
Inaugural - Dissertation
zur Erlangung der Doktorwürde der

Naturwissenschaftlich-Mathematischen Gesamtfakultät
der Ruprecht-Karls-Universität Heidelberg

The Algebraic Diagrammatic
Construction Method For High

Performance Computing Environments
Using an Atomic Orbital Representation

vorgelegt von

Maximilien Alexandre Ambroise, M. Sc.

aus Differdingen, Luxemburg

September 2021

Gutachter: Prof. Dr. Andreas Dreuw
Prof. Dr. Oriol Vendrell

Tag der mündlichen Prüfung: 11. November 2021

i

The source code for this PhD thesis is freely available on GitHub under https://github.
com/ambmax00/dissertation

ii

Notation for Orbital Representations

µ, ν, γ, λ, ... atomic orbitals

i, j, k, l, ... occupied molecular orbitals

a, b, c, d, ... virtual molecular orbitals

i, j, k, l, ... local occupied molecular orbitals

a, b, c, d, ... local virtual molecular orbitals

I, J , K, L, ... occupied molecular spin orbitals

A, B, C, D, ... virtual molecular spin orbitals

µ, ν, λ, σ, ... occupied projected atomic orbitals

µ, ν, λ, σ, ... virtual projected atomic orbitals

Abbreviations

ADC algebraic diagrammatic construction

AO atomic orbital

CC coupled cluster

CDD Cholesky decomposed densities

CI configuration interaction

CMO canonical molecular orbital

DF density fitting

DFT density functional theory

DIIS direct inversion of the iterative subspace

EOM equation of motion

HF Hartree-Fock

LMO local molecular orbital

LR linear response

MPPT Møller-Plesset perturbation theory

NO natural orbital

NTO natural transition orbital

PAO projected atomic orbital

PNO pair natural orbital

iii

RSPT Rayleigh-Schrödinger perturbation theory

SCF self-consistent field

SCS spin-component scaled

SEQ Schrödinger equation

SOS spin-opposite scaled

TDDFT time-dependent DFT

TDHF time-dependent Hartree-Fock

Mathematical Notation

A matrix or vector

Â operator

⟨ij|ab⟩ physicist’s notation for the 2-electron integrals

(ia | jb) chemist’s (Mulliken) notation for the 2-electron integrals

⟨ij| |ab⟩ antisymmetrized electron integrals

iv

Abstract

The algebraic diagrammatic construction (ADC) method, alongside coupled cluster linear
response (CCLR) and equation-of-motion coupled cluster (EOMCC) are among the most
accurate and predictive methods currently available for the calculation of excited state
properties. However, even the most cost effective variants such as ADC(2) or the CC2
flavors of CCLR and EOMCC, still scale with the fifth power of the system size. In recent
years, there has been an increased interest in local excited state methods, which borrow
concepts from local correlation methods for computing ground state properties, to lower
the scaling of canonical ADC, CCLR and EOMCC. By switching from the delocalized ca-
nonical molecular orbital (CMO) basis to a more spatially confined orbital representation,
the computational complexity can be significantly lowered. Current implementations of
local excited state methods use local molecular orbitals (LMOs), natural orbitals (NOs),
or combinations thereof. These methods often have the disadvantage of being state-
specific, meaning that the compact orbital representation needs to be recomputed for
each individual excited state, which greatly increases the cost prefactor. Moreover, they
introduce many parameters for controlling the construction of the orbitals, making the
methods less robust.

In this thesis, a novel approach to local excited state methods is proposed, where the
concept of the atomic orbital formulation of the second-order Møller-Plesset (MP2) energy
expression is extended to ADC(2) by virtue of the Laplace transform (LT). The spin-
opposite scaled second-order algebraic diagrammatic construction method with Cholesky
decomposed densities and density fitting, or CDD-DF-SOS-ADC(2) for short, exploits the
sparsity of the two-electron repulsion integrals, the atomic ground state density matrix
and the atomic transition density matrix to drastically reduce the computational effort.
By using the local density fitting approximation, it is shown that linear scaling can be
achieved for linear carboxylic acids. For electron-dense systems, near-quadratic scaling
can still be achieved if the transition density is sparse, which is for example the case for
hydrated formamide. Furthermore, the memory footprint and accuracy of the CDD-DF-
SOS-ADC(2) method are explored in detail.

The CDD-DF-SOS-ADC(2) method is implemented in a new quantum chemistry soft-
ware package called MEGALOchem. It is MPI parallel and supports sparse matrix multipli-
cation and tensor contraction through an interface to the distributed block compressed
sparse row (DBCSR) library. The thesis discusses the implementation and structure of
MEGALOchem in detail, and summarizes the concepts of parallel computing, as well as the
basics of matrix multiplication and storage formats.

v

Zusammenfassung

Das algebraisch-diagrammatische Konstruktionsschema (ADC), sowie die "Coupled Clus-
ter Linear Response" (CCLR) und die "Equation-of-Motion Coupled Cluster" (EOM)
Methoden zählen zu den exaktesten und prädikativisten Verfahren zur Berechnung von
Eigenschaften von angeregten Zuständen, die aktuell zur Verfügung stehen. Allerdings
wachsen selbst die kostengünstigsten Varianten wie ADC(2), CC2LR oder EOMCC2 mit
der fünften Potenz der Systemgröße. In den letzten Jahren hat deshalb das Interesse an
lokalen Methoden zur Berechnung angeregter Zustände stark zugenommen, welche Kon-
zepte von lokalen Korrelationsmethoden für Grundzustände nutzen, um die Skalierung
der Berechnungskosten von ADC, CCLR und EOMCC zu senken. Die Rechenkomple-
xität kann signifikant reduziert werden, indem man von der delokalisierten kanonischen
molekularen Orbitalbasis (CMO) zu einer neuen Basis wechselt, die stärker räumlich
eingeschränkt ist. Die aktuellen Implementationen von lokalen Methoden im Rahmen
angeregter Zustände nutzen meist lokale Molekularorbitale (LMO), natürliche Orbita-
le (NO) oder eine Kombination beider Repräsentationen. Allerdings haben LMO- und
NO-Methoden oft den Nachteil, dass sie zustandsspezifisch sind, d.h. die kompakte Orbi-
talbasis muss für jeden einzelnen angeregten Zustand wieder berechnet werden, was den
Vorfaktor der Rechnungskosten stark ansteigen lässt. Außerdem führen zusätzliche Pa-
rameter, die für die Konstruktion der Orbitale notwendig sind, dazu dass die Methoden
weniger robust sind.

In dieser Dissertation wird eine neuartige lokale Methode zur Berechnung angereg-
ter Zustände präsentiert, welche das Konzept einer Atomorbital-basierten Formulierung
der Møller-Plesset Energie zweiter Ordnung durch die Laplace-Transformation auf die
ADC(2) Methode erweitert. Die "Spin-Opposite Scaled" algebraisch-diagrammatische
Konstruktionsmethode mit Cholesky-Zerlegung der Dichtematrizen und mit "Density-
Fitting", abgekürzt CDD-DF-SOS-ADC(2), nutzt die dünne Besetzungsstruktur der Zwei-
Elektronen-Integrale, der elektronischen Dichtematrizen des Grundzustands und der Über-
gangsmatrizen des angeregten Zustands um die Rechenkomplexität im Vergleich zur kano-
nischen SOS-ADC(2) Methode stark zu reduzieren. Mit lokalem "Density-Fitting" kann
die Methode lineare Skalierbarkeit erreichen für molekulare Systeme wie lineare Carbon-
säuren. Selbst für Systeme mit hoher Elektronendichte skaliert die Methode fast mit der
zweiten Potenz, wenn die Übergangsmatrix dünn besetzt ist, wie es z.B. für hydratisiertes
Formamid der Fall ist. Die Methode wird zudem auch auf Exaktheit und Speicherbedarf
geprüft.

Die CDD-DF-SOS-ADC(2) Methode ist in einem neuem Quantenchemiepaket namens
MEGALOchem implementiert. Das Program ist MPI-parallel und unterstützt Multiplikation
und Kontraktion von dünnbesetzten Matrizen und Tensoren durch die externe Program-
bibliothek DBCSR (Distributed Block-Compressed Sparse Row). Die Implemtierung und

vi

die Struktur von MEGALOchem werden im Detail beschrieben, und Grundlagen zu Matrix-
Multiplikation, Matrix-Strukturen sowie die Funktionsweise von Parellelrechnern werden
auch diskutiert.

vii Contents

Contents

I 4

1 Electronic Structure Methods for the Ground State 6
1.1 Describing Dynamics in a Molecular System 6
1.2 The Electronic Schrödinger Equation . 8

1.2.1 The Time-Independent Schrödinger Equation 8
1.2.2 The Born-Oppenheimer Approximation 9

1.3 Solutions to the Electronic Schrödinger Equation 9
1.3.1 Slater Determinants . 9
1.3.2 The Fock Space . 10
1.3.3 Exact Solution and Standard Models 11
1.3.4 The Variational Method . 13

1.4 Hartree-Fock . 14
1.4.1 The Hartree Fock Equations . 14
1.4.2 The Basis Set Approximation . 16
1.4.3 Working Equations for Restricted and Unrestricted Hartree-Fock . 16
1.4.4 The Self-Consistent Field Method 18
1.4.5 Brillouin’s Theorem and Orbital Rotations 19

1.5 Electron Correlation . 20
1.6 Configuration Interaction . 21

1.6.1 The CI Matrix . 21
1.6.2 Truncated CI . 22
1.6.3 Solving the CI Eigenvalue Problem 22
1.6.4 Size Consistency and Size Extensivity 22

1.7 Coupled Cluster . 23
1.7.1 Pair Clusters . 23
1.7.2 Coupled Cluster Ansatz . 24
1.7.3 The Coupled Cluster Equations 24

1.8 Perturbation Theory . 25
1.8.1 Rayleigh-Schrödinger Perturbation Theory 25
1.8.2 Møller-Plesset Perturbation Theory 27
1.8.3 Convergence Behavior of the MPn series 28
1.8.4 Møller-Plesset Perturbation Theory with Spin-Component-Scaling 28
1.8.5 Hybrid Coupled Cluster Methods 29

1.9 Performance of Correlated Methods . 30

Contents viii

2 Electronic Excited States 32
2.1 Nature of Excited States . 32
2.2 Explicit Optimization of the Excited State Wave Function 34
2.3 The Algebraic Diagrammatic Construction Scheme 35

2.3.1 Many-Body Green’s Function . 35
2.3.2 The ADC scheme . 39
2.3.3 Structure of the ADC matrix . 40
2.3.4 Solving the Eigenvalue Problem 41
2.3.5 Intermediate states . 43
2.3.6 Spin-Opposite Scaled ADC . 43
2.3.7 Performance and Accuracy . 44

2.4 Response Theory . 44
2.4.1 Exact Response Theory . 44
2.4.2 Time-Dependent Hartree-Fock . 46
2.4.3 Time-Dependent DFT . 46
2.4.4 Coupled Cluster . 46
2.4.5 Connection between ADC(2) and CC2-LR 47

2.5 Equation-of-Motion Coupled Cluster . 48

3 Local Correlation Methods (I): Tools and Concepts 50
3.1 Sparsity in Electronic Structure Theory 50

3.1.1 Element-Wise Sparsity of Electron Integrals 51
3.1.2 Element-Wise Sparsity of the Density Matrix 54
3.1.3 Diagrammatic Notation . 54
3.1.4 Rank Sparsity . 55

3.2 Density Fitting . 56
3.2.1 Basics of Density Fitting . 56
3.2.2 Scaling of the 3c2e Integrals . 57
3.2.3 Local Density Fitting: Principles 58
3.2.4 LDF (I): Short-Range Metrics . 59
3.2.5 LDF (II): Local Domains . 60
3.2.6 LDF (III): Quasi-Robust Density Fitting 61
3.2.7 Auxiliary Basis Sets . 63

3.3 Multipole Expansion of the Electron Integrals 64
3.3.1 Classical and Non-Classical Electron Integrals 64
3.3.2 Multipole Expansion . 64
3.3.3 Fast Multipole Method . 65
3.3.4 Continuous Fast Multipole Method 66

3.4 The ABCs of LMOs and NOs: Orbital Representations 67
3.4.1 Local Molecular Orbitals . 68
3.4.2 Natural Orbitals . 70
3.4.3 Specific Virtual Orbitals . 73

ix Contents

4 Local Correlation Methods (II): Ground State 76
4.1 Low-Scaling Self-Consistent Field Methods 76

4.1.1 The Coulomb Matrix . 76
4.1.2 The Exchange Matrix . 78
4.1.3 The SCF Procedure . 80

4.2 Møller-Plesset . 81
4.2.1 Atomic Orbital MP2 . 81
4.2.2 Local Molecular Orbital MP2 . 87
4.2.3 Natural Orbitals . 92

4.3 Coupled Cluster . 92

5 Local Correlation Methods (III): Excited States 93
5.1 Low-Scaling Correlated Excited State Methods 93

5.1.1 Orbital Invariance of the Matrix Expressions 93
5.1.2 Local Molecular Orbitals and Domains 95
5.1.3 Natural Orbitals . 96
5.1.4 Pair Natural Orbitals . 97
5.1.5 Natural Transition Orbitals . 98

5.2 Atomic Orbital Configuration Interaction Singles 99

6 The Spin-Opposite Scaled Algebraic Diagrammatic Construction Me-
thod in the Atomic Orbital Basis 102
6.1 Restricted ADC with Doubles-Folding 102
6.2 Restricted SOS-ADC(2) with Doubles-Folding 106
6.3 Working Equations For Restricted AO-SOS-ADC(2) 108

6.3.1 First Order . 109
6.3.2 Second Order: Part 2A and 2B 109
6.3.3 Second Order: Part 2C . 111
6.3.4 Second Order: Part 2D . 112
6.3.5 Second Order: Part 2E . 113
6.3.6 Summary . 115

6.4 Restricted DF-SOS-ADC(2) with Doubles-Folding in the AO Basis 116

7 Scaling and Accuracy of CDD-DF-SOS-ADC(2) 121
7.1 Computational Details . 121
7.2 Ground-state Prerequisites . 121

7.2.1 Molecular Test Systems . 121
7.2.2 Illustrating the Scaling . 122
7.2.3 Integral Evaluation . 123
7.2.4 Hartree-Fock . 124
7.2.5 MP2 . 130

7.3 CDD-DF-SOS-ADC(2) . 132
7.3.1 Molecular Test Systems . 132
7.3.2 Scaling . 133
7.3.3 Accuracy . 137
7.3.4 Large Molecules: Challenges and Limitations 138

7.4 Summary and Outlook . 140

Contents x

II 142

8 Parallel Computing 144
8.1 Moore’s Law . 144
8.2 Benefits and Limits of Parallel Computing 145
8.3 Types of Parallelism and Memory Hierarchy 146
8.4 Vectorization . 148

8.4.1 Parallel SAXPY using Vectorization 148
8.5 Thread-based Parallelism . 152

8.5.1 SAXPY using OpenMP . 152
8.6 Process-based Parallelism . 154

8.6.1 SAXPY using MPI . 155
8.6.2 MPI and Shared Memory . 157

8.7 Stream Processing . 158
8.7.1 GPU Architecture . 158
8.7.2 GPU Programming Model . 158
8.7.3 When to Use GPUs . 161

9 Into The Matrix 162
9.1 Linear Algebra . 162

9.1.1 Matrices . 162
9.2 Matrix Storage Formats . 164

9.2.1 Dense Storage . 164
9.2.2 Sparse Storage . 164
9.2.3 Block Compressed Sparse Row . 166
9.2.4 Distributed Storage . 166

9.3 Tensors . 167
9.3.1 Definitions . 167
9.3.2 Tensor Storage and Mapping . 169

9.4 Matrix Libraries . 171
9.4.1 BLAS . 171
9.4.2 LAPACK . 171
9.4.3 Eigen . 171
9.4.4 PBLAS . 172
9.4.5 ScaLAPACK . 172
9.4.6 DBCSR . 172

10 The MEGALOchem Program Package 174
10.1 Motivation . 174
10.2 Software Architecture . 174
10.3 Parallel Runtime Environment . 176
10.4 JSON Interface . 177
10.5 Design Patterns . 178
10.6 Libraries . 179

10.6.1 dbcsrx . 180
10.6.2 math . 181
10.6.3 ints . 182

xi Contents

10.6.4 fock . 183
10.6.5 hf . 184
10.6.6 mp . 184
10.6.7 adc . 184
10.6.8 locorb . 184

11 Algorithms 185
11.1 Direct Inversion of The Iterative Subspace 185
11.2 Davidson Diagonalization . 186

11.2.1 Davidson-Liu Method . 187
11.2.2 Modified Davidson Method . 188

11.3 Incomplete Cholesky Decomposition . 188
11.4 Laplace Transformation . 192
11.5 Cuthill-McKee . 193

12 Conclusion and Outlook 196

A Second Quantization: Formulas 198

B Hartree-Fock Starting Guesses 199
B.1 Superposition of Atomic Densities . 199

B.1.1 Partial Occupation Hartree-Fock 199
B.2 Projection Methods . 200

C Removing Linear Dependencies in Basis Sets 201
C.1 Canonical Orthogonalization . 201
C.2 Cholesky Decomposition . 201

List of Figures xii

List of Figures

1 Fock matrix of the GC DNA base pair 3

1.1 Four regimes of dynamical equations . 8
1.2 Converging towards the exact wave function 12

2.1 Potential energy surface of a chemical system depicting the major pathways
encountered in spectroscopy and photochemistry. 33

2.2 Hierarchy of Green’s functions . 36
2.3 Feynman diagrams in Abrikosov notation for the polarization propagator

through second order. 39
2.4 Structure of the ADC matrix from zeroth through third order. 41

3.1 Sparsity of overlap and electron repulsion integrals 51
3.2 Decay of the overlap and electron repulsion integrals 52
3.3 MO diagram and decay of density matrix elements in the infinite hydrogen

chain . 55
3.4 Absolute value of the 3c2e integral BµµP between two 1s GTOs µ and P

with α = 1.0 using different metrics. 60
3.5 Single-level multipole method . 66
3.6 Fast multipole method . 67
3.7 Cholesky decomposition of density matrices 71

4.1 Number of significant electron pairs in glycine chains. 90

5.1 Wall times of CIS compared to NO-ADC(2) as a function of system size
of hydrated formamide. 97

5.2 Dominant natural transition orbital pair for the lowest excitation of the
carboxylic acid C79H159COOH. 100

5.3 Logarithm of the absolute values of the matrix elements in the transition
densities in the MO and AO basis for the lowest excited state for the
carboxylic acid C79H159COOH. 101

7.1 Molecular systems used for the analysis of the J, K and Z kernels. 122
7.2 Scaling property of BXµν for LA. 125
7.3 Scaling behavior of the J and K kernels for LA. 127
7.4 Scaling behavior of the J and K kernels for FW 128
7.5 Scaling behavior of the tensor MXYBY µν 129
7.6 Sparsity behavior of the intermediate tensors in the Z kernel. 131
7.7 Structure of the linear carboxylic acids (LCA). 133

xiii List of Figures

7.8 Scaling behavior of CDD-DF-SOS-ADC(2) for LCA 135
7.9 Scaling behavior of CDD-DF-SOS-ADC(2) for FW 136
7.10 Molecular structure of borondipyrromethene-flavin (a) and phenothiazine-

isoalloxazine (b) . 139

8.1 Moore’s Law . 145
8.2 Schematic representation of the architecture of a modern computing cluster

which supports heterogeneous computing. 147
8.3 Shared memory parallelism . 152
8.4 GPU architecture . 159

9.1 Cyclic and blocked distribution . 167
9.2 Block-cyclic distribution . 168
9.3 Distributed block compressed sparse row format 168
9.4 Code architecture of the DBCSR library. 173

10.1 Software architecture of the MEGALOchem program package with external
dependencies. 176

11.1 Illustration of the Cuthill-McKee algorithm 194

List of Tables xiv

List of Tables

1.1 Formal scaling of popular electronic structure methods 30

2.1 Mean absolute errors (MAE) and deviations (in eV) for closed-shell mole-
cules at various levels of theory. 44

3.1 Expressions for the operator g in different local metrics. 59

7.1 Molecular formula for the considered systems and the number of basis
functions for cc-pVDZ. 123

7.2 Expressions for B and M for kernels presented in this work. 123
7.3 Absolute Hartree-Fock energy difference in µHartrees per occupied orbital

compared to exact Hartree-Fock. 130
7.4 SOS-MP2 energy differences in µHartrees per occupied orbital compared

to the canonical SOS-MP2 reference. 132
7.5 Total number of basis functions for linear carboxylic acids (LCA) and

solvated formamide (FW) with the aug-cc-pVDZ basis set 133
7.6 Difference in excitation energy between canonical SOS-ADC(2) and CD-

DF-SOS-ADC(2), in µHartrees per occupied orbital, for different density
fitting approximations. 138

8.1 Vector lengths and number of registers for commonly encountered vector
extensions. SSE = Streaming SIMD Extension, AVX = advanced vector
instructions. 148

1 List of Tables

Introduction

During their undergraduate courses in quantum mechanics, students often encounter the
particle in a box. It is the simplest and most educational model to illustrate the concepts
and inner workings of quantum mechanics, without the need for complex mathematics. In
this hypothetical model, a non-classical and non-relativistic particle is stuck in an infinite,
one-dimensional potential-well V (x), which is zero in a certain domain x ∈ [0, L], and
infinite everywhere else. Non-classical and non-relativistic means that the Schrödinger
equation is used to obtain a solution of the system. The particle in a box model teaches
two important concepts: (1) the particle is described by a wave function Ψ(x), with the
observable |Ψ(x)|2 measuring the probability of finding the particle at a given position x,
and (2) the energy levels are quantized. If the lecturer is feeling particularly adventurous,
they might also tackle 3-dimensional systems such as the hydrogen atom. While the
particle in a box can be described by simple sine and cosine functions, the mathematics
are much more complex in this case. The solutions to the Schrödinger equation of the
hydrogen atom atoms are known as atomic orbitals. Atomic orbitals are mathematical
functions that are composed of a radial part, which changes with the distance r from the
nucleus, and an angular part which determines the shape of the orbital (s,p,d,...).

Hydrogen and hydrogen-like atoms, i.e. atoms with a single electron (He+, Li2+), are
among the only types of quantum systems for which the Schrödinger equation can be
solved analytically. Even for relatively simple systems like H2, no closed form solution
exists. This is the quantum equivalent of the n-body problem: the systems can only be
computed numerically to a given accuracy. While numerical approaches are not proble-
matic per se, the time-to-solution rapidly increases with the number of particles and mesh
size of the grid on which the equations are evaluated, quickly exhausting computational
resources.

One way to reduce the computational effort is to introduce approximations to the
Schrödinger equation. The Born-Oppenheimer approximation is undoubtedly one of the
best known approximations in quantum chemistry. It decouples the nuclear from the
electronic degrees of freedom and reduces the problem into two smaller steps. Solving the
electronic Schrödinger equation gives a potential energy surface for the nuclei to move on,
and their trajectories are easily computed. The problem therefore reduces to computing
the electronic wave function which in and of itself still remains a major challenge, and
further approximations are necessary. Electronic structure methods differ by their way
of modeling electron-electron interactions, also known as electron correlation. In the
Hartree-Fock approximation, each electron sees the average potential of all the other
electrons. While HF accounts for 99% of the total electronic energy, the remaining 1%,
which is formerly defined as the correlation energy, is often crucial for computing chemical
properties accurately. Building up on the HF wave function, correlated methods have

List of Tables 2

been developed that allow systematic convergence towards the exact wave function by
adding higher order terms, such as configuration interaction (CI), coupled cluster (CC)
or Møller Plesset perturbation theory (MPPT).

Very good accuracy for molecular properties can be already obtained by adding only
a few correction terms. However, methods such as second order Møller Plesset (MP2) or
coupled cluster with singles and doubles (CCSD) are still computationally expensive, and
scale with the fifth and sixth power of the molecular size, and are generally not applicable
for large systems. The steep scaling of correlated methods is not chemically intuitive.
Consider for example functional groups. Functional groups are important conceptual
tools in organic chemistry to describe molecular properties and reaction pathways, and
work under the assumption that the same substituents undergo similar reactions with
little influence from the rest of the molecule. A system can be divided into several
"domains", which influence each other less the greater their separation is.

Local correlation methods exploit the nearsightedness of electrons to drastically lower
the scaling of conventional correlated methods by recasting their working equations into
a more compact orbital basis. There are three popular types of orbital representations:
local molecular orbitals (LMOs), natural orbitals (NOs) and atomic orbitals. In the LMO
basis, the number of significant electron pairs scales quadratically with system size N ,
and a compact virtual molecular space can be constructed for each individual pair whose
size is independent of N . Natural orbital methods generate a set of compact molecular
orbitals from an approximate ground density. Atomic orbital approaches exploit the
sparsity of the electron integrals and the density matrix in the AO basis to achieve lower
scaling by sparse matrix multiplication (Figure 1). Even if the scaling can be effectively
reduced, the transformation of the electron integrals to the new orbital representation
can still be quite expensive. Techniques such as (local) density can help to reduce the
prefactor of local correlation methods.

While the local correlation approximation has been relatively successful for computing
ground state properties, the extension to excited state methods is relatively new. With
the rapid development in the field of photochemistry and spectroscopy, the demand for
accurate and efficient excited state methods has been steadily rising. However, popular
correlated methods like coupled cluster linear response (CCLR), the algebraic diagram-
matic construction (ADC) method or equation-of-motion coupled cluster (EOM-CC) are
plagued by the same steep scaling as their ground state analogs. Due to the delocalized
nature of certain excitations such as charge transfer states, a simple extension of local
correlation methods is non-trivial. In the last decade, many different solutions were pro-
posed, based on LMOs and NOs, with varying degrees of success. However, an approach
based on atomic orbitals has not yet been considered.

This thesis proposes a novel approach to the algebraic diagrammatic construction me-
thod using atomic orbital intermediates with the local density fitting approximation. The
method, named CDD-DF-SOS-ADC(2), second order spin-opposite scaled algebraic dia-
grammatic construction method with density fitting and Cholesky decomposed densities,
will be explored in detail in terms of scaling, memory footprint and accuracy.

The thesis is divided into two parts, which address the theoretical and computational
aspects respectively. Chapter 1 introduces the basic concepts in theoretical chemistry ne-
cessary to describe the ground state. Chapter 2 gives an introduction to excited methods.
Chapter 3 discusses the concepts of sparsity and locality in quantum chemistry. Chapter

3 List of Tables

Figure 1: Fock matrix of the guanine-cytosine (GC) DNA base pair, using the cc-pVTZ
basis set. The HF wave function was computed using Gaussian [1]. Bright spots indicate
a high absolute value of the matrix elements, while dark spots indicate zero or near-zero
values (threshold: 1e-8).

4 and 5 show how these tools can be used to obtain low-scaling ground and excited state
methods. The working equations for CDD-DF-SOS-ADC(2) are derived in Chapter 6,
and the results are discussed in Chapter 7.

In the second part, Chapter 8 gives a brief introduction on parallel computing with
a few concrete examples written in C. Chapter 9 discusses matrix multiplication, matrix
storage and tensor contraction, and briefly describes the matrix libraries used in the
MEGALOchem quantum chemistry program, whose framework is described in more detail in
Chapter 10. Finally Chapter 11 gives insight on a few of the more important algorithms,
such as the Davidson diagonalization and the incomplete pivoted Cholesky decomposition.

Part I

4

6

Chapter 1

Electronic Structure Methods for the
Ground State

Over the last decades, quantum chemistry has emerged as a crucial tool for investigating
a wide variety of problems in chemistry. This, in combination with the increasing perfor-
mance and widespread use of computers, has spawned a whole new branch of chemistry
known as computational chemistry. The field of computational chemistry uses methods
developed in theoretical chemistry and incorporates them into efficient programs. Quan-
tum chemical methods are routinely applied to assist in solving problems related to
chemical structure, reactivity and spectroscopy. However, one of the main problems in
computational chemistry is choosing a suitable level of theory for a given problem - the
best choice is always a trade-off between speed and accuracy, and requires intricate know-
ledge of the methods’ theoretical and computational limits. This chapter summarizes the
core concepts of quantum chemistry and its most important methods for computing the
ground state. It is by no means complete, and the reader is referred to the original text
book resources on which this chapter is based on [2, 3, 4, 5, 6].

1.1 Describing Dynamics in a Molecular System

In order to describe a molecular system, one needs to decide

• what the fundamental particles are

• what forces are governing them

• what the starting conditions are

• and what form the dynamical equations take.

The choice of particles dictates what properties the model is ultimately able to describe.
For example, force field methods use atoms as the indivisible unit, which is sufficient to
describe the molecular structure and dynamics of large molecules such as proteins, but
does not provide any information on electron distribution. Using electrons and nuclei
as the fundamental particles allows to get a better picture of the electron density and
how it reacts to external perturbation, which is important for studies on reactivity and

7 1.1. Describing Dynamics in a Molecular System

spectroscopic constants. To describe radioactive decay, it is necessary to further divide
the nucleus into protons and neutrons.

Smaller subdivisions lead to a stricter limit on the size of molecules that can be trea-
ted. Force field methods may describe the dynamics of molecules with several tens of
thousands of atoms, while a finer grained method involving electrons can often only de-
scribe molecules one to two orders of magnitudes smaller depending on the approximation
used.

The mathematical form of the dynamical equations is determined by the size and
mass of the particles. They can be divided into four regimes (Figure 1.1). Atoms are
sufficiently heavy and slow that their trajectories can be described using classical (New-
tonian) mechanics. The time evolution of the positions r of the atoms in a potential V
can be written as

−∂V

∂t
= m

∂2r

∂t
(1.1)

which is another form of Newton’s second law F = ma. The potential V is also treated
classically as the sum of contributions of particle-particle interactions.

For objects with velocities approaching the speed of light, it is necessary to introduce
relativistic effects. Mass then becomes a function of velocity

m =
m0√

1− v2/c2
(1.2)

Classical Newtonian mechanics cannot be applied to very light particles such as elec-
trons, and quantum effects need to taken into considerations. For non-relativistic veloci-
ties, the dynamics are governed by the time-dependent Schrödinger equation:

ĤΨ(r, t) = i
∂Ψ(r, t)

∂t
(1.3)

where Ĥ is the Hamiltonian operator which is a sum of the kinetic and potential energy
operators

Ĥ = T̂ + V̂ (1.4)

T̂ = − 1

2m
∇2 (1.5)

and Ψ is the wave function of the system, which is obtained as the solution to the
Schrödinger equation, and |Ψ|2 gives the probability of finding a particle at position r at
time t. Here, atomic units are assumed.

For electrons moving at relativistic speed, for example in the core orbitals of super-
heavy atoms like Uranium, the Hamiltonian takes a more complex form, and the Schrö-
dinger equation is then known as the Dirac equation:

ĤDirac =
(
cαp̂+ βmc2

)
+ V̂ (1.6)

where α and β are 4 × 4 matrices. The relativistic wave function therefore has four
components which are traditionally called the small and large components. Here, only
the solutions and approximations to the non-relativistic Schrödinger equation will be
discussed.

1.2. The Electronic Schrödinger Equation 8

Quantum Classical

R
e
la

tiv
istic

N
o
n
-re

la
tiv

istic

Dirac Einstein

NewtonSchrödinger

Mass

Velocity

≈ 1 amu

≈ 1/3 c

Figure 1.1: Dynamical equations can be divided into four regimes, depending on the size
and speed of the individual particles. Adapted form [4]

1.2 The Electronic Schrödinger Equation
"Where did we get that [Schrödinger’s equation] from? It’s not possible to
derive it from anything you know. It came out of the mind of Schrödinger."

— Richard Feynman, The Feynman Lectures on Physics

If one is interested in describing the electron distribution in detail, the Schrödinger
Equation (SEQ) is the best starting point. There is no formal, rigorous proof for the
Schrödinger equation, similar to how Newton’s second law cannot really be "derived",
more than simply "motivated" by observation.

As successful as the Schrödinger equation is, finding solutions to it is non-trivial.
Different approximations may be applied to the SEQ to solve it more easily, without
considerable loss of accuracy.

1.2.1 The Time-Independent Schrödinger Equation

The potential energy operator is the only time-dependent part of the Hamiltonian:

Ĥ(r, t) = T̂ (r) + V̂ (r, t) (1.7)

For systems where the potential is time-independent, e.g. bound systems without external
(electromagnetic) perturbation, the Hamiltonian is time-independent as well, which in
turn allows to separate space and time variables. It can then be shown that the time-
independent Schrödinger equation takes the form

ĤΨ(r) = EΨ(r) (1.8)

where E is the total energy of the system, and the eigenvalue of the wave function Ψ.
The time-dependence is then simply reduced to a phase factor:

Ψ(r, t) = e−iEtΨ(r) (1.9)

9 1.3. Solutions to the Electronic Schrödinger Equation

1.2.2 The Born-Oppenheimer Approximation

Atomic nuclei are much heavier than electrons (mproton ≈ 1836melectron), and move much
slower. To a good approximation, the nuclei can be assumed to be stationary from the
point of view of electrons. This is known as the Born-Oppenheimer approximation. The
total Hamiltonian operator can be written in terms of the kinetic and potential operator
of the nuclei (n) and electrons (e) as

Ĥtot = T̂n + T̂e + V̂ne + V̂ee + V̂nn (1.10)

In the Born-Oppenheimer approximation, the kinetic energy of the nuclei Tnn is neglec-
ted, and the nucleus-nucleus potential Vnn is taken as a constant, which corresponds to
neglecting the coupling between electrons and nuclei. This allows a separation of the elec-
tronic and nuclear variables. The remaining terms of Equation 1.10 form the electronic
Hamiltonian Ĥelec. The solutions to the electronic Schrödinger equation

ĤelecΨelec(ri,Rn) = Eelec(Rn)Ψelec(ri,Rn) (1.11)

produce the electronic wave function which depends on the (fixed) position Rn of the
nuclei and no longer on the momentum of the nuclei. The total energy

Etot(Rn) = Eelec(Rn) + Enucl(Rn) (1.12)

provides a potential energy surface (PES) on which the nuclei move. The PES can then
be used to solve the nuclear Schrödinger equation to obtain information on vibrational,
rotational and translational properties in the molecular system.

From this point onward, the subscript elec is dropped, and only the electronic Schrö-
dinger Equation is considered.

1.3 Solutions to the Electronic Schrödinger Equation

1.3.1 Slater Determinants

It is beneficial to first consider the wave function of a single electron. In single-atom
systems, these functions take the form of "atomic orbitals" (AOs). Correspondingly,
"molecular orbitals" (MOs) are defined as the single electron wave functions in a molecular
system. These spatial orbital functions form the basis of the full electronic wave function.

The Hamiltonian in 1.10 only depends on the spatial coordinates. However, to fully
describe an electron, spin also needs to be considered. This is done by introducing two
orthonormal spin functions α(ω) and β(ω) corresponding to spin-up (↑) and spin-down
(↓), with the spin-coordinate ω. For one spatial molecular orbital, this gives two possible
spin-orbitals

ϕ(x) =

{
φ(r)α(ω)
φ(r)β(ω)

(1.13)

where φ are the spatial orbitals, and x are the combined spatial and spin coordinates.
The spin orbitals therefore depend on four variables.

1.3. Solutions to the Electronic Schrödinger Equation 10

To a first approximation, one may consider a molecular system to consist of N non-
interacting, independent electrons. The Hamiltonian is then written as a sum of one-
particle Hamiltonians

H =
N∑
i

hi (1.14)

Electron correlation may be included in some average way by using effective one-electron
Hamiltonians, which is the basic working idea of the Hartree method. The solution to
the SEQ can then be expressed as a product of the one electron wave functions

ΨHP (x1,x2, ...,xN) = ϕ(x1)ϕ(x2)...ϕ(xN) (1.15)

which is also known as Hartree product.
However, the Hartree product does not take into account the indistinguishability of

electrons. In what is known as the antisymmetry principle, a generalization of the Pauli
exclusion principle, the wave function needs to fulfill

Ψ(x1,x2) = −Ψ(x2,x1) (1.16)

upon exchange of any two electrons in the system. This is most easily achieved by using
Slater determinants (SD). For a molecular system consisting of N electrons distributed
over N spin orbitals ϕi, the SD takes the form

ΨSD(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕI(x1) ϕJ(x1) . . . ϕP (x1)
ϕI(x2) ϕJ(x2) . . . ϕP (x2)

...
...

ϕI(xN) ϕJ(xN) . . . ϕP (xN)

∣∣∣∣∣∣∣∣∣ (1.17)

Or, using the diagonal of the SD as a short-hand notation

ΨSD(x1,x2, . . . ,xN) = |ϕI(x1), ϕJ(x2), . . . , ϕP (xN)⟩ (1.18)

1.3.2 The Fock Space

A more generalized representation of the space of the antisymmetrized electron wave
functions can be achieved by introducing the concept of occupation number (ON) vectors
in the context of second quantization (Appendix A). In a system with M possible states
(which in the case of molecules correspond to spin molecular orbitals), the ON vectors
take the form

|k⟩ = |k1, k2, . . . , kM⟩ =
{
1 if ϕP occupied
0 if ϕP occupied (1.19)

The occupation number is 1 if ϕP is present in the SD, and 0 if not. Together, all possible
ON vectors in Equation 1.19 form an orthonormal abstract vector space, known as Fock
space. The Fock space formed by N electrons distributed over M orbitals is denoted as
F (M,N) with total dimension equal to the binomial coefficient

(
M
N

)
. The sum of the

occupation numbers in the ON vectors gives the total number of electrons

N =
M∑
i

ki (1.20)

11 1.3. Solutions to the Electronic Schrödinger Equation

The special Fock space F (0,M) contains a single vector known as the vacuum state with

|vac⟩ = |01, 02, . . . , 0M⟩ (1.21)
⟨vac|vac⟩ = 1 (1.22)

The ON vectors in F (M,N) can alternatively be expressed in terms of the vacuum state
from F (M, 0) using creation operators

|k⟩ =
[

M∏
P=1

(a†P)
kP

]
|vac⟩ (1.23)

In second quantization, the antisymmetry principle of the wave function is guaranteed
by the anticommutator relationship of the annihilation and creation operators aP and a†P
which act on the ON vectors.

1.3.3 Exact Solution and Standard Models

The simplest approach to solving the electronic SEQ is by approximating the exact wave
function |Ψ⟩ using a single Slater determinant where the electrons occupy the lowest
lying molecular orbitals. The Hartree-Fock method is an example of a single-determinant
method and finds the single best Slater determinant for |Ψ⟩. In Fock space, the best
possible determinant is represented by the ON vector where the N lowest lying orbitals
are occupied.

As will be discussed in more detail later, a single-determinant treatment of the elec-
tronic wave function is insufficient to fully capture electron correlation. The electron
correlation energy is formerly defined as the difference between the Hartree-Fock energy
and the exact energy of |Ψ⟩

Ecorrelation = EHF − Eexact (1.24)

although the Hartree-Fock wave function does include correlation effects to some degree.
In a more general sense, electron correlation is a broad term for any interactions between
electrons that make their movement depend on each other, or correlate with each other
(see Section 1.5).

In order to improve on the HF approximation, it is important to add additional
Slater determinants. These SDs can be generated from the HF reference wave function
by replacing the occupied MOs ϕI in a reference Slater determinant by one or multiple
orbitals ϕA which were previously unoccupied. This effectively corresponds to exciting one
or more electrons from their occupied molecular orbitals I, J, .. to unoccupied, or virtual
orbitals A,B, ... These excited Slater determinants can be classified by the number of
electrons they excite and are often referred to as singles, doubles, triples and so on.

|Φ0⟩ = |HF⟩ Reference (1.25)∣∣ΦA
I

〉
= a†AaI |HF⟩ Singles (1.26)∣∣ΦAB

IJ

〉
= a†AaIa

†
BaJ |HF⟩ Doubles (1.27)∣∣ΦABC

IJK

〉
= a†AaIa

†
BaJa

†
CaK |HF⟩ Triples (1.28)

1.3. Solutions to the Electronic Schrödinger Equation 12

Number of Slater determinants

N
u
m

b
e
r

o
f

B
a
si

s
Fu

n
ct

io
n
s

Exact Solution

Exact Solution in
a given basis

Basis set limit
for a given method

Figure 1.2: The wave function converges to the exact solution in the limit of an infinitely
large basis set that spans the molecular orbitals, and an infinitely large correlation space
spanned by the Slater Determinants.

Alternatively, singles states are known as 1-particle-1-hole (1p-1h or simply p-h) states,
doubles as 2-particle-2-hole (2p-2h) and so on, due to the excitation operators effectively
creating holes in the reference determinant and adding particles in higher lying orbitals
instead.

The exact solution to the electronic Schrödinger equation is then given by the sum of
the Hartree-Fock wave function and all possible ON vectors in F (M,N)

|Ψ⟩ = c0 |HF⟩+
(MN)−1∑
i=1

ci |i⟩ (1.29)

Equation 1.29 offers a systematic approach to improve on the Hartree Fock method, by
increasing (1) the number of Slater determinants and (2) the basis set size M , and gives
rise to a hierarchy of methods (Figure 1.2). Correlated electronic structure methods
mainly differ by how they determine the expansion coefficients c. For all but the smallest
systems, the full F (M,N) Fock space cannot be used in calculations due to the total
number of ON vectors which increases binomially with

(
M
N

)
, and hence the number of

coefficients to be determined. In practice, the Fock space is truncated to some degree.
Multi-determinant methods like configuration interaction (CI) or coupled cluster (CC)

use the Hartree Fock wave function as reference from which they generate singles, doubles,
triples ... SDs. By truncating at different excitation levels, one gets a hierarchy of CI/CC
methods which recover different amounts of correlation energy (e.g. CIS, CISD, CISDT
...). Multi-determinant methods are mainly suited to recover dynamic correlation.

For systems with strong static correlation, additionally, a multi-reference approach
is needed. Here, the excited SDs are generated from multiple reference states rather
than only from HF. Methods include multi-reference CI (MRCI) and multi-reference CC
(MRCC). The reference states are traditionally obtained from multi-configurational self-
consistent-field methods (MCSCF) like the complete active space SCF (CASSCF) or

13 1.3. Solutions to the Electronic Schrödinger Equation

restricted active space SCF (RASSCF). MCSCF is a combination of HF and CI, which
both optimizes the HF molecular coefficients and the CI expansion coefficients. Multi-
reference methods methods mainly recover static correlation.

1.3.4 The Variational Method

The time-independent Schrödinger equation takes the form of an eigenvalue problem

Ĥ |Ψi⟩ = Ei |Ψi⟩ i = 0, 1, 2, ...∞ (1.30)

where the infinite set of exact solutions |Ψi⟩ with eigenvalues Ei forms an orthonormal
basis

⟨Ψi|Ψj⟩ = δij (1.31)

A trial wave function can be expanded in the basis of exact solutions with coefficients c
as

|Ψ̃⟩ =
∑
i

ci |Ψi⟩ (1.32)

The variation principle states that the expectation value of the Hamiltonian of an ap-
proximate wave function of the form 1.32 is an upper bound to the exact ground state
energy. This statement can be expressed as

⟨Ψ̃| Ĥ |Ψ̃⟩
⟨Ψ̃|Ψ̃⟩

≥ E0 (1.33)

The equality only holds when |Ψ̃⟩ is equal to the exact solution |Ψ0⟩. One can recast
the eigenvalue problem 1.30 as a variational optimization problem where the energy is a
functional of a trial wave function

E[Ψ̃] =
⟨Ψ̃| Ĥ |Ψ̃⟩
⟨Ψ̃|Ψ̃⟩

(1.34)

The saddle points of the energy functional then correspond to the exact solutions of the
Schrödinger equation. The variational approach to the SEQ provides a powerful tool to
solve a wide variety of problems in electronic structure theory.

The trial wave function depends on a set of coefficients c, and hence the energy
functional will also depend on these coefficients. In general, determining the coefficients
which minimize the functional is very difficult. However, a more simple approach of the
variational method can be obtained by using a linear ansatz where the trial function is
expanded in a fixed N-dimensional set of orthonormal basis functions |ϕ⟩

|Ψ̃⟩ =
N∑
i

ci |ϕi⟩ (1.35)

By using Lagrange’s method of undetermined multipliers

L(c, E) = ⟨Ψ̃| Ĥ |Ψ̃⟩ − E(⟨Ψ̃|Ψ̃⟩ − 1) (1.36)
∂L
∂c

= 0 (1.37)

1.4. Hartree-Fock 14

it is possible to show that the variational problem corresponds to solving the eigenvalue
problem involving the Hamiltonian matrix H:

Hcn = Encn (1.38)

Or, in a more general form
HC = CE (1.39)

Here, C is a N by N coefficient matrix containing N column coefficient vectors cn (n =
0...N) which describe N possible solutions for the trial wave function |Ψ̃⟩. E is a diagonal
matrix containing the eigenvalues En. This approach of finding approximate solutions to
the eigenvalue problem 1.30 is known as the linear variational method.

1.4 Hartree-Fock

The Hartree-Fock method is central to electronic structure theory. It is computationally
inexpensive, and is still routinely used in qualitative studies of large molecules, even if it
does not accurately account for electron correlation. It also serves as the starting point
for correlated methods. Only a few computational methods actually bypass the solution
to the Hartree-Fock equations, firmly cementing its place in quantum chemistry.

1.4.1 The Hartree Fock Equations

Recall the structure of the electronic Hamiltonian

Ĥ = T̂e + V̂ne + V̂ee + V̂nn (1.40)

with

T̂e = −
N∑
i

1

2
∇2

i kinetic energy of electrons (1.41)

V̂ne = −
Nnuc∑
a

N∑
i

Za

| Ra − ri |
nuclei-electron repulsion (1.42)

V̂ee =
1

2

N∑
i

N∑
j ̸=i

1

| ri − rj |
electron-electron repulsion (1.43)

V̂nn =
1

2

Nnuc∑
a

Nnuc∑
b ̸=a

ZaZb

| Ra −Rb |
nuclei-nuclei repulsion (1.44)

In Hartree-Fock theory, the electrons are treated as independent particles. One can
therefore ignore the coupling between electrons in V̂ee and express the Hamiltonian as a
sum of an effective one-electron operator f , also known as the Fock operator, of the form

Ĥ =
∑
i

f̂i =
∑
i

ĥi +
1

2

∑
i

∑
j ̸=i

ĝij (1.45)

15 1.4. Hartree-Fock

ĥi = −
1

2
∇2

i −
Nnuc∑
a

Za

| Ra − ri|
(1.46)

ĝij =
1

| ri − rj |
(1.47)

The one-electron operator ĥ, also known as the core Hamiltonian describes the movement
of the electrons in the field of the nuclei. The two-electron operator gij gives the average
potential (or "field") experienced by electron i due to the presence of all the other electrons
j. For this reason, Hartree-Fock is also known the mean-field approximation. In second
quantization, the Fock operator takes the form

f̂ =
M∑
PQ

hPQa
†
PaQ +

1

2

M∑
PQRS

gPQRSa
†
Pa

†
RaSaQ (1.48)

with the matrix elements of the one and two electron operators given by

hPQ = ⟨ϕP |h |ϕQ⟩ =
∫

ϕ∗
P (x)h(x)ϕQ(x)dx (1.49)

gPQRS = ⟨PQ|RS⟩ =
∫ ∫

ϕ∗
P (x1)ϕ

∗
R(x2)g(x1,x2)ϕQ(x1)ϕS(x2)dx1dx2 (1.50)

The elements gPQRS are known as the two-electron repulsion integrals. Calculating the
expectation values for the Fock operator in 1.48 using second quantization gives the
matrix elements [3]

fPQ = ⟨ϕP | f |ϕQ⟩

= hPQ +
N∑
I

1

2
(gPQII − gPIIQ)

= hPQ +
1

2
(JPQ −KPQ)

(1.51)

The symmetric matrix with entries fPQ is also known as the Fock matrix. J is the
coulomb matrix and describes electron correlation due to the coulomb potential (coulomb
correlation), and K is the exchange matrix describing the electron correlation which arises
due to the Pauli exclusion principle (Fermi correlation). The exchange contributions have
no classical counterpart and arise purely from quantum mechanical considerations.

In the special basis where the Fock matrix is diagonal

fPQ = δPQϵP (1.52)

the one-electron eigenfunctions of the Fock operator

f |ϕP ⟩ = ϵP |ϕP ⟩ (1.53)

are known as the canonical molecular spin orbitals, and the eigenvalues are the molecular
orbital energies. Solving the canonical Hartree-Fock equation 1.53 gives the MOs which
form the basis of the Hartree-Fock wave function. It should be stressed that the total

1.4. Hartree-Fock 16

electronic Hartree-Fock energy is not the sum of the individual MO energies, but is given
by the expectation value of the Hamiltonian

EHF = ⟨HF| Ĥ |HF⟩ =
N∑
I

hII +
1

2

N∑
I

(JII −KII) (1.54)

which is equivalent to the trace of the Hamiltonian matrix H. The index I runs over all
occupied spin molecular orbitals. For N electrons distributed over M MOs, there are N
occupied orbitals with ϵI < 0 and M −N virtual orbitals with ϵA > 0.

1.4.2 The Basis Set Approximation

Up until this point, the electronic wave function was constructed from Slater determinants
of molecular spin orbitals. Virtually all applications use a basis set expansion to express
the unknown MOs in terms of known functions, conventionally called atomic orbitals.
Any type of function can be used, e.g. exponentials, Gaussians, polynomials or plane
waves. The molecular orbitals are then expressed as a linear combination of atomic
orbitals (LCAO)

|ϕi⟩ =
Mbasis∑

i

ciµχµ (1.55)

For molecular systems, there are two types of basis functions that are generally used,
namely Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO):

χSTO
ζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r

n−1e−ζr (1.56)

χGTO
ζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r

2n−2−le−ζr2 (1.57)

where N is a normalization constant, Yl,m are spherical harmonics, and {n, l,m} are the
principal, angular momentum and magnetic quantum number respectively. There are two
major differences between STOs and GTOs. At r = 0, STOs have finite slope and GTOs
have zero slope. For large r values, GTOs decay much more rapidly than STOs. From
an electronic structure point of view, one would prefer to use STOs, as they describe the
qualitative features of molecular orbitals better than GTOs. Roughly three time as many
GTOs are necessary to obtain the same accuracy as with STOs. Nonetheless, GTOs
are preferred, as their drawbacks are outweighed by the relative ease with which their
integrals can be evaluated compared to STOs.

1.4.3 Working Equations for Restricted and Unrestricted Har-
tree-Fock

For reasons of efficient implementation, it is useful to separate out different electron spin
components. The Fock matrix has four spin blocks: Fαα, Fαβ, Fβα and Fββ. The Fock
matrix in the canonical basis is diagonal, and therefore only the diagonal blocks Fαα and
Fββ are important. Introducing the notation I for MOs with spin σ′, and I with opposite

17 1.4. Hartree-Fock

spin σ, the matrix elements of a spin block are given by

fσ
PQ = hσ

PQ +
1

2

{
Nσ∑
PQ

Nσ∑
I

(PQ | II)− (PI | QI)−
Nσ∑
PQ

Nσ′∑
I

(
PQ | JJ

)
−
(
PJ | QJ

)}

= hσ
PQ +

Nσ∑
PQ

Jσ
PQ −Kσ

PQ + Jσ′

PQ −Kσ′

PQ

(1.58)

The opposite spin block fσ′
PQ is obtained by substituting indices with a bar by indices

without a bar and vice-versa. Spin separation yields two coupled sets of equations for
alpha and beta MOs

fα |ϕα
I ⟩ = ϵαI |ϕα

I ⟩
fβ |ϕβ

I ⟩ = ϵβI |ϕβ
I ⟩

(1.59)

These are known as the unrestricted Hartree-Fock equations (UHF). For closed-shell
molecules with equal number of alpha and beta electrons, the spatial part of the MOs is
the same for both spins. The expression for the Fock matrix then further simplifies to

fij = hij + 2Jij −Kij (1.60)

f |ϕi⟩ = ϵi |ϕi⟩ (1.61)

The equations in 1.61 are known as the restricted Hartree-Fock (RHF) equations.
Using the linear variatonal method explained in the previous section for the MO trial
functions expressed as a linear combination of Nbas AO basis functions, the eigenvalue
problem for RHF can be recast in matrix form as

FC = CE (1.62)

with the MO coefficient matrix C and the Fock matrix F in the AO basis given by

Fµν = Hcore
µν +

Nbasis∑
λσ

[2 (µν | σλ)Pλσ − (µσ | νλ)Pλσ] (1.63)

= Hcore
µν + 2Jµν −Kµν (1.64)

The symmetric matrix P is the so-called atomic orbital density matrix (DM) of the form

Pµν =
Nocc∑
i

CµiCνi (1.65)

A similar expressions is found for UHF

F σ
µν = Hcore

µν +

Nbasis∑
λσ

(
(µν | σλ)P T

λσ − (µσ | νλ)P σ
λσ

)
P T
µν = P σ

µν + P σ′

µν

(1.66)

where the AO spin-density matrices Pσ are defined as the product of the corresponding
coefficient matrices with spin σ.

1.4. Hartree-Fock 18

1.4.4 The Self-Consistent Field Method

In general, the atomic orbitals are not orthogonal. The overlap matrix S is defined as

Sµν =

∫
χ∗
µ(r)χ

∗
ν(r)dr (1.67)

with diagonal entries Sµµ = 1, and off-diagonal elements 0 < |Sµν | < 1. The eigenvalue
problem for RHF then takes the more general form

FC = SCE (1.68)

The equations in 1.68 are known as the Roothan-Hall equations (RH). In the unrestricted
case, they are called the Pople-Nesbet equations (PN) which are given by

FαCα = SCαEα (1.69)

FβCβ = SCβEβ (1.70)

The Fock matrix is constructed using the coefficient matrices C to compute the density
matrix P. This means that the RH (and PN) equations depend on their own solution and
must be solved iteratively. Popular choices for iterative schemes include Newton’s method
and the self-consistent field (SCF) method, with the latter being the most straight-
forward one to implement.

The SCF procedure is summarized in Algorithm 1. At every iteration, the Fock matrix
is diagonalized to obtain a new guess for the density matrix, which is used for constructing
the Fock matrix in the next step. These steps are repeated until self-consistency is
reached. There are different ways to test for convergence, the simplest being the Hartree-
Fock energy difference between subsequent iterations. A more rigorous bound is given by
the matrix norm of the error vector e

e = FPS− SPF (1.71)

At convergence, the density matrix has to commute with the Fock matrix through the
overlap matrix.

SCF Initial Guesses

The preiteration steps compute the two-electron integrals, the transformation matrix X
and a set of guess orbitals. There are different methods for generating a guess. The closer
the guess is to the solution, the fewer SCF iterations are needed which saves time. The
simplest method consists of using a null matrix for P, which corresponds to setting the
Fock matrix to the core Hamiltonian Hcore. Diagonalization then gives the guess orbitals.
The core Hamiltonian gives a sufficiently close starting guess for small molecules, but is
unsuitable for larger molecules.

The most popular and efficient method at the time of writing is the superposition
of atomic densities (SAD) [7]. For each type of atom in the molecule, an atomic HF
calculation is carried out which gives the atomic density matrix for this atom type. The
molecular guess density matrix is then constructed by setting its diagonal blocks to the

19 1.4. Hartree-Fock

Algorithm 1: Hartree-Fock Self-Consistent Field
Input: Molecule with nuclear coordinates {RA}, atomic numbers {ZA}, number

of electrons N and basis set {χµ}
Output: The matrices F, P, C and E

1 Calculate all one- and two electron integrals
2 Compute the transformation matrix X from the overlap matrix S with

X†SX = 1 (1.72)

3 Generate a set of guess orbitals to compute an initial guess density P
4 while not converged do
5 Construct the Fock matrix F using the current guess density
6 Orthogonalize the Fock matrix F′ = X†FX
7 Diagonalize F′ to obtain the new orthogonalized MO coefficient matrices C′

8 Compute C = XC

9 Form the new density P = CCT

10 Check convergence using certain criteria

atomic densities. The SAD method generates densities that are quite close to the solution.
For implementation details, see Appendix B.

An alternative starting guess can be obtained by first carrying out a HF calculation
with a smaller basis set using the core or SAD guess, and then projecting the density
matrix onto the larger basis set (Appendix B). This method is especially useful for larger
basis sets.

SCF convergence

There is no guarantee that the SCF procedure converges. For small molecules and equi-
librium geometries, the unmodified SCF procedure converges quite smoothly. For large,
diffuse basis sets or distorted geometries, additional modifications to the algorithms might
be necessary:

1. Direct inversion of the iterative subspace (DIIS): the previous Fock matrices are
used for extrapolation to generate a better Fock matrix (section 11.1)

2. Damping: A damping factor ω is introduced and the density matrix is replaced by
a weighted average P′

n+1 = ωDn+(1−ω)Dn+1. Damping is especially useful when
the SCF energy oscillates around the equilibrium

3. Level shifting: It has been shown that raising the energy of the virtual orbitals
guarantees convergence, at the cost of a decreased convergence rate

1.4.5 Brillouin’s Theorem and Orbital Rotations

The Fock matrix can be divided into four distinct blocks: occupied-occupied, occupied-
virtual, virtual-occupied and virtual-virtual. The terms "particle" (p) and "hole" (h)

1.5. Electron Correlation 20

may be used instead of occupied and virtual. In the special case where the orbitals are
the canonical MOs, the Fock matrix is diagonal. This is known as the canonical condition
for the HF wave function. However, diagonality is not necessary for obtaining a valid HF
wave function. The general Hartree-Fock equations take the form

f̂ϕP =
∑
PR

λPRϕR (1.73)

Where λ are the Lagrange multipliers. For non-canonical MOs, the p-p and h-h are
non-diagonal, with elements λIJ and λAB respectively. The off-diagonal elements are
computed as

fIA = ⟨HF| f̂ |a†AaIHF⟩ = 0 (1.74)

and are zero by virtue of Brillouin’s theorem for any valid HF wave function. This is
also known as the variational condition; it is an alternative formulation of the variational
principle (see [3], section 10.3.5).

The Hartree-Fock energy is therefore stable under unitary rotations

ϕI′ = UϕI U †U = U (1.75)

The canonical MOs may be rotated to another orbital MO basis with smaller spatial
extent, also known as localized molecular orbitals (see Section 3.4).

1.5 Electron Correlation

In the Hartree-Fock method, the electron-electron interaction is replaced by an average
interaction. For large basis sets, HF is actually able to recover approximately 99% of the
total energy. Unfortunately, the remaining 1%, the correlation energy, is often important
to compute chemical properties with sufficient accuracy.

Electron correlation arises from electrons trying to avoid each other due to coulombic
repulsion (coulomb correlation) and the antisymmetry principle (Fermi correlation). This
in turn leads to a region of space around each electron where the probability of finding
another electron is reduced, typically known as the coulomb hole for electrons of opposite
spin, and Fermi hole for electrons of the same spin.

Another distinction is often drawn between dynamic correlation and static correla-
tion, although there exists no formal definition. Dynamic correlation generally describes
the correlated movement of electrons due to their "instantaneous mutual repulsion" [4].
For example, in the ground-state Helium atom, electron correlation is purely dynamical.
Static (or non-dynamic) correlation on the other hand arises in the case of near-dege-
neracy, where multiple configurations of similar energy contribute to the ground-state
wave function. To show the difference between these two two types of correlation, the
dissociation of the H2 molecule is often taken as an illustrative example. At equilibrium
distance, correlation is mostly dynamic, and the ground-state can be well described as a
singlet state. In the dissociation limit, electrons may be coupled to yield either a singlet
or a triplet, as the energy difference between those two states vanishes. The correlation
in the system is then entirely static. There is no clear-cut line between dynamic and
static correlation, but it offers a useful classification for correlation effects.

21 1.6. Configuration Interaction

To fully capture both dynamic and static correlation, it is crucial to add additional
Slater determinants as mentioned previously. Methods which generate excited Slater de-
terminants from a single reference SD recover mostly dynamical correlation: electrons are
disturbed through their instantaneous repulsion and are excited to higher spin orbitals,
hence the need of additional excited-type SDs. Methods generating SDs from multiple
references recover mostly static correlation. At the theoretical limit (i.e. the full confi-
guration space), both approaches eventually recover all correlation effects. It is therefore
the responsibility of the computational chemist to choose the correct method that best
fits the problem at hand.

Any electronic structure method that improves on the HF wave function is usually
referred to as a "correlated method". Hartree-Fock, by convention, is an "uncorrelated
method".

For the rest of this report, only single-reference methods are considered.

1.6 Configuration Interaction

1.6.1 The CI Matrix

Configuration interaction (CI) is the simplest and one of the oldest examples of a corre-
lated electronic structure method. The CI wave function takes the general form

|CI⟩ = |Ψ0⟩+
∑
IA

cAI |ΦIA⟩+
∑
I<J
A<B

cAB
IJ |ΦAB

IJ ⟩+
∑

I<J<K
A<B<C

cABC
IJK |ΦABC

IJK ⟩+ . . . (1.76)

summing all SDs of all possible types (singles, doubles, triples...). Φ0 is the reference
wave function, here taken as the HF ground state. Whereas the HF wave function was
a linear combination of molecular orbitals, the CI wave function is a linear expansion of
SDs. Similarly, the CI expansion coefficient matrix C is determined variationally

∂

∂Ci

⟨CI| Ĥ |CI⟩
⟨CI|CI⟩ = 0 (1.77)

which, as was shown before, reduces to the eigenvalue problem

HC = CE (1.78)

The matrix H is also known as the CI matrix. Using the notation |S⟩, |D⟩, |T ⟩, ... to
denote the set of singles, doubles, triples ... SDs, the CI matrix takes the form

⟨Φ0|H |Φ0⟩ 0 ⟨Φ0|H |D⟩ 0 0 . . .
0 ⟨S|H |S⟩ ⟨S|H |D⟩ ⟨S|H |T ⟩ 0 . . .

⟨D|H |Φ0⟩ ⟨D|H |S⟩ ⟨D|H |D⟩ ⟨D|H |T ⟩ ⟨D|H |Q⟩ . . .
0 ⟨T |H |S⟩ ⟨T |H |D⟩ ⟨T |H |T ⟩ ⟨T |H |Q⟩ . . .
0 0 ⟨D|H |Q⟩ ⟨T |H |Q⟩ ⟨Q|H |Q⟩ . . .
...

...
...

...
... . . .

(1.79)

In analogy to the Fock matrix, some blocks in the CI matrix are zero. Brillouin’s theorem
states that there is no coupling between the ground state and the singlet states. That

1.6. Configuration Interaction 22

does not imply that they do not contribute to the CI energy at all. Singles mix indirectly
via doubles. Moreover, matrix blocks of the Hamiltonian between two SDs which differ
by more than two spin orbitals are also zero. Triples mix with doubles and singles, but
not with the ground state.

A more compact representation of the CI matrix is obtained by taking linear combi-
nations of SDs in the same excitation manifold, known as configuration state functions
(CSF) or spin-adapted configurations (SAC). The CSFs form a basis smaller than that
composed of all individual SDs which leads to computational savings. However, CSFs
were primarly introduced to preserve the spin symmetry of the ground state, or in other
words, CSFs are eigenfunctions of the S2 operator. If the HF ground state is a singlet, a
non-spin-symmetric CI basis may lead to the CI wave function being a mixture of singlet
and triplet determinants.

1.6.2 Truncated CI

Full CI, i.e. including all excitation manifolds, is only computationally feasible for the
smallest molecules, due to the binomial increase in the number of SDs as a function
of system and basis set size. For this reason, the CI wave function is often truncated
at a given excitation level. Including only singles gives configuration interaction with
singles (CIS), including singles and doubles yields configuration interaction with singles
and doubles (CISD), etc. Higher order methods recover a larger fraction of the correlation
energy, but come at a higher computational cost.

It should be noted that the energy of the CIS wave function is equal to the HF energy
due to Brillouin’s theorem, and hence does not contribute to the correlation energy of
the ground state.

1.6.3 Solving the CI Eigenvalue Problem

Even at relatively low truncation levels, the number of matrix elements have a quite steep
polynomial scaling with O(N6) for CISD and O(N8) for CISDT. In most cases however,
only the few lowest eigenvalues are needed. Davidson’s method of matrix diagonalization
(section 11.2) was specifically developed to tackle this problem. Rather than storing the
whole matrix, only matrix-vector products need to be computed

r = MCIu (1.80)

Closed expressions can be derived and the full matrix is not explicitly needed, but gene-
rated on-the-fly.

1.6.4 Size Consistency and Size Extensivity

Over the years, single-reference truncated CI methods have fallen out of favor for more
sophisticated methods, due to CI not being size-consistent and size-extensive. Size-
consistency refers to the idea that the energy of two non-interacting systems A and
B should be equal to the sum of their individual energies obtained from two different
calculations:

E(A+B) = E(A) + E(B) (1.81)

23 1.7. Coupled Cluster

Size-extensivity is a closely-related criterion that states that the energy should be a
linear function of the number of electrons , i.e. the energies of small and large molecules
have similar errors, which is important for comparing properties [8]. As the system size
increases, truncated CI recovers less and less of the total correlation energy.

1.7 Coupled Cluster

The coupled-cluster (CC) approximation offers a more sophisticated picture of electron
correlation than CI, and has become one of the most successful and accurate ab initio
correlated methods. It is both size-consistent and size-extensive.

1.7.1 Pair Clusters

Consider a system composed of two electrons, occupying the orbitals I and J in the
independent particle model. Correlation manifests itself by the electrons’ instantaneous
repulsion and excitation into higher lying orbitals. Mathematically, this may be expressed
as [3]

a†Ia
†
J +

∑
A>B

tAB
IJ a†Aa

†
B =

(
1 + tAB

IJ τ̂AB
IJ

)
a†Ia

†
J (1.82)

where t are the associated cluster coefficients, also known as amplitudes. By virtue of
Brillouin’s theorem, single excitations are not considered. Equation 1.82 is known as the
electron pair, two-electron cluster or pair-cluster approximation.

In a first approximation, electron pairs may be treated independently in a molecular
system, in what is known as the independent electron pair approximation (IEPA). The
total correlation energy is then simply given as the sum of the individual pair correlation
energies

EIEPA
corr =

∑
I<J

eIJ (1.83)

|IEPA⟩ =
∑

I<J,A<B

(
1 + tAB

IJ τ̂AB
IJ

)
|HF⟩ (1.84)

A more complete picture of electron correlation is given by additionally letting electron
clusters interact with each other by using the parametrization

|CCD⟩ =
(∏

A>B,I>J

1 + tAB
IJ τ̂AB

IJ

)
|HF⟩ (1.85)

The resulting wave function corresponds to the coupled cluster approximation including
only doubles (CCD). As opposed to CID, CCD additionally includes products of dou-
bles cluster operators (τAB

IJ τCD
KL , or τAB

IJ τCD
KL τ

EF
MN), in other words, doubles excitations are

included up to infinite order. It is this property that makes CC size-extensive.

1.7. Coupled Cluster 24

1.7.2 Coupled Cluster Ansatz

The CCD model can be generalized to let clusters of three and more electrons interact
with each other, and electrons interact within these clusters. The general CC ansatz
reads

|CC⟩ =
(∏

µ

1 + tµτ̂µ

)
|HF⟩ = exp(tµτ̂µ) |HF⟩ = exp(T̂µ) |HF⟩ (1.86)

where T̂µ is the cluster operator, and µ are the excitation manifolds. The cluster operator
may be partitioned into classes comprising all singles, doubles, ... excitations:

T̂ = T̂1 + T̂2 + ...+ T̂N (1.87)

Truncating the cluster operator to include only excitations up to a certain degree yields a
hierarchy of CC method named CCS, CCSD, CCSDT etc. Again, including higher orders
implies a higher computational effort. The exponential in Equation 1.86 for different
truncation levels is approximated as

exp(T̂) = T̂1 (1.88)

exp(T̂1 + T̂2) = T̂2 +
1

2
T̂ 2
1 (1.89)

exp(T̂1 + T̂2 + T̂3) = T̂3 + T̂1T̂2 +
1

6
T̂ 3
1 (1.90)

. . .

Triplet configurations for example are generated by three mechanisms. T̂3 is known as
a connected term, and the other terms which are products of lower order operators are
known as disconnected terms.

1.7.3 The Coupled Cluster Equations

The cluster amplitudes are unknown and need to be solved for. Equations for the ampli-
tudes can be obtained by projecting the Schrödinger equation with the CC ansatz 1.86
onto the excitation manifolds. Using the so-called similarity-transformed Hamiltonian

ˆ̄H = exp(−T̂)Ĥexp(T̂) (1.91)

gives the set of non-linear equations

⟨µ1| ˆ̄H |HF⟩ = 0

⟨µ2| ˆ̄H |HF⟩ = 0

⟨µ3| ˆ̄H |HF⟩ = 0

...

(1.92)

where µn is the nth order excitation manifold (singles, doubles). The exact expressions
of the CC amplitude equations at different truncation levels may be evaluated using the
Baker–Campbell–Hausdorff (BCH) formula, but will not be discussed in detail here. As an

25 1.8. Perturbation Theory

example of the exact form of the working equations, consider the CCSD model truncated
at doubles excitation. Equation 1.92 then reduces to

⟨µ1| ˆ̄H +
[
ˆ̄H, T̂2

]
|HF⟩ = 0 (1.93)

⟨µ2| ˆ̄H +
[
ˆ̄H, T̂2

]
+

1

2

[[
ˆ̄H, T̂2

]
, T̂2

]
|HF⟩ = 0 (1.94)

The system of equations 1.92 depends on its own solution, and therefore needs to be
solved iteratively. They are most commonly solved using a modified Newton method
with DIIS acceleration.

1.8 Perturbation Theory

Coupled cluster and configuration interaction offer a systematic way to move towards the
exact solution to the Schrödinger equation by means of adding more Slater determinants.
However, the calculation of the CC and CI wave functions is very expensive, and it may be
profitable to look at alternative schemes. Perturbation theory (PT) is a different approach
to systematically close in on the exact wave function. It is based on the idea that the
exact solution differs only slightly from a previously solved problem for a simpler, related
system.

1.8.1 Rayleigh-Schrödinger Perturbation Theory

Perturbation theory is used in a wide range of fields and disciplines in natural sciences and
mathematics. In the context of molecular electronic structure theory, the most widely
used form of PT is Rayleigh-Schrödinger perturbation theory (RSPT). In RSPT, the
Hamiltonian is partitioned according to

Ĥ = Ĥ0 + Û (1.95)

where Ĥ0 is some reference zero-order Hamiltonian with known eigenfunctions |Ψ0
i ⟩ and

eigenvalues E0
i . Û is a small perturbation to the system. The exact wave function and

energies may be expanded in orders of the perturbation

|Φi⟩ =
∞∑
k=0

|Ψ(k)
i ⟩ (1.96)

Ei =
∞∑
k=0

E
(k)
i (1.97)

The task at hand is to derive closed expressions for higher order terms of order n using
terms of order n − 1 and lower. Substituting the expressions 1.96 and 1.97 into the
Schrödinger equation gives

(
Ĥ0 + Û

) ∞∑
k=0

|Ψ(k)
i ⟩ =

(
∞∑
k=0

E
(k)
i

)(
∞∑
k=0

|Ψ(k)
i ⟩
)

(1.98)

1.8. Perturbation Theory 26

Collecting terms of order n, the above expression may be rewritten as a system of equa-
tions involving the residual of the Hamiltonian:

(Ĥ0 − E
(0)
i) |Ψ(n)

i ⟩ = −Û |Ψ(n−1)
i ⟩+

n∑
k=1

E
(k)
i |Ψ(n−k)

i ⟩ (1.99)

Or alternatively, when multiplied with the inverse of the Hamiltonian residual:

|Ψ(n)
i ⟩ = −(Ĥ0 − E

(0)
i)−1

(
Û |Ψ(n−1)

i ⟩+
n∑

k=1

E
(k)
i |Ψ(n−k)

i ⟩
)

(1.100)

Furthermore, to obtain simpler expressions for E(k)
i , the normalization is chosen such that

⟨Ψ(0)
i |Φi⟩ = 1, also known as intermediate normalization. From this it follows that the

approximate wave functions are orthogonal to the reference states

⟨Ψ(0)
i |Ψ(n)

i ⟩ = 0 n = 1, 2, 3, . . . (1.101)

Left-projection of ⟨Ψ(0)
i | onto the system of equations in 1.99 and using the orthogonality

condition 1.101 yields the master equations for the RSPT energies

E
(n)
i = ⟨Ψ(0)

i | Û |Ψ(n−1)
i ⟩ n > 0 (1.102)

The approximate energy expressions can be solved for without the need of iterative pro-
cedures, and closed expressions may be derived for a given reference. One way of solving
1.102 is to expand the first-order wave function in terms of the the eigenfunctions of Ĥ0:

|Ψ(1)
i ⟩ =

∑
n

c(1)n |Ψ(0)
i ⟩ (1.103)

Multiplying from the left by ⟨Ψ(0)
n |, the expansion coefficients can be obtained with

⟨Ψ(0)
n |Ψ(1)

i ⟩ = c(1)n (1.104)

From the expression of the first order wave function in 1.96

|Ψ(1)
i ⟩ = −(Ĥ0 − E

(0)
i)−1(Û + E

(1)
i) |Ψ(1)

i ⟩ (1.105)

it follows that the first order expansion coefficients are given by

c(1)n =
⟨Ψ(0)

n | Û |Ψ(0)
0 ⟩

E
(0)
i − E

(0)
n

(1.106)

Higher order energy expressions can then be "build up" step by step from lower order
approximations following the normalization and orthogonality conditions. The first few
closed-form RSPT energy expressions are given by

E
(1)
0 = ⟨Ψ(0)

0 | Û |Ψ(0)
0 ⟩ (1.107)

E
(2)
0 =

∑
n

∣∣∣⟨Ψ(0)
0 | Û |Ψ(0)

n ⟩
∣∣∣2

E
(0)
0 − E

(0)
n

(1.108)

27 1.8. Perturbation Theory

E
(3)
0 =

∑
nm

⟨Ψ(0)
0 | Û |Ψ(0)

n)⟩ ⟨Ψ(0)
n | Û |Ψ(0)

m ⟩ ⟨Ψ(0)
m | Û |Ψ(0)

0 ⟩
(E

(0)
0 − E

(0)
n)(E

(0)
0 − E

(0)
m)

− E
(1)
0

∑
n

∣∣∣⟨Ψ(0)
0 | Û |Ψ(0)

n ⟩
∣∣∣2

(E
(0)
0 − E

(0)
n)2

(1.109)

. . .

1.8.2 Møller-Plesset Perturbation Theory

The success of RSPT is closely related to the choice of the zero-order Hamiltonian. The
most popular variant of RSPT is Møller-Plesset perturbation theory (MPPT), where Ĥ0

is taken as the Fock operator from HF theory

Ĥ0 = f̂ =
∑
P

ϵPa
†
PaP (1.110)

The zero-order wave function |Ψ(0)
0 ⟩ corresponds to the Hartree Fock wave function |HF⟩.

The perturbation operator takes the form

Û = Ĥ − f̂ =
∑
PQRS

ĝPQRSa
†
Pa

†
RaSaQ − V̂ HF (1.111)

where V HF is the Hartree-Fock potential. The zero-order component of the ground state
energy is simply given as the sum of the orbital energies

E
(0)
0 =

∑
I

ϵI (1.112)

The first order energy is

E
(1)
0 = ⟨Ψ(0)

0 | Û |Ψ(0)
0 ⟩

= ⟨HF| Û |HF⟩

= −1

2

∑
IJ

(⟨IJ |IJ⟩ − ⟨IJ |JI⟩)

= −1

2

∑
IJ

⟨IJ | |IJ⟩

(1.113)

where ⟨IJ | |IJ⟩ are the antisymmetrized two-electron integrals in the MO basis. The
energy sum E

(0)
0 + E

(1)
0 corresponds to the Hartree-Fock energy. Therefore, the first

correction to the Hartree-Fock energy occurs at the second order of MPPT. Using the
notation MPn to refer to MPPT including perturbations up to the nth order, the second
order energy reads

E
(2)
0 = EMP2 =

1

4

∑
IJAB

|⟨IJ | |AB⟩|2
ϵI + ϵJ − ϵA − ϵB

(1.114)

1.8. Perturbation Theory 28

For a closed-shell molecule, the restricted MP2 energy can be obtained by spin-separation
similarly to how it was done in Section 1.4.3 for Hartree-Fock:

ERMP2 =
∑
ijab

(ia | jb) [2 (ia | jb)− (ib | ja)]
ϵi + ϵj − ϵa − ϵb

=
∑
ijab

tiajb [(ia | jb)− (ib | ja)]
(1.115)

where t are the MP2 amplitudes. Furthermore, the MP2 energy may be split into indi-
vidual electron pair contributions, analogous to CC:

EMP2 =
∑
ij

eij (1.116)

The energy expressions for MP3 and beyond will not be discussed here.

1.8.3 Convergence Behavior of the MPn series

MP2 is a computationally cheap correlated method that includes 80% to 90% of electron
correlation method, scaling with O(N5) as a function of the system size N . Higher order
variants like MP3 or MP4 are considerably less popular.

Ideally, the MPn energy should converge monotonically towards the limit with in-
creasing order of perturbation. However, such a behavior is not guaranteed. Contrary
to the CI energy, which is determined variationally and therefore has a lower bound, the
same is not true for MPPT and the MPn series may become divergent or oscillating for
larger basis sets, especially if diffuse functions are used. MP2 improves on the HF wave
function, but slightly overestimates correlation energy. MP3 underestimates electron cor-
relation, and properties computed at this level are often inferior to those computed at
second order. MP4 again overestimates correlation effects, but is better than MP2.

Due to the erratic convergence behavior of MPPT, higher order variations like MP3
or MP4 have fallen somewhat out of favor in recent years. Moreover, the requirement of
the single-determinant HF wave function being a suitable starting guess makes MPPT
ill-suited to describe static correlation effects.

1.8.4 Møller-Plesset Perturbation Theory with Spin-Component-
Scaling

With the rise of density functional theory (DFT), even the computationally inexpensive
MP2 method fell out of use in favor of DFT which often shows better performance and
accuracy for the same molecular systems.

In the early 2000s, MPPT again gained more popularity with the introduction of
spin-component scaling (SCS) by Grimme et al. [9, 10] which greatly improves on the
accuracy of MP2.

Consider again the MP2 energy in the unrestricted case in Equation 1.115. The energy
contributions can be split into same-spin (SS) and opposite spin (OS) components:

EMP2−SS =
∑
IJ

eIJ + eIJ (1.117)

29 1.8. Perturbation Theory

EMP2−OS =
∑
IJ

eIJ (1.118)

with

eIJ =
∑
AB

tIAJB((IA | JB)− (IB | JA)) (1.119)

eIJ =
∑
AB

tIAJB(
(
IA | JB

)
−
(
IB | JA

)
) (1.120)

eIJ =
∑
AB

tIAJB

(
IA | JB

)
(1.121)

The correlation effects in SS and OS are of different nature as discussed in Section 1.5.
Hartree-Fock accounts for Fermi correlation by the antisymmetry principle but does not
fully account for Coulomb correlation. MP2 cannot fully rectify this deficiency in the
starting guess. SCS-MP2 accounts for this behavior by scaling down the SS components
and scaling up the OS components

ESCS−MP2 = cosEOS−MP2 + cssESS−MP2 (1.122)

where the scaling factors are determined empirically by fitting to a data set, with css =
6/5 and cos = 1/3. In later iterations of SCS-MP2, the two parameters were unified by
introducing the relationship

css = 4− 3cos (1.123)

whit css and cos set to 0.4 and 1.2 respectively.
SCS-MP2 gives considerable improvements to reaction energies [9], barrier heights

[11, 12], geometries and vibrational frequencies [13], comparable to QCISD(T) with errors
on the order of 1.7 kcal/mol. Strictly speaking, SCS-MP2 is no longer an ab initio method,
but semi-empirical. SCS was initially an ad-hoc improvement to the description of the
wave function, but it is possible to justify its position in the theoretical framework of
MPPT [14, 15].

Over the years, many different variations of SCS-MP2 have been proposed [16, 17, 18,
19]. One variation is the so-called spin-opposite scaled (SOS) MP2 method [16], where
the SS components are simply ignored:

ESOS−MP2 = cosEOS−MP2 (1.124)

with cos set to 1.3 instead of 1.2 as in SCS-MP2. The method can be justified by observing
that the SS components already do not contribute a lot to the SCS-MP2 energy. SOS-
MP2 has comparable or slightly worse accuracy than SCS-MP2. The major advantage
which makes SOS-MP2 one of the more attractive spin-component scaling variants is
the reduced scaling O(N4) compared to O(N5) for (SCS)-MP2 when the density-fitting
approximation is used.

1.8.5 Hybrid Coupled Cluster Methods

Perturbational approaches may also be used to obtain approximate hybrid coupled cluster
methods.

1.9. Performance of Correlated Methods 30

Scaling Non-correlated CI methods CC methods MP methods
O(N4) HF
O(N5) CIS CC2, SCS-CC2 MP2, SCS-MP2
O(N6) CISD CCSD MP3
O(N7) CC3, CCSD(T) MP4
O(N8) CISDT MP5 CCSDT

Table 1.1: Formal scaling of popular electronic structure methods

Consider again the CCSD equations for the coupled cluster singles 1.93 and doubles
amplitudes 1.94. Introducing the same partitioning of the Hamiltonian as in MP2 with

Ĥ = F̂ + Û (1.125)

where Û is also known as the fluctuation potential, the coupled cluster singles doubles
method by Christiansen et al. [20] approximates the doubles amplitudes to first order
only. The doubles equation 1.94 thus becomes

⟨µ2|
[
F̂ , T̂2

]
+ Ĥ |HF⟩ = 0 (1.126)

Equations 1.93 and 1.126 define the so-called CC2 model. The doubles equations give
an MP2-like closed expressions, and only the singles amplitudes need to be determined
variationally.

The CC2 energy has a similar accuracy and computational effort to MP2. Spin-
component scaling has been generalized to CC2 as well [21, 22], with similar improvements
to its accuracy [23].

Higher order CC methods like CCSDT can be approximated in a similar way to
obtain the approximate CC3 method [24], where triples contributions are approximated
to second order. A related method is the coupled cluster singles doubles with perturbative
non-iterative triples method [25], abbreviated as CCSD(T), where triples contributions
to the energy are added to the CCSD ground state energy. CCSD(T) and CC3 have
comparable accuracy and cost.

1.9 Performance of Correlated Methods
The previous sections give insight into the most popular, single-determinant, correlated
electronic structure methods. The methods vary widely in accuracy, computational cost
and convergence behavior.

Table 1.1 gives the formal computational scaling for some of the methods. The no-
tation O(), also known as Big O notation, is the standard way of indicating the limiting
behavior of algorithms for increasing input size. N is used as a measure of the molecular
system size (e.g. number of atoms or basis functions). Formal scaling means that factors
like sparsity or locality are not considered.

At the time of writing, on current work stations, O(N5) methods are limited to system
sizes of around 50 to 100 atoms, and O(N6) to sizes of several tens of atoms. Models
with O(N7) scaling and beyond are not used routinely.

31 1.9. Performance of Correlated Methods

In terms accuracy, the current trend is often observed [4]:

HF << MP2 ≈ CC2 < CCSD < MP4 < CCSD(T) (1.127)

32

Chapter 2

Electronic Excited States

"The XXIst century might be very well the century of light. Understanding
and controlling photoexcited systems will be crucial for future research in
many branches of optics and photonics."

— L. González, D. Escudero, L. Serrano-Andrés (2011) [26]

A quantum system is said to be in an excited state if that state is at a higher energy
level than the ground state, for example by absorption of one or more light quanta. While
computing ground state properties has become routine even for larger molecules, the
extension of the standard models to excited state properties is an active field of research.
Triggered by the development of complex, high-resolution spectroscopic techniques such
as X-ray spectroscopy [27], and advances in photochemistry [26], the demand for accurate
and computational methods of excited states has been steadily increasing. Electronic
spectra are often very difficult to interpret, and computational spectroscopy has emerged
as an important tool to explain the underlying mechanisms.

Excited states are notoriously difficult to model, and similarly to their ground state
analogs, there is no single method to rule them all. Over the years, many different
approaches have been proposed, each with their strengths and weaknesses. This section
will go over the most popular, single-reference methods available, with a focus on the
algebraic diagrammatic construction method.

2.1 Nature of Excited States
The potential energy landscape of electronic excited states is complex and governed by
various absorption and decay mechanisms. Excitations are generally grouped into three
categories:

1. Valence excitations, where valence electrons are excited into (local) higher lying
unoccupied orbitals above the Fermi level

2. Rydberg excitations, where electrons are excited into very diffuse orbitals around
the molecule

3. Charge transfer excitations (CT), where electrons are excited to different parts of
the molecule or different molecules entirely.

33 2.1. Nature of Excited States

S1

S0

T1

vertical
excitation

phosphorescence

fluorescence

ISC

CoIn

hν

hν'

hν''

Figure 2.1: Potential energy surface of a chemical system depicting the major pathways
encountered in spectroscopy and photochemistry.

Excited states typically have lifetimes and decay back to the ground state via several
different mechanisms. Figure 2.1 illustrates the different processes. The notation S, D,
T ... is used to denote singlet, doublet, triplet ... states and the subscripts indicate the
energy level, where 0 is the ground state, 1 is the first excited state for the given spin
symmetry, 2 is the second excited state etc. The transition from the ground state S0 to
the excited state S1 on the same reaction coordinate is known as a vertical excitation. The
excited state may be in a higher vibrational state at that reaction coordinate (indicated by
the lines within the potential wells), and relax to the lowest level. The difference between
these two points is known as the reorganization energy, and the difference between the
lowest vibrational states of S0 and the excited state is known as the adiabatic excitation
energy. The molecule returns to the ground state by emitting a photon in a process
known as fluorescence.

Surfaces of different states may cross at specific reaction coordinates. The crossing
between states with different multiplicity (e.g. S1 to T1) is known as an inter-system
crossing (ISC). The process between two states where the crossing takes place between
molecules of the same spin-symmetry is known as internal conversion (IC), and takes
place at a conical intersection (CoIn). The S1 excited state can cross over to the T1 state
via an ISC which then decays in a process known as phosphorescence, or it can decay
radiation-less via the CoIn. At the ISC and CoIn, the Born-Oppenheimer approximation
breaks down due to non-adiabatic coupling between electrons and nuclei. ISCs and CoIns
are central to describing the dynamics in photochemical events [28, 29, 30, 31].

For the sake of brevity, this chapter will focus on the computational of vertical exci-
tation energies only.

2.2. Explicit Optimization of the Excited State Wave Function 34

2.2 Explicit Optimization of the Excited State Wave
Function

One of the conceptually simplest approaches for obtaining information on excited states is
explicit optimization of the excited wave function. The excitation energy is then directly
computed by taking the difference between the ground state energy and the energy of
excited state i

E0→i = Ei − E0 (2.1)

Any ground state model discussed in the previous chapter can be used. This approach to
excited states is known by different names, depending on which approximation is used.
Generally, the Greek letter ∆ is just prepended to the method name, giving ∆SCF or
∆HF for Hartree-Fock [32, 33, 34], ∆KS (Kohn-Sham) or ∆DFT for DFT [35, 36, 37],
and so on. At the moment of writing, excitation energies are also routinely computed
using ∆MPn [38], ∆CI, ∆MCSCF [39] and ∆CC [38, 40]. From here on out, ∆X will be
used as an umbrella term to group all aforementioned terms.

Despite the simplicity of the ∆X methods, obtaining a solution to the KS or HF
equations for higher energy states is non-trivial. By the variational principle, the SCF
method finds the lowest energy solution. A HF type excited wave function may therefore
collapse to that lowest energy solution during the SCF procedure (variational collapse).
For small symmetric molecules, it is possible to converge excited states if they have a dif-
ferent spin multiplicity or spatial point group than the ground state. If the ground and
excited state have the same symmetry however, this approach will not work. This tech-
nical difficulty was one of reasons why ∆X methods never gained much ground compared
to more sophisticated methods.

In 2008, Gilbert et al. [41] proposed a modification the SCF procedure that prevents
variational collapse, known as the maximum overlap method (MOM). On each iteration,
the new guess orbitals are obtained by diagonalization of the Fock matrix which is cons-
tructed using the old coefficients

FCnew = SCnewϵ (2.2)

At this step, it is possible to decide which of those new orbitals are actually occupied.
Normally, the nocc eigenvectors with the lowest eigenvalues are chosen as the new occupied
MOs. Alternatively, the MOM protocol chooses the set of new MOs that overlap most
with the span of the old coefficients, by evaluating the overlap matrix

O = (Cold)†Cnew (2.3)

The maximum overlap method has led to a renewed interest in the ∆X methods in
recent years, especially in the context of core excitations and ionizations as they capture
relaxation effects.

Adding to the above-mentioned technical difficulties, there are several other known
criticisms. First, each excited state requires a separately optimized wave function, which
may become a limiting factor for multi-state calculations. Second, the ∆X methods
assume that a transition can be represented by an excitation involving only two orbitals.
The separate optimization generally leads to the excited states being non-orthogonal,

35 2.3. The Algebraic Diagrammatic Construction Scheme

and there is considerable overlap between high and low energy states [42, 43, 41]. ∆X is
therefore assumed to be only applicable to low-lying excited states. Third, the transition
moments cannot be computed directly, but need to be evaluated using Fermi’s Golden
Rule [44]. Furthermore, to allow a comparison with experimental XAS spectra, the
calculated transition energies must be convoluted, for example by Gaussian functions, to
account for the finite experimental resolution and lifetime of the electron hole. Finally,
using an unrestricted HF or KS formalism leads to spin contamination. A single excited
state is not a pure singlet but a mixture of singlet and triplet state. Spin contamination
can be alleviated by applying Ziegler’s spin purification formula [45]:

ES = 2Emixed − ET (2.4)

Despite these disadvantages, ∆X is still an attractive and low-cost alternative to
response and propagator methods.

2.3 The Algebraic Diagrammatic Construction Scheme
The algebraic diagrammatic construction (ADC) scheme is an excited state method ori-
ginating from Green’s functions [46, 6]. By diagrammatic perturbation expansion of
electron propagators, ADC gives a hierarchy of methods which systematically converge
to the exact solution (full CI).

2.3.1 Many-Body Green’s Function

Many-Body Green’s Functions (MBGFs) are powerful tools to treat electron correlation
in quantum mechanics. They are more commonly encountered in (condensed matter)
physics, for the modeling of strongly correlated systems such as metals or semi-conductors.
MBGFs get their name from their building blocks: Green’s functions (GFs). GFs, or
correlation functions, are special solutions to differential equations (DEQs).

Consider the inhomogeneous DEQ in one dimension:

D̂xy(x) = f(x) (2.5)

where D̂ is a linear differential operator. The general solution can be divided into a
homogeneous and a special part

y(x) = yhom(x) + yspec(x) (2.6)

where yhom is the solution to the homogeneous equation D̂yhom(x) = 0. The special
solution can be expressed in terms of GFs which are defined as the solution to the DEQ
where the inhomogeneity is a Dirac function:

D̂xG(x, x′) = δ(x− x′) (2.7)

A special solution can then be constructed by

yspec =

∫
G(x, x′)f(x′)dx (2.8)

2.3. The Algebraic Diagrammatic Construction Scheme 36

for any inhomogeneity f(x).
The Schrödinger equation is also a differential equation where the inhomogeneity takes

the role of the external perturbation V[
i
∂

∂t
+

1

2
∇2

]
Ψ(r, t) = V (r, t)Ψ(r, t) (2.9)

The wave function may then be expressed by

Ψ(r, t) =

∫
G(r, t; r′, t′)Ψ(r′, t′) (2.10)

The GF has the effect of propagating the wave function from a given time and position
to another time and space coordinate. GFs are therefore also known as propagators.

The MBGFs form a hierarchy, in which the one-particle GFs are the lowest rank
(Figure 2.2). One-particle GFs can be used to extract information on 1-electron processes
such as ionization and electron attachment. Two-particle GFs allow to gain information
on two-particle processes such as electron excitation (electron-hole) and two-electron
ionization (electron-electron).

r', t'

r, t

t > t'

r', t'

r, t

t < t'

r2, t2r1, t1

r2, t2r1, t1

r1', t1' r2', t2'

r2', t2'r1', t1'

(a) electron (e) propagator

(b) hole (h) propagator (d) electron-hole (p-h) propagator

(c) electron-electron (p-p) propagator

t1 > t1'
t2 > t2'

t1 > t1'
t2 < t2'

Figure 2.2: Hierarchy of Green’s functions, illustrated using a diagrammatic notation.
The squiggly lines indicate interactions between particles and/or holes.

One-electron Propagator

To see how GFs can be used for excited state analysis, consider the 1-electron propagator
in the time domain

Gpq(t, t
′) = −iΘ(t− t′) ⟨Ψ0| T̂ (ap[t]a†q[t′]) |Ψ0⟩ (2.11)

37 2.3. The Algebraic Diagrammatic Construction Scheme

with Θ as the Heaviside step function, and the time-ordering operator

T̂ =

{
ap[t]a

†
q[t

′] for t > t′

−a†q[t′]ap[t] for t < t′
(2.12)

which plays the role of conserving symmetry with respect to time. It is useful to switch
to the energy representation of the GF by Fourier transformation of Equation 2.11

Gpq(ω) =
∑
n

⟨Ψ0| cp |ΨN+1
n ⟩ ⟨ΨN+1

n | c†q |Ψ0⟩
ω + E0 − EN+1

n + iη︸ ︷︷ ︸
G+(t, t′)

+
∑
n

⟨Ψ0| c†q |ΨN−1
n ⟩ ⟨ΨN−1

n | cp |Ψ0⟩
ω + EN−1

n − E0 − iη︸ ︷︷ ︸
G−(t, t′)

(2.13)

Equation 2.13 is also known as the spectral, energy or Lehmann representation of the 1p
GF. The superscripts N + 1 and N − 1 indicate the addition or removal of an electron
form the N -electron wave function. The left-hand sum G+ describes electron attachment
and the right-hand term G− describes electron detachment (ionization). The singularities
or poles of the spectral representation give the nth electron affinity and ionization energy

An = E0 − EN+1
n (2.14)

In = EN−1
n − E0 (2.15)

Moreover, the transition strengths (or pole strengths) are given by the spectroscopic
factors

x(n)
p = ⟨Ψ0| cp

∣∣ΨN+1
n

〉
, n ∈ {N + 1} (2.16)

x(n)
p =

〈
ΨN−1

n

∣∣ cp |Ψ0⟩ , n ∈ {N − 1} (2.17)

By analyzing the 1e-GF, it is therefore possible to compute the 1-particle excitation
spectrum.

Polarization Propagator

A solution to the single-particle SEQ can be given directly by integrating the GFs. For
many-electron systems however, one- and two-particle GFs are only building blocks for
many-body propagators. The 1p and 2p GFs allow to introduce the particle-hole response
function

Rpq,uv(t1, t2; t
′
1, t

′
2) = Gpq,uv(t1, t2; t

′
1, t

′
2)−Gpu(t1, t

′
1)Gqv(t2, t

′
2) (2.18)

also known as the two-particle correlation function. It is the variational derivative of
the 1p-GF with respect to an external perturbation V (t1, t2), for example in the form
of an incoming light quantum [47]. Similarly to the 1p-GF, analyzing the ph response
function gives information on the excited state. It can be evaluated directly via the
Bethe-Salpeter equations [48, 49], but their dependency on four time variables make
them difficult to solve. Fortunately, the same information is already contained in the
polarization propagator defined by

Π(t, t′) = lim
t1→t′1=t
t2→t′2=t′

iR(t1, t2; t
′
1, t

′
2) (2.19)

2.3. The Algebraic Diagrammatic Construction Scheme 38

The spectral representation of Π takes the form

Πp,q;r,s(ω) =
∑
n̸=0

⟨Ψ0| ĉ†q ĉp |Ψn⟩ ⟨Ψn| ĉ†rĉs |Ψ0⟩
ω − (En − E0) + iη︸ ︷︷ ︸

Π+(ω)

+
∑
n̸=0

⟨Ψ0| ĉ†rĉs |Ψn⟩ ⟨Ψn| ĉ†q ĉp |Ψ0⟩
−ω − (En − E0) + iη︸ ︷︷ ︸

Π−(ω)

(2.20)

Here, the poles correspond to the excitation energies ωn = En−E0 and the spectroscopic
factors give the transition strengths. The polarization propagator is therefore all one
needs to evaluate absorption or emission spectra of molecules. The left and right hand
terms are related by

Π(−ω)†+ = Π−(ω) (2.21)

Up to this point, the exact wave function was used in the expression for the propaga-
tors. To actually be able to compute the propagators, an approximate wave function is
necessary. There are a couple of choices. Coupled cluster linear response (CCLR) theory
inserts the CC ansatz for the wave function and explicitly evaluates expressions for the
polarization propagator truncated to a given level of excitations (CCSDLR, CCSDTLR
etc.). Alternatively, the polarization propagator may be evaluated using perturbation
theory.

Diagrammatic Perturbation

Similarly to the wave function in RSPT, the polarization propagator can be expanded as

Π = Π(0) +Π(1) +Π(2) + . . . (2.22)

with the same partitioning of the Hamiltonian

Ĥ = Ĥ0 + Û (2.23)

with the expressions for the wave functions and their energies given in Equations 1.96
and 1.102.

The perturbation series 2.22 can be evaluatred using either Rayleigh-Schrödinger per-
turbation theory or the Gell-Mann Low theorem [6] to obtain master equations for Π(n).
However, these equations are very tedious to solve, even more so than for Møller Plesset,
due to the rapidly increasing number of nested terms for higher n. For this reason, dia-
grams were introduced to better keep track of the contributions at a given level. Diagrams
were originally conceived by Feynman, and are a pictorial representation of mathematical
expressions for particle interactions. Over the years, many different types of diagrams
were proposed, such as Goldstone, Abrikosov or Hugenholtz diagrams. Each type has its
own set of rules on how to construct them and translate them into formulas for a given
problem. There is no formal proof: Feynman first worked out the rules by trial and error
[50], and later refined the model.

Figure 2.3 shows the Feynman diagrams (in Abrikosov notation) for the polarization
propagator up to second order. Each line represents a free particle (electron or hole).
Lines with the arrow pointing up are also known as particle lines, while those with the
arrow pointing down are known as hole lines. Here, the particle lines represent the time
evolution of the electron between t and t′. The perturbation V̂ is represented by dots

39 2.3. The Algebraic Diagrammatic Construction Scheme

Figure 2.3: Feynman diagrams in Abrikosov notation for the polarization propagator
through second order. Taken from [6].

in the diagrams, with the total number of dots indicating the perturbation order of the
diagram. Each dot contributes a factor of Vrs[r′s′] = ⟨rs| V̂ |r′s′⟩ − ⟨rs| V̂ |s′r′⟩ to the
mathematical expression of the diagram, where r, s and r′, s′ are incoming and outgoing
fermion lines. Each vertex contributes a free one-particle Green’s function G0

x(t, t
′). Fur-

ther rules need to be applied to get the correct sign factors from the direction of the lines.
As an example, consider the first order expression of the polarization propagator

Π
(1)
rs,r′s′(t, t

′) =
∞∑
−∞

V̂rs[r′s′]G
0
r(t, t1)G

0
s(t1, t)G

0
r′(t1, t

′)G0
s′(t

′, t1)dt1 (2.24)

Equation 2.24 can then be transformed to the energy representation. Alternatively, Gold-
stone diagrams can be used where the set of rules directly gives the spectral instead of
the time representation. For a more detailed explanation, the reader is referred to [6].

2.3.2 The ADC scheme

The polarization propagator cannot be directly "measured". To establish a bridge be-
tween theory and experiments, the transition function is introduced as

T (ω) = D†Π+D (2.25)

where D̂ is an arbitrary operator. The quantity measured during experiments is the
spectral function, given by

f(ω) =
1

π
Im{T (ω)} (2.26)

In the algebraic diagrammatic construction method, the transition function is reformula-
ted as

T (ω) = F†Γ(ω)F (2.27)

2.3. The Algebraic Diagrammatic Construction Scheme 40

where F are the modified transition moments and the non-diagonal matrix Γ is given by

Γ(ω) = [ω1− (K+C)] = [ω1−M] (2.28)

with the ADC matrix M. The transition function, the modified transition moments and
M can be expanded in a perturbation series as

T (ω) =
∞∑
n=0

T (n)(ω) =
∞∑
n=0

D†Π
(n)
+ D (2.29)

F =
∞∑
n=0

F(n) (2.30)

M = K+
∞∑
n=1

C(n) (2.31)

the nth order approximations to the transition function read

T (0)(ω) = F(0)† [ω1−K]−1F(0) (2.32)

T (1)(ω) = F(0)† [ω1−K]−1C(1) [ω1−K]−1F(0) + F(1)† [ω1−K]−1F(0)

+ F(0)† [ω1−K]−1F(1)
(2.33)

T (2)(ω) = F(1)† [ω1−K]−1F(1) + F(0)† [ω1−K]−1C(2) [ω1−K]−1F(0)

+ F(0)† [ω1−K]−1C(1) [ω1−K]−1C(1) [ω1−K]−1F(0)

+ F(1)† [ω1−K]−1C(1) [ω1−K]−1F(0)

+ F(0)† [ω1−K]−1C(1) [ω1−K]−1F(1)

(2.34)

By comparing the above nth order expression of the transition operator T (ω)(n) with the
mathematical expression of D†Π(n)(ω)D derived using the diagrammatic perturbation
of the polarization propagator, algebraic expressions can be constructed for the transi-
tion moments F, and the matrices K and C, hence the name algebraic diagrammatic
construction.

2.3.3 Structure of the ADC matrix

At its core, ADC reduces to the eigenvalue problem

MX = XΩ X†X = 1 (2.35)

The solution gives the vertical excitation energies Ω and the eigenvectors X. Figure 2.4
shows the structure of the ADC matrix M up to third order. Each second level n adds an
additional higher excitation manifold to the matrix. ADC(0) and ADC(1) include only
singles, while ADC(2) and ADC(3) also include doubles. The ADC(0) matrix contains
only the Hartree-Fock orbital energy differences:

M
(0)
ia,jb = Kia,jb = δijδab(ϵi − ϵa) (2.36)

The ADC(1) matrix adds the first order expression for C, and is identical to the CIS
matrix:

M
(1)
ia,jb = Kia,jb + C

(1)
ia,jb = δijδab(ϵi − ϵa)− ⟨ij| |ab⟩ (2.37)

41 2.3. The Algebraic Diagrammatic Construction Scheme

ADC(0)

ADC(1) ADC(2)

p-h

p-h

p-hp-h p-2h

2p-h

p-2h

2p-2h

p-hp-h p-2h

2p-h

p-2h

2p-2h

0

1 1

112

0

23

12

ADC(3)

Figure 2.4: Structure of the ADC matrix from zeroth through third order. The number
in each block indicates the perturbation order.

The ADC(2) matrix has additional second order contributions to the p-h block, and
approximates the 2h-1p, 1h-2p to first order and the 2p-2h to zeroth order.

C
(2)
ijab = C

(2)A
ijab + C

(2)B
ijab + C

(2)C
ijab (2.38)

C
(1)
ia,jkcl = ⟨kl| |id⟩ δac − ⟨kl| |ic⟩ δad − ⟨al| |cd⟩ δik + ⟨ak| |cd⟩ δil (2.39)

C
(1)
iajb,kc = ⟨kb| |ij⟩ δac − ⟨ka| |ij⟩ δbc − ⟨ab| |cj⟩ δik + ⟨ab| |ci⟩ δjk (2.40)

Kiajb,kcld = (ϵa − ϵi + ϵb − ϵj)δacδbdδikδjl (2.41)

with

C
(2)A
ijab =

1

4
δij
∑
ckl

[
t̂ackl ⟨kl| |bc⟩+ ⟨ac| |kl⟩ t̂klbc

]
(2.42)

C
(2)B
ijab =

1

4
δab
∑
cdk

[
t̂cdik ⟨jk| |cd⟩+ ⟨cd| |ik⟩ t̂jkcd

]
(2.43)

C
(2)C
ijab = −1

2

∑
ck

[
t̂acik ⟨jk| |bc⟩+ ⟨ac| |ik⟩ t̂jkbc

]
(2.44)

and the anti-symmetrized MP2 amplitudes

t̂ijab =
⟨ij| |ab⟩

ϵa + ϵb − ϵi − ϵj
(2.45)

Approximating the 2p-2h block to first order in the ADC(2) matrix, i.e. swapping the
2p-2h block with the one from the ADC(3) matrix, gives the so-called extended ADC(2)
scheme (ADC(2)-x). It is an ad-hoc extension without rigorous theoretical justification
[51].

2.3.4 Solving the Eigenvalue Problem

The eigenvalue problem 2.35 is typically solved using the Davidson procedure to extract
the first few eigenvalues, analogous to configuration interaction. Rather than constructing

2.3. The Algebraic Diagrammatic Construction Scheme 42

the whole ADC matrix, closed expressions are derived for the matrix-vector products of
the different blocks with a general trial vector u. For computational considerations, the
matrix-vector product is split into its individual components which are then multiplied by
the sub-blocks of the ADC matrix. In the case of ADC(2) and ADC(3), the components
are limited to singles and doubles contributions:

ria = Aia,jbujb + Aia,jbkcujbkc (2.46)
riajb = Aiajb,kcukc + Aiajb,kcldukcld (2.47)

While the Davidson procedure allows to circumvent storing the whole ADC matrix,
the storage of the trial vectors can still be a major memory bottle-neck for ADC(2) and
beyond. At second and third order, the doubles part of the vectors scale with n2

occn
2
vir,

and take up as much space as the MP2 amplitudes. As the Davidson subspace grows,
so does the number of trial vectors. Techniques such as subspace collapse (Section 11.2)
impose a maximum to the number of trial vectors held in memory, which helps to better
estimate the total storage size needed by an ADC calculation, although it increases the
total number of iterations to convergence.

An alternative technique to reduce the memory footprint of the Davidson diagona-
lization is doubles-folding. Consider the doubles part of the MVP which is computed
as

riajb = Aiajb,kcukc + Aiajb,kcldukcld = ωuiajb (2.48)

By refactoring the above expression, the doubles component of u can be reformulated in
terms of its singles component as

uiajb =
Aiajb,kcukc

ω − Aiajb,iajb

(2.49)

This technique is limited to ADC(2) only, where the doubles-doubles block is diagonal.
Substituting 2.49 into the singles expression of the MVP, and using the explicit formulas
for the doubles-doubles block gives

ria = Aia,jbujb + Aia,jbkc
Ajbkc,lduld

ω − ϵj − ϵk + ϵb + ϵc
(2.50)

The doubles part of the MVP is computed on-the-fly and does not need to be explicitly
stored, reducing the overall memory requirements of the Davidson diagonalization to
noccnvir. Doubles-folding corresponds to a multiplication of the singles vectors with an
effective ADC matrix which depends on the eigenvalue ω

rµ1 = A(ω)µ1ν1uν1 (2.51)

One drawback of doubles-folding is that a modified Davidson procedure is necessary to
solve this pseudo eigenvalue problem (see 11.2) due to the dependence on the excitation
energy ω.

43 2.3. The Algebraic Diagrammatic Construction Scheme

2.3.5 Intermediate states

An alternative route to deriving the ADC working equations is via the intermediate state
representation [52, 53, 54].

The previous derivation showed that the eigenvalues of the ADC matrix M correspond
to the excitation energies, and that it can be expanded in a perturbation series. These
features suggest that M is a representation of the energy-shifted Hamiltonian

M = H− E0 (2.52)

with the matrix elements
MIJ = −⟨Ψ̃I | Ĥ − E0 |Ψ̃J⟩ (2.53)

Here, the space of the shifted Hamiltonian is spanned by a set of intermediate states.
Starting from the set of correlated excited (CE) states

|Ψ#
I ⟩ = ĈI |Ψ0⟩ (2.54)

with the excitation operators

{ĈI} = {a†aai; a†bajc†aci; . . .} (2.55)

the intermediate states are obtained by a step-wise Gram-Schmidt orthogonalization of
the CE states. The ground state |Ψ0⟩ is approximated by MPPT. Constructing the
intermediate states from the MPn ground state wave function and evaluating the matrix
elements according to 2.53 gives the nth order ADC matrix. For this reason, ADC is also
known as an "excited state method for Møller-Plesset".

2.3.6 Spin-Opposite Scaled ADC

The spin-opposite scaling method previously applied to MP2 and CC2 can be expanded to
ADC(2) as well. There are two version of SOS-ADC(2): the version which will be referred
to as "standard" SOS-ADC(2) derived from the SOS-CC2 linear response equations [22],
and ISR-SOS-ADC(2) derived from SOS-MP2 using the intermediate state representation
[55]. Standard SOS-ADC(2) introduces the following modifications to the ADC(2) matrix:

1. The same-spin contributions of antisymmetrized MP2 amplitudes are ignored, and
the opposite-spin components are scaled up:

t̂SOS
iajb = cost̂iajb

(
1− δσ(i)σ(j)

)
(2.56)

where σ(x) gives the spin of x, and with the amplitudes given by

t̂iajb =
⟨ij| |ab⟩

ϵa + ϵb − ϵi − ϵj
(2.57)

2. All same-spin entries of the 2p-1h and 1p-2h blocks of the ADC(2) matrix are
deleted (αααα and ββββ), and the remaining blocks are scaled up:

Mia,kcld = cosc [⟨kl| |id⟩ δac − ⟨kl| |ic⟩ δac − ⟨al| |cd⟩ δik + ⟨ak| |cd⟩ δil]
×
(
1− δσ(k)σ(l)

) (2.58)

2.4. Response Theory 44

Miajb,kc = cosc [⟨kb| |ij⟩ δac − ⟨ka| |ij⟩ δbc − ⟨ab| |cj⟩ δik + ⟨ab| |ci⟩ δjk]
×
(
1− δσ(i)σ(j)

) (2.59)

where cosc is the opposite-spin coupling constant, typically set to 1.15 or 1.17 [55].

For open-shell molecules, this drastically reduces the size of the matrix, reducing the
prefactor of the method. By applying density fitting, the total scaling can be further
reduced by an order of magnitude [22].

ISR-SOS-ADC(2) does not modify the off-diagonal blocks of the ADC(2) and only
replaces the amplitudes as in Equation 2.56, and therefore offers no substantial improve-
ment.

2.3.7 Performance and Accuracy

Table 2.1 lists the formal scaling, mean errors and standard deviation of excitation ener-
gies for the ADC(n) methods. ADC(2), similarly to MP2, offers an economical way of
computing excited state properties compared to other excited state methods with similar
accuracy. ADC(2)-x and ADC(3) have the same scaling factor, but ADC(2)-x has a lower
prefactor. The ADC methods offer high accuracy and high precision on the order of a few
tenths of eV . The SOS method can significantly reduce the errors, but it should be kept
in mind that the spin coefficients were fitted to the benchmark set, and similar accuracy
is not guaranteed for other systems.

Method Scaling Singlets Triplets
ADC(2) O(N5) 0.22 ± 0.38a 0.12 ± 0.16 a

SOS-ADC(2) O(N5) 0.00 ± 0.15b 0.06 ± 0.10b
ADC(2)-x O(N6) -0.70 ± 0.37a -0.55 ± 0.20a
SOS-ADC(2)-x O(N6) -0.11 ± 0.18b -0.04 ± 0.12b
ADC(3) O(N6) 0.12 ± 0.28c -0.18 ± 0.16 c

Table 2.1: Mean absolute errors (MAE) and deviations (in eV) for closed-shell molecules
at various levels of theory. a [56], b [55], c [57]

2.4 Response Theory
Response theory is a popular tool similar to propagators that provides methods for com-
puting the response of a molecule to an external, time-dependent perturbation, such as an
electromagnetic field. It can be applied to different levels of theory, such as Hartree-Fock,
DFT or Coupled Cluster, to gain information on various excited state properties.

2.4.1 Exact Response Theory

Consider a molecular system described by the time-independent Hamiltonian Ĥ0 with
eigenfunctions |Ψ0⟩ exposed to an external perturbation V̂ given by [58]

V̂ (t) =

∫ ∞

−∞
V̂ ωeiωtdω (2.60)

45 2.4. Response Theory

where V̂ ω is the representation of the external perturbation in the frequency domain, and
ϵ is a real positive infinitesimal. It has the role of slowly "switching on" the perturbation
as time progresses. For t→ −∞, the perturbation is zero, and at t→∞, the perturbation
is fully applied. This slow gradual switching makes sure that the process is adiabatic.

The time-dependent wave function may be expanded in orders of the perturbation
V̂ (t) as

|Ψ(t)⟩ = |Ψ0⟩+ |Ψ(1)(t)⟩+ |Ψ(2)(t)⟩+ . . . (2.61)

which can be determined using Ehrenfest’s theorem. Using this wave function expansion,
the expectation value of a time-independent operator Â reads

⟨Ψ(t)| Â |Ψ(t)⟩ = ⟨Ψ0| Â |Ψ0⟩+
∫ ∞

−∞
⟨⟨Â; V̂ ω1⟩⟩︸ ︷︷ ︸
linear response

e(−iω1+ϵ)tdω1

+
1

2

∫ ∞

−∞

∫ ∞

−∞
⟨⟨Â; V̂ ω1 , V̂ ω2⟩⟩︸ ︷︷ ︸
quadratic reponse

e(−i(ω1+ω2)+2ϵ)tdω1dω2 + . . .

(2.62)

The expansion coefficients ⟨⟨Â; ·⟩⟩ are known as response functions. Different orders
(linear, quadratic...) describe different processes. The linear response function may be
used to describe single-photon absorption and polarizability, while the quadratic response
function is needed to describe two-photon absorption and hyperpolarizability.

The spectral representation of the linear response function takes the form

⟨⟨Â; B̂⟩⟩ =
∑
k

⟨Ψ0| Â |Ψk⟩ ⟨Ψk| B̂ |Ψ0⟩
ω − En + E0

− ⟨Ψ0| B̂ |Ψk⟩ ⟨Ψk| Â |Ψ0⟩
ω + En − E0

(2.63)

and can be analyzed similarly to the polarization propagator: the poles of the function
give the excitation energy

ωi = Ei − E0 (2.64)

and the residues give information about the transition moments

lim
ω→ωi

(ω − ωi)⟨⟨Â; B̂⟩⟩ = ⟨Ψ0| Â |Ψi⟩ ⟨Ψi| B̂ |Ψ0⟩ (2.65)

for the ith excited state. The linear response function and the polarization propagator
are related by [6]

⟨⟨Â; B̂⟩⟩ =
∑
rsr′s′

ArsΠBr′s′ (2.66)

The expressions for response functions are exact, and need to be evaluated by intro-
ducing approximations. Similar to the ADC scheme, finding the poles and residues of the
response function ultimately reduces to an eigenvalue problem of the form

Av = vΩ (2.67)

where A can be symmetric (HF,DFT) or non-symmetric (CC).

2.4. Response Theory 46

2.4.2 Time-Dependent Hartree-Fock

There are many different routes for deriving the expressions for the matrix elements of
A for linear response time-dependent Hartree-Fock (TDHF) [59], which all lead to the
same eigenvalue problem given by[

A B
B∗ A∗

] [
X
Y

]
= ω

[
1 0
0 −1

] [
X
Y

]
(2.68)

where A is the matrix of single excitations, and B couples the excitations with the de-
excitations. The matrix elements are given by

AIA,JB = δIA,JB(ϵA − ϵI) + ⟨IJ | |AB⟩ (2.69)
BIA,JB = ⟨IJ | |AB⟩ (2.70)

Setting the coupling block B to zero, the TDHF equations reduce to the CIS equations.
Even if TDHF can therefore be seen as an extension to CIS, it does not give a considerable
improvement. Over the years, it has fallen into disuse.

Linear response TDHF is equivalent to the random phase approximation.

2.4.3 Time-Dependent DFT

The foundations of time-dependent DFT will not be discussed here. The reader is referred
to [59] and references therein for more details.

The TDDFT linear response equations are similar in structure to TDHF, reducing to
the same eigenvalue problem 2.68, with two different blocks A and B given by

AIA,JB = δIA,JB(ϵA − ϵI) + ⟨IJ |AB⟩+ ⟨IJ | f̂xc |AB⟩ (2.71)

BIA,JB = ⟨IJ |AB⟩+ ⟨IJ | f̂xc |AB⟩ (2.72)

Here, the exchange contributions are replaced by the so-called xc kernel. In the adiabatic
local density approximation (ALDA), the time dependent xc kernel is substituted by a
time-independent kernel

⟨IJ | f̂xc |AB⟩ =
∫

ϕ∗
i (r)ϕj(r

′)
∂2Exc

∂ρ(r)ρ(r′)
ϕa(r)ϕ

∗
b(r

′) (2.73)

which allows the use of standard xc functionals for the ground state.
Since its introduction, TDDFT has evolved to become the most prominent method

for computing excited state energies and transition moments. It has a computational
cost on the same order as CIS, with an error of ≈ 0.3 eV [60] for low-lying valence states.
However TDDFT is not a panacea: excitation energies for Rydberg states, valence states
of molecules with extended π-systems, doubly excited states and charge-transfer states
exhibit errors on the order of several eV.

2.4.4 Coupled Cluster

The derivation of the coupled cluster response equations is again a very lengthy and
complex process [58, 61]. The most important steps will be summarized in this section.

47 2.4. Response Theory

For a molecular system in the presence of a static external perturbation, such as a
constant electric or magnetic field with strength parameter λ, the Hellmann-Feynman
theorem relates the expectation value of X̂λ to the energy derivative by

∂E

∂λx

= ⟨Ψ| ∂Ĥ
∂λx

|Ψ⟩ = ⟨Ψ| X̂ |Ψ⟩ (2.74)

By perturbation expansion of X̂, the nth order property can then be related to the
nth order derivative of the wave function energy, which is in most cases is more readily
evaluated than the expectation value. For time-dependent perturbations, the theorem
can be reformulated as

∂{Q}T
∂λx

= ⟨Ψ(t)| X̂(t) |Ψ(t)⟩ (2.75)

where {Q}T is the time-averaged quasi-energy given by

{Q}T =
1

T

∫ T

0

⟨Ψ(t)| (Ĥ − i
∂

∂t
) |Ψ(t)⟩ (2.76)

The time-averaged quasi-energy is the analog of the ground state energy for static per-
turbations in Equation 2.74. Using the perturbation expansion 2.62 for the operator, the
first, second, ... derivative of the quasi-energy can be related to the linear, quadratic
... response function. Similarly to the energy derivative, expressions for quasi-energy
derivatives are more easily evaluated. The CC response equations are then obtained by
constructing a Lagrangian of the CC quasi-energy.

Analysis of the CC response equations leads to the non-symmetric eigenvalue problem

AR = ΩR (2.77)
LA = RΩ (2.78)

where R and L are the right and left eigenvectors respectively.
Analogous to ground state calculations, a hierarchy of CC response methods is ob-

tained by truncating the excitation operator T̂ to singles, doubles, triples, ... to yield
CCS-LR, CCSD-LR, CCSDT-LR. Approximate CC methods may also be used, such as
CC2, CC3 or CCSD(T). The formal scaling of the different methods is equal to their
respective scaling for ground states, although with a higher prefactor. CC2 excitation
energies are similar in accuracy to ADC(2). CCSD is better than ADC(2), and CC3 is
slightly better than ADC(3) [62].

2.4.5 Connection between ADC(2) and CC2-LR

An interesting relationship can be established between ADC(2) and CC2-LR [63]. Con-
sider the expression for the CC2 Jacobian:

ACC2−LR =

⟨µ1|
[
(ˆ̄H + [ˆ̄H, T̂2]), τν1

]
|HF ⟩ ⟨µ1|

[
ˆ̄H, τν2

]
|HF ⟩

⟨µ2|
[
ˆ̄H, τν1

]
|HF ⟩ ⟨µ2|

[
(ˆ̄H + [F̂ , T̂2]), τν2

]
|HF ⟩

 (2.79)

2.5. Equation-of-Motion Coupled Cluster 48

where µ1, µ2 are the single and double excitation manifolds. By replacing the similarity-
transformed Hamiltonian ˆ̄H by the Hamiltonian itself, the CIS(D) matrix reads

ACIS(D) =

⟨µ1|
[
(Ĥ + [Ĥ, T̂2]), τν1

]
|HF ⟩ ⟨µ1|

[
Ĥ, τν2

]
|HF ⟩

⟨µ2|
[
Ĥ, τν1

]
|HF ⟩ ⟨µ2|

[
(Ĥ + [F̂ , T̂2]), τν2

]
|HF ⟩

 (2.80)

CIS(D) is a second-order perturbative correction of CIS which includes doubles contribu-
tions [64] scaling with O(N5). The ADC(2) matrix is then obtained by symmetrization

AADC(2) =
1

2

(
ACIS(D) + (ACIS(D))†

)
(2.81)

This relationship is especially useful for easily deriving approximate methods for ADC(2)
from CC2, such as SOS-ADC(2), or local ADC(2).

2.5 Equation-of-Motion Coupled Cluster
An alternative way for describing the molecular response to an external field using coupled
cluster is via the equation-of-motion (EOM) ansatz [65, 66, 67, 68, 69]. In the EOM
approach, the target excited (R) and de-excited (L) wave functions are parameterized as

|ΨR⟩ = eT̂ R̂ |Ψ0⟩ (2.82)

⟨ΨL| = ⟨Φ0| L̂e−T̂ (2.83)

with the excitation and de-excitation operators R̂ and L̂

R̂ =
∑

rµτ̂µ (2.84)

L̂ =
∑

lµτ̂µ (2.85)

where r and l are the excitation and de-excitation cluster amplitudes. The exact form of
R̂ and L̂ depend on the nature of the reference and final states. The most common uses
of EOM are for the calculation of excitation energies (EOM-EE) and ionization potentials
(EOM-IP). In the case of EOM-EE, with Ψ0 taken as the Hartree-Fock wave function, R̂
and L̂ conserve the number of electrons and are given as

R̂EE = r0 +
∑
IA

rAI a
†
AaI +

1

4

∑
IAJB

rAB
IJ a†AaIa

†
BaJ + . . . (2.86)

L̂EE = l0 +
∑
IA

lAI a
†
IaA +

1

4

∑
IAJB

lAB
IJ a†IaAa

†
JaB + . . . (2.87)

The (de-)excitation operators can be truncated similar to T̂ to yield different approxima-
tions (EOM-CCS, EOM-CCSD...). The cluster amplitudes and the excitation energies
are obtained by solving the non-Hermitian eigenvalue problem

⟨µ| ˆ̄H − E |R̂HF⟩ = 0 (2.88)

49 2.5. Equation-of-Motion Coupled Cluster

⟨HFL̂| ˆ̄H − E |HF⟩ = 0 (2.89)

The excitation energies obtained by solving the LR-CC and EOM-CC eigenvalue problems
are identical for pure CC models (CCSD, CCSDT...), but they give different results for
transition moments and excited-state properties.

The EOM-CC methods, alongside ADC and CC-LR, are among the most accurate
methods available for excited states.

50

Chapter 3

Local Correlation Methods (I): Tools
and Concepts

While computational chemistry has emerged as a reliable experimental tool, the inherent
steep scaling of its most accurate methods like coupled cluster or perturbation theory of-
ten imposes strict limits on the maximum molecular system size that can be treated. Even
the Hartree-Fock method formerly scales as O(N4), and becomes prohibitively expensive
for larger molecules if no further approximations are introduced. For post-Hartree-Fock
methods, the major bottle necks are the transformation of the 2-electron repulsion in-
tegrals from the atomic orbital into the molecular orbital basis, and evaluation of the
working equations using these integrals. The OV OV -type MO integrals, as they appear
in Møller-Plesset perturbation theory and coupled cluster, are given by

(ia | jb) =
vir∑
b

Cσb

vir∑
a

Cνa

occ∑
j

Cλj

occ∑
i

Cµi (µν | λσ) (3.1)

The AO-MO transformation step scales quartically with system size. Over the years,
several different strategies have been proposed to speed up this step. Rank-reduction
approaches like density fitting or the Cholesky decomposition split the 4-index integral
tensor into a product of two 3-index tensors, which reduces the memory footprint and
the prefactor of the transformation. Methods that exploit the nearsightedness of the
electrons use a different molecular orbital representations, such as local molecular orbitals
or natural orbitals, to obtain a more compact representation of the virtual MO space, and
consequently reduce the scaling. The AO-MO transformation may be completely skipped
by reformulating the working equations in an atomic orbital basis and using sparsity to
speed up the calculations.

This chapter introduces the most important tools used in local correlation methods.

3.1 Sparsity in Electronic Structure Theory
Sparsity is a core concept in electronic structure theory. Many of the most commonly
encountered matrices and tensors exhibit some form of sparsity, for example, the two-
electron repulsion integrals in the AO basis. This section analyses the different possible
types of sparsity in detail.

51 3.1. Sparsity in Electronic Structure Theory

3.1.1 Element-Wise Sparsity of Electron Integrals

Consider a model system consisting of n hydrogen atoms arranged in a line, with a di-
stance of 1 a0 between one another, and a primitive 1s Gaussian function attached to
each atom. Figure 3.1 shows the scaling behavior of the overlap and electron repulsion
integrals for this toy system. A blue/full line is used to show the number of total ele-
ments, while the green/dotted line represents the number of significant integrals with an
absolute value below 1e-10. From observing both graphs, it becomes apparent that for
an increasing number of atoms, many of the electron integrals can be ignored. Therefore,
one only needs to store integrals above a certain threshold. This is known as element-wise
sparsity.

5 10 15

Number of H atoms

0

100

200

300

N
u

m
b

er
of

el
em

en
ts

dense (N2)

sparse

(a)

5 10 15

Number of H atoms

0

25000

50000

75000

100000

125000

N
u

m
b

er
of

el
em

en
ts

dense (N4)

sparse

(b)

Figure 3.1: (a) Number of significant entries (green/dotted line) in the overlap matrix
for a hydrogen atom chain, with a threshold of 1e-10. The blue/full line shows the total
number of elements for the dense matrix, which scale as N2. (b) Number of significant
entries (green/dotted line) in the electron repulsion integral tensor for a hydrogen atom
chain, with a threshold of 1e-10. The blue/full line shows the total number of elements
for the dense tensor, which scale as N4.

Linear Scaling Overlap Integrals

While the overlap integrals formerly scale with O(N2), the number of significant elements
scales linearly. First, consider the product of two 1s GTOs χA and χB, centered at A
and B, with exponents α and β. The Gaussian product theorem (GPT) states that the
result is itself a (scaled) Gaussian function

χ(A,α)χ(B, β) = e−α|r−A|2e−β|r−B|2 = κχ(P, α+ β) (3.2)

with the scaling factor κ

κ = e−
αβ
α+β

|A−B|2 (3.3)

and the center-of-charge coordinate P

P =
αA+ βB

α + β
(3.4)

3.1. Sparsity in Electronic Structure Theory 52

5 10 15

rµν [a0]

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Sµν

(a)

5 10 15

rµν [a0]

0.0

0.2

0.4

0.6

0.8 (µν | µν)

(µµ | νν)

(b)

Figure 3.2: (a) Magnitude of the overlap integral between two Gaussian 1s orbitals as
a function of distance r (exponential decay). (b) Magnitude of the electron repulsion
integral between two Gaussian 1s orbitals as a function of r. The short range interaction
(µν | µν) decays at a much faster rate with e−r2 , compared to the long range interaction
(µµ | νν) with 1/R.

Spatial integration yields the expression for the overlap between χA and χB

SAB =

∫
κχPdr = κ

(
π

α + β

)3/2

(3.5)

The magnitude of the overlap integral is proportional to the scaling factor κ which decays
exponentially with the distance between GTO centers. In the case of the model system
given above, where α = β, the distance at which the integral falls below a certain threshold
ϵ is given by

ds =

√
α−1ln

[(π

2α

)3
ϵ−1/2

]
(3.6)

Which in our case is equal to 6.9 a0. Each hydrogen atom therefore only has significant
overlap with a finite number nmax of other centers. For atom chains with n > nmax, the
number of non-zero elements in the overlap matrix will no longer scale as n2, but linearly
with nmax. For more realistic, three-dimensional molecular systems, the crossover is less
clearly defined due to the non-uniform distribution of atoms and different GTO exponents.
Nonetheless, if a system grows sufficiently large, the overlap integrals still scale linearly.
Similar arguments can be brought forth for the kinetic-energy integrals as well.

Quadratic Scaling Electron Repulsion Integrals

Using the Gaussian product theorem established above, we can express the two-electron
repulsion integrals of four primitive 1s Gaussian functions s(A,α), s(B, β), s(C, γ) and
s(D, δ) as

gABCD =

∫
s(A,α)s(B, β)

1

|r1 − r2|
s(C, γ)s(D, δ)dr

=

∫
κs(P, α+ β)

1

|r1 − r2|
λs(Q, γ + δ)

(3.7)

53 3.1. Sparsity in Electronic Structure Theory

where s(P, p) and s(Q, q) are Gaussian distributions with

P =
αA+ βB

α + β
; Q =

γC+ δD

γ + δ
(3.8)

κ = e−p|A−B|2 ; λ = e−q|C−D|2 (3.9)

p =
αβ

α + β
; q =

γδ

γ + δ
(3.10)

The Coulomb integrals can then be evaluated as

gABCD =

√
4η

π
SABSCDF0

(
η |P−Q|2

)
(3.11)

with the Boys function F0 and the reduced exponent η given by

η =
pq

p+ q
(3.12)

The Boys function is an important function appearing in many expressions for molecular
integral evaluation. There are two expressions that bound the Boys function

Fn(x) ≤
1

2n+ 1
for small x

Fn(x) ≤
(2n− 1)!!

2n+1

√
π

x2n+1
for large x

(3.13)

Using the Boys function’s upper bounds, we can derive an upper bound for the electron
repulsion integrals of our model system

gABCD ≤ min

{√
4η

π
SABSCD,

SABSCD

|P−Q|

}
(3.14)

The left-hand upper bound represents the short-range limit of the Boys function, and
the right-hand one the long-range limit. In the short-range limit, i.e. for increasing
distance RAB or RCD, the magnitude of g decreases exponentially. As shown in the
previous section, the non-zero elements of the overlap integrals SAB and SCD scale linearly
with system size, and therefore the number of significant electron repulsion integrals
scales with N2 in total. It should be noted, that in the long-range limit with increasing
distance RPQ between product densities, the number of elements in g will eventually scale
linearly. However, the algebraic 1/R decay of the long-range interactions is so slow that it
practically useless for the size of molecules that can be tackled with current technologies.
In the case of the hydrogen atom chain, the integrals (µµ | νν) only fall below 1e-10 for
RPQ greater than 10e+10 a0. While the long-range decay is impractical for use in the
case of the electron repulsion integrals, there are instances such as in atomic orbital MP2
(see Chapter 4) where bra and ket decay as 1/R4. Knowing that the electron repulsion
integrals are sparse is only the first step. One also has to develop a screening method to
avoid computing small integrals, by finding a general upper bound. It has been shown
[70] that g is positive-definite, and fulfills the relationship∑

abcd

cabgabcdccd > 0 (3.15)

3.1. Sparsity in Electronic Structure Theory 54

where c are one-electron orbital distributions. One can then apply the Schwarz inequality
[71] to obtain an upper bound expression for g

(µν | σλ) ≤ (µν | µν) (σλ | σλ) = QµνQσλ (3.16)

The matrix Q contains the square root of the short-range diagonal entries of g, and is
also known as the Schwarz matrix. Q can be evaluated quickly with O(N2) effort and
individual integrals can be efficiently screened. It should be noted that Schwarz screening
does not take into account the 1/R decay between product densities, which makes the
method less useful in methods like AO-MP2.

3.1.2 Element-Wise Sparsity of the Density Matrix

The decaying behavior of the density matrix has been extensively studied in solids for
atom-centered Bloch and Wannier functions [72, 73, 74, 75, 76]. It was shown that for
insulators, i.e. systems with large band-gaps, the contributions Pµν decay exponentially
with increasing distance Rµν , while for systems with small or no band gaps, such as
metals, the elements decay algebraically. This is also known as Kohn’s conjecture [72].
The same observations have been made for non-periodic systems using atomic orbitals as
basis. For molecules with a large HOMO-LUMO gap, e.g. alkanes, the number of non-
zero elements in the atomic orbital density matrix scales linearly with increasing system
size. On the other hand, molecules with strong electron delocalization, such as conjugated
polyenes, have a small HOMO-LUMO gap, and the density matrix elements decay much
slower. Consider again a chain of hydrogen atoms, equally spaced by a0, each with one
1s Gaussian function, this time with Natom atoms. Figure 3.2a shows the MO diagram
for an increasing chain length. In the limit where Natom → ∞, the system takes on a
band structure, similar to how they are encountered in a metal, with a smooth transition
between occupied (valence) and virtual (conductance) band. In other words, the HOMO-
LUMO gap becomes increasingly small. For a hydrogen chain, where each individual
atom contributes one electron, the band is half filled, and the system is a conductor. If
the Hydrogen atoms are replaced by Helium atoms, with two electrons per site, the band
is fully filled and the system becomes an insulator. The magnitude of the density matrix
elements Pµν is plotted in Figure 3.3b as a function of increasing distance between 1s
functions. The elements decay much slower for the conducting hydrogen chain (algebraic
decay), while a rapid exponential decay can be observed in the case of the insulating
helium chain. An interesting thing to note is the oscillating values of the density matrix
for the hydrogen chain. This phenomenon arises due to the hydrogen atoms pairing up
into loosely bound H2 molecules.

3.1.3 Diagrammatic Notation

Hollmann et al. [77] introduced a simple graphical representation to show contributing
factors to the sparsity of a given matrix, tensor or tensor contraction. Each tensor index
is represented as a vertex. Non-connected vertices each contribute O(N) elements to the
overall expression. A sparsity relationship between two indices is represented as an edge
connecting two vertices. In that case, the number of pairs scales as O(N). Consider the
two electron integral tensor (µν | σλ). From the previous section, we know that the index

55 3.1. Sparsity in Electronic Structure Theory

H2 H4 H6 Hn
...

co
n
d
u
ctio

n
 b

a
n
d

v
a
le

n
ce

 b
a
n
d

E

(a)

0 5 10 15

rµν [a0]

10−4

10−3

10−2

10−1

100

lo
g
|P
µ
ν
|

H chain

He chain

(b)

Figure 3.3: (a) Molecular orbital diagram for a hydrogen with increasing chain length.
(b) Logarithm of the absolute value of the density matrix element Pµν as a function of
increasing distance Rµν for a Hydrogen and a Helium atom chain.

pairs µ, ν and λ, σ are related by overlap. The diagrammatic representation takes the
form:

µ ν σ λ
S S

There are two pairs of connected vertices, which indicates that the integrals can be
evaluated with O(N2) effort, which is in agreement with the findings above. The S
denotes the overlap relationship between vertices. For another example, consider the
Hartree-Fock expression for the exchange matrix

Kµν = (µσ | νλ)Pλσ (3.17)

Diagrammatically, the expression for K can be represented as

µ νσ λ
S P S

The connection between σ and λ is also known as a "P-junction" [78], which represents
the sparsity relationship arising due to the exponential decay of density matrix elements.
The sparsity graph is fully connected, which suggests that K can be evaluated with O(N)
effort. This is indeed the case, as shown by the ONX or LinK method. For linear scaling
to emerge, indices of an expression therefore need to be fully linked. This simple but
important fact is also known the linked index rule (LIR). Diagrams also show which
factors can influence the performance of the scaling, such as diffuseness of the atomic
orbitals (slower S decay) or size of of the HOMO-LUMO gap (slower P decay). One can
therefore conclude that the expression for K as given above, is less suitable for large basis
sets and conducting systems.

3.1.4 Rank Sparsity

A positive semi-definite matrix A has the property that it can be decomposed as a product

A = BBT (3.18)

3.2. Density Fitting 56

where A has dimensions N by N , and B has dimensions N by rank(A). The rank repres-
ents the number of linearly independent column vectors in a matrix, and for rank(A) < N ,
the matrix is said to be rank-deficient. The decomposition matrix B therefore is more
compact and needs less storage space than A. There are different ways to compute B,
such as Cholesky decomposition or QR decomposition. The tensor (µν | σλ) can be re-
presented as a N2

AO by N2
AO matrix with combined row indices I = µ + NAO ∗ ν and

column indices J = σ + NAO ∗ λ. Because the tensor has been shown to be positive
semi-definite, there exists a decomposition, such that

(µν | σλ) = A(µν)(σλ) = B(µν)XB(σλ)X (3.19)

The rank of A is in general much smaller than the combined index range N2
AO, and scales

linearly rather than quadratically with the number of basis functions. The decomposition
tensor B is therefore 3-dimensional, rather than 4-dimensional, which reduces the storage
needed by an order of magnitude from O(N4) to O(N3), ignoring sparsity. In the limit
of large molecules, the NZEs of B also scale with O(N2). Rather than for the molecular
integrals in the AO basis, decomposition techniques are more useful for reducing the
storage size of molecular integrals in the canonical MO basis

(ia | jb) = CµiCσaBµσXBXνλCνjCλb = BiaXBXjb (3.20)

The AO-MO transformation step is drastically sped up, but remains a O(N4) effort.
Rank sparsity has therefore little impact on the overall scaling, but rather reduces the
scaling prefactor. Over the years, different methods have been proposed to compute
C, such as density fitting, Cholesky decomposition, pseudo-spectral methods, or tensor
hypercontraction. Density matrices at different levels of theory (Hartree Fock, MP2, CC
...) also exhibit rank sparsity. Decomposition of such matrices play an important role in
local molecular orbital schemes and low scaling electronic structure methods, as will be
shown in later sections.

3.2 Density Fitting
The method of choice in this thesis for the decomposition of two-electron molecular
integrals is density fitting (DF), also known as resolution of the identity (RI). Techniques
such as Cholesky decomposition [79, 80] or tensor hypercontraction (THC) [81, 82, 83]
are not discussed here.

3.2.1 Basics of Density Fitting

The two-electron integrals can be expressed in terms of the charge product densities
ρµν = χµχν as

(µν | σλ) =
∫ ∫

ρµν(r1)ρσλ(r2)

|r1 − r2|
dr1dr2 (3.21)

The charge densities ρ can be approximated by fitting them to a set of atom-centered
auxiliary functions χP

ρµν(r) = CPµνχP (r) + ∆ρµν (3.22)

57 3.2. Density Fitting

Or in the chemist’s notation:

|µν) = CPµν |P) + |ϵµν) = |µ̃ν) + |ϵµν) (3.23)

where CPµν are the fitting coefficients, and ∆ρµν or |ϵµν) is the error introduced by the
fitting procedure. Equation 3.23 is known as the density fitting approximation [84, 85,
86, 87]. The two-electron integrals then take the form

(µν | σλ) = (µ̃ν|σ̃λ) + (µ̃ν|ϵσλ) + (ϵµν |σ̃λ)︸ ︷︷ ︸
first order

+(ϵµν | ϵσλ)︸ ︷︷ ︸
second order

= (µ̃ν|σ̃λ) + ϵ
(1)
J + ϵ

(2)
J

(3.24)

Here, ϵ(1)J and ϵ
(2)
J represent the first order (linear) and second order (quadratic) error.

The fitting coefficients are then generally found by minimizing ϵ
(2)
J . Substituting (ϵµν | =

(µν − µ̃ν| gives
∂

∂CP
µν

(µν − µ̃ν | σλ− σ̃λ) = 0 (3.25)

which then yields a set of linear equations

(µν | P)−
∑
Q

CQ
µν (Q | P) = 0 (3.26)

Finding the fitting coefficients by minimizing ϵ
(2)
J has the important feature that ϵ(1)J = 0,

which can be shown by substituting Equation 3.26 back into Equation 3.24. The total
electron integral error is therefore quadratic in the fitting error. Fitting procedures where
the coefficients CP

µν satisfy Equation 3.26 are termed robust [88]. Any restrictions posed
on CP

µν makes ϵ1 different from zero and the error scales linearly. Equation 3.26 requires
the evaluation of the three-center-two-electron (3c2e) and two-center-two-electron (2c2e)
integrals in the auxiliary basis set {P}

(µν | P) =

∫ ∫
χµ(r1)χµ(r1)

1

|r1 − r2|
χP (r2)dr1dr2 (3.27)

(P | Q) =

∫ ∫
χP (r1)

1

|r1 − r2|
χQ(r2)dr1dr2 (3.28)

The fitting coefficients are generally computed by inverting (P | Q), which leads to the
following approximation for the four-center-two-electron integrals (4c2e)

(µν | σλ) ≈ (µν | P) (P | Q)−1 (Q | σλ) (3.29)

Matrix inversion is a O(N3) computational effort.

3.2.2 Scaling of the 3c2e Integrals

Using the diagrammatic representation introduced earlier, the 3c2e integral tensor reduces
to

3.2. Density Fitting 58

µ ν P
S

The number of non-zero elements therefore scales asO(N2), just like for the 4c2e integrals.
Similarly, the Schwarz inequality can be used to screen out small integrals

|(µν | P)| ≤ |(µν | µν)|1/2 |(P | P)|1/2 (3.30)

As mentioned above, Schwarz screening does not take into account increasing bra-ket
distance. The long-range decay is too slow to be of any advantage in the case of the 4c2e
integrals. However, it was found [89] that for an auxiliary density χP (r) with angular
momentum lP , the 3c2e integrals actually decay as 1/R−1−lP with increasing bra-ket
distance, establishing a weak but not insignificant sparsity relationship between (µν| and
|P)

µ ν P
S

1/R−1−lP

In principle, the 3c2e integrals can be evaluated with linear effort. Hollmann et al. [89]
have introduced a tight upper bound, known as the SVQl estimator, to exploit this faster
decay. Due to the dependence on lP , the screening is most effective with larger basis sets
with high angular momentum functions.

The fitting coefficients evaluated as CP
µν = (µν | Q) (Q | P)−1 formerly scale with

O(N3)

µ ν Q P
S

due to the inverse of (P | Q) not being sparse.

3.2.3 Local Density Fitting: Principles

The long-range behavior introduced by Equation 3.26 is often deemed "unphysical" [90].
Local density fitting (LDF) methods circumvent this problem by forcing a more rapid
decay of long-range contributions, either (a) by using a different metric in the fitting
procedure or (b) by constructing domains [µν] that exclude distant fitting functions P
a priori. In both cases, Equation 3.26 no longer holds and the error in the electron
integrals increases linearly with the fitting error. Therefore, the density fitting procedure
is no longer robust. Fortunately, LDF methods can use a different expression for the
electron integrals which includes the first order terms to remove the linear error

(µν | σλ) ≈ (µ̃ν|σλ) + (µν|σ̃λ)− (µ̃ν|σ̃λ) (3.31)

which is known as Dunlap’s robust density fitting formula [88]. It greatly increases
accuracy for LDF.

59 3.2. Density Fitting

Metric g(r12)

Overlap [85] 1

Coulomb-Attenuated [91] erfc(ωr12)

r12

Yukawa [92] e−ωr12

r12

Gaussian-Damped [93] e−ωr212

r12

Table 3.1: Expressions for the operator g in different local metrics.

3.2.4 LDF (I): Short-Range Metrics

The first type of LDF methods replaces the fitting procedure in the Coulomb metric in
Equation 3.26 by a more general expression

BP
µν − CQ

µνMQP = 0 (3.32)

where BP
µν and MPQ are the 3c2e and 2c2e integrals given by

BP
µν =

∫ ∫
χµ(r1)χν(r1)g(r1, r2)χP (r2)dr1dr2 (3.33)

MPQ =

∫ ∫
χP (r1)g(r1, r2)χQ(r2)dr1dr2 (3.34)

with g being the operator for the local metric. A list of known local metrics is given in
Table 3.1. Earliest forms of density fitting actually first used an overlap metric to directly
minimize the norm of the residual Rµν = (µν| − (µ̃ν| by the linear least squares methods
[85], and the fitting coefficients are computed as

CP
µν = S−1

PQ(µνQ) (3.35)

where SPQ is the overlap matrix of the auxiliary basis, and (µνQ) are the 3-center-1-
electron overlap integrals. While the overlap metric has the most rapid decay and the
quantities in Equation 3.35 can be evaluated in O(N) time, it has the worst accuracy of
all metrics. One solution to this problem is to introduce a metric which is intermediate
between overlap and coulomb fitting. Examples include the Yukawa, Coulomb- and
Gaussian-attenuated metrics. These intermediate metrics introduce a damping factor ω
to control the sparsity and accuracy of the density fit. In the limit where ω → 0, and
ω →∞, one recovers the coulomb and overlap metric, respectively. Figure 3.4 shows the
decay behavior of the Coulomb-attenuated metric, for ω = 0.01, 0.1 and 1.0, compared
to the overlap and the Coulomb metric.

3.2. Density Fitting 60

5 10 15

rµP [a0]

0

1

2

3

|B
P µ
µ
|

coulomb

erfc(0.01)

erfc(0.1)

erfc(1.0)

overlap

Figure 3.4: Absolute value of the 3c2e integral BµµP between two 1s GTOs µ and P with
α = 1.0 using different metrics.

3.2.5 LDF (II): Local Domains

The second method to force locality in density fitting consists in constructing local do-
mains for each atom, pair of atoms or local molecular orbital, and excluding any auxiliary
functions that lie outside, which can drastically reduce the dimension of the fitting pro-
cedure.

Atomic Resolution of the Identity

The simplest example of a domain is one that includes a single atom. The atomic reso-
lution of the identity (ARI) [94] uses a fitting procedure where the sum over auxiliary
function Q only includes those which are centered on the same atom A as the atomic
orbital µ

|µ̃ν) =
∑
Q∪Aµ

(P | Q)−1
Aµ

(µν | Q) (3.36)

Each atom X has its own metric matrix inverse (P | Q)−1
X which takes the form

(P | Q)−1
X = BX ((P | Q)D +BX (P | Q)OD BX)

−1BX (3.37)

where (P | Q)D and (P | Q)OD are the diagonal and off-diagonal part of (P | Q) respec-
tively. BX is a so-called bump matrix which imposes a fast, but smooth decay between
functions P and Q in order to avoid using all functions P for the fitting. For further
details, the reader is referred to the original publication. The bump matrix uses multiple
distance-dependent criteria which make the ARI less of a black-box method.

Pair-Atomic Resolution of the Identity

A more popular and simple variant of atomic density fitting is the pair-atomic resolution
of the identity (PARI) method [95]. As the name implies, the domains include atom pairs

61 3.2. Density Fitting

rather than a single atom. Again expressing it in terms of the fitting procedure

(P | µν) =
∑

Q∈A∪B

(P | Q)CQ
µν ∀P ∈ A ∪B (3.38)

The number of linear equations is equal to the number of non-zero pairs µν, which
scales linearly. However, the PARI approach enforces heavy constraints on the fitting
coefficients, which leads to large integral errors. Merlot et al. proposed to increase the
atomic pair domain with any atoms which lie between A and B. Alternatively, larger and
more diffuse basis sets can be used. In both cases, performance is sacrificed for increased
accuracy. The absence of any distance dependent parameters or thresholds still make it
an attractive method both for Hartree Fock and Post-Hartree Fock methods [96, 97].

LDF using Local Molecular Orbitals

Finally, domains can also be formed using local molecular orbitals instead of AOs. LMOs
are larger than AOs, but are still generally centered on only a few atoms. The exact
atomic sites can be determined for example by using a Mulliken population analysis.
Consider the density fitting procedure as proposed by Polly et al. for their LDF-Hartree
Fock method [98]

(µi | P) =
∑

Q∈[i]fit

(P | Q)CQ
µi (3.39)

The fitting coefficients are determined individually for each AO-LMO pair |µi), and in-
clude only those auxiliary functions centered on atoms in the fitting domain [i]fit for
which the Mulliken charges are above a given threshold. Although the fitting coeffici-
ents need to be recomputed for each update of the MO coefficients, the number of |µi)
pairs scales linearly with system size. This type of local density fitting and variations
thereof are predominantly used in pair-orbital specific local correlation methods, and will
be explained in more detail further below.

3.2.6 LDF (III): Quasi-Robust Density Fitting

Local density fitting imposes constraints on the fitting procedure, and the integral error
consequently scales linearly with the fitting error. Using Dunlap’s robust formula is
deemed necessary in most cases to achieve acceptable accuracy, but reintroduces the
slowly decaying 3c2e integrals. Furthermore, replacing the 4c2e integrals by Equation
3.31 greatly increases the complexity of expressions in electronic structure theory, which
is still manageable for ground state methods, but quickly becomes cumbersome for excited
states.

Quasi-robust density fitting (QRDF) [90] aims to combine the exponential decay be-
havior of LDF with an accuracy comparable to standard density fitting, without the use
of Dunlap’s formula. Again, consider the fitting procedure∑

Q

(P | Q)CQ
µν = (P | µν) (3.40)

The sets of auxiliary functions {P} and {Q} have different roles. The functions Q fit
the charge density |µν), while the P functions act as test functions where the electron

3.2. Density Fitting 62

integrals should be accurate, i.e. where (X | µ̃ν) ≈ (X | µν). For two functions µ and ν
not located on the same atom, their charge density |µν) lies in the vacuum between them,
and the atom-centered auxiliary functions may be ill-suited to fit |µν). For this reason,
the fitting procedure draws from all fitting functions {P} spanning the whole molecule
to cancel out the linear error, which in consequence introduces long-range contributions
in CP

µν in the coulomb metric, even if |P) is not close to |µν). The basic idea of QRDF
is to only chose fitting functions {P} close to |µν) via overlap criteria, but still perform
the fitting procedure in the coulomb metric.

The QRDF Fitting Procedure

For a set of given µ, ν, select a set of fitting function {Pµν} ∈ {P} close to |µν) according
to the criteria ∣∣∣∣∣∑

R

S−1
PR(Rµν)

∣∣∣∣∣ > T (3.41)

where S is the auxiliary overlap matrix, and (Rµν) are the 3-center-1-electron overlap
integrals. Next, choose a set of test functions {Qµν} ∈ {P} using

f(Qµν , Pµν) < R (3.42)

with

f(A,B) =
αβ

α + β
|A−B|2 (3.43)

where for two auxiliary functions A and B, the values α, β are their smallest primitive
exponents and A, B are their respective positions. The fitting coefficients are then
determined via ∑

P

(Qµν | Pµν)C
P
µν = (Qµν | µν) (3.44)

where the fitting coefficients are accurate within the set of test functions {Qµν}. The
linear equations in Equation 3.44 can be solved via QR decomposition or singular value
decomposition (SVD) of the rectangular matrix (Qµν | Pµν). The QRDF scheme depends
on two parameters, T and R. In the limit where T → 0 and R→∞, the standard fitting
procedure in the Coulomb metric is recovered.

The fitting functions {Pµν} are selected via overlap criteria and therefore scale linearly
with the number of pairs |µν), and consequently the same holds true for the number of test
functions {Qµν} close to {Pµν} chosen by Equation 3.41. In the limit of large molecules,
the size of the rectangular matrix in Equation 3.42 becomes constant and the fitting
procedure can be evaluated with O(N) effort. However, a QR decomposition needs to be
computed for each set of |µν), leading to relatively high prefactor which makes the method
not competitive for dense 3D structures like water clusters, as will be discussed in the
results section. The QRDF method has been shown to deliver accuracies comparable to
standard density fitting, without the use of Dunlap’s formula, making it a very attractive
alternative to other LDF schemes, especially if one wishes to reduce the complexity of
expressions involving LDF.

63 3.2. Density Fitting

3.2.7 Auxiliary Basis Sets

The density fitting approximation does not make any assumptions about the size or shape
of the auxiliary basis set used. In principle, the fit is exact for the basis set containing
all N2

AO Gaussian products χP = χµχν . In practice, the product space is over-complete
and can be represented by much smaller basis sets. Accurate results can be obtained for
auxiliary basis sets which are about four times larger than the principal basis set they
are used with.

Auxiliary basis sets generally need more higher angular momentum functions than
standard basis sets. Consider an isolated, unperturbed atom, with electrons occupying
atomic orbitals with highest angular momentum locc. A minimal basis set for this atom
contains functions of angular momenta 0 to locc. However, a minimal auxiliary basis
set for fitting the product space χ

(0...locc)
µ χ

(0...locc)
ν needs functions with maximum angular

momentum 2locc. For example, 2nd row elements (locc = 1) need an auxiliary basis set
containing d-functions, and first row transition metals (locc = 2) even need g-functions.
Similarly to standard basis sets, to describe atoms in molecules where the orbitals are
subject to polarization effects, even higher angular momentum functions are needed to fit
polarization functions. In practice, a principal basis set with maximum angular momen-
tum lbas is paired with an auxiliary basis set with highest angular momentum lbas + locc.

Auxiliary basis sets have the drawback of being method-specific. There are two cate-
gories: auxiliary basis sets for density fitted Hartree-Fock (DF-HF) and for density fitted
correlated methods (e.g. DF-MP2, DF-CCSD, DF-ADC(2)). Auxiliary basis sets for DF-
HF not only need to reproduce Hartree Fock energies, but also need to minimize negative
impact on post-Hartree methods. An ill-suited auxiliary basis set leads to a deterioration
of the virtual orbital space, and hence an increased error for correlated methods.

Optimization procedures often try to minimize the energy differences between the
standard method and its density fitting approximation in a series of atomic calculations.
For example, the jkfit family of basis sets (cc-pVXZ-JKFIT [99], def-XVP-JKFIT [100])
minimize the error

∆EHF = EHF − EDF−HF (3.45)

The RI basis set family (cc-pVXZ-RIFIT [101], def2-XVP-RIFIT [102]) minimizes the
same energy difference but for MP2 or Coupled Cluster.

Another disadvantage of auxiliary basis sets is that the accuracy of the fitting proce-
dure cannot be easily controlled as a function of its composition (number of functions,
angular momenta...), but rather extensive benchmarks are needed for each basis set that
is introduced. An alternative approach was proposed by Aquilante et al. [103] where the
fitting basis sets are generated automatically by Cholesky decomposition of the atomic
2-electron integrals

(µν | σλ) = LX
µνL

X
σλ (3.46)

The Cholesky vectors Lµν indicate which product densities should be taken to construct
the auxiliary basis. This type of atomic Cholesky decomposition (aCD) basis sets has the
advantage that the accuracy can be rigorously controlled by the decomposition threshold
θ. To remove linear dependencies in the aCD basis set, another Cholesky decomposition
can be performed to yield the atomic compact Cholesky decomposition (acCD) auxiliary
basis set [104].

3.3. Multipole Expansion of the Electron Integrals 64

3.3 Multipole Expansion of the Electron Integrals

The slow 1/R decay between the product densities Ωµν and Ωλσ in the coulomb integrals is
a major obstacle for achieving linear scaling in cases where no other sparsity relationship
can be established between indices belonging to separate charge densities, e.g. in the
evaluation of the coulomb matrix J versus the exchange matrix K. Luckily, there are
approximate methods for integral evaluation that can be computed with O(N) effort,
known as multipole methods.

3.3.1 Classical and Non-Classical Electron Integrals

First, consider the concept of classical and non-classical interactions. Two-electron inte-
grals are said to be non-classical if the two charge densities Ωµν and Ωσλ overlap, and
classical if the charge densities are well separated. In the latter case, the electron integrals
represent classical interactions between disjoint point charges, and can be approximated
using multipole methods, whereas the non-classical contributions must be evaluated using
the more expensive standard integral codes such as McMurchie-Davidson or Obara-Saika.

Two Gaussian distributions ΩP and ΩQ are considered well-separated up to a target
accuracy 10−k, if their center-to-center distance RPQ is larger than the sum of their
extents extP and extQ:

RPQ > extP + extQ (3.47)

with the extent of a Gaussian product P defined as

rP =
1√
p
erfc−1(10−k) (3.48)

where p is the reduced exponent. Another important thing to note is that the number of
significant non-classical and classical integrals scale as O(N) and O(N2) respectively [3],
which has important consequences as will be shown further below.

3.3.2 Multipole Expansion

For two well-separated charge distributions P and Q, the inverse inter-electronic distance
can be expanded in terms of Legendre polynomials P as

1

r12
=

∞∑
l=0

∆rl12
Rl

PQ

Plcosθ (3.49)

with

cosθ =
∆rl12RQP

∆r12RQP

(3.50)

∆r12 = r1P r2Q (3.51)

where r1P and r2Q are the distance between electron 1,2 and the centers P ,Q. Equation
3.49 is also known as the partial-wave expansion of the coulomb operator [105]. Plugging

65 3.3. Multipole Expansion of the Electron Integrals

Equation 3.49 into the expression for the two-electron repulsion integrals gives the bipolar
multipole expansion of the two-electron integrals

gabcd =
∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
k=−j

M lm
ab (P)Tlm,jkM

jk
cd (3.52)

where Mlm
ab (P) is the multipole moment of the charge distribution P with total moment

l + k, and T is the so-called interaction matrix. As such, the complicated 6-dimensional
evaluation of g can be simply substituted by two 3-dimensional integrations of the mul-
tipole moments M at a much lower cost. For the lowest order expansion, where l = m =
0, and j = k = 0, the multipole moments and the interaction matrix become

M00
ab = Sab (3.53)

M00
cd = Scd (3.54)

T00,00 = 1/RPQ (3.55)

The zero order term of the multipole expansion therefore takes the form

gabcd ≈
SabScd

RPQ

(3.56)

3.3.3 Fast Multipole Method

While the number of individual non-zero integrals still scales with O(N2), the total
contribution of all pair-wise interactions to the total energy (Hartree Fock, MP2 ...), can
actually be evaluated in O(N).

For the sake of simplicity, consider a system with point-charge particles with charge
Z, in a 2-dimensional plane. The total interaction energy is given by

U =
∑
i>j

ZiZj

rij
(3.57)

Evaluating Equation 3.57 as is takes a quadratic effort. In a first approximation, one
can divide the plane into a grid of blocks of equal size, where each block contains a
certain number of particles (Figure 3.5). Consider the interaction of a single particle i
in its source block C with the other particles in the system. The interaction has two
contributions: near-field (NF) contributions UNF from the other particles in the source
block, and the blocks immediately surrounding it, and far-field (FF) contributions UFF

from boxes that are well-separated from C. The NF interactions are evaluated directly
by summing over all particles j in the near-field

UNF
i =

∑
j∈NF

ZiZj

Rij

(3.58)

while FF interactions are computed using multipole expansions qiC and qA of the FF
boxes and the particle i

UFF
i =

∑
A∈FF

qiCTCAqA (3.59)

3.3. Multipole Expansion of the Electron Integrals 66

C

NF NF

NF

NFNFNF

NF

NF

FF FF FF FFFF

FF FF FF FFFF

FF FF FF FFFF FF FF FF

FF FF FF

FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF

FF

FF

Figure 3.5: In multipole methods, the system is subdivided into blocks of equal size
containing one or more particles. For a reference block C, its surrounding blocks are
categorized into near-field and far-field contributions which are treated using separate
methods.

While evaluating the interaction energy at block-level rather than particle-level can con-
siderably reduce the prefactor, the cost of this single-level multipole method is still qua-
dratic, since for each particle i, there is a system-dependent number of FF boxes. The
granularity of the blocks is the same, independent of how far away the blocks are. To
achieve linear scaling, the crucial point to realize is that, the further one gets from the
source block C, the smaller the single-particle interaction Ui becomes, and the less ac-
curately it actually needs to be evaluated. This means that the farther one moves away
from C, the larger the FF boxes can be. For this reason, multi-level multipole methods
introduce a hierarchy of boxes (Figure 3.6), where at level 0, the whole system is in a
single box, and for each subsequent level, the field is divided into fourths. FF boxes that
are closest to C are evaluated at the highest level/granularity S. The region of FF boxes
surrounding the closest FF boxes are then treated at a lower level S − 1, and so on,
until all interactions have been computed. Because the multipole expansion is evaluated
for increasing box size, it can be shown that the total number of boxes is constant for
a single particle i. This is the basic idea on which the Fast Multipole Method (FMM)
operates [106, 107, 108], and it has quickly become one of the most important algorithms
in scientific computing, as the problem of particle-particle interaction is not limited to
the field of quantum chemistry. FMM can evaluate the total interaction energy U with
linear computational complexity.

3.3.4 Continuous Fast Multipole Method

The fast multipole method does not work for continuous charge distributions like Gaussian
functions, as their extents can be quite different from one another, making the separation
into NF and FF contributions more difficult. Nonetheless, FMM has been generalized
to the continuous case, known as the continuous fast multipole method (CFMM) [109].
The principle is the same as in multi-level multipole methods, only special care needs
to be taken to only include classical contributions into the FMM treatment. For further

67 3.4. The ABCs of LMOs and NOs: Orbital Representations

Figure 3.6: In the fast multiple method, the granularity of the boxes becomes coarser the
further away they are from the source blocks.

details, the reader is referred to the original publication.

3.4 The ABCs of LMOs and NOs: Orbital Represen-
tations

To efficiently solve the Hartree-Fock equations, it is favorable to choose the set of mo-
lecular orbitals such that they diagonalize the Fock matrix F. In other words, they are
eigenfunctions of the Fock operator

f̂ |ϕi⟩ = ϵi |ϕi⟩ (3.60)

Here, {ϕi} are also known as the canonical molecular orbitals. CMOs are not unique
in the sense that there are infinitely many alternative molecular representations which
yield the same electron density P. Quantities like the total wave function energy or the
electronic density are said to be orbitally invariant. Non-observables like the MO energies
are not preserved under orbital rotation. Let C be the CMO coefficient matrix. A new
solution to the HF equations can then be generated by applying a unitary transformation
such that

Cnew
µj

= UjiCµi UU† = 1 (3.61)

There are different reasons why one would want to use another MO basis: they can (a)
offer a more intuitive picture for the interpretation of chemical phenomena and (b) help
to achieve are more localized and compact representation of the wave function which is
helpful for local correlation methods.

There are two significant types of molecular representations besides CMOs: local mo-
lecular orbitals (LMOs) and natural orbitals (NOs). The following sections will introduce
both types in more detail.

3.4. The ABCs of LMOs and NOs: Orbital Representations 68

3.4.1 Local Molecular Orbitals

In contrast to canonical molecular orbitals, which are generally delocalized over the whole
molecule, local molecular orbitals are confined to a relatively small volume and span only
a few atoms (except in large conjugated systems). LMOs are well suited for a qualitative
description of chemical reaction in terms of molecular bonds, lone pairs and π systems
[110]. Moreover, they are often used in local correlation methods due to their reduced
orbital span. There are several different ways for generating LMOs.

LMOs by Reducing a Functional

One of the most popular methods for finding LMOs consists in maximizing a localization
function η(ϕ) by successive rotation of the orbital space. The most prominent examples
are Foster-Boys (FB) [111], Edmiston-Ruedenberg (ER) [112] and Pipek-Mezey (PM)
[113]. Their functionals can be written as

ζFB(χ) =
∑
i

⟨χi| r |χi⟩2 (3.62)

ζER(χ) =
∑
i

(χiχi | χiχi) (3.63)

ζFB(χ) =
∑
i

∑
A

⟨χi|PA |χi⟩2 (3.64)

The problem is generally solved using an iterative procedure consisting in consecutive
pair-wise rotations, known as Jacobi sweeps. These sweeps are repeated until convergence
is reached, which may be slow. The methods differ within the procedure by how the
rotational angle is computed, and scale differently with system size, with O(N3) for FB,
O(N5) for ER and O(N4) for PM. A faster alternative to Jacobi sweeps does also exist
[114].

Over the years, PM has been the more popular choice of the three: like ER and unlike
FB, it conserves σ-π separation [115], but scales more favorably than ER.

Functional localization methods are most often used for rotating occupied MOs. Vir-
tual MOs are often plagued by convergence issues and have a steep computational cost
simply due to being much more numerous than occupied MOs [116]. It is crucial that
molecular localization should not take longer than the methods they are used for, and
hence VMOs are often localized using separate methods (e.g. PAO).

Projected Atomic Orbitals

A set of highly localized molecular orbitals can be obtained by projecting the CMOs
onto the atomic orbital basis, known as projected atomic orbitals (PAO) [117]. For a set
of orthonormal occupied and virtual molecular orbitals {Ψi} and {Ψa}, the projection
operators P̂ and Q̂ are defined as [118]

P̂ = |Ψi⟩ ⟨Ψi| = |χµ⟩CµiCνi ⟨χν | (3.65)
Q̂ = |Ψa⟩ ⟨Ψa| = |χµ⟩CµaCνa ⟨χν | (3.66)

69 3.4. The ABCs of LMOs and NOs: Orbital Representations

which are then applied to the atomic orbitals χ

P̂ |χµ′⟩ =
∑

µ PµνSνµ′ |χµ′⟩ =
∑
µ

P µµ′ |χµ′⟩ = |χµ⟩ (3.67)

Q̂ |χµ′⟩ =
∑

µQµνSνµ′ |χµ′⟩ = Qµµ′ |χµ′⟩ = |χµ⟩ (3.68)

The projection operators P̂ , Q̂ and the non-symmetric PAO coefficient matrices P,
Q are idempotent

PP = P QQ = Q (3.69)

and mutually orthogonal
PQ = 0 P+Q = 1 (3.70)

but not orthogonal within themselves

⟨χµ|χν⟩ = SPAO
µν ⟨χµ|χν⟩ = SPAO

µν (3.71)

Here, the indices µ, ν, ... and µ, ν, ... are used for occupied and virtual projected atomic
orbitals, respectively. The number of PAOs (occupied or virtual) is equal to the number
of AOs, and are therefore linearly dependent (redundant). CMOs are transformed to
PAOs by using

|χµ⟩ = (SC)µi |Ψi⟩ = Cµi |Ψi⟩ (3.72)
|χµ⟩ = (SC)µa |Ψa⟩ = Cµa |Ψa⟩ (3.73)

The back-transformation is defined as

|Ψi⟩ = Cµi |µ⟩ (3.74)
|Ψa⟩ = Cµa |ν⟩ (3.75)

PAOs are centered on the atom on which their corresponding AO is localized, but can
still be delocalized over multiple atoms, depending on the sparsity of the density matrix.
Methods which are entirely formulated in PAOs are rare but possible [118]. The projec-
tion method is most often used on the virtual orbital space, where standard localization
procedures fail. In literature, the following alternative formula is often used for expression
the virtual PAO coefficient matrix in terms of the occupied LMOs:

Q =
(
1− LL†S

)
C (3.76)

where L is the coefficient matrix of the occupied LMOs.

Cholesky Molecular Orbitals

Sparsity of the atomic density matrix is crucial for achieving low-scaling electronic struc-
ture methods. Aquilante et al. proposed [115] to define a set of occupied molecular
orbitals by Cholesky decomposition of the density matrix. Analysis of the resulting Cho-
lesky molecular orbitals (CholMOs) showed their localized character inherited from the
sparsity of the density matrix.

P = LLT (3.77)

3.4. The ABCs of LMOs and NOs: Orbital Representations 70

Figure 3.7 shows the sparsity of the occupied density matrix and the occupied Cholesky
molecular coefficient matrix of the linear alkane H322C160. The number of CholMOs is
equal to the rank of the density matrix, which is equal to the number of occupied orbitals.
The CholMOs are computed by an incomplete Cholesky decomposition with full row and
column pivoting (Section 11.3). The unitary transformation matrix is given by

Uii = CµiSµνLνi (3.78)

The decomposition algorithm scales with O(N3) but can be made linearly scaling
by using sparse matrix algebra. CholMOs have several advantages: the Cholesky de-
composition is fast and non-iterative, and an initial guess for molecular orbitals is not
needed.

The scheme can be extended to virtual orbitals as well, by CD of the virtual atomic
density matrix Q. The rank of Q is equal to the number of virtual orbitals nvir, therefore
the prefactor of the incomplete CD increases with basis set size. Especially in the presence
of diffuse functions, the rank reduction might not offer much of an advantage compared
to simpler localization methods such as PAOs.

Moreover, orbitals obtained by CD are less localized than FB or ER LMOs, especially
for small molecules. Low scaling is still possible using CholMOs in the context of LMO
correlation methods, albeit with a larger prefactor.

CD is also used in the context of AO-MP2 to reduce the prefactor of integral transfor-
mation by using the rank sparsity of the pseudo-density matrices, as will be shown further
below. CholMOs can also used as an initial guess for iterative localization schemes to
achieve faster convergence.

3.4.2 Natural Orbitals

While the schemes described above try to generate a set of occupied and/or virtual
molecular orbitals localized in space, natural orbital (NOs) methods try to generate a
set of "compact" orbitals, i.e. a minimal set of orbitals that can describe the problem at
hand. The concept of natural orbitals was first introduced by Löwdin [119]. The natural
orbitals Θi of a wave function Ψ are defined as the eigenfunctions of the one-particle
density operator n̂

n̂ |Θi⟩ = ni |Θi⟩ (3.79)

where ni are the occupation numbers of the associated orbital Θi. One can then choose a
reduced orbital space {Ψ̃i} by only taking into account those orbitals with an occupation
number above a certain threshold τ . The orbitals are "natural" in the sense that they
are determined purely using Ψ, and are intrinsic to the system. NOs are computed by
diagonalizing the one-particle density matrix at the desired level of theory (Hartree-Fock,
MP, CIS, CC).

Natural Orbitals in Hartree Fock Theory

In Hartree-Fock theory, natural orbitals are mostly reserved for qualitative population
and bond order analysis.

71 3.4. The ABCs of LMOs and NOs: Orbital Representations

0 1000 2000 3000

0

1000

2000

3000

=⇒

0 500

0

1000

2000

3000

0 1000 2000 3000

0

1000

2000

3000

=⇒

0 1000 2000 3000

0

1000

2000

3000

Figure 3.7: Cholesky decomposition of the occupied and virtual density matrices (left)
yields a set of coefficients that describe a localized MO basis in the orbital and virtual
space, respectively (right). The matrices are represented in terms of a heat map which
indicates the magnitude of log10(abs(aij)).

Natural atomic orbitals (NAOs) are computed by diagonalizing the blocks PµAνA of
the atomic density matrix, where µA, νA are basis functions centered on atom A. NAOs
are optimal for describing the electron density around individual atom centers. NAOs
are also useful for obtaining a set of guess orbitals from density matrices formed from the
superposition of atomic densities (SAD) guess (Appendix B).

Furthermore, NAOs serve as the starting point for obtaining natural hybrid orbitals
(NHOs), which in turn are used for constructing natural bond orbitals (NBOs). NBOs
are a useful orbital representation for analyzing molecular bonds (e.g. bond order, bond
polarity). They are conceptually close to the traditional Lewis structure of a molecule
[120, 121, 122].

Frozen Natural Orbitals

For large basis sets, the number of occupied canonical MOs is several times lower than the
number of virtual canonical orbitals. Furthermore, NOs do not considerably reduce the
number of occupied orbitals. It is therefore sufficient to only compute the eigenfunctions
of the virtual-virtual block of the one-particle density matrix, in what is known as the

3.4. The ABCs of LMOs and NOs: Orbital Representations 72

frozen natural orbitals (FNOs) approach [123]. FNOs need information of the correlated
wave function, and are therefore typically computed at a lower level of theory. For
example, the easiest way to obtain a set of FNOs for CCSD or CCSD(T) computation is
to diagonalize the virtual-virtual block of the MP2 density matrix [124, 125, 126]

Dab =
1

2

∑
cij

Kcb
ijK

ca
ij

ϵabij ϵ
ca
ij

(3.80)

with
Kab

ij = 2 (ia | jb)− (ib | ja) (3.81)

ϵabij = ϵi + ϵj − ϵa − ϵb (3.82)
The FNOs are then canonicalized. The combined set of occupied CMOs and virtual
FNOs forms a very compact representation suitable for CC ground state and excited
state calculations.

Natural Transition Orbitals

Consider the CIS eigenvalue problem for finding the excitation energies ωn and their
associated transition density matrices Rn

ACISRn = ωnRn (3.83)
The matrices Rn contain noccnvir expansion coefficients cia which show how much an
orbital-virtual MO pair ia contributes to the excitation n. The number of non-negligible
coefficients can be far from zero, making interpretations of the computed results difficult
for some systems.

Natural transition orbitals (NTOs) were introduced to facilitate the qualitative de-
scription of an excited state and finding connections to experimental spectra [127, 128].
NTOs are typically obtained by computing the singular value decomposition (SVD) of
the state densities Rn

R = UΣV† (3.84)
where U and V are unitary matrices with dimension noccnNTO and nvirnNTO, and Σ is
a nNTO by nNTO matrix containing the singular values s on its diagonal. The CMOs
{Ψocc

i ,Ψvir
a } are transformed to the NTO basis {Ψocc

k ,Ψ
vir

k } using∣∣Ψocc

k

〉
= Uki |Ψocc

i ⟩ (3.85)∣∣∣Ψvir

k

〉
= Vka

∣∣Ψvir
a

〉
(3.86)

The singular values sk show the contribution of an NTO pair k to the excited state. In
most cases, the number of significant NTO pairs is significantly lower than noccnvir and
at most equal to nocc. NTOs are not limited to CIS, but can also be obtained by SVD
decomposition of the singles-singles block of excited state densities from higher order
methods such as ADC or CCLR.

Natural transition orbitals have also found use in local excited state correlation me-
thods [129, 130], where CIS NTOs are combined with MP2 NOs to obtain a compact
orbital representation for ground and excited state coupled cluster calculations.

73 3.4. The ABCs of LMOs and NOs: Orbital Representations

3.4.3 Specific Virtual Orbitals

In most cases, using LMOs instead of CMOs does not offer any a priori advantage in
terms of the computational complexity associated with correlated methods, and addi-
tional approximations are necessary. In local correlation methods, this is often done by
truncating the VMO space. Truncation of the VMOs has been an active field of research
for several decades. A naive approach to truncate the virtual space would be to elimi-
nate VMOs with orbital energies above a certain threshold; however, this proved to be
unusable in most contexts [131]. More successful methods for VMO truncation use the
concept of what will referred to as specific virtual orbitals (SVOs). SVOs are specific in
the sense that each individual occupied MO i or each pair of MOs ij has their own set of
SVOs ai (orbital specific virtual orbitals) or aij (pair specific virtual orbitals) associated
to it. The concept of SVOs naturally arises in the context of correlated methods such as
the coupled electron pair approximation (CEPA) where the total energy is computed is
computed as the sum of electron pair energies e

ECEPA =
∑
ij

eij (3.87)

The electron pair energy decays rapidly as a function of the distance r between MO
centers in an LMO basis. Distant virtual orbitals contribute less to the electron pair
energy as virtual orbitals close to ij. It has been shown early on that instead of using
the whole virtual orbital span, one can correlate only a subset or reduced set of virtual
orbitals with each electron pair [132, 133, 134, 135] and still recover most of the correlation
energy. In the limit of large molecules, the number of significant virtual orbitals for an
electron pair becomes independent of system size [136] (see also Chapter 4). There are
different ways to choose how to define the VMO subsets, either by using local molecular
orbitals or natural orbitals.

Domain Specific Virtual Orbitals

The term domain specific virtual orbitals (DSVOs) will be used to denote any type of
virtual orbitals where the subsets are formed a priori by distance or partial charge criteria.
Examples include the local MP2 and local CCSD implementations by Schütz et al. [137,
138, 139].

First, occupied CMOs are localized by one of the methods described above, e.g. FB or
ER. Virtual CMOs are transformed into the PAO basis. Each individual occupied LMO
|Ψi⟩ is then assigned a subset [i] of PAOs, chosen by a Boughton-Pulay (BP) criterion
[140] or by population analysis [141]. For a given electron pair ij, the pair domain is then
formed by taking the union [ij] = [i] ∪ [j]. The set of all virtual pair domains [ij] forms
the DSVOs.

Alongside AOs, DSVOs were among the first orbital representations in which li-
near scaling correlated methods were formulated. Their dependency on distance criteria
for selecting the pair domains makes them less rigorous than other methods, and pure
LMO+PAO methods have fallen somewhat out of favor over the years. Nonetheless, the
concepts of local domains remain crucial for low-scaling algorithms using natural orbitals
[142].

3.4. The ABCs of LMOs and NOs: Orbital Representations 74

Pair Natural Orbitals

First introduced under the guise of "pseudo-natural orbitals" [133], then rediscovered
by Neese [143, 144, 145], pair natural orbitals (PNOs) have risen in popularity in the
recent years. Similarly to DSVMOs, each electron pair has a set of PNOs associated to
it. PNOs are formed by diagonalizing the MP2 pair density matrix for each MO pair ij
(hence "pair-natural")

Dij =
1

1 + δij

(
t̃ijtij + t̃ijtij†

)
(3.88)

with

t̃ijab = 2tijab − tjiab (3.89)

The eigenvalue decomposition of D then gives

DijQij = nijQij (3.90)

where Qij are the pair specific transformation matrices, and nij their occupation numbers.
The Fock matrix in the LMO representation is not diagonal, and the MP2 amplitudes
are approximated by

tabij =
(ia | jb)

ϵa + ϵb − fii − fjj
(3.91)

where fii are the diagonal entries of the Fock matrix in the LMO basis. The pair domains
[ij] are chosen by keeping the PNOs with an occupation number larger than a threshold
τPAO. Therefore, accuracy is controlled by a single, distance-independent parameter,
which is an advantage over other methods like DSVOs.

However, computing the PNOs requires a full MP2 calculation which scales as O(N5).
Moreover, even if the PNO basis is compact, the fact that each LMO pair has its own
virtual orbital basis may lead to a prohibitively large number of PNOs for large molecules.
The concept of PNOs can be combined with the domain-based approach of LMO+PAO,
in what is known as local pair-natural orbitals (LPNOs) [142].

Orbital Specific Virtuals

Closely related to PNOs are the orbital specific virtual orbitals (OSVs) [146]. The OSVs
for an LMO |Ψi⟩ are obtained by taking the diagonal PNOs for the domain [ii]. The MP2
density matrix reduces to

Dii = 4tiitii (3.92)

Instead of reducing the density matrix, one can just diagonalize tij instead.

tiiQii = tiiQii (3.93)

where tii are the eigenvalues, which are used to compute the compute the occupation
numbers nii = (tii)

2. OSVs for which nii > τOSV are included into the orbital specific
domain [i]. Pair domains [ij] are then formed as the union of [i] and [j] similar to DSVOs.

75 3.4. The ABCs of LMOs and NOs: Orbital Representations

OSVs have the advantage that they can be constructed with O(N3) scaling provided
that density fitting is used. However, OSVs are less compact than PNOs, but they
can be used to lower the computational complexity to construct PNOs. Several hybrid
OSV-PNO schemes have been proposed with a computational complexity of O(N4) [136],
O(N3) [147] and finally O(N) [142].

76

Chapter 4

Local Correlation Methods (II):
Ground State

Since the seminal work of Sæbø and Pulay [148, 132, 117], demonstrating how the com-
putational effort of electronic structure methods may be reduced via a local treatment of
electron correlation using LMOs and PAOs, the concept of locality has been applied to
Hartree-Fock, Møller-Plesset and Coupled-Cluster methods. Over the years, pure LMO
methods have somewhat fallen out of use, in favor for an atomic orbital or (local) natural
orbital treatment. This chapter summarizes how the tools and concepts of sparsity and
local electron correlation presented in the previous chapter can be used to reduce the
scaling of electronic structure methods. The focus will mainly be on Hartree-Fock and
Møller-Plesset, with some words on Coupled-Cluster as well.

4.1 Low-Scaling Self-Consistent Field Methods

Hartree-Fock and density field theory, grouped under the umbrella term of self-consistent
field (SCF) methods, are the working horses in quantum chemistry, and the underlying
equations, the Roothan and Kohn-Sham equations, are well known and studied. Con-
ventional formulations of HF and DFT, without inclusion of sparsity, scale with O(N3)
to O(N4) which hampers extension to very large systems. There are three major bottle-
necks: (1) computation of the coulomb matrix, (2) computation of the exchange matrix
and (3) diagonalization of the Fock matrix. Over the last couple of decades, multiple
different approaches have been proposed on how to lower the scaling of constructing the
Fock matrix and circumvent matrix diagonalization. To this day, the field of low sca-
ling SCF methods remains an active area of research in theoretical chemistry. The next
sections will address the time-determining steps in detail.

4.1.1 The Coulomb Matrix

Consider again the expression for the coulomb matrix J

Jµν = (µν | λσ)Pσλ (4.1)

which gives the following sparsity diagram:

77 4.1. Low-Scaling Self-Consistent Field Methods

µ ν σ λ
S P/S

The construction of J has an inherent computational complexity of O(N2), even though
the number of non-zero elements scales linearly due to the overlap relationship between µ
and ν. Quadratic scaling algorithms are straight-forward to implement. The first method
to construct J with O(N) effort was the continuous fast multipole method (CFMM)
[109]. For each element µν the contributions σλ are split into near-field and far-field
contributions. NF interactions are computed using standard integration techniques, while
FF interactions are computed using multi-level multipole expansion. The linear scaling
remains even if the density matrix is not sparse. Other tree-like algorithms were also
proposed [149, 150]. In all cases, computing the NF interactions are by far the most
time-consuming step.

One way to speed up the evaluation of the non-classical contributions is by moving
the contraction step with the density matrix into the underlying integral evaluation. By
modifying the formulas for the Gaussian integrals, the explicit storage of the 2-electron
repulsion integrals can be skipped which greatly increases computational efficiency [109,
151, 152]. To this day, the J engine method, in combination with CFMM, remains the
most efficient way to evaluate the exact Coulomb matrix.

Alternatively, one may introduce the density fitting approximation. The Coulomb
matrix is then evaluated in several steps via the intermediates D and C as

Jµν = CXµνDX (4.2)
DX = (Y | µν)Pνµ (4.3)

CXµν = (X | Y)−1 (Y | µν) (4.4)

The computational effort remains unchanged, with O(N2), but with a much lower pre-
factor, especially for larger, more diffuse basis sets [99]. Furthermore, the integrals can
be recomputed on the fly, and do not need to be explicitly stored. The inversion of the
metric matrix (X | Y) scales cubically, and dominates the cost of the DF approximation
for large molecules.

For large molecules, one could also consider using local density fitting, such as the
atomic resolution of the identity or pair-atomic resolution of the identity. Unfortunately,
LDF also only reduces the prefactor, rather than scaling. Furthermore, it is necessary to
use the robust density fitting of the electron integrals (Equation 3.31) to recover quadratic
scaling in the fitting error, due to the constraints imposed on the density fitting procedure.
The Coulomb matrix is then expressed as

Jµν = (µν | X) bX + cYµν [gY − g̃Y] (4.5)

gX = CX
µνPµν (4.6)

g̃X = (X | Y) bY (4.7)
bX = CX

µνPµν (4.8)

The robust LDF-J approximation is evaluated at an effort similar to standard DF-J. The
only advantages to LDF in this case pertain to the fitting procedure itself. It is no longer
necessary to invert the 2c2e integral matrix (X | Y), and the fitting coefficients CX

µν can

4.1. Low-Scaling Self-Consistent Field Methods 78

be evaluated in linear scaling fashion. However, it has been demonstrated that using
Dunlap’s robust formula in combination with local metrics leads to "attractive electron"
states where the SCF energy may converge to very high positive values [95, 153]. The
reason is that the the two-electron integral tensor in the robust LDF approximation is no
longer positive semidefinite, but indefinite, which can lead to severe convergence problems.
One way to circumvent this problem is to loosen the constraints on the density fitting
procedure, or use a larger auxiliary basis set. In both cases, performance is compromised.

As shall be shown in chapter 7, quasi-robust density offers a better alternative to
robust LDF-J methods, with similar sparsity and higher accuracy without the use of
Dunlap’s formula.

4.1.2 The Exchange Matrix

Exact Exchange

The expression for the exchange matrix is given by

Kµν = (µσ | νλ)Pλσ (4.9)

In the section where sparsity diagrams were introduced, it was demonstrated that the
indices of the exchange expression can be fully linked:

µ νσ λ
S P S

The non-zero elements in K scale linearly and can be evaluated withO(N). This property
was realized quite early on [154]. However, a straight-forward implementation where the
4c2e integrals are directly contracted with the density matrix P using sparse matrix
algebra does not give the desired results, when applying the standard O(N2) Schwarz-
screening to (µσ | νλ). To lower the scaling of electron integral evaluation, it is important
to design a screening algorithm which imposes the P junction between σ and λ which in
turn leads to only a linear increase in the number of bra-ket pairs.

The ONX method by Schwegler [154] was the first O(N) scheme for constructing the
exchange matrix, but did not exploit permutational symmetry, which lead to a four fold
increase in the prefactor. More competitive methods were proposed later, such as Linear
Exchange (LinK) [155], or symmetrized ONX (SONX) [139] that could also be applied
to small systems without major overhead.

For all approaches, an important step is the screening of the bra-ket pairs using a
density-weighted integral estimate

|Pλσ|| (µσ | µσ) |1/2| (νλ | νλ) |1/2 ≤ τ (4.10)

which scales linearly in the limit of large systems with large HOMO-LUMO gaps. Further-
more, shell ordering is very important to avoid the O(N2) complexity of screening and
enable early exit out of the shell loops during construction of the exchange matrix. Si-
milarly to the J kernel, the electron integrals need not to be held in memory, but can be
recomputed on the fly.

79 4.1. Low-Scaling Self-Consistent Field Methods

Density Fitting

The downside of exact linear exchange algorithms is the steep O(N4) scaling with in-
creasing basis set size which delays the onset of the low-scaling regime. For this reason,
considerable effort has been invested in recent years to also exploit rank sparsity by
density fitting. The DF expression for the exchange matrix in the AO basis reads

CX
µν = (X | Y)−1 (Y | µν) (4.11)

Kµν = CX
νλ (X | µσ)Pσλ (4.12)

In a straight-forward implementation using sparse matrix algebra, Equation 4.11 and
Equation 4.12 are evaluated with O(N3) and O(N2) effort respectively. The non-zero
elements of both the fitting coefficients C and the 3c2e integrals increase quadratically.
Their storage can quickly become problematic for large basis sets if both are held in-core.
In principle, both tensors can be recomputed batchwise on-the-fly to reduce memory-
footprint, but in contrast to the DF-J kernel where only the 3c2e integrals need to be
generated at each iteration, recomputing the fitting coefficients each time introduces a
prefactor that is too large for an out-of-core DF-K kernel to be of any practical use (see
Chapter 7).

For an efficient, direct evaluation of the exchange matrix using density fitting, an MO
based approach is much more favorable [99]. The MO-DF-K kernel is evaluated as

BX
µi = Cνi (X | µν) (4.13)

DX
µi = (X | Y)−1/2BX

µi (4.14)

Kµν = BX
µiB

X
νi (4.15)

with cubic computational complexity. The matrix elements of the exchange matrix are
evaluated batch-wise over occupied blocks I. By contracting the 3c2e integrals with the
coefficient matrix Cµi to form the half-transformed integrals BX

µi, storage can be reduced
from NauxN

2
AO to NauxNAONocc/NI . The 3c2e integrals need to be recomputed for each

block I, but in practice the number of blocks can be held quite small. The DF-MO-K
method is especially well suited for small to medium sized molecules with large diffuse
basis sets for post-HF calculations.

Local Density Fitting

Standard density fitting introduces long-range interactions which inhibit the linear scaling
construction of the exchange matrix. This problem can be solved by using LDF. Again,
Dunlap’s robust density fitting needs to applied to get accurate results. The robust DF-K
kernel can take the form

EX
µν = CX

µσPλν (4.16)

Lµν = EX
µσ (X | νσ)−

1

2
EX

µσ (X | Y)CY
νσ (4.17)

Kµν = Lµν + Lνµ (4.18)

All steps can be evaluated inO(N) time, under the assumption that the fitting coefficients
scale linearly:

4.1. Low-Scaling Self-Consistent Field Methods 80

E : X µ σ ν
LDF S P

L : X µ σ ν + X µ σ ν Y
LDF P S LDF P S LDF

K : µ ν + νµ

Alternatively, an LDF-K scheme based on LMOs is also possible [98, 156]. Over the
years, many different LDF-K kernels have been proposed that approximate CX

µν based on
LMO domains [98, 156], the atomic resolution of the identity (ARI) [94], the pair-atomic
resolution of the identity (PARI) [95] or the concentric atomic density fitting (CADF)
[77]. Although the electron integrals are no longer positive semidefinite, LDF-K is not
plagued by the same convergence problems as LDF-J, and it has been shown that LDF-K
can be combined with standard DF-J to circumvent convergence problems [96].

4.1.3 The SCF Procedure

In the standard SCF procedure, the construction of the Fock matrix is followed by a
cubic scaling diagonalization to obtain the MO coefficient matrix and the MO energies.
As was discussed in detail in the previous chapter, the eigenvectors of the Fock matrix,
i.e. the canonical MOs, are delocalized, and therefore using a sparse eigenvalue solver is
unfortunately not an option. The solution is to entirely avoid any MO quantities and
replace the Fock diagonalization step. For a functional, fully AO-based method, the same
constraints on the density matrix need to be fulfilled as in the standard SCF procedure:

P = P† Hermiticity (4.19)
Tr(PS) = Nele N -representability (4.20)

PSP = P Idempotency (4.21)
FPS− SPF = 0 Commutator (4.22)

There are two main approaches for replacing Fock matrix diagonalization: Purification
(or spectral projection) and density matrix minimization [157].

In spectral projection methods, an initial guess for the density matrix P of its Fock
matrix F is obtained as

P = Θ(µI− F) (4.23)

where µ is the chemical potential, and Θ is the Heaviside step-function. The guess den-
sity then has orbital occupation numbers spread between 0 and 1, and has the same
eigenvectors as the Fock matrix. The idempotent density is then determined by density
purification. Density purification is an iterative procedure where a purification transfor-
mation is repeatedly applied to the density matrix which converges the orbital occupation
numbers either towards 0 or 1. One of the earliest purification transformation by Mc-
Weeny [158] takes the form

Pn+1 = 3PnSPn − 2PnSPnSPn (4.24)

81 4.2. Møller-Plesset

Equation 4.24 is also known as the grand-canonical purification scheme. Other trans-
formations have been proposed over the years, such as canonical purification [159] or
trace-resetting purification [160], which do not need the chemical potential µ. The only
operations in purification schemes are matrix multiplications, which can be made line-
arly scaling using sparse matrix algebra. Compared to Fock diagonalization, density
purification has a larger overhead, but can be easily integrated without needing large
modifications of existing SCF code.

The second method, density matrix minimization, starts from an existing idempotent
density matrix guess from a previous SCF cycle and minimizes the energy functional
[161, 162, 163]

E = Tr [(3PSP− 2PSPSP) (K− µI)] (4.25)

where K is the effective one-electron Hamiltonian matrix. The energy minimum is found
either by gradient descent or the curvy-step approach [3, 164].

Routine application of density matrix purification or minimization has been mainly
limited by uncontrolled error accumulation and convergence problems [165].

4.2 Møller-Plesset
Second-Order Møller Plesset is one of the simplest post-Hartree Fock methods available,
but still scales as O(N5). Attempts to reduce computational complexity can generally be
grouped into two categories: AO-MP2 and LMO-MP2. Independent on which method is
used, they share two problems.

First, the energy denominator in the MP2-amplitudes t make it difficult to transform
the MP2 energy expressions into a different basis. AO-MP2 and LMO-MP2 take different
approaches to an orbital-invariant formulation of the MP2 energy expressions: AO-MP2
solves the problem using the Laplace quadrature, while LMO-MP2 methods generally use
the Hylleraas functional.

Second, steps involving the transformation of the AO two-electron integrals to the
Pseudo-AO or LMO basis still remain a major bottle-neck, even with sparsity involved.
Both AO- and LMO-MP2 use screening criteria, additional domain restrictions, density
fitting or similar methods to lower the cost of integral transformation. These additional
procedures are crucial if one wishes to achieve a truly linear scaling MP2 method with a
reduced overhead.

4.2.1 Atomic Orbital MP2

MP2 was first formulated in the AO basis in 1993 by Häser [166], and a linear scaling
algorithm was presented by Scuseria and Ayala in 1999 [167].

The Laplace Transform

In 1991, Almlöf showed [168] that the energy denominator in the MP2 amplitudes can
be removed using an integral transform called the Laplace Transform

1

ϵa + ϵb − ϵi − ϵj
=

∫ ∞

0

e−(ϵa+ϵb−ϵi−ϵj)tdt (4.26)

4.2. Møller-Plesset 82

The t-integration can be replaced [166] by a finite summation using a functional
approximation:

1

ϵa + ϵb − ϵi − ϵj
≈

n∑
α

w(α)e−(ϵa+ϵb−ϵi−ϵj)t
(α)

(4.27)

where w(α) and t(α) are the Laplace weights and exponents at the Laplace points α.
Accuracy can be controlled by the number of Laplace points n. An efficient AO-MP2
implementation heavily relies on an accurate quadrature scheme to achieve the desired
accuracy using as few Laplace points as possible to reduce overhead caused by the repea-
ted AO transformation at each step. In general, 5-8 Laplace points are needed to achieve
milli-Hartree accuracy, and 10 to 15 points for micro-Hartree accuracy. For more details,
the reader is referred to section 11.4.

AO-MP2 Equations

Using the Laplace transform, the energy expression for restricted canonical MP2 can be
expressed as

EMP2 = −
∑
iajb

(ia | jb) [2 (ia | jb)− (ib | ja)]
ϵa + ϵb − ϵi − ϵj

≈ −
n∑
α

∑
iajb

(ia | jb) [2 (ia | jb)− (ib | ja)]w(α)e−(ϵa+ϵb−ϵi−ϵj)t
(α)

(4.28)

The coefficient matrices can then be factored out as

−
n∑
α

∑
iajb

(ia | jb) [2 (ia | jb)− (ib | ja)]w(α)e−(ϵa+ϵb−ϵi−ϵj)t
(α)

=−
n∑
α

∑
iajb

∑
µνλσ

µ′ν′λ′σ′

w(α)e−(ϵa+ϵb−ϵi−ϵj)t
(α)

Cµ′iCσ′a (µ
′σ′ | ν ′λ′)Cν′jCλ′b

× {CµiCσa [2 (µσ | νλ)− (µλ | νσ)]CνjCλb}

=−
n∑
α

∑
µνλσ

µ′ν′λ′σ′

P
(α)
µµ′Q

(α)
σσ′ (µ

′σ′ | ν ′λ′)P
(α)
νν′ Q

(α)
λλ′ [2 (µσ | νλ)− (µλ | νσ)]

(4.29)

with the occupied and virtual pseudo or Laplace density matrices

P
(α)
µµ′ =

∑
i

Cµie
0.25 lnw(α)+ϵit

(α)

Cµ′i

Q
(α)
µµ′ =

∑
i

Cσae
0.25 lnw(α)−ϵat(α)

Cσ′i

(4.30)

Introducing the pseudo-AO transformed electron integrals(
µσ | νλ

)(α)
= P

(α)
µµ′Q

(α)
σσ′ (µ

′σ′ | ν ′λ′)P
(α)
νν′ Q

(α)
λλ′ (4.31)

83 4.2. Møller-Plesset

the energy expression for AO-MP2 then reads

EAO−MP2 = −
n∑
α

∑
µνλσ

(
µσ | νλ

)(α)
[2 (µσ | νλ)− (µλ | νσ)] (4.32)

For t = 0, P(α) and Q(α) are equal to the Hartree Fock density matrices. The Laplace
matrices also fulfill similar relationships:

P(α)SP(α) = 0 (4.33)

P(α)S+Q(α)S = Iexp (4.34)

where Iexp is a diagonal matrix with trace

Tr[Iexp] =
∑
i

e0.25 lnw(α)+ϵit
(α)

+
∑
a

e0.25 lnw(α)−ϵat(α)

(4.35)

The entries of the pseudo-density also decay exponentially as function of the distance
between pseudo-AO centers. Strictly speaking, AO-MP2 is not only formulated in a pure
AO-basis (µν...), but also a PAO-like basis (µ, ν, ...).

Quadratic Scaling AO-MP2

Using the linked index rule, the complexity of the AO-MP2 method can easily be de-
termined. The energy expression in Equation 4.32 involves the dot product between
two different tensors, the AO-ERIs (µσ | νλ) and the pseudo-AO-ERIs

(
µσ | νλ

)
(α). The

scaling is thus determined by the sparsity of those two tensors. From the discussion in
Chapter 3, it followed that the ERIs can be computed with O(N2) effort. The pseudo-AO
ERIs are computed by transforming the ERIs with the pseudo-density matrices, whose in-
dices µ, ν are connected by a P junction. The diagrammatic expression for the pseudo-AO
ERIs 4.31 is given by

µ
P←→ µ′ S←→ σ′ P←→ σ

ν
P←→ ν ′ S←→ λ′ P←→ λ

(4.36)

Two vertices indicate an O(N2) effort for evaluating Equation 4.31. Therefore, the inher-
ent asymptotic scaling of AO-MP2, without any other further approximations, is O(N2)
as well. Similarly to the AO ERIs, a quadratic scaling evaluation of the pseudo-AO ERIs
can be achieved using a Schwarz-like screening, as first advocated by Almlöf. Defining
the screening matrices

Qµν = |(µν | µν)|1/2

Xµν =
∣∣(µν | µν)∣∣1/2

Yµν = |(µν | µν)|1/2

Zµν = min

(∑
σ

Aµσ|Pσν |;
∑
σ

Bµσ|Qσν |
) (4.37)

4.2. Møller-Plesset 84

gives an upper bound for each transformation step in Equation 4.31, for example

(µ′σ′ | ν ′λ′) ≤ Qµ′σ′Qν′λ′ (4.38)(
µσ′ | ν ′λ′) ≤ Xµ′σ′Qν′λ′ (4.39)(
µσ | νλ

)
≤ ZµσZνλ (4.40)

An efficient screening protocol can be devised [166] to get quadratic scaling AO-MP2.

Linear Scaling AO-MP2

For the two-electron repulsion integrals, the 1/R decay between the charge densities (µσ|
and |νλ) is too slow to be of any use even for large systems. However, it was shown [169]
that bra and ket in the Laplace integral tensor e(α) decay much faster with 1/R3. Here,
we follow the discussion from Reference [170].

For two non-overlapping charge densities (µσ| and |νλ) the following inequality holds

(µσ | νλ) = (µσ| 1

r12
|νλ) ≤ 1

R

∣∣∣∣∣
∞∑
n=0

(µσ| (r1 − r2)
n |νλ)

Rn

∣∣∣∣∣ (4.41)

Introducing the following abbreviation for the nth order 1-center multipole integrals

M (n)
µσ =

∫
χµ(r1)r

n
1χσ(r1)dr (4.42)

where M0 are the overlap integrals, M1 are the dipole integrals etc. Rewriting equation
4.41 as a multipole expansion gives

(µσ | νλ) ≤ R−1
∣∣∣M (0)

µσ M
(0)
νλ

∣∣∣+R−2
∣∣∣M (1)

µσ M
(0)
νλ −M (0)

µσ M
(1)
νλ

∣∣∣
+R−3

∣∣∣M (2)
µσ M

(0)
νλ − 2M (1)

µσ M
(1)
νλ +M (0)

µσ M
(2)
νλ

∣∣∣
+R−4

∣∣∣M (3)
µσ M

(0)
νλ − 3M (2)

µσ M
(1)
νλ + 3M (1)

µσ M
(2)
νλ −M (0)

µσ M
(3)
νλ

∣∣∣
+O(R−5)

(4.43)

From equation 4.33, it follows that M
(0)
µσ = Sµσ = 0. The multipole expansion for the

pseudo-AO ERIs e(α) therefore reduces to(
µσ | νλ

)
≤ R−3

∣∣∣−2M (1)
µσ M

(1)

νλ

∣∣∣
+R−4

∣∣∣−3M (2)
µσ M

(1)

νλ
+ 3M

(1)
µσ M

(2)

νλ

∣∣∣
+O(R−5)

(4.44)

which shows the 1/R3 dependence of the tensor
(
µσ | νλ

)
. Combined with the 1/R decay

of the AO ERIs, this leads to an overall 1/R4 behavior for the AO-MP2 energy. This
long-range decay can be exploited to introduce a sparsity relationship between the bra
and ket quantities, and reduce the scaling of AO-MP2 from O(N2) to O(N1). In the
original paper by Ayala and Scuseria [169], this decay was accounted for by introducing

85 4.2. Møller-Plesset

an interaction domain centered on each atomic orbital µ in the form of a sphere. For the
integrals

(
µµ | νν

)
, the domain D(µ), comprises all charge distributions σλ for which(

P (α)
µσ SσλQ

(α)
λµ

)
≥ ϵ (4.45)

The radius Rµ of the interaction sphere is defined by the maximum distance between µ
and the charge density σλ in its domain. One can then screen long-range behavior for
the interaction sphere µ and ν by the distance criterion

rµν −Rµ −Rν ≥ r0 (4.46)

The biggest drawback of the scheme above is that the threshold parameters r0 and ϵ are
system-dependent. A more rigorous screening method has been proposed by Lambrecht
et al. known as multipole based integral estimates (MBIE) [171, 170, 172]. MBIEs offer
a tight upper bound for the AO and pseudo-AO electron integrals by using the multipole
expansion and replacing the higher order terms O(R−5) by lower-order ones.

Cholesky Decomposition of Pseudo-Densities

As with any method formulated entirely in an AO basis, AO-MP2 suffers from O(N4)
scaling with increasing basis set size N . The cost associated with larger basis sets can be
mitigated by Cholesky decomposition of the pseudo-density matrices (CDD) [173]. Simi-
lar to the orbital localization technique described in Chapter 3, where the (incomplete)
CD of the occupied and virtual Hartree-Fock density matrices yields a set of occupied
and virtual Cholesky molecular orbitals, the CD of the pseudo-density matrices P(α) and
Q(α) yields a set of Cholesky pseudo-molecular orbitals:

P(α) = L(α)L(α)T (4.47)

Q(α) = L
(α)

L
(α)T (4.48)

The pseudo-molecular orbitals show a local behavior inherited from the sparsity of the
pseudo-density matrices. It has been observed however [174], that the pseudo-MOs L are
not always very well localized. A more localized set of MOs can be obtained by using the
orthogonalized pseudo-density matrices, for example in the case of P(α):

P
(α)
orth = S1/2P(α)S1/2 (4.49)

The pseudo-MO coefficients are then computed as

L(α) = S−1/2L
(α)
orth (4.50)

The square root and inverse square root of the overlap matrix S are most reliably found
by (full) Cholesky decomposition. The number of occupied and virtual pseudo-MOs is
given by the rank of the occupied/virtual pseudo-density matrices, which is equal or a
little less than the number of occupied/virtual CMOs.

One can then formulate the CDD-MP2 energy expression as

ECDD−MP2 = −
n∑
α

∑
iajb

(
ia | jb

)(α) [
2
(
ia | jb

)(α) − (ib | ja)(α)] (4.51)

4.2. Møller-Plesset 86

with the pseudo-MO integrals(
ia | jb

)(α)
= L

(α)
µi L

(α)

σa (µσ | νλ)L(α)
νj L

(α)

λb (4.52)

CDD-MP2 therefore reduces the sizes of the tensors from N4
AO to N2

occN
2
vir, while still

being sparse. Similar to AO-MP2, Schwarz screening and interaction domains can be
introduced to obtain quadratic and linear scaling CDD-MP2.

Density Fitting in AO-MP2

To reduce the prefactor associated with integral transformation, either from AOs to
pseudo-AOs, or from AOs to pseudo-MOs, on can furthermore introduce density fitting
[173, 175]. The transformed 3c2e integrals are given at each Laplace point α by(

X | µν
)(α)

= (X | µ′ν ′)P
(α)
µµ′Q

(α)
νν′ (4.53)

which are evaluated with O(N2) cost. Using local density fitting approximations, this
step can be reduced to approximately O(N) [176].

Spin-Opposite Scaling

SOS-MP2 is a cost-efficient variant of MP2 with improved accuracy (Section 1.8.4). One
of the advantages of SOS-MP2 is that by omitting the same-spin contributions, the energy
expressions can be efficiently factored when using the density fitting approximation [175,
176]:

EAO−DF−SOS−MP2 = −cos
nlap∑
α=1

∑
µνσλ

(νσ | X)(α) (X | Y)−1 (Y | νλ)(α)
(µσ | X ′) (X ′ | Y ′) (Y ′ | νλ)

(4.54)

Introducing the intermediates

Z
(α)
XY =

(
X | µσ

)(α)
(µσ | Y) (4.55)

Z̃
(α)
XY = (X | R)−1 Z

(α)
RX (4.56)

a compact energy expression can be obtained which reads

EAO−DF−SOS−MP2 = −cos
nlap∑
α=1

∑
XY

Z̃
(α)
XY Z̃

(α)
Y X (4.57)

The computation of Z(α) is the time-determining step. The sparse map of the intermediate
is given by

X µ′

µ

ν ′

ν Y
P P

S

S

87 4.2. Møller-Plesset

which suggests that AO-DF-SOS-MP2 has an overall asymptotic scaling of O(N3). With
local density fitting, the graph can become fully connected

X µ′

µ

ν ′

ν Y
P P

S

S
LDF

LDF

where "LDF" is the sparsity relationship introduced between the auxiliary density X
and the product density (µν|, which is metric-specific. In the case of quasi-robust density
fitting, LDF = S, and the intermediates Z(α) can be constructed with linear effort. For
weaker decay behavior, such as the error function coulomb-attenuated metric, the scaling
is intermediate between linear and quadratic [176].

4.2.2 Local Molecular Orbital MP2

While linear scaling MP2 was first achieved using an atomic orbital formulation, the first
low-scaling MP2 implementations were actually formulated in a local molecular orbital
basis with domain-specific virtual orbitals [148, 132, 177, 178, 179]. While pure LMO
methods are not used very often nowadays, the concepts and tools they introduced are
still found in the context of (pair) natural orbitals [180].

Laplace Transform MP2

In the local molecular orbital basis, the Fock matrix is no longer diagonal, and the
amplitudes tiajb cannot be easily expressed in a local basis, due to the energy denominator.
AO-MP2 tackles this problem by virtue of the Laplace transform. Similarly, one can
obtain an energy expression in the LMO basis. The Laplace decomposed MP2 energy is
given by

EMP2 =
n∑
α

∑
iajb

|w(α)|e(ϵi+ϵj−ϵa−ϵj)t
(α)

[2 (ia | jb)− (ib | ja)] (ia | jb) (4.58)

Introducing the unitary occupied and virtual LMO-MO transformation matrix U

|i⟩ = Uii |i⟩ (4.59)
|a⟩ = Uaa |a⟩ (4.60)

4.2. Møller-Plesset 88

which is factorized out, Equation 4.58 becomes

EMP2 =
n∑
α

∑
iajb

∑
iab

∑
kcld

|w(α)|e(ϵi+ϵj−ϵa−ϵj)t
(α)

UiiUaa

[
2
(
ia | jb

)
−
(
ib | ja

)]
UjjUbb

UikUac

(
kc | ld

)
UjlUbd

=
n∑
α

∑
iab

[
2
(
ia | jb

)
−
(
ib | ja

)]∑
kcld

X
(α)
ik Y

(α)
ac

(
kc | ld

)
X

(α)
jl Y

(α)

bd

=
∑
iab

[
2
(
ia | jb

)
−
(
ib | ja

)]
Tiajb

(4.61)

with the Laplace amplitudes T and the Laplace matrices

X
(α)
ik =

∑
i

Uii|w(α)|1/4eϵit(α)

Ukk (4.62)

Y
(α)
ac =

∑
a

Uaa|w(α)|1/4e−ϵat(α)

Ucc (4.63)

Equation 4.61 is the general expression for the MP2 energy in a local molecular orbital
basis, where both the occupied and virtual orbitals are orthogonal. The situation changes
slightly when using non-orthogonal, domain-specific PAOs µ, which are related to CMOs
via

|µ⟩ = C̄µa |a⟩ (4.64)
|a⟩ = C̄νaS

−1
νµ |µ⟩ (4.65)

with S being the overlap matrix in the PAO basis, and C̄ = SC are the orthogonalized
MO coefficients. The inverse of S is computed by canonical orthogonalization (Appendix
C). This approximate inverse will be given by the matrix V, which is also specific to a
given pair [ij]. In general, only the virtual CMOs are transformed to the PAO base. The
virtual Laplace matrix then takes the following form [181]:

Y(α) = VB(α)V† (4.66)

B
(α)
µν =

∑
a

C̄µa|w(α)|1/4e−ϵat(α)

C̄νa (4.67)

with the other expressions of the LMO-MP2 energy remaining the same as before.

Hylleraas Functional

Alternatively, the local MP2 amplitudes can be determined iteratively via an orbital-
invariant formulation of the MP2 energy expression based on the Hylleraas functional
[182, 177]. The Hylleraas functional form of the energy is given by minimizing

E(2) = min
[
2
〈
Ψ(1)

∣∣H− E0

∣∣Ψ(0
〉
−
〈
Ψ(1)

∣∣H0 − E0

∣∣Ψ(1)
〉]

(4.68)

89 4.2. Møller-Plesset

In the case of MP2, the quantities in Equation 4.68 take the form〈
Ψ(1)

∣∣H− E0

∣∣Ψ(0)
〉
=

1

4

∑
ijab

tiajb ⟨ij| |ab⟩ (4.69)

〈
Ψ(1)

∣∣H0 − E0

∣∣Ψ(1)
〉
=

1

8

∑
ijabc

tiajbfcbtiajc −
1

8

∑
ijkab

tiajbfjktiakb (4.70)

Minimization of the MP2 Hylleraas functional, with respect to the amplitudes t yields a
set of linear equations given by

Riajb = ⟨ij| |ab⟩+
∑
c

(tijabfcb + factiacb)−
∑
k

(tiakbfkj + fiktkajb) = 0 (4.71)

where R is the residual. The amplitudes t are then no longer computed directly by a
closed expression, but iteratively by solving the system of equations, in a similar vein to
coupled cluster. For a set of orthogonal MOs i and a, the quantities in Equation 4.71 are
simply replaced by their local equivalent. Analogous to LT-LMP2, if PAOs are to be used
for the virtual orbital space, the non-orthogonality needs to be taken into consideration.
For a mixed LMO-PAO basis, the MP2 residual reads

Riµjν =
〈
ij
∣∣ |µν⟩+∑

σλ

(
fµσtiσjλSλν + Sµσtiσjλfλν

)
−
∑
k

(
fikSµσtkσjλSλν + fkjSµσtiσjλSλν

)
= 0

(4.72)

For specific virtual orbitals, the equations are solved individually for each electron pair
ij to obtain their amplitude tij and to compute the pair correlation energy.

Quadratic Scaling LMP2

Similar to CEPA, the MP2 energy can be computed as a sum of electron pair energies

EMP2 =
∑
ij

eij (4.73)

eij =
(
2tabij − tbaij

)
(ia | jb) (4.74)

For well localized orbitals, the electron pair correlation eij decays with 1/r6ij with the
distance between orbital centers. Electron pairs are generally divided into four groups:
strong pairs (rij < 1a0), weak pairs (1a0 < rij ≤ 8a0), distant pairs (8 < rij ≤ 15a0), and
very distant pairs (15 < rij) [137]. Other than by distance criteria, electron pairs can be
grouped by their pair energy [78]. Figure 4.1 shows the number of significant electron
pairs in each category for glycine chains. The number of strong, weak and distant pairs
scale as O(N), while the number of very distant pairs scales quadratically.

The occupied molecular orbitals ij are localized using e.g. Foster-Boys, Pipek-Mezey
or a Cholesky decomposition of the density matrix. Virtual orbitals are generally localized
by projection onto the atomic orbital space (PAOs) and subsequently assigning them to
pair domains [ij] (domain specific virtuals), or by diagonalizing the MP2 density matrix

4.2. Møller-Plesset 90

Figure 4.1: Number of significant electron pairs in glycine chains. Taken from [137]

for each electron pair (pair natural orbitals). In all cases, the number of virtual orbitals
within a domain scales as O(1) for each electron pair ij, in the limit of large molecules,
such that the scaling of LMP2 is determined by the scaling of significant electron pairs
only.

The major bottle-neck in LMP2 is, as usual, the transformation of the 2 electron
integrals from the AO basis into the local basis(

ia | jb
)
= LµiLσa (µσ | νλ)LνjLλb (4.75)

The expression above translates into the sparsity diagram

µ σ ν λ

i a j b

S S

which indicates that the MO integrals can be evaluated with O(N2) effort without further
approximations. One thing to note is that the quadratic scaling is also obtained, even if
the sparsity relationships i ↔ a and j ↔ b did not exist, i.e. where virtual orbitals are
localized, but not grouped into (pair) domains. The major disadvantage of such non-pair
specific methods is that the virtual orbital space is less compact, which leads to a high
overhead for integral transformation involving virtual orbitals, which could be the reason
that there are no examples in literature using such a scheme. Establishing an a priori
sparsity relationship between occupied and virtual space allows to more easily reach the
low-scaling regime.

Linear Scaling LMP2

It has been found [178] early on that the quadratic scaling very distant electron pairs can
be safely ignored without major impact on the total correlation energy. Distant pairs

91 4.2. Møller-Plesset

may also be approximated either by a multipole expansion [183] or empirically [184]. As
a consequence, this establishes a sparsity relationship between i and j, and the sparsity
diagram for the MO integrals becomes fully connected

µ σ ν λ

i a j b

S S

1/R6

Linear scaling MP2 can therefore be achieved with an LMO formulation [137].

Density Fitting for LMP2

While specific virtual orbitals form a very compact representation of the virtual space,
the fact that each electron pair has their own orthogonal virtual orbital basis means that
the total number of virtuals can become exceedingly large, and consequently increases
the cost associated with the AO-MO transformation step. The most expensive step then
becomes

(ia | P) = Lµi (µν | P)Lνa (4.76)

Transformation of the 3c2e integrals scales with O(N2). Linear scaling can be achieved
by introducing an orbital-specific fitting domain [i]fit, e.g. by assigning all auxiliary
functions P on atoms with a Mulliken charge above a given threshold for the local orbital
i [185], or by using a Boughton-Pulay like scheme [186]. This yields the sparsity diagram

P µ σ

i a

S

LDF

As opposed to SOS-AO-MP2, where density fitting can give a more favorable factorization
of the energy expression, the MO integrals need to be fully assembled for LMP2 in order
to solve the linear equations 4.71. The assembly is done in two steps

BX
ia =

∑
Y ∈[i]fit∪[j]fit

(X | Y)−1/2 (Y | ia) (4.77)

(
ia | jb

)
=

∑
X∈[i]fit∪[j]fit

BX
iaB

X
jb

(4.78)

The two steps are repeated for each electron pair ij, and the sum runs over all auxiliary
functions P in the unified fitting domain [i]fit ∪ [j]fit, which enforces linear scaling for
these steps as well.

4.3. Coupled Cluster 92

4.2.3 Natural Orbitals

Pure natural orbital techniques are generally not used in the context of MP2, given that
MP2 is also used as a guess density to obtain the natural orbitals. Rather, NOs are more
popular in the context of coupled cluster methods like CCSD and CCSD(T), though there
have been some application in the context of PNOs [187, 147] and domain-based local
PNOs (DLPNO) [186, 180]. The latter combines the compact virtual representation of
PNOs with the local electron-pair treatment of LMOs described in the previous sections.

As was previously explained, the main idea of NOs is to truncate the virtual space
by omitting all orbitals with an occupation number below a certain threshold. The MO
integrals in the truncated NO basis can then be plugged into one of the orbital-invariant
formulations of the MP2 energy expressions, or they can be canonicalized to be used in
the standard MP2 expressions.

4.3 Coupled Cluster
Virtually all of the concepts introduced in the previous section can also be applied in
the context of coupled cluster. Local MP2 and local CC evaluate the MO integrals in
the same exact manner, either using LMOs [138, 188, 189, 190, 138], natural orbitals
[126, 191, 192] or pair-natural orbitals [143, 193, 194, 142]. The orbital-invariant CC
amplitude equations can then be directly solved at a reduced cost by plugging in the
truncated MO integrals.

An atomic orbital formulation of the coupled cluster equations is possible [167], but
has never been pursued further. Again, the AO-CCSD method as presented by Scuseria et
al. is not really a pure AO-method, but rather a PAO-like approach similar to PAO-CCSD
later proposed by Christiansen and Koch [118]. The reason why AO/PAO coupled cluster
methods have not been popular is likely due to the very high prefactor for larger basis sets,
which are often crucial for obtaining accurate correlation energies. Moreover, in contrast
to MPn amplitudes, the coupled cluster amplitudes do not have closed expressions, which
in turn inhibits any further factorizations of coefficient matrices to reduce the overhead
like in Cholesky decomposed MP2, with the exception of hybrid methods like CC2 [195].

93

Chapter 5

Local Correlation Methods (III):
Excited States

While local correlation methods for the ground state have been around since the 1980s,
the extension of the local treatment of electron correlation to excited states is relatively
new. With the earliest attempts dating back to the 2000s, many new approaches and
approximations have emerged over the last decade, building on the concepts of LMOs,
NOs and PNOs. One of the major obstacles that makes a straight-forward extension to
excited states difficult is the long-range character of certain excitations, such as charge
transfer states. In contrast to the description of electron correlation in the ground state,
the occupied and virtual orbitals involved in electron transitions can be very far apart.
This means that the optimal molecular orbital space for the excited state can be very
different from that of the ground state. This chapter presents the state of the art for
local correlated excited state methods (ADC, CCLR, EOM-CC) for LMOs, NOs, PNOs,
and combinations thereof. Atomic orbital approaches are discussed as well.

5.1 Low-Scaling Correlated Excited State Methods
All of the existing low-scaling implementations of ADC, CCLR and EOM-CC use some
form of local or compact molecular orbital representation, to varying degrees of success.
As mentioned above, the major problem that these methods face is the non-locality of
certain excited states such as charge transfer states, which can involve occupied and
virtual orbitals which are localized on entirely different parts in the system. Clearly,
truncating virtual orbitals spatially is no longer a valid option, and makes a straight-
forward extension of LMO-methods difficult, because they cut out far-away contributions.
Similar problems are encountered in NO formulations, as the excited state is often not
properly described by the electronic ground state (pair-)densities and their associated
(pair) natural representation. Over the years, various strategies have been proposed to
adapt existing LMO and NO schemes to excited states as well.

5.1.1 Orbital Invariance of the Matrix Expressions

Correlated excited state methods involve some form of symmetric or non-symmetric ei-
genvalue problem, which is generally solved using the Davidson procedure. The time-

5.1. Low-Scaling Correlated Excited State Methods 94

determining step is given by the computation of the matrix-vector product of the ADC,
CC response, or EOM-CC matrix A with the Davidson trial vectors u

r = Au (5.1)

Closed expressions can be derived for the MVPs, with the matrix elements computed on
the fly. The MVPs and trial vectors are divided into blocks of singles, doubles, triples,
... (ua

i , uab
ij , uabc

ijk) depending on the level of approximation of the underlying methods. In
the case of ADC(2), the MVP is split according to

ria = Aia,jbujb + Aia,jbkcujbkc (5.2)
riajb = Aiajb,kcukc + Aiajb,kcldukcld (5.3)

The eigenvalue problem is generally solved in the canonical molecular orbital basis, but
other orbital representations can also be used, by swapping all the CMO quantities
(ia | jb), tiajb, ... by their local counterparts

(
ia | jb

)
, tiajb, The eigenvalue problem

can then be solved e.g. in an LMO basis, or the MVPs can be computed in the LMO
basis and transformed to the CMO basis using the transformation matrix U:

ria = UiiriaUaa (5.4)

The eigenvalues of the LMO matrix appear to not differ from the ones obtained via a
CMO formalism [196].

For local EOM-CC and CCLR, the singles and doubles amplitudes tµ1 and tµ2 are
determined iteratively from a local ground state calculations using the techniques in
the previous chapter for reduced scaling. For the approximate EOM-CC2 and CC2-LR
methods, as well as ADC(2), the MP2 amplitudes may also be computed iteratively in
the local basis using the Hylleraas functional, or using a closed form expression via the
Laplace transform techniques.

EOM-CC2, CC2-LR and ADC(2) allow for an on-the-fly computation of the doubles
part (see section 2.3.4). Here, the orbital invariant formulation becomes less straight-
forward because the doubles-doubles block of the non-canonical ADC and CC2 Jacobian
matrix is not diagonal. Fortunately, the Laplace transform can be applied to circumvent
this problem. Using the ADC(2) eigenvalue problem as an example, the doubles-folded
MVP expression is given by

ria(ω) = Aia,jbujb + Aia,jbkc
Aiajb,kcukc

ω − ϵa − ϵb + ϵi + ϵj

= Aia,jbujb −
n∑
α

|w(α)|e(ω−ϵa−ϵb+ϵi+ϵj)t
(α)

Aia,jbkcA,kcukc

(5.5)

After transforming to the LMO basis, the local ADC(2) equations read

ria(ω) = Aia,jbujb − Aia,jbkc

n∑
α

eωt
(α)

X
(α)

jj′ Y
(α)

bb
′ Aj′b

′
k′c′,lduldX

(α)

kk′
Y

(α)

cc′ (5.6)

with the Laplace matrices X and Y

X
(α)
ik =

∑
i

Uii|w
′(α)|1/4eϵit

′(α)

Ukk (5.7)

95 5.1. Low-Scaling Correlated Excited State Methods

Y
(α)
ac =

∑
a

Uaa|w
′(α)|1/4e−ϵat

′(α)

Ucc (5.8)

Note that the optimal Laplace parameters w′(α) and t
′(α) are different from the ones used

in the MP2 amplitudes, due to the presence of the eigenvalue ω in the denominator. Each
time the eigenvalue changes, the Laplace parameters need to be recomputed to obtain an
accurate approximation.

An orbital invariant reformulation is not needed by every method. NOs, PNOs and
NTOs can be canonicalized by diagonalizing the occupied-occupied and virtual-virtual
block of the Fock matrix in the truncated NO/PNO/NTO basis to get a smaller set of
canonical molecular orbitals and orbital energies. Because these types of representations
generally do not depend on distance criteria, they are unaffected by the delocalized nature
of the canonical basis, as they seek compactness rather than locality.

5.1.2 Local Molecular Orbitals and Domains

The most challenging part in extending domain-specific virtual orbital methods to ex-
cited states lies in determining a suitable excitation domain in which to expand the
virtual space. The first implementations of local excited state EOM-CCSD [197, 198]
and CC2-LR [199] constructed the domains using a Mulliken-charge like analysis of the
CIS coefficients ria. The CIS coefficients are first transformed to the LMO-PAO basis

riµ = UiiriaC̄µa (5.9)

To determine the importance w of each LMO/PAO, the squares of the norms of the
coefficients are summed up row- and column-wise

wi =
∑
µ

|riµ|2

wµ =
∑
i

|riµ|2
(5.10)

The LMOs/PAOs are then ordered by decreasing weight. Their weights are then summed
up until a certain threshold TLMO/TPAO is reached (typically around 0.995 to 0.9999).
The excited state orbital domains [i]ES containing the relevant virtual orbitals are then
constructed by applying the Boughton-Pulay algorithm to a set of "excited natural orbi-
tals" [198]

ϕ∗
i =

∑
a

riµϕµ (5.11)

The full orbital domain of i is then given as the union of its ground-state and excited
state domain [i] = [i]GS ∪ [i]ES. The virtual orbital weights wµ can be used to impose
further restrictions on the virtual orbital space. Finally, the pair domains ij are formed
as the union [i] ∪ [j]. In general, only the computation of the doubles part, which is
time-determining, is subject to domain-restrictions, while the singles part is computed
without domain lists.

The method however has the major flaw that the orbital domains are highly sensitive
to the CIS transition density, which does not describe the excited state very accura-
tely. Some orbitals can be dropped in the domain construction which might become

5.1. Low-Scaling Correlated Excited State Methods 96

important for doubles contributions. LMO methods face an interesting chicken-or-egg
problem where they need information from the excited state wave function, to accurately
compute properties of said function. There are several ways to address this problem.
In their local CC2-LR implementation, Kats and Schütz [196] use Laplace transformed
doubles folding to recompute the doubles amplitudes on the fly, which allows to adapt the
excited state domains dynamically during the optimization procedure. Starting from the
CIS transition density, the domains are recomputed at each step by analyzing the state
vector riµ(ω) as described above. This greatly increased accuracy compared to canonical
calculations with energy differences well below 0.1 eV.

Mester et al. [200] proposed a more pragmatic approach, where they first analyze
the CIS state vector to extract the important LMOs and PAOs. They then augment the
domains [i]EX by adding all remaining molecular orbitals that have a significant Mulliken
charge on an atom that is also significant for i. This is based on the assumption that,
although CIS might not be a good approximation, the important orbitals should still be
close by.

Nonetheless, the LMO method is again plagued by spurious distance dependent th-
resholds and Mulliken charge thresholds. Nowadays, low scaling excited state methods
are mostly dominated by PNOs, NOs, or NTOs.

5.1.3 Natural Orbitals

NO methods achieve performance by dropping virtual natural orbitals with low occupa-
tion numbers. The first implementations of EOM-CC and CCLR in the NO representation
used natural orbitals obtained from the diagonalization of the ground state MP2 density
matrix [201]. A reasonable speed-up could be observed, although the excited state cha-
racter was not taken into account. However, it was shown [202] that properties like the
polarizability are much more sensitive to the truncation of the virtual orbitals than the
ground state correlation energy, with the error increasing linearly as a function of the
number of dropped virtual natural orbitals. While VNOs with low occupation numbers,
i.e. diffuse character, can be safely ignored for the ground state correlation energy, diffuse
VNOs play a much more important role for response properties, and hence fewer VNOs
can be omitted. Better results could be obtained by simply truncating the virtual CMOs
instead, which invalidates the use of VNOs.

In their NO-CC2 and NO-ADC(2) implementations, Mester et al. [200, 203, 204]
proposed to compute a set of occupied and virtual NOs by diagonalizing the occupied
and virtual state-averaged densities

Dij =
1

2

(
DMP2

ij +D
CIS(D)
ij

)
(5.12)

Dab =
1

2

(
DMP2

ab +D
CIS(D)
ab

)
(5.13)

where DMP2 is the MP2 ground state density and DCIS(D) is the state-specific CIS(D)
excited state density. Their restricted expressions read

DMP2
ij =

∑
kab

(
2tabik t

ab
jk − tabik t

ab
jk

)
(5.14)

97 5.1. Low-Scaling Correlated Excited State Methods

Figure 5.1: Wall times of CIS compared to NO-ADC(2) as a function of system size of
hydrated formamide. Taken from [204].

DMP2
ab =

∑
ijc

(
2tcaij t

cb
ij − tcaij t

bc
ij

)
(5.15)

D
CIS(D)
ij =

∑
a

cai c
a
j +

∑
kab

(
2tabik t

ab
jk − tabik t

ab
jk

)
(5.16)

D
CIS(D)
ab =

∑
i

cai c
b
i +
∑
ijc

(
2ccaij c

cb
ij − ccaij c

bc
ij

)
(5.17)

where cai are the CIS coefficients and the cabij are the CIS(D) doubles coefficients

cabij =

∑
c

[
(ac | bj) cci + (ac | bi) ccj

]
−∑k

[
(kj | ai) cbk + (kj | bj) cak

]
Dab

ij + ωCIS

(5.18)

The state-averaged density needs to be recomputed and diagonalized for each state be-
cause DCIS(D) depends on the excitation energy ω. While the CIS(D) density is much
easier to compute than the ADC(2) or CC2-LR state density, it still scales with O(N5).
To reduce the computational complexity, the density is constructed in a truncated orbital
space: first, a set of occupied and virtual LMOs are chosen according to the CIS weighting
criteria w described in the previous section. The basis is augmented by spatially close
orbitals, and then canonicalized to yield a highly compact orbital molecular space which
lowers the cost of constructing the CIS(D) densities.

In combination with natural auxiliary functions, this hybrid NO-LMO scheme can
reduce the timings for CC2 and ADC(2) to such a drastic extent that the CIS pre-
iterations become the time-determining step (Figure 5.1), with an additional error of
only 2-4 meV. The reduced scaling however comes at a high prefactor when computing
multiple different excitation energies.

5.1.4 Pair Natural Orbitals

Pair natural orbital methods face the same problems as NOs, where PNOs with low
occupation numbers are considerably more important for response properties than for
ground state properties [205]. In a similar vein, excited state PNOs can be generated
by considering lower level excited state electron pair densities [206]. PNO methods have

5.1. Low-Scaling Correlated Excited State Methods 98

been successfully extended to ADC(2), CC2-LR [207], ADC(2)-x [208] and CCSD-LR
[209] by using CIS(D) or CIS(D)-like densities

Dab
ij =

∑
c

(
2babij − bbaij

)
babij +

(
2babij − bbaij

)
bbaij (5.19)

where bij are state-specific modified pair amplitudes which are not uniquely defined.
Again, these methods come at the cost of a higher prefactor due to the relatively high
cost of constructing PNOs.

Efforts have also been made to develop PNO response methods which are more econo-
mical for computing larger excitation manifolds by removing the state-specificity. Instead
of taking individual excited state densities, Peng et al. [210] proposed to generate a set
of state-averaged PNOs obtained by diagonalization of the average excited state density
over an N -state manifold

Dij =
1

N

N∑
k

D
(k)
ij (5.20)

A production-quality implementation has not yet been shown which uses this approach.
In their perturbed pair-natural orbital (PNO++) approach for CCLR, Cunha and

Crawford [211] incorporate the external perturbation into the electron pair density

Dab
ij =

∑
c

(
2xab

ij − xba
ij

)
xab
ij +

(
2xab

ij − xba
ij

)
xba
ij (5.21)

where x are perturbed amplitudes given by

xab
ij =

B

Haa +Hbb −H ii −Hjj + ω
(5.22)

with an external perturbation B and the similarity transformed Hamiltonian H. This
gives a set of "perturbation-aware" PNOs customized for a given external perturbation
[212].

Finally, there are also the back-transformed PNOs, or bt-PNOs, where the ground
state PNO-quantities like the amplitudes are transformed back to the canonical basis
and used in the canonical working equations [213].

In the end, most local excited state methods using natural orbitals differ by how
they redefine the amplitudes b for the individual excited states or the whole perturbed
molecular system. It is still an active field of research.

5.1.5 Natural Transition Orbitals

The last method to obtain a compact representation of excited states is via natural transi-
tion orbitals. NTOs are the equivalent of NOs for excited states, and represent a compact
representations of their dominant contribution (Figure 5.2). Baudin and Kristensen have
developed two different CC2-LR schemes based on NTOs called LoFEX (local framework
for calculating excitation energies) [214] and CornFLEX (correlated natural transition
orbital framework for calculating excitation energies) [129]

Again, one needs information about the excited state to efficiently compute its pro-
perties. The LoFEX method starts with a time-dependent Hartree Fock calculation and

99 5.2. Atomic Orbital Configuration Interaction Singles

generates a set of NTOs by decomposition of the TDHF transition vectors r by diagona-
lization

rr†U = λoU (5.23)
r†rV = λvV (5.24)

which is just an alternative way to compute the occupied and virtual NTO transformation
matrices U and V, rather than by singular value decomposition. A set of dominant NTO
pairs is then chosen for which their occupation numbers are above a given threshold
τLoFEX . The non-dominant NTOs are not discarded, but rather localized. The idea
is to construct a surrounding excitation orbital space (XOS) containing LMOs that are
important for correlation effects of the NTOs. A first guess to the XOS is chosen based on
distance criteria and Löwdin charges. The CC2-LR eigenvalue problem is then solved in
that basis, and new NTOs are computed from the CC2 transition vector and added to the
XOS. This procedure is repeated until the excitation energy ω for that state has converged.
While the guess XOS is first formed using distance criteria, the subsequent optimization
procedure makes the method much more robust and black-box. Even for relatively small
molecules, LoFEX can obtain considerable speed-ups. The main disadvantage is that
LoFEX does not give any leverage for very delocalized excitations.

The improved CornFLEX method constructs a set of CIS(D)-like NTOs (CIS(D’)-
NTOs) which is obtained from diagonalizing a CIS(D)-like density matrix in the CIS-
NTO basis. As opposed to CIS-NTOs, the CIS(D’) NTOs also include correlation effects
and are a more robust representation that the simple ad-hoc extension of CIS-NTOs using
LMOs. Speed-ups can be observed in CornFLEX even for delocalized excitations.

5.2 Atomic Orbital Configuration Interaction Singles
The methods presented in the previous section all work similarly. They first start by ap-
proximating the targeted excited states with a lower level of theory using CIS or CIS(D).
They then solve higher order equations in the basis obtained from that approximation
and may also dynamically augment the correlation domain while optimizing the excita-
tion energies. The methods work on the principle of orbital compactness rather than
sparsity

At the moment of writing, CIS is the only excited state method which is routinely
evaluated using an AO approach. While CIS does not give qualitatively good results, it
is still a very important stepping stone for higher order methods, as was demonstrated in
the previous section. Omitting the zero-order contributions, the CIS working equations
are given by

ria = [2 (ia | jb)− (ib | ja)]ujb (5.25)

Factoring out the MO coefficient matrices:

ria = CµiCσa [2 (µσ | νλ)− (µλ | νσ)]CνjCλbujb

= CµiCσa [2 (µσ | νλ)− (µλ | νσ)]Pνλ

(5.26)

where P is the non-symmetric transition density in the AO basis. The CIS working
equations can be reduced to the construction of a "pseudo"-Fock matrix which has a

5.2. Atomic Orbital Configuration Interaction Singles 100

e-

occupied NTO

virtual NTO

Figure 5.2: Dominant natural transition orbital pair for the lowest excitation of the
carboxylic acid C79H159COOH (π → π∗ transition). The span of the NTOs is very small
compared to the rest of the molecule, and the compactness can be used to drastically
speed up excited state calculations.

Coulomb and an exchange part. The Fock matrix is then transformed to the MO basis:

Fµν = Jµν +Kµν (5.27)
ria = CµiFµνCµa (5.28)

For localized excitations, the AO transition density is sparse (Figure 5.3), and similar
approximation can be used as in Hartree Fock, e.g. LinK, CFMM, or LDF. CIS can
therefore be evaluated with O(N) computational effort. Strictly speaking, it is not a
"pure" AO formulation, because the AO intermediates still need to be transformed to
the MO basis.

101 5.2. Atomic Orbital Configuration Interaction Singles

0 200 400 600 800 1000 1200 1400 1600

0

200

(a)

=⇒

0 250 500 750 1000 1250 1500 1750

0

250

500

750

1000

1250

1500

1750

(b)

Figure 5.3: Logarithm of the absolute values of the matrix elements in the transition
densities in the MO (left) and AO basis (right) for the lowest excited state for the car-
boxylic acid C79H159COOH. The excitation domain is entirely localized on the carboxylic
group. Using sparse matrix algebra, significant speed-ups can be obtained for CIS in the
AO basis.

102

Chapter 6

The Spin-Opposite Scaled Algebraic
Diagrammatic Construction Method in
the Atomic Orbital Basis

The Algebraic Diagrammatic Construction method can be considered as Møller Plesset
for excited states. It is therefore not surprising that local correlation methods for MP
can also be applied to ADC. In chapter 4, it has been shown that local approximations
for the ground state can be grouped into 3 categories: atomic orbitals, local orbitals and
natural orbitals. Only the latter two have been used in the context of ADC as discussed
in chapter 5. An atomic orbital representation of ADC has not yet been considered in
literature, and will be the subject of this chapter. First, the restricted doubles-folded
ADC working equations are derived. Then the SOS approximation is applied. Finally,
the restricted SOS-ADC working equations are derived in the AO basis, with and without
density fitting.

6.1 Restricted ADC with Doubles-Folding
The eigenvalue problem in the algebraic diagrammatic construction method truncated at
doubles excitations takes the form[

Aµ1ν1 Aµ1ν2

Aµ2ν1 Aµ2µ2

] [
vµ1

vµ2

]
=

[
vµ1

vµ2

]
Ω (6.1)

where A is the symmetric ADC matrix with the singles-singles (µ1ν1), doubles-singles
(µ2ν1), singles-doubles (µ1ν2) and doubles-doubles (µ2ν2) sub-blocks, with the eigenvec-
tors v and the diagonal eigenvalue matrix Ω. The eigenvalue problem is generally solved
using the Davidson diagonalization procedure to extract the first few lowest eigenvalues.
Rather than constructing the entire Jacobian matrix which scales as O(N8), the David-
son method computes the matrix-vector products r = Au with the current trial vectors
u using a closed-form expression, which reduces the computational complexity to O(N5).
The MVPs can be expressed in block-form as

rµ1 = Aµ1ν1uν1 +Aµ1ν2uν2

rµ2 = Aµ2ν1uν1 +Aµ2ν2uν2

(6.2)

103 6.1. Restricted ADC with Doubles-Folding

The trial vector space in the Davidson diagonalization scales as o2v2, and can quickly
become a memory bottle-neck for large molecules. As shown in chapter 2, one can
recompute the doubles-part of the MVP on-the-fly using doubles-folding

rµ1(ω) = Aµ1ν1uν1 +
Aµ1ζ2Aζ2ν1

ω −Aζ2ζ2

uν1 (6.3)

This trick is only possible for ADC(2)-s where the doubles-doubles block of the ADC ma-
trix is diagonal. While the memory footprint for the diagonalization is reduced from o2v2

to ov, the MVP becomes dependent on the eigenvalue ω and a modified Davidson pro-
cedure needs to be used to solve this pseudo-eigenvalue problem. The working equations
for the folded ADC(2) matrix-vector product is given by [215]

rIA =
∑
B

uIBfAB −
∑
J

fIJuJB +
∑
JB

⟨JA| |IB⟩uJB +

[∑
B

I
(1)
ABuIB +

∑
J

I
(2)
IJ uJA

]

− 1

2

[∑
JB

tIJABI
(3)
JB −

∑
JB

⟨IJ | |AB⟩ I(4)JB

]

+

[∑
JKB

⟨JK| |IB⟩uJKAB(ω) +
∑
JBC

uIJBC(ω) ⟨JA| |BC⟩
]

(6.4)

where the doubles part is computed as

uIAJB(ω) =
1

2
(ω + ϵI + ϵJ − ϵA − ϵB)

−1

{∑
K

[⟨IJ | |KB⟩uKA − ⟨IJ | |KA⟩uKB]

+
∑
C

[uIC ⟨JC| |AB⟩ − uJC ⟨IC| |AB⟩]
} (6.5)

and with the intermediates I(1), I(2), I(3) and I(4) as given in [215]. Until now, only
spin molecular orbitals were assumed. Implementations such as adcman in Q-Chem [216]
can use these formulae directly by delegating any considerations of spin-symmetry to
a special tensor library called libtensor [217], which programmatically keeps track of
the non-vanishing spin block components and reduces the expressions to the restricted
ADC(2) equations for closed-shell molecules.

If no special block tensor library is used, it is numerically advantageous to split the
ADC(2) matrix-vector products into their spin-components, and compute each block
individually. Using a double-bar notation to indicate MOs with opposite spin σ(i) ̸= σ(i),

6.1. Restricted ADC with Doubles-Folding 104

the matrix-vector product can be written as

ria(ω) =(ϵa − ϵi)uia −
∑
jb

[(ij | ab)− (ia | jb)]ujb +
∑
jb

(
ia | jb

)
ujb

+
∑
b

Iabuib +
∑
j

Iijuja −
1

2

[
tiajbI

(1)

jb
+
(
ia | jb

)
I
(2)

jb

]
− 1

2

[
(tiajb − tjaib) I

(1)
jb + ((ia | jb)− (ja | ib)) I(2)jb

]
+
∑
kcl

ukalc(ω) (ik | cl) +
∑
kcl

ukalc(ω)
(
ik | cl

)
−
∑
ckd

(ac | kd)uikcd(ω)−
∑
ckd

(
ac | kd

)
uickd(ω)

(6.6)

with the preiteration intermediates (computed only once)

Iab =
1

2

∑
kcl

[tkalc (kb | lc)− tkalc (kc | lb) + (ak | cl) tkblc − (al | ck) tkblc]

+
1

2

∑
kcl

[
tkalc

(
kb | lc

)
+
(
ak | cl

)
tkblc

] (6.7)

Iij =
1

2

∑
ckd

[tickd (jc | kd)− tickd (jd | kc) + (ci | dk) tjckd − (ck | di) tjckd]

+
1

2

∑
ckd

[
tickd

(
jc | kd

)
+
(
ci | dk

)
tjckd

] (6.8)

and the iteration intermediates which depend on the trial vectors u (computed at each
Davidson iteration)

I
(1)
ia =

∑
jb

[(jb | ia)− (ja | ib)]ujb +
∑
jb

(
jb | ia

)
ujb (6.9)

I
(2)
ia =

∑
jb

[tiajb − tjaib]ujb +
∑
jb

tiajbujb (6.10)

The doubles spin components are computed on-the-fly and read

uiajb(ω) =
1

ω − ϵa − ϵb + ϵi + ϵj

{∑
k

[uka (ki | bj)− uka (kj | bi)− ukb (ki | aj)

+ ukb (kj | ai)]−
∑
c

[uic (ac | bj)− uic (aj | bc)− ujc (ac | bi) + ujc (bc | ai)]
}

(6.11)

uiajb(ω) =
1

ω − ϵa − ϵb + ϵi + ϵj

∑
k

uka

(
ki | bj

)
+
∑
k

ukb

(
kj | ai

)
−
∑
c

uic
(
ac | bj

)
−
∑
c

ujc

(
bc | ai

)} (6.12)

105 6.1. Restricted ADC with Doubles-Folding

The expression for the MVP for beta electrons (ria) is obtained by replacing alpha or-
bitals (i) by beta orbitals (i) and vice-versa in the expressions above. The off-diagonal
blocks ria/ria i.e. the spin-flipped states will not be considered here and are set to zero.
For closed-shell molecules, the complexity of the formulas can be drastically reduced by
introducing the following spin-symmetry relationships:

tiajb = tiajb = tiajb = tiajb (6.13)

(ia | jb) =
(
ia | jb

)
=
(
ia | jb

)
=
(
ia | jb

)
(6.14)

uia = uia if singlet (6.15)
uia = −uia if triplet (6.16)

One then obtains two separate expressions for restricted ADC(2), depending on whether
singlet or triplet states are addressed

rSia(ω) = (ϵa − ϵi)u
S
ia −

∑
jb

[2 (ia | jb)− (ij | ab)]uS
jb +

∑
b

Iabu
S
ib +

∑
j

uS
jaIij

− 1

2

∑
jb

[2tiajb − tibja] I
(1)S
jb − 1

2

∑
jb

[2 (ia | jb)− (ib | ja)] I(2)Sjb

+
∑
kcl

(ik | lc)
(
2uS

kalc(ω)− uS
lakc(ω)

)
+
∑
ckd

(
2uS

ickd(ω)− uS
kcid(ω)

)
(kd | ac)

(6.17)

rTia(ω) = (ϵa − ϵi)u
T
ia −

∑
jb

(ij | ab)uT
jb +

∑
b

Iabu
T
ib +

∑
j

Iiju
T
ja

+
1

2

∑
jb

tibjaI
(1)T
jb +

1

2

∑
jb

(ib | ja) I(2)Tjb

+
∑
kcl

(ik | lc)uT
kalc(ω) +

∑
ckd

[
2uT

ickd(ω)− uT
idkc(ω)− uT

kcid(ω)
] (6.18)

with the singlet and triplet doubles intermediates

uS,SOS
iajb (ω) =

cosc
ω − ϵa + ϵi − ϵb + ϵj

{∑
k

[
uS
ka (ki | jb) + uS

kb (kj | ai)
]

−
∑
c

[
uS
ic (jb | ac)− uS

jc (ib | ac)
]} (6.19)

uT
iajb(ω) =

1

ω − ϵa + ϵi − ϵb + ϵj

{∑
k

uT
ka (ki | bj)−

∑
c

uT
ic (ac | jb)

}
(6.20)

The pre-iteration intermediates are given by

Iab =
1

2

∑
kcl

[(2tkalc − tkcla) (kb | lc) + (2tkblc − tkclb) (ka | lc)]

=
1

2

[∑
kcl

(2tkalc − tkcla) (kb | lc)
]
a↔b

(6.21)

6.2. Restricted SOS-ADC(2) with Doubles-Folding 106

Iij =
1

2

∑
ckd

[(2tickd − tidkc) (jc | kd) + (2tjckd − tjdkc) (ic | kd)]

=
1

2

[∑
ckd

(2tickd − tidkc) (jc | kd)
]
i↔j

(6.22)

and are the same for both singlet and triplet expressions. The iterative intermediates
however are split:

I
(1)S
ia =

∑
jb

(2 (ia | jb)− (ib | ja))uS
jb (6.23)

I
(2)S
ia =

∑
jb

(2tiajb − tibja)u
S
jb (6.24)

I
(1)T
ia = −

∑
jb

(ib | ja)uT
jb (6.25)

I
(2)T
ia = −

∑
jb

tibjau
T
jb (6.26)

6.2 Restricted SOS-ADC(2) with Doubles-Folding

In the restricted ADC expressions for the matrix-vector product, the 4-index interme-
diates uiajb(ω) need to be evaluated and temporarily stored, even if the density fitting
approximation is used. This memory-intensive step can be avoided by using spin-opposite
scaling (Section 2.3.6). Consider again the approximations introduced by the SOS method
for the unrestricted ADC(2) matrix equations

• In the spin-amplitudes t̂iajb the same-spin contributions are nulled and the opposite-
spin contributions are scales by cos

t̂SOS = cost̂iajb
(
1− δσ(i)σ(j)

)
(6.27)

• In the doubles-singles and singles-doubles block of the ADC matrix, some same-spin
contributions are also removed, and the whole block is scaled by a different constant
cosc

Cia,kcld = cosc [⟨kl| |id⟩ δac − ⟨kl| |ic⟩ δac − ⟨al| |cd⟩ δik + ⟨ak| |cd⟩ δil]
×
(
1− δσ(k)σ(l)

) (6.28)

Ciajb,kc = cosc [⟨kb| |ij⟩ δac − ⟨ka| |ij⟩ δbc − ⟨ab| |cj⟩ δik + ⟨ab| |ci⟩ δjk]
×
(
1− δσ(i)σ(j)

) (6.29)

Here, the function σ(x) returns the spin of orbital x.

107 6.2. Restricted SOS-ADC(2) with Doubles-Folding

Applying the above constraints to the MVP expression 6.17 (shown for singles only) gives
the spin components of the SOS-ADC(2) matrix-vector product:

rSOS
ia (ω) =(ϵa − ϵi)uia −

∑
jb

[(ij | ab)− (ia | jb)]ujb +
∑
jb

(
ia | jb

)
ujb

+
∑
b

ISOS
ab uib +

∑
j

ISOS
ij uja −

1

2

[
tiajbI

(1)SOS

jb
+
(
ia | jb

)
I
(2)SOS

jb

]
− 1

2
[(ia | jb)− (ja | ib)] I(2)SOS

jb

+ cosc

∑
kcl

ukalc(ω)
(
ik | cl

)
−
∑
ckd

(
ac | kd

)
uickd(ω)

(6.30)

with the SOS pre-iteration intermediates

ISOS
ab =

1

2

∑
kcl

[
tkalc

(
kb | lc

)
+
(
ak | cl

)
tkblc

]
(6.31)

ISOS
ij =

1

2

∑
ckd

[
tickd

(
jc | kd

)
+
(
ci | dk

)
tjckd

]
(6.32)

and the singlet SOS iteration intermediates

I
(1)SOS
ia =

∑
jb

[(jb | ia)− (ja | ib)]ujb +
∑
jb

(
jb | ia

)
ujb (6.33)

I
(2)SOS
ia =

∑
jb

tiajbujb (6.34)

Only the opposite-spin components of the doubles components are needed:

uSOS
iajb

(ω) =
cosc

ω − ϵa − ϵb + ϵi + ϵj

∑
k

uka

(
ki | bj

)
+
∑
k

ukb

(
kj | ai

)
−
∑
c

uic
(
ac | bj

)
−
∑
c

ujc

(
bc | ai

)} (6.35)

Finally, for closed-shell molecules, the matrix vector product for singlet excitations for
restricted SOS-ADC(2) can be obtained by inserting the spin-symmetry relationships
6.13 to 6.16 into Equation 6.30, and performing a similar manipulation for the triplet
expression:

rS,SOS
ia (ω) = (ϵa − ϵi)u

S
ia −

∑
jb

[2 (ia | jb)− (ij | ab)]uS
jb +

∑
b

ISOS
ab uib +

∑
j

uS
jaI

SOS
ij

− 1

2

∑
jb

tSOS
iajb I

(1)S,SOS
jb − 1

2

∑
jb

[2 (ia | jb)− (ib | ja)] I(2)S,SOS
jb

+ cosc

{∑
kcl

(ik | lc)uS,SOS
kalc (ω)−

∑
ckd

uS,SOS
ickd (ω) (kd | ac)

}
(6.36)

6.3. Working Equations For Restricted AO-SOS-ADC(2) 108

rT,SOS
ia (ω) = (ϵa − ϵi)u

S
ia −

∑
jb

(ij | ab)uT
jb +

∑
b

ISOS
ab uib +

∑
j

uS
jaI

SOS
ij

− 1

2

∑
jb

tSOS
iajb I

(1)T,SOS
jb +

1

2

∑
jb

(ib | ja) I(2)T,SOS
jb

+ cosc

{∑
kcl

(ik | lc)uT,SOS
kalc (ω)−

∑
ckd

uT,SOS
ickd (ω) (kd | ac)

} (6.37)

with the on-the-fly doubles

uS,SOS
iajb (ω) =

cosc
ω − ϵa − ϵb + ϵi + ϵj

{∑
k

uka (ki | bj) +
∑
k

ukb (kj | ai)

−
∑
c

uic (ac | bj)−
∑
c

ujc (bc | ai)
} (6.38)

uT,SOS
iajb (ω) =

cosc
ω − ϵa − ϵb + ϵi + ϵj

{∑
k

uka (ki | bj)−
∑
k

ukb (kj | ai)

−
∑
c

uic (ac | bj) +
∑
c

ujc (bc | ai)
} (6.39)

and the intermediates

ISOS
ab =

cos
2

[∑
kcl

tkalc (kb | lc)
]
a↔b

(6.40)

ISOS
ij =

cos
2

[∑
ckd

tickd (jc | kd)
]
i↔j

(6.41)

I
(1)S,SOS
ia =

∑
jb

(2 (ia | jb)− (ib | ja))uS
jb (6.42)

I
(2)S,SOS
ia = cos

∑
jb

tiajbu
S
jb (6.43)

I
(1)T,SOS
ia = −

∑
jb

(ib | ja)uT
jb (6.44)

I
(2)T,SOS
ia = −cos

∑
jb

tiajbu
T
jb (6.45)

6.3 Restricted SOS-ADC(2) with Doubles-Folding in
an Atomic Orbital Basis

The goal of an atomic orbital based formulation of ADC(2) is to compute the matrix-
vector product in an intermediate AO basis and transform it back to the MO basis (or
alternatively an LMO basis) for the Davidson procedure, similarly to how it is done for
CIS:

ria = CµirµνCνa (6.46)

109 6.3. Working Equations For Restricted AO-SOS-ADC(2)

Furthermore, it is convenient to split the MVP into six components which are evaluated
individually

ria(ω) = rCIS
ia + r2Aia + r2Bia + r2Cia + r2Dia + r2Eia (ω) (6.47)

In the next sections, using Equations 6.36 and 6.37 as starting points, the working equa-
tions for restricted AO-SOS-ADC(2) will be derived and discussed in detail.

6.3.1 First Order

The first order part of the MVP is identical in both ADC(2) and SOS-ADC(2)

rS,CIS
ia = (ϵa − ϵi)u

S
ia +

∑
jb

[2 (ia | jb)− (ij | ab)]uS
jb (6.48)

rT,CIS
ia = (ϵa − ϵi)u

T
ia −

∑
jb

(ij | ab)uT
jb (6.49)

An AO formulation is obtained in an identical manner to AO-CIS by factoring out the
coefficient matrices to obtain Hartree-Fock-like expressions:

rS,CIS,AO
ia = (ϵa − ϵi)u

S
ia +

∑
ia

CµiCσa

[
(2 (µσ | νλ)− (µν | σλ))uS

νλ

]
= (ϵa − ϵi)u

S
ia +

∑
ia

CµiCσa

[
2J̃S

µσ − K̃S
µσ

] (6.50)

rT,CIS,AO
ia = (ϵa − ϵi)u

T
ia −

∑
ia

CµiCσa

[
(µν | σλ)uT

νλ

]
= (ϵa − ϵi)u

T
ia −

∑
ia

CµiCσaK̃
T
µσ

(6.51)

where J̃ and K̃ are the Coulomb and exchange kernels, and uµσ is the transition density
in the AO basis

uµσ = CµiuiaCσa (6.52)

The zero order terms (i.e. the molecular orbital energy differences) do not need to be
formulated in an AO basis, because the computation time is negligible. Similarly, trans-
forming J̃ and K̃ to the MO basis formerly scales as O(N3) but has very low overhead and
does not influence the overall scaling of AO-SOS-ADC(2). The time-determining steps
are the computation of the J-kernel, which scales as O(N2) and the K-kernel, which scales
as O(N) in the limit of large systems. For triplet excitations, the scaling is reduced to
linear due to the absence of coulomb contributions.

6.3.2 Second Order: Part 2A and 2B

The expressions for component 2A and 2B read

rS,SOS,2A
ia =

∑
b

ISOS
ab uS

ib +
∑
j

ISOS
ij uS

ja (6.53)

rT,SOS,2A
ia =

∑
b

ISOS
ab uT

ia +
∑
j

ISOS
ij uT

ja (6.54)

6.3. Working Equations For Restricted AO-SOS-ADC(2) 110

with the intermediates as defined in the previous section. Rather than casting the whole
expression into the AO basis, it is more convenient to evaluate only the non-symmetrized
intermediates ISOS,ns

ab and ISOS,ns
ij in the AO basis. The expressions for the intermediates

involve the t-amplitudes, and to obtain an orbital-invariant formulation, it is necessary
to use the Laplace transform

1

ϵa − ϵi + ϵb − ϵj
=

nlap∑
α

|w(α)|e−ϵat(α)

eϵit
(α)

e−ϵbt
(α)

eϵjt
(α)

(6.55)

Using a similar strategy to AO-MP2 to factor out the coefficient matrices, the interme-
diates can be formulated as

IAO−SOS,ns
ab =

cos
2

∑
kcl

∑
α

|w(α)|e∆kalct
(α)

(ka | lc) (kb | lc) (6.56)

=
cos
2

∑
b

Cλb

∑
α

| w(α) |1/4 e−ϵat(α)

Cσa

∑
κγτ

(κσ | τγ)(α) (κλ | τγ) (6.57)

=
cos
2

∑
b

Cλb

∑
α

| w(α) |1/4 e−ϵat(α)

CσaA
(α)
σλ (6.58)

with the pseudo-AO electron integrals and the occupied/virtual pseudo density matrices

(κσ | τγ)(α) = P
(α)
κκ′ (κ

′σ | τ ′γ′)P
(α)
ττ ′ Q

(α)
γγ′ (6.59)

P
(α)
µµ′ =

∑
i

Cµie
0.25ln|w(α)|+ϵit

(α)

Cµ′i (6.60)

Q
(α)
νν′ =

∑
a

Cνae
0.25ln|w(α)|−ϵat(α)

Cν′a (6.61)

Similarly

IAO−SOS,ns
ij =

cos
2

∑
α

∑
ckd

∣∣w(α)
∣∣ e∆ickdt

(α)

(ic | kd) (jc | kd) (6.62)

=
cos
2

∑
j

Cνj

∑
i

∣∣w(α)
∣∣1/4Cµie

ϵit
(α)
∑
γκδ

(
µγ | κδ

)
(νγ | κδ) (6.63)

=
cos
2

∑
j

Cνj

∑
i

∣∣w(α)
∣∣1/4Cµie

ϵit
(α)

B(α)
µν (6.64)

Finally, the intermediates are symmetrized

IAO−SOS
ab = IAO−SOS,ns

ab + IAO−SOS,ns
ba (6.65)

IAO−SOS
ij = IAO−SOS,ns

ij + IAO−SOS,ns
ji (6.66)

The time-determining step for both intermediates is the computation of the Laplace
intermediates A(α) and B(α). The subsequent multiplication with the coefficient matrices
is again negligible. Consider now the sparsity diagram for the Laplace intermediate A(α):

λ κ κ′ σ τ τ ′ γ′ γ
S P S P S P

The diagram has two edges, and hence A is evaluated with O(N2) computational com-
plexity. The same can be shown for B. The total memory footprint is also quadratic in
N .

111 6.3. Working Equations For Restricted AO-SOS-ADC(2)

6.3.3 Second Order: Part 2C

Component 2C is computed as

rS,SOS,2C
ia = −cos

2

∑
jb

tiajbI
(1)S,SOS
jb (6.67)

rT,SOS,2C
ia = −cos

2

∑
jb

tiajbI
(1)T,SOS
jb (6.68)

Applying the Laplace transform, this then gives

rS,AO−SOS,2C
ia = −cos

2

∑
jb

∑
α

∣∣w(α)
∣∣ e∆iajbt

(α)

(ia | jb)
[∑

kc

(2 (jb | kc)− (jc | kb))uS
kc

]
= −cos

2

∑
α

∑
ia

∣∣w(α)
∣∣1/2Cµie

ϵit
(α)

Cσae
−ϵat(α)

×
{∑

νλ

(
µα | νλ

)(α) [∑
κγ

(2 (νλ | κγ)− (νγ | κλ))uS
κγ

]}
= −cos

2

∑
α

∑
ia

∣∣w(α)
∣∣1/2Cµie

ϵit
(α)

Cσae
−ϵat(α)

×
{∑

νλ

(
µα | νλ

)(α) [
2J̃λν − K̃λν

]}
= −cos

2

∑
α

∑
ia

∣∣w(α)
∣∣1/2Cµie

ϵit
(α)

Cσae
−ϵat(α)

I(1)(α)S,AO−SOS
µσ

(6.69)

Similarly, triplet contributions are given by

rT,AO−SOS,2C
ia =

cos
2

∑
alpha

∑
ia

∣∣w(α)
∣∣1/2Cµie

ϵit
(α)

Cσae
−ϵat(α)

{∑
νλ

(
µα | νλ

)(α)
K̃λν

}
=

cos
2

∑
alpha

∑
ia

∣∣w(α)
∣∣1/2Cµie

ϵit
(α)

Cσae
−ϵat(α)

I(1)(α)T,AO−SOS
µσ

(6.70)

where J̃ and K̃ are the same matrices needed for the CIS contributions. Note that the
matrices are transposed, i.e. the index order is λν, and not νλ. The time-determining
step is the formation of the Laplace AO intermediates Iα(1)µν . Their sparsity diagrams read

µ σ ν ν ′ λ′ λ
S P S P

J/K

The singlet and triplet AO intermediates are therefore evaluated in O(N2) time.

6.3. Working Equations For Restricted AO-SOS-ADC(2) 112

6.3.4 Second Order: Part 2D

Now consider part 2D

rS,SOS,2D
ia = −1

2

∑
jb

[2 (ia | jb)− (ib | ja)] I(2)S,SOS
jb

= −1

2

∑
jb

KiajbI
(2)S,SOS
jb

(6.71)

rT,SOS,2D
ia =

1

2

∑
jb

(ib | ja) I(2)T,SOS
jb (6.72)

Applying the Laplace transform gives the singlet expression

rS,AO−SOS,2D
ia = −cos

2

∑
jb

Kiajb

∑
kc

∑
α

∣∣w(α)
∣∣ e∆iajbt

(α)

(jb | kc)uS
kc

= −cos
2

∑
ia

CµiCσa

[
Kµσνλ

(∑
α

(
νλ | κγ

)(α)
u
(α)S
κγ

)]
= −cos

2

∑
ia

CµiCσaI
(2)S,AO−SOS
µσ

(6.73)

Similarly, the triplet expressions

rT,AO−SOS,2D
ia =

cos
2

∑
jb

(ia | jb)
∑
kc

∑
α

∣∣w(α)
∣∣ e∆iajbt

(α)

(jb | kc)uT
kc

=
cos
2

∑
ia

CµiCσa

[
(µσ | νλ)

(∑
α

(
νλ | κγ

)(α)
u
(α)T
κγ

)]
=

cos
2

∑
ia

CµiCσaI
(2)T,AO−SOS
µσ

(6.74)

With the transition density in the pseudo atomic orbital basis

u
(α)
µσ =

∣∣w(α)
∣∣1/2Cµie

ϵit
(α)

uiaCσae
−ϵat(α)

(6.75)

The computation of the AO intermediates I(2)SOS−AO is the time-determining step, and
is best evaluated as

J̃ (α)
µσ = (µσ | νλ)u(α)

νλ
(6.76)

J̃
(α)
µσ = P

(α)
µµ′ J̃

(α)
µν Q

(α)
νν′ (6.77)

I(2)SOS−AO
µσ =

∑
α

[2 (µσ | νλ)− (µλ | νσ)] J̃ (α)

νλ
(6.78)

Every individual step can be computed with O(N2) complexity, meaning the intermediate
is also evaluated with overall quadratic effort.

113 6.3. Working Equations For Restricted AO-SOS-ADC(2)

6.3.5 Second Order: Part 2E

The final part is given by

rS,SOS,2E
ia (ω) = cosc

{∑
kcl

(ik | lc)uS,SOS
kalc (ω)−

∑
ckd

uS,SOS
ickd (ω) (kd | ac)

}
(6.79)

rT,SOS,2E
ia (ω) = cosc

{∑
kcl

(ik | lc)uT,SOS
kalc (ω)−

∑
ckd

uT,SOS
ickd (ω) (kd | ac)

}
(6.80)

With the doubles intermediates as given in Equation 6.38 and 6.39. The Laplace trans-
form needs to be applied to the energy denominator present in these intermediates. The
optimal Laplace parameters are however different from the ones used for the t-amplitudes,
due to the additional factor of the excitation energy ω. For each different excitation energy
ω, a new Laplace quadrature needs to be computed, alongside a new set of pseudo-density
matrices P and Q. The additional time is however negligible for the standard number of
quadrature points (nlap < 10). The symbol θ is used to designate the Laplace quadrature
for the doubles denominator to differentiate them from the ones for the t-amplitudes.

First, an AO formulation of the doubles amplitudes will be derived such that

uiajb(ω) = CµiCσauµσνλCνjCλb (6.81)

For quantities like the MO integrals (ia | jb), this is straight forwardly done by factoring
out the coefficient matrices. However, the situation is more complex in the doubles
intermediates, due to the presence of terms like uka (ki | bj). For the MO transition
densities, the non-orthogonality of the AO basis needs to be taken into consideration.
The MO coefficient matrices are factored out by a PAO backtransform:

uia = CµiSµµ′uµ′σ′Sσ′σCσa (6.82)

The doubles intermediates can then be expressed as

u
S/T
iajb(ω) = −cosc

∑
θ

∑
µσνλ

|w(θ)|e(ω−ϵa−ϵb+ϵi+ϵj)t
(θ)

CµiCσaCνjCλb

{
∑
κ

[
u
S/T

κσ′ Sσ′σ (κµ | νλ)± u
S/T

κλ
′ Sλ′λ (νκ | µσ)

]
−
∑
γ

[
Sµµ′u

S/T
µ′σ (νλ | σγ)± Sνν′u

S/T
ν′γ (µσ | γλ)

]}
= −

∑
θ

∑
µσνλ

|w(θ)|e(ω−ϵa−ϵb+ϵi+ϵj)t
(θ)

CµiCσau
S/T
µσνλCνjCλb

(6.83)

Note the additional minus sign in front of the Laplace summation. After the Laplace
transform, the sign of the denominator is swapped, i.e. 1

±x
→ exp(∓xt(θ)). For large

negative occupied molecular orbital energies ϵi or large positive virtual molecular orbital
energies ϵa, this would lead to very large values and numerical instabilities. For this
reason, the minus sign is factored out to reverse the sign in the exponent.

6.3. Working Equations For Restricted AO-SOS-ADC(2) 114

Inserting 6.83 into Equations 6.79 and 6.80 gives the expression for part 2E constructed
via AO intermediates:

r
S/T,AO−SOS,2E
ia (ω) = −c2osc

∑
θ

eωt
(θ)

{
Cµi|w(θ)|1/4Cσae

−ϵat(θ)

[∑
κγτ

(µκ | τγ)(θ) uS/T
κστγ

]

−|w(θ)|1/4Cµie
ϵit

(θ)

Cσa

[∑
γκδ

u
S/T
µγκδ

(
κδ | σγ

)(θ)]}
= −c2osc

∑
θ

eωt
(θ)
{
Cµi|w(θ)|1/4Cσae

−ϵat(θ)R
(θ)(1)S/T
µσ

−|w(θ)|1/4Cµie
ϵit

(θ)

CσaR
(θ)(2)S/T
µσ

}
(6.84)

Similarly to previous expressions, the AO electron repulsion integrals are not completely
transformed into the pseudo-AO basis, but only three-quarter transformed integrals are
obtained. To obtain fully-transformed integrals, it is beneficial to perform the following
transformation:

ria = C̄µi′rµσC̄σa′ = C̄µi′CµiriaCσaC̄σa′ (6.85)

Inserting this expression into Equation 6.84 yields

r
S/T,AO−SOS,2E
ia (ω) = −c2osc

∑
θ

eωt
(θ)

{
C̄µiPµνC̄σa

[∑
κγτ

(νκ | τγ)(θ) uS/T
κστγ

]

−C̄µiC̄σaQσν

[∑
γκδ

u
S/T
µγκδ

(
κδ | νγ

)(θ)]}
= −c2osc

∑
θ

eωt
(θ)
{
C̄µiC̄σaR

(θ)(1)S/T
µσ − C̄µiC̄σaR

(θ)(2)S/T
µσ

}
(6.86)

which gives fully transformed integrals. This step is necessary to obtain a better factori-
zation for part 2E in the density fitting approximation. Note that there are other cases of
non-fully transformed integrals in the previous parts - however a full transformation does
not give any significant advantage over a DF formulation, so they are left unchanged.

The time-determining step is the formation of the R intermediates, which in turn
depend on the AO doubles intermediates. Consider the sparsity diagram for the following
term encountered in Equation 6.83:

uκσ′Sσ′σ (κµ | νλ) (6.87)

ν λ µ κ σ′ σ
P SSS

Similar diagrams can be derived for the other three contractions in Equation 6.83. This
shows an overall quadratic scaling in computational effort and number of non-zero ele-
ments for the AO doubles intermediates uµσνλ. The indices µ/σ and ν/λ are connected

115 6.3. Working Equations For Restricted AO-SOS-ADC(2)

by either an S/P junction, but no sparsity relationship can be established between those
pairs, similar to the AO electron integrals.

This information can be used to find the scaling of the R intermediates. For example,
the sparsity diagram for R

(1)
µσ =

(
µκ | τγ

)(θ)
uκστγ reads

µ µ′ κ′ κ σ τ τ ′ γ′ γ
P S P S/P P S P

and a similar diagram can be drawn for R(2), which again shows quadratic scaling.

6.3.6 Summary

The AO-SOS-ADC(2) matrix-vector product is finally computed as

rS,AO−DF−SOS
ia (ω) = (ϵa − ϵi)u

S
ia +

∑
µν

CµiCνa

(
2J̃S

µν − K̃S
µν

)
+
∑
b

IAO−DF−SOS
ab uS

ib +
∑
j

IAO−DF−SOS
ij uS

ja

− cos
2

∑
α

∑
ia

∣∣w(α)
∣∣1/2C(α)

µi C
(α)
σa I

(1)(α)S,AO−DF−SOS
µσ

− cos
2

∑
ia

CµiCσaI
(2)S,AO−DF−SOS
µσ

− c2osc
∑
θ

eωt
(θ)
{
C̄µiC̄σaR

(θ)(1)S
µσ − C̄µiC̄σaR

(θ)(2)S
µσ

}
(6.88)

rT,AO−DF−SOS
ia (ω) = (ϵa − ϵi)u

T
ia +

∑
µν

CµiCνaK̃
T
µν

+
∑
b

IAO−DF−SOS
ab uT

ib +
∑
j

IAO−DF−SOS
ij uT

ja

− cos
2

∑
α

∑
ia

∣∣w(α)
∣∣1/2C(α)

µi C
(α)
σa I

(1)(α)T,AO−DF−SOS
µσ

− cos
2

∑
ia

CµiCσaI
(2)T,AO−DF−SOS
µσ

− c2osc
∑
θ

eωt
(θ)
{
C̄µiC̄σaR

(θ)(1)T
µσ − C̄µiC̄σaR

(θ)(2)T
µσ

}
(6.89)

where the intermediates are evaluated as presented in the previous sections. The 2-
index intermediates still need to be transformed back to the canonical MO basis for the
Davidson procedure, but the computational effort required is negligible. The overall cost
of the AO-SOS-ADC(2) scales quadratically both in time and memory requirements.

It is expected that AO-SOS-ADC(2) has the same drawback as LinK or AO-MP2,
namely a late onset of the low-scaling regime for larger basis sets. This additional over-
head is even worse for AO-ADC due to the complexity of the formulas which involve
many more tensor contractions than the ground state, and more S and P junctions which
makes the method much more dependent on basis set size. This is further aggravated by
the fact that diffuse basis functions are essential to obtain accurate excitation energies as
opposed to ground state correlation energies.

6.4. Restricted DF-SOS-ADC(2) with Doubles-Folding in the AO Basis 116

6.4 Restricted DF-SOS-ADC(2) with Doubles-Folding
in the AO Basis

To lower the steep scaling associated with increasing basis set size, the density fitting
approximation is introduced. The two-electron repulsion integrals are approximated using
the generalized form

(µσ | νλ) = BµσXMXYBY νλ (6.90)

where the quantities B and M depend on the density fitting method. Furthermore, the
J-,K- and Z-kernels are introduced:

J {M,P}µν = BµνXMXYBY σλPλσ (6.91)

K{M,P}µν = BµσXMXYBY νλPλσ (6.92)

Z {P,Q}XY = BXµνPµµ′Bµ′ν′YQν′ν (6.93)

This notation allows to reduce the complexity of the formulas to some degree.
The working equations for AO-DF-SOS-ADC(2) are given in Tables 2, 3 and 4. Table

2 shows the preiteration steps, that is, the computation of the Laplace parameters and
the intermediates Iij and Iab. The construction of the intermediates can be formulated
in terms of the Z- and K-kernels. In the K-kernel, the metric matrix M is replaced by
the Laplace matrix G formed by the Z-kernel. The contraction of G with BXµν in the
K-kernel is the most expensive step in the preiteration procedure. The resulting tensor
can be computed on-the-fly as it is not needed for any other contraction.

Table 3 shows the steps to form part 1 and 2A-2D of the matrix-vector product. The
steps are listed for both singlet and triplet. First the CIS Fock-like matrix FCIS is formed,
as it represents an important intermediate for the subsequent steps. This is easily done
using the J/K-kernels. Zero and first order contributions, as well as part 2A and 2B of the
second order contributions are formed trivially afterwards using the intermediates. Part
2C is most conveniently computed using the J-kernel where the density matrix is replaced
by a pseudo-density matrix H formed by contracting with a pseudo-AO CIS matrix. Part
2D is a bit more involved. First, the matrix T is formed by looping over the Laplace
points and using the J-kernel. Then, this matrix is used in a Fock-like construction
scheme to get the final result.

Finally, Table 4 shows the construction of part 2E of the MVP. This is the most
expensive step of the whole procedure. First, the Laplace parameters are (re-)computed
for the current excitation energy ω. The algorithm then enters the Laplace loop in step 2.
First, the intermediate tensors BXµν and RXµν are formed and stored. They are then used
to compute two intermediate matrices in the auxiliary basis, and the final intermediate
DXµν is formed. After two major exchange-like contraction steps, the contributions are
added to part 2E.

Using the density fitting approximation, the four-index intermediates uµσνλ from AO-
SOS-ADC(2) can be avoided, and the procedure only depends on 3-index intermediates.

Similarly to AO-MP2, the prefactor can be significantly lowered by virtue of the in-
complete Cholesky decomposition which yields the CDD-DF-SOS-ADC(2) method. Table
5 and 6 show how the intermediates in part 2E can be formed in a mixed pseudo-AO/MO
basis ("OB" algorithm) or in a complete pseudo-MO basis ("OV" algorithm). While the

117 6.4. Restricted DF-SOS-ADC(2) with Doubles-Folding in the AO Basis

Algorithm 2: Pre-iterative steps for computing the AO-ADC(2) intermediates

1 Compute Laplace quadrature parameters {w(α), t(α)} for (ϵi + ϵj − ϵa − ϵb)
−1

2 If needed by the J,K or Z kernels, compute the Cholesky decompositions of the
occupied and virtual pseudo-density matrix Compute the intermediate matrices
Iij and Iab

3 for α = 0 to nlap do

4 G
(α)
XY ←MXRZ

{
P (α), Q(α)

}
RS

MSR

5 Iab ← − cos
2
Cνb

∑
αCµa | w(α) |1/4 e−ϵat(α)K

{
P (α), G(α)

}
µν

6 Iij ← − cos
2
Cνj

∑
αCµi | w(α) |1/4 eϵit(α)K

{
Q(α), G(α)

}
µν

7 Symmetrize matrices

8 Iij ← Iji

9 Iab ← Iba

fully transformed OV version has a lower memory footprint by reducing the dimension
from NXN

2
AO to NXOV , the overhead due to the additional Cholesky decomposition of

the virtual pseudo-density might outweigh the benefit: first, the virtual space may be
quite large, especially if large basis sets are used, increasing the rank of the matrix and
hence the computational effort of the Cholesky decomposition. Second, the decomposi-
tions need to be recomputed for each ω, and for each Laplace point. The OB version
might offer a compromise between memory savings and additional overhead.

It should be noted that the Cholesky decomposition can also be used in the Z-kernels
in Table 2 to reduce its prefactor as well.

By using local density fitting, the inherent quadratic scaling of the AO-SOS-ADC(2)
method also applies for AO-DF-SOS-ADC(2) and CDD-DF-SOS-ADC(2), but the pre-
factor and memory requirements are significantly reduced.

6.4. Restricted DF-SOS-ADC(2) with Doubles-Folding in the AO Basis 118

Algorithm 3: Steps for computing the singles part of the MVP of AO-ADC(2)

1 Compute the CIS Fock matrices

2 if singlet: Uµν ← Cµiu
S
iaCνa

3 if triplet: Uµν ← Cµiu
T
iaCνa

4 if singlet: FCIS
µν ← 2 ∗ J {U,M}νµ −K{U,M}νµ

5 if triplet: FCIS
µν ← −K{U,M}νµ

6 Add zero- and first-order terms

7 ria ← (ϵa − ϵi)uia

8 ria ← CµiF
CIS
µν Cνa

9 Compute part (A) and (B) of second-order term

10 ria ← uibIab

11 ria ← ujaIij

12 Compute part (C) of second-order term

13 for α = 0 to nlap do

14 if singlet: H
(α)
µν ← P

(α)
µ′µQ

(α)
ν′νF

CIS
ν′µ′

15 if triplet: H
(α)
µν ← −P (α)

µ′µQ
(α)
ν′νF

CIS
ν′µ′

16 ria ← −cos
4
| w(α) |1/2 Cµie

ϵit
(α)
Cνae

−ϵat(α)J
{
H(α),M

}
µν

17 Compute part (D) of second-order term

18 for α = 0 to nlap do

19 if singlet: U
(α)
µν ←| w(α) |1/2 Cµie

ϵit
(α)
Cνae

−ϵat(α)
uS
ia

20 if triplet: U
(α)
µν ← − | w(α) |1/2 Cµie

ϵit
(α)
Cνae

−ϵat(α)
uT
ia

21 Tµν ← 1
2

∑
α P

(α)
µµ′Q

(α)
νν′J

{
U (α),M

}
νµ

22 ria ← − cos
2
CµiCνa

[
2J {T,M}µν −K{T,M}µν

]

119 6.4. Restricted DF-SOS-ADC(2) with Doubles-Folding in the AO Basis

Algorithm 4: Steps for computing the doubles part of the MVP of AO-ADC(2)

1 Compute Laplace quadrature parameters {w(θ), t(θ)} for (−ω+ ϵi + ϵj − ϵa− ϵb)
−1

2 for α = 0 to nlap do

3 Compute doubles pseudo-matrices P (θ) and Q(θ)

4 B
(θ)
Xµσ ← P

(θ)
µµ′BXµ′ν′Q

(θ)
ν′ν

5 v
(1)(θ)
µσ ← P

(θ)
µλ Sλνuνσ

6 v
(2)(θ)
µσ ← uµγSγλQ

(θ)
λσ

7 R
(θ)
Xµσ ← P

(θ)
µλ BXλνv

(1)(θ)
νσ − v

(2)(θ)
µγ BXγνQ

(θ)
νσ

8 H
(θ)
XY ← B

(θ)
XµσBY µσ

9 G
(θ)
XY ← R

(θ)
XµσBY µσ

10 D
(θ)
Xµσ ← H

(θ)
XYR

(θ)
Y µσ +G

(θ)
XYBY µσ

11 r
(A)
ia (ω)← CµiPµµ′

[
D

(θ)
XνσBXνµ′

]
Cσa

12 r
(B)
ia (ω)← Cµi

[
D

(θ)
XµγBXγσ′

]
Qσ′σCσa

13 ria+ = c2os−couplinge
ωt(α)

[
−r(A)

ia (α, ω) + r
(B)
ia (α, ω)

]

Algorithm 5: Steps for computing the doubles part of the MVP of AO-ADC(2),
with Cholesky decomposition of occupied densities

1 Compute Laplace quadrature parameters {w(θ), t(θ)} for (−ω+ ϵi + ϵj − ϵa− ϵb)
−1

2 for α = 0 to nlap do

3 Compute doubles pseudo-matrices P (θ) and Q(θ) and the Cholesky
decomposition Lµi

4 B
(θ)
Xiσ ← L

(θ)
µi BXµνQ

(θ)
νσ

5 v
(1)(θ)
iσ ← L

(θ)
µi Sµνuνσ

6 v
(2)(θ)
µσ ← uµγSγλQ

(θ)
λσ

7 R
(θ)
Xiσ ← L

(θ)
µi BXµνv

(1)(θ)
νσ − v

(2)(θ)
iγ BXγνQ

(θ)
νσ

8 H
(θ)
XY ← L

(θ)
µi B

(θ)
XiσBY µσ

9 G
(θ)
XY ← LµiR

(θ)
XiσBY µσ

10 D
(θ)
Xiσ ← H

(θ)
XYR

(θ)
Y iσ +G

(θ)
XYBY iσ

11 r
(A)
ia (ω)← CλiPλµ

[
D

(θ)
XkσBXνµL

(θ)
νk

]
Cσa

12 r
(B)
ia (ω)← CµiLµi

[
D

(θ)
XiγBXσγ

]
QγλCλa

13 ria+ = c2os−couplinge
ωt(α)

[
−r(A)

ia (α, ω) + r
(B)
ia (α, ω)

]

6.4. Restricted DF-SOS-ADC(2) with Doubles-Folding in the AO Basis 120

Algorithm 6: Steps for computing the doubles part of the MVP of AO-ADC(2),
with Cholesky decomposition of occupied and virtual densities

1 Compute Laplace quadrature parameters {w(θ), t(θ)} for (−ω+ ϵi + ϵj − ϵa− ϵb)
−1

2 for α = 0 to nlap do

3 Compute doubles pseudo-matrices P (θ) and Q(θ) and their Cholesky
decompositions L

(θ)
µi and L

(θ)
σa

4 B
(θ)
Xia ← L

(θ)
µi BXµνL

(θ)
νa

5 v
(1)(θ)
iσ ← L

(θ)
µi Sµνuνσ

6 v
(2)(θ)
µa ← uµγSγλL

(θ)
λa

7 R
(θ)
Xia ← L

(θ)
µi BXµνv

(1)(θ)
να − v

(2)(θ)
iγ BXγνL

(θ)
νa

8 H
(θ)
XY ← B

(θ)
XiaBY ia

9 G
(θ)
XY ← R

(θ)
XiaBY ia

10 D
(θ)
Xia ← H

(θ)
XYR

(θ)
Y ia +G

(θ)
XYBY ia

11 r
(A)
ia (ω)← CλiPλµ

[
D

(θ)
XkaBXνµLνk

]
LσaCσa

12 r
(B)
ia (ω)← CµiLµi

[
D

(θ)

Xib
BXγσLσb

]
QγλCλa

13 ria+ = c2os−couplinge
ωt(α)

[
−r(A)

ia (α, ω) + r
(B)
ia (α, ω)

]

121

Chapter 7

Scaling and Accuracy of
CDD-DF-SOS-ADC(2)

The theoretical groundwork for CDD-DF-SOS-ADC(2) was laid out in detail in the pre-
vious chapters. In this chapter, the performance of the method is explored in terms of
scaling, memory footprint and accuracy. First, the J, K and Z kernels are analyzed in the
context of ground state Hartree-Fock and SOS-MP2 calculations. They form the heart of
the AO-SOS-ADC(2) machinery and a separate analysis is therefore justified. Moreover,
bugs and performance issues are easier to spot. In the second part of this chapter, the
performance of the CDD-DF-SOS-ADC(2) method itself is investigated. Results are then
summarized at the end of this chapter.

7.1 Computational Details

If not stated otherwise, results presented in this chapter were obtained using MEGALOchem,
an open-source quantum chemistry package which provides an optimized environment for
algorithms exploiting the sparsity of the AO basis. For more details, the reader is referred
to the subsequent chapters.

Reference values for Hartree-Fock and SOS-MP2 energies, as well as excitation ener-
gies for canonical SOS-ADC(2) were obtained with version 5.1 of the Q-Chem quantum
chemistry package [218].

All calculations that use MEGALOchem have been performed on two nodes with two
Intel E5-2690v3 Haswell CPUs and 512 GB RAM each (48 cores in total), located on the
Tegner cluster at the PDC in Stockholm. Absolute wall times for scalings should not be
considered, as developmental builds of MEGALOchem are used, and MPI processes are not
optimally distributed.

7.2 Ground-state Prerequisites

7.2.1 Molecular Test Systems

Virtually all works that present some form of low-scaling electronic structure methods use
linear alkanes (LA) as their test systems. Linear molecular system represent a best case

7.2. Ground-state Prerequisites 122

(a)

(b)

Figure 7.1: Molecular systems used for the analysis of the J, K and Z kernels: (a) linear
alkanes (LA); (b) hydrated formamide (FW)

scenario where the overlap between basis functions µ, ν decays very rapidly as function of
distance rµν . The low scaling regime can generally be reached quite quickly, which is great
for getting a first impression on the performance on the methods. Unfortunately, linear
systems like alkanes are chemically uninteresting. For this reason, the present benchmar-
king also looks at the worst case scenario of spherically shaped and thus electron-dense
molecular system, in this case hydrated formamide (FW) with differently sized solvation
shells. For systems such as these, the strength of electron correlation effects decreases
much more slowly as a function of increasing system size N . The systems are illustrated
in Figure 7.1. LA structure are taken from [219] and FW structures from [129].

Basis sets also play an important role. For correlated methods such as MP2, Cou-
pled Cluster and their excited state analogs, triple-zeta quality basis sets are mandatory
for obtaining accurate results for small to medium-sized molecules. A larger basis set
implicates a larger virtual space to capture correlation effects. Fortunately, for larger
molecules, basis set superposition makes triple-zeta basis sets less crucial. Here, the small
but still routinely used cc-pVDZ basis set is considered for the computation of ground
state properties. For Hartree-Fock and MP2, the auxiliary basis sets cc-pVDZ-jkfit and
cc-pVDZ-ri are used, respectively.

Table 7.1 shows the total number of basis functions of the systems considered in this
section. The length of the alkane chains and the size of the solvation shell of FW are
chosen such that they are on the same order of magnitude. For each system type, four
sizes are chosen.

7.2.2 Illustrating the Scaling

There are generally two ways how scaling is illustrated in literature: (1) a graph that
shows the total wall time as a function of increasing system size and/or (2) a table with

123 7.2. Ground-state Prerequisites

LA FW
Molecule Abbrev. NAO Molecule Abbrev. NAO

H42C20 LA20 490 H33CNO16 FW15 417
H82C40 LA40 970 H63CNO31 FW30 777
H162C80 LA80 1930 H129CNO64 FW63 1569
H322C160 LA160 3850 H291CNO145 FW144 3513

Table 7.1: Molecular formula for the considered systems and the number of basis functions
for cc-pVDZ.

scaling coefficients computed relative to a previous system size as

x =
log(Ni/Ni−1)

log(Ti/Ti−1)
(7.1)

Graphs are most useful to show the prefactor of the methods, while tables are much
better suited for showing the polynomial scaling, as the differences between e.g. O(N2)
and O(N2.5) are difficult to pick up with the naked eye. Here, both methods are used.

7.2.3 Integral Evaluation

The J and K kernels have the tensors BXµν and MXY as common input. They are defined
by

(µν | λσ) = BXµνMXYBXλσ (7.2)

Three different density fitting approximations are considered for benchmarking: the stan-
dard density fitting in the coulomb metric (DFCM), local density fitting in the coulomb
attenuated metric with the complimentary error function (DFCAM), and quasi-robust
density fitting (QRDF). The exact form of B and M depends on the DF approximation
(Table 7.2). If not indicated otherwise, DFCAM uses an attenuation factor of 0.1, and
QRDF uses T = 1e-5 and R = 40.

Figure 7.2a shows the time needed to evaluate B for the LA systems. There is no
difference between DFCM and DFCAM, hence only DFCM is shown. QRDF has a much
higher prefactor due to the huge number of QR decompositions that are necessary for
the calculation of the fitting coefficients. The consequence is that QRDF is an order
of magnitude more expensive than DFCM or DFCAM. Comparing the wall times here
to the the total time needed for the Hartree-Fock procedure, QRDF is actually more
expensive than the whole HF computation for LA20, LA40 and LA80. However, QRDF

DF method BX
µν MXY

DFCM (X | µν) (X | Y)−1

DFCAM (X | µν)ω (X | Y)−1
ω (Y | R) (R | S)−1

ω

QRDF CQRDF
Xµν (X | Y)

Table 7.2: Expressions for B and M for kernels presented in this work. The subscript ω
indicates that the coulomb attenuated metric is used.

7.2. Ground-state Prerequisites 124

has the advantage of becoming linearly scaling going from LA80 to LA160, compared to
the quadratic scaling of DFCM.

In QRDF, the test functions {Q} for the fitting procedure are chosen based on overlap
criteria with the fitting functions {P} (Equation 3.42). Here lies the reason for the massive
overhead of QRDF: in the original implementation by Tew, the smallest exponent of a
GTO is chosen for determining the overlap between µQ and νP . In the QRDF procedure
as implemented in MEGALOchem, the scheme is generalized to blocks of basis shells centered
on the same atom, i.e. the smallest exponent of the whole block is used for the overlap
screening. This had the unwanted side-effect that the screening for the test functions is
much harsher than necessary. Even if the overlap values for most exponents of a block
with another block are zero, only one exponent decides whether the block is included in
the fitting procedure. A more lenient criteria based on an average overlap or matrix norm
can reduce the overhead with little impact on accuracy. For most of this chapter, the
original, strict version of the QRDF algorithm is used, but for determining the accuracy
of CDD-DF-SOS-ADC(2), an improved version will be used (see below). The strictness
of the method has no impact on the sparsity of the fitting coefficients, and hence all
findings on the scaling of the kernels will still be valid for the new implementation.

Figure 7.2b shows the number of non-zero elements of B for LA. Quadratic scaling
can be observed for DFCM, and linear scaling for DFCAM and QRDF. An interesting
observation is that B is evaluated with O(N2) effort in DFCAM, but it scales linearly
in its elements. This is due to the screening procedure: for DFCAM, the normal DFCM
Schwarz screening is used, which does not take into account the erfc(ωr)/r decay between
(X| and |µν). More strict screening procedures could be introduced to speed up integral
evaluation of DFCAM, which will be especially useful for direct algorithms. Similarly, the
QRDF scheme has mostly cubic scaling effort for evaluation, but ultimately the elements
scale linearly with system size.

Finally, Figure 7.2c shows the memory footprint of B for the hydrated formamide
systems. The tensors are naturally much more dense due to the molecular structure.
Nonetheless, the QRDF fitting coefficients still scale quite favorably. Unfortunately, the
QRDF procedure itself takes ten times longer than the HF calculation itself. Whether this
is due to the strictness of QRDF, or just the nature of QRDF itself, is a point for further
investigation. For now, QRDF is not considered useful for dense electronic systems.

To compute M in DFCM and DFCAM, a matrix inversion needs to computed, which
scales with O(N3). For the system sizes considered in this report, the relative wall times
for matrix inversions are small compared to all other steps. The QR decompositions
in QRDF also scale cubically, although the size of the linear least squares problem will
eventually become constant, i.e. the number of test functions will be independent of
system sizes. This is a major advantage of QRDF, although as was already pointed out,
it does matter for the current molecular sizes.

7.2.4 Hartree-Fock

Scaling: Coulomb Matrix

The coulomb matrix is evaluated as

dX = MXYBY µνPνµ (7.3)

125 7.2. Ground-state Prerequisites

1000 2000 3000

Number of basis functions

101

102

103

T
im

e
[s

]

Coul.

QR

NAO DFCM QRDF
490 — —
970 1.94 2.95

1930 1.96 2.53
3850 1.70 1.09

(a)

1000 2000 3000 4000

Number of basis functions

0.00

0.25

0.50

0.75

1.00

1.25

N
on

-Z
er

o
E

le
m

en
ts

×1010

Coul.

Coul-erfc

QR NAO DFCM DFCAM QRDF
490 — — —
970 2.01 1.37 1.45

1930 1.92 1.16 1.18
3850 1.83 1.07 1.08

(b)

1000 2000 3000

Number of basis functions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
on

-Z
er

o
E

le
m

en
ts

×1010

Coul.

Coul-erfc

QR NAO DFCM DFCAM QRDF
417 — — —
777 2.50 2.45 2.15

1569 2.23 2.11 1.73
3513 2.10 — 1.47

(c)

Figure 7.2: (a) Total walltime needed to construct the tensor BXµν (3c2e integrals, QR
fitting coefficients) for LA, with scaling coefficients. (b) Number of non-zero elements in
the tensor BXµν as a function of NAO for LA, with the corresponding scaling coefficients.
(c) Number of non-zero elements in the tensor BXµν as a function of NAO for FW, with
the corresponding scaling coefficients

7.2. Ground-state Prerequisites 126

Jµν = BXµνdX (7.4)

The scaling of the individual steps is not considered, but only the total time needed to
construct the coulomb matrix. Figure 7.3a shows the scaling behavior of the J kernel for
the LA systems. DFCM does not lower the scaling compared to the exact evaluation of
the coulomb matrix which scales quadratically if sparse matrix algebra is used. Local
metrics can however lower the scaling by an order of magnitude. QRDF even exhibits
sublinear scaling from LA80 to LA160. The sublinear scaling originates from the increased
sparsity of M. While DFCM and DFCAM need to invert matrices, which also destroys
sparsity, QRDF only needs the 2c2e integrals which have an 1/Rl+1 decay between centers.
Although this decay is slow, it is faster compared to the 4c2e integrals and can affect the
scaling positively.

Table 7.4a shows the scaling coefficients for the FW systems. Here, DFCAM and
QRDF do not give any considerable advantage over DFCM.

Scaling: Exchange Matrix

The exchange matrix is computed as

CXµν = MXYBY µν (7.5)
Kµν = BXνσCXµλPλσ (7.6)

Both steps are analyzed separately. Step 1 actually only needs to be evaluated once,
while step 2 is repeated at each iteration. Figure 7.3b illustrates the scaling for step 1
for linear alkanes. It is the most expensive step of the Hartree-Fock procedure in terms
of scaling (ignoring diagonalization and matrix inversion), and profits most from the
local density fitting approximation. The computational effort can be reduced to O(N2)
and almost O(N) for QRDF. Step 1 forms a 3-index tensor which needs to be stored in
memory. The sparsity of this tensor is illustrated in Figure 7.5a. The number of elements
scales approximately quadratically for all metrics, although QRDF has a slight edge on
the other methods. It appears that local density fitting approximations do not have a
lot of impact on the memory requirements of step 1, although they can speed up the
computation considerably.

Step 2 is less expensive, but still more demanding than the computation of the coulomb
matrix. Figure 7.3c shows the scaling for linear alkanes. Moreover, the MO algorithm
is also included for comparison. Even standard density fitting can positively impact
the scaling, with a reduction from cubic to O(N1.5). DFCAM does not improve on the
scaling, although the additional sparsity lowers the prefactor compared to DFCM. QRDF
can again achieve linear scaling, for similar reasons as discussed above.

Finally, the scaling coefficients for the FW systems are collected in Table 7.4a. As
expected, local density fitting does not considerably reduce the scaling for evaluating
the exchange matrix and shows the limit of what AO methods can do. Of course, at
some point, the computational effort will eventually decrease with increasing system size
N , although the crossover point is much later than for LA. The major advantage is
that, compared to a MO implementation, local density fitting decreases the overhead
compared to DFCM, making it more competitive to the MO methods (Figure 7.4b). The
AO method is therefore still applicable in a dense context.

127 7.2. Ground-state Prerequisites

1000 2000 3000 4000

Number of basis functions

0

20

40

60

80

100

T
im

e
[s

]

Coul.

Coul-erfc

QR
NAO DFCM DFCAM QRDF
490 — — —
970 1.93 1.23 1.29

1930 2.03 1.23 1.23
3850 1.88 1.23 0.73

(a)

1000 2000 3000 4000

Number of basis functions

0

500

1000

1500

2000

T
im

e
[s

]

Coul.

Coul-erfc

QR
NAO DFCM DFCAM QRDF
490 — — —
970 2.43 1.97 1.96

1930 2.49 1.89 1.78
3850 2.53 1.98 1.21

(b)

1000 2000 3000 4000

Number of basis functions

0

500

1000

1500

2000

2500

3000

T
im

e
[s

]

Coul.

Coul-erfc

QR

Coul. (MO) NAO DFCM DFCAM QRDF DFMO
490 — — — —
970 1.58 1.58 1.60 2.34

1930 1.57 1.57 1.50 2.96
3850 1.56 1.56 0.67 3.14

(c)

Figure 7.3: (a) Scaling behavior for the construction of the coulomb matrix using different
metrics (LA). (b) Scaling behavior for the construction of the exchange matrix (step1)
using different metrics (LA). (c) Scaling behavior for the construction of the exchange
matrix (step 2) using different metrics (LA)

7.2. Ground-state Prerequisites 128

J K (STEP 1) K (STEP 2)
NAO DFCM DFCAM QRDF DFCM DFCAM QRDF DFCM DFCAM QRDF DFMO
417 — — — — — — — — — —
777 2.18 2.20 1.88 2.77 2.77 2.51 2.55 2.55 2.33 2.33

1569 2.32 1.71 1.28 2.77 2.18 1.85 2.82 2.13 1.67 2.86
3513 2.08 — 1.94 2.79 — 2.74 2.59 — 2.65 3.13

(a)

1000 2000 3000

Number of basis functions

0

1000

2000

3000

T
im

e
[s

]

Coul.

Coul-erfc

QR

Coul. (MO)

(b)

Figure 7.4: (a) Scaling coefficients for the J kernel and the two steps of the K kernel
(FW). (b) Scaling for the construction of the exchange matrix (step 2) for hydrated
formamide. Although local density approximations do not lower the scaling, a reduction
of the prefactor can be observed.

129 7.2. Ground-state Prerequisites

1000 2000 3000 4000

Number of basis functions

0.0

0.5

1.0

1.5

N
o
n

-Z
er

o
E

le
m

en
ts

×1010

Coul.

Coul-erfc

QR NAO DFCM DFCAM QRDF
490 — — —
970 2.07 2.06 2.01

1930 2.01 1.98 1.92
3850 1.99 1.96 1.84

(a)

1000 2000 3000

Number of basis functions

0

1

2

3

4

N
o
n

-Z
er

o
E

le
m

en
ts

×1010

Coul.

Coul-erfc

QR NAO DFCM DFCAM QRDF
417 — — —
777 2.27 2.26 2.20

1569 1.96 1.94 1.88
3513 1.71 1.68 1.57

(b)

Figure 7.5: (a) Scaling behavior of the tensor MXYBY µν (LCA). (b) Scaling behavior of
the tensor MXYBY µν (FW).

7.2. Ground-state Prerequisites 130

For FW, numerical issues were encountered for FW144, hence this point is missing in
the tables and figures.

Accuracy

The accuracy of the J and K kernels are compared collectively by considering the total
Hartree Fock energy. Table 7.3 lists the total energy differences per occupied orbital
in µHartrees for a small set of molecules. Here, LA30 and FW21 are introduced, with
the respective molecular formulas H62C30 and H45CO22. For standard density fitting,
one finds errors on the order of several µHartrees, which is in accordance to results in
literature. QRDF has virtually the same errors compared to DFCM, although this might
also be partly due to the strict screening of test functions. DFCAM unfortunately shows
very large errors that are two orders of magnitude larger than QRDF and DFCM. Here
lies yet another advantage of the QRDF scheme: while Dunlap’s robust density fitting is
crucial for obtaining accurate results for local density fitting approximations like DFCAM,
QRDF has no such restrictions.

DFCM DFCAM QRDF
LA20 3.76 235.21 3.80
LA30 3.85 274.59 3.85
LA40 3.85 368.60 3.84
FW15 8.23 713.43 8.21
FW21 7.95 524.92 7.95
FW30 1.59 111.87 1.59

Table 7.3: Absolute Hartree-Fock energy difference in µHartrees per occupied orbital
compared to exact Hartree-Fock.

7.2.5 MP2

Scaling

The Z kernel is defined here as

D
(α)
Xµν = L

(α)

µi

(
L
(α)

µ′i
BXµ′ν′Q

(α)
ν′ν

)
(7.7)

Z
(α)
XY = D

(α)
XµνBY µν (7.8)

and is evaluated for each Laplace point α. The 3-index intermediate D can either be
stored in main memory, stored on disk, or computed on the fly. Here, only the first
variant of the algorithm is considered, although the other methods are implemented as
well. First, the sparsity of the intermediate tensor will be considered (Figure 7.6a) for the
LA systems. Quadratic scaling is observed for DFCM, while linear scaling is achievable
for DFCAM and QRDF. This is in accordance to the sparsity analysis in chapter 4.
Again, local density fitting is crucial to reduce the memory footprint.

The scaling behavior of the Z kernel is collected in Figure 7.6b for LA. Even with
DFCM, the computational effort is drastically reduced from quartic to quadratic. It is

131 7.2. Ground-state Prerequisites

1000 2000 3000 4000

Number of basis functions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
o
n

-Z
er

o
E

le
m

en
ts

×1010

Coul.

Coul-erfc

QR NAO DFCM DFCAM QRDF
490 — — —
970 2.14 1.69 1.80

1930 2.06 1.26 1.25
3850 2.03 1.11 1.11

(a)

1000 2000 3000 4000

Number of basis functions

0

500

1000

1500

T
im

e
[s

]

Coul.

Coul-erfc

QR
NAO DFCM DFCAM QRDF
490 — — —
970 2.45 1.96 2.09

1930 2.55 1.82 1.83
3850 2.00 1.59 1.00

(b)

1000 2000 3000

Number of basis functions

0

500

1000

1500

2000

2500

3000

T
im

e
[s

]

Coul.

Coul-erfc

QR
NAO DFCM DFCAM QRDF
490 — — —
970 2.51 1.88 1.88

1930 2.59 3.18 2.36
3850 3.26 3.18 —

(c)

Figure 7.6: (a) Sparsity behavior of the intermediate tensor D in the Z kernel for the first
Laplace point. (b) Average wall times for the construction of the Z kernel and scaling
coefficients (LA). (c) Average wall times for the construction of the Z kernel and scaling
coefficients (FW).

7.3. CDD-DF-SOS-ADC(2) 132

even further reduced with LDF, and linear scaling of the Z kernel is obtained for QRDF
from LA80 to LA160.

For the hydrated formamide systems, scaling is again less favorable (Figure 7.6c).
Nonetheless, it still scales at O(N3), i.e. one order of magnitude less than the canonical
algorithm. As opposed to HF, LDF has no major impact on the prefactor. The last point
for FW163 is missing for QRDF due to numerical issues.

Accuracy

The accuracy for the different density fitting approximations is given in Table 7.4, com-
pared to the canonical SOS-MP2, in µHartrees per occupied orbital. For all methods,
the Hartree-Fock reference is calculated with DFCM.

Immediately, it is apparent that the energy errors are much higher than for Hartree-
Fock. This is due to the quality of the HF wave function, which was computed using
density fitting. Results may be improved by using a larger auxiliary basis set to improve
the description of the virtual space. The impact of the HF wave function on the SOS-MP2
energy is not explored here.

DFCM, DFCAM and QRDF all have similar errors. The SOS-MP2 energy is therefore
much less sensitive to the density fitting approximation, because it is a non-iterative
method and DFCAM can be used without problems in this case.

Coul. Coul-erfc QR
LA20 28.81 28.76 28.85
LA30 29.04 29.02 29.14
LA40 28.38 28.38 28.50
FW15 23.31 23.29 23.27
FW21 23.27 23.26 23.26
FW30 24.30 24.20 24.10

Table 7.4: SOS-MP2 energy differences in µHartrees per occupied orbital compared to
the canonical SOS-MP2 reference.

7.3 CDD-DF-SOS-ADC(2)

7.3.1 Molecular Test Systems

For the performance analysis of CDD-DF-SOS-ADC(2), again two molecular systems are
chosen: linear carboxylic acids (LCA, Figure 7.7) and the hydrated formamide systems
(FW) from the previous section. The LCAs were optimized using DFT/B3LYP and the
6-31G* basis set.

Two major factors influence the performance of local excited state methods: locality
of electron correlation, and locality of the excitation space. The LCA systems form the
best case scenario for both types of locality. The atomic ground state density becomes
sparse very rapidly with increasing chain length, and so does the atomic transition density
for the lowest lying singlet excitation. The excitation space for that transition is localized

133 7.3. CDD-DF-SOS-ADC(2)

Figure 7.7: Structure of the linear carboxylic acids (LCA).

on the COOH group, and the number of elements in the transition density matrix scales
with with O(1) in the limit of large systems. On the other hand, FW has a non-sparse AO
ground state density, but a sparse AO transition density. Here, the first singlet excited
state is localized on the formamide molecule. With increasing size of the solvation shell,
the number of significant elements in the transition matrix grows slowly, and the excita-
tion energy will eventually converge to a constant value in the limit of an infinitely large
solvation shell [129], demonstrating the intensive property of excitations. As such, while
FW is a worst case scenario for local ground state calculations, excited state methods are
able to exploit the locality of the excitation in order to lower the computational cost.

7.3.2 Scaling

For analyzing the scaling of the AO-ADC(2) method, the cc-pVDZ basis set is used,
with cc-pVDZ-ri for density fitting. Table 7.5 shows the number of basis functions for
the test systems. Furthermore, only the performance of the first matrix-vector product
is analyzed, using a (singlet) CIS-optimized transition matrix as the input. The CIS
vectors are sparse, and the density of the ADC(2) trial vectors will be of similar sparsity.
It should be noted that it is very important to use CIS as the the initial guess, because
a guess based on molecular orbital energies can be very dense.

LCA FW
Molecule Abbrev. NAO Molecule Abbrev. NAO

H41C20O LCA20 508 H33CNO16 FW15 417
H81C40O LCA40 988 H63CNO31 FW30 777
H161C80O LCA80 1948 H129CNO64 FW63 1569
H321C160O LCA160 3868 H291CNO145 FW144 3513

Table 7.5: Total number of basis functions for linear carboxylic acids (LCA) and solvated
formamide (FW) with the aug-cc-pVDZ basis set

For evaluating the doubles part of the MVP, the OV version of the algorithm will be

7.3. CDD-DF-SOS-ADC(2) 134

used.
Figure 7.8a shows the performance of the matrix-vector product for the LCA systems.

Again, three metrics are used: DFCM, DFCAM (ω = 0.1) and QRDF (T = 1e-5, R = 40).
The atomic orbital formulation of ADC(2) drastically reduces the scaling from O(N4) to
O(N2) for standard density fitting. Using local density fitting, the computational effort
can be further pushed down to O(N1.5) and O(N1) for DFCAM and QRDF respectively.
The cross-over is very early, and sub-quadratic scaling is already reached at LCA40. The
performance of AO-ADC(2) is therefore even better than the predicted O(N2) scaling.
This discrepancy is due to the sparsity of the AO transition matrix: during the sparsity
analysis, O(N1) scaling was assumed, analogous to the ground state density. However, the
transition density scales with O(1) in the asymptotic limit, which leads to sub-quadratic
performance.

Figure 7.8b shows the total wall time for each individual component of the MVP
calculation. The evaluation of the intermediate matrices (intermeds) and the doubles-part
(2E) are the most expensive steps. The computational timings for computing part 2C, 2D
and the CIS Fock matrices (jk) are one order of magnitude lower. Part 2A and 2B only
involve a single matrix multiplication of the MO transition matrix with the intermediate
matrices, and are therefore evaluated very quickly. The Cholesky decompositions also do
not considerably influence the total scaling.

Concerning the memory footprint of AO-ADC(2), the same 3-index tensors that ap-
peared in the evaluation of the Hartree-Fock and SOS-MP2 ground state energy also
appear here: BXµν (the 3c2e integrals or the QRDF fitting coefficients), CXµν (which
corresponds to MXYBY µν) and B

(α)
Xia (the pseudo-AO integrals P

(α)
µµ′BXµ′ν′Q

(α)
ν′ν). Their

sparsity was discussed in detail in the previous section. Additionally, the following ten-
sors need to be stored in memory: C ′

Xµν (GXYBY µν in the K kernel during evaluation of
the intermediates, see Algorithm 2), and the intermediate Laplace tensors in the Cholesky
MO basis (B(θ)

Xia, R
(θ)
Xia, D

(θ)
Xia), as defined in the previous chapter in Algorithm 6. The

tensors will be abbreviated as C ′, BMO, RMO and DMO for this discussion, and BAO is
used for BXµν .

7.8c shows the block sparsity of those tensors for QRDF, with BAO as a reference.
Block sparsity is defined as the number of significant blocks divided by the total number
of blocks in the dense tensor. C ′ and BMO are very dense, with a block sparsity slightly
below 10%. The intermediate Laplace tensors DMO and RMO decay much faster than
BAO which was shown to scale with O(N). For LCA160, IMO and RMO are an order of
magnitude sparser (≈ 0.1%) than BAO. The difference to the other Laplace tensor BMO

is that IMO and RMO are formed by the contraction of BAO with both the AO ground
state density P and the AO transition matrix U, which explains their much higher degree
of sparsity compared to BMO which is formed using the AO ground state densities only.
One peculiar thing to notice here is that the intermediate tensor DMO, which is formed
from BMO and RMO, is sparser than both of its input tensors. This indicates a potentially
faster route to evaluating DMO by imposing sparsity criteria on BMO and RMO. How
these criteria exactly look like is subject of future investigation. The most plausible route
goes via a sparsity analysis of the trial vector u, similar to how LMO or NO excited state
methods generate a compact virtual orbital space.

Similarly, the evaluation of the intermediate tensors can be sped up by only taking
into the account the AOs which are near or within the excitation space. This would

135 7.3. CDD-DF-SOS-ADC(2)

1000 2000 3000 4000

Number of basis functions

0

5000

10000

15000

20000

25000

T
im

e
[s

]

Coul.

Coul-erfc

QR NAO DFCM DFCAM QRDF
508 — — —
988 1.8 1.4 1.5

1948 2.1 1.5 1.4
3868 2.2 1.5 1.0

(a)

1000 2000 3000 4000

Number of basis functions

10−2

10−1

100

101

102

103

T
im

e
[s

]

Intermeds

jk

2A+2B

2C+2D

2E

Chol.

(b)

1000 2000 3000 4000

Number of basis functions

10−1

100

101

102

B
lo

ck
S

p
ar

si
ty

[%
]

BXµν

CXµν

DXia

BXia
RXia

(c)

Figure 7.8: (a) Scaling behavior for the computation of a single matrix-vector-product
with a CIS optimized (singlet) trial vector (LCA). (b) Total time needed to evaluate
each separate component of the MVP using quasi-robust density fitting (LCA). (c) Block
sparsity for the major 3-index tensors appearing in the evaluation of the MVP (LCA).

7.3. CDD-DF-SOS-ADC(2) 136

1000 2000 3000

Number of basis functions

0

10000

20000

30000

40000

50000

T
im

e
[s

]

Coul.

Coul-erfc

NAO DFCM DFCAM
508 — —
988 2.3 2.3

1948 2.1 2.0
3868 2.74 —

(a)

1000 2000 3000

Number of basis functions

100

101

102

B
lo

ck
S

p
a
rs

it
y

[%
]

BXµν

CXµν

DXia

BXia
RXia

(b)

Figure 7.9: (a) Scaling behavior for the computation of a single matrix-vector-product
with a CIS optimized (singlet) trial vector (FW). (b) Block sparsity for the major 3-index
tensors appearing in the evaluation of the MVP (FW)

137 7.3. CDD-DF-SOS-ADC(2)

however lead to a loss of state specificity of the CDD-DF-SOS-ADC(2) MVP.
Figure 7.9a shows the performance of CDD-DF-SOS-ADC(2) for solvated formamide.

Although the density of the systems negatively impacts performance compared to LCA,
it is still possible to achieve sub-cubic scaling thanks to the sparsity of the AO transition
matrix. The point for FW144 with DFCAM is missing due to numerical issues that were
encountered during the calculation. Nonetheless, the graph speaks for the success of
the AO-ADC(2), even for non-ideal systems, provided that the excitation space is small.
Figure 7.9b shows the block sparsity of the tensors discussed in the previous paragraphs
for LCA. Although most tensors are very dense, the intermediate DMO almost falls below
the 0.1% mark. Similarly to LCA, this sparsity might be used for imposing conditions
on the other tensors, and speeding up the calculations for all components of the MVP.

7.3.3 Accuracy

To get an impression on the accuracy that can be achieved with CDD-DF-SOS-ADC(2),
the lowest lying singlet excitation energies for a small set of molecules are compared to
the exact results obtained with canonical SOS-ADC(2), as implemented in Q-Chem. The
Hartree-Fock wave function is optimized using standard density fitting without any local
approximations as the reference for CDD-DF-SOS-ADC(2), while the exact HF ground
state is used for the canonical calculation. The aug-cc-pVDZ basis set, and the auxiliary
basis sets cc-pVTZ-jkfit and aug-cc-pVDZ-ri are used for Hartree-Fock and CDD-DF-
SOS-ADC(2) respectively. The test systems include linear alkanes and carboxylic acids,
solvated formamide, as well as the borondipyrromethene-flavin dyad (FLVA) [220] and
the phenothiazine-isoalloxazine dyad (DYAP) [197]. The structures of FLVA and DYAP
are given in Figure 7.10.

Before considering the results, it is important to note that convergence issues were
commonly encountered in the Davidson procedure when using local density approxima-
tions. This is due to linear dependencies in the auxiliary basis set space, which then lead
to numerical issues in the local density fitting procedure. For DFCAM, the matrix of
the 2c2e integrals in the coulomb-attenuated metric, i.e. (X | Y)ω needs to be inverted.
This can be done by solving the eigenvalue problem, then scaling the eigenvectors by the
inverse of the eigenvalues. However, for a linearly dependent basis set, the eigenvalues
are very small, which leads to large entries in (X | Y)ω, and a loss of accuracy. The error
propagates through the Davidson iterations and causes convergence issues in the form of
negative excitation energies. Fortunately, the problem can often be solved by filtering
out all eigenvectors with an associated eigenvalue below a certain threshold (typically
around 1e-6 to 1e-4). In the quantum chemistry community, this procedure is known
as canonical orthogonalization, and gives an approximation to the exact matrix inverse.
Alternatively, the problem can be solved by removing the linear dependencies from the
basis set itself (see Annex C). Finally, a less diffuse basis set can be used as well. For
example, instead of using aug-cc-pVDZ-ri, one may use cc-pVTZ-ri.

However, none of these methods worked for "strict" QRDF. Due to the harsh screening
procedure for the test functions mentioned in the previous sections, many matrix entries
of the rectangular matrix (Qtest | Pfit) will be very small. This leads to numerical issues
when solving the linear-least squares problem, even with linear dependencies removed.
Here, an alternative QRDF algorithm is used , where the test functions are chosen by a

7.3. CDD-DF-SOS-ADC(2) 138

System Coul. Coul-erfc (0.1) Coul-erfc (1.0) QRDF (new)
LCA12 3.48 0.11 2.02 2.70
LCA20 1.52 4.01 22.66 1.32
LA20 0.90 6.29 1.24 0.50
FW10 0.09 6.37 0.70 0.20
FW15 0.49 0.62 0.86 0.10
FLVA 0.26 0.04(a) 5.25(a) 0.26
DYAP 1.77 27.25 94.89 1.76

Table 7.6: Difference in excitation energy between canonical SOS-ADC(2) and CD-DF-
SOS-ADC(2), in µHartrees per occupied orbital, for different density fitting approxima-
tions. LA = linear alkane, LCA = linear carboxylic acid, FW = solvated formamide,
flva(a) = borondipyrromethene-flavin dyad, iso = phenothiazine-isoalloxazine dyad. (a)

The cc-pVTZ-ri auxiliary basis set was used instead of aug-cc-pVDZ-ri due to conver-
gence problems.

weighted average criteria using the auxiliary overlap matrix, with the parameters T =
1e-4 and S = 1e-4. Numerical issues can be completely avoided, as the QR decomposition
is more robust than matrix inversion.

Table 7.6 shows the SOS-ADC(2) excitation energy differences in µHartrees per oc-
cupied orbital. Values are given for DFCM, DFCAM with attenuation factors 0.1 and
1.0, and the improved QRDF algorithm. DFCM shows acceptable accuracy, on the order
of several µHartrees for the linear systems LCA12, LCA20 and LA20. The errors are
even lower for the other test systems. As expected, DFCAM introduces much larger
errors, similar to Hartree-Fock. The iterative nature of the Davidson procedure therefore
has a significant impact on accuracy for DFCAM. The largest errors are again observed
for linear molecules, especially for DFCAM(1.0) where errors for LA20 are almost two
orders of magnitude larger. Errors are much smaller for QRDF, and even problematic
systems like LA20 have similar accuracy to DFCM, again showing the superiority of the
quasi-robust density fitting scheme. Only a single set of parameters for QRDF was used
for testing accuracy. A more extensive benchmark, as well as the impact of diffuse basis
sets on scaling, are subjects for further investigation.

7.3.4 Large Molecules: Challenges and Limitations

An attempt was made to apply CDD-DF-SOS-ADC(2) to chemically interesting molec-
ules with 5000 basis functions or more, with limited success: even if the atomic orbital
formulation can exploit sparsity to reduce the memory footprint and scaling, the need
for diffuse basis functions practically nullifies any advantages it provides. The block oc-
cupation with aug-cc-pVDZ or def2-SVPD is still above 50% for non-linear molecules
containing around 300 atoms, and the very large auxiliary basis sets often lead to OOM
(out-of-memory) errors due to data duplication in the QRDF algorithm and other rou-
tines. For diffuse auxiliary functions, processes often need to hold the whole (X | Y)
matrix in memory while solving the linear least squares problem. For multiple ranks on
a single node, this can quickly lead to memory problems. While memory duplication
can be reduced by simply using fewer ranks per node, it should be noted that currently

139 7.3. CDD-DF-SOS-ADC(2)

Figure 7.10: Molecular structure of borondipyrromethene-flavin (a) and phenothiazine-
isoalloxazine (b)

7.4. Summary and Outlook 140

the DBCSR tensor library is only optimized for one MPI rank per CPU. Furthermore,
each rank can only allocate approximately 2GB of memory at once, because only 4-byte
integers (with maximum value 2,147,483,648) are used to specify the size of the memory
window that is allocated. Moreover, the need to reorder the tensors before each contrac-
tion effectively doubles the space needed by each tensor (see also the discussion in section
9.3.2).

In ground state methods, OOM errors can often be solved by using direct methods
where tensors are recomputed on-the-fly. By increasing the number of batches, the me-
mory footprint can be lowered quite considerably. A direct version of CD-DF-SOS-
ADC(2) could also be considered, although the need to recompute tensors like CXµν ,
RXiν or BXiν multiple times would lead to a much higher prefactor which further pushes
the low-scaling regime to larger molecular sizes.

7.4 Summary and Outlook

An atomic orbital formulation of the spin-opposite-scaled algebraic diagrammatic con-
struction method can drastically reduce the formal quartic scaling of canonical, density-
fitted SOS-ADC(2). This method, named CDD-DF-SOS-ADC(2), can successfully ex-
ploit the sparsity of the AO ground state density and the AO transition density. Further-
more, local density fitting significantly reduces the overhead, and the low scaling regime
is more easily reached. For linear carboxylic acids, the method scales linearly, and even
electron-dense systems, like hydrated formamide, were shown to have sub-cubic scaling
if the transition density is sparse. The 3-index tensors necessary for a CDD-DF-SOS-
ADC(2) calculation show a high degree of sparsity, which, when using block-sparse ma-
trix storage, greatly reduces the memory footprint. Furthermore, the high prefactor of
CDD-DF-SOS-ADC(2) can be mitigated using local density fitting, making it somewhat
competitive with canonical density-fitted SOS-ADC(2) for dense systems, although with
a much larger memory footprint.

Accuracy was shown to be within acceptable range for standard density fitting and
quasi-robust density fitting. Convergence issues were encountered due to linear depen-
dencies with the auxiliary basis sets, which can be addressed by removing certain basis
functions, by canonical orthogonalization of the metric inverse, or by just using another
basis set.

Unfortunately, the need for augmented basis sets negatively impacts the scaling of
CDD-DF-SOS-ADC(2) and delays the onset of the linear-scaling regime. Compared to
NO methods, CDD-DF-SOS-ADC(2) includes all atomic orbitals and molecular orbitals,
as opposed to only the ones close to the excitation region, making it more computationally
expensive, although it has the advantage of not being state-specific.

Pushing the current implementation of CDD-DF-SOS-ADC(2) to system sizes with
a large number of basis functions (> 5000 basis functions) quickly leads to memory
problems, even on distributed systems. This, in combination with diffuse basis functions
and molecular systems that are not strictly linear in nature, as well as the increased
algebraic complexity of the working equations, means that CDD-DF-SOS-ADC(2) cannot
really reach the low-scaling regime except in very specific cases. Introducing similar pre-
screening techniques to NO methods based on some CIS or CIS(D) density might be

141 7.4. Summary and Outlook

beneficial. Moreover, a less memory-intensive tensor library should also be considered.
However, at the moment, there are no other tensor libraries besides DBCSR that are well
suited. Further development of sparse block tensor libraries are crucial for the future of
atomic orbital based methods.

The equations for computing triplet excitations have not yet been implemented, but
similar scaling and accuracy to singlet excitations are expected.

Part II

142

144

Chapter 8

Parallel Computing

The popularity of computational chemistry can be attributed in no small part to the
advances and development of highly efficient algorithms in theoretical chemistry. Equally
important however is the ever increasing accessibility and performance of computing
resources: commercially available work stations can handle chemical systems which could
only be modeled on supercomputers a couple decades ago, and firmly cemented the
position of computational chemistry as an important "experimental" tool in the toolbox
of a chemist.

As the speed of computers increased over the years, so did the complexity of their
components. Nowadays, programmers can choose between several types of architectures,
such as shared or distributed memory systems, or accelerators like GPUs. Knowing the
strengths and weaknesses of each type is paramount to developing efficient algorithms
and tackling larger molecular systems.

This chapter gives an overview on computer architecture, and the different types of
parallelism encountered on modern hardware.

8.1 Moore’s Law

Moore’s Law states that the transistor density in integrated chips doubles every 12 to 24
months. First formulated in 1965 by Gordon Moore, his prediction has held up fairly well
over the years. However, the technology enabling this trend has changed over the years.

Figure 8.1 shows the trends in clock speed, single-thread performance, power con-
sumption and number of logical cores and transistors for microprocessors from 1970 to
2020. Since the early 2000s, clock-speed and single-thread performance have begun to
plateau, and have stagnated from 2010 onwards. Increasing the clock speed to values
beyond 4 to 5 GHz generates too much stress on the microchip in form of heat, and
decreases its performance. This flaw was compensated by using the growing transistor
density to instead increase the number of logical cores on a single chip.

Shifting towards increasing core count however entails that the ideal performance for
a CPU can only be achieved through parallel programming. Over the years, the number
of different parallel hardware features has drastically increased, and it can be difficult
for programmers to fully exploit the available computing resources. Moreover, different
programming languages and compiler extensions have emerged as well, with numerous
competing standards, especially for GPUs.

145 8.2. Benefits and Limits of Parallel Computing

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

Figure 8.1: Taken from https://github.com/karlrupp/microprocessor-trend-data

8.2 Benefits and Limits of Parallel Computing
While the different available programming models can seem daunting at first, one of
the major advantages of parallel computing is improved scalabilty. An application that
exposes parallelism can be sped up by several orders of magnitude, simply by adding more
computing power, with several different architectures to choose from. The limit of what
problem sizes can be tackled is mostly dictated by the amount of available computing
resources and storage, rather than individual processor characteristics.

As important as parallel computing has become in recent years, there is a reason
why increasing clock speed was seen as the foremost strategy in keeping Moore’s law
alive. First, modifying a serial program to exploit parallelism can be a time-consuming
endeavor, and second, not all tasks can be effectively parallelized. This means that the
potential amount of seed-up is limited by the amount of parallel code. This is known as
Amdahl’s law. The speed-up for a number of cores Nc is given by

Speed-Up(Nc) =
1

S + P
Nc

(8.1)

where S is the fraction of serial code and P is the fraction of parallel code. The speedup
for a fixed-size problem as a number of cores is known as strong scaling, and the time-to-
solution on each individual core decreases when more cores are added.

An alternate way to compute potential speed-up is given by Gustafson-Barsis’s Law

Speed-Up(Nc) = Nc − S(Nc − 1) (8.2)

where the problem size also increases proportionally to the number of cores. The scaling
for this trend is known as weak scaling. In this scenario, the time-to-solution spend on
each core remains constant, as the system size and number of cores increases. Even if
this type is called "weak", both forms of scaling are equally important, as they address
different scenarios.

8.3. Types of Parallelism and Memory Hierarchy 146

8.3 Types of Parallelism and Memory Hierarchy
Nowadays, a programmer has access to four categories of parallelism:

1. vectorization

2. thread-based parallelism

3. process-based parallelism

4. streaming

Leveraging the power of each type requires some understanding of the underlying hard-
ware.

Figure 8.2 shows the major components and memory pathways in a modern computing
cluster. A cluster is a collection of individual computers that work together and form
a single unit. Individual computers are also called nodes and occupy a single rack (or
"shelf") each in a large server cabinet. The nodes are connected via a low-latency, high
through-put network, e.g. Ethernet cables to enable inter-node communication. Each
node contains one or more central processing units (CPU) and optionally one or more
graphical processing units (GPU). Systems where different types of hardware architecture
are mixed are also known as heterogeneous systems. The individual components are fixed
on a motherboard : CPUs are plugged into sockets and GPUs into PCIe slots. A CPU
is composed of one or more cores, where the actual processing of data is carried out. A
GPU is also composed of multiple cores, which are grouped into independent streaming
multiprocessors (SM, NVIDIA), also known as compute units (CU, OpenCL), or subslices
(Intel).

Memory is also a crucial component of computer architecture and is a limited resource.
The speed at which data is read from memory can become a major bottle-neck: No matter
how fast a processor is, if the feed rate is too low, it cannot reach its peak performance
because it wastes cycles while waiting for data to arrive. To optimize data through-put,
the memory model in modern computer architecture requires a complex hierarchy, with
different sizes and speeds. Computer memory at the top of the hierarchy has a high
response rate, but low complexity. It is also very expensive to produce and therefore
much smaller. At the bottom of the hierarchy is memory with large storage space and
capable of complex tasks. It is cheap but has low response rate. Over the years, the
number of levels in the memory hierarchy has increased. Most modern computers have
six levels: CPU registers, L1 cache, L2 cache, L3 cache, DRAM and disk.

CPU registers sit at the top of the hierarchy and are closest to the cores. It is
the region of memory where data is directly manipulated by arithmetic operations and
machine code. Its size is typically on the order of several tens to hundreds of bytes. Data
is loaded into the registers from cache, a region of memory which is further subdivided
into different levels named L1, L2 and L3. Each core has its own L1 cache, but might
share L2 and L3 cache with other cores. Caches have different sizes and speeds, with L1
being the fastest and smallest at several tens of kB, and L3 being the slowest and largest
at several tens to hundreds of kB. Memory is transferred from L3, to L2, to L1 and finally
to the CPU registry. The reason why there are multiple levels of cache is to reduce cache
misses. If data requested by the core is not found in L1, then L2 is searched, then L3.

147 8.3. Types of Parallelism and Memory Hierarchy

RAM (CPU)

CPU

Socket 1

CPU

Socket 2

GPU
SM

SM

RAM (GPU)

PCIe slot

Node 1

Node 2

RAM (CPU)

CPU

Socket 1

CPU

Socket 2

GPU
SM

SM

RAM (GPU)

PCIe slot

co
m

m
u
n
ic

a
ti

o
n
 n

e
tw

o
rk

re
g
is

tr
y

core

L1 cache

L2 cache

L3 cache

re
g
is

tr
y

core

L1 cache

L2 cache

re
g
is

tr
y

core

L1 cache

L2 cache

L3 cache

re
g
is

tr
y

core

L1 cache

L2 cache

L1 cache

core core core core

L1 cache

core core core core

L2
 c

a
ch

e

re
g
is

tr
y

core

L1 cache

L2 cache

L3 cache

re
g
is

tr
y

core

L1 cache

L2 cache

re
g
is

tr
y

core

L1 cache

L2 cache

L3 cache

re
g
is

tr
y

core

L1 cache

L2 cache

L1 cache

core core core core

L1 cache

core core core core

L2
 c

a
ch

e

Figure 8.2: Schematic representation of the architecture of a modern computing cluster
which supports heterogeneous computing.

8.4. Vectorization 148

Release Vector Length (bit) No. Registers
SSE 128 8
SSE2/SSE3/SSE4 128 16
AVX/AVX2 256 16
AVX512 512 32

Table 8.1: Vector lengths and number of registers for commonly encountered vector
extensions. SSE = Streaming SIMD Extension, AVX = advanced vector instructions.

A cache miss is an event where the data is not found anywhere in cache. In that case, a
request has to be put out to the dynamical random access memory (DRAM) to retrieve
data. Modern techniques such as cache prefetching can minimize the amount of cache
misses by loading the data into higher cache levels before it is actually needed by the
lower levels.

The speed of DRAM is 10 to 100 time slower than cache, but much larger in size.
It is the main memory pool and shared by all cores. CPUs and GPUs have separate
DRAM regions which communicate via a PCIe bus. DRAM sizes vary drastically, and
are on the order of 1 GB to 10 GB for GPUs and 1 GB to 1000 GB for CPUs. Data can
be transferred from one node to another via CPU DRAM through the communication
network, with transfer rates on the order of several GB/s. For programs which are not
reading from disk, this is weakest link in the memory hierarchy.

8.4 Vectorization

Vectorization is the process of operating on multiple variables at the same type. This
type of parallelism is encountered at the highest level of the memory hierarchy introduced
in the previous section, i.e. CPU registers. Each core has multiple registers, also called
vector registers with a certain size or vector length. Instead of loading each individual
element from cache and operating on it, one vector operation on a range of elements can
replace multiple single operations. For a 512-bit register, two vectors with 8 floats (32
bit) can be summed within one cycle instead of eight. This type of parallelism is also
known as single instruction multiple data (SIMD) in Flynn’s taxonomy.

The length of vector registers, number of registers as well as the number of supported
vector operations have greatly expanded over the years (Table 8.1).

8.4.1 Parallel SAXPY using Vectorization

To show how vectorization can be used in a program, consider the following vector ope-
ration:

y ← αx+ y (8.3)

where y, x are vectors of equal length, and α is a scaling factor. The vector operation 8.3
is also known as "saxpy" for single precision, and "daxpy" for double precision. A naive
implementation of the saxpy-kernel is given in Listing 8.4.1 for vector size N

149 8.4. Vectorization

Listing 8.4.1: Naive implementation of saxpy (listings/saxpy_nopara.c)

1 #define ARRAY_SIZE 1024
2

3 static float x[] = {[0 ... ARRAY_SIZE] = 1.0};
4 static float y[] = {[0 ... ARRAY_SIZE] = 2.0};
5 static float a = 3.0;
6

7 int main() {
8

9 for (int i = 0; i < ARRAY_SIZE; ++i) {
10 y[i] += a * x[i];
11 }
12

13 }

Two arrays are allocated, x and y, and all their entries set to 1 and 2 respectively. Each
element is updated individually in the for loop. There are several possibilities to introduce
vectorization:

1. auto-vectorization

2. compiler directives

3. intrinsic functions

4. optimized libraries

Auto-vectorization is by far the easiest approach: the compiler automatically recognizes
that the loop can be vectorized and generates optimized machine code that uses vector
instructions. This does not require any input from the user. Compiling the code on a
machine with AVX support, using the GNU C compiler, and passing the compiler flags

-O2 -march=native -ftree -vectorize -fopt -info -vec -optimized

generates the following report:

saxpy_nopara.c:9:3: optimized: loop vectorized using 32 byte vectors

which indicates that the vectors are loaded and operated on in 32 byte chunks, or 8 floats
at once. The flag "-ftree-vectorize" (or alternatively "-O3") activates auto-vectorization
and "-fopt-info-vec" generates the report. To make sure that the C compiler uses the right
vectorization release, the flag "-march=native" is needed, or else the compiler might fall
back to SSE.

In some cases, auto-vectorization cannot take place because the compiler did not
recognize that the loop can be vectorized. It can then be beneficial to use intrinsic
functions. Intrinsic functions are compiler-dependent functions that map to processor
operations. When targeting an AVX architecture with 256-bit registers, the saxpy kernel
can be rewritten as

8.4. Vectorization 150

Listing 8.4.2: SAXPY using intrinsics (listings/saxpy_intrinsic.c)

1 #include <immintrin.h>
2 #define ARRAY_SIZE 1024
3

4 // attribute needed for alignment , misalignment leads to
errors

5 static float x[] __attribute__ ((aligned (8* ARRAY_SIZE))) = {[0
... ARRAY_SIZE] = 1.0};

6 static float y[] __attribute__ ((aligned (8* ARRAY_SIZE))) = {[0
... ARRAY_SIZE] = 2.0};

7 static float a = 3.0;
8

9

10 int main() {
11

12 __m256 a_vec , x_vec , y_vec , r_vec;
13

14 // set each entry of a_vec to a
15 a_vec = _mm256_set1_ps(a);
16

17 int stride = 8;
18 for (int i = 0; i < ARRAY_SIZE; i += stride) {
19 // load values into registers with appropriate offset i
20 x_vec = _mm256_load_ps (&x[i]);
21 y_vec = _mm256_load_ps (&y[i]);
22

23 // perform saxpy: (1) multiply , (2) add
24 r_vec = _mm256_add_ps(_mm256_mul_ps(a_vec , x_vec), y_vec);
25

26 // copy results back to y
27 _mm256_store_ps (&y[i], r_vec);
28 }
29

30 }

It is apparent that using intrinsics makes the program much more complex. The arrays
cannot be fed directly to the functions, but need to be loaded into vectors of type __mm256,
using "set" or "load" functions. Furthermore, the data needs to be aligned correctly
using __attribute__ ((aligned(...))). The arrays are then loaded in chunks into
the registers and given to the vector functions for multiplying and adding. The major
problem with using intrinsic functions, besides increased complexity, is portability. The
code in 8.4.1 does not compile on machines that do not support AVX, and is limited to
256-bit registers even on AVX-512 machines. Portable alternatives include using compiler
directives or optimized libraries.

Directives (or "pragmas") are hints that can be given to the compiler that suggest that
the loop might be vectorizable. By far the most popular set of compiler directives that

151 8.4. Vectorization

provide vectorization capabilities is undoubtedly included in the OpenMP application
programming interface (API). The OpenMP API is standardized across all compilers,
making it highly portable. The OpenMP directives greatly simplify the SAXPY program:

Listing 8.4.3: SAXPY using compiler directives (listings/saxpy_simd.c)

1 #define ARRAY_SIZE 1024
2

3 static float x[] = {[0 ... ARRAY_SIZE] = 1.0};
4 static float y[] = {[0 ... ARRAY_SIZE] = 2.0};
5 static float a = 3.0;
6

7 int main() {
8

9 #pragma omp simd
10 for (int i = 0; i < ARRAY_SIZE; ++i) {
11 y[i] += a * x[i];
12 }
13

14 }

Simply plopping the directive in front of the for loop takes care of generating the appro-
priate machine code for the targeted architecture.

The last way to introduce vectorization is via external programs, such as the basic
linear algebra subprograms (BLAS) library. It provides a set of specific functions for
performing basic vector and matrix operations. Similar to OpenMP, it only provides spe-
cifications, and the direct implementation is compiler-dependent. In the BLAS routines,
there is a saxpy functions available that can be called directly. It has the advantage of
completely removing the loop and clearly states what operation is performed.

Listing 8.4.4: SAXPY using BLAS (listings/saxpy_blas.c)

1 #include <cblas.h>
2 #define ARRAY_SIZE 1024
3

4 static float x[] = {[0 ... ARRAY_SIZE] = 1.0};
5 static float y[] = {[0 ... ARRAY_SIZE] = 2.0};
6 static float a = 3.0;
7

8 int main() {
9 cblas_saxpy(ARRAY_SIZE , a, x, 1, y, 1);

10 }

External libraries can however be associated with a steeper learning curve depending on
the complexity of function signatures.

8.5. Thread-based Parallelism 152

8.5 Thread-based Parallelism

Vectorization is limited to single cores only. For multi-core processing, it is important
to understand the concept of processes and threads. Processes are executing instances
of programs that group related operating system resources together. These resources
are exclusive (private) to the process which allocated them, such as system memory, file
handles, I/O status information, scheduling information and accounting information.

A process spawns one or more threads (Figure 8.3). A thread is the smallest subset
of a process that can be scheduled independently by the OS scheduler. Unlike processes,
threads of the same process share resources. They can be seen as "light-weight" processes:
start-up of individual threads and communication between threads is much faster. Each
core executes only one thread at a time, but can quickly switch between different threads
(or contexts). Threads with a higher priority are granted more CPU time than threads
with lower priority. One a single-core processor, threads are only executed concurrently,
i.e. they are paused and resumed at regular intervals depending on their priority. On
multi-core processors, threads can be executed at the same time (multi-threading), but
concurrency is still needed if the number of threads exceeds the number of logical cores.

process user space

threads

OS scheduler

core core core core

shared
memory

Figure 8.3: Shared memory parallelism

8.5.1 SAXPY using OpenMP

The most popular standard for thread-based parallelism (or shared-memory parallelism)
is OpenMP, which was briefly discussed in the previous section. OpenMP was originally
introduced to parallelize highly regular loops, but the standard has since then been greatly
expanded and includes vectorization directives as well. Using pragmas, multiple threads
can be spawned that execute the code within the parallel region. Listing 8.5.1 shows
an OpenMP parallel version of SAXPY. Each thread in the parallel region has a unique
number associated with it which is used to divide up the arrays. Caution needs to be
taken that threads do not operate on the same region at once, as this can lead to undefined
behavior ("race conditions").

153 8.5. Thread-based Parallelism

Listing 8.5.1: SAXPY using OpenMP (listings/saxpy_omp.c)

1 #include <omp.h>
2 #define ARRAY_SIZE 1024
3

4 static float x[] = {[0 ... ARRAY_SIZE] = 1.0};
5 static float y[] = {[0 ... ARRAY_SIZE] = 2.0};
6 static float a = 3.0;
7

8 int main() {
9

10 // launch threads
11 #pragma omp parallel
12 {
13 // The code in this region is executed by ALL threads
14 int threadnum = omp_get_thread_num ();
15 int numthreads = omp_get_num_threads ();
16

17 // lower and upper bound for this thread are determined
using the thread number and number of threads

18 int lb = ARRAY_SIZE*threadnum/numthreads;
19 int ub = ARRAY_SIZE *(threadnum +1)/numthreads;
20

21 for (int i = lb; i < ub; ++i) {
22 y[i] += a * x[i];
23 }
24

25 } // end parallel region , synchronize
26

27 // tasks share memory , and the result is visible here
28

29 }

Alternatively, the code may be more easily expressed by using a single compiler directive:

Listing 8.5.2: SAXPY using OpenMP (listings/saxpy_omp2.c)

1 #define ARRAY_SIZE 1024
2

3 static float x[] = {[0 ... ARRAY_SIZE] = 1.0};
4 static float y[] = {[0 ... ARRAY_SIZE] = 2.0};
5 static float a = 3.0;
6

7 int main() {
8

9 #pragma omp parallel for
10 for (int i = 0; i < ARRAY_SIZE; ++i) {

8.6. Process-based Parallelism 154

11 y[i] += a * x[i];
12 }
13

14 }

The omp parallel for directive also offers different scheduling tactics which may be
difficult to program by hand. Listing 8.5.1 is an example of static scheduling, where
the work is divided equally among threads a priori. However, in the case where each
step requires different computational cost, dynamic scheduling offers a more balanced
approach, although with a somewhat higher prefactor. Threads request tasks, or a chunk
of multiple tasks, from the main thread, which distributes work on a first-come first-
serve basis. There are many more directives available in the OpenMP standard with a
lot of options for fine-tuning. For further details, the reader is referred to the official
specifications [221].

OpenMP is not the only option available for introducing shared-memory parallelism
into a program. Alternatives include the pthread (POSIX threads) library for C, the
std::thread library, or the Intel TBB (thread building blocks) library for C++. While
these libraries can offer a more fine-grained control of threads, the learning curve can be
very steep, and parallelizing an application can be very time-consuming. In contrast to
OpenMP, they are not based on high-level compiler directives, but rather expose low-level
functions and structures that create and control threads.

Shared-memory parallelism, as the name implies, is limited to cores sharing the same
memory space. The primary disadvantage of this model is scalability. It becomes increa-
singly expensive to produce shared memory systems with more and more cores. Moreover,
a larger number of cores implies heavier CPU traffic and time penalties due to cache cohe-
rence. Cache coherence is the mechanism by which uniformity of data is guaranteed and
propagated among processes. There can be multiple copies of the same memory region
in cache, which is operated on by different cores. Checking how to combine data from
different caches can become costly for a large number of cores.

8.6 Process-based Parallelism

One of the most scalable approaches in parallel computing is process-based parallelism,
also known as distributed memory parallelism. Multiple copies of the same program
run on separate processes, each with their own local memory and instruction set. In
contrast to threads, processes cannot exchange data via shared memory, but need to
communicate via a network using message passing. The increased cost of communication
is often outweighed by the increased potential for scalability. Larger problems can be
tackled simply by adding more nodes.

Pure message-passing assigns or binds one rank to a single CPU core. In hybrid par-
allel approaches, a single process can be bound to a whole node, using shared-memory
parallelism for intra-node communication and message passing for inter-node communi-
cation. It is also possible to spawn more processes than there are available cores: in that
case, the processes are scheduled and executed concurrently similar to threads.

The most popular standard for message passing is the message passing interface

155 8.6. Process-based Parallelism

(MPI). It defines a set of functions that allow processes to send and receive messages.
There are different implementations of MPI, such as the open-source implementations
OpenMPI, MPICH, or the vendor implementations Intel MPI or Cray MPI. MPI pro-
grams are run using a special start-up command:

mpirun −n <nprocs> ./ myprogram . exe

The exact command and options depend on the MPI implementation. The start-up pro-
gram is responsible for duplicating the program on the different processes and establishing
the communication network. Most implementations use the flag -n to pass the number
of processes to be spawned.

All processes are characterized by their rank, a unique, portable identifier, normally
an integer between [0 : nprocs − 1]. Only processes using the same communicator can
exchange messages. A communicator is a special handle of type MPI_Comm and describes a
group of processes. Communicators may also have different topologies, such as Cartesian
grids, or graphs, which restrict the flow communication between processes to nearest
neighbors. Cartesian grids for example are best suited for matrix operations. By passing
topology information to MPI, it can optimize the runtime environment by renumbering
tasks such that processes are physically closer to reduce communication overhead. By
default, the topology is undefined, and any processor can exchange messages with all
other processors.

8.6.1 SAXPY using MPI

Modifying programs to exploit distributed parallelism requires significant effort, with
the most crucial point being how data is distributed over the processes. Consider again
the SAXPY kernel. There are two memory models: either every process has a copy
of the whole array, or the arrays are distributed in chunks over all processes. If data
is duplicated on every rank, this can quickly exhaust memory resources for large data
sets. On the other hand, if data is distributed in a non-ideal way, commutation may
incur major overhead. A programmer has to balance the benefits of data duplication and
network communication.

Listing 8.6.1 shows a distributed memory approach to the SAXPY kernel

Listing 8.6.1: SAXPY using MPI (listings/saxpy_mpi.c)

1 #include <mpi.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4 #define ARRAY_SIZE 1024
5

6 static float a = 3.0;
7

8 int main(int argc , char** argv) {
9

10 MPI_Init (&argc ,&argv);
11 MPI_Comm comm = MPI_COMM_WORLD;
12

8.6. Process-based Parallelism 156

13 int rank , size;
14 // get information form communicator
15 MPI_Comm_rank(comm , &rank);
16 MPI_Comm_size(comm , &size);
17

18 // size needs to be a divisor of ARRAY_SIZE
19 if (ARRAY_SIZE % size != 0) exit(-1);
20 int num_local = ARRAY_SIZE / size;
21

22 // allocate local arrays on each process
23 float* x_loc = (float *) malloc(num_local*sizeof(float));
24 float* y_loc = (float *) malloc(num_local*sizeof(float));
25

26 // global arrays
27 float *x, *y;
28

29 if (rank == 0) {
30 // init data on rank 0
31 x = (float *) malloc(ARRAY_SIZE*sizeof(float));
32 y = (float *) malloc(ARRAY_SIZE*sizeof(float));
33 for (int i = 0; i < ARRAY_SIZE; ++i) {
34 x[i] = 1.0; y[i] = 2.0;
35 }
36 }
37

38 // send to other processes
39 MPI_Scatter(x,num_local ,MPI_FLOAT ,x_loc ,num_local ,MPI_FLOAT

,0,comm);
40 MPI_Scatter(y,num_local ,MPI_FLOAT ,y_loc ,num_local ,MPI_FLOAT

,0,comm);
41

42 // perform operation on local arrays
43 for (int i = 0; i < num_local; ++i) {
44 y_loc[i] += a * x_loc[i];
45 }
46

47 // gather data on rank 0
48 MPI_Gather(y_loc ,num_local ,MPI_FLOAT ,y,num_local ,MPI_FLOAT

,0,comm);
49 // print it out , store it ...
50

51 // clean up
52 free(x_loc); free(y_loc);
53 if (rank == 0) {
54 free(x); free(y);
55 }
56

57 MPI_Finalize ();

157 8.6. Process-based Parallelism

58

59 }

The program starts by initializing the executing environment using MPI_Init, and defi-
ning the communicator handle. The communicator that groups all processes at start-up
is called MPI_COMM_WORLD, and is a macro defined in the header <mpi.h>. If the program
is stand-alone, it is safe to use as the primary communicator. When writing a library that
is used in combination with other MPI libraries, it is crucial to use a communicator that
is passed from the main program. There are two reasons for this: (1) the user may want
to use a subcommunicator, rather than the whole process group, and (2) MPI messages
have a unique identifier (integer) and if another library uses the same identifier, erroneous
communication can take place. In this example, the global communicator is sufficient.

Each process then allocates a local array of size num_local < ARRAY_SIZE. In this
example, the main data is initialized on rank 0, which is then split into equal chunks
and send to the other processes’ local array using MPI_Scatter. Each process then only
needs to perform the SAXPY operation on its local chunk. Afterwards, the results are
collected on rank 0 using the routine MPI_Gather. Data is then available on rank 0 to be
further manipulated, written to console, etc.

It should be noted that the above program only works for a number of processes that
is a divisor of ARRAY_SIZE, because MPI_Scatter and MPI_Gather can only handle chunks
that are of equal size on each process. If that is not the case, one can use the more general
routines MPI_Scatterv and MPI_Gatherv which also take the different chunk sizes as an
input.

Furthermore, the local SAXPY for-loop can be parallelized using the techniques de-
scribed in the previous sections (vectorization, threads) in case where a process is bound
to a whole node and has access to further compute resources.

This program shows only a few of the many functions available for message passing.
The MPI standard defines many more functions for sending, receiving, broadcasting,
reduction, one-sided communication etc. The official document for the newest MPI stan-
dard [222] is over a thousand pages long, and is updated regularly. Message passing has
a very steep learning curve, and can be quite difficult to debug.

8.6.2 MPI and Shared Memory

One may come under the impression that MPI is not efficient on shared-memory systems,
as data is exchanged via network-calls. However, MPI is optimized to recognize shared
memory and data is then copied within DRAM rather than send through a communication
layer, making MPI competitive even on single nodes. Of course, there is still a slight
overhead associated with it compared to thread-based parallelism.

MPI standards of version 3.0 and above furthermore introduce functions to allocate
shared memory, also known as windows, for processes on the same node. Processes can
then read/write to the same memory region without using network calls, much in the same
manner as OpenMP. This approach can be seen as a MPI+MPI hybrid parallel approach
rather than the more frequently used MPI+OpenMP approach. Hybrid parallelism is
much more efficient than "MPI-everywhere" approaches due to reduced communication

8.7. Stream Processing 158

overhead and easier load-balancing.
MPI+MPI has the advantage of only needing one programming model for both dis-

tributed and shared memory access, with relatively easy syntax. However, MPI+MPI
is much lesser known, and there are is no automatic support for splitting up loops or
atomic loads/stores to shared memory. An external library that offers auxiliary functions
for MPI+MPI would be beneficial.

8.7 Stream Processing
The last type of parallelism tackled in this chapter is stream processing. A stream is
defined as a sequence of data that requires similar (low-level) computation. Streams are
processed by accelerators, special hardware components with high data throughput, that
complement the general purpose CPU by speeding up certain operations.

8.7.1 GPU Architecture

By far the most popular type of accelerators are graphical processing units (GPUs). As
the name implies, GPUs were originally conceived to speed up graphics-related computa-
tion, but their use was later extended to include non-graphics workloads as well, in what
is known as general-purpose graphic processing unit (GPGPU) programming. Nowadays,
computing clusters increasingly come with one or more GPGPUs included on each node.

The hardware architecture design of modern GPUs is much more varied than that of
CPUs. GPU vendors, like NVIDIA or AMD, have different hardware variations and use
different terminology for similar components, and it can be difficult to abstract hardware
as some vendor-specific features need to be omitted. Figure 8.4 shows a simplified block
diagram of the most common GPU components. A GPU is composed of multiple compute
units (CUs), also known as streaming multi-processors (SMs) in NVIDIA GPUs. Work
is assigned to different CUs by a workload distributor. Each CU is further subdivided
into an array of processing elements (PEs), or CUDA cores as referred to by NVIDIA.
A single PE can operate on multiple data elements at once using SIMD or a variation
known as single instruction multiple threads (SIMT) used in CUDA cores.

The overall performance of a GPU is given by the number of CUs and PEs, as well as
the bandwidth of the PCIe land connecting CPU and GPU. Data transfer between the
two devices is often the time-determining step.

8.7.2 GPU Programming Model

The rise of GPGPU programming has lead to a plethora of different programming lan-
guages and models. Low-level languages like CUDA, OpenCL or HIP directly reflect
features of the targeted GPU hardware as part of their syntax, and the user is responsi-
ble for managing each aspect of parallelism and data transfer. They require a very tho-
rough understanding of how GPUs operate. Due to the complexity of "native" languages,
higher-level languages have gained popularity over the years. Pragma based languages
like OpenACC or OpenMP offer a much easier approach to GPU programming that re-
sembles shared memory parallelism on CPUs, and offer a higher degree of portability, at
the cost of lower performance ceiling.

159 8.7. Stream Processing

CU CU CU

CUCUCU

GPU
RAM

workload
distributor

GPU
CU

thread scheduler

local memory

PEs

Figure 8.4: GPU architecture

Low level languages all operate on a similar programming model which allow the
programmer to define special functions called kernels, which, when called on a GPU, are
executed N times in parallel by N GPU threads. Rather than using for loops, kernels
operate on a whole range of data at once, known as a grid or NDRange. A grid can be
one, two or three-dimensional to allow a more intuitive view of the data at hand. Each
grid is subdivided into blocks or work groups which can be executed independently. The
maximum size of a block is given by the number of threads in a CU. "Good" values
are generally 128, 256 or 512, but the optimal size depends on the hardware and the
problem addressed. Threads in a block share memory which is useful in case data from
neighboring subblocks is needed. Information on grid and block dimensions are needed
by the kernels for distributing work over the GPU. As an example, consider the SAXPY
function using the CUDA programming language:

Listing 8.7.1: SAXPY using CUDA (listings/saxpy_cuda.cu)

1 #define ARRAY_SIZE 1024
2 #define BLOCK_SIZE 256
3

4 static float x[ARRAY_SIZE];
5 static float y[ARRAY_SIZE];
6 static float a = 3.0;
7

8 // the identifier __global__ indicates that it should be
launched on the GPU

9 __global__
10 void saxpy(int N, float d_a , float* d_x , float* d_y) {
11 int i = blockIdx.x*blockDim.x+threadIdx.x;
12 if (i < N) d_y[i] = d_a*d_x[i] + d_y[i];
13 }

8.7. Stream Processing 160

14

15 int main() {
16

17 // initialize memory on CPU
18 for (int i = 0; i < ARRAY_SIZE; ++i) {
19 x[i] = 1.0; y[i] = 2.0;
20 }
21

22 // allocate memory on GPU
23 float *d_x , *d_y;
24 cudaMalloc (&d_x , ARRAY_SIZE*sizeof(float));
25 cudaMalloc (&d_y , ARRAY_SIZE*sizeof(float));
26

27 // copy data to GPU
28 cudaMemcpy(d_x , x, ARRAY_SIZE*sizeof(float),

cudaMemcpyHostToDevice);
29 cudaMemcpy(d_y , y, ARRAY_SIZE*sizeof(float),

cudaMemcpyHostToDevice);
30

31 // launch kernel
32 int nblocks = (ARRAY_SIZE + BLOCK_SIZE) / BLOCK_SIZE;
33 saxpy <<<nblocks ,BLOCK_SIZE >>>(ARRAY_SIZE , a, d_x , d_y)

;
34

35 // copy back
36 cudaMemcpy(y, d_y , ARRAY_SIZE*sizeof(float),

cudaMemcpyDeviceToHost);
37

38 // free up memory on GPU
39 cudaFree(d_x);
40 cudaFree(d_y);
41

42 }

CPU and GPU do not share memory. The first steps therefore involve allocating memory
using cudaMalloc and copying data from CPU ("Host") to GPU ("Device") with the
function cudaMemcpy. The arrays can then be passed to the kernel. The kernel function
is indicated by the identifier __ global__, and is executed at the same time by all threads
in a block. Each thread has a unique block and thread id which indicate its position in
the work group. This information is used to make sure that the thread is operating on
the correct portion of the array. The GPU threads do not have any information of the
loop extent, and it is the user’s responsibility to make sure that threads do not write past
the allocated memory window by introducing boundary checks (if (i < N)).

In this example for a 1D array, the kernel takes two launch parameters: the number
of blocks, and the block size which are put between <<< >>> after the function call.
Afterwards, the data can be copied back to the CPU for further processing.

The concept of operating relative to thread coordinates rather than using a for loop

161 8.7. Stream Processing

with a single index can be quite confusing. Nowadays, there are directive-based compiler
extensions, that allow to easily offload work to accelerators, such as OpenMP and Open-
ACC (Open ACCelerators). Listing 8.7.2 shows how a for loop can be easily modified
using OpenACC

Listing 8.7.2: SAXPY using OpenACC (listings/saxpy_acc.c)

1 #define ARRAY_SIZE 1024
2

3 static float x[] = {[0 ... ARRAY_SIZE] = 1.0};
4 static float y[] = {[0 ... ARRAY_SIZE] = 2.0};
5 static float a = 3.0;
6

7 int main() {
8

9 #pragma acc data copy(x,y,a)
10 {
11 #pragma acc parallel loop
12 for (int i = 0; i < ARRAY_SIZE; ++i) {
13 y[i] += a * x[i];
14 }
15 }
16

17 }

OpenACC offers several pragmas for allocating and copying arrays to GPUs and back.
By only adding two directives, the SAXPY code is easily ported to GPUs.

8.7.3 When to Use GPUs

Despite the success of GPU computing, GPUs only complement, rather than replace
CPUs. GPU cores are very light-weight and have a limited instruction set compared to
CPU cores, making them ill-suited for task-based parallelism, e.g. running an operating
system with many different processes executing in the background. The strength of
GPUs rather lies in data-based parallelism. Generally, any code that can benefit from
vectorization can be sped up using GPUs.

162

Chapter 9

Into The Matrix

At its core, computational chemistry is basically matrix algebra applied to molecular
systems. The performance of an algorithm, in other words its scaling, memory footprint
and even accuracy, is intimately linked to how matrix operations and storage are handled
internally. While the earliest implementations of molecular electronic structure methods
often used hand-coded loops running over matrix indices, over the years, a whole eco-
system of matrix and tensor libraries has emerged in an attempt to lessen the burden
of programmers, to various degrees of success, each with their strong and weak points.
Choosing the best library for an algorithm is a non-trivial task, and depends on various
factors: if memory is the bottle-neck, a sparse matrix library might be able to sufficiently
compress data into a smaller space. If speed is the greatest concern, targeting diffe-
rent architectures like distributed memory systems, accelerators, or both, might be the
solution.

This chapter introduces basic concepts of matrix and tensor algebra, with a focus on
storage orders. After introducing the core concepts, a small list of matrix libraries used
in MEGALOchem is provided which summarizes the core functionalities.

9.1 Linear Algebra

Linear algebra is a crucial tool in many areas of computational science, such as image
processing, machine learning, computational physics, computational biology and of course
computational chemistry. The most important concepts are discussed in this section.
Until mentioned otherwise, zero-based indexing is assumed.

9.1.1 Matrices

A matrix is a rectangular, 2-dimensional array of dimension M by N , containing a
set of complex or real numbers {aij} with ordered subscripts i = 0, 1, 2, ...M and j =
0, 1, 2, ..., N , of the form

A =

a00 a01 . . . a0N
a10 a11 . . . a1N
...

...
aM0 aM1 . . . aMN

 (9.1)

163 9.1. Linear Algebra

with M rows and N columns. Row vectors and column vectors are types of matrices that
contain only one row or one column, respectively.

Matrix multiplication is only defined between matrices of dimension M by K and K
by N . The product yields an M by N matrix

CM×N = AM×KBK×N (9.2)

cij =
∑
k

aikbkj (9.3)

A matrix with an equal number of rows and columns is called a square matrix. There
a different types of square matrices:

1. Diagonal matrices only have non-zero entries on the diagonal

aij = aiiδij (9.4)

2. If all entries below the diagonal are zero, the matrix is lower triangular. Simi-
larly, if all elements above the diagonal are zero, the matrix is upper triangular.
Furthermore, if the diagonal entries are all equal to 1, the matrix is unit triangular.

3. The identity or unit matrix 1 is defined as

A1 = 1A (9.5)
1ij = δij (9.6)

4. The inverse of a matrix A is defined as

A−1A = 1 (9.7)

It only exists for matrices with a non-zero determinant. If a matrix is non-invertible,
it is also called singular.

5. A matrix is unitary, if its inverse is equal to its conjugate transpose

A−1 = A† (9.8)

A real unitary matrix is called orthogonal

6. A hermitian matrix is its own conjugate transpose

A = A† (9.9)
aij = (aji)

∗ (9.10)

A real hermitian matrix is called symmetric

7. A hermitian matrix is said to be positive definite if all of its eigenvalues are po-
sitive, and negative definite if all eigenvalues are negative. Semi-definite matrices
additionally have some eigenvalues which are equal to zero.

9.2. Matrix Storage Formats 164

9.2 Matrix Storage Formats
The main memory in a computer, i.e. DRAM, is a linear address space and can be seen
as a single, contiguous, one-dimensional array. Two-dimensional arrays like matrices need
to be mapped to this linear space by the compiler. This mapping depends on whether a
dense or sparse view of the matrix is desired.

9.2.1 Dense Storage

There are two ways to map a dense matrix to memory: row-major ordering and column-
major ordering. The two storage orders differ by the order in which the individual
elements are stored in memory. For an M by N matrix stored in a linear array a in
row-major format, the address offset of an element aij compared to element a00 is given
by

A(i, j)→ a[i * N + j] (9.11)
and in column-major format by

A(i, j)→ a[i + j * M] (9.12)

Neither storage order has any advantages or disadvantages over the other one. It is only
a matter of convention, and depends on the library and programming language. Fortran
arrays are column-major, while C/C++ arrays are row-major.

However, algorithms optimized for column-major access might not give the same
performance for row-major formats and vice-versa. Consider a simple loop over matrix
elements in the Fortran programming language

Listing 9.2.1: Matrix Loop

1 DO i = 1, N
2 DO j = 1, N
3 A(i,j) = A(i,j) + 2
4 ENDDO
5 ENDDO

By first looping over the rows, and then over the columns, the elements in the column-
major matrix are accessed in a non-contiguous manner. This prevents efficient optimiza-
tions like vectorization due to cache misses. By swapping the loops, the inner loop can
be vectorized. Therefore, if algorithms assume a certain ordering, it is important to pass
matrices of the same ordering.

Column-major ordering is by far the most common in scientific computing. Matrix
algebra routines like the QR, Eigenvalue or Cholesky decompositions are most intuitively
written using column operations rather than row operations. Examples include the LA-
PACK and Eigen matrix libraries.

9.2.2 Sparse Storage

A matrix is called sparse if "most" of its elements are zero. The threshold between sparse
and dense is ill-defined, and range anywhere between 1% and 10%. Sparse matrices

165 9.2. Matrix Storage Formats

are encountered in many fields of computational science in systems with few pair-wise
interactions. By storing and looping over the significant elements only, the memory
footprint and the scaling of matrix multiplications or decompositions can be significantly
reduced. There are several different sparse matrix formats available. The following
sections will demonstrate how the matrix

3 5 0 0
0 4 0 0
0 0 1 2
0 0 6 7

may be represented using some of these formats.

Coordinate Format

The coordinate format (COO) is one of the simplest storage schemes for sparse matrices.
The matrix is stored using three arrays of length NNZ (number of non-zero elements)
containing the row indices, column indices and matrix entries. The above matrix reduces
to

COO :

idx_i = [0, 0, 1, 2, 3, 2, 3]
idx_j = [0, 1, 1, 2, 2, 3, 3]
val = [3, 5, 4, 1, 6, 2, 7]

The values do not need to be necessarily ordered. The COO format has the advantage
that it is very easy to insert elements and change the sparsity pattern with low overhead.
COO is generally not used for algebra due to slow random access of elements if they are
not stored in order. Rather, COO is an intermediate format for incremental construction
of sparse matrices in the CSR or CSC format.

Compressed Sparse Row

The compressed sparse row format (CSR) is similar to COO, but compresses the rows.
A CSR matrix is represented by three arrays: the extent of rows, the column indices
and non-zero matrix entries, with dimension M , NNZ and NNZ respectively. For the
example matrix above, the CSR format gives

CSR :

row_ext = [0, 2, 3, 5]
col_idx = [0, 1, 1, 2, 2, 3, 3]
val = [3, 5, 4, 1, 2, 6, 7]

The ith entry of the row extents contains the offset to the first non-zero element in the
array val in the ith row. The entries in col_idx are the associated column indices. Com-
pared to COO, accessing elements is much faster, and the memory prefactor is reduced
from 3NNZ to 2NNZE + M . Matrix-vector products are very fast to compute, but
CSR in not well suited for column slicing.

Compressed Sparse Column

The compressed sparse column format (CSC) is the "column-major" analog to the CSR
format. Instead of compressing the rows, it compresses the columns. The matrix in the
CSC format is represented as

9.2. Matrix Storage Formats 166

CSC :

col_ext = [0, 1, 3, 5]
row_idx = [0, 0, 1, 2, 2, 3, 3]
val = [3, 5, 4, 1, 6, 2, 7]

CSC has similar performance to CSR, but is better suited for column slicing and
therefore column-oriented matrix decomposition.

9.2.3 Block Compressed Sparse Row

The block-compressed sparse row (BCSR or BSR) format is a generalization of CSR.
BCSR is ideal for matrices which are block-sparse, i.e. matrices with few dense submatri-
ces. For a constant block size n by m, let the number of row and column blocks be Mblk

and Nblk, and NNZblk the number of significant blocks. A matrix is then represented by
three arrays containing the row block offsets, column block indices, and non-zero indices
with size Mblk, NNZblk and NNZblkmn. For blocks of size 2 by 2, the matrix above in
the BCSR format yields

BCSR :

rowblk_ext = [0, 1]
colblk_idx = [0, 1]
val = [3, 0, 5, 4, 1, 6, 2, 7]

The matrix is therefore split into two non-zero blocks of size 2-by-2 each, with elements
{3, 0, 5, 4} and {1, 6, 2, 7} using column-major ordering. The BCSR format can further
reduce the storage prefactor for block-sparse matrices compared to CSR or CSC. Smaller
block-sizes can account for a higher degree of sparsity, but lead to a higher prefactor.
Large block sizes have lower prefactor, but capture less of the sparsity. Figure 9.2 shows
the BCSR format for different split factors. The block sizes do not need to be the same,
although a constant block size is best suited for load balancing. Whether a block is
significant or not depends on the matrix norm that is chosen as a criterion for filtering.
Popular choices include the Frobenius norm or the max norm.

9.2.4 Distributed Storage

In distributed memory parallelism, processes do no longer have access to the whole ma-
trix. The question then arises how to distribute data over multiple nodes or processes.
Distribution can be blocked or cyclic (Figure 9.1). In the block representation, the ma-
trix is distributed by dividing rows, columns (or both) by the number of processes, and
distributing them sequentially over the processes. On the other hand, the cyclic represen-
tation distributes each individual row, column or matrix element over the set of processes
and wrapping over them until all elements are assigned to a processor. The cyclic data
layout achieves great load balancing by evenly distributing the matrix elements, but is
not suitable for row or column manipulations due to a high communication overhead. A
blocked representation can reduce this overhead, but load-balancing is more difficult to
achieve if the number of elements is not evenly divisible by the number of processes.

The most commonly used format for distributed matrix storage is the block-cyclic
representation (Figure 9.2). It combines the best of both worlds, with good load-balancing
and low communication overhead for matrix algebra. Communication is most efficient by

167 9.3. Tensors

1 8 7 4 0 2 6
4 9 8 11 3 6 0
8 2 3 9 3 7 4
0 1 4 8 0 2 5
1 7 6 3 0 2 6
8 9 4 1 5 3 1
1 4 0 1 8 2 6

1 8 7 4 0 2 6
4 9 8 11 3 6 0
8 2 3 9 3 7 4
0 1 4 8 0 2 5
1 7 6 3 0 2 6
8 9 4 1 5 3 1
1 4 0 1 8 2 6

1 8 7 4 0 2 6
4 9 8 11 3 6 0
8 2 3 9 3 7 4
0 1 4 8 0 2 5
1 7 6 3 0 2 6
8 9 4 1 5 3 1
1 4 0 1 8 2 6

1 8 7 4 0 2 6
4 9 8 11 3 6 0
8 2 3 9 3 7 4
0 1 4 8 0 2 5
1 7 6 3 0 2 6
8 9 4 1 5 3 1
1 4 0 1 8 2 6

1 8 7 4 0 2 6
4 9 8 11 3 6 0
8 2 3 9 3 7 4
0 1 4 8 0 2 5
1 7 6 3 0 2 6
8 9 4 1 5 3 1
1 4 0 1 8 2 6

1 8 7 4 0 2 6
4 9 8 11 3 6 0
8 2 3 9 3 7 4
0 1 4 8 0 2 5
1 7 6 3 0 2 6
8 9 4 1 5 3 1
1 4 0 1 8 2 6

cyclic,- -,cyclic cyclic,cyclic

block,- -,block block,block

Figure 9.1: There are two distinct ways to distribute rows, column or elements along
processes, namely cyclic and block. Each color represents a processor (4 in total).

arranging processes into a 2-dimensional rectangular grid with Nproc = Nrow ×Ncol, such
that each process is uniquely identified by its coordinates (i, j). A 4-by-2 grid therefore
has 4 process rows and 2 process columns. With MPI, this is most easily achieved by using
Cartesian grids. In Cartesian grids, processes can only communicate with their nearest
neighbor. Each process has a local array which can be packed in different ways. While
the ScaLAPACK library keeps the original ordering of the matrix elements, other matrix
libraries like DBCSR store the individual blocks sequentially in memory. Blocks do not
necessarily need to be equal in size. Libraries like DBCSR also support heterogeneous
block sizes.

All the sparse storage schemes discussed in the previous sections can also be applied
to distributed matrices. DBCSR uses a block-sparse row format which distributes the
significant blocks over the processors in a row-major format (Figure 9.3).

9.3 Tensors

9.3.1 Definitions

Tensors are multi-dimensional arrays and can be seen as a generalization of matrix objects
to higher dimensions, containing a set of complex or real values {aijk...} with the ordered
indices i = 0, 1, 2, ...N0, j = 0, 1, 2, ...N1, k = 0, 1, 2, ...N2 etc. The total number of indices
required to identify an element in a tensor corresponds to its dimension, also called rank,
order or degree. It should be stressed that tensor rank is different from the concept of a
matrix rank.

9.3. Tensors 168

1 8 7 4 0 2 6
4 9 8 11 3 6 0
8 2 3 9 3 7 4
0 1 4 8 0 2 5
1 7 6 3 0 2 6
8 9 4 1 5 3 1
1 4 0 1 8 2 6

1 8
4 9

0 2
3 6

1 7
8 9

0 2
5 3

7 4
8 11

6
0
6
1

6 3
4 1

8 2
0 1
1 4 8 2

3 7
0 2

3 9 4
4 8 5
0 1 6

(0,0) (0,1)

(1,0) (1,1)

Figure 9.2: In the block-cyclic distribution, the matrix is divided into blocks which are
distributed over a processor grid, in this case 2 × 2.

(0,0) (0,1)

(1,0) (1,1)

1 8 7 4 0 0 0
4 0 8 11 0 0 0
8 2 3 9 3 0 0
0 1 4 8 0 2 0
0 0 6 3 0 2 6
0 0 0 1 5 3 1
0 0 0 0 0 2 6

1 8
4 0

0 2
5 3

7 4
8 11

6 3 6
0 1 1

8 2 3 0
0 1 0 2

0 2 3 9
4 8

6

Figure 9.3: The DBCSR library distributes the significant blocks over the processor grid
in row-major format.

169 9.3. Tensors

Tensors are important quantities in various scientific fields, especially in physics and
quantum chemistry. Examples of tensor are the 4-dimensional MP2-amplitudes tiajb or
the 3-dimensional 3c2e electron integrals. Matrices can be seen as 2-dimensional tensors.

The analog of matrix multiplication is tensor contraction, which involves the summa-
tion over one or multiple indices. Consider for example the tensor contraction

Cijm =
∑
kl

AikjlBlkm (9.13)

Here, the summation runs over the indices kl. Alternatively, the expression above can be
abbreviated as

Cijm = AikjlBlkm (9.14)

which is known as Einstein summation, a notational convention used to simplify tensor
expressions. Indices appearing on the right but not on the left are implicitly summed
over.

9.3.2 Tensor Storage and Mapping

Mapping multi-dimensional to the linear main memory is non-trivial. Tensors may follow
a generalized column or row major storage such that

A(i0, i1, ..., in)→
∑
k=0

(
Ndim∏
l=k+1

nl

)
ik row-major (9.15)

A(i0, i1, ..., in)→
∑
k=0

(
k−1∏
l=0

nl

)
ik column-major (9.16)

where Ndim is the dimension of the tensor, and nk is the size of dimension k.
Consider again the tensor contraction 9.14. It can be programmed by just looping

over all elements explicitly:

Listing 9.3.1: Tensor Loop

1 DO i = 1, ndim_i
2 DO j = 1, ndim_j
3 DO m = 1, ndim_m
4 DO k = 1, ndim_k
5 DO l = 1, ndim_l
6 C(i,j,m) = A(i,k,j,l) * B(l,k,m)
7 ENDDO
8 ENDDO
9 ENDDO

10 ENDDO
11 ENDDO

Similarly to Example 9.2.1 which loops over matrix elements, efficient parallelization by
means of vectorization is a major concern when coding tensor contractions by hand.

9.3. Tensors 170

Ideally, tensor contractions should be offloaded to a specialized library. However, writing
a general tensor library is a complex task, as the optimal kernel is dependent on the
nature of the tensor contraction, i.e. number of indices involved, tensor dimensions and
memory mapping. Whereas the dgemm BLAS routine only needs to know whether the
matrices are transposed or not, the rapidly increasing number of parameters and loops
makes it very difficult to write optimized code for arbitrary tensor contractions. For the
example above, there are already 5! = 120 different ways to arrange the loops.

Many tensor libraries solve this problem by mapping tensors to matrices so that
existing code for optimized matrix-matrix multiplication can be used instead. Consider
the tensor Aikjl. By introducing the super-indices P and Q, the tensor can be mapped
to a matrix with NP = nink rows and NQ = njnl columns with

P (i, k) = i+ k ∗ ni (9.17)
Q(j, l) = j + l ∗ nj (9.18)

The individual tensor elements are then accessed by

A(i, k, j, l)→ P (i, k) +Q(j, l)NP (9.19)

using column-major storage for both the indices and super-indices. This corresponds
to mapping ik to the rows and jl to the columns of a large matrix, which may also
be written in a condensed notation as (01 | 23), where 0, 1, ... indicate the mapping of
the first, second, ... index of the tensor. As another example, consider the mapping
(0 | 213): this indicates that the index i is mapped to rows, and jkl are mapped to the
columns. Alternatively, the mapping can be indicated by using upper or lower indices.
(01 | 23) corresponds to Ajl

ik and (0 | 213) to Ajkl
i . The lower indices are also known as

covariant indices, and the upper indices as contravariant indices. From here on out, only
the notation (· | ·) will be used.

Coming back to the tensor contraction in 9.14, mapping the tensors according to
A

(02|13)
ikjl , B(10|2)

lkm and C
(01|2)
ijm , the contraction can be reformulated as a simple matrix mul-

tiplication
C = AB (9.20)

and optimized matrix libraries can be used to perform the tensor contraction. It is also
possible to choose the mapping B

(2|10)
lkm , and the tensor contraction may be expressed as

C = ABT (9.21)

by taking the transpose of B. In general, any tensor contraction can be reformulated as a
matrix multiplication by mapping the indices which are summed over to either the row or
column of a matrix, and the indices which are not involved to the remaining dimension.

There are two drawbacks to this approach: first, tensors which are participating in
different types of tensor contractions may need to be reordered. Reordering can take
up a significant amount of time and add overhead to the tensor contraction, and it
effectively doubles the amount of space needed by the tensor. Second, standard matrix
libraries may not be optimized to handle tall-and-skinny (TAS) matrices. TAS matrices
are matrices where one dimension is much larger then the other one, which is often the
case for tensors with uneven mappings. Consider the tensor B(10|2)

lkm . It maps to a matrix

171 9.4. Matrix Libraries

with nknl rows and nm columns. If this matrix is distributed over an MPI grid, the
process columns have much more work to perform than the process rows, which may lead
to load imbalances. This problem can be addressed by dividing the TAS matrices into
multiple square submatrices to improve load balancing, but at the cost of adding further
complexity to the code.

9.4 Matrix Libraries

This section briefly describes the different matrix libraries that are used in MEGALOchem.

9.4.1 BLAS

Basic Linear Algebra Subroutines (BLAS) is a specification that describes a set of funda-
mental operations on vectors and matrices which serve as building blocks for higher level
algebraic functionality [223]. The subroutines are grouped into different levels. BLAS 1
provides vector-vector operations, BLAS 2 performs matrix-vector operations, and BLAS
3 provides matrix-matrix operations. Implementations of the BLAS library are often op-
timized for a certain type of processor, such as Intel’s math kernel library (MKL) or the
BLAS-like instantiation software (BLIS) which are optimized for Intel and AMD proces-
sors respectively. By providing a general interface, BLAS-based code is highly portable
and should be preferred over processor-dependent, intrinsic functions.

9.4.2 LAPACK

The linear algebra package (LAPACK) provides routines for matrix factorizations such as
the QR decomposition, eigenvalue decomposition or singular value decomposition [224].
It also includes functions for solving systems of linear equations and linear least squares
problems. The official Netlib LAPACK implementation is based on BLAS and therefore
highly portable, and simply linking the corresponding BLAS library that is optimized for
the targeted architecture is sufficient. However, processor-specific re-implementations of
LAPACK such as Intel MKL also exist. LAPACK can handle dense matrices only.

9.4.3 Eigen

Eigen is a C++ template library that provides basic and advanced matrix algebra rou-
tines, including numerical solvers and matrix decompositions [225]. Compared to the
LAPACK library, Eigen offers a more user-friendly interface with an API that is closer
in form to to standard algebraic notation. A matrix multiplication with addition is as
simple as writing

Listing 9.4.1: Eigen Matrix Multiplication

1 Eigen :: MatrixXd A, B, C;
2 // initialize matrices
3 A = A + B * C;

9.4. Matrix Libraries 172

Matrix manipulations, such as row, column or block operations are also much more
intuitive, which is its primary use in MEGALOchem.

9.4.4 PBLAS

PBLAS (Parallel BLAS) is a generalization of the BLAS specification to distributed
memory environments [226]. It uses BLACS (basic linear algebra communication sub-
programs) as the message passing interface, typically built on MPI, and optimized for
2D grid communication. Matrices and vectors use a block-cyclic distribution with homo-
geneous block sizes across processor rows and columns. Similarly to BLAS, it provides
a general interface and several different implementations exist (Netlib, Intel MKL, IBM,
Cray). It closely mimics the function signature of BLAS, but matrices have an addi-
tional array descriptor which holds all parameters of the matrix distribution. Matrix
multiplication is performed using Cannon’s algorithm [227].

9.4.5 ScaLAPACK

Scalable LAPACK (ScaLAPACK) is LAPACK’s analog for distributed memory systems
[228]. It provides highly optimized, advanced linear algebra routines based on the PBLAS
interface. It solves linear least squares, eigenvalue and singular value decomposition
problems, among others. Again, while the specification is general, processor optimized
implementations are often encountered, which are even more crucial in the context of
high-performance computing.

Compared to LAPACK, ScaLAPACK does not support many matrix decompositions
with pivoting. Pivoting incurs a very high overhead due to the increased communication
between nodes.

9.4.6 DBCSR

DBCSR (distributed block compressed sparse row) is a Fortran library designed for effi-
cient sparse matrix multiplication in distributed memory environments [229, 230]. It is
OpenMP and MPI parallel and can exploit NVIDIA and AMD GPUs via Cuda and HIP.
It uses a sparse block-cyclic matrix storage format (Figure 9.2) and was originally develo-
ped for linear-scaling self-consistent field calculations within CP2K, a quantum chemistry
and solid state physics software package [231, 232].

The DBCSR matrix multiplication architecture is divided into several layers managing
data transfer, data access and offloading. Figure 9.4 shows a schematic representation of
the layers. The top-most layer manages the parallelization of the matrix multiplication
over multiple nodes, and subdivides the matrix into large sparse sub-matrices, or panels,
which contain approximately the same number of blocks. A block-generalized version of
Cannon’s algorithm [227] is used to communicate the panels to different processes in a
regular and ordered fashion. At each "tick" of Canon’s algorithm, each process sends and
receives panels which it then multiplies and adds to the local blocks.

The multiplication of the panels is handled by the multrec layer, which subdivides
panels recursively along the longest dimension until the submatrices are small enough to
fit into cache size.

173 9.4. Matrix Libraries

Canon

MultRec

CSR

Scheduler

Host Driver Device Driver

BLAS LIBXSMM cu/hip-BLAS LIBSMM_ACC

cluster

node

GPUCPU

MPI Parallelization

Cache Optimization

Stack Generation

load balancing

Figure 9.4: Code architecture of the DBCSR library.

The CSR layer then determines which blocks need to be multiplied from the sparsity
pattern of the matrices. It generates a list of needed block-multiplications, called stacks
and passes this information to the scheduler. The scheduler receives the stacks and
arranges them for processing by handing them off to different drivers. Stacks can be
processed either by the host (CPU) or the device (GPU). Both drivers support standard
matrix multiplication by using (cu/hip)-BLAS, as well as small matrix multiplication
(SMM) which are handled by specialized SMM libraries optimized for CPU (libxsmm) or
GPU (libsmm_acc).

For multiplication of matrices with dimension N by K and K by M , a problem size
suitable for SMM libraries approximately falls within (MNK)1/3 < 64. Block-sparse
matrices in quantum chemistry often have very small block sizes. However, standard
libraries like BLAS are most often optimized for very large matrices, and SMM libraries
are often crucial to reduce the overhead when using small block sizes.

In 2019, the DBCSR library was extended to handle tensor contractions using the TAS
matrix mapping discussed above [233]. It is an ad-hoc extension of the DBCSR matrix
machinery, and still somewhat experimental. Memory issues are commonly encountered
(see chapter 7).

A C-interface to the DBCSR library was written as part of this PhD project [234].

174

Chapter 10

The c�e� Program Package

MEGALOchem is a quantum chemistry program that specializes in and provides tools for low
scaling electronic structure methods for ground and excited states in the atomic and local
molecular orbital basis. It is MPI parallel and supports sparse matrix multiplication and
tensor contractions via the DBCSR library. It is open-source and available on GitHub
(github.com/ambmax00/megalochem). This chapter will give an overview on the software
architecture and features of MEGALOchem. As the program is still in development at the
moment of writing, details are subject to change, and the reader is referred to the online
documentation for the up-to-date user and developer guides.

10.1 Motivation

Nowadays, quantum chemists have access to a healthy ecosystem of open-source quantum
chemistry programs that are under active development, including, but not limited to,
CP2K [231], Dalton [235], GAMESS [236], NWChem [237], Psi4 [238], PySCF [239] or
VeloxChem [240]. They offer efficient algorithms for computing correlated ground and
excited state properties, either with thread- or task-based parallelism. However, none
of them support local correlation methods based on local molecular orbitals or atomic
orbitals. The goal of MEGALOchem is two-fold: (1) provide a framework for the development
of local correlation methods and (2) offer a set of kernels for accelerating Hartree-Fock,
MP2 and ADC(2) calculations, using MPI parallelism. While MEGALOchem is stand-alone,
it should be primarily seen as an external library or module. Quantum chemistry software
packages are often composed of many different, often quite sophisticated libraries that
handle e.g. evaluation of electron integrals, computation of the coulomb and exchange
matrix or solving the eigenvalue problem of excited state methods. Modules allow teams
of developers to concentrate on the optimization of specific libraries, rather than a whole
program suite.

10.2 Software Architecture

MEGALOchem is written in C++17 and Fortran. Figure 10.1 shows a rough outline of
its structure and dependencies. Its work flow is identical to other quantum chemistry
software. An input file containing job information is parsed by the program and passed

175 10.2. Software Architecture

to a driver or scheduler which sets up a series of calculations, most often in the order
Hartree-Fock → Correlated Methods → Properties. The results are collected and saved
to an output file.

MEGALOchem takes two inputs: a .json file which contains the requested jobs, and
an optional .hdf5 file which contains information of the wave function from previous
calculations. HDF5 (hierarchical data format) is a high-performance library and file
format for storing and managing data. Data sets are organized into a filesystem-like
format, called groups, and can be accessed with a similar syntax /path/to/dataset. The
HDF5 library is written in C, but has bindings for C++, Fortran, Python and Java, among
others. HDF5 files can also be opened and edited using external programs like HDFview
or Vitables. The support for multiple languages and the simple user interface allows to
easily extract information from the output file without the need to write complex bash
scripts, especially for matrices like the HF coefficients, or the ADC transition matrices.

The JSON format was chosen as the data format for the job control input, because it
is a well known file format that is easy to read and edit, with multiple open-source parser
libraries already available. MEGALOchem has an object-oriented approach for setting up
jobs, and examples of input files will be shown in Section 10.4.

After parsing the JSON input file and optionally loading data from previous calcula-
tions, the main driver sets up the jobs in a queue. The queue can contain multiple jobs
of the same type, e.g. Hartree-Fock, with different systems and options. After initiali-
zing the parallel runtime environment, the queue is worked off and the job information
is passed to the different subdrivers. MEGALOchem currently has four different job types it
can handle: Hartree Fock and MP2 ground state calculations, excited state calculations
(CIS and ADC(2)), as well as orbital localization, analysis and plotting. Subdrivers like
MP2 or ADC can read information from previous calculations, meaning that the HF wave
function does not need to be recomputed each time. Output is written to stdout and a
new HDF5 file.

The subdrivers depend on other modules for handling evaluation of electron integrals,
linear algebra and sparse matrix multiplication.

Integrals are computed using the libcint library [241], which is also used in Py-
SCF. Alternatively another branch of libcint called qcint may be used, that is optimized
against AVX, AVX2 and AVX512. It provides the same API as libcint and no modi-
fications to MEGALOchem are necessary. However, other integral libraries can be easily
swapped in. MEGALOchem has its own data structures for molecules, basis sets and a ge-
neral interface for requesting and handling electron integrals. Only two files need to be
modified to accommodate other libraries.

Linear algebra, such as eigenvalue decomposition, singular value decomposition and
other dense matrix operations are mainly handled by the ScaLAPACK Fortran library. C
and C++ bindings for ScaLAPACK are provided by MEGALOchem. For node-local matrix
operations, the Eigen library is used as well.

The most crucial part of MEGALOchem are the kernels, which construct the coulomb,
exchange and Z matrices (encountered in AO-SOS-MP2), and compute the CIS and
ADC(2) matrix vector products. Sparse matrix multiplication in the kernels is managed
by the DBCSR library. MEGALOchem provides an extended C++ interface (DBCSRX)
with additional capabilities for ease of use.

10.3. Parallel Runtime Environment 176

subdrivers

HF
MP2
ADC

ScaLAPACK

Eigen

libcint

JSON

locorb

Linear Algebra

HDF5

AO Factory

DBCSRX

Input

Output

Kernels

DBCSR

Parser

Driver

MEGALOchem

Figure 10.1: Software architecture of the MEGALOchem program package with external
dependencies.

10.3 Parallel Runtime Environment

As mentioned in the introduction, MEGALOchem is MPI parallel. Calculations are launched
using the command mpirun, mpiexec or similar. For example, the command

mpirun -n 64 bin/chem h2o /scratch

launches 64 MPI processes with the input file h2o.json located in the directory /scratch.
Process are arranged in a Cartesian grid. It is therefore crucial to choose a square number
of processes for optimal performance, even if some cores on the nodes might be idle. For
example, for three nodes with 24 cores each, it is better to run 64 processes instead of
72, as the performance penalty for idling cores is not significant.

Most of the considerations for performance are dictated by the DBCSR library.
DBCSR supports OpenMP parallelism, meaning a hybrid MPI+OpenMP approach is
also possible for MEGALOchem. However, the tensor module of DBCSR has optimal per-
formance for 1 OpenMP thread per MPI process. The reasons are two-fold: first, each
process can only allocate approximately 2.1 GB at once, which means that a larger num-
ber of MPI processes per node reduces the possibility of crashes for memory-intensive
calculations. Second, not every task in the tensor library is parallelized with OpenMP
threads. For these reasons, MEGALOchem was also not optimized for a lower number of
MPI processes, and the 1-OpenMP-thread rule is also valid for the rest of the program
modules. This preference for pure MPI might conflict with other quantum chemistry
software with a hybrid MPI+OpenMP approach. For more information on MPI binding
and mapping, the reader is referred to the CP2K documentation, which also uses DBCSR
(https://xconfigure.readthedocs.io/en/latest/cp2k/#running-cp2k).

177 10.4. JSON Interface

Besides the DBCSR runtime environment, ScaLAPACK also works best with a square
process grid. MEGALOchem uses two separate grid instances for DBCSR and ScaLAPACK
to avoid conflicts during message passing.

10.4 JSON Interface

Job control is specified by an input file in the JSON format. It is inspired by the BAGLE
quantum chemistry software [242] and follows a similar scheme to the object-oriented
python interfaces like Psi4 or PySCF. Consider the following example for running a
Hartree-Fock calculation on a water molecule with the cc-pVDZ basis set

{
"megalochem ": [
{

"type": "atoms",
"tag": "xyz",
"unit": "angstrom",
"geometry ": [

0.00000 , 0.00000 , 0.11779 ,
0.00000 , 0.75545 , -0.47116,
0.00000 , -0.75545, -0.47116

],
"symbols ": ["O", "H", "H"]

},
{

"type": "basis",
"atoms": "xyz",
"tag": "basis1",
"name": "cc-pvdz"

},
{

"type": "molecule",
"tag": "mol",
"atoms": "xyz",
"basis": "basis1",
"mult": 1,
"charge ": 0

},
{

"type": "hfwfn",
"tag": "hfwfn",
"molecule ": "mol",
"guess": "SAD",
"build_J ": "exact",
"build_K ": "exact"

}]
}

The JSON file contains a main structure megalochem which specifies an ordered array of

10.5. Design Patterns 178

objects. Each object must contain the fields type and tag. The entry type specifies what
kind of object it is, and tag is a user-defined name to uniquely define that object. This
is similar to declaring a variable in a programming language. The available types are

• global: Specifies global variables like block thresholds or damping factors for elec-
tron integrals

• atoms: Specifies the atomic structure of the system. It can either contain an array
with coordinates or reference an XYZ file

• basis: Specifies the basis set and what kind of clustering is used. Clustering
indicates how atomic orbitals are grouped into blocks. A cutoff parameter can also
be specified for removing linear dependencies

• molecule: Specifies molecular information like multiplicity and charge

• hfwfn: Job control for computing the HF wave function

• mpwfn: Job control for computing the MP2 wave function

• adcwfn: Job control for computing CIS and ADC(2) excitation energies

• moprint: Job control for localizing and plotting orbitals (CMOs, LMOs, NTOs)
from different calculations.

Some objects may reference other preceding objects. For example, the adcwfn object
needs to reference a hfwfn object on which to operate.

This object-oriented approach will also facilitate a potential implementation of a py-
thon interface to MEGALOchem.

10.5 Design Patterns
One of the major challenges in designing a modular quantum chemistry software is de-
ciding how arguments are passed from one module to another. Implementations of elec-
tronic structure methods often accept dozens of different keywords, leading to complex
function and constructor signatures, and grouping keywords into logical structures is
non-trivial. A popular solution to this problem is the use of a options class which group
parameters into an overarching context. Examples include psi4::options in Psi4 or
libctx::context in Q-Chem. The advantage is that keywords are easily accessed by
requesting it by name. Existence of the keys can also be checked by using member func-
tions. However, this is at the same time the greatest downside of context classes. For
a complex hierarchy of interacting modules and functions, which can all insert or delete
keywords, it is often impossible to know what objects are or are not present within the
context at a given level.

Contexts are therefore not used in MEGALOchem. This leads to more verbose code, as
each class needs to explicitly define all its parameters, but it is less error-prone. Optional
parameters are handled using a modified std::optional class.

Large classes are constructed using the factory method pattern and parameters are
passed to the factory class by calling a chain of setter member functions. Consider the
following example for defining a Hartree-Fock object:

179 10.6. Libraries

auto hfobj = hf::hfmod:: create ()
.set_world(my_world)
.set_molecule(my_molecule)
.df_basis(dfbas)
.build_J("dfao") // optional
.build_K("dfao") // optional
.guess("SAD") // optional
.build();

It sets up a density-fitting calculation of a Hartree-Fock wave function. Objects like
world and molecule are required, and will give a runtime error if they are not set before
calling build(). Other parameters are optional, and can either be set or just omitted.
The factory function pattern needs a lot of boiler-plate code, but imposing the pattern
is facilitated by the use of preprocessor directives. Each module header file has a prepro-
cessor list of required and optional parameters before the class definition. For the hfmod
class, it reads

#define HFMOD_LIST \
(((world), set_world),
((desc:: shared_molecule), set_molecule), \
// ... other parameters

)
#define HFMOD_LIST_OPT \

(((util::optional <std::string >), guess , "SAD"), \
((util::optional <double >), scf_threshold , 1e-6), \
((util::optional <int >), max_iter , 100), \
((util::optional <bool >), do_diis , true), \
((util::optional <int >), diis_max_vecs , 10), \
((util::optional <int >), diis_min_vecs , 2), \
((util::optional <int >), diis_start , 1), \
((util::optional <std::string >), build_J , "exact"), \
((util::optional <std::string >), build_K , "exact"), \
((util::optional <std::string >), df_metric , "coulomb"), \
// ... other parameters
)

New keywords can be easily added to the list. For optional parameters, there is also the
possibility to add default values. The lists are then passed to preprocessor functions which
automatically generate the necessary code for the factory functions. They construct a
struct containing all of the parameters in the list which can be used in the constructor
of the module class. While this approach is more verbose, it provides a clearer overview
of possible input parameters.

10.6 Libraries

This section provides an overview of the different modules present in MEGALOchem, and
presents some examples on how to use them.

All information on the parallel MPI runtime environment, that is, communicators
and Cartesian grids for the DBCSR and ScaLAPACK libraries, are stored in a class

10.6. Libraries 180

called megalochem::world. It contains information on the rank, size and topology of the
different grids.

10.6.1 dbcsrx

The dbcsrx module is an extended C++ interface to the DBCSR library. Most objects
are constructed using the factory function pattern explained in the previous section.
Classes may have different constructors with a different set of keywords. Matrices are
easily constructed from scratch by using the create function

std::vector <int > blksizes = {2,5,6,3};
dbcsr:: shared_matrix <double >
my_matrix = dbcsr::matrix <>:: create ()

.set_cart(world.dbcsr_grid ())

.name("My␣Matrix")

.row_blk_sizes(blksizes)

.col_blk_sizes(blksizes)

.matrix_type(dbcsr::type:: symmetric)

.build();

which returns a std::shared_ptr to a dbcsr matrix object, or dbcsr::shared_matrix
for short. In general, all the factory functions return pointers rather than objects. The
matrix class needs the Cartesian grids, row and column block sizes, as well as the matrix
type (symmetric, hermitian, nonsymmetric, ...). Factory functions can also be used to
construct copies of the matrix, e.g.

auto my_copy = dbcsr::matrix <>::copy(* my_matrix)
.name("My␣Copy")
.build();

There are further factory functions for constructing templates, transposes or reading data
from disk.

Tensors are constructed in a similar way, but additionally need a pgrid<N> (process
grid) object which is a N -dimensional general Cartesian grid. The underlying matrix
representation also needs mapping information (see previous chapter). A tensor can then
be allocated by

std::array <std::vector <int >,3>
arrvec = {blksizes1 , blksizes2 , blksizes3 };

dbcsr:: shared_pgrid <3>
my_pgrid = dbcsr::pgrid <3>:: create(world.comm()).build();

dbcsr:: shared_tensor <3>
my_tensor = dbcsr::tensor <3>:: create ()

.set_pgrid(my_pgrid)

.name("My␣Tensor")

.blk_sizes(arrvec)

.map1 ({0}).map2 ({1 ,2})

.build();

181 10.6. Libraries

Each class has member functions which have a Fortran analog in the DBCSR library.
The object-oriented C++ interface greatly reduces the complexity of the code, as the C
interface of the DBCSR library can become quite unwieldy at times.

The matrix multiplication and tensor contraction functions are also used in a factory
function-like manner and their function signatures resemble those of the LAPACK gemm
routines
dbcsr:: shared_matrix <> A, B, C;
// allocate and fill matrices ...

// perform C = 3 * A * B + C
dbcsr:: multiply('N', 'N', 3.0, *A, *B, 1.0, *C)

.filter_eps (1e-8) // pass optional parameters

.perform ();

The tensor contraction routines have been extended to work with Einstein summation:
dbcsr:: shared_tensor <3> A, C;
dbcsr:: shared_tensor <4> B;
// allocate and fill ...

// perform C("ikl") = 3 * A("ljm") * B("ikjm")
dbcsr:: contract (3.0, *A, *B, 0.0, *C)

.perform("ljm ,␣ikjm␣->␣ikl");

which greatly simplifies the implementation.
One of the more prominent extensions in dbcsrx is the btensor (batched tensor) class.

Tensor contractions often need to be performed in batches for memory efficiency. This
however means that the tensor needs to be split appropriately along each dimension.
The btensor class manages the necessary metadata of batched tensor contractions and
provides helper functions to the developer. Moreover, it is possible to pass a btype
variable to the constructor which specifies whether the tensor is held in core memory,
read from disk, or generated on-the-fly. The interface remains the same, irregardless of
how the tensor is stored, meaning that in-core, disk and direct algorithms do not need
separate implementations. Disk batched tensors store data in block-wise format on disk
using MPI I/O, meaning each process can read and write independently. Direct batch
tensors furthermore need a generator function that indicates how the data is generated,
for example in the case of atomic orbital electron integrals.

The dbcsrx module also provides several functions for converting to ScaLAPACK and
Eigen matrix formats.

10.6.2 math

The math library contains the C++ interface to the ScaLAPACK functions for matrix
decompositions, as well as DIIS and Davidson solver routines, a routine for incomplete
pivoted Cholesky decomposition, and an interface to the Fortran library by Helmich-Paris
and Visscher [243] for computing the Laplace quadrature parameters.

The ScaLAPACK interface accepts DBCSR matrices which are then converted to
the fixed block-cyclic format used by ScaLAPACK. The following example shows the
eigenvalue decomposition of a hermitian matrix:

10.6. Libraries 182

hermitian_eigen_solver hsolver(world , *my_matrix , 'V', true);
hsolver.compute ();
auto eigenvalues = hsolver.eigvals ();
auto eigenvectors = hsolver.eigvecs ();

10.6.3 ints

Evaluation of electron integrals, as well as the computation of density fitting coefficients
is handled by the ints module. The interface for requesting integrals is general and does
not depend on what integral library is used. Integrals are computed by constructing an
aofactory object
auto factory = ints:: aofactory(my_world , my_molecule);

// get the overlap integrals
dbcsr:: shared_matrix <> s_bb = factory.ao_overlap ();
dbcsr:: shared_matrix <> k_bb = factory.ao_kinetic ();

Computing the 3c2e and 4c2e integrals is more complex, as they need to be evaluated in
batches and more information needs to be passed to the functions:
dbcsr:: shared_tensor <3> eri_3c2e;
// allocate tensor

factory.ao_3c2e_setup(metric :: coulomb);
factory.ao_3c2e_fill(eri_3c2e);

For this reason, the user should prefer the auxiliary aoloader class, where integrals are
first requested, and then computed.
auto loader = ints:: aoloader :: create ()

.set_world(my_world)

.set_molecule(my_molecule)

.build();

loader.request(ints::key::s_bb)
.request(ints::key:: coul_xbb)
.request(ints::key:: dfit_coul_xbb);

loader.compute ();

Integrals are requested by a predefined set of keys. Fitting coefficients can also be compu-
ted by the aoloader class. Furthermore, it also resolves any dependencies and computes
all the necessary integrals, even if they were not specifically requested. The integral
library can compute the following density fitting coefficients:

• Standard coulomb metric

• Coulomb-attenuated metric

• Overlap metric

• Quasi-robust density fitting

183 10.6. Libraries

• Pair-atomic resolution of the identity

10.6.4 fock

The fock library provides kernels for computing the coulomb and exchange matrix. The
kernels follow the factory pattern, which returns a general fock::J or fock::K which
works the same irrespective of which method is chosen to evaluate the coulomb and
exchange matrices.

std::shared_ptr <fock::J>
jbuilder = fock::DF_J:: create ()

.set_world(my_world)

.molecule(my_molecule)

.eri3c2e_batches(my_tensor)

.metric_inv(my_matrix)

.build();

jbuilder ->init();

// compute density matrix
dbcsr:: shared_matrix P_bb = ...
jbuilder ->set_density_alpha (*P_bb);

// compute coulomb matrix
auto J_bb = jbuilder ->get_J();

After calling build(), the object needs to be initialized. For each SCF cycle, the kernel
is updated with the current density matrix. The matrix is then constructed by calling
the get functions. The coulomb matrix can be computed with the kernels

• EXACT: exact coulomb matrix without density fitting

• DFAO: coulomb matrix with density fitting in the AO basis

and the following kernels are available for the exchange matrix

• EXACT: exact exchange matrix without density fitting

• DFAO: density fitting in the AO basis

• DFMO: density fitting in the MO basis

• DFAOMEM: density fitting in the AO basis, with the fitting coefficients computed
on-the-fly

• DFROBUST: density fitting using Dunlap’s robust density fitting formula

The EXACT kernels are not optimized and should only be used for reference calculations.

10.6. Libraries 184

10.6.5 hf

The hf module computes the Hartree-Fock wave function using the self-consistent field
methods. The Fock matrix is computed with the J and K kernels, and different methods
can be easily combined. The guess is computed either from the core Hamiltonian, the
superposition of atomic densities (SAD) or projection methods (see Appendix B).

10.6.6 mp

The mp library contains the kernels for computing the Z matrix encountered in AO-DF-
SOS-MP2. The kernels are initialized similarly to the J and K kernels. Two different
types have been implemented

• LLMP_FULL: computes the Z kernel by constructing the fully transformed BXµν tensor
and keeping it in core memory

• LLMP_MEM: the tensor BXµν is recomputed on-the-fly when contracting it with BXµν

10.6.7 adc

The final set of kernels is contained in the adc library, which compute the AO-CIS and
CDD-DF-SOS-ADC(2) matrix-vector product and reuse the J , K and Z kernels from
the other modules to evaluate some of the expressions. The adc library solves the ADC
eigenvalue problem by using the (modified) Davidson method. Only eigenvalues can be
computed at the moment.

10.6.8 locorb

The locorb module provides routines for localizing molecular orbitals. The available
localization schemes are

• Foster-Boys LMOs

• Cholesky LMOs

• Projected atomic orbitals

Furthermore, the library can compute the natural transition orbitals from the CIS or
ADC(2) density matrices. The orbital information can be written to a file in molden
format for plotting in external software.

185

Chapter 11

Algorithms

The final chapter collects a few of the more important numerical algorithms and solvers
used in the MEGALOchem software, with some comments on the implementation details.

11.1 Direct Inversion of The Iterative Subspace
The direct inversion of the iterative subspace (DIIS) method is an acceleration technique
for solvers of nonlinear equations, originally introduced by Pulay [244] in the context
of the self-consistent field method. It has also found use in the solution of the coupled
cluster amplitude equations via Newton-Raphson methods, as well as in the Davidson
diagonalization procedure.

At a given iteration i, the DIIS method tries to find a set of coefficients ci such that
the sum of the m previous error vectors

ei+1 =
m∑
i=0

ciei (11.1)

approximates the null vector in a least-squares sense. The new coefficients are then used
to extrapolate the solution p for the next iteration using the current set of solution
vectors:

pi+1 =
m∑
i=0

cip (11.2)

In the classical DIIS scheme, the coefficients are furthermore required to sum to one
m∑
i

ci = 1 (11.3)

Finding the coefficients thus corresponds to minimizing the Lagrangian subject to the
constraint 11.3:

L = c†Bc− λ

(
1−

m∑
i

ci

)
(11.4)

where B is the matrix (or subspace) containing the overlaps

Bij = ⟨ei|ej⟩ (11.5)

11.2. Davidson Diagonalization 186

Minimizing L with respect to c gives

∂L
∂ck

= 2
m∑
i

ciBki − λ = 0 (11.6)

which then reduces to the matrix equation
B00 B01 . . . B0m −1
B10 B11 . . . B1m −1
...

...
...

Bm0 Bm1 . . . Bmm −1
−1 −1 . . . −1 0

c0
c2
...
cm
λ

 =

0
0
...
0
−1

 (11.7)

The system can be solved by inverting the subspace matrix (hence the name DIIS). The
DIIS method is straight-forward to implement. Algorithm 7 gives a summary for the
method as it is used in the SCF procedure. The exact form of the error vector (or
residual) depends on the nature of the problem. In the general case, one can use the
quantity

ei = Fi − Fi−1 (11.8)

In the case of the SCF method, the commutator relationship may be used instead:

ei = FiPiS− SPiFi (11.9)

In some cases, it is beneficial to remove some error vectors from the subspace to avoid
linear dependencies. One can either remove the first error vector, or the vector with the
largest norm. In most quantum chemistry software packages, the maximum DIIS space
is set between 8 and 12.

Algorithm 7: DIIS method for SCF
1 Compute the new Fock matrix Fi for the current iteration i using the density

matrix Pi

2 Compute the error vector ei = FiPiS− SPiFi

3 Add the error vector ei and the Fi to the trial vectors. If the number of trial
vectors is larger than a given threshold DIIS_MAX_SUBSPACE, remove the
first vector in the sets {F} and {e}, or erase entry k where ek is the error with
the largest norm.

4 Compute the overlap matrix B and minimize the Lagrangian
5 Compute a new Fock matrix using the new coefficients Fi+1 =

∑m
i ciFi, and

diagonalize it to get the new density matrix Pi+1.
6 Increment i, begin new cycle

11.2 Davidson Diagonalization
Eigenvalue problems involving large, symmetric matrices are ubiquitous in electronic
structure theory. Due to the steep scaling in the number of elements, a full diagonalization

187 11.2. Davidson Diagonalization

is often not possible. Fortunately, in most cases the interest lies only in a few select
eigenvalues, rather than the whole spectrum, and iterative methods may be used that
avoid storing the whole matrix. Davidson’s diagonalization procedure [245] was originally
introduced to extract the first few eigenvalues CI matrix, and is mainly used for eigenvalue
problems of large, sparse, diagonally dominant matrices. Davidson’s method is part
of a larger category called Krylov subspace methods. Krylov subspaces help to find
approximate solutions to a higher-dimensional problem by projecting the matrix onto a
smaller subspace that fits in memory. Other methods in this family include the Lanczos
and Arnoldi algorithm, which also find uses in quantum chemistry [246].

11.2.1 Davidson-Liu Method

The Davidson method builds up an iterative subspace representation of the full matrix
which corresponds to the overlap ⟨ri|uj⟩ between the current set of trial vectors u and
the set of matrix-vector products r = Au. Diagonalizing this subspace matrix gives a
set of approximate eigenvalues and eigenvectors. New trial vectors are constructed using
the preconditioned residual. A preconditioner helps to "steer" the problem into the right
direction by better approximating the matrix A and thus speeding up convergence. In
the original paper, Davidson uses M = D − λI as the preconditioner, where D is the
exact diagonal of the matrix. If constructing the diagonal is too expensive, the Olsen
preconditioner may be used as an alternative, which approximates the diagonal to zeroth
order [247]. For example, the diagonal of the singles-singles block is then simply given by
the MO energy differences Dia = ϵi − ϵa. Other more sophisticated preconditioners have
also been investigated [248].

The quality of the starting guess vectors also influences convergence rate. In most
quantum chemistry programs, they are constructed by considering the exact or approxi-
mate matrix diagonal D. The entries of D are ordered from highest to lowest norm. The
first guess vector is then generated by putting a 1 on the position of the matrix element
with the highest norm, with the rest of the elements set to 0. The second, third, ... ei-
genvectors are constructed in a similar way. Eigenvectors from a lower order calculation
can also be used as a starting guess for higher order methods (e.g. using CIS eigenvectors
for ADC(2)).

The Davidson method was originally a single-root method, i.e. each root needed a
separate optimization. A blocked version was proposed by Liu [249], which allows to
optimize multiple roots at once. The blocked Davidson-Liu method as implemented in
MEGALOchem is given in Algorithm 8. If only a single root is needed, the loops over the
states are restricted to a single index instead, where iroot corresponds to the desired root
index.

Furthermore, the Davidson procedure can be modified such that it follows eigenvectors
that have a desired structure. The so-called root-homing procedure [250] reorders the
eigenvalues and eigenvectors at each iteration according to overlap criteria. If one wishes
to preserve the structure of the initial guesses, root-homing is essential. This modification
to the Davidson algorithm is not implemented in MEGALOchem.

While the Davidson algorithm avoids storing the whole matrix, it still needs to save
the trial vectors and matrix-vector products. As the subspace grows, so does the number
of vectors, which might become a memory bottleneck. To limit the number of vectors,

11.3. Incomplete Cholesky Decomposition 188

the Davidson subspace can be collapsed and a new set of vectors can be formed according
to

u′
i =

ndav∑
j

Vjiuj (11.10)

where V are the eigenvectors of the subspace matrix. This is followed by a normalization
step

unew
i =

u′
i

∥u′
i∥

(11.11)

Subspace collapse allows to formulate a better estimate of the total memory requirements
of the procedure.

11.2.2 Modified Davidson Method

When using doubles-folding in the context of the ADC(2) or CC2 method (section 2.3.4),
the effective matrix Aeff becomes dependent on its own eigenvalues:

Aeff (ω)v = ωv (11.12)

In this case, the standard Davidson method does not work, and needs to be modified to
be able to solve this pseudo-eigenvalue problem. Different approaches have been proposed
over the years, but are each based on similar principles [196, 22]. The modified Davidson
algorithm is given in Algorithm 9, as implemented in MEGALOchem.

The algorithm is split into macro and micro iterations, which are state-specific. The
micro-iterations corresponds to the standard single-root Davidson iterations for diago-
nalizing an effective matrix Aeff (ωi) with fixed eigenvalue ωi. When the procedure has
converged, ωi is set to the new eigenvalue ω′

i, and a new Davidson procedure, or macro-
iteration commences with the effective matrix Aeff (ωi). The macro-iterations are repea-
ted until the eigenvectors have converged to a certain threshold. The individual roots are
then further converged using DIIS.

11.3 Incomplete Cholesky Decomposition
The Cholesky factorization decomposes a symmetric, positive definite (PD) matrix into
a lower and upper triangular matrix:

A = LLT (11.13)

where L has the same dimension as A. However, the Cholesky factorization, as defined
in 11.13, does not exist for positive semi-definite (PSD) matrices. To see the reason why,
consider Algorithm 10 for the standard Cholesky factorization. The loop runs over all
columns i of A and involves divisions by the diagonal elements Lii. For PSD matrices,
some of these elements will be zero due to linear dependencies of the column vectors, and
the operation is therefore not defined.

A PSD matrix is also called rank-deficient. The rank of a symmetric matrix is equal
to the number of linearly independent column vectors. The occupied atomic density
matrix P is an example of a rank-deficient matrix. The atomic orbital basis, with Nbas

189 11.3. Incomplete Cholesky Decomposition

Algorithm 8: Davidson-Liu Algorithm. Indices i, j, k... implicitly loop over
the number of roots nroots, and indices i, j, k, ... implicitly loop over the whole
Davidson subspace ndav.
Input: Number of desired roots nroot, guess vectors U = {ui}, convergence

threshold dconv, (approximate) diagonal D, matrix-vector product
function mvp_func()

Output: Converged eigenvectors {vi} and eigenvalues {ωi}
1 while not converged do
2 Compute all the matrix-vector products which have not yet been computed

ri = mvp_func(ui)

3 Form the subspace matrix
Aij = ri · uj

4 Diagonalize A to get the eigenvectors V = {vi} and eigenvalues {ωi}
5 Compute the nroot residuals

ρi = rjVji − ujVjiωi

6 Root i has converged if ∥ρi∥ < dconv or |V (ndav − 1, i)| < dconv
7 If all roots have converged, then break, else continue.
8 Compute the correction vectors {ei}

ei =
ρi

D− ωiI

9 Compute a new set of vectors {bi} by Gram-Schmidt orthogonalization of
{di} against the current set of {ui}

10 Normalize the new vectors {bi} and add all vectors to {ui} for which
∥bi∥ / ∥di∥ are above 1e-3 (to remove linear dependencies)

11 If the size of the Davidson subspace ndav is above a given threshold, collapse
the subspace and form a new set according to Equations 11.10 and 11.11

12 The final eigenvalues are equal to the eigenvalues of the last subspace matrix.
The final eigenvectors {vi} are formed according to Equations 11.10 and 11.11
using the trial vectors {ui} and the eigenvectors of the subspace matrix

11.3. Incomplete Cholesky Decomposition 190

Algorithm 9: Modified Davidson algorithm with DIIS acceleration for pseudo-
eigenvalue problems.

Input: Number of desired roots nroot, guess vectors {ui} and eigenvalues {ω(0)
i },

convergence threshold dconv, (approximate) diagonal D, matrix-vector
product function mvp_func()

Output: Converged eigenvectors {vi} and eigenvalues {ωi}
1 Set ωmacro

i to ω
(0)
i and start macro-iterations for each individual state i

2 while not converged do
3 Perform Davidson diagonalization on the effective matrix A(ωmacro

i).
Convergence is reached when the difference between eigenvalues ωmicro

i from
subsequent micro-iterations is smaller than the total change since the start
of the procedure, i.e. at iteration n:

abs
(
ωmacro
i − ωmicro

i |iter=0

)
> abs

(
ωmicro
i |iter=n − ωmicro

i |iter=n−1

)
4 If the residual ρi is smaller than 1e-3, break, else continue
5 Set ωmacro

i to ωmicro
i , and ui to vmicro

i

6 Set ωi to ωmacro
i , start DIIS

7 while not converged do
8 Compute the matrix-vector product ri = mvp_prod(ui, ωi)

9 Compute the residual

ρi =
ri − ωiui

∥ui∥
10 Compute the new eigenvalue ωi

ωi =
ui · ri
∥ui∥

11 If ∥ρi∥ < dconv, root i has converged, break
12 Compute the corrected vector bi according to

bi = ui +
ρi

D

13 Add ρi to the DIIS error vector space, and perform extrapolation on bi to get
a new guess vector ui

191 11.3. Incomplete Cholesky Decomposition

Algorithm 10: Cholesky decomposition without pivoting.
Input: Symmetric matrix A with dimension N by N

Output: Cholesky factors L

1 L00 ←
√
A00

2 Lj0 ← aj0
L00

j ∈ [1 : N]

3 Lii ←
√

Aii −
∑i

k=0 L
2
ik i ∈ [1 : N]

4 Lji ←
(
Aji −

∑i
k=0 LikLjk

)
/Lii i ∈ [1 : N] j ∈ [i+ 1 : N]

functions, is often redundant and has linear dependencies, which translates to a lower
rank r < Nbas of the occupied density matrix. The rank of P is equal to the number
of occupied molecular orbitals. The atomic orbital overlap matrix S is an example of a
"numerically" positive semi-definite matrix. While the column vectors are not strictly
linearly dependent from a mathematical point of view, they are linearly dependent in the
sense of floating-point precision. The diagonals Lii are close to zero (< 1e-5), which will
lead to large values and reduced accuracy when dividing.

The Cholesky factorization can be generalized to PSD matrices by introducing per-
mutation matrices which pivot the columns and rows of A:

PAPT = LLT (11.14)

or
A = PTLLTP (11.15)

where L is a N by k lower triangular matrix with k = rank(A). The permutation
matrices swap the diagonal entries Lii, also known as pivots, in a way that division by
zero is avoided during the procedure. If the pivot is below a certain threshold, the
procedure halts and the number of total iterations is equal to the rank of A. The
incomplete pivoted Cholesky factorization is therefore rank-revealing. Other examples of
rank-revealing decompositions include the pivoted QR decomposition, and the singular
value decomposition.

The Cholesky decomposition with full pivoting is given in Algorithm 11. It can also be
used in cases where the matrix is nearly positive semi-definite (N ≈ rank(A)) for extra
numerical stability, e.g. the AO overlap matrix. In MEGALOchem, the pivoted Cholesky
factorization is used to obtain a set of localized Cholesky MO coefficients which help to
reduce the prefactor of atomic orbital methods.

Comments

It should be noted that pivoting destroys the banded structure of the matrix L (Figure
3.7). In other words, the pivoted Cholesky factorization of a diagonally dominant, sparse
matrix may not give sparse matrices L in the block-diagonal form. Blocking significant
elements together reduces the number of non-zero blocks, which is crucial for the perfor-
mance of atomic orbital based methods. It is therefore necessary to reorder the columns
of PTL at the end of the procedure. In MEGALOchem, this is done by sorting the columns

11.4. Laplace Transformation 192

Algorithm 11: Incomplete Cholesky decomposition with full pivoting.
Input: Symmetric matrix A with dimension N by N , threshold dlindep
Output: Cholesky factors L and the rank r of A

1 Initialize index vector perm = {0, 1, 2, ..., N}
2 for i = 0 to N do
3 Find maximum diagonal element Amax = Ajj

4 Swap rows i and j of A
5 Swap columns i and j of A
6 Swap perm(i) and perm(j)

7 if Amax < 0 then
8 Negative pivot element, the Cholesky decomposition is not possible
9 if abs(Amax) < dlindep then

10 r = i+ 1, break
11 Lii =

√
Amax

12 Lki = Aki/
√
Amax k ∈ [i+ 1 : N]

13 Akl = Akl − LkiLkl k, l ∈ [i+ 1 : N]

14 Impose original order of the rows, set row perm(i) of the new Cholesky matrix L′

to row i of L i ∈ [0 : r]

15 Set L to L′

by their weight n = (pf − pi)/2, where pi is the first significant element in the column,
and pf is the last significant element. The block-diagonal form can then restored for L.

The pivoted Cholesky decomposition in MEGALOchem does not exploit sparsity and
scales with O(N2rank(A)). While a sparse implementation could be considered, row and
column pivoting often destroys sparsity patterns (also known as fill-in) and leads to a lot
of reordering within the sparse data structures. Pivoting needs to be applied in such a
way that fill-in is reduced to keep scaling low.

Finally, pivoting also negatively impacts parallelization when using MPI. When co-
lumns are swapped, this incurs additional communication overhead between processes.
Moreover, global communication is necessary to communicate the position and value of
the maximum diagonal element to each process, which further slows down the procedure.
Efficient parallelization of matrix decompositions with pivoting is subject of current re-
search [251, 252].

11.4 Laplace Transformation

The Laplace transformation is a crucial step for formulating an orbital invariant MP2
energy expression, where the orbital energy denominator is converted to an exponential
form

1

ϵa + ϵb − ϵi − ϵj
=

1

x
=

∫ ∞

0

e−xtdt (11.16)

193 11.5. Cuthill-McKee

The integral is then approximated by the Laplace quadrature

1

x
=

k∑
α=0

ω(α)e−xt(α)

(11.17)

where k is the number of quadrature points, ω(α) are the Laplace weights and t(α) are the
Laplace exponents. In their original paper, Häser and Almlöf [253] computed the Laplace
parameters by least-squares minimization of the error distribution function

ηk(x, ω
(α), t(α)) =

k∑
α=0

ω(α)e−xt(α) − 1

x
(11.18)

in the interval [xmin, xmax]. Later, it was shown that the quadrature parameters can
be computed at a much lower cost using a minimax approximation (MA) [254], which
minimizes the maximum Chebychev norm

δk[1,R](ω̄
(α), t̄(α)) = max

x∈[1,R]

∣∣ηk(x, ω̄(α), t̄(α))
∣∣ (11.19)

with the scaled Laplace parameters ω̄ = ωxmin, t̄ = txmin in the new interval [1, R]
where R = xmax/xmin. The scaled Laplace coefficients in the minimax approximation are
obtained by repeating the following two steps until self-consistency is reached:

1. Determine the 2k − 1 extremum points xi of the error distribution function
ηk(x, ω̄

(α), t̄(α)) with the current set of {ω̄(α)} and {t̄(α)}

2. Optimize the 2k + 1 parameters {ω̄(α)} and {t̄(α)} by solving the 2k + 1 non-linear
equations

ηk(xi, ω̄
(α), t̄(α)) = (−1)iδk[1,R](ω̄

(α), t̄(α)) (11.20)

This procedure is also known as the Remez algorithm (RA). Each of the two steps are non-
trivial to compute. The set of non-linear equations in step 2 can be solved by performing a
Newton-Raphson minimization using pre-tabulated values of {ω̄(α)} and {t̄(α)} as guesses
for the first RA iteration. Step 1 is a bit more complicated, and is either solved (a) by first
finding the nodal points x0 of the error distribution function to compute the extremum
points using Newton-Raphson [254], or (b) by finding the extremum points directly using
the Newton-Maehly algorithm [243]. For further details, the reader is referred to the
original publications.

All calculations in this report use the robust minimax approximation as proposed
by Helmich-Paris and Visscher [243]. They have published their source code on GitHub
(GitHub.com/bhelmichparis/laplace-minimax), which was in turn incorporated into the
MEGALOchem software.

11.5 Cuthill-McKee
The Cuthill-McKee (CM) algorithm finds a permutation P of a sparse, symmetric matrix
that minimizes its bandwidth [255]. A banded matrix is a matrix that has all significant

11.5. Cuthill-McKee 194

0 200 400

0

100

200

300

400

0 200 400

0

100

200

300

400

Figure 11.1: Connectivity matrix of FW144 before reordering (left), and connectivity
matrix after applying the reverse Cuthill-McKee algorithm (right). Reducing the band-
width allows to compress matrices and tensors in the AO basis into a much smaller space
when using the block-sparse format.

elements clustered around the main diagonal. The bandwidth k is defined as the smallest
positive index for which

min
k
|A(k, k)| = 0 k ∈ [0, N] (11.21)

The CM algorithm reduces the bandwidth of a matrix by reordering the nodes of the
corresponding adjacency or connectivity matrix C (Algorithm 12). For a N -by-N matrix,
there are N nodes. Node i and j are connected if the entry (i, j) of the connectivity matrix
is 1, and not connected if the entry is 0. Here, the degree of a node is defined by the total
number of connections, i.e. the row or column sum

degree(i) =
N∑
j

C(i, j) (11.22)

In the context of quantum chemistry, the nodes correspond to atoms in a molecule, and
the connections to bonds. Reordering the indexing of the atoms based on the connectivity
matrix of a molecule allows to significantly reduce the number of blocks needed to store
quantities like the overlap matrix, density matrix or 2-electron repulsion integrals when
using block-sparse matrix algebra by grouping close atoms together. Figure 11.1 shows
how the connectivity matrix is reordered for the FW144 system using the reverse CM
algorithm. Two atoms are "connected", if their are within 5 a0 of each other.

195 11.5. Cuthill-McKee

Algorithm 12: (Reverse) Cuthill-McKee algorithm.
Input: Sparse symmetric matrix A with dimension N by N

Output: Reordered matrix A with minimized bandwidth.
1 Form the binary connectivity matrix C of the input matrix
2 Instantiate empty queue Q and result array R

3 while true do
4 Find node p with minimum degree that is not yet in R, and put it into R

5 Add all nodes to the queue that are connected to p

6 while length of Q ̸= 0 do
7 Get fist node q in queue, and pop it from queue
8 if q in R then
9 skip to next loop

10 else
11 add q to R

12 Append all nodes connected to q not yet in R both to R and Q

13 if size of R = N then
14 break

15 Reorder the rows and columns of A according to R (standard Cuthill-McKee) or
the reverse order of R (reverse Cuthill-McKee)

196

Chapter 12

Conclusion and Outlook

The development of local excited methods is an active area of research. It combines two
concepts, namely local electron correlation and electron excitation, which are already very
demanding by themselves both from a theoretical and computational point of view. While
the earliest attempts date back to the early 2000s, the last decade has seen a substantial
increase in interest. Prior to this work, attempts to a local treatment of electron excitation
were limited to local molecular orbital and (local) natural orbital approaches. The spin-
opposite-scaled second-order algebraic diagrammatic construction method with Cholesky
decomposed densities and density fitting (CDD-DF-SOS-ADC(2)) is the first local excited
method beyond CIS which is based on an atomic orbital formulation. By exploiting the
sparsity of both the AO ground state and transition densities, combined with modern
local density fitting techniques, CDD-DF-SOS-ADC(2) drastically reduces the scaling
compared to canonical SOS-ADC(2). Linear scaling is observed for the "ideal case"
systems of linear carboxylic acids, and near quadratic scaling is obtained even for very
electron-dense systems such as hydrated formamide. This work also presents the first
linear scaling implementation of the quasi-robust density fitting scheme, which proved to
be a crucial ingredient for decreasing the computational effort of CDD-DF-SOS-ADC(2)
with similar accuracy to standard density fitting on the order of a few µHartrees.

The CDD-DF-SOS-ADC(2) method is implemented in MEGALOchem, a quantum che-
mistry software specialized in algorithms exploiting the sparsity of the atomic orbital
basis. Sparse matrix algebra and tensor contraction is offloaded to an external library
called DBCSR, which plays a crucial role in the success of CDD-DF-SOS-ADC(2). The
method is highly parallelizable and suitable for distributed memory systems.

While CDD-DF-SOS-ADC(2) theoretically scales linearly in the limit of infinite sys-
tem size, its applicability is still hampered by a few obstacles.

First, the method is plagued by the same problems as most atomic orbital based
methods: the computational effort increases significantly for large basis sets with diffuse
basis functions, which are necessary to obtain accurate excitation energies. Diffuse func-
tions severely impact the scaling of CDD-DF-SOS-ADC(2) by reducing the sparsity of the
matrices and tensors, effectively negating the benefits of the method. These effects are
further exacerbated by the complexity of the working equations compared to the ground
state energy expressions. The low-scaling regime can often not be reached for electron-
dense systems, and memory resources are quickly exhausted, even in high-performance
computing environments. This is an inherent weakness of AO methods, and will need to

197

be addressed in future iterations of CDD-DF-SOS-ADC(2).
Second, the diffuse basis functions are also less than ideal for local density fitting

methods. Density fitting often involves some form of matrix inversion or matrix decom-
position, which are both very sensitive to linear dependencies. Diffuse functions can often
reduce accuracy and lead to convergence issues.

Third, while the DBCSR matrix library is quite efficient, the tensor library built on top
of it has a few drawbacks. Tensors need to regularly reordered which effectively doubles
memory requirements. Furthermore, the tensor library is optimized for 1 OpenMP-thread
per MPI rank, which also negatively impacts memory due to data duplication. Sparse
tensor libraries are still an active field of research and need to be further investigated, as
they will be crucial for developing novel AO based excited state methods.

To summarize, local excited state methods need a lot of know-how both in theoretical
chemistry and computer programming. The road towards a truly robust local excited
state method is arduous, but promising new approaches arise each year, and bring a new
puzzle piece to the table.

198

Appendix A

Second Quantization: Formulas

In second quantization, the antisymmetry property of the wave function is transferred
to the algebraic properties of a set of elementary operators known as the creation and
annihilation operators. As their name implies, they act on a state by adding or removing
an electron, which translates to

a†P |k⟩ = δkP 0Γ
k
P |k1, . . . , 1P , . . . , kM⟩ creation operator (A.1)

aP |k⟩ = δkP 1Γ
k
P |k1, . . . , 0P , . . . , kM⟩ annihilation operator (A.2)

where Γ is a phase factor given by

Γk
P =

P−1∏
Q=1

(−1)kQ (A.3)

The creation and annihilation operators are related by the anticommutation relations

a†PaQ + aQa
†
P = δPQ (A.4)

a†Pa
†
Q + a†Qa

†
P = 0 (A.5)

aPaQ + aQaP = 0 (A.6)

All operators and states can be constructed from the creation and annihilation operators.
A general ON vector can be expressed as a string of creation operators acting on the
vacuum state

|k⟩ =
[

M∏
P=1

(a†P)
kP

]
|vac⟩ (A.7)

One-electron and two-electron operators take the form

f̂ =
∑
PQ

fPQa
†
PaQ One-electron (A.8)

ĝ =
∑
PQRS

gPQRSa
†
Pa

†
RaSaQ Two-electron (A.9)

where fPQ and gPQRS are the matrix elements (expectation values) of the operators.

199

Appendix B

Hartree-Fock Starting Guesses

MEGALOchem can use three different starting guesses for the Hartree-Fock procedure: the
core Hamiltonian, SAD and projection. This section gives some additional implementa-
tion details on the latter two methods

B.1 Superposition of Atomic Densities
The superposition of atomic densities (SAD) is a simple, yet powerful method to generate
a HF starting guess that is already very close to the solution [7, 256]. To a very good
approximation, a molecule can be seen as a collection of atoms. The electronic guess
density P is then simply the direct sum of the individual atomic densities

P =
Natoms⊕
i=0

Patomic
i (B.1)

The resulting density matrix P is block-diagonal. The atomic densities are obtained by
performing a Hartree-Fock calculation on the individual atoms using partial occupation.

The SAD guess only gives an initial density, but no molecular orbitals, which might
be necessary in some cases to construct the Fock matrix, depending on which algorithm
is chosen. There are two choices in MEGALOchem to generate starting orbitals:

• Natural orbitals by diagonalization of the guess density

• Local molecular orbitals by performing an incomplete Cholesky decomposition with
full pivoting on the guess density

The Cholesky decomposition has the advantage of revealing the rank of the matrix,
and the resulting orbitals are therefore much more compact. It is the default option in
MEGALOchem.

B.1.1 Partial Occupation Hartree-Fock

There are several different ways to perform the atomic Hartree-Fock calculations. In-
dividual atoms often have unpaired electrons, and may be computed using unrestricted
Hartree-Fock. Alternatively, it is possible to perform fractional occupation Hartree-Fock

B.2. Projection Methods 200

(FOHF) calculations [257]. After diagonalization of the Fock matrix, FOHF scales the
coefficient matrices by an occupation vector v

Cσ
frac = Cσv (B.2)

where σ is either α or β spin. In standard HF, all entries in v are set to 1 for occupied,
and 0 for virtual orbitals. FOHF allows fractional values between 0 and 1 for occupied
orbitals. The exact form of v depends on the atom. Consider for example the oxygen
atom with configuration 1s↑↓2s↑↓2p↑↓

x 2p↑
y2↑z, using the aufbau principle. In standard UHF,

the single ↓ (or β) electron in the p orbitals will occupy either x, y or z. However, in
absence of any external perturbation, the electron should have no preference for any of
them. FOHF allows the electron to occupy all orbitals, and the occupation vectors for
the occupied AOs are given by

vα = {1, 1, 1, 1, 1} (B.3)

vβ = {1, 1, 1
3
,
1

3
,
1

3
} (B.4)

Through electron-delocalization across all three p-orbitals, the energy of the FOHF wave
function is actually lowered compared to the UHF wave function. FOHF can substantially
improve the description of single atoms and open-shell molecules. Restricted FOHF is
also possible by simply spin-averaging the α and β occupation vectors:

vrestricted =
1

2

(
vα + vβ

)
(B.5)

MEGALOchem supports both unrestricted and restricted FOHF, though only for single
atoms. The occupation numbers for each atom-type are hard-coded and taken from
Psi4 [238].

B.2 Projection Methods
For Hartree-Fock calculations that encounter convergence difficulties when using large
basis sets with many diffuse basis functions, it may be beneficial to first compute the HF
wave function in a minimal basis, and then project it onto the larger basis set [256]. Let
|χmin⟩ be the atomic orbitals for the minimal basis set and |χfull⟩ the AOs of the larger
basis set. By defining the projection operator for a non-orthogonal AO basis

P̂ = |χµ⟩S−1
µν ⟨χν | (B.6)

the MOs computed in the minimal basis set can then be projected onto the larger AO
space as

P̂ full |ϕi⟩ = P̂ full
∑
i

Cmin
µi |χmin

µ ⟩

= (Sfull
µν)−1 ⟨χfull

ν |χmin
σ ⟩ |χfull

σ ⟩
(B.7)

Using the above expression, and introducing the cross-overlap matrix Sfull,min between
the two basis sets, the projected coefficient matrix is then computed as

Cfull = (Sfull)−1Sfull,minCmin (B.8)

The projection method is also useful in cases where the SAD guess cannot be used (see
Appendix C).

201

Appendix C

Removing Linear Dependencies in
Basis Sets

Excited state methods often need larger basis sets with diffuse functions to accurately
describe electron transitions into higher lying orbitals. However, large basis sets often in-
troduce linear dependencies which may lead to decreased accuracy, numerical instabilities
or even crashes. MEGALOchem can use two different methods to remove linear dependencies
from basis sets.

C.1 Canonical Orthogonalization
Most quantum chemistry programs use canonical orthogonalization [119, 258] to remove
linear dependencies in basis sets. Diagonalization of the AO overlap matrix

S = VΛV† (C.1)

gives the eigenvectors V and the diagonal matrix Λ containing the eigenvalues. For near-
linearly dependent basis sets, some the eigenvalues become very small and introduce
large numerical errors for subsequent operations such as matrix inversion. Canonical
orthogonalization removes all eigenvectors with eigenvalues below a certain threshold
(1e-4 to 1e-6).

C.2 Cholesky Decomposition
Linear dependencies may alternatively be removed by an incomplete pivoted Cholesky
decomposition of the overlap matrix [259]

PSPT = LLT (C.2)

where P is a permutation matrix, and L are the Cholesky factors of dimension NAO × r,
where r is the rank of S. The Cholesky procedure in Algorithm 11 outputs a vector
perm which contains the pivoting indices. A new basis set is constructed such that each
atomic orbital with indices perm[0:r] are included. The remaining functions perm[r:N]
for which the pivots lie below the threshold are discarded.

C.2. Cholesky Decomposition 202

Because the removal of linear dependencies from basis sets can significantly alter the
basis sets on individual atoms, the SAD method cannot be used for an initial guess, and
projective approaches should be used.

203 C.2. Cholesky Decomposition

Acknowledgments

First and foremost, I would like to thank my supervisor Prof. Dr. Andreas Dreuw for
taking me under his wing for the last three years. He created a research environment
that allowed for a lot of freedom on how to approach the project, and he was there for
the moments where I felt lost during it.

A big thanks goes to all members of his research group as well. I had many serious
(and not so serious) discussions with them that greatly helped me during my project.
Special thanks to Maximilian Scheurer for his input on programming practices and being
one of the proof readers for this thesis.

I would also like to thank Prof. Dr. Christian Ochsenfeld and his group for giving
me insight on the concepts of linear scaling algorithms during the time I could spend in
Munich.

My thanks also go out to Prof. Dr. Patrick Norman from KTH for allowing me access
to the Tegner and Beskow supercomputer clusters at the PDC in Stockholm. Without
these computing resources, the development of MEGALOchem would not have progressed as
smoothly and rapidly as it did.

I also like to thank the research group at NTNU: Prof. Dr. Henrik Koch for his
online-course on electronic structure theory, and Alexander Paul for being the second
proof-reader for this thesis.

I am also indebted to Prof. Dr. Sonia Coriani, who made me aware of this position
in the first place.

I gratefully acknowledge the funding received from the Marie Skłodowska-Curie Euro-
pean Training Network "COSINE - COmputational Spectroscopy In Natural sciences and
Engineering” (Grant agreement no. 765739). It is regretful that the COVID-19 pandemic
had such a profound impact on the international training events.

Last but not least, I would like to thank my parents for their support all throughout
my Bachelor, Master and PhD studies. Without them, I would not be where I am now.

Bibliography 204

Bibliography

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scal-
mani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino,
B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L.
Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone,
T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Na-
kai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J.
Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam,
M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.
Foresman, and D. J. Fox. Gaussian~16 Revision C.01, 2016. Gaussian Inc. Wallingford CT.

[2] Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Elec-
tronic Structure Theory. Courier Corporation, Jul 1996.

[3] Trygve Helgaker, Poul Jørgensen, and Jeppe Olsen. Molecular Electronic-Structure Theory. Wiley,
Aug 2000.

[4] Frank Jensen. Introduction to Computational Chemistry, 3rd Edition. Wiley, Hoboken, NJ, USA,
Feb 2017.

[5] Patrick Norman, Kenneth Ruud, and Trond Saue. Principles and Practices of Molecular Properties:
Theory, Modeling, and Simulations. Wiley, Hoboken, NJ, USA, Mar 2018.

[6] Jochen Schirmer. Many-Body Methods for Atoms, Molecules and Clusters. Springer International
Publishing, Cham, Switzerland, 2018.

[7] J. H. Van Lenthe, R. Zwaans, H. J. J. Van Dam, and M. F. Guest. Starting SCF calculations by
superposition of atomic densities. J. Comput. Chem., 27(8):926–932, Jun 2006.

[8] D. Young. Computational Chemistry. Wiley, Chichester, England, UK, 2004.

[9] Stefan Grimme. Improved second-order Møller–Plesset perturbation theory by separate scaling of
parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys., 118(20):9095–9102, May
2003.

[10] Stefan Grimme, Lars Goerigk, and Reinhold F. Fink. Spin-component-scaled electron correlation
methods. WIREs Comput. Mol. Sci., 2(6):886–906, Nov 2012.

[11] T. P. M. Goumans, Andreas W. Ehlers, Koop Lammertsma, Ernst-Ulrich Würthwein, and Stefan
Grimme. Improved Reaction and Activation Energies of [4+2] Cycloadditions, [3,3] Sigmatropic
Rearrangements and Electrocyclizations with the Spin-Component-Scaled MP2 Method. Chemis-
try – A European Journal, 10(24):6468–6475, Dec 2004.

[12] Rosa E. Bulo, Helen Jansen, Andreas W. Ehlers, Fransiscus J. J. de Kanter, Marius Schakel, Martin
Lutz, Anthony L. Spek, and Koop Lammertsma. The Circumambulation of a Phosphirane: Taking
9-Phenyl-9-phosphabicyclo[6.1.0]nona-2,4,6-triene for a “Walk”. Angew. Chem., 116(6):732–735,
Jan 2004.

[13] Mareike Gerenkamp and Stefan Grimme. Spin-component scaled second-order Møller–Plesset per-
turbation theory for the calculation of molecular geometries and harmonic vibrational frequencies.
Chem. Phys. Lett., 392(1):229–235, Jul 2004.

205 Bibliography

[14] Ágnes Szabados. Theoretical interpretation of Grimme’s spin-component-scaled second order
Møller-Plesset theory. J. Chem. Phys., 125(21):214105, Dec 2006.

[15] Reinhold F. Fink. Spin-component-scaled Møller–Plesset (SCS-MP) perturbation theory: A ge-
neralization of the MP approach with improved properties. J. Chem. Phys., 133(17):174113, Nov
2010.

[16] Yousung Jung, Rohini C. Lochan, Anthony D. Dutoi, and Martin Head-Gordon. Scaled opposite-
spin second order Møller-Plesset correlation energy: an economical electronic structure method.
J. Chem. Phys., 121(20):9793–9802, Nov 2004.

[17] Rohini C. Lochan, Yousung Jung, and Martin Head-Gordon. Scaled opposite spin second order
Møller-Plesset theory with improved physical description of long-range dispersion interactions. J.
Phys. Chem. A, 109(33):7598–7605, Aug 2005.

[18] Robert A. Distasio J. R.. and Martin Head-Gordon. Optimized spin-component scaled second-
order Møller-Plesset perturbation theory for intermolecular interaction energies. Mol. Phys.,
105(8):1073–1083, Apr 2007.

[19] J. Grant Hill and James A. Platts. Spin-Component Scaling Methods for Weak and Stacking
Interactions. J. Chem. Theory Comput., 3(1):80–85, Jan 2007.

[20] Ove Christiansen, Henrik Koch, and Poul Jørgensen. The second-order approximate coupled cluster
singles and doubles model CC2. Chem. Phys. Lett., 243(5):409–418, Sep 1995.

[21] Arnim Hellweg, Sarah A. Grün, and Christof Hättig. Benchmarking the performance of spin-
component scaled CC2 in ground and electronically excited states. Phys. Chem. Chem. Phys.,
10(28):4119–4127, Jul 2008.

[22] Nina O. C. Winter and Christof Hättig. Scaled opposite-spin CC2 for ground and excited states
with fourth order scaling computational costs. J. Chem. Phys., 134(18):184101, May 2011.

[23] Attila Tajti and Péter G. Szalay. Accuracy of Spin-Component-Scaled CC2 Excitation Energies
and Potential Energy Surfaces. J. Chem. Theory Comput., 15(10):5523–5531, Oct 2019.

[24] Henrik Koch, Ove Christiansen, Poul Jo/rgensen, Alfredo M. Sanchez de Merás, and Trygve Hel-
gaker. The CC3 model: An iterative coupled cluster approach including connected triples. J.
Chem. Phys., 106(5):1808–1818, Feb 1997.

[25] Krishnan Raghavachari, Gary W. Trucks, John A. Pople, and Martin Head-Gordon. A fifth-order
perturbation comparison of electron correlation theories. Chem. Phys. Lett., 157(6):479–483, May
1989.

[26] Leticia González, Daniel Escudero, and Luis Serrano-Andrés. Progress and Challenges in the
Calculation of Electronic Excited States. ChemPhysChem, 13(1):28–51, Jan 2012.

[27] Patrick Norman and Andreas Dreuw. Simulating X-ray Spectroscopies and Calculating Core-
Excited States of Molecules. Chem. Rev., 118(15):7208–7248, Aug 2018.

[28] Annapaola Migani, Lluís Blancafort, Michael A. Robb, and Anthony D. DeBellis. An Extended
Conical Intersection Seam Associated with a Manifold of Decay Paths: Excited-State Intramole-
cular Proton Transfer in O-Hydroxybenzaldehyde. J. Am. Chem. Soc., 130(22):6932–6933, Jun
2008.

[29] Spiridoula Matsika and Pascal Krause. Nonadiabatic Events and Conical Intersections. Annu.
Rev. Phys. Chem., 62(1):621–643, Mar 2011.

[30] Jaehee Kim, Hongli Tao, Todd J. Martinez, and Phil Bucksbaum. Ab initio multiple spawning
on laser-dressed states: a study of 1,3-cyclohexadiene photoisomerization via light-induced conical
intersections. J. Phys. B: At. Mol. Opt. Phys., 48(16):164003, Jul 2015.

[31] Xiaolei Zhu and David R. Yarkony. Non-adiabaticity: the importance of conical intersections. Mol.
Phys., 114(13):1983–2013, Jul 2016.

Bibliography 206

[32] P. S. Bagus. Self-Consistent-Field Wave Functions for Hole States of Some Ne-Like and Ar-Like
Ions. Phys. Rev., 139(3A):A619–A634, Aug 1965.

[33] P. W. Deutsch and L. A. Curtiss. Ab initio calculation of the K-shell excitation and ionization
energies of CH4, NH3, H2O, and HF. Chem. Phys. Lett., 39(3):588–592, May 1976.

[34] Maximilien A. Ambroise and Frank Jensen. Probing Basis Set Requirements for Calculating Core
Ionization and Core Excitation Spectroscopy by the ∆ Self-Consistent-Field Approach. J. Chem.
Theory Comput., 15(1):325–337, Jan 2019.

[35] L. Triguero, O. Plashkevych, L. G. M. Pettersson, and H. Ågren. Separate state vs. transition state
Kohn-Sham calculations of X-ray photoelectron binding energies and chemical shifts. J. Electron
Spectrosc. Relat. Phenom., 1-3(104):195–207, 1999.

[36] Yuji Takahata and Delano P. Chong. DFT calculation of core-electron binding energies. J. Electron
Spectrosc. Relat. Phenom., 133(1):69–76, Nov 2003.

[37] Nicholas A. Besley, Andrew T. B. Gilbert, and Peter M. W. Gill. Self-consistent-field calculations
of core excited states. J. Chem. Phys., 130(12):124308, Mar 2009.

[38] Alf Holme, Knut J. Børve, Leif J. Sæthre, and T. Darrah Thomas. Accuracy of Calculated Chemical
Shifts in Carbon 1s Ionization Energies from Single-Reference ab Initio Methods and Density
Functional Theory. J. Chem. Theory Comput., 7(12):4104–4114, Dec 2011.

[39] Luca Schio, Cui Li, Susanna Monti, Peter Salén, Vasyl Yatsyna, Raimund Feifel, Michele Alagia,
Robert Richter, Stefano Falcinelli, Stefano Stranges, Vitali Zhaunerchyk, and Vincenzo Carravetta.
NEXAFS and XPS studies of nitrosyl chloride. Phys. Chem. Chem. Phys., 17(14):9040–9048, Mar
2015.

[40] Xuechen Zheng and Lan Cheng. Performance of Delta-Coupled-Cluster Methods for Calculations
of Core-Ionization Energies of First-Row Elements. J. Chem. Theory Comput., 15(9):4945–4955,
Sep 2019.

[41] Andrew T. B. Gilbert, Nicholas A. Besley, and Peter M. W. Gill. Self-consistent field calculations
of excited states using the maximum overlap method (MOM). J. Phys. Chem. A, 112(50):13164–
13171, Dec 2008.

[42] Ernest R. Davidson. Single-Configuration Calculations on Excited States of Helium. J. Chem.
Phys., 41(3):656–658, Aug 1964.

[43] Ernest R. Davidson. Single-Configuration Calculations on Excited States of Helium. II. J. Chem.
Phys., 42(12):4199–4200, Jun 1965.

[44] Akio Kotani Frank de Groot. Core Level Spectroscopy of Solids. Taylor & Francis, Andover,
England, UK, Mar 2008.

[45] Tom Ziegler, Arvi Rauk, and Evert J. Baerends. On the calculation of multiplet energies by the
hartree-fock-slater method. Theor. Chim. Acta, 43(3):261–271, Sep 1977.

[46] Jochen Schirmer. Beyond the random-phase approximation: A new approximation scheme for the
polarization propagator. Phys. Rev. A, 26(5):2395–2416, Nov 1982.

[47] Gordon Baym. Self-Consistent Approximations in Many-Body Systems. Phys. Rev., 127(4):1391–
1401, Aug 1962.

[48] Yoichiro Nambu. Force Potentials in Quantum Field Theory. Prog. Theor. Phys., 5(4):614–633,
Jul 1950.

[49] E. E. Salpeter and H. A. Bethe. A Relativistic Equation for Bound-State Problems. Phys. Rev.,
84(6):1232–1242, Dec 1951.

[50] Richard P. Feynman. The Development of the Space-Time View of Quantum Electrodynamics.
Science, 153(3737):699–708, Aug 1966.

[51] A. B. Trofimov and J. Schirmer. An efficient polarization propagator approach to valence electron
excitation spectra. J. Phys. B: At. Mol. Opt. Phys., 28(12):2299–2324, Jun 1995.

207 Bibliography

[52] Jochen Schirmer. Closed-form intermediate representations of many-body propagators and resol-
vent matrices. Phys. Rev. A, 43(9):4647–4659, May 1991.

[53] J. Schirmer and A. B. Trofimov. Intermediate state representation approach to physical properties
of electronically excited molecules. J. Chem. Phys., 120(24):11449–11464, Jun 2004.

[54] S. Knippenberg, D. R. Rehn, M. Wormit, J. H. Starcke, I. L. Rusakova, A. B. Trofimov, and
A. Dreuw. Calculations of nonlinear response properties using the intermediate state representa-
tion and the algebraic-diagrammatic construction polarization propagator approach: two-photon
absorption spectra. J. Chem. Phys., 136(6):064107., Feb 2012.

[55] Caroline M. Krauter, Markus Pernpointner, and Andreas Dreuw. Application of the scaled-
opposite-spin approximation to algebraic diagrammatic construction schemes of second order. J.
Chem. Phys., 138(4):044107, Jan 2013.

[56] Philipp H. P. Harbach, Michael Wormit, and Andreas Dreuw. The third-order algebraic diagram-
matic construction method (ADC(3)) for the polarization propagator for closed-shell molecules:
Efficient implementation and benchmarking. J. Chem. Phys., 141(6):064113, Aug 2014.

[57] A. B. Trofimov, I. L. Krivdina, J. Weller, and J. Schirmer. Algebraic-diagrammatic construction
propagator approach to molecular response properties. Chem. Phys., 1-3(329):1–10, 2006.

[58] Henrik Koch and Poul Jo/rgensen. Coupled cluster response functions. J. Chem. Phys., 93(5):3333–
3344, Sep 1990.

[59] Andreas Dreuw and Martin Head-Gordon. Single-Reference ab Initio Methods for the Calculation
of Excited States of Large Molecules. Chem. Rev., 105(11):4009–4037, Nov 2005.

[60] Adèle D. Laurent and Denis Jacquemin. TD-DFT benchmarks: A review. Int. J. Quantum Chem.,
113(17):2019–2039, Sep 2013.

[61] Ove Christiansen, Poul Jørgensen, and Christof Hättig. Response functions from Fourier com-
ponent variational perturbation theory applied to a time-averaged quasienergy. Int. J. Quantum
Chem., 68(1):1–52, Jan 1998.

[62] Pierre-François Loos and Denis Jacquemin. Is ADC(3) as Accurate as CC3 for Valence and Rydberg
Transition Energies? J. Phys. Chem. Lett., 11(3):974–980, Feb 2020.

[63] Christof Hättig. Structure Optimizations for Excited States with Correlated Second-Order Me-
thods: CC2 and ADC(2). In Advances in Quantum Chemistry, volume 50, pages 37–60. Academic
Press, Cambridge, MA, USA, Jan 2005.

[64] Martin Head-Gordon, Rudolph J. Rico, Manabu Oumi, and Timothy J. Lee. A doubles correction
to electronic excited states from configuration interaction in the space of single substitutions.
Chem. Phys. Lett., 219(1):21–29, Mar 1994.

[65] Jan Geertsen, Magnus Rittby, and Rodney J. Bartlett. The equation-of-motion coupled-cluster
method: Excitation energies of Be and CO. Chem. Phys. Lett., 164(1):57–62, Dec 1989.

[66] K. Emrich. An extension of the coupled cluster formalism to excited states (I). Nucl. Phys. A,
351(3):379–396, Jan 1981.

[67] John F. Stanton and Rodney J. Bartlett. The equation of motion coupled-cluster method. A
systematic biorthogonal approach to molecular excitation energies, transition probabilities, and
excited state properties. J. Chem. Phys., 98(9):7029–7039, May 1993.

[68] John F. Stanton and Jürgen Gauss. Analytic energy derivatives for ionized states described by the
equation-of-motion coupled cluster method. J. Chem. Phys., 101(10):8938–8944, Nov 1994.

[69] Anna I. Krylov. Equation-of-Motion Coupled-Cluster Methods for Open-Shell and Electronically
Excited Species: The Hitchhiker’s Guide to Fock Space. Annu. Rev. Phys. Chem., 59(1):433–462,
Apr 2008.

[70] C. C. J. Roothaan. New Developments in Molecular Orbital Theory. Rev. Mod. Phys., 23(2):69–89,
Apr 1951.

Bibliography 208

[71] Marco Häser and Reinhart Ahlrichs. Improvements on the direct SCF method. J. Comput. Chem.,
10(1):104–111, Jan 1989.

[72] W. Kohn. Analytic Properties of Bloch Waves and Wannier Functions. Phys. Rev., 115(4):809–821,
Aug 1959.

[73] Sohrab Ismail-Beigi and T. A. Arias. Locality of the Density Matrix in Metals, Semiconductors,
and Insulators. Phys. Rev. Lett., 82(10):2127–2130, Mar 1999.

[74] S. Goedecker and L. Colombo. Efficient Linear Scaling Algorithm for Tight-Binding Molecular
Dynamics. Phys. Rev. Lett., 73(1):122–125, Jul 1994.

[75] S. Goedecker. Decay properties of the finite-temperature density matrix in metals. Phys. Rev. B,
58(7):3501–3502, Aug 1998.

[76] S. N. Taraskin, P. A. Fry, Xiaodong Zhang, D. A. Drabold, and S. R. Elliott. Spatial decay of the
single-particle density matrix in tight-binding metals: Analytic results in two dimensions. Phys.
Rev. B, 66(23):233101, Dec 2002.

[77] David S. Hollman, Henry F. Schaefer, and Edward F. Valeev. Fast construction of the exchange
operator in an atom-centred basis with concentric atomic density fitting. Mol. Phys., 115(17-
18):2065–2076, Sep 2017.

[78] Frank Neese, Frank Wennmohs, Andreas Hansen, and Ute Becker. Efficient, approximate and
parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Har-
tree–Fock exchange. Chem. Phys., 356(1):98–109, Feb 2009.

[79] Henrik Koch, Alfredo Sánchez de Merás, and Thomas Bondo Pedersen. Reduced scaling in elec-
tronic structure calculations using Cholesky decompositions. J. Chem. Phys., 118(21):9481–9484,
Jun 2003.

[80] I. Røeggen and Tor Johansen. Cholesky decomposition of the two-electron integral matrix in
electronic structure calculations. J. Chem. Phys., 128(19):194107, May 2008.

[81] Edward G. Hohenstein, Robert M. Parrish, and Todd J. Martínez. Tensor hypercontraction density
fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory. J. Chem.
Phys., 137(4):044103, Jul 2012.

[82] Robert M. Parrish, Edward G. Hohenstein, Todd J. Martínez, and C. David Sherrill. Tensor
hypercontraction. II. Least-squares renormalization. J. Chem. Phys., 137(22):224106, Dec 2012.

[83] Edward G. Hohenstein, Robert M. Parrish, C. David Sherrill, and Todd J. Martínez. Communi-
cation: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination
of correlated wavefunctions. J. Chem. Phys., 137(22):221101, Dec 2012.

[84] J. L. Whitten. Coulombic potential energy integrals and approximations. J. Chem. Phys.,
58(10):4496–4501, May 1973.

[85] E. J. Baerends, D. E. Ellis, and P. Ros. Self-consistent molecular Hartree—Fock—Slater calcula-
tions I. The computational procedure. Chem. Phys., 2(1):41–51, Sep 1973.

[86] O. Vahtras, J. Almlöf, and M. W. Feyereisen. Integral approximations for LCAO-SCF calculations.
Chem. Phys. Lett., 213(5):514–518, Oct 1993.

[87] C.-K. Skylaris, L. Gagliardi, N. C. Handy, A. G. Ioannou, S. Spencer, and A. Willetts. On the
resolution of identity Coulomb energy approximation in density functional theory. J. Mol. Struct.
THEOCHEM, 501-502:229–239, Apr 2000.

[88] B. I. Dunlap. Robust variational fitting: Gáspár’s variational exchange can accurately be treated
analytically. J. Mol. Struct. THEOCHEM, 501-502:221–228, Apr 2000.

[89] David S. Hollman, Henry F. Schaefer, and Edward F. Valeev. A tight distance-dependent estima-
tor for screening three-center Coulomb integrals over Gaussian basis functions. J. Chem. Phys.,
142(15):154106, Apr 2015.

209 Bibliography

[90] David P. Tew. Communication: Quasi-robust local density fitting. J. Chem. Phys., 148(1):011102,
Jan 2018.

[91] Yousung Jung, Alex Sodt, Peter M. W. Gill, and Martin Head-Gordon. Auxiliary basis expansions
for large-scale electronic structure calculations. Proc. Natl. Acad. Sci. U.S.A., 102(19):6692–6697,
May 2005.

[92] P. M. W. Gill, A. T. B. Gilbert, S. W. Taylor, G. Friesecke, and M. Head-Gordon. Decay behavior
of least-squares coefficients in auxiliary basis expansions. J. Chem. Phys., 123(6):061101, Aug
2005.

[93] Simen Reine, Erik Tellgren, Andreas Krapp, Thomas Kjærgaard, Trygve Helgaker, Branislav Jan-
sik, Stinne Høst, and Paweł Salek. Variational and robust density fitting of four-center two-electron
integrals in local metrics. J. Chem. Phys., 129(10):104101, Sep 2008.

[94] Alex Sodt and Martin Head-Gordon. Hartree-Fock exchange computed using the atomic resolution
of the identity approximation. J. Chem. Phys., 128(10):104106, Mar 2008.

[95] Patrick Merlot, Thomas Kjærgaard, Trygve Helgaker, Roland Lindh, Francesco Aquilante, Simen
Reine, and Thomas Bondo Pedersen. Attractive electron–electron interactions within robust local
fitting approximations. J. Comput. Chem., 34(17):1486–1496, Jun 2013.

[96] Samuel F. Manzer, Evgeny Epifanovsky, and Martin Head-Gordon. Efficient Implementation of
the Pair Atomic Resolution of the Identity Approximation for Exact Exchange for Hybrid and
Range-Separated Density Functionals. J. Chem. Theory Comput., 11(2):518–527, Feb 2015.

[97] Arno Förster, Mirko Franchini, Erik van Lenthe, and Lucas Visscher. A Quadratic Pair Atomic
Resolution of the Identity Based SOS-AO-MP2 Algorithm Using Slater Type Orbitals. J. Chem.
Theory Comput., 16(2):875–891, Feb 2020.

[98] Robert Polly, Hans-Joachim Werner ∗, Frederick R. Manby, and Peter J. Knowles. Fast Har-
tree–Fock theory using local density fitting approximations. Mol. Phys., 102(21-22):2311–2321,
Nov 2004.

[99] Florian Weigend. A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets,
demonstration of accuracy and efficiency. Phys. Chem. Chem. Phys., 4(18):4285–4291, Sep 2002.

[100] Florian Weigend. Hartree–Fock exchange fitting basis sets for H to Rn †. J. Comput. Chem.,
29(2):167–175, Jan 2008.

[101] Florian Weigend, Marco Häser, Holger Patzelt, and Reinhart Ahlrichs. RI-MP2: optimized auxi-
liary basis sets and demonstration of efficiency. Chem. Phys. Lett., 294(1):143–152, Sep 1998.

[102] David E. Bernholdt and Robert J. Harrison. Fitting basis sets for the RI-MP2 approximate second-
order many-body perturbation theory method. J. Chem. Phys., 109(5):1593–1600, Aug 1998.

[103] Francesco Aquilante, Roland Lindh, and Thomas Bondo Pedersen. Unbiased auxiliary basis sets
for accurate two-electron integral approximations. J. Chem. Phys., 127(11):114107, Sep 2007.

[104] Francesco Aquilante, Laura Gagliardi, Thomas Bondo Pedersen, and Roland Lindh. Atomic Cho-
lesky decompositions: A route to unbiased auxiliary basis sets for density fitting approximation
with tunable accuracy and efficiency. J. Chem. Phys., 130(15):154107, Apr 2009.

[105] George B. Arfken, Hans J. Weber, and Frank E. Harris. Mathematical Methods for Physicists.
Elsevier, Academic Press, 2012.

[106] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys.,
73(2):325–348, Dec 1987.

[107] Leslie Greengard. Fast Algorithms for Classical Physics. Science, 265(5174):909–914, Aug 1994.

[108] Hong-Qiang Ding, Naoki Karasawa, and William A. Goddard. Atomic level simulations on a
million particles: The cell multipole method for Coulomb and London nonbond interactions. J.
Chem. Phys., 97(6):4309–4315, Sep 1992.

Bibliography 210

[109] Christopher A. White, Benny G. Johnson, Peter M. W. Gill, and Martin Head-Gordon. Linear
scaling density functional calculations via the continuous fast multipole method. Chem. Phys.
Lett., 253(3):268–278, May 1996.

[110] James J. P. Stewart. An examination of the nature of localized molecular orbitals and their value
in understanding various phenomena that occur in organic chemistry. J. Mol. Model., 25(1):1–17,
Jan 2019.

[111] S. F. Boys. Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes
from One Molecule to Another. Rev. Mod. Phys., 32(2):296–299, Apr 1960.

[112] Clyde Edmiston and Klaus Ruedenberg. Localized Atomic and Molecular Orbitals. Rev. Mod.
Phys., 35(3):457–464, Jul 1963.

[113] János Pipek and Paul G. Mezey. A fast intrinsic localization procedure applicable for ab initio and
semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys., 90(9):4916–
4926, May 1989.

[114] Joseph E. Subotnik, Yihan Shao, WanZhen Liang, and Martin Head-Gordon. An efficient method
for calculating maxima of homogeneous functions of orthogonal matrices: Applications to localized
occupied orbitals. J. Chem. Phys., 121(19):9220–9229, Nov 2004.

[115] Francesco Aquilante, Thomas Bondo Pedersen, Alfredo Sánchez de Merás, and Henrik Koch. Fast
noniterative orbital localization for large molecules. J. Chem. Phys., 125(17):174101, Nov 2006.

[116] Joseph E. Subotnik, Anthony D. Dutoi, and Martin Head-Gordon. Fast localized orthonormal
virtual orbitals which depend smoothly on nuclear coordinates. J. Chem. Phys., 123(11):114108,
Sep 2005.

[117] S. Saebo and P. Pulay. Local Treatment of Electron Correlation. Annu. Rev. Phys. Chem.,
44(1):213–236, Oct 1993.

[118] Ove Christiansen, Pekka Manninen, Poul Jørgensen, and Jeppe Olsen. Coupled-cluster theory in
a projected atomic orbital basis. J. Chem. Phys., 124(8):084103, Feb 2006.

[119] Per-Olov Löwdin and Harrison Shull. Natural Orbitals in the Quantum Theory of Two-Electron
Systems. Phys. Rev., 101(6):1730–1739, Mar 1956.

[120] Alan E. Reed and Frank Weinhold. Natural bond orbital analysis of near-Hartree–Fock water
dimer. J. Chem. Phys., 78(6):4066–4073, Mar 1983.

[121] Frank Weinhold and Clark R. Landis. NATURAL BOND ORBITALS AND EXTENSIONS OF
LOCALIZED BONDING CONCEPTS. Chem. Educ. Res. Pract., 2(2):91–104, May 2001.

[122] Eric D. Glendening, Clark R. Landis, and Frank Weinhold. Natural bond orbital methods. WIREs
Comput. Mol. Sci., 2(1):1–42, Jan 2012.

[123] Tery L. Barr and Ernest R. Davidson. Nature of the Configuration-Interaction Method in Ab Initio
Calculations. I. Ne Ground State. Phys. Rev. A, 1(3):644–658, Mar 1970.

[124] Carlos Sosa, Jan Geertsen, Gary W. Trucks, Rodney J. Bartlett, and James A. Franz. Selection
of the reduced virtual space for correlated calculations. An application to the energy and dipole
moment of H2O. Chem. Phys. Lett., 159(2):148–154, Jul 1989.

[125] Andrew G. Taube and Rodney J. Bartlett. Frozen Natural Orbitals: Systematic Basis Set Trun-
cation for Coupled-Cluster Theory. Collect. Czech. Chem. Commun., 70(6):837–850, 2005.

[126] Andrew G. Taube and Rodney J. Bartlett. Frozen natural orbital coupled-cluster theory: Forces
and application to decomposition of nitroethane. J. Chem. Phys., 128(16):164101, Apr 2008.

[127] A. V. Luzanov, A. A. Sukhorukov, and V. É. Umanskii. Application of transition density matrix
for analysis of excited states. Theor. Exp. Chem., 10(4):354–361, Jul 1976.

[128] Richard L. Martin. Natural transition orbitals. J. Chem. Phys., 118(11):4775–4777, Mar 2003.

211 Bibliography

[129] Pablo Baudin and Kasper Kristensen. Correlated natural transition orbital framework for low-
scaling excitation energy calculations (CorNFLEx). J. Chem. Phys., 146(21):214114, Jun 2017.

[130] Sebastian Höfener and Wim Klopper. Natural transition orbitals for the calculation of correlation
and excitation energies. Chem. Phys. Lett., 679:52–59, Jul 2017.

[131] Robert Send, Ville R. I. Kaila, and Dage Sundholm. Reduction of the virtual space for
coupled-cluster excitation energies of large molecules and embedded systems. J. Chem. Phys.,
134(21):214114, Jun 2011.

[132] Svein Sæbø and Peter Pulay. Local configuration interaction: An efficient approach for larger
molecules. Chem. Phys. Lett., 113(1):13–18, Jan 1985.

[133] C. Edmiston and M. Krauss. Configuration-Interaction Calculation of H3 and H2. J. Chem. Phys.,
42(3):1119–1120, Feb 1965.

[134] Wilfried Meyer. Ionization energies of water from PNO-CI calculations. Int. J. Quantum Chem.,
5(S5):341–348, Jan 1971.

[135] Wilfried Meyer. PNO–CI Studies of electron correlation effects. I. Configuration expansion by
means of nonorthogonal orbitals, and application to the ground state and ionized states of methane.
J. Chem. Phys., 58(3):1017–1035, Feb 1973.

[136] Christine Krause and Hans-Joachim Werner. Comparison of explicitly correlated local coupled-
cluster methods with various choices of virtual orbitals. Phys. Chem. Chem. Phys., 14(21):7591–
7604, May 2012.

[137] Martin Schütz, Georg Hetzer, and Hans-Joachim Werner. Low-order scaling local electron corre-
lation methods. I. Linear scaling local MP2. J. Chem. Phys., 111(13):5691–5705, Oct 1999.

[138] Martin Schütz and Hans-Joachim Werner. Low-order scaling local electron correlation methods.
IV. Linear scaling local coupled-cluster (LCCSD). J. Chem. Phys., 114(2):661–681, Jan 2001.

[139] Martin Schütz and Hans-Joachim Werner. Local perturbative triples correction (T) with linear
cost scaling. Chem. Phys. Lett., 318(4):370–378, Feb 2000.

[140] James W. Boughton and Peter Pulay. Comparison of the boys and Pipek–Mezey localizations in the
local correlation approach and automatic virtual basis selection. J. Comput. Chem., 14(6):736–740,
Jun 1993.

[141] Ricardo A. Mata, Hans-Joachim Werner, Stephan Thiel, and Walter Thiel. Toward accurate
barriers for enzymatic reactions: QM/MM case study on p-hydroxybenzoate hydroxylase. J.
Chem. Phys., 128(2):025104, Jan 2008.

[142] Christoph Riplinger and Frank Neese. An efficient and near linear scaling pair natural orbital
based local coupled cluster method. J. Chem. Phys., 138(3):034106, Jan 2013.

[143] Frank Neese, Andreas Hansen, and Dimitrios G. Liakos. Efficient and accurate approximations to
the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J.
Chem. Phys., 131(6):064103, Aug 2009.

[144] Frank Neese, Frank Wennmohs, and Andreas Hansen. Efficient and accurate local approximations
to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. J.
Chem. Phys., 130(11):114108, Mar 2009.

[145] Andreas Hansen, Dimitrios G. Liakos, and Frank Neese. Efficient and accurate local single reference
correlation methods for high-spin open-shell molecules using pair natural orbitals. J. Chem. Phys.,
135(21):214102., Dec 2011.

[146] Jun Yang, Yuki Kurashige, Frederick R. Manby, and Garnet K. L. Chan. Tensor factorizations of
local second-order Møller–Plesset theory. J. Chem. Phys., 134(4):044123, Jan 2011.

[147] Gunnar Schmitz, Benjamin Helmich, and Christof Hättig. A scaling PNO–MP2 method using a
hybrid OSV–PNO approach with an iterative direct generation of OSVs†. Mol. Phys., 111(16-
17):2463–2476, Sep 2013.

Bibliography 212

[148] Peter Pulay. Localizability of dynamic electron correlation. Chem. Phys. Lett., 100(2):151–154,
Sep 1983.

[149] Matthew C. Strain, Gustavo E. Scuseria, and Michael J. Frisch. Achieving Linear Scaling for the
Electronic Quantum Coulomb Problem. Science, 271(5245):51–53, Jan 1996.

[150] Matt Challacombe, Eric Schwegler, and Jan Almlöf. Fast assembly of the Coulomb matrix: A
quantum chemical tree code. J. Chem. Phys., 104(12):4685–4698, Mar 1996.

[151] Yihan Shao and Martin Head-Gordon. An improved J matrix engine for density functional theory
calculations. Chem. Phys. Lett., 323(5):425–433, Jun 2000.

[152] Yihan Shao, Christopher A. White, and Martin Head-Gordon. Efficient evaluation of the Coulomb
force in density-functional theory calculations. J. Chem. Phys., 114(15):6572–6577, Apr 2001.

[153] David S. Hollman, Henry F. Schaefer, and Edward F. Valeev. Semi-exact concentric atomic density
fitting: Reduced cost and increased accuracy compared to standard density fitting. J. Chem. Phys.,
140(6):064109, Feb 2014.

[154] Eric Schwegler, Matt Challacombe, and Martin Head-Gordon. Linear scaling computation of the
Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build. J. Chem.
Phys., 106(23):9708–9717, Jun 1997.

[155] Christian Ochsenfeld, Christopher A. White, and Martin Head-Gordon. Linear and sublinear
scaling formation of Hartree–Fock-type exchange matrices. J. Chem. Phys., 109(5):1663–1669,
Aug 1998.

[156] Daniel Mejía-Rodríguez and Andreas M. Köster. Robust and efficient variational fitting of Fock
exchange. J. Chem. Phys., 141(12):124114, Sep 2014.

[157] Jaehoon Kim and Yousung Jung. A perspective on the density matrix purification for linear scaling
electronic structure calculations. Int. J. Quantum Chem., 116(8):563–568, Apr 2016.

[158] R. McWeeny. Hartree-Fock Theory with Nonorthogonal Basis Functions. Phys. Rev., 114(6):1528–
1529, Jun 1959.

[159] Adam H. R. Palser and David E. Manolopoulos. Canonical purification of the density matrix in
electronic-structure theory. Phys. Rev. B, 58(19):12704–12711, Nov 1998.

[160] Anders M. N. Niklasson, C. J. Tymczak, and Matt Challacombe. Trace resetting density matrix
purification in O(N) self-consistent-field theory. J. Chem. Phys., 118(19):8611–8620, May 2003.

[161] X.-P. Li, R. W. Nunes, and David Vanderbilt. Density-matrix electronic-structure method with
linear system-size scaling. Phys. Rev. B, 47(16):10891–10894, Apr 1993.

[162] Murray S. Daw. Model for energetics of solids based on the density matrix. Phys. Rev. B,
47(16):10895–10898, Apr 1993.

[163] R. W. Nunes and David Vanderbilt. Generalization of the density-matrix method to a nonortho-
gonal basis. Phys. Rev. B, 50(23):17611–17614, Dec 1994.

[164] Yihan Shao, Chandra Saravanan, Martin Head-Gordon, and Christopher A. White. Curvy steps
for density matrix-based energy minimization: Application to large-scale self-consistent-field cal-
culations. J. Chem. Phys., 118(14):6144–6151, Apr 2003.

[165] Emanuel H. Rubensson, Elias Rudberg, and Paweł Sałek. Density matrix purification with rigorous
error control. J. Chem. Phys., 128(7):074106, Feb 2008.

[166] Marco Häser. Møller-Plesset (MP2) perturbation theory for large molecules. Theor. Chim. Acta,
87(1):147–173, Nov 1993.

[167] Gustavo E. Scuseria and Philippe Y. Ayala. Linear scaling coupled cluster and perturbation theories
in the atomic orbital basis. J. Chem. Phys., 111(18):8330–8343, Nov 1999.

[168] Jan Almlöf. Elimination of energy denominators in Møller—Plesset perturbation theory by a
Laplace transform approach. Chem. Phys. Lett., 181(4):319–320, Jun 1991.

213 Bibliography

[169] Philippe Y. Ayala and Gustavo E. Scuseria. Linear scaling second-order Moller–Plesset theory in
the atomic orbital basis for large molecular systems. J. Chem. Phys., 110(8):3660–3671, Feb 1999.

[170] Daniel S. Lambrecht, Bernd Doser, and Christian Ochsenfeld. Rigorous integral screening for
electron correlation methods. J. Chem. Phys., 123(18):184102, Nov 2005.

[171] Daniel S. Lambrecht and Christian Ochsenfeld. Multipole-based integral estimates for the rigorous
description of distance dependence in two-electron integrals. J. Chem. Phys., 123(18):184101, Nov
2005.

[172] Bernd Doser, Daniel S. Lambrecht, and Christian Ochsenfeld. Tighter multipole-based integral
estimates and parallel implementation of linear-scaling AO–MP2 theory. Phys. Chem. Chem.
Phys., 10(23):3335–3344, Jun 2008.

[173] Jan Zienau, Lucien Clin, Bernd Doser, and Christian Ochsenfeld. Cholesky-decomposed densities in
Laplace-based second-order Møller–Plesset perturbation theory. J. Chem. Phys., 130(20):204112,
May 2009.

[174] Arne Luenser, Henry F. Schurkus, and Christian Ochsenfeld. Vanishing-Overhead Linear-Scaling
Random Phase Approximation by Cholesky Decomposition and an Attenuated Coulomb-Metric.
J. Chem. Theory Comput., 13(4):1647–1655, Apr 2017.

[175] Simon A. Maurer, Lucien Clin, and Christian Ochsenfeld. Cholesky-decomposed density MP2 with
density fitting: Accurate MP2 and double-hybrid DFT energies for large systems. J. Chem. Phys.,
140(22):224112, Jun 2014.

[176] Michael Glasbrenner, Daniel Graf, and Christian Ochsenfeld. Efficient Reduced-Scaling Second-
Order Møller–Plesset Perturbation Theory with Cholesky-Decomposed Densities and an Attenua-
ted Coulomb Metric. J. Chem. Theory Comput., 16(11):6856–6868, Nov 2020.

[177] Peter Pulay and Svein Saebø. Orbital-invariant formulation and second-order gradient evaluation
in Møller-Plesset perturbation theory. Theor. Chim. Acta, 69(5):357–368, Jun 1986.

[178] Svein Saebo/ and Peter Pulay. Fourth-order Mo/ller–Plessett perturbation theory in the local
correlation treatment. I. Method. J. Chem. Phys., 86(2):914–922, Jan 1987.

[179] Svein Saebo and Peter Pulay. The local correlation treatment. II. Implementation and tests. J.
Chem. Phys., 88(3):1884–1890, Feb 1988.

[180] Peter Pinski and Frank Neese. Communication: Exact analytical derivatives for the domain-based
local pair natural orbital MP2 method (DLPNO-MP2). J. Chem. Phys., 148(3):031101, Jan 2018.

[181] Danylo Kats, Denis Usvyat, and Martin Schütz. On the use of the Laplace transform in local
correlation methods. Phys. Chem. Chem. Phys., 10(23):3430–3439, Jun 2008.

[182] Egil A. Hylleraas. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten
Terms von Ortho-Helium. Z. Phys., 54(5-6):347–366, May 1929.

[183] Georg Hetzer, Peter Pulay, and Hans-Joachim Werner. Multipole approximation of distant pair
energies in local MP2 calculations. Chem. Phys. Lett., 290(1):143–149, Jun 1998.

[184] Guntram Rauhut, James W. Boughton, and Peter Pulay. Modeling localized electron pair corre-
lation energies. J. Chem. Phys., 103(13):5662–5673, Oct 1995.

[185] Peter Pinski, Christoph Riplinger, Edward F. Valeev, and Frank Neese. Sparse maps—A systematic
infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear
scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J. Chem. Phys.,
143(3):034108, Jul 2015.

[186] Hans-Joachim Werner, Gerald Knizia, Christine Krause, Max Schwilk, and Mark Dornbach. Sca-
lable Electron Correlation Methods I.: PNO-LMP2 with Linear Scaling in the Molecular Size and
Near-Inverse-Linear Scaling in the Number of Processors. J. Chem. Theory Comput., 11(2):484–
507, Feb 2015.

Bibliography 214

[187] Marius S. Frank, Gunnar Schmitz, and Christof Hättig. The PNO–MP2 gradient and its application
to molecular geometry optimisations. Mol. Phys., 115(3):343–356, Feb 2017.

[188] Martin Schütz. Low-order scaling local electron correlation methods. V. Connected triples beyond
(T): Linear scaling local CCSDT-1b. J. Chem. Phys., 116(20):8772–8785, May 2002.

[189] Martin Schütz and Hans-Joachim Werner. Local perturbative triples correction (T) with linear
cost scaling. Chem. Phys. Lett., 318(4):370–378, Feb 2000.

[190] Martin Schütz. Low-order scaling local electron correlation methods. III. Linear scaling local
perturbative triples correction (T). J. Chem. Phys., 113(22):9986–10001, Dec 2000.

[191] Péter R. Nagy, Gyula Samu, and Mihály Kállay. Optimization of the Linear-Scaling Local Natural
Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications. J. Chem. Theory
Comput., 14(8):4193–4215, Aug 2018.

[192] Zoltán Rolik, Lóránt Szegedy, István Ladjánszki, Bence Ladóczki, and Mihály Kállay. An efficient
linear-scaling CCSD(T) method based on local natural orbitals. J. Chem. Phys., 139(9):094105,
Sep 2013.

[193] Yang Guo, Christoph Riplinger, Ute Becker, Dimitrios G. Liakos, Yury Minenkov, Luigi Cavallo,
and Frank Neese. Communication: An improved linear scaling perturbative triples correction
for the domain based local pair-natural orbital based singles and doubles coupled cluster method
[DLPNO-CCSD(T)]. J. Chem. Phys., 148(1):011101, Jan 2018.

[194] Gunnar Schmitz and Christof Hättig. Accuracy of Explicitly Correlated Local PNO-CCSD(T). J.
Chem. Theory Comput., 13(6):2623–2633, Jun 2017.

[195] Filippo Sacchetta and Christian Ochsenfeld. 2021.

[196] Danylo Kats and Martin Schütz. A multistate local coupled cluster CC2 response method based
on the Laplace transform. J. Chem. Phys., 131(12):124117, Sep 2009.

[197] T. Daniel Crawford and Rollin A. King. Locally correlated equation-of-motion coupled cluster
theory for the excited states of large molecules. Chem. Phys. Lett., 366(5):611–622, Dec 2002.

[198] Tatiana Korona and Hans-Joachim Werner. Local treatment of electron excitations in the EOM-
CCSD method. J. Chem. Phys., 118(7):3006–3019, Feb 2003.

[199] Danylo Kats, Tatiana Korona, and Martin Schütz. Local CC2 electronic excitation energies for
large molecules with density fitting. J. Chem. Phys., 125(10):104106, Sep 2006.

[200] Dávid Mester, Péter R. Nagy, and Mihály Kállay. Reduced-cost linear-response CC2 method based
on natural orbitals and natural auxiliary functions. J. Chem. Phys., 146(19):194102, May 2017.

[201] Arie Landau, Kirill Khistyaev, Stanislav Dolgikh, and Anna I. Krylov. Frozen natural orbitals for
ionized states within equation-of-motion coupled-cluster formalism. J. Chem. Phys., 132(1):014109,
Jan 2010.

[202] Ashutosh Kumar and T. Daniel Crawford. Frozen Virtual Natural Orbitals for Coupled-Cluster
Linear-Response Theory. J. Phys. Chem. A, 121(3):708–716, Jan 2017.

[203] Dávid Mester, Péter R. Nagy, and Mihály Kállay. Reduced-cost second-order algebraic-
diagrammatic construction method for excitation energies and transition moments. J. Chem.
Phys., 148(9):094111, Mar 2018.

[204] Dávid Mester, Péter R. Nagy, and Mihály Kállay. Reduced-Scaling Correlation Methods for the Ex-
cited States of Large Molecules: Implementation and Benchmarks for the Second-Order Algebraic-
Diagrammatic Construction Approach. J. Chem. Theory Comput., 15(11):6111–6126, Nov 2019.

[205] Harley R. McAlexander and T. Daniel Crawford. A Comparison of Three Approaches to the
Reduced-Scaling Coupled Cluster Treatment of Non-Resonant Molecular Response Properties. J.
Chem. Theory Comput., 12(1):209–222, Jan 2016.

[206] Benjamin Helmich and Christof Hättig. Local pair natural orbitals for excited states. J. Chem.
Phys., 135(21):214106, Dec 2011.

215 Bibliography

[207] Benjamin Helmich and Christof Hättig. A pair natural orbital implementation of the coupled
cluster model CC2 for excitation energies. J. Chem. Phys., 139(8):084114, Aug 2013.

[208] Benjamin Helmich and Christof Hättig. A pair natural orbital based implementation of ADC(2)-x:
Perspectives and challenges for response methods for singly and doubly excited states in large
molecules. Comput. Theor. Chem., 1040-1041:35–44, Jul 2014.

[209] Marius S. Frank and Christof Hättig. A pair natural orbital based implementation of CCSD
excitation energies within the framework of linear response theory. J. Chem. Phys., 148(13):134102,
Apr 2018.

[210] Chong Peng, Marjory C. Clement, and Edward F. Valeev. Exploration of Reduced Scaling Formu-
lation of Equation of Motion Coupled-Cluster Singles and Doubles Based on State-Averaged Pair
Natural Orbitals. arXiv, Feb 2018.

[211] Ruhee D’Cunha and T. Daniel Crawford. PNO++: Perturbed Pair Natural Orbitals for Coupled
Cluster Linear Response Theory. J. Chem. Theory Comput., 17(1):290–301, Jan 2021.

[212] T. Daniel Crawford, Ashutosh Kumar, Alexandre P. Bazanté, and Roberto Di Remigio. Reduced-
scaling coupled cluster response theory: Challenges and opportunities. WIREs Comput. Mol. Sci.,
9(4):e1406, Jul 2019.

[213] Achintya Kumar Dutta, Frank Neese, and Róbert Izsák. Towards a pair natural orbital coupled
cluster method for excited states. J. Chem. Phys., 145(3):034102, Jul 2016.

[214] Pablo Baudin and Kasper Kristensen. LoFEx — A local framework for calculating excitation
energies: Illustrations using RI-CC2 linear response theory. J. Chem. Phys., 144(22):224106, Jun
2016.

[215] Michael Wormit. Development and Application of Reliable Methods for the Calculation of Exci-
ted States: From Light-Harvesting Complexes to Medium-Sized Molecules. PhD thesis, Johann
Wolfgang Goethe–Universitaet Frankfurt, 2009.

[216] Yihan Shao, Laszlo Fusti Molnar, Yousung Jung, Jörg Kussmann, Christian Ochsenfeld, Shawn T.
Brown, Andrew T. B. Gilbert, Lyudmila V. Slipchenko, Sergey V. Levchenko, Darragh P. O’Neill,
A. DiStasio Robert, Jr., Rohini C. Lochan, Tao Wang, Gregory J. O. Beran, Nicholas A. Besley,
John M. Herbert, Ching Yeh Lin, Troy Van Voorhis, Siu Hung Chien, Alex Sodt, Ryan P. Steele,
Vitaly A. Rassolov, Paul E. Maslen, Prakashan P. Korambath, Ross D. Adamson, Brian Austin,
Jon Baker, Edward F. C. Byrd, Holger Dachsel, Robert J. Doerksen, Andreas Dreuw, Barry D.
Dunietz, Anthony D. Dutoi, Thomas R. Furlani, Steven R. Gwaltney, Andreas Heyden, So Hirata,
Chao-Ping Hsu, Gary Kedziora, Rustam Z. Khalliulin, Phil Klunzinger, Aaron M. Lee, Michael S.
Lee, WanZhen Liang, Itay Lotan, Nikhil Nair, Baron Peters, Emil I. Proynov, Piotr A. Pieniazek,
Young Min Rhee, Jim Ritchie, Edina Rosta, C. David Sherrill, Andrew C. Simmonett, Joseph E.
Subotnik, H. Lee Woodcock Iii, Weimin Zhang, Alexis T. Bell, Arup K. Chakraborty, Daniel M.
Chipman, Frerich J. Keil, Arieh Warshel, Warren J. Hehre, Henry F. Schaefer Iii, Jing Kong,
Anna I. Krylov, Peter M. W. Gill, and Martin Head-Gordon. Advances in methods and algorithms
in a modern quantum chemistry program package. Phys. Chem. Chem. Phys., 8(27):3172–3191,
Jul 2006.

[217] Evgeny Epifanovsky, Michael Wormit, Tomasz Kuś, Arie Landau, Dmitry Zuev, Kirill Khistyaev,
Prashant Manohar, Ilya Kaliman, Andreas Dreuw, and Anna I. Krylov. New implementation of
high-level correlated methods using a general block tensor library for high-performance electronic
structure calculations. J. Comput. Chem., 34(26):2293–2309, Oct 2013.

[218] Yihan Shao, Zhengting Gan, Evgeny Epifanovsky, Andrew T. B. Gilbert, Michael Wormit, Joerg
Kussmann, Adrian W. Lange, Andrew Behn, Jia Deng, Xintian Feng, Debashree Ghosh, Matthew
Goldey, Paul R. Horn, Leif D. Jacobson, Ilya Kaliman, Rustam Z. Khaliullin, Tomasz Kuś, Arie
Landau, Jie Liu, Emil I. Proynov, Young Min Rhee, Ryan M. Richard, Mary A. Rohrdanz, Ryan P.
Steele, Eric J. Sundstrom, H. Lee Woodcock, Paul M. Zimmerman, Dmitry Zuev, Ben Albrecht,
Ethan Alguire, Brian Austin, Gregory J. O. Beran, Yves A. Bernard, Eric Berquist, Kai Brand-
horst, Ksenia B. Bravaya, Shawn T. Brown, David Casanova, Chun-Min Chang, Yunqing Chen,

Bibliography 216

Siu Hung Chien, Kristina D. Closser, Deborah L. Crittenden, Michael Diedenhofen, Robert A.
DiStasio, Hainam Do, Anthony D. Dutoi, Richard G. Edgar, Shervin Fatehi, Laszlo Fusti-Molnar,
An Ghysels, Anna Golubeva-Zadorozhnaya, Joseph Gomes, Magnus W. D. Hanson-Heine, Philipp
H. P. Harbach, Andreas W. Hauser, Edward G. Hohenstein, Zachary C. Holden, Thomas-C. Jagau,
Hyunjun Ji, Benjamin Kaduk, Kirill Khistyaev, Jaehoon Kim, Jihan Kim, Rollin A. King, Phil
Klunzinger, Dmytro Kosenkov, Tim Kowalczyk, Caroline M. Krauter, Ka Un Lao, Adèle D. Lau-
rent, Keith V. Lawler, Sergey V. Levchenko, Ching Yeh Lin, Fenglai Liu, Ester Livshits, Rohini C.
Lochan, Arne Luenser, Prashant Manohar, Samuel F. Manzer, Shan-Ping Mao, Narbe Mardiros-
sian, Aleksandr V. Marenich, Simon A. Maurer, Nicholas J. Mayhall, Eric Neuscamman, C. Melania
Oana, Roberto Olivares-Amaya, Darragh P. O’Neill, John A. Parkhill, Trilisa M. Perrine, Roberto
Peverati, Alexander Prociuk, Dirk R. Rehn, Edina Rosta, Nicholas J. Russ, Shaama M. Sharada,
Sandeep Sharma, David W. Small, Alexander Sodt, Tamar Stein, David Stück, Yu-Chuan Su,
Alex J. W. Thom, Takashi Tsuchimochi, Vitalii Vanovschi, Leslie Vogt, Oleg Vydrov, Tao Wang,
Mark A. Watson, Jan Wenzel, Alec White, Christopher F. Williams, Jun Yang, Sina Yeganeh,
Shane R. Yost, Zhi-Qiang You, Igor Ying Zhang, Xing Zhang, Yan Zhao, Bernard R. Brooks,
Garnet K. L. Chan, Daniel M. Chipman, Christopher J. Cramer, William A. Goddard, Mark S.
Gordon, Warren J. Hehre, Andreas Klamt, Henry F. Schaefer, Michael W. Schmidt, C. David
Sherrill, Donald G. Truhlar, Arieh Warshel, Xin Xu, Alán Aspuru-Guzik, Roi Baer, Alexis T.
Bell, Nicholas A. Besley, Jeng-Da Chai, Andreas Dreuw, Barry D. Dunietz, Thomas R. Furlani,
Steven R. Gwaltney, Chao-Ping Hsu, Yousung Jung, Jing Kong, Daniel S. Lambrecht, WanZhen
Liang, Christian Ochsenfeld, Vitaly A. Rassolov, Lyudmila V. Slipchenko, Joseph E. Subotnik,
Troy Van Voorhis, John M. Herbert, Anna I. Krylov, Peter M. W. Gill, and Martin Head-Gordon.
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol.
Phys., 113(2):184–215, Jan 2015.

[219] Theoretical Chemistry Group - Faculty for Chemistry and Pharmacy - Download, Aug 2021.
[Online; accessed 28. Aug. 2021].

[220] Danylo Kats, Tatiana Korona, and Martin Schütz. Transition strengths and first-order properties
of excited states from local coupled cluster CC2 response theory with density fitting. J. Chem.
Phys., 127(6):064107, Aug 2007.

[221] Specifications - OpenMP, Aug 2021. [Online; accessed 6. Sep. 2021].

[222] MPI Documents, Sep 2021. [Online; accessed 6. Sep. 2021].

[223] BLAS (Basic Linear Algebra Subprograms), Jun 2021. [Online; accessed 28. Aug. 2021].

[224] LAPACK — Linear Algebra PACKage, Aug 2021. [Online; accessed 28. Aug. 2021].

[225] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[226] PBLAS, Mar 1995. [Online; accessed 28. Aug. 2021].

[227] Lynn Elliot Cannon. A cellular computer to implement the Kalman filter algorithm. Montana
State University - Bozeman, College of Engineering, pages 1–229, 1969.

[228] ScaLAPACK— Scalable Linear Algebra PACKage, Apr 2021. [Online; accessed 28. Aug. 2021].

[229] Urban Borstnik, Joost VandeVondele, Valery Weber, and Juerg Hutter. Sparse Matrix Multi-
plication: The Distributed Block-Compressed Sparse Row Library. Parallel Computing, 40(5-6),
2014.

[230] The CP2K Developers Group. DBCSR: Distributed Block Compressed Sparse Row matrix library,
2020.

[231] Jürg Hutter, Marcella Iannuzzi, Florian Schiffmann, and Joost VandeVondele. cp2k: atomistic
simulations of condensed matter systems. WIREs Comput. Mol. Sci., 4(1):15–25, Jan 2014.

[232] Ole Schütt, Peter Messmer, Jürg Hutter, and Joost VandeVondele. GPU-Accelerated Sparse Ma-
trix–Matrix Multiplication for Linear Scaling Density Functional Theory. In Electronic Structure
Calculations on Graphics Processing Units, pages 173–190. John Wiley & Sons, Ltd, Chichester,
England, UK, Mar 2016.

217 Bibliography

[233] Ilia Sivkov, Alfio Lazzaro, and Juerg Hutter. DBCSR: A Library for Dense Matrix Multiplications
on Distributed GPU-Accelerated Systems. arXiv, Oct 2019.

[234] Maximilien Ambroise. Designing a modern c++/fortran interface by example. Presented at Fort-
ranCon 2020, University of Zurich, Switzerland, 2020.

[235] Kestutis Aidas, Celestino Angeli, Keld L. Bak, Vebjørn Bakken, Radovan Bast, Linus Boman,
Ove Christiansen, Renzo Cimiraglia, Sonia Coriani, Pål Dahle, Erik K. Dalskov, Ulf Ekström,
Thomas Enevoldsen, Janus J. Eriksen, Patrick Ettenhuber, Berta Fernández, Lara Ferrighi, Heike
Fliegl, Luca Frediani, Kasper Hald, Asger Halkier, Christof Hättig, Hanne Heiberg, Trygve Hel-
gaker, Alf Christian Hennum, Hinne Hettema, Eirik Hjertenæs, Stinne Høst, Ida-Marie Høyvik,
Maria Francesca Iozzi, Branislav Jansík, Hans Jørgen Aa. Jensen, Dan Jonsson, Poul Jørgensen,
Joanna Kauczor, Sheela Kirpekar, Thomas Kjærgaard, Wim Klopper, Stefan Knecht, Rika Koba-
yashi, Henrik Koch, Jacob Kongsted, Andreas Krapp, Kasper Kristensen, Andrea Ligabue, Ola B.
Lutnæs, Juan I. Melo, Kurt V. Mikkelsen, Rolf H. Myhre, Christian Neiss, Christian B. Nielsen,
Patrick Norman, Jeppe Olsen, Jógvan Magnus H. Olsen, Anders Osted, Martin J. Packer, Filip
Pawlowski, Thomas B. Pedersen, Patricio F. Provasi, Simen Reine, Zilvinas Rinkevicius, Torgeir A.
Ruden, Kenneth Ruud, Vladimir V. Rybkin, Pawel Sałek, Claire C. M. Samson, Alfredo Sánchez
de Merás, Trond Saue, Stephan P. A. Sauer, Bernd Schimmelpfennig, Kristian Sneskov, Arnfinn H.
Steindal, Kristian O. Sylvester-Hvid, Peter R. Taylor, Andrew M. Teale, Erik I. Tellgren, David P.
Tew, Andreas J. Thorvaldsen, Lea Thøgersen, Olav Vahtras, Mark A. Watson, David J. D. Wilson,
Marcin Ziolkowski, and Hans Ågren. The Dalton quantum chemistry program system. WIREs
Comput. Mol. Sci., 4(3):269–284, May 2014.

[236] Mark S. Gordon and Michael W. Schmidt. Advances in electronic structure theory: GAMESS a
decade later. In Theory and Applications of Computational Chemistry, pages 1167–1189. Elsevier,
Walthm, MA, USA, Jan 2005.

[237] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang,
J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong. NWChem: A comprehensive and
scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun.,
181(9):1477–1489, Sep 2010.

[238] Justin M. Turney, Andrew C. Simmonett, Robert M. Parrish, Edward G. Hohenstein, Francesco A.
Evangelista, Justin T. Fermann, Benjamin J. Mintz, Lori A. Burns, Jeremiah J. Wilke, Micah L.
Abrams, Nicholas J. Russ, Matthew L. Leininger, Curtis L. Janssen, Edward T. Seidl, Wesley D.
Allen, Henry F. Schaefer, Rollin A. King, Edward F. Valeev, C. David Sherrill, and T. Daniel
Crawford. Psi4: an open-source ab initio electronic structure program. WIREs Comput. Mol. Sci.,
2(4):556–565, Jul 2012.

[239] Qiming Sun, Timothy C. Berkelbach, Nick S. Blunt, George H. Booth, Sheng Guo, Zhendong Li,
Junzi Liu, James D. McClain, Elvira R. Sayfutyarova, Sandeep Sharma, Sebastian Wouters, and
Garnet Kin-Lic Chan. PySCF: the Python-based simulations of chemistry framework. WIREs
Comput. Mol. Sci., 8(1):e1340, Jan 2018.

[240] Zilvinas Rinkevicius, Xin Li, Olav Vahtras, Karan Ahmadzadeh, Manuel Brand, Magnus Ringholm,
Nanna Holmgaard List, Maximilian Scheurer, Mikael Scott, Andreas Dreuw, and Patrick Norman.
VeloxChem: A Python-driven density-functional theory program for spectroscopy simulations in
high-performance computing environments. WIREs Comput. Mol. Sci., 10(5):e1457, Sep 2020.

[241] Qiming Sun. Libcint: An efficient general integral library for gaussian basis functions. Journal of
Computational Chemistry, 36:1664–1671, 2015.

[242] Toru Shiozaki. BAGEL: Brilliantly Advanced General Electronic-structure Library. WIREs Com-
put. Mol. Sci., 8(1):e1331, Jan 2018.

[243] Benjamin Helmich-Paris and Lucas Visscher. Improvements on the minimax algorithm for the
Laplace transformation of orbital energy denominators. J. Comput. Phys., 321:927–931, Sep 2016.

[244] Péter Pulay. Convergence acceleration of iterative sequences. the case of scf iteration. Chem. Phys.
Lett., 73(2):393–398, Jul 1980.

Bibliography 218

[245] Ernest R. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding
eigenvectors of large real-symmetric matrices. J. Comput. Phys., 17(1):87–94, Jan 1975.

[246] Sonia Coriani, Thomas Fransson, Ove Christiansen, and Patrick Norman. Asymmetric-Lanczos-
Chain-Driven Implementation of Electronic Resonance Convergent Coupled-Cluster Linear Re-
sponse Theory. J. Chem. Theory Comput., 8(5):1616–1628, May 2012.

[247] Jeppe Olsen, Poul Jørgensen, and Jack Simons. Passing the one-billion limit in full configuration-
interaction (FCI) calculations. Chem. Phys. Lett., 169(6):463–472, Jun 1990.

[248] Ronald B. Morgan. Davidson’s method and preconditioning for generalized eigenvalue problems.
J. Comput. Phys., 89(1):241–245, Jul 1990.

[249] C. B. Moler, I. Shavitt, and Lawrence Berkeley Laboratory. National Resource for Computation
In Chemistry. Report on the Workshop Numerical Algorithms in Chemistry: Algebraic Methods:
August 9-11, 1978. Lawrence Berkeley Laboratory, University of California, Berkeley, CA, USA,
1978.

[250] W. Butscher and W. E. Kammer. Modification of Davidson’s method for the calculation of ei-
genvalues and eigenvectors of large real-symmetric matrices: “root homing procedure”. J. Comput.
Phys., 20(3):313–325, Mar 1976.

[251] Jianwei Xiao and Ming Gu. Spectrum-Revealing Cholesky Factorization for Kernel Methods. In
2016 IEEE 16th International Conference on Data Mining (ICDM), pages 1293–1298. IEEE, Dec
2016.

[252] Jianwei Xiao, Ming Gu, and Julien Langou. Fast Parallel Randomized QR with Column Pivoting
Algorithms for Reliable Low-Rank Matrix Approximations. In 2017 IEEE 24th International
Conference on High Performance Computing (HiPC), pages 233–242. IEEE, Dec 2017.

[253] Marco Häser and Jan Almlöf. Laplace transform techniques in Mo/ller–Plesset perturbation theory.
J. Chem. Phys., 96(1):489–494, Jan 1992.

[254] Akio Takatsuka, Seiichiro Ten-no, and Wolfgang Hackbusch. Minimax approximation for the de-
composition of energy denominators in Laplace-transformed Møller–Plesset perturbation theories.
J. Chem. Phys., 129(4):044112, Jul 2008.

[255] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In ACM ’69:
Proceedings of the 1969 24th national conference, pages 157–172. Association for Computing Ma-
chinery, New York, NY, USA, Aug 1969.

[256] Susi Lehtola. Assessment of Initial Guesses for Self-Consistent Field Calculations. Superposition
of Atomic Potentials: Simple yet Efficient. J. Chem. Theory Comput., 15(3):1593–1604, Mar 2019.

[257] H. S. Brandi, M. M. De Matos, and R. Ferreira. Fractional occupation in the hartree-fock method.
Chem. Phys. Lett., 73(3):597–601, Aug 1980.

[258] Per-Olov Löwdin. On the Nonorthogonality Problem. In Advances in Quantum Chemistry, vo-
lume 5, pages 185–199. Academic Press, Cambridge, MA, USA, Jan 1970.

[259] Susi Lehtola. Curing basis set overcompleteness with pivoted Cholesky decompositions. J. Chem.
Phys., 151(24):241102, Dec 2019.

