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Abstract

A local, active thermographic measurement method was advanced and used for measuring
the mean viscous shear stress in the water-sided boundary layer of a wind driven air-water
interface in the presence of water waves, at low wind speeds up to u10 = (4.8 ± 0.3) m/s.
Higher wind speeds of up to u10 = (10.7 ± 0.7) m/s were considered to explore the
boundaries of the application of the method. The measurements were conducted at
the annular wind-wave facility Aeolotron in Heidelberg, Germany. The measurement
technique utilizes a thin line which is heated onto the surface perpendicular to the wind
direction. The broadening of the line is enhanced by Taylor dispersion due to shear flow
in the boundary layer. The temporal development of the line width is monitored by
an infrared camera. The broadening is compared to numerically simulated line widths,
enabling the determination of the viscous shear stress. This initial study with a rough
surface showed promising results for both the evaluation of longer time intervals, and
temporally resolved measurements on the order of few seconds. Stationary conditions
with the air and water compartments in dynamical equilibrium, corresponding to a quasi-
infinite fetch, and non-stationary conditions after turning the wind on were considered.
The stationary results were compared to results for the viscous shear stress obtained by
water-sided particle streak velocimetry, with results deviating by less than 15%. The
non-stationary measurements indicated an overshoot in the viscous shear stress shortly
after turning the wind on.

Zusammenfassung

Eine lokale Messmethode für die mittlere viskose Schubspannung in der wasserseitigen
Grenzschicht einer windgetriebenen und wellenbewegten Luft-Wasser Grenzfläche mittels
aktiver Thermographie wurde weiterentwickelt und bei niedrigen Windgeschwindigkeiten
bis u10 = (4.8 ± 0.3) m/s angewandt. Höhere Windgeschwindigkeiten bis zu u10 =
(10.7 ± 0.7) m/s wurden betrachtet um die Grenzen der Anwendbarkeit der Methode
zu untersuchen. Die Messungen wurden im ringförmingen Wind-Wellenkanal Aeolotron
in Heidelberg, Deutschland, durchgeführt. Die Messmethode nutzt eine schmale Linie,
die senkrecht zum Wind auf die Wasseroberfläche geheizt wird, deren Breite durch die
von der Scherungströmung in der Grenzschicht verursachten Taylor Dispersion verstärkt
zunimmt, und mittels einer Infrarotkamera gemessen wird. Die Verbreiterung wird
mit numerisch simulierten Linienbreiten verglichen, was Rückschlüsse auf die viskose
Schubspannung erlaubt. Diese Pilotstudie lieferte vielversprechende Ergebnisse für so-
wohl die Auswertung längerer Zeitintervalle, wie auch für höhere zeitliche Auflösungen
in der Größenordnung von Sekunden. Stationäre Messbedingungen, mit Luft- und
Wasserkörper im dynamischen Gleichgewicht, also quasi-unendlicher Windwirklänge,
und instationäre Bedingungen nach dem Windeinschalten wurden berücksichtigt. Die
stationären Ergebnisse wurden mit Referenzmessungen anhand Particle Streak Veloci-
metry verglichen, mit Abweichungen unter 15%. Die instationären Messungen deuten auf
einen Überschuss der viskosen Schubspannung kurz nach dem Einschalten des Windes
hin.





Contents

1 Introduction 1

2 Theory 5
2.1 Fluid mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Wave theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Heat transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Refraction and reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 The viscous boundary layer and shear stress . . . . . . . . . . . . . . . . . 21
2.6 Measurement principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Surface compression
and dilation 25
3.1 Approach by the continuity equation . . . . . . . . . . . . . . . . . . . . . 25
3.2 An intuitive approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Finite amplitude case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Implications for the thermographic measurement method . . . . . . . . . 32
3.6 Summary of chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Setup and measurements 41
4.1 The Aeolotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Setup January 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Setup by Arne Emmel [2017] . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Setup January 2019 - reference method (PSV) . . . . . . . . . . . . . . . . 45
4.5 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Simulation 49
5.1 Heating step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Diffusion step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Shifting step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Evaluation of the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Constants and parameters used in the simulation . . . . . . . . . . . . . . 54

6 Image processing and
data analysis 55
6.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Preprocessing of the infrared images . . . . . . . . . . . . . . . . . . . . . 56
6.3 Tracking and evaluation of the heated lines . . . . . . . . . . . . . . . . . 58

VII



6.4 Data analysis of the thermographic measurement . . . . . . . . . . . . . . 62
6.5 Image processing and evaluation of the LHC images . . . . . . . . . . . . 69
6.6 Particle streak velocimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Results and discussion 79
7.1 Evaluation of long time intervals . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Short time intervals and non-stationary conditions . . . . . . . . . . . . . 93
7.3 Surface compression and dilation . . . . . . . . . . . . . . . . . . . . . . . 98
7.4 Additional observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5 Reference measurement: PSV results . . . . . . . . . . . . . . . . . . . . . 106

8 Summary and outlook 111

Bibliography 115

A Appendix 121
A.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Long time interval evaluations . . . . . . . . . . . . . . . . . . . . . . . . 125
A.3 Radial variations of the viscous shear stress . . . . . . . . . . . . . . . . . 129
A.4 Line width distributions (crest and trough) . . . . . . . . . . . . . . . . . 130
A.5 Non-stationary measurements . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.6 Further PSV results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B Mathematical tools 138

VIII



1 | Introduction

The climate of the Earth is determined by the net energy flow to the planet and its surface
(Stephens et al. [2012]), with the downward solar flux varying with both geographical
location and season (Wild et al. [2013]). The spatially different inputs and outputs of
energy cause circulation in both the air and water compartments of the climate system
and drive the hydrological cycle. As implicated, the flow patterns of the atmosphere
and the oceans are coupled. With the ocean covering about 71% of the Earth’s surface
(Roy-Barman and Jeandel [2016]), it has a large impact on the planet’s climate. It is,
for example, a large reservoir for heat and carbon, exchanging these quantities with the
atmosphere. The current anthropogenic emissions of CO2 perturb the energy balance
of the Earth and hence the climate, with the ocean dampening these changes due to its
uptake of both heat and about 1/3 of the CO2 emissions (Gruber et al. [2019]). The
global mean temperatures strongly depend on the ocean and its response to the present
perpetuated forcing (Andrews et al. [2009]).

The coupling between the atmosphere and the ocean also leads to the interaction of
the exchange processes. As the density and hence inertia of air is much lower than of
water, the air flow velocities tend to be much higher. Thus, momentum is transferred
from the air to the water compartment, leading to viscous shear stress and the build-up
of water waves, with the stresses possibly also coupling to the state of the wave field
(Reichl et al. [2014], Janssen [1997]). These processes are subject to complex and non-
linear interaction mechanisms and flow fields, also altering the exchange of, for example,
heat and gases, with many of the mechanisms not being completely understood (Liss
and Johnson [2014]). Also surface active substances (surfactants) are able to modify
the exchange processes (Jähne [2019]), thus biological processes which are a source of
surfactants (Wurl et al. [2011]), play a role.

The exchanging quantities must cross the air-water interface. Whereas the fluid
layers far from the interface tend to be well-mixed due to turbulent transport, the
diminishing influence by eddies close to the surface limits the turbulent transport as
the interface is approached. This gives rise to boundary layers, where diffusive transport
mechanisms dominate. This simple picture is complicated by the formation and influence
of wave breaking, surface renewal events, sea spray and the formation of bubbles, with
these effects being important and their presence wind speed dependent (Krall et al.
[2019], Wanninkhof et al. [2009]). The latter effects are less pronounced for low wind
speeds. The thickness of the boundary layer, which is controlled by the viscous shear
stress, is therefore of importance as the transfer velocities increase with a thinning of
the layer (Jähne et al. [1987]). Moreover, the water-sided boundary layer also underlies
a large influence by orbital motion associated with waves, these being of comparable
magnitude as the velocities in the viscous boundary layer (Jähne [2019]).

The water-sided flow structures and exchange mechanisms have been investigated
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by passive thermographic approaches (see e.g. Lu et al. [2021] and Lu et al. [2019]).
Active thermographic methods have been developed and used to determine heat transfer
velocities (Kunz and Jähne [2018]), and been combined with other techniques such as
wave slope imaging and boundary layer imaging (Klein [2019]). The boundary layer
imaging techniques based on laser induced fluorescence are used for visualizing the
exchange processes (see Kräuter et al. [2014], Arnold [2015]). Also air-sided measure-
ments of gas transfer velocities and boundary layer thicknesses relying on laser induced
fluorescence have also been developed (Friman [2020]).

The momentum transfer may be measured in several ways. For air-sided measure-
ments, it may be computed from the logarithmic wind profile, if present. For annular
wind-wave facilities this approach is not possible due to secondary flows preventing a
logarithmic wind profile (Bopp [2014]). Here, momentum balance may be used, which is
an approach where the bulk velocities along with the friction from the channel walls are
used to determine the momentum input (Ilmberger [1981], Schwenk [2019]). This has
the disadvantage of the friction coefficients being difficult to measure.

Particle image or particle streak velocimetry (PIV and PSV), relying on tracking
and/or illuminating particles for a known amount of time, enable the contactless mea-
surement of flow velocities, are used to determine the momentum transfer. Both air-sided
studies (e.g. Bopp [2018] and Buckley and Veron [2017]), as well as water-sided studies
(e.g. Okuda [1982], Banner and Peirson [1995], Siddiqui and Loewen [2010]) have been
conducted using PIV and PSV. Besides being rather laborious with respect to the setup,
especially if more than one camera is used or field situations are considered, one of the
drawbacks is limited temporal resolution as sufficient statistics must be obtained. On
the other hand, there is a prospect of wave phase resolved measurements, enabling a
closer insight into the flow associated with different wave amplitudes, steepnesses and
shapes. Water-sided measurements require a water-sided camera, which is evidently
easier to implement in a laboratory setting than in a field situation, particularly without
disturbing the system.

Due to the influence of the viscous shear stress on the boundary layer thickness
and the exchange processes, a measurement method that can be applied in the field is
of interest. Moreover, due to changing measurement conditions in the field, and also
the possibility of non-stationary measurements in a laboratory setting, high temporal
resolution is desirable. This would open the pathway to study changes in the viscous
shear stress for measurement conditions between the limited fetches, i.e. the length of
water surface over which the wind can blow unrestrictedly, available in linear channels
or with artificial fetch limitations in annular facilities, and the quasi-infinite fetch in
circular wind-wave channels and stationary conditions. Hereby stationary measurement
conditions refer to the wind and wave fields being in dynamical equilibrium.

As the viscous shear stress is proportional to the velocity gradient with respect
to depth, the water-sided shear stress can be approached with a method relying on
active thermography and Taylor dispersion, the latter describing an increased apparent
diffusivity and diffusion coefficient due to the presence of shear flow. By active thermo-
graphy, thin lines are heated perpendicular to the wind direction onto the water surface
using a laser. The enhanced broadening of the lines with time is monitored, enabling the
determination of the velocity gradient. The method was first proposed by Garbe et al.
[2007], used in a similar fashion by Gutsche [2014], and further developed by Holtmann
[2017], Emmel [2017] and Rembeck [2018], where issues regarding the relation between
the observed line widths and the viscous shear stress were present. This was resolved
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in Voigt [2019] by numerically simulating the line widths and comparing them with the
measurements. This yielded a good agreement between the temporal development of
the simulated widths and those experimentally found, with values for the viscous shear
stress agreeing well with those found by particle tracking. Only conditions without
the presence of waves were considered, achieved by the use of surfactants, since a large
influence by waves on the line widths was observed. More specifically, the orbital motion
distorts the spatial extents of the fluid parcels at the surface, thereby also distorting the
line widths. Generally, as most measurement conditions include waves, it is crucial for
the applicability of the method that also such conditions can be handled. Hence, the
goal of this study is to further develop the measurement method, hereby exploring the
influence of water waves on the line widths and the implications for the subsequent
evaluation.

First the theoretical fundamentals will be given in chapter 2, with the main focus on
fluid dynamics and wave theory. Also the measurement principle will be explained. In
chapter 3 a theoretical model for the surface compression and dilation will be developed
and used to discuss the impact on the active thermographic method in this thesis.
Thereafter the experimental setup is presented in chapter 4, before a brief description
of the numerical simulation is given in chapter 5. In chapter 6 the image- and data
processing in will be explained. The experimental results are presented in chapter 7,
with focus on both the determination of the viscous shear stress and the impact on the
heated lines by the compression and stretching of the surface in light of the implications
found in chapter 3. Also the results of a reference measurement by particle streak
velocimetry will be presented. The findings are then summarized in chapter 8.
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2 | Theory

In this chapter, a brief overview of the most important fundamentals will be given. As
the water-side of the air-water interface is of main interest in this thesis, most equations
are stated for incompressible Newtonian fluids only.

Conventions in this thesis

If not specified otherwise, the Cartesian coordinates (x, y, z) will be defined with z
pointing upwards and z = 0 corresponding to the equilibrium water elevation, x will
point in wind direction, which leaves y as the second horizontal coordinate perpendicular
to the wind direction. The velocity vector is defined as v⃗ = (u, v, w)T.

Derivatives will be denoted analogous to ∂xj

∂xi
=: ∂xixj . The symbol dxf will denote

the total derivative of f with respect to x, whereas ∂xf denotes the partial derivative.
Mostly, but not always, explicit denotation of functional and parameter dependencies

will be left out for legibility, unless the explicit dependencies are deemed explanatory
for the calculations. Generally, the dependencies of particle trajectories are given by
x⃗ = x⃗(t) and the velocity fields by v⃗ = v⃗(x⃗, t).

Lagrangian and Eulerian specifications

Two distinctions are made with respect to the choice of viewpoint. The Eulerian frame
of reference refers to describing the situation from a spatially fixed coordinate system,
whereas the Lagrangian frame of reference follows an individual fluid parcel. With a
quantity q = q(x⃗, t), it follows by the chain rule,

dtq = ∂tq + (dtx⃗ · ∇⃗)q. (2.1)

Hereby dtq is the material or total time derivative, whereas ∂tq is the local time derivative.
Evidently, dtq is path dependent as seen by the directional derivative dtx⃗ · ∇⃗, and
corresponds to the total temporal change experienced by an individual fluid parcel with
the given path, hence describing the Lagrangian view. The local derivative, on the other
hand, gives the spatially fixed Eulerian view.

2.1
Fluid mechanics

Continuity equation

Local conservation of a quantity q in a fluid requires that q within a (fixed) volume
V may only change by flowing in or out of the volume, if no sources or sinks γ are

5



present. Denoting the density of q as ρq and the velocity field v⃗, the amount of q flowing
through a surface element dS⃗ of V with its normal vector pointing outwards is given by
ρqv⃗ · dS⃗ =: j⃗ · dS⃗, where the flux j⃗ was defined. Hence, within the Eulerian frame of
reference, the temporal change of q in V :

∂tq = ∂t

∫
V

ρq dV = −
∮

∂V
j⃗ · dS⃗ +

∫
V

γ dV = −
∫

∇⃗ · j⃗ dV +
∫

V
γ dV, (2.2)

where the divergence theorem was used in the last step. This is known as the continuity
equation, often stated in differential form,

∂tρq + ∇⃗ · j⃗ = γ, (2.3)

and is an important conservation law. Importantly, with q being mass and γ = 0, one
finds for an incompressible fluid, (i.e. derivatives of the density vanish) that

∇⃗ · v⃗ = 0. (2.4)

2.1.1
Navier-Stokes equation

Another important conservation law is that of momentum. In the sense of continuum
mechanics, Newton’s laws of motion F⃗ = dt(mv⃗), with mass m and net force F⃗ , can
be normalized by volume, hence, for an incompressible, isotropic Newtonian fluid in an
inertial frame of reference (Kundu [2008]) it is found that:

ρ dtv⃗ = ρ∂tv⃗ + ρ(v⃗ · ∇⃗)v⃗ = −∇⃗p + ρg⃗ + µ∆v⃗, (2.5)

with pressure p, fluid density ρ, gravitational acceleration g⃗ and dynamic viscosity µ.
By Newtonian fluid a fluid whose viscosity only depends on the thermodynamic state is
meant. This is referred to as the Navier-Stokes equation.

For a Newtonian fluid, the last term in equation (2.5) may be rewritten using
Einstein’s sum convention, which for the different velocity components vj yields:

µ∂2
xi

vj = µ
(
∂2

xi
vj + ∂xj (∂xivi)

)
= ∂xi

(
µ(∂xivj + ∂xj vi)

)
=: ∂xiτvisc,ij . (2.6)

In the first step zero was added (equation (2.4)), in the second step the symmetry of
the Hessian matrix was used, and lastly the viscous stress tensor τvisc,ij was introduced.
The τvisc,ij component represents the transport of i momentum in negative j direction
(Bopp [2018]).

2.1.2
Reynolds decomposition and momentum transfer

If the inertia forces increase and become large in comparison to the viscous forces,
described by the Reynolds number

Re = UL

ν
, (2.7)

where U and L are a characteristic velocity and length scale, respectively, and ν = µ/ρ
the kinematic viscosity, eddies form. These describe fluctuating, swirling flow patterns.
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Beyond a critical (system dependent) value of Re, the flow transits to become turbulent,
characterized by highly irregular flow patterns with a chaotic nature. The non-linear
inertia term (v⃗ · ∇⃗) · v⃗ in the Navier-Stokes equation enables the transfer of momentum
across scales, hence couples these different scales, which is a typical feature of turbulent
flow. The energy becomes dissipated at small scales, where viscosity again plays a role,
often referred to as Kolmogorov micro scales. In order to cope with these chaotic flow
properties, the quantities of interest can be split into a mean q and a fluctuating part
q′. In the presence of waves, when q is phase dependant, one may additionally average
q keeping the phase φ fixed, in the sense that the average over all φ is ⟨q⟩ = q and for
given φ is ⟨q⟩φ = q + q̃, and (Bopp [2018], Buckley and Veron [2016]).

q = q + q̃ + q′, (2.8)

known as a Reynolds triple decomposition. For example the velocity may be Reynolds
decomposed. Absorbing g from the Navier-Stokes equation into the modified pressure
pg = p + ρgz and averaging over time, yields the Reynolds averaged Navier-Stokes
equation for a given phase φ (Bopp [2018]):

∂xi (ρ(uiuj + uiũj + uj ũi)) = ∂xi

−ρũiũj︸     ︷︷     ︸
τ̃wave,ij

− ρ⟨u′
iu

′
j⟩︸     ︷︷     ︸

τ̃turb,ij

− pgδij︸  ︷︷  ︸
τ̃pres,ij

+ µ∂xi(uj + ũj)︸               ︷︷               ︸
τ̃visc,ij

 , (2.9)

with δij being the Kronecker delta and τ̃ denoting that the averaging is done for a
given φ (in contrast to the average over phase τ). The left hand side is an advection
term similar to that found in the diffusion-advection equation (2.59) below. The right
hand side shows, as indicated, different terms that can be interpreted as transfer of i
momentum in j direction, the sum of which corresponds to a total momentum transfer
τ̃i,j . The different terms represent the partitioning of τ̃i,j . Regarding the transfer of x
momentum in z direction, due to the typical orbital motion in the upper water-sided
layer (see section 2.2), τ̃wave,xz is expected to be pronounced there. τ̃turb,xz is vanishing
in the viscous boundary layer as eddy sizes shrink and turbulent transport becomes
neglectable in close proximity to the surface, whereas τ̃visc,xz will have a large influence.

The terms in equation (2.9) may be averaged over φ as well, which removes all terms
with ũj occurring only once, hence the correlation term ũiũj does not vanish. Assuming
temporally and spatially invariant conditions in terms of the averaged quantities, one
finds since the left side terms vanish in equation (2.9), for the phase averaged horizontal
momentum transfer in vertical direction (Bopp [2018]):

∂z

−ρũw̃︸    ︷︷    ︸
τwave,xz

− ρu′w′︸   ︷︷   ︸
τ turb,xz

+ µ∂zu︸  ︷︷  ︸
τvisc,xz

 = ∂zτxz = 0. (2.10)

Hence the momentum transport may be partitioned into three terms, and is constant
with depth. The mean contribution from each term, however, may vary with z. As these
averaged quantities are of main interest in this thesis, the overline will mostly be skipped
in the following, e.g. τxz =: τxz. When this is not the case, it will be marked accordingly.
The most important quantity in this thesis is the viscous contribution, τvisc,xz. Further
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on, the friction velocity u∗ is often given instead of τxz, given by

u∗ =
√

τxz/ρ. (2.11)

Averaging as done above has its limitations with respect to z, since above the deepest
point of the wave, both air and water is present when averaging over phase. In Bopp
[2018] this is solved by doing the averaging in curvilinear, wave following coordinates,
with the curvilinear coordinates. This gives rise to a pressure related term in the
partitioning of the momentum transfer, also for the phase averaged equation. Else the
contributions are the same, though the expressions change.

The term −ρu′w′ may be expressed analogously to equation (2.6) by the macroscopic
mean velocities and an effective turbulent diffusivity (Bopp [2018]):

u′
iu

′
j = −νturb

(
∂xivj + ∂xj vi

)
. (2.12)

This introduces the concept of eddy diffusivity, as an approximation to resolve closure
issues of the problems of mean quantities. Note that νturb is a property of the flow, and
not of the fluid itself. For more details, see for example Prandtl [2017].

2.1.3
Bernoulli equation

Considering an inviscid and incompressible fluid in steady state flow, the specific energy
along a streamline is constant, and the following relation holds:

|v⃗|2

2
+ p

ρ
+ gz = constant. (2.13)

If the flow is additionally irrotational, then Bernoulli’s equation may also be used to
describe unsteady flows (Kundu [2008]). Let ϕ be the velocity potential that in this
special case can be found, such that v⃗ = ∇⃗ϕ, then

∂tϕ + |v⃗|2

2
+ p

ρ
+ gz = f(t), (2.14)

where f(t) depends on time only. This allows for absorbing f(t) into the potential,
namely by Φ = ϕ −

∫ t f(t′) dt′.

2.1.4
Vorticity

Another important fluid dynamical quantity is the vorticity,

ω⃗ = ∇⃗ × v⃗, (2.15)

which is a measure for local “spinning” motion of the fluid parcels. In the well-known
and illustrative case of rigid-body-like rotation of the fluid, the vorticity equals twice
the angular velocity. Usually, shear flow has non-zero vorticity due to the velocity
gradients, though this is not always true, e.g. for an ideal irrotational vortex. As non-
zero vorticity implies that the fluid is rotational, the prerequisite of an irrotational flow
field for potential theory does not hold for ω⃗ , 0.
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2.2
Wave theory

As the measurements in this thesis are conducted in conditions with the presence of
water waves, a brief introduction to wave theory is given below. Furthermore, the waves
give rise to several phenomena that directly influence the outcome of the thermographic
measurement method. This will be discussed in chapter 3.

The irrotational wave problem

In the following, the wave problem is approached using potential theory, meaning that
the velocity is expressed as the gradient of a potential,

v⃗ =
(

u
w

)
= ∇⃗ϕ. (2.16)

It directly follows that the curl of the velocity field is zero, and the solution hence will
be irrotational. Furthermore, as indicated, the problem will be restricted to the x- and
z-direction, with x being the direction of wave propagation and z the upwards directed
coordinate as before.

Starting from the continuity equation (2.3) and inserting equation (2.16), one finds
that in case of an incompressible fluid ϕ = ϕ(x⃗, t) must satisfy the Laplace equation

∆ϕ = 0. (2.17)

Considering the bottom, z = −h, to be impermeable, the flow in z-direction must vanish
there, hence

w|z=−h = ∂zϕ = 0, (2.18)

providing a boundary condition to equation (2.17). Note that z = 0 describes the
vertical coordinate of the free surface η = η(x, t) in equilibrium, i.e. in the absence of
waves. Neglecting viscous forces, the Bernoulli equation (2.14) can be deployed, yielding
a second boundary condition (dynamical) when evaluated at the free surface:

p/ρ = (pa − γ∂2
xη)/ρ = −∂tϕ − 1

2

(
(∂xϕ)2 + (∂zϕ)2

)
− gη. (2.19)

The pressure p(z = η) consists of the air pressure pa, assumed temporally and spatially
constant and may be taken as being zero, and a term related to the surface tension γ.
The latter introduces a pressure jump across the air-water interface.

Lastly, within this framework, a fluid parcel at the surface remains there for all
times, hence the following expression must be satisfied at z = η:

dtη = ∂tη + ∂xϕ∂xη = ∂zϕ, (2.20)

yielding another boundary condition (kinematic).
As depicted, this problem has not been solved analytically. Several simplifications

exist (Zhong and Liao [2018]), however, some of them outlined below.
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Linearised solution

The above problem may be linearised, known as Airy wave theory. Assuming the wave
steepness

ϵ = ka = 2πa

λ
, (2.21)

with k, a and λ being the angular wave number, amplitude and wavelength, respectively,
to be ≪ 1, equation (2.20) reduces to ∂tη ≈ ∂zϕ|z=0. Similarly, linearisation of (2.19)
removes the quadratic velocity terms (∂xiϕ)2, and ϕ is also evaluated at z = 0 instead
of z = η. Let

φ = k(x − ct) (2.22)

be the phase of the wave, with c = c(k) being the phase velocity. Solving the linearised
problem yields (Kundu [2008]):

η(x, z, t) = a cos(φ), (2.23)

ϕ(x, z, t) = ac
cosh(k(z + h))

sinh(kh)
sin(φ). (2.24)

and, with angular frequency ω also defining the dispersion relation,

c = ω

k
=
√(

g

k
+ γk

ρ

)
tanh(kh). (2.25)

Dispersion relation

Based on these equations, some regimes and characteristics may be defined, refer to
figure 2.1 for a schematic. As the latter equation shows, surface tension apparently
modifies the phase velocity, which increases with increasing γ, and may be absorbed by
modifying g′ = g + γk2/ρ. Accordingly, surface tension as a restoring force becomes
increasingly important when k grows, that is, for small wavelengths, all the way until g
is of negligible importance. This is then called the capillary regime. Likewise, for large
wavelength the influence of surface tension may be neglected, leaving g as the main
restoring force, giving rise to the gravity wave regime. Furthermore, as

tanh(kh) =
{

kh, kh → 0
1, kh → ∞

, (2.26)

see upper plot of figure 2.1, another classification is that of water depth relative to
wavelength. For gravity waves, the following classification related to the functional
dependence of c is common (Toffoli and Bitner-Gregersen [2017]):

– shallow water: λ > 20h, c2 ≈ gh,
– deep water: λ < 2h, c2 ≈ g/k,
– intermediate water depth: 20h < λ < h/2, c = c(k, h).

It follows that the phase speed is limited by water depth for shallow water waves, whereas
for deep water waves c is largely independent of the water depth. In this thesis the deep
water regime is the relevant regime. As capillary waves are subject to shorter wavelengths
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Fig 2.1.: The upper plot shows tanh(kh) and the resulting classification of water depth
h relative to k. The lower plot shows the deep water dispersion relation, i.e.
tanh(kh) = 1, and the resulting regimes. The coloured dashed lines show
the separate contributions by surface tension and gravity as restoring force,
respectively, see equation (2.25), whereas the black dashed line shows the
wavelength associated with equation (2.27).

than gravity waves, the tanh(ka) term in equation (2.25) may be omitted in the deep
water regime also when including surface tension effects. As equation (2.25) also shows,
there will be a kc min for which c in minimal;

kc min =
√

gρ

γ
. (2.27)

For water at standard state this equals to about kc min = 369 /m or equivalently a
wavelength of about 1.7 cm, yielding cmin = 23 cm/s. Based on the description above,
kc min divides the capillary from the gravity wave regime, with smaller k corresponding to
gravity waves. Note that there is a range around kc min for which both effects should be
considered, depending on the required accuracy. As gravity waves are of main importance
in this thesis, surface tension effects will mostly be left out in the following.

Stokes drift

Continuing the consideration of gravity deep water waves in the linear framework, a
second order property can be derived, namely the Stokes drift. It describes a mean drift
of the fluid parcels due to the presence of waves, and is derived here since it will be
important in chapter 3.

The velocity potential (2.24) for deep water waves simplifies to:

ϕ(x, z, t) = acekz sin(φ), (2.28)
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𝑥𝑧 𝑥(𝑡) ⃗
(𝑥𝑝,𝑧𝑝,𝑡 = 0) (𝑥𝑝,𝑧𝑝,𝑡)𝔳(𝑥𝑝,𝑧𝑝,𝑡) = 𝑣(𝑥,𝑧,𝑡)⃗𝑝⃗

Fig 2.2.: A sketch of the described situation for the derivation of the Stokes drift.

yielding

v⃗ = akcekz ·
(

cos(φ)
sin(φ)

)
. (2.29)

This means that the Eulerian horizontal velocities are maximal at the wave crest (φ =
0) and minimal in the trough (φ = π). The vertical velocities reach their extremal
values at φ = ±π/2. Consequently, the fluid parcels move oscillatory. For vanishing
wave steepness, that is, a diverging wavelength as compared to amplitude, both velocity
components oscillate symmetrically around zero as the change in z due to the particle
excursions in the exponent in equation (2.29) vanishes. Hence fluid parcel trajectories
become closed circles. This changes, however, if a small but non-vanishing steepness is
allowed for. Let x⃗(t) be the position of a fluid parcel p, with x⃗(0) = (xp, zp), moving
with the Lagrangian specified velocity v⃗ = (u,w)T , then

x⃗(t) =
(

xp +
∫ t

0 u(xp, zp, τ) dτ

zp +
∫ t

0 w(xp, zp, τ) dτ

)
. (2.30)

Refer to figure 2.2 for a sketch of the situation. Hereby note that the coordinates of the
fluid parcel, seen from the (Lagrangian) perspective of the parcel itself, do not change. At
given time t the Lagrangian velocity of a fluid parcel must equal the Eulerian velocities,
equation (2.29), at position x⃗(t), specifically v⃗(xp, zp, t) = v⃗(x, z, t). In the limiting case
of closed orbits the temporal average of both components of both flow field specifications
are zero, e.g. u = u = 0. For small, but finite ϵ, this does not hold for the x components
any more. Taylor expanding to first order of the Eulerian u yields:

u(xp, zp, t) = u(xp, zp, t) + (x − xp)∂xu|(xp,zp,t) + (z − zp)∂zu|(xp,zp,t). (2.31)

Taking the temporal average yields zero for the first term on the right hand side.
As ϵ ≪ 1 the fluid parcel excursions are small relative to wavelength, and the terms
x − xp and z − zp may be approximated in the framework of linear theory as x − xp =
−a exp(kzp) sin(φ(xp)) and z − zp = a exp(kzp) cos(φ(xp)). Plugging these expression
into 2.31 and time averaging yields:

u(xp, zp, t) − u(xp, zp, t) ≈ ca2k2e2kzp =: uS . (2.32)

uS is known as Stokes drift, and yields a net transport by the waves in the direction
of propagation. A glance at figure 3.4 may clarify the situation. It results from the
orbits having higher horizontal velocities at the crests than in the troughs. The vertical
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component does not posses such an asymmetry, which would also lead to unphysical
behaviour. As a consequence, particle orbits are no longer closed circles, as will also be
seen in chapter 3. It should be noted that the Stokes drift is a second order property,
as seen by the quadratic amplitude, here calculated in the framework of Airy wave
theory, but still present for higher order approximations. As it is strongly decaying with
decreasing z, its importance is mainly restricted to the layers in proximity of the surface.
In these layers it introduces a velocity gradient for the fluid parcels, and may additionally
disperse e.g. near surface contaminants with a non-negligible vertical distribution.

For typical parameters relevant for this thesis, with dominating wavelengths on the
order of ten up to some tenth of centimetres, and for ϵ ∼ 0.2, the Stokes drift at the
surface will be of order of some centimetres per second. This corresponds to about a
quarter of the mean drift velocity at the surface when subtracting the bulk drift. Of
more important influence for the thermographic measurement method is the vertical
velocity gradient introduced by the Stokes drift,

∂zuS = 2ca2k3e2kz, (2.33)

contributing up to some millipascal to the mean shear stress at the surface. For typical
measurement conditions of u10 ∼ 5 m/s this would be of order < 10 %, refer to section
7.1. The quadratic dependence on wave steepness or ∂zuS

∝∼ k3/2 when inserting the
dispersion relation (2.25) suggest it to be of largest importance for short and steep waves.
Furthermore, as ex ≈ 1 + x for small x, the vertical velocity gradient associated with
the open orbits of the fluid parcels would contribute linearly to the mean total gradient.
Note that this requires boundary thickness δ ≪ λ. Furthermore, it must be emphasized
that this results from the velocity fields in the framework of potential theory, which is
not applicable if there is vorticity present in the flow. For the boundary layer, where
the velocity gradient is measured in this thesis, vorticity is large due to the momentum
transfer and resulting shear flow (Okuda [1984]), so the interpretation of the above
results should be taken with care.

Stokes wave

For real world applications, the assumption of an infinitesimal wave steepness often does
not hold. Hence the need for finite amplitude waves arises. Several approaches exist. In
the following, a brief look at Stokes waves as an approximation to more realistic gravity
waves will be given, staying with deep water waves and irrotational wave theory.

Stokes [1847] approached the problem given in at the beginning of section 2.2 by a
perturbation series approach for ϕ and η. Furthermore, u, w and pressure p are assumed
functions of x − ct and z only. Using the wave steepness as expansion parameter,

η = ϵη1 + ϵ2η2 + ϵ3η3 . . . , (2.34)

ϕ = ϵϕ1 + ϵ2ϕ2 + ϵ3ϕ3 . . . , (2.35)

can then be inserted into the governing equations. Terms with equal powers of ϵ may
then be sorted and solved separately. The series is then truncated at some power in ϵ,
yielding the Stokes wave at that respective order. Furthermore, also c must be corrected
for a dependence on ϵ, in order to avoid secular terms (Tsuchiya and Yasuda [1981]).
This was already done by Stokes [1847] by perturbing the angular frequency analogously
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to equation (2.34).
Being describing periodic waves, Stokes [1847] gave the general expressions for η and

ϕ as Fourier series, based on his analysis leaving out the odd and even harmonic terms,
respectively:

η = a cos(φ) +
∞∑

r=2
arAr cos(rφ) (2.36)

and

ϕ = Bt + Cx +
∞∑

r=1
arDr cosh (rk(h + z)) sin(rφ). (2.37)

Here Ar and Dr are coefficients to be determined, noting that ar might be absorbed in
them and that cosh (rk(h + z))) = erk(h+z) in the deep water case, and B and C are
constants. The term Bt acts by merely introducing a constant in the dynamical boundary
condition, equation (2.19), whereas C give rise to an offset in u, hence describes a uniform
underlying drift.

2.2.1
Doppler shift due to drift

C in equation (2.37) introduces a Doppler shift. Observing the waves from a coordinate
system (x̃, z̃) fixed at the bottom, they will propagate by c̃ = cref + C, where cref is
the phase speed in a co-moving reference frame with the uniform drift. This may be
seen by plugging xref = x̃ − Ct into equation (2.22), collecting the time dependent
terms and using that φ does not depend on the reference system. In the bypassing
it should be noted that k is unaffected by the transform, and hence the Doppler shift
∆ω = ω̃ − ωref = k · (c̃ − cref).

Likewise, due to the Stokes drift, a co-moving reference frame located at height zc

close to the surface will experience an additional drift, hence observing c′ = cref −uS(zc).
In the expressions for c given, e.g. equation (2.40) below, C is zero and hence

correspond to cref. This corresponds to Stokes’ first definition of wave celerity, where
each point in space has a zero mean Eulerian velocity, u(x, z) = 0 (Song et al. [2012]).

Third order Stokes wave

As an approximation to somewhat more realistic water waves, still keeping the algebraic
expressions reasonable simple, third order Stokes waves are often deployed. Stokes [1847]
gives the expressions, substituted the ϵ = ka:

η = a cos(φ) + 1
2

ka2 cos(2φ) + 3
8

k2a3 cos(3φ), (2.38)

ϕ = ac(1 − 5
8

k2a2)ekz sin(φ) (2.39)

and

c = (1 + 1
2

k2a2)
√

g

k
. (2.40)
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Fig 2.3.: The figure shows a third order Stokes wave for ϵ = 0.25, along with its different
order contributions, see equation (2.38). The asymmetry about z = 0, sharper
crests and flatter troughs are clearly visible when compared to the symmetric
lowest order component, which corresponds to the linear wave (2.23).

Several interesting aspects might be noted. c is no longer independent of amplitude,
as higher waves travels faster. This leads to an amplitude dispersion as well as the
dispersion related to wavelength known from linear waves. Moving on, the expression
for ϕ still exhibits the simple form of the linear solution, with second and third order
terms vanishing, though a modification related to ϵ2 enters. The velocity field hence
consists of circular motion at each point in space. Lastly, the expression for η is not
symmetrical about z = 0, see figure 2.3, and the shape is not sinusoidal. The crests
are steeper whereas the the troughs are flatter. Also the wave height H, defined as the
distance between ηmax and ηmin, is not twice the linear amplitude:

H = 2a

(
1 + 3

8
k2a2

)
(2.41)

As a consequence of these asymmetries, the vertical midpoint between ηmax and ηmin
lies at z = 1

2ka2. Recall that z = 0 corresponds to the water level in equilibrium. This
means that when considering a fluid parcel located at the water surface in the presence
of waves, it oscillates about a vertical mean position that lies above the water surface at
rest. The integral over one period of η is still zero, however, being a necessity of mass
conservation and the assumption of incompressibility.

Maximum wave steepness and wave breaking

Another important aspect of finite amplitude waves is the maximum wave steepness.
Stokes [1847] calculated the maximum angle of a Stokes wave crest, which is then
sharp, to 120◦, measured through the water. Michell [1893] estimated the corresponding
maximum ratio H/λ = 0.142, and also Schwartz [1974] reaches the similar highest ratio
of H/λ = 0.1412. This corresponds to ϵmax ≈ 0.44. Experiments have found comparable
results (Bopp [2018]).

Wave height and steepness is limited by increasing energy density, which in the end
leads to wave breaking. Hereby the processes become highly non-linear. Peregrine et al.
[1980] lists some typical features for a breaking wave, these being velocities greater than
cmax(k) at the crest, regions on the leeward side of the crest featuring fluid parcels with
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accelerations up to several times g (Schwartz and Fenton [1982]), and regions on the
windward side with low particle accelerations. This then causes some fluid parcels to
overtake others, rendering the wave unstable, which then breaks.

Energy and power density spectra for wave fields

The wavy surface observed in reality is mostly much more complicated than the two
dimensional approximations given above, with superposing modes. Hence the need for
statistical characterizations of the wave field arises.

Waves cause motion and displacement of fluid parcels relative to their equilibrium
state, with the free undisturbed surface located at z = 0, and are hence associated with
both kinetic and potential energy. Starting with the latter and ignoring surface tension
effects, a fluid layer located at depth z with horizontal extent δx will contribute by
dU = ρzδx dz to the total potential energy. Referencing the energy to the undisturbed
state and integrating over the water column and averaging over one wavelength yields:

U =
∫ 2π

0

dφ

2π

∫ η

−h
dU −

∫ 0

−h
dU = 1

2
ρgη2. (2.42)

This then expresses the potential energy per unit horizontal area.
Similarly for the kinetic energy dT = ρδx dz|∇⃗ϕ|2/2, being given by the motion of

fluid parcels. For a third order Stokes wave with the velocities given by equation (2.39)
in deep water one finds:

T =
∫ η

−h
δT = ρga2

4

(
1 + 3

4
ϵ2 + O(ϵ4)

)
, (2.43)

where the orthogonality of the sinusoidal functions was used. Furthermore, with equation
(2.38),

U = ρga2

4
·
(

1 + ϵ2

4
+ O(ϵ4)

)
, (2.44)

and consequently for the total energy E per unit horizontal area

E = U + T = ρga2

2

(
1 + 1

2
ϵ2 + O(ϵ4)

)
. (2.45)

Hence both the potential and kinetic energy increases with increasing amplitude.
For the lowest (quadratic) order in amplitude, the potential and kinetic energy is equal.
These terms correspond to the first order approximation of linear waves, and the equi-
partition of energy is as expected for a harmonic oscillator. For higher order terms,
however, this equipartition is not longer the case, with T ≥ U . The sign and magnitude
of these higher order terms are here given for the third order Stokes wave, and can be
different for other order Stokes waves (Longuet-Higgins [1975]), due to cross terms, with
T ≥ U still holding.

In the case of a stationary wave field, η(t) at a given location can be expressed in
terms of its Fourier transform

η(x⃗, t) = F −1{F{η(x⃗, t)}
k⃗,ω

}x⃗,t = F −1{η̂(k⃗, ω)}x⃗,t. (2.46)
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Taking the spatial and temporal average over (infinitely extended) domain Ω of η2(x⃗, t)
yields:

η2 =
∫

Ω|η(x⃗, t)|2 dΩ∫
Ω dΩ

=
∫

Π|η̂(k⃗, ω)|2 dΠ∫
Ω dΩ

(2.47)

where the Parseval - Plancherel identity was used, and Π describes the domain of Fourier
(spectral) modes. It is therefore possible to express the mean total energy density by
the Fourier modes of η(x⃗, t), to quadratic order in amplitude, by

E ≈ ρgη2 ∝
∫

Π
|η̂(k⃗, ω)|2 dΠ. (2.48)

Integrating out some of the variables, for example the spatial modes, yields the reduced
spectra, in this case to the frequency power density spectrum

Sxx(f) = lim
T →∞

1
T

|η̂ (ω/(2π))|2. (2.49)

In the real world applications, the wave field is not temporally stationary for an
infinite domain as described above. Therefore Sxx will be calculated and approximated
for limited spacial domains and time windows. Especially in the case of non-stationary
wave fields this becomes critical. With the spatial extent of measurement being small,
also time intervals must be kept small in order to only allow for minor changes in the
spectra during evaluation. This of course comes with poor statistics.

The main application of the frequency power sprectra will be to compute the domina-
ting wave, with the corresponding dominating properties. This is adapted from Bopp
[2018]. In this work it will be defined as the reconstructed surface profile η(x, t)dom for
frequencies f in the range

fm
2

≤ f ≤ 3
2

fm, (2.50)

where fm is the frequency corresponding to the maximum value of Sxx(f). This range
corresponds to that used in Bopp [2018].

2.3
Heat transport

Another important aspect for this work is heat transport. Three general mechanisms
can be identified, namely molecular diffusion, advection and radiative transfer. Often
also convection is mentioned when describing heat transport, in this thesis convection is
defined as the combined transport by advection and diffusion.

2.3.1
Radiative transfer

Starting with radiative transfer, this transport is a result of every object with a tempera-
ture above absolute zero emitting radiation. The spectral radiance L(λ, T ) in case of a
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black body is described by Planck’s law,

L(λ, T ) = 2hc2

λ5 (e
hc

λkBT − 1)−1, (2.51)

describing the power emitted per unit area, unit solid angle and unit wavelength. More-
over, T is the temperature, h is the Planck constant, c is the speed of light in the medium,
and kB the Boltzmann constant. The absorbed fraction of incident radiation onto an
object is described by the spectral absorptivity α(λ) ≤ 1. For an ideal black body
α(λ) = 1, per definition, for real objects α(λ) < 1. Similarly, the fraction of emitted
radiation at a given wavelength, as compared to a black body, is called the spectral
emissivity ϵ(λ) ≤ 1. By Kirchhoff’s law of thermal radiation, for a specific wavelength
and for a body in thermal equilibrium, the emissivity and absorptivity must be equal,

α(λ) = ϵ(λ). (2.52)

If there is no dependence on the wavelength in the emissivity, the body is referred to as
a grey body. The two cameras used for thermal imaging in this thesis both fall in the
wavelength range between 3 − 5 µm, where water has an emissivity ϵ ≈ 0.97 (Haußecker
[1996]).

If the incident radiation on a body is not absorbed, it can be either transmitted
or reflected. The wavelength dependent fractions of the incident radiation that are
transmitted and reflected, τ(λ) and ρ(λ), respectively, must due to energy conservation
add up to the remaining fraction that is not absorbed, i.e.

α(λ) + τ(λ) + ρ(λ) = 1. (2.53)

The radiation will penetrate into a body, described by a wavelength dependent
penetration depth ζ(λ). The fraction of incident radiation remaining after passing
through δz of a homogeneous material, the transmittance T , can be described with
Lambert-Beer’s law,

T (δz, λ) = Φ(δz, λ)
Φ0(λ)

= exp
(

− δz

ζ(λ)

)
, (2.54)

where Φ0(λ) is the incoming spectral radiant flux, and Φ(δz, λ) the flux remaining after
passing through δz.

2.3.2
Advection

When bulk motion of a fluid carries along a substance or quantity, it is referred to as
advection. For example thermal energy or a dissolved gas in water can be transported,
giving rise to an advection term in transport equation, with an associated flux as
described in section 2.1.

2.3.3
Diffusion

Heat transported by thermal motion, vibration and collision on a molecular scale is
referred to as diffusion or heat conduction. It can in an isotropic medium be described
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by Fick’s second law,

∂

∂t
T = α∆T, (2.55)

respectively, with temperature T = T (x⃗, t), c the specific heat capacity, and α = κ/(ρc)
the thermal diffusivity. κ is the thermal conductivity. By taking the Fourier transform
of equation (2.55) with respect to spatial dimensions one finds:

∂

∂t
T̂ (k⃗, t) = −αk⃗2T̂ (k⃗, t), (2.56)

where the transfer function of the Laplacian operator ∆f � −k⃗2f̂ was used for the
differentiable (for all x⃗) function f (Jähne [2012]), with solution

T̂ (k⃗, t) = T̂0(k⃗) · exp(−αk⃗2t). (2.57)

This shows that diffusion in Fourier space multiplies the initial temperature distribution
T̂0(k⃗) by a Gaussian. From an intuitive point of view, this means that for small |⃗k|,
corresponding to large spatial structures of the temperature profile, little alteration by
diffusion happens for short times, whereas small spatial structures, associated with large
|⃗k|, are more quickly dampened away.

By the convolution theorem (B.7), it thereby follows by inverse transformation that
(Voigt [2019])

T (x⃗, t) = 1
√

2π
3 · 1

√
2αt

3 exp
(

−x⃗2

4αt

)
∗ T0(x⃗), (2.58)

where the asterisk ∗ denotes the convolution operator. Therefore, in real space, diffusion
acts by convolving the initial temperature profile by a Gaussian of width σ =

√
2αt in

each spatial dimension.

2.3.4
Diffusion-advection equation for heat and Taylor dispersion

Inserting the advection and diffusion related fluxes for heat into the continuity equation
2.3 yields, after division by ρc:

∂tT = ∇⃗ · (T v⃗ − α∇⃗T ) ∇⃗v⃗=0= v⃗ · ∇⃗T − α∆T. (2.59)

In the last step incompressibility was, ρc · j⃗T being the heat flux, whereby assumed.
Equation (2.59) is known as the diffusion-advection equation, where the first term on
the right hand side describes the advection related transport, and the second describes
a smoothing of the temperature profile caused by diffusion.

In the case of a uniform flow field, the contribution from the advection term is of no
influence for the Lagrangian view of a fluid parcel. If there is shear present in the flow
field, however, this is no longer the case. Imagining a temperature profile encompassed
in the fluid parcel exposed to shear flow, the profile will be deformed along with the
parcel. This changes the derivatives of the temperature profile in equation (2.59), as
adjacent fluid parcels are pulled apart. The actual temporal temperature development is
dependent on both the flow and initial profile, at some point the profile is dispersed faster
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than it would due to diffusion only. This apparent enhancement of the diffusivity by
shear flow is referred to as Taylor dispersion. The thermographic measurement method
in this work exploits this enhanced smearing of the temperature profile, more details are
given below in section 2.6.

2.4
Refraction and reflection

In the following processes close to the interface between two different media, air and
water, are approached with imaging and active thermographic techniques. Naturally,
both refraction and reflection enter the considerations. For the latter the most important
relation is that the angle of incidence equals that of reflection, when both angles are
referenced to the surface normal of the interface, as depicted in figure 2.4.

Refraction occurs when the two media with the interface have different refractive
indices nmed, because the speed of light changes with the medium according to cmed =
c/nmed, where c is the speed of light in vacuum. As the frequency is unchanged across
the interface, the wave vector has to change. Only the normal component of the wave
vector is conserved across the interface, resulting in Snell’s law:

n1 sin θ1 = n2 sin θ2, (2.60)

where the angles are measured relative to the normal of the interface, refer to figure 2.4.
When a ray from the medium with the higher refractive index, here still n2, hits

the surface at an angle θ > θc, instead of being refracted, it is reflected back into the
medium. This is called total internal reflection, depicted by the red ray in figure 2.4,
with

θc = arcsin
(

n1
n2

)
. (2.61)

This can be understood from the fact that the refraction angle is always larger than
the incident angle when coming from the medium with higher refractive index. Then,
when increasing the incident angle, at some points the refraction angle reach it maximum
at 90◦, which corresponds to the critical angle. For the water-air interface θc ≈ 49◦.

𝜃1 𝜃1

𝜃>𝜃c

𝑛1𝑛2>𝑛1 𝜃2<𝜃1

reflection

refraction
total reflection

Fig 2.4.: A sketch of the reflection and
refraction at the interface between
two media, where the refractive
index n1 in the white medium
is smaller than that of in the
blue medium, n2. θ1 is the
angle of incidence, equal to the
angle of reflection, whereas angle
of refraction θ2 < θ1. The dotted
line is normal to the surface. The
red ray represents total reflection
at an angle larger than the critical
angle θc.
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2.5
The viscous boundary layer and shear stress
As found in 2.1.2, horizontal momentum is transferred downwards in vertical direction,
and stems from different contributions. The input comes from wind blowing over the
surface. Assuming a non-slip condition at the surface, the momentum transfer must be
continuous across the interface. The thin layers close to the interfaces are referred to
as boundary layers, where transport by molecular diffusion dominates over turbulent
transport, in the sense that D > K. Hereby D is the diffusion constant and K the
turbulent (eddy) diffusivity defined in analogy to equation (2.12) for the xz component.
The reason for the diminishing turbulence is that eddies cannot reach trough the surface,
and vanish towards the interface. Depending on the diffusion constants, the boundary
layer thickness δ varies. For the momentum considerations the corresponding layer is
referred to as the viscous boundary layer, and is on the water side on the order of
0.25-3 mm. For comparison, the water sided heat boundary layer and mass boundary
layers are of the order of 0.1-1.5 mm and 10-350 µm, respectively, whereas the air-sided
boundary layers are of similar thickness and ∼0.1-1.5 mm (Kunz and Jähne [2018]).

Due to the higher wind velocities and the non-slip condition at the interface, the
topmost water layers will posses a higher velocity than the lower layers, giving rise to
a shear flow in the surface layer. Considering the stationary case, the most simple
model for the velocity profile in the viscous boundary layer corresponds to the topmost
layer moving with us and the layer at depth δ with the bulk velocity, see figure 2.5,
corresponding to the stagnant film model. The situation is identical to that of a Couette
flow, and the Navier-Stokes equation can be solved analytically. This yields a linear
velocity profile, with the viscous shear stress

τvisc,xz = µ
∂u

∂z
= constant. (2.62)

Exchange processes at the interface are to a large extent determined by boundary
layer thickness, especially at lower wind speeds when highly non-linear processes such
as sea spray formation or wave breaking of the gravity waves are less important. As
boundary layer thickness is highly influenced by τvisc,xz, a measurement of the latter is
of interest for parametrizing the exchange processes. In the following, for simplicity and
legibility, τvisc,xz(z = η) =: τvisc, where η(x⃗, t) describes the surface elevation.

Clearly, the situation depicted above is an approximation only, as the eddies to
some degree also influence the viscous boundary layer, especially the lowermost parts
and other events such as for example micro scale wave breaking (see Klein [2019]) and
surface renewal is not accounted for. Furthermore, in the presence of waves, the water
sided flow fields are also heavily influenced by the orbital movement of the fluid parcels,
see section 2.2 for more details. Additionally, the viscous shear stress is also expected
to be wave phase dependent (Bopp [2018]), which then to some extent would introduce
curvatures in the velocity profiles. However, due to the large complexity of the problem
and the need for a simple representation of the system, in this thesis, the simple picture
with a linear gradient in the topmost surface layer is used.
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Viscous boundary layer
Wind profile
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Velocity Velocity gradient 
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Fig 2.5.: Simplified representation of the viscous boundary layer. The constant velocity
gradient in the boundary layer in the right figure is proportional to τvisc,xz. The
figure is taken from Voigt [2019], originally adapted and edited from Emmel
[2017].

2.6
Measurement principle

In order to determine τvisc, active thermography is deployed. Hereby a line is heated
with e.g. an near-infrared (NIR) laser perpendicular to the wind. The amplitude of the
resulting temperature profile is low, initially ∼ 0.4◦C, in order not to disturb the flow in
the boundary layer by inducing convection or giving rise to a stable stratification. The
broadening of the line width σ(t) with time is measured. Generally, this is described by
equation (2.59). Now, due to the shear flow in the boundary layer, the heated line is
subject to Taylor dispersion, see section 2.3.3, which leads to an increased broadening of
the line depending on the velocity gradient. Hence, by measuring the line broadening, a
determination of τvisc is possible (Voigt [2019]). This is done by numerically simulating
the system, and then comparing the observed line widths to the simulated ones. See
figure 2.6 and 2.7 for a simulated vertical cross-section showing the heated line directly
after heating and after 0.7 s.

Firstly looking at the case of v⃗ = 0, and assuming the laser beam to be Gaussian,
the width of the (Gaussian) temperature profile will broaden in accordance with 1D
diffusion, i.e.

σ2(t) − σ2
0 = 2αt, (2.63)

with σ0 being the initial width (Voigt [2019]). The profile does not move, and is only
smoothed out by diffusion, hence gets wider and the maximum temperature decreases.
Now, in the presence of shear flow as seen in figure 2.7, the profile tilts with time.
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Fig 2.6.: The figure shows a heated line directly after heating, with penetration depth
of the laser = 355 µm. The colours indicate the temperature in Kelvin.
The depicted cross-section is then followed, corresponding to a Lagrangian
description. Other parameters were: ∂zu = 30/s, ∂yu = 0/s and σ0 = 1 mm. z
describes the depth, and the wind direction is in negative x-direction. The
figure is taken from Voigt [2019].
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Fig 2.7.: The heated line from figure 2.6 after 0.7 s. The shear flow is tilting the
temperature profile, and the line is broader than what would be expected form
diffusion only (2.63). The bend towards the surface is caused by the profile
“locking” water inbetween itself and the surface, which is then heated by the
profile. Downwind (negative x-direction) there is more cold water available,
which is therefore heated less. Note the somewhat skewed surface temperature
profile, and the displacement of the temperature maximum relative to t = 0
caused by the bending; the surface layer does not move. The figure is taken
from Voigt [2019].
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Fig 2.8.: The figure shows the simulated quadratic line widths σ2 at the surface and
at 1.3 mm depth, compared to the widths computed by the analytical model
(2.64). For the surface σ(t)2 ∝∼ t2 for high t, in contrast to the model σ(t)2 ∝∼
t3. This is caused by the in section 2.6 explained effect by the surface on
temperature profile. Parameters were ∂zu = 30/s, ∂yu = 0/s and σ0 = 1 mm.
The figure is taken from Voigt [2019]

Loosely speaking, this increases the surface of the profile, whilst keeping its volume
constant, resulting in the excess broadening associated with Taylor dispersion. Emmel
[2017] solved (2.59) analytically far away from any interface, finding

σ(t)2 = σ2
0 + 2αt

(1
3

(∂zu)2 t2 + 1
)

. (2.64)

Note that for high t the temporal dependence is σ(t)2 ∝∼ t3. Whilst the simulated
profiles reproduce this description away from the surface, it is found that at the interface,
the width of the profiles σ(t)2 ∝∼ t2 for high t, see figure 2.8. This is caused by the bend
in the temperature profile seen in figure 2.7, caused by the smaller amount of water
locked in between the surface and profile in upwind direction (positive x-direction in
the figure) as compared to downwind, which then is heated more by the profile and
causes the observed bend. The bend also causes skewed temperature profiles observed
at the surface. That the bend causes a strong decrease in the broadening with time,
even with a lower exponent, can be understood by the subsequent up-straightening or
“untilting” of the profile, which decreases the surface of the profile and counteracts the
Taylor dispersion.

Lastly, the line may also be sheared in the direction along the line, if a horizontal
velocity gradient in y-direction is non-zero. This causes a tilting of the profile in analogy
to the presence of shear flow with depth, except that the analogy to the surface is missing
in y-direction. This means that the broadening of the line subject to ∂yu , 0 is described
by equation (2.64) when substituting the respective velocity gradient, as verified in Voigt
[2019]. As may be deduced from figure 2.8 and expected form the t3 behaviour, even
small ∂yu can have a large influence on σ(t). It is therefore crucial to evaluate only parts
of the heated lines that are not subject to a velocity gradient in y-direction.
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3 | Surface compression
and dilation

Having introduced the most important equations describing gravity waves, it is now
possible to calculate a critical aspect for the thermographic measurement method, caused
by the flow field of the wave associated motion. Though water in the context of this work
is an incompressible fluid, the fluid parcels are stretched and compressed by tangential
(to the surface) gradients in the velocity field varying with the wave phase, referred to as
surface dilation and compression, see figure 3.1 for a sketch of the situation. Imagining
the heated lines whose width is used to determine the viscous shear stress, located within
a fluid parcel undergoing such a distortion, clarifies the issue. First, the stretching and
compression will be considered in the framework of a single set of wave parameters, i.e.
amplitude and wave length in the case of deep water waves (and dispersion), before the
situation of a wave field is approached by letting the parameters be distributed.

3.1
Approach by the continuity equation
The problem can be approached by starting with the continuity equation, in principle
adapting the approach by Osborne [1965], who considered the limiting case of linear
waves and small amplitudes. This approach will in this section be extended for finite
amplitudes. By the continuity equation and restricting the analysis to the xz-plane, one
finds:

∂tρ + ∇⃗(ρv⃗) = dtρ + ρ∇⃗v⃗ = 0, (3.1)

hence

−dtρ

ρ
= − dt ln(ρ) = ∂x∥u∥ + ∂z⊥u⊥, (3.2)

where the rotated coordinate system (x∥, z⊥) was introduced. Equation (3.2) hence
describes the normal strain on the fluid parcel in the rotated coordinate system. The
vanishing divergence of an incompressible velocity field is unchanged by a rotation,
which is also intuitively clear as the fluid parcel cannot be compressed, no matter its
orientation. Let the rotation be by angle θ = θ(x, t) = arctan(∂xη(x, t)), i.e. such that
x∥ is tangential to η(x, t) and

x∥ = x cos(θ) + z sin(θ) (3.3)
z⊥ = −x sin(θ) + z cos(θ). (3.4)
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𝛿 𝜃𝛿𝑏propagation h

Fig 3.1.: A sketch of a fluid parcel (dark blue) at different wave phases. The arrows
depict the (momentary) alteration of the fluid parcel height δh and width δb in
the system rotating according to the surface inclination. The surface angle θ is
indicated for the wave phase φ = π/2. The δb is maximal in the wave trough
(φ = π) and minimal at the crest (φ = 0). The wave propagates to the right.

The velocities transform correspondingly. Considering an infinitesimally small fluid
parcel arbitrarily close to the surface with perpendicular and tangential extent with
respect to the surface δh and δb, respectively, and unit extent in y-direction, its volume
δV = δbδhδy =: δAδy = δA must be conserved due to incompressibility, and the same
applies to its mass δm. Therefore, with ρ = δm/δA:

− dt ln(ρ) = dt [ln(δA) − ln(δm)] = dt [ln(δb) + ln(δh)] . (3.5)

Associating the tangential velocity gradient with the logarithmic rate of change of the
fluid parcel’s width, one can find the absolute change of width by integration over time.
The following differential equation and solution arises,

dt ln(δb) = ∂x∥up,∥ and δb(x⃗, t) = δb0 exp
(∫ t

t0
∂x∥up,∥ dt′

)
, (3.6)

where the label p was added to emphasize the dependence of the velocity on the parcel’s
trajectory. Expressing the tangential directional derivative of the tangential velocity
component at the location of the parcel x⃗ at time t in the unrotated reference system
yields:

∂x∥u∥|x⃗,t = ∂xu cos2(θ) + (∂zu + ∂xw) cos(θ) sin(θ) + ∂zw sin2(θ). (3.7)

In the framework of potential theory (section 2.2), the velocity field is conservative, and
the expressions may be simplified by using the Cauchy-Riemann relations, ∂zu = ∂xw
and ∂xu = −∂zw. Furthermore, the velocity components are functions of x − ct, see
equation (2.37), hence c∂xu = −∂tu and likewise for w, and one finds after trigonometric
reformulation:

∂x∥u∥ = −1
c

∂tu cos(2θ) − 1
c

∂tw sin(2θ). (3.8)

This can be inserted back into equation (3.6b), and may then be integrated numerically
if expressions for ϕ and η are known. It should be noted that this generally also requires
the calculation of the fluid parcel trajectories x⃗ = x⃗(t), as for non-infinitesimal wave
steepness, and both the partial derivatives of the velocity components and surface
inclination angle (i.e. θ) are dependent on (x⃗(t), t). A plot of these equation in the
framework of third order Stokes theory can be found below, see figure 3.4.
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Fig 3.2.: A (momentary) sketch of the fluid parcel at the surface for calculating the
compression and dilation in section 3.2.

3.2
An intuitive approach

Equation (3.8) has some disadvantages for the practical application of describing the
stretching and compression of the heated lines. Regarding ∂tu for example, it could be
determined from the measured horizontal position x(t) of the heated line, encompassed in
the fluid parcel, differentiating it twice, while ∂tw and θ could be computed by measuring
η(x, y, t) and assuming that a fluid parcel at the surface must stay there and hence follow
its motion. However, twice differentiating the respective estimated positions, in practice
not measured by the same apparatus in combination with a complex wave field, and
then approximating the integral by a sum, could be a difficult and error prone task. The
applicability of potential theory is another critical aspect.

Having gained some insights into wave associated motion, one can approach the
problem from a more intuitive perspective, staying in the framework of a single set
of wave parameters. A fluid parcel at the surface will oscillate by ξ⃗(φ) about a mean
position x⃗(t), the latter moving with a mean surface drift Ud. In the unrotated coordinate
system, let the down- and upwind edges of this infinitesimal fluid parcel be x1 and x2,
see figure 3.2, the width of which is then given by δb = (x2 −x1)/ cos(θ). θ is the surface
inclination angle relative to the x-axis as before. Both these edges are associated with
their respective mean positions x1 and x2 (mean z = z1,2 is equal for both). Let Ud be
spatially constant on the relevant scale for the fluid parcel, such that κ := x2 − x1 is
constant with time. A temporal change in parcel width is hence caused by a slight phase
difference between the two points, corresponding to a slight change in ξ⃗(φ). Keeping in
mind that φ = k(x − ct) yields, by Taylor expansion:

x2 − x1 = x2 + ξx(φ2) − x1 − ξx(φ1) ≈ κ + ξx(φ1) + κ∂xξx|φ1 − ξx(φ1)

= κ(1 − 1
c

∂tξx|φ1) = κ(1 − u

c
). (3.9)
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Referencing to a horizontal length a0 related to a reference state, see below, yields

δb(x⃗, t) = a0
cos (θ(x⃗, t))

· (1 − u(x⃗, t)
c

). (3.10)

This is an expression better suited for the practical application than equation (3.6b),
as u may be obtained by once differentiating the heated line position x(t) and also θ is
readily obtained in an experimental setting, with c and a0 still to be determined. Also
the critical integration of measured quantities occurring in equation (3.6b) is not needed.
As a side note, while it may be tempting to identify 1 − u/c as the Taylor expansion
of exp(−u/c), similarly to equation (3.6), the derivation of the latter does not apply in
this situation, and numerically speaking it also yields clearly deviating results for larger
values of ϵ.

It would be advantageous being able to reference δb to some selected state. By
defining a0 as

a0 := δbref · cos(θref)
(

1 − uref
c

)−1
, (3.11)

one finds, when the parcel is in its reference state, u = uref and θ = θref, δb/δbref = 1.
The effort of relating to a given reference state becomes useful later.

As δb(t) refers to the width of a fluid parcel, it must be the same whether the
reference system moves by a constant velocity or not. The same holds true for θ, as it
depends only on position and time. The situation is different for u, and as briefly noted
in section 2.2, also for c. However, by rewriting (3.10) and collecting the invariant terms
on the left hand side one finds:

δb

δbref

cos(θ)
cos(θref)

= c − u

c − uref
= c − U + U − u

c − U + U − uref
= c′ − u′

c′ − u′
ref

, (3.12)

where c′ = c − U , u′
ref = uref − U and u′ = u − U . This is nothing but transforming the

velocities into a reference system moving by horizontal velocity U . Thereby it is clear
that the right hand side is indeed invariant with respect to this kind of transformation.

3.3
Linear case

Given the two different expressions for the surface dilation and compression, namely
equations (3.6) and (3.10), it is illustrative looking at the limiting case of small wave
steepness ϵ , i.e. a ≪ 1/k, and linear waves to simplify the problem. In this case
θ ≈ 0 for all (x⃗, t). Moreover, the influence by the Stokes drift decreases along with
ϵ and the amplitude of the oscillation of x⃗(t) around the mean position, hence the
local and material derivates are approximately equal, ∂t ln(δb) ≈ dt ln(δb). Now, with
u = cϵ cos(φ) (see equation (2.29)) and the first order Taylor expansion of the exponent
in equation (3.6), one finds:

δb(t) = δb0 (1 − ϵ cos(φ)) = δb0(1 − u

c
), (3.13)

with δb0 describing the average width of the fluid parcel. Osborne [1965] reaches a
corresponding (phase shifted) result for the vertical boundary layer thickness δh(t) under
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Fig 3.3.: The figure shows the normalized by amplitude elevation η(x⃗, t) of a linear wave
with a single set of parameters (left), the position of some randomly picked fluid
parcels (middle) and the fluctuation of the fluid parcel width normalized by
wave steepness calculated by equation (3.13) (right). As can be seen, at the
wave crests (bright colours, left plot) the fluid parcel density is at its highest,
corresponding to small widths δb and elongation in z-direction. The situation
is the opposite in the wave trough. A (unrealistically) high value of ϵ = 0.45
was chosen for visibility of the density fluctuations, with everything calculated
in the linear wave framework.

the influence of linear waves. Expression 3.13 is also identical to equation (3.10) in the
limiting case, when setting uref = u = 0 and δbref = δb0.

As can be seen by equation (3.13), again viewing the water surface as an one
dimensional compressible fluid, the compression is maximal for φ = 0, corresponding
to the wave crest, and the dilation at the trough for φ = π, see figure 3.3. The fluid
parcel encompassing the heated line will undergo periodic changes of δb, with the wave
steepness giving the amplitude of the oscillation of the relative width δb(t)/δb0. The
important implication is that the width of the heated line will be altered accordingly.
This will be discussed in further detail below.

3.4
Finite amplitude case
Bringing it all together for the finite amplitude case, turning to the third order Stokes
wave, equations (3.6) and (3.10) may be compared to directly numerically calculated
quantities. Choosing two barely separated starting points at the water surface
(x1, η(x1, t0)) and (x2, η(x2, t0)), with η described by equation (2.38), their trajectories
can be calculated by numerically integrating the velocities at their subsequent positions
(x⃗i, t), see figure 3.4. Hereby c and ϕ are given by equation (2.40) and (2.39), respectively,
and the explicit Runge-Kutta 45 algorithm is used for integration with error control. The
starting points represent the up- and downwind edges of a fluid parcel, their distance
may therefore be used to verify the expressions for δb(t). Furthermore, the situation
is also easily viewed from a co-moving (constant drift) reference system, by letting all
x-values drift by −uS , with the Stokes drift calculated at mean vertical position of the
fluid parcels ka2/2, refer to section 2.2.1.

Starting with the clearly visible open orbit seen in figure 3.4(a), it is associated with
Stokes drift (section 2.2), resulting in a moving mean parcel position x(t). As expected,
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Fig 3.4.: The figure shows the surface layer of a 3. order Stokes wave with ϵ = 0.25 with
no underlying current, from a reference system locked at the bottom (a) and
one co-moving (c.m.) with the Stokes drift uS (b), both at same time t = 2 s.
The horizontal and vertical scales are equal (i.e. equal aspect ratio), hence the
shape is undistorted. The wave propagates in positive x-direction. The fluid
parcel (lime) is followed from a starting point at φ = 0 (black dot) and is the
same in both plots, with the black dotted line marking its trajectory. The size
of the depicted fluid parcel is exaggerated as compared to the one used for
the analysis. Other evenly spaced (relative to their mean position x⃗(t), blue
dots) fluid parcels are also shown. The red dots mark their current position
x⃗(t) = x⃗(t) + ξ⃗(t), with the parcel deflection ξ⃗(t), while the blue dotted lines
guide to their corresponding x⃗(t). For clarity, x⃗(t) are moving with speed uS

in the upper plot, and correspondingly non-moving in the moving reference
system. Note that the mean vertical position zp = ka2/2 of the fluid parcels
lie above z = 0 (cyan line). This is also evident in (d) for zp(t).

Subplot (c) and (d) show the velocity components and positions, respectively,
as function of time of the lime fluid parcel, with red corresponding to the x-
components and blue to z. Dashed lines indicate the x-components in the
moving reference frame, which are the only ones that change between the
frames. The black dotted line in (c) marks the magnitude of the Stokes drift,
also evident by the offset in up relative to up,c.m.. Likewise, in (d), the mean
of xp(t) increases corresponding to uSt.

Subplot (e) shows the temporal development of the fluid parcel width δb(t)
relative to its reference width at t = 0 s (red curve, barely visible), along with
the curves following from equation (3.6) in combination with the equations (3.8)
(blue) and (3.10) (cyan). The dotted lines show the computed x-component
δx of the width relative to its initial value δx0. Note that δx0/δb0 = cos(θ0).
The development is shown for somewhat more than one period in the co-
moving system, T ′. As can be seen, both equation (3.6) and (3.10) describe
the development well, with equation (3.6) deviating most.

30



when moving the reference frame with the very same velocity, x become stationary in
that frame, whereas the orbit of the fluid parcel relative to x becomes nearly circular
(i.e. circular for ϵ → 0), closed orbits. The difference between the reference systems
are also seen in plot (c), since the horizontal velocities are offset by uS relative to the
horizontal velocity in the co-moving system. Likewise in plot (d), xp oscillates around a
mean position drifting by uS · t.

Noting that the wavelength is unchanged between the systems, the Doppler shift
mentioned in section 2.2 becomes evident. One wave period in the moving system equals
to T ′ = 2π/(c′k) = 2π/ ((c − uS)k), with c given by equation (2.40) in the non-moving
reference frame, hence the periods are longer in the moving frame than in the fixed
frame. As the fluid parcels drifts by uS , the curves in (c)-(e) all possess a periodicity of
T ′.

In the two topmost plots in figure 3.4, the compression at the crest and dilation in the
trough can be clearly seen by the distance between the red points and the corresponding
angles between the blue dotted lines and deflections ξ⃗(t) from their mean position. For
the analysed fluid parcel, starting at φ = 0, its change of relative width is shown in
(e), red curve, for roughly one orbit. The width was thereby referenced to its width at
t = 0. Firstly, it should be noted that the width is always larger or equal to the initial
width, which is a consequence of referencing to the width at φ = 0, where the fluid
parcels reach their minimal widths. Furthermore, regarding only the x-contribution to
δb and its relative change (red dotted line), it can be described by equation (3.9) when
referencing to an initial state analogous to equation (3.11). The deviation from δb/δbt=0
are small (∼ 5 %), which is adequately explained by θ being small and the deviations
caused by ignoring cos(θ)−1 in (3.10). The deviations are largest where |θ| is largest, as
expected.

More importantly, both equation (3.6), with the temporal derivative of the tangential
velocity expressed by equation (3.8) (blue curve in figure 3.4e) and equation (3.10)
(cyan curve) describe δb/δbt=0 well, with equation (3.10) being slightly better (relative
deviations of ∼ 5 ‰compared to ∼ 1 ‰). This is most likely caused by the numerical
integration in (3.6b) in combination with the third order Stokes wave approximation
being, at ϵ = 0.25, quite far from the small wave steepness assumption by Stokes [1847].
These deviations also tend to approach the numerical error tolerances as ϵ becomes
smaller, for ϵ = 10−6 the deviations are of order 10−12.

Furthermore, the description of the derivative of the tangential velocity in (3.8)
was based on potential theory, as the Cauchy-Riemann relations were used. This is
questionable within the boundary layer in the presence of shear forces, as this introduces
vorticity and hence breaks the assumption of irrotionality. Equation (3.10) was based
on using that a wave of spatially non-varying shape may be described by x − ct, which
is not altered by vorticity present in the boundary layer. However, verifying (3.10) for a
rotational wave remains, which could be approached numerically (Francius and Kharif
[2017], also see Murashige and Choi [2020]), the same holds true for higher order Stokes
waves or other solutions to the wave problem in section 2.2.

Based on this, equation (3.10) is used for describing the surface compression and
dilation in the rest of this thesis, thereby yielding an expression reasonable for practical
application. It must be emphasized, however, that the relation is derived for a single set
of parameters a, k yielding a value for c. In reality, there will be much more complicated
wave fields. As will be explained in chapter 6, this will be handled by using estimated
parameters for the dominating wave.
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3.5
Implications for the thermographic measurement method
As already mentioned, the above findings have some direct impact on the measurement
technique for the viscous shear stress, as the surface compression and dilation alters
the widths of the heated lines, and hence their distributions. As the method relies on
analysing a characteristic line width, the question remains how it is best described.
In the case of waveless conditions, the distributions were approximately of Gaussian
shape (Voigt [2019]), easing the characterization due to the symmetry of the normal
distribution, as both maximum count, mean and median equal the same value. As will
be argued in this section, this is no longer the case in the presence of waves, making the
characteristic line width more ambiguous.

3.5.1
Single set of wave parameters

Firstly, the initial widths of the heated lines σ0 are influenced by the surface velocity,
as the laser always points at the same point in space during the heating of the lines
and is turned on for a finite amount of time tlaser on, during which the surface moves.
Subsequently, as the velocity depends on wave phase, this is also true for the initial line
width. For simplicity, in the following assume that the laser with a Gaussian beam of
width σlaser is directed purely vertically, the horizontal surface velocity component is of
sinusoidal shape superposed with a mean drift, u = ũ0 cos(φ) + Ud and the influence
by surface inclination on the line width is negligible. Also neglecting shear flow in the
boundary layer and diffusion, which has only a minor influence on the profile for such
small times, the temperature profile yielding the initial width will be given by:

T (x) ∝
∫ tlaser on

0
exp

(
−(x − ut)2

2σ2
laser

)
dt (3.14)

If the wave phase is sampled uniformly, the velocity probability density function can
be described by an arcsine density distribution (Crooks [2019]):

P (u) = 1
2π

dφ

du
= 1

π

1√
(u + ũ0 − Ud)(ũ0 + Ud − u)

, (3.15)

see figure 3.5.
Hence, the most likely velocity to influence the initial width is u = Ud ± ũ0. Since

the wave period is long compared to the heating time of the lines, the velocity is
approximately constant during the heating process, and therefore also the distribution
of σ0 is expected to show two peaks, corresponding to those extremal values, if tlaser on
and u0 are high enough, refer to the right plot of figure 3.5, and Ud 0 0. The latter must
be true in order to not get symmetric velocities for both extrema, which yield the same
σ0. It also requires σ0 to be sharply distributed and the presence of only a single wave
mode to avoid smearing of the distributions, which in practice is not given. However,
as it is illustrative, this framework will be carried on. Also diffusion will be neglected,
as the focus lies solely on alteration of the distributions caused by the wave motion as
discussed in this chapter.

Moving on to surface dilation and compression, the line width will oscillate in
accordance with the fluid parcel that encompasses it, and is thereby described by
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Fig 3.5.: The left plot shows the arcsine distribution (3.15) for ũ0 = 5 cm/s and Ud =
15 cm/s, which diverges for u = Ud±ũ0, in the sense that the integral still equals
1. The middle and right subplot shows the initial line width σ0 for different
heating times tlaser on under the influence of horizontal surface flow velocities
u, relative to the width of the laser beam σlaser (middle) and absolute (right).
Markers and colours are equal in both (right and middle) plots. As can be seen,
the relative and absolute alteration is largest for high velocities and small σlaser.
For high tlaser on, σ0 is expected to increase ∝ u · tlaser on, when the shape of the
temperature profile, equation (3.14), changes from Gaussian to exhibiting a
plateau of constant temperature. Correspondingly, for small tlaser on the profile
remains of Gaussian shape due to the width of the beam, hence only minor
changes in σ0 occur. The smaller σlaser, the faster the transition, hence both
σ0 − σlaser and σ0/σlaser are largest for small σlaser for given tlaser on. Diffusion
was neglected.

equation (3.10). The reference width for that line, however, will always be given by
σ0. For example, if a line is heated in the trough of the wave, the surface dilation
there is maximal, and the line will be compressed for all other wave phases until again
reaching its original width in the next trough. As the (Eulerian) velocity and hence
σ0 in the trough is minimal, see e.g. figure 3.4, one would expect the over all lowest
possible line widths for each phase. Correspondingly, σ0 is expected to be maximal at
the crest and stretched for all other wave phases, yielding the maximum line width for
each phase. Moreover, these two extrema also correspond to the most likely events,
as expected from the arcsine distribution. Since the measurement technique is based
on finding a representative line width, this tendency towards the extrema is a rather
unfortunate phenomenon.

More quantitative, one finds by equation (3.10):

σ(t)
σ0 · g(t)

= δb(t)
δb0

= cos(θ0)
cos(θ)

· c − u

c − u0
=: f(t), (3.16)

when referencing to the parameters at t = 0, i.e. the initial wave phase φ0 when heating
the line. See figure 3.6 for a plot of f for different φ0. The function g(t) was added to
account for diffusion related broadening of the line, such that in the absence of waves
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Fig 3.6.: A plot of f(φ0), equation (3.16), for a third order Stokes wave with ϵ = 0.25
and λ = 0.2 m, equal to that in figure 3.4. Note that f is independent on
the underlying bulk drift, as seen in section 3.2, whereas σ0 is not. Seen is
the asymmetry in stretching and compression of the line widths, arising from
σ0 fixing the reference width. For the lines heated at the crest, expected
to be wider than those starting in the trough for a non-vanishing mean
surface velocity, f(φ0 = 0) ≥ 1 for all t, whereas f(φ0 = π) ≤ 1 for
those in the trough. Note that max {f(φ0 = 0)} = (min {f(φ0 = π)})−1, and
max{fφ0(t)}/ min{fφ0(t)} is equal for all φ0.

f(t) = 1 for all t. Neglecting diffusion in the following, one can set g(t) = 1. By equation
(3.16) one finds f(t = 0) = f(t = T ′) = 1, with T ′ being one wave period seen from the
co-moving perspective of the line. Furthermore, the magnitude of f is dependent on φ0,
as for example (c − umin)−1 ≤ (c − umax)−1 in the case of the discussed extrema. This
introduces an asymmetry in the distributions of the line widths for t , T ′ (and integer
multiples), with the range of high values of σ(t) (i.e. for f > 1) being larger than the
range of the small σ(t) (i.e. f < 1). To clarify, the lines heated at the crest undergo a
larger absolute change in width when stretched, compared to the lines in the trough when
compressed, even if their initial widths were equal. The discussed dependence of σ0 on
φ0 comes on top of this, and further exaggerates the tendency towards large σ(t). Also
noting that the ratio of max{σφ0(t)}/ min{σφ0(t)} = (c−umin)/(c−umax) is independent
of φ0 when assuming θ = 0 when u is extremal, in contrast to the line widths themselves,
further supports the impression of the asymmetric distributions. That the ratio must be
constant is clear from the fact that the width of the fluid parcel encompassing the line
will always oscillate in the same manner, irrespective of the initial state of the line.

With several aspects coming together, it is helpful to look at a numerical example
with a large number of randomly picked initial phases, still in the idealized framework of
a fixed σlaser and a single set of wave parameters. The result is shown in figure 3.7. As can
be seen in the topmost plot for σ0, the two expected peaks from the arcsine distribution
are seen. The peak for the lower value of σ0, corresponding to u = −ũ0 + Ud ≈ 0, is
more pronounced, however. This can be explained by the low value of u, causing only a
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Fig 3.7.: The figure shows the result of 5·104 randomly initiated (with respect to phase),
heated lines on a third order Stokes wave, under the assumption of constant
velocity during heating the line. Diffusion was omitted in order to enclose only
the aspects discussed above. The topmost plot shows the distribution of the
initial line width σ0, the middle plot a (2D) histogram of f(t), see equation
(3.16) and the lower plot the histogram of the temporal evolution of the line
width σ. The red line in the middle plot marks f = 1. Lime dots mark the
average values of the respective distributions, note the slight tendency toward
high values at t ∼ T ′/2 compared to t = 0. A logarithmic color scale in the
lower two plots was used. Parameters were: ϵ = 0.25, tlaser on = 10 ms, σlaser=
0.9 mm, λ = 0.2 m and Ud = 0.15 m/s.

minor change in σlaser (figure 3.5), such that a larger range of velocities u get sampled
per bin than for the upper peak of σ0.

The two lower plots of 3.7 show the explained asymmetry, and the higher counts at
the extremal values of both f and σ(t), with more counts at the minimum, reflecting
the distribution of σ0. The return to the initial state at t = T ′ is also clearly visible.
Furthermore, the averaged values of the distributions are not constant, both the mean
f and σ tend towards slightly higher values at t ∼ T ′/2 than at t = 0.

3.5.2
Distributed parameters

Having gained some insights on what to expect for an idealized situation, one might
approach the problem of the characteristic line width using a slightly more complex,
although still highly simplified, scenario. Besides, noting that the characteristic line
width must correspond to f = 1 in order to represent and correspond to σ0, it is time
to progress beyond looking at only one set of wave parameters. Longuet-Higgins [1952]
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derived that the wave height distribution of ocean waves approximately follow a Rayleigh
distribution,

R(x; s) = x

s2 e−x2/(2s2), (3.17)

with s being the scale parameter, corresponding to the maximum of the distribution.
In order to derive this result, Longuet-Higgins [1952] assumed a narrow frequency band
and a large number of modes interfering from different directions. Since ω = ck ∝∼

√
k

for deep water gravity waves, this implies that also k must be narrowly distributed. In
the following, it will still be assumed that each individual heated line is only affected by
one (randomly drawn) wave with a single set of parameters, for simplicity.

Since a is then Rayleigh distributed and k of little variation, also the wave steepness ϵ
follows approximately a Rayleigh distribution. As found in section 3.3, the compression
and dilation is determined by ϵ. With the wave associated velocity ũ0 ≈ ack (see
equation (2.29)), the magnitude of f is strongly dependent on a, with f(t) = 1 for a = 0.
Therefore, in the depicted situation, one expects the pronounced extrema of f as seen
in the middle plot of figure 3.7 to be more evenly but skewly distributed towards higher
values in accordance with the underlying distribution of a. Furthermore, irrespective of
φ0 and a, as long as each individual line is affected by one set of wave parameters, it
will revisit f = 1 for t > 0 at least once per T ′. One therefore might assume that the
distributions of f peak at f ≈ 1 for all times after heating the line, with varying degrees
of skewness and distribution width. Hence, as long as σ0 is approximately independent
on ϕ0, corresponding to low values of tlaser on and some spatial variation of σlaser, there
will be a single peak in the distribution of σ(t), which indeed corresponds to f = 1. How
sharp this peak is, however, will depend on the circumstances.

Due to |umin| being closer to zero than |umax|, a skewed distribution of σ0 is expected,
with the long tail towards higher values corresponding to high values of u0. In analogy
to the reasoning for f , the peak would correspond to u = Ud, as this value is visited for
all a, whereas the width would also depend on the circumstances.

Again considering a numerical example, see figure 3.8, one sees that the above
reasoning to a large extent holds true in this simplified framework. Of course, care must
be taken, as this highly simplified situation is far from the real world application. Still,
some valuable information about the phenomenology may be found. The distributions
of the parameters used may be compared to measured distributions in figure 6.8, note
that k is broader distributed in reality, however.

In addition to the Rayleigh distribution of the amplitudes, both k and σlaser were
described as normally distributed, i.e.:

N (x; µ, σ) = 1√
2πσ

exp(−(x − µ)2

2σ2 ) (3.18)

each with a width of 5% of the respective mean values. What can be seen, is that for
f(t) (second lower plot) the maximal value of the distributions (red dots) lies at about
f = 1, with a minor tendency of deviating about 5 % towards lower values when the
distributions reach their maximal width at t = T ′/2. There are also some fluctuations of
the maximum values, as expected due to the randomness of the initial parameters and
the resulting distributions. Also the mean values (lime dots) of f(t) at each t is stable
at f ≈ 1, with a tendency towards larger values (deviations ∼ 1%).
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Fig 3.8.: The figure is similar to figure 3.7, but with distributed parameters. It shows
the result of 3·104 randomly initiated heated lines on a third order Stokes wave.
Diffusion was omitted. The 3 topmost plots show the distribution of the line
widths σ(t) initially (σ0) and at t = 0.19 s≈ T ′/2 (left), the Rayleigh distributed
amplitude a (top, middle) and wave steepness ϵ (right). The two latter may
be compared to measured distributions, see figure 6.8 for the u10 ≈ 4.8 m/s
measurement. The second lowest plot shows a histogram of f(t), with the
maxima (red dots) and mean values (lime dots) given for each t. The thin
red line shows f = 1. The lowest plot shows the histogram of σ(t), with red
dots representing the maxima of the distributions and green dots the mean
values. The initial line width is represented by the red line, also shown in
the upper left plot for reference. Note the logarithmic colour scale in the two
lower plots. Parameters were: a = H/2, H ∼ R(s = 5 mm), tlaser on = 10 ms,
σlaser ∼ N (µ = 0.9 mm, σ = 0.045 mm), k ∼ N (µ = 2π/0.2, σ = 2π/4) and
Ud = 0.12 m/s (latter realistic for u10 ≈ 4.8 m/s, else compare to figure 6.8).
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Moving on to the distributions of σ(t) (bottom plot), the expected skewed distri-
butions towards high values are clearly evident, especially for t ∼ T ′/2 ≈ 0.19 s. The
maximum of the distributions (red dots) are rather stable, for all times. The values at
t ∼ T ′/2 again tend to somewhat lower values than at t = 0, deviating on average by
∼ 5 %. This is mainly caused by the high number of lines corresponding to the low
extrema of f , as seen also for a single wave in figure 3.7. The mean of the distributions
are depicted by the green dots, and yield stable values with respect to t, lying a bit above
the values of the distribution maxima. The initial line width is depicted as the red line.
For reference, this line is also shown in the upper left plot, along with the distribution
of line widths at t = 0 and t = 0.19 s. Note the different peak positions, deviating by
∼ 5% as mentioned above, and that both distributions are skew as expected, especially
that for t = 0.2 s. In the case of a sufficiently narrow distribution of σ0, the peaks of
σ(t) correspond to those of f(t).

Based on the reasoning above and numerical example in figure 3.8, the peaks of the
distribution of σ(t) will approximately correspond to f = 1, and may therefore be used
as the characteristic line width since they then correspond to the unaltered (by surface
compression and dilation) line widths. The deviations are smaller for t ≈ nT ′ than at
t ≈ nT ′/2, for integer n > 0. The main reason for preferring the peak positions as
the estimator for the characteristic line widths over the mean, is that experimentally
speaking, the mean is prone to a bias caused by outliers. As line widths are strictly non-
negative, low value outliers will be restricted to the range between zero and the actual
σ(t), whereas high value outliers are unrestricted, simply leading to the elongation of
the tails of the (skew) distributions. Due to the rather heavy tails, defining a cut-off for
outlier detection is questionable, as this may influence the resulting mean value. Hence,
evaluating the peak of the distribution is a more stable estimator.

As the real wave fields consist of superposing waves and a wider frequency band
than allowed for in the numerical example above, it is to be expected that the narrowing
of the distributions seen in figure 3.8 at T ′ vanishes as the periodicity is no longer as
sharply determined, and that the distributions are overall broader than in this simplified
example. Furthermore, diffusion, under the influence of shear flows in several directions,
will add another contribution towards even broader distributions, in addition to a general
increase in σ(t). The observed distributions of σ(t) are indeed both skewed and peaked,
mostly without the narrowing at T ′.

3.5.3
Influence on the diffusion related broadening

As a final aspect, the stretching and compression of the lines may also alter the broadening
of the heated lines. By viewing the diffusion process acting on a temperature profile as
a convolution with a Gaussian kernel, see section 2.3.3, one can argue that altering the
spatial dimensions of a fluid parcel will have impact on the smoothing of temperature
profiles associated with diffusion. This can be thought of as the Gaussian kernel being
unaltered, whilst the spatial temperature structures of the fluid parcel (such as temp-
erature gradients or widths of distributions) will be changed. In the case of horizontal
stretching, for example, with a localized temperature gradient purely in x-direction, this
gradient would become smaller. The horizontal distance a particle would need to surpass
by random walk in order to escape the gradient would also be longer.

For simplicity, regarding δb(t) described in the linear case of section 3.3, the extremal
values of the width of the fluid parcel will be δbextr. = δb0(1 ± ϵ), with mean width δb0.
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In the most relevant measurement conditions, that is for low wind speeds, ϵ of the
dominating wave is mostly a rather small number with subsequent low changes of the
extent of the fluid parcels encompassing the heated lines. With the wave period being
smaller or similar to the life time of the heated lines, the individual line will undergo both
stretching and compression and the subsequent alterations of the temperature profiles,
and only spend short times at the extrema, i.e. maximal stretching and compression.

Furthermore, assuming laminar alteration of the fluid parcel during the dilation
and compression, the shape of the temperature profile will return to its original except
diffusion related smoothing. For the line this would mean that it stays a line during and
after completing a wave cycle. This brings along another point; in contrast to shear flow,
which deforms the shape of the profiles, the surface compression and dilation acts by
normal strain, hence predominantly alters the spatial extents of the fluid parcel without
shearing it. To clarify, this is reflected by their respective dependencies; ∂z⊥u∥ for the
shear flow and ∂x∥u∥ for the normal strain, with x∥ and u∥ tangential and z⊥ normal
to the surface, respectively. For conditions similar to those depicted in figure 3.8 above
(i.e. u10 ≈ 4.8 m/s), ∂x∥u∥ is roughly 10 times smaller than ∂z⊥u∥.

Based on this, the effect of Taylor dispersion corresponding to the enhancement of
line broadening due to the presence of shear flow, is assumed to dominate the broadening
of the lines. Hence the effect of surface compression and dilation on the broadening due
to diffusion is neglected in the following. Note that this must not be confused with the
compression and stretching of the fluid parcels, causing the discussed alterations in the
line widths; solely the effect on the diffusive broadening is neglected.

3.6
Summary of chapter 3
The most important implications found above regarding the influence by waves for the
thermographic method:

– The heated lines undergo an alteration of their width σ(t) associated with wave
induced surface compression and dilation. This is in the following described by
equation (3.16), and is wave phase dependent.

– The peaks of the expectedly skew distributions of σ(t) are used as an estimator for
the characteristic line widths, with the smallest deviations for times corresponding
to an integer multiple of the wave period in the reference system following the
mean surface velocity. It is advantageous to sample (i.e. heating the lines) such
that both different wave phases and the -field is reflected.

– It is preferential to keep the heating time of the line at a minimum in order to
minimize the width and wave phase related skewness of the distribution of σ0.

– The influence by the compression and dilation on the diffusion related line broad-
ening is neglected.
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4 | Setup and measurements

In this chapter the setup, measurements and the wind-wave facility will be presented.
All image acquisition was done and controlled by scripts written in Heurisko.

4.1
The Aeolotron
All measurements were conducted at the Aeolotron annular wind-wave facility, see figure
4.1, located at the Institute of Environmental Physics in Heidelberg, Germany. The outer
diameter is about 10 m and channel width approximately 61 cm. Filled to approximately
100 cm this corresponds to a water volume of roughly 18 m3. The height of the air
compartment is then about 140 cm, with the wind being driven by four evenly spaced
axial ventilators. The annular shape gives rise to secondary flows, which prevent a
logarithmic wind profile as found in for example linear facilities and additionally makes
the wind field inhomogeneous (Bopp [2014]). As a consequence, it is more difficult to
reference the wind speed in the Aeolotron to the usual reference to the wind speed at a
height of 10 meters, u10. Estimations exist (refer to Bopp [2014] for details), however,
and are given in 4.1 for the measurements included in this thesis. These are given for
the frequency used to control the axial ventilators (possible range between 0 and 50 Hz).
In the this work, since the wind generator frequencies are given and the estimates of u10
might change, the former will be referred to in this thesis, for future reference.

4.2
Setup January 2021
The setup consisted of the a combined configuration for the active thermography and a
system for measuring the surface elevation along a line parallell to the wind direction,
see figure 4.3. The active thermography setup consisted of the infrared sensitive camera
FLIR X8501sc with a FLIR 50 mm (i.e. focal length) lens, gratefully lent from FLIR
systems, and a near-infrared (NIR) laser. The camera is sensitive in the spectral range
of 3.0−5.0µ m, and has a resolution of 1280x1024 pixels along with a thermal sensitivity
of ≤ 30 mK (FLIR Systems [2020]). The detector material is indium antimonide (InSb)
with a detector pitch of 12 µm, cooled by a Sterling cooler. This yields along with
the used lens and roughly 1.5 m object distance a observed pixel size of 12 µm/px ·
1500 mm
50 mm ∼ 460 µm/px. This is comparable to the calibrated ∼ 420 µm/px. The camera

was mounted at an angle of about 20◦ relative to the vertical direction and facing upwind,
see figure 4.3. This was done in order to not see the reflection of the cooled camera
detector (Kunz [2017]).

In the measurements, only half-frame images (640x512 pixels) were acquired. This
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Segment 13

Fig 4.1.: Schematic of the Aeolotron. The experiment was conducted at segment 13,
where the optical access is located. Modified from Krall [2013].

was done in order to reduce the amount of data, without compromising the measurement.
Frame rates were 200 fps and exposure time of 4.8 ms for wind reference frequency <
15 Hz and 250 fps and an exposure time of 3.8 ms at wind reference frequency higher
than 15 Hz.

The laser used consists of 9 SemiNex T09-181-161 Laser diodes, divided into two
separately controllable blocks, emitting in the NIR at λ = 1450 ± 20 nm, see figure 4.2
for the characteristic curves. The diodes already have a line-like shape, with an emitter
width of 95 µm and height of 1 µm. Together with aspherical lenses with a focal length
of 4.6 mm and object distance of 1450 mm, the heated lines where expected to be ∼
28x0.3 mm. This was not the case, however, with only 3 sharp lines, all in one block,
with a width of σlaser = 0.9 ± 0.1mm dimension was off by a few millimetres, but is less
critical. Hence only this block was used, containing four diodes, which were oriented
perpendicular to the wind direction and at an angle relative to the vertical direction of
about 8◦ in radial direction towards the channel center (refer figure 4.3). One of the
four diodes in the block gave rise to a highly unsharp signal, hence the three lines were a
result of merely 3 diodes. They were supplied by 8 A, enabled by a 40 F capacitor pack,
referring to the characteristic curves in figure 4.2 this yields a power per centimeter line
of about 0.8 W/cm. A supply voltage of 10 V was used. The penetration depth in water
at 27◦ is ζlaser = (318 ± 4) µm (Palmer and Williams [1974]), which is assumed correct
also at ∼ 20◦C at the measurement.

The laser was pulsed at frequencies between 1 and 5 Hz, with heating time of the
line tlaser on = 15 ms, using custom electronics and a Teensy microcontroller. When
temporally feasible, the laser frequency was adjusted during the measurements, to heat
a high number of non-overlapping lines. The maximum frequency depends on the water
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Fig 4.2.: Characteristic curves for the NIR-diodes SemiNex T09-181-161. They were
used at 8 A supply current.

surface velocity. For that reason, an IR image was displayed every 5 seconds, giving an
handle for how high the frequency could be and adjust it accordingly.

The water elevation was measured simultaneously, using a second camera (laser
height camera, LHC) sensitive in the visible wavelength range in combination with a
laser sheet that was non-pulsed and a fluorescent dye. The laser height camera was
triggered by the IR-camera, hence acquiring images at the same rate and timing.

The camera was Basler acA1920-155um (1500x667 pixel section was used, compared
to detector resolution of 1920x1200 pixel) with a 17 mm Tokina wide angle lens, mounted
with a Scheimpflug adapter (see Scheimpflug [1906]) and a green band pass filter (525
nm). This enabled mounting the camera well above the water surface at an angle of about
30◦ relative to the horizontal direction, see figure 4.3, while still seeing the vertical plane
in focus. Hence problems with wetting of the measurement window and subsequent
unsharp images were avoided. The wide angle lens furthermore enabled a broad enough
field of view for all measurement conditions. At the water surface, the resolution was
∼ 200 µm/px, which is enough for the dominant wave field parameters that were needed
for evaluation. An exposure time of 3 ms was used.

The laser used for the LHC measurement consisted of three blocks of Nichia NUBM08
Diode Bank, emitting at (455±5) nm. These formed a laser sheet, oriented parallel to the
wind. About 13.5 cm were seen by the camera at the surface, which was the maximum
limited by the measurement window installed in the facility. The three block were
supplied with 46.5VDC , which along with the current yields a total power of about 90 W.
The mounting angle relative to the vertical direction was about 4◦ downwind.

The water was dyed with (10±0.1) g Pyranine (Trisodium 8-hydroxypyrene-1,3,6-
trisulfonate), corresponding to ∼ 10−6 mol/L, in combination with 5 ·10−5mol/L sodium
hydroxide (NaOH). Pyranine’s fluorescent properties are pH dependent (Schwarz [2016]),
and has the advantage of possessing a rather large Stokes shift at the wavelength of the
deployed laser. This means that it is excited at 455 nm (corresponds to blue), but emits
at about 511 nm (green, Kräuter [2015]). Hence, by using the mentioned green band pass
filter, most reflexes from the laser can be filtered out, easing the water level detection.

Due to the large amounts of data continuously (cyclically) acquired simultaneously
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Fig 4.3.: Schematic of the setup, tangentially (left) and radially (right) to the wind-wave
facility. Active thermography: The NIR-laser is pointing vertically (xz-plane)
and at an angle of 8◦ in the yz-plane at the surface. The heated line direction
is perpendicular to the wind. θa is about 20◦, whereas θy ≈ 0. The length
of the 3 heated lines are (30 ± 5) mm, and width (0.9 ± 0.1) mm. The LHC
(laser height camera)-laser is vertical in the xy-plane and angled downwind by
4◦ in the xz-plane. Note the angle depicted for the LHC, this is achieved by
the Scheimpflug principle, and the camera sees a sharp plane in the vertical
direction. The water was dyed with the fluorescent dye Pyranine. Emmel [2017]
deployed a setup that in principle is similar, without the LHC associated setup.
Furthermore the water was dyed yellow by Tartrazine, in order to absorb a blue
laser used for heating the lines, instead of the NIR laser. The line was about
28 cm long and (0.6 ± 0.1) mm thick.

by the two cameras, rarely and for unknown reasons, image packets were not saved in
time, meaning that new images had overwritten older ones in the ring buffer before the
old were saved. Therefore both buffer position and the count of acquired images where
saved in the filenames. By comparing these number to buffer size, it was possible to
detect the affected images and discard the corresponding data.

4.3
Setup by Arne Emmel [2017]
Some of the measurements conducted by Arne Emmel were reanalysed. Emmel used
a setup similar to that described above, refer to Emmel [2017] for further details.
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PSV- algorithm

Fig 4.4.: A particle from the PSV method, illuminated by one series of pulses. Based on
the pattern and streak length, both velocity and direction can be determined.
The figure is modified and adapted from Schwenk [2019].

The IR-camera deployed was IRCAM Velox 327k with a 50 mm lens, yielding about
700 µm/px, and acquisition with 100 fps. The camera is sensitive in the range 3.5 −
5.0µ m. Furthermore, instead of the NIR-laser, the water was dyed yellow using Tartrazine,
absorbing in the blue spectrum. Hence a blue laser was used for creating the line, with
power per centimeter heated line ∼ 1.3 W/cm and a penetration depth of ζlaser ≈ 725 µm.
The length of the line was 28 cm, and found here to have a beam width of σlaser =
(0.6 ± 0.1) mm.

4.4
Setup January 2019 - reference method (PSV)

In the framework of Voigt [2019] also water-sided particle streak velocimetry (PSV)
data in conditions with waves were acquired. Since the viscous shear stress also can
be determined by the PSV method, the data is analysed in this thesis as a reference
measurements. Two cameras of type Basler acA1920-155um were used, one above
the water for surface elevation measurement with a Canon 50 mm lens (∼ 61 µm/px
(observed resolution), 1900x600 pixels, 200 Hz), and the other water-sided for the particle
images with a Zeiss 100 mm macro lens (∼ 21 µm/px, 1900x1200 pixels, 50 Hz). Similar
to the setup in January 2021, Pyranine was used to dye the water, and a blue laser
used to create a laser sheet parallel to the wind direction, and a green band pass filter
(525 nm) for the LHC. The laser sheet was pulsed, with a frequency of 1200 Hz for
creating a streak pattern, see figure 4.4, with a series of 5 pulses, a pause of 2 and
then further 2 pulses. This makes the direction unambiguous. The particles had a size
of about 30 µm. Correspondingly, the exposure time of the PSV camera was 8 ms for
seeing the whole streak in one image. The LHC was triggered at pulse number 2 and 6,
when not counting the pause. Further two LHC images where acquired per cycle. The
exposure time of the LHC was 0.5 ms. The setup of the experiment was conducted by
Maximilian Bopp.

Both lenses of the cameras were mounted with Scheimpflug adapters, looking up
and down at the water surface, respectively, seeing the vertical plane in focus, see figure
4.5 for reference. The reason for using two cameras in the first place, is that the water
sided camera cannot detect the water surface with certainty due to total reflection, see
section 2.4.
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principle. The laser
sheet is vertically
oriented, and parallel
to the wind direction.

4.5
Measurements
The evaluated measurement are listed below. Two kinds of measurement conditions were
examined: non-stationary (type St) and stationary (type NSt). The latter describes the
situation when wind- and wave field are in a dynamical equilibrium, achieved by turning
on the wind and then waiting until the water bulk velocity does not change any more.
Depending on the wind velocity, this waiting time should at least be 90 minutes for the
lower wind settings, and longer for higher wind speeds.

The non-stationary kind of measurement evaluated in this thesis, is to turn on the
wind after starting the measurement, thereby seeing the temporal development during
the build-up of the wave field. Depending on wind speed, the changes in the wave field
are minor beyond about 10-20 minutes for the relevant conditions in this thesis. This
does not mean, however, that the bulk velocities have reached their asymptotic values.
This might influence the momentum transfer. The non-stationary measurements were
continued for a few minutes after turning off the wind. Starting next the measurement
with a slight water velocity remaining from the last measurement, avoids heating the
lines on top of each other before the wind is turned on.

In the non-stationary measurement by Emmel [2017] the wind generator frequency
was first set to 15 Hz for 5 s before turning down to 10 Hz, in order to build of the wind
field faster.
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fwind [Hz] u10 [m/s] Duration [min] Type tlaser on[ms] Date Reference
2.5 0.9 ± 0.2 20 NSt 15 30.01.2021 12
5.0 2.4 ± 0.2 25 NSt 15 30.01.2021 11
6.3* 3.1 ± 0.2 25 NSt 15 30.01.2021 14
7.5 3.7 ± 0.2 20 NSt 15 30.01.2021 13
8.8* 4.3 ± 0.3 30 NSt 15 30.01.2021 15
10.0 4.8 ± 0.3 50 NSt 15 30.01.2021 06
12.5 6.1 ± 0.4 30 NSt 15 30.01.2021 07
15.0 7.3 ± 0.4 35 NSt 15 30.01.2021 08
17.5 8.9 ± 0.5 35 NSt 15 30.01.2021 09
20.0 10.7 ± 0.7 35 NSt 15 30.01.2021 10

5.0 2.4 ± 0.2 5.5 St 10 30.08.2017 Emmel [2017]
6.3* 3.1 ± 0.2 5.5 St 10 30.08.2017 Emmel [2017]
7.9* 3.9 ± 0.2 5.5 St 10 29.08.2017 Emmel [2017]
10.0 4.8 ± 0.3 5.5 St 5 31.08.2017 Emmel [2017]
10.0 4.8 ± 0.3 5.5 St 10 31.08.2017 Emmel [2017]
10.0 4.8 ± 0.3 5.5 NSt 10 01.09.2017 Emmel [2017]

5.0 2.4 ± 0.2 10 St n.a. 11.01.2019 46-PSV
5.0 2.4 ± 0.2 10 St n.a. 11.01.2019 47-PSV
7.5 3.7 ± 0.2 12 St n.a. 10.01.2019 43-PSV
10.0 4.8 ± 0.3 10 St n.a. 10.01.2019 44-PSV
10.0 4.8 ± 0.3 10 St n.a. 14.01.2019 48-PSV

Table 4.1.: An overview over the measurements included in this thesis. For the upper
10 measurements, the duration describes the approximate duration the wind
was on during the measurement. For the lower 11, the duration described
the duration of the actual measurement. The approximate relations between
the wind generator frequency and reference wind speed at 10 m height u10
are also given, values provided by Maximilian Bopp. Wind speeds for
conditions denoted by an asterisk (*) are interpolated. Interpolation error
was small compared to the uncertainties of the interpolated values. The
reference denotes the measurement labels, provided for future reference.
“n.a.”: not applicable.
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5 | Simulation

In this chapter a short summary of the simulation deployed for solving the problem
described in section 2.6 will be given for sake of completeness. The approach was
developed in Voigt [2019], and is mostly applied as described there, therefore more
detailed derivations are left out in the following. Minor changes to the original approach
will be indicated. An example of a simulated temperature profile of heated line is
provided in figure 2.7.

The problem is described in an Lagrangian frame of reference, with the topmost
fluid layer not moving. Only the part of the boundary layer encompassing the heated
line is considered, the size of which is adapted to the prescribed velocity gradient in order
to ensure that calculated heated temperature profile is not influenced by the size of the
simulated volume. In this thesis only the shear stress in z-direction, ∂zu, is of interest,
hence the problem is restricted to two dimensions with unit extent in y-direction in order
to save computational effort. This can be done since the heated line is homogeneous in
y-direction, hence no heat will flow in that direction.

The volume to be simulated is divided into voxels with variable side lengths ∆xi,
however constant for each dimension. As the vertical scale is smaller and preferentially
higher resolved, ∆z ≤ ∆x in practice. The procedure followed for each time step is
(Voigt [2019]):

– a heating step as long as the laser is on and the line heated,
– a diffusion step,
– a shift of the volume in x-direction corresponding to the shear flow, with cubic

interpolation accounting for shifts not equal to a multiple of ∆x.

5.1
Heating step
Assuming a laser profile that is Gaussian in x-direction centred at x0 with width σlaser
and box shape of unit length in y-direction, the irradiance flux E hitting the surface can
be described by:

E(x, t) = Pl√
2πσlaser

exp
(

(x + Udt − x0)2

2σ2
0

)
, (5.1)

where Pl is the laser power per unit line length and Ud is the drift velocity of the
surface. This corresponds to moving the laser with Ud while keeping the surface fixed.
The approach of accounting for the surface drift velocity, instead of adjusting σlaser in
order to cover a range of initial line widths, is changed from the original work. Though
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representing a more realistic approach, it yields a minor correction only for relevant
values of the parameters, however, and is found to alter the result the estimated τvisc
by ∼ 1% and may hence be neglected. Also some smaller values of σlaser were simulated
in order to account for events where the measured and estimated initial line width was
slightly smaller than σlaser.

The change in temperature ∆T per time step ∆t due to E(x, t) is given by:

∆T (x, z, t; λ) = E(x, t) · ∆t

ξ(λ)ρcV
exp

(
− z

ζ(λ)

)
, (5.2)

with penetration depth ζ(λ), ρ is the density of the water and cV its specific heat, and
Lambert-Beer’s law, equation (2.54), was used.

In practice ∆T corresponds to a matrix of same dimensions as the simulation volume.
As the heating time tlaser on is longer than the time step size ∆t, heating for several time
steps is needed. This is done most cost efficient by precalculating ∆t and shifting it
according to Ud and ∂zu before being added to the simulation volume.

5.2
Diffusion step
This idea was originally adapted from Haußecker [1996], who used a similar approach.

As seen in section 2.3.3, diffusion acts on a temperature profile by convolving it
with a Gaussian of width

√
2αt per dimension. With the advantages of the fast Fourier

transform (FFT), however, doing the corresponding multiplication in Fourier space
becomes an option. Somewhat dependent on array sizes, this is advantageous, as a
multiplication is less expensive for large arrays than a convolution.

The Gaussian still must be discretized. The mask or operator found in Voigt [2019]
is in two dimensions:

Mxz =

 βxβz βz(1 − 2βx) βxβz

βx(1 − 2βz) (1 − 2βx)(1 − 2βz) βx(1 − 2βz)
βxβz βz(1 − 2βx) βxβz

 , (5.3)

with

βxi = α∆t

∆x2
i

. (5.4)

The latter equation links the time step to the spatial discretization. Note that Mxz(κx, κz)
may be separated, Mxz = Mx ∗ M z, such that due to the associative property of
convolution, it is possible to multiplicate the simulation volume in Fourier space by one
dimensional masks at a time, additionally saving computational effort. For the transfer
function of M̂xz(κx, κz), see equation (B.4), one finds
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Fig 5.1.: The transfer functions of the ideal (Gaussian) operator, see equation (2.58)
exp(−βk2) (left), compared to the method of finite differences (middle, refer
to Voigt [2019]) and the chosen mask Mxy (right). The functions are depicted
βx = βy = β = 1/4 (above) and β = 1/16 (below). For β = 1/4, Mxy yields
the binomial mask 2B, with a particular isotropic transfer function. For small
κ, as equation (5.5) shows, Mxy is isotropic for all values of β. Note that the
xy plane is shown, and that the expressions stay the same. The figure is taken
from Voigt [2019].

M̂xz(κx, κz) =

(1 − 2βx)(1 − 2βz) + 2βx(1 − 2βz) cos(κx) + 2βz(1 − 2βx) cos(κz) + 4βxβz cos(κx) cos(κz))

= 1 − βxκ2
x − βzκ2

z + O(κ4). (5.5)

The full expression is stated here since it yields a correction to the corresponding
expression in Voigt [2019], though the result is the same. Note that M̂xz(κx, κz) is
isotropic for βx = βz, as expected for an operator representing a diffusion process. If
∆x , ∆z, however, then βx , βz and M̂xz(κx, κz) is anisotropic. This is a necessity for
keeping the diffusion homogeneous. Furthermore, one must require β ≤ 1/2 both for
avoiding more heat to flow out of each cell than contained in it and numerical stability
(Crank [1975]). β = 1/4 yields the second order binomial mask 2B (see equation (B.9)),
with a particular isotropic transfer function, see figure 5.1. βz is always set to 1/4, since
∆z as mentioned above is the smallest grid cell size, thereby fixing the time step. This
leaves the ∆x ≥ ∆z free to be chosen.
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To summarize, for each time step the diffusion is simulated by

T (t + ∆t) = Mxz ∗ T (t). (5.6)

5.3
Shifting step
This steps implements the deformation by the shear flow that leads to the Taylor
dispersion. The simulation volume geometry is kept unchanged, however, implying
that only the temperature distribution is shifted. This is achieved by cubic spline
interpolation of the temperature profile at each (discrete) z, and the whole row is then
shifted by the same amount,

δi(k) = ∂u

∂z
· k∆z · ∆t

∆x
, n (5.7)

where δi is the shift in x-direction in units of ∆x and k is the (integer) row index,
hence z = −k∆z. Missing values at the boundary due to the shift are replaced by the
surrounding water temperature, i.e. the temperature the volume had before heating the
profile. Values shifted “out” of the volume are discarded.

5.4
Boundary conditions
Boundary conditions are crucial for representing the desired system. In this case these
must be found with respect to the convolution of the temperature profile. The heat
loss through the air-water interface is neglected, corresponding to a no-flow (Neumann)
boundary condition. This is justified by the low heat capacity of air compared to water,
and the “sky” corresponding to the channel walls, having a similar temperature as the
water. On the open ocean this would change. The no-flow boundary can simply be
implemented by applying a mirror symmetric boundary for the convolution. The other
edges are all, in the real world picture, in contact with the surrounding water, hence heat
flow may occur. This can be achieved by keeping the outermost cells along these edges of
the volume constant at the surrounding water temperature. This has the advantage that
no special boundary handling must be implemented in the convolution, hence the whole
volume can be convolved with the same mirror symmetric boundary handling. Naturally,
this requires the convolution to be done first, before resetting the temperature in the
respective cells. Moreover, it requires the volume to be large enough to avoid artefacts
associated with steep temperature gradients if the heated profile is too close to the
boundary. This also is one of the reasons for keeping the surface layer fixed, being the
most important part of the profile, and shifting the deeper layers.

5.5
Evaluation of the simulation
First, the profile seen by the camera must be calculated. The radiation reaching the
detector originates not solely from the surface layer as somewhat deeper layers also
contribute, a consequence of the (small) penetration depth in the spectral range where
the camera is sensitive. In Voigt [2019] three different approaches are implemented,
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(i) using the surface layer only, (ii) assuming the camera angle θa sufficiently small to
neglect the watersided angle after refraction and assuming a mean penetration depth
ζmean = 44 µm (Downing and Williams [1975]) and (iii) considering both the refraction
angle θw (see equation (2.60)) and integrating over the spectral range as well. For an
air-sided camera with mounted angle ∼ 20◦ and a sensitivity for 3.5 µm ≤ λ ≤ 5 µm, the
difference between (ii) and (iii) was negligible, whereas (i) deviated by ∼ 5% from the
others. In this work, approach (iii) is used.

The final expression for the intensity observed by a detector element in the sensitive
range dI(x,z=0)

dSD
for approach (iii) is (Voigt [2019]):

dI(x, z = 0)
dSD

∝
∫ λ2

λ1

∫ zmax

0

L(T (x + z sin(θw), z), λ)
ζ(λ)

exp
(

− z

cos(θw)ζ(λ)

)
dzdλ, (5.8)

where L is the spectral radiance, equation (2.51), and ζ(λ) is the penetration depth
of the laser Lambert-Beer’s law, equation (2.54), was applied. Since the shape of the
temperature profile is of interest, only the proportionality is stated in equation (5.8).
Furthermore, it was found that dIz=0(Tc)/dSD is well approximated by a linear function
f(Tc) = aTc + b, such that the shape could be evaluated without first converting to a
temperature. The expression above must also be discretized. For further details refer to
(Voigt [2019]).

Having calculated the shape temperature distribution seen by the camera, this is
then evaluated by fitting a Gaussian, analogously to how the line widths in the real
world data are evaluated. As discussed in section 2.6, the temperature distribution close
to the surface is skewed. Fitting a Gaussian still approximates the width well (Voigt
[2019]).
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5.6
Constants and parameters used in the simulation

Constant or parameter Symbol Value
Grid cell length in z-direction ∆z 10-15 µm
Grid cell length in x-direction ∆x 10-30 µm
Domain length in z-direction lz 2 mm
Domain length in x-direction lx 30 - 120 mm
Time step ∆t 0.4 ms
Heating time tlaser on 15 ms (a) and 10 ms (b)
Time step between evaluating
the temperature profile 25 ms
Simulated total time of the signal tmax 0.3 - 1.1 s
Velocity gradient in z-direction ∂u/∂z 0 - 100 s−1

Step size of ∂u/∂z 1 s−1(a) and 0.5 s−1 (b)
Velocity gradient in y-direction ∂u/∂y 0 s−1

Dynamic viscosity µ 1001.6 µPa·s
Width of laser beam σlaser 0.7-0.9 mm (a) and 0.3-0.6 mm(b)
Drift velocity Ud 0-36 cm/s
Thermal diffusivity α 1.4·10−7 m2/s
Penetration depth laser ζλl 318 µm (a) and 725 µm (b)
IR camera sensitive range 3.0 - 5.0 µm (a) and 3.4 - 5.0 µm (b)
Initial temperature T0 293 K
Power of laser per unit line length Pl 0.8 (a) W/cm and 1.3 W/cm (b)
Density of water at 20◦C ρ 998.2 kg/m3

Specific heat capacity of water cV 4182 J/(K·kg)
Angle of observation, air θa 20◦

Angle of observation, water θw 14.7◦

Refractive index water nw 1.33

Table 5.1.: The constants and parameters used in the simulation and for the analysis.
The labels (a) and (b) refer to parameters differing for the evaluated
measurements, corresponding to the measurements of January 2021 and
Emmel [2017], respectively, see chapter 4

.
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6 | Image processing and
data analysis

In this chapter the process from the raw images to the measurement results is described.
Being the most important for this work, the active thermographic method is described
in greater detail than the processing of the particle streak velocimetry (PSV) data, the
latter being described in detail in Bopp [2018]. Changes and adaptation to water sided
measurements made to the PSV-processing are described separately below, see section
6.6. The calibration of the images is identical, however, refer to section 6.1.

The processing of the data from Emmel [2017] is in principle analogous to that of
the measurements conducted in the framework of this thesis, with the exception of a few
simplifications. Therefore the process will be described and showed on the basis of the
2021 measurement.

6.1
Calibration

The cameras were first calibrated, with images of checker boards or square patterns of
known dimensions, enabling mapping from pixel coordinates (xpx, ypx)to the real world
coordinates (xr, yr). A mapping function described by

xr =
ax2

px + by2
px + cxpxypx + dxpx + eypx + f

gx2
px + hy2

px + ixpxypx + jxpx + kypx + 1

yr =
lx2

px + my2
px + nxpxypx + oxpx + pypx + q

gx2
px + hy2

px + iypxxpx + jxpx + kypx + 1
(6.1)

was fitted. This accounts for both perspective distortions and possible distortions due to
the lenses (Bopp [2018]). For the infrared images of both measurements (January 2021
and Emmel [2017]), the maximal projection error were on the order of few pixels, caused
primarily by poor detection in the calibration points. Note that the most important
quantity in these images are the line widths, hence relative positions in the images,
and not the exact real world coordinates. For the LHC measurement of January 2021,
LHC for the PSV measurement and the PSV measurement itself, mean projection error
relative to the resolution were ∼ 25 %, ∼ 30 % and ∼ 80 %, respectively.
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6.2
Preprocessing of the infrared images
In this section the processing of the heated lines is described. The image processing is
done using the uncalibrated raw images, only the resulting data is transformed to real
work coordinates. The goal is to determine the line width as function of time, σ(t), and
their horizontal positions (x, y). The latter is especially important since the angles of
the lines relative to the wind direction must be calculated, and only the parts of the
lines that stay perpendicular to the wind are evaluated (Voigt [2019]). One of the main
challenges is that, as explained in section 4.2, the measurements of January 2021 were
conducted with a line heating frequency that was adapted to the present conditions, i.e.
the water surface velocity. Subsequently, the script must also automatically detect and
adapt to the number of lines present per time. Furthermore, overlaps between lines,
arising when the heating frequency was chosen too high or orbital movements displaced
the old line upwind, must be detected, as those falsify the line width.

As the temporal broadening of the lines is of key interest, the individual lines must
also be applied with a time stamp and a line label, tracked and kept separated over
the course of up to several hundred images. Clearly, if that fails, the line width and
position is assigned to the wrong line and later evaluated for the incorrect signal time
(i.e. time since heating the line). Simply using the relative position to other lines for
time labelling is insufficient for higher signal times, due to the complexity of the flow, as
some lines may disappear faster than others and their y-coordinates, i.e. the direction
perpendicular to that of the wind, may change in the course of time. Two of the heated
lines are also parallelly shifted at the same y-position, see figure 6.2, further complicating
the approach of position based labelling. Lastly, as a setup for measuring the surface
elevation is applied simultaneously, based on using a powerful laser which gets hot, the
reflexes of the warm laser casing are also regularly seen as the waves cause the necessary
surface inclination for the reflexes to be seen by the infrared camera (refer to figure
4.3 for a sketch of the setup). These reflexes are bright, and must not be mistaken for
a heated line by the script for not falsifying the measurements and cause issues with
tracking the lines.

6.2.1
Preprocessing

First a flat field correction is done by subtracting the background of the images. Only
the part of the images containing the heated lines and a small surrounding area was
considered. This background is calculated for each image sequence of 1024 images, by
median filtering of an temporally averaged image with a mask size in pixels of (10,
30), corresponding to the directions parallel to the lines and the wind, respectively.
The asymmetrical size was chosen for a smaller vertical range, since the mean image
was influenced by the presence of the heated lines in the respective areas. In order to
not subtract this footprint of the signal, the part of the mean image where the heated
lines were located was interpolated linearly from the surrounding edges. This posed no
problem, as the signals were only contained in a relatively narrow middle part (160x400
pixels) of the full image (1024x1280 pixels), where the image quality was good.

Having subtracted the background, erroneous pixels were corrected. Two kinds of
errors were differentiated, namely dead and hot pixels and pixels with a high standard
deviation. The former were detected in the mean (background corrected) image, by using
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it’s mean and standard deviation, and a detection threshold of 3 standard deviations.
For the images of January 2021, this yielded very few pixels, likely due to a precorrection
done by the camera itself. The slight influence by the heated lines on the mean image did
not lead to wrong detections. The pixels with high standard deviations were detected
similarly; a temporal pixel-wise standard deviation was calculated, and compared to the
average standard deviation of the part of the image containing the signal shortly after
heating the lines. Pixels deviating by more than 3 standard deviations from the mean
were classified as erroneous. Note that the part of the image containing the signal shortly
after heating the lines were used as reference, since these are prone to large fluctuations
and represent the worst case scenario. This was found to be sufficient for the given
image quality and low amplitude of the signals, with no need for further efforts. For
more challenging image qualities than with the FLIR camera, or in the presence of a
high number of heated lines, it can be suggested to use images without any signal for
detecting the error pixels.

The mean of the temporally averaged image without the detected error pixels was
then calculated. The deviating pixels were in the first step replaced by the mean in
an temporary image sequence, which was then slightly smoothed by convolving with a
degree two dimensional binomial mask 2B (see equation (B.9) and Jähne [2012]). The
error pixels in the images were then replaced by the corresponding values from the
smoothed image sequence. As the convolution is cost (computational) efficiently done
in Fourier space, it was found that this approach was faster than iterating through the
images and replacing the error pixel values with those from neighbouring pixels.

For the images of the measurement by Emmel [2017], there was a substantial amount
of both dead, hot and fluctuating pixels. The flat field correction was also more important
due to the large spatial extent of the line and thereby larger inhomogeneities. However,
as laser frequencies were low, specifically 0.5 for the lowest two wind speeds and 1 Hz for
the two highest settings, the mean images were barely influenced by the presence of the
lines and could be used directly for median filtering and error pixel detection. Due to
the low resolution compared to the line widths, error pixels where replaced by the mean
value of their surrounding pixels in y-direction, i.e. parallel to the line. This avoided as
much alteration of the line width as possible.

6.2.2
Detection of new lines

Since all lines are heated at the same place on the water surface, the detection of new
signals is fairly easy. First, the average pixel values in the respective section of the image
of interest can be calculated for each image. Then the median for each image sequence
of 1024 of these values can be calculated and subtracted. This correction by the median
is done for shifting the pixel averaged values to comparable values in case that the mean
surface temperature changes somewhat during the measurement, which can be the case
especially shortly after turning the wind on. For example when the channel air happens
to be dry, causing cooling by evaporation of the surface layer, turning on the wind can
enhances mixing with warmer bulk water and also the heat exchange by thinning of the
boundary layer, causing the surface temperature to drift somewhat.

The temporal gradient of the pixel average values is also calculated, being positive
and high when a new line is heated. Fitting the gradient distribution by a Gaussian
(equation (6.3)) yields it’s width, which is used to define a threshold for the detection of
new lines. The maximum of the gradient comes just before the maximum of the average

57



3200 3400 3600 3800 4000
image number [ ]

−40

−20

0

20

40

60

80

100

120

d
ev

ia
ti

on
fr

om
m

ed
ia

n
[a

.u
.]

mean pixel dev.

gradient of dev.

new signal

thresh. gradient

Fig 6.1.: The figure shows an example of the detection of new lines, marked by the black
dotted lines. The blue line depicts the pixel averaged deviation from the median
(latter calculated for the image sequence) of the section of the images where
the new lines are expected. The orange curve depicts it’s gradient. Note that
the algorithm starts the search 3 images before the maximum of the gradient.
The frame rate was 200 fps. Note the small peaks in the pixel average values
between the new signals, these are caused by line 2 (refer to figure 6.2) passing
through the initial position of line 3.

pixel values. So, finding both the local maxima of the gradient and of the pixel averaged
values, requiring the maxima of the gradient to come slightly first, combined with the
threshold for the gradient, turned out to be a stable way of detecting the new lines.
Lines that return back into the initial position due to orbital movement were found to
not be detected, as the gradient were lower. Also, since line 2 and 3 have about the same
y-position (refer to figure 6.2), a small peak arises when line 2 passes through the initial
position of line 3. The gradient does not strongly peak simultaneously, however, and the
advantage of stable triggering on all 3 lines overweights the disadvantage of those minor
peaks. Furthermore, the algorithm starts looking for the new line 3 frames before the
maximum of the gradient, making sure also the start of the heating process is captured,
assuring a precise start of the time stamp. For comparison, with 15 ms heating time and
200 fps, the heating is captured with at least 3 images. An example of detected new
lines is shown in figure 6.1.

In the following, a set of three lines heated at the same time, is referred to as a
signal unit. These are labelled with numbers {1, 2, 3} according to their starting position
relative to each other, this being fixed by the position of the laser.

6.3
Tracking and evaluation of the heated lines
After detection, the new lines are evaluated, this will be explained in further detail below.
The line labels must be kept associated with the same line and the signal units (set of
three lines) separated for all following images, until the maximum evaluation time for
the signal unit is reached. This is achieved through several steps for each image:
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– tracking the signal unit to the new image,
– evaluating it,
– adjusting the signal unit extent, expected to become larger with time,
– passing this new extent to the next image for tracking, and so on.

Figure 6.2 shows an example for the measurement with the 10 Hz wind generator frequency
setting.

6.3.1
Tracking

The lines are tracked by using a small subsection of the last image containing the signal
unit, and minimizing the squared difference to the next image. Both the small section of
the last image and the next image is smoothed by convolving with a two dimensional 2.
degree binomial mask 2B in order to lessen the possibility of tracking the signatures of
possible uncorrected error pixels. For large images, this is done (computationally) most
efficiently in Fourier space by the use of the convolution theorem, equation (B.7), for
small image sections as in this thesis, however, it was found to be faster to just convolve
without the transformation.

The least square difference D is given by

D =
∑
i,j

(Ik,ij − Ik−1,ij)2, (6.2)

with Ik being the new image and Ik−1 the last, and i, j the pixel coordinates in the
small image section used for tracking. This is rather expensive, but the cost can be
considerably reduced by realising that only a minor range must be searched for the
minimal D. With the resolution of about 0.4 mm/px and 200 fps, even a velocity of
40 cm/s, which is a lot for most measurement conditions, corresponds to a shift of 5
pixel per image. Furthermore, the shift in x-direction is larger than in y-direction. Note
that it should also be accounted for that the last detection can be off by a few pixels,
the shape of the lines to change somewhat and that the movement could be against the
wind direction due to orbital motion. In the end a range of ±4 pixels perpendicular to
the wind direction, and ±5 pixels in wind direction was used.

Furthermore, tracking using a cross correlation was tested, with the advantage of
being much more faster. As the signals were relatively weak, it turned out that this
approach was not stable enough. Especially the reflections of the casing of the surface
elevation laser, which were bright, caused the cross correlation to “jump” onto these
reflections and drift off. The problem became larger for higher signal times, as the lines
themselves became weaker. The least squares was more stable also in the case of the
reflections. See figure 6.2 for an example of both the tracking and a few, small laser
casing reflections.

With the shift in the position known, a section of the new image of the same size as
the tracked window can be passed on for evaluation.

6.3.2
Evaluation of the line widths

Since the initial line positions are known and additionally the signals strong, with
exception of the very first image of the lines appearing, the lines are easily evaluated
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Fig 6.2.: The tracking and evaluation of four signal units of the 10 Hz measurement at
t ≈ 1953 s after starting the measurement. The oldest line has been tracked
for close to 200 images, and the newest line was heated 22 ms ago. The wind
direction is in negative x-direction. The markers ’x’ indicate the line positions,
and the ’+’ mark the line widths. The cyan dashed lines show the smaller
evaluation- and tracking windows containing a signal unit each. The overlap
between these windows is expected, and not all lines within them belong to the
same signal unit (set of lines {1,2,3}). Notice the outliers of large line width
for small y in line 1 in the window with signal time 671 ms, and the spots in
the upper left corner next to the legend. The spots originate from the warm
laser casing of the laser used for the surface elevation measurement, and may
be both brighter and more frequent.

and labelled by the mentioned line number {1, 2, 3} in the first few images. Later, with
the advantage of the tracking the lines, only a small windows or sections of the image
containing the lines must be evaluated.

The small image section is first copied and smoothed by convolving it with a 4.
degree 2 dimensional binomial mask 4B (see equation (B.9)). For each row in this image
section, local peaks are detected, fulfilling requirements to width and prominence, the
latter determined based on the standard deviation of the smoothed section in order to
not evaluate random fluctuations. For clarity, these peaks correspond to local maxima
in the temperature distribution, i.e. optimally the heated lines, and their peaks coincide
since 4B is symmetric and hence the peak is not shifted.

The found peaks are then checked for agreement with the expected positions, cal-
culated based on the result of the last image and the shift resulting from the tracking. All
peaks deviating by more than 2 pixels in y-direction and 4 in x-direction are discarded.
Peaks fulfilling the positional requirement are evaluated, and labelled according to the
corresponding point in the last image, and with the associated updated signal time.

The evaluation is prepared by taking the original, unsmoothed image section, and
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smoothing it with a one dimensional 2B (see equation (B.9)) only in y-direction, in order
to not artificially broaden the line. Then, for row i containing the validated peak, also
the data points of row i − 1 and i + 1 are collected in order to increase the number of
data points. These are then fitted by a Gaussian profile,

G(x) = A · exp
(

−(x − µ)2

2σ2

)
+ b, (6.3)

with σ being the sought line width and µ the line’s x-position. µ must be strictly
restricted to the found peak in order for the fit to converge to the correct peak, and not
for example a stronger, neighbouring signal. The y-position is given by i. Naturally,
both these are related to edges of the small image section, which again are given relative
to the section of the original images used for further processing (depicted in figure 6.2).
Moreover, as only half frame images were acquired, another offset must be added in
order to calibrate the data using a full frame calibration image.

Lastly, it may seem unnecessarily complex to track the lines in addition to evaluating
them, considering that the spatial steps from image to image are small. The tracking
allowed for being much more rigorous with respect to the updated line positions when
evaluating the new image, however, as more information regarding what to expect was
available. Taking into account that the positions might shift somewhat in the y-direction
with time, and the lines may even travel upwind due to the orbital movement, clarifies
the situation. A drift in y-direction without tracking the lines may also cause problems
keeping the lines within a signal unit separated. Furthermore, the reflexes could mostly
be excluded by the strict position criteria. The exception was if the reflex coincidences
with the line. As the reflexes travelled much faster than the line, however, and the
tracking was stable in this regard, the reflexes are “lost” again due to the maximum
allowed tracking step size, such that the influence is kept at a neglectable level.

6.3.3
Dynamically adjusting the evaluation

As mentioned initially, the script must handle a varying number of signal units. This is
solved by using lists of data blocks, each containing the information of one unit. Each
of them carries all the necessary information needed, including the section of the last
image needed for tracking. These lists are equally effortlessly passed on to the next image
sequence, such that a seamless transition and evaluation is possible. In case that one
signal unit has become too faint to be evaluated before reaching the maximum evaluation
time, the whole data block can be saved and deleted from the lists. Lastly, these lists
are also saved, such that in the case of an interruption, the script and evaluation may
be continued.

6.3.4
Detection of overlap and jumps

The last aspect is the detection of possible overlap between lines of different signal
units. This may either be detected simultaneously with the above described evaluation
or separately, the principle is the same. Due to the similar y-position of line 2 and 3,
these were the main overlapping lines. The overlaps were detected by comparing the
positions of the individual lines, and must only be done once when a new signal unit
is heated. Line 1 is only overlapping with itself if the surface velocity is either low or

61



negative due to orbital motion, which is rarely the case. For each new signal unit, the
position of the pre-existing lines before the heating of the new signal started must be
compared to the initial position of the new lines. This is important, as the new lines
might be close enough to the old signal to disturb the temperature distribution of the
latter to the extent that only the new peak is detected. Then, due to the strict position
criteria, the old lines apparently vanish, and the overlap is not detected. In these cases
the temperature distributions of the new lines are excessively broad, so it is important
to detect these overlap events. Once a overlap is detected, all data points of the new
line and all data points of the old line since the heating of the new unit are labelled
accordingly.

Lastly, sometimes when inhomogeneities in the flow field bring the ends of two lines
closer, the algorithm may incorrectly assign the line labels at the end parts of the lines.
This may happen if for example a reflex by the laser casing “bridges over” the gap in
one time step. Due to the implementation regarding only one signal unit at a time, such
jumps just occur within the unit itself, which is of small importance since all lines have
the same properties, and may be counted as one if they are connected closely enough.
Jumps between signal units can just occur if two lines are sufficiently close and the gap
is bridged, and can be detected as an overlap suddenly occurring. This is possible as the
part of the corresponding line is (mistakenly) evaluated twice for both signal units. In
this case only the jumping line can be discarded, since this is an artefact of evaluation
and not a physical overlap. Such jumps are rather rarely found in the older, weaker
signals.

6.4
Data analysis of the thermographic measurement

The line widths can be corrected for surface inclination, if such data is available (see
section 6.5 for details), by

σcorr
σmeas

= cos(θa)
cos(θa − θ)

, (6.4)

with σcorr the corrected line width, σmeas the observed line width, θa the mounting
angle of the camera relative to the vertical direction (refer to figure 4.3) and the surface
inclination θ(x, t) = arctan(∂xη(x, t)).

Note that for θ = θa a correction ≤ 1 occurs. This is due to the camera being
calibrated on a horizontal surface, hence seeing only a projection of the target. This leads
to an overestimation of the line width if the camera view is parallel to the surface normal.
With θa ≈ 20◦ in the used setup and a (close to breaking) Stokes wave at maximal angle,
see section 2.2.1, the maximal (upwind) correction would be close to 50%. Especially
at lower wind speeds, surface inclination is mostly small and the correction may be
neglected. For most measurement conditions used in this thesis, it was experimentally
found (refer to section 7.1.2) to not make a marked difference in the determined values
for the viscous shear stress in this work. For the measurements of Emmel [2017], the
surface elevation data is not available and subsequently the corrections are left out.
Moreover, for localized surface inclination measurements, such as in this thesis, where
only a vertical sheet in wind direction was considered, the correction is questionable
since θ may vary considerably with position along the line. This would particularly be
the case if the line is long. This can be seen by measurements considering a larger part
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of the surface, see for example Rennebaum [2017].
The simulated line widths are in the framework of this thesis only subject to non-zero

velocity gradients with respect depth, i.e. ∂zu , 0 and ∂yu = 0, hence also the measured
line widths used in the evaluation must reflect this in order to not falsify the determined
values of the viscous shear stress (Voigt [2019]), see section 2.6 for further details. Even
small values of ∂yu are capable of considerable influence on the broadening of the lines by
Taylor dispersion. Since varying flow velocities along the line, corresponding to ∂yu , 0,
lead to displacements of different parts of the line, ∂yu , 0 is associated with a change
of the angle θs of the line relative to the initial angle θ0s. Hereby θs describes the angle
in the horizontal plane between the line and the direction perpendicular to the wind,
hence θ0s is close to zero. θs is given by (Voigt [2019]):

θs = arctan (dyx(y)) , (6.5)

with temporal development

θs(t) = arctan (∂yu · (t − t0) + tan(θ0s)) . (6.6)

The angle along the lines is calculated by cubic spline interpolation of the line position
x(y) combined with equation (6.5). This is another reason why precise tracking of
the lines is important; if the algorithm jumps between two parallel lines, this would
correspond to large and incorrect values of θs. For reference, Voigt [2019] estimated the
influence on the determined viscous shear stress by including by including |∂yu| ≤ 0.2 s−1

to be ∼ 1%, this limit is mostly adapted in the following.
The sorted data set for the time interval of the measurement of interest can then be

processed further. A look at figure 6.5 is illustrative. For this, a two dimensional
histogram of the line widths as function of time t since heating is calculated. As
argued in section 3.5, the peaks of the resulting distributions for each t will be used
as representative line widths. As the distributions are of noisy nature, the maximum is
estimated by a fit. Empirically, this is done by fitting skew Gaussians to the distribution,
given by

h(x) = A exp
(

−(x − l)2

2s2

)[∫ α x−l
s

−∞
exp

(
−α

t2

2

)
dt

]
+ b (6.7)

where α relates to the skewness of the distribution, l to it’s location, and s to the width.
Although this function generally describes the peaks of the distribution well, these being
the important parameter, the tails of the line width distributions are not always well
described. Especially for high signal times and wind velocities they tend to be heavier,
possibly due to more outliers. Inspired by equation (6.7), a similar approach is therefore
chosen with a student’s t-distribution, known for it’s heavier tails, with probability
density function τ(x)

τ(t) =
Γ(ν+1

2 )
√

νπΓ(ν
2 )

(
1 + t2

ν

)− ν+1
2

with t := x − l

s
. (6.8)

Here ν > 0 is the (integer) number of degrees of freedom, and Γ(n) = (n − 1)!. As only
it’s shape is of interest, the prefactor and ν > 0 may be treated as fit parameter. Hence
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Fig 6.3.: The figure shows the fitted distributions of squared line widths σ2 for the 7.5 Hz
measurement shortly after heating the lines (heating time 15 ms) (left) and after
about half a second (right). The expressions (6.7) (red curve) and (6.9) (blue)
were fitted. As can be seen, the distributions are skew, and both fits describe
the shape and peak position well. The dotted lines depict the estimated
maximum points for the distributions, and are here hardly distinguishable.
Both fits are performed as the convergence of the fits is slightly different,
enabling a more robust evaluation. Note that the times since heating the
lines are given for the centre of the deployed binning interval.

the following fit function is deployed for the distributions as well:

g(x) = A · τ(t; ν)
[∫ α x−l

s

−∞
τ(t; ν) dt

]
+ b. (6.9)

It must be emphasized that this is a purely empirical approach, not based on a
theoretical foundation. There are mainly two reasons for using equation (6.9); firstly,
due to the heavier tails and better agreeance in shape, the fits converge more reliably
than for equation (6.7), and secondly the two different estimates can be compared as a
handle for uncertainty and convergence of the fits. Mostly, the difference between the
resulting peak positions from the two fits is neglectable. Note that while both equations
might seem complicated, they are readily implemented with build-in-functions for both
cumulative- and probability density functions for the respective underlying distributions.

The question remains whether the squared or non-squared line widths are used for
calculating the distributions that are fitted. Not squaring first translates to a quadratic
increase in bin sizes with increasing line widths when compared to the squared case.
Ideally, if the distributions are sufficiently sharply peaked, this to be of little importance.
This was the case in the wave-less conditions in Voigt [2019]. For the line widths in
the presence of waves, however, it indeed makes a marked difference, especially in the
measurements with higher wind speeds, as the distributions get broader and the peaks
flatter.
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The system is seemingly better described by the squared line widths. For one
dimensional diffusion without any velocity gradient, one expects equation (2.63) to hold,
as explained in section 2.6. Taylor dispersion acts by introducing an apparent, enhanced
diffusion constant, in this case time dependant, hence it is plausible that the system
is well described by σ2(t). Note that the expression (2.64), suitable away from the
surface, also shows this dependence. Turning to the simulation, this also suggests that
σ2(t) represents the system well, see figure 6.4, with σ2(t) − σ2

0 being similar for a given
value of ∂zu. Note, however, that there also is a modest dependence of σ2(t) − σ2

0 on
σ0. Such a clear relation is not found for σ(t). In the practical application a large
number of heated lines with a distribution of σ0 is collectively evaluated, hence the best
possible representation is important, especially if the distribution of σ0 is not narrow.
As a side note, division by σ0 or σ2

0 yields no pattern as seen in the right plot in figure
6.4. Therefore the distributions of the squared line widths are used for calculating the
representative widths.

If the distribution of σ0 is broad due to wave phase selective influence on the initial
line widths, as explained in section 3.5, and the resulting distribution is dominated by
a particular range of phases, this might lead to an evaluation of the line widths that
does not represent the whole system. This is further exaggerated by the viscous shear
stress also being wave phase dependant. The relation found in figure 6.4 can be used to
diminish this systematic error by shifting the measured squared line widths relative to
a representative value of the squared initial widths, i.e.

σ2
shifted(t) = σ2

meas(t) − σ2
meas,0 + σ2

rep,0, (6.10)

with σ2
meas(t) and σ2

meas,0(t) being the measured line widths of an individual line, σ2
rep,0

the representative, squared line width and σ2
shifted(t) the shifted, squared line widths used

for evaluation the viscous shear stress. Note that this approach neglects the dependence
of σ2(t) − σ2

0 on σ0, but as long as σ2
rep,0 is similar to the observed line widths, the

error is small. Due to the long heating time of the lines tlaser on = 15 m/s used in
the measurements of January 2021, the shifting (6.10) is done for all the evaluations
considering a large number of lines at once. This yields the best estimate for the viscous
shear stress. The results corresponding to the unshifted data sets are also given, however,
for comparison and reference.

The characteristic line widths are fitted in an evaluation time window by a cubic
polynomial for outlier reduction, see figure 6.5. This time window has to be chosen with
care; it is advantageous to evaluate the lines as late as possible, since the effect by Taylor
dispersion needs some time to develop, and this increases the discrepancy between the
different ∂zu. At some point, these points introduces a bias, as the lines undergoing
a strong broadening will yield weaker signals and in the end not be evaluable. Hence
only the thinner lines remain, and causing the mentioned bias in the characteristic line
widths.

The stretching and compression of the line widths by the wave associated motion,
refer to section 3.5, may, depending on the setup, introduce another bias towards too
low characteristic line widths for t ∼ T ′/2. Here T ′ describes the wave period in the
reference system drifting with the mean surface velocity, hence the period experienced
by the lines. This bias and it’s manifestation will be discussed in detail in section 7.1,
but it can be mentioned here that in order to avoid the bias, the evaluation of the line
widths should be conducted at t & T ′. Naturally, this is especially important if there is
a pronounced influence on the characteristic line widths.
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Fig 6.4.: The figure shows simulated line widths for several σ0 and ∂zu, specifically it
shows σ−σ0 (left) and σ2−σ2

0 (right) as functions of time since heating the line.
The subtraction by the initial quantities is done for improved comparability.
As seen, the squared line widths describe the system better with respect to
different σ0, with a much smaller spread for the same ∂zu. In the real world
application, lines of distributed initial width are collectively evaluated, hence
the best representation is important. Hereby σ02 approximately represents an
offset in σ2(t), with the exception of a modest dependence of σ2 − σ2

0 on σ0.
Hence, this favours a narrow distribution of σ2

0. Colours and markers are the
same in both plots, hence both legends apply to the whole figure.

For short times after heating the line, t > tlaser on, but after the heating process is
finished, the characteristic line widths are used to determine σ0. This is preferable done
by extrapolating these points to t = 0 using the expression for one dimensional diffusion
(2.63), which holds since the influence by the shear stress is still neglectable. If there is a
higher degree of scattering, the mean in the interval tlaser on ≤ t ≤ 8 ms is used instead.

The fit for representing σ(t) in the evaluation window and σ0 is then compared to
the simulation. Depending on the scattering of the characteristic line widths, which is
strongly dependent on how many lines are evaluated at once, the simulated data is either
used as a look-up table or interpolated and then evaluated. Importantly, the simulation
gives the relationship σ = h(t, σ0, ∂zu) for discrete sets of input parameters. In the case of
scattered data, the first approach is used, since it is much faster and the resolution of the
simulated data set is high enough for not introducing further uncertainties. Specifically,
first the closest σ0 in the data set is found, then for t in the time evaluation window the
closest σ2(t) is found, yielding the corresponding ∂zu. The approach changes if σ(t) is less
scattered, such that using only the look-up table could introduce noticeable uncertainties,
then ∂zu is interpolated as a function of t, σ0 and σ(t)2. Inserting the experimentally
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determined quantities and σ2(t) from the cubic fit within the evaluation interval, into
the interpolated function, then returns the result as τvisc,xz ∝ ∂zu. These returned values
are then averaged. The procedure is repeated within an larger uncertainty evaluation
window, reflecting that the sensitivity to the choice of evaluation time window. The
standard deviation of the values returned for this larger window is used as an uncertainty
estimate.

With the evaluation of longer time intervals (& 300 s) of the measurement, more lines
are considered and statistics improve. In these cases, the statistics are good enough to
subdivide the time intervals into ∼ 100 s without introducing large uncertainties due to
the statistics and evaluation method. The deviations in the results of τvisc evaluated for
these intervals is then stated as an additional uncertainty estimate in table A.2. Also
the uncertainty related to σ0 may be of comparable magnitude in these cases. The
sensitivity of the result of τvisc,xz with respect to this uncertainty can be evaluated by
repeating the evaluation of the data for σ0 ± ∆σ0, where ∆σ0 describes the uncertainty.

For the measurements of January 2021, also the characteristic life time of the heated
lines was computed. This was done by determining the time at which the number of
data points has dropped to half of the maximum number of points, using the unsorted
dataset. The unsorted set was chosen in order to avoid any selection caused by sorting
the lines, and also to represent the whole flow field, not only without horizontal shear
flow.

Finally, for the measurements of January 2021, also surface dilation and compression
was experimentally approached, by the description given by equation (3.16). For this, the
phase speed was determined from the surface elevation data and by a correlation of the
orbital horizontal motion between line 2 and 3, see section 6.5.1. It was estimated twice,
since both methods were prone to scattering, and the value fitting best to the observation
of the line widths chosen. Furthermore, the phase speed was assumed constant for the
duration of the individual line. The observed (for ∂yu ≈ 0), non-squared line widths
were slightly sorted using the 20th and 80th percentile as a cut-off, then averaged, and
these values fitted by equation (3.16), describing the part of the observed widths relating
to the stretching and compression of a fluid parcel, multiplied by the square root of a
second order polynomial to account for diffusive broadening, to the observed σ(t) for
each individual line. The input parameters for equation (3.16) were allowed to vary
by 20% in the fit, and a small time shift accounting for a phase shift in the horizontal
velocity of the line due to the mounting angle of the camera was allowed for. The second
order polynomial was found in Voigt [2019] to describe the temporal development of
the squared line widths caused by Taylor dispersion well, and the derivative was forced
to be positive in the fit. The horizontal velocity of the line was calculated by spline
interpolation of its position x(t) and subsequently taking the temporal derivative.
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Fig 6.5.: An unsorted (left) and the evaluation of a sorted (right) data set containing
the squared line widths σ2 for time t since heating the lines, in a time interval
of [600 s, 1000 s] after turning the wind on, of the 10 Hz measurement. The set
was sorted according to equation (6.6) for ∂yu= (0±0.2)/s. As can be seen,
the unsorted set contains broader distributions. The scattering of the data
points at t ≈ 0 is caused by the new lines being weak in brightness whilst
heating, thus more prone for being mixed up with reflexes or similar bright
spots. The sorted data set is fitted with the expressions (6.9) and (6.7) for
each t, yielding approximations for the peaks position of the distributions,
which are then averaged (characteristic σ2, white dots). The maxima of the
(slightly smoothed) distributions are shown by magenta points, and scatter
more than the fits. The characteristic σ2 for small times are extrapolated to t =
0 using equation (2.63) yielding the initial squared line width σ2

0 (blue dashed
line), whereas they are fitted by a third degree polynomial in the evaluation
window (lime dashed line) and uncertainty estimation window (red dashed
line), respectively. These are then compared to the simulation, returning the
best estimate for τvisc for the evaluation window and the uncertainty in τvisc
within the uncertainty window. The corresponding simulated curve is also
shown (cyan dashed curve).
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6.5
Image processing and evaluation of the LHC images
In this section the analysis of the laser height camera (LHC) images for surface elevation
measurements will be summarized. More detailed descriptions about the principle can
be found for example in Schwarz [2016], also the used workflow is mostly similar. The
process is described for the data of the experiment conducted in January 2021, but is
similar for the PSV-measurement.

The images were first smoothed for noise reduction by convolution with 4B as
described above. There were two marked steps in the brightness of the images, the
upper corresponding to the transition between channel wall and (background) water
surface, and then between this background water surface and the surface illuminated
by the laser sheet. The surface was first roughly detected using a threshold given by
the brightness of the second step and finding the first significantly brighter pixel per
column. From these values standard deviation and mean were calculated, in order to
sort out the strongest deviating values, which arose due to inhomogeneities in the laser
sheet. Based on this, a section of the image containing the water surface was used
for further processing. Firstly, it was median filtered in horizontal direction for noise
reduction, and for each row the brightness values above and below (image coordinates)
the surface were found. The average then defined a threshold, and the water surface
was detected by the weighed mean of the pixels position closes to 90%, 100% (weighted
twice) and 110% of the threshold value, similar to Schwarz [2016].

Another approach was also implemented, namely by estimating the position of the
water surface by the maximal gradient of the small section of the image containing the
surface. The gradient was calculated by convolving the image with a (5 tap) kernel for
horizontal interpolation and a (5 tap) kernel for differentiation, see Farid and Simoncelli
[1997] for further details, and see equation (B.10) for the kernels. It was found that
for most measurement conditions, the gradient approach was the most stable method,
though differences were small. See figure 6.6 for an example. The resulting surface
detections are then labelled with the time corresponding to the image and calibrated. By
median filtering in the t-x-plane, outliers could be detected, which were then interpolated
by cubic splines. An analogous interpolation on the uncalibrated is also shown in figure
6.6.

With the surface elevation η(x, t) known, properties of the wave field could be
calculated. The surface inclination ∂xη was found through the derivative of the spline
interpolation. Moreover, the frequency power spectrum was calculated for 5 second
intervals due to the non-stationary wave field, see equation (2.49), using Welch’s method
(refer to Welch [1967]) for a trade-off between frequency resolution and noise reduction.
The peak frequency was then found, defining a cut-off frequency range 1

2fm ≤ f ≤ 3
2fm

for the dominating wave (Bopp [2018]).
By reconstructing the dominating wave using fast Fourier transforms, a Hilbert

transform, refer to B in the appendix and equation (B.12) of the dominating signal
could be computed. This retrieves phase φ information as well as the signals envelope.
More information can be found in Oppenheim and Schafer [2010]. At the endpoints
of the signal, both the envelope and phase was unreliable, hence an overlap to the
neighbouring interval was included in the calculation. From the phase information, also
the local dominating wave number k and frequency ω were estimated, namely as

kdom = dxφ and ωdom = dtφ. (6.11)
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of an image from the
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surface computed by the
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described in section 6.5.
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The phase was unwrapped and interpolated before the derivatives were calculated.
For the parts of the signals with a small amplitude, the phase information from the
Hilbert transform became inaccurate, such that the phase information could not be
relied on. Hence, the water surface treated as flat in these low-amplitude cases, this
being of particular relevance for the PSV evaluation. This was also done in Bopp [2018].

For an example of the determined quantities from the surface elevation measurements,
see figure 6.7 showing a 10 s interval of the 10 Hz measurement of January 2021.

6.5.1
Phase speed

In order to explore the surface compression and dilation and the validity of equation
(3.16), the phase speed c is needed. This was estimated in two ways for the co-moving
reference system with the mean surface drift velocity Ud; by cdom = ωdom/kdom − Ud

and by using the equation for a third order Stokes wave (2.40). The latter must then
be corrected by subtracting the Stokes drift, equation (2.32), and needs an estimate of
the wave steepness. This was approximated by kdom · H/2, where H is the wave height
found by interpolating the surface elevation at the crests and troughs, see figure 6.7. The
dominating amplitude was deemed too fluctuating due to the asymmetry of the wave
elevation about the mean water level.

As a side note, due to the spatial and temporal information of the surface elevation,
the phase speed could also be determined by a cross-correlation of the temporal develop-
ment at two different positions. This, however, revealed wave phase dependent time shifts
between the signals. Further explanation would likely require elevation measurements
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Fig 6.7.: The topmost plot shows the water elevation (black line) along with the
dominating wave (cyan dashed line), and the splines used for wave height
estimation, in dependence of time at a fixed position in the middle of the
laser sheet. When the change in the (extremal) surface elevation was large,
the splines for the wave height estimation sometimes overshoot. The resulting
waveheight for the dominating wave is shown in the middle plot (blue), along
with the more fluctuation envelope of the Hilbert transform (lime). The
fluctuations are caused by the waves being asymmetric around the water level.
The lower plot shows the wave phase calculated by the Hilbert transform. Note
the unreliability when the wave heights are low.

of a larger part of the surface, which is out of scope in this thesis, but this led to a
determined phase speed dependent on the (random) extent of the signal considered.
Being an artefact of the evaluation, this approach was discarded.

Lastly, due to two lines (line number 2 and 3, see figure 6.2) of the measurements of
January 2021 located at similar y-positions (i.e. perpendicular to the wind), the phase
speed in the co-moving system could also be calculated by the temporal shift between the
horizontal orbital velocities, i.e. form the thermographic data. Hereby the positions of
the individual lines after heating x(t) were considered. The mean drift velocity and mean
relative position of the was determined by a linear fit of x(t), with the slope corresponding
to the mean surface velocity us and the offset to the relative position. The instantaneous
velocity of the line were found by spline interpolation and differentiation of x(t). The
mean velocities us were subtracted, and a cross correlation performed. The distance
between in their relative positions divided by the temporal shift then yielded the phase
speed. If only single lines are used, this method for determining c is still applicable if the
heating frequency of the lines is higher than the Nyquist frequency requirement. Hence
at least to lines must be present per (dominating) wavelength.
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Fig 6.8.: An example of the LHC result, for a 10 interval of the 10 Hz measurement.
Wind direction is in positive x-direction. Upper row: (a) surface elevation η,
(b) surface slope ∂xη, (c) dominating wave phase φdom, with negative phases
corresponding to upwind direction. Lower row: (d) calculated phase speed by
cdom = ωdom

kdom
in the (co-moving) reference system drifting with mean surface

velocity, (e) the phase speed calculated by equation (2.40) in the co-moving
system (middle), and (f) dominating wavelength λdom. The colours indicate
the magnitude of the quantities, with the unit given below the colour bar. Note
the fluctuations in the quantities with time, and the predominant agreement
between the two calculations of the phase speed. The last two plots show (g)
comparison of the distributions of half the wave height H/2 (orange) estimated
by cubic splines and from the Hilbert transform adom (blue), and (h) estimated
wave steepness ϵ = kdom · H/2.

6.6
Particle streak velocimetry

The reference measurement with particle streak velocimetry will briefly be explained in
the following. The method was developed by Bopp [2018] for air-sided measurements.
Only minor adjustments, mainly preprocessing and streak detection, had to be performed
for the water-sided evaluation, hence refer to Bopp [2018] for further details.

The raw images were subject to large brightness differences, both from image to
image and within an image. Differences within the images resulted from an inhomo-
geneous laser sheet. In the original algorithm for air-sided measurements, threshold
limits for the streak detection were found by a fit of two Gaussian distribution to the
image pixel value distribution, one corresponding to the (bright) water surface, and
the other to the dark air-side background. Due to the large brightness variation and the
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total reflection at the surface, this was found to not yield sensible threshold values on the
water-side. Furthermore, background calculation purely by median filtering as in Bopp
[2018], was found to be suboptimal. Even for relatively large masks, bright particles or
similar spots - especially frequently located at the interface - had a notable influence
on the calculated median. Spatial changes in brightness on small scales also tended
to favor smaller masks, which further exaggerates the problem of the influence by the
bright particles. Subsequently, brighter backgrounds resulted in the area nearby bright
streaks, then reducing the brightness of the streak when the background is subtracted.
Darker neighbouring streaks then often fell under the detection limit.

6.6.1
Preprocessing and streak detection

This was solved by iteratively calculating the background. First a copy of the image
was smoothed (i.e. convolved) with a forth degree binomial mask 4B, see equation
(B.9), and subtracted, thereby removing most background structures. Based on this
now “flat” image, its pixel value distribution was calculated. The idea is that all
bright spots remaining must be caused spatially narrow structures, otherwise most of
their signal would have been subtracted along with the preliminary background. The
symmetry 4B makes sure to not shift their positions. Using a rather low threshold, these
remaining bright pixels were detected. From the original image a new background was
then calculated, by replacing the remaining bright values by strongly negative values and
median filtering. The bias in the median was then slightly shifted towards darker values.
Finally the result was smoothed once more and subtracted. Even the less bright streaks
were then found to deviate by more than 5 standard deviations from the background,
making them easily detectable without the need for fine adjustments.

6.6.2
Evaluation of the streaks

The part of the algorithm finding the surface and excluding the non-relevant fluid
compartment, was excluded, since the surface detection was not possible based on the
water-sided images. Beyond this stage, however, the algorithm for streak evaluation was
left unchanged. Briefly explained, the final background was subtracted the raw image,
refer to figure 6.9. Then, the resulting image was smoothed by a second degree binomial
mask 2B, see equation (B.9), and an orientation image was calculated by applying a
structural tensor (refer to Bopp [2018] for details) to the smoothed image, thereby
determining the direction of the flow. See figure 6.10 for a schematic. This enables
the separation of streaks separated by less than the gap between the two streak parts.
The black and white image resulting from the detected streaks is then dilated somewhat,
to include surrounding pixels below the threshold values still belonging to the streaks.
Using the orientation image, the streaks are then collected, and a line fitted along them,
weighted by their grey values. Along this line, including an area of 1.5 pixels at each side
of the line, the average gray values are determined for each position, with 0.5 pixel steps.
This average is weighted by the overlap between the above mentioned area (mask) and
the actual pixels. This leads to an one dimensional profile of the streak, whose length is
used for evaluating the velocity.

As the laser pulses illuminating the streaks are created with one frequency, if the
streak is long enough, a fast Fourier transform (FFT) can be used to determine its
frequency in terms of pixels. Hence, this enables a straightforward first estimation of its
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Fig 6.9.: Preprocessing of the PSV-images. The grey value ranges are identical in the
three topmost plots. The lower left and middle also have equal gray scales,
but differing from the upper. In the lower right image the pixels are either
true (white) or false (black). The raw image, shown in the upper left plot, is
smoothed (top middle), and then subtracted from the raw image, yielding
the lower left image. The latter is used to determine the brightest small
scale elements, which are then labelled. The new background is calculated
by median filtering the raw image, with the labelled pixels set to strongly
negative values, and then smoothed (upper right). This is then subtracted
from the raw image (lower middle), with the streaks clearly distinct form the
remaining background. These are then detected by a threshold based on the
remaining background (right). The latter image has not been dilated yet. Note
that the surface is not sharply visible due to total reflection, also a particle at
x ≈ 950 is reflected. Also note that in the final background broader, bright
structures remain and low magnitude “footprints” by streaks to weak to be
detected in the first iteration.

length. For this a smoothed profile of the streak is first subtracted, removing lower order
harmonics from the streak profile. For shorter streaks the pulses are no longer distinct,
yielding two parts of continuous illumination. Here the Fourier transform estimate is no
longer trusted.

The 1D profiles are in an final step fitted with model profiles, i.e. idealized, calculated
streak patterns. The range of length of these profiles is limited to ±10% of the estimated
length by FFT for less computational effort, while for short streaks all profiles up to the
lower limit where the FFT is trustworthy are also fitted. The short streaks are detected
by the distance between start- and endpoint. The fitting is done by first performing
a cross-correlation between the (normalized) profile and model, finding their relative
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Fig 6.10.: The figure shows the first steps of the PSV algorithm after subtracting
the final background (refer to figure 6.9). The particle image is used for
calculating the streak orientations, enabling separation of streaks closer than
the pulse gap, and for detecting the streaks (binary particle image). The
streaks are then collected and fitted by a straight line, from which the profile
is extracted using a mask of 3 pixels and weighting the pixel values according
to the overlap by the mask. The figure is adapted and modified from Bopp
[2018].

displacement, and subsequently minimizing the residuum Θ normed by the model profile,

Θ =
∑

i|gmodel,i − gprof,i|∑
i gmodel,i

, (6.12)

with gmodel being the model profile and gprof the extracted profile. The latter is used
as a measure of goodness of fit. Note that the fit must be done with the model profile
oriented in both directions.

Ideally, the best fit is the one in the correct direction, and the next best the same
profile in the opposite direction. This means that both the velocity and direction is well
determined, hence a small residuum and a distinct difference between the goodness of fit
for the second best fit ∆Θ is desired. Bopp [2018] found selection criteria for the streaks
based on numerically analysing the fit results of artificially created model images. These
selection criteria, yielding good results also for the water-sided data, is adapted in this
work:

Θ < −0.21125 exp(−0.74749λstreak) + 0.38786 (6.13)
∆Θ > −0.36395 exp(−3.104λstreak) + 0.20327, (6.14)

with λstreak being the wavelength in pixel of one of the seven pulses comprising the
streak. Particles passing the selection criteria are used for further analysis. The particle
velocity is calculated based on the determined length, and the position based on the
middle point of the streak.
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6.6.3
Evaluation of the PSV data

The streaks’ position relative to the surface height is calculated from the LHC data,
see above (section 6.5). This is done by using wave following coordinates (x∗, y∗, z∗),
where the horizontal coordinates remain unchanged and the vertical coordinate follows
the surface, i.e. (Bopp [2018])

x∗ = x (6.15)
y∗ = y (6.16)
z∗ = z − f(x⃗∗, t), (6.17)

where f(x⃗∗, t) must be equal to the wave height η(x⃗, t) for z∗ = 0. In this work a simple
shift f(x∗, t) = η(x, t) is applied, with Jacobian J and its determinant

Jij = ∂xj x∗
i and det(J) = 1, (6.18)

respectively. The velocities vi can be transformed to Vi by (Bopp [2018]):

Vk = 1
J

(vk∂xk
x∗

i + ∂tx
∗
i ) . (6.19)

The simple shift yields a physically questionable representation far away from the surface,
where the waves have less influence than described by this shift. Bopp [2018] also used
a declining shift on the air-side in addition to the simple shift, and found it to yield a
better description - this is out of scope in this thesis, however.

The transformed viscous shear stress τvisc,xz∗ equals τvisc,∥ = µ∂z⊥u∥ (Bopp [2018]),
with ∂z⊥u∥ being the gradient with respect to the perpendicular distance to surface of
the tangential velocity. Note that the heated line will also follow the surface motion, and
will be broadened according to ∂z⊥u∥. Direct estimation of the gradient in each image
is limited by the sparse streak density, hence only the mean quantity is computed. The
perpendicular distance between a streak at (x0, z0) and the surface η(x, t). z⊥ is found
by solving

∂xη(x, t) · (η(x, t) − y0) − (x − x0) = 0, (6.20)

which represents a numerically slightly more stable implementation compared to the
same equation divided by ∂xη(x, t). Moreover, the parallel and normal (w⊥) velocities
of the streaks were found by decomposing the untransformed velocities by rotation
analogues to equation (3.3). The surface inclination at the point corresponding to z⊥
was used. Note that since the water surface also moves vertically, a part of the z-
velocity of the streak is caused by this motion, whereas the distance to the surface is
wave following. Hence ∂tη is subtracted before the decomposition. The resulting profiles
of u∥ as function of z⊥ profiles are lastly fitted by cubic, penalized splines (B.15), in
the lack of other parametrizations. The value of the derivative of this spline in the
topmost half millimetre below the surface is then used for calculating the viscous shear
stress. This is done both wave phase resolved and phase averaged, yielding τ̃visc and
τvisc, respectively. Since the spline is no model, the smoothing of the splines is arbitrary.
This is reflected by varying the degree of smoothing, using the standard deviations of
the values as an uncertainty estimate. Density variations in the particles with respect to
phase are accounted for by normalization before averaging. As also done in Bopp [2018],
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the velocity range of the middle 50% of particles for each depth and phase interval were
considered, and those deviating by more that twice this range from the median, were
considered to be outliers and discarded before averaging.
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7 | Results and discussion

In this chapter the results and findings of the measurements are presented and discussed.
The main focus is on the evaluation of the viscous shear stress τvisc by the active
thermographic method, only occasionally other quantities will be considered. As before,
τvisc denotes the mean, phase averaged shear stress, and only when phase resolved
measurements are presented or discussed, τ̃visc (phase specific) and τvisc (phase averaged)
will be used. Moreover, in this chapter the wave period always refers to the period in the
reference system moving with the mean surface velocity, T ′, corresponding to the period
experienced by the heated lines. A value is considered to be significantly deviating if the
deviation is larger than three standard deviations. For the comparison of two results,
Gaussian error propagation is applied.

First, the observations and outcomes of the evaluation of long time intervals of the
measurements of January 2021 and the reanalysis of the stationary measurements by
Emmel [2017] are considered. Then the results of the non-stationary evaluations are
presented, before looking closer into the effects of surface dilation and compression on
individual heated lines, followed by several additional findings. Finally, the outcomes of
the reference measurements will be given.

7.1
Evaluation of long time intervals
Evaluating long time intervals poses the advantage of being able to collectively evaluate
a large number of heated lines, reducing problems associated with poor statistics and
highlighting persistent patterns in the data. In order to yield meaningful results, however,
the conditions should not change considerably within the evaluation interval. The
duration of the measurements of January 2021 (refer to section 4.2) are too short for the
wind field to fully equilibrate with the water, hence the system may still change as the
bulk velocities increase. As will be seen in section 7.2, changes in surface velocity and
the viscous shear stress per time interval are found to be small after a initial transitional
regime. Therefore, in the following the lines after 600 s after turning the wind on are
evaluated collectively, for a time interval of 600 s. As explained in section 6.4, also an
uncertainty by partitioning the collective evaluations into smaller intervals is evaluated,
i.e. reflecting a possible temporal change in τvisc. These changes were found to be small,
hence the collective evaluation of the whole interval is reasonable.

For the measurements of January 2021, considerable deviation between the simulated
line widths and the measured characteristic line widths were found. This was not
observed for the measurements by Emmel [2017]. Therefore, in section 7.1.1 an explana-
tion for the observed deviations and the subsequent implications will be given, before
the results for the viscous shear stress are discussed in section 7.1.2.
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7.1.1
Influence by the waves on the long time interval evaluations

Low wind speeds

Starting with the measurement of January 2021 at low wind speeds, it was found that the
temporal evolution of the characteristic squared line widths σ2(t) after heating coincided
well with simulated line widths, indicating that using the peaks of the distributions - as
argued in chapter 3 - represents the system well. Starting with the 5 Hz measurement, the
influence by waves on the line widths are clearly seen when considering individual lines.
This influence is exemplified in section 7.3. The distributions of σ2(t) for given t for the
collective evaluation also clearly show the influence, see figure 7.1. The distributions are
skewed, with the long tail towards higher values of the squared line widths, as expected
from the reasoning and analysis in section 3.5. More interestingly, mainly the first
narrowing of the distributions that were found in the simplified numerical example after
integer multiples of the wave period in the co-moving reference system T ′ experienced
by the lines, refer1 to figure 3.8, is indeed also observed in this measurement, see figure
7.1. The a broadening of the lines due to diffusion and subsequent Taylor dispersion is
present, leading to an increase in σ2(t).

Briefly explained, the initial widening and subsequent narrowing of the distributions
of the squared line widths is caused by wave associated motion, which compresses and
stretches the widths of the fluid parcels encompassing the heated lines. Hence also the
line widths are distorted. Upon heating, the lines have approximately the same width if
the oscillation of the surface velocity due to orbital motion is small. The initial widening
of the distributions then results from some line widths being stretched, whilst others are
compressed. After one wave period, the fluid parcels are back in their initial state at the
time of heating the line, hence the distributions of the squared line widths are narrowing.
Since also T ′ is distributed, it varies from line to line, hence a second narrowing at t = 2T ′

is not clearly seen, caused by the stretching and compression of line widths being to a
larger degree out of phase.

Considering the distributions of σ2(t) themselves suggests the narrowing of the
distributions to be seen in the 6.3 Hz measurement as well, though less pronounced.
By closer scrutiny this may also be seen in figure A.4 in the appendix. For higher wind
speeds, as the wave field becomes more irregular and steeper, the narrowing is no longer
seen in the collective distributions of all lines. For the lowest wind setting in this work,
the 2.5 Hz measurement (figure A.3 in the appendix), the influence of waves was found
negligible with respect to the line width of the heated lines. The distributions of σ2(t)
were also close to symmetric, as expected for conditions without waves (Voigt [2019]).

Middle wind speeds

The curvature with respect to time of the temporal development of the simulated squared
line widths, ∂2

t σ2(t), is larger (or equal in the absence of shear flow, see equation (2.63))
to zero for all times since heating the line. Hence the broadening per (infinitesimal) time
interval of the lines is getting larger with time. It is expected that the curvature of the

1Note when comparing the figures in section 3.5 to the figures in this chapter, that the figures in
section 3.5 show σ(t) and not σ2(t), since the former is the natural description of the stretching and
compression of fluid parcels. Moreover, the diffusive broadening was neglected in section 3.5. In this
chapter, σ2(t) is used due to the good representation related to the diffusive broadening of the lines,
refer to figure 6.4, which is of main interest due to the determination of the viscous shear stress τvisc.
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Fig 7.1.: Evaluation of the squared line widths σ2(t) for the 5 Hz measurement. Refer to
figure 6.5 and section 6.4 for further details. Note the broadening and successive
narrowing of the distribution at t ≈ T ′/2 and t = T ′ (indicated above the
figure), respectively, with T ′ ≈ 0.29 s being the wave phase in the system co-
moving with the mean surface velocity. A second narrowing at t = 2T ′ is not
clearly seen, caused by the wave frequency being distributed and the stretching
and compression of line widths being out of phase to a larger degree. The cyan
dashed line shows the simulated curve for the result of the determined viscous
shear stress τvisc, and the orange dashed lines indicate the simulated sensitivity
towards a change of τvisc by ±10%. The given uncertainty reflects the standard
deviation of the estimated values of τvisc in the interval between the red vertical
dashed lines. The best estimate for τvisc is evaluated between the lime dashed
lines. Note the logarithmic colour scale, depicting number of data points per
bin.

measured characteristic σ2(t) changes sign at some point due to the fading of the broad
lines for high times after heating. Hereby only narrow, brighter lines remain, causing
a bias in the characteristic σ2(t) towards low line widths. This causes the sign of the
curvature to change. Especially from the 6.3 Hz measurement and onwards, however, the
measured characteristic line widths show several changes of the sign of the curvature,
which is consistent between the measurements. See figure 7.2 for the evaluation of the
(unshifted line widths, refer to equation (6.10) and the discussion on phase dependent
initial line widths below) 10 Hz measurement. For this measurement, at times similar
to half a wave period T ′/2 ≈ 0.18 s, the curvature is positive. When comparing to the
simulated development of the squared line widths for τvisc evaluated at t ≈ T ′ (cyan
curve in figure 7.2), the line widths at t = T ′/2 are smaller than expected from the
simulation. At about one period, the sign of the curvature is negative, and the squared
line widths are close to those simulated. For t > T ′, this pattern in the curvature is less
prominent due to the fading of the lines and subsequent decreasing σ2(t), in combination
with that the stretching and compression of the individual lines is to a larger degree out
of phase.
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Fig 7.2.: Evaluation of the 10 Hz measurement, without shifting the individual line
widths with respect to σ2

0 to a common σ0. Note the change in curvature of
the characteristic line widths, caused by the influence of surface compression
on dilation. Briefly explained, at t = T ′ ≈ 0.37 s (indicated above of the
figure) the influence is expected to be minimal, hence the measurement is
evaluated at approximately that time (lime dashed lines), whereas at t = T ′/2
the more narrow distribution associated with compression of the lines slightly
dominates, causing a bias towards low σ2(t). The observed pattern complicates
the evaluation, as the evaluation time window becomes critical. This also gives
rise to the large uncertainty, the time window of which is depicted by the red
dashed line. This interval is asymmetrical in order to avoid a bias to small
σ2(t) caused by fading of the lines at high times.

These observed patterns for t . T ′ are clearly not random, as they are of similar
shape for the different measurements and persistent even though a large number of lines
are considered, and they are related to the wave period. Intriguingly, an analogous
change of curvature was also seen in the numerical example in figure 3.8, though the
transferability of the clearly simplified example must be treated with caution. However,
as will be discussed in further detail below, the mechanism behind the pattern in the
measured line widths is the same as that found for the numerical example.

Similarly to the widening of the distributions seen for the low wind speeds above,
the patterns in the characteristic, squared line widths are caused by the stretching and
compression of the fluid parcel widths. For the distributions of σ2(t) around t = T ′/2,
one finds an lower “branch” corresponding to the lines heated in the wave trough (φ0 =
±π), whose widths are only compressed after heating since the fluid parcels reach their
maximum width in the trough. An analogous upper “branch” for the lines heated at the
crest (φ0 = 0) is also found, caused by the fluid parcels having their minimum extent,
hence the line widths are stretched for times 0 < t < T ′.

In section 3.5, the ratio of the line width σ(t) to the initial line width σ0 multiplied by
a function accounting for diffusive broadening g(t), as function of time and in dependence
on the wave phase at the time of heating φ0, was found to be described by a function,
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see equation (3.16). This function f describes the width of the fluid parcel encompassing
the heated line relative to the parcel’s width at t = 0. The function f was found to be
dependent on the inclination of the surface, the horizontal velocity component of the
heated lines and the phase speed. In the real world application, one finds g(t > 0) > 1,
in contrast to the examples given in section 3.5. For legibility, σtheo(t) := σ0 · g(t) is
introduced, hence describing the temporal broadening of the line widths without the
alteration caused by compression and stretching of the surface layer. Then, f in relation
to σtheo is expressed as

f2 = σ2
meas(t)

σ2
theo(t)

, (7.1)

where σmeas is the observed (measured) line width. Intuitively speaking, this merely
reflects that when the fluid parcels return to their state at t = 0 after one wave period
T ′, hence f returns to f = 1, one would now expect to find σtheo(T ′) instead of the
initial line width σ0, with σtheo(T ′) > σ0. A compression of the line widths corresponds
to f < 1 and a stretching to f > 1.

Note that only if assuming that (i) the viscous shear stress is constant and independent
of the wave phase, and, as argued in section 3.5.3, that (ii) the diffusive broadening is in-
dependent of the change of the fluid parcel extents, σ2

theo(t) is described by the simulated
line widths based on the simulation in chapter 5. In particular condition (i) is, as will
be seen in section 6.6 below, not fulfilled. However, since theoretical models as missing,
the discussion and evaluation of the measurements will be continued with the simulated
curves as an approximation.

The lines heated in the wave trough, which as explained above only are stretched,
are hence described by f ≤ 1. The lines heated at the crest, on the other hand, by
f ≥ 1. As found in section 3.5, there is an asymmetry of f(t) with respect to φ0 (see for
example figure 3.6). Hence the range of values found for f < 1 is smaller than for f > 1,
leading to a more narrow and subsequently higher (counts per bin) distribution of the
smaller compressed line widths corresponding to f < 1, when compared the stretched
(f > 1). A look at figure 7.3 for the 10 Hz measurement may clarify the matter, where
the distributions of σ2(t) for the lines heated in the trough (left) and the crest (right) is
given. Since the peaks of the total distributions are used as characteristic line widths,
the more narrow distributions for the compressed line widths with f < 1 lead to a bias
towards smaller σ2(t ≈ T ′/2). This causes the observed pattern described above, with
the characteristic σ2 being smaller than expected from the simulated curves. Analogous
figures to figure 7.3 for the 6.3 Hz of January 2021 and the 10 Hz measurement by Emmel
[2017] are found in the appendix A.6 for comparison (figure A.15 and A.16, respectively).
As can be seen, the 6.3 Hz measurement is less influenced, likely due to the wave field
being less steep, and slightly lower values of the initial line widths σ0. The lower initial
line widths σ0 are likely also the reason why the 10 Hz measurement of Emmel [2017] is
less influenced, as will be found below.

Ideally, for t ≈ T ′, all distributions should correspond to f ≈ 1. Since the wave
field is much more complex, this is at best fulfilled in a statistical sense. Therefore
also the bias toward the smaller σ2(t) is expected to be minimal at t = T ′, before
growing again when time is further increased. One can therefore argue that the most
unbiased line widths occur for t ∼ T ′ or integer multiples, and the measurement should
be evaluated in a time window encompassing t = T ′. For the lower wind speeds, up to
8.8 Hz measurements, the evaluation must be conducted after t > T ′ in order for the lines
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Fig 7.3.: The distributions of the squared line widths σ2(t) of the heated lines heated at
the wave trough (left) and at the crest (right) for the 10 Hz measurement. The
red dots depict the maxima of the distributions, for a somewhat coarser binning
than in the shown 2D histogram. The colours depict the number of data points
per bin. A phase binning interval of ±2π/12 was used in both cases. These two
cases represent the outer bounds of the distributions of the line widths, as lines
heated in the trough only can be compressed (f ≤ 1, refer to equation (7.1)),
whereas the lines heated at the crest may only be stretched (f ≥ 1). Note
the different initial line widths, and that both distributions possess similar line
widths starting at t ∼ T ′ ≈ 0.37 s, corresponding to f ≈ 1. Note the larger
scattering for φ0 ≈ 0 and subsequently the more narrow distributions and
higher counts per bin for φ0 ≈ π, causing, along with similar initial phases, a
bias towards lower σ2(t) due to compression of the lines. The total number of
data points is similar in both cases for t < 0.5 s.

to broaden enough for a reliable evaluation. This is less of a problem since by then the
bias is lower due to less coherency in the stretching and compression of the line widths,
caused by frequency differences in the wave field. As will be seen below, the opposite
is true for higher wind speeds, with evaluation for t < T ′. Since the pattern causes an
uncertainty with respect to the time interval where the line widths are evaluated, also
larger uncertainties in the results for the viscous shear stress follow. As a side note, T ′

can for example be determined by either the orbital motion in the horizontal plane of the
heated lines, or the mean drift in combination with the surface elevation measurements.

Robustness towards higher wind speeds

The bias towards lower line widths for t ∼ T ′/2 described above gets more pronounced
for higher wind speeds. This is caused by the wave steepness increasing along with a
higher shear flow that enhances the broadening of the lines. Also the wave period gets
higher as wavelengths increase. Several consequences arise; firstly, evaluation at T ′ may
be prevented by the temperature amplitude of the lines being dispersed too fast, i.e. the
lines fading before evaluation. Secondly, as the part of the distribution corresponding
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to f > 1 gets broader, this increases the bias towards the more narrow distribution for
f < 1, and the bias is worsened as the stretching of the line width causes a weaker signal
until the lines are too weak for evaluation. One therefore might deduce that the bias
towards small characteristic line widths at some point becomes so prominent that the
apparent shear stress resulting from the analysis starts to decrease.

This is indeed observed. For the 12.5 Hz measurement (figure A.6), T ′ ≈ 0.5 s, and
the characteristic line widths should be evaluated before that time in order to avoid
only the thinner, less faded parts of the lines remaining. The measurement is therefore
evaluated in the range t = [0.24 s, 0.34 s]. This, however, represents an evaluation at
t ∼ T ′/2, and an underlying bias towards too low values is hence expected to be
present. The results must therefore be interpreted with caution. For even higher wind
speeds, the effect of dominating compressed line widths is enhanced to the point that
the characteristic line widths even decrease after heating, see figure A.7 in the appendix
for the 20 Hz measurement.

A quantification of the bias requires phase specific considerations, which is compli-
cated by the viscous shear stress being phase dependent, and hence σ2

theo(t) in equation
(7.1) is unknown. An approximation by the simulated curves of σ2(t) would need a
reliable value of τvisc. Moreover, also the values of f for the collectively evaluated lines
are not known (refer to section 7.3). Hence, the bias could not be quantified in this
work.

For field applications of the method, this effect is important to keep in mind, since
at some high wind speed the determined τvisc will mistakenly be equal to that at lower
wind speeds. Ideas towards how this can be handled will be given in section 7.4 below.

Phase dependent initial line width

Another issue that arises due to the initial wave phase when heating the line φ0 is seen
in figure 7.3. As already noted in section 3.5, the phase dependent surface velocity
causes different σ2

0 depending on φ0. For the lines heated at the crest (φ0 ≈ 0) the
distribution is considerably broader and shifted towards higher values than for φ0 ≈ π,
the latter being more narrow and higher, thus of stronger influence when determining σ2

0.
The distribution of σ2

0 should be independent of the wave phase in order to describe the
whole system, this being especially important when considering that the determined τvisc
represents a phase averaged quantity, and the phase specific τ̃visc may vary considerably.
Furthermore, as seen in the figure, at t ∼ T ′, with T ′ ≈ 0.37 s, the distinction between
the distributions of φ0 ≈ π and φ0 ∼ 0 is no longer clear, hence the initially broader lines
corresponding to φ0 ≈ 0 now contribute considerably to the characteristic σ2(t). Hence,
recalling figure 6.4 in chapter 6, this then leads to a bias toward too high estimations of
the viscous shear stress τvisc.

As explained in section 6.4, based on figure 6.4, for a given value of vertical velocity
gradient in the flow (∂zu), one may neglect the dependence of σ2(t) − σ2

0 on σ0 since the
discrepancies are small, and shift the distributions to a characteristic σ2

0 according to
equation (6.10). This was done for the individual lines. Subsequently, the distributions
of σ2(t) became more narrowly peaked, see figure 7.4 for the shifted evaluation of the
10 Hz measurement. As can be seen, the wave influenced pattern is still visible, as
well as the resulting lower values of τvisc, as expected (compare to figure 7.2 for the
unshifted evaluation). The shifting made only minor difference for the outcome of the
measurements with lower wind speeds, where σ2

0 was less influenced by φ0. Notice that
the approach of shifting the squared line widths is not valid with respect to the stretching
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Fig 7.4.: The evaluation of the shifted result from the 10Hz measurement. The squared
line widths σ2(t) were shifted according to equation (6.10). Note the lower
resulting value for τvisc compared to the unshifted evaluation seen in figure 7.2,
and the more narrow distributions of σ2(t). Line widths being smaller than
zero after the shift are disregarded in the evaluation.

and compression of the line widths, as it is altering f . However, for the characteristic
line widths with f ∼ 1 and sufficiently small shifts, the error introduced is neglectable.

For completeness, both values for τvisc will be stated in the results, see figure 7.7
and table A.2, with the shifted values deemed as the best estimates.

Some insights regarding the choice of initial line width and heating times

Turning to the stationary measurements by Emmel [2017], the situation is different
regarding the influence by the waves seen above. Interestingly, the observed influence by
the waves in the temporal development in the squared line widths σ2(t) seen above are
not found in the distributions of the measurements from Emmel [2017]. The squared line
widths σ2(t) follows the development as expected from the simulations in a much more
rigorous manner, see for example figure 7.5 for the evaluation of the 10 Hz measurement,
considerably easing the evaluation as the evaluation time window is much less critical.
Thereby also the uncertainties in the values of the viscous shear stress decrease. Further
evaluations of the measurements of Emmel [2017] are found in the appendix A.2.3. The
shorter heating time of the lines also yields a narrow distribution of σ2

0, not requiring a
shift in the line widths of the individual lines. The distributions are still skew, however,
and upon considering the orbital motion of individual lines and the raw images, the
presence of waves is confirmed. In the following, a possible explanation of the observed
discrepancies with respect to the influence by waves for the different setups will be given.

The main difference between the setups for the measurements of January 2021 and
that of Emmel [2017], is the width of the heated lines, being roughly 0.6 mm for Emmel
[2017] and 0.9 mm for the laser of January 2021, refer to chapter 4. There is also a
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Fig 7.5.: The evaluation of the 10 Hz measurement of Emmel [2017]. The figure is
analogous to figure 7.2. As can be seen, the clear pattern in the characteristic
squared line widths σ2(t) (white circles, black edge) seen in figure 7.2, is not
seen here. This is most likely caused by the smaller initial line width. Note that
the distributions are skewed towards high values of σ2(t). The colours depict
the number of data points per bin. Surface elevation data are not available.

difference in the penetration depth of the lasers, but this is not expected to alter the
behaviour with respect to the observed influence by the waves. Moreover, the line used
in Emmel [2017] is longer, but the observed influence by the waves should not be a
problem of poor statistics, since a large number of lines are evaluated in both cases.

It is illustrative to simplify the situation. As explained above, σ2
sim(t)−σ2

0 ≈ h(t; ∂zu)
is fulfilled, with h thereby neglecting the modest dependence on σ0, where σ2

sim(t)
was labelled in order to emphasize that it is the line width resulting from the model
assumptions in chapter 5, ignoring any influence by the waves and phase dependent
values of the viscous shear stress. In this simplified situation, σ2

sim(t) replaces σ2
theo(t) in

equation (7.1). Therefore:

f2 = σ2
meas(t)

h(t) + σ2
0

. (7.2)

Since f is a consequence of the flow acting on the fluid parcel, it cannot depend on
the heated line. Hence f2 is unaltered irrespective of initial line width, which for a
given value of ∂zu also holds for h(t) under assumptions given above. As can be seen,
increasing σ0 means that σ2

meas(t) must compensate in order to leave f2 unaltered, hence
distributions of the squared line widths are broader for wider lines. This is especially
pronounced as long as h(t) is small, i.e. for short times after heating the line. In other
words, observed discrepancies with regard to the patterns seen in the characteristic line
widths for the different setups are apparently caused by the system being described by
the squared line widths, with similar h(t) for different σ0. Due to the line widths being
squared, however, the influence is pronounced for wide lines.

In order to illustrate the effect, an example can be given. Refer to figure 3.6 for a
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plot of f for different initial wave phases φ0 for a third order Stokes wave with steepness
ϵ = 0.25. Moreover, recall that the ratio between fmax and fmin must be equal for all φ0,
since this is a property of the fluid parcels. Lines heated in the wave trough, under the
influence of constant (phase independent) τvisc = 30 mPa, would in the first wave period
reach a minimum width of σ2(T ′/2) ≈ 0.16 mm2 in the case of the line of Emmel [2017],
and σ2(T ′/2) ≈ 0.31 mm for the laser used in January 2021. For the lines heated at the
crest, the corresponding numbers are σ2(T ′/2) ≈ 1.48 mm2 and σ2(T ′/2) ≈ 2.85 mm2,
respectively, so the range of σ2(T ′/2) would be roughly twice as wide only by changing
the width of the laser beams from 0.6 mm to 0.9 mm. The same argument holds for
the value corresponding to the peak of the distributions of f , which is assumed to
ideally correspond to f = 1 for all t (refer to section 3.5 for clarity), but found to be
slightly deviating, especially at t = T ′/2. This deviation of f , 1 propagates to σ2,
and is amplified by larger σ0. This is likely explaining why the observed patterns in the
characteristic squared line widths found above are pronounced in the measurement of
January 2021, but not in those by Emmel [2017]. For future applications of the method,
if the viscous shear stress is the interesting quantity, it is therefore recommended to keep
the laser line as thin as feasible. If the wave induced dynamics and alteration of fluid
parcel extents within the boundary layer is the main focus, a larger initial line width is
preferable.

In order to achieve a distribution of the initial line widths as thin and phase
independent as possible, the heating time tlaser on of the lines should be kept as low
as possible. A measurement by Emmel [2017] with tlaser on = 5 ms for the 10 Hz
measurement was reanalysed. For the other measurements that were reanalysed, the
heating time was tlaser on = 10 ms. As seen in figure 7.6, showing the 5 ms measurement,
the distributions of σ2(t) end abruptly; below half a second after heating, most lines
are no longer evaluable. This is caused by the heating time yielding weaker (i.e. lower
temperature amplitude) lines. Therefore, while short heating times are advantageous,
the laser must also posses enough power. The main issue arising is that this is prone to
causing a bias towards smaller line widths, since the broader lines may fade before the
lines are evaluated. The result is lower for the measurement with the short heating time
compared to the equivalent measurement with tlaser on = 10 ms; τvisc = (28.2 ± 1.3) mPa
and τvisc = (31.2 ± 1.3) mPa, respectively. Though not significantly deviating, the issue
is expected to be of higher importance with increasing wind speeds, as the viscous shear
stress increases and varies considerable with the wave phase.

7.1.2
Results for the viscous shear stress

The results for the viscous shear stress τvisc for the long time interval evaluations
collectively considering a large number of lines, are discussed in this section. The values
are provided in table A.2 in the appendix, and shown in figure 7.7 in dependence on
wind reference frequency. Note that results with a white marker colour in the middle
indicate values subject to a bias, and cannot be trusted. An equivalent figure, but in
dependence of the estimated values of reference wind speed in 10 m height, u10, can
be found in the appendix, figure A.2. In the following, the best estimate for τvisc will
be discussed, corresponding to the evaluations with the individual line widths shifted
according to equation (6.10) (also refer to section 7.1.1 above).

As mentioned earlier in chapter 4, the measurement conditions in the measure-
ments of January 2021 and the reanalysed measurements of Emmel [2017] are different.
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Fig 7.6.: The evaluation of the 10 Hz (wind reference) measurement of Emmel [2017]
with heating time of the lines of 5 ms, in contrast to 10 ms in figure 7.5. The
abrupt end of the distributions at t ∼ 0.5s, is caused by the fading of the lines.
There is likely a bias toward too low values of τvisc present due to the broader
lines fading before evaluation, and this shows the possible issue associated with
low heating times.

The results for January 2021 are evaluated in the time interval tm ∈ [600 s, 1200 s]
after turning the wind on, with the 10 Hz measurement being longer than the other
measurements and also evaluated in the interval tm ∈ [2160 s, 2760 s] after turning the
wind on. In the case of Emmel [2017], at least 120 minutes had passed before conducting
the measurement, corresponding to stationary conditions.

Interestingly, as seen in figure 7.7, the 5 Hz and 6.3 Hz measurements of January 2021
and Emmel [2017] do not deviate significantly, neither does the 7.9 Hz measurement of
Emmel [2017] when compared to the 7.5 Hz measurement. This indicates the viscous
shear stress had reached the proximity of its asymptotic values within 20 minutes after
turning the wind on. It must be noted that the data basis consists of few measurements,
hence robust conclusions are not possible. The reference measurement method, particle
streak velocimetry (PSV), showed no significant deviations (<1 standard deviation) for
the stationary 5 Hz and 7.5 Hz measurements.

The result of the 10 Hz measurement shows a large spread of the values for τvisc. It
must be mentioned that when excluding the result for the tlaser on = 5 ms measurement
by Emmel [2017] due to the possible bias towards small line widths, as argued in section
7.1.1 above, however, none of the data points are significantly deviating (i.e. > 3 standard
deviations) from each other. This is mainly caused by the large uncertainty in the
results of January 2021, caused by the observed patterns in the characteristic σ2(t),
and reflecting the uncertainty in the value for τvisc. For the 10 Hz measurement of
January 2021, the discrepancies in characteristic σ2(t) between the [600 s, 1200 s]- and
[2160 s, 2760 s]-intervals, however, are significant. Due to the different setup, such a
comparison cannot be done for the measurement of Emmel [2017].

The results for the viscous shear stress for the [600 s, 1200 s] interval for the 10 Hz
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measurement is τvisc = (42.0 ± 4.1) mPa, whereas the evaluation for the [2160 s, 2760 s]
interval yielded τvisc = (34.7±4.2) mPa. Moreover, the result of the stationary measure-
ments are τvisc = (31.2±1.3) mPa for the measurement of Emmel [2017], and for the PSV-
method (January 2019) τvisc = (35.0 ± 1.6) mPa. The difference between the stationary
results might be explained by the spatial coverage of the heated line of the measurement
by Emmel [2017] being larger than the laser sheet used for the PSV measurement, as the
wind velocities are expected to vary up to about 20% (Bopp [2014]) in the measurement
section, which is likely to cause spatially differing values in the determined viscous shear
stress. Further details will be given below.

Hence, this indicates decreasing values of the viscous shear stress with increasing
time after turning the wind on, occurring after the initial large changes in the wave
field associated with short times after turning the wind on, see section 7.2 below. This
could be caused by further restructuring of the wave field. For the 10 Hz measurement
of January 2021, the initial water velocity us0 = (3.8 ± 0.2) cm/s was close to the
bulk velocity in stationary conditions ub = (4.221 ± 0.009) cm/s (Schwenk [2019]).
Moreover, similar changes for times after the initial build-up of the wave field have been
observed for the total momentum transfer in global momentum balance measurements
(Schwenk [2019]). Interestingly, almost no difference in surface velocity was found:
us = (12.3±0.8) cm/s for the first interval and us = (12.1±0.5) cm/s for the later interval
of January 2021, compared to us = (12.3 ± 0.4) cm/s (measurement of Emmel [2017])
and us = (11.7 ± 0.1) cm/s (PSV). The corresponding bulk velocities are not known,
but as mentioned above, the initial water velocities were close to the bulk velocities
found in similar measurement conditions. This would correspond to a thinner boundary
layer thickness for shorter times after turning the wind on. Note, however, that since
this discussion is based on only one non-stationary measurement, the results must be
interpreted with care.

The results for the 12.5 Hz and 15 Hz measurement are also given for completeness
in figure 7.7, with a white marker centre. As mentioned, this is done for indicating that
the values cannot be trusted. The reason for the bias is in both cases the evaluation for
times considerably smaller than a wave period T ′, refer to section 7.1.1.

In figure 7.7 also the results for τvisc measured in stationary conditions without waves
are shown. Hereby the waves were suppressed with the surfactant Triton X-100, refer to
Voigt [2019] for further details. As can be seen, the values are similar compared to τvisc
measured in the presence of waves, with no clear differences to be found, except for the
7.5 Hz measurement, whose value for τvisc is lower. The latter deviation is non-significant
when compared to the stationary PSV-evaluation, and significant with respect to the
7.9 Hz measurement of Emmel [2017]. Since the uncertainties are small, however, the
latter significant deviation is likely caused by the differing wind speed. The implication
of the values of τvisc being similar, will be further discussed in section 7.4.3.

Since the method is novel and few other methods for determining τvisc are developed,
no further verification of values of τvisc the beyond the reference measurement evaluated
in this work could be obtained. Measurements of the air-sided τvisc from PSV are
available in Bopp [2018], a direct comparison is prevented, however, by the shorter fetch
of 28 m used, yielding different measurement conditions, and the lack of comparable
wind reference values. The values are of the same order, however. The results from
momentum balance methods, e.g. Schwenk [2019], cannot separate the viscous shear
stress from the total momentum transfer and are hence not comparable, besides yielding
global measurements in contrast to the localized measurements of this work.
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Lastly, as explained in section 6.4, a correction of the line widths for the measure-
ments of January 2021 according to the surface inclination and camera mounting angle,
see equation (6.4), was performed. The correction was not found to make a considerable
difference in the determined values for the viscous shear stress for any of the measure-
ments, with no systematic influence or changes above the order of a few percent. This
can be attributed to the surface inclination mostly being small, the uncertainty of τvisc
being dominated by the uncertainty relating to the stretching and compression of the
line widths and the water elevation measurement being confined to a thin sheet, hence
not representing the whole spatial extent covered by the heated lines.

Radial variations in the viscous shear stress

The long line of Emmel [2017] also allows for a sequential evaluation, i.e. the spatial
variation in τvisc with respect to radial position y, pointing towards the channel centre
(refer to figure 4.3 for a sketch of the setup and coordinate system). The result of
evaluating the viscous shear stress for pieces of 50 mm can be found in the appendix A.3.
As can be seen, the variation is found to be mostly below 15 %. As the uncertainties are
large compared to the variation, care must be taken by interpreting the patterns seen,
but the results mostly seem to be in accordance with < 20% for the considered part of
the channel. The mean (radially averaged) values of τvisc do not deviate significantly
from those obtained by evaluating the whole lines.
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Fig 7.7.: All results for the long time interval evaluation of the viscous shear stress
τvisc, in dependence of wind generator frequency fwind. An equivalent plot in
dependence of u10 can be found in the appendix A.2. Included are the PSV-
results (cyan crosses) of the stationary measurement of January 2019 (label 1),
and the results for stationary, wave-less (smooth, label 4) surface from Voigt
[2019] (orange dots). The red hexagons mark the results of the stationary
measurement of Emmel [2017] (label 2a) with a heating time of 10 ms, and
the green hexagon the measurement with a heating time of 5 ms (2b). The
remaining data points are from the measurement of January 2021. Shown are
the evaluation in the time interval [600 s, 1200 s] (label 3a) and [2160 s, 2760 s]
(label 3b) after turning the wind on. The best estimates of τvisc are based
on the shifted evaluation of the line widths (magenta and blue markers refer
to section 7.1.1 and equation (6.10)). Also shown is the evaluation of τvisc
for the uncorrected line widths (gray, translucent black dots). Markers with a
white centre are subject to a bias, and should not be trusted. Also note the
(uncorrected) result for the 2.5 Hz measurement.
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7.2
Short time intervals and non-stationary conditions

One of the main advantages of the measurement method is the feasibility of high temporal
resolution on the order of seconds. The temporal resolution is, if spatial sampling of the
wave field is experimentally realised, only limited by the time needed for the lines to
broaden. Hence, valuable insights into how the viscous shear stress develops and changes
in non-stationary measurement settings may be achieved. Also in field conditions, where
wind speeds may change within short times, this is a large advantage. An initial look into
this can be provided by the measurements in January 2021, since these were conducted
while turning the wind on, thereby capturing the first minutes after the change from a
resting air compartment. The evaluation of five second intervals were chosen as a trade-
off between sampling the wave phases and wave field as much as possible and loosing the
possibility to capture rapid changes. For reference, initial heating frequencies were 2 Hz,
with the exception of a heating frequency of 1 Hz for the fwind = 5 Hz measurement.
Capturing the onset of the wind poses difficulties regarding overlap of the lines, as the
surface velocity is initially low, before both velocity and shear stress rises rapidly and
ideally the heating frequency should be increased accordingly for better statistics. A
slight initial water velocity therefore eases this issue as it allows for a higher initial
heating frequency, but should be kept in mind especially when considering the surface
velocities and also the possible influence on the viscous shear.

The non-stationary evaluations were conducted for the measurements with wind
generator frequency between 5 Hz and 10 Hz. If the figures are not presented in this
chapter, they can be found in the appendix A.5. Beyond this wind speed, the number
of data points in the 5 s intervals did not suffice for a stable evaluation, in addition
to the changes taking place on shorter time scales. Furthermore, based on this set of
measurements, without repeated measurements, robust conclusions are excluded, but
some tendencies are found.

In all measurements a fast increase in surface velocity was found, with both a
increased acceleration and shorter times before reaching the first maximum surface
velocity for higher wind speeds, e.g. ∼20 s for the 10 Hz measurement and ∼65 s for
the 5 Hz. After turning the wind on, the flow is first largely laminar, with mostly
uniform flow velocities. The surface velocity increases, and reaches a maximum that
represents an overshoot, as also found for a smooth surface in Voigt [2019]. The flow
remains in this overshoot-regime for longer durations for lower wind velocities. This
is also associated with an overshoot in τvisc for the 6.3 Hz and 5 Hz measurement, with
&50% increased values. The overshoot is then relieved, possibly upon exceeding a critical
Reynolds number, by a change of flow regime, associated with the break up of a mostly
uniform flow pattern into more irregular patterns and velocity differences. Typically,
also waves start to form. This regimes further develops by the patterns also including
smaller structures, which then persists for higher times, and waves growing. At some
point the waves stop growing and surface velocities level out to a temporally more
steady value. This marks the end of the overshoot regime. The findings of the regimes
are qualitatively similar to those in Klein [2019], who studies the fetch dependence on
gas and heat exchange. Kunz and Jähne [2018] investigated short fetches and the effect
on heat transfer velocities, and reached similar findings indicating an overshoot for small
fetches. Note that the results of this work, given as a function of time after turning the
wind on, are not directly transferable to conditions for different fetch lengths, since it is
not clear which characteristic quantity should be used as reference.
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Figures 7.8 and 7.9 exemplify the change of regimes for the 10 Hz measurement. The
blue and red vertical lines in figure 7.9 mark the four times shown in figure 7.8. The
patterns seen on the surface are caused by the air in the wind-wave facility still being
dry, as it was the first measurement, causing evaporation and hence a cooling of the
surface. When turning the wind on, the explained changes in the flow field, probably
associated with the increased shear stress and subsequent thinning of the boundary
layer, in combination with increased mixing by surface renewal events of warmer bulk
water and possibly the onset of turbulence in lower fluid layers, causes this clearly colder
surface to subside with time. Hence the surface appears more homogeneous in the image
at t = 120.5 s, and further changes in the flow field are not visible beyond this time.

Regarding the viscous shear stress, the measurements are not conclusive for the
overshoot-regime. The lower wind speeds clearly show an overshoot, as mentioned,
while those at higher wind speeds do not show this, especially the 7.5 Hz and 8.8 Hz
measurement. The 10 Hz measurement is more unclear in this regard, refer to figure
7.9. The first steep increase in τvisc for the first ∼ 30 s after turning the wind on is
seen in all cases, associated with regular (laminar) flow fields without much influence by
waves, simplifying the evaluation with the thermographic approach. This then suddenly
changes, often with a marked drop in the values of τvisc and large uncertainties, the
latter indicative of scattering characteristic line widths. A look at the individual lines
shows that this is mainly caused by insufficient statistics with broad distributions and
the lines being strongly influenced by the flow, making evaluation more difficult. Most
likely this is caused by a strong influence by the first short capillary-gravity waves,
initiating the growth of the waves (Phillips [1957]). Large amplitude capillary waves
are known to be capable of strongly modifying the boundary layers (Witting [1971]),
which is consistent with the broad distributions of line widths observed. Moreover, for
the 10 Hz measurement, the time t∗ passing before the number of data points of the
unsorted data set were halved (refer to section 6.4), was lower in the overshoot-regime
than later on. This is indicative of a high shear stress as it leads to a faster fading of
the lines, see section 7.4 for further discussion. For the measurements at lower wind
speed t∗ was longer, such that random events caused by the flow had a larger influence,
yielding scattering values, and in combination with the fact that the heated lines are
followed for a limited time only, a bias towards lower t∗ was found. Hence t∗ is deemed
not meaningful in these cases.

Lastly, a non-stationary 10 Hz measurement was available from the measurements
by Emmel [2017], see figure A.21, with the difference that the wind was first turned on at
15 Hz for 5 s for a faster build-up of the wind field. Also the initial water velocity was close
to zero. The statistics due to the longer line is better, and an overshoot in τvisc is seen.
Interestingly, the values for τvisc are considerably lower than seen in the corresponding
measurement of January 2021, seemingly levelling out at τvisc = (26.3±3.4) mPa, which is
lower than the result of the stationary measurement conducted with the same setup. Also
in conditions without waves in Voigt [2019], the values for τvisc for the non-stationary
measurement was higher, hence the discrepancies are most likely not caused by the
presence of surfactants. The water velocities from the non-stationary measurement by
Emmel [2017] are more consistent with the 7.5 Hz measurement of January 2021, which
was also conducted with a initial water surface velocity close to zero. It is not known
what causes these large differences for the seemingly same measurement conditions. Since
no water elevation measurement is available for the measurements of Emmel [2017], a
comparison of the wave fields is not possible. More measurements are required in order
to verify if such large discrepancies are frequent, or have other causes.
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𝑡=64.9 s 𝑡=67.2 s

𝑡=76.1 s 𝑡=120.5 s
Fig 7.8.: The change of the flow field for short times after turning the wind on at

t = 39 s. The shown times are indicated in figure 7.9. The wind direction
is from right to left. The air humidity was low, causing causing cooling of
the surface by evaporation, hence structures arising with changes in the flow
can be seen as warmer bulk water increasingly influences the upper layer.
The colour scale is equal in all images, with bright colours indicating higher
temperatures. Upper left: the flow field at the water surface is still largely
laminar, with high velocities, before larger patches of higher temperatures arise
(upper right) with the onset of horizontal flow velocity gradients. The mean
velocities tend to decrease, and waves start to form. These structures further
break up (bottom left), now also including smaller scales. For longer times
(bottom right), these structures remain, which is not clearly seen since the
temperature in the boundary layer is now fairly homogeneous, waves get larger
and the mean velocity tends to level out. Note the bright structure in the
upper middle part of the image, which is a reflex from the laser casing of the
surface elevation measurement. The time since heating the lines is not equal
in the images.
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Fig 7.9.: The non-stationary result for 5 s intervals for the 10 Hz measurement of January
2021. The line widths were not corrected for surface compression and dilation,
refer to section 7.3 for details. The abscissa shows time since starting the
measurement in all plots, note a smaller temporal range in the lowest plot. The
topmost plot shows the viscous shear stress τvisc along with a running mean of
20 s (red curve), the second plot from the top the mean surface velocity us and
the second lowest plot the characteristic life time t∗ of the lines. The lowest
plot shows the surface elevation η in the middle of the laser sheet. The blue
(upper 3 plots) and the red (lower plot) vertical lines indicate the times shown
in figure 7.8. Note the overshoot in the surface velocity, and the lower values
of t∗ seen for short times after turning the wind on (t = 39 s). The latter is
associated with an increased τvisc, which is, however, not seen with certainty.
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fwind [Hz] τvisc [mPa] (long time interval) τvisc [mPa] (5 s, mean ± std. dev.)
5.0 9.0±0.3 8.7±1.1
6.3 13.8 ± 0.4 12.9 ± 1.7
7.9 21.9 ± 0.3 21.1 ± 3.7
10.0 31.2 ± 1.3 33 ±8

Table 7.1.: The table shows the values of the viscous shear stress τvisc evaluated for
the stationary measurements of Emmel [2017] for four wind speeds with
reference wind frequency fwind, by collective evaluation of all lines (∼ 300 s)
(middle column) and evaluation of 5 s intervals (right column). The results
for the 5 s intervals were averaged and the standard deviation computed,
given as mean ± standard deviation. As seen, the averaged values of the 5 s
intervals deviate by less than 10%.

Based on the above indications, it is likely that the overshoot in τvisc is also present
for higher wind speeds, and not seen in the evaluated values due to technical reasons
regarding the setup. This must be verified in future studies, and cannot be stated with
certainty.

A relatively large scattering of the results of τvisc for the evaluation of the 5 s intervals
are found. This may have several causes. First and foremost, because the flow- and
wave field is irregular, which besides causing fluctuations by itself, also is expected
to lead to amplitude related differences in the phase dependent viscous shear stress
(Bopp [2018]), with lower amplitudes being associated with less difference between the
phases. Moreover, since relatively few lines are considered due to the short time intervals,
only a smaller part of the wave field is sampled. Hence some scattering caused by the
random timing of the heating of the lines is expected, which would be an artefact of
the measurement technique and setup. This is especially true if the phase sampling is
inadequate, which could happen if the heating frequency is similar to the wave frequency,
leading to phase selective sampling. The mean values determined for the viscous shear
stress by these shorter 5 s intervals for the part of the measurements corresponding to
the long interval evaluations, are comparable to those found for the longer time intervals
evaluation. This is found in the case of the stationary measurements of Emmel [2017] as
well as for the measurements of January 2021, indicating that the approach is valid. Due
to the small uncertainties of τvisc for the long time interval evaluation for the reanalysis
of the stationary measurements of Emmel [2017], these results are given in comparison
to the 5 s intervals in table 7.1.

It must be emphasized that several of the measurements were started with the initial
water velocity us0 being non-zero, including the 10 Hz measurement in figure 7.9 as stated
in section 7.1.2, where it was about 90% of the bulk velocity’s asymptotic value. This
can be seen in the respective plots for the non-stationary evaluations, along with being
stated in table A.1. The initial velocity could possibly influence the viscous shear. No
conclusions regarding these changes can be made based on the available measurements,
but these initial results show that the thermographic method could be used to study
this dependence due to the temporal resolution in future measurements.
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7.3
Surface compression and dilation

As already seen, the waves have an impact on the line widths. Several limitations follow,
especially concerning phase resolved measurements of τvisc. Starting by considering
individual lines, see figure 7.10 for examples from the 10 Hz measurement, one clearly
sees the impact of the compression and stretching of the fluid parcels. This gives a
possibility to verify the expression f (see equation 3.16). Also recall equation (7.1),
where it was found that the observed line width σmeas compared to the theoretical σtheo
is described by f . In the following analysis, since σtheo is not known, it is approximated
and fitted by a second order polynomial p2(t). A second order polynomial was found
to approximately describe the simulated development of σ2

sim(t) (Voigt [2019]). Note
that this is not strictly applicable, as τvisc is not constant as a function of wave phase,
refer to section 7.5 below, but used as a first approach. Hence f2 · p2(t) was fitted to
the squared mean line widths (red dots in figure 7.10), refer to section 6.4 for further
details. As can be seen in the figure, f is in some cases describing the observed surface
dynamics well, even to the point that the extrapolated curves fit well. While this indeed
often holds, small scale events can have a large impact, causing the simple model to fail
to describe the surface compression and dilation. Note that this implies that the fluid
parcels are distorted in a way that a laminar flow field is induced in the interior, such
that the temperature profile is “unmixed” upon returning to the same wave phase after
a period. This is as expected for the viscous boundary layer and the small spatial scales
of the fluid parcels encompassing the heated lines.

Equation (3.16) refers to fluid parcel velocity and phase speed, both in reality
complicated due to superposition of the waves. As seen in figure 6.8, the estimated
values for the phase speed vary, also on short time scales. Furthermore, non-linear
phenomena associated with steeper waves, such as breaking waves, are not described by
the equation, and it is also found experimentally to underestimate the compression and
dilation for larger and steeper waves. This could partly be due to the horizontal velocities
found by numerical derivation of the interpolated line position x(t) to be artificially
dampened, or simply non-linear effects influencing the stretching and compression in
a way not described by equation (3.16). Furthermore, capillary waves are known to
distort the boundary layer considerably (Witting [1971]), but make almost no deflection
in x(t), hence being more or less unconsidered when applying equation (3.16). Since their
frequency is higher than that of gravity waves, their contribution is prone to overlay the
stretching and compression of the gravity waves, thus being of less importance when
considering more lines at once.

Another issue is that the slope of the interpolation of x(t) is to some degree unreliable
at the endpoints, notably at the time of heating the line, therefore the initial velocity
is error prone. Lastly note that the surface elevation measurement was conducted at
one y-position only (i.e. position radial to the channel, figure 4.3), whereas the lines
are extended in this direction. This means that due to inhomogeneities in the wave
field, the parameters at the line where the surface measurement was not available, are
likely different (Rennebaum [2017]). Based on this, a correction (i.e. by σcorr(t) =
σ2

meas(t)/f(t)2, refer to equation (7.1)) of the line widths with respect to the compression
and stretching, based on the short individual lines of January 2021, is deemed too
uncertain to yield meaningful results due to the limited applicability of equation (3.16).
It would, however, if managed in future work, improve the evaluation of the viscous shear
stress, especially in the temporally resolved measurements, where individual events may
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Fig 7.10.: Shown are uncorrected (left) and the corrected (right) squared line widths of
individual lines. They are corrected for compression and stretching of the line
widths, described by f2 (orange curve, see equation (3.16)). The upper three
rows of plots show the correction of a set of three lines heated at the same
time, for which a fit between the red lines of f2·p2(t) (lime curve) yields a good
description, whereas the fit is poor for the three lower rows. The second order
polynomial p2(t) approximates the diffusive broadening of σ2(t). The lime
curve is extrapolated beyond the fit range. The lowest row shows a stretching
event where f ≈ 1, hence the orbital motion was too modest for detection.
The second lowest row shows a small scale event strongly influencing a part
of the line.
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Fig 7.11.: The figure shows the evaluation of individual lines of the 10 Hz measurement
(gray dots), their phase dependent mean (red dots, errorbar: standard
deviation) and the collective phase dependent evaluation (blue points). The
wave phase φ was estimated by a Hilbert transform of the horizontal orbital
motion of the heated lines, and was evaluated in the same time interval ([0.22 s,
0.32 s] after heating the lines) as the (phase dependent) viscous shear stress
τ̃visc. The cyan dotted line shows a third order Stokes wave with arbitrary
wave height and steepness for illustration, and the wind direction is from left
to right. Note the low values of τvisc at the crest and high values in the trough,
opposite of what is expected, compare to the PSV measurements, figure 7.16.

have a larger impact due to few lines being collectively evaluated.
For illustration, a figure for the collectively evaluated, individually corrected lines

for the 10 Hz measurement can be found in the appendix, see figure A.8. This figure is
exemplary for most corrected results. As can be seen, the correction tends to over-correct
the line widths for t ≈ T ′/2, effectively straightening out the temporal development of the
heated lines to become nearly linear. This is most likely caused by equation (3.16) better
describing the compression of the lines, again caused by the more narrow distribution of
f < 1 as explained in section 7.1, thereby introducing a bias towards poorly corrected
large (stretched) line widths. This is also the case for t ∼ T ′, though corrections are
smaller, as expected, therefore the determined values for τvisc do not change much.

Another option is to correct all lines with the same initial wave phase, by using
a collectively evaluated velocity. This has a main disadvantage, however, as all lines
are weighed equally for the mean velocity, yielding relatively small deviations from the
mean velocity, whereas the line widths are considered squared, hence under- and over
corrections do not cancel. This is especially problematic for φ0 = 0, where the widths
of the distributions of σ2(t) are largest.

It is not clear whether the correction of longer lines - thus less influenced by small
scale fluctuations - would perform better, as no surface elevation data is available in
the measurements of Emmel [2017]. However, due to the long line and therefore a

100



large amount of data points, it might be tempting to evaluate also single lines in order
to improve the temporal resolution. This is problematic, since the line widths are
systematically compressed at the wave crest and stretched in the trough, thereby strongly
influencing the determined viscous shear stress τvisc. This is especially an issue when
the wave period is on the order of the time that passes before evaluating the heated
lines. Hence, a systematic error occurs, see figure 7.11 for an example for the 10 Hz
measurement. The wind direction is towards the right. The wave phase was estimated
by a Hilbert transform (see equation (B.12)) of the observed horizontal velocity. Depicted
is the wave phase at the time of evaluating the line. As can be seen, the determined
(wave phase dependent) τ̃visc, both when collectively evaluating all lines with the same
phase, and when considering single lines, is clearly lower at the crest than at the trough,
which is contrary to the expected distribution (see section 7.5 below and Bopp [2018]).
The slight phase shift is caused by the mounting angle of the camera, yielding a maximal
observed velocity on the leeward side of the wave (see figure 4.3 for the setup), and that
the heated line is influenced by the (phase dependent) shear stress also for the phases
before the evaluation. Thereby it becomes clear that evaluating single lines underlies a
strong influence by the wave phase at the time of evaluation. Hence, it is important to
sample the wave phases as evenly as possible and to evaluate those lines collectively.

7.4
Additional observations

7.4.1
Characteristic life time of the heated lines

A few other observations were made during the evaluation of the measurements. First,
as already implicated, for the measurement of January 2021 the characteristic time scale
or life time t∗ of the heated lines was calculated by determining the time at which the
number of all data points (line widths) reached half of the maximal number, refer to
section 6.4 for further details. This time scale will be system, evaluation and setup
dependent, since it reflects the detection and evaluation limits of the heated lines. The
computation of t∗ was found to be cost-efficient compared to the evaluation of τvisc. For
the 2.5 Hz and 5 Hz measurements, this was not conducted as the life time turned out to
be higher than the duration of their tracking, 1.8 s and 1.2 s, respectively. For the other
wind speeds, however, they were found to be decreasing with increasing wind speed, with
the exception for the 17.5 Hz and 20 Hz measurement, where they were approximately
equal, see figure 7.12. This could either be due to lack of better accuracy, as indicated
by the uncertainties, or due to the viscous shear stress saturating, thus t∗ approaching a
constant value. Several studies have found the air-sided viscous shear stress to saturate
below 80 mPa (refer to Bopp [2018], page 98) in the presence of waves. The viscous shear
stress could not be estimated for these wind speeds, such that a direct comparison could
not be conducted.

For the 10 Hz measurement, t∗ was found to be lower in the interval [600 s,1200 s]
after turning the wind on (t∗ = (0.68 ± 0.04) s), compared to the interval [2160 s,2760 s]
where it was determined to t∗ = (0.72 ± 0.06) s. This is in agreement with the decrease
in the values of τvisc between the two intervals, refer to section 7.1.2.

As discussed above in section 7.1, at some point the line widths underlie a strong
bias towards smaller line widths due to the compression of the widths of the fluid
parcels, whereas the stretched lines become strongly scattered and partly non-evaluable.
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Fig 7.12.: The left plot shows the (setup dependent) characteristic life time of the heated
lines t∗ for the measurement of January 2021 in dependence of wind reference
frequency fwind (left) and estimated viscous shear stress τvisc (right). t∗ was
estimated as the time after heating the lines when the number of data points
(line widths) had dropped to 50% of the maximum number, indicative of the
broadening and hence fading of the lines. With increasing fwind and hence
wind speed, t∗ decreases, and seems to level out at above 15 Hz. Moreover, t∗

decreases with increasing viscous shear stress τvisc. Both the uncorrected
values (gray and black points) and the shifted (best estimate, blue and
magenta points) results (refer to section 7.1.1) are depicted for the 6.3 Hz
to the 15 Hz measurement. Unfilled data points in the right plots indicate the
values of τvisc underlying a bias. Blue and gray dots depict the evaluation in
the interval [600 s,1200 s] (label (a))after turning the wind on, whereas black
and magenta dots the evaluation in the interval [2160 s,2760 s] (label (b)).

Therefore the determined viscous shear stress will sink falsely for higher wind speeds.
Since t∗ decreases with increasing τvisc, one could use t∗ to sort out the erroneous values.
This is especially relevant in a field setting with a high degree of varying wind. The
characteristic time scales would require some sort of calibration.

7.4.2
Mean surface velocity

Moreover, the thermographic method is well suited to determine surface velocities us,
as already implicated above. A plot of the mean surface velocities us determined by
the long time interval evaluations can be found in figure 7.13. Note that the velocities
for the measurement of January 2021 do not reflect the stationary limiting case, but
are evaluated for the same time intervals ([600 s,1200 s] after turning the wind on) as
described in section 7.1. The velocities for the stationary measurements of Emmel
[2017] can be compared to the stationary results obtained by particle streak velocimetry
(PSV) for the measurements with waves of January 2019, and agree within one standard
deviation. Interestingly, for the measurements of January 2021 evaluated in section
7.2, the surface velocities show no clear dependence on the initial water velocity, with
all measurements reaching velocities in the proximity of their values at the end of the
measurements shortly after the overshoot regime. Most values also agree within one
standard deviation to the stationary velocities, if the latter are available. The exception
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is the non-stationary 10 Hz measurement by Emmel [2017], where the water surface
velocity is also considerably lower than for the corresponding measurement of January
2021. As mentioned above (section 7.2), also the viscous shear stress is clearly lower in
the former measurement. The number of measurements in this study is small, however,
and repeated measurements of longer duration are lacking. If the independence of the
velocity after the overshoot regime on the initial water velocity is confirmed in later
studies, it would indicate that the surface velocity to be dependent on wind speed and
state of the wave field, rather than the underlying drift. Clearly, this argument breaks
down if the initial water speed is increased beyond the bulk velocity, which could be the
case in field conditions. Further research is needed.

Additionally, the values for the stationary measurements conducted with smooth
(without waves) surface conditions are given (Voigt [2019]). Compared to the stationary
measurements of Emmel [2017] in the presence of waves, the surface velocities for the
smooth case are higher than for the rough surface case for all considered wind speeds,
though not significantly except for the 5 Hz measurement. For conditions with waves,
however, Schwenk [2019] found the bulk velocities to be higher than in the case without
waves. The latter is consistent with an increased total momentum transfer in the
presence of waves, as also form drag contributes (Bopp [2018]). Similarly, a higher
surface velocity might be explained by the momentum transfer entirely being caused by
the viscous shear stress in the smooth case. This is not supported by the determined
viscous shear, however, which in the smooth case is found to not be larger than in the
rough case, refer to figure 7.7. Assuming the viscous shear stress to be equal in both
cases, this would then imply an increased turbulent momentum transport closer to the
interface in the presence of waves, hence slowing down the velocity at the surface, which
corresponds to a smaller boundary layer thickness. The estimated values for the latter
are in agreement with this reasoning, see below in section 7.4.3 and figure 7.14.

7.4.3
Boundary layer thickness

At the end of a measurement, after turning the wind off, the air compartment is slowed
down much faster than the water body due to less inertia. Since the surface velocity is
highly influenced by the shear stress, which in the water surface layer becomes negligible
without the wind, the surface velocity is expected to drop quickly according to the wind
speed, see the left plot in figure 7.14 for an example for the 10 Hz measurement. In the
end, the water compartment will drive the air velocity, but since the density of air is low
compared to water and the water velocities are much lower than the wind speeds, the
resulting shear stress can be neglected as a first approximation. Hence the water velocity
can be extrapolated to the point of turning the wind off and used as an estimation of
the water velocity below the boundary layer ub. Therefore, by measuring the surface
velocity before and after turning off the wind, in combination with the velocity gradient
determined by ∂zu = τvisc/µ, one can estimate the viscous boundary layer thickness δ
by a linear approximation,

δ ≈ us − ub

∂zu
. (7.3)

This represents the most simple model, with the real velocity profiles possessing gradual
transition to the bulk velocity, see for example the lower left plot in figure 7.16 for the
mean tangential velocity (u∥) profile as function of perpendicular distance to the surface

103



2 3 4 5 6 7 8 10 12 15 20
fwind [Hz]

3

4

5

6

8

10

12

15

20

25

30

u
s

[cm
/s

]

waves, PSV (stat, 1)
waves (stat, 2)
waves (3)
smooth (4)

Fig 7.13.: The determined mean horizontal surface velocities us in dependence of wind
generator frequency fwind. Refer to figure A.1 for an analogous figure in
dependence of u10. The red markers show the results of the stationary
measurement of Emmel [2017] (label 2), the cyan the speed determined by
the PSV-method for the stationary measurement of January 2019 (label 1),
and the orange points the velocities determined in Voigt [2019] for conditions
without waves (smooth surface, label 4). Also shown are the velocities for the
[600 s, 1200 s] time interval after turning the wind on for the measurements
of January 2021 (blue, partly translucent points, label 3). Note the higher
surface velocities in stationary conditions without waves, compared to the
conditions with waves.

z⊥. Note that ideally u∥ should be used instead of us and ub, but is here approximated
by the mean horizontal velocity.

The results for δ are given in the right plot of figure 7.14 and in table A.1 in the
appendix, for the 5 Hz to the 10 Hz measurement. Note that the 10 Hz measurement is
evaluated about 2800 s after turning the wind on, the other at t ∼ 1400 s. Recall that
τvisc may decrease with increasing time after turning the wind on as found in 7.1.2, hence
the values for δ may not be directly comparable. In the case of the 2.5 Hz measurement
the drop in surface velocity to bulk velocity was not clear and could not be evaluated.
For the 12.5 Hz measurement and above, the value for τvisc is, as explained in section
7.1.1, uncertain due to a possible bias, and is hence left out.

The boundary layer thickness can be computed analogously with the results of the
(stationary) PSV measurements, substituting the velocity at a depth of 15 mm as ub,
which is the maximal depth available. This might yield values for ub that are not
directly comparable to those evaluated for the thermographic approach as explained
above. Moreover, a comparison to the values for δ found for conditions without waves is
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Fig 7.14.: The estimation of the mean surface velocities us for the 10 Hz measurement
before and after turning the wind off (left), and the approximated viscous
boundary layer thickness δ in dependence of wind reference frequency fwind
(right). The velocities in the left figure are evaluated in 5 s intervals, and fitted
for times before (orange) and after (blue) turning the wind off by a linear
function. The latter is suitable as long as the considered time interval after
turning off the wind is short. The surface velocities drop rapidly to the velocity
of deeper water layers after turning off the wind (∼ 30 s). The boundary layer
thickness (right plot) is computed by equation (7.3) with estimated surface
velocity, bulk velocity and viscous shear stress by the PSV method (cyan)
and the thermographic best estimates (i.e. shifted line widths, refer to section
7.1.1, blue markers). There are no significant deviations between the methods
of evaluation. Also δ for conditions without waves are given (Voigt [2019]),
these being larger than the values for the measurements with waves. δ tends
to decrease for higher fwind, i.e. higher wind speed.

also given in figure 7.14 (orange data points, see Voigt [2019]). As can be seen, the viscous
boundary layer thicknesses tends to decrease with higher wind speeds, as expected for
higher Reynolds numbers and subsequent higher influence by turbulence, but based on
these measurements to level out for higher wind speeds than 7.5 Hz. Moreover, δ is
smaller in the presence of waves, as also deduced in section 7.4.2 above, indicative of a
higher turbulent momentum transport close to the surface for the rough surface. This is
especially seen for the lowest wind speed, the 5 Hz measurement, where a small degree
of velocity variation and correspondingly low turbulent momentum transport was found
for the conditions without waves (Voigt [2019]). The tangential velocity component u∥
for the 5 Hz measurement with waves (figure A.22) shows a larger degree of variation,
and the boundary layer thickness is significantly smaller, hence the turbulent transport
can be expected to be higher.

This has implications for the thermographic method, since by model assumption
the velocity gradient is constant in the topmost 2 mm. In the case of a thin boundary
layer, with the gradient being constant for less than the topmost 2 mm and decreasing
for deeper layers, this could lead to less broadening of the line widths relative to the
simulated widths, and thus to an underestimation of the viscous shear stress. For the
highest wind speeds given in figure 7.14, δ is about 2 mm, hence it is not clear whether
this is indeed of considerable influence as the wind speed increases further. Also the
observed tendency of δ to level out needs further verification, as the sample size is small.
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7.5
Reference measurement: PSV results

The reference method using particle streak velocimetry (PSV) provides valuable insights
into the average flow field below the surface, in addition to the values for the mean shear
stress. The orbital motion of the fluid parcels have been a central element, both as
an indicator of the wave phase and also as the cause for the surface compression and
dilation. In the following section, q̃ refers to quantities averaged keeping the wave phase
φ constant, whereas q describes the average over all phases, refer to section 2.1.2 for
further details.

The large influence by this motion on the flow field can be illustrated by the PSV
measurements, see figure 7.15 for the stationary 10 Hz measurement of January 2019.
Analogous plots are given for the 5 Hz and 7.5 Hz measurements in the appendix A.6.
The uppermost plot shows the flow field as seen in the laboratory frame, relative to
a mean surface profile, the lower shows a coordinate system moving with the mean
velocity at a depth of 15 mm. Direction of propagation is from left to right. The colours
indicate the absolute velocities, the arrows the velocity vectors. The central 50% of wave
amplitude range were considered.

Especially clear in the lower plot is the orbital motion, manifested amongst others by
the particle speed being approximately constant. Moreover the velocities farther away
from the interface in the co-moving system are, as expected, directed in negative and
positive x-direction (direction of wave propagation) for φ ≈ π and φ ≈ 0, respectively,
whereas for φ ≈ ±π/2 the velocities are vertical (±z-direction). Note the converging
flow field clearly visible in the layers below the boundary layer, at φ ≈ π/2, where the
sign of the tangential velocity to the surface changes sign. This gives rise to a change of
fluid parcel widths, refer to chapter 3, and when integrated over time, the compression
of the fluid parcels at the crest. Likewise the flow field at φ ≈ −π/2 diverges, giving rise
to the stretched fluid parcels in the trough. In the laboratory frame, the x-component of
the velocity is close to zero, but positive, below the boundary layer in the wave through,
hence particle “orbits” do not intersect themselves in this system. The depicted depth
is not large enough for dividing the underlying drift into contributions by bulk motion
and Stokes drift.

More importantly, the layers close to the interface show clear deviations from the
deeper layers, giving rise to velocity gradients. These are associated with the viscous part
of the momentum transfer, more specifically the perpendicular (to the surface) gradient
of tangential velocity, seen from a reference system moving vertically with the surface
motion, refer to section 6.6. The mean of this velocity gradient is the quantity measured
by the active thermographic approach in this work, proportional to the viscous shear
stress. Note the clear phase dependence of the horizontal surface velocity is also seen,
used in case of Emmel [2017] for estimating the wave phase.

Both the 5 Hz and 7.5 Hz (figures A.24 and A.25) show slightly increased orbital
velocities for φ ≈ ±π/2, mainly caused by higher vertical velocity components. If
correct, this would require a three dimensional flow structure in order for divergence
of the flow field to vanish, i.e. a non-vanishing mean velocity component in y-direction.
Caution must be taken when interpreting these results, however, as selection criteria
regarding the streaks were applied (see section 6.6), which could therefore lead to
artefacts of the evaluation if they were velocity selective.

In order to evaluate the mean viscous shear stress, the above tangential and per-
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Fig 7.15.: The figure shows the mean water-sided flow field for the middle 50% of
the amplitude range of the 10 Hz stationary measurement, with the wave
propagating from left to right. The upper plot shows the field in the laboratory
frame of view, the lower a reference system drifting with the mean velocity
at z = −15 mm. In the lower plot, the influence on the flow field by orbital
motion is clearly seen, giving rise to the surface dilation and compression.
In the laboratory frame, the x-components of the velocities are positive for
all phases, hence particle trajectories do not intersect. Note the deviating
velocities close to the air-water interface, whose perpendicular gradients (to
the surface) of the tangential velocity in a reference system following the
vertical motion of the surface, are proportional to the (phase dependent)
viscous shear stress τ̃visc. The figure is created using bicubic interpolation
for plotting, hence the smooth appearance of the colours. For reference, the
wavelength is approximately 20 cm.

pendicular velocity components were computed in a coordinate system following wave
motion, see figure 7.16 for an example for the 10 Hz measurement. The upper part of
the figure shows examples of phase dependent evaluations of τ̃visc for the central 60%
of the wave amplitudes with respect to wave amplitude. Shown is the tangential and
perpendicular velocity ũ∥ (red dots) and ũ⊥ (lime crosses), respectively, as function of
perpendicular distance z⊥ to the surface, refer to equation (6.20). The histogram below
depicts u∥. Close to the interface ũ⊥ should be zero in the system moving with the
surface motion, which is approximately fulfilled. The average values for u∥ were, as
explained in section 6.6, fitted by a penalized spline (red curve, see equation (B.15)),
whose derivative is used for calculating the viscous shear stress. Again, note the influence
by the orbital motion.

The lower left plot in figure 7.16 shows the evaluation of all particles at once for the
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determination of the mean viscous shear stress τvisc. Particle density variations with
phase (more particles detected in the trough) and depth were accounted for. The result
for τ̃visc is shown in the lower right plot, along with the mean viscous shear stress (lime
line) and the average of τ̃visc (blue line). As can be seen, the latter quantities do not
deviate significantly, but differ. This is caused by the phase dependent evaluation being
sensitive to deviations caused by fluctuations in ũ∥ due to a low number of particles
and the issues described below. Hence, as the best estimate for τvisc, the values from
the total velocity profile are used, the shape of which are comparable to those found by
McLeish and Putland [1975]. Furthermore, τ̃visc varies considerably with wave phase, for
the depicted amplitude range by a factor of about 2. The highest values are found on
the upwind part of the crest. This is qualitatively in agreement with the results for the
boundary layer in the air-compartment Bopp [2018], and water-sided measurements by
Banner and Peirson [1998], Okuda et al. [1977] and Okuda [1982], though the distribution
of the viscous shear stress in the latter study was more narrowly peaked at the crest.

The results of τ̃visc in this study show an additional peak at φ between π/4 and π/2,
which is most likely an artefact of the measurement and evaluation. This peak is not
found in the above-mentioned studies. caused by timing deficiencies due to too low frame
rates, as accelerations of the surface elevations are not captured and the distance covered
by the surface between images is large. The duration of the (water-sided) streaks were
7.5 ms and the surface elevation was measured with an (air-sided) image every 5 ms. This
is found to cause especially particles of larger amplitude waves, associated with higher
orbital velocities, to be mapped too high (up to ∼ 0.2 mm above the surface), leading to
enhanced gradients close to the surface since faster particles are found to be selectively
mapped above slower ones, whilst they should have been averaged at the true value of the
surface. Further down below the surface this is less of a problem, as the both faster and
slower particles mapped slightly wrong are present at each depth, hence compensating
and averaging out to a larger degree. This compensation changes at the (true) surface,
where particles reach the maximal velocities irrespective of the amplitude, leading to
somewhat distorted values at the mapped surface. Though the errors are small, the
gradients are highly sensitive to such displacements. Likewise, the values of τ̃visc for
φ ≈ −π/2 are likely too low for the analogous reason, i.e. causing streaks of larger
amplitude waves to be mapped too far below the surface. The effect can be seen by
close scrutiny in figure 7.16 when comparing the evaluation for φ ∈ [−99.3◦, −63.3◦]
(upper right) and φ ∈ [63.3◦, 99.3◦] (lower left evaluation plot), and is enhanced when
including higher amplitudes.

The mapping errors were found to be fairly symmetrical (i.e. mapping too far below
and too far above the surface) for ±φ, which was evaluated by exaggerating the issues
by considering large amplitudes only. Therefore, the total (averaged over all phases)
mean velocity profile is expected to be slightly rounded off at the surface, due to the
smearing caused by the mapping issues. The total velocity gradient is found to be less
influenced due to the mentioned symmetry, with possible deviations reflected in the
uncertainty estimates. Still, the mapping problems must be taken into consideration
when interpreting the results, especially for τ̃visc. For the 5 Hz measurement (figure A.22
in the appendix), the clear peak upwind to the crest is not found, instead τ̃visc has a
peak for φ ≈ ±π/2. Also the mean velocity profile shows small deviation from the
expected smooth profile with depth close to the surface, also slightly altering the profile
of τvisc(z⊥).

As a side note, this illuminates some of the difficulties of particle imaging techniques.
Moreover, the described issues, along with insufficient statistics, also prevented an
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Fig 7.16.: Evaluation of the stationary 10 Hz measurement by particle streak
velocimetry. The three upper rows show the velocity profiles for the middle
60% of particles with respect to the wave amplitude. Seen are the tangential
velocity (ũ∥, red dots), the spline used for evaluation the viscous shear stress
τ̃visc (red curve) and the perpendicular velocities (ũ⊥, lime ’+’) as function of
perpendicular distance to the surface z⊥, for different wave phase φ intervals.
Colours indicate the number of particles per bin, and the small cyan dots the
cut-off criteria for outliers. White dots indicate values that have been excluded
from the evaluation due to their location above the surface. The lower row
of plots show (left) the mean (all particles) perpendicular (u⊥, green) and
tangential velocities (ũ∥, blue) and the spline (red) for evaluating the phase
averaged shear stress τvisc. The latter is seen in the lower middle plot. The
lower right plot shows τ̃visc for the upper 0.5 mm (blue points), along with
the average of these values (blue line), and the result for the upper 0.5 mm
for τvisc found in the middle plot (lime). The black dotted line indicates the
mean wave profile η(φ) for the middle 60% of particles. The wind direction
is towards the right.
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estimation of the turbulent and wave coherent contributions to the momentum transfer,
as the correlation terms close to the surface (see equation (2.9), and refer to Bopp [2018]
for expressions in a wave following coordinate system) were strongly influenced by the
timing- and mapping errors. The estimation of the turbulent contribution is furthermore
found to be complicated by the dominance of orbital motion on the flow velocities. Based
on this, for future applications the surface elevation should be measured at higher frame
rates. Lowering the streak duration is difficult, as they come shorter.

Note that there apparently are detections (far) above the surface in figure 7.16.
These are caused by the total reflection of the particles below the surface (hence appea-
ring above), and as the number of these reflections decrease further away the surface,
they are prone to scatter, partly being detected as particles having high velocities.

Quantitatively, the results for the phase averaged viscous shear stress do not deviate
significantly from those found by the active thermographic method for the reanalysed
measurements by Emmel [2017], which also were conducted in stationary conditions. In
this case of the 7.5 Hz PSV-measurement, it was compared to the result of the 7.9 Hz
measurement by Emmel [2017]. Refer to figure 7.7 for a plot of the determined τvisc,
and to table A.2 for the values of τvisc and the mean horizontal surface velocity us. The
observed phase dependence of τvisc has complications for the thermographic method,
however, this will be discussed below.

7.5.1
Implications of the phase dependent shear stress

First, the velocity profiles (refer to figure 7.16) in close proximity of the interface are
approximately linear for all wave phases. This was seen by the derivatives of the splines
fitted to the velocity profiles, and could thereby also to some degree be an artefact of the
evaluation since the splines were penalized (see equation (B.15)). However, as long as
the curvatures of the velocity profiles with depth close to the surface are approximately
linear, the model assumptions used for simulating the line widths are approximately
fulfilled. The phase dependent viscous shear stress, however, brings along an important
point that has been neglected in the evaluation of τvisc for the thermographic method,
namely that the assumption of a constant velocity gradient does not hold for broadening
of the individual lines. Their broadening is therefore expected to deviate from the
simulated curves. An evaluation of the impact of this on the collectively evaluated lines
would require an analysis along the same line as for the surface dilation and compression
in chapter 3, with the difference that theoretical models of τ̃visc are not available. The
results above, beside the mentioned uncertainties due to the bias, are only given for the
range of the middle 60% of the wave amplitudes, and the statistics did not allow for
smaller amplitude binning. It is for example expected that the phase modulation of
the viscous shear stress decreases for small amplitudes, vanishing in the limiting case
of a smooth (i.e. without waves) surface. Likewise an increasing difference between the
extremal values of τ̃visc for larger amplitudes was found on the air-side (Bopp [2018]),
assuming a no-slip condition, this shear stress would need to transfer to the water-
sided boundary layer. Since the models of τ̃visc are lacking, the influence on the line
broadening and the subsequently determined values for τvisc is not further studied in
this work, instead relying on comparing the results for τvisc by the thermographic and
PSV methods. As already described, no significant deviations were found, but with
solely three reference measurements, there is need for further verification.
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8 | Summary and outlook

In this work, an active thermographic method was used to measure the viscous shear
stress τvisc within the water-sided boundary layer of a wind-driven air-water interface
in the presence of water waves. The measurement technique yields spatially localized
measurements of the wave phase averaged shear stress, and was further developed from
Voigt [2019] to be applicable to measurement conditions with waves. The measurements
were conducted in an annular wind-wave facility, and a range of wind speeds up to
u10 = (10.7 ± 0.7) m/s were considered. Values for the best estimates of the viscous
shear stress are limited to the lower range up to u10 = (4.8 ± 0.3) m/s.

The measurement method uses a laser to heat a thin line perpendicular to the wind
direction onto the water. A laser with an wavelength of ∼1450 nm is found well suited
to enable absorption by the water without any dye and an adequate penetration depth.
The lines are observed with an infrared sensitive camera. The infrared images are then
analysed to yield the evolution of the line widths σ(t). Due to the shear flow in the
boundary layer, the broadening of the heated line is enhanced by Taylor dispersion,
subsequently enabling the determination of the mean velocity gradient with depth ∂zu
within the boundary layer, and hence τvisc ∝ ∂zu. Hereby the velocity tangential to the
surface is meant, and depth refers to the distance perpendicular to the surface. The
velocity gradient is evaluated by comparing the broadening of the lines to numerically
simulated line widths. Additionally, a camera and laser sheet for monitoring the surface
elevation were applied in order to measure properties of the wave field and correct the
observed line widths due to surface inclination. For the lower wind speeds where τvisc
was determined, the correction was experimentally found to be negligible.

By model assumption the heated lines are influenced by a constant velocity gradient
in the topmost 2 mm of the water compartment, and not subject to horizontal velocity
gradients. Hence only the segments of the measured heated lines fulfilling this are used
in the evaluation. Moreover, the enhanced broadening needs some time to develop,
depending on the velocity gradient. At some point, the line widths are subject to a bias
towards small line widths due to the broader lines fading too much for evaluation (Voigt
[2019]). Hence the evaluation is restrained to an interval of intermediate times, which
depends on the measurement conditions.

It was found in Voigt [2019] that the simulated broadening of the lines is dependent
on the initial line width σ0. Due to variations of the surface velocity in the presence of
waves, this could, depending on the setup and the duration of the heating of the lines,
represent an issue since a range of initial line widths could result. It is found by analysis
of the simulation results that using squared line widths minimizes this issue, as σ2(t)−σ2

0
only has a modest dependence on σ0 for given values of ∂zu. Moreover, the viscous shear
stress is wave phase dependent. In order to avoid wave phase selective evaluation of τvisc
and to sample the wave field, the line widths of a large number of heated lines should
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be evaluated collectively. In the case of a phase dependent σ0 due to surface velocity
variations, problems arising with the (broad) phase dependent distributions of σ0 may
be diminished by shifting σ2(t) according to σ2

0 to a common, representative value of σ2
0.

Water waves stretch and compress the spatial extents of the fluid parcels at the
surface, in a way that their volume is unaltered, as expected for an incompressible
fluid. This is in this work referred to as surface compression and dilation, and leads
to the line widths being stretched in the wave troughs and compressed at the crests.
The resulting distributions of σ2(t) for a given time after heating the lines is expected
and found to be skewed, with the long tail towards high values of the squared line
widths. It is found that the peak of these distributions can be used as an approximation
for the characteristic line widths that can be compared to the simulation, the latter
being implemented without the flow dynamics induced by the waves. The peak of the
distributions of σ2(t) may be influenced by surface compression and dilation. This leads
to deviations between the simulated temporal developments of σ2(t) and the measured
characteristic σ2(t), complicating the evaluation as the results may depend strongly on
the used time interval. The influence is largest for times after heating corresponding
to a half wave period, with the period in the reference system moving with the mean
surface velocity and hence is experienced by the lines, where a bias towards lower values
of the line widths is expected. This corresponds to compressions of the line widths.
Evaluations for times similar to a half wave period are therefore expected to lead to a
bias in the values of τvisc towards too low values. For times similar to one period, the
influence is expected to be smallest, as the fluid parcels encompassing the lines return to
their initial width. Therefore the line widths should be, if feasible, evaluated at times of
approximately one wave period. For longer times since heating the lines, the influence is
smaller due to wave frequency differences leading to the compression and stretching of
the different lines being to a larger degree out of phase. Longer times before evaluation
hence tends to be less of a problem. The influence by the waves on the characteristic
σ2(t) is found to depend on the initial line widths, with larger σ0 leading to a more
pronounced effect and subsequent deviations from the simulated line widths. Hence, in
a measurement of τvisc, the initial line width should be as small as feasible.

Correction of the distortion of the line widths was attempted, but found too unreli-
able, and needs further study to become applicable. If accomplished, it would ease the
evaluation considerably. This is especially true if few lines are evaluated at once, such
that individual events strongly affecting the line widths have a smaller impact on the
outcome.

Furthermore, the temperature amplitude of the heated lines must be high enough
for the stretched line widths not to fall below the detection limit, which leads to a bias
towards too low values of τvisc. This was found to especially be a problem for higher
wind speeds with increased wave steepness. Along with the bias towards compressed
line widths caused by evaluation for times after heating the lines well below one wave
period, it can lead to erroneously determined values for τvisc for high wind speeds. In
a field application with varying wind speed, these false values may be detected by a
low life time of the heated lines, seen by the number of evaluable line widths decreasing
faster with time after heating the lines.

The evaluation of a large number of lines at once was compared to results of the
phase averaged τvisc obtained by water-sided particle streak velocimetry (PSV), for the
measurements with u10 = (2.4±0.2) m/s, u10 = (3.7±0.2) m/s and u10 = (4.8±0.3) m/s.
These were found to not deviate significantly, with deviations below 15%. Moreover, τvisc

112



was found to increase with wind speed. For the u10 = (4.8 ± 0.3) m/s measurements,
evaluations conducted in the intervals [10 min, 20 min] and [36 min, 46 min] after turning
the wind on, along with a result for stationary conditions, indicated that τvisc decreases as
the system approaches equilibrium between the air- and water compartment. While not
seen for lower wind speeds, this observation is in agreement with (global) measurements
by Schwenk [2019], and should be investigated further.

Moreover, this initial study showed promising results with regard to temporally
resolved results for τvisc, on the order of seconds. Ideally, as far as the sampling of the
wave phase and field is realized by the setup, the temporal resolution would be only
limited by the time the heated lines must broaden before evaluation. In the case of a
single line, the time intervals should be larger in order to ensure a sufficient sampling.
The heating frequency should be as high as the current situation allows, as long as the
lines are not overlapping. Overlapping can be caused by the wave associated orbital
motion, as the downwind motion of the lines may be limited in the wave troughs.
If caution is not taken, it could lead to phase selection as the overlapping lines are
discarded. Lines at the same position with respect to the direction perpendicular to the
wind, but only slightly shifted in wind direction, are prone to overlapping and tend to
limit the heating frequency.

The non-stationary evaluation of 5 s intervals, showed several interesting features,
especially shortly after turning the wind on, including an overshoot in the surface
velocity, and, for low wind speeds, a pronounced overshoot in the viscous shear stress.
It is likely that a similar, maybe of shorter duration, overshoot in the viscous shear
stress is present for the higher wind speeds as well. Changes took place on time scales
of some some tenths of seconds to seconds. The temporal resolution, in this case 5 s,
of the method makes it well suited to study these phenomena, though the setup should
be improved in order to handle the regime with the overshooting better. An improved
setup, especially if the initial line widths are smaller and heating times are shorter, could
also be used to study the method’s upper limits regarding wind speed, being important
knowledge for field applications. Likewise could a wider initial line width could be used
to verify the calculations in this work, expecting a larger influence by the waves on the
observed line widths.

Of special interest is also the influence of the build-up of the wave field and the
bulk velocity on the viscous shear stress. The aforementioned decrease in τvisc for longer
times after turning the wind on, could be caused by changes in the wave fields as well as
bulk velocities approaching their asymptotic values, or both. The temporal resolution
of the method makes it adequate to investigate this. For example, the problem could be
approached by diminishing the influence by the bulk velocity, and study the influence
of changes in the wave field alone. This could be achieved by letting the air- and water
compartment equilibrate at a higher wind speed than that of interest, leading to an
overshoot of the bulk velocity, then turning the wind off and waiting for the waves to
subside. Thereafter the wind speed to be studied can be turned on. Done correctly,
the bulk velocity will then have the asymptotic value for the wind speed of interest,
hence the changes in τvisc will be caused by changes in the wave field. Monitoring the
surface velocity simultaneously and its dependence on velocity before turning the wind
on, would also be interesting.

The model was chosen due to its simplicity, and the largely unknown phase dependent
water-sided velocity profiles. Hence, no condition dependent profiles are alleged, and the
same method was used for a range of situations. The drawback naturally comes with
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the model assumptions not being satisfied for the individual lines undergoing different
wave phases. The validity of this approach was not verified beyond the three reference
measurements by PSV and a comparison to the results obtained for a smooth (without
waves) surface, with the value of τvisc in the presence of waves relative to the smooth case
being unknown. Therefore, further studies for verification are required. The comparison
with air-sided PSV measurements of the viscous shear stress would also be interesting.
Lastly, the broadening of the heated lines was assumed independent of surface dilation
and compression, irrespective of the wave period. Though the considerations of the
individual lines did not oppose this assumption, this does not mean that the influence
is indeed negligible. Careful considerations relating to how and if velocity gradients
are altered when the small volume of the surface encompassing the line undergoes the
distortion of its spatial extents, and of the flow field within the volume, would be needed.
The influence on the broadening might then be estimated by numerical simulation.
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A | Appendix

A.1
Main results
Here figures analogous to figure 7.7 and 7.13 in chapter 7 are shown, but in dependency
of estimated values for u10 instead of wind reference frequency fwind.
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Fig A.1.: The determined mean horizontal surface velocities us in dependence of the
estimated wind speed in 10 metres height u10. For additional details see figure
7.13 in section 7.1, which is analogous except for the abscissa.
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Fig A.2.: All results for the long time interval evaluation of the viscous shear stress τvisc,
in dependence of the estimated wind speed in 10 metres height u10. Refer to
figure 7.7 in section 7.1, which is analogous except for the abscissa for details.

A.1.1
Measured values

In this section, the main results will be stated in tabular form. Values that are not
available, are marked by “n.a.”.

Table A.1 states the parameters used for calculating the boundary layer thickness
in section 7.4.3, along with the initial surface water velocity before starting the non-
stationary measurements, refer to section 7.2.

The results of the long time interval evaluations and the reference measurements
deploying particle streak velocimetry (PSV) are given in table A.2. Note that values
marked with a star (⋆) are subject to a bias and must not be trusted, refer to section
7.1. For the measurements of January 2021, two values for viscous shear stress τvisc are
provided; the result of the evaluation of the uncorrected data set of line widths and the
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fwind [Hz] us0 [mm/s] us [mm/s] ub [mm/s] ∂zu [s−1] δ [mm]
5.0 20 ± 3 56 ± 3 28 ± 4 7.8 ± 0.8 3.7 ± 0.7
6.3 9 ± 2 74 ± 5 31 ± 3 13.8 ± 0.5 3.2 ± 0.4
7.5 −1 ± 1 83 ± 5 38 ± 3 20.5 ± 1.7 2.2 ± 0.4
8.8 6 ± 5 103 ± 5 41 ± 4 30.0 ± 1.0 2.1 ± 0.2
10.0 38 ± 2 121 ± 7 44 ± 3 34.7 ± 4.2 2.2 ± 0.3

5.0 (PSV) n.a. 56.0 ± 3 28 ± 2 8.8 ± 2.0 3.2 ± 1.0
7.5 (PSV) n.a. 87 ± 2 40 ± 2 21.0 ± 1.7 2.2 ± 0.2
10.0 (PSV) n.a. 117 ± 2 53 ± 8 35.0 ± 1.6 1.8 ± 0.2

Table A.1.: Table with the initial water surface velocity before turning the wind on
us0 for the non-stationary measurements of January 2021 (section 7.2, and
the parameters used for calculating the boundary layer thickness δ (section
7.4.3). The measurements are labelled by the wind reference (generator)
frequency fwind. The symbols refer to: mean surface velocity before turning
the wind off us, and the (extrapolated) bulk velocity ub and the velocity
gradient with depth in the boundary layer ∂zu. The three lowest rows give
the PSV results for the stationary measurement of January 2019.

best estimates based on shifting the individual lines according to their squared initial
width, see equation (6.10) and refer to section 6.4 for further details. All results are
given for the time interval [600 s, 1200 s] after turning the wind on, except the values for
(a), which are given for the interval [2160 s, 2760 s].

Moreover, for the best estimate values of τvisc resulting from the thermographic
method of this work, the three uncertainty estimates are provided, these are also discussed
in the aforementioned section. The uncertainties (·)1 reflect the uncertainty due to the
choice of evaluation time (after heating the lines) and hence the agreement between
the simulated line widths and the measured line widths, having a direct impact on the
resulting values for τvisc. The values denoted with (·)2 depict the uncertainty due to
the determination of the initial line width and (·)3 reflects the division of the long time
intervals into 3 subintervals. The latter subintervals of enough heated lines in order for
the evaluation to be stable, and therefore reflects the temporal change and/or fluctuation
in the values for τvisc within the (total) interval. The values (·)1 are provided in all plots.

The re-evaluated measurements of Emmel [2017] and January 2019 are stationary.
The label (b) denotes a heating time of the lines of 5 ms, refer to section 7.1.1, chapter
7, in contrast to 10 ms for the other measurements of Emmel [2017].

The surface velocity denoted by us and the characteristic life time of the heated
lines t∗ are also given in table A.2.
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fwind [Hz] τvisc [mPa]
(best estimate)

τvisc [mPa]
(uncorr.)

us [mm/s] t∗ [s]

January 2021
2.5 3.22±(0.04)1±(0.91)2±(0.08)3 n.a. 29.7 ± 0.1 n.a.
5.0 7.8 ± (1.0)1 ± (0.2)2 ± (0.6)3 7.9 ± (0.8)1 57 ± 2 n.a.
6.3 13.6 ± (1.4)1 ± (0.2)2 ± (0.4)3 13.8 ± (1.9)1 69 ± 2 1.16 ± 0.03
7.5 22.5 ± (2.7)1 ± (0.6)2 ± (0.4)3 22.6 ± (1.8)1 78 ± 4 0.98 ± 0.02
8.8 30.7 ± (1.0)1 ± (0.7)2 ± (2.1)3 34.8 ± (5.7)1 100 ± 4 0.80 ± 0.06
10.0 42 ± (4.1)1 ± (1.3)2 ± (0.8)3 48.5 ± (7.2)1 123 ± 8 0.68 ± 0.04
10.0 (a) 34.7 ± (4.2)1 ± (0.9)2 ± (1.4)3 38.5 ± (4.8)1 121 ± 5 0.72 ± 0.06
12.5 45.7⋆ ± (8.9)1 ± (1.8)2 ± (3.5)3 54.2⋆ ± (1.7)1 151 ± 5 0.43 ± 0.03
15.0 n.a. 63.1⋆ ± (15.9)1 172 ± 7 0.25 ± 0.06
17.5 n.a. n.a. 226 ± 4 0.14 ± 0.08
20.0 n.a. n.a. 264 ± 3 0.16 ± 0.06

Emmel [2017]
5.0 9.0 ± (0.3)1 ± (0.06)2 ± (0.2)3 n.a. 56.0 ± 0.3 n.a.
6.3 13.8 ± (0.4)1 ± (0.2)2 ± (0.1)3 n.a. 87 ± 1 n.a.
7.9 21.9 ± (0.3)1 ± (0.4)2 ± (0.6)3 n.a. 117 ± 1 n.a.
10.0 31.2 ± (1.3)1 ± (1.6)2 ± (1.1)3 n.a. 123 ± 4 n.a.
10.0 (b) 28.2⋆ ± (1.3)1 ± (1.2)2 ± (1.6)3 n.a. 123 ± 3 n.a.

January 2019
5.0 (PSV) 8.5 ± 2.0 n.a. 56 ± 3
7.5 (PSV) 21.0 ± 1.7 n.a. 87 ± 2
10.0 (PSV) 35.0 ± 1.6 n.a. 117 ± 2

Table A.2.: The results of the long time interval evaluation and the reference
measurements using particle streak velocimetry (PSV). Wind reference
frequencies are denoted fwind, refer to table 4.1, for approximate u10-values.
Values marked with a star (·⋆) are subject to a bias and must not be trusted.
All values for the measurement of January 2021 are given for the interval
[600 s, 1200 s] after turning the wind on, except the values for (a) which are
given for the interval [2160 s, 2760 s]. The uncertainties (·)i reflect different
uncertainty estimations, refer to section A.1.1 above. The measurements
of Emmel [2017] and January 2019 are stationary. The label (b) denotes
a heating time of the lines of 5 ms, refer to section 7.1.1, in contrast to
10 ms for the other measurements of Emmel [2017]. The surface velocity is
denoted by us and the characteristic life time of the heated lines by t∗.

124



A.2
Long time interval evaluations

A.2.1
January 2021

Some of the evaluations of τvisc are given in this section, for illustration of how the
evaluations change with wind speed. Refer to section 6.4 and figure 6.5 for details. The
uncorrected evaluations will be given, since show the discussed issues in section 7.1.
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Fig A.3.: Analogous to figure 7.1, but shows the 2.5 Hz (wind reference) measurement.
The influence by the waves is negligible, and the distributions of the squared
line widths σ2(t) are close to symmetric, as expected.
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Fig A.4.: Analogous to figure 7.1, but shows the 6.3 Hz (wind reference) measurement,
with wave period (co-moving ref. system) T ′ ≈ 0.35 s. A slight broadening at
T ′/2 and narrowing for t ∼ T ′ of the distributions of the squared line widths
σ2(t) can be seen, refer to section 7.1 for further details. Also see figure A.15.
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Fig A.5.: Analogous to figure 7.2, but shows the 10 Hz (wind reference) measurement in
the time interval [2160 s, 2760 s] after turning the wind on. The characteristic
squared line widths σ2(t) are smaller than in figure 7.2, indicating that the
viscous shear stress has decreased, which is confirmed upon evaluation. The
pattern in the characteristic σ2(t) caused by surface compression and dilation
is present.
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Fig A.6.: Analogous to figure 7.1, but shows the 12.5 Hz (wind reference) measurement.
The result should not be trusted, due to a bias towards too low values of the
viscous shear stress τvisc caused by the evaluation at approximately a half wave
period T ′ in the co-moving reference system, T ′ ≈ 0.5 s. Note the decreasing
characteristic squared line widths σ2(t) after t ≈ 0.35 s. This is caused by the
fading of broader lines, hence only the thin lines remain.
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Fig A.7.: The evaluation of the squared characteristic line widths σ2(t) for the 20 Hz
(wind reference) measurement. The bias towards too low line widths
(compressed lines) is high enough for σ2(t) to decrease after heating. The
characteristic life time of the lines is t∗ = (0.16 ± 0.06) s for reference.

A.2.2
Correction of surface dilation and compression

Here, the evaluation of the unshifted line widths (refer to section 6.4), corrected for
surface compression and dilation according to equation (3.16), for the 10 Hz (wind
reference) measurement of January 2021 in the interval [600 s, 1200 s] after turning the
wind on, is shown. Refer to section 7.3 for further discussion.
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Fig A.8.: Evaluation of the unshifted (section 6.4), but corrected line widths according to
equation (3.16) of the 10 Hz measurement of January 2021. Note the apparent
overcorrection of the line widths σ(t) when comparing the characteristic σ2(t)
to the simulated curve (cyan dashed line) for times around half a wave period,
t ∼ T ′/2 ≈ 0.18 s.
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A.2.3
Measurements of Emmel [2017]

Figure A.9 and figure 7.6 show figures analogous to those in the section A.2.1 above, for
the stationary measurements (5 Hz and 7.9 Hz) of Emmel [2017]. These evaluations are
given for the sake of completeness. The main difference to the setup in January 2021 is
a thinner heated line, refer to section 7.1.1. Refer to figure 7.1 for further explanation
of the figures.
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Fig A.9.: Evaluation of the 5 Hz (wind reference) measurement by Emmel [2017]. Note
the widening and narrowing of the distributions of σ2(t) seen in figure 7.1,
which is analogous but with a wider heated line, is not seen here.
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Fig A.10.: Evaluation of the 7.9 Hz (wind reference) measurement by Emmel [2017]. The
figure is analogous to figure 7.5. Surface elevation data were not available.
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A.3
Radial variations of the viscous shear stress
As explained in section 7.1.2 in chapter 7, the long heated line in the measurements of
Emmel [2017] allows for determining the viscous shear stress τvisc for shorter partitions
of 50 mm of the heated lines, hence the variation of τvisc along the heated line can be
estimated. These pieces were considered at several positions along the line with overlap
between the intervals considered for each data point. This corresponds to variations
in radial direction of the wind-wave channel, with the y-direction directed towards the
channel centre, see figure 4.3. The radially averaged value for τvisc is given in the legend
of the figures, with the standard deviation as uncertainty.

0 50 100 150 200 250
y [mm]

8.0

8.5

9.0

9.5

10.0

10.5

τ v
is

c
[m

P
a]

τ visc = (9.0± 0.5) mPa

−10

−5

0

5

10

15

D
ev

ia
ti

on
fr

om
m

ea
n

[%
]

Fig A.11.: The viscous shear stress τvisc in dependence on position on the heated line,
i.e. radially with respect to the channel, evaluated for 50 mm segments, for
the 5 Hz (wind reference) measurement of Emmel [2017].

50 100 150 200 250
y [mm]

12.5

13.0

13.5

14.0

14.5

15.0

15.5

τ v
is

c
[m

P
a]

τ visc = (14.1± 0.5) mPa

−10

−5

0

5

10

D
ev

ia
ti

on
fr

om
m

ea
n

[%
]

Fig A.12.: The viscous shear stress τvisc in dependence on position on the heated line,
evaluated for 50 mm segments of the heated lines, for the 6.3 Hz (wind
reference) measurement of Emmel [2017].
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Fig A.13.: The viscous shear stress τvisc in dependence on position on the heated line
evaluated for 50 mm segments of the heated lines, for the 7.9 Hz (wind
reference) measurement of Emmel [2017].
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Fig A.14.: The viscous shear stress τvisc in dependence on position on the heated
line evaluated for 50 mm segments of the heated lines, for the 10 Hz (wind
reference) measurement of Emmel [2017].

A.4
Line width distributions (crest and trough)
Two examples for the line width distributions for lines heated in the wave trough (phase
φ = π) and at the wave crest (phase φ = 0) are shown, figure A.15 (6.3 Hz measurement
of January 2021) and figure A.16 (10 Hz measurement of Emmel [2017]). Refer to section
7.1.1 for the analogous figure 7.3 for the 10 Hz measurement of January 2021.
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Fig A.15.: Shown are the line width distributions for lines heated in the wave trough
(left) and at the crest (right), for the 6.3 Hz measurement of January 2021.
Refer to figure 7.3 for further details, which is analogous. Note the more
narrow distributions og σ2(t) and smaller influence by the waves than for the
10 Hz measurement, and some lines being stretched in the left plot likely due
to spatial inhomogeneities in the wave field. The wave period (co-moving
system) is T ′ ≈ 0.35 s.
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Fig A.16.: Shown are the line width distributions for lines heated in the wave trough
(left) and at the crest (right), for the 10 Hz measurement of Emmel [2017].
Refer to figure 7.3 for further details, which is analogous. Note the smaller
influence by the waves than for the 10 Hz measurement of January 2021,
though the wind speed is the same.
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A.5
Non-stationary measurements
The temporal development of the viscous shear stress τvisc and surface velocity us for
the non-stationary 5 Hz to the 8.8 Hz measurements of January 2021 are shown, and the
non-stationary 10 Hz measurement by Emmel [2017]. Also the development of the water
elevation η(t) is given for reference, for a fixed position on the laser sheet. Note the
different temporal range in the plot of η, showing the first part of the measurements.
More details regarding the seen developments are found in section 7.2.
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Fig A.17.: Viscous shear stress τvisc and mean surface velocity us for the non-stationary
5 Hz measurement and the evaluation of 5 s intervals. Refer to figure 7.9 for
further details, which is analogous. There is a clear overshoot in us and τvisc.
The temporal range in the plot of water elevation η differs from the two upper
plots. The red curve in the upper plot shows the running mean of 20 s.
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Fig A.18.: Viscous shear stress τvisc and mean surface velocity us for the non-stationary
6.3 Hz measurement and the evaluation of 5 s intervals. Refer to the analogous
figure 7.9 for details. The temporal range in the plot of water elevation η
differs from the two upper plots.
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Fig A.19.: Viscous shear stress τvisc and mean surface velocity us for the non-stationary
7.5 Hz measurement and the evaluation of 5 s intervals. Refer to the analogous
figure 7.9 for details. The temporal range in the plot of water elevation η
differs from the two upper plots.

133



0 100 200 300 400 500 600 700 800
t [s]

0
10
20
30
40
50

τ v
is

c
[m

P
a]

run. mean 20 s

uncorrected

0 100 200 300 400 500 600 700 800
t[s]

0.3
0.4
0.5
0.6
0.7
0.8

t∗
[s

]

0 100 200 300 400 500 600 700 800
t[s]

0
25
50
75

100
125

u
s

[m
m

/s
]

50 100 150 200 250
t [s]

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

η
[m

m
]

Fig A.20.: Viscous shear stress τvisc and mean surface velocity us for the non-stationary
8.8 Hz measurement and the evaluation of 5 s intervals. Refer to the analogous
figure 7.9 for further details. The long-period waves of small amplitude in
the water elevation η, also present before the wind was turned on, are caused
by refilling water before the measurement. The temporal range in the plot
of water elevation η differs from the two upper plots.
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Fig A.21.: Viscous shear stress τvisc and mean surface velocity us for the non-stationary
10 Hz measurement of Emmel [2017] and the evaluation of 5 s intervals. Refer
to figure 7.9 for further details, which is analogous. Both the surface velocity
us and the viscous shear stress τvisc is considerably lower than for the 10 Hz
measurement of January 2021,refer to section 7.2 for further discussion.
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A.6
Further PSV results
In the following the particle streak velocimetry results (PSV) for the stationary 5 Hz
and the 7.5 Hz wind reference measurements of January 2019 are shown. Tilde (i.e. ã for
quantity a) denote wave phase φ specific averaging and the overline (a) the average over
all phases. The results must be interpreted with care, since artifacts of the measurement
method are likely to be present. Refer to section 7.5 for further details.
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Fig A.22.: Profiles of the tangential u∥ and normal u⊥ velocity as function of depth
normal to the surface z⊥ and the viscous shear stress τvisc for the 5 Hz
measurement. Refer to the analogous figure 7.11 and section 7.5. The colour
scales in the upper plots are oversaturated at the surface (z⊥ = 0). The seen
distribution of the shear stress in dependence of wave phase (lower left) may
be considerably influenced by artifacts of the evaluation. The value used as
reference is τvisc from the mean velocity profile (lower left and middle plot).
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Fig A.23.: The evaluation of the viscous shear stress for the 7.5 Hz measurement. Refer
to figure 7.11, which is analogous, and section 7.5 for further details. The
seen distribution of the shear stress in dependence of wave phase (lower left)
may be considerably influenced by artifacts of thee evaluation. The value
used as reference is τvisc from the mean velocity profile, see the lower left and
middle plot.
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Fig A.24.: The mean velocity field for the 5 Hz measurement. Refer to the analogous
figure 7.16 and section 7.5 for further details. Note the higher water speeds for
φ ∼ ±π/2, best seen in the co-moving reference frame (lower plot), possibly
an artifact of the evaluation. The increased velocities in the boundary layer
give rise to the viscous shear stress. Note the large influence by orbital motion
on the flow field.
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Fig A.25.: The mean velocity field for the 7.5 Hz measurement. Refer to the analogous
figure 7.16 and section 7.5 for further details. Note the slightly higher water
speeds for φ ∼ ±π/2, best seen in the co-moving reference frame (lower
plot), possibly an artifact of the evaluation. The increased velocities in the
boundary layer give rise to the viscous shear stress. Note the large influence
by orbital motion on the flow field.
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B | Mathematical tools

In this chapter some of the most important mathematical tools and formulas in this
thesis are given. For further information, refer to Jähne [2012].

The Fourier transform

The continuous Fourier transform is given by

f̂(k⃗) = F{f(x⃗)}
k⃗

= 1
√

2π
d

∫
Rd

f(x⃗′) exp
(
−i⃗k · x⃗′

)
dx⃗′, (B.1)

with the inverse transform

f̂(x⃗) = F −1{f(k⃗)}x⃗ = 1
√

2π
d

∫
Rd

f(k⃗′) exp
(
i⃗k · x⃗′

)
dk⃗′, (B.2)

where x⃗ and k⃗ are d-dimensional conjugate variables, e.g. space and wave number vectors,
and f and f̂ are referred to as Fourier transform pairs. The discrete Fourier transform
of a (complex) sequence
x0, x1, . . . xN−1 to the transformed sequence X0, X1, . . . XN−1, and the inverse transform,
is given by:

Xk =
N∑

n=0
xn exp(−i2π

N
kn) and xn = 1

N

N∑
k=0

Xk exp(i2π

N
kn), (B.3)

respectively. In analogy to equation (B.3) the transfer function Â of a two dimensional
mask (kernel), i.e. the discretized operator, can be calculated, with κi = 2π/Ni

Â(κx, κy) =
∑
m

[∑
n

Am,n exp (−iκxn)
]

exp (−iκym) . (B.4)

Convolution and cross correlation

Convolution of images by masks is a central part of the image processing of this thesis,
and is in the continuous and real, one dimensional case given as

(f ∗ g)(t) =
∫ ∞

−∞
f(t′)g(t − t′) dt′ (B.5)
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where the asterisk denotes the convolution operator, or in the discrete case:

(f ∗ g)n =
∑
m

fmgn−m. (B.6)

Both equations can be extended to higher dimensions. Moreover, the convolution
theorem is given by:

F{(f ∗ g)(x⃗)}
k⃗

=
√

2π
d
f̂(k⃗) · ĝ(k⃗), (B.7)

hence a convolution in real space corresponds to a multiplication in Fourier space. In
the discrete case of multidimensional image processing, especially if the masks or images
are large or the number of spatial dimensions high, it is computationally less expensive
to transform into Fourier space by fast Fourier transforms, perform the multiplication,
and transforming back, especially if the mask is separable into one dimensional masks
(i.e. M = Mx ∗ My for a two dimensional mask M). The latter property enables the
multiplication with the one dimensional masks, further reducing computational expense.

Related to the convolution is the cross-correlation,

(f ⋆ g)(t) =
∫ ∞

−∞
f(t′)g(t + t′) dt′, (B.8)

used for finding the lag or displacements between signals, and can be discretized in
analogy to equation B.6.

Important masks in this work

For the image processing used in this work, especially the binomial masks of degree two
and degree four are important,

2B = 1
4

[1 2 1] and 4B = 1
16

[1 4 6 4 1]. (B.9)

The two dimensional masks are then given by the convolution of the column- with
the row vectors, hence they are separable by construction.

For the calculation of image gradients, the following 5 tap filters were used (refer to
Farid and Simoncelli [1997] for further details):

κ = [0.030320 0.249724 0.439911 0.249724 0.030320] (B.10)
D = [0.104550 0.292315 0.000000 − 0.292315 − 0.104550], (B.11)

where κ is used for interpolation and D for differentiation. Note that D and κ are
applied along different axes. In the case of computing a vertical gradient of an image, κ
is horizontal (i.e. row vector) and d vertical (column vector).

The Hilbert transform

In order to calculate the phase and the envelope of a (real-valued) signal, a Hilbert
transform can be computed,

H {f(x)} = 1
π

∫ ∞

−∞

f(x′)
x′ − x

dx′, (B.12)
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if the Cauchy principal value of the integral exists (Liu [2012]). The Hilbert transform
can be used to calculate the complex analytic signal fa, given by

fa(x) = f(x) + iH {f(x)}, (B.13)

from which the envelope a and phase φ is computed:

a(x) = |fa(x)| and φ(x) = arg(fa(x)). (B.14)

Penalized cubic splines

For interpolation, or if a theoretical model is unavailable, splines are often used for
describing the observations. These are piecewise polynomials, and e.g. cubic splines
posses the advantage of being differentiable for all points except at their end points.
The number of knots is adjusted until the requirement regarding the deviation from
points to be interpolated is met. Mostly used in this work are penalized (smoothing)
splines, with a few exceptions, where the curvature of the splines is penalized such that
the resulting spline is smoother and less prone to overfitting. This is in this work done
with de Boor’s approach (refer to de Boor [2001]), for a cubic spline interpolant s3
achieved by minimizing the criteria

p
∑

i

(
yi − s3(xi)

δi

)2
+ (1 − p)

∫ (
s′′

3(x)
)2 dx, (B.15)

where δi is the uncertainty of the data point (xi, yi), yielding a weighting of the points,
and p ∈ [0, 1] is the smoothing parameter for penalization of the curvature (second
derivative) of the spline, s′′

3(x). The first term describes the squared differences, hence
for p = 0 a straight line results, and for p = 1 the non-penalized spline interpolant.
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