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-Abstract-

Mechanisms of cellular memory allow cells to remember their embryonically

established determination state through the many mitotic divisions required to complete

development. The Polycomb-group (PcG) and trithorax-group (trxG) proteins ensure this

function through their interplay at chromosomal elements, termed Cellular Memory Modules

(CMMs), by creating stable and inheritable chromatin structures. By this way, CMMs are able

to remember the embryonic state of transcription of homeotic genes and to maintain it

throughout development.

I asked whether such CMMs could also control expression of genes involved in patterning

imaginal discs during larval development, which expression pattern may be modulated with

time. The results demonstrate that expression of one of these genes, hedgehog, once activated,

is maintained by a CMM even when the initial activator has disappeared. These experiments

suggest that the chromatin-based epigenetic inheritance of gene expression involving CMMs

may be widely spread. This implies that during imaginal disc patterning, the determination of

a morphogenetic field is not only established by the surrounding combinations of signaling

molecules but is also dependent from the history of the composing cells.

Transdetermination is a switch of disc identity that occurs in some cells, under specific

conditions, when cells are already determined. It was shown to appear in Drosophila when

manually fragmented imaginal discs were cultivated for a period of time allowing several cell

divisions. It is still unclear what factors are involved in the switch to the new identity and how

cells are able to inherit it through cell divisions. I investigated the role of PcG and trxG genes

in the determination and transdetermination of imaginal disc cells. My results show that

reducing the concentration of some PcG members in the cells affects the frequency of

transdetermination suggesting that some genes involved in the establishment of the new disc

identity are targets of PcG-mediated regulation. Furthermore, PcG proteins may also be

required for the accurate inheritance of the new transdetermined state through mitosis. These

results suggest that the establishment and the maintenance of the new cell identity is

generated through the switching of the activation state of the CMM of developmental genes.

In conclusion, several conditions are defined that may favour or are necessary for

transdetermination, in which a transient downregulation of some PcG/trxG proteins as well as

several rounds of DNA replication may facilitate the switch of CMMs.

Finally, I discuss these results with a perspective on how the control of CMM switching may

have applications for medical research in tissue remodelling.
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1. Introduction

1.1 Short introduction to the concepts of epigenetics and cell determination

The central question in developmental biology concerns how a small number of

undifferentiated embryonic cells, with the same genomic content, can give rise to the diverse

complex structures of the adult.

Organisms with different tissues must establish tissue-specific patterns of gene

expression early in development and maintain these patterns until adult stages. During early

embryogenesis, cells receive information, through molecules called “determinants”, which

commit them to specific fates. This leads to the establishment of cell specific transcriptional

patterns necessary to activate the developmental pathways which will define the determined

identities. Once established, epigenetic processes allow all cells to inherit their own specific

transcriptional patterns through cell divisions, in order to maintain the initial determined state,

until tissue development is accomplished and cells differentiated. In this way, epigenetic

mechanisms allow heritable changes in gene expression that occur without a change in DNA

sequence (Wolffe and Matzke, 1999).

Consequently, a determined state is cell heritable (Hadorn, 1965). Understanding cell

determination requires understanding both how determined states are established, and by

which epigenetic processes they are maintained throughout development.

1.2 The establishment of determined states during early embryogenesis in Drosophila

Early patterning events are under the control of the maternal genes. These are genes

coming from the mother genome which must be expressed in the developing oocyte for the

subsequent correct development of the embryo. These gene products form gradients in the egg

providing the embryo with polarity, and lay down a pre-pattern for subsequent development

(Ingham, 1988; St Johnston and Nüsslein-Volhard, 1992). Polarity is established before

fertilisation, and results from signaling between the oocyte and the surrounding somatic

follicle cells of the mother (Ray and Schüpbach, 1996). The transcription factors encoded by

the maternal genes bicoid (bcd), hunchback (hb), nanos (nos) and caudal (cad) regulate

expression of the so-called gap genes (because gap gene mutants lack contiguous blocks of

segments) (Jäckle, 1987; Driever and Nüsslein-Volhard, 1988; Gaul and Tautz, 1988; Driever

and Nüsslein-Volhard, 1989; Struhl et al., 1989; Rivera-Pomar et al., 1995). Later, the

periodic pattern of expression of gap genes along the embryo, together with the maternal

determinants, acts on the specific enhancers of the pair-rule genes to induce their expression



                                                                                                                                                                      I.Introduction.

3

in a spatially restricted pattern of seven or eight stripes along the antero-posterior (A-P) axis

of the embryo.

The gap and pair-rule genes, mainly encoding for RNA and DNA-binding proteins, are part of

a transcriptional cascade which directly activates gene expression. Their coordinated action

culminates by establishing the pattern of expression of segmentation genes and homeotic

genes.

The products of segmentation genes divide the body into a repeated array of 14 parasegments

defining cell identity along the antero-posterior axis. The parasegments are units of cell

lineage, and the metameric structure of the adult is a direct consequence of the basic

organisation of the embryo (Martinez-Arias and Lawrence, 1985). Two groups of founder

cells of each embryonic parasegment are allocated to make either an anterior or posterior

compartment of each adult segment. All descendents of a group of founder cells will

exclusively form one adult compartment, and no other cells contribute to it (Morata and

Lawrence, 1975).

Each parasegment expresses a specific set of homeotic genes (or Hox genes) which determine

its own identity. These parasegments must maintain their own homeotic gene expression

pattern throughout development in order to give rise to the defined adult structure.

The early expression pattern of the gap and pair-rule proteins disappears by about four

hours of embryogenesis. Thus, distinct regulators are needed to maintain homeotic gene

expression during the rest of development.

1.3 Maintenance of embryonically established expression patterns throughout

development

1.3.1 Introduction to the concept of cellular memory

The fate of a cell is determined by its gene expression program. Once this has been

embryonically established, some mechanisms must allow its persistence through the required

round of cell divisions at the end of which the initial embryonic cell becomes a whole adult

structure.

Cellular memory is a term used to define the epigenetic processes allowing the cells to

remember and propagate their initial gene expression program through cell divisions when the

early patterning factors have disappeared. In the last decade, there has been accumulating

evidence that chromatin structure can control the transcriptional state of a gene and be

inherited through DNA replication and mitosis to the next generation of cells. How a given

chromatin structure can resist to the processes of DNA replication and compaction of
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metaphasic chromosomes, and be inherited to the daughter cells is still unknown. In fact,

several studies observed that the chromatin structure itself is mainly disrupted at least during

mitosis but reassembles in daughter cells to allow the reformation of the transcriptional

pattern (Buchenau et al., 1998; Dietzel et al., 1999; Yamamoto et al., 1997). These

observations suggest that there could be a discrete mark only that would persist on the DNA

during the replication and the mitotic processes, could be copied to newly replicated

chromosomes and would re-recruit the appropriate repressing or activating chromatin

complexes to the target gene at the end of the affair.

Changing this memory mark at any time during development would lead to a loss of the

memory and could switch the transcription of a gene to a new state. It is obvious that the

failure of a cell to strictly remember its own gene expression program during development

would make it lose its identity and could have disastrous consequences.

1.3.2 What is chromatin?

In contrast to prokaryotic organisms, eukaryotes need to package their DNA within a

nucleus. The first level of packaging is provided by nucleosomes. They consist of an octamer

of core histones, that directly interacts with DNA. The DNA is wrapped around nucleosomes

and the repetition of this event produces a primary fiber itself coiled into a secondary fiber

ordering the complex into a basic architecture. Beside the need for packaging the enormous

eukaryotic DNA in an independent compartment, histones and various other proteins as well

as RNAs (Kelley and Kuroda, 2000) act together on DNA to form dynamic higher-ordered

structures. They contribute to a system of regulation of gene expression that supports

development of multicellular organisms, with extensive specialization of cell types. The

overall mixture formed by the DNA interacting with all these proteins and RNAs is called

“chromatin”.

Two different conditions of chromatin co-inhabit the nucleus. Heterochromatin mainly

consists of silent DNA which contains very few transcribed genes. It is highly packaged and

dense. Euchromatin contains most of the transcribed genes. Its structure is globally looser.

The structural organisation of chromatin regulates the expression of many genes, presumably

by controlling the access of trans-acting factors to the promoter regions, and seems to be a

critical parameter for the epigenetic inheritance of gene expression throughout development.
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1.3.3 Polycomb and trithorax group proteins

Once the expression pattern of homeotic genes is established in each parasegment, the

initial transiently expressed patterning factors disappear later in embryogenesis, and a

memory system has to take over to maintain the initial transcriptional state of the genes

throughout development. Two families of proteins fulfill this role. The Polycomb group

(PcG) proteins are known to maintain the silenced state whereas the counteracting trithorax

group (trxG) proteins allow inheritance of the active state. Both these families of proteins act

as multi-protein complexes thought to be able to remodel the structure of chromatin. The

PcG/trxG maintenance system is evolutionarily conserved from Drosophila through to

mammals (Goodrich et al., 1997; Deschamps et al., 1999).

1.3.3.1 The Polycomb group proteins are needed to maintain repression

Pc-G mutants were originally identified on the basis of their homeotic phenotype.

Mutants been proved to cause expression of homeotic genes in unusual locations, regions in

which they normally would not be expressed. This ectopic expression is attributed to the

failure of proper gene silencing by Pc-G mutants. The fact that in PcG mutants, homeotic

gene expression is normal at early stages of development indicates that the PcG genes do not

have a role in the establishment of the repression of these selector genes. They would rather

maintain the silenced state throughout development, when the initial repressor proteins

encoded by the gap genes have established the initial off-state and are no longer expressed.

For this purpose, the products of most PcG genes are required continuously throughout

development.

Molecular analysis of the Polycomb protein (PC) gave important insights into the mechanism

of PcG repression. A 48 amino acid domain (the chromodomain) was identified which

showed significant homology the heterochromatin-associated protein HP1. Since HP1 is

involved in heterochromatic silencing, it was proposed that the PcG proteins may silence

target genes in a manner comparable to that of heterochromatin (Paro, 1990).

Based on genetic studies, it is estimated that there could be about 40 potential PcG genes, but

only about 15 have been molecularly identified and characterised in Drosophila. There is no

significant sequence similarity among them. However, several conserved protein motifs seen

in other nuclear factors are potential domains for protein-protein interactions. Further

experiments confirmed the idea that PcG proteins act as multimeric complexes (Franke et al.,

1992; DeCamillis et al., 1992). Precisely, at least 2 biochemically distinct complexes can be

observed with different roles. One consists of a 600 kD complex containing the product of the
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genes extra sex comb (esc), Suppressor of zeste 12 (Su(z)12) and Enhancer of zeste  (E(z))

which possesses a histone-methyl-transferase (HMT) activity (Jones et al., 1998; Czermin et

al., 2002; Müller et al., 2002; Cao et al., 2002; Kuzmichev et al., 2002). This complex is

critically required for establishment of PcG-mediated silencing during early embryogenesis.

However in contrast with esc, E(z) is still required for later stages of development (Simon et

al., 1995; Tie et al., 1998; Ng et al., 2000). A second complex, the Polycomb Repressive

Complex 1 (PRC1) containing several other PcG proteins such as PC, PH, PSC and SCM, has

been purified. PRC1 is able to block remodelling of a nucleosome array by the SWI/SNF

chromatin remodelling complex (Shao et al., 1999). Thus it may stabilize and maintain the

chromatin in a repressive structure counteracting the action of trans-activating factors during

development. Interestingly, in several studies, these complexes have been shown to copurify

with other kinds of proteins able to modify histones (like Rpd3, a histone deacetylase), or

components of the general transcription factor TFIID (dTAFIIs) indicating a direct physical

connection between PcG proteins and histone modifying enzymes or proteins of the general

transcription machinery (Tie et al., 2001; Saurin et al., 2001; Breiling et al., 2001).

Polycomb-G proteins act through the binding of cis-regulatory elements called Polycomb

Response Elements (PREs) (Simon et al., 1993; Chan et al., 1994). Several PREs have been

identified in the bithorax complex (BX-C) (Orlando et al., 1993; Simon et al., 1993; Strutt et

al., 1997; Mihaly et al., 1997; Barges et al., 2000). They are necessary to maintain the

repressed expression status of corresponding homeotic genes in appropriate segmental

domains. So far only one PcG protein, Pleiohomeotic (PHO) has been found to have the

capacity to directly bind these PREs in a sequence specific manner (Mihaly et al., 1998). It

has been proposed that PHO acts to recruit and anchor PcG protein complexes to DNA

(Fritsch et al., 1999). Nevertheless an intact PHO binding site is necessary but not sufficient

for PRE activity, indicating that additional sequence elements are required to establish a Pc-

repressing complex (Brown et al., 1998). Furthermore, PHO itself when tethered to DNA is

not able to recruit the correct Pc-complex and does not silence a reporter gene, unlike Pc

(Poux et al., 2001).

Gene Complex Protein domains

Polycomb (Pc) PRC1 Carboxy-terminal domain; chromodomain

polyhomeotic (ph) PRC1 SPM, H1, zinc finger

Posterior sex comb (Psc) PRC1 Homology region: RING (zinc finger) +



                                                                                                                                                                      I.Introduction.

7

helix-turn-helix

dRing PRC1 RING

Sex comb on midleg (Scm) P R C 1  ( s m a l l

fraction only)

SPM

Enhancer of zeste (E(z)) E(z) / Esc SET (HMT activity)

extra sex combs (esc) E(z) / Esc WD40 repeats

Suppressor of zeste 12

(Su(z)12)

E(z) / Esc Zinc finger, VEFS box

Additional sex combs (Asc)

super sex combs (sxc)

multi sex combs (mxc)

WD40 repeats

Polycomb-like(Pcl)

cramped (crm)

PHD fingers

pleiohomeotic (pho)

Sex comb extra (Sce)

Zinc fingers

Enhancer of Polycomb

(E(Pc))

Suppressor of zeste 2 (Su(z)2) HR region (shared with Psc)

Table 1: Polycomb group genes. Derived from Francis and Kingston (2001)

In summary, it appears that PcG proteins form large multimeric complexes associated with

different kinds of enzyme activities linked to histone modifications or connected with the

general transcription machinery. These complexes associate with the DNA at specific

sequences (PREs) and may organise and maintain a spatially restricted heterochromatin-like

structure, preventing activation of transcription of the packaged gene during development.

1.3.3.2 The trithorax-Group proteins are needed to maintain activation

Most of the trxG genes have been identified by their ability to suppress homeotic

phenotypes caused by PcG gene mutations. Mutations in any of these genes mimic the

homeotic transformations caused by loss of function mutations of homeotic genes such as

Antennapedia and Ultrabithorax. This interaction between trithorax (trx) and homeotic genes

has lead to observations that trx is necessary to sustain homeotic gene expression past the

gastrulation phase (Breen, 1991). In fact, they appear to counteract the formation of repressive
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PcG-mediated chromatin structures, and to maintain the environment around the target gene

in an open, permissive configuration allowing accessibility of the transcription factors to the

promoter region. Their role is to maintain the expression of a gene throughout development

when its initial expression state was activated by the primary early transcription factors (gap

genes, pair rule genes). Like PcG genes, for this purpose, they are required and expressed

continuously during development.

Polytene chromosome stainings (Zink and Paro, 1989; Paro and Zink, 1993; Rastelli et al.,

1993; Chinwalla et al., 1995; Tripoulas et al., 1996) as well as chromatin

immunoprecipitation analysis (Strutt et al., 1997; Orlando et al., 1998) showed that TrxG and

PcG proteins mainly overlap on the same regulatory sequences responsible for the

maintenance of homeotic gene expression. However, functional dissection of one of these

modules showed that the TRE (trithorax response element) and PRE activities can be ascribed

to separable DNA elements, even though they are located within 30-40 nucleotides of each

other (Tillib et al., 1999). This proximity suggests that there may be some direct interactions

between protein complexes formed at these elements. So far, the GAGA factor (GAF),

encoded by the Trithorax-like (Trl) gene, and ZESTE are the only trxG proteins shown to

directly bind DNA. These proteins bind short consensus sequences in PREs/TREs (Benson

and Pirrotta, 1988; Strutt et al., 1997; Cavalli and Paro, 1998). However, the (GA)n repeats to

which the GAF binds are also found at the promoter of many genes like the heat shock genes

(O’Brien et al., 1995) and are not implicated in epigenetic phenomena.

There is growing evidence that the trxG represents a heterogeneous family of proteins with

diverse functions. Some of them, such as TRX, ASH1, ASH2, GAF, and ZESTE, are

associated with particular sites on polytene chromosomes (Rastelli at al., 1993; Kuzin et al.,

1994; Chinwalla et al., 1995; Adamson and Shearn, 1996; Tripoulas et al., 1996), while

others, such as Brahma (BRM) and SNR1, are found in chromatin remodelling complexes

that may not be associated with specific chromosomal regions. There is some evidence that

one of the functions of trxG proteins may be to recruit chromatin remodelling complexes to

DNA. GAGA factor is required for the function of one chromatin remodelling complex, the

Drosophila NURF complex (Tsukiyama and Wu., 1997), and TRX has been shown to

physically interact with SNR1, a component of the Drosophila SWI/SNF complex

(Rozenblatt-Rosen et al., 1998). However, there is no evidence thus far that these interactions

are mediated through particular TREs. In addition, there is evidence that TRX and its human

homologue, ALL-1/HRX, may be involved directly in the activation of promoters, since both

of these proteins possess transactivation activity in cells (Chang et al., 1995; Prasad et al.,
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1995; Zeleznik-Le et al., 1994). Therefore, it is likely that trxG proteins not only can

counteract formation of PcG-mediated repressive chromatin structure but may also play a

more general role in maintaining transcription. Very recently, it has been demonstrated that

the SET domain of ASH1 is associated with an HMT activity, leading to the hypothesis that

methylation of histones may have a role in maintaining activation of transcription (Beisel et

al., 2002)

Gene Complex Protein domains

brahma (brm) Brahma complex (SWI/SNF) SNF2/SWI2 ATPase domain;

bromodomain

moira (mor) Brahma complex (SWI/SNF) SANT domain, leucine zipper

osa  Brahma complex (SWI/SNF)

(sub-stochiometric)

ARID

trithorax (trx) SET

trithorax-like (trl) Single zinc-finger DNA-binding

motif

ash1 SET (HMT activity), PHD

ash2 PHD

little imaginal discs ARID; RING/PHD; leucine

zipper; PHD (2)

urdur

kismet S N F 2 / S W I 2  A T P a s e ;

chromodomain

modifier of (mdg4)

lawc

kohtalo Mediator-related co-activator

complex?

(homolog of human TRAP240)

Table 2: trithorax group genes. derived from Francis and Kingston (2001)
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1.3.3.3 Proteins with overlapping functions: the enhancer of trithorax and Polycomb (ETP)

group

There is now evidence that some members of the PcG and trxG show overlapping

functions. It has been proposed that a third class of genes should be established to encompass

genes that enhance both PcG- and trxG-mediated phenotypes (Gildea et al., 2000; Brock and

van Lohuizen, 2001). Some proteins could be common sub-units actually involved in both

processes of activation or repression through their ability, in different contexts, to allow the

recruitment of activating or repressing factors. For this reason, this class of proteins have been

named the enhancer of trithorax and Polycomb (ETP). A recent screen for enhancer of trxG

mutation phenotypes, indeed, identified six different members of the PcG genes (Asc, E(Pc),

E(z), Psc, Scm, Su(z)2), suggesting that a subset of PcG genes are required to activate as well

as to suppress homeotic gene expression (Gildea et al., 2000). The same applies to some

presumptive trxG members, the GAF and Zeste, which both have sequence specific DNA

binding activities. Although Trl (GAF) mutations show clear trxG phenotypes (Farkas et al.,

1994), the GAF can interact with PcG complexes in vitro (Farkas et al., 1994) and is localised

to PRE sequences in vivo (Cavalli and Paro 1998). Furthermore several studies have recently

shown that the GAF is required for the correct silencing activity of different PREs (Mishra et

al., 2001; Hodgson et al., 2001; Busturia et al., 2001). Genetic data link Zeste to both the PcG

and trxG indicating that it might function as an activator or as a repressor in different contexts

(Pirrotta and Rastelli, 1994; Kal et al., 2000). Zeste was also found to bind directly to the

components of the BRM complex to increase transcription (Kal et al., 2000), whereas it is

also associated with PRC1 (Saurin et al., 2001) and is necessary to maintain repression of

Ubx transgenes (Hur et al., 2002).

In agreement with the apparent overlap of PRE and TRE sequences, ETPs  might simply be a

link between the PcG-/trxG complexes and the DNA, marking genes as potential targets,

whereas other proteins or the state of the chromatin template might determine which

complexes should be recruited, and therefore, whether activation or repression is the outcome

(Francis and Kingston, 2001).

1.3.3.4 Targeting of the PcG/trxG proteins to specific genes

So far very little is known about the mechanisms leading to the targeting of PcG/trxG

complex to specific genes. However, as mentioned earlier, PcG/trxG complexes might be

attracted to PREs/TREs in a sequence specific manner. In this way, the PcG protein PHO

binds a short consensus sequence found in many PREs (Mihaly et al., 1998; Brown et al.,
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1998) although it can not by itself induce silencing. Nevertheless, a 138 bp sequence within

the MCP PRE (controlling expression of the Abd-B gene in the bithorax-complex) containing

four PHO-binding sites and two GAGA sites seems sufficient for silencing (Busturia et al.,

2001). This  confirms that the EPT member, GAF, might mark the target DNA and interact

with PcG proteins to recruit the PcG complex at PREs. Furthermore, PREs seem to be

continuously required to maintain the PcG-mediated silencing since excision of the MCP PRE

from a transgene during larval stages leads to the loss of silencing.  This finding suggests that

these DNA elements, and/or an epigenetic mark they carry, may be needed to continuously

attract the protein complexes in order to maintain at least silencing through cell proliferation

(Busturia et al., 1997).

1.3.3.5 The interplay of PcG and trxG complexes at homeotic PREs conveys transcriptional

memory: the cellular memory modules (CMMs)

In an attempt to isolate and investigate how regulatory sequences can allow

inheritance of the initial transcriptional state throughout the whole of development, Cavalli

and Paro have set up a transgenic model system showing that PREs can be switched at

embryogenesis to an activated state, allowing continuous transcription of a nearby reporter

gene through many rounds of mitotic divisions and surprisingly, with a lower frequency, also

through meiosis (Cavalli and Paro, 1998).

The model was first established with the Fab7 PRE/TRE (Fig. 1). This element

belongs to the bithorax-complex and is needed for maintaining segment-specific expression of

the homeotic Abdominal-B gene. The transgenic construct carries Fab7 upstream of several

UAS sites (upstream activating sequence) acting as a specific enhancer for two reporter

genes: the lacZ gene, and the mini-white gene possessing its own minimal promoter.

When no activation of transcription is initiated during embryogenesis, the Fab7 PRE acts as a

repressing element since mini-white gene expression is silenced in adult eyes. This repressive

effect seems to be the default state for a PRE, confirming that PcG-mediated silencing is

preferentially established on inactive genes. A short embryonic GAL4 pulse (acting as an

early embryonic transcription factor) can activate transcription of the reporter genes through

the binding to the UAS sites, as expected. However it appears that the transcription of the

reporter genes is maintained throughout the whole of development as indicated by the

transcription of the mini-white gene in the eyes of adult flies in spite of the absence of the

initial transactivator (Cavalli and Paro, 1999). Conclusively, the Fab7 element can be

“switched” from a silenced to an active state, and this state could be inherited throughout the
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Figure 1: The transgenic assay allows to test whether a chromosomal element can maintain the
embryonically established state of transcription through the whole of development. A) In the
endogenous situation, early transcription factors are transiently expressed in the embryo, establishing a
specific pattern of transcription of the homeotic genes. Later on, the early transcription factors disappear,
and the PRE/TRE chromosomal element is able to maintain the initial state of transcription throughout
development. B) In the transgenic assay, an embryonic heat-shock induces a transient expression of GAL4
which can activate transcription of the reporter genes through the binding of the UAS sites, mimicking the
action of the early transcription factors. In this way, it is possible to test whether a specific chromosomal
element is able to maintain the initial state of transcription throughout development when placed upstream
of the reporter genes.

  

PRE/TRE
(CMM)

Homeotic generegulatory
sequence

early transcription factor
(gap gene, pair-rule gene, seg-
mentation gene etc...)

PRE/TRE
(CMM)

lacZUAS mW

GAL4hsp70

A)   Homeotic gene regulation during embryogenesis

B)   Transgenic assay for testing CMMs

whole development. For this reason, the Fab7 element has been termed a Cellular Memory

Module (CMM).

Activity is dependent on the PcG and trxG proteins (Cavalli and Paro, 1998; 1999). The

interplay of PcG and trxG proteins at elements such as Fab7 allows transcriptional memory

presumably by setting and maintaining epigenetic marks during DNA replication and mitosis.

Surprisingly, the same kind of GAL4 pulse, when provided in larval stages, was only able to

transiently activate transcription of the reporter gene, but no switching of the Fab7 CMM was

observed since transcription was lost as soon as the transactivator (GAL4) was down-
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regulated. These observations led to the hypothesis that Pc-mediated silencing might be more

stable in larval stages than in embryonic stages and CMMs can not be switched to mitotically

heritable activity at these later stages.

This experiment gave insights into how PcG and trxG proteins are targeted at PREs/TREs (or

CMMs) to maintain the initial silent/active state of expression of homeotic genes, which was

decided by the regulatory cascade of the early transcription factors. This assay also allows to

determine whether a regulatory element is able to function as a CMM.

1.4 Molecular mechanisms of cellular memory: What is the epigenetic mark?

1.4.1 The histone code hypothesis

In the last years, the discovery that histones could be subjected to different kind of

covalent modifications (Fig. 2) affecting the gene transcription state raised the possibility that

a “histone code” might operate for the longer-term maintenance and modulation of patterns of

gene expression (Turner, 2000; Jenuwein and Allis, 2001). The histone code hypothesis,

indeed, predicts that the modification marks on the histone should provide binding sites for

effector proteins. The main modifications found so far are the acetylation, methylation and

phosporylation of specific residues of the N-terminus of histones called histone tails. Proteins

responsible for these modifications are often associated with chromatin remodelling

complexes. Some histone deacetylases (HDAC) like Rpd3, whose role is to deacetylate

histones, and which are generally connected with silencing activities, have been found

associated with PcG complexes and genetically interact with some PcG mutants (van der Vlag

et al., 1999; Tie et al., 2001; Breiling et al., 2001). Conversely some histone acetyl-

transferases (HAT), which are generally connected with activation of gene expression, have

been found in complexes containing trxG proteins (Petruk et al., 2001). Furthermore, the SET

domain of Su(var)3-9 has been shown to methylate histone H3 at lysine 9 (Rea et al., 2000)

and to affect the structure of heterochromatin. The SET domain is found as well in the PcG

member E(z) and is able in vitro to methylate histone H3 at lysines 9 and 27 (Czermin et al.,

2002; Müller et al., 2002; Cao et al., 2002; Kuzmichev et al., 2002). The methylation pattern

of lysine 9 correlates well with the Pc-binding sites on polytene chromosomes (Czermin et al.,

2002). Likewise, the SET domain of the member of the trxG protein ASH1 is able to

methylate H3 at lysine 4 and 9 which is necessary for the maintenance of homeotic gene

expression (Beisel et al., 2002). Moreover, a trithorax-group complex purified from

Saccharomyces cerevisiae was recently demonstrated to be required for methylation of
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histone H3 at lysine 4 (Nagy et al., 2002). The fact that all these histone-modifiers are found

associated with heterochromatin protein as well as with PcG/trxG activities suggests that

PcG/trxG activities may use the histone code to generate and/or maintain higher-ordered

chromatin structure.

The tremendous number of various combinations that these modifications can offer suggests

that the histone code may considerably extend the information potential of the genetic (DNA)

code. Since it has now been demonstrated that the entire PcG complex does not remain

associated at its target genes throught mitosis (Yamamoto et al., 1997; Buchenau et al., 1998;

Dietzel et al., 1999), the semi-conservative nucleosome distribution on DNA after replication

and their persistence on the DNA during mitosis make these nucleosomes good candidates to

carry the epigenetic mark through cell division. The combination of histone marks could

provide, after mitosis, the anchor for specific protein complexes to recapitulate their initial

formation on the target DNA. In this way, several protein domains have been found to be able

to read the histone code and selectively bind specific combination of modifications. The

bromodomain has been the first protein module to be shown to bind acetylated histone tails

(Dhalluin et al., 1999; Winston and Allis, 1999; Owen et al., 2000; Jacobson et al., 2000). It is

found in TAFII250 (Jacobson et al., 2000) as well as in the human ash1 gene (Nakamura et

al., 2000). The chromodomain of HP1 was recently shown to bind the Su(var)3-9 methylated

histone 3 at lysine 9 (Bannister et al., 2001; Lachner et al., 2001). Interestingly, other

chromodomain proteins exist (PC itself has one) that may recognize other methylated residues

although this has not been shown so far.

Figure  2 :  Known
modifications of histone
tails. + suggests that this
modification is involved in
activation of transcription
whereas – suggests that the
modification is involved in
repressing transcription.
(derived from Zhang and
Reinberg, 2001)        
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1.4.2 The marker proteins in the PcG / trxG complexes

A recent study proposed that, in the PcG complex, the maintenance of the repression

and the repression itself are performed by different proteins (Beuchle et al., 2001). Based on

an inducible “knock-out” strategy, the authors reported that the silencing was lost at different

rates depending on which PcG gene was knocked out during development. Furthermore,

when resupplying the protein after several cell divisions, they observed that, in some genes,

the silencing could be restored suggesting that in these cases, the epigenetic mark was still

present on the DNA and could still attract the repressing complex. They concluded that PcG

proteins could mainly be separated in two groups: the repressor (or effector) proteins (PSC-

SU(Z)2, PH), and the marker proteins (PC, PCL, SCM, SCE).  In this model, the repressors

are responsible for the silencing by compacting the chromatin for example, whereas the

markers establish the epigenetic mark on the DNA allowing maintenance of the

transcriptional state through cell division.

Such a model could also be extrapolated to the trxG proteins, and we could imagine that a

subset of proteins in the trxG complex are responsible for marking the CMMs as being active,

whereas others are responsible for activating transcription by having a direct effect on the

transcriptional machinery or by attracting some coactivators.

Consistent with the existence of a histone code, marker proteins in the PcG / trxG may

actually modify histone tails in a very specific manner. The fact that some of these proteins

contain domains involved in histone modifications (like the SET domain in E(z) and ash1)

supports this hypothesis. Furthermore, the idea that a specific epigenetic mark could specify

the activation state of a CMM was first proposed by Cavalli and Paro (1999), who reported

that acetylation of histone H4 is characteristic for active Fab7 CMMs (Cavalli and Paro,

1999). However, it is still not known whether histone H4 acetylation is the cause of the

activation of the CMM or only a consequence of the transcription allowed by the active

CMM.

To summarize, it is one major focus of current studies to find the epigenetic marks defining

the activity of CMMs and it is suspected that these marks may lie in the histone code

(Ringrose and Paro, 2001).

1.5 Cellular memory modules besides homeotic genes?

Immunostainings on polytene chromosomes from salivary glands revealed that PC and

other PcG proteins are localised at about 100 different sites, including homeotic gene

complexes (bithorax, antennapedia...). However, for most of the PC-binding sites, the actual
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target of PC regulation is not known (Zink and Paro, 1989, Paro and Zink, 1993). The same

kind of pattern has also been shown for some trxG proteins like ASH1, TRX or Z, often

colocalising with the PcG proteins (Rastelli et al., 1993; Chinwalla et al., 1995; Tripoulas et

al., 1996). Other studies showed that mutations in some PcG genes interfere with regulation

of some segmentation genes although for most of them it was not clear whether the effect is

direct or indirect (McKeon et al., 1994). However, interestingly, en itself is directly controlled

by PcG and trxG proteins in embryos (Moazed and O'Farrell, 1992; Breen et al., 1995) and

imaginal discs (Randsholt et al., 2000; Americo et al., 2002), opening the possibility that the

maintenance of expression of this selector gene is supported by cellular memory processes. It

suggests that besides homeotic genes, an important number of genes involved in determining

cell identity and in patterning imaginal disc could be controlled by PcG and trxG proteins

during development and could show cellular memory processes.

1.6 The determination and transdetermination of imaginal disc cells

1.6.1 The development of imaginal discs

As the identity of each parasegment along the A-P axis is being defined by the

combination of homeotic genes in the embryo, in the mean time small clusters of 10-40 cells

deriving from these parasegments are set aside which will give rise to the imaginal disc

anlagen. These imaginal discs are found in larvae and are the undifferentiated precursors of

the adult appendages. Later, during the pupal stages, each imaginal disc undergoes

metamorphosis to form one of the specific adult appendages (Fig. 3).

Figure 3: The imaginal
discs in the drosophila
larvae and the adult
structures they give rise
to. (After Fristrom et al.,
1969).
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These cells do not participate in larval life, but instead divide during the larval instars to form

large epithelial sacs, each containing tens of thousands of cells. Therefore, imaginal disc cells

acquire a disc-specific (such as leg, wing, or eye) determined state during embryogenesis and

heritably maintain that determined state as they proliferate throughout larval life.

Furthermore, proliferating cells must decide between alternative fates during the growth of

the appendage anlage. In the wing and leg discs, an early arising cell lineage restriction

subdivides the discs into anterior (A) and posterior (P) compartments. The A-P restriction is

present at the earlier stages of leg and wing development resulting from the inheritance of

selector gene expression, like en, from the embryo.

In the wing disc, a second lineage restriction appears during the middle stages of disc growth

subdividing the disc into dorsal and ventral compartments. The borders of these

compartments form distinct signaling centers which organise the patterning and the growth of

the developing disc. The understanding of the morphogenesis of Drosophila appendages is

important for the understanding of vertebrate limb development since it follows similar

processes.

The PcG and trxG genes are required for the proper development of these imaginal discs.

Mutations in some PcG genes can lead to several kind of transformations such as antenna to

mesothoracic leg and mesothoracic leg to prothoracic leg, that mimic the effect of gain of

function homeotic gene mutation (Lewis, 1978;  Struhl, 1981). Likewise, loss of trxG gene

function causes loss or reduction of homeotic gene expression and induces transformations

mimicking loss of homeotic gene function, such as haltere to wing (Ingham, 1985; Adamson

and Shearn, 1996; Brizuela and Kennison, 1997).

Furthermore, experiments have shown that the imaginal disc cells are able to maintain their

determination for many rounds of division. When specific fragments of imaginal discs are

isolated and transplanted into a larval host, they will continue to develop according to their

prospective fate, and produce specific adult structures (Hadorn, 1963). Thus imaginal disc

cells maintain their determined state through larval life.

1.6.2 In vivo culture of imaginal disc fragments

To more rigorously test the ability of imaginal disc cells to maintain their determined

states, Ernst Hadorn’s group developed, in the 1960’s, an in vivo culture system for imaginal

discs. When imaginal discs or disc fragments are transplanted into adult female abdomens, the

hormonal conditions are such that the disc cells will still proliferate but do not differentiate.
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The state of determination of the implant can be tested afterwards by reisolating the disc

fragment and transplanting it into a larval host to allow differentiation. Studies of imaginal

disc fragments that are given extra time to grow in culture demonstrate that they do, for most

of the part, maintain their determined states.

It was initially observed that transplanted fragments of imaginal discs could either duplicate

the patterns of the fate map already present in the fragment, or regenerate patterns of the map

missing in the fragment (Schubiger, 1971). Regeneration of imaginal disc tissue has been

observed in other insects (Gehring and Nöthiger, 1973), revealing that this pattern regulation

response is not unique to Drosophila.

Only cells at the cut edges of imaginal disc fragments appear to participate in pattern

regulation. Typically, cells of the cut edges of a cultured disc fragment form a blastema in that

they divide more frequently than other cells of the fragment and can give rise to structures

that differ from their normal fate (Abbott et al., 1981; Kiehle and Schubiger, 1985). Even

after extensive growth in culture, imaginal disc fragments can still maintain their disc-specific

determined states (Hadorn, 1966). These observations provide strong evidence that disc-

specific determined state are propagated over hundreds of cell divisions and are thus cell

heritable.

1.6.3 Imaginal disc transdetermination

1.6.3.1 The discovery of imaginal disc transdetermination

Unexpected discoveries were made in Hadorn’s laboratory when Schläpfer (1963)

observed, in rare cases, wing tissue derived from eye-antennal disc fragments and when

Hadorn (1963) observed that genital disc fragments could give rise to leg and antennal tissue.

These observations were the first evidence that the disc-specific determined states of imaginal

cells could be altered after they are established. The process by which imaginal disc cell

determination switches to that of another disc type is called transdetermination (Hadorn,

1965).

Further studies of cultured imaginal disc fragments revealed that all of the imaginal discs can

transdetermine, but transdetermination events do not occur randomly: each disc

transdetermines in a particular, reproducible direction and with a particular probability. For

example, leg disc cells are able to transdetermine to wing, whereas wing disc cells rarely

transdetermine to leg (Schubiger, 1968) (Fig. 4).
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Transdetermination is often considered to be a rare event that occurs only after many extra

cell divisions. However, specific regions within discs have been identified as particularly

susceptible to fragmentation-induced transdetermination, and cuts through such regions,

which have been termed “weak points” (Hadorn, 1978), can induce transdetermination at high

frequency. Thus, leg disc fragments with cuts through this proximal-dorsal region can

transdetermine after only a few extra cell divisions in culture (Schubiger, 1971). Moreover,

Gehring showed that transdetermination is a polyclonal event, arguing against somatic

mutations causing the switch (Gehring, 1967).

Taken together, these observations suggest that cells in specific regions of a disc tend to give

rise, under certain conditions, to particular cell types of another disc. This localized

directionality may provide insight into how transdetermination occurs, and thus, may help

understanding mechanisms of disc cell determination.

1.6.3.2 Inducing transdetermination in situ

Interestingly, many transdeterminations resemble mutant phenotypes of homeotic

genes. By misexpressing the homeotic gene Antennapedia (Antp) in the eye-antennal disc of

third instar larvae, Schneuwly et al. (1987) induced antenna-to-leg transdetermination,

without wounding, fragmentation or transplantation. The effect of Antp is typically restricted

to particular appendages, and a leg appeared only in the antenna at the same weak point

identified in the fragmentation/regeneration experiment.

However, the homeotic genes are not the only genes that control appendage identity in

Drosophila. Therefore, ectopic expression of eyeless, normally restricted to the eye imaginal

disc, induces eye structures in some specific regions of the wings, halteres, legs and antennae

Figure 4: Sequence of
transdetermination
events and effect of
homeotic mutations and
ectopic gene expression
on Drosophila imaginal
discs (from Wei et al.
2000).
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(Halder et al., 1995). Likewise, ectopic expression of vestigial (vg), normally restricted to

wing and haltere discs, induces wing structures in some regions of the eye, head, antennae,

leg and gennitalia (Kim et al., 1996). These results suggest that Vg regulates the expression or

activity of genes that are critical for the determination of dorsal appendage (wing or haltere)

identity. In the same way, Distal-less (Dll) was shown to promote ventral appendage (leg,

antenna) identity when expressed in eyes or wings (Gorfinkiel et al., 1997).

These results demonstrate that the proper expression of homeotic genes and other regulatory

factors is crucial for the determination of imaginal disc identity and therefore must be tightly

controlled all along development. Understanding how the expression of these genes is

established and maintained in the appropriate imaginal disc cells is central to understand disc

determination. We can expect these genes to be misexpressed in the fragmentation-induced

transdetermination experiment.

1.6.3.3 The disc fragmentation experiment induces transdetermination by creating new

combinations of cell signaling molecules.

In 1998, Maves and Schubiger showed that transdetermination may be the

consequence of cell signaling molecules interacting out of their proper context. They

produced ectopic clones of cells expressing wingless (wg) in leg imaginal disc and observed

that a leg-to-wing transdetermination event could occur in the same region previously

described as being a weak point for transdetermination (dorsal leg disc cells). They further

demonstrated that this change of cell identity is due to the fact that the induction of wg clones

in, or close, to the dorsal leg region, expressing decapentaplegic (dpp), establishes a new

combination of cell signaling molecules. Forcing this new interaction in dorsal leg disc may

mimick the situation occurring in ventral wing disc cells and promote the expression of the

wing hinge marker: vestigial.

Therefore, an interaction between Wg and Dpp signaling may also initiate transdetermination

in fragmented leg discs. Leg disc fragments that have the ability to transdetermine are those

with cuts through dorsal as well as through ventral leg disc cells (Schubiger, 1971). During

wound healing in culture, the fragmented disc cut edges heal together, thereby effectively

juxtaposing wg-expressing (ventral) leg cells with dpp-expressing (dorsal) leg cells.

Intercellular signaling interactions can thus explain how the expression of nuclear regulatory

factors that play critical roles in the specification of segmental identity and imaginal disc cell

fate, such as Vg, could become activated following a wounding event.
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In some cases, sublines of transdetermined cells could be established and maintained in

culture indicating that once these cells have transdetermined and changed their identity, upon

the action of new combinations of cell signaling molecules, they could stably maintain their

new cell identity through hundreds of rounds of cell divisions, even when cell signaling

molecules have disappeared (Gehring, 1967). These cells are thus able to maintain their new

gene expression program in a clonally inheritable manner.

In recent years, substantial progress has been made in the understanding of how the

switch from a determined identity to a new one is established in the leg discs. However, very

little is know about how the new gene expression program is then maintained through cell

divisions.

1.6.3.4 Vertebrate parallels to imaginal disc transdetermination

Transdetermination-like events have been observed in vertebrates. One example is the

ability of retinoids to induce homeotic transformations of regenerating amphibian tails to

hindlimbs (Mohanty-Hejmadi et al., 1992). In such experiments, tadpole tails are amputated,

and then the tadpoles are bathed in a solution containing retinoids. The tail-to-hindlimb

transformation that is induce by this procedure resembles imaginal disc transdetermination in

many ways: it occurs in already determined tail cells; it is dependant on tail regeneration

(Maden and Corcoran, 1996), it is induced by signaling molecules (retinoids), and it is likely

mediated by changes in Hox gene expression. Retinoic acid treatment can also induce

homeotic transformations, accompanied by changes in Hox gene expression, along the A-P

embryonic body axis in mice (Kessel and Gruss, 1991; Marshall et al., 1992). Other studies

suggest that homeotic transformations induced by retinoic acid signaling may be mediated by

interactions with signaling pathways (such as TGF-ß/Dpp) that are used in imaginal disc

transdetermination.

In humans, metaplasias represent another parallel to imaginal disc transdetermination.

Metaplasias are transformations in tissue type that occur postnatally and are often precursors

to cancer. These metaplasias are changes in the determined states of epithelial states. They

usually occur in response to damage and subsequent regeneration. Metaplasias are throught to

be polyclonal and a way for local stem or progenitor cells to adapt to a changed environment

by producing cells appropriate for the new conditions. The transformations are directional and

Kauffman (1993) has argued that the directions of human metaplasias, like imaginal disc

transdetermination, represent “neighbouring” developmental programs. These analogies
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predict that the directions of metaplasias are controlled by nuclear regulatory factor switches

such as those used in imaginal disc transdetermination.

In a courageous comparison, Wei et al. (2000) tried to find similarities between stem cell

plasticity in mammals and transdetermination in Drosophila. They suggest that observations

like neural stem cell and muscle stem cell reconstitution of the hematopoietic system

represent stem cell fate changes equivalent to transdetermination events. They postulated that

transdetermination in Drosophila may serve as a paradigm for the better understanding of

mammalian stem cell biology.

1.7 Aim of the thesis

PcG and trxG proteins are able to maintain the established transcriptional state of

homeotic genes during the whole of development through their binding to Cellular Memory

Modules (CMMs). Polytene chromosome immunostainings reveal that PC could regulate the

expression of about 100 different genes, the identity of most of them being unknown. This

suggests that PcG/trxG genes potentially control the expression of all these genes during

development allowing the maintenance of their initial transcriptional state until adult stages.

Therefore it is possible to imagine that genes responsible for the determination of imaginal

disc identity may be controlled by such CMMs.

In transdetermination events, as a consequence of the appearance of new combinations of

signaling molecules in the disc, new gene expression programs are established in the

transdetermined cells and maintained through cell divisions.

In this thesis, I ask the question whether transdetermination results in the switching of the

CMMs of developmental genes to a new state of activation. This switching would establish a

new gene expression program in the cells, which would, by this way, be inherited through

mitosis in order to maintain the new transdetermined identity.

To answer this question, in the first part, I will demonstrate that the function of CMMs

during development is not restricted to the control of homeotic gene expression. It may

instead be a much more widely spread mecanism.

Furthermore, I will prove that the state of activation of CMMs can be switched to a new one

in embryonic as well as larval stages.

The next part will investigate the role of PcG and trxG members in the determination

and transdetermination of imaginal discs. It will be shown that the establishment of

transdetermination events is influenced by some PcG members.
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Furthermore, it will be suggested that PcG as well as trxG proteins may be needed for the

inheritance of the new transdetermined identity through their interplay at CMMs.

 This study may help in understanding how gene expression patterns are established

and maintained, or possibly switched, from embryogenesis to adulthood.
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A Cellular Memory Module conveys epigenetic inheritance of

hedgehog expression during Drosophila wing imaginal disc

development.
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2.1.1 Introduction

Although several PREs regulating developmentally important genes have been

identified (en, ph, as well as from the bithorax and Antennapedia complexes) (Zink et al.,

1991; Simon et al., 1993; Fauvarque et al., 1995; Brown et al., 1998) and many more

candidates exist, only a few PREs from the bithorax complex have been tested and

characterized as CMMs (Cavalli and Paro, 1998; Rank et al., 2002). It is not known whether

the concept of epigenetic maintenance of gene expression states is restricted to genes involved

in long term decisions, such as the homeotic genes (i.e. to restrict embryonic patterns) or may

be a more general phenomenon used at different times of development. Segmentation genes

are used to pattern the body at various stages during development and their expression pattern

may be modulated with time. Therefore, they constitute interesting targets to investigate the

potential role of CMMs in controlling their expression. Importantly, the knowledge of how

selector genes and segmentation genes are transcriptionally regulated is of fundamental

importance to understand how stem cells established at later stages of development can

maintain their identity throughout cell divisions.

The product of one of these segmentation genes, hedgehog (hh), known to act as a

morphogen (Heemskerk and DiNardo, 1994), is essential for many crucial developmental

pathways involved in the regulation of growth and patterning in both invertebrate and

vertebrate species. In humans, mis-activation of the hh pathways leads to congenital diseases

(for example prosencephaly) (Villavicencio et al., 2000), and is associated with many kind of

tumors and cancers such as basal cell carcinomas and primitive neuroectodermal tumors

(Toftgard, 2000; Taipale and Beachy, 2001). In Drosophila, one of its roles is to pattern leg

and wing imaginal discs through the activation of decapentaplegic and wingless expression

(Basler and Struhl, 1994). In these discs, hh is initially activated in the posterior (P)

compartment by Engrailed (En) (Tabata et al., 1992; Zecca et al., 1995) which plays the key

role in specifying the posterior identity (Kornberg et al., 1985; Simmonds et al., 1995). In late

third instar wing discs, Hh induces expression of en in the anterior compartment in a thin

stripe along the antero-posterior (A-P) boundary (Blair, 1992; Strigini and Cohen, 1997).

Several mechanisms seem to prevent hh and en expression from spreading into the anterior

(A) compartment. For example, Polyhomeotic (PH) probably directly or indirectly maintains

the repression of hh in the anterior cells abutting the A-P boundary (Maschat et al., 1998),

whereas Groucho represses both hh and en in anterior cells (de Celis and Ruiz-Gomez, 1995;

Apidianakis et al., 2001).
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How cells building compartments can maintain their determined identity until the

completion of development is still unclear. The trxG and PcG proteins are known to control

en expression (Busturia and Morata, 1988; Moazed and O'Farrell, 1992; Breen et al., 1995;

Brizuela and Kennison, 1997; Strutt and Paro, 1997; Maschat et al., 1998). Previous studies

found indications that hh expression itself might also be regulated by the trxG and PcG

proteins (Felsenfeld and Kennison, 1995; Randsholt et al., 2000). In this first part of the

thesis, I present evidence that hh expression is indeed directly controlled by the action of trxG

and PcG proteins. I demonstrate that a 3,4 kb fragment situated upstream of the h h

transcription start site exhibits CMM activity and I show that during larval stages, hh

expression can be activated by En in wing imaginal disc, and inherited through mitosis to

daughter cells, even after En has ceased to act. The maintenance of hh expression is not due to

any kind of positive feedback loop but is dependent on the trxG and PcG proteins. It can be

concluded that, during development, hh transcription is controlled by a CMM. In this respect,

CMM switching may be a mechanism widely used at any time during development to

maintain transcriptional states of genes with diverse functions. Moreover, I could show that

the state of histone-acetylation at CMMs do not play a crucial role in inducing CMM

switching.
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2..1.2 Results

2.1.2.1 hedgehog transcription is directly controlled by  PcG and trxG proteins

The immunoprecipitation technique using cross-linked chromatin (XChIP) allows the

mapping of in vivo DNA target sites of chromatin proteins (Strutt and Paro, 1999). Since one

Polycomb (PC, a member of the PcG) binding site on polytene chromosomes coincides with

the cytological position of hh at 94E, this method was used to ask whether there are PC and

GAGA factor (GAF/Trl; a member of the trxG) binding sites in the hh genomic region. These

two factors had previously been found to be hallmarks of CMMs (Strutt et al., 1997; Tillib et

al., 1999) and the GAF has been shown to be associated with some PcG complexes and

necessary for the silencing function of PREs (Horard et al., 2000; Busturia et al., 2001).

Initially, the immunoprecipitated material was hybridised to a genomic stretch of 45 kbp,

deriving from a BAC (BACR03N12; Genbank: AC008365) containing an insert with the hh

gene region (Fig. 5). This led to the identification of PC/GAF binding sites in regions close

and into the transcription unit.

To further fine-map the location of the PC/GAF binding sites, the region around the hh

gene was subdivided into 1 kb sized PCR fragments (from 4 kb upstream of the h h

transcription start site according to the transcript CG4637  from Flybase, to 13.4 kb

Figure 5: Identification of Pc-
binding sites in the hh gene
region. The immunoprecipitated
material was hybridised to a
genomic stretch of 45 kbp
encompassing the hh gene. The
hybridisation reveals two new
bands in the immunoprecipitated
material that correspond to the
promoter region (arrowhead at
1200) and a region located
between 7 to 11 kb after the
transcription start site (arrowhead
at 3500 ). The stars depict a DNA
region located more than 20 kb
upstream of the hh  gene in the
region of another gene.



                                                                                                                                                                 II. Results. Part 1

28

downstream to the end of the gene (Fig. 6). Slot-blot hybridizations of immunoprecipitated

material (Fig. 6A) revealed two main sites where PC and GAF are strongly enriched (Fig.

6B). The first site (A) is located in a region between 0,07 to 1,06 kb upstream of the

transcription start site, whereas the second binding site (B) is found in a region spanning the

second exon of the hh gene and spreading about 0,4 kb on both sides of the exon. At both

peaks, PC and GAF binding sites substantially overlap. The presence of this particular

arrangement of PC and GAF binding sites in the hh genomic region suggests that these PcG

and trxG proteins directly control hh expression.

Figure 6: Binding of PC and
GAF factor to the h h
genomic region in embryos.
A) Slot blot hybridization;
chromatin from Drosophila
wild-type embryos was either
mock immunoprecipitated or
immunoprecipitated with anti-
PC or anti-GAGA antibodies.
1kb PCR-fragments from the
h h  genomic region were
blotted on a nylon membrane
and the immunopurified DNA
was radiolabelled and used as
a probe for hybridization
(arrows A and B show the
signals corresponding to the
s t r o n g e s t  e n r i c h m e n t
compared to mock). B) The
graph depicts the relative
e n r i c h m e n t s  o f
i m m u n o p u r i f i e d  D N A
compared to mock (PC
enrichment is shown in black,
GAF enrichment in gray). The
protein distribution shows two
main peaks of PC and GAF
binding sites. One peak is
situated upstream of the
transcription start site (peak
A) whereas the second one
spans the second exon and
spreads in the neighboring
introns (peak B). The
transposon EP-hh is inserted
364 bp upstream of the h h
transcription start site.
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To investigate this at the functional level, the accessibility of the hh promoter region to a

trans-activating factor was assessed. It is known that a PRE placed in the vicinity of an

Upstream Activating Sequence (UAS) is able to counteract GAL4 binding preventing

expression of the reporter gene (Zink and Paro, 1995; Fitzgerald and Bender, 2001). I took

advantage of the availability of an EP line possessing a UAS site close to the endogenous hh

transcription start site (Rørth et al., 1998) to test whether the hh-PREs could inhibit the

activation of transcription induced by GAL4. The EP3521 line (termed here EP-hh) possesses

an EP transposon containing several UAS sites, and is inserted in the hh promoter region (-

0,36 kb, see Fig. 6B). The endogenous hh gene is not transcribed in salivary glands. By using

a hs-GAL4 line, which is known to be leaky at 25°C, weak expression of GAL4 in larval

salivary glands is observed. When hs-GAL4 is crossed to a line containing UAS-hh integrated

randomly in the genome, in situ stainings reveal that at 25°C, by the action of GAL4, the hh

mRNA is present in high amount in all the salivary gland cells (Fig. 7A). However, when hs-

GAL4 is crossed to the EP-hh line, in which the UAS sites are juxtaposed to the presumptive

PRE, hh transcription was observed in only a very few cells situated mainly at the base of the

glands (Fig. 7B). Since in most cells transcription is inhibited, it was reasonable to think that

the PcG proteins binding the PREs in the vicinity of the hh promoter blocks the accessibility

of GAL4 to the UAS sites. Accordingly, reducing the amount of some of the PcG proteins in

the cells by repeating the experiment with flies heterozygote for the Pc3 allele (Fig. 7C) or

with males hemizygote for the ph409 alleles (Fig. 7D), induces partial derepression of

transcription of the endogenous hh gene in a substantial number of gland cells. These results

indicate that the repression observed in most of the salivary gland cells in the EP line is due to

the action of the PcG proteins through the binding to the identified PREs. These experiments

together demonstrate that PcG proteins directly repress the transcription of hh.
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2.1.2.2 A fragment of the upstream regulatory region of hedgehog exhibits a CMM activity.

Having shown that the hh gene is controlled by the PcG proteins, I was interested to

see whether the mapped PC/GAF binding sites could function as PREs and CMMs in vivo.

Transgenic flies were produced using the vector that allows to test for the maintenance of the

reporter gene expression through cell divisions (Cavalli and Paro, 1998). A 3,4 kb fragment,

starting from position -3760 to -402 bp upstream of the hh transcription start site (according

to transcript CG4637 from Flybase), and containing the PRE identified in the hh promoter

region by chromatin immunoprecipitation  (peak A, Fig. 6), was linked to a GAL4 / UAS-

inducible lacZ gene (UAS-lacZ) and mini-white as a reporter and transformation marker (Fig.

8A). Another construct was made containing a 3,6 kb fragment starting from position -3760

to -248 bp upstream of the hh transcription start site (according to transcript CG4637 from

Flybase).

a. Characterisation of the PRE-like activity

Most of the lines obtained with the 3,4 kb fragment (15/22) exhibit pairing-sensitive

silencing when homozygous for the construct, indicated by the variegated expression of mini-

white in the eyes , a phenomenon often associated with PREs (Fig. 8D) (Fauvarque and Dura,

Figure 7: The PcG proteins
repress transcription of the hh
gene in salivary glands. At
25°C, the hs-GAL4 driver is leaky
in salivary glands. It can activate
transcription of a UAS-h h
reporter construct (A). However,
when using the EP-hh  line (in
which an EP element is inserted
near the endogenous hh
promoter) in the same conditions,
hh transcription is observed in a
very few cells only (B).
Repeating the same experiment in
flies heterozygous mutant for Pc3

(C) or ph409 (D) shows that hh
t r a n s c r i p t i o n  b e c o m e s
derepressed in more cells in the
salivary glands.
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1993; Kassis, 1994; Zink and Paro, 1995). Similar results have been obtained with transgenics

containing the 3,6 kb fragment (10/15).

In order to characterise more precisely the action of the 3.4 or 3.6kb fragment on the

expression of the reporter genes, lacZ expression was assessed in embryos and imaginal discs

of the transgenics. Some posterior cells of each parasegment seem to express lacZ (Fig. 8B).

This reflects that the hh DNA fragment cloned in front of the reporter genes contains some

regulatory elements able to drive lacZ in some of the posterior cells but is not sufficient to

drive the correct expression pattern of the endogenous hh gene. In imaginal discs, lacZ is

expressed in ectopic patches, more frequently in the posterior compartment (Fig. 8C).

Interestingly the expression pattern of lacZ in imaginal discs is not reproducible and different

for each disc. LacZ expression can be activated at any time of development since clones are of

different sizes and activation seems to be maintained through cell divisions. This suggests an

epigenetic kind of regulation of lacZ expression

In addition, the silencing of the mini-white reporter gene was tested in different mutant

backgrounds. For the 5 tested lines (Table 3), derepression of mini-white was observed in

flies heterozygous for the transgenic construct and for a ph401 hypomorph mutation, showing a

ph-dependent repression of the reporter gene (Fig. 8E). Surprisingly, for the 4 lines, mini-

white was more strongly repressed in flies heterozygous for the transgene and for a Pc3 or

PcXT109 mutations (respectively strong antimorph and null allele). Mini-white expression was

slightly repressed when flies were crossed in a double heterozygous mutant for the trx-G

genes trx and brm (trxE2/brm2), consistently with a trx-dependent activation of the transgene

(Fig. 8E).

Moreover, these lines exhibit a temperature-dependent silencing with lines grown at 25°C

being more strongly repressed than lines grown at 18°C for several generations (Fig. 8F). This

is consistent with the observed fact that Pc-mediated silencing is more efficient at higher

temperature (Fauvarque and Dura, 1993; Cavalli and Paro, 1998).
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Figure 8: Transgenic study of
the influence of a 3.4 kb
element of the hh promoter
region on reporter gene
expression. A 3.4 kb fragment,
termed hhCMM, containing the
PRE identified in the h h
promoter region was cloned
into the pUZ transformation
vector (A) and transgenic flies
were generated. All pictures are
taken from the line 7.2s. The 5
other transgenic lines tested
show similar results. The 3.4kb
DNA fragment contains
regulatory regions which are
able to drive lacZ expression in
a pattern ressembling the
endogenous hh pattern (B).
However, in imaginal discs (C),
ectopic randomly distributed
patches of lacZ expression are
seen. Flies heterozygous for the
transgene show reduced mini-
white expression (D). This is
even more pronounced in flies
homozygous for the transgene
depicting pairing-dependent
silencing of mini-white (E).
Mini-white expression is
derepressed in ph heterozygous
mutants,  whereas i t  is
unexpectedly super-repressed in
P c  heterozygous mutants.
Consistently with the PRE-like
activity of the 3.4 kb fragment,
mini-white is more strongly
r e p r e s s e d  i n  d o u b l y
heterozygous mutants for some
trxG genes, trx and brm. One
week old flies raised for several
generations at 18°C show a
partial derepression of mini-
white in the eyes compared to
flies continuously raised at
25°C.
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The insertion site of 3 of the collected lines, 7.2s, 11.6s, 8,1b, (Table 3) showing a strong

pairing-dependent silencing was determined by in situ hybridisation on polytene

chromosomes. Since they were not inserted into any known Pc-binding site, I tried to check

whether they would create some new PC-binding site. Immunostainings of polytene

chromosomes against PC and PH were performed, but no additional binding site could be

detected at the position of insertion of the transgenes (Fig.9).

Despite the absence of additional PC-binding sites on chromosomes, the 3,4 and 3,6 kb DNA

fragment from the hh upstream regulatory region show some characteristics of known PREs,

like pairing dependant silencing of the reporter genes, and silencing dependant on some trxG

and PcG genes. Therefore, it is reasonable to define this region as a PRE-like element.

b. Characterisation of the CMM activity

A hs-GAL4 driver was crossed into the lines containing the transgenes. This enables the

transient production of GAL4 protein upon heat shocks, resulting in lacZ expression through

the binding of GAL4 to the UAS elements in the construct. By this way, it is possible to test

whether the hh PRE identified can function as a CMM and convey inheritance of the reporter

gene expression throughout development.

A short GAL4 pulse produced in these flies, during embryogenesis, by activation of the hs-

GAL4 driver, leads to a homogeneous expression of the lacZ gene in the entire embryo (Fig.

10B). When these embryos are transferred back to 21°C and are allowed to develop to

adulthood, more than 90% of the offspring of the two lines tested displayed partial or

homogeneous mini-white derepression in the eyes (Fig. 10A,B). These results show that the

Figure 9: No additional PC-binding site is detected at the insertion site of the transgene on polytene
chromosomes. In A is depicted the insertion site of the transgene in the line 7,2s at position 3C, close to the
white gene (3B6-C1). Immunostainings with α-PC (B) or α-PH antibodies do not reveal additional binding sites
for these two proteins. The DNA has been stained with DAPI (blue), in red are shown the PC-binding sites.
Similar results have been observed for lines 11.6s and 8,1b.

3C
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upstream 3,4 kb fragment, as well as the 3,6 kb fragment, are able to maintain the initial state

of transcription of the reporter gene through the development and therefore exhibits CMM

properties. In the same way as it was reported for the Fab7 CMM (Cavalli and Paro, 1998),

the hh CMM can not be switched to an activated state when the GAL4 pulse is produced

during larval stages (Fig. 10C)

line Insertion site Pairing-dependent
silencing

Epigenetic inheritance

7,2s 3C (on X) ++++ Yes (can only be followed in
females)

11,6s 2A (on X) +++ Yes (can only be followed in
females)

8,1b 88E (on 3rd) ++ yes
6,2b on 3rd chromosome ++ yes
10s on 3rd chromosome ++++ yes

Table 3: Transgenic lines containing either the 3,4 kb fragment (s) or the 3,6 kb fragment (b), and showing
pairing-dependent silencing exhibit epigenetic inheritance of the transcriptional state.

Figure 10: A fragment of the upstream regulatory region of hedgehog exhibits a
CMM activity. A 3.4 kb fragment, termed hh CMM, containing the PRE identified in
the hh promoter region was cloned into the pUZ transformation vector and transgenic
flies were generated. Transgenic flies, homozygous for the hh CMM construct and
containing the hs-GAL4 driver raised at 21°C have repressed mini-white expression (A).
When submitted to an embryonic GAL4 pulse. LacZ is homogeneously expressed in the
embryo (B). When raised afterwards at 21°C until adulthood, the activation of the
reporter  genes is maintained from embryonic to adult stages and flies exhibit red eye
color (B). When a GAL4 pulse is given during larval stages, the activation of the
reporter genes is not maintained through the development and mini-white stays
repressed in the eyes (C). Pictures are here taken from line 7,2s.
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2.1.2.3 During imaginal disc development, hedgehog expression can be inherited through cell
divisions independently of the initial trans-activator

Having shown that the hh gene is controlled by PcG proteins and that a DNA-

fragment upstream of the hh transcription start site can function as a CMM in a transgenic

assay, I wanted to test whether the hh gene itself, in its original chromatin environment, is

regulated by a CMM activity during imaginal disc development when cells undergo a high

number of divisions. It is known that all wing pouch cells are progenies of the cells

determined at the dorso-ventral (D-V) boundary at early larval stages (Klein, 2001). I

hypothesized that if the transcription of a gene possessing a CMM is activated in cells during

early larval development at the D-V boundary, then transcription should be inherited to

daughter cells after mitosis, resulting in expression of the gene in all wing pouch cells.

During embryonic and larval development, En induces transcription of hh in the

posterior compartment of leg and wing imaginal discs where the two factors substantially

colocalize (Fig. 11A, B, C) (Tabata et al., 1992; Zecca et al., 1995; Guillen et al., 1995). Even

though it is not presently clear whether En directly activates hh expression, this regulatory

feature gives us a tool to test for CMM activity at the hh gene during imaginal disc

development. UAS-en was overexpressed, at the D-V boundary using a vestigial-GAL4 driver

(vg-GAL4) (Simmonds at al., 1995). This transgene combination allows expression of GAL4

in a thin stripe (1 or 2 cells thick) along the D-V boundary during wing disc development

(Fig. 11D). Double stainings of such late third instar wing discs reveal that surprisingly En

does not only induce a thin stripe of hh-lacZ expression (reflecting the hh expression pattern

in the P30 enhancer trap line) in cells along the D-V boundary as expected, but also in all the

posterior and anterior wing pouch cells (except in a stripe along the A-P boundary (Fig. 11F).

Strong UAS-en expression is detected in cells at the D-V boundary and lower levels of En in

some regions of the anterior wing pouch (Fig. 11G). The repression of the endogenous en

observed in some parts of the posterior compartment is explained by the fact that high levels

of En could cause repression of the endogenous en in the P compartment (Guillen et al.,

1995). Strikingly, the overlay of hh-LacZ and En stainings clearly reveals large domains, in

both anterior and posterior wing pouch, with strong hh expression in the absence of En,

suggesting that the transcription of hh in these cells becomes independent of En (Fig. 11H).

Furthermore, it is known that En represses cubitus interruptus (ci) expression (Eaton

and Kornberg, 1990; Schwartz et al., 1995) and it has been shown that clones of A cells

lacking Ci express low levels of Hh protein (Methot and Basler, 1999). In order to check

whether the activation of hh in the wing pouch cells is not due to the repression of ci
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expression by En, ci expression was examined in vg-GAL4; UAS-en wing imaginal disc. The

stainings revealed that ci repression by En is restricted to the cells at the D-V boundary only

(Fig. 11E), indicating that hh expression in the wing pouch cells of the A compartment is not

due to a downregulation of ci. These observations suggest that hh expression is activated by

En at the D-V boundary in early larval development, and is inherited, even in the absence of

the initial trans-activator (En), through mitosis in the cells forming, in later stages, the wing

pouch.

Figure 11: UAS-en expressed at the D-V boundary induces expression of hh in most of the wing pouch cells.
All discs are shown dorsal side up, and anterior to the left. In wild type third instar wing imaginal disc, hh-lacZ (A)
and en (B) are expressed in the posterior compartment. However in late discs, Hh induces an extension of en
expression into the anterior compartment (C; arrowhead). The vg-GAL4 driver induces expression of the UAS-lacZ
reporter gene at the D-V boundary in wing imaginal discs (D). When UAS-en is misexpressed in a stripe along the
D-V boundary using the vg-GAL4 driver, ci is only repressed at the D-V boundary by En (E). However, En is able
to activate hh-lacZ expression in most of the wing pouch cells (anterior and posterior) at a constant high level (F),
whereas strong UAS-en expression is detected at the D-V boundary and lower levels of EN in some regions of the
wing pouch (G). The overlay (H) of hh-lacZ and en expression domains shows large regions in the wing pouch
where hh-lacZ is expressed in the complete absence of En (arrows), indicating that at this stage hh expression is
maintained independently of En.
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2.1.2.4 hedgehog inheritance of expression in the wing imaginal disc is not due to a positive

feedback loop

hh inheritance of transcription to daughter cells could be explained alternatively by the

existence of a positive feedback loop allowing continuous maintenance of hh expression. This

positive feedback loop would be activated once hh is expressed, either by auto-activation or

cross-activation with another factor, like En, for instance. To investigate this possibility, hh

was misexpressed along the D-V boundary, using the vg-GAL4 driver and a UAS-hh

transgene. Although UAS-hh is continuously strongly expressed at the D-V boundary from

the second instar larval stage, in situ stainings do not reveal any inheritance of hh

transcription to daughter cells, since the presence of hh mRNA is always restricted to a thin

row of cells at the D-V boundary, even in late third instar wing discs (Fig. 12A). This result

demonstrates that the previously observed inheritance of hh expression in wing pouch cells of

vg-GAL4; UAS-en flies is not due to auto-activation by Hh itself nor to any positive feedback

loop.

Furthermore, antibody stainings in such discs displays a progressive activation of en

expression along the D-V boundary during development. In late third instar larvae, a strong

En signal is observed, testifying the functional activity of the protein produced by UAS-hh.

Higher magnification shows that in these discs, Hh is able to induce non cell-autonomously

en expression in a stripe of about 7 rows of cells (Fig. 12B). However, the fact that at this

stage, hh expression is only limited to a stripe of 2 rows of cells indicates that En is not able

anymore to induce transcription of the endogenous hh gene, in contrast with early larval

stages. It implies that the low levels of En protein observed in some of the anterior wing

pouch cells of vg-GAL4; UAS-en third instar larvae (Fig. 11G), is most probably due to a late

activation of en transcription by Hh. In addition, hh expression in these cells cannot be due to

activation by low or undetectable levels of En protein, since we have now shown that even

strong doses of En do not activate hh transcription in this region at this stage of development.
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2.1.2.5 The maintenance of the transcriptional state of hedgehog through cell division
depends on PcG and trxG proteins

When UAS-en is misexpressed at the D-V boundary in a wild type genetic background

using vg-GAL4 (Fig. 13A), it induces hh expression in most of the cells of the wing pouch

except in a stripe along the A-P boundary where hh seems to be repressed. While UAS-en is

strongly misexpressed at the D-V boundary, the endogenous en gene is weakly misactivated

in some cells of the anterior wing pouch (Fig. 13B).

Repeating the same experiment in a genetic background hemizygous mutant for an

hypomorphic allele of polyhomeotic (ph409) leads to a broader domain of expression of hh

(Fig. 13C). Remarkably, the region along the A-P boundary seems to be less refractory to

activation of hh transcription since the territory of the repressed domain is reduced.

Endogenous en is itself overexpressed in the anterior compartment (Fig. 13D). This is

consistent with the previous findings demonstrating that its expression can be derepressed in

PcG gene mutant background (Busturia and Morata, 1988; Moazed and O'Farrell, 1992;

Randsholt et al., 2000). In this case in the anterior wing pouch cells, the activation of en

transcription by Hh is probably more efficient than in a wild type background since en can not

be correctly silenced by PH.

The same experiment repeated in a genetic background now doubly heterozygote for

the trxG genes trithorax (trxE2) and brahma (brm2) consistently shows that hh expression is

Figure 12: Misexpression of UAS-hh at
the D-V boundary induces en
expression but does not activate
transcription of the endogenous h h
gene. The figure shows wing imaginal
discs from second instar larvae to late
third instar larvae. UAS-hh is strongly
misexpressed at the D-V boundary by the
vg-GAL4 driver, starting when the D-V
boundary is established (A), but is not
maintained in the progenitor cells in the
wing pouch. e n expression gets
progressively activated at the D-V
boundary in late larval development (B).
The magnifications of the D-V boundary
(inserts) shows that in late third instar
wing imaginal disc, Hh induces e n
expression non cell-autonomously. The en
expression domain is broader (7 cells
thick) than that of hh  (2 cells thick)
indicating that in late larval wing pouch
cells, En is not able to activate h h
expression.
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activated at the D-V boundary, but can hardly be maintained through cell divisions in the

anterior compartment, since in in situ staining the hh signal progressively fades away from the

D-V boundary (Fig. 13E). As expected, in such a case, en expression, in the anterior

compartment, is restricted to the D-V boundary since Hh might not be present in a sufficient

amount to activate transcription of the endogenous en gene in the subsequent wing pouch

cells (Fig. 13F).

Furthermore, it is known that PcG-mediated silencing is enhanced at higher

temperature (Fauvarque and Dura, 1993) and this hyperrepressed state can be inherited

through cell divisions (Cavalli and Paro, 1998). Based on these observations, it could be

reasoned that raising embryos at 28°C instead of 18°C would make the Pc-mediated silencing

more difficult to derepress, and influence the activation of hh transcription by En. Vg-GAL4,

UAS-en embryos were allowed to develop at 28°C until the beginning of second instar larvae

when the D-V boundary is established in wing discs and UAS-en expressed there. As

Figure 13: The PcG and trxG proteins
control the inheritance of h h
expression in the wing pouch cells.
UAS-en is misexpressed using the vg-
GAL4 driver in all wing discs shown. In
wild type background, a high level of hh
mRNA is detected in most of the wing
pouch cells except in a stripe at the A-P
boundary (A), en is expressed strongly at
the D-V boundary and more weakly in
some region of the wing pouch (B). In
ph409 mutant background, hh (C) and en
(D) are more strongly derepressed than
in wild type flies. The stripe where hh
was not expressed in a wild type
background is reduced, indicating a
dependence on PH-regulation. In double
heterozygous mutants for trxE2 and brm2,
hh expression is activated at the D-V but
is not maintained through cell divisions
and progressively fades away (E). en is
strongly expressed at the D-V boundary
but not in the other wing pouch cells (F).
For embryos raised at 29°C until the start
of the second instar larval stage, hh
transcription is ectopically activated only
in few clones in the wing pouch (G)
indicating that, at this temperature, the
Pc-repression of the hh gene is stronger
and transcription is more difficult to be
switched on. However, once switched, it
is inherited through cell divisions, in
contrast to the trx-G mutants.
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expected, stainings on third instar imaginal discs reveal ectopic clones of wing pouch cells

expressing hh (Fig. 13G). However, the frequency of cells expressing hh is lower than in

discs of larvae grown at 18°C indicating that the Pc-mediated silencing was harder to erase at

28°C. Nevertheless, in contrast with trxG mutant flies, once the transcription has initially

been activated in this case, it is maintained in the subsequent daughter cells as suggested by

the presence of clones spreading from the D-V midline to the limits of the wing pouch.

These experiments demonstrate that once initiated by En, the maintenance of the

transcriptional state of hh to the daughter cells can be attributed to the action of the PcG and

trxG proteins. It can be concluded that the CMM activity of the hh upstream region we have

described in the transgenic assay is also efficient when considered in its natural chromatin

environment and is responsible for the inheritance of the initial transcriptional state of hh

from the initiation to the completion of the wing pouch development.

2.1.2.6 The switching of a CMM during larval stages may require specific trans-activating

factors

It has been previously reported that in the GAL4/UAS system, a GAL4 pulse, when

provided in larval stages, was only able to transiently activate transcription of the reporter

gene, but no heritable switching of the Fab7 CMM was observed since transcription was lost

as soon as the trans-activator (GAL4) was down-regulated (Cavalli and Paro, 1998). These

observations led to the hypothesis that Pc-mediated silencing might be more stable in larval

stages than in embryonic stages and CMMs can not be switched to mitotically heritable

activity at these later stages. Consistent with these data, the upstream 3,4 kb fragment

showing a CMM activity could not be switched to an active state through a GAL4 pulse

produced during larval stages as demonstrated by the lack of mini-white derepression in the

eyes of the adult flies (Fig. 10C).

However, in contrast to these experiments, I have now shown that the endogenous hh CMM

can be switched to an active state in larval wing pouch cells upon an En pulse. The switch

occurs in second instar larval stages, when the D-V boundary is established through the action

of the Notch pathway (Kim et al., 1996, Klein, 2001) and GAL4 expressed by the vg driver.

At this moment, en misexpression induces a switch of the endogenous hh CMM at the D-V to

an active state, leading to maintenance of hh transcription in all wing pouch cells. I wanted to

test whether GAL4 is also able to directly switch the endogenous hh CMM, in its natural
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chromatin environment, in larval stages or whether this feature is restricted to specific trans-

activators like En. To perform this experiment, the previously described line containing an

EP-element inserted into the hh promoter region (EP-hh) was used. By inducing GAL4 in the

cells it is possible to activate expression of the endogenous hh gene. I postulated that, by

promoting transcription of the endogenous hh gene, the hh CMM may be switched to an

active state in wing pouch cells. As observed on in situ preparations of late third instar discs,

endogenous hh transcription is activated by GAL4 at the D-V boundary, but not maintained

through cell division in wing pouch cells (Fig. 14A). In comparison, also the well

characterized Fab7 CMM is itself not switched to the active state after GAL4 induction at the

D-V boundary since expression of the reporter gene is not maintained in daughter wing pouch

cells (Fig. 14B). Thus, it is possible to conclude that the GAL4 trans-activator is not able to

switch a CMM in larval stages, though this can be carried out by the action of a gene specific

trans-activator, alone or more likely in association with other factors.

2.1.2.7 The repression conferred by a CMM can not be overcome by inhibition of histone-

deacetylases

The fact that in imaginal discs, an epigenetic mark can apparently be erased, and a

new one be established, upon specific circumstances addresses the question of the nature of

this mark.  A few years ago, the lab demonstrated that hyper-acetylation of histone H4 was an

epigenetic mark for active CMMs (Cavalli and Paro, 1999). However, it is still unclear what

is the role of histone-acetylation in this context. In general histone-acetylation has been shown

to activate transcription although this is not a universal feature. It has been suggested that

histone-deacetylases present in the Pc-complex could maintain the repressed state of the

chromatin by continuously deacetylating the histones. Conversely, histone-acetylases in the

      

α-LacZhh mRNA

BA vg-GAL4; EP-hh vg-GAL4; FLW-1

Figure 14: The GAL4 trans-activator is not able to
switch a CMM when expressed during larval stages.
hh is transcribed at the D-V boundary using the EP-hh
line in combination with the vg-G A L 4 driver (A).
However, transcription is not maintained in the daughter
cells of the wing pouch. Similarly, expression of lacZ is
not maintained when FLW-1 flies (Cavalli and Paro,
1998) are crossed with vg-GAL4 (B). It indicates that at
this stage the Fab7 CMM can not be switched to the
active state by GAL4.
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trx-complex would maintain the transcription in an active state by continuously acetylating

the histones (Pirrotta, 1998). To investigate this hypothesis, I have decided to test whether

inhibition of histone deacetylases alone could lead to an erasure of the epigenetic mark and

induce derepression of a CMM. Treatment of cells by Trichostatin A (TSA), a histone-

deacetylase inhibitor, has been shown to activate transcription of genes as a consequence of

hyperacetylation of the promoter region due to the unbalanced action of histone-acetylases

(Almouzni et al., 1994).

Because embryos are not permeable to chemicals, primary embryonic cell cultures deriving

from a transgenic fly line transformed with the GAL4 inducible FLW-1 construct were

established. This construct contains the Fab-7 CMM upstream of some UAS enhancers

controlling expression of the lacZ and mW reporter genes. As control, embryonic cell cultures

with the LW-1 construct lacking the Fab-7 CMM were established. These primary cultures

were treated overnight with TSA (Fig. 15A).

This overnight treatment induces expression of the lacZ gene from the LW-1 construct.

However, lacZ is not expressed in cells containing the FLW-1 construct (Fig. 15B).

In these primary cultures, cells are very fragile and difficult to handle, and small patches of

embryonic tissues can often been seen. Therefore, it is very difficult to estimate the number of

cells by directly counting them. In order to check whether the TSA treatment do not block cell

division, we indirectly measured the rate of cell divisions by measuring the amount of

proteins in our sample after cells were collected. This gives a rough idea of how the primary

cells were dividing. It appears that mitosis still occurs in these cultures after TSA treatment

since the amount of proteins continuously increased over time (Fig. 15C).

After the overnight TSA treatment, cells were maintained in culture up to 72 hours, and cell

division was observed. Twenty-four hours, after TSA have been removed, the expression of

lacZ in the LW-1 line start to decrease indicating that the histone-deacetylases are not

inhibited anymore. In the FLW-1 cells, lacZ is never expressed even after cell division has

occured (Fig. 15B). These results show that inhibition of histone-deacetylases does not

overcome the repression mediated by the Fab7 CMM, although being able to activate

transcription in a reporter construct lacking the CMM. Therefore overacetylating histones at

the CMM does not have any direct effect on the activation of transcription.

The possibility that histone-acetylation is just the main marker for an active CMM state, that

would be needed as an anchor to recruit a trancriptionally active trx-complex after DNA

replication, is implausible since an overnight TSA treatment followed by some cell divisions

still does not switch the CMM to an active state.
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Therefore it can be concluded that the state of histone acetylation, although influencing the

transcriptional activity of basal promoters, does not seem to be the main mechanism, as an

epigenetic mark, responsible for the maintenance of epigenetic states.

Figure 15: TSA treatment of primary embryonic cells does not induce activation of the reporter genes in
cells containing the FLW-1 construct. A) Primary embryonic cell cultures from embryos of the LW-1 and FLW-
1 fly lines have been generated and treated overnight with TSA. B) Inhibition of histone-deacetylases induces
expression of the lacZ reporter gene in the LW-1 line lacking the Fab7 CMM. However, TSA has no effect on the
repression conferred by the Fab7 CMM on the lacZ reporter gene in the FLW-1 line since no lacZ expression is
induced, even after cell divisions. C) Since the direct counting of cells is difficult in these primary cultures, cell
division was assayed indirectly by measuring the quantity of proteins after cells were collected following different
times of recovery.
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2.1.3 Discussion

Initially, the first CMM was found to maintain the embryonically defined expression

of Abd-B expression (Cavalli and Paro, 1998). By extension, it was admitted that CMMs

maintain homeotic gene expression patterns until the completion of the development.

However, it appears that other developmental genes, like hedgehog, are controlled by CMMs

suggesting that this chromatin-based epigenetic inheritance of gene expression may be much

more widely spread as expected.

Furthermore, CMMs may also be used to freeze developmental decisions taken at later stages

upon signal from the cellular environment. The hh CMM could indeed be switched from a

repressed to an active state during larval stages. However, in contrast with embryonic stages,

specific trans-activators appear to be necessary to induce the switch in larval stages. These

results highlight the dynamic of such CMMs during later stages of development and provide

an additional layer of complexity for the control of morphogenic signaling used for tissue

patterning.

2.1.3.1 Developmental relevance of the presence of CMMs at the hedgehog gene and other

segmentation genes

Very little is known about how the gene expression pattern of cells building

compartments in imaginal discs is inherited through cell divisions. Except for some homeotic

genes, it is generally assumed that auto- and cross-regulations allow selector and

segmentation gene expression to be maintained until the adult stage. However, here it was

shown that at least in the case of hh a cellular memory system can take over to carry out the

maintenance. It had already been proposed that trxG proteins might be needed to allow a

proper inheritance of En expression in the cells of the posterior compartment (Breen, 1995). It

was also suggested that a positive feedback loop between en and hh could achieve their own

maintenance (de Celis and Ruiz-Gomez, 1995). My results indicate that this does not seem to

be the case since the windows of time, when En can activate hh and Hh activate en, seem not

to overlap over the entire wing development. During embryogenesis and early larval

development (at least until the D-V boundary is established in wing disc), En is able to

activate hh. However, experiments have proven that this competence disappears later, in

particular in third instar larvae, when even high amounts of En can not activate h h

transcription in at least the anterior compartment of the disc. On the other hand, Hh seems to
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acquire the competence to activate en transcription in late larval stages. These results are

consistent with the fact that in late larval stages, the Hh gradient is able to induce a stripe of

en expression at the A-P boundary, whereas En does not in turn induce hh expression in this

domain (Blair, 1992; Strigini and Cohen, 1997). Thus, since no feedback loop seems to exist,

it suggests that the hh CMM has a role in maintaining hh expression in the posterior domain

during late stages of development.

In an attempt to characterise the mechanisms by which the hh CMM mediates

repression of the reporter genes in the transgenic lines, I tried to check whether additional PC

and PH-binding sites would be visible at the insertion sites of the transgenes on polytene

chromosomes. Although there is a visible PC-binding site at the cytological localisation of the

endogenous hh, no obvious new sites could be detected in the three transgenics tested. On the

chromatin-immunoprecipitation experiments, two mains PREs could be determined. The

transgenes only contain the PRE located in the promoter region. Despite the fact that it is able

to exhibit PRE-like and CMM activities on transgenic assays, this element on its own may not

be able to recruit enough PC and PH proteins to be detectable by our antibodies on polytene

chromosome immunostainings.

The endogenous hh gene seems to be directly repressed by PH and PC (Fig. 6 and 7) and

consistently, the repression of the transgene seems to be impaired in ph mutations, whereas it

is enforced by trxG gene mutations. However, Pc mutated alleles induce the opposite effect as

expected. The transgene is more strongly repressed in such mutants. One explanation for this

result is that the Pc mutation may misregulate a gene that could act on mini-white expression

through the binding to the 3,4 kb region which, we know, possesses some regulatory elements

in addition to the CMM. Subdivisions of the 3,4 kb fragment and their study in transgenic

assays may help to isolate the minimum hh CMM which should be used to study more

directly the real action of PcG and trxG proteins.

A domain along the A-P boundary seems to be refractory to a switch of the hh CMM

to an active state (see Fig. 11 and 13). Interestingly, it appears that in this region Groucho and

PH contribute to a strong repression system preventing hh expression to be activated in the

anterior compartment in wild type flies (de Celis and Ruiz-Gomez, 1995; Maschat et al.,

1998; Apidianakis et al., 2001). Thus, these proteins may counteract a stable switch of the

CMM to an active state. Consistent with this result is the reduction of the thickness of this

refractory domain in flies mutant for ph (Fig. 13C).

It has been reported that large clones lacking en/inv expression in the posterior

compartment of wing discs show reduced or no Hh protein although this was not a universal
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feature of small clones (Tabata et al., 1995; Sanicola et al., 1995). Apparently, in this situation

the loss of en/inv in the cells, especially when induced early in development, might cause a

substantial reprogramming of the gene expression pattern leading to repression of hh, perhaps

due to the appearance of new repressors. In this case, the initially activated CMM would not

be able to overcome the repression.

Interestingly, in 3rd instar imaginal discs in which en have been overexpressed at the D-V

boundary, it was noticed that the endogenous en is sometimes completely repressed from

large domains of the posterior compartment of the wing pouch (Fig. 11G). This was explained

by the fact that En is able to directly downregulate its own expression when it is

overexpressed in a cell (Guillen et al., 1995). However, it is clear from the immunostainings

that once silenced by the exogenous En, the endogenous engrailed gene is able to maintain its

transcription repressed even when the exogenous En protein has disappeared. Since it is

known that En is regulated by PcG and trxG genes, it is actually likely that en is also

regulated by a CMM. In this case, we observe here a switch of the en CMM from an active to

a repressed state. This observation brings us some more proofs that CMMs are switchable

elements which can not only be switched from a repressed to an active state, but also from an

active to a repressed state, and this at any time during development.

The experiments described in this chapter strongly suggest that CMMs have major

direct roles in the inheritance of the expression of hh, and most probably en, in the

development of wing imaginal discs. Furthermore, hh and its vertebrate homologues are

expressed in many other tissues during development, in which its activation and/or

maintenance are independent of En and not yet elucidated (i.e. eye, gut, lung) (Bitgood and

McMahon, 1995; Strutt and Mlodzik, 1996; Hoch and Pankratz, 1996; Warburton et al.,

2000). Further studies should help to understand how the hh CMM may be involved in

regulating the gene in different tissues.

2.1.3.2 Dynamic CMM states during development

The finding that genes necessary to pattern imaginal discs can be regulated by CMMs

is in disagreement with models in which the elaboration of pattern in multi-cellular fields is

solely based on information conferred by the local concentration of secreted signaling

molecules (morphogen model). In addition to this, it is now clear that, the establishment of a

specific gene expression program in cells at various developmental stages depends on both
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the information conferred by the morphogens surrounding the cell and its history. Thus, a cell

fate will be specified by the transcriptional activation or repression of new genes, as a result

from surrounding information, as well as by the maintenance of old transcriptional states

established earlier and inherited by CMMs through the action of the PcG and trxG proteins. It

has already been suggested that the gene optomotor-blind could be regulated by a cellular

memory mechanism in imaginal discs (Lecuit et al., 1996), although it was not directly

demonstrated which mechanism could allow inheritance of transcription.

It is important to note that the state of activation of a CMM does not have to be

established, once and for all, during embryogenesis, but can be modified or stably switched

later in development. This may be especially true for genes patterning imaginal discs for

which the expression pattern is established during larval development in contrast to homeotic

genes defining the A-P axis during embryogenesis. However, it seems that general trans-

activating factors such as GAL4, which are able to establish the active state of a CMM during

embryogenesis, are not able to modify or switch the CMM state later in development,

suggesting that the chromatin state of a CMM is more difficult to reprogram at late

developmental stages. During larval stages, many cell divisions have been accomplished and

cells are getting more and more restricted in their determination state. The chromatin could

then be in a “mature” conformation stable enough to transmit a previously established

transcriptional state despite the potentially contradictory actions of other transcription factors

found concomitantly in the nucleus. Nevertheless, other transcription factors such as En (in

the case where En directly activates hh) seem to be able, alone or by recruiting cofactors, to

stably switch a CMM from a repressed to an active state during larval stages. At these stages,

the switching of CMMs could require specific factors to set epigenetic marks. It could be

envisaged that the En complex is able to attract some kind of chromatin remodeling

machinery which would have the potency to erase the memory imprint and leave the

chromatin competent to be reprogrammed.

In this way, it seems that the cell memory system is a complex and dynamic process

during development, in which the role of CMMs is to heritably maintain a previously

established transcriptional state until new specific patterning events are able to redirect the

epigenetic marks of the CMMs.

The nature of the epigenetic mark responsible for the maintenance of a specific state of

activation of a CMM is still not clear. Since it has been shown that hyperacetylation of

histone H4 is an epigenetic mark for active CMMs, we tried to assess more carefully what is

the influence of histone-acetylation on the activity of CMMs. We could demonstrate that, at
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least in embryonic cells, the state of histone-acetylation is not by itself able to switch a CMM

from a repressed to an active state (however the possibility that TSA is not able to inhibit a

specific histone-deacetylase responsible for deacetylation at CMMs can not be rejected). This

argues that histone-acetylation may not be the main or the only mark defining the activity of a

CMM. This would be consistent with the recent results suggesting that histone-methylation

would have a preponderant role in marking the different epigenetic states of the chromatin

(Beisel et al., 2002; Czermin et al., 2002; Müller et al., 2002; Cao et al., 2002; Kuzmichev et

al., 2002). It is likely that the epigenetic states are actually defined by different combinations

of histone modifications, in which methylation may be responsible for the maintenance of

defined transcriptional states, and acetylation a consequence of it.

2.1.3.3 Implications for diseases, cancer and cell reprogramming

hh possesses three homologues in mammals whose functions are highly similar those

found in Drosophila (Fietz, 1994). The mammalian trxG and PcG proteins control homeotic

gene expression (Deschamps  et al., 1999) as well as hematopoiesis (Takihara and Hara,

2000). It can be predicted that such a cellular memory system, as found in Drosophila, also

exists in mammals. In this way, the hh genes and many other developmental genes in

mammals could very well be regulated by chromosomal elements with CMM function.

The fact that the transcriptional state of essential developmental genes can potentially

be stably switched at any time during Drosophila development, could have serious

consequences in case of accidental switches. Misactivation of the hh pathways causes

dramatic developmental malformations and diseases such as cancer in mammals

(Villavicencio et al., 2000; Toftgard, 2000; Taipale and Beachy, 2001). It would not be

surprising to find such syndromes associated with a misexpression of one of the mammalian

hh genes due to some alterations in the epigenetic marks setting the corresponding CMM

status.

Furthermore, this study offers clues to how stem cells can be reprogrammed and can

differentiate in different cell fates after the initial action of transcription factor bursts, and

may maintain their new transcription pattern for the required round of cell divisions. In this

direction, an accidental CMM switching of developmental genes during larval Drosophila

development could explain transdetermination events (Maves and Schubinger, 1999). Under

certain circumstances, some imaginal disc cells suddenly change their determination state and
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are able to propagate their new cell fate over many divisions ending by creating new tissue

structures.
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Part 2

The role of Cellular Memory Modules in the transdetermination of

Drosophila imaginal disc cells
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2.2.1 Introduction

In the first part, it has been demonstrated that, besides homeotic genes, the expression

of different kinds of genes involved in regulating developmental pathways, like hh, may be

regulated by CMMs. The homeotic genes in the bithorax complex, which expression pattern

defines the segment identity along the antero-posterior axe of the embryo, are regulated by

several CMMs (Cavalli and Paro, 1998; Rank et al., 2002). Other genes, like hh, which are

responsible to define the cell identities in imaginal discs are regulated by CMMs during

development, however in a dynamic way. The CMM of these genes would be able to maintain

an established state of transcription through cell divisions, but under certain circumstances it

seems that the epigenetic mark responsible for the maintenance of the previously established

transcription state could be erased and the transcription state switched to a new one, which

would in turn be inherited through cell divisions.

Transdetermination is a switch of disc identity that occurs in some cells, under specific

conditions, when the cell is already determined. It was shown to appear in Drosophila

melanogaster when fragmented discs were cultivated for a period of time allowing several

cell divisions. Cells at the wound start an aggressive regeneration program involving cell

proliferation and fate respecification. One feature of the fragmented prothoracic leg (L1)

compared to the mesothoracic (L2) and (L3) legs is that L1 anterior 1/4 (A1/4) fragments

almost always regenerate, while complementing posterior 3/4 (P3/4) fragments almost always

duplicate (Schubiger, 1971). In both cases, some anterior (A) cells convert directly to

posterior (P) identity (Abbott et al., 1981), in direct violation of lineage restrictions imposed

during normal development (Garcia-Bellido et al., 1973; Garcia-Bellido, 1975). Only a few

founder cells are engaged in this proliferation program.

Recently, new molecular tools have allowed a better understanding of the transdetermination

phenomenon. The reason why among the leg discs, only L1 legs are able to start this

regeneration program may be to be due to the presence of peripodial cells expressing

hedgehog in L1. Indeed, Gibson and Schubiger (1999) demonstrated that the secretion of Hh

from the peripodial cells is responsible for the start of this regeneration and respecification

program. A distinct population of squamous en/hh-expressing peripodial cells (specific to L1)

fuses to the cut disc edge and acts as a transient ectopic source of Hh in cultured disc

fragments. Hh signaling induces A/P conversion in both fragments by activating engrailed

(en) in anterior cells. Furthermore, this transient hh expression is apparently responsible for

the induction of an ectopic wg domain at the wound site in P3/4 fragments, overlapping with

the endogenous dpp gradient. The new interaction between wg and dpp signaling generates



                                                                                                                                                                 II. Results. Part 2

52

the activation of vg expression, a marker for cell identity (Kim et al.m 1996), inducing a leg-

to-wing transdetermination event (Maves and Schubiger, 1995; 1998; Johnston and

Schubiger, 1996). This new cell identity is clonally inherited since sub-cultures could be

established containing only a population of transdetermined cell (Gehring, 1967).

Whereas it is thought that the new combination of signaling molecules, resulting from the

juxtaposition of the two edges of the fragmented disc, has a major role in establishing a new

gene expression pattern in the cells at the wound, it is not clear to what extents can PcG and

trxG genes influence the switching to the new expression program. Furthermore, it is still not

known which mechanisms allow these transdetermined cells to maintain their new identity

through mitosis, in a clonally inheritable manner.

In the light of the results described in the first part of the thesis, I will demonstrate that PcG

and trxG genes also have a role in the switching of cell identity during transdetermination

events. Their influence may be concentrated at CMMs. I will show experiments suggesting

that transdetermination consists of the switching of the CMM of some genes to a new state of

activation. This new state of activation may be maintained through cell divisions by the

interplay of PcG and trxG proteins at CMMs.
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2.2.2 Results

2.2.2.1 In imaginal disc cells, Polycomb restricts activation of specific developmental

pathways

Pc is expressed in all imaginal disc cells suggesting a general role in the maintenance

of imaginal disc cell identity during development. To assess this question more carefully,

clones of cells lacking any functional PC protein were produced during imaginal disc

development. The FLP/FRT recombination technique was developed to induce “loss of

function” clones (Dang and Perrimon, 1992). This technique allows mitotic recombination

between homologous genetically engineered chromosomes through FRT (FLP-Recombinase-

Target) sites after a transient expression of the FLP-recombinase. If recombination is induced

between two homologous chromosomes, one containing a mutated allele of your gene of

interest, the segregation of the chromosomes to the daughter cells after the mitosis will

produce progenies exhibiting new genotypes: either homozygous for the mutated allele or

completely wild type in an heterozygotic environment. By this way, it is possible to study the

behaviour of clones of cells homozygous mutant for a specific gene in an heterozygotic

environment. In the mean time, cells are genetically marked with the Green Fluorescent

Protein (GFP). It is possible to visualise the clones because they do not express GFP, whereas

the cells wild type for the gene have two copies of GFP and the cells heterozygous for the

mutated allele have one copy of GFP (Fig. 16).

Figure  16 :  The
production of loss of
function clones. The
scheme shows how
mitotic recombination
i n d u c e d  d u r i n g
development can be used
to produce clones of cells
homozygous for a
mutated allele of a
specific gene. This allow
studying the behavior of
muated cells in a wild
type environment.
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For this purpose, the strong antimorphic Pc3 allele, on the third chromosome, was recombined

with an FRT containing chromosome. Clones homozygous for the mutant Pc allele were

induced during early larval stages, and 3rd instar imaginal discs were stained with different

antibodies to observe how the lack of PC during development affects expression of genes

involved in defining cell identity in the discs. All the clones shown here were produced with

the Pc3 mutation. However, the experiments have been reproduced with the Pc(XT) null mutant,

and results observed were identical.

A striking feature that appears is that most of the clones observed do not mix with the normal

population of cells. Cells lacking PC appear to minimize the contacts with the surrounding

cells and form small islands of tissue in the disc. This fact may reflect the inability of the cells

in the clones to remember their initial determination state. This may give rise to altered

properties, affinities and identities by opening new developmental pathways.

Immunostainings revealed that, as expected, homeotic genes like Ubx which is normally not

expressed in wings, are derepressed in most of the clones lacking PC (Fig. 17A). More

interestingly, expression of segmentation genes, like en , wg and vg (vg expression is

represented by the expression of the lacZ gene which is under the control of the vg boundary-

enhancer), is directly or indirectly affected by the loss of PC (Fig. 17B,C,D). It appears

indeed that, depending on the region were the clones are situated, the expression of these

genes can be repressed or activated. For instance, en , normally expressed in the P

compartment, is repressed in clones made in the P wing pouch cells. Furthermore, en

expression is not derepressed in the clones located in the A wing pouch cells. However, en

expression is activated in clones formed in the putative dorsal hinge compartment.
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Figure 17: Cells lacking Polycomb lose their identities. Discs are all wing imaginal discs of late 3rd instar larvae.
They are presented dorsal side up and posterior to the right. One copy of GFP is expressed in cells heteroyzygous
mutant for Pc, 2 copies of GFP are expressed in cells being wild type for Pc and there is no GFP present in cells
homozygous mutant for Pc. In the A row, Ubx is derepressed in most of the clones lacking PC. In B, it is possible to
see that en is either repressed or activated in the clones lacking PC depending on the region of the disc where the
clone is made. An enlarged view of one clones is seen in insert, in the phase contrast picture, showing how clones
sort out from the wild type tissue. Similar results are observed in C for wingless or in D for vestigial. In D, the pattern
of expression of lacZ is dependent on the boundary enhancer of vestigial.
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In adult cuticles several kinds of defects caused by misregulation of gene expression are

observed. For example, most of the wings show additional or loss of wing veins (Fig. 18).

The wing margin is sometimes notched and the corresponding rows of bristles are absent (Fig.

18D). This is a typical phenotype caused by an inactivation of the Notch pathway at the D-V

boundary. Vestigial expression at the D-V boundary, which is directly activated by Notch and

Suppressor of Hairless (Kim et al., 1996), is indeed down-regulated in clones lacking PC (Fig.

17D). Therefore, the Notch pathway is affected by the loss of PC at the D-V boundary.

Moreover, bubbles are often observed between the dorsal and the ventral cell layers of the

wing surface, indicating that cells of the two layers do not attach to each other perhaps

because their cell identities are changed (Fig. 18B). Another striking defect lies in the

duplication of a wing in the notum, which could be due to the derepression of vg and/or

scalloped (Simmonds, 1998) in some clones (Fig. 18B).

Figure 18: Adult cuticle phenotypes of Pc- clones in wings. In A is a wild type adult wing. Some typical
defects in B show wing duplication (big arrow) or bubles between the dorsal and ventral cell layers in the wing
(small arrow). In C, the arrowhead  points out the appearance of a new vein connecting vein IV and vein V.
On the other hand, the small arrowhead  marks a gap in the intervein normaly linking vein 4 to vein 5. In D,
the big arrowhead points out a duplication of vein III, whereas the small one shows a notch at the wing margin
in the anterior compartment.
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These results show that cells lacking PC do not follow the gene expression program they were

initially determined for. They rather change their gene expression pattern in ways depending

on the region where they are formed, and open new developmental pathways. It can be

concluded that during development in the cells, the Pc-mediated repression pattern is

established to restrict the number of developmental pathways that could potentially be

activated, and indirectly promote the activation of specific ones.

2.2.2.2 Cells lacking Pc can potentially show transdetermination-like events

Vestigial can be used as a marker for leg-to-wing transdetermination, since it is

normally expressed in the wing discs only (and halteres which have wing origins).

Furthermore, when overexpressed, it is sufficient to induce outgrowths of wing tissue from

eyes, legs and antenna (Kim et al., 1996). It was previously used as a marker for leg-to-wing

transdetermination (Maves and Schubiger, 1995; 1998). Therefore, experiments were

designed to ask whether cells lacking PC could transdetermine by searching for vg expression

in discs different from wing imaginal discs. An enhancer trap line driving expression of lacZ

in a pattern governed by the vg boundary enhancer was used as a marker for vg expression.

Immunostainings showed that lacZ is expressed in some clones situated in the eye disc,

posterior to the morphogenetic furrow, in a region which will form the head capsule in the

adult. In this case, head imaginal disc cells derepress a gene marker for wing identity (Fig.

19A,B,C). In this respect, we can conclude that these cells show head-to-wing

transdetermination-like events. The fact that only clones located in a specific region of the

disc can transdetermine to a wing identity suggests that, in this region, the combination of

signaling molecules are such that they can potentially open new developmental pathways in

cells lacking PC, leading to a wing identity. The boundary enhancer normally induces

expression of vg at the dorso-ventral boundary of wing imaginal disc (Fig. 17D). Vestigial

expression under the boundary enhancer is unlikely to be regulated by a CMM, otherwise

lacZ expression in the enhancer trap line would be maintained in the wing pouch cells through

cell divisions (see Part I). Therefore, in this case, ectopic expression of lacZ driven by the vg

boundary enhancer reflects the expression of vg and most probably results from an indirect

misregulation of vg consecutive to the removal of PC from the cells.
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Cuticle preparations of the adult fly head did not allow the nature of the tissue outgrowths to

be precisely determined(Fig. 19D). It is likely that other genes are derepressed in these clones

preventing the wing determination pathway from acting correctly and leading to an undefined

tissue.

2.2.2.3 The frequency of transdetermination is affected by the dosage of PC protein in the cell

Maves and Schubiger (1995) demonstrated that the production, in the leg discs, of

ectopic “gain of function” clones expressing wg, induces leg-to-wing transdetermination.

Interestingly, as in fragmentation experiments, this event always occurs in the same predicted

proximal-dorsal region of the leg discs which has been called a “weak point”. Thus, it has

been postulated that the ectopic wg expression experiment may mimic the fragmentation

experiments by juxtaposing “ventral” wg-expressing cells with dorsal leg disc cells creating

new combinations of signaling molecules. In this assay, the cells will transdetermine if the

right amount of Wg signaling molecule is produced at the right location, in order to induce a

change in the gene expression program leading to the expression of vestigial. In the previous

paragraphs, experiments show that removing PC from cells allows new gene expression

Figure 19: Head imaginal disc cells lacking polycomb can
transdetermine.  In A, Pc- clones are marked with the lack of GFP.
In B, the immunostaining against LacZ reveals that the boundary
enhancer of vestigial is activated in some clones of the disc. C is the
overlay of the two previous pictures. The arrow in D shows the
outgrowth resulting from such clones, the tissue identity can not be
defined. The arrowhead shows the antenna.
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programs to be opened. It can be assumed that reducing the amount of PC protein in the cells

should increase their flexibility in changing their initial gene expression program upon

external influences. Therefore, if PC is required for the transcriptional regulation of genes

involved in transdetermination, the frequency of transdetermination should vary in cells

lacking half of the normal amount of PC protein.

To validate this hypothesis, I investigated the influence of PC in Wg-induced

transdetermination by inducing wg expressing clones in flies heterozygous for the Pc3

antimorphic mutation. A variant of the FRT/FLP recombination technique allows to produce

ectopic clones of cells expressing your gene of interest. By this mean, wg  was ectopically

expressed in imaginal discs during larval stages. The leg-to-wing transdetermination was

detected by the examination of vg expression in the discs (using the enhancer trap line

previously described in which lacZ expression is activated by the vg boundary enhancer)

(Fig. 20). In my hands, in flies wild type for the Pc gene, a frequency of transdetermination of

26% (69/270) of the leg discs possessing wg-expressing clones was observed. In comparison,

this frequency was increased up to 50% (97/194) in discs heterozygous for the Pc3 allele. This

result indicates that cells having a smaller amount of PC are more amenable to switch their

fate. It can also be concluded that some genes involved in the process of leg-to-wing

transdetermination are controlled by PC.

Figure 20: Induction of ectopic wg-
expressing clones induces leg-to-wing
transdetermination. In A, a wild type leg
imaginal disc is shown. In B, ectopic clones
expressing wingless have been produced
during larval development resulting in cell
p r o l i f e r a t i o n  a n d  l e g - t o - w i n g
transdetermination as visualized by the ß-gal
staining which represents v g expression.
Repeating the experiment in disc cells
lacking one copy of Pc  increased the
frequency of transdetermination by 2 fold.
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2.2.2.4 PcG proteins may be needed for the maintenance of the transdetermined state through

mitosis

Production of ectopic wg-expressing clones in PcG mutant discs allows assessing the

role of PcG proteins in the establishment of the new cell identity. However, even if the

ectopic expression of wg induces some extra-cell divisions, inducing wg-expressing clones in

the disc during larval stages may not be the right way to study the role of PcG and trxG genes

in the maintenance of the transdetermined state through mitosis since the number of cell

divisions is restricted in time by the entry in metamorphosis.

With the fragmentation/transplantation experiment, it is possible to cultivate discs for a long

period in vivo in the abdomen of adult flies where a high number of cell divisions can be

accomplished. Therefore, it could be an ideal mean to study how the new transdetermined

state is inherited through a high number of cell divisions.

For this purpose, I performed in vivo cultures of fragmented leg imaginal discs as described

by Hadorn (1963) to test whether PcG proteins were involved in the accurate transmission of

the transdetermined state through cell divisions. The P3/4 fragment of fragmented male wild

type foreleg discs (Fig. 21) were injected into one day old adult females. The same was

proceed for discs hemizygous mutant for the ph409 hypomorphic allele. After an incubation of

13 days at 25°C, leg-to-wing transdetermination in male foreleg discs was checked by looking

at UAS-GFP expression under the control of a vg boundary enhancer-GAL4 driver. Three

different phenotypes were screened: no GFP expressed in the disc, discs possessing small

domains expressing GFP (Fig. 22A), and discs having large domains of GFP expression (Fig.

Figure 21: Fragmentation of first leg
imaginal disc. The picture shows a first
leg imaginal disc, anterior to the left and
posterior to the right. To induce
transdetermination during in vivo culture,
the upper part of the anterior compartment
(A1/4) must be cut out. Then the
complementing 3/4 posterior fragment
(P3/4) can be transplanted into the
abdomen of an adult female fly. The P3/4
fragment of wild type male leg discs was
transplanted as well as male the P3/4
fragment of male leg discs hemyzigote for
the ph409 allele.
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22B). 43 wild type discs and 39 ph mutant discs were recovered after in vivo culture.

Surprisingly, results shows that the frequency of transdetermination slightly decreases in

mutant flies compared to wild type. The frequency of discs having large transdetermined

domains seem to be also reduced in mutant discs (Fig. 22C). 54% of the wild type discs have

a large domain of vg expression whereas this number is reduced to 38% is discs mutant for

the ph gene.

This could mean that a fewer number of founder cells transdetermine in ph mutants, or that

the new transdetermined cells can not maintain their new fate through mitosis as efficiently

than in wild type discs arguing that PcG genes are needed for the accurate transmission of the

new transdetermined state to the cell progenies.

C)

number of discs with or without vg expressiongenotype of the
fragmented discs

days of
incubation

Number of
discs recovered

after in vivo
culture no vg small domain large domain

WT 13 43 4 (9%) 16 (37%) 23 (54%)

ph409 13 39 7 (18%) 17  (44%) 15 (38%)

Figure 22: Transdetermination in leg discs after fragmentation and in vivo culture. Transdetermination is
visualized by the GFP signal which reflects expression of vestigial. In A, only small domains show GFP
expression whereas in B, GFP is expressed in larger domains. The table (C) shows the percentages of
transdetermination events in wild type discs and discs heterozygous for the ph409 mutant allele.
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2.2.2.5 Expression of some PcG and trxG genes may be downregulated at the wound of

fragmented discs

The last experiments highlight the fact that downregulation of some members of the

PcG gene expression favours the opening of new developmental pathways and affects the

frequency of transdetermination. Therefore if such an event would exist in a period of time

when cell proliferation is required and when cells are exposed to new signaling cascades, one

could envisage that cells would be more amenable to change their determination state and

possibly transdetermine.

After leg imaginal disc fragmentation, when the 3/4 fragment is cultured in vivo, the dorsal

and ventral cut edges undergo wound healing. In the adult Drosophila melanogaster, the Jun

N-terminal kinase (JNK) signal transduction pathway is activated at the edge of wounds in

epithelial cells (Ramet et al., 2002). Interestingly, a recent study of the genome-wide

transcriptional response to activation of the JNK pathway in the Drosophila embryo showed

that a number of genes encoding proteins involved in PcG and trxG-mediated mecanisms, like

Rpd3, brahma, polyhomeotic, and ASH2, are down-regulated in cells in which the JNK

pathway is activated (Jasper et al., 2001).

I investigated whether the JNK pathway was activated at the wound of fragmented imaginal

discs. Activation of the JNK pathway was revealed by assaying the expression of the

puckered (puc) gene, which is known a target of the JUN N-terminal kinase signaling

pathway (Martin-Blanco et al., 1998). For this purpose, an enhancer trap line containing the

lacZ gene inserted into the puc locus was used to reflect puc expression. After 48h of in vivo

culture, fragmented disc clearly show expression of the puc-lacZ gene at the wound meaning

that the JNK pathway is activated in cells at the wound (Fig. 23).

Figure 23: The JNK pathway is
activated at the wound of
fragmented imaginal disc during
regeneration. The expression of puc
(p u c k e r e d ) was investigated  in
fragmented leg imaginal discs
cultivated 48 hours in the abdomen of
adult Drosophilas. Cells in blue
express puc.
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These cells will later start to proliferate to form a blastema potentially containing

transdetermined cells. If some of the PcG and trxG genes are indeed transiently

downregulated in these cells due to the activation of the JNK pathway, it would certainly

make them more susceptible to the variations of their new environment and therefore these

cells could be preferential potential targets for transdetermination events.
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2.2.3 Discussion

2.2.3.1 Pc-mediated repression ensures that the cell is competent to follow specific

developmental programs

The lack of functional PC alters repression mechanisms, leading to aberrant gene

expression programs being activated and change in determination. One striking observation

resulting from the lack of PC in clones of cells is that the activation of developmental genes is

not random at all and depends on the region were the clone is produced even for the genes

known to be directly regulated by PcG proteins like en . For example, en  was not

systematically activated in the clones produced in the wing. Likewise, for the homeotic gene

Ubx, regions in the wing were present where it was not systematically derepressed. However

there seems to be a global change in the gene expression program of each clones since they all

show a rounded morphology, very different from their twin clone (having two copies of

GFP), perhaps reflecting their need to minimize contact with the surrounding wild type cells.

The progeny of cells in which a functional PC protein has been eliminated do not remember

their initial fate and change their developmental gene expression program. In fact, in the

different regions of the discs, the clones seem to activate different transcription programs

which is very likely due to the specificity of the environment. Lacking the repression

mecanism induced by PC, the cells may start to react more freely to the instructions provided

by the cellular environment and new developmental programs may thus be activated

depending on the combination of the surrounding signaling molecules. This situation may

then lead to aberrant gene expression patterns, such as en being expressed in anterior

compartments or vg being expressed in head imaginal disc cells.

In a new bid to define cell determination in molecular terms, it has been linked to the

distribution of superrepressed genes (Zuckerkandl, 1997; 1999). In this sense, it is possible to

say that the Polycomb-mediated repression pattern amounts to the limitation of the cell to a

certain subset of fates that remain potentially accessible to it or to its progeny. In cells

advancing toward terminal differentiation, the Pc-mediated repression pattern would be

responsible for the progressive narrowing of the range of developmental pathways that could

potentially still be activated for later development. In this way, the repression pattern

conferred by PC and the PcG protein distribution on chromatin renders the cells competent to

be determined in specific directions by allowing them to switch on the requested

developmental program only.
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On the other hand, the trxG protein distribution pattern on chromatin defines for a cell which

developmental genes must be transcribed (or competent for transcription) in the cell progenies

even in the absence of the transactivator.

2.2.3.2 Some genes involved in leg-to-wing transdetermination events are regulated by PcG

genes

As a molecular marker for leg-to-wing transdetermination, vg expression was assessed

by the help of a lacZ gene inserted into the vg boundary enhancer. This boundary enhancer

normally drives vg expression at the dorso-ventral boundary of the wing disc. Therefore in

this line, lacZ expression is restricted to the dorso-ventral boundary. This makes vg unlikely

to be regulated by a CMM because otherwise lacZ expression would be maintained in the

wing pouch cells through cell divisions (see Part 1). Therefore, vg expression seems not to be

directly influenced by PcG genes. In this respect, it represents a good general marker to

follow how PcG/trxG genes can influence the state of determination of a cell.

I could demonstrate that at least some PcG genes are involved in the process of

transdetermination since the frequency of transdetermination is affected by the dosage of PC

and PH in the cells. One assay used molecular tools to skip the

“fragmentation/transplantation” procedure and induce ectopic wg-expressing domains in the

leg disc that may be juxtaposed with high concentration of the Dpp morphogen possibly

resulting in a leg-to-wing transdetermination event. This experiment allows studying the

process of identity switching. The frequency of transdetermination is doubled in our hands in

leg discs from flies having only half on the normal amount of PC. This result suggests that a

lower concentration of PC in the cells render them more susceptible to switch their

developmental pathway and transdetermine.

Another strategy consisted in comparing the transdetermination frequencies in wild

type leg discs versus ph mutant discs by using the “fragmentation/transplantation”

experiment.  In this case, variations in the frequency of transdetermination were not very

striking and rather decreased in the mutant discs.

Unfortunately, for technical reasons, the same mutated PcG gene was not used for the two

experiments and therefore this makes a comparison difficult to interpret. PC and PH may for

example have different target genes. It is clear that ideally the fragmentation/transplantation

experiment should be repeated with discs mutant for the same Pc allele that was used in the

experiment that uses ectopic wg-expressing clones.
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However, it may be difficult to compare the effect of such PcG mutants between the two

experiments. In one strategy, the fragmentation and wounding steps were skipped and

replaced by directly promoting ectopic wg expression which is normally a consequence of the

fragmentation itself (Gibson and Schubiger, 1999). The establishment of the new wg-

expressing domain after fragmentation and in vivo culture represents a change in the gene

expression program of the cells and could itself be influenced by PcG genes. In the

fragmentation/transplantation experiment, PcG proteins could have an influence in the two

steps leading to transdetermination (Fig.  24). Therefore, if a mutation in a PcG group

interferes with the establishment of the wg-expressing domain, vg may not be expressed and

the frequency of transdetermination will decrease.

One gene known to be regulated by PcG/trxG genes via a PRE/TRE (Gindhart and Kaufman,

1995) and that may be downregulated during leg-to-wing transdetermination is the homeotic

gene Sex comb reduced (Scr). Scr is expressed in larvae in legs, antennas and thorax. It is

required for tarsus determination in leg and antenna discs (Percival-Smith et al., 1997). To

allow the leg-to-wing transdetermination event, one can predict that Scr should be turned off

in the first leg. In addition, the leg imaginal disc 3/4 fragment that have undergone

regeneration after in vivo culture show expression of wg in a region at the wound after a new

posterior compartment has been duplicated resulting from the secretion of Hh from the

Figure  24: PcG/trxG proteins may influence transdetermination events in a two
step process. In the fragmentation/transplantation experiment, Hh secretion
emmanating from peripodial cells induces a wg-expressing domain in cells at the
wound. The establishment of this new expression program may be  influenced  by
PcG/trxG proteins. In a second step, the new Wg signaling from cells at the wound is
combined with Dpp signalling from cells at the A-P boundary, inducing vg expression
which is also influenced by PcG/trxG proteins as we could show. Therefore, the
fragmentation/transplantation experiment establishes transdetermination in a two step
process both probably influenced by PcG/trxG genes. However, ectopic expression of
wg-expressing clones using the FRT/FLP technique skips the first step.
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peripodial cells (Gibson and Schubiger, 1999). This new posterior compartment expresses en

and most probably hh. Both these genes are under the control of PcG genes. Therefore these

genes represent targets that may affect the frequency of transdetermination in the mutant discs

lacking one functional copy of ph or Pc.

2.2.3.3 The fragmentation/transplantation technique can be used to study the role of CMMs

in the mitotic inheritance of the transdetermined state

One advantage of the fragmentation/transplantation experiment is that it is possible to

cultivate discs in vivo as long as desired (the disc can also be retransplanted to a new host

later on if necessary). By this way, a high number of cell divisions can be induced. This could

be very useful to study the mechanisms responsible for the maintenance of the

transdetermined state through cell divisions.

Interestingly, when the “fragmentation/transplantation” experiment was performed, I could

observed that wild type discs tend to have larger domains of transdetermined cells than

mutant discs. Although the ph mutation may reduce the rate of cell proliferation, which is

unlikely because ph mutant discs in larvae do not have proliferation defects, this result could

suggest that mutations in the ph gene may impair the stable inheritance of the new

transdetermined state through cell divisions. This could indicate that a stable PcG-mediated

repression pattern has to be established and transmitted to the progenies in order to allow a

proper inheritance of the transdetermined state. In other words, PcG proteins would be

necessary to maintain the new cell identity by providing a stable repression of other

developmental pathways that could interfere.

Obviously more experiments must be performed to confirm the role PcG and trxG genes in

the inheritance of the transdetermined state. It can be assumed that trxG proteins are

responsible for the maintenance of active transcriptional states at CMMs through mitosis

allowing the newly open developmental pathways to be inherited, whereas PcG proteins

ensure that other developmental pathways are kept repressed. One way to investigate if the

leg-to-wing switch of identity is clonally inheritable in imaginal disc cells, and if this

inheritance depends on trxG proteins, would be to produce, at the moment of fragmentation,

clones of cells genetically marked with GFP, using the FRT/FLP technique. After

transplantation and in vivo culture of the fragmented imaginal leg disc, large GFP-expressing

clones should be observed at the blastema. An immunostaining against Vg should tell whether
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cells of these clones have transdetermined, and how the new identity is clonally inherited, in a

wild type background, and in a background containing mutations in the trxG or PcG genes.

2.2.3.4 Defining conditions needed to induce a change in the determination state

Hadorn (1966; 1978) proposed the Dilution-Equilibrium theory as an explanation of

how transdetermination might arise. This theory is based on the role of proliferation in

transdetermination although proliferation by itself is not sufficient to induce

transdetermination (Shearn et al., 1984). The theory posits that factors controlling

determination are present in different equilibria in different cell types and that such factors

normally become diluted and resynthesized with each cell cycle. Changes in proliferation rate

could disrupt an equilibrium of determination factors such that a new equilibrium, which

would represent a new determined state might be reached. I indeed could show that reducing

the amount of PC or PH in the cells modifies the frequency of transdetermination. It is

possible that in highly proliferating cells forming the blastema at the wound, epigenetic

factors like the PcG and trxG proteins might be transiently diluted. Rather than defining new

specific determined state, this dilution may render the CMMs instable and therefore more

“easily” switchable upon strong transactivator pulses following the creation of new

morphogen gradiant combinations (wg expressed at the wound in a region where Dpp is in

high concentration). Furthermore, cells at the wound, which will later undergo an extensive

proliferation period, may have been subject to a consistent transient downregulation of some

chromatin proteins (trxG and PcG proteins as well as the histone-deacetylase Rpd3)

consequently to the activation of the JNK pathway. It is certainly important that

downregulation of chromatin factors is only transient in order to facilitate CMM switching,

but later on normal concentrations should be restored for proper inheritance of the

transdetermined state.

A high rate of cell proliferation may help in switching the epigenetic mark on the DNA. It

appeared in the last months that the state of histone methylation, conferred by E(z) for PcG-

mediated repression (Czermin et al., 2002; Müller et al., 2002; Cao et al., 2002; Kuzmichev et

al., 2002) and ASH1 for trx-mediated activation (Beisel et al., 2002), may provide the

epigenetic mark needed to maintain the initial CMM activation state through mitosis. Since

no histone-demethylase could be found so far despite extensive efforts (Jenuwein and Allis,

2001), it is assumed that there is no active histone demethylation process in the cell which

actually make histone methylation a good candidate for being a stable epigenetic imprint. The
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histone methylation state at CMMs is certainly maintained through DNA methylation by the

binding of the methylase-complex to the previously methylated nucleosomes, semi-

conservatively distributed after DNA replication, allowing newly deposed nucleosomes to be

in turn methylated. However, if the Pc/Trx-complex containing a methylase is destabilized by

downregulation of some of its components, and prevented for several rounds of cell divisions

from binding to the methylated histones at the CMMs because of the presence at the promoter

of new counteracting transcription factors, one could envisage that the epigenetic mark could

be progressively lost after a few rounds of cell divisions, and a new one may be established.

In this way, CMMs could be progressively switched to a new stable state of activation.

Interestingly, the switch in the hh CMM activation state we observed in the wing pouch cells

(see Part I of the thesis) after a transient expression of engrailed takes place at a moment in

which these cells undergo an extensive proliferation period (2nd and 3rd instar larvae).

Therefore, changes of the signaling molecule combination in the environment, a high rate of

cell proliferation, and a transient downregulation of proteins involved in PcG/trxG-mediated

mecanisms may be conditions necessary to induce switches of CMMs potentially leading to

inheritable transdetermination events in organisms.
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In this thesis I have shown that the state of determination of a cell, defined by a

specific gene expression program, although being clonally inheritable is not fixed once and

for all. Under certain conditions, cells can actually switch to a new identity, to a new gene

expression program, and maintain it again through mitosis. I could demonstrate, that the hh

gene is regulated by epigenetic mechanisms allowing inheritance of the initial transcriptional

state through cell divisions. However, this transcriptional state can apparently, by a still

mostly unknown mechanism, be switched during development to a new mitotically inheritable

state leading to a stable change in the identity of the cell. PcG and trxG proteins are involved

in this phenomenon through their interplay at CMMs.

Removing PC from the cells during imaginal disc development can induce

transdetermination-like events, and diluting the concentration of PC in the cells facilitates

transdetermination. Therefore, the change of cell identity observed in transdetermination

events may be explained by a switch in the CMMs of some genes, leading to a new,

mitotically inheritable, gene expression program in some cells. The maintenance of the new

cell identity would be processed by trxG and PcG genes. Several conditions favour or are

necessary for transdetermination: i) A new environment providing new signaling molecules

establishes a new gene expression pattern (Maves and Schubiger, 1995; 1998; Johnston and

Schubiger, 1996; Gibson and Schubiger, 1999). ii) Extensive cell proliferation appears to be

necessary (Hadorn, 1966), and it could contribute to a transient dilution of the concentration

of PcG and trxG-proteins in the cells, which favours the switch of developmental pathways by

destabilizing CMMs. Maybe even more importantly, DNA replication may help in changing

the epigenetic mark by a progressive dilution of modified histones. iii) Activation of the JNK

pathway at the wound of fragmented imaginal discs or vertebrate tissue may help CMMs

switching by transiently downregulating expression of proteins involved in PcG and trxG-

mediated mechanisms. However, it is still necessary to confirm by Western blot or RT-PCR

the fact that genes like the histone-deacetylase Rpd3, or the trxG gene brahma and the PcG

gene polyhomeotic are indeed downregulated as reported by the recent study on the genome-

wide transcriptional response to activation of the JNK pathway in the Drosophila embryo

(Jasper et al., 2001).

It remains to be determined whether possible switches in cell identity have any relevance for

development in normal physiological conditions. It must necessarily be under a strict control,

however it is becoming increasingly clear that the programming of determined state may not

be totally hard-wired. How often can a cell change its gene expression program during

development in order to switch to a new identity? When could it be used? Further experiments
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must be conducted to decipher more precisely this the mechanism by which CMMs are

switched, and for instance look more carefully at the role of histone-methylation.

In addition, it remains to determine more clearly how PcG and trxG are able, through their

interplays at CMMs, to maintain the new transdetermined state through many cell divisions.

This will give insights of how a specific state of determination is maintained or eventually

switched to a new one during development.

One exciting consequence of controlling cell determination and transdetermination

may lie in possible medical applications deriving from tissue remodelling studies.

In mammals, stem cell function is to maintain the cellular homeostasis of tissues and

regenerate cells after injury. These stem cells are found in a variety of tissues like in the

developing and adult brain, liver, intestine and hematopoietic system. They were initially

believed to be restricted in their potential and limited to generate the types of cells present in

the tissue. However, in recent years, it has became increasingly clear that in mammal adult

tissues, a variety of stem cells are, under specific signals, able to divide and change their fate

into a remarkably wide range of identities. For example, some striking results have shown that

hematopoiesis in irradiated mice could be reconstituted after intraveneous injection of neural

stem cells. Likewise, generation of liver cells, myocytes and neurons could be observed

deriving from mouse bone marrow cells (Ferrari et al., 1998; Bjornson et al., 1999; Lagasse et

al., 2000; Brazelton et al., 2000; Mezey et al., 2000; Krause et al., 2001). Interestingly, studies

realised in humans having received a transplant demonstrated that some stem cells deriving

from the blood and bone marrow grafted cells could generate hepatocytes, suggesting that

stem cells in humans also show some plasticity (Alison et al., 2000; Theise et al., 2000).

The production of heterokaryons, resulting of the fusion of the nuclei of two cells from

different types, may also induce a change of identity of the cells. For example, after the fusion

of mouse muscle cells containing the factor MyoD with human fibroblasts, human muscle

proteins were produced in the heterokaryon and its progeny (Pavlath and Blau, 1986). It

suggests that a new expression program is established and influenced by the epigenetic

signals in the cytoplasm of the new partner. Even more strikingly, recent studies reported that

in cocultures of embryonic stem cells with brain or bone marrow cells, pluripotent hybrid

cells emerged spontaneously, suggesting that stem cell plasticity could result from cell fusion

(Terada et al., 2002; Ying et al. 2002). Even if it is hard to believe that tetraploid

heterokaryons could be at the origin of regenerated tissues, these experiments suggest

however that a change in the intracellular concentration of epigenetic factors could influence
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the capacity of a determined cell to switch to another fate. Therefore, the ability of

mammalian stem cells or progenitor cells to dramatically change their fate and produce

completely new types of cells may reflect their capacity to answer to a new environment and

open new developmental pathways. In addition their plasticity may be favoured by conditions

influencing the intracellular concentration of epigenetic factors.

One could envisage in the future to be able to control the conditions that would allow

some cells to easily switch their fate to a new defined one. By using specific signaling

molecules, inducing cell proliferation, and transiently downregulating or inhibiting a number

of proteins involved in PcG/trxG-mediated mechanisms, one may be able to switch the

determination of some cells to a new desired direction. This could be extremely useful for

therapeutic applications.
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 4.1 Strains and handling

The following stocks were obtained from Bloomington, Indiana, USA, unless otherwise

noted.  Stocks were raised on standard fly food (10 L water, 80 g agar, 180 g dry yeast, 100 g

soya-flour, 220 g honey, 800 g cornmeal, 24 g nipagin (methyl-4-hydroxybensoate; Merck),

62.5 ml propionic acid (Sigma)). Flies were maintained on standard culture medium at 18°C,

except when stated otherwise with 60-70% relative humidity. Embryos of the strain w1118 were

used as a host for generating the transgenic lines.

In a modified version of the GAL47-1 (Brand et al., 1994), the hsGAL4 construct is inserted

into the CyO chromosomes and the mini-white marker gene was mutated with EMS. This

allows the hs-GAL4 driver to be followed during crossings (gift from M. Prestel and R. Paro).

 ph409 is an hypomorphic viable mutation, Pc3 is considered to be a strong antimorph mutant.

trxE2 and brm2 are two amorphic mutations, recombined on the same chromosome. The vg-

GAL4 line expresses GAL4 in a thin stripe at the dorso-ventral boundary of wing imaginal

discs (Simmonds et al., 1995). The hs-GAL4 line is able to produce high amount of GAL4

protein upon heatshock. However, at 25°C it is known to be leaky in salivary glands, as low

amount of GAL4 are produced. The EP3521 line, termed here EP-hh, (Rørth et al., 1998)

possesses an EP element inserted upstream of the hh gene. Upon GAL4 induction a functional

Hh protein is expressed (Rørth et al., 1998). The FLW-1 line possesses the Fab7-CMM

controlling expression of the reporter genes lacZ and mini-white (Cavalli and Paro, 1998).

UAS-en (Guillen et al., 1995; Tabata et al., 1995), UAS-hh (Fietz et al 1995), and UAS-GFP

are lines able to express functional En, Hh and GFP proteins respectively upon a GAL4 pulse.

The hh-lacZ line P30 (Lee et al., 1992) in which lacZ expression reflects expression of the

endogenous hh gene was used for immunostainings. An enhancer-trap line with lacZ

reflecting puc expression pattern (Martin-Blanco et al., 1998), and enhancer-trap line with

lacZ reflecting vg expression at the dorso-ventral boundary were used.

For the heat-shock experiments, in order to produce a short pulse of GAL4 protein in the

embryos, flies were allowed to lay overnight on apple juice agar plates at 21°C and embryos

(4 to 16 hours old) were heat shocked at 37°C in a water bath for 55 minutes. 2nd instar larvae

were heat shocked in small vials incubated in a water bath at 37°C for 1 hour.

Fly stocks Obtained from

Oregon R R. Paro
w1118 R. Paro
w hs-FLP; Dr/TM3



                                                                                                                                                 IV. Materials and Methods.

76

w Pc3 / TM3 R. Paro
w PcXT109 / TM3 R. Paro
w ph401 N. Randsholt
w ph409 N. Randsholt
w; trxE2, brm2 / TM6 R. Paro
w, UAS-en ftz.lacZ P. Lawrence
w hs-FLP; UAS-hh (III)
ry; hh[P30]  (hh-lacZ) (enhancer trap)
vg boundary enhancer-lacZ (II) (enhancer trap) S. Cohen
pucE69-lacZ (enhancer trap) D. Bohman
w; Ubi-GFP FRTw+ / TM3 (Insertion sites: 61E-F; 79D-F)
w; FRTw+   (Insertion site 79D-F)
UAS-GFP (II) R. Paro
FLW-I R. Paro
EP3521 / TM3 (EPhh)
hs-GAL4 (II) Brandt
w; hs-GAL4 Cyo / Sp M. Prestle and R. Paro
w; Act>y+>wingless K. Basler

4.2 Antibodies

Antigen Source Obtained from Dilution
engrailed mouse P. Lawrence 1/300 (immunostaining)

Ultrabithorax mouse R. White 1/20 (immunostaining)

wingless mouse S. Cohen 1/10 (immunostaining)

ß-Galactosidase mouse Roche (immunostaining)

ß-Galactosidase rabbit Abcam 1/1000 (immunostaining)

ß-Galactosidase mouse Sigma 1/1000 (Western)

Polycomb rabbit B. Koch (Paro) 1/100 (polytenes)

polyhomeotic rabbit H. Strutt (Paro) 1/500 (polytenes)

DIG-AP Roche 1/2000 (in situ)

α-tubulin mouse Sigma 1/1200 (Western)

α-rabbit Cy3 goat Dianova 1/800 (immunostaining)

α-mouse Cy3 goat Dianova 1/800 (immunostaining)

α-rabbit Alexa 488 donkey Molecular Probes 1/100 (immunostaining)

α-mouse HRP goat Amersham Life Sciences 1/2000 (Western)

4.3 Primers

Name Description Sequence
Pair1LP1036 hedgehog genomic region. Was used to amplify

DNA fragments for the dot blot.
GGATCACCTCCATCTCC
ATCTCCACATC

Pair1UP28 ion. Was used to amplify DNA fragments for the ATCCCAATCCCTGGTA
GCCGTAAATGTC

Pair2LP2028 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

TCGAGTGTGTGTGCGA
GAGTCTATGTGG
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Pair2UP1036 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

GATGTGGAGATGGAGA
TGGAGGTGATCC

Pair3LP2973 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

TACATATGGGTTCAAT
GCTGCTTCCGTT

Pair3UP2028 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

CCACATAGACTCTCGC
ACACACACTCGA

Pair4LP3943 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

ACTTCACTTTTGGCACA
CAGACACGCTT

Pair4UP2973 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

AACGGAAGCAGCATTG
AACCCATATGTA

Pair5LP5075 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

GAGCGATAAGCGATCG
CTAATTTGACAA

Pair5UP3943 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

AAGCGTGTCTGTGTGC
CAAAAGTGAAGT

Pair6LP5988 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

AGCACACATTTTGTTCT
GGCACCGATAT

Pair6UP5075 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

TTGTCAAATTAGCGAT
CGCTTATCGCTC

Pair7LP7017 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

GCAGGAATGGCAAAAG
ATTTCAATGTCA

Pair7UP5988 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

ATATCGGTGCCAGAAC
AAAATGTGTGCT

Pair8LP7989 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

TAAGTTTGATTACTTTG
TTCGCCGCAGG

Pair8UP7017 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

TGACATTGAAATCTTTT
GCCATTCCTGC

Pair9LP9024 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

GATTAAGGGTGCTGTA
TCGCGGCTAATT

Pair9UP7989 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

CCTGCGGCGAACAAAG
TAATCAAACTTA

Pair10LP10017 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

ATGTACCATCTCCCATC
TGTGGGCTTTT

Pair10UP9024 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

AATTAGCCGCGATACA
GCACCCTTAATC

Pair11LP11004 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

AGAGGATCGCTGCCAA
CGAGTGTGTATA

Pair11UP10017 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

AAAAGCCCACAGATGG
GAGATGGTACAT

Pair12LP11929 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

GAGTGCTTCTACCTCTT
TGCGCTCTGTG

Pair12UP11004 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

TATACACACTCGTTGG
CAGCGATCCTCT

Pair13LP13024 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

GTCGTGTCTTTTAACTG
GCACTGGCACT

Pair13UP11929 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

CACAGAGCGCAAAGAG
GTAGAAGCACTC

Pair14LP14016 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

GATATTGCCCAAGGAG
ACCAAGTTGGAG

Pair14UP13024 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

AGTGCCAGTGCCAGTT
AAAAGACACGAC

Pair15LP15014 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

TAAAACCCATAATCGA
TGTGGATGGACG

Pair15UP14016 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

CTCCAACTTGGTCTCCT
TGGGCAATATC

Pair16LP15913 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

TCTAATTTGGCGTTAAG
CATCCAATTGC

Pair16UP15014 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

CGTCCATCCACATCGA
TTATGGGTTTTA

Pair17LP17543 hedgehog genomic region. Was used to amplify TGCATTTTAGTATTTCA
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DNA fragments for the dot blot. AGGCTGGCTGC

Pair17LP15913 hedgehog genomic region. Was used to amplify
DNA fragments for the dot blot.

GCAATTGGATGCTTAA
CGCCAAATTAGA

UphhPRE.UP243.T3.No
t1

hedgehog upstream region + not1 site+ T3
promoter (can be used to make RNA probe). Was
used to clone the hh CMM in pUZ

AATTAACCCTCACTAA
AGGGAGAgcggccgcCGT
TTTTAGTTTGCTGCCTG
CATT

UphhPRELP1.3735.T7.
Spe1:

hedgehog upstream region + Spe1 site+ T7
promoter (can be used to make RNA probe). Was
used to clone the hh CMM in pUZ

TAATACGACTCACTAT
AGGGAGActagtAATGAC
ATTTCCGAGCGGAGTA
TC

UphhPRELP2.3580.T7.
Spe1:

hedgehog upstream region + Spe1 site+ T7
promoter (can be used to make RNA probe). Was
used to clone the hh CMM in pUZ

TAATACGACTCACTAT
AGGGAGactagtACACTA
TCGCCTCGAGTTCATTC
C

5’CI Sequence in the Cubitus Interruptus gene (can be
used to make RNA probe)

ATGGAGTTCGAGCATC
TGAC

3’CIT7 Sequence in the Cubitus Interruptus gene (can be
used to make RNA probe). The T7 promoter
sequence allows to make antisens RNA probe for
in situs

taatacgactcactatagggAGAG
CTGCTAACATCGGGA

4.4 DNA Vectors and cloning strategy

Preparation of the genomic stretch containing the hedgehog gene region

A genomic stretch containing the hh gene region from Drosophila Melanogater could

be obtained from BACPAC (BAC RPCI 98-3N12) (Genbank number: AC008365). It contains

a genomic insert of about 160 kbp. To shorten this fragment to the region of interest, 8mg of

the BAC DNA has been digested overnight with 6 U of Fse I (New England Biolab) at 37°C

in 50 ml. After phenol extraction, the digested DNA was resuspended in 30 ml ddH2O and

ligated in a total volume of 300 ml overnight at room temperature. Electro MAX DH10B

competent cells (Gibco) were transformed. From this procedure, a BAC was recovered with

an insert of only about 45 kb containing the hedgehog gene as well as 30 kb of upstream

sequence. This 53kb long BAC was used as genomic DNA to which immunoprecipitated

DNA could be hybridized for a southern blot.

Construction of the transgenes

The 3,4 kb fragment upstream of the transcription start site was amplified by PCR

(Table 4) using the Expand High Fidelity PCR System from Roche which contains a

thermostable Taq DNA polymerase and a proofreading polymerase.

aattaaccctcactaaagggagagcggccgcCGTTTTTAGTTTGCTGCCTGCATT was used as upper

primer, and taatacgactcactatagggagactagtACACTATCGCCTCGAGTTCATTCC as lower

primer (the capital letters denote the sequence homologous to the genomic hh upstream

region). For the 3,6 kb fragment the same cloning strategy was followed but the following
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p r i m e r  w a s  u s e d  i n s t e a d  a s  l o w e r  p r i m e r :

taatacgactcactatagggagactagtAATGACATTTCCGAGCGGAGTATC.

1 x denature template 2min at 94°C

15 x denaturation at 94°C for 20 s

annealing from 70 to 55°C (decrease from 1°C every new cycle) for 30 s

elongation at 72°C for 3.30 min

20x denaturation at 94°C for 20 s

annealing at 55°C

elongation at 72°C for 3.30 min + add 20 s each new cycle

1 x prolonged elongation 7 min at 72°C

Table  4: PCR cycle scheme for the amplification of the upstream region of hh.

Thereby, new restriction sites were created at both ends. The PCR product was digested with

the Not1 and Spe1 restriction enzymes and the resulting fragment was cloned via the Not1 and

Spe1 sites into the pUZ vector (Lyko et al. 1997).

4.5 Transformation of w1118 with pUAST constructs

The appropriate pUZ constructs (300 ng/ml, described in "DNA Constructs") were

coinjected into w1118 embryos with the helper DNA pUChspD2-3 (100 ng/ml).  Embryos were

recovered from 30 minutes egg lays at 25 oC. The embryos were transferred to 18 oC, were

dechorionised with a 1:5 dilution of bleach (14%)-water solution, and then were washed

extensively with water until bleach odor was no longer detectable. Around 70-100 embryos

were lined on 16% agar plates and were transferred onto a double-sided sticky tape on a

coverslip. The embryos were dehydrated in a closed chamber containing Silica gel for 7

minutes and then covered with Voltalef 10 S oil (Lehmann & Voss & Co.). Microinjection of

the pUAST/helper DNA solution into embryos was performed using the Eppendorf FemtoJet

microinjector. Larvae from injected embryos were collected into standard fly food and

allowed to develop. Eclosed flies were crossed to w1118 virgins or males; progenies were then

scored for pigmented eyes. At least 5 different independent transformants were kept as stocks

and the chromosome in which the construct was inserted was defined by established genetic

methods.
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4.6 In situ hybridisation of a DNA probe on polytene chromosomes from salivary glands

Preparation of the polytene chromosomes

Wandering 3rd instar larvae grown at 18°C on rich medium supplemented with yeast were

dissected in PBS/ 0,1% TritonX-100 and salivary glands were transferred in 30ml 45% acetic

acid on a 22x22 mm coverslip for 3-5 min for fixation. The coverslip was then picked up with

a poly-L-Lysin coated slide and tapped a few times with the tip of a pencil. If the spreading

was sufficient, as determined by inspection under the microscope, the slide was turned over

onto blotting paper and pressed heavily with the thumb. After freezing in liquid nitrogen, the

coverslip was flipped off with a razor blade. The slides were incubated immediately in

ethanol:acetic acid (3:1) for 3-5 min, dehydrated 10 min in 100% ethanol and air-dried. The

slides can be used immediately after air-drying, but aged preparations (at least one week at

room temperature) give better results.

Labelling the probe

The whole pUZ vector plus the 3,4 kb insert were used as template DNA. The vector was

digested with BamH1 in order to produce DNA fragments smaller than 5kb long. The

labelling was performed following the DIG-High Prime labelling kit (Roche) protocol. The

labelling reaction was performed overnight. After the reaction, the DIG-labelled DNA was

precipitated and the pellet washed. The pellet is resuspended in 50ml hybridisation buffer.

Hybridization

10 ml of this solution was applied to one chromosome preparation, mounted with a coverslip

and sealed with rubber cement. The probe and the chromosomal DNA were denatured

simultaneously by incubating the slide 3 min in a metalbox warmed at 70°C in a waterbath.

Hybridization was performed overnight at 37°C in a humid chamber.

Detection of the signal

After hybridisation, coverslips were removed, and the slides were washed twice for 30 min in

2x SSC at 53°C. For blocking, the slides were incubated for 45 min in TNM-A. Then the

slides were incubated for 1 hour at room temperature with the anti-DIG-AP in PBS and

afterwards washed 3 times for 5 min in PBS/0,1% Triton X-100. Then the slides were stained

with the detection solution containing a mix of NBT/BCIP in AP-buffer. The reaction was

followed under the microscope and stopped by washing the slides with PBS. Chromosomes

were then mounted with a coverslip for microscopy.
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Solutions

Hybridization-solution: 50% Formamide; 2x SSC; 10% Dextransulfate, 100mg/ml sheared

salmon sperm.

TNM-A: 100 mM Tris-HCl pH 7,5; 100 mM NaCl; 2mM MgCl2; 0,05% Triton X-100; 3%

BSA

AP-buffer: 20mM Tris/HCl; 100mM NaCl; 50mM MgCl2.

1x SSC: 0,15 M NaCl; 0,015 M Na-Citrat.

1x PBS: 130 mM NaCl; 2,7 mM KCl; 1,5 mM KH2PO4; 8mM Na2HPO4.

4.7 The FRT/FLP-recombination techniques

To produce “loss of function clones”

This technique takes benefit from engineered chromosomes containing a specific yeast

sequence (FRT) which is a target for the yeast FLP recombinase (Dang and Perrimon, 1992).

By low level induction of the FLP-recombinase in transgenic flies, recombination between

two homologous chromosomes containing the FRT sequence can be induced in a small

number of cells. It is used to produce clones of homozygous mutant cells in discs that are

heterozygous for recessive alleles of interest (mosaics) (Fig. 25). This can be of special

interest to study the role of a gene at a stage of development which can not be reached my

homozygous mutants because of lethality. It is also used to study the behavior of mutant

(homozygous) cells in a wild type environment (heterozygous).

Figure 25: The
FRT/FLP
recombination
t e c h n i q u e  t o
produce “loss of
function clones”.
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Based on this scheme, imaginal discs of heterozygous flies for the Pc3 allele should possess

clones of cells homozygous for the Polycomb mutated allele and without any GFP, whereas

“twin” clones will have two wild type copies of Polycomb and two copies of GFP.

Genotype of Flies: hsFLP ; + ; frt:GFP / frt:Pc3

The FLP-recombinase is under the control of the heat-shock promoter (hsp). A small heat

shock at a chosen stage of the development can induce a transient expression of the FLP-

recombinase in the cells. 2nd instar larvae were heat-shocked 1 hour at 37°C in order to

induce a transient expression of the FLP-recombinase which promotes mitotic recombination

at the FRT sites.

To produce “gain of function clones”

Another use of the FLP/FRT-recombination technique allows the production of “gain

of function” clones in a wild type environment (Struhl and Basler, 1993). In this case, the

FRT-cassette is made in which two FRT sequences frames a marker gene which expression is

controlled by a constitutive promoter downstream of this gene a termination sequence stops

the transcription (Fig. 26). Downstream of the FRT-cassette is placed the gene of interest.

Upon a transient expression of FLP in the cells during development, the recombination of the

two FRT sequence can occur and the FRT-cassette containing the marker gene and the

termination sequence is flipped out. This leads to an activation of the transcription of the gene

of the interest thanks to the constitutive promoter. In this case, the cells which will have

flipped out the cassette will produce clones overexpressing a new gene.

Figure 26: Production of gain of
function clones. In cells, the
constitutive promoter activate
transcription of the marker gene
which is blocked further by the
termination sequence. When the
FLP recombinase is transiently
expressed, the FRT-cassette jumps
out and the constitutive promoter
can activate transcription of the
favorite gene. The cells will
produce gain of function clone.

Constitutive promoter

FRT FRT

STOPmarker
Your favorite gene

(lost)
FLP recombinase (hs-FLP)

Your favorite gene

Your favorite gene is expressed

Only the marker gene is expressed
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Figure 27: Genetic scheme for the generation of the
FRT/Pc3 chromosome

Production of the recombined FRT/Pc3 chromosome.

The P c3 mutation which is

considered to be a strong antimorph was

recombined with a stock containing the

FRT sequence on the 3rd chromosome and

marked with the mini-white gene. Flies

heterozygotes for the Pc3 mutation exhibit

visible homeotic phenotypes like additional

sex combs on midllegs and posterior legs of

males and crumpled wings. However this

phenotype is not fully penetrant. In order to

simplify the screening procedure, an

additional step have been made in which

flies are crossed to a stock heterozygous for

the Pcl(XM3) mutation, on the 2nd chromosomes (Fig. 27). Flies heterozygote for this mutation

do not show any strong phenotype by themselves. However, flies transheterozygote for

Pcl(XM3) and Pc3 show a fully penetrant enhanced phenotype. Therefore, during the screening

procedure, flies showing strong homeotic phenotypes and red eyes are considered to have

recombined the FRT locus with the Pc3  allele. The Pcl(XM3) allele is crossed out afterwards.

4.8 Protocol for immunostaining of imaginal discs

Dissection of imaginal discs

Dissection was done in PBS. Using forceps, the larvae was catched by the head, and

with other hand, cut the larvae in two parts by pulling out from the middle of the body. The

cuticle of the larvae was everted “inside-out” along the forceps by keeping on holding the

head (Fig. 28). Imaginal discs appear, stuck to the cuticle. Salivary glands and the fat tissues

(in white) must be carefully removed (Can be stored in Eppendorf caps in PBS, on ice, up to 1

hour).

Fixation

The discs and the cuticle were fixed in PBS / 3%PFA for 30 min, and then rinsed twice and

washed once for 5 min in PBS.
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Immunostaining

After blocking in PBS / 0,3%TritonX100 / 5%BSA (3x10 min), the cuticles were incubated in

PBS / 0,1%TritonX100 / 1%BSA + primary antibodies (dilution for antibodies must be

checked). The preparation was incubated overnight at 4°C, on a rotating tray, in a humid

chamber to prevent from evaporation.

On the next morning, the preparation was rinsed two times in PBS / 0,1% TritonX100 and

incubated in PBS / 0,1%TritonX100 / 1%BSA (3x15 min). Afterwards, the preparation was

incubated in PBS / 0,1%TritonX100 / 1%BSA / 2% goat serum + secondary antibody (check

dilution of antibody) and again incubated 1 hour at room temperature on a rotating plate. It

was rinsed once in PBS / 0,1%TritonX100, and washed in PBS / 0,1%TritonX100 (3x15 min)

and finally rinsed in PBS.

Final dissection

A drop of 70% glycerol / PBS was put on a slide with two larval cuticles in the drop. Using

needles, imaginal discs were detached from cuticles. When all imaginal discs (wing, leg, eye-

antenna) were removed from the cuticles, cuticles were removed from the slide. A coverslip

was carefully layed on the slide, and sealed with nailpolish. Results were observed under the

fluorescence microscope.

4.9 Histochemical detection of ß-galactosidase activity in embryos and imaginal discs

An overnight collection of embryos was dechorionated for 2-3 min in 3% Na-

Hypoclorid and washed in PBS. The embryos were fixed in small baskets for 10 min in the

fix-solution. Finally the embryos were carefully washed in PBS, shortly dried and transferred

with a brush to an Eppendorf tube filled with staining solution.

Figure 28: The “inside-out” method for
dissection of larvae. The larva is first torn in
two part with the forceps. One forceps then
catch the mouth part while the other one
everts the cuticle “inside-out”. The imaginal
discs are now sticking out into the dissection
medium. The fat body and the gut should be
removed. The scheme depicts how the
preparation should look like after the
dissection.
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For imaginal discs, after the dissection of the larvae by the “inside-out” technique, the cuticles

with the discs were fixed for 15 min in PBS/1% glutaraldehyde at room temperature. After

fixation, they were washed twice with PBS and a staining solution was added.

One can stain from 5 min to overnight at 37°C (check staining under stereoview). After

staining, it should be washed in PBS, and mounted in PBS/70% glycerol.

Solution:

Fix-solution for embryos: 5 ml Heptan; 0,9 ml 25% Glutaraldehyde; 0,1 ml 1M Phosphate

buffer pH 7.

Mix vigorously, and take the upper phase for fixation.

Staining-solution: 10 mM Na-phosphate buffer pH 7,2; 150mM NaCl; 1 mM MgCl2; 6 mM

K4{FeII(CN)6}; 6 mM K3{FeIII(CN)6}; 0,3% Triton X-100.

4.10 In situ hybridization of imaginal discs

DIG-labeling of RNA Probes

The work was done in Rnase-free conditions.

Two methods were used to produce RNA-probes. The DNA template was either

cloned in pBlueScript and transcribed using the T3 or T7 promoter, or the DNA fragment to

be transcribed was amplified with primers containing one of the two promoters. The labeling

reaction was performed at 37°C for 2 hours. It contained the template DNA, some Rnase

inhibitor (Promega), transcription buffer (Boeringer Mannheim), DIG RNA-labeling mix

(Roche), T7 or T3 RNA Polymerase (Roche). The DNA was subsequently digested by

addition of Dnase (Roche) to the reaction. The labeled RNA was afterwards purified using the

QIAquick PCR purification Kit (Qiagen), and resuspended in 50ml Rnase free ddH2O. The

same volume of formamide was added and the RNA was stored at -80°C.

Tissue preparation

Imaginal discs were dissected in PBS according to the “inside-out” technique described in the

protocol for immunostaining of the imaginal discs section. The cuticle containing the discs

was immediately transferred to 4% formaldehyde/PBS on ice and fixed for 15-20 min

followed by a fixation in 4% formalfehyde/PBS containing 0,6% Triton X-100 at room
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temperature for an additional 15-20 min. Then, it was washed three times in PBS containing

0,3% Triton X-100 (PBS/TX) with rocking (5 min each wash).

At this stage, if it was needed to store discs for future use, they were rinsed in PBS,

dehydrated through an ethanol series (25%, 50%, 75%, twice absolute, 10 min each) and

stored in ethanol at –20°C. Storage in ethanol reduces nonspecific background staining.

After rehydration through an ethanol series, the preparation was rinsed in PBS containing

0,1% Tween20 (PBT). In the mean time, a tube with fixed discs or embryos was prepared,

which was used for the preabsorbtion of antibodies. Fixation with Fix-solution/PBT (1:1) for

10 min was performed, followed by rinsing (three times) and washing once for 5 min with

PBT. Disc were subjected to limited Proteinase K digestion for 4 min exactly in 500ml of

50mg/ml Proteinase K in PBT (a 50mg/ml Proteinase K stock solution must be made and 5ml

of the stock solution is diluted in 5ml PBT). 500ml Glycin/PBT (4mg/ml) was added and the

discs were incubated 3 min and rinsed twice with PBT. Be excessively gentle with the tissue

from this point on, as it is very fragile and the discs tend to break away. When adding

solutions to the tube, let them drip down the wall of the tube to minimize disruption of the

tissue. The preparation was post-fixed with Fix-solution/PBT (1:1) for 20 min and rinse 3

times, washed once for 5 min with PBT (At this point the tube containing the discs or the

embryos for the preabsorbtion of the antibodies were stored at 4°C). Washing with 500ml

HybeB-solution/PBT (1:1) was done and equilibrium waited. This procedure was repeated

with 250ml HybeB-solution, and with 250ml Hybe-solution.

Prehybridization, hybridization and washing

Discs were prehybridized with 250ml Hybe-solution at 65°C for 30-60 min. 12 min before the

end of the prehybridization, 1-3ml of the Dig-labelled probe was added to 30ml of Hybe-

solution and pre-heated at 65°C for 10 min. Hybe-solution was removed from the tubes

containing the discs and 30ml of the pre-heated solution containing the probe was added.

Incubation overnight in a waterbath at 65°C was performed.

The next morning, the anti-Dig-AP antibody was diluted (1:200 in PBT) and incubated with

the prepared discs, or embryos for preabsorbtion. 500ml of prewarmed Hybe-solution was

added to the tubes containing the discs and the probe and then replaced by 500ml of

prewarmed HybeB-solution for 15 min at 65°C. This was repeated once. Then, 500ml PBT

was added, and the preparation was rinsed twice with PBT and washed 5 min and twice 20

min in PBT.
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Detection

Discs were incubated with preabsorbed Anti-Dig-AP were incubated for 2 hours (900ml PBT

plus 100ml of preabsorbed antibodies), rinsed twice with PBT and washed twice 15 min.

After equilibration with AP-buffer (twice), incubate in staining solution was performed

(200ml of NBT/PCIP stock solution (Roche) in 10 ml AP-buffer) in a 24-well plate. The

progression of the staining was observed under the microscope and stopped before

background appeared. Then discs were rinsed 3 times in PBT, washed twice for 5 min, and

mounted in 70% glycerol/PBS.

Solutions

HybeB-solution: 50% Formamide; 5x SSC; pH 5.

Hybe solution: 50% Formamide; 5x SSC; 5mg/ml Heparin (Fluka); 5mg/ml Torula Yeast

(Sigma); 0,1% Tween20 (Sigma); pH 5.

Fix-solution: 10% paraformaldehyde (Sigma) in PBS; 50mM EGTA.

1x SSC: 0,15 M NaCl; 0,015 M Na-Citrat.

1x PBS: 130 mM NaCl; 2,7 mM KCl; 1,5 mM KH2PO4; 8mM Na2HPO4.

PBT: 1x PBS (pH 7,5); 0,1% Tween20.

AP-buffer:20mM Tris/HCl; 100mM NaCl; 50mM MgCl2.

4.11 Chromatin immunoprecipitation and dot blot analysis

The chromatin immunoprecipitation was performed following a standard procedure

described in Strutt and Paro (2000). For the dot-blot, 14 primer pairs were designed for the

elaboration of 1 kb sized PCR fragments covering the hh genomic region. PCRs were

performed using genomic DNA as template and the Taq Polymerase from Qiagen (Table 5).

1 x denature template 2min at 94°C

15 x denaturation at 94°C for10 s

annealing from 70 to 55°C (decrease from 1°C every new cycle) for 30 s

elongation at 72°C for 1 min

20x denaturation at 94°C for10 s

annealing at 55°C

elongation at 72°C for 1 min + add 10 s each new cycle

1 x prolonged elongation 7 min at 72°C

Table  5: PCR scheme for production of 1kb fragment covering the hh genomic region. Genomic DNA is
used as template and the reaction volume used is 50ml.
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After the first PCR, another PCR was performed using the same cycle scheme and the same

primers, but using, for each DNA fragment, 0,5ml of the product of the first PCR as template

DNA for the second PCR. This procedure allows minimizing the concentration of genomic

DNA in the PCR product and should reduce background in the dot blot.

 After blotting the PCR-products on nylon membranes, the immunoprecipitated and the mock

DNA were radiolabelled using the rediprimeTM kit II (Amersham Pharmacia Biotech) and the

membranes were probed individually with their respective labeled DNA. Filters were exposed

overnight to a Phosphorimager screen, and scanned. Signals were quantified by using NIH

image software (version 1,62). For each dot, the intensity of the signal was quantified and the

background subtracted to it. Then, relative enrichment of the immunoprecipitated material

was calculated by dividing the intensity of the signal obtained for the PC and GAF chromatin-

immunoprecipitation with the one obtained for their respective mock.

4.12 Antibody staining of polytene chromosomes

Two pairs of salivary glands were isolated in PBS and were transferred onto one poly-

L-lysine (PLL) coated slide.  The glands were incubated into a drop of 45% Acetic Acid / 5%

fresh para-formaldehyde / ddH20 fixative for 10 minutes.  Salivary glands were then squashed

and were spread by gently moving the cover slip.  Slides were immersed in liquid nitrogen,

and coverslips flicked off.  Slides were washed in PBS twice for 5 minutes, permeabilised for

10 minutes in 1% Triton-X/PBS, blocked in a saturated solution of non-fat milk powder

(blocking solution) for 30 minutes, and incubated with appropriate primary antibody dilution

for 1 hour at room temperature, followed by overnight at 4oC. After washing three times with

saturated solution of milk powder, slides were incubated for 1 hour with secondary antibodies

(a-rabbit Alexa-488, 1:200; a-mouse Cy3, 1:500) at room temperature. Slides were rinsed in

PBS, and washed for 15 minutes in 0.2% NP-40, 0.2% Tween 20-80, 300 mM NaCl, and in

0.2% NP-40, 0.2% Tween 20-80, 400 mM NaCl solutions. Finally, the slides were DAPI (100

ng/ml) stained for 10 minutes and were mounted in 70% Glycerol/PBS.

4.13 Embryonic primary cell culture protocol and TSA treatment

An overnight laying of eggs was collected from apple-juice plates and poured through

a 110 micron mesh sieve and washed with large amount of water. Embryos were

dechorionated in 4% sodium hypochlorite solution and washed through the sieve with large

amount of sterile ddH2O (all the yeast must be removed). At this point, the work was pursued

under the hood. Embryos were washed again with sterile ddH2O and transfered into a 50ml



                                                                                                                                                 IV. Materials and Methods.

89

Falcon tube. Embryos were washed again with 40ml 90% ethanol, incubated twice in 40ml

70% ethanol for 5 minutes each and then washed 3 times in Schneider Drosophila medium.

Embryos were transferred into a glass dounce tissue homogenizer. Embryos were disrupted

and cells dissociated with a type A (loose) pestle by twisting five times under fair pressure. A

slow withdrawing must be done, avoiding foaming. It was repeated if clumps of tissues were

visible by eye. Pipetting helped disaggregation. Cell were resuspended from homogenisator

into a steril 15-ml Falcon tube and spin for 1 min at 620g. The edium was then pored off and

cells were resuspended in fresh medium. This step was repeated twice. and cells were finally

resuspended in Schneider medium (Gibco) containing an antibiotics cocktail

(penicillin/streptamycin/ 0,05mg/ml gentamycin), 15% fetal calf serum. Adding 4,5 U/ml

insulin favors proliferation. Cells were resuspended in tissue culture flasks with a high

density, to allow them to grow. If it is better that cells attach the flask it is better not to put the

calf serum the first 1 or 2 hours. For TSA treatment, 120ng/ml of TSA was added in the

culture medium the cells were incubated overnight. The next morning, the cells were rinsed

once with medium, and incubated for the desired time.

After the cells were collected for Western blotting, a protein quantification was made using

the Bradford method. By this way, it was possible to roughly checked whether cells were still

dividing after TSA treatment.

4.14 Western Immunoblotting

Cells were collected and lysed in 10 mM Tris/0,3% Triton X-100. The amount of

protein was measured by the Bradford method. Electrophoresis was performed under

Laemmli conditions with the mini-gel system from Hoefer in a 12% SDS-Polyacrylamide gel

and the same amount of proteins (15 to 20 mg) was loaded in each well in loading buffer after

10 min boiling. Migrating conditions were : 170 V, 60 mA per gel, 60 min.

The transfer of proteins was realized on nitrocellulose membrane with the transfer cell from

Hoefer. Gels and membranes were immerged in the transfer-buffer. The transfer was

performed at 4%C under the following conditions: 100V, 350 mA, 60 min.

The detection was realized with the chemiluminescence method using the ECL western

blotting kit from Amersham Pharmacia Biotech. Signal was detected thanks to the HRP-

substrate ECL when reacting with HRP-conjugated secondary antibody.

Solutions:
Loading-buffer: 20 mM Tris/HCl pH 6,8; 20% Glycerol; 2% SDS; 2% ß-

Mercaptoethanol; 0,125% Bromophenol blue.
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Separating-gel (12%): 12% acrylamide/Bisacrylamide; 1,5 M Tris pH 8,8; 10% SDS;

10% APS; TEMED

Stacking gel: 5% acrylamide/Bisacrylamide; 1,0 M Tris pH 6,8; 10% SDS; 10% APS;

TEMED.

Running-buffer: 25 mM Tris/HCl pH 8,3; 192 mM Glycin; 0,1% SDS.

Transfer-buffer: 25 mM Tris-Base, 192 mM Glycin, 20% Methanol.

Blocking-solution: 5% milkpowder in PBS

Washing-solution: PBS-0,05 Tween20

4.14 In vivo culture of Drosophila imaginal discs

Principle

The transplantation of imaginal discs from the larvae to the abdomen of a young

female adult fly allows the culture of discs in a natural incubation medium, the hemolymph.

By this way, discs or fragmented discs can be kept for many days in this in vivo culture

system allowing cells to divide. After a while, discs or fragmented discs can be recovered

from the host abdomen and used for further manipulation. The technique was originally

devised by Ephrussi and Beadle (1936).

4.14.2 Dissection

Wandering third instar larvae were used as imaginal discs donors. Care should be taken that

larvae are not entering pupariation because discs may have started the prepupal

morphogenesis process. Larvae were washed in water and in 100% ethanol and rinsed in

sterile Ringer’s solution. For the study of leg-to-wing transdetermination, first leg discs were

dissected in sterile Ringer’s medium using the “inside-out” technique (see paragraph: 4.8

Protocol for immunostaining of imaginal discs). They are transferred into a new clean drop of

Ringer’s medium. Up to 6 pairs of first leg imaginal discs can be dissected in a row and left in

the drop of Ringer’s until fragmentation and transplantation.

Thin tungsten needles were used to cut the discs into fragments. Tungsten needles could be

sharpen by damping them in a solution of 1N NaOH in which an electric current (10 to 20V)

was generated (Fig. 29).
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It was shown that fragmented leg discs in which the upper anterior quarter has been removed

could transdetermine with a high efficiency. Therefore first leg discs has been cut this way

and transplanted in the abdomen of adult flies.

For the transplantation, a special injection apparatus should be mounted. An all-glass 2ml

syringe (Eterna-Matic) with a well-fitting glass plunger has been used. The syringe was

mounted on a heavy metal base. A 80 cm length of tygon tubing, anywhere from 1 to 4 mm

inside diameter was connected to a commercial needle holder. The tubing should be filled

with distilled water, avoiding air bubbles (Fig. 30). Needles for injections were drawn from

Pyrex capillaries (outside diameter 1 mm, inside diameter 0,8 mm) on a homemade

microburner. Pipettes with a diameter of 130 µ suits well for leg imaginal discs. The tip must

was given the shape of a hypodermic needle tip. This was done by pushing down a dissecting

needle onto the pulled portion of the capillary (Fig. 31). Next, the injection pipette was

equipped with a constriction et which the implant could come to halt when sucked up into the

pipette. A microforge was used for this effect.

Figure 29: Sharpening of the tungsten
needles through a 20V electric
current. The tungsten wire is damped
into the 1N NaOH solution. An electric
wire is attached to the needle holder.
Some sticky tape can be used to handle
the needle when the current is applied in
the solution. The sharpening should be
checked under a microscope.

Figure 30: Injection apparatus for
transplantation. The syringe should be mounted
on a laboratory stand and operated with the left
hand. the needle and the extremity of the tygon
tubbing are filled with Ringer’s solution. An air
bubble must separate the water from the Ringer’s
solution.
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Injection

A microscope slide was covered with a strip of double-faced sticky tape. Etherized one day

old female flies were then affixed to the sticky tape, belly up, in a row, by gently tapping their

wings against the tape.

The needle holder with the injection pipette was held in the right hand. The left hand was

operating the plunger of the syringe, which was connected to the needle holder by the tygon

tubing. In the tube the water phase must be separated from the Ringer’s solution by an air

bubble. Then the fragmented disc was gently sucked up into the needle. The discs must never

be in direct contact with water. Then the needle was brought to the abdomen of the host flies

while the left hand could help maintaining the abdomen stretched with a blunted needle. The

pipette was gently inserted into the abdomen about in the middle. The left hand then had to

leave the needle and operate the plunger again, pushing or rotating it gently so that the disc is

injected. The pipette was then withdrawn quickly. Because quite frequently, the fragmented

disc was rejected by the host, it is important to carefully check whether there is no rejection

after the injection. Ideally, there must not be any hemolymph rejected from the abdomen after

the transplantation. Flies were then carefully unstuck from the tape with forceps and

transferred is fresh food.

To get a high frequency of transdetermination it was important to leave the discs incubated for

several days in the abdomen. I left them 13 days at 25°C.

After the incubation period, the adult flies were dissected in PBS in order to recover the discs

from the abdomen. After the transplantation, needles are conserved in 10N NaOH.

Figure 31: Preparation of the
needle for injection. After pulling
the pipette, pressure is applied from
above with a dissection needle in
order to crush the capillary near its
tip (a). This often results in a U-
shaped break. Then, one spurs is
pried of gently with a needle in the
direction of the arrow (b). If
necessary this may be repeated but
should end up with a tip with the
shape shown. Finally, a constriction
is produced close to the tip by
heating the glass with a microforge
(c).
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Solutions

Ringer’s solution: 182 mM KCl; 46mM NaCl; 3mM CaCl2; 10 mM Tris-HCl. Adjust to pH

7,2 with 1 N HCl and autoclave.
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Abbreviations

A Anterior
ANT-C Antennapedia complex
antp antennapedia
ash1/ ash2 absent, small and homeotic discs 1/ 2
b-gal b-galactosidase
BX-C Bithorax complex
bp base pair
brm brahma
BSA Bovine Serum Albumine
cDNA complementary DNA
ChIP Chromatin ImunoPrecipitation
CMM Cellular Memory Module
D dorsal
ddH20 double-distilled water
DNA Desoxyribonucleic Acid
DNase Desoxyribonuclease
dpp decapentaplegic
E.coli Escherichia coli
EDTA ethylenediaminetetraacetic acid
en engrailed
esc extra sex combs
ETP Enhancer of Polycomb and trithorax
E(z) Enhancer of Zeste
FLP Flip-Recombinase
FRT Flip-Recombinase Target
g gram/ gravity
GFP Green Fluorescent Protein
HAT Histone acetyl-transferase
HCl hydrochloric acid
HDAC histone deacetylase complex
HMT histone methyl-transferase
HOX homeobox gene
hh hedgehog
HP1 heterochromatin protein 1
hs heat shock
Hsp70 heat-shock protein 70
kb kilobase
KCl potassium chloride
lacZ ß-galactosidase gene
LB Luria-Bertani bacterial medium
M molar
mg microgram

ml microliter
mM micromolar
mg milligram
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ml milliliter
mM millimolar
min minute
mRNA messenger ribonucleic acid
NaCl sodium chloride
nmol nanomol
NP-40 Nonidet P-40
P Posterior
PBS Phosphate Buffered Saline
Pc Polycomb
PCR Polymerase Chain Reaction
PcG Polycomb Group
Pcl Polycomb-like
PFA para-formaldehyde
ph polyhomeotic
PHD plant homology domain
pho pleiohomeotic
PRC1 Polycomb Repressive Complex 1
psc posterior sex combs
puc puckered
RNA Ribonucleic Acid
RNase Ribonuclease
PRE Polycomb Response Element
Sce Sex comb extra
scm sex comb midleg
SDS sodium lauryl sulfate
SET Su(var)3-9, E(z), Trx
Su(var)3-9 Suppression of variegation 3-9
Su(z)2 Suppressor of zeste 2
SWI/SNF switch/ sucrose non-fermenting gene (yeast)
TRE Trithorax Response Element
Tris tris(hydroxymethyl)aminomethane
trx trithorax
trxG trithorax Group
TSA Trichostatin A
Tween-20 polyoxyethylene sorbitan-20
V Ventral
UAS Upstream Activating Sequence (GAL4 binding site)
vg vestigial
w white
wg wingless
Z Zeste
oC degree Celsius
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