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Weihe di�raktive Hohenergiestreuung und Formfaktoren

in nihtperturbativer QCD

Zusammenfassung

In der vorliegenden Arbeit untersuhen wir weihe Hohenergie-Reaktionen im Rah-

men nihtperturbativer Modelle. Dazu verwenden wir ein auf einem Funktionalin-

tegral-Ansatz beruhendes Modell und leiten die Streuamplituden her, deren wesent-

liher Bestandteil Erwartungswerte von lihtartigen Wegner-Wilson Shleifen und

Linien sind, die dann im Modell des stohastishen Vakuums berehnet werden.

Mesonen beshreiben wir in einem einfahen Quark-Antiquark Bild, f�ur Baryonen

nehmen wir eine Quark-Diquark Struktur an, als Hadron-Wellenfunktionen verwen-

den wir einen Wirbel-Steh-Bauer Ansatz. Aus den Streuamplituden berehnen wir

integrierte und di�erentielle Wirkungsquershnitte sowohl f�ur elastishe und di�rak-

tive Proton-Proton als auh f�ur Proton-Pion Streuung bei hohen Shwerpunktsen-

ergien und kleinen Impuls�ubertr�agen und vergleihen mit experimentellen Daten.

Abh�angig von der Symmetrie des jeweiligen Endzustandes erhalten wir entweder

C = P = +1 (Pomeron) oder C = P = �1 (Odderon) Austaush. Des weiteren

berehnen wir im Rahmen des Modells die Isovektor-Formfaktoren des Protons und

des Pions bei raumartigen Impuls�ubertr�agen. Im abshliessenden Kapitel verwen-

den wir einen Dispersionsrelations-Ansatz zur Berehnung des Pion Formfaktors

bei zeitartigen Impuls�ubertr�agen. Aus dem Vergleih mit experimentellen Daten

bestimmen wir die Massen und Kopplungskonstanten der �- und !-Mesonen.

Soft di�rative high energy sattering and form fators in

nonperturbative QCD

Abstrat

In this work we study soft high energy reations in the framework of nonperturbative

models. Using a funtional integral approah we derive the sattering amplitudes,

whih are governed by expetation values of light-likeWegner-Wilson loops and lines,

whih then are then evaluated in the model of the stohasti vauum. We desribe

mesons in a simple quark-antiquark piture, for baryons we assume a quark-diquark

struture, as hadroni wave funtions we apply a Wirbel-Steh-Bauer ansatz. In the

following we alulate integrated and di�erential ross setions from the sattering

amplitudes, as well for elasti and di�rative proton-proton as for proton-pion sat-

tering at high entre of mass energies and small momentum transfers and ompare

to experimental data. Depending on the symmetry of the respetive �nal state we

get either C = P = +1 (pomeron) oder C = P = �1 (odderon) exhange. Further-

more we alulate the isovetor form fators of the proton and the pion at spae-like

momentum transfers. In the �nal hapter we use a dispersion approah to alulate

the pion form fator at time-like momentum transfers and determine the masses and

oupling onstants of the �- and !-mesons from a omparison to experimental data.
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Chapter 1

Introdution

Today it is ommon belief that Quantum Chromodynamis (QCD) is the theory

desribing the physis of the strong interation. QCD is a Yang-Mills theory [1℄

with the gauge group SU(3). The Lagrangian of QCD is onstruted from the basi

degrees of freedom, the quarks and gluons, in terms of whih we should be able to

desribe all strong proesses. Due to the non-abelian struture of SU(3), both quarks

and gluons arry olour-harge. But in the real world we observe neither quarks nor

gluons as free partiles. Instead, the partiles we see in nature are hadrons, whih are

olourless objets, in whih the quarks and gluons are on�ned. The problem now is

to �nd a suitable transition from the level of quarks and gluons, whose transations

are desribed by the QCD Lagrangian, to the level of hadrons, whih are seen in

the real world proesses. For ertain irumstanes we an solve this problem and

derive results from �rst priniples, starting from the Lagrangian.

One ase where this is possible is the �eld of short-distane phenomena. There,

all ourring momentum sales are muh larger than the QCD sale parameter

�

QCD

� 200MeV. Due to asymptoti freedom [2℄, the QCD oupling parameter

beomes small for large momentum sales and therefore we an use perturbative

methods, whih allow us for example to alulate the total ross setion in eletron-

positron annihilation or the total hadroni deay rate of the Z-boson. Another

example is the alulation of parton distribution funtions for large Q

2

by means of

the DGLAP equation [3℄, whih has been derived from perturbative QCD.

For long-distane phenomena, i.e. when all ourring momentum sales are only

of order �

QCD

or smaller, the QCD oupling beomes too large and perturbation

theory breaks down. This is the regime of nonperturbative QCD, where we have to

use numerial methods to obtain results from �rst priniples. One suh numerial

method is lattie QCD [4, 5℄. Typial quantities that are alulated in this ontext

are e.g. hadron masses.

The subjet of this work are soft high energy reations, whih are neither pure

short-distane, nor pure long-distane phenomena, beause we deal with two mo-

mentum sales: the entre of mass (.m.) energy is beoming large,

p

s & 10GeV,

the momentum transfer stays �nite,

p

jtj . 1GeV. Therefore, neither perturbation

1



2 Chapter 1. Introdution

theory nor numerial methods suh as lattie QCD an be applied diretly and we

have to revert to models.

Until today, of ourse a lot of models have been developed to desribe high

energy hadron-hadron sattering. Examples are the geometri model [6℄, the valon

model [7℄, topologial expansions and strings [8℄, perturbative �eld theoretial alu-

lations [9℄ and the work of Cheng and Wu on the behaviour of high energy sattering

amplitudes in quantum �eld theory based on perturbative alulations (see [10℄ and

referenes therein).

The experimentally observed inrease of total ross setions for hadroni rea-

tions with the .m. energy [11℄, starting at about

p

s = 10 GeV, has been desribed

phenomenologially by Donnahie and Landsho� [12℄ in the ontext of Regge the-

ory [13℄. In this piture the pomeron behaves like a photon with C = +1 and

ouples to single quarks, the transition to the hadron level then leads to the addi-

tive quark rule [14℄. The rise of the total hadroni ross setions an be desribed by

a pomeron with an interept slightly larger than one [11,12℄. For inelasti di�ration,

the pomeron-photon analogy was applied in [15℄ to relate the ross setion of these

reations in a quantitative way to the struture funtions of deep inelasti eletron-

proton sattering. For reviews on nonperturbative models we refer to [16{19℄.

A new nonperturbative desription of soft hadroni high energy reations, start-

ing from a mirosopi level, was developed in [20℄ where in the ase of an abelian

gluon model the pomeron properties were related to nonperturbative aspets of

the vauum like the gluon ondensate introdued by Shifman, Vainshtein and Za-

kharov [21℄. These methods were generalised to QCD in [22℄. In this model the ob-

jets governing the sattering amplitudes are orrelation funtions of Wegner-Wilson

lines and loops [23,24℄, whih are then evaluated in the model of the stohasti va-

uum [25℄ as formulated in Minkowski spae in [23, 24, 26℄.

This method has been applied to various reations, for example exlusive vetor

meson prodution [27{29℄, elasti hadron-hadron sattering [30℄, and photo- and

eletroprodution of pseudosalar and tensor mesons [31, 32℄. In this work we will

extend the model to the desription of inelasti di�rative hadron-hadron sattering.

In hapter 2 we present the basi priniples of our model. Progressing as in [22{

24,26{30,33,34℄ we start from quark-quark sattering, where we apply a funtional

integral approah and use an eikonal expansion to derive an expression for the quark-

quark sattering amplitudes at high energies and small momentum transfers. The

transition to the hadron level is performed by folding with suitably de�ned wave

funtions. In this work, the onstituent on�guration of baryons is assumed to be

of the quark-diquark type for the reasons given in [35, 36℄. Then baryons at as

olour dipoles like mesons. Moreover we use two di�erent models for the di�rative

�nal state X when desribing inelasti di�rative sattering proesses. The soft high

energy hadron-hadron sattering amplitudes for both elasti and inelasti di�rative

sattering are given at the end of this hapter.

The evaluation of the sattering amplitudes is the topi of the next hapter. We

�rst give a brief summery of the properties of the model of the stohasti vauum and
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then apply it in its Minkowskian formulation to alulate the orrelation funtions of

the light-like Wegner-Wilson loops, where we use two approahes. Then we disuss

the hadroni wave funtions [37℄ for s- and p-wave states. Furthermore we de�ne

wave funtions inorporating the eigenfuntions of a two-dimensional harmoni os-

illator whih we need for one of the methods desribing the di�rative �nal state

in inelasti di�rative sattering. Finally, we analyse symmetry properties of the

sattering amplitudes after inserting the wave funtions and the expressions whih

we obtain from the evaluation of the loop-loop orrelation funtions in the di�erent

approahes. Based on symmetry onsiderations we �nd that our model gives either

C = P = +1, i.e. pomeron, exhange, or C = P = �1, i.e. odderon, exhange,

depending on whih reation in partiular we are studying. To be able to study

odderon exhange in the framework of our model in a purely hadroni reation, we

have hosen a spei� reation whih should have a lear experimental signature.

In hapter 4 we alulate integrated and di�erential ross setions from the sat-

tering amplitudes derived in hapters 2 and 3. We onentrate on proton-proton

and proton-pion sattering and ompare our numerial results obtained from both

approahes to experimental data. In the ase of pp-sattering we briey review

previous results on the di�erential elasti ross setion from [30℄. We then turn to

single di�rative dissoiation pp ! pX. Most of the results shown in this ontext

are the basis for the publiation [38℄, where in addition to hadron-hadron satter-

ing also photo- and eletroprodution of �

0

-mesons is disussed. Furthermore we

study the double di�rative exitation of the proton pp ! N(1535)N(1535) whih

is mediated by odderon exhange and give our preditions for the di�erential and

integrated ross setion for this reation. For proton-pion sattering we also start

with a review of the di�erential elasti ross setion from [30℄ and then ontinue

with the study of single di�rative dissoiation of the pion p� ! pX.

The next hapter deals with the isovetor proton and pion form fators at small

spae-like momentum transfers. In the region of interest to us here, 0 � �q

2

�

10GeV

2

, the form fator is dominated by nonperturbative QCD e�ets [39℄, and an

for example be desribed by a piture based on the onept of onstituent quarks

whih e�etively aount for nonperturbative dynamis [40℄. In this region all pre-

onditions for the appliation of our nonperturbative model are ful�lled. Therefore

we an alulate the proton and pion form fators in the framework of our model

and extrat the eletromagneti radii from �ts to experimental data. However, we

do not intend to perform a preision alulation of the form fators but apply the

alulation mainly to extrat parameters we need in the de�nition of our hadron

wave funtions. The results obtained here are also published in [38℄.

The aim of hapter 6 is to study the pion form fator for small time-like mo-

mentum transfers. In this region we an no longer apply the nonperturbative model

whih we have used so far. There are many approahes to desribe the time-like pion

form fator, inluding vetor meson dominane [41℄, hiral perturbation theory [42℄

and the appliation of dispersion relations [43℄. In the following we apply onsis-

tently a dispersion approah with ���, �KK, and gauge-invariant � ouplings.
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The form fator is obtained by resummation of pion and kaon loops. For the loop

diagrams we use a dispersion representation and analyse ambiguities related to sub-

tration onstants. The resulting representation for the form fator is shown to have

the form of the onventional vetor meson dominane formula with one important

distintion - the e�etive �-meson deay onstant f

e�

�

turns out to depend on the

momentum transfer. For the eletromagneti pion form fator we inlude in addition

the � � ! mixing e�ets. We apply the representations obtained to the analysis of

the data on the pion form fators from e

+

e

�

annihilation and � deay and extrat

the �

�

, �

0

and ! masses and oupling onstants. The work of this hapter has been

published in [44℄.

Our onlusions and a summary are given in hapter 7.



Chapter 2

Derivation of the sattering

amplitudes

The formalism we are going to use, as developed in [22℄, is based on the following

general onsiderations. Imagine that we look at e.g. elasti hadron-hadron sattering

h

1

(P

1

) + h

2

(P

2

)! h

1

(P

3

) + h

2

(P

4

) (2.1)

at high energies and small momentum transfer through a \mirosope". This mi-

rosope has to have an appropriate resolution, whih allows us to see the essential

features of the proess but does not resolve the unimportant details of the internal

struture of the hadrons, whih would only ompliate the desription. In [22℄ the

appropriate resolution has been estimated by a series of simple arguments based

on the unertainty relation. For a time interval of approximately �

0

� 2 fm the

following assumptions onerning the sattering proess an be made:

� The parton state of the hadrons does not hange qualitatively, i.e. parton

annihilation and parton prodution proesses are negligible.

� The partons are subjet to soft elasti sattering.

� The partons move on essentially straight light-like worldlines.

To derive the sattering amplitudes for soft high energy hadron-hadron sattering,

we progress as follows: �rst, we onsider quark-quark sattering in the framework

of the model. On this level, the essential features of the model will beome ap-

parent and we will see that the strong interation between the quarks is mediated

by the nonperturbative gluoni vauum utuations. Then we disuss how to treat

antiquarks in our formalism and give simple rules for the onstrution of sattering

amplitudes for arbitrary systems of quarks and antiquarks in the framework of our

model. With these ingredients we an progress to the level of hadrons, whih we

perform by folding the partoni sattering amplitudes by suitable hadroni wave

funtions. In the last step we onstrut the hadroni T -matrix elements for the

types of reations we are interested in.

5



6 Chapter 2. Derivation of the sattering amplitudes

2.1 Quark-quark sattering

Consider the sattering of two quarks q

1

and q

2

q

1

(p

1

) + q

2

(p

2

)! q

3

(p

3

) + q

4

(p

4

); (2.2)

where p

i

; i = 1 : : : 4 are the four-momenta of the quarks and the momentum transfer

is q = p

1

� p

3

. The normalisation of the quark states is given by

hq(p

j

; s

j

; A

j

; f

j

)jq(p

k

; s

k

; A

k

; f

k

)i

= Æ

s

j

;s

k

Æ

A

j

;A

k

Æ

f

j

;f

k

(2�)

2

q

2p

0

j

2p

0

k

Æ

(3)

(p

j

� p

k

) (2.3)

� Æ(j; k):

As an abbreviation we use j(k) to denote the momentum p

j(k)

and the set of spin,

olour and avour index s

j(k)

; A

j(k)

and f

j(k)

of the quark q

j(k)

, respetively.

2.1.1 The funtional integral approah

Applying the redution formalism by Lehmann, Symanzik and Zimmermann to the

S-matrix element of reation (2.2), we get an integral over the 4-point funtion of

the quark �elds

S

fi

� hq

3

(p

3

)q

4

(p

4

)jSjq

1

(p

1

)q

2

(p

2

)i

= Z

�2

 

Z

d

4

x

1

d

4

x

2

d

4

x

3

d

4

x

4

e

�i(p

1

�x

1

+p

2

�p

2

�p

3

�x

3

�p

4

�x

4

)

�u

4

(i

!

�6

4

�m

0

q

4

)�u

3

(i

!

�6

3

�m

0

q

3

)

h0jT(q

4

(x

4

)q

3

(x

3

)�q

1

(x

1

)�q

2

(x

2

))j0i

(i

 

�6

1

+m

0

q

1

)u

1

(i

 

�6

2

+m

0

q

2

)u

2

: (2.4)

Here Z

 

is the wave funtion renormalisation onstant and m

0

q

j

are the renormalised

quark masses, de�ned by the loation of the pole of Fourier transform of the full

Feynman propagator. The 4-point funtion an be alulated nonperturbatively

using the funtional integral of QCD

h0jT(q

4

(x

4

)q

3

(x

3

)�q

1

(x

1

)�q

2

(x

2

))j0i

= Z

�1

Z

D(G; q; �q) exp

�

i

Z

dxL

QCD

(x)

�

q

4

(x

4

)q

3

(x

3

)�q

1

(x

1

)�q

2

(x

2

) (2.5)

with the partition funtion

Z = h0

out

j0

in

i =

Z

D(G; q; �q) exp

�

i

Z

dxL

QCD

(x)

�

: (2.6)



2.1. Quark-quark sattering 7

The QCD Lagrangian is given by

L

QCD

= �

1

2

Tr(G

��

(x)G

��

(x)) +

X

q

�q(x)(iD6 �m

q

)q(x): (2.7)

Here q(x) are the quark �elds with masses m

q

, q = u; d; s; ; b; t ounting the dif-

ferent quark avours. In standard notation G

�

(x) denotes the matrix of the gluon

potential, G

��

(x) the matrix of the gluon �eld strength tensor.

G

�

(x) = G

a

�

(x)

�

a

2

;

G

��

(x) = �

�

G

�

(x)� �

�

G

�

(x) + ig[G

�

(x); G

�

(x)℄ (2.8)

�

a; a=1;:::;8

are the Gell-Mann matries of SU(3) with olour index a, D

�

is the o-

variant derivative, de�ned by

D

�

= �

�

+ igG

�

: (2.9)

As the Lagrangian is bilinear in the quark and antiquark �elds we an diretly

perform the integration over the fermioni degrees of freedom by a generalised Gaus-

sian integration and �nd

h0jT(q

4

(x

4

)q

3

(x

3

)�q

1

(x

1

)�q

2

(x

2

))j0i

= Z

�1

Z

D(G) exp

�

�

i

2

Z

dxTr(G

��

(x)G

��

(x))

�

Y

q

det [�i(iD6 �m

q

+ i�)℄

�

Æ

f

3

f

1

1

i

S

F

(x

3

; x

1

;G)Æ

f

4

f

2

1

i

S

F

(x

4

; x

2

;G)� (3$ 4)

�

: (2.10)

S

F

(x

j

; x

k

;G) is the unrenormalised Green's funtion for a quark in an external gluon

�eld G

�

(x) for whih we have

(iD6 �m

q

)S

F

(x

j

; x

k

;G) = �Æ

(4)

(x

j

� x

k

): (2.11)

The Lippmann-Shwinger equation

S

F

(x

j

; x

k

;G) = S

0

F

(x

j

; x

k

)� S

0

F

(x

j

; x

k

)(gG6 �Æm)S

F

(x

j

; x

k

;G) (2.12)

relates the unrenormalised Green's funtion to the free Green's funtion S

0

F

(x

j

; x

k

)

with renormalised mass m

0

= m+ Æm. Using the shorthand notation

jj) := u

s

j

;A

j

(p

j

)e

�ip

j

�x

j

;

(jj := �u

s

j

;A

j

(p

j

)e

ip

j

�x

j

;

j 

F

p

j

) := S

F

(i

 

�6

j

+m

0

q

j

)jj); (2.13)
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where j 

F

p

j

) are quark wave funtions whih satisfy the Dira equation in an external

gluon potential

(iD6 �m

q

j

)j 

F

p

j

) = 0; j = 1; 2; (2.14)

and the Lippmann-Shwinger equation, we get from (2.4)

S

fi

= �Z

�2

 

D

Æ

f

3

f

1

Æ

f

4

f

2

(3j(gG6 �Æm

q

1

)j 

F

p

1

)(4j(gG6 �Æm

q

2

)j 

F

p

2

)� (3$ 4)

E

G

: (2.15)

In our notation we impliitly inlude the integrations over x

j

; x

k

, resulting from the

LSZ redution formalism, when we write expressions of the form (kj 

F

p

j

). To lear

up the notation further we have introdued the braket symbol h i

G

of a funtion

F (G) as

hF (G)i

G

:= Z

�1

Z

D(G) exp

�

�

i

2

Z

dxTr(G

��

(x)G

��

(x))

�

Y

q

det [�i(iD6 �m

q

+ i�)℄F (G): (2.16)

In (2.15) we have two ontributions, the one that is written out expliitely orre-

sponds to t-hannel exhange, the one that we have written symbolially as (3$ 4),

meaning that quark 3 has to be interhanged with quark 4, orresponds to an u-

hannel proess. In high energy sattering with

p

s ! 1 and small

p

�t the

u-hannel ontributions are suppressed by a fator s

�1

at least and we therefore will

neglet them in the following. With the de�nition of quark sattering amplitudes

M

F

kj

(G) := (kj(i

!

�6

k

�m

0

q

k

)S

F

(i

 

�6

j

+m

0

q

k

)jj)

= (kj(gG6 �Æm

q

j

)j 

F

p

j

); (j = 1; k = 3); (j = 2; k = 4);

(2.17)

whih have the orret form for a sattering amplitude, i.e. an inoming omplete

wave folded with the potential and an outgoing plane wave, we get from (2.15)

S

fi

= �Z

�2

 

Æ

f

3

f

1

Æ

f

4

f

2

hM

F

31

(G)M

F

42

(G)i

G

: (2.18)

This equation an be interpreted as follows: the inoming quarks are sattered inde-

pendently on the gluon bakground �elds. This is desribed by the quark sattering

amplitudesM

F

31

;M

F

42

whih are evaluated independently. Then we have to average

over all gluon �eld on�gurations by performing the funtional integration h i

G

.

The up to now undetermined wave funtion renormalisation onstant Z

 

appears

in (2.18). However, one of the assumptions of our model is that over the time interval

onsidered by us, no parton reation or annihilation proesses our, meaning Z

 

should be equal to 1. In [22℄ Z

 

has been alulated in the framework of the model

and one onsistently �nds Z

 

= 1. In the following we therefore set the wave

funtion renormalisation onstant to 1.
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Before we ontinue our programme and have to �nd a suitable high energy ap-

proximation that will allow us to alulate the quark sattering amplitudesM

F

kj

(G),

we note that the wave funtions j 

F

p

j

) do not satisfy the desired boundary onditions

for x

0

! �1. The transition from Feynman wave funtions j 

F

p

j

) to retarded wave

funtions j 

r

p

j

) an be performed using the Lippmann-Shwinger equation (2.12).

The wave funtions possess the orret behaviour for x

0

! �1, namely that of a

inoming plain wave

j 

r

p

j

)

x

0

!�1

�! jj): (2.19)

The replaement of M

F

kj

with M

r

kj

in (2.18), i.e. going from Feynman to retarded

boundary onditions, is a non-trivial step. It has been shown in [22℄ that this

replaement is valid in the high energy limit for gluon potentials G

�

with an upper

bound for the frequeny spetrum. This is in onsisteny with our model, where we

assumed that the partons undergo soft, elasti sattering. Therefore the funtional

integral in (2.18) is dominated by gluons with a frequeny that is suÆiently small

and we an write

S

fi

= �Æ

f

3

f

1

Æ

f

4

f

2

hM

r

31

(G)M

r

42

(G)i

G

; (2.20)

with

M

r

kj

(G) := (kj(gG6 �Æm

q

j

)j 

r

p

j

): (2.21)

2.1.2 The eikonal expansion

As mentioned before now we have to alulate the quark sattering amplitudes whih

involves solving the Dira equation for a quark in an external gluon potential

(iD6 �m

q

j

)j 

r

p

j

) = (i�6 �gG6 (x)�m

0

q

j

+ Æm

q

j

)j 

r

p

j

) = 0 (2.22)

and respeting the boundary ondition (2.19), whih of ourse annot be done ex-

atly. However, sine we are only interested in the high energy limit of (2.4) for small

momentum transfers, the DeBroglie wavelength of the quarks propagating through

the gluon potentials are suÆiently small ompared to the utuations of the gluoni

on�gurations governing the funtional integral in (2.4) and we an use an eikonal

approximation. For this purpose it is onvenient to use light-one variables whih

are de�ned by

x

�

= x

0

� x

3

(2.23)

for any 4-vetor x and to hoose the entre of mass system as referene frame. In

the high energy limit the quark light-one momenta then go to in�nity and the

transverse momenta stay �nite.

In the eikonal approximation we an now solve the di�erential equation (2.22)

and satisfy the boundary onditions (2.19). We proeed as explained in [22,33℄ and
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�nd as solutions for the quark wave funtions in leading order

 

r

p

1

(x) = V

�

(x

+

; x

�

;x

T

)

�

1 +O

�

1

p

1+

�

�

e

�ip

1

�x

u

1

(p

1

);

 

r

p

2

(x) = V

+

(x

+

; x

�

;x

T

)

�

1 +O

�

1

p

2�

�

�

e

�ip

2

�x

u

2

(p

2

); (2.24)

with the eikonal phases

V

�

(x

+

; x

�

;x

T

) = P

�

exp

�

�

ig

2

Z

x

+

�1

dx

0

+

G

�

(x

0

+

; x

�

;x

T

)

��

;

V

+

(x

+

; x

�

;x

T

) = P

�

exp

�

�

ig

2

Z

x

�

�1

dx

0

�

G

+

(x

+

; x

0

�

;x

T

)

��

; (2.25)

whih satisfy the following boundary onditions and di�erential equations:

V

�

(x

+

; x

�

;x

T

)

x

�

!�1

�! 1;

�

�

V

�

(x

+

; x

�

;x

T

) = �

ig

2

G

�

(x

+

; x

�

;x

T

) � V

�

(x

+

; x

�

;x

T

): (2.26)

Inserting (2.24) into (2.21) and taking into aount (2.26) and the relations

�u

3

(p

3

)

�

u

1

(p

1

) =

p

p

3+

p

1+

Æ

s

3

s

1

n

�

+

;

�u

4

(p

4

)

�

u

2

(p

2

) =

p

p

4�

p

2�

Æ

s

4

s

2

n

�

�

;

n

�

�

:=

0

B

B

�

1

0

0

�1

1

C

C

A

; (2.27)

whih are valid in the high energy limit p

1+

; p

3+

; p

2�

; p

4�

�

p

s; p

1�

; p

3�

; p

2+

; p

4+

� 0;

p

s!1 we �nd for the quark sattering amplitudes

M

r

31

(G) = i

p

p

3+

p

1+

Æ

s

3

s

1

Z

dx

�

d

2

x

T

e

i

2

(p

3

�p

1

)

+

x

�

�i(p

3

�p

1

)

T

�x

T

[V

�

(1; x

�

;x

T

)� 1℄

A

3

A

1

;

M

r

42

(G) = i

p

p

4�

p

2�

Æ

s

4

s

2

Z

dy

+

d

2

y

T

e

i

2

(p

4

�p

2

)

�

y

+

�i(p

4

�p

2

)

T

�y

T

[V

+

(y

+

;1;y

T

)� 1℄

A

4

A

2

: (2.28)

Now we insert these expressions for the quark sattering amplitudes into (2.20)

and make use of the translational invariane of the funtional integral. With the

de�nition of the impat parameter b

T

:= x

T

� y

T

we obtain our �nal result for the

quark-quark sattering amplitude

T

fi

= �2is Æ

s

3

s

1

Æ

s

4

s

2

Z

d

2

b

T

e

iq

T

�b

T

�

h

V

�

(1; 0;

b

T

2

)� 1

i

A

3

A

1

h

V

+

(0;1;�

b

T

2

)� 1

i

A

4

A

2

�

G

: (2.29)
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The momentum transfer q = q

1

� q

3

is purely transverse in the high energy limit.

The underlying physial piture of this result is the following: The quarks move

along straight light-like lines through the external gluon potential and aumulate

non-abelian phase fators V

�

, whih are obtained by integration along their traje-

tories, orrelating their phases, whih leads to the interation of the quarks. To

obtain the sattering amplitude we �nally have to perform a Fourier transform with

respet to the impat parameter b

T

. In the high energy limit the quark heliities

are onserved during the interation.

2.2 Desription of antiquarks

So far we have disussed the wave funtions for outgoing quarks, if we want to

desribe arbitrary systems of partons we need the wave funtions for inoming quarks

and inoming and outgoing antiquarks as well. We do not give wave funtions for

gluons here, sine in our simple ansatz for hadrons, whih we will present in the

next hapter, hadrons onsist of quarks and antiquarks - or diquarks in the ase of

baryons - only and due to one of the assumptions of our model, no parton reation

(nor annihilation) ours over the time interval of the sattering proess.

j 

0r

p

j

) := S

r

(i

 

�6

j

+m

0

q

j

)jj

0

);

(

e

 

a

p

j

j := (jj(�i

!

�6

j

+m

0

q

j

)S

r

;

(

e

 

0a

p

j

j := (j

0

j(�i

!

�6

j

+m

0

q

j

)S

r

: (2.30)

Here a prime denotes that we are onsidering an antiquark and the index a stands

for advaned wave funtions, whih have to be used for inoming partons and ful�l

the advaned boundary onditions

(

e

 

a

p

j

j

x

0

!+1

�! (jj: (2.31)

The antiquark spinors are given by

jj

0

) := v

s

j

;A

j

(p

j

)e

ip

j

�x

j

;

(j

0

j := �v

s

j

;A

j

(p

j

)e

�ip

j

�x

j

: (2.32)

The advaned wave funtions have to satisfy the Dira equation

(

e

 

a

p

j

j(i

 

�6

j

+ gG6 +m

0

q

j

� Æm

q

j

) = 0 (2.33)

to whih we �nd the solutions

e

 

a

p

1

(x) =

e

V

�

(x

+

; x

�

;x

T

)

�

1 +O

�

1

p

1

+

�

�

e

�ip

1

�x

u

1

(p

1

);

e

 

a

p

2

(x) =

e

V

+

(x

+

; x

�

;x

T

)

�

1 +O

�

1

p

2

�

�

�

e

�ip

2

�x

u

2

(p

2

); (2.34)
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with the eikonal phases de�ned analogously to (2.25)

e

V

�

(x

+

; x

�

;x

T

) = P

�

exp

�

ig

2

Z

1

x

+

dx

0

+

G

�

(x

0

+

; x

�

;x

T

)

��

;

e

V

+

(x

+

; x

�

;x

T

) = P

�

exp

�

ig

2

Z

1

x

�

dx

0

�

G

+

(x

+

; x

0

�

;x

T

)

��

: (2.35)

Here P denotes anti-path-ordering. For the phase fators analogue relations to (2.26)

hold

e

V

�

(x

+

; x

�

;x

T

)

x

�

!1

�! 1

�

�

h

e

V

y

�

(x

+

; x

�

;x

T

)V

�

(x

+

; x

�

;x

T

)

i

= 0

e

V

y

�

(x

+

; x

�

;x

T

)V

�

(x

+

; x

�

;x

T

) =

�

V

+

(x

+

;1;x

T

)

V

�

(1; x

�

;x

T

)

: (2.36)

To alulate the sattering amplitudeM

0r

k

0

j

0

(G) of an antiquark �q in an external

gluon potential G

�

we note that this orresponds to the sattering of a quark q in

the harge onjugated gluon potential G

0

�

with

G

0

�

(x) = CG

�

(x)C

y

= �G

�

�

(x): (2.37)

Furthermore we note that replaing G

�

by G

0

�

in V

�

orresponds to omplex onju-

gating the eikonal phase fator, i.e. to the replaement V

�

! V

�

�

. De�ning

M

0r

k

0

j

0

(G) := �(j

0

j(i

!

�6

j

�m

0

q

j

)j 

0r

p

k

): (2.38)

we then obtain for the antiquark sattering amplitude

M

0r

3

0

1

0

(G) = i

q

p

0

3+

p

0

1+

Æ

s

0

3

s

0

1

Z

dx

�

d

2

x

T

e

i

2

(p

0

3

�p

0

1

)

+

x

�

�i(p

0

3

�p

0

1

)

T

�x

T

�

V

�

�

(1; x

�

;x

T

)� 1

�

A

0

3

A

0

1

;

M

0r

4

0

2

0

(G) = i

q

p

0

4�

p

0

2�

Æ

s

0

4

s

0

2

Z

dy

+

d

2

y

T

e

i

2

(p

0

4

�p

0

2

)

�

y

+

�i(p

0

4

�p

0

2

)

T

�y

T

�

V

�

+

(y

+

;1;y

T

)� 1

�

A

0

4

A

0

2

: (2.39)

When alulating S-matrix elements for quarks and antiquarks we also have

to take into aount ontributions from disonneted diagrams when applying the

LSZ redution formalism. These diagrams lead to delta funtions Æ(j; k) (Æ(j

0

; k

0

))

whih anel the 1 in the (anti-)quark sattering amplitudes M

r

kj

(M

0r

k

0

j

0

). In the

high energy limit in leading order in s we then �nd a simple rule for the S-matrix

element: for eah quark or antiquark we write a ertain fator whih we obtain from

the appropriate quark or antiquark sattering amplitude for �xed external gluon

potential G

�

(x). Then we multiply all these fators and average over all gluon

potentials by means of the funtional integral (2.16).
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The fators are

� for a quark ying in positive x

3

diretion (j ! k)

S

q+

(k; j) =

p

p

k+

p

j+

Æ

s

k

s

j

Z

dx

�

d

2

x

T

e

i

2

(p

k

�p

j

)

+

x

�

�i(p

k

�p

j

)

T

�x

T

V

�

(1; x

�

;x

T

)

A

k

A

j

; (2.40)

� for a quark ying in negative x

3

diretion

S

q�

(k; j) =

p

p

k�

p

j�

Æ

s

k

s

j

Z

dx

+

d

2

x

T

e

i

2

(p

k

�p

j

)

�

x

+

�i(p

k

�p

j

)

T

�x

T

V

�

(x

+

;1;x

T

)

A

k

A

j

; (2.41)

� for an antiquark ying in positive x

3

diretion (j

0

! k

0

)

S

�q+

(k

0

; j

0

) =

q

p

0

k+

p

0

j+

Æ

s

0

k

s

0

j

Z

dx

�

d

2

x

T

e

i

2

(p

0

k

�p

0

j

)

+

x

�

�i(p

0

k

�p

0

j

)

T

�x

T

V

�

�

(1; x

�

;x

T

)

A

0

k

A

0

j

(2.42)

� and for an antiquark ying in negative x

3

diretion

S

�q�

(k

0

; j

0

) =

q

p

0

k�

p

0

j�

Æ

s

0

k

s

0

j

Z

dx

+

d

2

x

T

e

i

2

(p

0

k

�p

0

j

)

�

x

+

�i(p

0

k

�p

0

j

)

T

�x

T

V

�

+

(x

+

;1;x

T

)

A

0

k

A

0

j

: (2.43)

2.3 Sattering of hadrons

In this setion we want to study hadron-hadron sattering. We are interested in

two types of sattering reations. We all the �rst one \exlusive" sattering, i.e.

the �nal state onsists of two de�nite hadrons whih we desribe by their aording

hadroni wave funtions. Elasti sattering for example falls into this ategory,

h

1

(P

1

) + h

2

(P

2

)! h

1

(P

3

) + h

2

(P

4

); (2.44)

but we do not have to limit ourselves to elasti sattering. The di�rative sattering

of the initial state hadrons h

1

and h

2

into e.g. exited states h

0

1

and h

0

2

is also overed

by our approah. More generally we write

h

1

(P

1

) + h

2

(P

2

)! h

3

(P

3

) + h

4

(P

4

); (2.45)

where h

3

and h

4

an be any hadrons that are aessible by a soft di�rative proess.

The seond type of reations we want to study are \semi-inlusive" proesses, where
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one of the initial state hadrons stays intat and the other one di�ratively dissoiates

into a �nal state X

h

1

(P

1

) + h

2

(P

2

)! h

1

(P

3

) + X(P

4

); (2.46)

where X an be any di�rative exitation of h

2

. In both ases we use the onvention

that the hadrons h

1

; h

3

move in positive x

3

diretion and h

2

; h

4

or X, respetively,

in negative x

3

diretion, i.e. P

1+

; P

3+

; P

2�

; P

4�

!1 in the high energy limit.

In our model we desribe mesons as quark-antiquark pairs and the onstituent

quark on�guration of baryons is assumed to be of the quark-diquark type for the

reasons given in [35,36℄, where the point-like diquark is treated like an antiquark in

this approah. The baryons then at as olour dipoles like mesons.

The di�rative �nal state X is modelled by a q�q-pair (or quark-diquark pair)

in a olour singlet state. Then we use two approahes. In the �rst method we

use free plane waves for the quark and antiquark and invoke quark-hadron duality.

Integration over all allowed values in phase spae and the losure relation then yield

all possible di�rative �nal states X, where the ase of elasti sattering also is

inluded. The seond ansatz, applied to on�rm the results of the �rst method

and to gain additional insight into the struture of the alulated di�erential ross

setions, uses the wave funtions of a two-dimensional harmoni osillator where

the ground state orresponds to hadron h

2

and the exited states to the di�rative

exitations of h

2

. Sine these eigenfuntions form a basis, the ontributions from

di�erent exited states are orthogonal to eah other and the alulation of ross

setions an be performed as follows: �rst the ross setion for one spei� exited

state with de�nite quantum numbers n;m is alulated and then the sum over all

exited states is taken to get the inelasti semi-inlusive di�rative ross setion.

The momenta p of the quark and p

0

of the antiquark (or diquark, respetively)

in a hadron (or the di�rative �nal state X) with momentum P are parametrised

using light-one variables by

p

�

= zP

�

; p

0

�

= (1� z)P

�

;

p

T

= zP

T

+�

T

; p

0

T

= (1� z)P

T

��

T

:

(2.47)

Here z is the longitudinal momentum fration arried by the quark. The relative

transverse momentum between the quark and the antiquark (diquark) is given by

�

T

=

p

T

� p

0

T

2

+

�

1

2

� z

�

P

T

: (2.48)

Lorentz invariane requires z to appear also in the transverse momenta p

T

and p

0

T

as de�ned above.

2.3.1 Exlusive sattering

The hadroni sattering amplitude is obtained by folding the underlying partoni

S-matrix element with suitable hadroni wave funtions, where the hadrons will be
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+
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�
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x
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y

T

Figure 2.1: Two light-like Wegner-Wilson loops in position spae

formed of parton wave pakets as explained above. Proeeding as in [24, 33℄, i.e.

applying the rules (2.40)-(2.43) and with (2.47),(2.48), we �nd

S

fi

= Æ

fi

+ i(2�)

4

Æ

(4)

(P

3

+ P

4

� P

1

� P

2

)T

fi

T

fi

= 2is

Z

d

2

b

T

e

iq

T

�b

T

^

J

exl

(b

T

); (2.49)

with the exlusive pro�le funtion

^

J

exl

(b

T

) = �

Z

d

2

x

T

d

2

y

T

Z

1

0

dz dz

0

w

31

(x

T

; z)w

42

(y

T

; z

0

)

D

W

+

(

1

2

b

T

+ (

1

2

� z)x

T

;x

T

)W

�

(�

1

2

b

T

+ (

1

2

� z

0

)y

T

;y

T

)� 1

E

G

;

(2.50)

as has been found for the ase of elasti sattering in [30℄. HereW

�

are the light-like

Wegner-Wilson loops

W

�

:=

1

3

trV (C

�

) =

1

3

tr P exp (�ig

Z

C

�

dx

�

G

a

�

(x)

�

a

2

); (2.51)
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�
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z
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|
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z
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T

z

}
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b

T

r
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r

y�q

r
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r
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Figure 2.2: The orientation and extension of the light-like Wegner-Wilson loops in

a projetion into transverse position spae

where P denotes path ordering and C

�

is the urve onsisting of two light-like

worldlines for the quark and the antiquark (or diquark, respetively) and onnet-

ing piees at �1 (see Fig. 2.1), whih ensure gauge invariane. x

T

and y

T

de�ne

the extension and orientation in transverse position spae of the two loops repre-

senting the two hadrons h

1

and h

2

respetively, z (z

0

) parametrises the fration of

the longitudinal momentum of hadron h

1

(h

2

) arried by the quark (see (2.47)). The

impat parameter is given by b

T

, the light-one baryentres of the loops are loated

at

1

2

b

T

+ (

1

2

� z)x

T

and �

1

2

b

T

+ (

1

2

� z

0

)y

T

, respetively (see [27℄ and Fig. 2.2). As

x-axis for the transverse vetors x

T

; y

T

and b

T

we hoose q

T

.

The symbol h: : :i

G

denotes the funtional integration whih orrelates the two

loops. In (2.50) the loop-loop orrelation funtion is multiplied with the funtions

w

31

(x

T

; z) and w

42

(y

T

; z

0

). These funtions w

kj

(x

T

; z) denote the overlap between

initial state hadron h

j

and �nal state hadron h

k

for �xed transverse extension x

T

and �xed longitudinal momentum fration z. Then we have to integrate over all

extensions and orientations x

T

;y

T

of the loops in transverse spae as well as over

the longitudinal momentum frations z; z

0

respetively. Finally a Fourier transform

with respet to the impat parameter b

T

has to be performed, as in the ase of

quark-quark sattering.

2.3.2 Semi-inlusive sattering

Exept for the replaement h

4

(P

4

) ! X(P

4

) everything remains unhanged when

we want to desribe the inelasti di�rative dissoiation reation (2.46) and we �nd
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Figure 2.3: The semi-inlusive sattering reation h

1

+ h

2

! h

1

+X

in analogy to (2.49)

S

fi

= Æ

fi

+ i(2�)

4

Æ

(4)

(P

3

+ P

4

� P

1

� P

2

)T

fi

T

fi

= 2is

Z

d

2

b

T

e

iq

T

�b

T

^

J

diss

; (2.52)

where we have to use the pro�le funtion

^

J

diss

now. As stated before, we are going

to use two di�erent ans�atze for X, leading to two expressions for the pro�le fun-

tions, depending on whih desription for the di�rative �nal state we use in the

alulation.

For the plane wave desription we obtain

^

J

p:wave

diss

(b

T

; z

0

) = �

Z

d

2

x

T

d

2

y

T

Z

1

0

dz w

31

(x

T

; z)

p

2�

p

2z

0

(1� z

0

) e

�i�

4T

�y

T

'

2

(y

T

; z

0

)

D

W

+

(

1

2

b

T

+ (

1

2

� z)x

T

;x

T

)W

�

(�

1

2

b

T

+ (

1

2

� z

0

)y

T

;y

T

)� 1

E

G

;

(2.53)

where�

4T

is the relative transverse momentum between the quark and the antiquark

(or diquark) of X (see (2.48) and Fig. 2.3). Instead of the overlap funtion w

42

ourring in (2.50) here we have got the produt of the plane wave and the wave

funtion '

2

of the inoming hadron h

2

.

For the osillator desription we obtain

^

J

2d os

diss

(b

T

) = �

Z

d

2

x

T

d

2

y

T

Z

1

0

dz

Z

1

0

dz

0

w

31

(x

T

; z)X

n;m

(y

T

; z

0

)'

2

(y

T

; z

0

)

D

W

+

(

1

2

b

T

+ (

1

2

� z)x

T

;x

T

)W

�

(�

1

2

b

T

+ (

1

2

� z

0

)y

T

;y

T

)� 1

E

G

:

(2.54)

Here X

n;m

(y

T

; z

0

) stands for the two-dimensional harmoni osillator wave funtion

with quantum numbers n;m. Again, this funtion has to be multiplied by '

2

, de-

sribing the inoming hadron h

2

. Inserting in (2.54) the ground state wave funtion
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X

0;0

leads to the elasti sattering amplitude, whih we also get from (2.49),(2.50)

with h

4

= h

2

; h

3

= h

1

.

In the plane wave desription z

0

is part of the spei�ation of the �nal state

and thus appears as argument of

^

J

p:wave

diss

(b

T

; z

0

) in (2.53). The phase spae integral

then inludes an integration over z

0

. When using the seond method involving the

two-dimensional osillator funtions to desribe the di�rative �nal state, one has

to insert the funtion X

n;m

on the r.h.s. of (2.54) and to integrate over z

0

. Thus

^

J

2d os

diss

(b

T

) depends for given osillator funtion X

n;m

on b

T

only.



Chapter 3

Evaluation of the sattering

amplitudes

The next step is to evaluate the sattering amplitude (2.49), where the main part

will be to alulate the loop-loop orrelation funtion appearing in (2.50), (2.53)

and (2.54), respetively. For this task we will make use of the model of the stohasti

vauum (MSV), whih has been introdued by Dosh and Simonov [25℄. The model

is based on a small number of physially well motivated assumptions and allows us to

ompute the relevant quantities we need for the desription of high energy sattering,

e.g. the expetation values of Wegner-Wilson lines and loops. Furthermore we have

to speify suitable hadroni wave funtions '

j

and to onstrut from them the

overlap funtions w

kj

appearing in (2.50), (2.53) and (2.54). One we know how to

alulate the orrelation funtion by applying the model of the stohasti vauum

and after de�ning the wave funtions we an analyse the symmetry properties of the

sattering amplitudes. These onsiderations will allow us to lassify whih quantum

numbers an be exhanged in the di�erent reations we are studying.

3.1 The loop-loop orrelation funtion in the model

of the stohasti vauum

Aording to present knowledge the vauum has a highly nontrivial struture gov-

erned by hromoeletri and -magneti bakground �elds. It has been �rst noted by

Savvidy [45℄ that the mean energy density of the vauum an be lowered by adding

a onstant hromomagneti bakground �eld to the perturbative vauum. The min-

imal value of the energy density is obtained for a value of the hromomagneti �eld

strength B 6= 0, i.e. the vauum spontaneously develops a hromomagneti bak-

ground �eld, analogous to the spontaneous magnetisation of ferromagnets below the

Curie temperature.

Of ourse the QCD vauum state must be relativistially invariant and must

not have a preferred diretion in ordinary and olour spae. In analogy to Weiss

19
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domains in a ferromagnet, states omposed of domains with random orientation of

the gluon �eld strength have been proposed. The vauum state then is build of a

linear superposition of suh states with various domains, where the �elds inside the

domains are oriented in various diretions. As well the boundaries of the domains

as the orientation of the �elds inside of them will utuate.

An important step in the investigations of the QCD vauum struture was

ahieved by Shifman, Vainshtein and Zakharov [21℄ with the introdution of the

QCD ondensates. In this way, nonperturbative omponents entered the perturba-

tive desription of the QCD vauum. With the introdution of nonloal ondensates

one an go even one step further and study long-distane e�ets as for example on-

�nement. Beause QCD is a non-abelian theory, nonloal ondensates an a priori

not be de�ned in a gauge-invariant way. To ure this problem we introdue so-alled

onnetors as the non-abelian generalisation of the Shwinger string of QED, whih

allow us to de�ne parallel-transported quantities suh as the parallel-transported

gluon �eld strength (see Appendix B). Then we an de�ne gauge-invariant nonloal

ondensates by shifting the ourring �eld strengths to a ommon referene point.

The model of the stohasti vauum inorporates many of the above ideas. Its

strongest assumption is that the nonperturbative behaviour of QCD an be approx-

imated by a Gaussian proess where the �eld strengths are the stohasti variables.

This assumption already allows us to derive on�nement in the framework of the

model.

3.1.1 Properties of the model of the stohasti vauum

In this setion we will present the Minkowskian formulation of the model of the

stohasti vauum. A more detailed presentation of the model an be found in

[23{26℄, where both the original formulation in Eulidian spae-time and the analyti

ontinuation to Minkowskian spae-time are disussed.

The starting point for the model is the orrelator of two gluon �eld strength

tensors G

a

��

at points x

1

and x

2

, parallel-transported to a ommon referene point

o along the two urves C

x

1

and C

x

2

:

D

g

2

4�

2

^

G

a

��

(o; x

1

;C

x

1

)

^

G

��b

(o; x

2

;C

x

2

)

E

G

�

1

4

Æ

ab

F

����

(x

1

; x

2

; o;C

x

1

; C

x

2

): (3.1)

The right hand side depends only on the points x

1

; x

2

and the two urves C

x

1

; C

x

2

,

the ommon referene point o an be freely shifted along the urve C

12

= C

x

1

+

�

C

x

2

.

Due to olour onservation, the orrelation funtion is proportional to Æ

ab

. In the

MSV the strong assumption is made that F

����

is independent of the hoie of the

onneting urve C

12

:
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Assumption I: F

����

is independent of o and C

x

1

; C

x

2

.

Then Poinar�e and parity invariane require F

����

to be of the following form:

F

����

(z) =

1

24

G

2

�

(g

��

g

��

� g

��

g

��

)

�

�D(z

2

) + (1� �)D

1

(z

2

)

�

+(z

�

z

�

g

��

� z

�

z

�

g

��

+ z

�

z

�

g

��

� z

�

z

�

g

��

)(1� �)

dD

1

(z

2

)

dz

2

�

; (3.2)

G

2

�

1

4�

2

hg

2

FF i = h0j

g

2

4�

2

G

a

��

(0)G

a��

(0)j0i; (3.3)

where z = x

1

� x

2

.

Here G

2

is proportional to the gluon ondensate h0jG

a

��

(0)G

a��

(0) j0i, D and D

1

are invariant funtions normalised to 1 at z = 0, D(0) = D

1

(0) = 1, and � is a

parameter determining the non-abelian harater of the orrelator. The properties

of the funtions D and D

1

are further spei�ed through the seond assumption of

the MSV:

Assumption II: For spae-like separations the funtions D; D

1

rapidly fall to zero

on a sale given by the orrelation length a � 0:3 fm.

The Fourier deomposition of those funtions is given by

D(z

2

) =

Z

1

�1

d

4

k

(2�)

4

e

�ikz

e

D(k

2

);

D

1

(z

2

) =

Z

1

�1

d

4

k

(2�)

4

e

�ikz

e

D

1

(k

2

): (3.4)

A suitable ansatz for

e

D and

e

D

1

is given in [24℄:

e

D(k

2

) =

27(2�)

4

(8a)

2

ik

2

(k

2

� �

�2

+ i�)

4

;

e

D

1

(k

2

) =

2

3

27(2�)

4

(8a)

2

i

(k

2

� �

�2

+ i�)

3

; (3.5)

with the onstant � = 8a=3�. The funtions of (3.4),(3.5) an be ompared to lattie

alulations [46, 47℄ for the Eulidian version of the orrelator (3.1) and from a �t

one an extrat the following ranges for the parameters G

2

; a; � [47℄:

�G

2

a

4

= 0:39 : : : 0:41;

� = 0:80 : : : 0:89;

a = 0:33 : : : 0:37 fm: (3.6)
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Assumption III: The vauum utuations of the �eld strengths are determined by

a Gaussian proess.

This implies that orrelators of more than two gluon �eld strengths fatorise and

thus the proess is ompletely de�ned by the seond moment of its distribution.

The expetation value of one single parallel-transported gluon �eld strength tensor

vanishes due to olour onservation and the fat that the QCD vauum has no

preferred diretion in olour spae:

h

^

G(i)i

G

= 0; (3.7)

where we have used the abbreviation

^

G(i) �

^

G

a

i

�

i

�

i

(o; x

i

;C

x

i

): (3.8)

Due to the assumption of a Gaussian proess and olour onservation all n-point

funtions with odd n vanish as well and we are therefore left with

h

^

G(1) : : :

^

G(2n)i

G

=

X

all pairings

h

^

G(i
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: : : h
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G(i
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G(i

2n

)i

G

: (3.9)

3.1.2 Appliation of the model of the stohasti vauum to

the orrelation funtion

Now we will make a umulant expansion [33℄ for the loop-loop orrelation funtion
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+
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�
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T

;y

T

)

E

G

(3.10)

in (2.50), or (2.53), (2.54), respetively, and then evaluate the result in the framework

of the MSV.

To expand the orrelation funtion, we proeed as explained in [30℄. First the line

integrals along the losed loops C

�

are transformed to surfae integrals with the help

of the non-abelian Stokes theorem where, following the authors of [24℄, we hoose

the mantle of a double pyramid as the integration surfae. The basis surfaes S

�

of the two pyramids are enlosed by the two loops C

�

(see Fig. 3.1). The ommon

referene point o is hosen to be the apex, where both pyramids touh, and P

+

and P

�

are the mantle surfaes of the two pyramids, respetively. Following [30℄ we

rewrite the two traes over 3�3 matries ourring in (3.10) after inserting (2.51) as

one trae (Tr

2

) of a matrix ating in the 9-dimensional tensor produt spae. With

the de�nition

^

G

t;��

(o; x;C

x

) :=

�

^

G

a

��

(o; x;C

x

)(

�

a

2


 1) for x 2 P

+

^

G

a

��

(o; x;C

x

)(1


�

a

2

) for x 2 P

�

; (3.11)



3.1. The loop-loop orrelation funtion in the MSV 23
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�

P
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P

+

o

Figure 3.1: The integration surfaes for the evaluation of the loop-loop orrelation

funtion

we an write (3.10) as the expetation value of one ordered exponential in the

produt spae, where the integration surfae is given by the mantle P = P

+

[P

�

of

the double pyramid:

hW

+

W

�

i

G

=

1

9
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�

P exp

�

�

ig

2

Z
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d�

��

(x)

^
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t;��
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x

)

��

G

: (3.12)

The umulant expansion of this expression up to the seond term reads
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); (3.13)

where C

2

is a 9� 9 matrix invariant unter SU(3) olour rotations. As shown in [30℄

this �nally leads to

hW

+

W

�

i

G

=

2

3

e

�i

1

3

�

+

1

3

e

i

2

3

�

(3.14)
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with
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Here G

2

; �; � are as de�ned in (3.2),(3.5) and K

2;3

are the modi�ed Bessel funtions

of seond and third degree. The vetors r

ij

with i = x; y and j = q; �q are those from

the oordinate origin to the positions of the quarks and antiquarks (or diquarks) in

transverse spae as shown in Fig. 2.2. Separating the real and the imaginary part

of the above expression (� is a real funtion) we get
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(3.16)

This is the �nal result for the orrelation funtion of two light-like Wegner-Wilson

loops in the matrix umulant method [30℄. If we assume j�j � 1, (3.16) redues to

hW

+

W

�

� 1i

G

=

�

�

1

9

�(b

T

;x

T

;y

T

; z; z

0

)

2

�

; (3.17)

negleting terms of order �

3

and higher. This is the result of the traditional expan-

sion method [24℄. When omputing the numerial results for the ross setions we

are interested in, we will use both (3.16) and (3.17) and ompare with experimental

data.

3.2 The hadroni wave funtions

We now have to speify the hadroni wave funtions and overlap funtions ourring

in (2.50), (2.53) and (2.54). As mentioned before we make a simple ansatz and
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onstrut mesons as quark-antiquark and baryons as quark-diquark wave pakets,

where salar diquarks should be favoured above vetor diquarks due to dynamial

reasons [48℄. This means that in our model the spin of a baryon is arried by the

quark.

In the following we will deal mainly with hadrons with angular momentum L = 0,

in partiular the proton and the pion. When studying the sattering of protons

and pions we are only interested in unpolarised ross setions and due to heliity

onservation on the parton level in our model we an therefore limit ourselves to the

desription of spinless s-wave states. For the orresponding wave funtions we make

a Wirbel-Steh-Bauer ansatz [37℄, whih assumes a Gaussian-shaped distribution for

both the longitudinal momentum fration z arried by the quark in the hadron and

the transverse spatial extension x

T

of the hadron

'

j

(x
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; z) =

s

2z(1� z)

2�S

2
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=4z

2
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j

e

�x

2

T

=4S

2

h

j

: (3.18)

where z

h

j

and S

h

j

are the parameters de�ning the widths of the longitudinal mo-

mentum and transverse extension distributions of hadron h

j

, respetively. The nor-

malisation onstant I

h

j

is given by

I

h

j

=

Z

1

0

dz 2z(1� z) e

�(z�

1

2

)

2

=2z

2

h

j

: (3.19)

Only in our study of the double di�rative exitation of two protons into exited

nuleon resonanes, namely the N(1535), whih has the quantum numbers I(J

P

) =

1

2

(

1

2

�

) with L = 1 in the quark-diquark piture, we also need p-wave funtions. To

onstrut the N(1535) wave funtion we have to ouple a spin 1=2 state to a p-wave

in suh a way that the total angular momentum J = 1=2, taking into aount the

proper Clebsh-Gordan oeÆients. This means that the spin of the quark, whih

arries the total spin of the hadron, beause we use salar diquarks as explained

above, is antiparallel to the heliity of the p-wave. As our model onserves the

heliities on the parton level and again we are alulating unpolarised ross setions

only, the sattering of two protons into two exited resonanes is redued to the

sattering of two spinless s-waves in the initial state into two spinless p-waves with

�xed heliities in the �nal state. In the following we give only the � = �1 heliity

states of the wave funtion, sine due to the replaement of the Gaussian-shaped z-

dependene of the Wirbel-Steh-Bauer ansatz by a delta funtion entred at z = 1=2

in the numerial analysis, the � = 0 state does not ontribute, beause it ontains

a fator proportional to z � (1 � z), whih is idential to 0 when z is �xed to

1=2. As the ontribution of the � = 0 state is strongly suppressed ompared to

those of the � = �1 states as well in the formulation using the Gaussian-shaped

z-distribution, whih also is entred around z = 1=2, the replaement by the delta

funtion has no substantial impat on the numerial results. The reason for this
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approximation is disussed more detailed in hapter 4. To keep the expression for

the wave funtion short, we make this simpli�ation here as well and thus avoid

the otherwise ourring � = 0 term. For the spinless p-wave we extend the original

Wirbel-Steh-Bauer ansatz to angular momentum L = 1 and obtain

'
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; z) =

x

T

e

�x

2

T

=4S

2

h

j

q

6�S

4

h

j

�e

i��

x

Æ(z �
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); � = �1: (3.20)

Here �

x

is the angle between x

T

and q

T

.

As the overlap funtion w

kj

(x

T

; z) we de�ne the overlap between hadron h

j

in

the initial and hadron h

k

in the �nal state for �xed transverse extension x

T

and

�xed longitudinal momentum fration z

w

(�)

kj

(x

T

; z) := ('

(�)

k

(x

T

; z))

�

'

j

(x

T

; z); (3.21)

where the heliity index � ours only in ase we deal with a p-wave in the �nal

state.

For the desription of the di�rative �nal state X in semi-inlusive sattering we

use in our seond ansatz the wave funtionsX

n;m

, whih onsist of the eigenfuntions

~

X

n;m

(y

T

; z

0

) of a two-dimensional harmoni osillator [49℄ for the y

T

-dependene and

an additional part for the z

0

-dependene as in (3.18):
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where �

y

is the angle between y

T

and q

T

. Here of ourse, we also have angular

momentum L 6= 0 exept for the ground state wave funtion X

0;0

.

3.3 The hadroni sattering amplitudes

In the following we will deal with three types of hadron-hadron reations: the �rst

one is elasti sattering, whih falls into the ategory of the exlusive proesses

disussed in setion 2.3.1. As a semi-inlusive proess (see setion 2.3.2) we will

study single di�rative dissoiation. Double di�rative exitation, whih again is

an exlusive proess, is the third type of sattering reation we are investigating.
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After having evaluated the loop-loop orrelation funtion in 3.1.2 and with the

wave funtions from the previous setion, we give the expressions for the hadroni

sattering amplitudes for these proesses and analyse their respetive symmetry

properties.

3.3.1 Elasti sattering

We now put everything together, inserting the overlap funtions (3.21) and the

results (3.16) or (3.17) for the orrelation funtion of the Wegner-Wilson loops,

depending on whih method is used in the evaluation, in (2.50), where we set h

3

=

h

1

; h

4

= h

2

.

We an simplify the resulting expression by exploiting symmetry properties of

the wave and orrelation funtions. The replaements x

T

! �x

T

and z ! 1 � z,

whih exhange the quark with the orresponding diquark (or antiquark in the ase

of mesons) in hadron h

1

, lead to � ! �� (see Fig. 2.2 and (3.15)). On the other

hand these replaements leave the wave funtions invariant and thus the integration

over x

T

and z averages out the sin�-terms of (3.16) when inserted in (2.50). We

an therefore replae (3.16) by

hW

+

W

�

� 1i

G

!

�

2

3

os

�

1

3

�

�

+

1

3

os

�

2

3

�

�

� 1

�

: (3.23)

In the expansion method hW

+

W

�

� 1i

G

in (3.17) is already even under � ! ��.

In our model, therefore, the expression for the orrelation funtion is purely real

in (3.17) and only the real part of (3.16) ontributes. The T -matrix element is

invariant under the exhange of hadron h

1

by its antihadron. Thus we get only

C = P = +1 (pomeron) exhange and no C = P = �1 (odderon) exhange.

Furthermore it is useful to take advantage of global azimuthal invariane and

de�ne as new integration variables the relative angles between the impat parameter

b

T

and x

T

and y

T

, respetively:

�

0

x
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x

� �
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; �

0

y
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y

� �

b

: (3.24)

With this hoie of variables the elasti pro�le funtion beomes independent of �

b

and using the relation
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where J

n

is the Bessel funtion of n-th degree, we an perform the integral over the

angle of the impat parameter in (2.49) analytially.

For elasti sattering our �nal result for the sattering amplitude then reads
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); (3.26)
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with the elasti pro�le funtion
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when using the matrix umulant method and
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when using the expansion method, respetively.

3.3.2 Single di�rative dissoiation

In analogy to elasti sattering we insert the overlap funtion w

11

and either (3.16) or

(3.17) into

^

J

diss

, for whih we have two expressions, (2.53) and (2.54), depending on

the hoie of the plane wave or the harmoni osillator desription of the di�rative

�nal state X. If using the latter expression, we also have to input the exited state

wave funtions X

n;m

given by (3.22).

We note that it is suÆient that one overlap funtion, here w

11

(x

T

; z), has the

symmetry properties disussed in the previous setion, and thus the same arguments

as in the ase of elasti sattering an be applied. Therefore we an replae (3.16)

by (3.23) for single di�rative dissoiation as well.

The expression for the sattering amplitude is hene given by (2.52) with either

the pro�le funtion (2.53) for the plane wave desription or (2.54) for the osillator

desription of X. In both ases the loop-loop orrelation funtion evaluates to (3.23)

for the matrix umulant method or (3.17) for the expansion method.

Furthermore, when alulating ross setions with the desription of X given by

the osillator method we an use analogous arguments. The simultaneous replae-

ments y

T

! �y

T

and z

0

! 1 � z

0

and subsequent integration over y

T

and z

0

lead

to the anellation of ontributions with odd m in (2.54) beause of the existene

of a fator e

im�

y

in

~

X

n;m

(y

T

). Sine for these funtions odd m only our for odd

n, the sum over all exited states in the alulation of ross setions an be redued

to the sum over the wave funtions with even n and the orresponding m's. Finally

we point out that here the integration over the angle �

b

whih we aomplish anal-

ogously to the ase of elasti sattering by exploiting global azimuthal invariane

leads to Bessel funtions of m-th degree. This is due to the fator e

im�

y

in X

n;m

and

relation (3.25).
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3.3.3 Double di�rative exitation

We have seen in the previous setions that both in elasti and single di�rative dis-

soiation we only get C = P = +1, i.e. pomeron, exhange and no C = P = �1, i.e.

odderon, exhange in our model. This is, as we have seen, due to the symmetry of

the hadron wave funtions, where integration over all angles leads to a anellation of

those terms of the orrelation funtion that are odd under C and P transformations.

This result is not a unique feature of our model but is rather model independent.

It relies on the fat that the quark-diquark density in a nuleon is nearly symmet-

ri under a parity transformation if the diquark is suÆiently small, whereas the

odderon oupling hanges sign. To study odderon exhange in our model we have

to �nd a reation where the odderon ontribution is not anelled after integration

due to the symmetry properties of the wave funtions. This is possible in reations,

where initial state nuleons are transformed di�ratively into exited negative parity

states. In this ase, even for point-like diquarks whih we are using in our ansatz for

the wave funtions, the odderon ouples to the nuleon without any restrition [36℄.

Three reations whih permit odderon exhange but exlude pomeron exhange have

been suggested in high-energy photoprodution: exlusive neutral pseudosalar me-

son prodution with nuleon break-up [31℄, f

2

(1270) and a

2

(1320) prodution with

nuleon break-up [32℄, and the asymmetry in the frational energy of harm versus

antiharm jets, whih is sensitive to odderon-pomeron interferene [50℄.

Here we are going to study a hadroni reation for whih odderon exhange is

allowed, namely

p + p! N(1535) + N(1535): (3.29)

In addition, the N(1535) has a unique signature, being the only known baryon with

a strong �N deay [11℄. One should note, however, that this deay provides some

diÆulty for standard models of baryon spetrosopy, inluding the quark-diquark

model. It remains unlear why the N(1535) deay has suh a large branhing ratio

of about 30-55% into �N whereas this deay is negligible for the N(1520).

To onstrut the T -matrix element of reation (3.29) we start from (2.50), where

the overlap funtions w

�

31

and w

�

42

onsist of one s-wave for the proton and one p-

wave for the N(1535) eah. Now we are going to argue why it is suÆient to deal

with spinless s- and p-waves as stated in setion 3.2: as we are using salar diquarks

the spin of the proton and of the N(1535) is arried by the quark in the aording

hadron. The spin onserving delta funtions in (2.40)-(2.43) on the parton level then

ensure that the spins of the proton and of the exited nuleon resonane are aligned

parallel. As explained in setion 3.2 we do not get any ontributions from the states

with heliity � = 0 in our approximation. Sine spin and angular momentum of the

N(1535) are antiparallel to eah other in order to form a state with total angular

momentum J = 1=2, we an infer diretly that the heliity of the p-wave desribing

the N(1535) is oriented antiparallel to the spin of the inoming proton. This means

that from the originally 16 possible spin ombinations of the 4 hadrons in initial and

�nal state only 4 survive due to spin onservation on the parton level. For those we
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immediately know whih heliity state we have to assign to the N(1535) in the �nal

state. As we will alulate unpolarised ross setions in the following, i.e. we take

the average over the initial state spins and sum over all �nal state spins, we have

redued the problem to the sattering of two initial state s-waves into two �nal state

p-waves with �xed heliities, as already stated when disussing the wave funtions.

Moreover, looking at the expression for the p-wave (3.20), we note that on the level

of ross setions the following relations hold

jhN

+

(1535)N

+

(1535)jT jp pij

2

= jhN

�

(1535)N

�

(1535)jT jp pij

2

;

jhN

+

(1535)N

�

(1535)jT jp pij

2

= jhN

�

(1535)N

+

(1535)jT jp pij

2

; (3.30)

where � indiates the heliity � = �1 of the N(1535). This means that only

the relative orientation of the heliities of the two N(1535) in the �nal state are

of importane and thus we only have to alulate two sattering amplitudes, one

where the heliities are aligned parallel, whih we will all T

+

and one where they

are aligned antiparallel, whih we will all T

�

.

Now we have to show that we indeed get C = P = �1 exhange for this type of

reation. The proof will rely on symmetry onsiderations, as in the ase of elasti

sattering and single di�rative dissoiation before. To simplify our notation we

de�ne a redued overlap funtion ew

kj

whih does not ontain any terms due to the

angular dependene of the p-wave. Instead we expliitely write out this angular

dependene in the following beause it is ruial for our argumentation:

w

�

kj

(x

T

; �

x

; z) =: �e

i��

x

ew

kj

(x

T

; z): (3.31)

With this de�nition and (3.24), (3.25) we obtain for the sattering amplitude

T

�

= 4�is

Z

1

0

db

T

b

T

J

n

(

p

�t b

T

)

^

J

�

(b

T

); (3.32)

where n = 2 for T

+

and n = 0 for T

�

. Here the pro�le funtion is given by

^

J

�

(b

T

) =

Z

d

2

x

T

d

2

y

T

ew
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(x

T

;

1

2

) ew

42

(y

T

;

1

2

) os(�

x

� �

y

)

n

: : :

o

; (3.33)

where f: : :g is an abbreviation for either (3.16) or (3.17). To obtain this result we

have used the invariane of the orrelation funtion under the simultaneous trans-

formation of the variables �

x

! ��

x

and �

y

! ��

y

. Now we onsider the symme-

try properties of the wave and orrelation funtions again. The argumentation is

analogous to the ase of elasti sattering with the ruial di�erene being the addi-

tional fator os(�

x

� �

y

) here, whih hanges sign when we make the replaement

x

T

! �x

T

or y

T

! �y

T

, respetively. Due to this fator the integration over x

T

or y

T

now anels the os�-terms of (3.16) instead of the sin�-terms. Therefore, in

the ontext of this sattering reation, (3.16) redues to

hW

+

W

�

� 1i

G

! i

�

�

2

3

sin

�

1

3

�

�

+

1

3

sin

�

2

3

�

��

: (3.34)
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On the other hand, the expression (3.17), whih we get from the expansion method

in the approximation up to O(�

2

) disussed there, is even under �! �� and thus

vanishes ompletely after integration over x

T

or y

T

. To be able to use here as well

a orrelation funtion whih has been evaluated in the expansion method, we have

to inlude terms of higher order in �. In [36, 51℄ the relevant term of order �

3

has

been alulated in the framework of the expansion method and the result is

hW

+

W

�

� 1i

(3)

G

= i

�

�

5

4

1

81

�(b

T

;x

T

;y

T

; z; z

0

)

3

�

; (3.35)

where we have attahed an index (3) to denote that we are only disussing the

third order term in � here. Comparing this result with the O(�

3

)-term of the

expansion of (3.16) we notie that the former is larger by a fator 5=4. This is

a onsequene of the trunation of the umulant expansion at seond order, due

to whih we neglet terms proportional to �

3

. Taking into aount the 4- and

6-umulant we reover (3.35) as the term of order �

3

in an expansion [52℄.

To onlude, we note that for double di�rative exitation we have a purely imag-

inary ontribution to the orrelation funtion, either (3.34) for the matrix umulant

method or (3.35) for the expansion method, where we have to inlude the next, i.e.

third, order in � to get a non-zero ontribution. Due to the symmetry of the wave

and orrelation funtions we indeed get C = P = �1, i.e. odderon, exhange.

Finally we point out that also in the ase of elasti sattering and single di�rative

dissoiation an imaginary part of the orrelation funtion and C = P = �1 exhange

terms both non-vanishing after integration with the overlap funtions ould arise

from the inlusion of higher umulant terms in (3.13). This ould also be the ase if

we hose a more general desription of the hadrons with di�erent symmetries of the

wave funtions whih are essential for the anellations after integration. Of ourse,

the analogue is true for double di�rative exitation, with the di�erene that these

hanges would lead to C = P = +1 exhange there.
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Chapter 4

Hadron-hadron ross setions

The fous of this hapter will be on proton-proton sattering, where a lot of data is

available in the energy range we are interested in, i.e. high entre of mass energy and

small momentum transfer. First we will review elasti sattering, whih has been

alulated previously using the matrix umulant method in [30℄. Then the study will

be extended to single di�rative dissoiation. We will onlude the investigation of

proton-proton sattering with the analysis of the reation p p ! N(1535)N(1535),

i.e. double di�rative exitation of the proton. Then we will onsider proton-pion

sattering, i.e. we replae one of the inoming protons by a pion. In this ontext we

are going to study elasti sattering and single di�rative dissoiation of the pion.

To alulate ross setions for the reations we are onsidering, we have to �x

our free parameters, namely those of the MSV: G

2

, a and �; and those of the wave

funtions, the extension parameter S

h

j

and the width of the longitudinal momentum

distribution z

h

j

. The set of MSV parameters used in this work has been established

in [30℄ for the ase of the matrix umulant method giving (3.16). For the expansion

method giving (3.17) the set of parameters depends on whether we disuss C = P =

+1 exhange, for whih we use the values given in [27℄, or C = P = �1 exhange. In

order to obtain the latter ontribution, a somewhat di�erent approximation sheme

was used in [36, 51℄ and therefore the resulting values are slightly modi�ed. These

three parameter sets are ompiled in Table 4.1.

expansion method

matrix method

C = P = +1 C = P = �1

G

2

(529 MeV)

4

(501 MeV)

4

(525 MeV)

4

a 0:32 fm 0:346 fm 0:31 fm

� 0:74 0:74 0:74

Table 4.1: The parameters of the MSV for the matrix umulant and the expansion

method

The values given in Table 4.1 should be onsidered as e�etive values extrated from

33
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�ts to high energy sattering data using two di�erent approximate formulae. Thus

the di�erenes between the values in the seond and third (or fourth, respetively)

olumn of the table an be taken as a theoretial error estimate. With �xed param-

eters the model gives energy independent ross setions. It has been shown in [24℄

that both the energy dependene of the ross setion and of the slope parameter

b of elasti sattering an be well desribed by energy dependent hadron extension

parameters S

h

i

(s). In [30℄ it was found that in the framework of the matrix umu-

lant method energy dependent extension parameters an even desribe the energy

evolution of the whole di�erential elasti ross setions d�=dt up to jtj � 1GeV

2

.

When using the matrix umulant method we adopt the parametrisation from [30℄

for the extension parameter S

p

of the proton

S

p

(s) = 0:700

�

s

GeV

2

�

0:034

fm: (4.1)

This was obtained by �tting the total ross setion as alulated from the optial

theorem with the T -matrix element alulated within the model

�

tot

=

1

s

Im(T

fi

)

�

�

�

�

t=0

(4.2)

to the soft pomeron part of the Donnahie-Landsho� (DL) parametrisation for

�

tot

[12℄. For the expansion method we have established a similar onnetion between

S

p

and s:

S

p

(s) = 0:624

�

s

GeV

2

�

0:028

fm: (4.3)

At

p

s = 23:5 GeV, for instane, we get S

p

= 0:868 fm and S

p

= 0:745 fm from (4.1)

and (4.3), respetively. Sine the MSV-parameters for C = P = +1 exhange in the

expansion method are di�erent from the ones used for the C = P = �1 exhange

as stated above, of ourse the extension parameters di�er as well. In the following

we only need the extension parameter of the proton at

p

s = 20 GeV for the latter.

To be onsistent with the set of MSV-parameters, we use the value S

p

= 0:85 fm

from [36, 51℄. The width of the longitudinal momentum distribution of the proton

has been hosen as z

p

= 0:4 whih gives a best �t to the isovetor form fator of the

proton alulated in the framework of our model (see hapter 5).

A di�erent desription of the energy dependene, motivated by the two pomeron

piture has been suggested in [53℄. In this approah the orrelation funtion �

instead of the hadron extension parameters is assumed to depend on the energy.

This is in line with other two omponent pitures as e.g. [54, 55℄. Of ourse this

leads to a di�erent set of both MSV and wave funtion parameters. Sine in this

work also the orrelation funtions

e

D;

e

D

1

from (3.5) and the integration surfae (see

Fig. 3.1) are modi�ed ompared to our ansatz, we will not use this approah in the

following.

After having �xed all parameters, the alulation of ross setions an be per-

formed numerially. All phase spae integrals and the integrals ourring in the



4.1. Proton-proton sattering 35

sattering amplitudes are evaluated using the Monte-Carlo integration subroutine

Vegas [56℄ in an adapted version [57℄.

4.1 Proton-proton sattering

From the experimental side a lot of data on proton-proton sattering exists over a

wide range of energies. In partiular the availability of data on soft di�rative sat-

tering at high entre of mass energies makes proton-proton sattering an interesting

�eld of appliation for our model.

4.1.1 Elasti sattering

Let us �rst onsider elasti proton-proton sattering

p(P

1

) + p(P

2

)! p(P

3

) + p(P

4

): (4.4)

The di�erential ross setion d�

el

=dt for this reation has already been alulated

using the funtional integral approah and the matrix umulant method in [30℄,

however, as the results will be needed in the analysis of single di�rative dissoiation,

we give a short reminder of the results obtained there. Moreover we alulate the

di�erential ross setion using the expansion method and the integrated elasti ross

setion applying both methods and ompare the results.

For s�M

2

p

the di�erential ross setion is given by

d�

el

=

1

16�

1

s

2

jT

fi

j

2

dt; (4.5)

where T

fi

is our result (3.26) for the elasti sattering amplitude. Depending on

whih method for the evaluation of the orrelation funtion is used, we insert (3.27)

or (3.28), respetively.

In [27℄ it has been argued that the Gaussian shaped distribution of the longi-

tudinal momentum fration z (z

0

) an be replaed by a delta-funtion entred at

z = 1=2 (z

0

= 1=2), sine the funtion � (3.15), whih determines the shape of the

orrelation funtion, depends only weakly on z (z

0

). A numerial investigation of

the total ross setion alulated from the optial theorem shows that the resulting

di�erene for �

tot

is smaller than 1%. The pro�t one makes out of this simpli�ation

is a muh shorter omputation time in the numerial analysis, as eah additional

variable of integration means roughly a fator of 10 in the time needed to alulate

the ross setion. In the following we will make use of this simpli�ation if not

expliitly stated otherwise.

In Fig. 4.1 we ompare the results from the matrix umulant and expansion meth-

ods to experiment. The �rst method, i.e. using (3.23), gives a reasonable desription

of the data for jtj . 1GeV

2

over many orders of magnitude but underestimates the
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Figure 4.1: The di�erential elasti ross setion d�

el

=dt at

p

s = 23:5 GeV alu-

lated using the matrix umulant method (dashed line) and the expansion method

(solid line) ompared to the experimental data from [58℄

data at small jtj. The expansion method, i.e. using (3.17), gives a better desription

of the data for jtj . 0:2GeV

2

but overshoots the data by orders of magnitude for

larger jtj. A �t of the form d�

el

=dt = A exp b t to the di�erential ross setion gives

b = 13:8 � 0:4GeV

�2

for the matrix umulant method and b = 10:0 � 0:2GeV

�2

for the expansion method, respetively. From a �t to the experimental data [58℄

we obtain b = 11:6 � 0:1GeV

�2

. These �ts have been performed within the range

0 � jtj � 0:2GeV

2

, sine the desription of the data over a larger jtj-range would

require an additional term / t

2

in the exponent of the �t. If we alulate the

integrated elasti ross setion at

p

s = 23:5GeV, we obtain �

el

= 5:0mb in the

matrix umulant method and �

el

= 7:3mb in the expansion method ompared to

an experimental value of �

el

= 6:81 � 0:19mb [11℄. The fat that the elasti ross

setion alulated by the expansion method is loser to the experimental value than

the one from the matrix umulant method is easily understood from Fig. 4.1b. In

the integral over d�=dt only the region jtj . 0:2GeV

2

ontributes signi�antly and

there the expansion method desribes the data better. In the region jtj & 0:2GeV

2

the result from the expansion method is bigger than the experimental result, with

the onsequene that the resulting integrated ross setion is too big.

In Fig. 4.2 we show �

el

for 10 GeV �

p

s � 10 TeV. The data are as well

from pp- as from p�p-experiments [11℄. As our approah does not inlude, in Regge

terminology, any non-leading trajetories, we annot distinguish between these two

reations and they are desribed by the same sattering amplitude. The alulation

agrees reasonably well with the experimental data. Due to the reasons disussed

above, the integrated ross setions obtained from the matrix umulant method are
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Figure 4.2: The integrated elasti ross setion as a funtion of

p

s alulated using

the matrix umulant method (dashed line) and the expansion method (solid line)

ompared to the experimental data from [11℄

smaller than the experimental values. The di�erene we get from the two meth-

ods an thus be seen as a theoretial error estimate. The theoretial unertainties

have their origin in the di�erent shemes whih we use to evaluate the orrelation

funtion (3.10), whih both of ourse make use of approximations, as has been dis-

ussed in setion 3.1. In the ase of the matrix umulant expansion method the

approximation is due to the trunation of the umulant expansion after the seond

umulant term, in the expansion method we expand diretly in terms of the gluon

�eld strengths. This means that both methods do not neessarily ontain the same

physial ontributions when we ompare the respetive expressions order by order.

We have already pointed out this fat when disussing the sattering amplitude for

the C = P = �1 exhange in setion 3.3.3, where we noted that we would have

to inlude higher order umulant ontributions in the matrix umulant method to

obtain the same result in O(�

3

) as in the expansion method.

4.1.2 Single di�rative dissoiation

Now we turn to inelasti di�rative sattering

p(P

1

) + p(P

2

)! p(P

3

) + X(P

4

): (4.6)
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Figure 4.3: The integrated single di�rative dissoiation ross setion as a funtion

of

p

s alulated using the matrix umulant method (dashed line) and the expansion

method (solid line)

Using the plane wave method (2.52), (2.53) we alulate the di�erential di�rative

ross setion as

d�

di�

= (2�)

4

1

2s

jT

fi

j

2

d

5

P; (4.7)

where

d

5

P =

1

(2�)

9

1

4sz

0

(1� z

0

)

d

2

P

4T

d

2

�

4T

dz

0

(4.8)

is the 5-dimensional phase spae measure for the three partile �nal state formed

by the �rst proton whih remains intat and the quark and the diquark whih de-

sribe the seond, di�ratively exited proton. As stated above the desription of

the di�rative �nal state X by a free quark-diquark pair also inludes the ase of

elasti sattering. To obtain the ross setion �

sd

for single di�rative dissoiation,

we have to subtrat the elasti ontribution and then multiply by 2 to aount

for the reation where the �rst proton breaks up and the seond stays intat. We

�nd for the integrated single di�rative ross setion as a funtion of

p

s the result

shown in Fig. 4.3. Comparing our results to experimental data, one has to keep in

mind that the overall normalisation unertainty of the experiments is of O(10%).

Furthermore the derivation of integrated ross setions from experimental data in-

volves extrapolations of the measured data at given values of t and � = M

2

X

=s to
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regions where no data exist. The extrapolations depend on assumptions on the

shape of the t-distribution and the shape of the �-distribution. Di�erent experi-

ments make di�erent assumptions and thus the resulting integrated ross setions

di�er from eah other. The experimental values on the integrated single di�rative

dissoiation ross setion quoted here use � � 0:05 as an upper bound in the mass

distribution [59{61, 63℄, exept for [62℄ where the range is extended to � � 0:2. In

our alulation of �

sd

we integrate over all values of �. Beause the mass spetrum

obtained in our alulation dereases rapidly with inreasing � (see Fig. 4.6), our

numerial result of the integrated ross setion is dominated by the low mass region

and is not sensible to the integration range being � � 0:05 or � � 0:2. Again the dif-

ferene between the ross setions obtained by the two methods an be understood

as an estimation of the theoretial errors whih arise due to the approximations

made in the evaluation of the orrelation funtion.

In Table 4.2 we give the ratio R of the single di�rative dissoiation ross setion

to the sum of the single di�rative dissoiation and the elasti ross setions from our

model and from di�erent experiments. For

p

s = 546GeV and 1800 GeV we have

used the values of �

el

and �

sd

as quoted by the UA4, CDF and E710 experiments.

For the ISR energy range 20GeV .

p

s . 60GeV a lot of data exist. Sine the

ross setions do not vary muh over this energy range, we have �tted both �

el

and

�

sd

as being proportional to a small power of

p

s and have then alulated R as a

funtion of

p

s using these �ts. The quoted ISR R-value in Table 4.2 is evaluated

at an intermediate energy of

p

s = 38:5GeV. As an be seen, our model, and

R = �

sd

=(�

el

+ �

sd

)

p

s [GeV℄

matrix expansion values al. from exp.

23.5 0.40 0.47

38.5 0.39 0.47 0:49� 0:07 ISR [59, 60℄

62.3 0.39 0.46

0:41� 0:02 UA4 [61℄

546 0.36 0.45

0:38� 0:01 CDF [62℄

0:33� 0:05 E710 [63℄

1800 0.35 0.44

0:32� 0:01 CDF [62℄

Table 4.2: The ratio R of the single di�rative dissoiation to the sum of the

single di�rative dissoiation and elasti ross setions from the model and from

experiments

more pronounedly in the matrix umulant method, predits that the di�rative

dissoiation ross setion grows more slowly with inreasing energy than the elasti

ross setion. This is in qualitative agreement with experiment, where an even slower

rise of �

sd

ompared to �

el

is observed. The smaller R-values in the matrix umulant
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Figure 4.4: The di�erential di�rative ross setion d�

sd

=dt at

p

s = 23:5 GeV al-

ulated using the matrix umulant method (dashed line) and the expansion method

(solid line) ompared to the experimental data from [59℄

method ompared to the expansion method are mainly due to the relatively small

integrated single di�rative dissoiation ross setions in the former method.

The results for the di�erential ross setion of the single di�rative dissoiation

are shown in Fig. 4.4. The urve alulated in the framework of the expansion

method desribes the slope of the di�rative reation quite well even for larger val-

ues of jtj. Therefore the agreement with the experiment is reasonably good within

the jtj-range onsidered here. This ould however be partly aidental. In pro-

esses where the proton breaks up, the exhange of hard and semi-hard gluons will

play an important role. This exhange is not desribed by our model whih is an

approximation for the infrared behaviour of QCD. We have seen in elasti sat-

tering that the expansion method overestimates the ross setion for values of jtj

larger than 0:2GeV

2

, see Fig. 4.1, and this ould simulate the expeted ontribu-

tion of hard or semi-hard gluon exhange in the di�rative dissoiation reations.

We stress however that the fast derease of the single di�rative dissoiation ross

setion d�

sd

=dt for jtj . 0:2GeV

2

is a �rm predition of our model. Performing a

�t over the range 0 � jtj � 0:2GeV

2

of the form d�

sd

=dt = A exp bt like in the ase

of elasti sattering we obtain b = 12:6 � 0:2GeV

�2

. For suh small momentum

transfer no experimental data on the di�erential di�rative ross setion exist. To

ompare to experiment, we therefore apply the �t formula to both our result and

the experimental data in the range 0:2GeV

2

� jtj � 0:5GeV

2

. For larger values

of jtj we would require an additional term / t

2

in the exponent of the �t. The
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�ts then give b = 7:9� 0:3GeV

�2

for our alulation in the expansion method and

b = 7:0 � 0:3GeV

�2

for the data from [59℄. Integration of our result for the dif-

ferential distribution over t leads to integrated single di�rative dissoiation ross

setions whih are larger than the aording experimental integrated ross setions.

1

Those are alulated from the experimental di�erential ross setions under the as-

sumption of a linear extrapolation of the slope down to t = 0GeV

2

. Therefore it is

the steep slope for jtj . 0:2GeV

2

in our alulation that leads to larger integrated

ross setions than experimentally observed even though in the whole range where

experimental data on the di�erential t-distribution are available our alulation gives

smaller values than the experiment [59℄. Sine our model predits an inreasingly

steeper slope when we go to higher energies, this e�et gets more pronouned for

large values of

p

s. Therefore the agreement of our result for the integrated single

di�rative dissoiation ross setions is not as good for the Tevatron data as it is for

the ISR data (see Fig. 4.3).

To hek the validity of our desription of the di�rative �nal state by a free

quark-diquark pair using plane waves, now we apply the seond method, whih

desribes the di�rative �nal state X through a sum of wave funtions of exited

states of a two-dimensional harmoni osillator, as explained above in setion 2.3.2.

In this desription, the �nal state phase spae is two-dimensional as in the ase of

elasti sattering and the di�erential ross setion is given by

d�

sd

dt

=

1

16�

1

s

2

X

(n;m)6=(0;0)

jT

fi

j

2

(4.9)

with T

fi

from (2.54). The sum runs over all even n for the reasons given in se-

tion 3.3.2, the assoiated quantum number m runs over m = �n;�(n� 2); : : : ; n�

2; n. The numerial analysis shows that both alulations are in very good agree-

ment to eah other and that summing up the ontributions from values of n � 6

already gives � 98% of the result using plane waves.

So far we have only disussed the result for the di�erential ross setion whih

we obtain when we apply the expansion method. Fig. 4.4 also shows the result of

our alulation in the framework of the matrix umulant method. As already seen in

elasti sattering, the result obtained from the matrix umulant method is smaller

than the one from the expansion method. The same �t we have used for the expan-

sion method for the range 0 � jtj � 0:2GeV

2

here leads to b = 19:1 � 0:9GeV

�2

.

This is in analogy to elasti sattering, where we have also found a steeper slope

for very small momentum transfers when omparing matrix umulant with expan-

sion method. Repeating the �t in the range 0:2GeV

2

� jtj � 0:5GeV

2

we obtain

b = 9:2 � 1:7GeV

�2

. However, in the range 0:1GeV

2

. jtj . 0:7GeV

2

the di�er-

ential ross setion develops a depression and in ontrast to elasti sattering the

1

Of ourse the physial region of t is bounded by t

min

, whih is a funtion of the mass of the

di�rative �nal state and of

p

s, but in the kinematial region whih we are studying we have

t

min

. 10

�3

and thus t

min

an be safely set to 0.
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Figure 4.5: The ontributions of harmoni osillator wave funtions with �xed

quantum numbers n;m to the di�erential di�rative ross setion d�

sd

=dt ompared

to the result obtained by the plane wave desription (solid line) of the di�rative

�nal state X

matrix umulant method fails to desribe the shape of the di�erential ross setion.

This depression is the reason why, after integration over t, the integrated single

di�rative dissoiation ross setions in the matrix umulant method are notieably

smaller than the ones extrated from the expansion method and experimental data.

To understand where this depression omes from, we again apply the seond

method and desribe the di�rative �nal state through the sum of the wave fun-

tions X

n;m

. Progressing analogously to the above study of the expansion method we

sum up all ontributions with n � 6 and assoiated m's and �nd as well very good

agreement to the plane wave desription. This shows us that both desriptions of X

indeed are equivalent to eah other. Now we take a loser look at the ontributions

to the di�erential di�rative ross setion from exited state wave funtions X

n;m

with de�nite values of n and m. The reason why we an ompare the ontributions

from wave funtions with de�nite quantum numbers diretly to eah other and to

the plane wave desription is that due to orthogonality they add up on the level

of the ross setion and not on the level of the sattering amplitudes. We have

already used this fat in (4.9). Therefore we an alulate di�erential di�rative

ross setions with the sum over n;m replaed by just one term with �xed quantum

numbers. Some of these ontributions to the di�erential ross setion are shown

in Fig. 4.5, where we have also inluded the result obtained by the plane wave de-

sription for omparison. We see that, like for elasti sattering as disussed in [30℄,
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various ontributions to the di�erential ross setions develop a \dip"-struture, in

partiular those with m = 0. The loation of these dips is given by the jtj-value at

whih the real part of the orrelation funtion hanges sign. At whih exat value for

t < 0 this happens is governed by the details of the interplay of the Bessel funtion

J

m

that ours in the sattering amplitude (see (3.25) and setion 3.3.2), the wave

funtion X

n;m

and the orrelation funtion. We note that for inreasing quantum

number n the position of the dip moves to larger values of jtj. As the imaginary part

of the orrelation funtion is anelled after integration over the wave funtions as

disussed above, the sattering amplitude is zero at these positions and therefore we

get an in�nitely deep dip. As an be seen from Fig. 4.5 several dips develop in the

region 0:1GeV

2

� jtj � 0:7GeV

2

for wave funtions with n � 6. In partiular the

ontribution with the quantum numbers n = 2; m = 0 whih aounts for the main

part in the sum has a dip at jtj � 0:3GeV

2

. Performing the sum over n;m then leads

to the formation of the depression for this region of jtj. We expet the dips - and in

onsequene the depression - to be at least partly �lled up when we inlude higher

umulant terms, whih ould lead to an imaginary part of the orrelation funtion

non-vanishing after integration with the wave funtions as disussed in more detail in

setion 3.3. Also the desription of the proton by a more general quark on�guration

than the simple quark-diquark piture we have used here hanges the symmetries of

the wave funtions whih are essential for the anellation of the imaginary part of

the orrelation funtion. The result would be a re�ned desription of the di�erential

di�rative ross setion in the matrix umulant method and therefore, after inte-

gration over t, also a larger integrated single di�rative dissoiation ross setions

whih would be in better aord with experiment.

In the following we will onsider the mass spetrum d

2

�

sd

=(d�dt) of the single

di�rative dissoiation reation at

p

s = 23:5 GeV for t = �0:0525 GeV

2

, where �

is the squared mass of the di�rative �nal state divided by s. In our ansatz with

plane wave �nal states, � then is given by

� :=

M

2

X

s

=

�

2

4T

+ (1� z

0

)m

2

q

+ z

0

m

2

�q

z

0

(1� z

0

)s

: (4.10)

Here m

q

and m

�q

are the masses of the quark and the diquark whih desribe the

exited proton state. To take thresholds into aount the mass for the quark has

been hosen to be 330 MeV and for the diquark 660 MeV so that the sum roughly

gives the proton mass. Going bak to (2.53) we reognise that now we an no

longer replae the Gaussian shaped longitudinal momentum distribution in the wave

funtion (3.18) for the hadron h

2

, whih breaks up, by a delta funtion entred

around 1/2, as we have done in the alulations before, beause z

0

determines the

value of � in (4.10). This was di�erent for the alulation of d�

sd

=dt, where we

performed an integration over the full range of �

4T

in phase spae and were not

interested in any partiular value of �. As a onsequene of the introdution of quark

masses the integration over z

0

now does not run from 0 to 1, but the integration
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Figure 4.6: The di�rative mass spetrum d

2

�

sd

=(d�dt) for t = �0:0525 GeV

2

at

p

s = 23:5 GeV alulated using the matrix umulant method (dashed line) and the

expansion method (solid line) together with the data from [60℄

limits are given by

z

0

0=1

=

1

2

�

m

2

q

�m

2

�q

2�s

�

s

1

4

�

m

2

q

+m

2

�q

2�s

+

�

m

2

q

�m

2

�q

2�s

�

2

: (4.11)

This ensures that the mass spetrum starts at M

2

X

= M

2

p

where M

p

is the proton

mass. Our plane wave desription of the di�rative �nal state of ourse also inludes

elasti sattering. To ompare with experimental results on di�rative dissoiation

we have to subtrat the elasti ontribution. To do so we argue as follows: to obtain

the elasti ontribution, we integrate d

2

�

sd

=(d�dt) over � from �

0

= M

2

p

=s up to

�

1

. We determine �

1

in suh a way that the integral gives the value of the elasti

di�erential ross setion d�

el

=dt. Now we interprete the mass spetrum as onsisting

of the elasti part, whih lies between �

0

and �

1

and the dissoiation part, whih

starts at �

1

. This proedure allows us to separate the elasti and the dissoiation

ontributions.

The result of the alulation is shown in Fig. 4.6 for t = �0:0525GeV

2

and

the .m. energy

p

s = 23:5 GeV together with the data points from [60℄. For

the matrix umulant method we determine �

1

= 1:90GeV

2

=s � 3:44 � 10

�3

, for the

expansion method �

1

= 1:63GeV

2

=s � 2:95�10

�3

. Again the di�erential distribution

obtained by our alulation in the matrix umulant method is smaller than the one

orresponding to the expansion method and starts for slightly larger �

1

. This is
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not surprising beause integrating d

2

�

sd

=(d�dt) over � from �

1

to �

2

=1, following

the argumentation from above, we have to �nd the value for the di�erential single

dissoiative ross setion d�

sd

=dt at t = �0:0525GeV

2

.

2

As we have seen above,

this di�erential ross setion is smaller for all values of t in the matrix umulant

method than in the expansion method and therefore the double di�erential ross

setion also has to be smaller when alulated by means of the former method. The

omparison with the experimental data proves diÆult, as the experimental values

are smeared out over a ertain range of values for � beause of the detetor mass

resolution funtion. This explains also the data for the unphysial negative �-values.

As a onsequene the large peak of the di�rative mass spetrum is muh more

pronouned in our alulation and the experimental distribution is atter around

that peak. To ompare diretly with the experiment, we would have to fold our

results with the mass resolution funtion of the detetor used in the experiments [60℄,

but unfortunately, this resolution funtion an no longer be reonstruted [64℄. We

note that our model should give reliable results for small �. Indeed, for large values

of � the model seems to underestimate the data onsiderably. But for this � region

we expet, for instane, that our purely nonperturbative treatment of the sattering

must be supplemented by hard gluon radiation whih should lead to high invariant

masses for the di�ratively exited state. Furthermore our alulation treats the

�nal state as a quark-diquark pair and therefore no on�nement e�ets are inluded

here.

4.1.3 Double di�rative exitation

Now we will study the double di�rative exitation of the proton

p(P

1

) + p(P

2

)! N(1535)(P

3

) + N(1535)(P

4

); (4.12)

where the N(1535) is an exited nuleon resonane with mass M

�

= 1535MeV and

the quantum numbers I(J

P

) =

1

2

(

1

2

�

). In the quark-diquark piture it has angular

momentum L = 1. The di�erential ross setion is given by

d�

dd

=

1

32�

1

s

2

�

jT

+

j

2

+ jT

�

j

2

�

dt; (4.13)

with T

�

from (3.32). The sattering amplitudes ontain the double di�rative pro�le

funtion

^

J

�

, whih depends expliitely on the relative orientation of the heliities

of the two exited nuleon resonanes (see (3.33)). Depending on whih method we

want to use, we use either (3.34) or (3.35) to evaluate the orrelation funtion.

Unfortunately no experimental data exist on this reation so far, so we an only

give preditions for future experiments. RHIC for example meets all the require-

ments to investigate this reation. As we mentioned in setion 3.3.3 this reation

2

In pratie it is suÆient to perform the integral for a �nite value of �

2

� 25GeV

2

=s beause

of the fast derease of the alulated di�erential distribution for large values of �.
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Figure 4.7: The di�erential di�rative ross setion d�

dd

=dt at

p

s = 20 GeV al-

ulated using the matrix umulant method (dashed line) and the expansion method

(solid line)

has an unique signature sine the N(1535) is the only known baryon with a strong

�N deay. A lear signal in the detetor for this reation thus would be a �nal state

omposed of 2 �'s and 2 nuleons. However, there is also the question open why

the N(1535) has a strong deay mode into �N whereas the N(1520), whih has the

same quantum numbers apart from J =

3

2

instead of J =

1

2

, has not [11℄. Standard

models of baryon spetrosopy, inluding the quark-diquark model we use here, have

diÆulties explaining this experimentally well founded fat. We have to keep this in

mind as a possible soure of theoretial unertainties in our model when disussing

our results.

The di�erential ross setion d�

dd

=dt alulated in the framework of both meth-

ods is shown in Fig. 4.7. These distributions exhibit some qualitative features that

we have already disussed in setion 4.1.2 when investigating single di�rative dis-

soiation. One similarity is that again the result obtained by the matrix umulant

method is smaller ompared to the one alulated with the expansion method. Go-

ing bak to the disussion following (3.35) we reall that the two methods rely on

di�erent approximation shemes that do not neessarily inlude the same ontri-

butions at every order of �. We have seen for example that the term of O(�

3

) in

the expression for the orrelation funtion is larger by a fator

5

4

in the expansion

method ompared to the matrix umulant method with trunation after the se-

ond umulant. To see where the di�erene between the methods omes from we

expand (3.34) to order �

3

giving �i

1

81

�

3

and alulate the di�erential ross setion.
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Figure 4.8: The ontribution of T

+

and T

�

to the di�erential ross setion d�

dd

=dt

ompared to the full result (solid line)

Naively we would expet the distribution obtained that way to be smaller by a fa-

tor (

4

5

)

2

than the expansion method result for the reason given above. However, we

have to remember that the MSV parameters are di�erent for the two methods and in

fat the distribution alulated with the expanded matrix umulant result and the

original matrix umulant parameters (seond olumn of Table 4.1) is slightly larger

than the one alulated with the expansion method and the aording parameters

(fourth olumn of Table 4.1). This is mainly due to the fat that the orrelation

length enters the ross setion to power a

24

. Inluding step by step higher orders

in � we �nally get bak to the result for the matrix umulant method shown in

Fig. 4.7. By this argument we see that the ontributions from higher orders in

� have an essential inuene on both the normalisation and the shape of the dif-

ferential ross setion. For elasti sattering and for single di�rative dissoiation,

where we have C = P = +1 exhange instead of the C = P = �1 exhange we are

disussing here, these arguments also hold true. In all ases we start from (3.16)

for the matrix umulant method and depending on the symmetries of the wave and

orrelation funtions we keep either (3.23) or (3.34) after integration with the over-

lap funtions. Expanding these expressions and alulating the ontributions from

inreasingly higher orders in � we see that also for C = P = +1 exhange they

are ruial for the normalisation and the shape of the ross setion. In partiular

the position of the the dip struture seen in the di�erential distribution of elasti

sattering and the depression in the di�erential ross setion of single di�rative

dissoiation depend on how many orders in � we take into aount.
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Another agreement with single di�rative dissoiation is the development of a de-

pression in the di�erential distribution alulated with the matrix umulant method

(ompare Figs. 4.4 and 4.7). In analogy to setion 4.1.2, where we have analysed

the origin of the depression by studying ontributions of single osillator funtions

to the ross setion, we now alulate the ross setion from either T

+

or T

�

alone

instead of immediately summing up both ontributions. The respetive results are

shown in Fig. 4.8. Again we �nd that the reason for the depression is the loation

of a dip at jtj � 1:0GeV

2

in the leading term of the sum, namely the one we get

from T

�

.

3

As already mentioned in setion 4.1.2, the inlusion of higher umulants

and a re�ned model for both the proton and the exited nuleon state ould lead to

an improved desription of the di�erential ross setion.

Compared to elasti sattering or single di�rative dissoiation we note that the

di�erential distribution for small values of jtj is relatively at. A �t to d�

dd

=dt =

A exp b t gives b = 8:2� 0:1GeV

�2

for the matrix umulant and b = 5:7� 0:1GeV

�2

for the expansion method. Our preditions for the integrated ross setion for the

reation pp ! N(1535)N(1535) are �

dd

= 0:2mb when applying the matrix umu-

lant and �

dd

= 0:7mb when applying the expansion method. These ross setions

are solely due to C = P = �1, i.e. odderon, exhange. In the approximation we use

here, an a priori possible ontribution through pomeron exhange is stritly zero.

This is in agreement with the Gribov-Morrison rule [65℄, but as neither this rule nor

our model are exat the possibility annot be ruled out entirely. However, this an

be tested experimentally. As the odderon is known to ouple at most very weakly

to the nuleon it will not ontribute signi�antly to the reation p p ! pN(1535).

So if this reation is observed at high energy, the natural interpretation is that it

is due to pomeron exhange and, using reggeon fatorisation together with pp elas-

ti sattering, allows the pomeron ontribution to p p ! N(1535)N(1535) to be

obtained.

To onlude this setion we note that a possible hek of our results ould be

obtained by alulating the eletromagneti p � N(1535) transition form fator.

However, in the formulation of the model used here, in partiular due to the ap-

pliation of the quark-diquark piture with salar diquarks, this alulation is not

feasible. We will ome bak to this point when disussing the alulation of form

fators in the framework of our model.

4.2 Proton-pion sattering

We present alulations for the reation p �

�

! p � and p �

�

! pX, respetively.

Of ourse, the vauum parameters G

2

; a; � stay the same but we still have to �x the

pion extension parameters S

�

and z

�

in (3.18). Proeeding as in the ase of proton-

proton sattering we �nd for the parameters S

�

= 0:60 fm for the matrix umulant

3

Of ourse it is not the leading term in the region of the dip, where its ontribution tends to

zero.
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and S

�

= 0:55 fm for the expansion method, respetively, at

p

s = 19:5 GeV. In

both methods we obtain the same value z

�

= 0:5 for the width of the longitudinal

momentum distribution.

4.2.1 Elasti sattering
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Figure 4.9: The di�erential elasti ross setion d�

el

=dt at

p

s = 19:5 GeV alu-

lated using the matrix umulant method (dashed line) and the expansion method

(solid line) ompared to the experimental data from [67℄

Again we will �rst take a look at elasti sattering. For a .m. energy of

p

s = 19:5 GeV we �nd for the integrated elasti ross setions �

el

= 2:4mb with

the matrix umulant and �

el

= 3:1mb with the expansion method, ompared to an

experimental value of �

el

= 3:30� 0:11mb [66℄. The di�erential elasti ross setion

is shown in Fig. 4.9. The matrix umulant method desribes the di�erential distri-

bution reasonably well over many orders of magnitude and underestimates the data

for small jtj. This is the reason why the integrated ross setion omes out too small

when applying the matrix umulant method. The expansion method gives a better

desription of the data for jtj . 0:2GeV

2

but overestimates the data for larger values

of jtj, and therefore the integrated ross setion as well. All this is in omplete anal-

ogy to elasti proton-proton sattering. Fitting our result for the di�erential ross

setion by d�

el

=dt = A exp b t we �nd b = 10:9� 0:3GeV

2

for the matrix umulant

method and b = 8:7 � 0:3GeV

�2

for the expansion method. The experimentally

measured values are b = 7:9 � 0:2GeV

�2

for �

+

p - and b = 8:4 � 0:1GeV

�2

for

�

�

p -sattering, respetively [67℄. We annot distinguish between these two rea-

tions and desribe them by the same sattering amplitude beause our model does

not inlude, in Regge terminology, any non-leading trajetories.
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4.2.2 Single di�rative dissoiation

Moving on to the reation where the pion breaks up di�ratively, we alulate �

sd

and the R-value, whih we de�ne as in the ase of proton-proton sattering. For

the matrix umulant method we �nd �

sd

= 1:1mb and R = 0:32, for the expansion

method �

sd

= 2:0mb and R = 0:39. The aording experimental values are �

sd

=

1:90 � 0:2mb and R = 0:37 � 0:03 [68℄ whih is in quite good agreement to the

results obtained from the expansion method. Di�erential ross setion for proton-

pion sattering with di�rative break up of the pion are unfortunately not available

at .m. energies whih are high enough for our model to be appliable.



Chapter 5

Spae-like form fators in the

model

In this hapter we will study form fators within our model. We do not intend to

perform a preision alulation of form fators but we will apply the alulation

to extrat values for the width of the longitudinal momentum distributions of the

proton and the pion, z

p

and z

�

, respetively, by �tting our results to experimental

data.

5.1 The eletromagneti form fators of the pro-

ton

The oupling of the eletromagneti urrent to the proton an be desribed by

hp(P

0

; s

0

)jj

�

(0)jp(P; s)i = e �u

s

0

(P

0

)

�



�

F

1p

(Q

2

) +

i�

��

q

�

2M

p

F

2p

(Q

2

)

�

u

s

(P ); (5.1)

where the momentum transfer is q = P

0

� P , Q

2

= �q

2

, M

p

is the proton mass,

e =

p

4��

e:m:

and F

1p

; F

2p

are the Dira and Pauli form fator of the proton, respe-

tively. Now we hoose suh a oordinate system so that q is purely transverse:

P

�

=

1

2

P

+

n

�

+

+

1

2

P

�

n

�

�

�

1

2

q

�

;

P

0�

=

1

2

P

+

n

�

+

+

1

2

P

�

n

�

�

+

1

2

q

�

;

q =

0

�

0

q

T

0

1

A

; n

�

=

0

B

B

�

1

0

0

�1

1

C

C

A

;

P

�

= (

1

4

q

2

T

+M

2

p

)=P

+

: (5.2)
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In the high energy limit, P

+

!1, we get for the matrix element (5.1) (see [69℄)

hp(P

0

; s

0

)jj

�

(0)jp(P; s)i = e P

+

n

�

+

�

y

s

0

�

F

1p

(Q

2

)�

�

3

q

T

� �

2M

p

F

2p

(Q

2

)

�

�

s

+O(1); (5.3)

where �

s

; �

s

0

are the Pauli two-omponent spinors. F

1p

multiplies the spin-non-ip

part, F

2p

the spin-ip part of the matrix element. Calulating the spin average of

this expression leads to

1

2

X

s

hp(P

0

; s)jj

�

(x)jp(P; s)i = e P

+

n

�

+

F

1p

(Q

2

) +O(1): (5.4)

We desribe the alulation of the Dira form fator of the proton in the framework

of our model in appendix C. In the following we onsider the matrix element of the

third omponent of the isospin urrent j

�

3

. Its matrix element between proton states

is as in (5.1),(5.3), with F

ip

replaed by F

iv

, related to the form fators of proton

and neutron by

F

iv

=

1

2

�

F

ip

(Q

2

)� F

in

(Q

2

)

�

(i = 1; 2): (5.5)

With the wave funtions (3.18) we obtain

F

1v

(Q

2

) =

1

2I

p

Z

1

0

dz 2z(1� z) e

�(z�

1

2

)

2

=2z

2

p

e

�

z

2

2

S

2

p

Q

2

; (5.6)

where I

p

is the normalisation fator (3.19). For this alulation we need only the

expetation value of one Wegner-Wilson loop. A straightforward alulation shows

that the expetation value over one single loop is 1 in both the matrix umulant

method and the expansion method. Thus, in our model the form fator is just the

Fourier transform of the squared wave funtion.

We will now use (5.6) to determine z

p

and S

p

. It turns out that in the range

0 � Q � 0:5GeV the form fator depends sensitively on S

p

but only weakly on z

p

.

From a �t to experiment in this region we obtain S

p

= 0:77 fm. With S

p

�xed to

this value we show in Fig. 5.1 our result (5.6) for F

1v

for di�erent values of z

p

. The

experimental values have been alulated from the experimental data for G

Ep

and

G

Mp

from [70,71℄ and a �t of the experimental data on G

En

and G

Mn

[72℄ aording

to (5.5) and the relation between the Dira (F

1p;n

) and the eletri (G

Ep;n

) and

magneti (G

Mp;n

) form fator of the proton and neutron, respetively:

F

1N

(Q

2

) =

G

EN

(Q

2

) + �G

MN

(Q

2

)

1 + �

; � =

Q

2

4M

2

N

(N = p; n): (5.7)

The best �t is found for z

p

= 0:4. As an be seen from Fig. 5.1, z

p

, whih �xes

the width of the longitudinal momentum distribution of the onstituents, plays

no important role for Q . 0:5GeV. For larger values of Q however, our �t is
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Figure 5.1: The isovetor form fator of the proton for S

p

= 0:77 fm and di�erent

values of z

p

ompared to the experimental data from [70{72℄

substantially improved when using a Gaussian shaped z-dependene instead of a

delta-funtion entred around z = 1=2, whih is equivalent to z

p

! 0.

It has to be noted that the proton extension parameter S

p

obtained from (5.6) is

not, and need not be, the same as the one used in the hadroni sattering proesses in

the previous hapters. Whereas the hadroni extension parameter has been allowed

to be energy dependent (see (4.1),(4.3)) to aount for the rise of �

tot

with

p

s, the

extension parameter onneted with the form fator has a �xed value for all energies

as the form fator itself is energy independent and is related to the eletromagneti

radius of the proton as follows. Using the de�nitions

hr

2

i

p

= �6

dG

Ep

(Q

2

)

dQ

2

�

�

�

�

Q

2

=0

;

r

p

em

=

p

hr

2

i

p

; (5.8)

relations (5.5),(5.7) and the experimental value

dG

En

(Q

2

)

dQ

2

�

�

�

�

Q

2

=0

= 0:019 fm

2

(5.9)

from thermal-neutron-eletron sattering [73℄, we get from our model

r

p

em

= 0:81 fm: (5.10)



54 Chapter 5. Spae-like form fators in the model

This oinides with the value one obtains for the proton eletromagneti radius when

desribing the eletri form fator of the proton by the dipole parametrisation [70℄,

whih also results in r

p

em

= 0:81 fm. From sattering experiments one �nds r

p

em

=

0:88 � 0:03 fm or r

p

em

= 0:92 � 0:03 fm, depending on whih �t is used for the

experimental data on G

Ep

(Q

2

) for small Q

2

[70℄. The Lamb shift measurements [74℄

give r

p

em

= 0:890 � 0:014 fm. Thus our result (5.10), as well as the one alulated

from the dipole parametrisation, is smaller than the experimental value for r

p

em

.

Our alulation as well as the dipole �t desribe the data [71℄ for G

Ep

rather well

for Q & 0:4GeV. But for smaller Q the data [70℄ indiate a rapid hange in the

slope dG

Ep

(Q

2

)=dQ

2

whih is desribed neither by our model nor by the dipole

parametrisation. Suh an \anomalous" behaviour of G

Ep

and G

En

for small Q

2

has

been related to QCD vauum e�ets in [75℄.

5.2 The eletromagneti form fator of the pion
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Figure 5.2: The pion form fator for S

�

= 0:68 fm and di�erent values of z

�

om-

pared to the experimental data from [76℄

For the harged pions �

�

the matrix element of the eletromagneti and the third

omponent of the isospin urrent are equal. Choosing again the oordinate system

as in (5.2) with M

p

replaed by m

�

we get

h�

+

(P

0

)jj

�

(0)j�

+

(P )i = e (P

+

n

�

+

+ P

�

n

�

�

)F

�

(Q

2

): (5.11)
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Here the matrix element an be expressed by one form fator F

�

only. The alula-

tion of this matrix element in our model leads to

F

�

(Q

2

) =

1

I

�

Z

1

0

dz 2z(1� z) e

�(z�

1

2

)

2

=2z

2

�

e

�

z

2

2

S

2

�

Q

2

: (5.12)

We ompare (5.12) to experimental data for F

�

from [76℄ in Fig. 5.2. As for the

proton the transverse extension parameter S

�

an be �tted in the range 0 � Q �

0:5GeV with the result S

�

= 0:68 fm. Using the analogue of relation (5.8) for the

pion, this value gives an eletromagneti radius r

�

em

= 0:64 fm, whih is onsistent

with the experimental value r

�

em

= 0:663 � 0:006 fm [76℄. For values Q & 0:5GeV

our �t beomes sensitive to the width of the longitudinal momentum distribution

of the onstituents. For the pion, the best �t for the width of this distribution is

given by z

�

= 0:5. The broader distribution ompared to the proton is related to

the smaller mass of the pion, whih is in agreement with the parametrisation of the

hadron wave funtions in [37℄.
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Chapter 6

The time-like pion form fator in a

dispersion approah

Our aim in this hapter is to develop a dediated model of the time-like pion form

fator. In ontrast to the previous hapter, where our main interest lay in the

extration of the parameters z

p

; z

�

, here we want to give a detailed desription of

the behaviour of the form fator. First we will give an overview of some models and

the regions in whih they are appliable. Then we will present our approah and

alulate the phase and the modulus of the eletromagneti and harged urrent

form fator. From �ts to experimental data we will obtain the masses and deay

onstants of the neutral and harged �-mesons and the !-meson.

We reall the de�nition of the eletromagneti form fator of the pion by the

matrix element of the eletromagneti urrent

h�

+

(P

0

)jj

�

(0)j�

+

(P )i = e(P + P

0

)

�

F

�

(q

2

); (6.1)

where the momentum transfer is q = P

0

� P . The form fator is normalised as

F

�

(0) = 1. As funtion of the omplex variable s = q

2

, the form fator F

�

(s) has

a ut in the omplex s-plane starting at the two-pion threshold s = 4m

2

�

whih

orresponds to two-pion intermediate states. There are also uts related to K

�

K

intermediate states and multi-meson states (4�, et). The form fator in the time-

like region (s > 0) is

F

�

(s+ i�) = jF

�

(s)je

iÆ(s)

; (6.2)

where Æ(s) is the phase. For the theoretial desription of the form fator in di�erent

regions of momentum transfers di�erent theoretial approahes are used.

At large spae-like momentum transfers, �q

2

!1, perturbative QCD (pQCD)

gives rigorous preditions for the asymptoti behaviour of the form fator [77℄

F

�

(q

2

) �

8�f

�

�

s

(�q

2

)

�q

2

; (6.3)
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where �

s

is the QCD oupling parameter and f

�

= 130:7�0:4MeV is the pion deay

onstant de�ned by the relation

h0j

�

d

�



5

uj�

+

(P )i = iP

�

f

�

: (6.4)

As the spae-like momentum transfer beomes smaller, the form fator turns out

to be the result of the interplay of perturbative and nonperturbative QCD e�ets,

with a strong evidene that nonperturbative QCD e�ets dominate in the region

0 � �q

2

� 10GeV

2

[39℄. The piture based on the onept of onstituent quarks

whih e�etively aount for nonperturbative dynamis has proven to be eÆient

for the desription of the form fator in this region (see for instane [40℄). In hap-

ter 5, we also have alulated F

�

for small spae-like momentum transfers in the

framework of our nonperturbative model. This alulation is not intended as a pre-

ise determination of the form fator, sine our model, in the formulation we use

here, was not developed with the attention on the alulation of form fators, but

rather on the desription of soft high energy hadron-hadron sattering. However,

our model has allowed us to give a reasonable desription of the experimental data.

The agreement ould be improved by using a re�ned model, in partiular when

using more sophistiated wave funtions and more general quark on�gurations to

desribe the proton and the pion. Moving on to large time-like momentum transfers,

s & 10GeV

2

, F

�

(s) an be obtained from the analyti ontinuation of the pQCD

formula (6.3). At small time-like momentum transfers the situation is more om-

pliated sine there dynamial details of the on�nement mehanism are ruial.

Quarks and gluons are no longer the degrees of freedom of QCD leading to a simple

desription of the form fator. At time-like momentum transfers we are essentially

in the region of hadroni singularities and typially one relies on methods based on

hadroni degrees of freedom. In the region of interest to us here, 0 � q

2

� 1:5GeV

2

,

the lightest pseudosalar mesons are most important.

There are many approahes to understand the behaviour of the pion form fator

at time-like momentum transfers from 0 to 1.5 GeV

2

. A time honoured approah is

based on the vetor meson dominane (VMD) model [41℄. In the simplest version

of VMD one assumes just the �-meson dominane, whih leads to

F

�

(s) =

M

2

�

M

2

�

� s

; (6.5)

where M

�

is the mass of the �-meson. This simple formula works with a good

auray both for small spae-like momentum transfers and time-like momentum

transfers below the �� threshold: �1GeV

2

� s � 4m

2

�

. For s near the �� threshold

one should take into aount e�ets of the virtual pions. In this region momenta of

the intermediate pions are small and a onsistent desription of the form fator is

provided by hiral perturbation theory (ChPT) [42℄, the e�etive theory for QCD

at low energies.

For higher s, in the region of � and ! resonanes, a similar rigorous treatment

of the form fator is still laking, and one has to rely on model onsiderations.
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Contributions of the two-pion intermediate states may be onsistently desribed by

dispersion representations. The appliation of dispersion relations has led to the

famous Gounaris-Sakurai (GS) formula [43℄ whih takes into aount �-meson �nite

width orretions due to virtual pions

F

�

(s) =

M

2

�

� B

��

(0)

M

2

�

� s�B

��

(s)

: (6.6)

The funtion B

��

(s) orresponds to the two-pion loop diagram. The orrespond-

ing Feynman integral is linearly divergent, but its imaginary part is de�ned in a

unique way. The real part is then reonstruted by a doubly-subtrated dispersion

representation. The Gounaris-Sakurai presription to �x the subtration onstants

reads

Re B

��

(s)j

s=M

2

�

= 0;

d

ds

Re B

��

(s)j

s=M

2

�

= 0: (6.7)

The phase of the form fator

tan Æ(s) =

ImB

��

(s)

M

2

�

� s� ReB

��

(s)

: (6.8)

for the GS presription agrees well with the experimental data in the region 4m

2

�

<

s < 0:9GeV

2

. But (6.6) gives too small a value (by � 15%) for jF

�

(s)j at s around

M

2

�

.

On the other hand, one an onsider a simple VMD ansatz taking only the �-

meson ontribution into aount. This should be a good approximation in the region

0:5GeV

2

� s � 0:8GeV

2

, exept for the narrow interval near s � M

2

!

where the

��! mixing e�ets are important [78℄. The simple VMD ansatz then is very similar

to (6.6), but with the numerator replaed by the  ! � ! �� transition matrix

element:

F

�

(s) =

1

2

g

�!��

f

�

M

�

M

2

�

� s�B

��

(s)

: (6.9)

Here g

���

and f

�

are de�ned aording to

h�(k

1

)�(k

2

)jT j�("; k)i =

1

2

g

�!��

"

�

(k

1

� k

2

)

�

; (6.10)

h0jJ

�

j�

0

("; k)i = f

�

M

�

"

�

; (6.11)

where "

�

is the �-meson polarisation and k is the 4-momentum vetor. Now jF

�

(s)j

from (6.9) desribes well the data for s � M

2

�

. But extrapolating (6.9) to s = 0

gives F

�

(0) � 1:15 in gross violation of the normalisation ondition F

�

(0) = 1.

Thus, neither (6.6) nor (6.9) an desribe the form fator over the whole range

0 � s � 1:5GeV

2

: namely, (6.6) leads to a too small value of jF

�

j at s = M

2

�

,
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whereas the form fator given by (6.9) is far above unity at s = 0. There were

many attempts to modify the vetor meson dominane or to use related approahes

in order to bring the results on the pion form fator in agreement with the data

(see [79, 80℄ and referenes therein).

In the following we apply onsistently a dispersion approah to the pion form

fator in a model with ���, �KK, !��, and gauge-invariant � � , ! �  and

��! ouplings. Our approah allows a diret resummation of pion and kaon loops.

Ambiguities related to subtrations in linearly divergent meson loop diagrams are

absorbed in the physial meson masses and oupling onstants. After taking into

aount the �� ! mixing e�ets the pion form fator in the range 0 � s � 1GeV

2

is well desribed both in magnitude and phase by a formula whih is similar to the

VMD expressions (6.6) and (6.9) but avoids their pitfalls.

6.1 The dispersion approah

Our model makes use of onventional methods of dispersion theory. First we make

an ansatz for the e�etive ouplings of the pseudosalar mesons, vetor mesons and

the photon. These ouplings are used in essene only to alulate the absorptive

parts of the amplitudes. The omplete amplitudes are then obtained by dispersion

relations and a Dyson resummation. We want to make lear from the outset that our

e�etive ouplings disussed below are not to be ompared diretly to the e�etive

Lagrangian of ChPT [42℄ and resonane theory in the framework of ChPT [81℄. We

shall see, however, that our model, used as explained above, respets all the known

results from ChPT for the pion form fator. Thus our model an be seen as an

alternative to the one of [80℄ where ChPT results are extended to F

�

(s) in the range

0 � s � 1:5GeV

2

using again a resummation sheme.

In our model pions interat with the �-mesons and generate in this way the �nite

�-meson width. We do not inlude into onsideration diret four-pion ouplings. Ne-

gleting of the latter goes along the line of the resonane saturation in the ChPT [81℄

whih states that the oupling onstants of the e�etive hiral Lagrangian at order

p

4

are essentially saturated by the meson resonane exhange. The �

0

-meson is

oupled to the onserved vetor urrent of harged pions as follows:

L

���

=

i

2

g

�

�

y

�

�

� � �

�

�

y

�

�

�

�

; (6.12)

where �

�

is the onserved vetor �eld desribing the �-meson. We denote in this

setion g � g

�!��

. Mathing to the one-loop ChPT [42℄ leads to the relation

g

�!��

= 2M

�

=f

�

: (6.13)

The photon is oupled to the harged pion through the usual minimal oupling,

L

��

= ie(�

y

�

�

� � �

�

�

y

�)A

�

: (6.14)
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Figure 6.1: The pion form fator in the piture where pions interat via the �-

meson exhange and generate in this way the �nite �-meson width. The photon is

oupled to the harged pions through the usual minimal oupling, and the diret

gauge-invariant �� oupling is assumed. No G-parity violating e�ets are inluded

at this stage.

We also add a diret gauge-invariant ��  oupling of the form

L

�

= �

1

4

ef

�

M

�

F

��

G

(�)

��

; (6.15)

where

F

��

= �

�

A

�

� �

�

A

�

; G

(�)

��

= �

�

�

�

� �

�

�

�

: (6.16)

This model is similar to the model of [82℄. No G-parity violating !�� or diret

� � ! ouplings are inluded at this stage. As explained above, we alulate the

eletromagneti form fator in our model by the sum of the diagrams of Fig. 6.1.

Summing all the pion loop insertions, we obtain

F

�

(s) = 1 +

f

�

2M

�

s � g +

g

2

B

�

(s)

M

2

�

� s� B

��

(s)

=

M

2

�

� (1�

f

�

2M

�

g)s+

�

1

2

g B

�

(s)�B

��

(s)

	

M

2

�

� s� B

��

(s)

: (6.17)

The quantities B

��

(s) and B

�

(s) orrespond to one-loop � �  and � � � self en-

ergy diagrams generated by the pion loop. The imaginary parts of these diagrams

an be alulated by setting the intermediate pions on mass shell. The full fun-

tions B

��

(s) and B

�

(s) are onstruted from their imaginary parts by means of the

spetral representation with a suitable number of subtrations and by adding the
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orresponding subtration onstants. This is the usual dispersion theory proedure

whih we adopt sine the Feynman integral for the pion one-loop diagram leads to

a divergent expression. For the �� intermediate states the imaginary parts of the

funtions B

��

(s) and B

�

(s) satisfy the relations

Im B

��

(s) = g

2

Im B

��

(s);

Im B

�

(s) = 2g Im B

��

(s); (6.18)

where

Im B

��

(s) � I(s;m

2

�

) =

1

192�

s

�

1�

4m

2

�

s

�

3=2

: (6.19)

For a realisti desription we have to take into aount also ontributions of K

+

K

�

and K

0

�

K

0

intermediate states. The oupling onstant g

�!KK

annot be measured

diretly. We use the relation

2g

�!KK

= g

�!��

= g; (6.20)

whih is valid in the SU(3) limit. Repeating the proedure desribed above, summing

the pion and kaon loops, we �nd with (6.20)

Im B

��

= g

2

�

Im B

��

+

1

4

(Im B

K

+

K

�

+ Im B

K

0

�

K

0
)

�

= g

2

�

Im B

��

+

1

2

Im B

KK

�

;

Im B

�

= 2g

�

Im B

��

+

1

2

Im B

K

+

K

�

�

= 2g

�

Im B

��

+

1

2

Im B

KK

�

; (6.21)

and hene

1

2

g Im B

�

(s)� Im B

��

(s) = 0: (6.22)

It follows from (6.22) that the di�erene

1

2

gB

�

(s) � B

��

(s) is a polynomial in s

determined by the subtration onditions. Hene the numerator of the pion form

fator (6.17) is also a real polynomial. Therefore, the phase of the form fator is

ompletely determined by the denominator. The latter is the usual propagator of

the �-meson with the �nite width orretions taken into aount.

Let us now onsider subtration onstants. The funtion B

�

(s) desribes the

oupling of the pion to the onserved eletromagneti urrent. Therefore we must

set

B

�

(0) = 0; (6.23)
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suh that the harge of the pion remains unrenormalised by higher order orretions.

The funtion B

��

(s) determines the behaviour of the �� elasti J

P

= 1

�

partial wave

amplitude in whih the �-meson pole is known to be present in the zero-width limit.

Therefore, we require

Re B

��

(M

2

�

) = 0: (6.24)

Without loss of generality the seond subtration onstant may be �xed by setting

B

��

(s = 0) = 0: (6.25)

Any other ondition would just lead to resaling of the parameters in the formula for

the form fator. Thus, the most general expression for the form fator inorporating

subtration ambiguities in the �� and KK loop diagrams ontains three

1

onstants

M

2

�

, g, and f

�

:

F

�

(s) =

M

2

�

� (1�

f

�

2M

�

g)s

M

2

�

� s�B

��

(s)

: (6.26)

Here

B

��

(s) = g

2

s

�

R(s;m

2

�

)� R(M

2

�

; m

2

�

) +

R(s;m

2

K

)�R(M

2

�

; m

2

K

)

2

�

+ ig

2

�

I(s;m

2

�

) +

I(s;m

2

K

)

2

�

; (6.27)

with I(s;m

2

) de�ned by (6.19), and

R(s;m

2

) =

1

192�

2

V:P:

Z

1

4m

2

ds

0

(s

0

� s)s

0

�

1�

4m

2

s

0

�

3=2

=

8

<

:

1

96�

2

�

1

3

+ �

2

+

�

3

2

log

�

1��

1+�

��

; � =

q

1�

4m

2

s

; for s � 4m

2

;

1

96�

2

�

1

3

� �

2

+ �

3

� artan

�

1

�

��

; � =

q

4m

2

s

� 1; for s < 4m

2

;

(6.28)

where V.P. means the priniple value. Let us point out that the numerator of the

form fator in (6.26) is not a onstant, but a linear funtion of s. This s-dependene

appears as the diret onsequene of urrent onservation. We an write (6.26) in

the form of the modi�ed GS formula

F

�

(s) =

1

2

g

�!��

f

e�

�

(s)M

�

M

2

�

� s� B

��

(s)

(6.29)

1

Assuming more than two subtrations in the pion loop diagrams leads to more subtration

onstants. This is not ditated by the onvergene properties of the loop diagrams, but is still

possible. We will not disuss suh a ase here.
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with the e�etive s-dependent ��  oupling onstant

f

e�

�

(s) = f

�

s

M

2

�

+

2(M

2

�

� s)

gM

�

: (6.30)

One should be areful with the interpretation of this result: as is lear from (6.23),

there is no diret transition of the �-meson to the real photon as a onsequene of

the gauge invariant �� oupling. On the other hand, the e�etive oupling f

e�

�

(s)

is learly nonzero at s = 0. Therefore the pion form fator looks as if there was

diret � �  oupling also for the real photon. This is just the usual vetor meson

dominane. The latter thus emerges as the diret onsequene of our assumption

that the vetor meson ouples to the same pion urrent as the photon. For further

disussions of the relationship between VMD and gauge invariane we refer to [82℄.

If we use the ChPT relation (6.13), whih agrees perfetly with the measured value

of g

�!��

, then (6.30) leads to an interesting relation

f

e�

�

(s = 0) = f

�

: (6.31)

Notie that the phase of F

�

(s) in (6.29) is still given by (6.8) and is ompletely

determined by the funtion B

��

(s).

6.2 The �� ! mixing

In setion 6.1 we disussed the � ontribution due to the bare � plus the e�ets of the

�-meson width due to the light-meson loops to the pion form fator. This analysis

is suÆient for desribing the pion form fator of the harged vetor urrent using

the CVC relation. For the eletromagneti pion form fator it is neessary to take

into aount the ��! mixing e�ets. The ! is oupled to the pions and the photon

similarly to the �

0

-meson (see (6.12) and (6.15))

L

!��

=

i

2

g

!!��

�

�

y

�

�

� � �

�

�

y

�

�

!

�

; L

!

= �

1

4

ef

!

M

!

F

��

G

(!)

��

; (6.32)

!

�

being a onserved vetor �eld desribing the !-meson and G

(!)

��

= �

�

!

�

� �

�

!

�

.

It has proven useful to lassify various ontributions to hadroni amplitudes

aording to their formal order in the 1=N



expansion [42℄, where N



=3 is the number

of olours in QCD. In the language of the 1=N



expansion the analysis of the previous

setion orresponds to taking into aount the leading order 1=N



proess, whih

orresponds to the resonane ontribution in a zero-width approximation, and the

subleading O(1=N



) e�ets of the meson loops.

2

Performing a resummation of these

meson loops gave our dispersion desription of the form fator.

2

Reall that pion and kaon loop diagrams are of order 1=N



and of order p

4

of the momentum

expansion.
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Figure 6.2: Diagrams whih ontribute to the � � ! mixing amplitude B

�!

. The

diret �� ! mixing diagram is the only diagram whih emerges to leading order in

1=N



, meson-loop diagrams are subleading 1=N



e�ets.

A orresponding treatment of the �� ! mixing e�ets then requires taking into

aount the leading and subleading 1=N



e�ets as well. To leading order in 1=N



,

meson loops do not ontribute and therefore the only e�et is the diret � � !

transition desribed in terms of the diret oupling (see Fig. 6.2).

At subleading 1=N



order several meson loop diagrams shown in Fig. 6.2 emerge.

We make use of spetral representations for loop diagrams, i.e. we alulate diretly

the imaginary parts and then reonstrut the full funtion by means of the spetral

integral with the relevant number of subtrations. Subtration onstants then are

either �xed by physial onstraints or determined by the experimental data. Let

us point out an important feature related to our dispersion alulation: the diret

� � ! oupling, whih is a leading 1=N



proess and the real part of the � � !

mixing loop diagrams at q

2

=M

2

�

, whih is a subleading 1=N



proess, ontribute to

the form fator preisely in the same way, suh that only their sum has a physial

meaning. We therefore aount for the net e�et of these two ontributions by a

single subtration onstant and do not onsider the diret ��! oupling separately.

We have analysed in setion 6.1 the �-meson self-energy funtion B

��

whih

determines the propagator of the interating �-meson. Let us now disuss a similar

self-energy funtion of the !-meson B

!!

and the o�-diagonal � � ! funtion B

�!

whih desribes the �� ! mixing.

The funtion B

!!

determines the ! propagator D

!

(s) = 1=(M

2

!

� s � B

!!

) in

the absene of the �� ! mixing e�ets. The main ontribution to Im B

!!

is given

by the three-pion intermediate states. This Im B

!!

should then be inserted into

a dispersion integral to obtain B

!!

. However, beause of the small width of the !

resonane, it is suÆient for our analysis to onsider as a simple ansatz a onstant

B

!!

B

!!

= i�

tot

!

M

!

: (6.33)

Possible proesses whih ontribute to the � � ! mixing amplitude B

�!

= B

!�

are

shown in Fig. 6.2. The oupling onstants whih determine the relative strength of

the diagrams in Fig. 6.2 are shown in Table 6.1. One �nds (see also [83℄) that

the main ontribution to the imaginary part of the �� ! mixing amplitude B

�!

is

given by the diagrams with two-pion and two-kaon intermediate states. To obtain

the full B

�!

we write again a dispersion representation with two subtrations. The
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Res. M [MeV℄ �

tot

[MeV℄ �

e

+

e

�

[keV℄ Br(�

+

�

�

) Br(�

0

)

�

0

769.0� 0.9 150.7� 2.9 6.77� 0.32 100% (6.8� 1.7)�10

�4

! 782.57� 0.12 8.44� 0.09 0.60� 0.02 (2.21� 0.3)% (8.5� 0.5)�10

�2

Res. f

V

[MeV℄ g

V!2�

�

0

152� 5 11.8� 0.2

! 45.3� 0.9 0.4� 0.02

Table 6.1: Masses and rates for vetor mesons from [11℄ and the orresponding

deay onstants. Reall the SU(2)-limit relations f

�

= 3f

!

.

imaginary parts of these diagrams an be alulated in analogy to (6.18) in terms

of the oupling onstants g

V!PP

with V = �; !, P = �;K de�ned aording to the

relation

hP (k

1

)

�

P (k

2

)jT jV ("; k)i =

1

2

g

V!PP

"

(V )

�

(k

1

� k

2

)

�

:

For instane, the imaginary part of the diagram with the �� intermediate state is

equal to g

�!��

g

!!��

I(s;m

2

�

).

The same arguments as used to show the relation (6.22) between Im B

�

and

Im B

��

lead to

g

�!��

Im B

�!

(s)� g

!!��

Im B

��

(s) = 0: (6.34)

Hene, the ombination g

!!��

B

��

� g

�!��

B

�!

is a polynomial of �rst order in s.

The �� ! mixing e�ets are sizeable only in the narrow viinity of s = M

2

!

, so we

may set

g

�!��

B

�!

� g

!!��

B

��

= s �; (6.35)

and the value of � will be found from the �t to the pion form fator. As we have

explained above, the real part of the funtion B

�!

at s � M

2

�;!

inludes the diret

�� ! oupling.

6.3 The eletromagneti pion form fator with

�� ! mixing

In the problem of the � � ! mixing, the onstant g

!!2�

is a natural small param-

eter, and the expansion of the pion form fator in powers of this parameter an

be onstruted. We an safely neglet all terms of order g

2

!!��

and limit ourselves

to the �rst order analysis. The diagrams whih desribe the ontributions to the
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Figure 6.3: Diagrams for the pion form fator whih emerge at �rst order of the

expansion in g

!!��

. In this �gure the � and ! propagators areD

�

= 1=(M

2

�

�s�B

��

)

and D

!

= 1=(M

2

!

� s� B

!!

), respetively.

form fator of �rst order in g

!!2�

are shown in Fig. 6.3. Adding the orresponding

expressions to the result (6.29) we get for the pion form fator

F

�

(s) =

1

2

g

�!��

f

e�

�

(s)M

�

M

2

�

� s� B

��

(s)

+

1

2

g

!!��

f

!

s

M

!

M

2

!

� s� B

!!

(s)

�

M

2

�

� s+� � s

M

2

�

� s�B

��

(s)

�

+O(g

2

!!��

):

(6.36)

We use this expression for the numerial analysis of the data for the eletromagneti

pion form fator in the next setion.

6.4 Numerial analysis

In this setion we apply the formulas obtained to the analysis of the data on the

eletromagneti and harged urrent pion form fators and extrat in this way the

resonane masses and oupling onstants. We inlude the ontributions of the �(770)

and !(782) resonanes and neglet the higher vetor resonanes �(1450) and �(1700)

(for a disussion of these latter see [84℄). As an be seen from the analysis of [85℄,

the inuene of the latter upon the pion form fator is negligible in the region s � 1

GeV. We therefore extrat the � and ! parameters making use of the form fator

data for s � 1 GeV.

6.4.1 The eletromagneti pion form fator

We �t the available data on the phase [86℄ and the modulus [76, 87℄ of the eletro-

magneti pion form fator to (6.36) whih inludes the � � ! mixing e�ets. The
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form fator turns out to be weakly sensitive to g

!!��

and f

!

for whih we use the

values from Table 6.1.

The resonane parameters turn out to be rather sensitive to the upper limit

p

s � Q

upper

of the data points inluded into the �t proedure. The extrated

masses and ouplings from the best �t of the form fator, whih was done separately

for the phase and the modulus, are shown in Table 6.2 and 6.3, respetively. This

dependene on Q

upper

might signal that the errors in the extrated masses and

oupling onstants are in fat sizeably greater than those quoted in [11℄. Obviously,

the error estimates provided by the popular Fumili [88℄ program should be taken

with some are.

Q

upper

, MeV 710 (5 pts) 775 (10 pts) 850 (15 pts) 965 (20 pts)

M

�

0

, MeV 772.7� 1.3 773.4� 0.8 773.0� 0.6 771.1� 0.6

g

�

0

!�

+

�

�

12.05� 0.07 12.0� 0.05 12.0� 0.04 11.87� 0.04

Table 6.2: The upper limit of the

p

s-range of the data from [86℄ used for �tting

the phase of the pion form fator and the orresponding �tted parameters M

�

and

g

�!2�

. Error estimates as given by the Fumili program are shown.

960 (40 pts [76℄

Q

upper

[MeV℄ 820 (27 pts) 950 (40 pts) 1000 (45 pts)

+ 45 pts [87℄)

M

�

0

[MeV℄ 774.7� 0.3 776.1� 0.2 773.6� 0.2 775.5� 0.1

f

�

0

[MeV℄ 147.7� 0.2 148.2� 0.1 149.0� 0.1 149.4� 0.1

g

�

0

!�

+

�

�

11.37� 0.03 11.38� 0.01 11.7� 0.01 11.5� 0.05

M

!

[MeV℄ 782.5� 0.3 781.3� 0.2 781.9� 0.2 782.5� 0.2

� 0.180� 0.007 0.191� 0.006 0.183� 0.006 0.170� 0.007

Table 6.3: The upper limit of the Q-range of the data [76℄, used for �tting the

modulus of the pion form fator and the orresponding �tted parameters M

�

, f

�

,

g

�!2�

, M

!

, and �. The last olumn shows the result of the �t to the ombined

data on jF

�

j from [76℄ and [87℄. Error estimates as given by the Fumili program

are shown.

Our best estimates for the � and ! parameters from a ombination of the �ts

to the phase and the modulus are presented in Table 6.5. We obtain these values

as follows: the parameter values from the last olumns of Tables 6.2 and 6.3 should

be the most reliable ones, sine they orrespond to the biggest data sets. On the

other hand, the errors given by the Fumili program annot be trusted. We took

the average of the values for M

0

�

and g

�!��

, weighting the values from the modulus

�t by a fator 2/3 and those from the phase �t by 1/3. The errors in Table 6.5 are

our eduated guesses.

The pion elasti form fator alulated with the entral values of the parameters

from Table 6.5 is shown in Fig. 6.4. Both the phase and the magnitude of the form

fator are well desribed, exept for the phase at

p

s > 0:9 GeV.
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Figure 6.4: The phase (a) and the modulus (b,) of the pion form fator from the

� ontribution (dotted line) and with �� ! mixing e�ets (solid line) ompared to

the data on the phase from [86℄ and the data on the modulus from [76℄ (solid irles)

and [87℄ (empty irles). For the alulation the entral values of the parameters

from Table 6.5 have been used.
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6.4.2 The harged urrent pion form fator

The amplitude of the weak transition �

�

! �

�

�

0

�

�

an be parametrised in terms

of the two �

�

! �

0

transition form fators as follows

h�

0

(p

0

)j�u

�

dj�

�

(p)i =

1

p

2

F

+

�

(q

2

)(p

0

+ p)

�

+

1

p

2

F

�

�

(q

2

)q

�

: (6.37)

In the isospin limit F

�

�

= 0 and F

+

�

= F

�

. These relations should work well

for all q

2

exept for the region of the � and ! resonanes: the form fator F

�

ontains ontributions of the �

0

and ! resonane, whereas the ontribution analogous

to ! is absent in F

+

�

. Thus, the harged urrent form fator F

+

�

as measured in

the �

�

! �

0

�

�

�

�

deay is given in our model by the the modi�ed � dominane

formula (6.29). Comparison with the ALEPH [85℄ and CLEO [89℄ data allows the

extration of the masses and oupling onstants of the �

�

. We give the orresponding

numbers in Table 6.4 and plot the form fator in Fig. 6.5.

Q

upper

[MeV℄ 760 (18 pts) 900 (23 pts) 1025 (28 pts)

M

�

�

[MeV℄ 768.8� 0.3 775.1� 0.1 776.9� 0.1

f

�

�

[MeV℄ 144.9� 0.3 150.3� 0.1 150.1� 0.1

g

�

�

!�

0

�

�

11.22� 0.02 11.34� 0.01 11.80� 0.05

Table 6.4: Fit to the harged urrent pion form fator from the CLEO data [89℄ on

the �

�

! �

�

�

0

�

�

deay. The upper limit Q

upper

of the

p

s-range of the data used

and the orresponding �tted parameters for the �

�

meson. Error estimates as given

by the Fumili program are shown.
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Figure 6.5: The harged urrent pion form fator alulated for the parameter set

obtained for Q

upper

= 900 MeV from Table 6.4 ompared to the CLEO data [89℄
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To onlude this hapter we summarise our �nal results for the �

0

; �

�

and !

parameters whih we extrated from �ts to the data on the eletromagneti [76,86,87℄

and harged urrent [85, 89℄ pion form fators in Table 6.5. The masses, the weak

deay onstants and the pioni oupling onstants of the neutral and harged �-

mesons are found to be equal within the errors. Let us point out that our �tted

value for g

�!2�

agrees perfetly with the ChPT predition g

�!2�

= 2M

�

=f

�

=11.7.

We notie that our entral values of the � masses are 2-3 MeV higher than the

orresponding numbers obtained from the same reations by [11℄. A omparison of

the data and the theoretial urves for the eletromagneti and harged urrent pion

form fators is presented in Fig. 6.6. We point out that the � � ! mixing gives a

sizeable ontribution to the eletromagneti form fator in the region of the � and !

resonanes, where it leads to an inrease of jF

�

j

2

by 10% at s = M

2

�

and by almost

30% at s =M

2

!

.

M

�

�

[MeV℄ M

�

0

[MeV℄ M

!

[MeV℄ f

�

[MeV℄ g

�!��

�

775� 2 774� 2 782:0� 0:5 149� 1 11:6� 0:3 0:17� 0:02

Table 6.5: The masses and deay onstants of the vetor mesons and the � � !

mixing parameter � (see (6.35)) as obtained by our analysis
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Figure 6.6: Comparison of the eletromagneti (full irles) [76,87℄ and the harged

urrent form fator from the �

�

! �

�

�

0

�

�

deay (open squares) [89℄ with our �ts.

The �ts to the eletromagneti pion form fator show the �

0

ontribution (dotted

line) and the result inluding � � ! mixing (dashed line). The �t to the harged

urrent pion form fator is the solid line.
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Chapter 7

Conlusions

In this work we examine soft high energy reations in the framework of nonper-

turbative QCD. In the �rst part we alulate total and di�erential ross setions

for elasti and inelasti di�rative sattering. In our model we start from a mi-

rosopi desription of the sattering of quark-antiquark and quark-diquark wave

pakets and use funtional integral methods to obtain expressions for the sattering

amplitudes. The orrelation funtions of light-like Wegner-Wilson loops governing

these amplitudes are evaluated in the framework of the model of the stohasti va-

uum [23{26℄. The hadron-hadron sattering amplitudes are obtained by multiplying

the parton sattering amplitudes with suitable hadroni wave funtions [37℄. Both a

matrix umulant expansion for the orrelation funtion of two Wegner-Wilson loops

as developed in [30℄ and an expansion method [24, 27℄ are used.

The free parameters of our model are those of the model of the stohasti vauum:

G

2

, a and �, and the ones of the wave funtions: S

h

i

and z

h

i

, determining the

width of the transverse and longitudinal momentum distributions of the onstituents

of the hadrons, respetively. These parameters have been determined in previous

work [24, 30℄ on elasti sattering. The extension parameters S

h

i

are allowed to

depend on the .m. energy aording to (4.1) and (4.3) respetively. In this sense

di�erent hadrons are haraterised through their radii, whih ome out lose to the

orresponding eletromagneti radii of the hadrons for energies

p

s � 20 GeV. The

values for z

h

i

are obtained from a alulation of form fators in our model.

With all parameters �xed, integrated and di�erential ross setions for proton-

proton and proton-pion sattering are alulated and ompared to experimental

results [58{63,66{68℄. Our model does not distinguish between pp and p�p sattering

or p�

+

and p�

�

sattering, respetively.

The alulated integrated elasti ross setions agree with the experimental val-

ues within the numerial and experimental errors for a wide range of .m. energies

starting at about

p

s = 20 GeV up to the Tevatron energy

p

s = 1800 GeV. The

di�erential elasti ross setions are desribed reasonably well over many orders of

magnitude by the matrix umulant method, however, this method underestimates

the data for small jtj. On the other hand the expansion method gives a good
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desription of the di�erential ross setions for jtj . 0:2GeV

2

but overshoots the

data for larger values of jtj. As a onsequene of the integrated ross setions being

mainly due to the ontributions from small jtj, the expansion method gives better

results here whereas the matrix umulant method tends to underestimate the exper-

imental data. The di�erene between the results obtained from both methods an

be seen as a theoretial error estimate of our model, as they use di�erent approxi-

mation shemes in the evaluation of the orrelation funtion. In the approximation

we use in this work we have C = P = +1 exhange only.

Furthermore the rise of the integrated ross setions in single di�rative disso-

iation as a funtion of

p

s is alulated. Our alulated ratio �

sd

=(�

el

+ �

sd

) is

in rough agreement with experiment. The experimentally observed behaviour that

the di�rative dissoiation part of the ross setion inreases more slowly with

p

s

than the elasti one is reprodued qualitatively in our alulation. The di�erential

distribution an be reasonably well desribed by the expansion method. The diÆ-

ulties we enounter in the desription of d�

sd

=dt by means of the matrix umulant

method, i.e. the formation of a depression at jtj � 0:3GeV

2

, are investigated in

a seond approah. This approah uses two-dimensional harmoni osillator wave

funtions instead of plane waves for the desription of the di�rative �nal state and

on�rms the results found before, but allows us to analyse the origin of the observed

depression. Again the proess is mediated by C = P = +1 exhange only in our

approximation.

Turning to double di�rative exitation pp ! N(1535)N(1535) we study C =

P = �1 exhange in the framework of our model, whih arises due to the symmetries

of the �nal state wave funtions. The qualitative features of our preditions for

the integrated and di�erential ross setions resemble the ones of the results from

C = P = +1 exhange, the exeption being a rather slow derease of the di�erential

distribution with inreasing momentum transfer. This behaviour is also known

from the heliity amplitude A

p

1=2

measured in the ontext of the eletromagneti

p � N(1535) transition form fator. However, due to restritions of our model, in

partiular the simple ansatz for baryons, whih are given by wave pakets of a quark

and a salar diquark, we annot alulate this heliity amplitude in our model and

therefore are not able to ompare to experimental data.

The last hapter in the �rst part of our work deals with form fators at small

spae-like momentum transfers, alulated in the framework of our model. Our

result for the isovetor Dira form fator of the proton and the eletromagneti

form fator of the pion, as well as the eletromagneti radii extrated from them,

ompare reasonably well to experimental data.

To summarise the �rst part, our model is quite well suited to desribe inelasti

di�rative hadroni reations at high .m. energies (

p

s & 20 GeV) and small mo-

mentum transfer. Further progress ould be made when inluding higher umulant

terms in (3.16) whih would ontribute to both C = P = +1 and C = P = �1

exhange. The hope is that these ontributions ould, at least partly, �ll up the dips



75

enountered in various ontributions to the di�erential ross setions and thus lead

to an improved desription of the data. Also a more re�ned hadron model ould

help avoid some shortomings of the model as disussed in partiular in the ontext

of the spin-ip ontribution to the form fator.

The upoming experiments e.g. at RHIC will be a rih soure for new experi-

mental data for both single and double di�rative dissoiation in hadroni reations

at high .m. energies. Therefore the study of inelasti di�rative sattering will

remain an interesting and instrutive �eld of work, where e�ets of nonperturbative

QCD an be studied.

In the seond part of our work we analyse the eletromagneti and harged

urrent pion form fators at time-like momentum transfers in a dispersion approah.

Here we onsider a model with ���, �KK, !��, !KK and gauge-invariant � � 

and ! �  ouplings. The pion form fator is obtained by a resummation of pion

and kaon loops leading to the �nite width of the �-meson. The resulting expression

for the pion form fator takes the form of the vetor meson dominane formula with

one important distintion: the e�etive deay onstant f

e�

�

depends linearly on the

momentum transfer squared. We also take into aount the � � ! mixing in the

eletromagneti pion form fator.

The values of the �

0

and ! parameters are extrated from the �t to the eletro-

magneti pion form fator [76, 86, 87℄ at 0 �

p

s � 1:0GeV where ontributions of

higher vetor meson resonanes are negligible. The �� ! mixing is found to give a

sizeable ontribution to the eletromagneti form fator in the region of the � and !

resonanes, where it leads to an inrease of jF

�

j

2

by 10% at s = M

2

�

and by almost

30% at s =M

2

!

.

The values of the �

�

parameters are obtained by the �t to the harged urrent

pion form fator measured in � deay [85, 89℄.

Our best estimates for the � and ! parameters are presented in Table 6.5. The

masses, the weak deay onstants and the pioni oupling onstants of the neutral

and harged �-mesons are found to be equal within the errors andour �tted value

for g

�!2�

agrees perfetly with the ChPT predition g

�!2�

= 2M

�

=f

�

=11.7.

To summarise the seond part of our work, we have presented a model whih

gives a good desription the eletromagneti and harged urrent pion form fator

in the region 0 �

p

s � 1:0GeV inluding the e�ets due to � � ! mixing. The �

and ! parameters whih we obtain from our model are within errors in agreement

to experimental data [11℄.
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Appendix A

Conventions

Throughout this work we use natural units, in whih

~ =  = 1: (A.1)

The �ne struture onstant of the eletromagneti interation is given in Heaviside-

Lorentz units by

�

e:m:

=

e

2

4�

�

1

137

: (A.2)

Latin indies i; j; k et. generally run over the three spatial oordinate labels, greek

indies �; �; �; : : : generally run over the four spaetime oordinate labels.

The spaetime metri g

��

is diagonal with elements

g

00

= 1; g

11

= g

22

= g

33

= �1: (A.3)

The Dira matries 

�

are de�ned so that



�



�

+ 

�



�

= 2g

��

: (A.4)

Moreover we de�ne



5

= i

0



1



2



3

;

�

��

=

i

2

(

�



�

� 

�



�

): (A.5)

By letters in boldfae we denote spatial three-vetors, e.g. x;p. A subsript T

denotes that we are dealing with two-dimensional transverse vetors

x =

�

x

T

x

3

�

; x

T

=

�

x

1

x

2

�

: (A.6)
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Light-one variables are de�ned by

x

�

= x

0

� x

3

: (A.7)

The measure of integration then is given by

d

4

x = dx

0

dx

1

dx

2

dx

3

=

1

2

dx

+

dx

�

d

2

x

T

: (A.8)



Appendix B

Connetors

We de�ne a onnetor V (y; x;C

x

) between the points x and y along the urve C

x

as

the non-abelian generalisation of the Shwinger string of QED

V (y; x;C

x

) := P

�

exp(�ig

Z

C

x

dz

�

G

�

(z))

�

: (B.1)

Here P denotes path ordering. This onnetor has the following properties:

� The onnetor of the sum of two adjoined urves C

1

and C

2

is equal to the

produt of the onnetors of the single urves:

V (z; x;C

1

+ C

2

) = V (z; y;C

2

) � V (y; x;C

1

): (B.2)

� If C

x

is the urve onneting x and y and

�

C

x

is the same urve but with

reversed orientation, i.e. running from y to x, then

V (y; x;C

x

) � V (x; y;

�

C

x

) = 1: (B.3)

� Hermitian onjugation orresponds to path reversal:

V

y

(y; x;C

x

) = V (x; y;

�

C

x

) (B.4)

By applying onnetors we an shift various quantities between two points in

spae-time in a gauge ovariant way. E.g. we de�ne the shifted gluon �eld strength

tensor

^

G whih has been transported from x to y along the urve C

x

by

^

G

��

(y) := V (y; x;C

x

)G

��

(x)V

�1

(y; x;C

x

): (B.5)

Comparing to (2.25) we reognise that the onnetors are in fat the eikonal phases

whih we have introdued in the disussion of quark-quark sattering in hapter 2.
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Appendix C

Calulation of form fators in the

model

Starting point for the form fator alulation is the matrix element of the third

omponent of the isospin urrent at x = 0

J

�

3

� hh

3

(P

0

)jj

�

3

(0)jh

1

(P )i (C.1)

with

j

�

3

(x) =

X

 

�

 (x)

�

�

1

2

�

3

�

 (x): (C.2)

Here

P

 

denotes the sum over quark �elds u; d and �

3

is the third Pauli isospin

matrix. The hadrons h

1

; h

3

are supposed to move in positive x

3

-diretion with

P

+

= P

0

+

!1 (see (5.2)). In analogy to the desription of hadron-hadron satter-

ing we therefore denote the inoming hadron by h

1

and the outgoing hadron by h

3

.

The steps required to ompute the form fator from this expression are ompletely

analogous to those disussed in hapter 2 that lead to the T -matrix element (2.49),

with the di�erene that now there are additional ontrations between the quarks

and diquarks (or antiquarks in the ase of mesons) of the hadrons h

1

; h

3

and the

quark �elds of the urrent j

�

3

when applying the LSZ redution formalism. By on-

sidering the isospin urrent we ensure that ontributions whih ontain subdiagrams

arising from ontrations between the quark �elds of the urrent drop out beause

they are proportional to tr �

3

= 0. Now we desribe the form fator alulation for

the �

+

meson, modelled as u

�

d wave paket.

Using our notation from hapter 2 we obtain J

�

3

(C.1) by �rst alulating the

matrix element of j

�

3

between q�q states and then folding with the wave funtions of

the wave pakets.

J

�

3

=

Z

d

2

�

3T

Z

1

0

dz

3

1

(2�)

3=2

1

p

2

Æ

s

3

;�s

0

3

~'

�

3

(z

3

;�

3T

)

1

p

3

Æ

A

3

A

0

3

Z

d

2

�

1T

Z

1

0

dz

1

1

(2�)

3=2

1

p

2

Æ

s

1

;�s

0

1

~'

1

(z

1

;�

1T

)

1

p

3

Æ

A

1

A

0

1

hu

�

djj

�

3

ju

�

di; (C.3)
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�

�

d

u
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�
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�
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d
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d

(a) (b)

Figure C.1: The two ontributions to the matrix element hu

�

djj

�

3

ju

�

di. The dashed

lines indiate that the loops have been losed by the wave funtions.

with

hu

�

djj

�

3

ju

�

di � hu(p

3

; s

3

; A

3

)

�

d(p

0

3

; s

0

3

; A

0

3

)jj

�

3

(0)ju(p

1

; s

1

; A

1

)

�

d(p

0

1

; s

0

1

; A

0

1

)i; (C.4)

where s

i

; A

i

are spin and olour indies, respetively and ~'

1;3

are the Fourier trans-

forms of the wave funtions (3.18)

~'

i

(z;�

T

) =

1

2�

Z

d

2

x

T

e

�i�

T

�x

T

'

i

(z;x

T

): (C.5)

Applying the LSZ redution formalism we an express the matrix element hu

�

djj

�

3

ju

�

di

from (C.4) as an integral over the quark 6-point-funtion. We get only two terms

depited graphially in Fig. C.1 whih are to be interpreted as follows. We onsider a

�xed gluon bakground. The quark and antiquark travel in this bakground and the

urrent either hooks onto the quark line (Fig. C.1a) or the antiquark line (Fig. C.1b).

As in hapter 2 the matrix element (C.4) is obtained by averaging over all gluon

potentials with the measure given by the funtional integral (2.16). In the high

energy limit for u and

�

d the sattering amplitudes in the �xed gluon bakground

redue to Wegner-Wilson line operators whih are losed to a loopW

+

by the meson

wave funtions. This is indiated by the dashed lines in Fig. C.1. Combining

everything we obtain

h�

+

(P

0

)jj

�

3

(0)j�

+

(P )i =

P

1+

n

�

+

2

Z

1

0

dz

Z

d

2

x

T

'

�

3

(z;x

T

)'

1

(z;x

T

)

 

e

i(1�z)q

T

�x

T

+ e

�izq

T

�x

T

!

�

W

+

(

1

2

x

T

;x

T

)

�

G

: (C.6)
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A straightforward alulation in the MSV shows that the expetation value of

the orrelation funtion of one Wegner-Wilson loop is equal to 1. By a shift in the

integration variable the d

2

x

T

integration an be redued to a Gaussian integral over

the wave funtions and we �nd the �nal result for the matrix element (C.1)

h�

+

(P

0

)jj

�

3

(0)j�

+

(P )i =

P

1+

n

�

+

I

�

Z

1

0

dz 2z(1� z) e

�(z�

1

2

)

2

=2z

2

h

e

�

z

2

2

S

2

h

q

2

T

: (C.7)

Let us turn to the proton form fators now. In our simple ansatz the proton

onsists of a quark and a salar diquark, whih should be favoured above the vetor

diquark due to dynamial reasons [48℄. The spin of the proton then is arried by the

quark. This together with the spin onservation on the parton level draws onlusion

that, in our model, we get for the matrix element of j

�

3

between proton states an

expression similar to (C.7):

hp(P

0

; s

0

)jj

�

3

(0)jp(P; s)i = P

+

n

�

+

�

y

s

0

F

1v

(Q

2

)�

s

(C.8)

with F

1v

(Q

2

) given in (5.6). Thus we get only a spin-non-ip and no spin-ip

ontribution in the matrix element (5.3), that is, our model gives F

2v

(Q

2

) = 0. This

is ertainly not a very good approximation. But on the other hand the spin-ip part

in (5.3) is suppressed by jq

T

j=(2M

p

) for q

T

! 0. Thus the matrix element (5.3) is

still reasonably desribed by the model for small enough jq

T

j.

Here some remarks on the eletromagneti p � N(1535) transition form fator

are due. The transition urrent an be written in terms of the analogues F

1�

; F

2�

of

the Pauli and Dira form fator, respetively, (see [90, 91℄)

hN(1535)(P

0

; s

0

)jj

�

(0)jp(P; s)i

= e �u

s

0

(P

0

)

�



5

�



�

�Q

2

M

�

+M

P

+ q

�

�

F

1�

(Q

2

) + i

5

�

��

q

�

F

2p

(Q

2

)

�

u

s

(P ); (C.9)

whereM

�

is the mass of the N(1535). A similar alulation to the one presented here

for the form fators of the proton shows that again F

1�

multiplies the spin-non-ip

part and F

2�

the spin-ip part. Sine we annot obtain the spin-ip ontribution

in our model as shown above, we �nd F

2�

(Q

2

) = 0. We have argued that it is not

deisive for the desription of the eletromagneti form fators of the proton at small

momentum transfers that the spin-ip ontribution in our model is idential to zero.

However, this is di�erent for the eletromagneti p�N(1535) transition form fator.

The quantities that are measured experimentally are the heliity amplitudes A

p

1=2

and S

p

1=2

. Eah of these amplitudes are desribed by linear ombinations of F

1�

and

F

2�

and in this ontext F

2�

is not suppressed ompared to F

1�

. On the ontrary, for

A

p

1=2

, whih is due to transverse photons with heliity � = +1, F

1�

is suppressed by

jq

T

j

2

=(M

�

+M

P

) for q

T

! 0 (see [91℄). Therefore, we annot alulate in a sensible

way a quantity whih we ould ompare to experimental data. We only note that
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the experimentally observed slow derease of A

p

1=2

with Q

2

(see [92℄ and referenes

therein) is in qualitative agreement to our alulation of the di�erential ross for

pp! N(1535)N(1535), where we also �nd a relatively at distribution in jtj.

To summarise, we have outlined in this appendix a alulation of isovetor form

fators using the same methods as for the sattering proesses. The results are in

essene as in [69℄ taking our simple ansatz for the wave funtions of the hadrons into

aount.
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