/peerj.10316/fig-7

produced by generating responses from an internal environmentalmodel which is no longer
valid. In other words, the agent is unable to rely on local feedback-related information in
order to update beliefs about hidden states. On the other hand, higher values of information
loss reflect a general inefficiency of belief updating processes due to slow convergence to
the optimal probabilistic environmental model. From this perspective, Bayesian surprise
Bt and Shannon surprise It might play different roles in regulating behavior based on
different internal model probability configurations. In addition, errors might be processed
differently based on the status of the internal environmental representation, as reflected
by the entropy of the predictive model, Ht . Thus, information-theoretic measures allow
to describe cognitive dynamics on a trial-by-trial basis and, further, to disentangle the
effect that different feedback-related information processing dynamics exert on adaptive
behavior.

Processing unexpected observations is accounted by the quantification of surprise upon
observing a response-feedback pair which is inconsistent with the current internal model
of the task environment. Negative feedback is maximally informative when errors occur
after the internal model has converged to the true task model (grey area, Fig. 7A), or
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the entropy approaches zero (grey line, Fig. 7A). The Shannon surprise (orange line) is
maximal when errors occur within trial windows in which the agent’s uncertainty about
environmental states is minimal (orange areas, Fig. 7A). However, internal model updates
following an informative feedback are not optimally performed, which is reflected by very
small Bayesian surprise (blue line, Fig. 7A). This can be attributed to impaired flexibility
and reflects the fact that after internal model convergence, informative feedback is not
processed adequately and the internal model becomes impervious to change.

Conversely, errors occurring when the agent is uncertain about the true environmental
state carry no useful information for belief updating, since the system fails to conceive such
errors as unexpected and informative. The information loss parameter plays a crucial role
in characterizing this cognitive behavior. The slow convergence to the true environmental
model, accompanied by the slow reduction of entropy in the predictive model, leads to
a large number of trials required to achieve a good representation of the current task
environment (white areas, Fig. 7A). Errors occurring within trial windows with large
predictive model entropy (green area, Fig. 7A) do not affect subsequent behavior, and
feedback is maximally uninformative.

Rather different cognitive dynamics can be observed in Fig. 7B, accounting for a typical
optimal behavior where the errors produced fall within the trial windows which follow a
rule completion (e.g., when the individual completes a sequence of 10 consecutive correct
responses), and, thus, the environmental model becomes obsolete. However, the high
flexibility, λ, allows to rely on local feedback-related information to suddenly update
beliefs about the hidden states, that is, the most appropriate sorting rule. In this case,
negative feedback become maximally informative after model convergence (grey area, Fig.
7B) and the process of entropy reduction (green line, Fig. 7B) is faster (e.g., less trials
are needed) compared to the sub-optimal behavior scenario. Since uncertainty about the
environmental states decreases faster, the Shannon surprise is always highly peaked when
errors occur (orange line, Fig. 7B), thus ensuring an efficient employment of the local
feedback-related information. Accordingly, higher values of Bayesian surprise are observed
(blue line, Fig. 7B), revealing optimal internal model updating.

In general, the role that predictive (internal) model uncertainty plays in characterizing
the way the agent processes feedback allows to disentangle sub-types of errors based on
the information they convey for subsequent belief updating. From this perspective, error
classification is entirely dependent on the status of the internal environmental model across
task phases. Identifying such a dynamic latent process is therefore fundamental, since the
error codification criterion evolves with respect to the internal information processing
dynamics. Otherwise, the problem of inferring which errors are due to perseverance in
maintaining an older (converged) internal model and which due to uncertainty about the
true environmental state becomes intractable, or even impossible.

DISCUSSION
Investigating information processing related to changing environmental contingencies is
fundamental to understanding adaptive behavior. For this purpose, cognitive scientists
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mostly rely on controlled settings in which individuals are asked to accomplish (possibly)
highly demanding tasks whose demands are assumed to resemble those of natural
environments. Even in the most trivial cases, such as the WCST, optimal performance
requires integrated and distributed neurocognitive processes. Moreover, these processes
are unlikely to be isolated by simple scoring or aggregate performance measures.

In the current work, we developed and validated a new computational Bayesian model
which maps distinct cognitive processes into separable information-theoretic constructs
underlying observed adaptive behavior. We argue that these constructs could help describe
and investigate the neurocognitive processes underlying adaptive behavior in a principled
way.

Furthermore, we couple our computationalmodel with a novel neural density estimation
method for simulation-based Bayesian inference (Radev et al., 2020). Accordingly, we
can quantify the entire information contained in the data about the assumed cognitive
parameters via a full joint posterior over plausible parameter values. Based on the joint
posterior, a representative summary statistic can be computed to simulate the most
plausible unfolding of information-theoretic quantities on a trial-by-trial basis.

Several computational models have been proposed to describe and explain performance
in the WCST, ranging from behavioral (Bishara et al., 2010; Gläscher, Adolphs & Tranel,
2019; Steinke et al., 2020) to neural network models (Dehaene & Changeux, 1991; Amos,
2000; Levine, Parks & Prueitt, 1993; Monchi, Taylor & Dagher, 2000). These models aim
to provide psychologically interpretable parameters or biologically inspired network
structures, respectively, accounting for specific qualitative patterns of observed data.
Behavioral models, in particular, abstract the main cognitive features underlying individual
performance in the WCST according to different theoretical frameworks (e.g., attentional
updating (Bishara et al., 2010)), or reinforcement learning (Steinke et al., 2020) and
disentangle psychological sub-processes explaining observed task performance. However,
the main advantage of our Bayesian model is that it provides both a cognitive and a
measurement model which coexist within the overarching theoretical framework of
Bayesian brain theories. More precisely, the presented model is specifically designed to
capture trial-by-trial fluctuations in information processing as described by second-order
information-theoretic quantities. The latter can be seen as a multivariate quantitative
account of the interaction between the agent and its environment. Moreover, it is worth
noting that such a model representation might not be applicable outside a Bayesian
theoretical framework.

Even though our computational model is not a neural model, it might provide a
suitable description of cognitive dynamics at a representational and/or a computational
level (Marr, 1982). This description can then be related to neural functioning underlying
adaptive behavioral. Indeed, there is some evidence to suggest that neural processes related
to belief maintenance/updating and unexpectedness are crucial for performance in the
WCST. In particular, brain circuits associated with cognitive control and belief formation,
such as the parietal cortex and prefrontal regions, seem to share a functional basis with
neural substrates involved in adaptive tasks (Nour et al., 2018). Prefrontal regions appear
to mediate the relation between feedback and belief updating (Lie et al., 2006) and efficient
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functioning in such brain structures seems to be heavily dependent on dopaminergic
neuromodulation (Ott & Nieder, 2019). Moreover, the dopaminergic system plays a role
in the processing of salient and unexpected environmental stimuli, in learning based on
error-related information, and in evaluating candidate actions (Nour et al., 2018; Daw et
al., 2011; Gershman, 2018). Accordingly, dopaminergic system functioning has been put
in relation with performance in the WCST (Hsieh et al., 2010; Rybakowski et al., 2005)
and shown to be critical for the main executive components involved in the task, that
is, cognitive flexibility and set-shifting (Bestmann et al., 2014; Stelzel et al., 2010). Further,
neural activity in the anterior cingulate cortex (ACC) is increased when a negative feedback
occurs in the context of the WCST (Lie et al., 2006). This finding corroborates the view
that the ACC is part of an error-detection network which allocates attentional resources
to prevent future errors. The ACC might play a crucial role in adaptive functioning by
encoding error-related or, more generally, feedback-related information. Thus, it could
facilitate the updating of internal environmental models (Rushworth & Behrens, 2008).

The neurobiological evidence suggests that brain networks involved in the WCST might
endow adaptive behavior by accounting for maintaining/updating of an internal model of
the environment and efficient processing of unexpected information. Is it noteworthy, that
these processing aspects are incorporated into our computational framework. At this point,
we briefly outline the empirical and theoretical potentials of the proposed computational
framework for investigating adaptive functioning and discuss future research vistas.

Model-Based Neuroscience. Recent studies have pointed out the advantage of
simultaneously modeling and analyzing neural and behavioral data within a joint modeling
framework. In this way, the latter can be used to provide information for the former, as
well as the other way around (Turner et al., 2017; Turner et al., 2013; Forstmann et al.,
2011). This involves the development of joint models which encode assumptions about the
probabilistic relationships between neural and cognitive parameters.

Within our framework, the reconstruction of information-theoretic discrete time
series yields a quantitative account of the agent’s internal processing of environmental
information. Event-related cognitive measures of belief updating, epistemic uncertainty
and surprise can be put in relation with neural measurements by explicitly providing a
formal account of the statistical dependencies between neural and cognitive (information-
theoretic) quantities. In this way, latent cognitive dynamics can be directly related to neural
event-related measures (e.g., fMRI, EEG). Applications in which information-theoretic
measures are treated as dependent variables in standard statistical analysis are also possible.

Neurological Assessment. Although neuroscientists have considered performance in the
WCST as a proxy for measuring high-level cognitive processes, the usual approach to
the analysis of human adaptive behavior consists in summarizing response patterns by
simple heuristic scoring measures (e.g., occurrences of correct responses and sub-types
of errors produced) and classification rules (Flashman, Homer & Freides, 1991). However,
the theoretical utility of such a summary approach remains questionable. Indeed, adaptive
behavior appears to depend on a complex and intricate interplay betweenmultiple network
structures (Barcelo et al., 2006; Monchi et al., 2001; Lie et al., 2006; Barceló & Rubia, 1998;
Buchsbaum et al., 2005). This posits a great challenge for disentangling high-level cognitive
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constructs at a model level and further investigating their relationship with neurobiological
substrates. It appears that standard scoring measures might not be able to fulfil these
tasks. Moreover, there is a pronounced lack of anatomical specificity in previous research
concerning the neural and functional substrates of the WCST (Nyhus & Barceló, 2009).

Thus, there is a need for more sophisticated modeling approaches. For instance,
disentangling errors due to perseverative processing of previously relevant environmental
models from those due to uncertainty about task environmental states, is important and
nontrivial. Sparse and distributed error patterns might depend on several internal model
probability configurations. Such internal models are latent, and can only be uncovered
through cognitive modeling. Therefore, information-based criteria to response (error)
classification can enrich clinical evaluation beyond heuristically motivated criteria.

Generalizability. Another important advantage of the proposed computational
framework is that it is not solely confined to the WCST. In fact, one can argue that
the seventy-year old WCST does not provide the only or even the most suitable setting for
extracting information about cognitive dynamics from general populations or maladaptive
behavior in clinical populations. One can envision tasks which embody probabilistic
(uncertain) or even chaotic environments (for instance with partially observable or
unreliable feedback or partially observable states) and demand integrating information
from different modalities (O’Reilly et al., 2013; Nour et al., 2018). These settings might
prove more suitable for investigating changes in uncertainty-related processing or cross-
modal integration than deterministic and fully observable WCST-like settings.

Despite these advantages, our proposed computational framework has certain
limitations. A first limitation might concern the fact that the new Bayesian cognitive model
accounts for the main dynamics in adaptive tasks by relying on only two parameters.
Although such a parsimonious proposal suffices to disentangle latent data-generating
processes, a more exhaustive formal description of cognitive sub-components might be
envisioned. However, parameter estimation can become challenging in such a scenario,
especially when one-dimensional response data is used as a basis for parameter recovery.
Second, the information loss parameter appears to be more challenging to estimate than
the flexibility parameter in some datasets. There are at least two possible remedies for this
problem. On the one hand, global estimation of information loss might be hampered due to
the model’s current functional (algorithmic) formulation and can therefore be optimized
via an alternative formulation/parameterization. On the other hand, it might be the case
that the data obtainable in the simple WCST environment is not particularly informative
about this parameter and, in general, not suitable for modeling more complex and non-
linear cognitive dynamics in general. Future works should therefore focus on designing and
exploringmore data-rich controlled environments which can provide a better starting point
for investigating complex latent cognitive dynamics in a principled way. Additionally, the
information loss parameter seems to be less effective in differentiating between substance
abusers and healthy controls in the particular sample used in this work. Thus, further
model-based analyses on individuals from different clinical populations are needed to
fully understand the potential of our 2-parameter model as a clinical neuropsychological
tool. Finally, in this work, we did not perform formal model comparison, as this would
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require an extensive consideration of various nested and non-nested model within the
same theoretical framework and between different theoretical frameworks. We therefore
leave this important endeavor for future research.

CONCLUSIONS
In conclusion, the proposed model can be considered as the basis for a (bio)psychometric
tool for measuring the dynamics of cognitive processes under changing environmental
demands. Furthermore, it can be seen as a step towards a theory-based framework for
investigating the relation between such cognitive measures and their neural underpinnings.
Further investigations are needed to refine the proposed computational model and
systematically explore the advantages of the Bayesian brain theoretical framework for
empirical research on high-level cognition.

ACKNOWLEDGEMENTS
We thankKarin Prillinger and LucaD’Alessandro for reading themanuscript and providing
useful suggestions which significantly improved the original text.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work. Stefan T. Radev was supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; grant number
GRK 2277 ‘‘Statistical Modeling in Psychology’’).

Grant Disclosures
The following grant information was disclosed by the authors:
Deutsche Forschungsgemeinschaft: GRK 2277.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Marco D’Alessandro and Stefan Radev conceived and designed the experiments,
performed the experiments, analyzed the data, prepared figures and/or tables, authored
or reviewed drafts of the paper, and approved the final draft.
• Andreas Voss and Luigi Lombardi conceived and designed the experiments, authored
or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The codes for generating data and estimate parameters are available at GitHub:
https://github.com/stefanradev93/DBN.

The codes of the generative model and parameter estimation are available
in ‘‘WCST_INN_Final.ipynb’’. The data used for parameter estimation are in

D’Alessandro et al. (2020), PeerJ, DOI 10.7717/peerj.10316 27/32



‘‘Data128.ipynb’’ and ‘‘MathingMat.ipynb’’. The codes for producing the information-
theoretic measures from estimated parameters are shown in ‘‘ITmeasures.ipynb’’. The
codes require the library Bayes Flow (https://github.com/stefanradev93/BayesFlow).

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.10316#supplemental-information.

REFERENCES
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, DevinM, Ghemawat S, Irving G,

IsardM, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker
P, Vasudevan V,Warden P,WickeM, Yu Y, Zheng X. 2016. Tensorflow: a system
for large-scale machine learning. In: 12th USENIX symposium on operating systems
design and implementation (OSDI 16). 265–283.

Alvarez JA, Emory E. 2006. Executive function and the frontal lobes: a meta-analytic
review. Neuropsychology Review 16(1):17–42 DOI 10.1007/s11065-006-9002-x.

Amos A. 2000. A computational model of information processing in the frontal
cortex and basal ganglia. Journal of Cognitive Neuroscience 12(3):505–519
DOI 10.1162/089892900562174.

Anderson PJ. 2008. Towards a developmental model of executive function. In: Anderson
V, Jacobs R, Anderson PJ, eds. Executive functions and the frontal lobes. New York:
Psychology Press, 3–21.

Barcelo F, Escera C, Corral MJ, Periáñez JA. 2006. Task switching and novelty process-
ing activate a common neural network for cognitive control. Journal of Cognitive
Neuroscience 18(10):1734–1748 DOI 10.1162/jocn.2006.18.10.1734.

Barceló F, Rubia FJ. 1998. Non-frontal P3b-like activity evoked by the Wisconsin Card
Sorting Test. Neuroreport 9(4):747–751 DOI 10.1097/00001756-199803090-00034.

Bechara A, Damasio H. 2002. Decision-making and addiction (part I): impaired
activation of somatic states in substance dependent individuals when pondering
decisions with negative future consequences. Neuropsychologia 40(10):1675–1689
DOI 10.1016/S0028-3932(02)00015-5.

Berg EA. 1948. A simple objective technique for measuring flexibility in thinking. The
Journal of General Psychology 39(1):15–22 DOI 10.1080/00221309.1948.9918159.

Bestmann S, Ruge D, Rothwell J, Galea JM. 2014. The role of dopamine in motor
flexibility. Journal of Cognitive Neuroscience 27(2):365–376.

Bishara AJ, Kruschke JK, Stout JC, Bechara A, McCabe DP, Busemeyer JR. 2010.
Sequential learning models for the Wisconsin card sort task: assessing processes in
substance dependent individuals. Journal of Mathematical Psychology 54(1):5–13
DOI 10.1016/j.jmp.2008.10.002.

Braff DL, Heaton R, Kuck J, CullumM,Moranville J, Grant I, Zisook S. 1991. The
generalized pattern of neuropsychological deficits in outpatients with chronic
schizophrenia with heterogeneous Wisconsin Card Sorting Test results. Archives of
General Psychiatry 48(10):891–898 DOI 10.1001/archpsyc.1991.01810340023003.

D’Alessandro et al. (2020), PeerJ, DOI 10.7717/peerj.10316 28/32



Buchsbaum BR, Greer S, ChangW-L, Berman KF. 2005.Meta-analysis of neuroimaging
studies of the Wisconsin Card-Sorting task and component processes. Human Brain
Mapping 25(1):35–45 DOI 10.1002/hbm.20128.

Buckley CL, Kim CS, McGregor S, Seth AK. 2017. The free energy principle for ac-
tion and perception: a mathematical review. Journal of Mathematical Psychology
81:55–79 DOI 10.1016/j.jmp.2017.09.004.

Collell G, Fauquet J. 2015. Brain activity and cognition: a connection from thermody-
namics and information theory. Frontiers in Psychology 6:818.

Cooper R, Fox J, Farringdon J, Shallice T. 1996. A systematic methodology for cognitive
modelling. Artificial Intelligence 85(1–2):3–44 DOI 10.1016/0004-3702(95)00112-3.

DawND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. 2011.Model-based influences
on humans’ choices and striatal prediction errors. Neuron 69(6):1204–1215
DOI 10.1016/j.neuron.2011.02.027.

Dehaene S, Changeux J-P. 1991. The Wisconsin Card Sorting Test: theoretical
analysis and modeling in a neuronal network. Cerebral Cortex 1(1):62–79
DOI 10.1093/cercor/1.1.62.

Feldman H, Friston K. 2010. Attention, uncertainty, and free-energy. Frontiers in Human
Neuroscience 4:215.

Figueroa IJ, Youmans RJ. 2013. Failure to maintain set: a measure of distractibility or
cognitive flexibility? In: Proceedings of the human factors and ergonomics society an-
nual meeting. Los Angeles: Sage Publications, 828–832 DOI 10.1177/1541931213571180.

First MB. 1997. Structured clinical interview for DSM-IV axis I disorders. New York:
Biometrics Research, New York State Psychiatric Institute.

Flashman LA, HomerMD, Freides D. 1991. Note on scoring perseveration on the
Wisconsin Card Sorting Test. The Clinical Neuropsychologist 5(2):190–194
DOI 10.1080/13854049108403303.

Forstmann BU,Wagenmakers E-J, Eichele T, Brown S, Serences JT. 2011. Reciprocal
relations between cognitive neuroscience and formal cognitive models: opposites
attract? Trends in Cognitive Sciences 15(6):272–279 DOI 10.1016/j.tics.2011.04.002.

Friston K. 2003. Learning and inference in the brain. Neural Networks 16(9):1325–1352
DOI 10.1016/j.neunet.2003.06.005.

Friston K. 2005. A theory of cortical responses. Philosophical Transactions of the Royal
Society B: Biological Sciences 360(1456):815–836 DOI 10.1098/rstb.2005.1622.

Friston K. 2010. The free-energy principle: a unified brain theory? Nature Reviews
Neuroscience 11(2):127–138 DOI 10.1038/nrn2787.

Friston K, Adams R, Perrinet L, Breakspear M. 2012. Perceptions as hypotheses:
saccades as experiments. Frontiers in Psychology 3:151.

Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, Pezzulo G. 2017. Active inference: a
process theory. Neural Computation 29(1):1–49 DOI 10.1162/NECO_a_00912.

Friston K, Kiebel S. 2009. Predictive coding under the free-energy principle. Philosoph-
ical Transactions of the Royal Society B: Biological Sciences 364(1521):1211–1221
DOI 10.1098/rstb.2008.0300.

D’Alessandro et al. (2020), PeerJ, DOI 10.7717/peerj.10316 29/32



Friston KJ, Daunizeau J, Kilner J, Kiebel SJ. 2010. Action and behavior: a free-energy
formulation. Biological Cybernetics 102(3):227–260
DOI 10.1007/s00422-010-0364-z.

Gershman SJ. 2018. The successor representation: its computational logic and neural
substrates. Journal of Neuroscience 38(33):7193–7200
DOI 10.1523/JNEUROSCI.0151-18.2018.

Gläscher J, Adolphs R, Tranel D. 2019.Model-based lesion mapping of cognitive
control using the Wisconsin Card Sorting Test. Nature Communications 10(1):1–12
DOI 10.1038/s41467-018-07882-8.

Haker H, Schneebeli M, Stephan KE. 2016. Can Bayesian theories of autism spectrum
disorder help improve clinical practice? Frontiers in Psychiatry 7:107.

Heaton R. 1981. Wisconsin card sorting test manual; revised and expanded. Odessa, FL:
Psychological Assessment Resources.

Hirsh JB, Mar RA, Peterson JB. 2012. Psychological entropy: a framework for un-
derstanding uncertainty-related anxiety. Psychological Review 119(2):304–320
DOI 10.1037/a0026767.

Hsieh PC, Yeh TL, Lee IH, Huang HC, Chen PS, Yang YK, Chiu NT, Lu RB, Liao
M-H. 2010. Correlation between errors on the Wisconsin Card Sorting Test and
the availability of striatal dopamine transporters in healthy volunteers. Journal of
Psychiatry & Neuroscience 35(2):90–94 DOI 10.1503/jpn.090007.

Kersten D, Mamassian P, Yuille A. 2004. Object perception as Bayesian inference. An-
nual Review of Psychology 55:271–304 DOI 10.1146/annurev.psych.55.090902.142005.

Knill DC, Pouget A. 2004. The Bayesian brain: the role of uncertainty in neu-
ral coding and computation. TRENDS in Neurosciences 27(12):712–719
DOI 10.1016/j.tins.2004.10.007.

Koechlin E, Summerfield C. 2007. An information theoretical approach to prefrontal
executive function. Trends in Cognitive Sciences 11(6):229–235
DOI 10.1016/j.tics.2007.04.005.

Körding KP, Beierholm U,MaWJ, Quartz S, Tenenbaum JB, Shams L. 2007. Causal
inference in multisensory perception. PLOS ONE 2(9):e943
DOI 10.1371/journal.pone.0000943.

Kübler A, Murphy K, Garavan H. 2005. Cocaine dependence and attention switching
within and between verbal and visuospatial working memory. European Journal of
Neuroscience 21(7):1984–1992 DOI 10.1111/j.1460-9568.2005.04027.x.

Landry O, Al-Taie S. 2016. A meta-analysis of the Wisconsin Card Sort Task
in autism. Journal of autism and developmental disorders 46(4):1220–1235
DOI 10.1007/s10803-015-2659-3.

Lawson RP, Rees G, Friston KJ. 2014. An aberrant precision account of autism. Frontiers
in Human Neuroscience 8:302.

Lee TS, Mumford D. 2003.Hierarchical Bayesian inference in the visual cortex. JOSA A
20(7):1434–1448 DOI 10.1364/JOSAA.20.001434.

LeeMD,Wagenmakers E-J. 2014. Bayesian cognitive modeling: a practical course.
Cambridge: Cambridge University Press.

D’Alessandro et al. (2020), PeerJ, DOI 10.7717/peerj.10316 30/32



Levine DS, Parks RW, Prueitt PS. 1993.Methodological and theoretical issues in neural
network models of frontal cognitive functions. International Journal of Neuroscience
72(3-4):209–233 DOI 10.3109/00207459309024110.

Lie C-H, Specht K, Marshall JC, Fink GR. 2006. Using fMRI to decompose the
neural processes underlying the Wisconsin Card Sorting Test. NeuroImage
30(3):1038–1049 DOI 10.1016/j.neuroimage.2005.10.031.

Marr D. 1982. Vision: a computational investigation into the human representation and
processing of visual information. San Francisco: W.H. Freeman.

Monchi O, Petrides M, Petre V,Worsley K, Dagher A. 2001.Wisconsin Card Sorting
revisited: distinct neural circuits participating in different stages of the task identified
by event-related functional magnetic resonance imaging. Journal of Neuroscience
21(19):7733–7741 DOI 10.1523/JNEUROSCI.21-19-07733.2001.

Monchi O, Taylor JG, Dagher A. 2000. A neural model of working memory processes in
normal subjects, Parkinson’s disease and schizophrenia for fMRI design and predic-
tions. Neural Networks 13(8–9):953–973 DOI 10.1016/S0893-6080(00)00058-7.

NourMM, Dahoun T, Schwartenbeck P, Adams RA, FitzGerald TH, Coello C,
Wall MB, Dolan RJ, Howes OD. 2018. Dopaminergic basis for signaling belief
updates, but not surprise, and the link to paranoia. Proceedings of the National
Academy of Sciences of the United States of America 115(43):E10167–E10176
DOI 10.1073/pnas.1809298115.

Nyhus E, Barceló F. 2009. The Wisconsin Card Sorting Test and the cognitive as-
sessment of prefrontal executive functions: a critical update. Brain and Cognition
71(3):437–451 DOI 10.1016/j.bandc.2009.03.005.

Ott T, Nieder A. 2019. Dopamine and cognitive control in prefrontal cortex. Trends in
Cognitive Sciences 23(3):213–234.

O’Reilly JX, Schüffelgen U, Cuell SF, Behrens TE, Mars RB, RushworthMF. 2013.
Dissociable effects of surprise and model update in parietal and anterior cingulate
cortex. Proceedings of the National Academy of Sciences 110(38):E3660–E3669
DOI 10.1073/pnas.1305373110.

Petzschner FH, Glasauer S, Stephan KE. 2015. A Bayesian perspective on magnitude es-
timation. Trends in Cognitive Sciences 19(5):285–293 DOI 10.1016/j.tics.2015.03.002.

Radev ST, Mertens UK, Voss A, Ardizzone L, Kthe U. 2020. BayesFlow: Learning
complex stochastic models with invertible neural networks. ArXiv preprint.
arXiv:2003.06281.

RushworthMF, Behrens TE. 2008. Choice, uncertainty and value in prefrontal and
cingulate cortex. Nature Neuroscience 11(4):389–397 DOI 10.1038/nn2066.

Rybakowski J, Borkowska A, Czerski P, Kapelski P, Dmitrzak-Weglarz M, Hauser
J. 2005. An association study of dopamine receptors polymorphisms and the
Wisconsin Card Sorting Test in schizophrenia. Journal of Neural Transmission
112(11):1575–1582 DOI 10.1007/s00702-005-0292-6.

Sayood K. 2018. Information theory and cognition: a review. Entropy 20(9):706
DOI 10.3390/e20090706.

D’Alessandro et al. (2020), PeerJ, DOI 10.7717/peerj.10316 31/32



Schwartenbeck P, FitzGerald TH, Dolan R. 2016. Neural signals encoding shifts in
beliefs. NeuroImage 125:578–586 DOI 10.1016/j.neuroimage.2015.10.067.

Singh S, Aich TK, Bhattarai R. 2017.Wisconsin Card Sorting Test performance
impairment in schizophrenia: an Indian study report. Indian journal of psychiatry
59(1):88–93 DOI 10.4103/0019-5545.204440.

Sisson SA, Fan Y. 2011. Likelihood-free MCMC. Chapman & Hall/CRC, New York.[839].
Steinke A, Lange F, Seer C, Hendel MK, Kopp B. 2020. Computational modeling for

neuropsychological assessment of bradyphrenia in Parkinsons disease. Journal of
Clinical Medicine 9(4):1158 DOI 10.3390/jcm9041158.

Stelzel C, Basten U, Montag C, Reuter M, Fiebach CJ. 2010. Frontostriatal involvement
in task switching depends on genetic differences in d2 receptor density. Journal of
Neuroscience 30(42):14205–14212 DOI 10.1523/JNEUROSCI.1062-10.2010.

Stephan KE, Baldeweg T, Friston KJ. 2006. Synaptic plasticity and dysconnection in
schizophrenia. Biological Psychiatry 59(10):929–939
DOI 10.1016/j.biopsych.2005.10.005.

Strange BA, Duggins A, PennyW, Dolan RJ, Friston KJ. 2005. Information theory,
novelty and hippocampal responses: unpredicted or unpredictable? Neural Networks
18(3):225–230 DOI 10.1016/j.neunet.2004.12.004.

Sun R. 2009. Theoretical status of computational cognitive modeling. Cognitive Systems
Research 10(2):124–140 DOI 10.1016/j.cogsys.2008.07.002.

Talts S, Betancourt M, Simpson D, Vehtari A, Gelman A. 2018. Validating Bayesian
inference algorithms with simulation-based calibration. ArXiv preprint.
arXiv:1804.06788.

Turner BM, Forstmann BU, Love BC, Palmeri TJ, VanMaanen L. 2017. Approaches to
analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology
76:65–79 DOI 10.1016/j.jmp.2016.01.001.

Turner BM, Forstmann BU,Wagenmakers E-J, Brown SD, Sederberg PB, Steyvers M.
2013. A Bayesian framework for simultaneously modeling neural and behavioral
data. NeuroImage 72:193–206 DOI 10.1016/j.neuroimage.2013.01.048.

Willuhn I, SunW, Steiner H. 2003. Topography of cocaine-induced gene regulation in
the rat striatum: relationship to cortical inputs and role of behavioural context. Euro-
pean Journal of Neuroscience 17(5):1053–1066 DOI 10.1046/j.1460-9568.2003.02525.x.

Zakzanis KK. 1998. The subcortical dementia of Huntington’s disease. Journal of Clinical
and Experimental Neuropsychology 20(4):565–578 DOI 10.1076/jcen.20.4.565.1468.

D’Alessandro et al. (2020), PeerJ, DOI 10.7717/peerj.10316 32/32





Declaration in accordance to § 8 (1) c)
and (d) of the doctoral degree
regulation of the Faculty

201



 

 
 

 
FAKULTÄT FÜR VERHALTENS-  

UND EMPIRISCHE KULTURWISSENSCHAFTEN 
 

 
 
 
Promotionsausschuss der Fakultät für Verhaltens- und Empirische Kulturwissenschaften 
der Ruprecht-Karls-Universität Heidelberg 
Doctoral Committee of the Faculty of Behavioural and Cultural Studies of Heidelberg University 

 
 
Erklärung gemäß § 8 (1) c) der Promotionsordnung der Universität Heidelberg 
für die Fakultät für Verhaltens- und Empirische Kulturwissenschaften 
Declaration in accordance to § 8 (1) c) of the doctoral degree regulation of Heidelberg University, 
Faculty of Behavioural and Cultural Studies 

 
Ich erkläre, dass ich die vorgelegte Dissertation selbstständig angefertigt, nur die angegebenen 
Hilfsmittel benutzt und die Zitate gekennzeichnet habe. 
I declare that I have made the submitted dissertation independently, using only the specified tools and have 
correctly marked all quotations. 

 
 
 
Erklärung gemäß § 8 (1) d) der Promotionsordnung der Universität Heidelberg  
für die Fakultät für Verhaltens- und Empirische Kulturwissenschaften 
Declaration in accordance to § 8 (1) d) of the doctoral degree regulation of Heidelberg University, 
Faculty of Behavioural and Cultural Studies 

 
Ich erkläre, dass ich die vorgelegte Dissertation in dieser oder einer anderen Form nicht 
anderweitig als Prüfungsarbeit verwendet oder einer anderen Fakultät als Dissertation vorgelegt 
habe. 
I declare that I did not use the submitted dissertation in this or any other form as an examination paper until 
now and that I did not submit it in another faculty. 

 
 
 
 
Vorname Nachname 
First name Family name Stefan Radev 
 
 
 
 
Datum, Unterschrift 
Date, Signature  15.03.2021,                               
 
 


