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Wei
he di�raktive Ho
henergiestreuung und Formfaktoren

in ni
htperturbativer QCD

Zusammenfassung

In der vorliegenden Arbeit untersu
hen wir wei
he Ho
henergie-Reaktionen im Rah-

men ni
htperturbativer Modelle. Dazu verwenden wir ein auf einem Funktionalin-

tegral-Ansatz beruhendes Modell und leiten die Streuamplituden her, deren wesent-

li
her Bestandteil Erwartungswerte von li
htartigen Wegner-Wilson S
hleifen und

Linien sind, die dann im Modell des sto
hastis
hen Vakuums bere
hnet werden.

Mesonen bes
hreiben wir in einem einfa
hen Quark-Antiquark Bild, f�ur Baryonen

nehmen wir eine Quark-Diquark Struktur an, als Hadron-Wellenfunktionen verwen-

den wir einen Wirbel-Ste
h-Bauer Ansatz. Aus den Streuamplituden bere
hnen wir

integrierte und di�erentielle Wirkungsquers
hnitte sowohl f�ur elastis
he und di�rak-

tive Proton-Proton als au
h f�ur Proton-Pion Streuung bei hohen S
hwerpunktsen-

ergien und kleinen Impuls�ubertr�agen und verglei
hen mit experimentellen Daten.

Abh�angig von der Symmetrie des jeweiligen Endzustandes erhalten wir entweder

C = P = +1 (Pomeron) oder C = P = �1 (Odderon) Austaus
h. Des weiteren

bere
hnen wir im Rahmen des Modells die Isovektor-Formfaktoren des Protons und

des Pions bei raumartigen Impuls�ubertr�agen. Im abs
hliessenden Kapitel verwen-

den wir einen Dispersionsrelations-Ansatz zur Bere
hnung des Pion Formfaktors

bei zeitartigen Impuls�ubertr�agen. Aus dem Verglei
h mit experimentellen Daten

bestimmen wir die Massen und Kopplungskonstanten der �- und !-Mesonen.

Soft di�ra
tive high energy s
attering and form fa
tors in

nonperturbative QCD

Abstra
t

In this work we study soft high energy rea
tions in the framework of nonperturbative

models. Using a fun
tional integral approa
h we derive the s
attering amplitudes,

whi
h are governed by expe
tation values of light-likeWegner-Wilson loops and lines,

whi
h then are then evaluated in the model of the sto
hasti
 va
uum. We des
ribe

mesons in a simple quark-antiquark pi
ture, for baryons we assume a quark-diquark

stru
ture, as hadroni
 wave fun
tions we apply a Wirbel-Ste
h-Bauer ansatz. In the

following we 
al
ulate integrated and di�erential 
ross se
tions from the s
attering

amplitudes, as well for elasti
 and di�ra
tive proton-proton as for proton-pion s
at-

tering at high 
entre of mass energies and small momentum transfers and 
ompare

to experimental data. Depending on the symmetry of the respe
tive �nal state we

get either C = P = +1 (pomeron) oder C = P = �1 (odderon) ex
hange. Further-

more we 
al
ulate the isove
tor form fa
tors of the proton and the pion at spa
e-like

momentum transfers. In the �nal 
hapter we use a dispersion approa
h to 
al
ulate

the pion form fa
tor at time-like momentum transfers and determine the masses and


oupling 
onstants of the �- and !-mesons from a 
omparison to experimental data.
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Chapter 1

Introdu
tion

Today it is 
ommon belief that Quantum Chromodynami
s (QCD) is the theory

des
ribing the physi
s of the strong intera
tion. QCD is a Yang-Mills theory [1℄

with the gauge group SU(3). The Lagrangian of QCD is 
onstru
ted from the basi


degrees of freedom, the quarks and gluons, in terms of whi
h we should be able to

des
ribe all strong pro
esses. Due to the non-abelian stru
ture of SU(3), both quarks

and gluons 
arry 
olour-
harge. But in the real world we observe neither quarks nor

gluons as free parti
les. Instead, the parti
les we see in nature are hadrons, whi
h are


olourless obje
ts, in whi
h the quarks and gluons are 
on�ned. The problem now is

to �nd a suitable transition from the level of quarks and gluons, whose transa
tions

are des
ribed by the QCD Lagrangian, to the level of hadrons, whi
h are seen in

the real world pro
esses. For 
ertain 
ir
umstan
es we 
an solve this problem and

derive results from �rst prin
iples, starting from the Lagrangian.

One 
ase where this is possible is the �eld of short-distan
e phenomena. There,

all o

urring momentum s
ales are mu
h larger than the QCD s
ale parameter

�

QCD

� 200MeV. Due to asymptoti
 freedom [2℄, the QCD 
oupling parameter

be
omes small for large momentum s
ales and therefore we 
an use perturbative

methods, whi
h allow us for example to 
al
ulate the total 
ross se
tion in ele
tron-

positron annihilation or the total hadroni
 de
ay rate of the Z-boson. Another

example is the 
al
ulation of parton distribution fun
tions for large Q

2

by means of

the DGLAP equation [3℄, whi
h has been derived from perturbative QCD.

For long-distan
e phenomena, i.e. when all o

urring momentum s
ales are only

of order �

QCD

or smaller, the QCD 
oupling be
omes too large and perturbation

theory breaks down. This is the regime of nonperturbative QCD, where we have to

use numeri
al methods to obtain results from �rst prin
iples. One su
h numeri
al

method is latti
e QCD [4, 5℄. Typi
al quantities that are 
al
ulated in this 
ontext

are e.g. hadron masses.

The subje
t of this work are soft high energy rea
tions, whi
h are neither pure

short-distan
e, nor pure long-distan
e phenomena, be
ause we deal with two mo-

mentum s
ales: the 
entre of mass (
.m.) energy is be
oming large,

p

s & 10GeV,

the momentum transfer stays �nite,

p

jtj . 1GeV. Therefore, neither perturbation

1



2 Chapter 1. Introdu
tion

theory nor numeri
al methods su
h as latti
e QCD 
an be applied dire
tly and we

have to revert to models.

Until today, of 
ourse a lot of models have been developed to des
ribe high

energy hadron-hadron s
attering. Examples are the geometri
 model [6℄, the valon

model [7℄, topologi
al expansions and strings [8℄, perturbative �eld theoreti
al 
al
u-

lations [9℄ and the work of Cheng and Wu on the behaviour of high energy s
attering

amplitudes in quantum �eld theory based on perturbative 
al
ulations (see [10℄ and

referen
es therein).

The experimentally observed in
rease of total 
ross se
tions for hadroni
 rea
-

tions with the 
.m. energy [11℄, starting at about

p

s = 10 GeV, has been des
ribed

phenomenologi
ally by Donna
hie and Landsho� [12℄ in the 
ontext of Regge the-

ory [13℄. In this pi
ture the pomeron behaves like a photon with C = +1 and


ouples to single quarks, the transition to the hadron level then leads to the addi-

tive quark rule [14℄. The rise of the total hadroni
 
ross se
tions 
an be des
ribed by

a pomeron with an inter
ept slightly larger than one [11,12℄. For inelasti
 di�ra
tion,

the pomeron-photon analogy was applied in [15℄ to relate the 
ross se
tion of these

rea
tions in a quantitative way to the stru
ture fun
tions of deep inelasti
 ele
tron-

proton s
attering. For reviews on nonperturbative models we refer to [16{19℄.

A new nonperturbative des
ription of soft hadroni
 high energy rea
tions, start-

ing from a mi
ros
opi
 level, was developed in [20℄ where in the 
ase of an abelian

gluon model the pomeron properties were related to nonperturbative aspe
ts of

the va
uum like the gluon 
ondensate introdu
ed by Shifman, Vainshtein and Za-

kharov [21℄. These methods were generalised to QCD in [22℄. In this model the ob-

je
ts governing the s
attering amplitudes are 
orrelation fun
tions of Wegner-Wilson

lines and loops [23,24℄, whi
h are then evaluated in the model of the sto
hasti
 va
-

uum [25℄ as formulated in Minkowski spa
e in [23, 24, 26℄.

This method has been applied to various rea
tions, for example ex
lusive ve
tor

meson produ
tion [27{29℄, elasti
 hadron-hadron s
attering [30℄, and photo- and

ele
troprodu
tion of pseudos
alar and tensor mesons [31, 32℄. In this work we will

extend the model to the des
ription of inelasti
 di�ra
tive hadron-hadron s
attering.

In 
hapter 2 we present the basi
 prin
iples of our model. Progressing as in [22{

24,26{30,33,34℄ we start from quark-quark s
attering, where we apply a fun
tional

integral approa
h and use an eikonal expansion to derive an expression for the quark-

quark s
attering amplitudes at high energies and small momentum transfers. The

transition to the hadron level is performed by folding with suitably de�ned wave

fun
tions. In this work, the 
onstituent 
on�guration of baryons is assumed to be

of the quark-diquark type for the reasons given in [35, 36℄. Then baryons a
t as


olour dipoles like mesons. Moreover we use two di�erent models for the di�ra
tive

�nal state X when des
ribing inelasti
 di�ra
tive s
attering pro
esses. The soft high

energy hadron-hadron s
attering amplitudes for both elasti
 and inelasti
 di�ra
tive

s
attering are given at the end of this 
hapter.

The evaluation of the s
attering amplitudes is the topi
 of the next 
hapter. We

�rst give a brief summery of the properties of the model of the sto
hasti
 va
uum and
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then apply it in its Minkowskian formulation to 
al
ulate the 
orrelation fun
tions of

the light-like Wegner-Wilson loops, where we use two approa
hes. Then we dis
uss

the hadroni
 wave fun
tions [37℄ for s- and p-wave states. Furthermore we de�ne

wave fun
tions in
orporating the eigenfun
tions of a two-dimensional harmoni
 os-


illator whi
h we need for one of the methods des
ribing the di�ra
tive �nal state

in inelasti
 di�ra
tive s
attering. Finally, we analyse symmetry properties of the

s
attering amplitudes after inserting the wave fun
tions and the expressions whi
h

we obtain from the evaluation of the loop-loop 
orrelation fun
tions in the di�erent

approa
hes. Based on symmetry 
onsiderations we �nd that our model gives either

C = P = +1, i.e. pomeron, ex
hange, or C = P = �1, i.e. odderon, ex
hange,

depending on whi
h rea
tion in parti
ular we are studying. To be able to study

odderon ex
hange in the framework of our model in a purely hadroni
 rea
tion, we

have 
hosen a spe
i�
 rea
tion whi
h should have a 
lear experimental signature.

In 
hapter 4 we 
al
ulate integrated and di�erential 
ross se
tions from the s
at-

tering amplitudes derived in 
hapters 2 and 3. We 
on
entrate on proton-proton

and proton-pion s
attering and 
ompare our numeri
al results obtained from both

approa
hes to experimental data. In the 
ase of pp-s
attering we brie
y review

previous results on the di�erential elasti
 
ross se
tion from [30℄. We then turn to

single di�ra
tive disso
iation pp ! pX. Most of the results shown in this 
ontext

are the basis for the publi
ation [38℄, where in addition to hadron-hadron s
atter-

ing also photo- and ele
troprodu
tion of �

0

-mesons is dis
ussed. Furthermore we

study the double di�ra
tive ex
itation of the proton pp ! N(1535)N(1535) whi
h

is mediated by odderon ex
hange and give our predi
tions for the di�erential and

integrated 
ross se
tion for this rea
tion. For proton-pion s
attering we also start

with a review of the di�erential elasti
 
ross se
tion from [30℄ and then 
ontinue

with the study of single di�ra
tive disso
iation of the pion p� ! pX.

The next 
hapter deals with the isove
tor proton and pion form fa
tors at small

spa
e-like momentum transfers. In the region of interest to us here, 0 � �q

2

�

10GeV

2

, the form fa
tor is dominated by nonperturbative QCD e�e
ts [39℄, and 
an

for example be des
ribed by a pi
ture based on the 
on
ept of 
onstituent quarks

whi
h e�e
tively a

ount for nonperturbative dynami
s [40℄. In this region all pre-


onditions for the appli
ation of our nonperturbative model are ful�lled. Therefore

we 
an 
al
ulate the proton and pion form fa
tors in the framework of our model

and extra
t the ele
tromagneti
 radii from �ts to experimental data. However, we

do not intend to perform a pre
ision 
al
ulation of the form fa
tors but apply the


al
ulation mainly to extra
t parameters we need in the de�nition of our hadron

wave fun
tions. The results obtained here are also published in [38℄.

The aim of 
hapter 6 is to study the pion form fa
tor for small time-like mo-

mentum transfers. In this region we 
an no longer apply the nonperturbative model

whi
h we have used so far. There are many approa
hes to des
ribe the time-like pion

form fa
tor, in
luding ve
tor meson dominan
e [41℄, 
hiral perturbation theory [42℄

and the appli
ation of dispersion relations [43℄. In the following we apply 
onsis-

tently a dispersion approa
h with ���, �KK, and gauge-invariant �
 
ouplings.



4 Chapter 1. Introdu
tion

The form fa
tor is obtained by resummation of pion and kaon loops. For the loop

diagrams we use a dispersion representation and analyse ambiguities related to sub-

tra
tion 
onstants. The resulting representation for the form fa
tor is shown to have

the form of the 
onventional ve
tor meson dominan
e formula with one important

distin
tion - the e�e
tive �-meson de
ay 
onstant f

e�

�

turns out to depend on the

momentum transfer. For the ele
tromagneti
 pion form fa
tor we in
lude in addition

the � � ! mixing e�e
ts. We apply the representations obtained to the analysis of

the data on the pion form fa
tors from e

+

e

�

annihilation and � de
ay and extra
t

the �

�

, �

0

and ! masses and 
oupling 
onstants. The work of this 
hapter has been

published in [44℄.

Our 
on
lusions and a summary are given in 
hapter 7.



Chapter 2

Derivation of the s
attering

amplitudes

The formalism we are going to use, as developed in [22℄, is based on the following

general 
onsiderations. Imagine that we look at e.g. elasti
 hadron-hadron s
attering

h

1

(P

1

) + h

2

(P

2

)! h

1

(P

3

) + h

2

(P

4

) (2.1)

at high energies and small momentum transfer through a \mi
ros
ope". This mi-


ros
ope has to have an appropriate resolution, whi
h allows us to see the essential

features of the pro
ess but does not resolve the unimportant details of the internal

stru
ture of the hadrons, whi
h would only 
ompli
ate the des
ription. In [22℄ the

appropriate resolution has been estimated by a series of simple arguments based

on the un
ertainty relation. For a time interval of approximately �

0

� 2 fm the

following assumptions 
on
erning the s
attering pro
ess 
an be made:

� The parton state of the hadrons does not 
hange qualitatively, i.e. parton

annihilation and parton produ
tion pro
esses are negligible.

� The partons are subje
t to soft elasti
 s
attering.

� The partons move on essentially straight light-like worldlines.

To derive the s
attering amplitudes for soft high energy hadron-hadron s
attering,

we progress as follows: �rst, we 
onsider quark-quark s
attering in the framework

of the model. On this level, the essential features of the model will be
ome ap-

parent and we will see that the strong intera
tion between the quarks is mediated

by the nonperturbative gluoni
 va
uum 
u
tuations. Then we dis
uss how to treat

antiquarks in our formalism and give simple rules for the 
onstru
tion of s
attering

amplitudes for arbitrary systems of quarks and antiquarks in the framework of our

model. With these ingredients we 
an progress to the level of hadrons, whi
h we

perform by folding the partoni
 s
attering amplitudes by suitable hadroni
 wave

fun
tions. In the last step we 
onstru
t the hadroni
 T -matrix elements for the

types of rea
tions we are interested in.

5



6 Chapter 2. Derivation of the s
attering amplitudes

2.1 Quark-quark s
attering

Consider the s
attering of two quarks q

1

and q

2

q

1

(p

1

) + q

2

(p

2

)! q

3

(p

3

) + q

4

(p

4

); (2.2)

where p

i

; i = 1 : : : 4 are the four-momenta of the quarks and the momentum transfer

is q = p

1

� p

3

. The normalisation of the quark states is given by

hq(p

j

; s

j

; A

j

; f

j

)jq(p

k

; s

k

; A

k

; f

k

)i

= Æ

s

j

;s

k

Æ

A

j

;A

k

Æ

f

j

;f

k

(2�)

2

q

2p

0

j

2p

0

k

Æ

(3)

(p

j

� p

k

) (2.3)

� Æ(j; k):

As an abbreviation we use j(k) to denote the momentum p

j(k)

and the set of spin,


olour and 
avour index s

j(k)

; A

j(k)

and f

j(k)

of the quark q

j(k)

, respe
tively.

2.1.1 The fun
tional integral approa
h

Applying the redu
tion formalism by Lehmann, Symanzik and Zimmermann to the

S-matrix element of rea
tion (2.2), we get an integral over the 4-point fun
tion of

the quark �elds

S

fi

� hq

3

(p

3

)q

4

(p

4

)jSjq

1

(p

1

)q

2

(p

2

)i

= Z

�2

 

Z

d

4

x

1

d

4

x

2

d

4

x

3

d

4

x

4

e

�i(p

1

�x

1

+p

2

�p

2

�p

3

�x

3

�p

4

�x

4

)

�u

4

(i

!

�6

4

�m

0

q

4

)�u

3

(i

!

�6

3

�m

0

q

3

)

h0jT(q

4

(x

4

)q

3

(x

3

)�q

1

(x

1

)�q

2

(x

2

))j0i

(i

 

�6

1

+m

0

q

1

)u

1

(i

 

�6

2

+m

0

q

2

)u

2

: (2.4)

Here Z

 

is the wave fun
tion renormalisation 
onstant and m

0

q

j

are the renormalised

quark masses, de�ned by the lo
ation of the pole of Fourier transform of the full

Feynman propagator. The 4-point fun
tion 
an be 
al
ulated nonperturbatively

using the fun
tional integral of QCD

h0jT(q

4

(x

4

)q

3

(x

3

)�q

1

(x

1

)�q

2

(x

2

))j0i

= Z

�1

Z

D(G; q; �q) exp

�

i

Z

dxL

QCD

(x)

�

q

4

(x

4

)q

3

(x

3

)�q

1

(x

1

)�q

2

(x

2

) (2.5)

with the partition fun
tion

Z = h0

out

j0

in

i =

Z

D(G; q; �q) exp

�

i

Z

dxL

QCD

(x)

�

: (2.6)
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The QCD Lagrangian is given by

L

QCD

= �

1

2

Tr(G

��

(x)G

��

(x)) +

X

q

�q(x)(iD6 �m

q

)q(x): (2.7)

Here q(x) are the quark �elds with masses m

q

, q = u; d; s; 
; b; t 
ounting the dif-

ferent quark 
avours. In standard notation G

�

(x) denotes the matrix of the gluon

potential, G

��

(x) the matrix of the gluon �eld strength tensor.

G

�

(x) = G

a

�

(x)

�

a

2

;

G

��

(x) = �

�

G

�

(x)� �

�

G

�

(x) + ig[G

�

(x); G

�

(x)℄ (2.8)

�

a; a=1;:::;8

are the Gell-Mann matri
es of SU(3) with 
olour index a, D

�

is the 
o-

variant derivative, de�ned by

D

�

= �

�

+ igG

�

: (2.9)

As the Lagrangian is bilinear in the quark and antiquark �elds we 
an dire
tly

perform the integration over the fermioni
 degrees of freedom by a generalised Gaus-

sian integration and �nd

h0jT(q

4

(x

4

)q

3

(x

3

)�q

1

(x

1

)�q

2

(x

2

))j0i

= Z

�1

Z

D(G) exp

�

�

i

2

Z

dxTr(G

��

(x)G

��

(x))

�

Y

q

det [�i(iD6 �m

q

+ i�)℄

�

Æ

f

3

f

1

1

i

S

F

(x

3

; x

1

;G)Æ

f

4

f

2

1

i

S

F

(x

4

; x

2

;G)� (3$ 4)

�

: (2.10)

S

F

(x

j

; x

k

;G) is the unrenormalised Green's fun
tion for a quark in an external gluon

�eld G

�

(x) for whi
h we have

(iD6 �m

q

)S

F

(x

j

; x

k

;G) = �Æ

(4)

(x

j

� x

k

): (2.11)

The Lippmann-S
hwinger equation

S

F

(x

j

; x

k

;G) = S

0

F

(x

j

; x

k

)� S

0

F

(x

j

; x

k

)(gG6 �Æm)S

F

(x

j

; x

k

;G) (2.12)

relates the unrenormalised Green's fun
tion to the free Green's fun
tion S

0

F

(x

j

; x

k

)

with renormalised mass m

0

= m+ Æm. Using the shorthand notation

jj) := u

s

j

;A

j

(p

j

)e

�ip

j

�x

j

;

(jj := �u

s

j

;A

j

(p

j

)e

ip

j

�x

j

;

j 

F

p

j

) := S

F

(i

 

�6

j

+m

0

q

j

)jj); (2.13)
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where j 

F

p

j

) are quark wave fun
tions whi
h satisfy the Dira
 equation in an external

gluon potential

(iD6 �m

q

j

)j 

F

p

j

) = 0; j = 1; 2; (2.14)

and the Lippmann-S
hwinger equation, we get from (2.4)

S

fi

= �Z

�2

 

D

Æ

f

3

f

1

Æ

f

4

f

2

(3j(gG6 �Æm

q

1

)j 

F

p

1

)(4j(gG6 �Æm

q

2

)j 

F

p

2

)� (3$ 4)

E

G

: (2.15)

In our notation we impli
itly in
lude the integrations over x

j

; x

k

, resulting from the

LSZ redu
tion formalism, when we write expressions of the form (kj 

F

p

j

). To 
lear

up the notation further we have introdu
ed the bra
ket symbol h i

G

of a fun
tion

F (G) as

hF (G)i

G

:= Z

�1

Z

D(G) exp

�

�

i

2

Z

dxTr(G

��

(x)G

��

(x))

�

Y

q

det [�i(iD6 �m

q

+ i�)℄F (G): (2.16)

In (2.15) we have two 
ontributions, the one that is written out expli
itely 
orre-

sponds to t-
hannel ex
hange, the one that we have written symboli
ally as (3$ 4),

meaning that quark 3 has to be inter
hanged with quark 4, 
orresponds to an u-


hannel pro
ess. In high energy s
attering with

p

s ! 1 and small

p

�t the

u-
hannel 
ontributions are suppressed by a fa
tor s

�1

at least and we therefore will

negle
t them in the following. With the de�nition of quark s
attering amplitudes

M

F

kj

(G) := (kj(i

!

�6

k

�m

0

q

k

)S

F

(i

 

�6

j

+m

0

q

k

)jj)

= (kj(gG6 �Æm

q

j

)j 

F

p

j

); (j = 1; k = 3); (j = 2; k = 4);

(2.17)

whi
h have the 
orre
t form for a s
attering amplitude, i.e. an in
oming 
omplete

wave folded with the potential and an outgoing plane wave, we get from (2.15)

S

fi

= �Z

�2

 

Æ

f

3

f

1

Æ

f

4

f

2

hM

F

31

(G)M

F

42

(G)i

G

: (2.18)

This equation 
an be interpreted as follows: the in
oming quarks are s
attered inde-

pendently on the gluon ba
kground �elds. This is des
ribed by the quark s
attering

amplitudesM

F

31

;M

F

42

whi
h are evaluated independently. Then we have to average

over all gluon �eld 
on�gurations by performing the fun
tional integration h i

G

.

The up to now undetermined wave fun
tion renormalisation 
onstant Z

 

appears

in (2.18). However, one of the assumptions of our model is that over the time interval


onsidered by us, no parton 
reation or annihilation pro
esses o

ur, meaning Z

 

should be equal to 1. In [22℄ Z

 

has been 
al
ulated in the framework of the model

and one 
onsistently �nds Z

 

= 1. In the following we therefore set the wave

fun
tion renormalisation 
onstant to 1.
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Before we 
ontinue our programme and have to �nd a suitable high energy ap-

proximation that will allow us to 
al
ulate the quark s
attering amplitudesM

F

kj

(G),

we note that the wave fun
tions j 

F

p

j

) do not satisfy the desired boundary 
onditions

for x

0

! �1. The transition from Feynman wave fun
tions j 

F

p

j

) to retarded wave

fun
tions j 

r

p

j

) 
an be performed using the Lippmann-S
hwinger equation (2.12).

The wave fun
tions possess the 
orre
t behaviour for x

0

! �1, namely that of a

in
oming plain wave

j 

r

p

j

)

x

0

!�1

�! jj): (2.19)

The repla
ement of M

F

kj

with M

r

kj

in (2.18), i.e. going from Feynman to retarded

boundary 
onditions, is a non-trivial step. It has been shown in [22℄ that this

repla
ement is valid in the high energy limit for gluon potentials G

�

with an upper

bound for the frequen
y spe
trum. This is in 
onsisten
y with our model, where we

assumed that the partons undergo soft, elasti
 s
attering. Therefore the fun
tional

integral in (2.18) is dominated by gluons with a frequen
y that is suÆ
iently small

and we 
an write

S

fi

= �Æ

f

3

f

1

Æ

f

4

f

2

hM

r

31

(G)M

r

42

(G)i

G

; (2.20)

with

M

r

kj

(G) := (kj(gG6 �Æm

q

j

)j 

r

p

j

): (2.21)

2.1.2 The eikonal expansion

As mentioned before now we have to 
al
ulate the quark s
attering amplitudes whi
h

involves solving the Dira
 equation for a quark in an external gluon potential

(iD6 �m

q

j

)j 

r

p

j

) = (i�6 �gG6 (x)�m

0

q

j

+ Æm

q

j

)j 

r

p

j

) = 0 (2.22)

and respe
ting the boundary 
ondition (2.19), whi
h of 
ourse 
annot be done ex-

a
tly. However, sin
e we are only interested in the high energy limit of (2.4) for small

momentum transfers, the DeBroglie wavelength of the quarks propagating through

the gluon potentials are suÆ
iently small 
ompared to the 
u
tuations of the gluoni



on�gurations governing the fun
tional integral in (2.4) and we 
an use an eikonal

approximation. For this purpose it is 
onvenient to use light-
one variables whi
h

are de�ned by

x

�

= x

0

� x

3

(2.23)

for any 4-ve
tor x and to 
hoose the 
entre of mass system as referen
e frame. In

the high energy limit the quark light-
one momenta then go to in�nity and the

transverse momenta stay �nite.

In the eikonal approximation we 
an now solve the di�erential equation (2.22)

and satisfy the boundary 
onditions (2.19). We pro
eed as explained in [22,33℄ and
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�nd as solutions for the quark wave fun
tions in leading order

 

r

p

1

(x) = V

�

(x

+

; x

�

;x

T

)

�

1 +O

�

1

p

1+

�

�

e

�ip

1

�x

u

1

(p

1

);

 

r

p

2

(x) = V

+

(x

+

; x

�

;x

T

)

�

1 +O

�

1

p

2�

�

�

e

�ip

2

�x

u

2

(p

2

); (2.24)

with the eikonal phases

V

�

(x

+

; x

�

;x

T

) = P

�

exp

�

�

ig

2

Z

x

+

�1

dx

0

+

G

�

(x

0

+

; x

�

;x

T

)

��

;

V

+

(x

+

; x

�

;x

T

) = P

�

exp

�

�

ig

2

Z

x

�

�1

dx

0

�

G

+

(x

+

; x

0

�

;x

T

)

��

; (2.25)

whi
h satisfy the following boundary 
onditions and di�erential equations:

V

�

(x

+

; x

�

;x

T

)

x

�

!�1

�! 1;

�

�

V

�

(x

+

; x

�

;x

T

) = �

ig

2

G

�

(x

+

; x

�

;x

T

) � V

�

(x

+

; x

�

;x

T

): (2.26)

Inserting (2.24) into (2.21) and taking into a

ount (2.26) and the relations

�u

3

(p

3

)


�

u

1

(p

1

) =

p

p

3+

p

1+

Æ

s

3

s

1

n

�

+

;

�u

4

(p

4

)


�

u

2

(p

2

) =

p

p

4�

p

2�

Æ

s

4

s

2

n

�

�

;

n

�

�

:=

0

B

B

�

1

0

0

�1

1

C

C

A

; (2.27)

whi
h are valid in the high energy limit p

1+

; p

3+

; p

2�

; p

4�

�

p

s; p

1�

; p

3�

; p

2+

; p

4+

� 0;

p

s!1 we �nd for the quark s
attering amplitudes

M

r

31

(G) = i

p

p

3+

p

1+

Æ

s

3

s

1

Z

dx

�

d

2

x

T

e

i

2

(p

3

�p

1

)

+

x

�

�i(p

3

�p

1

)

T

�x

T

[V

�

(1; x

�

;x

T

)� 1℄

A

3

A

1

;

M

r

42

(G) = i

p

p

4�

p

2�

Æ

s

4

s

2

Z

dy

+

d

2

y

T

e

i

2

(p

4

�p

2

)

�

y

+

�i(p

4

�p

2

)

T

�y

T

[V

+

(y

+

;1;y

T

)� 1℄

A

4

A

2

: (2.28)

Now we insert these expressions for the quark s
attering amplitudes into (2.20)

and make use of the translational invarian
e of the fun
tional integral. With the

de�nition of the impa
t parameter b

T

:= x

T

� y

T

we obtain our �nal result for the

quark-quark s
attering amplitude

T

fi

= �2is Æ

s

3

s

1

Æ

s

4

s

2

Z

d

2

b

T

e

iq

T

�b

T

�

h

V

�

(1; 0;

b

T

2

)� 1

i

A

3

A

1

h

V

+

(0;1;�

b

T

2

)� 1

i

A

4

A

2

�

G

: (2.29)
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The momentum transfer q = q

1

� q

3

is purely transverse in the high energy limit.

The underlying physi
al pi
ture of this result is the following: The quarks move

along straight light-like lines through the external gluon potential and a

umulate

non-abelian phase fa
tors V

�

, whi
h are obtained by integration along their traje
-

tories, 
orrelating their phases, whi
h leads to the intera
tion of the quarks. To

obtain the s
attering amplitude we �nally have to perform a Fourier transform with

respe
t to the impa
t parameter b

T

. In the high energy limit the quark heli
ities

are 
onserved during the intera
tion.

2.2 Des
ription of antiquarks

So far we have dis
ussed the wave fun
tions for outgoing quarks, if we want to

des
ribe arbitrary systems of partons we need the wave fun
tions for in
oming quarks

and in
oming and outgoing antiquarks as well. We do not give wave fun
tions for

gluons here, sin
e in our simple ansatz for hadrons, whi
h we will present in the

next 
hapter, hadrons 
onsist of quarks and antiquarks - or diquarks in the 
ase of

baryons - only and due to one of the assumptions of our model, no parton 
reation

(nor annihilation) o

urs over the time interval of the s
attering pro
ess.

j 

0r

p

j

) := S

r

(i

 

�6

j

+m

0

q

j

)jj

0

);

(

e

 

a

p

j

j := (jj(�i

!

�6

j

+m

0

q

j

)S

r

;

(

e

 

0a

p

j

j := (j

0

j(�i

!

�6

j

+m

0

q

j

)S

r

: (2.30)

Here a prime denotes that we are 
onsidering an antiquark and the index a stands

for advan
ed wave fun
tions, whi
h have to be used for in
oming partons and ful�l

the advan
ed boundary 
onditions

(

e

 

a

p

j

j

x

0

!+1

�! (jj: (2.31)

The antiquark spinors are given by

jj

0

) := v

s

j

;A

j

(p

j

)e

ip

j

�x

j

;

(j

0

j := �v

s

j

;A

j

(p

j

)e

�ip

j

�x

j

: (2.32)

The advan
ed wave fun
tions have to satisfy the Dira
 equation

(

e

 

a

p

j

j(i

 

�6

j

+ gG6 +m

0

q

j

� Æm

q

j

) = 0 (2.33)

to whi
h we �nd the solutions

e

 

a

p

1

(x) =

e

V

�

(x

+

; x

�

;x

T

)

�

1 +O

�

1

p

1

+

�

�

e

�ip

1

�x

u

1

(p

1

);

e

 

a

p

2

(x) =

e

V

+

(x

+

; x

�

;x

T

)

�

1 +O

�

1

p

2

�

�

�

e

�ip

2

�x

u

2

(p

2

); (2.34)
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with the eikonal phases de�ned analogously to (2.25)

e

V

�

(x

+

; x

�

;x

T

) = P

�

exp

�

ig

2

Z

1

x

+

dx

0

+

G

�

(x

0

+

; x

�

;x

T

)

��

;

e

V

+

(x

+

; x

�

;x

T

) = P

�

exp

�

ig

2

Z

1

x

�

dx

0

�

G

+

(x

+

; x

0

�

;x

T

)

��

: (2.35)

Here P denotes anti-path-ordering. For the phase fa
tors analogue relations to (2.26)

hold

e

V

�

(x

+

; x

�

;x

T

)

x

�

!1

�! 1

�

�

h

e

V

y

�

(x

+

; x

�

;x

T

)V

�

(x

+

; x

�

;x

T

)

i

= 0

e

V

y

�

(x

+

; x

�

;x

T

)V

�

(x

+

; x

�

;x

T

) =

�

V

+

(x

+

;1;x

T

)

V

�

(1; x

�

;x

T

)

: (2.36)

To 
al
ulate the s
attering amplitudeM

0r

k

0

j

0

(G) of an antiquark �q in an external

gluon potential G

�

we note that this 
orresponds to the s
attering of a quark q in

the 
harge 
onjugated gluon potential G

0

�

with

G

0

�

(x) = CG

�

(x)C

y

= �G

�

�

(x): (2.37)

Furthermore we note that repla
ing G

�

by G

0

�

in V

�


orresponds to 
omplex 
onju-

gating the eikonal phase fa
tor, i.e. to the repla
ement V

�

! V

�

�

. De�ning

M

0r

k

0

j

0

(G) := �(j

0

j(i

!

�6

j

�m

0

q

j

)j 

0r

p

k

): (2.38)

we then obtain for the antiquark s
attering amplitude

M

0r

3

0

1

0

(G) = i

q

p

0

3+

p

0

1+

Æ

s

0

3

s

0

1

Z

dx

�

d

2

x

T

e

i

2

(p

0

3

�p

0

1

)

+

x

�

�i(p

0

3

�p

0

1

)

T

�x

T

�

V

�

�

(1; x

�

;x

T

)� 1

�

A

0

3

A

0

1

;

M

0r

4

0

2

0

(G) = i

q

p

0

4�

p

0

2�

Æ

s

0

4

s

0

2

Z

dy

+

d

2

y

T

e

i

2

(p

0

4

�p

0

2

)

�

y

+

�i(p

0

4

�p

0

2

)

T

�y

T

�

V

�

+

(y

+

;1;y

T

)� 1

�

A

0

4

A

0

2

: (2.39)

When 
al
ulating S-matrix elements for quarks and antiquarks we also have

to take into a

ount 
ontributions from dis
onne
ted diagrams when applying the

LSZ redu
tion formalism. These diagrams lead to delta fun
tions Æ(j; k) (Æ(j

0

; k

0

))

whi
h 
an
el the 1 in the (anti-)quark s
attering amplitudes M

r

kj

(M

0r

k

0

j

0

). In the

high energy limit in leading order in s we then �nd a simple rule for the S-matrix

element: for ea
h quark or antiquark we write a 
ertain fa
tor whi
h we obtain from

the appropriate quark or antiquark s
attering amplitude for �xed external gluon

potential G

�

(x). Then we multiply all these fa
tors and average over all gluon

potentials by means of the fun
tional integral (2.16).
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The fa
tors are

� for a quark 
ying in positive x

3

dire
tion (j ! k)

S

q+

(k; j) =

p

p

k+

p

j+

Æ

s

k

s

j

Z

dx

�

d

2

x

T

e

i

2

(p

k

�p

j

)

+

x

�

�i(p

k

�p

j

)

T

�x

T

V

�

(1; x

�

;x

T

)

A

k

A

j

; (2.40)

� for a quark 
ying in negative x

3

dire
tion

S

q�

(k; j) =

p

p

k�

p

j�

Æ

s

k

s

j

Z

dx

+

d

2

x

T

e

i

2

(p

k

�p

j

)

�

x

+

�i(p

k

�p

j

)

T

�x

T

V

�

(x

+

;1;x

T

)

A

k

A

j

; (2.41)

� for an antiquark 
ying in positive x

3

dire
tion (j

0

! k

0

)

S

�q+

(k

0

; j

0

) =

q

p

0

k+

p

0

j+

Æ

s

0

k

s

0

j

Z

dx

�

d

2

x

T

e

i

2

(p

0

k

�p

0

j

)

+

x

�

�i(p

0

k

�p

0

j

)

T

�x

T

V

�

�

(1; x

�

;x

T

)

A

0

k

A

0

j

(2.42)

� and for an antiquark 
ying in negative x

3

dire
tion

S

�q�

(k

0

; j

0

) =

q

p

0

k�

p

0

j�

Æ

s

0

k

s

0

j

Z

dx

+

d

2

x

T

e

i

2

(p

0

k

�p

0

j

)

�

x

+

�i(p

0

k

�p

0

j

)

T

�x

T

V

�

+

(x

+

;1;x

T

)

A

0

k

A

0

j

: (2.43)

2.3 S
attering of hadrons

In this se
tion we want to study hadron-hadron s
attering. We are interested in

two types of s
attering rea
tions. We 
all the �rst one \ex
lusive" s
attering, i.e.

the �nal state 
onsists of two de�nite hadrons whi
h we des
ribe by their a

ording

hadroni
 wave fun
tions. Elasti
 s
attering for example falls into this 
ategory,

h

1

(P

1

) + h

2

(P

2

)! h

1

(P

3

) + h

2

(P

4

); (2.44)

but we do not have to limit ourselves to elasti
 s
attering. The di�ra
tive s
attering

of the initial state hadrons h

1

and h

2

into e.g. ex
ited states h

0

1

and h

0

2

is also 
overed

by our approa
h. More generally we write

h

1

(P

1

) + h

2

(P

2

)! h

3

(P

3

) + h

4

(P

4

); (2.45)

where h

3

and h

4


an be any hadrons that are a

essible by a soft di�ra
tive pro
ess.

The se
ond type of rea
tions we want to study are \semi-in
lusive" pro
esses, where
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one of the initial state hadrons stays inta
t and the other one di�ra
tively disso
iates

into a �nal state X

h

1

(P

1

) + h

2

(P

2

)! h

1

(P

3

) + X(P

4

); (2.46)

where X 
an be any di�ra
tive ex
itation of h

2

. In both 
ases we use the 
onvention

that the hadrons h

1

; h

3

move in positive x

3

dire
tion and h

2

; h

4

or X, respe
tively,

in negative x

3

dire
tion, i.e. P

1+

; P

3+

; P

2�

; P

4�

!1 in the high energy limit.

In our model we des
ribe mesons as quark-antiquark pairs and the 
onstituent

quark 
on�guration of baryons is assumed to be of the quark-diquark type for the

reasons given in [35,36℄, where the point-like diquark is treated like an antiquark in

this approa
h. The baryons then a
t as 
olour dipoles like mesons.

The di�ra
tive �nal state X is modelled by a q�q-pair (or quark-diquark pair)

in a 
olour singlet state. Then we use two approa
hes. In the �rst method we

use free plane waves for the quark and antiquark and invoke quark-hadron duality.

Integration over all allowed values in phase spa
e and the 
losure relation then yield

all possible di�ra
tive �nal states X, where the 
ase of elasti
 s
attering also is

in
luded. The se
ond ansatz, applied to 
on�rm the results of the �rst method

and to gain additional insight into the stru
ture of the 
al
ulated di�erential 
ross

se
tions, uses the wave fun
tions of a two-dimensional harmoni
 os
illator where

the ground state 
orresponds to hadron h

2

and the ex
ited states to the di�ra
tive

ex
itations of h

2

. Sin
e these eigenfun
tions form a basis, the 
ontributions from

di�erent ex
ited states are orthogonal to ea
h other and the 
al
ulation of 
ross

se
tions 
an be performed as follows: �rst the 
ross se
tion for one spe
i�
 ex
ited

state with de�nite quantum numbers n;m is 
al
ulated and then the sum over all

ex
ited states is taken to get the inelasti
 semi-in
lusive di�ra
tive 
ross se
tion.

The momenta p of the quark and p

0

of the antiquark (or diquark, respe
tively)

in a hadron (or the di�ra
tive �nal state X) with momentum P are parametrised

using light-
one variables by

p

�

= zP

�

; p

0

�

= (1� z)P

�

;

p

T

= zP

T

+�

T

; p

0

T

= (1� z)P

T

��

T

:

(2.47)

Here z is the longitudinal momentum fra
tion 
arried by the quark. The relative

transverse momentum between the quark and the antiquark (diquark) is given by

�

T

=

p

T

� p

0

T

2

+

�

1

2

� z

�

P

T

: (2.48)

Lorentz invarian
e requires z to appear also in the transverse momenta p

T

and p

0

T

as de�ned above.

2.3.1 Ex
lusive s
attering

The hadroni
 s
attering amplitude is obtained by folding the underlying partoni


S-matrix element with suitable hadroni
 wave fun
tions, where the hadrons will be
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x

3

x

0

x

1;2

C

+

C

�

b

T

x

T

y

T

Figure 2.1: Two light-like Wegner-Wilson loops in position spa
e

formed of parton wave pa
kets as explained above. Pro
eeding as in [24, 33℄, i.e.

applying the rules (2.40)-(2.43) and with (2.47),(2.48), we �nd

S

fi

= Æ

fi

+ i(2�)

4

Æ

(4)

(P

3

+ P

4

� P

1

� P

2

)T

fi

T

fi

= 2is

Z

d

2

b

T

e

iq

T

�b

T

^

J

ex
l

(b

T

); (2.49)

with the ex
lusive pro�le fun
tion

^

J

ex
l

(b

T

) = �

Z

d

2

x

T

d

2

y

T

Z

1

0

dz dz

0

w

31

(x

T

; z)w

42

(y

T

; z

0

)

D

W

+

(

1

2

b

T

+ (

1

2

� z)x

T

;x

T

)W

�

(�

1

2

b

T

+ (

1

2

� z

0

)y

T

;y

T

)� 1

E

G

;

(2.50)

as has been found for the 
ase of elasti
 s
attering in [30℄. HereW

�

are the light-like

Wegner-Wilson loops

W

�

:=

1

3

trV (C

�

) =

1

3

tr P exp (�ig

Z

C

�

dx

�

G

a

�

(x)

�

a

2

); (2.51)



16 Chapter 2. Derivation of the s
attering amplitudes

�q

+

q

+

�q

�

q

�

|

{

z

}

|

{

z

}

z

1� z

x

T

z

}

|

{

z

}

|

{

1� z

0

z

0

y

T

b

T

r

yq

r

y�q

r

xq

r

x�q

Figure 2.2: The orientation and extension of the light-like Wegner-Wilson loops in

a proje
tion into transverse position spa
e

where P denotes path ordering and C

�

is the 
urve 
onsisting of two light-like

worldlines for the quark and the antiquark (or diquark, respe
tively) and 
onne
t-

ing pie
es at �1 (see Fig. 2.1), whi
h ensure gauge invarian
e. x

T

and y

T

de�ne

the extension and orientation in transverse position spa
e of the two loops repre-

senting the two hadrons h

1

and h

2

respe
tively, z (z

0

) parametrises the fra
tion of

the longitudinal momentum of hadron h

1

(h

2

) 
arried by the quark (see (2.47)). The

impa
t parameter is given by b

T

, the light-
one bary
entres of the loops are lo
ated

at

1

2

b

T

+ (

1

2

� z)x

T

and �

1

2

b

T

+ (

1

2

� z

0

)y

T

, respe
tively (see [27℄ and Fig. 2.2). As

x-axis for the transverse ve
tors x

T

; y

T

and b

T

we 
hoose q

T

.

The symbol h: : :i

G

denotes the fun
tional integration whi
h 
orrelates the two

loops. In (2.50) the loop-loop 
orrelation fun
tion is multiplied with the fun
tions

w

31

(x

T

; z) and w

42

(y

T

; z

0

). These fun
tions w

kj

(x

T

; z) denote the overlap between

initial state hadron h

j

and �nal state hadron h

k

for �xed transverse extension x

T

and �xed longitudinal momentum fra
tion z. Then we have to integrate over all

extensions and orientations x

T

;y

T

of the loops in transverse spa
e as well as over

the longitudinal momentum fra
tions z; z

0

respe
tively. Finally a Fourier transform

with respe
t to the impa
t parameter b

T

has to be performed, as in the 
ase of

quark-quark s
attering.

2.3.2 Semi-in
lusive s
attering

Ex
ept for the repla
ement h

4

(P

4

) ! X(P

4

) everything remains un
hanged when

we want to des
ribe the inelasti
 di�ra
tive disso
iation rea
tion (2.46) and we �nd
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�

q

T

�q

q

h

2

(P

2

)

h

1

(P

1

) h

1

(P

3

)

�

4T

6

?

?

|

{

z

}

X(P

4

)

Figure 2.3: The semi-in
lusive s
attering rea
tion h

1

+ h

2

! h

1

+X

in analogy to (2.49)

S

fi

= Æ

fi

+ i(2�)

4

Æ

(4)

(P

3

+ P

4

� P

1

� P

2

)T

fi

T

fi

= 2is

Z

d

2

b

T

e

iq

T

�b

T

^

J

diss

; (2.52)

where we have to use the pro�le fun
tion

^

J

diss

now. As stated before, we are going

to use two di�erent ans�atze for X, leading to two expressions for the pro�le fun
-

tions, depending on whi
h des
ription for the di�ra
tive �nal state we use in the


al
ulation.

For the plane wave des
ription we obtain

^

J

p:wave

diss

(b

T

; z

0

) = �

Z

d

2

x

T

d

2

y

T

Z

1

0

dz w

31

(x

T

; z)

p

2�

p

2z

0

(1� z

0

) e

�i�

4T

�y

T

'

2

(y

T

; z

0

)

D

W

+

(

1

2

b

T

+ (

1

2

� z)x

T

;x

T

)W

�

(�

1

2

b

T

+ (

1

2

� z

0

)y

T

;y

T

)� 1

E

G

;

(2.53)

where�

4T

is the relative transverse momentum between the quark and the antiquark

(or diquark) of X (see (2.48) and Fig. 2.3). Instead of the overlap fun
tion w

42

o

urring in (2.50) here we have got the produ
t of the plane wave and the wave

fun
tion '

2

of the in
oming hadron h

2

.

For the os
illator des
ription we obtain

^

J

2d os


diss

(b

T

) = �

Z

d

2

x

T

d

2

y

T

Z

1

0

dz

Z

1

0

dz

0

w

31

(x

T

; z)X

n;m

(y

T

; z

0

)'

2

(y

T

; z

0

)

D

W

+

(

1

2

b

T

+ (

1

2

� z)x

T

;x

T

)W

�

(�

1

2

b

T

+ (

1

2

� z

0

)y

T

;y

T

)� 1

E

G

:

(2.54)

Here X

n;m

(y

T

; z

0

) stands for the two-dimensional harmoni
 os
illator wave fun
tion

with quantum numbers n;m. Again, this fun
tion has to be multiplied by '

2

, de-

s
ribing the in
oming hadron h

2

. Inserting in (2.54) the ground state wave fun
tion
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X

0;0

leads to the elasti
 s
attering amplitude, whi
h we also get from (2.49),(2.50)

with h

4

= h

2

; h

3

= h

1

.

In the plane wave des
ription z

0

is part of the spe
i�
ation of the �nal state

and thus appears as argument of

^

J

p:wave

diss

(b

T

; z

0

) in (2.53). The phase spa
e integral

then in
ludes an integration over z

0

. When using the se
ond method involving the

two-dimensional os
illator fun
tions to des
ribe the di�ra
tive �nal state, one has

to insert the fun
tion X

n;m

on the r.h.s. of (2.54) and to integrate over z

0

. Thus

^

J

2d os


diss

(b

T

) depends for given os
illator fun
tion X

n;m

on b

T

only.



Chapter 3

Evaluation of the s
attering

amplitudes

The next step is to evaluate the s
attering amplitude (2.49), where the main part

will be to 
al
ulate the loop-loop 
orrelation fun
tion appearing in (2.50), (2.53)

and (2.54), respe
tively. For this task we will make use of the model of the sto
hasti


va
uum (MSV), whi
h has been introdu
ed by Dos
h and Simonov [25℄. The model

is based on a small number of physi
ally well motivated assumptions and allows us to


ompute the relevant quantities we need for the des
ription of high energy s
attering,

e.g. the expe
tation values of Wegner-Wilson lines and loops. Furthermore we have

to spe
ify suitable hadroni
 wave fun
tions '

j

and to 
onstru
t from them the

overlap fun
tions w

kj

appearing in (2.50), (2.53) and (2.54). On
e we know how to


al
ulate the 
orrelation fun
tion by applying the model of the sto
hasti
 va
uum

and after de�ning the wave fun
tions we 
an analyse the symmetry properties of the

s
attering amplitudes. These 
onsiderations will allow us to 
lassify whi
h quantum

numbers 
an be ex
hanged in the di�erent rea
tions we are studying.

3.1 The loop-loop 
orrelation fun
tion in the model

of the sto
hasti
 va
uum

A

ording to present knowledge the va
uum has a highly nontrivial stru
ture gov-

erned by 
hromoele
tri
 and -magneti
 ba
kground �elds. It has been �rst noted by

Savvidy [45℄ that the mean energy density of the va
uum 
an be lowered by adding

a 
onstant 
hromomagneti
 ba
kground �eld to the perturbative va
uum. The min-

imal value of the energy density is obtained for a value of the 
hromomagneti
 �eld

strength B 6= 0, i.e. the va
uum spontaneously develops a 
hromomagneti
 ba
k-

ground �eld, analogous to the spontaneous magnetisation of ferromagnets below the

Curie temperature.

Of 
ourse the QCD va
uum state must be relativisti
ally invariant and must

not have a preferred dire
tion in ordinary and 
olour spa
e. In analogy to Weiss

19
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domains in a ferromagnet, states 
omposed of domains with random orientation of

the gluon �eld strength have been proposed. The va
uum state then is build of a

linear superposition of su
h states with various domains, where the �elds inside the

domains are oriented in various dire
tions. As well the boundaries of the domains

as the orientation of the �elds inside of them will 
u
tuate.

An important step in the investigations of the QCD va
uum stru
ture was

a
hieved by Shifman, Vainshtein and Zakharov [21℄ with the introdu
tion of the

QCD 
ondensates. In this way, nonperturbative 
omponents entered the perturba-

tive des
ription of the QCD va
uum. With the introdu
tion of nonlo
al 
ondensates

one 
an go even one step further and study long-distan
e e�e
ts as for example 
on-

�nement. Be
ause QCD is a non-abelian theory, nonlo
al 
ondensates 
an a priori

not be de�ned in a gauge-invariant way. To 
ure this problem we introdu
e so-
alled


onne
tors as the non-abelian generalisation of the S
hwinger string of QED, whi
h

allow us to de�ne parallel-transported quantities su
h as the parallel-transported

gluon �eld strength (see Appendix B). Then we 
an de�ne gauge-invariant nonlo
al


ondensates by shifting the o

urring �eld strengths to a 
ommon referen
e point.

The model of the sto
hasti
 va
uum in
orporates many of the above ideas. Its

strongest assumption is that the nonperturbative behaviour of QCD 
an be approx-

imated by a Gaussian pro
ess where the �eld strengths are the sto
hasti
 variables.

This assumption already allows us to derive 
on�nement in the framework of the

model.

3.1.1 Properties of the model of the sto
hasti
 va
uum

In this se
tion we will present the Minkowskian formulation of the model of the

sto
hasti
 va
uum. A more detailed presentation of the model 
an be found in

[23{26℄, where both the original formulation in Eu
lidian spa
e-time and the analyti



ontinuation to Minkowskian spa
e-time are dis
ussed.

The starting point for the model is the 
orrelator of two gluon �eld strength

tensors G

a

��

at points x

1

and x

2

, parallel-transported to a 
ommon referen
e point

o along the two 
urves C

x

1

and C

x

2

:

D

g

2

4�

2

^

G

a

��

(o; x

1

;C

x

1

)

^

G

��b

(o; x

2

;C

x

2

)

E

G

�

1

4

Æ

ab

F

����

(x

1

; x

2

; o;C

x

1

; C

x

2

): (3.1)

The right hand side depends only on the points x

1

; x

2

and the two 
urves C

x

1

; C

x

2

,

the 
ommon referen
e point o 
an be freely shifted along the 
urve C

12

= C

x

1

+

�

C

x

2

.

Due to 
olour 
onservation, the 
orrelation fun
tion is proportional to Æ

ab

. In the

MSV the strong assumption is made that F

����

is independent of the 
hoi
e of the


onne
ting 
urve C

12

:
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Assumption I: F

����

is independent of o and C

x

1

; C

x

2

.

Then Poin
ar�e and parity invarian
e require F

����

to be of the following form:

F

����

(z) =

1

24

G

2

�

(g

��

g

��

� g

��

g

��

)

�

�D(z

2

) + (1� �)D

1

(z

2

)

�

+(z

�

z

�

g

��

� z

�

z

�

g

��

+ z

�

z

�

g

��

� z

�

z

�

g

��

)(1� �)

dD

1

(z

2

)

dz

2

�

; (3.2)

G

2

�

1

4�

2

hg

2

FF i = h0j

g

2

4�

2

G

a

��

(0)G

a��

(0)j0i; (3.3)

where z = x

1

� x

2

.

Here G

2

is proportional to the gluon 
ondensate h0jG

a

��

(0)G

a��

(0) j0i, D and D

1

are invariant fun
tions normalised to 1 at z = 0, D(0) = D

1

(0) = 1, and � is a

parameter determining the non-abelian 
hara
ter of the 
orrelator. The properties

of the fun
tions D and D

1

are further spe
i�ed through the se
ond assumption of

the MSV:

Assumption II: For spa
e-like separations the fun
tions D; D

1

rapidly fall to zero

on a s
ale given by the 
orrelation length a � 0:3 fm.

The Fourier de
omposition of those fun
tions is given by

D(z

2

) =

Z

1

�1

d

4

k

(2�)

4

e

�ikz

e

D(k

2

);

D

1

(z

2

) =

Z

1

�1

d

4

k

(2�)

4

e

�ikz

e

D

1

(k

2

): (3.4)

A suitable ansatz for

e

D and

e

D

1

is given in [24℄:

e

D(k

2

) =

27(2�)

4

(8a)

2

ik

2

(k

2

� �

�2

+ i�)

4

;

e

D

1

(k

2

) =

2

3

27(2�)

4

(8a)

2

i

(k

2

� �

�2

+ i�)

3

; (3.5)

with the 
onstant � = 8a=3�. The fun
tions of (3.4),(3.5) 
an be 
ompared to latti
e


al
ulations [46, 47℄ for the Eu
lidian version of the 
orrelator (3.1) and from a �t

one 
an extra
t the following ranges for the parameters G

2

; a; � [47℄:

�G

2

a

4

= 0:39 : : : 0:41;

� = 0:80 : : : 0:89;

a = 0:33 : : : 0:37 fm: (3.6)
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Assumption III: The va
uum 
u
tuations of the �eld strengths are determined by

a Gaussian pro
ess.

This implies that 
orrelators of more than two gluon �eld strengths fa
torise and

thus the pro
ess is 
ompletely de�ned by the se
ond moment of its distribution.

The expe
tation value of one single parallel-transported gluon �eld strength tensor

vanishes due to 
olour 
onservation and the fa
t that the QCD va
uum has no

preferred dire
tion in 
olour spa
e:

h

^

G(i)i

G

= 0; (3.7)

where we have used the abbreviation

^

G(i) �

^

G

a

i

�

i

�

i

(o; x

i

;C

x

i

): (3.8)

Due to the assumption of a Gaussian pro
ess and 
olour 
onservation all n-point

fun
tions with odd n vanish as well and we are therefore left with

h

^

G(1) : : :

^

G(2n)i

G

=

X

all pairings

h

^

G(i

1

)

^

G(i

2

)i

G

: : : h

^

G(i

2n�1

)

^

G(i

2n

)i

G

: (3.9)

3.1.2 Appli
ation of the model of the sto
hasti
 va
uum to

the 
orrelation fun
tion

Now we will make a 
umulant expansion [33℄ for the loop-loop 
orrelation fun
tion

D

W

+

W

�

E

G

�

D

W

+

(

1

2

b

T

+ (

1

2

� z)x

T

;x

T

)W

�

(�

1

2

b

T

+ (

1

2

� z

0

)y

T

;y

T

)

E

G

(3.10)

in (2.50), or (2.53), (2.54), respe
tively, and then evaluate the result in the framework

of the MSV.

To expand the 
orrelation fun
tion, we pro
eed as explained in [30℄. First the line

integrals along the 
losed loops C

�

are transformed to surfa
e integrals with the help

of the non-abelian Stokes theorem where, following the authors of [24℄, we 
hoose

the mantle of a double pyramid as the integration surfa
e. The basis surfa
es S

�

of the two pyramids are en
losed by the two loops C

�

(see Fig. 3.1). The 
ommon

referen
e point o is 
hosen to be the apex, where both pyramids tou
h, and P

+

and P

�

are the mantle surfa
es of the two pyramids, respe
tively. Following [30℄ we

rewrite the two tra
es over 3�3 matri
es o

urring in (3.10) after inserting (2.51) as

one tra
e (Tr

2

) of a matrix a
ting in the 9-dimensional tensor produ
t spa
e. With

the de�nition

^

G

t;��

(o; x;C

x

) :=

�

^

G

a

��

(o; x;C

x

)(

�

a

2


 1) for x 2 P

+

^

G

a

��

(o; x;C

x

)(1


�

a

2

) for x 2 P

�

; (3.11)
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x

3

x

0

x

1;2

C

+

C

�

P

�

P

+

o

Figure 3.1: The integration surfa
es for the evaluation of the loop-loop 
orrelation

fun
tion

we 
an write (3.10) as the expe
tation value of one ordered exponential in the

produ
t spa
e, where the integration surfa
e is given by the mantle P = P

+

[P

�

of

the double pyramid:

hW

+

W

�

i

G

=

1

9

Tr

2

�

P exp

�

�

ig

2

Z

P

d�

��

(x)

^

G

t;��

(o; x;C

x

)

��

G

: (3.12)

The 
umulant expansion of this expression up to the se
ond term reads

D

W

+

(

1

2

b

T

+ (

1

2

� z)x

T

;x

T

)W

�

(�

1

2

b

T

+ (

1

2

� z

0

)y

T

;y

T

)

E

G

=

1

9

Tr

2

exp

�

�

g

2

8

Z

P

d�

��

(x)

Z

P

d�

��

(x

0

)

D

P(

^

G

t;��

(o; x;C

x

)

^

G

t;��

(o; x

0

;C

x

0

))

E

G

�

=:

1

9

Tr

2

exp C

2

(b

T

;x

T

;y

T

; z; z

0

); (3.13)

where C

2

is a 9� 9 matrix invariant unter SU(3) 
olour rotations. As shown in [30℄

this �nally leads to

hW

+

W

�

i

G

=

2

3

e

�i

1

3

�

+

1

3

e

i

2

3

�

(3.14)
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with

�(b

T

;x

T

;y

T

; z; z

0

) =

G

2

�

2

24

fI(r
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; r

yq
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x�q

; r

y�q

)� I(r
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; r
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)� I(r

x�q

; r
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)g ;
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y
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x
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�

�

2
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�
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y

� r

x

j

�

�

+

�

jr

y

� vr

x

j

�

�

2

K

2

�

jr

y

� vr

x

j

�

�

)

+(1� �)��

4

�

jr

y

� r

x

j

�

�

3

K

3

�

jr

y

� r

x

j

�

�

: (3.15)

Here G

2

; �; � are as de�ned in (3.2),(3.5) and K

2;3

are the modi�ed Bessel fun
tions

of se
ond and third degree. The ve
tors r

ij

with i = x; y and j = q; �q are those from

the 
oordinate origin to the positions of the quarks and antiquarks (or diquarks) in

transverse spa
e as shown in Fig. 2.2. Separating the real and the imaginary part

of the above expression (� is a real fun
tion) we get

�

W

+

(

1

2

b

T

+ (

1

2

� z)x

T

;x

T
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�
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+ (

1

2

� z

0
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)� 1
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=
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; z; z
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�

+
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�(b
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; z; z
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)

�

� 1

�i
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1

3

�(b

T
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T
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T

; z; z

0

)

�

+ i

1

3

sin

�

2

3

�(b

T

;x

T

;y

T

; z; z

0

)

�

)

:

(3.16)

This is the �nal result for the 
orrelation fun
tion of two light-like Wegner-Wilson

loops in the matrix 
umulant method [30℄. If we assume j�j � 1, (3.16) redu
es to

hW

+

W

�

� 1i

G

=

�

�

1

9

�(b

T

;x

T

;y

T

; z; z

0

)

2

�

; (3.17)

negle
ting terms of order �

3

and higher. This is the result of the traditional expan-

sion method [24℄. When 
omputing the numeri
al results for the 
ross se
tions we

are interested in, we will use both (3.16) and (3.17) and 
ompare with experimental

data.

3.2 The hadroni
 wave fun
tions

We now have to spe
ify the hadroni
 wave fun
tions and overlap fun
tions o

urring

in (2.50), (2.53) and (2.54). As mentioned before we make a simple ansatz and
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onstru
t mesons as quark-antiquark and baryons as quark-diquark wave pa
kets,

where s
alar diquarks should be favoured above ve
tor diquarks due to dynami
al

reasons [48℄. This means that in our model the spin of a baryon is 
arried by the

quark.

In the following we will deal mainly with hadrons with angular momentum L = 0,

in parti
ular the proton and the pion. When studying the s
attering of protons

and pions we are only interested in unpolarised 
ross se
tions and due to heli
ity


onservation on the parton level in our model we 
an therefore limit ourselves to the

des
ription of spinless s-wave states. For the 
orresponding wave fun
tions we make

a Wirbel-Ste
h-Bauer ansatz [37℄, whi
h assumes a Gaussian-shaped distribution for

both the longitudinal momentum fra
tion z 
arried by the quark in the hadron and

the transverse spatial extension x

T

of the hadron

'

j

(x

T

; z) =

s

2z(1� z)

2�S

2

h

j

I

h

j

e

�(z�

1

2

)

2

=4z

2

h

j

e

�x

2

T

=4S

2

h

j

: (3.18)

where z

h

j

and S

h

j

are the parameters de�ning the widths of the longitudinal mo-

mentum and transverse extension distributions of hadron h

j

, respe
tively. The nor-

malisation 
onstant I

h

j

is given by

I

h

j

=

Z

1

0

dz 2z(1� z) e

�(z�

1

2

)

2

=2z

2

h

j

: (3.19)

Only in our study of the double di�ra
tive ex
itation of two protons into ex
ited

nu
leon resonan
es, namely the N(1535), whi
h has the quantum numbers I(J

P

) =

1

2

(

1

2

�

) with L = 1 in the quark-diquark pi
ture, we also need p-wave fun
tions. To


onstru
t the N(1535) wave fun
tion we have to 
ouple a spin 1=2 state to a p-wave

in su
h a way that the total angular momentum J = 1=2, taking into a

ount the

proper Clebs
h-Gordan 
oeÆ
ients. This means that the spin of the quark, whi
h


arries the total spin of the hadron, be
ause we use s
alar diquarks as explained

above, is antiparallel to the heli
ity of the p-wave. As our model 
onserves the

heli
ities on the parton level and again we are 
al
ulating unpolarised 
ross se
tions

only, the s
attering of two protons into two ex
ited resonan
es is redu
ed to the

s
attering of two spinless s-waves in the initial state into two spinless p-waves with

�xed heli
ities in the �nal state. In the following we give only the � = �1 heli
ity

states of the wave fun
tion, sin
e due to the repla
ement of the Gaussian-shaped z-

dependen
e of the Wirbel-Ste
h-Bauer ansatz by a delta fun
tion 
entred at z = 1=2

in the numeri
al analysis, the � = 0 state does not 
ontribute, be
ause it 
ontains

a fa
tor proportional to z � (1 � z), whi
h is identi
al to 0 when z is �xed to

1=2. As the 
ontribution of the � = 0 state is strongly suppressed 
ompared to

those of the � = �1 states as well in the formulation using the Gaussian-shaped

z-distribution, whi
h also is 
entred around z = 1=2, the repla
ement by the delta

fun
tion has no substantial impa
t on the numeri
al results. The reason for this
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approximation is dis
ussed more detailed in 
hapter 4. To keep the expression for

the wave fun
tion short, we make this simpli�
ation here as well and thus avoid

the otherwise o

urring � = 0 term. For the spinless p-wave we extend the original

Wirbel-Ste
h-Bauer ansatz to angular momentum L = 1 and obtain

'

�

j

(x

T

; z) =

x

T

e

�x

2

T

=4S

2

h

j

q

6�S

4

h

j

�e

i��

x

Æ(z �

1

2

); � = �1: (3.20)

Here �

x

is the angle between x

T

and q

T

.

As the overlap fun
tion w

kj

(x

T

; z) we de�ne the overlap between hadron h

j

in

the initial and hadron h

k

in the �nal state for �xed transverse extension x

T

and

�xed longitudinal momentum fra
tion z

w

(�)

kj

(x

T

; z) := ('

(�)

k

(x

T

; z))

�

'

j

(x

T

; z); (3.21)

where the heli
ity index � o

urs only in 
ase we deal with a p-wave in the �nal

state.

For the des
ription of the di�ra
tive �nal state X in semi-in
lusive s
attering we

use in our se
ond ansatz the wave fun
tionsX

n;m

, whi
h 
onsist of the eigenfun
tions

~

X

n;m

(y

T

; z

0

) of a two-dimensional harmoni
 os
illator [49℄ for the y

T

-dependen
e and

an additional part for the z

0

-dependen
e as in (3.18):

X
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) =

s
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~
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h
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�
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e
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2

T

=4S

2

h

j

q

2�S

2

h

j

e

im�

y

; (3.22)

where �

y

is the angle between y

T

and q

T

. Here of 
ourse, we also have angular

momentum L 6= 0 ex
ept for the ground state wave fun
tion X

0;0

.

3.3 The hadroni
 s
attering amplitudes

In the following we will deal with three types of hadron-hadron rea
tions: the �rst

one is elasti
 s
attering, whi
h falls into the 
ategory of the ex
lusive pro
esses

dis
ussed in se
tion 2.3.1. As a semi-in
lusive pro
ess (see se
tion 2.3.2) we will

study single di�ra
tive disso
iation. Double di�ra
tive ex
itation, whi
h again is

an ex
lusive pro
ess, is the third type of s
attering rea
tion we are investigating.
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After having evaluated the loop-loop 
orrelation fun
tion in 3.1.2 and with the

wave fun
tions from the previous se
tion, we give the expressions for the hadroni


s
attering amplitudes for these pro
esses and analyse their respe
tive symmetry

properties.

3.3.1 Elasti
 s
attering

We now put everything together, inserting the overlap fun
tions (3.21) and the

results (3.16) or (3.17) for the 
orrelation fun
tion of the Wegner-Wilson loops,

depending on whi
h method is used in the evaluation, in (2.50), where we set h

3

=

h

1

; h

4

= h

2

.

We 
an simplify the resulting expression by exploiting symmetry properties of

the wave and 
orrelation fun
tions. The repla
ements x

T

! �x

T

and z ! 1 � z,

whi
h ex
hange the quark with the 
orresponding diquark (or antiquark in the 
ase

of mesons) in hadron h

1

, lead to � ! �� (see Fig. 2.2 and (3.15)). On the other

hand these repla
ements leave the wave fun
tions invariant and thus the integration

over x

T

and z averages out the sin�-terms of (3.16) when inserted in (2.50). We


an therefore repla
e (3.16) by

hW

+

W

�

� 1i

G

!

�

2

3


os

�

1

3

�

�

+

1

3


os

�

2

3

�

�

� 1

�

: (3.23)

In the expansion method hW

+

W

�

� 1i

G

in (3.17) is already even under � ! ��.

In our model, therefore, the expression for the 
orrelation fun
tion is purely real

in (3.17) and only the real part of (3.16) 
ontributes. The T -matrix element is

invariant under the ex
hange of hadron h

1

by its antihadron. Thus we get only

C = P = +1 (pomeron) ex
hange and no C = P = �1 (odderon) ex
hange.

Furthermore it is useful to take advantage of global azimuthal invarian
e and

de�ne as new integration variables the relative angles between the impa
t parameter

b

T

and x

T

and y

T

, respe
tively:

�

0

x

= �

x

� �

b

; �

0

y

= �

y

� �

b

: (3.24)

With this 
hoi
e of variables the elasti
 pro�le fun
tion be
omes independent of �

b

and using the relation

Z

2�

0

d�

b

e

i

p

�t b

T

e

in�

b

= 2�i

n

J

n

(

p

�t b

T

); (3.25)

where J

n

is the Bessel fun
tion of n-th degree, we 
an perform the integral over the

angle of the impa
t parameter in (2.49) analyti
ally.

For elasti
 s
attering our �nal result for the s
attering amplitude then reads

T

fi

= 4�is

Z

1

0

db

T

b

T

J

0

(

p

�t b

T

)

^

J

el

(b

T

); (3.26)
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with the elasti
 pro�le fun
tion

^

J

el

(b

T

) = �

Z

d

2

x

T

d

2

y

T

Z

1

0

dz dz

0

w

11

(x

T

; z)w

22

(y

T

; z

0

)

�

2

3


os

�

1

3

�(b

T

;x

T

;y

T

; z; z

0

)

�

+

1

3


os

�

2

3

�(b

T

;x

T

;y

T

; z; z

0

)

�

� 1

�

(3.27)

when using the matrix 
umulant method and

^

J

el

(b

T

) = �

Z

d

2

x

T

d

2

y

T

Z

1

0

dz dz

0

w

11

(x

T

; z)w

22

(y

T

; z

0

)

�

�

1

9

�(b

T

;x

T

;y

T

; z; z

0

)

2

�

(3.28)

when using the expansion method, respe
tively.

3.3.2 Single di�ra
tive disso
iation

In analogy to elasti
 s
attering we insert the overlap fun
tion w

11

and either (3.16) or

(3.17) into

^

J

diss

, for whi
h we have two expressions, (2.53) and (2.54), depending on

the 
hoi
e of the plane wave or the harmoni
 os
illator des
ription of the di�ra
tive

�nal state X. If using the latter expression, we also have to input the ex
ited state

wave fun
tions X

n;m

given by (3.22).

We note that it is suÆ
ient that one overlap fun
tion, here w

11

(x

T

; z), has the

symmetry properties dis
ussed in the previous se
tion, and thus the same arguments

as in the 
ase of elasti
 s
attering 
an be applied. Therefore we 
an repla
e (3.16)

by (3.23) for single di�ra
tive disso
iation as well.

The expression for the s
attering amplitude is hen
e given by (2.52) with either

the pro�le fun
tion (2.53) for the plane wave des
ription or (2.54) for the os
illator

des
ription of X. In both 
ases the loop-loop 
orrelation fun
tion evaluates to (3.23)

for the matrix 
umulant method or (3.17) for the expansion method.

Furthermore, when 
al
ulating 
ross se
tions with the des
ription of X given by

the os
illator method we 
an use analogous arguments. The simultaneous repla
e-

ments y

T

! �y

T

and z

0

! 1 � z

0

and subsequent integration over y

T

and z

0

lead

to the 
an
ellation of 
ontributions with odd m in (2.54) be
ause of the existen
e

of a fa
tor e

im�

y

in

~

X

n;m

(y

T

). Sin
e for these fun
tions odd m only o

ur for odd

n, the sum over all ex
ited states in the 
al
ulation of 
ross se
tions 
an be redu
ed

to the sum over the wave fun
tions with even n and the 
orresponding m's. Finally

we point out that here the integration over the angle �

b

whi
h we a

omplish anal-

ogously to the 
ase of elasti
 s
attering by exploiting global azimuthal invarian
e

leads to Bessel fun
tions of m-th degree. This is due to the fa
tor e

im�

y

in X

n;m

and

relation (3.25).
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3.3.3 Double di�ra
tive ex
itation

We have seen in the previous se
tions that both in elasti
 and single di�ra
tive dis-

so
iation we only get C = P = +1, i.e. pomeron, ex
hange and no C = P = �1, i.e.

odderon, ex
hange in our model. This is, as we have seen, due to the symmetry of

the hadron wave fun
tions, where integration over all angles leads to a 
an
ellation of

those terms of the 
orrelation fun
tion that are odd under C and P transformations.

This result is not a unique feature of our model but is rather model independent.

It relies on the fa
t that the quark-diquark density in a nu
leon is nearly symmet-

ri
 under a parity transformation if the diquark is suÆ
iently small, whereas the

odderon 
oupling 
hanges sign. To study odderon ex
hange in our model we have

to �nd a rea
tion where the odderon 
ontribution is not 
an
elled after integration

due to the symmetry properties of the wave fun
tions. This is possible in rea
tions,

where initial state nu
leons are transformed di�ra
tively into ex
ited negative parity

states. In this 
ase, even for point-like diquarks whi
h we are using in our ansatz for

the wave fun
tions, the odderon 
ouples to the nu
leon without any restri
tion [36℄.

Three rea
tions whi
h permit odderon ex
hange but ex
lude pomeron ex
hange have

been suggested in high-energy photoprodu
tion: ex
lusive neutral pseudos
alar me-

son produ
tion with nu
leon break-up [31℄, f

2

(1270) and a

2

(1320) produ
tion with

nu
leon break-up [32℄, and the asymmetry in the fra
tional energy of 
harm versus

anti
harm jets, whi
h is sensitive to odderon-pomeron interferen
e [50℄.

Here we are going to study a hadroni
 rea
tion for whi
h odderon ex
hange is

allowed, namely

p + p! N(1535) + N(1535): (3.29)

In addition, the N(1535) has a unique signature, being the only known baryon with

a strong �N de
ay [11℄. One should note, however, that this de
ay provides some

diÆ
ulty for standard models of baryon spe
tros
opy, in
luding the quark-diquark

model. It remains un
lear why the N(1535) de
ay has su
h a large bran
hing ratio

of about 30-55% into �N whereas this de
ay is negligible for the N(1520).

To 
onstru
t the T -matrix element of rea
tion (3.29) we start from (2.50), where

the overlap fun
tions w

�

31

and w

�

42


onsist of one s-wave for the proton and one p-

wave for the N(1535) ea
h. Now we are going to argue why it is suÆ
ient to deal

with spinless s- and p-waves as stated in se
tion 3.2: as we are using s
alar diquarks

the spin of the proton and of the N(1535) is 
arried by the quark in the a

ording

hadron. The spin 
onserving delta fun
tions in (2.40)-(2.43) on the parton level then

ensure that the spins of the proton and of the ex
ited nu
leon resonan
e are aligned

parallel. As explained in se
tion 3.2 we do not get any 
ontributions from the states

with heli
ity � = 0 in our approximation. Sin
e spin and angular momentum of the

N(1535) are antiparallel to ea
h other in order to form a state with total angular

momentum J = 1=2, we 
an infer dire
tly that the heli
ity of the p-wave des
ribing

the N(1535) is oriented antiparallel to the spin of the in
oming proton. This means

that from the originally 16 possible spin 
ombinations of the 4 hadrons in initial and

�nal state only 4 survive due to spin 
onservation on the parton level. For those we
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immediately know whi
h heli
ity state we have to assign to the N(1535) in the �nal

state. As we will 
al
ulate unpolarised 
ross se
tions in the following, i.e. we take

the average over the initial state spins and sum over all �nal state spins, we have

redu
ed the problem to the s
attering of two initial state s-waves into two �nal state

p-waves with �xed heli
ities, as already stated when dis
ussing the wave fun
tions.

Moreover, looking at the expression for the p-wave (3.20), we note that on the level

of 
ross se
tions the following relations hold

jhN

+

(1535)N

+

(1535)jT jp pij

2

= jhN

�

(1535)N

�

(1535)jT jp pij

2

;

jhN

+

(1535)N

�

(1535)jT jp pij

2

= jhN

�

(1535)N

+

(1535)jT jp pij

2

; (3.30)

where � indi
ates the heli
ity � = �1 of the N(1535). This means that only

the relative orientation of the heli
ities of the two N(1535) in the �nal state are

of importan
e and thus we only have to 
al
ulate two s
attering amplitudes, one

where the heli
ities are aligned parallel, whi
h we will 
all T

+

and one where they

are aligned antiparallel, whi
h we will 
all T

�

.

Now we have to show that we indeed get C = P = �1 ex
hange for this type of

rea
tion. The proof will rely on symmetry 
onsiderations, as in the 
ase of elasti


s
attering and single di�ra
tive disso
iation before. To simplify our notation we

de�ne a redu
ed overlap fun
tion ew

kj

whi
h does not 
ontain any terms due to the

angular dependen
e of the p-wave. Instead we expli
itely write out this angular

dependen
e in the following be
ause it is 
ru
ial for our argumentation:

w

�

kj

(x

T

; �

x

; z) =: �e

i��

x

ew

kj

(x

T

; z): (3.31)

With this de�nition and (3.24), (3.25) we obtain for the s
attering amplitude

T

�

= 4�is

Z

1

0

db

T

b

T

J

n

(

p

�t b

T

)

^

J

�

(b

T

); (3.32)

where n = 2 for T

+

and n = 0 for T

�

. Here the pro�le fun
tion is given by

^

J

�

(b

T

) =

Z

d

2

x

T

d

2

y

T

ew
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(x

T

;

1

2

) ew

42

(y

T

;

1

2

) 
os(�

x

� �

y

)

n

: : :

o

; (3.33)

where f: : :g is an abbreviation for either (3.16) or (3.17). To obtain this result we

have used the invarian
e of the 
orrelation fun
tion under the simultaneous trans-

formation of the variables �

x

! ��

x

and �

y

! ��

y

. Now we 
onsider the symme-

try properties of the wave and 
orrelation fun
tions again. The argumentation is

analogous to the 
ase of elasti
 s
attering with the 
ru
ial di�eren
e being the addi-

tional fa
tor 
os(�

x

� �

y

) here, whi
h 
hanges sign when we make the repla
ement

x

T

! �x

T

or y

T

! �y

T

, respe
tively. Due to this fa
tor the integration over x

T

or y

T

now 
an
els the 
os�-terms of (3.16) instead of the sin�-terms. Therefore, in

the 
ontext of this s
attering rea
tion, (3.16) redu
es to

hW

+

W

�

� 1i

G

! i

�

�

2

3

sin

�

1

3

�

�

+

1

3

sin

�

2

3

�

��

: (3.34)



3.3. The hadroni
 s
attering amplitudes 31

On the other hand, the expression (3.17), whi
h we get from the expansion method

in the approximation up to O(�

2

) dis
ussed there, is even under �! �� and thus

vanishes 
ompletely after integration over x

T

or y

T

. To be able to use here as well

a 
orrelation fun
tion whi
h has been evaluated in the expansion method, we have

to in
lude terms of higher order in �. In [36, 51℄ the relevant term of order �

3

has

been 
al
ulated in the framework of the expansion method and the result is

hW

+

W

�

� 1i

(3)

G

= i

�

�

5

4

1

81

�(b

T

;x

T

;y

T

; z; z

0

)

3

�

; (3.35)

where we have atta
hed an index (3) to denote that we are only dis
ussing the

third order term in � here. Comparing this result with the O(�

3

)-term of the

expansion of (3.16) we noti
e that the former is larger by a fa
tor 5=4. This is

a 
onsequen
e of the trun
ation of the 
umulant expansion at se
ond order, due

to whi
h we negle
t terms proportional to �

3

. Taking into a

ount the 4- and

6-
umulant we re
over (3.35) as the term of order �

3

in an expansion [52℄.

To 
on
lude, we note that for double di�ra
tive ex
itation we have a purely imag-

inary 
ontribution to the 
orrelation fun
tion, either (3.34) for the matrix 
umulant

method or (3.35) for the expansion method, where we have to in
lude the next, i.e.

third, order in � to get a non-zero 
ontribution. Due to the symmetry of the wave

and 
orrelation fun
tions we indeed get C = P = �1, i.e. odderon, ex
hange.

Finally we point out that also in the 
ase of elasti
 s
attering and single di�ra
tive

disso
iation an imaginary part of the 
orrelation fun
tion and C = P = �1 ex
hange

terms both non-vanishing after integration with the overlap fun
tions 
ould arise

from the in
lusion of higher 
umulant terms in (3.13). This 
ould also be the 
ase if

we 
hose a more general des
ription of the hadrons with di�erent symmetries of the

wave fun
tions whi
h are essential for the 
an
ellations after integration. Of 
ourse,

the analogue is true for double di�ra
tive ex
itation, with the di�eren
e that these


hanges would lead to C = P = +1 ex
hange there.
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Chapter 4

Hadron-hadron 
ross se
tions

The fo
us of this 
hapter will be on proton-proton s
attering, where a lot of data is

available in the energy range we are interested in, i.e. high 
entre of mass energy and

small momentum transfer. First we will review elasti
 s
attering, whi
h has been


al
ulated previously using the matrix 
umulant method in [30℄. Then the study will

be extended to single di�ra
tive disso
iation. We will 
on
lude the investigation of

proton-proton s
attering with the analysis of the rea
tion p p ! N(1535)N(1535),

i.e. double di�ra
tive ex
itation of the proton. Then we will 
onsider proton-pion

s
attering, i.e. we repla
e one of the in
oming protons by a pion. In this 
ontext we

are going to study elasti
 s
attering and single di�ra
tive disso
iation of the pion.

To 
al
ulate 
ross se
tions for the rea
tions we are 
onsidering, we have to �x

our free parameters, namely those of the MSV: G

2

, a and �; and those of the wave

fun
tions, the extension parameter S

h

j

and the width of the longitudinal momentum

distribution z

h

j

. The set of MSV parameters used in this work has been established

in [30℄ for the 
ase of the matrix 
umulant method giving (3.16). For the expansion

method giving (3.17) the set of parameters depends on whether we dis
uss C = P =

+1 ex
hange, for whi
h we use the values given in [27℄, or C = P = �1 ex
hange. In

order to obtain the latter 
ontribution, a somewhat di�erent approximation s
heme

was used in [36, 51℄ and therefore the resulting values are slightly modi�ed. These

three parameter sets are 
ompiled in Table 4.1.

expansion method

matrix method

C = P = +1 C = P = �1

G

2

(529 MeV)

4

(501 MeV)

4

(525 MeV)

4

a 0:32 fm 0:346 fm 0:31 fm

� 0:74 0:74 0:74

Table 4.1: The parameters of the MSV for the matrix 
umulant and the expansion

method

The values given in Table 4.1 should be 
onsidered as e�e
tive values extra
ted from

33
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�ts to high energy s
attering data using two di�erent approximate formulae. Thus

the di�eren
es between the values in the se
ond and third (or fourth, respe
tively)


olumn of the table 
an be taken as a theoreti
al error estimate. With �xed param-

eters the model gives energy independent 
ross se
tions. It has been shown in [24℄

that both the energy dependen
e of the 
ross se
tion and of the slope parameter

b of elasti
 s
attering 
an be well des
ribed by energy dependent hadron extension

parameters S

h

i

(s). In [30℄ it was found that in the framework of the matrix 
umu-

lant method energy dependent extension parameters 
an even des
ribe the energy

evolution of the whole di�erential elasti
 
ross se
tions d�=dt up to jtj � 1GeV

2

.

When using the matrix 
umulant method we adopt the parametrisation from [30℄

for the extension parameter S

p

of the proton

S

p

(s) = 0:700

�

s

GeV

2

�

0:034

fm: (4.1)

This was obtained by �tting the total 
ross se
tion as 
al
ulated from the opti
al

theorem with the T -matrix element 
al
ulated within the model

�

tot

=

1

s

Im(T

fi

)

�

�

�

�

t=0

(4.2)

to the soft pomeron part of the Donna
hie-Landsho� (DL) parametrisation for

�

tot

[12℄. For the expansion method we have established a similar 
onne
tion between

S

p

and s:

S

p

(s) = 0:624

�

s

GeV

2

�

0:028

fm: (4.3)

At

p

s = 23:5 GeV, for instan
e, we get S

p

= 0:868 fm and S

p

= 0:745 fm from (4.1)

and (4.3), respe
tively. Sin
e the MSV-parameters for C = P = +1 ex
hange in the

expansion method are di�erent from the ones used for the C = P = �1 ex
hange

as stated above, of 
ourse the extension parameters di�er as well. In the following

we only need the extension parameter of the proton at

p

s = 20 GeV for the latter.

To be 
onsistent with the set of MSV-parameters, we use the value S

p

= 0:85 fm

from [36, 51℄. The width of the longitudinal momentum distribution of the proton

has been 
hosen as z

p

= 0:4 whi
h gives a best �t to the isove
tor form fa
tor of the

proton 
al
ulated in the framework of our model (see 
hapter 5).

A di�erent des
ription of the energy dependen
e, motivated by the two pomeron

pi
ture has been suggested in [53℄. In this approa
h the 
orrelation fun
tion �

instead of the hadron extension parameters is assumed to depend on the energy.

This is in line with other two 
omponent pi
tures as e.g. [54, 55℄. Of 
ourse this

leads to a di�erent set of both MSV and wave fun
tion parameters. Sin
e in this

work also the 
orrelation fun
tions

e

D;

e

D

1

from (3.5) and the integration surfa
e (see

Fig. 3.1) are modi�ed 
ompared to our ansatz, we will not use this approa
h in the

following.

After having �xed all parameters, the 
al
ulation of 
ross se
tions 
an be per-

formed numeri
ally. All phase spa
e integrals and the integrals o

urring in the
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s
attering amplitudes are evaluated using the Monte-Carlo integration subroutine

Vegas [56℄ in an adapted version [57℄.

4.1 Proton-proton s
attering

From the experimental side a lot of data on proton-proton s
attering exists over a

wide range of energies. In parti
ular the availability of data on soft di�ra
tive s
at-

tering at high 
entre of mass energies makes proton-proton s
attering an interesting

�eld of appli
ation for our model.

4.1.1 Elasti
 s
attering

Let us �rst 
onsider elasti
 proton-proton s
attering

p(P

1

) + p(P

2

)! p(P

3

) + p(P

4

): (4.4)

The di�erential 
ross se
tion d�

el

=dt for this rea
tion has already been 
al
ulated

using the fun
tional integral approa
h and the matrix 
umulant method in [30℄,

however, as the results will be needed in the analysis of single di�ra
tive disso
iation,

we give a short reminder of the results obtained there. Moreover we 
al
ulate the

di�erential 
ross se
tion using the expansion method and the integrated elasti
 
ross

se
tion applying both methods and 
ompare the results.

For s�M

2

p

the di�erential 
ross se
tion is given by

d�

el

=

1

16�

1

s

2

jT

fi

j

2

dt; (4.5)

where T

fi

is our result (3.26) for the elasti
 s
attering amplitude. Depending on

whi
h method for the evaluation of the 
orrelation fun
tion is used, we insert (3.27)

or (3.28), respe
tively.

In [27℄ it has been argued that the Gaussian shaped distribution of the longi-

tudinal momentum fra
tion z (z

0

) 
an be repla
ed by a delta-fun
tion 
entred at

z = 1=2 (z

0

= 1=2), sin
e the fun
tion � (3.15), whi
h determines the shape of the


orrelation fun
tion, depends only weakly on z (z

0

). A numeri
al investigation of

the total 
ross se
tion 
al
ulated from the opti
al theorem shows that the resulting

di�eren
e for �

tot

is smaller than 1%. The pro�t one makes out of this simpli�
ation

is a mu
h shorter 
omputation time in the numeri
al analysis, as ea
h additional

variable of integration means roughly a fa
tor of 10 in the time needed to 
al
ulate

the 
ross se
tion. In the following we will make use of this simpli�
ation if not

expli
itly stated otherwise.

In Fig. 4.1 we 
ompare the results from the matrix 
umulant and expansion meth-

ods to experiment. The �rst method, i.e. using (3.23), gives a reasonable des
ription

of the data for jtj . 1GeV

2

over many orders of magnitude but underestimates the
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Figure 4.1: The di�erential elasti
 
ross se
tion d�

el

=dt at

p

s = 23:5 GeV 
al
u-

lated using the matrix 
umulant method (dashed line) and the expansion method

(solid line) 
ompared to the experimental data from [58℄

data at small jtj. The expansion method, i.e. using (3.17), gives a better des
ription

of the data for jtj . 0:2GeV

2

but overshoots the data by orders of magnitude for

larger jtj. A �t of the form d�

el

=dt = A exp b t to the di�erential 
ross se
tion gives

b = 13:8 � 0:4GeV

�2

for the matrix 
umulant method and b = 10:0 � 0:2GeV

�2

for the expansion method, respe
tively. From a �t to the experimental data [58℄

we obtain b = 11:6 � 0:1GeV

�2

. These �ts have been performed within the range

0 � jtj � 0:2GeV

2

, sin
e the des
ription of the data over a larger jtj-range would

require an additional term / t

2

in the exponent of the �t. If we 
al
ulate the

integrated elasti
 
ross se
tion at

p

s = 23:5GeV, we obtain �

el

= 5:0mb in the

matrix 
umulant method and �

el

= 7:3mb in the expansion method 
ompared to

an experimental value of �

el

= 6:81 � 0:19mb [11℄. The fa
t that the elasti
 
ross

se
tion 
al
ulated by the expansion method is 
loser to the experimental value than

the one from the matrix 
umulant method is easily understood from Fig. 4.1b. In

the integral over d�=dt only the region jtj . 0:2GeV

2


ontributes signi�
antly and

there the expansion method des
ribes the data better. In the region jtj & 0:2GeV

2

the result from the expansion method is bigger than the experimental result, with

the 
onsequen
e that the resulting integrated 
ross se
tion is too big.

In Fig. 4.2 we show �

el

for 10 GeV �

p

s � 10 TeV. The data are as well

from pp- as from p�p-experiments [11℄. As our approa
h does not in
lude, in Regge

terminology, any non-leading traje
tories, we 
annot distinguish between these two

rea
tions and they are des
ribed by the same s
attering amplitude. The 
al
ulation

agrees reasonably well with the experimental data. Due to the reasons dis
ussed

above, the integrated 
ross se
tions obtained from the matrix 
umulant method are
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Figure 4.2: The integrated elasti
 
ross se
tion as a fun
tion of

p

s 
al
ulated using

the matrix 
umulant method (dashed line) and the expansion method (solid line)


ompared to the experimental data from [11℄

smaller than the experimental values. The di�eren
e we get from the two meth-

ods 
an thus be seen as a theoreti
al error estimate. The theoreti
al un
ertainties

have their origin in the di�erent s
hemes whi
h we use to evaluate the 
orrelation

fun
tion (3.10), whi
h both of 
ourse make use of approximations, as has been dis-


ussed in se
tion 3.1. In the 
ase of the matrix 
umulant expansion method the

approximation is due to the trun
ation of the 
umulant expansion after the se
ond


umulant term, in the expansion method we expand dire
tly in terms of the gluon

�eld strengths. This means that both methods do not ne
essarily 
ontain the same

physi
al 
ontributions when we 
ompare the respe
tive expressions order by order.

We have already pointed out this fa
t when dis
ussing the s
attering amplitude for

the C = P = �1 ex
hange in se
tion 3.3.3, where we noted that we would have

to in
lude higher order 
umulant 
ontributions in the matrix 
umulant method to

obtain the same result in O(�

3

) as in the expansion method.

4.1.2 Single di�ra
tive disso
iation

Now we turn to inelasti
 di�ra
tive s
attering

p(P

1

) + p(P

2

)! p(P

3

) + X(P

4

): (4.6)
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Figure 4.3: The integrated single di�ra
tive disso
iation 
ross se
tion as a fun
tion

of

p

s 
al
ulated using the matrix 
umulant method (dashed line) and the expansion

method (solid line)

Using the plane wave method (2.52), (2.53) we 
al
ulate the di�erential di�ra
tive


ross se
tion as

d�

di�

= (2�)

4

1

2s

jT

fi

j

2

d

5

P; (4.7)

where

d

5

P =

1

(2�)

9

1

4sz

0

(1� z

0

)

d

2

P

4T

d

2

�

4T

dz

0

(4.8)

is the 5-dimensional phase spa
e measure for the three parti
le �nal state formed

by the �rst proton whi
h remains inta
t and the quark and the diquark whi
h de-

s
ribe the se
ond, di�ra
tively ex
ited proton. As stated above the des
ription of

the di�ra
tive �nal state X by a free quark-diquark pair also in
ludes the 
ase of

elasti
 s
attering. To obtain the 
ross se
tion �

sd

for single di�ra
tive disso
iation,

we have to subtra
t the elasti
 
ontribution and then multiply by 2 to a

ount

for the rea
tion where the �rst proton breaks up and the se
ond stays inta
t. We

�nd for the integrated single di�ra
tive 
ross se
tion as a fun
tion of

p

s the result

shown in Fig. 4.3. Comparing our results to experimental data, one has to keep in

mind that the overall normalisation un
ertainty of the experiments is of O(10%).

Furthermore the derivation of integrated 
ross se
tions from experimental data in-

volves extrapolations of the measured data at given values of t and � = M

2

X

=s to
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regions where no data exist. The extrapolations depend on assumptions on the

shape of the t-distribution and the shape of the �-distribution. Di�erent experi-

ments make di�erent assumptions and thus the resulting integrated 
ross se
tions

di�er from ea
h other. The experimental values on the integrated single di�ra
tive

disso
iation 
ross se
tion quoted here use � � 0:05 as an upper bound in the mass

distribution [59{61, 63℄, ex
ept for [62℄ where the range is extended to � � 0:2. In

our 
al
ulation of �

sd

we integrate over all values of �. Be
ause the mass spe
trum

obtained in our 
al
ulation de
reases rapidly with in
reasing � (see Fig. 4.6), our

numeri
al result of the integrated 
ross se
tion is dominated by the low mass region

and is not sensible to the integration range being � � 0:05 or � � 0:2. Again the dif-

feren
e between the 
ross se
tions obtained by the two methods 
an be understood

as an estimation of the theoreti
al errors whi
h arise due to the approximations

made in the evaluation of the 
orrelation fun
tion.

In Table 4.2 we give the ratio R of the single di�ra
tive disso
iation 
ross se
tion

to the sum of the single di�ra
tive disso
iation and the elasti
 
ross se
tions from our

model and from di�erent experiments. For

p

s = 546GeV and 1800 GeV we have

used the values of �

el

and �

sd

as quoted by the UA4, CDF and E710 experiments.

For the ISR energy range 20GeV .

p

s . 60GeV a lot of data exist. Sin
e the


ross se
tions do not vary mu
h over this energy range, we have �tted both �

el

and

�

sd

as being proportional to a small power of

p

s and have then 
al
ulated R as a

fun
tion of

p

s using these �ts. The quoted ISR R-value in Table 4.2 is evaluated

at an intermediate energy of

p

s = 38:5GeV. As 
an be seen, our model, and

R = �

sd

=(�

el

+ �

sd

)

p

s [GeV℄

matrix expansion values 
al
. from exp.

23.5 0.40 0.47

38.5 0.39 0.47 0:49� 0:07 ISR [59, 60℄

62.3 0.39 0.46

0:41� 0:02 UA4 [61℄

546 0.36 0.45

0:38� 0:01 CDF [62℄

0:33� 0:05 E710 [63℄

1800 0.35 0.44

0:32� 0:01 CDF [62℄

Table 4.2: The ratio R of the single di�ra
tive disso
iation to the sum of the

single di�ra
tive disso
iation and elasti
 
ross se
tions from the model and from

experiments

more pronoun
edly in the matrix 
umulant method, predi
ts that the di�ra
tive

disso
iation 
ross se
tion grows more slowly with in
reasing energy than the elasti



ross se
tion. This is in qualitative agreement with experiment, where an even slower

rise of �

sd


ompared to �

el

is observed. The smaller R-values in the matrix 
umulant
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Figure 4.4: The di�erential di�ra
tive 
ross se
tion d�

sd

=dt at

p

s = 23:5 GeV 
al-


ulated using the matrix 
umulant method (dashed line) and the expansion method

(solid line) 
ompared to the experimental data from [59℄

method 
ompared to the expansion method are mainly due to the relatively small

integrated single di�ra
tive disso
iation 
ross se
tions in the former method.

The results for the di�erential 
ross se
tion of the single di�ra
tive disso
iation

are shown in Fig. 4.4. The 
urve 
al
ulated in the framework of the expansion

method des
ribes the slope of the di�ra
tive rea
tion quite well even for larger val-

ues of jtj. Therefore the agreement with the experiment is reasonably good within

the jtj-range 
onsidered here. This 
ould however be partly a

idental. In pro-


esses where the proton breaks up, the ex
hange of hard and semi-hard gluons will

play an important role. This ex
hange is not des
ribed by our model whi
h is an

approximation for the infrared behaviour of QCD. We have seen in elasti
 s
at-

tering that the expansion method overestimates the 
ross se
tion for values of jtj

larger than 0:2GeV

2

, see Fig. 4.1, and this 
ould simulate the expe
ted 
ontribu-

tion of hard or semi-hard gluon ex
hange in the di�ra
tive disso
iation rea
tions.

We stress however that the fast de
rease of the single di�ra
tive disso
iation 
ross

se
tion d�

sd

=dt for jtj . 0:2GeV

2

is a �rm predi
tion of our model. Performing a

�t over the range 0 � jtj � 0:2GeV

2

of the form d�

sd

=dt = A exp bt like in the 
ase

of elasti
 s
attering we obtain b = 12:6 � 0:2GeV

�2

. For su
h small momentum

transfer no experimental data on the di�erential di�ra
tive 
ross se
tion exist. To


ompare to experiment, we therefore apply the �t formula to both our result and

the experimental data in the range 0:2GeV

2

� jtj � 0:5GeV

2

. For larger values

of jtj we would require an additional term / t

2

in the exponent of the �t. The
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�ts then give b = 7:9� 0:3GeV

�2

for our 
al
ulation in the expansion method and

b = 7:0 � 0:3GeV

�2

for the data from [59℄. Integration of our result for the dif-

ferential distribution over t leads to integrated single di�ra
tive disso
iation 
ross

se
tions whi
h are larger than the a

ording experimental integrated 
ross se
tions.

1

Those are 
al
ulated from the experimental di�erential 
ross se
tions under the as-

sumption of a linear extrapolation of the slope down to t = 0GeV

2

. Therefore it is

the steep slope for jtj . 0:2GeV

2

in our 
al
ulation that leads to larger integrated


ross se
tions than experimentally observed even though in the whole range where

experimental data on the di�erential t-distribution are available our 
al
ulation gives

smaller values than the experiment [59℄. Sin
e our model predi
ts an in
reasingly

steeper slope when we go to higher energies, this e�e
t gets more pronoun
ed for

large values of

p

s. Therefore the agreement of our result for the integrated single

di�ra
tive disso
iation 
ross se
tions is not as good for the Tevatron data as it is for

the ISR data (see Fig. 4.3).

To 
he
k the validity of our des
ription of the di�ra
tive �nal state by a free

quark-diquark pair using plane waves, now we apply the se
ond method, whi
h

des
ribes the di�ra
tive �nal state X through a sum of wave fun
tions of ex
ited

states of a two-dimensional harmoni
 os
illator, as explained above in se
tion 2.3.2.

In this des
ription, the �nal state phase spa
e is two-dimensional as in the 
ase of

elasti
 s
attering and the di�erential 
ross se
tion is given by

d�

sd

dt

=

1

16�

1

s

2

X

(n;m)6=(0;0)

jT

fi

j

2

(4.9)

with T

fi

from (2.54). The sum runs over all even n for the reasons given in se
-

tion 3.3.2, the asso
iated quantum number m runs over m = �n;�(n� 2); : : : ; n�

2; n. The numeri
al analysis shows that both 
al
ulations are in very good agree-

ment to ea
h other and that summing up the 
ontributions from values of n � 6

already gives � 98% of the result using plane waves.

So far we have only dis
ussed the result for the di�erential 
ross se
tion whi
h

we obtain when we apply the expansion method. Fig. 4.4 also shows the result of

our 
al
ulation in the framework of the matrix 
umulant method. As already seen in

elasti
 s
attering, the result obtained from the matrix 
umulant method is smaller

than the one from the expansion method. The same �t we have used for the expan-

sion method for the range 0 � jtj � 0:2GeV

2

here leads to b = 19:1 � 0:9GeV

�2

.

This is in analogy to elasti
 s
attering, where we have also found a steeper slope

for very small momentum transfers when 
omparing matrix 
umulant with expan-

sion method. Repeating the �t in the range 0:2GeV

2

� jtj � 0:5GeV

2

we obtain

b = 9:2 � 1:7GeV

�2

. However, in the range 0:1GeV

2

. jtj . 0:7GeV

2

the di�er-

ential 
ross se
tion develops a depression and in 
ontrast to elasti
 s
attering the

1

Of 
ourse the physi
al region of t is bounded by t

min

, whi
h is a fun
tion of the mass of the

di�ra
tive �nal state and of

p

s, but in the kinemati
al region whi
h we are studying we have

t

min

. 10

�3

and thus t

min


an be safely set to 0.
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Figure 4.5: The 
ontributions of harmoni
 os
illator wave fun
tions with �xed

quantum numbers n;m to the di�erential di�ra
tive 
ross se
tion d�

sd

=dt 
ompared

to the result obtained by the plane wave des
ription (solid line) of the di�ra
tive

�nal state X

matrix 
umulant method fails to des
ribe the shape of the di�erential 
ross se
tion.

This depression is the reason why, after integration over t, the integrated single

di�ra
tive disso
iation 
ross se
tions in the matrix 
umulant method are noti
eably

smaller than the ones extra
ted from the expansion method and experimental data.

To understand where this depression 
omes from, we again apply the se
ond

method and des
ribe the di�ra
tive �nal state through the sum of the wave fun
-

tions X

n;m

. Progressing analogously to the above study of the expansion method we

sum up all 
ontributions with n � 6 and asso
iated m's and �nd as well very good

agreement to the plane wave des
ription. This shows us that both des
riptions of X

indeed are equivalent to ea
h other. Now we take a 
loser look at the 
ontributions

to the di�erential di�ra
tive 
ross se
tion from ex
ited state wave fun
tions X

n;m

with de�nite values of n and m. The reason why we 
an 
ompare the 
ontributions

from wave fun
tions with de�nite quantum numbers dire
tly to ea
h other and to

the plane wave des
ription is that due to orthogonality they add up on the level

of the 
ross se
tion and not on the level of the s
attering amplitudes. We have

already used this fa
t in (4.9). Therefore we 
an 
al
ulate di�erential di�ra
tive


ross se
tions with the sum over n;m repla
ed by just one term with �xed quantum

numbers. Some of these 
ontributions to the di�erential 
ross se
tion are shown

in Fig. 4.5, where we have also in
luded the result obtained by the plane wave de-

s
ription for 
omparison. We see that, like for elasti
 s
attering as dis
ussed in [30℄,
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various 
ontributions to the di�erential 
ross se
tions develop a \dip"-stru
ture, in

parti
ular those with m = 0. The lo
ation of these dips is given by the jtj-value at

whi
h the real part of the 
orrelation fun
tion 
hanges sign. At whi
h exa
t value for

t < 0 this happens is governed by the details of the interplay of the Bessel fun
tion

J

m

that o

urs in the s
attering amplitude (see (3.25) and se
tion 3.3.2), the wave

fun
tion X

n;m

and the 
orrelation fun
tion. We note that for in
reasing quantum

number n the position of the dip moves to larger values of jtj. As the imaginary part

of the 
orrelation fun
tion is 
an
elled after integration over the wave fun
tions as

dis
ussed above, the s
attering amplitude is zero at these positions and therefore we

get an in�nitely deep dip. As 
an be seen from Fig. 4.5 several dips develop in the

region 0:1GeV

2

� jtj � 0:7GeV

2

for wave fun
tions with n � 6. In parti
ular the


ontribution with the quantum numbers n = 2; m = 0 whi
h a

ounts for the main

part in the sum has a dip at jtj � 0:3GeV

2

. Performing the sum over n;m then leads

to the formation of the depression for this region of jtj. We expe
t the dips - and in


onsequen
e the depression - to be at least partly �lled up when we in
lude higher


umulant terms, whi
h 
ould lead to an imaginary part of the 
orrelation fun
tion

non-vanishing after integration with the wave fun
tions as dis
ussed in more detail in

se
tion 3.3. Also the des
ription of the proton by a more general quark 
on�guration

than the simple quark-diquark pi
ture we have used here 
hanges the symmetries of

the wave fun
tions whi
h are essential for the 
an
ellation of the imaginary part of

the 
orrelation fun
tion. The result would be a re�ned des
ription of the di�erential

di�ra
tive 
ross se
tion in the matrix 
umulant method and therefore, after inte-

gration over t, also a larger integrated single di�ra
tive disso
iation 
ross se
tions

whi
h would be in better a

ord with experiment.

In the following we will 
onsider the mass spe
trum d

2

�

sd

=(d�dt) of the single

di�ra
tive disso
iation rea
tion at

p

s = 23:5 GeV for t = �0:0525 GeV

2

, where �

is the squared mass of the di�ra
tive �nal state divided by s. In our ansatz with

plane wave �nal states, � then is given by

� :=

M

2

X

s

=

�

2

4T

+ (1� z

0

)m

2

q

+ z

0

m

2

�q

z

0

(1� z

0

)s

: (4.10)

Here m

q

and m

�q

are the masses of the quark and the diquark whi
h des
ribe the

ex
ited proton state. To take thresholds into a

ount the mass for the quark has

been 
hosen to be 330 MeV and for the diquark 660 MeV so that the sum roughly

gives the proton mass. Going ba
k to (2.53) we re
ognise that now we 
an no

longer repla
e the Gaussian shaped longitudinal momentum distribution in the wave

fun
tion (3.18) for the hadron h

2

, whi
h breaks up, by a delta fun
tion 
entred

around 1/2, as we have done in the 
al
ulations before, be
ause z

0

determines the

value of � in (4.10). This was di�erent for the 
al
ulation of d�

sd

=dt, where we

performed an integration over the full range of �

4T

in phase spa
e and were not

interested in any parti
ular value of �. As a 
onsequen
e of the introdu
tion of quark

masses the integration over z

0

now does not run from 0 to 1, but the integration
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Figure 4.6: The di�ra
tive mass spe
trum d

2

�

sd

=(d�dt) for t = �0:0525 GeV

2

at

p

s = 23:5 GeV 
al
ulated using the matrix 
umulant method (dashed line) and the

expansion method (solid line) together with the data from [60℄

limits are given by

z

0

0=1

=

1

2

�

m

2

q

�m

2

�q

2�s

�

s

1

4

�

m

2

q

+m

2

�q

2�s

+

�

m

2

q

�m

2

�q

2�s

�

2

: (4.11)

This ensures that the mass spe
trum starts at M

2

X

= M

2

p

where M

p

is the proton

mass. Our plane wave des
ription of the di�ra
tive �nal state of 
ourse also in
ludes

elasti
 s
attering. To 
ompare with experimental results on di�ra
tive disso
iation

we have to subtra
t the elasti
 
ontribution. To do so we argue as follows: to obtain

the elasti
 
ontribution, we integrate d

2

�

sd

=(d�dt) over � from �

0

= M

2

p

=s up to

�

1

. We determine �

1

in su
h a way that the integral gives the value of the elasti


di�erential 
ross se
tion d�

el

=dt. Now we interprete the mass spe
trum as 
onsisting

of the elasti
 part, whi
h lies between �

0

and �

1

and the disso
iation part, whi
h

starts at �

1

. This pro
edure allows us to separate the elasti
 and the disso
iation


ontributions.

The result of the 
al
ulation is shown in Fig. 4.6 for t = �0:0525GeV

2

and

the 
.m. energy

p

s = 23:5 GeV together with the data points from [60℄. For

the matrix 
umulant method we determine �

1

= 1:90GeV

2

=s � 3:44 � 10

�3

, for the

expansion method �

1

= 1:63GeV

2

=s � 2:95�10

�3

. Again the di�erential distribution

obtained by our 
al
ulation in the matrix 
umulant method is smaller than the one


orresponding to the expansion method and starts for slightly larger �

1

. This is
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not surprising be
ause integrating d

2

�

sd

=(d�dt) over � from �

1

to �

2

=1, following

the argumentation from above, we have to �nd the value for the di�erential single

disso
iative 
ross se
tion d�

sd

=dt at t = �0:0525GeV

2

.

2

As we have seen above,

this di�erential 
ross se
tion is smaller for all values of t in the matrix 
umulant

method than in the expansion method and therefore the double di�erential 
ross

se
tion also has to be smaller when 
al
ulated by means of the former method. The


omparison with the experimental data proves diÆ
ult, as the experimental values

are smeared out over a 
ertain range of values for � be
ause of the dete
tor mass

resolution fun
tion. This explains also the data for the unphysi
al negative �-values.

As a 
onsequen
e the large peak of the di�ra
tive mass spe
trum is mu
h more

pronoun
ed in our 
al
ulation and the experimental distribution is 
atter around

that peak. To 
ompare dire
tly with the experiment, we would have to fold our

results with the mass resolution fun
tion of the dete
tor used in the experiments [60℄,

but unfortunately, this resolution fun
tion 
an no longer be re
onstru
ted [64℄. We

note that our model should give reliable results for small �. Indeed, for large values

of � the model seems to underestimate the data 
onsiderably. But for this � region

we expe
t, for instan
e, that our purely nonperturbative treatment of the s
attering

must be supplemented by hard gluon radiation whi
h should lead to high invariant

masses for the di�ra
tively ex
ited state. Furthermore our 
al
ulation treats the

�nal state as a quark-diquark pair and therefore no 
on�nement e�e
ts are in
luded

here.

4.1.3 Double di�ra
tive ex
itation

Now we will study the double di�ra
tive ex
itation of the proton

p(P

1

) + p(P

2

)! N(1535)(P

3

) + N(1535)(P

4

); (4.12)

where the N(1535) is an ex
ited nu
leon resonan
e with mass M

�

= 1535MeV and

the quantum numbers I(J

P

) =

1

2

(

1

2

�

). In the quark-diquark pi
ture it has angular

momentum L = 1. The di�erential 
ross se
tion is given by

d�

dd

=

1

32�

1

s

2

�

jT

+

j

2

+ jT

�

j

2

�

dt; (4.13)

with T

�

from (3.32). The s
attering amplitudes 
ontain the double di�ra
tive pro�le

fun
tion

^

J

�

, whi
h depends expli
itely on the relative orientation of the heli
ities

of the two ex
ited nu
leon resonan
es (see (3.33)). Depending on whi
h method we

want to use, we use either (3.34) or (3.35) to evaluate the 
orrelation fun
tion.

Unfortunately no experimental data exist on this rea
tion so far, so we 
an only

give predi
tions for future experiments. RHIC for example meets all the require-

ments to investigate this rea
tion. As we mentioned in se
tion 3.3.3 this rea
tion

2

In pra
ti
e it is suÆ
ient to perform the integral for a �nite value of �

2

� 25GeV

2

=s be
ause

of the fast de
rease of the 
al
ulated di�erential distribution for large values of �.
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Figure 4.7: The di�erential di�ra
tive 
ross se
tion d�

dd

=dt at

p

s = 20 GeV 
al-


ulated using the matrix 
umulant method (dashed line) and the expansion method

(solid line)

has an unique signature sin
e the N(1535) is the only known baryon with a strong

�N de
ay. A 
lear signal in the dete
tor for this rea
tion thus would be a �nal state


omposed of 2 �'s and 2 nu
leons. However, there is also the question open why

the N(1535) has a strong de
ay mode into �N whereas the N(1520), whi
h has the

same quantum numbers apart from J =

3

2

instead of J =

1

2

, has not [11℄. Standard

models of baryon spe
tros
opy, in
luding the quark-diquark model we use here, have

diÆ
ulties explaining this experimentally well founded fa
t. We have to keep this in

mind as a possible sour
e of theoreti
al un
ertainties in our model when dis
ussing

our results.

The di�erential 
ross se
tion d�

dd

=dt 
al
ulated in the framework of both meth-

ods is shown in Fig. 4.7. These distributions exhibit some qualitative features that

we have already dis
ussed in se
tion 4.1.2 when investigating single di�ra
tive dis-

so
iation. One similarity is that again the result obtained by the matrix 
umulant

method is smaller 
ompared to the one 
al
ulated with the expansion method. Go-

ing ba
k to the dis
ussion following (3.35) we re
all that the two methods rely on

di�erent approximation s
hemes that do not ne
essarily in
lude the same 
ontri-

butions at every order of �. We have seen for example that the term of O(�

3

) in

the expression for the 
orrelation fun
tion is larger by a fa
tor

5

4

in the expansion

method 
ompared to the matrix 
umulant method with trun
ation after the se
-

ond 
umulant. To see where the di�eren
e between the methods 
omes from we

expand (3.34) to order �

3

giving �i

1

81

�

3

and 
al
ulate the di�erential 
ross se
tion.
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Figure 4.8: The 
ontribution of T

+

and T

�

to the di�erential 
ross se
tion d�

dd

=dt


ompared to the full result (solid line)

Naively we would expe
t the distribution obtained that way to be smaller by a fa
-

tor (

4

5

)

2

than the expansion method result for the reason given above. However, we

have to remember that the MSV parameters are di�erent for the two methods and in

fa
t the distribution 
al
ulated with the expanded matrix 
umulant result and the

original matrix 
umulant parameters (se
ond 
olumn of Table 4.1) is slightly larger

than the one 
al
ulated with the expansion method and the a

ording parameters

(fourth 
olumn of Table 4.1). This is mainly due to the fa
t that the 
orrelation

length enters the 
ross se
tion to power a

24

. In
luding step by step higher orders

in � we �nally get ba
k to the result for the matrix 
umulant method shown in

Fig. 4.7. By this argument we see that the 
ontributions from higher orders in

� have an essential in
uen
e on both the normalisation and the shape of the dif-

ferential 
ross se
tion. For elasti
 s
attering and for single di�ra
tive disso
iation,

where we have C = P = +1 ex
hange instead of the C = P = �1 ex
hange we are

dis
ussing here, these arguments also hold true. In all 
ases we start from (3.16)

for the matrix 
umulant method and depending on the symmetries of the wave and


orrelation fun
tions we keep either (3.23) or (3.34) after integration with the over-

lap fun
tions. Expanding these expressions and 
al
ulating the 
ontributions from

in
reasingly higher orders in � we see that also for C = P = +1 ex
hange they

are 
ru
ial for the normalisation and the shape of the 
ross se
tion. In parti
ular

the position of the the dip stru
ture seen in the di�erential distribution of elasti


s
attering and the depression in the di�erential 
ross se
tion of single di�ra
tive

disso
iation depend on how many orders in � we take into a

ount.
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Another agreement with single di�ra
tive disso
iation is the development of a de-

pression in the di�erential distribution 
al
ulated with the matrix 
umulant method

(
ompare Figs. 4.4 and 4.7). In analogy to se
tion 4.1.2, where we have analysed

the origin of the depression by studying 
ontributions of single os
illator fun
tions

to the 
ross se
tion, we now 
al
ulate the 
ross se
tion from either T

+

or T

�

alone

instead of immediately summing up both 
ontributions. The respe
tive results are

shown in Fig. 4.8. Again we �nd that the reason for the depression is the lo
ation

of a dip at jtj � 1:0GeV

2

in the leading term of the sum, namely the one we get

from T

�

.

3

As already mentioned in se
tion 4.1.2, the in
lusion of higher 
umulants

and a re�ned model for both the proton and the ex
ited nu
leon state 
ould lead to

an improved des
ription of the di�erential 
ross se
tion.

Compared to elasti
 s
attering or single di�ra
tive disso
iation we note that the

di�erential distribution for small values of jtj is relatively 
at. A �t to d�

dd

=dt =

A exp b t gives b = 8:2� 0:1GeV

�2

for the matrix 
umulant and b = 5:7� 0:1GeV

�2

for the expansion method. Our predi
tions for the integrated 
ross se
tion for the

rea
tion pp ! N(1535)N(1535) are �

dd

= 0:2mb when applying the matrix 
umu-

lant and �

dd

= 0:7mb when applying the expansion method. These 
ross se
tions

are solely due to C = P = �1, i.e. odderon, ex
hange. In the approximation we use

here, an a priori possible 
ontribution through pomeron ex
hange is stri
tly zero.

This is in agreement with the Gribov-Morrison rule [65℄, but as neither this rule nor

our model are exa
t the possibility 
annot be ruled out entirely. However, this 
an

be tested experimentally. As the odderon is known to 
ouple at most very weakly

to the nu
leon it will not 
ontribute signi�
antly to the rea
tion p p ! pN(1535).

So if this rea
tion is observed at high energy, the natural interpretation is that it

is due to pomeron ex
hange and, using reggeon fa
torisation together with pp elas-

ti
 s
attering, allows the pomeron 
ontribution to p p ! N(1535)N(1535) to be

obtained.

To 
on
lude this se
tion we note that a possible 
he
k of our results 
ould be

obtained by 
al
ulating the ele
tromagneti
 p � N(1535) transition form fa
tor.

However, in the formulation of the model used here, in parti
ular due to the ap-

pli
ation of the quark-diquark pi
ture with s
alar diquarks, this 
al
ulation is not

feasible. We will 
ome ba
k to this point when dis
ussing the 
al
ulation of form

fa
tors in the framework of our model.

4.2 Proton-pion s
attering

We present 
al
ulations for the rea
tion p �

�

! p � and p �

�

! pX, respe
tively.

Of 
ourse, the va
uum parameters G

2

; a; � stay the same but we still have to �x the

pion extension parameters S

�

and z

�

in (3.18). Pro
eeding as in the 
ase of proton-

proton s
attering we �nd for the parameters S

�

= 0:60 fm for the matrix 
umulant

3

Of 
ourse it is not the leading term in the region of the dip, where its 
ontribution tends to

zero.
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and S

�

= 0:55 fm for the expansion method, respe
tively, at

p

s = 19:5 GeV. In

both methods we obtain the same value z

�

= 0:5 for the width of the longitudinal

momentum distribution.

4.2.1 Elasti
 s
attering
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Figure 4.9: The di�erential elasti
 
ross se
tion d�

el

=dt at

p

s = 19:5 GeV 
al
u-

lated using the matrix 
umulant method (dashed line) and the expansion method

(solid line) 
ompared to the experimental data from [67℄

Again we will �rst take a look at elasti
 s
attering. For a 
.m. energy of

p

s = 19:5 GeV we �nd for the integrated elasti
 
ross se
tions �

el

= 2:4mb with

the matrix 
umulant and �

el

= 3:1mb with the expansion method, 
ompared to an

experimental value of �

el

= 3:30� 0:11mb [66℄. The di�erential elasti
 
ross se
tion

is shown in Fig. 4.9. The matrix 
umulant method des
ribes the di�erential distri-

bution reasonably well over many orders of magnitude and underestimates the data

for small jtj. This is the reason why the integrated 
ross se
tion 
omes out too small

when applying the matrix 
umulant method. The expansion method gives a better

des
ription of the data for jtj . 0:2GeV

2

but overestimates the data for larger values

of jtj, and therefore the integrated 
ross se
tion as well. All this is in 
omplete anal-

ogy to elasti
 proton-proton s
attering. Fitting our result for the di�erential 
ross

se
tion by d�

el

=dt = A exp b t we �nd b = 10:9� 0:3GeV

2

for the matrix 
umulant

method and b = 8:7 � 0:3GeV

�2

for the expansion method. The experimentally

measured values are b = 7:9 � 0:2GeV

�2

for �

+

p - and b = 8:4 � 0:1GeV

�2

for

�

�

p -s
attering, respe
tively [67℄. We 
annot distinguish between these two rea
-

tions and des
ribe them by the same s
attering amplitude be
ause our model does

not in
lude, in Regge terminology, any non-leading traje
tories.
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4.2.2 Single di�ra
tive disso
iation

Moving on to the rea
tion where the pion breaks up di�ra
tively, we 
al
ulate �

sd

and the R-value, whi
h we de�ne as in the 
ase of proton-proton s
attering. For

the matrix 
umulant method we �nd �

sd

= 1:1mb and R = 0:32, for the expansion

method �

sd

= 2:0mb and R = 0:39. The a

ording experimental values are �

sd

=

1:90 � 0:2mb and R = 0:37 � 0:03 [68℄ whi
h is in quite good agreement to the

results obtained from the expansion method. Di�erential 
ross se
tion for proton-

pion s
attering with di�ra
tive break up of the pion are unfortunately not available

at 
.m. energies whi
h are high enough for our model to be appli
able.



Chapter 5

Spa
e-like form fa
tors in the

model

In this 
hapter we will study form fa
tors within our model. We do not intend to

perform a pre
ision 
al
ulation of form fa
tors but we will apply the 
al
ulation

to extra
t values for the width of the longitudinal momentum distributions of the

proton and the pion, z

p

and z

�

, respe
tively, by �tting our results to experimental

data.

5.1 The ele
tromagneti
 form fa
tors of the pro-

ton

The 
oupling of the ele
tromagneti
 
urrent to the proton 
an be des
ribed by

hp(P

0

; s

0

)jj

�

(0)jp(P; s)i = e �u

s

0

(P

0

)

�




�

F

1p

(Q

2

) +

i�

��

q

�

2M

p

F

2p

(Q

2

)

�

u

s

(P ); (5.1)

where the momentum transfer is q = P

0

� P , Q

2

= �q

2

, M

p

is the proton mass,

e =

p

4��

e:m:

and F

1p

; F

2p

are the Dira
 and Pauli form fa
tor of the proton, respe
-

tively. Now we 
hoose su
h a 
oordinate system so that q is purely transverse:

P

�

=

1

2

P

+

n

�

+

+

1

2

P

�

n

�

�

�

1

2

q

�

;

P

0�

=

1

2

P

+

n

�

+

+

1

2

P

�

n

�

�

+

1

2

q

�

;

q =

0

�

0

q

T

0

1

A

; n

�

=

0

B

B

�

1

0

0

�1

1

C

C

A

;

P

�

= (

1

4

q

2

T

+M

2

p

)=P

+

: (5.2)
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In the high energy limit, P

+

!1, we get for the matrix element (5.1) (see [69℄)

hp(P

0

; s

0

)jj

�

(0)jp(P; s)i = e P

+

n

�

+

�

y

s

0

�

F

1p

(Q

2

)�

�

3

q

T

� �

2M

p

F

2p

(Q

2

)

�

�

s

+O(1); (5.3)

where �

s

; �

s

0

are the Pauli two-
omponent spinors. F

1p

multiplies the spin-non-
ip

part, F

2p

the spin-
ip part of the matrix element. Cal
ulating the spin average of

this expression leads to

1

2

X

s

hp(P

0

; s)jj

�

(x)jp(P; s)i = e P

+

n

�

+

F

1p

(Q

2

) +O(1): (5.4)

We des
ribe the 
al
ulation of the Dira
 form fa
tor of the proton in the framework

of our model in appendix C. In the following we 
onsider the matrix element of the

third 
omponent of the isospin 
urrent j

�

3

. Its matrix element between proton states

is as in (5.1),(5.3), with F

ip

repla
ed by F

iv

, related to the form fa
tors of proton

and neutron by

F

iv

=

1

2

�

F

ip

(Q

2

)� F

in

(Q

2

)

�

(i = 1; 2): (5.5)

With the wave fun
tions (3.18) we obtain

F

1v

(Q

2

) =

1

2I

p

Z

1

0

dz 2z(1� z) e

�(z�

1

2

)

2

=2z

2

p

e

�

z

2

2

S

2

p

Q

2

; (5.6)

where I

p

is the normalisation fa
tor (3.19). For this 
al
ulation we need only the

expe
tation value of one Wegner-Wilson loop. A straightforward 
al
ulation shows

that the expe
tation value over one single loop is 1 in both the matrix 
umulant

method and the expansion method. Thus, in our model the form fa
tor is just the

Fourier transform of the squared wave fun
tion.

We will now use (5.6) to determine z

p

and S

p

. It turns out that in the range

0 � Q � 0:5GeV the form fa
tor depends sensitively on S

p

but only weakly on z

p

.

From a �t to experiment in this region we obtain S

p

= 0:77 fm. With S

p

�xed to

this value we show in Fig. 5.1 our result (5.6) for F

1v

for di�erent values of z

p

. The

experimental values have been 
al
ulated from the experimental data for G

Ep

and

G

Mp

from [70,71℄ and a �t of the experimental data on G

En

and G

Mn

[72℄ a

ording

to (5.5) and the relation between the Dira
 (F

1p;n

) and the ele
tri
 (G

Ep;n

) and

magneti
 (G

Mp;n

) form fa
tor of the proton and neutron, respe
tively:

F

1N

(Q

2

) =

G

EN

(Q

2

) + �G

MN

(Q

2

)

1 + �

; � =

Q

2

4M

2

N

(N = p; n): (5.7)

The best �t is found for z

p

= 0:4. As 
an be seen from Fig. 5.1, z

p

, whi
h �xes

the width of the longitudinal momentum distribution of the 
onstituents, plays

no important role for Q . 0:5GeV. For larger values of Q however, our �t is
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Figure 5.1: The isove
tor form fa
tor of the proton for S

p

= 0:77 fm and di�erent

values of z

p


ompared to the experimental data from [70{72℄

substantially improved when using a Gaussian shaped z-dependen
e instead of a

delta-fun
tion 
entred around z = 1=2, whi
h is equivalent to z

p

! 0.

It has to be noted that the proton extension parameter S

p

obtained from (5.6) is

not, and need not be, the same as the one used in the hadroni
 s
attering pro
esses in

the previous 
hapters. Whereas the hadroni
 extension parameter has been allowed

to be energy dependent (see (4.1),(4.3)) to a

ount for the rise of �

tot

with

p

s, the

extension parameter 
onne
ted with the form fa
tor has a �xed value for all energies

as the form fa
tor itself is energy independent and is related to the ele
tromagneti


radius of the proton as follows. Using the de�nitions

hr

2

i

p

= �6

dG

Ep

(Q

2

)

dQ

2

�

�

�

�

Q

2

=0

;

r

p

em

=

p

hr

2

i

p

; (5.8)

relations (5.5),(5.7) and the experimental value

dG

En

(Q

2

)

dQ

2

�

�

�

�

Q

2

=0

= 0:019 fm

2

(5.9)

from thermal-neutron-ele
tron s
attering [73℄, we get from our model

r

p

em

= 0:81 fm: (5.10)
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This 
oin
ides with the value one obtains for the proton ele
tromagneti
 radius when

des
ribing the ele
tri
 form fa
tor of the proton by the dipole parametrisation [70℄,

whi
h also results in r

p

em

= 0:81 fm. From s
attering experiments one �nds r

p

em

=

0:88 � 0:03 fm or r

p

em

= 0:92 � 0:03 fm, depending on whi
h �t is used for the

experimental data on G

Ep

(Q

2

) for small Q

2

[70℄. The Lamb shift measurements [74℄

give r

p

em

= 0:890 � 0:014 fm. Thus our result (5.10), as well as the one 
al
ulated

from the dipole parametrisation, is smaller than the experimental value for r

p

em

.

Our 
al
ulation as well as the dipole �t des
ribe the data [71℄ for G

Ep

rather well

for Q & 0:4GeV. But for smaller Q the data [70℄ indi
ate a rapid 
hange in the

slope dG

Ep

(Q

2

)=dQ

2

whi
h is des
ribed neither by our model nor by the dipole

parametrisation. Su
h an \anomalous" behaviour of G

Ep

and G

En

for small Q

2

has

been related to QCD va
uum e�e
ts in [75℄.

5.2 The ele
tromagneti
 form fa
tor of the pion
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Figure 5.2: The pion form fa
tor for S

�

= 0:68 fm and di�erent values of z

�


om-

pared to the experimental data from [76℄

For the 
harged pions �

�

the matrix element of the ele
tromagneti
 and the third


omponent of the isospin 
urrent are equal. Choosing again the 
oordinate system

as in (5.2) with M

p

repla
ed by m

�

we get

h�

+

(P

0

)jj

�

(0)j�

+

(P )i = e (P

+

n

�

+

+ P

�

n

�

�

)F

�

(Q

2

): (5.11)
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Here the matrix element 
an be expressed by one form fa
tor F

�

only. The 
al
ula-

tion of this matrix element in our model leads to

F

�

(Q

2

) =

1

I

�

Z

1

0

dz 2z(1� z) e

�(z�

1

2

)

2

=2z

2

�

e

�

z

2

2

S

2

�

Q

2

: (5.12)

We 
ompare (5.12) to experimental data for F

�

from [76℄ in Fig. 5.2. As for the

proton the transverse extension parameter S

�


an be �tted in the range 0 � Q �

0:5GeV with the result S

�

= 0:68 fm. Using the analogue of relation (5.8) for the

pion, this value gives an ele
tromagneti
 radius r

�

em

= 0:64 fm, whi
h is 
onsistent

with the experimental value r

�

em

= 0:663 � 0:006 fm [76℄. For values Q & 0:5GeV

our �t be
omes sensitive to the width of the longitudinal momentum distribution

of the 
onstituents. For the pion, the best �t for the width of this distribution is

given by z

�

= 0:5. The broader distribution 
ompared to the proton is related to

the smaller mass of the pion, whi
h is in agreement with the parametrisation of the

hadron wave fun
tions in [37℄.
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Chapter 6

The time-like pion form fa
tor in a

dispersion approa
h

Our aim in this 
hapter is to develop a dedi
ated model of the time-like pion form

fa
tor. In 
ontrast to the previous 
hapter, where our main interest lay in the

extra
tion of the parameters z

p

; z

�

, here we want to give a detailed des
ription of

the behaviour of the form fa
tor. First we will give an overview of some models and

the regions in whi
h they are appli
able. Then we will present our approa
h and


al
ulate the phase and the modulus of the ele
tromagneti
 and 
harged 
urrent

form fa
tor. From �ts to experimental data we will obtain the masses and de
ay


onstants of the neutral and 
harged �-mesons and the !-meson.

We re
all the de�nition of the ele
tromagneti
 form fa
tor of the pion by the

matrix element of the ele
tromagneti
 
urrent

h�

+

(P

0

)jj

�

(0)j�

+

(P )i = e(P + P

0

)

�

F

�

(q

2

); (6.1)

where the momentum transfer is q = P

0

� P . The form fa
tor is normalised as

F

�

(0) = 1. As fun
tion of the 
omplex variable s = q

2

, the form fa
tor F

�

(s) has

a 
ut in the 
omplex s-plane starting at the two-pion threshold s = 4m

2

�

whi
h


orresponds to two-pion intermediate states. There are also 
uts related to K

�

K

intermediate states and multi-meson states (4�, et
). The form fa
tor in the time-

like region (s > 0) is

F

�

(s+ i�) = jF

�

(s)je

iÆ(s)

; (6.2)

where Æ(s) is the phase. For the theoreti
al des
ription of the form fa
tor in di�erent

regions of momentum transfers di�erent theoreti
al approa
hes are used.

At large spa
e-like momentum transfers, �q

2

!1, perturbative QCD (pQCD)

gives rigorous predi
tions for the asymptoti
 behaviour of the form fa
tor [77℄

F

�

(q

2

) �

8�f

�

�

s

(�q

2

)

�q

2

; (6.3)
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where �

s

is the QCD 
oupling parameter and f

�

= 130:7�0:4MeV is the pion de
ay


onstant de�ned by the relation

h0j

�

d


�




5

uj�

+

(P )i = iP

�

f

�

: (6.4)

As the spa
e-like momentum transfer be
omes smaller, the form fa
tor turns out

to be the result of the interplay of perturbative and nonperturbative QCD e�e
ts,

with a strong eviden
e that nonperturbative QCD e�e
ts dominate in the region

0 � �q

2

� 10GeV

2

[39℄. The pi
ture based on the 
on
ept of 
onstituent quarks

whi
h e�e
tively a

ount for nonperturbative dynami
s has proven to be eÆ
ient

for the des
ription of the form fa
tor in this region (see for instan
e [40℄). In 
hap-

ter 5, we also have 
al
ulated F

�

for small spa
e-like momentum transfers in the

framework of our nonperturbative model. This 
al
ulation is not intended as a pre-


ise determination of the form fa
tor, sin
e our model, in the formulation we use

here, was not developed with the attention on the 
al
ulation of form fa
tors, but

rather on the des
ription of soft high energy hadron-hadron s
attering. However,

our model has allowed us to give a reasonable des
ription of the experimental data.

The agreement 
ould be improved by using a re�ned model, in parti
ular when

using more sophisti
ated wave fun
tions and more general quark 
on�gurations to

des
ribe the proton and the pion. Moving on to large time-like momentum transfers,

s & 10GeV

2

, F

�

(s) 
an be obtained from the analyti
 
ontinuation of the pQCD

formula (6.3). At small time-like momentum transfers the situation is more 
om-

pli
ated sin
e there dynami
al details of the 
on�nement me
hanism are 
ru
ial.

Quarks and gluons are no longer the degrees of freedom of QCD leading to a simple

des
ription of the form fa
tor. At time-like momentum transfers we are essentially

in the region of hadroni
 singularities and typi
ally one relies on methods based on

hadroni
 degrees of freedom. In the region of interest to us here, 0 � q

2

� 1:5GeV

2

,

the lightest pseudos
alar mesons are most important.

There are many approa
hes to understand the behaviour of the pion form fa
tor

at time-like momentum transfers from 0 to 1.5 GeV

2

. A time honoured approa
h is

based on the ve
tor meson dominan
e (VMD) model [41℄. In the simplest version

of VMD one assumes just the �-meson dominan
e, whi
h leads to

F

�

(s) =

M

2

�

M

2

�

� s

; (6.5)

where M

�

is the mass of the �-meson. This simple formula works with a good

a

ura
y both for small spa
e-like momentum transfers and time-like momentum

transfers below the �� threshold: �1GeV

2

� s � 4m

2

�

. For s near the �� threshold

one should take into a

ount e�e
ts of the virtual pions. In this region momenta of

the intermediate pions are small and a 
onsistent des
ription of the form fa
tor is

provided by 
hiral perturbation theory (ChPT) [42℄, the e�e
tive theory for QCD

at low energies.

For higher s, in the region of � and ! resonan
es, a similar rigorous treatment

of the form fa
tor is still la
king, and one has to rely on model 
onsiderations.
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Contributions of the two-pion intermediate states may be 
onsistently des
ribed by

dispersion representations. The appli
ation of dispersion relations has led to the

famous Gounaris-Sakurai (GS) formula [43℄ whi
h takes into a

ount �-meson �nite

width 
orre
tions due to virtual pions

F

�

(s) =

M

2

�

� B

��

(0)

M

2

�

� s�B

��

(s)

: (6.6)

The fun
tion B

��

(s) 
orresponds to the two-pion loop diagram. The 
orrespond-

ing Feynman integral is linearly divergent, but its imaginary part is de�ned in a

unique way. The real part is then re
onstru
ted by a doubly-subtra
ted dispersion

representation. The Gounaris-Sakurai pres
ription to �x the subtra
tion 
onstants

reads

Re B

��

(s)j

s=M

2

�

= 0;

d

ds

Re B

��

(s)j

s=M

2

�

= 0: (6.7)

The phase of the form fa
tor

tan Æ(s) =

ImB

��

(s)

M

2

�

� s� ReB

��

(s)

: (6.8)

for the GS pres
ription agrees well with the experimental data in the region 4m

2

�

<

s < 0:9GeV

2

. But (6.6) gives too small a value (by � 15%) for jF

�

(s)j at s around

M

2

�

.

On the other hand, one 
an 
onsider a simple VMD ansatz taking only the �-

meson 
ontribution into a

ount. This should be a good approximation in the region

0:5GeV

2

� s � 0:8GeV

2

, ex
ept for the narrow interval near s � M

2

!

where the

��! mixing e�e
ts are important [78℄. The simple VMD ansatz then is very similar

to (6.6), but with the numerator repla
ed by the 
 ! � ! �� transition matrix

element:

F

�

(s) =

1

2

g

�!��

f

�

M

�

M

2

�

� s�B

��

(s)

: (6.9)

Here g

���

and f

�

are de�ned a

ording to

h�(k

1

)�(k

2

)jT j�("; k)i =

1

2

g

�!��

"

�

(k

1

� k

2

)

�

; (6.10)

h0jJ

�

j�

0

("; k)i = f

�

M

�

"

�

; (6.11)

where "

�

is the �-meson polarisation and k is the 4-momentum ve
tor. Now jF

�

(s)j

from (6.9) des
ribes well the data for s � M

2

�

. But extrapolating (6.9) to s = 0

gives F

�

(0) � 1:15 in gross violation of the normalisation 
ondition F

�

(0) = 1.

Thus, neither (6.6) nor (6.9) 
an des
ribe the form fa
tor over the whole range

0 � s � 1:5GeV

2

: namely, (6.6) leads to a too small value of jF

�

j at s = M

2

�

,
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whereas the form fa
tor given by (6.9) is far above unity at s = 0. There were

many attempts to modify the ve
tor meson dominan
e or to use related approa
hes

in order to bring the results on the pion form fa
tor in agreement with the data

(see [79, 80℄ and referen
es therein).

In the following we apply 
onsistently a dispersion approa
h to the pion form

fa
tor in a model with ���, �KK, !��, and gauge-invariant � � 
, ! � 
 and

��! 
ouplings. Our approa
h allows a dire
t resummation of pion and kaon loops.

Ambiguities related to subtra
tions in linearly divergent meson loop diagrams are

absorbed in the physi
al meson masses and 
oupling 
onstants. After taking into

a

ount the �� ! mixing e�e
ts the pion form fa
tor in the range 0 � s � 1GeV

2

is well des
ribed both in magnitude and phase by a formula whi
h is similar to the

VMD expressions (6.6) and (6.9) but avoids their pitfalls.

6.1 The dispersion approa
h

Our model makes use of 
onventional methods of dispersion theory. First we make

an ansatz for the e�e
tive 
ouplings of the pseudos
alar mesons, ve
tor mesons and

the photon. These 
ouplings are used in essen
e only to 
al
ulate the absorptive

parts of the amplitudes. The 
omplete amplitudes are then obtained by dispersion

relations and a Dyson resummation. We want to make 
lear from the outset that our

e�e
tive 
ouplings dis
ussed below are not to be 
ompared dire
tly to the e�e
tive

Lagrangian of ChPT [42℄ and resonan
e theory in the framework of ChPT [81℄. We

shall see, however, that our model, used as explained above, respe
ts all the known

results from ChPT for the pion form fa
tor. Thus our model 
an be seen as an

alternative to the one of [80℄ where ChPT results are extended to F

�

(s) in the range

0 � s � 1:5GeV

2

using again a resummation s
heme.

In our model pions intera
t with the �-mesons and generate in this way the �nite

�-meson width. We do not in
lude into 
onsideration dire
t four-pion 
ouplings. Ne-

gle
ting of the latter goes along the line of the resonan
e saturation in the ChPT [81℄

whi
h states that the 
oupling 
onstants of the e�e
tive 
hiral Lagrangian at order

p

4

are essentially saturated by the meson resonan
e ex
hange. The �

0

-meson is


oupled to the 
onserved ve
tor 
urrent of 
harged pions as follows:

L

���

=

i

2

g

�

�

y

�

�

� � �

�

�

y

�

�

�

�

; (6.12)

where �

�

is the 
onserved ve
tor �eld des
ribing the �-meson. We denote in this

se
tion g � g

�!��

. Mat
hing to the one-loop ChPT [42℄ leads to the relation

g

�!��

= 2M

�

=f

�

: (6.13)

The photon is 
oupled to the 
harged pion through the usual minimal 
oupling,

L


��

= ie(�

y

�

�

� � �

�

�

y

�)A

�

: (6.14)
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Figure 6.1: The pion form fa
tor in the pi
ture where pions intera
t via the �-

meson ex
hange and generate in this way the �nite �-meson width. The photon is


oupled to the 
harged pions through the usual minimal 
oupling, and the dire
t

gauge-invariant ��
 
oupling is assumed. No G-parity violating e�e
ts are in
luded

at this stage.

We also add a dire
t gauge-invariant �� 
 
oupling of the form

L

�


= �

1

4

ef

�

M

�

F

��

G

(�)

��

; (6.15)

where

F

��

= �

�

A

�

� �

�

A

�

; G

(�)

��

= �

�

�

�

� �

�

�

�

: (6.16)

This model is similar to the model of [82℄. No G-parity violating !�� or dire
t

� � ! 
ouplings are in
luded at this stage. As explained above, we 
al
ulate the

ele
tromagneti
 form fa
tor in our model by the sum of the diagrams of Fig. 6.1.

Summing all the pion loop insertions, we obtain

F

�

(s) = 1 +

f

�

2M

�

s � g +

g

2

B

�


(s)

M

2

�

� s� B

��

(s)

=

M

2

�

� (1�

f

�

2M

�

g)s+

�

1

2

g B

�


(s)�B

��

(s)

	

M

2

�

� s� B

��

(s)

: (6.17)

The quantities B

��

(s) and B

�


(s) 
orrespond to one-loop � � 
 and � � � self en-

ergy diagrams generated by the pion loop. The imaginary parts of these diagrams


an be 
al
ulated by setting the intermediate pions on mass shell. The full fun
-

tions B

��

(s) and B

�


(s) are 
onstru
ted from their imaginary parts by means of the

spe
tral representation with a suitable number of subtra
tions and by adding the
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orresponding subtra
tion 
onstants. This is the usual dispersion theory pro
edure

whi
h we adopt sin
e the Feynman integral for the pion one-loop diagram leads to

a divergent expression. For the �� intermediate states the imaginary parts of the

fun
tions B

��

(s) and B

�


(s) satisfy the relations

Im B

��

(s) = g

2

Im B

��

(s);

Im B

�


(s) = 2g Im B

��

(s); (6.18)

where

Im B

��

(s) � I(s;m

2

�

) =

1

192�

s

�

1�

4m

2

�

s

�

3=2

: (6.19)

For a realisti
 des
ription we have to take into a

ount also 
ontributions of K

+

K

�

and K

0

�

K

0

intermediate states. The 
oupling 
onstant g

�!KK


annot be measured

dire
tly. We use the relation

2g

�!KK

= g

�!��

= g; (6.20)

whi
h is valid in the SU(3) limit. Repeating the pro
edure des
ribed above, summing

the pion and kaon loops, we �nd with (6.20)

Im B

��

= g

2

�

Im B

��

+

1

4

(Im B

K

+

K

�

+ Im B

K

0

�

K

0
)

�

= g

2

�

Im B

��

+

1

2

Im B

KK

�

;

Im B

�


= 2g

�

Im B

��

+

1

2

Im B

K

+

K

�

�

= 2g

�

Im B

��

+

1

2

Im B

KK

�

; (6.21)

and hen
e

1

2

g Im B

�


(s)� Im B

��

(s) = 0: (6.22)

It follows from (6.22) that the di�eren
e

1

2

gB

�


(s) � B

��

(s) is a polynomial in s

determined by the subtra
tion 
onditions. Hen
e the numerator of the pion form

fa
tor (6.17) is also a real polynomial. Therefore, the phase of the form fa
tor is


ompletely determined by the denominator. The latter is the usual propagator of

the �-meson with the �nite width 
orre
tions taken into a

ount.

Let us now 
onsider subtra
tion 
onstants. The fun
tion B

�


(s) des
ribes the


oupling of the pion to the 
onserved ele
tromagneti
 
urrent. Therefore we must

set

B

�


(0) = 0; (6.23)
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su
h that the 
harge of the pion remains unrenormalised by higher order 
orre
tions.

The fun
tion B

��

(s) determines the behaviour of the �� elasti
 J

P

= 1

�

partial wave

amplitude in whi
h the �-meson pole is known to be present in the zero-width limit.

Therefore, we require

Re B

��

(M

2

�

) = 0: (6.24)

Without loss of generality the se
ond subtra
tion 
onstant may be �xed by setting

B

��

(s = 0) = 0: (6.25)

Any other 
ondition would just lead to res
aling of the parameters in the formula for

the form fa
tor. Thus, the most general expression for the form fa
tor in
orporating

subtra
tion ambiguities in the �� and KK loop diagrams 
ontains three

1


onstants

M

2

�

, g, and f

�

:

F

�

(s) =

M

2

�

� (1�

f

�

2M

�

g)s

M

2

�

� s�B

��

(s)

: (6.26)

Here

B

��

(s) = g

2

s

�

R(s;m

2

�

)� R(M

2

�

; m

2

�

) +

R(s;m

2

K

)�R(M

2

�

; m

2

K

)

2

�

+ ig

2

�

I(s;m

2

�

) +

I(s;m

2

K

)

2

�

; (6.27)

with I(s;m

2

) de�ned by (6.19), and

R(s;m

2

) =

1

192�

2

V:P:

Z

1

4m

2

ds

0

(s

0

� s)s

0

�

1�

4m

2

s

0

�

3=2

=

8

<

:

1

96�

2

�

1

3

+ �

2

+

�

3

2

log

�

1��

1+�

��

; � =

q

1�

4m

2

s

; for s � 4m

2

;

1

96�

2

�

1

3

� �

2

+ �

3

� ar
tan

�

1

�

��

; � =

q

4m

2

s

� 1; for s < 4m

2

;

(6.28)

where V.P. means the prin
iple value. Let us point out that the numerator of the

form fa
tor in (6.26) is not a 
onstant, but a linear fun
tion of s. This s-dependen
e

appears as the dire
t 
onsequen
e of 
urrent 
onservation. We 
an write (6.26) in

the form of the modi�ed GS formula

F

�

(s) =

1

2

g

�!��

f

e�

�

(s)M

�

M

2

�

� s� B

��

(s)

(6.29)

1

Assuming more than two subtra
tions in the pion loop diagrams leads to more subtra
tion


onstants. This is not di
tated by the 
onvergen
e properties of the loop diagrams, but is still

possible. We will not dis
uss su
h a 
ase here.
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with the e�e
tive s-dependent �� 
 
oupling 
onstant

f

e�

�

(s) = f

�

s

M

2

�

+

2(M

2

�

� s)

gM

�

: (6.30)

One should be 
areful with the interpretation of this result: as is 
lear from (6.23),

there is no dire
t transition of the �-meson to the real photon as a 
onsequen
e of

the gauge invariant ��
 
oupling. On the other hand, the e�e
tive 
oupling f

e�

�

(s)

is 
learly nonzero at s = 0. Therefore the pion form fa
tor looks as if there was

dire
t � � 
 
oupling also for the real photon. This is just the usual ve
tor meson

dominan
e. The latter thus emerges as the dire
t 
onsequen
e of our assumption

that the ve
tor meson 
ouples to the same pion 
urrent as the photon. For further

dis
ussions of the relationship between VMD and gauge invarian
e we refer to [82℄.

If we use the ChPT relation (6.13), whi
h agrees perfe
tly with the measured value

of g

�!��

, then (6.30) leads to an interesting relation

f

e�

�

(s = 0) = f

�

: (6.31)

Noti
e that the phase of F

�

(s) in (6.29) is still given by (6.8) and is 
ompletely

determined by the fun
tion B

��

(s).

6.2 The �� ! mixing

In se
tion 6.1 we dis
ussed the � 
ontribution due to the bare � plus the e�e
ts of the

�-meson width due to the light-meson loops to the pion form fa
tor. This analysis

is suÆ
ient for des
ribing the pion form fa
tor of the 
harged ve
tor 
urrent using

the CVC relation. For the ele
tromagneti
 pion form fa
tor it is ne
essary to take

into a

ount the ��! mixing e�e
ts. The ! is 
oupled to the pions and the photon

similarly to the �

0

-meson (see (6.12) and (6.15))

L

!��

=

i

2

g

!!��

�

�

y

�

�

� � �

�

�

y

�

�

!

�

; L

!


= �

1

4

ef

!

M

!

F

��

G

(!)

��

; (6.32)

!

�

being a 
onserved ve
tor �eld des
ribing the !-meson and G

(!)

��

= �

�

!

�

� �

�

!

�

.

It has proven useful to 
lassify various 
ontributions to hadroni
 amplitudes

a

ording to their formal order in the 1=N




expansion [42℄, where N




=3 is the number

of 
olours in QCD. In the language of the 1=N




expansion the analysis of the previous

se
tion 
orresponds to taking into a

ount the leading order 1=N




pro
ess, whi
h


orresponds to the resonan
e 
ontribution in a zero-width approximation, and the

subleading O(1=N




) e�e
ts of the meson loops.

2

Performing a resummation of these

meson loops gave our dispersion des
ription of the form fa
tor.

2

Re
all that pion and kaon loop diagrams are of order 1=N




and of order p

4

of the momentum

expansion.
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Figure 6.2: Diagrams whi
h 
ontribute to the � � ! mixing amplitude B

�!

. The

dire
t �� ! mixing diagram is the only diagram whi
h emerges to leading order in

1=N




, meson-loop diagrams are subleading 1=N




e�e
ts.

A 
orresponding treatment of the �� ! mixing e�e
ts then requires taking into

a

ount the leading and subleading 1=N




e�e
ts as well. To leading order in 1=N




,

meson loops do not 
ontribute and therefore the only e�e
t is the dire
t � � !

transition des
ribed in terms of the dire
t 
oupling (see Fig. 6.2).

At subleading 1=N




order several meson loop diagrams shown in Fig. 6.2 emerge.

We make use of spe
tral representations for loop diagrams, i.e. we 
al
ulate dire
tly

the imaginary parts and then re
onstru
t the full fun
tion by means of the spe
tral

integral with the relevant number of subtra
tions. Subtra
tion 
onstants then are

either �xed by physi
al 
onstraints or determined by the experimental data. Let

us point out an important feature related to our dispersion 
al
ulation: the dire
t

� � ! 
oupling, whi
h is a leading 1=N




pro
ess and the real part of the � � !

mixing loop diagrams at q

2

=M

2

�

, whi
h is a subleading 1=N




pro
ess, 
ontribute to

the form fa
tor pre
isely in the same way, su
h that only their sum has a physi
al

meaning. We therefore a

ount for the net e�e
t of these two 
ontributions by a

single subtra
tion 
onstant and do not 
onsider the dire
t ��! 
oupling separately.

We have analysed in se
tion 6.1 the �-meson self-energy fun
tion B

��

whi
h

determines the propagator of the intera
ting �-meson. Let us now dis
uss a similar

self-energy fun
tion of the !-meson B

!!

and the o�-diagonal � � ! fun
tion B

�!

whi
h des
ribes the �� ! mixing.

The fun
tion B

!!

determines the ! propagator D

!

(s) = 1=(M

2

!

� s � B

!!

) in

the absen
e of the �� ! mixing e�e
ts. The main 
ontribution to Im B

!!

is given

by the three-pion intermediate states. This Im B

!!

should then be inserted into

a dispersion integral to obtain B

!!

. However, be
ause of the small width of the !

resonan
e, it is suÆ
ient for our analysis to 
onsider as a simple ansatz a 
onstant

B

!!

B

!!

= i�

tot

!

M

!

: (6.33)

Possible pro
esses whi
h 
ontribute to the � � ! mixing amplitude B

�!

= B

!�

are

shown in Fig. 6.2. The 
oupling 
onstants whi
h determine the relative strength of

the diagrams in Fig. 6.2 are shown in Table 6.1. One �nds (see also [83℄) that

the main 
ontribution to the imaginary part of the �� ! mixing amplitude B

�!

is

given by the diagrams with two-pion and two-kaon intermediate states. To obtain

the full B

�!

we write again a dispersion representation with two subtra
tions. The
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Res. M [MeV℄ �

tot

[MeV℄ �

e

+

e

�

[keV℄ Br(�

+

�

�

) Br(�

0


)

�

0

769.0� 0.9 150.7� 2.9 6.77� 0.32 100% (6.8� 1.7)�10

�4

! 782.57� 0.12 8.44� 0.09 0.60� 0.02 (2.21� 0.3)% (8.5� 0.5)�10

�2

Res. f

V

[MeV℄ g

V!2�

�

0

152� 5 11.8� 0.2

! 45.3� 0.9 0.4� 0.02

Table 6.1: Masses and rates for ve
tor mesons from [11℄ and the 
orresponding

de
ay 
onstants. Re
all the SU(2)-limit relations f

�

= 3f

!

.

imaginary parts of these diagrams 
an be 
al
ulated in analogy to (6.18) in terms

of the 
oupling 
onstants g

V!PP

with V = �; !, P = �;K de�ned a

ording to the

relation

hP (k

1

)

�

P (k

2

)jT jV ("; k)i =

1

2

g

V!PP

"

(V )

�

(k

1

� k

2

)

�

:

For instan
e, the imaginary part of the diagram with the �� intermediate state is

equal to g

�!��

g

!!��

I(s;m

2

�

).

The same arguments as used to show the relation (6.22) between Im B

�


and

Im B

��

lead to

g

�!��

Im B

�!

(s)� g

!!��

Im B

��

(s) = 0: (6.34)

Hen
e, the 
ombination g

!!��

B

��

� g

�!��

B

�!

is a polynomial of �rst order in s.

The �� ! mixing e�e
ts are sizeable only in the narrow vi
inity of s = M

2

!

, so we

may set

g

�!��

B

�!

� g

!!��

B

��

= s �; (6.35)

and the value of � will be found from the �t to the pion form fa
tor. As we have

explained above, the real part of the fun
tion B

�!

at s � M

2

�;!

in
ludes the dire
t

�� ! 
oupling.

6.3 The ele
tromagneti
 pion form fa
tor with

�� ! mixing

In the problem of the � � ! mixing, the 
onstant g

!!2�

is a natural small param-

eter, and the expansion of the pion form fa
tor in powers of this parameter 
an

be 
onstru
ted. We 
an safely negle
t all terms of order g

2

!!��

and limit ourselves

to the �rst order analysis. The diagrams whi
h des
ribe the 
ontributions to the
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Figure 6.3: Diagrams for the pion form fa
tor whi
h emerge at �rst order of the

expansion in g

!!��

. In this �gure the � and ! propagators areD

�

= 1=(M

2

�

�s�B

��

)

and D

!

= 1=(M

2

!

� s� B

!!

), respe
tively.

form fa
tor of �rst order in g

!!2�

are shown in Fig. 6.3. Adding the 
orresponding

expressions to the result (6.29) we get for the pion form fa
tor

F

�

(s) =

1

2

g

�!��

f

e�

�

(s)M

�

M

2

�

� s� B

��

(s)

+

1

2

g

!!��

f

!

s

M

!

M

2

!

� s� B

!!

(s)

�

M

2

�

� s+� � s

M

2

�

� s�B

��

(s)

�

+O(g

2

!!��

):

(6.36)

We use this expression for the numeri
al analysis of the data for the ele
tromagneti


pion form fa
tor in the next se
tion.

6.4 Numeri
al analysis

In this se
tion we apply the formulas obtained to the analysis of the data on the

ele
tromagneti
 and 
harged 
urrent pion form fa
tors and extra
t in this way the

resonan
e masses and 
oupling 
onstants. We in
lude the 
ontributions of the �(770)

and !(782) resonan
es and negle
t the higher ve
tor resonan
es �(1450) and �(1700)

(for a dis
ussion of these latter see [84℄). As 
an be seen from the analysis of [85℄,

the in
uen
e of the latter upon the pion form fa
tor is negligible in the region s � 1

GeV. We therefore extra
t the � and ! parameters making use of the form fa
tor

data for s � 1 GeV.

6.4.1 The ele
tromagneti
 pion form fa
tor

We �t the available data on the phase [86℄ and the modulus [76, 87℄ of the ele
tro-

magneti
 pion form fa
tor to (6.36) whi
h in
ludes the � � ! mixing e�e
ts. The
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form fa
tor turns out to be weakly sensitive to g

!!��

and f

!

for whi
h we use the

values from Table 6.1.

The resonan
e parameters turn out to be rather sensitive to the upper limit

p

s � Q

upper

of the data points in
luded into the �t pro
edure. The extra
ted

masses and 
ouplings from the best �t of the form fa
tor, whi
h was done separately

for the phase and the modulus, are shown in Table 6.2 and 6.3, respe
tively. This

dependen
e on Q

upper

might signal that the errors in the extra
ted masses and


oupling 
onstants are in fa
t sizeably greater than those quoted in [11℄. Obviously,

the error estimates provided by the popular Fumili [88℄ program should be taken

with some 
are.

Q

upper

, MeV 710 (5 pts) 775 (10 pts) 850 (15 pts) 965 (20 pts)

M

�

0

, MeV 772.7� 1.3 773.4� 0.8 773.0� 0.6 771.1� 0.6

g

�

0

!�

+

�

�

12.05� 0.07 12.0� 0.05 12.0� 0.04 11.87� 0.04

Table 6.2: The upper limit of the

p

s-range of the data from [86℄ used for �tting

the phase of the pion form fa
tor and the 
orresponding �tted parameters M

�

and

g

�!2�

. Error estimates as given by the Fumili program are shown.

960 (40 pts [76℄

Q

upper

[MeV℄ 820 (27 pts) 950 (40 pts) 1000 (45 pts)

+ 45 pts [87℄)

M

�

0

[MeV℄ 774.7� 0.3 776.1� 0.2 773.6� 0.2 775.5� 0.1

f

�

0

[MeV℄ 147.7� 0.2 148.2� 0.1 149.0� 0.1 149.4� 0.1

g

�

0

!�

+

�

�

11.37� 0.03 11.38� 0.01 11.7� 0.01 11.5� 0.05

M

!

[MeV℄ 782.5� 0.3 781.3� 0.2 781.9� 0.2 782.5� 0.2

� 0.180� 0.007 0.191� 0.006 0.183� 0.006 0.170� 0.007

Table 6.3: The upper limit of the Q-range of the data [76℄, used for �tting the

modulus of the pion form fa
tor and the 
orresponding �tted parameters M

�

, f

�

,

g

�!2�

, M

!

, and �. The last 
olumn shows the result of the �t to the 
ombined

data on jF

�

j from [76℄ and [87℄. Error estimates as given by the Fumili program

are shown.

Our best estimates for the � and ! parameters from a 
ombination of the �ts

to the phase and the modulus are presented in Table 6.5. We obtain these values

as follows: the parameter values from the last 
olumns of Tables 6.2 and 6.3 should

be the most reliable ones, sin
e they 
orrespond to the biggest data sets. On the

other hand, the errors given by the Fumili program 
annot be trusted. We took

the average of the values for M

0

�

and g

�!��

, weighting the values from the modulus

�t by a fa
tor 2/3 and those from the phase �t by 1/3. The errors in Table 6.5 are

our edu
ated guesses.

The pion elasti
 form fa
tor 
al
ulated with the 
entral values of the parameters

from Table 6.5 is shown in Fig. 6.4. Both the phase and the magnitude of the form

fa
tor are well des
ribed, ex
ept for the phase at

p

s > 0:9 GeV.
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Figure 6.4: The phase (a) and the modulus (b,
) of the pion form fa
tor from the

� 
ontribution (dotted line) and with �� ! mixing e�e
ts (solid line) 
ompared to

the data on the phase from [86℄ and the data on the modulus from [76℄ (solid 
ir
les)

and [87℄ (empty 
ir
les). For the 
al
ulation the 
entral values of the parameters

from Table 6.5 have been used.
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6.4.2 The 
harged 
urrent pion form fa
tor

The amplitude of the weak transition �

�

! �

�

�

0

�

�


an be parametrised in terms

of the two �

�

! �

0

transition form fa
tors as follows

h�

0

(p

0

)j�u


�

dj�

�

(p)i =

1

p

2

F

+

�

(q

2

)(p

0

+ p)

�

+

1

p

2

F

�

�

(q

2

)q

�

: (6.37)

In the isospin limit F

�

�

= 0 and F

+

�

= F

�

. These relations should work well

for all q

2

ex
ept for the region of the � and ! resonan
es: the form fa
tor F

�


ontains 
ontributions of the �

0

and ! resonan
e, whereas the 
ontribution analogous

to ! is absent in F

+

�

. Thus, the 
harged 
urrent form fa
tor F

+

�

as measured in

the �

�

! �

0

�

�

�

�

de
ay is given in our model by the the modi�ed � dominan
e

formula (6.29). Comparison with the ALEPH [85℄ and CLEO [89℄ data allows the

extra
tion of the masses and 
oupling 
onstants of the �

�

. We give the 
orresponding

numbers in Table 6.4 and plot the form fa
tor in Fig. 6.5.

Q

upper

[MeV℄ 760 (18 pts) 900 (23 pts) 1025 (28 pts)

M

�

�

[MeV℄ 768.8� 0.3 775.1� 0.1 776.9� 0.1

f

�

�

[MeV℄ 144.9� 0.3 150.3� 0.1 150.1� 0.1

g

�

�

!�

0

�

�

11.22� 0.02 11.34� 0.01 11.80� 0.05

Table 6.4: Fit to the 
harged 
urrent pion form fa
tor from the CLEO data [89℄ on

the �

�

! �

�

�

0

�

�

de
ay. The upper limit Q

upper

of the

p

s-range of the data used

and the 
orresponding �tted parameters for the �

�

meson. Error estimates as given

by the Fumili program are shown.
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To 
on
lude this 
hapter we summarise our �nal results for the �

0

; �

�

and !

parameters whi
h we extra
ted from �ts to the data on the ele
tromagneti
 [76,86,87℄

and 
harged 
urrent [85, 89℄ pion form fa
tors in Table 6.5. The masses, the weak

de
ay 
onstants and the pioni
 
oupling 
onstants of the neutral and 
harged �-

mesons are found to be equal within the errors. Let us point out that our �tted

value for g

�!2�

agrees perfe
tly with the ChPT predi
tion g

�!2�

= 2M

�

=f

�

=11.7.

We noti
e that our 
entral values of the � masses are 2-3 MeV higher than the


orresponding numbers obtained from the same rea
tions by [11℄. A 
omparison of

the data and the theoreti
al 
urves for the ele
tromagneti
 and 
harged 
urrent pion

form fa
tors is presented in Fig. 6.6. We point out that the � � ! mixing gives a

sizeable 
ontribution to the ele
tromagneti
 form fa
tor in the region of the � and !

resonan
es, where it leads to an in
rease of jF

�

j

2

by 10% at s = M

2

�

and by almost

30% at s =M

2

!

.

M

�

�

[MeV℄ M

�

0

[MeV℄ M

!

[MeV℄ f

�

[MeV℄ g

�!��

�

775� 2 774� 2 782:0� 0:5 149� 1 11:6� 0:3 0:17� 0:02

Table 6.5: The masses and de
ay 
onstants of the ve
tor mesons and the � � !

mixing parameter � (see (6.35)) as obtained by our analysis
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tromagneti
 (full 
ir
les) [76,87℄ and the 
harged


urrent form fa
tor from the �

�

! �

�

�

0

�

�

de
ay (open squares) [89℄ with our �ts.

The �ts to the ele
tromagneti
 pion form fa
tor show the �

0


ontribution (dotted

line) and the result in
luding � � ! mixing (dashed line). The �t to the 
harged


urrent pion form fa
tor is the solid line.
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Chapter 7

Con
lusions

In this work we examine soft high energy rea
tions in the framework of nonper-

turbative QCD. In the �rst part we 
al
ulate total and di�erential 
ross se
tions

for elasti
 and inelasti
 di�ra
tive s
attering. In our model we start from a mi-


ros
opi
 des
ription of the s
attering of quark-antiquark and quark-diquark wave

pa
kets and use fun
tional integral methods to obtain expressions for the s
attering

amplitudes. The 
orrelation fun
tions of light-like Wegner-Wilson loops governing

these amplitudes are evaluated in the framework of the model of the sto
hasti
 va
-

uum [23{26℄. The hadron-hadron s
attering amplitudes are obtained by multiplying

the parton s
attering amplitudes with suitable hadroni
 wave fun
tions [37℄. Both a

matrix 
umulant expansion for the 
orrelation fun
tion of two Wegner-Wilson loops

as developed in [30℄ and an expansion method [24, 27℄ are used.

The free parameters of our model are those of the model of the sto
hasti
 va
uum:

G

2

, a and �, and the ones of the wave fun
tions: S

h

i

and z

h

i

, determining the

width of the transverse and longitudinal momentum distributions of the 
onstituents

of the hadrons, respe
tively. These parameters have been determined in previous

work [24, 30℄ on elasti
 s
attering. The extension parameters S

h

i

are allowed to

depend on the 
.m. energy a

ording to (4.1) and (4.3) respe
tively. In this sense

di�erent hadrons are 
hara
terised through their radii, whi
h 
ome out 
lose to the


orresponding ele
tromagneti
 radii of the hadrons for energies

p

s � 20 GeV. The

values for z

h

i

are obtained from a 
al
ulation of form fa
tors in our model.

With all parameters �xed, integrated and di�erential 
ross se
tions for proton-

proton and proton-pion s
attering are 
al
ulated and 
ompared to experimental

results [58{63,66{68℄. Our model does not distinguish between pp and p�p s
attering

or p�

+

and p�

�

s
attering, respe
tively.

The 
al
ulated integrated elasti
 
ross se
tions agree with the experimental val-

ues within the numeri
al and experimental errors for a wide range of 
.m. energies

starting at about

p

s = 20 GeV up to the Tevatron energy

p

s = 1800 GeV. The

di�erential elasti
 
ross se
tions are des
ribed reasonably well over many orders of

magnitude by the matrix 
umulant method, however, this method underestimates

the data for small jtj. On the other hand the expansion method gives a good
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des
ription of the di�erential 
ross se
tions for jtj . 0:2GeV

2

but overshoots the

data for larger values of jtj. As a 
onsequen
e of the integrated 
ross se
tions being

mainly due to the 
ontributions from small jtj, the expansion method gives better

results here whereas the matrix 
umulant method tends to underestimate the exper-

imental data. The di�eren
e between the results obtained from both methods 
an

be seen as a theoreti
al error estimate of our model, as they use di�erent approxi-

mation s
hemes in the evaluation of the 
orrelation fun
tion. In the approximation

we use in this work we have C = P = +1 ex
hange only.

Furthermore the rise of the integrated 
ross se
tions in single di�ra
tive disso-


iation as a fun
tion of

p

s is 
al
ulated. Our 
al
ulated ratio �

sd

=(�

el

+ �

sd

) is

in rough agreement with experiment. The experimentally observed behaviour that

the di�ra
tive disso
iation part of the 
ross se
tion in
reases more slowly with

p

s

than the elasti
 one is reprodu
ed qualitatively in our 
al
ulation. The di�erential

distribution 
an be reasonably well des
ribed by the expansion method. The diÆ-


ulties we en
ounter in the des
ription of d�

sd

=dt by means of the matrix 
umulant

method, i.e. the formation of a depression at jtj � 0:3GeV

2

, are investigated in

a se
ond approa
h. This approa
h uses two-dimensional harmoni
 os
illator wave

fun
tions instead of plane waves for the des
ription of the di�ra
tive �nal state and


on�rms the results found before, but allows us to analyse the origin of the observed

depression. Again the pro
ess is mediated by C = P = +1 ex
hange only in our

approximation.

Turning to double di�ra
tive ex
itation pp ! N(1535)N(1535) we study C =

P = �1 ex
hange in the framework of our model, whi
h arises due to the symmetries

of the �nal state wave fun
tions. The qualitative features of our predi
tions for

the integrated and di�erential 
ross se
tions resemble the ones of the results from

C = P = +1 ex
hange, the ex
eption being a rather slow de
rease of the di�erential

distribution with in
reasing momentum transfer. This behaviour is also known

from the heli
ity amplitude A

p

1=2

measured in the 
ontext of the ele
tromagneti


p � N(1535) transition form fa
tor. However, due to restri
tions of our model, in

parti
ular the simple ansatz for baryons, whi
h are given by wave pa
kets of a quark

and a s
alar diquark, we 
annot 
al
ulate this heli
ity amplitude in our model and

therefore are not able to 
ompare to experimental data.

The last 
hapter in the �rst part of our work deals with form fa
tors at small

spa
e-like momentum transfers, 
al
ulated in the framework of our model. Our

result for the isove
tor Dira
 form fa
tor of the proton and the ele
tromagneti


form fa
tor of the pion, as well as the ele
tromagneti
 radii extra
ted from them,


ompare reasonably well to experimental data.

To summarise the �rst part, our model is quite well suited to des
ribe inelasti


di�ra
tive hadroni
 rea
tions at high 
.m. energies (

p

s & 20 GeV) and small mo-

mentum transfer. Further progress 
ould be made when in
luding higher 
umulant

terms in (3.16) whi
h would 
ontribute to both C = P = +1 and C = P = �1

ex
hange. The hope is that these 
ontributions 
ould, at least partly, �ll up the dips
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en
ountered in various 
ontributions to the di�erential 
ross se
tions and thus lead

to an improved des
ription of the data. Also a more re�ned hadron model 
ould

help avoid some short
omings of the model as dis
ussed in parti
ular in the 
ontext

of the spin-
ip 
ontribution to the form fa
tor.

The up
oming experiments e.g. at RHIC will be a ri
h sour
e for new experi-

mental data for both single and double di�ra
tive disso
iation in hadroni
 rea
tions

at high 
.m. energies. Therefore the study of inelasti
 di�ra
tive s
attering will

remain an interesting and instru
tive �eld of work, where e�e
ts of nonperturbative

QCD 
an be studied.

In the se
ond part of our work we analyse the ele
tromagneti
 and 
harged


urrent pion form fa
tors at time-like momentum transfers in a dispersion approa
h.

Here we 
onsider a model with ���, �KK, !��, !KK and gauge-invariant � � 


and ! � 
 
ouplings. The pion form fa
tor is obtained by a resummation of pion

and kaon loops leading to the �nite width of the �-meson. The resulting expression

for the pion form fa
tor takes the form of the ve
tor meson dominan
e formula with

one important distin
tion: the e�e
tive de
ay 
onstant f

e�

�

depends linearly on the

momentum transfer squared. We also take into a

ount the � � ! mixing in the

ele
tromagneti
 pion form fa
tor.

The values of the �

0

and ! parameters are extra
ted from the �t to the ele
tro-

magneti
 pion form fa
tor [76, 86, 87℄ at 0 �

p

s � 1:0GeV where 
ontributions of

higher ve
tor meson resonan
es are negligible. The �� ! mixing is found to give a

sizeable 
ontribution to the ele
tromagneti
 form fa
tor in the region of the � and !

resonan
es, where it leads to an in
rease of jF

�

j

2

by 10% at s = M

2

�

and by almost

30% at s =M

2

!

.

The values of the �

�

parameters are obtained by the �t to the 
harged 
urrent

pion form fa
tor measured in � de
ay [85, 89℄.

Our best estimates for the � and ! parameters are presented in Table 6.5. The

masses, the weak de
ay 
onstants and the pioni
 
oupling 
onstants of the neutral

and 
harged �-mesons are found to be equal within the errors andour �tted value

for g

�!2�

agrees perfe
tly with the ChPT predi
tion g

�!2�

= 2M

�

=f

�

=11.7.

To summarise the se
ond part of our work, we have presented a model whi
h

gives a good des
ription the ele
tromagneti
 and 
harged 
urrent pion form fa
tor

in the region 0 �

p

s � 1:0GeV in
luding the e�e
ts due to � � ! mixing. The �

and ! parameters whi
h we obtain from our model are within errors in agreement

to experimental data [11℄.
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Appendix A

Conventions

Throughout this work we use natural units, in whi
h

~ = 
 = 1: (A.1)

The �ne stru
ture 
onstant of the ele
tromagneti
 intera
tion is given in Heaviside-

Lorentz units by

�

e:m:

=

e

2

4�

�

1

137

: (A.2)

Latin indi
es i; j; k et
. generally run over the three spatial 
oordinate labels, greek

indi
es �; �; �; : : : generally run over the four spa
etime 
oordinate labels.

The spa
etime metri
 g

��

is diagonal with elements

g

00

= 1; g

11

= g

22

= g

33

= �1: (A.3)

The Dira
 matri
es 


�

are de�ned so that




�




�

+ 


�




�

= 2g

��

: (A.4)

Moreover we de�ne




5

= i


0




1




2




3

;

�

��

=

i

2

(


�




�

� 


�




�

): (A.5)

By letters in boldfa
e we denote spatial three-ve
tors, e.g. x;p. A subs
ript T

denotes that we are dealing with two-dimensional transverse ve
tors

x =

�

x

T

x

3

�

; x

T

=

�

x

1

x

2

�

: (A.6)

77



78 Appendix A. Conventions

Light-
one variables are de�ned by

x

�

= x

0

� x

3

: (A.7)

The measure of integration then is given by

d

4

x = dx

0

dx

1

dx

2

dx

3

=

1

2

dx

+

dx

�

d

2

x

T

: (A.8)



Appendix B

Conne
tors

We de�ne a 
onne
tor V (y; x;C

x

) between the points x and y along the 
urve C

x

as

the non-abelian generalisation of the S
hwinger string of QED

V (y; x;C

x

) := P

�

exp(�ig

Z

C

x

dz

�

G

�

(z))

�

: (B.1)

Here P denotes path ordering. This 
onne
tor has the following properties:

� The 
onne
tor of the sum of two adjoined 
urves C

1

and C

2

is equal to the

produ
t of the 
onne
tors of the single 
urves:

V (z; x;C

1

+ C

2

) = V (z; y;C

2

) � V (y; x;C

1

): (B.2)

� If C

x

is the 
urve 
onne
ting x and y and

�

C

x

is the same 
urve but with

reversed orientation, i.e. running from y to x, then

V (y; x;C

x

) � V (x; y;

�

C

x

) = 1: (B.3)

� Hermitian 
onjugation 
orresponds to path reversal:

V

y

(y; x;C

x

) = V (x; y;

�

C

x

) (B.4)

By applying 
onne
tors we 
an shift various quantities between two points in

spa
e-time in a gauge 
ovariant way. E.g. we de�ne the shifted gluon �eld strength

tensor

^

G whi
h has been transported from x to y along the 
urve C

x

by

^

G

��

(y) := V (y; x;C

x

)G

��

(x)V

�1

(y; x;C

x

): (B.5)

Comparing to (2.25) we re
ognise that the 
onne
tors are in fa
t the eikonal phases

whi
h we have introdu
ed in the dis
ussion of quark-quark s
attering in 
hapter 2.
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Appendix C

Cal
ulation of form fa
tors in the

model

Starting point for the form fa
tor 
al
ulation is the matrix element of the third


omponent of the isospin 
urrent at x = 0

J

�

3

� hh

3

(P

0

)jj

�

3

(0)jh

1

(P )i (C.1)

with

j

�

3

(x) =

X

 

�

 (x)


�

�

1

2

�

3

�

 (x): (C.2)

Here

P

 

denotes the sum over quark �elds u; d and �

3

is the third Pauli isospin

matrix. The hadrons h

1

; h

3

are supposed to move in positive x

3

-dire
tion with

P

+

= P

0

+

!1 (see (5.2)). In analogy to the des
ription of hadron-hadron s
atter-

ing we therefore denote the in
oming hadron by h

1

and the outgoing hadron by h

3

.

The steps required to 
ompute the form fa
tor from this expression are 
ompletely

analogous to those dis
ussed in 
hapter 2 that lead to the T -matrix element (2.49),

with the di�eren
e that now there are additional 
ontra
tions between the quarks

and diquarks (or antiquarks in the 
ase of mesons) of the hadrons h

1

; h

3

and the

quark �elds of the 
urrent j

�

3

when applying the LSZ redu
tion formalism. By 
on-

sidering the isospin 
urrent we ensure that 
ontributions whi
h 
ontain subdiagrams

arising from 
ontra
tions between the quark �elds of the 
urrent drop out be
ause

they are proportional to tr �

3

= 0. Now we des
ribe the form fa
tor 
al
ulation for

the �

+

meson, modelled as u

�

d wave pa
ket.

Using our notation from 
hapter 2 we obtain J

�

3

(C.1) by �rst 
al
ulating the

matrix element of j

�

3

between q�q states and then folding with the wave fun
tions of

the wave pa
kets.

J

�

3

=

Z

d

2

�

3T

Z

1

0

dz

3

1

(2�)

3=2

1

p

2

Æ

s

3

;�s

0

3

~'

�

3

(z

3

;�

3T

)

1

p

3

Æ

A

3

A

0

3

Z

d

2

�

1T

Z

1

0

dz

1

1

(2�)

3=2

1

p

2

Æ

s

1

;�s

0

1

~'

1

(z

1

;�

1T

)

1

p

3

Æ

A

1

A

0

1

hu

�

djj

�

3

ju

�

di; (C.3)
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�

�

d

u

u

j

�

(0)

�

j

�

(0)

�

d

u

�

d

(a) (b)

Figure C.1: The two 
ontributions to the matrix element hu

�

djj

�

3

ju

�

di. The dashed

lines indi
ate that the loops have been 
losed by the wave fun
tions.

with

hu

�

djj

�

3

ju

�

di � hu(p

3

; s

3

; A

3

)

�

d(p

0

3

; s

0

3

; A

0

3

)jj

�

3

(0)ju(p

1

; s

1

; A

1

)

�

d(p

0

1

; s

0

1

; A

0

1

)i; (C.4)

where s

i

; A

i

are spin and 
olour indi
es, respe
tively and ~'

1;3

are the Fourier trans-

forms of the wave fun
tions (3.18)

~'

i

(z;�

T

) =

1

2�

Z

d

2

x

T

e

�i�

T

�x

T

'

i

(z;x

T

): (C.5)

Applying the LSZ redu
tion formalism we 
an express the matrix element hu

�

djj

�

3

ju

�

di

from (C.4) as an integral over the quark 6-point-fun
tion. We get only two terms

depi
ted graphi
ally in Fig. C.1 whi
h are to be interpreted as follows. We 
onsider a

�xed gluon ba
kground. The quark and antiquark travel in this ba
kground and the


urrent either hooks onto the quark line (Fig. C.1a) or the antiquark line (Fig. C.1b).

As in 
hapter 2 the matrix element (C.4) is obtained by averaging over all gluon

potentials with the measure given by the fun
tional integral (2.16). In the high

energy limit for u and

�

d the s
attering amplitudes in the �xed gluon ba
kground

redu
e to Wegner-Wilson line operators whi
h are 
losed to a loopW

+

by the meson

wave fun
tions. This is indi
ated by the dashed lines in Fig. C.1. Combining

everything we obtain

h�

+

(P

0

)jj

�

3

(0)j�

+

(P )i =

P

1+

n

�

+

2

Z

1

0

dz

Z

d

2

x

T

'

�

3

(z;x

T

)'

1

(z;x

T

)

 

e

i(1�z)q

T

�x

T

+ e

�izq

T

�x

T

!

�

W

+

(

1

2

x

T

;x

T

)

�

G

: (C.6)
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A straightforward 
al
ulation in the MSV shows that the expe
tation value of

the 
orrelation fun
tion of one Wegner-Wilson loop is equal to 1. By a shift in the

integration variable the d

2

x

T

integration 
an be redu
ed to a Gaussian integral over

the wave fun
tions and we �nd the �nal result for the matrix element (C.1)

h�

+

(P

0

)jj

�

3

(0)j�

+

(P )i =

P

1+

n

�

+

I

�

Z

1

0

dz 2z(1� z) e

�(z�

1

2

)

2

=2z

2

h

e

�

z

2

2

S

2

h

q

2

T

: (C.7)

Let us turn to the proton form fa
tors now. In our simple ansatz the proton


onsists of a quark and a s
alar diquark, whi
h should be favoured above the ve
tor

diquark due to dynami
al reasons [48℄. The spin of the proton then is 
arried by the

quark. This together with the spin 
onservation on the parton level draws 
on
lusion

that, in our model, we get for the matrix element of j

�

3

between proton states an

expression similar to (C.7):

hp(P

0

; s

0

)jj

�

3

(0)jp(P; s)i = P

+

n

�

+

�

y

s

0

F

1v

(Q

2

)�

s

(C.8)

with F

1v

(Q

2

) given in (5.6). Thus we get only a spin-non-
ip and no spin-
ip


ontribution in the matrix element (5.3), that is, our model gives F

2v

(Q

2

) = 0. This

is 
ertainly not a very good approximation. But on the other hand the spin-
ip part

in (5.3) is suppressed by jq

T

j=(2M

p

) for q

T

! 0. Thus the matrix element (5.3) is

still reasonably des
ribed by the model for small enough jq

T

j.

Here some remarks on the ele
tromagneti
 p � N(1535) transition form fa
tor

are due. The transition 
urrent 
an be written in terms of the analogues F

1�

; F

2�

of

the Pauli and Dira
 form fa
tor, respe
tively, (see [90, 91℄)

hN(1535)(P

0

; s

0

)jj

�

(0)jp(P; s)i

= e �u

s

0

(P

0

)

�




5

�




�

�Q

2

M

�

+M

P

+ q

�

�

F

1�

(Q

2

) + i


5

�

��

q

�

F

2p

(Q

2

)

�

u

s

(P ); (C.9)

whereM

�

is the mass of the N(1535). A similar 
al
ulation to the one presented here

for the form fa
tors of the proton shows that again F

1�

multiplies the spin-non-
ip

part and F

2�

the spin-
ip part. Sin
e we 
annot obtain the spin-
ip 
ontribution

in our model as shown above, we �nd F

2�

(Q

2

) = 0. We have argued that it is not

de
isive for the des
ription of the ele
tromagneti
 form fa
tors of the proton at small

momentum transfers that the spin-
ip 
ontribution in our model is identi
al to zero.

However, this is di�erent for the ele
tromagneti
 p�N(1535) transition form fa
tor.

The quantities that are measured experimentally are the heli
ity amplitudes A

p

1=2

and S

p

1=2

. Ea
h of these amplitudes are des
ribed by linear 
ombinations of F

1�

and

F

2�

and in this 
ontext F

2�

is not suppressed 
ompared to F

1�

. On the 
ontrary, for

A

p

1=2

, whi
h is due to transverse photons with heli
ity � = +1, F

1�

is suppressed by

jq

T

j

2

=(M

�

+M

P

) for q

T

! 0 (see [91℄). Therefore, we 
annot 
al
ulate in a sensible

way a quantity whi
h we 
ould 
ompare to experimental data. We only note that
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the experimentally observed slow de
rease of A

p

1=2

with Q

2

(see [92℄ and referen
es

therein) is in qualitative agreement to our 
al
ulation of the di�erential 
ross for

pp! N(1535)N(1535), where we also �nd a relatively 
at distribution in jtj.

To summarise, we have outlined in this appendix a 
al
ulation of isove
tor form

fa
tors using the same methods as for the s
attering pro
esses. The results are in

essen
e as in [69℄ taking our simple ansatz for the wave fun
tions of the hadrons into

a

ount.
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