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Zusammenfassung

In dieser Arbeit werden multidimensionale hydrodynamische Simulationen des Inneren von
Sternen mit dem Seven-League Hydro (SLH) code durchgeführt. Der Fokus liegt da-
bei auf dynamischen Phänomenen bei niedrigen Machzahlen. Ein gutes Verständnis dieser
Phänomene ist wesentlich, um die Modellierung der Evolution von Sternen zu verbessern.
Es wird dargelegt, dass geeignete numerische Methoden notwendig sind, um numerische
Artefakte und künstliche Dissipation zu reduzieren. Diese würden ansonsten die eigentli-
che physikalische Strömung dominieren. Dreidimensionale Simulationen von konvektivem
Helium-Schalenbrennen werden verwendet, um die Anwachsrate der Masse der Konvektions-
zone zu bestimmen. Dies hilft die Parametrisierung von eindimensionalen Sternentwicklungs-
Berechnungen zu verbessern. Weiterhin wird die Anregung von Wellen durch Kernkonvektion
simuliert und die Resultate hinsichtlich ihrer physikalischen Plausibilität und Übereinstim-
mung mit Beobachtungen analysiert. Die Ergebnisse demonstrieren, dass die vom SLH code
verwendeten numerischen Methoden vielversprechend sind hinsichtlich zukünftiger, realisti-
scherer Simulationen von astrophysikalischen Strömungen.

Abstract

This thesis presents multidimensional hydrodynamic simulations of stellar interiors with a
focus on dynamical phenomena at low Mach numbers using the Seven-League Hydro
(SLH) code. A better understanding of these phenomena is crucial to improve the modeling
of stellar evolution. It is demonstrated that suitable numerical methods are required to
avoid that numerical artifacts and spurious dissipation dominate the actual physical flow.
Three-dimensional simulations of convective helium shell burning are used to measure the
entrainment of mass into the convective region. This aids the parametrization of entrainment
in one-dimensional evolution calculations. Furthermore, the excitation of waves by core
convection is simulated and the results are analyzed regarding their physical plausibility and
agreement with observations. These simulations demonstrate that the current set of numerical
methods used by the SLH code is promising regarding future, more realistic simulations of
astrophysical flows.
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CHAPTER 1
Introduction

1.1 Astrophysical context
Stars are three-dimensional (3D) objects that involve a variety of intrinsically multidimen-
sional phenomena, such as convection, rotation, or magnetic fields. Yet, even with modern
supercomputer facilities, it is not possible to resolve all relevant time and spatial scales of a
star in full 3D simulations. Conventional stellar evolution simulations therefore reduce stars
to spherically symmetric objects and solve the corresponding one-dimensional (1D) formu-
lation of the underlying equations while approximating multidimensional phenomena by 1D
parametrizations (e.g., Heger et al., 2000; Maeder, 2009; Kippenhahn et al., 2012; Salaris and
Cassisi, 2017; Buldgen, 2019).1 The 1D approach greatly reduces the computational costs
and enables simulations to follow the full evolutionary timescales of stars which are typically
at the order of millions to billions of years.

However, although the principle mechanisms that act inside stars are now known (e.g., see
the books by Kippenhahn et al., 2012; Maeder, 2009; Salaris and Cassisi, 2005; Weiss et al.,
2004; Prialnik, 2000) discrepancies between stellar evolution calculations and observations
still exist. For example, asteroseismic data suggest that the predicted size of convective
cores is generally too small (e.g., Aerts, 2021; Johnston, 2021). Current 1D prescriptions
of stellar rotation can also not explain the efficient angular momentum transport needed
to reproduce the rotation rates of evolved stars as inferred from asteroseismology (Aerts
et al., 2019; Spada et al., 2016; Eggenberger et al., 2017; den Hartogh et al., 2020). The
observation of slow rotators with large surface abundances of nitrogen and fast rotators with
low abundances further challenges prescriptions of stellar rotation (Hunter et al., 2008; Morel
et al., 2008; Aerts et al., 2014; Grin et al., 2017; Markova et al., 2018; Buldgen, 2019, see
also the discussion by Maeder and Meynet, 2015). Another indication of the deficiency of
current evolution models is the discrepancy between masses as inferred from stellar evolution
calculations and masses as inferred from spectroscopy (e.g., Markova et al., 2018; Serenelli
et al., 2021) or eclipsing binaries (e.g., Tkachenko et al., 2020; Serenelli et al., 2021). For
massive stars, current parametrizations of convective mixing cannot fully reproduce the main-
sequence (MS) width (Castro et al., 2014; Scott et al., 2021) or the surface helium abundances
(Georgy et al., 2021). These examples (see also the reviews by Langer, 2012 and Maeder
and Meynet, 2012) indicate that current state-of-the-art stellar evolution models are still
incomplete.

The main source of uncertainty in 1D modeling is the necessity to approximate multidi-
mensional phenomena by 1D parametrizations. The development and verification of suitable
approximations is subject of ongoing research and to date, no unified prescription exists for
the various multidimensional effects emerging in stars. Instead, already the specific choice

1There are current efforts for developing two-dimensional stellar evolution codes. However, to date, none of
them is able to follow stellar evolution on long enough timescales (e.g., see the review by Lovekin, 2020).
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and calibration of the respective 1D prescriptions in different stellar evolution codes leads
to different evolution calculations for the same initial conditions, indicating the large uncer-
tainties in the resulting stellar models (e.g., Meynet et al., 2013; Martins and Palacios, 2013;
Jones et al., 2015; Stancliffe et al., 2016; Kaiser et al., 2020; Davis et al., 2019; Clarkson and
Herwig, 2021).

Stellar evolution calculations need to consider a variety of complex phenomena. For exam-
ple, convection creates large scale motions of gas which affect the chemical structure inside
stars. Rotation induces large scale currents and instabilities which can have a major impact
on stars, for example through the transport of angular momentum (Maeder, 2009; Maeder
et al., 2013; Salaris and Cassisi, 2017). It further leads to a deformation of the star, contradict-
ing the assumption of spherical symmetry. Therefore, the 1D equations of stellar structure
need to be adapted to at least approximately include rotational effects (Meynet and Maeder,
1997). This approximation, however, is not suitable at fast rotation rates. Other phenom-
ena are magnetic fields which interact with stellar rotation and affect angular momentum
transport, binary interactions which may introduce mass transfer and change rotation and
internal mixing processes by tidal interactions (e.g., Meynet et al., 2017), or mass loss at the
stellar surface which is crucial especially in massive star evolution yet particularly difficult
to parametrize (e.g., Smith, 2014).

In the effort for improvement, observations are essential to assess the quality of current
theories and to calibrate 1D prescriptions. However, finding suitable stellar samples at suf-
ficient accuracy is difficult. It is also not straightforward to determine properties like mass,
age, rotation, or binarity of the individual stars of the sample. These properties are needed
for a meaningful comparison with evolution models and observational uncertainties will prop-
agate into the calibration of 1D parametrizations (e.g., Torres et al., 2010; Valle et al., 2017).
Furthermore, the observable properties of a star are the result of the combined action of
all stellar processes and it is challenging to isolate individual contributions when they are
compared to 1D calculations (e.g., see discussion by Johnston, 2021).

Multidimensional hydrodynamic simulations of stellar setups are therefore important to
complement observations. In such simulations, typically the Navier-Stokes equations or the
Euler equations of fluid dynamics are solved numerically for stellar initial conditions. Dy-
namical processes may then develop self-consistently without the need of parametrization
and their immediate action can be followed. These simulations further allow controlling the
involved effects by considering suitable initial conditions, as for example non-rotating versus
rotating, the inclusion of magnetic fields, or different energy inputs. These aspects can then
be analyzed individually and the results can be used in order to calibrate already existing
1D parametrizations or to develop new prescriptions. Due to the high computational costs,
multidimensional simulations are, however, restricted to timescales which are small compared
to the timescales of stellar evolution, or processes at late evolutionary stages that are closer
to dynamical timescales.

The focus of this thesis lies on hydrodynamic simulations of convection and associated
phenomena in stellar interiors. Convection is one of the dominant processes that determines
stellar evolution and is ubiquitous in stars. Convective regions occur, for example, due to
increasing opacities in stellar envelopes of low-mass stars with masses smaller than about
one solar mass (M⋆ ≲ 1 M⊙) or in the envelope of red giants where hydrogen burning in
the core has ceased, but also due to the high temperature sensitivity of nuclear burning
in the cores of more massive stars (M⋆ ≳ 1 M⊙) or in shells around the core at advanced
burning stages (Kippenhahn et al., 2012). The turbulent flows within these regions provide an
efficient transport of material. By mixing unburnt material into burning regions, convection
directly affects the evolution of the core size, the time spent on the MS, luminosity, or the
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1.1 Astrophysical context

chemical composition of stars. Large convective envelopes may extend inwards to burning
regions and mix the products of nuclear burning to the surface where it can be detected
by observations (Maeder, 2009; Kippenhahn et al., 2012; Salaris and Cassisi, 2017). An
accurate representation of convection is thus essential in order to model stellar evolution
(e.g., Salaris and Cassisi, 2017; Kupka and Muthsam, 2017; Buldgen, 2019). In almost all 1D
stellar evolution codes, convection is parametrized using mixing-length theory (MLT) (Böhm-
Vitense, 1958) despite its known deficiencies (Kupka and Muthsam, 2017). The underlying
idea of MLT and the known shortcomings of this approach are discussed in more detail
in Section 1.2. In hydrodynamic simulations, basic assumptions of MLT can be verified.
They further allow the identification of additional phenomena which are not included in
standard MLT in order to improve current 1D models. One prominent example is the mixing
of material across interfaces between convective and stable regions which naturally occurs
in hydrodynamic simulations (e.g., Meakin and Arnett, 2007b) and is strongly suggested
through comparison with observations (e.g., Johnston, 2021). Convection is also known
to stochastically excite internal gravity waves (IGW). IGW can affect stellar evolution, for
example through mixing and angular momentum transport (Alvan et al., 2015; Rogers and
McElwaine, 2017; Aerts et al., 2019). Also the effects of IGW can be included into 1D
calculations only by means of parametrizations (e.g., Talon, 2008; Salaris and Cassisi, 2017).
Some examples for multidimensional simulations of stellar convection are simulations of the
interaction with large scale currents due to rotation (e.g., Augustson et al., 2012; Brun et al.,
2017), mixing in burning or surface regions (e.g., Andrassy et al., 2020; Pratt et al., 2017),
or simulations of collapsing massive stars (e.g., Müller, 2020). Hydrodynamic simulations
are also used to study IGW excitation, for example by convective cores (Rogers et al., 2013;
Edelmann et al., 2019), by envelope convection in solar-like stars (Rogers and Glatzmaier,
2005; Alvan et al., 2014, 2015), or in simplified convective setups (Lecoanet et al., 2021).

This thesis aims at contributing to these current efforts to improve the theory of stellar evo-
lution by performing multidimensional hydrodynamic simulations with the Seven-League
Hydro (SLH) code (Miczek, 2013; Edelmann, 2014). The work focuses on simulations of
stellar convection at low Mach numbers, meaning that the speed of the convective flow is
small compared to the local speed of sound. This is a typical situation found in convective
zones in stellar interiors of massive stars at early evolutionary phases. While understand-
ing the action of low-Mach flows is crucial for stellar evolution, their numerical treatment
is particularly challenging (e.g., Miczek et al., 2015) and therefore, Mach numbers are often
artificially increased by an enhanced energy input (e.g., Cristini et al., 2019). This motivated
the development of the SLH code which employs several numerical techniques to mitigate
these challenges and to perform simulations at low Mach numbers with enhanced accuracy.
However, as already noticed by Miczek (2013) and Edelmann (2014), these techniques are
prone to instabilities in simulations which involve order of magnitude changes in density and
pressure, a situation typically found in stars. The principle goal of the present thesis is there-
fore twofold: To assess the robustness of the numerical methods used by the SLH code in
test setups and realistic astrophysical setups. But also to provide additional simulations and
analysis of stellar convection and IGW that complement already published results by other
groups for different stellar scenarios (e.g., Meakin and Arnett, 2007b; Cristini et al., 2019;
Edelmann et al., 2019).

The thesis is structured as follows: Section 1.2 introduces the commonly used MLT of
convection in 1D evolution codes along with a discussion of its well-known deficiencies and
possible extensions. Section 1.3 briefly describes insights from asteroseismology related to
convection. In Section 1.4, the SLH code is presented in the context of the challenges of
low-Mach simulations. The chapter ends with a further motivation to improve low-Mach
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simulations in Section 1.5. Chapter 2 presents results from simulations performed with the
SLH code: Firstly, the importance of an accurate treatment of hydrostatic stratifications for
low-Mach convection is illustrated in Section 2.1, along with possible approaches for improve-
ments. Furthermore, entrainment rates are extracted from simulations of convective helium
shell burning in Section 2.2, while demonstrating the benefits of using low-Mach techniques.
It is followed by a detailed analysis of IGW excited in simulations of core convection in a
massive star in Section 2.3. Chapter 3 concludes the thesis by summarizing the obtained
results and discussing remaining challenges and prospects in simulations of hydrodynamic
phenomena in stars.

1.2 Convection modeled in 1D stellar evolution
Conventional 1D evolution codes typically apply MLT (Böhm-Vitense, 1958) to parametrize
convection. The basic principles of this approach are sketched in the following.

Convection and thermal radiation are the two main processes that transport the energy in
the interior of stars, for example released by nuclear burning, to the surface.2 Hence, in a
region of the star that is not convective, energy is transported solely through the radiative
flux Frad, thus

Ftot = Frad, (1.1)

where Ftot denotes the total energy flux in the star. Because the mean free path of photons
in the deep interior of stars is short, energy transport by radiation can be described within
the diffusion approximation. The radiative flux is then given by (e.g., Kippenhahn et al.,
2012, Sect. 5.1.3)

Frad = −4 a c

3

T 3

κρ
∇T, (1.2)

where ρ is the density, T the temperature, κ the Rosseland mean opacity over all frequencies,
a = 7.57 × 10−15 erg cm−3 K−4 the radiation constant, and c the speed of light. Rearranging
Eq. (1.2) leads to an expression for the temperature gradient ∇rad ≡

( d lnT
d lnP

)
rad that is needed

if the total energy flux is carried by radiation alone. One obtains

∇rad = −Hp

T
∇Trad =

3κρHP

4acT 4

Lr

4πr2
, (1.3)

where Lr = 4πr2Ftot is the total luminosity of the star at radius r, P denotes the pressure,
and Hp ≡ −(dr/dP )P is the pressure scale height. Thus, outside of convection zones, the
temperature gradient of the star ∇ ≡ d lnT

d lnP is equal to the radiative temperature gradient,
that is ∇ = ∇rad. Within convective regions, however, the convective flux contributes to the
energy transport, hence

Ftot = Frad + Fconv, (1.4)

and ∇ ̸= ∇rad. From this, three main questions arise: (i) what are the criteria to identify
convective regions inside a star, (ii) how to calculate Fconv and what is the resulting temper-
ature gradient ∇ within a convection zone, (iii) how can convective mixing inside and at the
boundaries of a convection zone be included in 1D stellar evolution simulations.

2“Neutrino cooling” by non-interacting neutrinos leaving the star is commonly thought of as an energy sink.

4



1.2 Convection modeled in 1D stellar evolution

1.2.1 The criteria for convection
From linear perturbation theory it can be shown (e.g., see Kippenhahn et al., 2012, Sect. 6.1)
that a region inside a star is convective if

∇rad > ∇ad, (1.5)

with the adiabatic temperature gradient (e.g., Maeder and Meynet, 2000, Sect. 3.3)

∇ad =
Pδ

cpρT
, (1.6)

where cp denotes the specific heat at constant pressure and δ ≡ − (∂ ln ρ/∂ lnT )P is a property
given by the equation of state (EoS). If also the chemical gradient ∇µ = ∂ lnµ

∂ lnP is considered,
a region is convective if

∇rad > ∇ad +
φ

δ
∇µ, (1.7)

with φ ≡ (∂ ln ρ/∂ lnµ)P,T . Eq. (1.5) is referred to as the Schwarzschild criterion while
Eq. (1.7) is called the Ledoux criterion. A stratification where

∇ad +
φ

δ
∇µ > ∇rad > ∇ad

is called semiconvective: It is formally stable on the dynamical time scale but the oscillation
amplitude of a displaced fluid element will slowly grow on the thermal time scale (e.g., see
Maeder, 2009, Sect. 6.2). The increasing amplitudes eventually lead to mixing.

There is no clear consensus in the stellar evolution community which criterion is to be
used to determine convective regions during 1D stellar evolution simulations. As discussed
by Langer (2012), in the presence of chemical gradients the Ledoux-criterion should be taken
in order to account for the stabilizing effect of ∇µ > 0 (i.e., the molecular weight decreases
toward the surface, the typical situation in single stars). This principally allows for the for-
mation of semiconvective regions. However, it may be argued that semiconvective mixing
will quickly erase the chemical gradient in these regions. The net effect is then the same as
if the Schwarzschild-criterion had been used. Therefore, often the Schwarzschild-criterion is
used instead of the Ledoux-criterion. But this approach is questionable if the evolutionary
time scale is at the order of the time scale of semiconvective mixing. Alternatively, semi-
convective mixing can be accounted for in a diffusive approach (Langer et al., 1983) while
applying the Ledoux-criterion to determine convective regions. The corresponding efficiencies
are, however, rather uncertain (e.g., see Kaiser et al., 2020).

For convective cores of massive stars at the MS, the difference between simulations using
either of the criteria can be expected to be small as the mass of the convective core decreases
during the MS evolution and hence chemical gradients lie outside the core region (Meynet
et al., 2017; Martinet et al., 2021). This is, however, different for later evolutionary phases
where convective shells emerge, and generally, the results can vary for the two criteria (e.g.,
Paxton et al., 2013, 2018, see also Kaiser et al., 2020 for a detailed discussion). The recent
studies by Georgy et al. (2014, 2021) indicate that the Ledoux criterion better reproduces
the observed surface abundances of chemical species in 1D models of blue supergiants. Fur-
thermore, as pointed out by Gabriel et al. (2014), some of the numerical techniques that are
commonly used to determine the boundary position using the Ledoux criterion are inaccurate
if discontinuities in the chemical abundance are present. This may result in a substantial
difference in the mass of convective cores. If convective boundary mixing (CBM) (see Sec-
tion 1.2.3) is included in the 1D simulations, the issue seems less severe as CBM removes
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possible discontinuities in the vicinity of boundaries of convection zones. It further consid-
erably diminishes the impact of diffusive semiconvective mixing as chemical gradients are
efficiently removed (Kaiser et al., 2020).

This section illustrates that already the choice of the criterion for convection and the way
how it is calculated are sources of uncertainty, leading to different results for the same initial
conditions.

1.2.2 The mixing-length theory of convection
Inside convective regions, the total energy is transported by both, radiation and convection
(Eq. (1.4)). While for a given temperature profile, Frad is determined by Eq. (1.2), an
expression for Fconv is more difficult to obtain. One widely used approach is the mixing-
length theory (MLT) which quantifies the efficiency of convective energy transport by means
of rising “blobs” that carry a temperature excess over a mixing length ℓMLT. Different flavors
of MLT exist which mainly differ in the treatment of the temporal and spatial averages
that appear during the derivation of the theory. One of the mostly used formalism is the
one by Böhm-Vitense (1958) which is briefly reviewed in the following on the basis of the
presentations by Kippenhahn et al. (2012) and Maeder and Meynet (2000). For a comparison
between different flavors see for example Tassoul et al. (1990) and Salaris and Cassisi (2008).

In MLT, the convective blobs are assumed to rise a distance ℓMLT before they dissolve and
mix with the surrounding medium. The blob is further thought to always be in pressure
equilibrium with its surrounding. This is justified if convective motions are slower than the
speed of sound, a reasonable assumption for the stellar interior (see, for example, figure 1 in
Section 2.2). At a hypothetical spherical surface within a convective region, an average blob
has moved a distance ℓMLT/2 when reaching the surface with a velocity v and a temperature
excess DT compared to its surrounding. The average convective energy flux at this surface
is then

Fconv = cPρ v DT . (1.8)

The temperature excess can be expressed as

DT ≈
(

dTb
dr − dT

dr

)
ℓMLT
2

= (∇−∇b)
T

HP

ℓMLT
2

, (1.9)

where the subscript b denotes quantities of the rising blob. Buoyancy will lead to a mean
velocity v of the blob according to

Fg = −gDρ, (1.10)

where Dρ denotes the density fluctuation with respect to the surrounding. The gravitational
acceleration g is assumed to be constant over the considered spatial scales. If chemical
gradients can be neglected, the relation between relative density and temperature fluctuations
is

Dρ

ρ
= δ

DT

T
. (1.11)

Assuming that half of the buoyancy work is dissipated during the average travel distance of
ℓMLT/2, one obtains for the square of the resulting velocity

v2 =
gδ

8

∇−∇b

Hp
ℓ2MLT, (1.12)
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and finally the convective flux (Eq. (1.8)) can be approximated as

Fconv = ρcPT
√

gδ
ℓ2MLT
4
√
2
H−3/2

p (∇−∇b)
3/2. (1.13)

It remains to find an estimate for the temperature gradient ∇b. The temperature in the
blob will change because of adiabatic expansion or compression and because of energy loss
by radiation. The latter is obtained with the aid of Eq. (1.2) as

∆(Ub)

Vb
= Frad,b δt

Ab

Vb
=

4acT 3

3κρ

DT

(ℓMLT/2)︸ ︷︷ ︸
≈∇T

ℓMLT
v︸ ︷︷ ︸
δt

6

ℓMLT
(1.14)

=
4acT 3

3κρ

6T (∇−∇b)

Hpv
(1.15)

where δt is the travel time of the blob, ∆(Ub)/Vb the energy loss of the blob per unit volume,
and ∆(.) denotes the change of a quantity inside the blob compared to the initial state. Ab/Vb

is the ratio of the surface to the volume of the blob. With the relation dq = cpdT − δ
ρdP for

the specific internal energy q and dT/dr = (−T ∇)/(HP ) it follows that

ρ∆(q) = ρcp∆(T )−∇ad
ρcpT

P

dP
dr ℓMLT (1.16)

=
ρcPT

HP
(∇b −∇ad) ℓMLT. (1.17)

The energy loss given in Eq. (1.15) is associated with the change of internal energy described
by Eq. (1.17) and one obtains

∇−∇b

∇b −∇ad
=

3ρ2cPκ

4acT 3

vℓMLT
6

. (1.18)

With Eqs. (1.12), (1.13), and (1.18) it is now possible to solve for the unknown stellar
temperature gradient ∇, see for example Maeder (2009), Sect. 5.4.3 or Kippenhahn et al.
(2012), Sect. 7.2 and references therein. Different flavors of MLT result in slightly different
constant pre-factors in the derived equations (see Salaris and Cassisi, 2008).

Besides the choice of the specific flavor, the result for ∇ will generally depend on the free
parameter ℓMLT which is often expressed as

ℓMLT = αMLT HP , (1.19)

which introduces the free parameter αMLT. The values for ℓMLT or αMLT are usually obtained
by calibrating 1D models to match observables of the Sun. Typical values for αMLT range
between 1.7 to 1.9 for solar calibrations with different codes (e.g., Magic et al., 2010). There
are also approaches to calibrate αMLT by 3D hydrodynamical simulations of convection. For
example, Trampedach et al. (2014) study different types of surface layers and find αMLT
ranging from 1.6 to 2.05, Magic et al. (2015) find with a similar approach αMLT ranging
from 1.7 to 2.4. These studies, as well as the calibration from observables of stars with
different properties (e.g., Bonaca et al., 2012; Li et al., 2018; Joyce and Chaboyer, 2018;
Schootemeijer et al., 2019; Martinet et al., 2021), suggest that αMLT is not the same for all
types of stars but should be varied with stellar properties. Based on asteroseismic data, Viani
et al. (2018) approximate the dependence of αMLT on surface gravity, effective temperature,
and metallicity of a star with a linear model. Furthermore, the calibration of αMLT itself
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is not straightforward (see, e.g., Valle et al., 2019) and “[…] already for the Sun α [αMLT in
this thesis] is anything but constant even completely within the framework of 1D modeling.”
(Kupka and Muthsam, 2017, Sect. 6.1.1). As criticized by Canuto et al. (1996), the common
practice to adjust the value of MLT to different astrophysical problems (different types of
stars) makes it difficult to falsify MLT, see also Kupka and Muthsam (2017).

Clearly, a parametrization of the same physical process that needs individual calibration,
even within the same stellar object, is not satisfactory. The derivation of MLT already in-
dicates that MLT is based on rather crude approximations. The picture of single isolated
blobs rising and then simply dissolving inside convection zones, for example, is certainly in
disagreement with the turbulent flows observed in simulations and laboratory experiments.
Furthermore, if MLT is to be used to approximate CBM (see Section 1.2.3) several inconsis-
tencies arise as discussed by Renzini (1987) and reviewed in detail by Arnett et al. (2019).
The precise asteroseismic measurements of pressure mode frequencies in solar-like stars fur-
ther show that the prediction of the mode frequencies based on MLT generally deviates
from observations (commonly referred to as “surface-effect”, see also figure 1 of Ball et al.,
2016). As discussed by Rosenthal et al. (1999), these differences mainly originate from the
incorrect predictions of the background stratification for the stellar surface and the lacking
inclusion of the impact of surface convection on the asteroseismic modes (e.g., Brown, 1984)
in conventional 1D star models that apply MLT. Predictions of stellar properties based on
asteroseismic measurements require accurate 1D models and are thus directly affected by the
surface-effect (e.g., Aerts, 2021).

The situation can be improved when the MLT predictions for the problematic surface
regions in the last time step of conventional 1D evolution simulations are replaced with mean
profiles derived from radiative magnetohydrodynamic simulations (e.g., Rosenthal et al., 1999;
Ball et al., 2016). Recently, it was demonstrated that coupling the results of 3D simulations
directly to the 1D stellar evolution further reduces the discrepancies between predicted and
observed pressure mode frequencies (Jørgensen et al., 2018, 2021; Mosumgaard et al., 2020, see
also Spada et al., 2021). However, such approaches may alleviate some of the shortcomings of
MLT but do not tackle the fundamental problem of finding a more appropriate 1D description
of convection.

As stated by Kupka and Muthsam (2017, Sect. 3.2) the classical MLT formulation has been
falsified by the discrepancies that are found when comparing to observations and hydrody-
namical simulations. Yet, MLT is still the most popular approach to determine the thermal
structure inside convection zones in 1D stellar models. Although there is a broad consensus
that MLT needs to be replaced, Kupka and Muthsam (2017) see the following reasons why
MLT is nevertheless commonly used:

• It is still the standard model of convection. Many astrophysical applications like stellar
population synthesis are based on published grids of stellar evolutionary tracks which
used MLT.

• It only relies on local quantities and its implementation into stellar evolution codes is
rather easy.

• More sophisticated models of convection often come with additional free parameters
which are harder to calibrate. Improvements have been proposed, for example, by
taking the full spectrum of turbulent eddies into account instead of the free parameter
ℓMLT (Canuto and Mazzitelli, 1991), or using Reynolds stress models (Canuto, 2011).
However, they do not necessarily improve accuracy (Buldgen, 2019).

• Sufficiently accurate asteroseismic observations and hydrodynamic simulations that
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show that even with tuning αMLT, the correct pressure and temperature are not ob-
tained, became available only recently, compared to the time MLT has already been
used in 1D modeling.

1.2.3 Parametrization of convective boundary mixing
The deficiencies of MLT that have been discussed so far mainly concern the surface layers
of stars. There, the density is much smaller compared to core regions which makes energy
transport by convection less efficient and the full equations derived in previous sections have
to be solved for ∇, meaning that all uncertainties of MLT will impact the result. The situ-
ation in the deep interior of stars is different because of the higher efficiency of convection.
Only a small value of the superadiabaticity is necessary to carry the energy (e.g., see Maeder
and Meynet, 2000, Sect. 5.2.1 for an order of magnitude estimate) such that within the con-
vection zones ∇ ≈ ∇ad. For example, in the convective core of the 3 M⊙ model considered in
Section 2.3, one has (∇ −∇ad)/∇ < 10−4. Also, velocities are in agreement with hydrody-
namic simulations (e.g., see Section 2.2). Furthermore, convection will efficiently homogenize
abundance gradients within the convection zone such that abundance profiles are flattened
quickly.

While this means that determining the temperature gradient in the interior and mixing
in the bulk of a convection zone is not a main issue, it remains that MLT is a local theory
and fails for regions near the interfaces to stable zones: According to MLT, the flow has zero
velocity and vanishing acceleration at the edge of a convective region. In reality, however, fluid
elements approaching from within the convection zone will have a non-zero velocity. While
decelerating and overturning, they reach into adjacent formally stable layers. This leads to
mixing of chemical elements and possibly affects the thermal structure in the vicinity of the
boundary. These effects are not captured by MLT. In principle, the inclusion of the effect
of overshooting needs a non-local theory, for which many approaches have been followed,
see Kupka and Muthsam (2017) for a detailed overview and discussion. However, to date,
none of these are broadly applied in conventional stellar evolution codes. Instead, more
commonly, prescriptions based on non-local models are applied in addition to the conventional
MLT implementation and a variety of different implementations exists across different stellar
evolution codes.

Step overshooting

A simple approach to model CBM is the so called “step overshooting”, where the convection
zone is extended by a certain fraction αso of the local pressure scale height,

∆dov = αsoHP . (1.20)

This is motivated by the picture of penetrative convection, where CBM decreases the entropy
gradient at the boundary which leads to a growth of the convective region over long enough
timescales.3 Step overshooting is, for example, the standard prescription for MLT in the
Geneva stellar evolution code GENEC (Eggenberger et al., 2008).

Diffusive overshooting

Another approach is to describe the mixing across the boundaries of a convection zone (given
by the local criteria Eqs. (1.5) and (1.7)) as a diffusive process. Motivated by two-dimensional

3It is, however, also common to only extend the mixed region by step-overshooting while keeping the tem-
perature gradient at ∇ = ∇rad in the overshooting region, that is the convective region is not extended.
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(2D) simulations of stellar atmospheres, the diffusion coefficient is expressed by an exponen-
tially decreasing function in the stable zone (Freytag et al., 1996; Herwig, 2000)

Dov = D0 exp
(

−2z

fov HP

)
, (1.21)

where z is the distance to the edge of the convection zone and fov determines how far the
diffusion coefficient reaches into the stable layer before it falls below a certain threshold value
for which it is assumed to be zero. The value of D0 can be estimated from D0 =

1
3ℓMLTvMLT

where vMLT and ℓMLT follow from MLT at a point within the convection zone near the
interface to the stable zone. In the CBM region, the temperature gradient is set equal
to ∇rad and chemical elements are mixed following a diffusion equation with the diffusion
coefficient given by Eq. (1.21). This approach is, for example, used by the open-source stellar
evolution code MESA (see Paxton et al., 2019 for the latest report on updates of the code).
Compared to “step overshooting”, the exponentially decaying diffusion approach results in
smoother transitions between mixed and unmixed regions.

The values for αso and fov are typically calibrated, for example, by comparing the proper-
ties of the Hertzsprung-Russel diagram (HR diagram) obtained by a set of 1D stellar evolution
calculations with different initial parameters to observations (e.g., Ekström et al., 2012; Mar-
tinet et al., 2021) or by means of hydrodynamic simulations (e.g., Jones et al., 2017; Korre
et al., 2019; Higl et al., 2021). See Kaiser et al. (2020) for a detailed compilation of published
calibrations.

By using a statistical analysis of convective overshooting events, Pratt et al. (2017, 2020)
derive a diffusion coefficient from simulations of surface convection. Some first 1D evolu-
tion studies apply this prescription and find some improvements for certain observables (e.g.,
Baraffe et al., 2017; Jørgensen and Weiss, 2018), but it has not yet been tested in 1D calcu-
lations covering a broad parameter range.

The Bulk-Richardson entrainment law

A rather new approach to CBM in the stellar context is to describe it in terms of turbulent
entrainment. It was shown by Meakin and Arnett (2007b) in 3D simulations of oxygen-shell
burning that the measured entrainment of mass at the upper boundary can be described by
the Bulk-Richardson entrainment law

ve
vrms

= ARi−n
B , (1.22)

where ve is the entrainment velocity at the boundary and vrms the root-mean square velocity
inside the respective convection zone (see also Section 2.2). The Bulk-Richardson number
RiB measures the stiffness of a boundary and can be calculated from a given stellar profile as

RiB =
∆B l

v2rms
, (1.23)

where l is the integral length scale of the convection and

∆B =

∫ rc+∆r

rc−∆r
N2 dr, (1.24)

where rc is the radius of the considered boundary and N2 the Brunt-Väisälä frequency (BVF).
The parameters n and A can be either determined by theory or extracted from hydrodynamic
simulations, as for example done in Section 2.2. Recently, first applications of this prescription
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of CBM to stellar evolution simulations have been published (Staritsin, 2013; Scott et al.,
2021).

The various prescriptions of CBM lead to the situation that different 1D codes will predict
a different evolutionary tracks for the same star, in particular for the post-MS phase. By
comparing the evolutionary tracks predicted by different stellar evolution codes, Martins and
Palacios (2013), Jones et al. (2015), and Stancliffe et al. (2016) demonstrate that the details
of the treatment of convective mixing is one of the main sources for the uncertainty of stellar
evolution models. Even if the stellar evolution calculations are done with a single 1D code,
results may vary significantly due to the rather unconstrained free parameters involved in the
prescriptions of CBM (e.g., Davis et al., 2019; Kaiser et al., 2020; Clarkson and Herwig, 2021).
As pointed out by Kaiser et al. (2020), the calibrations of the parameters are ambiguous and
a range of different values for αso and fov can be found in the literature.

Furthermore, typically the prescription of CBM is set at the initialization of the 1D simu-
lations and then applied to all convection zones that emerge during the evolution, regardless
of the prevailing thermodynamic conditions. However, Viallet et al. (2015) argue that the
different parametrizations may be valid only for a certain range of the Péclet number Pe. The
Péclet number compares the efficiency of advective heat transport to radiative heat trans-
port and varies significantly between convection zones in the deep interior of stars (Pe ≫ 1)
and convection at stellar surfaces (Pe ≪ 1). Viallet et al. (2015) therefore propose to ap-
ply different prescriptions of CBM for different regimes of the Péclet number. For example,
the widely used diffusion coefficient (Eq. (1.21)) has been inferred from simulations at low
Péclet numbers. Applying it to all convection zones during stellar evolution corresponds to
an extrapolation over many orders of magnitude (as for example criticized by Kupka and
Muthsam, 2017).

Simulations for different stellar scenarios analyzed with respect to different prescriptions
will help to identify different characteristics of the mixing process. However, simulations
in the stellar interior are difficult because of the involved slow flows and long timescales
(see Section 1.4). The work presented in Chapter 2 will provide a further step toward such
simulations.

1.3 Insights from asteroseismology
The field of asteroseismology provides guidance for developing improved prescriptions for
stellar evolution codes. The constantly increasing accuracy of space telescopes has greatly
improved asteroseismic observations and modeling over the past years (e.g., see the review by
Bowman, 2020). Waves propagate through the stellar interior, which influences the distinct
signatures they leave on the stellar surface. The interpretation of the surface signatures
allows inferring information about the stellar interior and reveals discrepancies between stellar
evolution calculations and observations (e.g., see Aerts et al., 2010, 2019; Aerts, 2021, for a
general overview).

Convective boundary mixing

Typically, the efficient mixing in convective regions lead to gradients in the chemical composi-
tions which in turn lead to a step-like profile of the speed of sound in this region. This causes
“acoustic glitches” that generate clear signatures in the frequency spectra of pressure modes.
Also the BVF will have a sharp transition in its profile, leading to “buoyancy glitches” and
corresponding modulations of the period spacing of gravity waves (for a detailed discussion,
see for example Aerts et al., 2010; Aerts, 2021). Studies that aim to reproduce asteroseis-
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mic observables on the basis of 1D models generally agree that CBM has to be included in
stellar evolution calculations as otherwise, the predicted cores are too small to explain the
observed spectra (e.g., Moravveji et al., 2015, 2016; Deheuvels et al., 2016; Szewczuk and
Daszyńska-Daszkiewicz, 2018). By modeling single, slowly pulsating B stars (SPB stars),
some studies conclude that the exponentially diffusing approach for CBM is favored to re-
produce the specific asteroseismic data (Moravveji et al., 2015, 2016). Viani and Basu (2020)
find a positive correlation between the amount of CBM and the mass of stars with convec-
tive cores. However, Pedersen et al. (2021) investigated a sample of 26 SPB stars using a
homogeneous modeling approach. None of the eight considered 1D mixing prescriptions (the
combination of step or diffusive overshooting and four different prescriptions for envelope
mixing) provides a best fit to all observed stars. They further find a wide spread for the
inferred mixing efficiencies. Exceptionally small or even vanishing overshooting efficiencies
are reported for two different SPB stars by Buysschaert et al. (2018) and Wu et al. (2020).

Mixing in radiative regions

Some of the aforementioned studies also demonstrate that additional mixing within radia-
tive zones is needed to improve the comparison to observations (e.g., Moravveji et al., 2015;
Pedersen et al., 2021; Dumont et al., 2021). Such mixing can, for example, be caused due to
rotation or due to IGW that get excited by convective plumes hitting the interface between
convective and radiative zones. In massive stars, these waves reach significant amplitudes
when traveling outwards to the surface. Simulations indicate that IGW provide an efficient
mechanism for chemical mixing and angular momentum transport in radiative zones (Brown-
ing et al., 2004; Rogers et al., 2013; Rogers and McElwaine, 2017). Furthermore, observations
of rotating OB stars indicate a correlation between the surface nitrogen abundance and the
dominant pulsation frequency, while the rotation rate seems not to be correlated (Aerts et al.,
2014)4. It is therefore likely that the interplay between rotational effects and IGW needs to
be considered in order to understand the observed mixing and angular momentum transport
in rotating massive stars (Mathis et al., 2013; Rogers et al., 2013).

The low-frequency excess in massive stars

Recent studies found that the photometric spectra of massive MS and post-MS stars show
nearly ubiquitous signatures of stochastic low-frequency variability, commonly referred to as
the “low-frequency excess” (Bowman et al., 2019a,b, 2020; Pedersen, 2020; Dorn-Wallenstein
et al., 2020). The typical signature of the excess are amplitudes above the noise level at
low frequencies, that follow a flat profile toward larger frequencies, and significantly decrease
for periods typically smaller than a few days. Bowman et al. (2020, 2019b) find that the
observed low-frequency variabilities have a similar morphology with respect to the frequency
range, the characteristic frequency where the amplitudes start to drop, and the slope of the
excess over a range of masses and metallicities. In massive stars, the κ-mechanism (e.g.,
Aerts et al., 2010) leads to the excitation of gravity modes (g-modes) and pressure modes
(p-modes). However, it only acts for stars residing in certain regions of the HR diagram (e.g.,
Szewczuk and Daszyńska-Daszkiewicz, 2017; Burssens et al., 2020) and can hardly explain
these observations. There is therefore a current debate which mechanism is responsible for
the observed low-frequency variability across the upper HR diagram (Bowman et al., 2019a;
Cantiello et al., 2021).

4However, Maeder and Meynet (2015) note that the considered stellar sample of Aerts et al. (2014) spans a
wide range of masses, ages, and metallicities and therefore may not be suitable for a definitive conclusion.
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Bowman et al. (2019a,b, 2020) suggest that stochastic excitation of IGW by core convection
leads to the variability at low frequencies which could explain the similar morphology along
metal-rich and metal-poor stars. This is supported by simulations of IGW in hydrodynamic
simulations of a 3 M⊙ star (Rogers et al., 2013; Edelmann et al., 2019, see also Section 2.3).
However, Lecoanet et al. (2019, 2021) predict from linear theory that peaks from coherent
g-modes would be observed in addition to the low-frequency excess if the excess was due to
IGW excited by core convection: Radiative damping affects low-frequency IGW the strongest.
Thus, if IGW reach the surface with considerable amplitudes in the low-frequency regime,
the amplitude will be even higher at larger frequencies, leading to strong peaks for coherent
modes. Lecoanet et al. (2019) do not see such peaks in the spectra presented by Bowman
et al. (2019a, 2020) and therefore disagree with the IGW hypothesis. While individual peaks
are also not present in the spectra obtained from hydrodynamic simulations (Edelmann et al.,
2019 and Section 2.3), Lecoanet et al. (2019) and Cantiello et al. (2021) argue that this may be
an artifact of the artificially increased energy generation and short simulation times (see also
discussion in Section 3.2). Instead, Lecoanet et al. (2019) and Cantiello et al. (2021) suggest
that subsurface convection zones emerging from the iron opacity peak are responsible for the
observed variability at low frequencies. Cantiello et al. (2021) show that the trend in the
properties of the subsurface convection zone regarding the position in the HR diagram could
explain the trend found in the observed low-frequency excess. The authors further argue
that IGW by core convection would produce larger characteristic frequencies as massive stars
evolve, while the opposite is observed in the spectra.

On the other hand, Pedersen (2020) investigated the spectra of 38 SPB stars which are in
a mass regime where sub-surface convection zones are expected to be weak (Pedersen, 2020;
Cantiello and Braithwaite, 2019; Cantiello et al., 2021). Yet, 75 % of the spectra of the SPB
stars exhibit a low-frequency excess. While it seems unlikely that sub-surface convection
can produce the observed spectra for these stars, IGW by core convection remains a valid
explanation. Furthermore, Pedersen (2020) finds signatures of non-linear effects in the spectra
of the SPB stars. This is in contradiction with the linear assumption by Lecoanet et al. (2019,
2021). The exact mechanism that drives the low-frequency excess, IGW by core convection,
sub-surface convection, or a combination of both, remains to be subject of debates.

Identifying the excitation mechanism of the low-frequency excess helps to constrain sim-
ulations of IGW, the associated angular momentum transport, and its implementation into
stellar evolution calculations (Aerts et al., 2019). Furthermore, an improved understand-
ing of how IGW manifest at the stellar surface provides a possibility to infer properties of
massive stars which do not exhibit standing g- and p-modes but only show spectra with a
low-frequency excess (Bowman et al., 2019a). The detection of standing modes is usually
required for conventional asteroseismic methods.

The asteroseismic analysis of spectra regarding CBM reveals that the current parametriza-
tion of CBM needs further refinement. A single prescription of CBM and a fixed efficiency
is likely insufficient for stellar evolution modeling. Testing different stellar regimes with hy-
drodynamic simulations will therefore help to improve the current approaches. Furthermore,
simulations of IGW provide a path toward an improved inclusion of their effect on stellar
evolution. Multidimensional simulations are also an important tool to gain further insight
into the excitation mechanism of IGW and the resulting surface spectra, for instance regard-
ing the origin of the observed low-frequency excess (e.g., Edelmann et al., 2019; Ratnasingam
et al., 2020, and Section 2.3).
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1.4 Simulating astrophysical flows with the Seven-League Hydro
code

The numerical tool to perform the simulations that are presented in Chapter 2 is the Seven-
League Hydro (SLH) code. It is developed with a focus on low-Mach flows in astrophysical
setups and features curvilinear grid geometries, a general EoS, a nuclear network coupled
to the hydrodynamic equations, and two gravity solvers. Descriptions of the implemented
methods and technical details can be found in Miczek (2013), Edelmann (2014), and Michel
(2019). One of the main aspects in the development was to utilize methods that work for low-
Mach flows but are also applicable to intermediate and fast flows. In this way, the SLH code
is a versatile tool and can be used to address a range of different problems, involving slow and
fast flows at the same time. So far, it has been applied to convective mixing in Population III
stars (Edelmann, 2014), simulations of classical novae (Bolaños Rosales, 2016), simulations
of dynamical shear instabilities (Edelmann et al., 2017), and silicon burning in massive stars
(Michel, 2019).

The following subsections give a brief overview on the main challenges when simulating
low-Mach flows and how they are addressed within the SLH code. Some of these aspects are
discussed in more detail in Chapter 2.

1.4.1 The high Reynolds number in stars
The motion of the gas within stars can be described by the Navier-Stokes equations which
follow from the principles of conservation of mass, momentum, and energy (e.g., Toro, 2009).
A characteristic quantity for these equations is the Reynolds number Re which measures the
relative importance of viscous effects and inertial forces. It is given by

Re ≡ U L

ν
, (1.25)

where U and L denote the characteristic velocity and length scale of the global flow and
ν is the kinematic viscosity (e.g., Landau and Lifshitz, 1987). For flows at low Reynolds
numbers, viscous effects dominate and the flow is laminar. If Re exceeds a critical value
Recrit, the flow will become turbulent. The exact value for Recrit depends on the problem
at hand, but generally a flow is thought to be fully turbulent for Re ≥ Recrit ∼ 103 (e.g.,
Frisch, 1995). Using typical values for the solar envelope convection zone ( U = 104 cm s−1,
L = 0.3 R⊙, R⊙ = 6.96 × 1010 cm, ν ≈ 2 cm2 s−1, Hanasoge et al., 2016) one finds Re⊙ ∼ 1014.
The huge Reynolds number implies that the convective flow in stellar interiors is highly
turbulent. Furthermore, it is orders of magnitude larger than what can be achieved in direct
numerical simulations (DNS) that aim to resolve all relevant spatial scales. This is illustrated
in a phenomenological picture of turbulence following the arguments given in Pope (2000),
Sect. 7: The Kolmogorov length scale ηK estimates the scale below which a turbulent flow is
dominated by viscous effects and is given by η = (ν3/ϵ)1/4, where ϵ is the mean kinetic energy
transfer rate from large scales to small scales. At a specific length scale l and corresponding
typical velocity v(l), the rate can be estimated by ϵ = v3/l. As the transfer rate is the same
on all scales it follows that v(l) = U (l/L)1/3. From this, the Reynolds number can be related
to the Kolmogorov scale via

ηK/L = Re−3/4. (1.26)

For the Sun, ηK/L ∼ 10−11, meaning that one would need to resolve scales spanning more
than ten orders of magnitude on the computation grid if the global flow and the physical
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dissipation range is to be represented. Following similar arguments, Kupka and Muthsam
(2017) estimate a total number of ∼ 1033 cells to resolve all relevant scales of the solar
convection zone. Storing just a single quantity then requires about 7 × 1021 PB of memory.
These numbers are representative for all types of stars. Hence, even without considering any
computational costs, it is obvious that performing such simulations on conventional computers
is impossible.

Instead, in typical astrophysical hydrodynamic simulations, the numerical discretization is
done at scales that are orders of magnitude larger than ηK and the “numerical viscosity” that
is inevitably introduced by the numerical methods to solve the equations will be orders of
magnitude larger than the physical viscosity. It is therefore a common approach to abandon
the explicit inclusion of viscosity that appears in the Navier-Stokes equations. This leads
to the Euler equations, which describe the motion of an inviscid fluid. Because of their
conservative form, common finite-volume schemes are well suited for their numerical solution.
The computational domain is discretized into small volumes and the associated average states
of the fluid are evolved through fluxes across the cell interfaces.

Boris (2007) discusses several arguments why simulations of turbulence still give meaningful
results even though the small scales are neglected. For example, the energy content of the
small scales is insignificant compared to the large, resolvable scales, as the amplitudes in
spectra of kinetic energy drop toward smaller scales in turbulent flows (see for example the
spectra shown in Section 2.2). Furthermore, numerical studies of turbulence show that kinetic
energy is transferred exclusively between comparable scales (see references given by Boris,
2007). There is no immediate transfer from the largest to the smallest scales that would
skip the intermediate scales. Thus, if the energy is properly propagated through the scales
down to the grid level where it is dissipated into heat, it can be expected that the large
structures are reasonably represented and are not affected by the missing small scales. It
is therefore sufficient to resolve the scales that are relevant for the dynamic process under
investigation, as for example mixing of species. The relevant scales can, for example, be
assessed in convergence studies where the grid resolution is increased successively.

Simulations which add a sub-grid model to the Euler equations in order to mimic the
transport of energy from the grid scales to the unresolved scales and eventually into heat are
called large eddy simulations (LES). Sub-grid models can be complex and, in the absence of a
general theory of turbulence, they involve crude approximations. Furthermore, the dissipation
introduced by the sub-grid model might be of the same order as the truncation error of
the applied numerical method and interference between the two mechanisms is difficult to
disentangle. Also, complex models may require substantial computational resources. A
more detailed discussion can be found in works by Boris (2007), Grinstein et al. (2007), or
Drikakis et al. (2007). The difficulties encountered in LES motivated the concept of implicit
large eddy simulations (ILES), where the numerical viscosity that is implicitly or explicitly
included in the numerical scheme takes care of the dissipation, instead of a physics-based
sub-grid model. As argued by Boris (2007), only a few physical requirements need to be
fulfilled by the numerical scheme to ensure that the kinetic energy is transformed into heat
in a physically reasonable way. The arguments in favor of the ILES approach are that it is
less complex, does not require additional modeling, and its results are comparable to LES
after all. For example, by studying the turbulent decay of the Taylor-Green vortex, Drikakis
et al. (2007) do not find any obvious advantage of LES over ILES. The concept of ILES
is also followed by the SLH code. It has been demonstrated by Berberich (2014) that the
numerical methods that are used in SLH give reasonable results in the context of ILES for
the decaying Taylor-Green vortex. In particular, Berberich (2014) does not find signatures of
a “bottleneck effect” which emerges if the numerical scheme does not dissipate kinetic energy
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quickly enough at small scales.
As indicated by the huge Reynolds number, the natural astrophysical flow is highly turbu-

lent even on scales far below the grid scale. It is therefore desirable that a given numerical
scheme has a dissipation range as narrow as possible, acting only close to the grid scale. This
is particularly difficult to achieve for low-Mach flows, as demonstrated in the next section.

1.4.2 The need for low-Mach flux functions
The SLH code solves the Euler equations using the finite-volume method. Only the principle
idea is sketched in the following. For a comprehensive introduction to the method see, for
example, LeVeque (2002).

The 3D Euler equations can be written in a compact form as (e.g., Toro, 2009)

∂U⃗

∂t
+

∂F⃗ (U⃗)

∂x
+

∂G⃗(U⃗)

∂y
+

∂H⃗(U⃗)

∂z
= S⃗(U⃗), (1.27)

where

U⃗ =



ρ
ρu
ρv
ρw
ρE
ρXi

 , F⃗ =



ρu
ρu2 + P
ρuv
ρuw

u(ρE + P )
ρuXi

 , G⃗ =



ρv
ρuv

ρv2 + P
ρvw

v(ρE + P )
ρvXi

 , H⃗ =



ρw
ρuw
ρvw

ρw2 + P
w(ρE + P )

ρwXi

 ,

Xi denotes an optional set of advected scalars, and the velocity vector is given by v⃗ = (u, v, w)T.
Other variables have their usual meaning. The source term S⃗ in Eq. (1.27) may, for exam-
ple, include gravity terms or the energy release from nuclear burning. In the finite-volume
approach, the domain is divided into small volumes which contain the average of the state
vector U⃗ . By considering the average of a quantity Qi,j,k in cell (i, j, k) with the domain
Ωi,j,k and volume Vi,j,k,

Qi,j,k =
1

Vi,j,k

∫
Ωi,j,k

Q d3x , (1.28)

the Euler equations can be written as

∂U⃗i,j,k

∂t
+

1

Vi,j,k

(
F⃗i+1/2,j,k − F⃗i−1/2,j,k+

G⃗i,j+1/2,k − G⃗i,j−1/2,k+

H⃗i,j,k+1/2 − H⃗i,j,k−1/2

)
= S⃗i,j,k.

(1.29)

Here, half-valued integers denote the interface between two neighboring cells. The form of
Eq. (1.29) illustrates the conservative character of the equations. In the absence of a source
term, the state vector U⃗i,j,k only changes through fluxes at the cell interfaces. Thus, the
volume integral of U , for example the total energy, is conserved and can only change through
fluxes across the boundary of the computational grid which are controlled by boundary con-
ditions.

Choosing an appropriate numerical flux function is one of the key ingredients for every
finite-volume code. The importance of a suitable numerical method when simulating flows
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at low-Mach numbers is nicely illustrated by the work of Miczek et al. (2015). Their main
results will be repeated in condensed form in the following.

The two different state vectors at the interface of two cells pose a Riemann problem. This is
utilized in the well-known flux function developed by Roe (1981) which uses an approximate
solution to the Riemann problem at the interfaces to construct a stabilizing upwind term.
The flux is given by5

F⃗i+1/2,j,k =
1

2

[
F⃗
(
U⃗L
i+1/2,j,k

)
+ F⃗

(
U⃗R
i+1/2,j,k

)]
− |ARoe|

(
U⃗R
i+1/2,j,k − U⃗L

i+1/2,j,k

)
, (1.30)

where L,R denote the values on the left and right side of the interface. The upwind term on
the right-hand side includes the matrix ARoe which depends on the left and right state vectors
U⃗L, U⃗R (for details, see for example Toro, 2009, Chap. 11). Miczek et al. (2015) conclude
that the Roe flux has excessive numerical dissipation originating from the upwind matrix
Aroe for flows in the low-Mach regime. To demonstrate this, Miczek et al. (2015) reformulate
the Euler equations in non-dimensional form such that the equations only depend on the
reference Mach number Mar. They are further reformulated in terms of the velocity vector
q⃗n normal to the cell interface with the normal vector n⃗ = (nx, ny, nz)

T. The general flux
vector along n⃗ is then given by

⃗̂
Fn =



ρq̂n

ρ̂ûq̂n + nx
P̂
M2

r

ρ̂v̂q̂n + ny
P̂
M2

r

ρ̂ŵq̂n + nz
P̂
M2

r

(ρ̂Ê + P̂ )q̂n,

 , (1.31)

where the hats denote the non-dimensional quantities6. Furthermore, Eq. (1.30) can be
written as
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i+1/2,j,k

]
− |Âroe|

(
⃗̂
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⃗̂
UL
i+1/2,j,k

)
, (1.32)

with the flux Jacobian Â = ∂
⃗̂
F/∂

⃗̂
U . The key finding of Miczek et al. (2015) is that the

upwind matrix Âroe, which introduces a diffusion term, scales differently with Mar compared
to the actual physical flux Jacobian Â. After transforming to the primitive variables ⃗̂

V =
(ρ̂, û, v̂, ŵ, P̂ ,X)T, they find

Â ⃗̂
V
∝
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)
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0 0 O (1) 0 O
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1
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)
0

0 0 0 O (1) O
(

1
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)
0

0 O (1) O (1) O (1) O (1) 0

0 0 0 0 0 O (1)


, (1.33)

5Without loss of generality, the interface between two cells in the x-direction is considered here.
6For example, ρ = ρ̂ ρr with ρ̂ being the non-dimensional density and ρr being the reference density. For

the non-dimensionalization as done by Miczek et al. (2015), all reference quantities cancel except for the
reference Mach number.
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whereas
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. (1.34)

By comparing Eq. (1.33) to Eq. (1.34) it is evident that for small Mach numbers some
parts of the upwind matrix, for example the O (1/Mar) terms for the velocity components in
Eq. (1.34), will completely dominate over the physical flux function, leading to an excessive
dissipative behavior. This is clearly not desired as the artificial upwind term of the Roe
scheme is meant to ensure numerical stability while the actual flux should be mainly given
by the central flux 1

2

[
ÂL ⃗̂UL

i+1/2,j,k + ÂR ⃗̂
UR
i+1/2,j,k

]
in Eq. (1.32).

To alleviate the problematic scaling, Miczek et al. (2015) propose a preconditioned Roe
solver which replaces the original matrix by(

P−1 |PARoe|
)
, (1.35)

where P(U⃗) is a preconditioning matrix that ensures the correct scaling. They demonstrate
the improved properties of the preconditioned Roe solver for simulations of the Gresho vortex
on a 402 Cartesian grid, a stationary solution to the Euler equations where the centrifugal
force is balanced by a pressure gradient. The classical Roe scheme already shows significant
dissipation at Ma = 10−2 and the vortex completely dissolves within one rotation for Ma ≤
10−3. In contrast, the improved scheme shows almost no dissipation, even at Ma = 10−4.

This demonstrates the importance of having a suitable numerical flux function when the
typical low-Mach phenomena in stellar interiors are to be simulated. A variety of different
flux functions are implemented in SLH. However, astrophysical problems require the inclu-
sion of gravity, which was not considered in the discussion above. Indeed, gravity leads to
further complications, in particular in combination with a low-Mach flux function. Numerical
experiments with the SLH code revealed that many low-Mach flux functions develop strong
instabilities for astrophysical setups in hydrostatic equilibrium. The instabilities may cause
artificial flows at magnitudes that are stronger than the flow of interest. Such artifacts are also
seen for the preconditioned Roe solver (Miczek, 2013; Edelmann, 2014). Therefore, for most
of the simulations presented in Chapter 2, the AUSM+−up flux is used (Liou, 2006). It splits
the numerical flux into a pressure and advection part and ensures a consistent scaling in the
limit of low Mach numbers. An explicit pressure-diffusion term improves the stability of the
numerical scheme for low-Mach simulations. The scaling in the AUSM+−up scheme is lim-
ited by a cut-off Mach number which avoids the divergence of some terms at small velocities.
However, in the original version of AUSM+−up, the pressure diffusion term in the advection
part of the numerical flux scales with the inverse Mach number. This leads to spurious fluxes
in simulations of hydrostatic atmospheres. It was therefore proposed by Miczek (2013) and
Edelmann (2014) to use separate cut-off numbers for the pressure and advection term such
that the strength of the pressure diffusion can be controlled separately. A more detailed
description of the modified AUSM+−up scheme is given in Section 2.1. Tests by Edelmann
et al. (2019) and Berberich (2014) show that the results obtained with the AUSM+−up
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scheme are comparable with the preconditioned Roe solver. Although AUSM+−up shows
some improved behavior regarding stability compared to the preconditioned Roe solver, spu-
rious flows also develop with this scheme if it is applied to astrophysical setups. This issue
is discussed in detail in Section 2.1 along with strategies to suppress the arising instabilities.
It is shown that the combination of the AUSM+−up scheme with suitable “well-balancing”
techniques that reduce the effective pressure gradient is a promising approach to simulating
low-Mach flows in astrophysics.

1.4.3 Time stepping
An additional challenge of low-Mach flows is the efficiency of common time integration
schemes. Eq. (1.29) can be written in compact form (this approach is called “method of
lines”) as

∂U⃗i,j,k

∂t
+ R⃗i,j,k(U⃗) = 0⃗, (1.36)

showing that the numerical formulation separates into a spatial discretization (discussed in
the previous section) and a temporal discretization that will be briefly discussed here. This
separation allows choosing numerical methods for time and space independently from each
other which eases implementing and testing new schemes.

A common approach for the time integration is explicit time stepping where the new state
of the flow is calculated from the knowledge of the current state alone. A simple example of
such an explicit scheme is the forward-Euler method

U⃗n+1
i,j,k = U⃗n

i,j,k − R⃗i,j,k(U⃗
n)∆t, (1.37)

where the superscript n denotes the state of the system after n time steps. The imple-
mentation, also of even more elaborate schemes of higher order as for example multi-stage
Runge-Kutta methods (e.g., Shu and Osher, 1988), does not require large coding effort. Fur-
thermore, the efficiency of the calculation of a single explicit time step is mainly determined
by the calculation of R⃗i,j,k. However, the step sizes ∆t of explicit time stepping are restricted
by the Courant-Friedrichs-Lewy (CFL) criterion (e.g., LeVeque, 2002) which is a necessary
condition for numerical stability. Thus, for low-Mach flows the maximum time step is essen-
tially given by the sound crossing time of the smallest grid cell. This requires a huge number
of time steps in order to evolve flows at low Mach numbers and explicit schemes become
inefficient.

In contrast, if implicit time stepping is performed, the time step size is not restricted
by stability reasons but by the desired accuracy alone. It is essentially determined by the
minimum time the flow of interest, as for instance convective flows, needs to cross one grid
cell. One simple example of an implicit scheme is the backward Euler method

U⃗n+1
i,j,k = U⃗n

i,j,k − R⃗i,j,k(U⃗
n+1)∆t . (1.38)

Here, the calculation requires the spatial part of the equation evaluated at the unknown
new state, Ri,j,k(U⃗

n+1), hence Eq. (1.38) is an implicit equation for the new state U⃗n+1.
Consequently, to obtain the new state, a non-linear system of equations needs to be solved.
Compared to explicit schemes, this implies a considerably larger computational effort per time
step. More elaborate implicit methods of higher order, for example the ESDIRK schemes
(e.g., Hosea and Shampine, 1996; Kennedy and Carpenter, 2001), even require the subsequent
solution of several non-linear systems. However, the increasing time step sizes that are
permitted by implicit methods for decreasing flow speeds eventually overcompensate the
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computational costs of one time step compared to explicit methods. The implicit method
in the SLH code becomes more efficient for flows below Ma ∼ 10−2 (Miczek, 2013). This
threshold, however, depends on the details of the spatial discretization (like the number of
cells, reconstruction schemes, or flux function).

In SLH, the non-linear equations are solved using the Newton-Raphson method that in-
volves solving a system of linear equations. Because of the huge number of equations7,
memory requirements prohibit a direct solution and iterative solvers are more suitable, see
Miczek (2013). Some aspects of time stepping are further discussed in Sections 2.1 and 2.3.

1.5 Motivation

The previous sections illustrate that current theories and parametrizations of dynamical, mul-
tidimensional phenomena inside stars are insufficient. Classical MLT is known to capture the
turbulent nature of convection inaccurately and it is not able to describe mixing of material at
the boundaries of convection zones. A variety of prescriptions for CBM exists, however, each
of which requires its own calibration. Asteroseismic studies reveal shortcomings of current
stellar evolution models and that additional mixing in radiative envelopes of massive stars is
required.

Comparisons between observations and 1D calculations are important benchmarks for cur-
rent 1D models but it is difficult to develop new or improved prescriptions of complex dy-
namical phenomena from such comparisons alone. An example is the asteroseisimic study by
Bellinger et al. (2019) which indicates that mixing processes may be still missing in current
state-of-the-art 1D simulations but the origin of this process remains unclear.

Multidimensional hydrodynamic simulations are suitable to improve this situation. They
are parameter-free and do not require calibration. The turbulent flow can be directly followed
and simulations allow studying the action of hydrodynamic phenomena, as for instance the
mixing of elements and excitation of waves. Hence, simulations can be used to identify
processes not yet included in 1D simulations, as for example the angular momentum transport
and mixing by IGW (Rogers et al., 2013; Rogers and McElwaine, 2017; Edelmann et al., 2019;
Higl et al., 2021). Another example is the “321D” project that aims at replacing standard
MLT by Reynolds-averaged Navier-Stokes equations in combination with 3D simulations
(Arnett et al., 2015). In this thesis, several hydrodynamics simulations are performed to
investigate CBM in different setups (see further Section 2.2) and to simulate excitation of
IGW by convection (see further Section 2.3). Typically, the Mach number for such setups
is expected to be very low. As discussed in Section 1.4, this leads to numerical difficulties
because of long timescales, numerical dissipation, and because it is challenging to avoid
spurious flows.

What can be found in the literature

Few publications specifically address simulations of low-Mach convection in astrophysical
setups. Typically, a finite-volume approach is chosen and the lowest achieved Mach numbers
range around 10−3 in more experimental simulations, but often the actual analysis is done
for runs where the velocities are a factor of a few larger. Either the velocity of convection in
the chosen setups is naturally at feasible Mach rumbers (e.g., Woodward et al., 2015; Jones
et al., 2017), simulations are boosted (e.g., Rogers et al., 2013; Edelmann et al., 2019; Cristini

7For a typical simulation of 5123 grid cells, the number of equations that need to be solved in every step is
about Nvar ×Ncells ∼ 0.7 × 109, where Nvar is the number of conserved variables, that is ρ, ρu⃗, and ρE.
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et al., 2019), or follow only a short amount of time at nominal luminosity (e.g., Meakin and
Arnett, 2007b; Cristini et al., 2019).

An exception is the simulation of convective hydrogen core burning in a 15 M⊙ star by Gilet
et al. (2013) who use the MAESTRO code (Almgren et al., 2007; Nonaka et al., 2010; Fan
et al., 2019) which is particularly designed for low-Mach flows. Based on the data published
by Gilet et al. (2013), one can infer a typical convective velocity in their simulations of
Ma ∼ 6 × 10−4. This is in the regime predicted by MLT for similar stars. MAESTRO solves
a modified version of the Euler equations in order to exclude sound waves from simulations
and to ensure correct scaling of leading order terms in the limit of low Mach numbers. The
exclusion of fast sound waves makes time stepping much more efficient as it relaxes the strict
CFL criterion. However, the modified Euler equations are only strictly valid in the low-Mach
limit. It is therefore difficult to simulate slow and fast flows at the same time. Because the
Mach number of waves can become large in the envelope and for stability reasons, Gilet et al.
(2013) need to damp the velocities in the outer parts of the computational domain and large
parts of the stable envelope are excluded in the simulations. The “all-Mach” approach of the
SLH code does not have these restrictions. Its capability to simultaneously evolve slow core
convection and fast wave propagation is demonstrated in Section 2.3.

An approach similar to that taken in SLH is followed by the MUSIC code (Viallet et al.,
2016; Goffrey et al., 2017). It solves the unmodified Euler equations and applies implicit time
stepping, using a memory efficient method to solve the non-linear systems. Benchmark tests
without gravity show that it is able to evolve flows at Mach numbers down to Ma ≈ 10−6

(Viallet et al., 2016). However, to the author’s knowledge, simulations of stellar convection for
Ma ≤ 10−3 have not yet been published. In the red giant simulation of Viallet et al. (2013b)
the typical Mach number ranges from 10−1 at the top to 10−2 at the bottom of the convection
zone. The recent series by Pratt et al. (2016, 2017, 2020) considers convection in the envelope
of a young sun model. The authors do not explicitly state the Mach numbers reached in their
simulation, however, in similar models the typical Mach numbers are expected to range from
10−3 to 10−2 (Viallet et al., 2013a, 2016; Popov et al., 2019).

Besides the finite-volume approach, also spectral methods are commonly used for fluid
dynamic simulations. While they are not ideal for fast flows with shocks and discontinuities,
flows in the intermediate- and low-Mach regime are smooth and therefore well accessible to
spectral methods. Lecoanet et al. (2016) compare the simulations of 2D Kelvin-Helmholtz
instabilities with the pseudo-spectral DEDALUS code (Burns et al., 2020) and the finite-
volume code ATHENA (Stone et al., 2008). Their results suggest that for this particular
test setup, the finite-volume approach requires a grid resolution eight times higher in each
dimension to reach the same accuracy as DEDALUS. Anders and Brown (2017) use the
DEDALUS code to simulate Rayleigh-Bénard convection in stratified atmospheres. In their
simulations, the smallest achieved Mach numbers are Ma ∼ 10−4. Spectral codes therefore
appear to be a promising approach for low-Mach simulations of realistic astrophysical setups.
In Section 2.3 a first comparison between the SLH code and the pseudo-spectral SPIN code
(Edelmann et al., 2019) is made for the case of IGW excitation and propagation. A more
comprehensive comparison, including other codes as for instance DEDALUS, would certainly
be interesting, also regarding the respective computational efficiency and ability to follow
CBM in stellar convection zones at low Mach numbers.

Low-Mach number simulations are needed

Because of the difficulties of high dissipation and inefficient time stepping in typical explicit
non low-Mach schemes, it is common to artificially increase the velocities, for example by
boosting the energy generation by orders of magnitude (e.g., Rogers et al., 2013; Edelmann

21



Chapter 1 Introduction

et al., 2019; Cristini et al., 2019; Käpylä, 2021a; Baraffe et al., 2021, see also Chapter 2).
The results (e.g., the mixing rate) are then scaled from the boosted simulation to the nomi-
nal luminosity. Yet, it is unclear whether such a simple scaling over orders of magnitude is
correct because artificial boosting changes the relation of characteristic scales of the differ-
ent processes involved. For example, the Péclet number (the ratio of diffusion timescale to
convection timescale) changes if the thermal diffusivity is not scaled accordingly. However,
if the Péclet number is kept constant by increasing thermal diffusivity, the Prandtl number
Pr (i.e., the ratio of kinematic viscosity to thermal diffusivity) will become smaller. Also,
the length scales of advective processes are proportional to the timescale, while diffusive pro-
cesses scale with the square root of the timescale. Thus, it is not possible to create fully
equivalent simulations at different driving strengths. The effect of different characteristic
numbers on the overshooting depth of convection was studied in detail by Käpylä (2019,
2021b), although the simulated flows are only mildly turbulent and probe a regime that is
rather different from actual stellar conditions. Käpylä (2019, 2021b) finds only weak de-
pendence of the overshooting depth on the Péclet number but a strong dependence on the
Prandtl number. In simulations of the convective envelope of a solar-like star, Baraffe et al.
(2021) find that an artificial boosting of the luminosity and thermal diffusivity may alter the
mixing efficiency at the convective boundary. They argue that this may because of a changed
interplay between local heating by convective penetration into the adjacent stable layers and
the radiative energy transport.

Another problem of boosting is that a faster convective flow will excite IGW at higher
frequencies and larger amplitudes. This also implies different spatial scales of the waves
relative to other length scales of the system. This will inevitably change how they are
affected by dissipative processes such as thermal diffusion and how they contribute to mixing.
Larger wave amplitudes can also lead to additional non-linear effects. Artificial boosting
will also change the impact of rotationally induced phenomena like meridional circulation
or shear instabilities and the rotation rate would need to be scaled accordingly, leading to
stronger instabilities and deformation than in the actual star. This demonstrates that the
flow properties in boosted astrophysical simulations likely change compared to the unboosted
cases. It is therefore desirable to perform simulations as close as possible to stellar values, in
particular at the low Mach numbers that are expected inside stars. To enable such simulations
is one of the main goals in the development of the SLH code. As indicated in Section 1.4 and
demonstrated in the following sections, this is an ambitious project which requires a careful
choice of the numerical ingredients because of the rather extreme scales of stars.

Goals of this thesis

The functionality of the SLH code has been extended and the code was applied to different
astrophysical setups in the past. An analysis of results regarding their physical plausibility
with a focus on low Mach numbers considerably below 10−2 is, however, still lacking for such
setups.

One aspect of this thesis is therefore to assess the fundamental capabilities of the code
by performing simulations of basic test setups that include gravity and for which a clear
expectation for the results exists. Examples are tests on stable atmospheres (Section 2.1)
or the evolution of linear IGW with small group velocities (Section 2.3). Some tests are
inspired by the tests of Miczek (2013) and Edelmann (2014) but reinvestigated here in a
more systematic way and with improved versions of the SLH code and the test setups. These
basic simulations are important to identify current limitations of the code which may be less
obvious in more complex simulations.

The other aspect of this thesis is to apply the SLH code to realistic but simple astrophysical
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setups that involve convection for which MLT predicts low Mach numbers. The setups are
realistic in the sense that they are based on 1D stellar-structure models as obtained from
stellar evolution simulations but simple as these regions are chosen such that they do not
involve additional complex processes (as, for instance, complicated feedback from nuclear
burning, changes of the background structure, rotation, magnetic fields, and the like). For
these setups, expectations from linear wave theory or basic flow properties like turbulent
velocity spectra and kinetic energy dissipation are compared to the results obtained from the
simulations. This provides a further, important test of the validity of the results obtained
with the SLH code in slightly more complex simulations compared to plain test setups. At
the same time they still provide insights to current astrophysical problems. In particular,
the entrainment is measured at the boundaries of a convective burning shell in a MS star
(Section 2.2). This allows the comparison with and the enlargement of the parameter space
of simulations already covered by other groups. The chosen setup to study the excitation of
waves by core convection (Section 2.3) is well suited to reveal the benefits of SLH simulations
through comparison to simulations with codes that follow a different numerical approach.
From the simulations, velocity spectra are extracted which, with some precautions, can guide
the interpretation of observed stellar oscillation phenomena like the low-frequency excess
observed in massive stars (Section 1.3).
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CHAPTER 2
Results
In this Chapter, the main results of the thesis are presented. The content consists of three
papers that have been published in the peer-reviewed journal Astronomy & Astrophysics 8.
The order of the sections does not follow the respective date of publication but was changed to
better reflect the dependency of the content. Each section is preceded by a short introduction
that describes the main context. The results are summarized in Section 3.1 and further
discussed in Section 3.2.

8https://www.aanda.org
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2.1 Publication I: Well-balancing

The publication in this section presents SLH simulations for a set of test problems while
applying three different well-balancing methods in combination with the AUSM+−up flux.
The results are investigated regarding the improved accuracy at which small perturbations
are simulated on top of strongly stratified atmospheres if well-balancing is applied.

During most of a star’s evolution, self-gravity is balanced by a pressure gradient. In this
hydrostatic equilibrium, pressure and density may vary over orders of magnitude from the
center of a star to its surface regions. Hydrodynamic phenomena, as for example turbulent
flows in convective regions, can be seen as small perturbations on top of the hydrostatic
background stratification. Thus, if stellar hydrodynamics are to be simulated, it is crucial
that the applied numerical tool is able to maintain the hydrostatic background to a high
accuracy.

This is not trivial to achieve with finite-volume codes because typically pressure and gravity
are discretized in different ways: The effect of a pressure gradient is included in the flux
function while gravity is included as an additional source term. Hence, even though the initial
conditions from which the numerical grid is initialized is in perfect hydrostatic equilibrium,
this is not guaranteed for the discretized equations (see section 4 in the publication below
for a simple example). Imperfect balancing leads to a non-zero flux across the cell interfaces
and thus to spurious flows. The resulting error accumulates over the course of the simulation
and is particularly problematic for simulations at low Mach numbers as the artificial flow will
quickly deteriorate the physical flow.

Furthermore, as discussed in Section 1.4, the numerical flux function which calculates the
flows in and out of the discrete volumes in the finite-volume approach has to be appropriate
for low-Mach flows. However, in applications involving strong hydrostatic stratifications, low-
Mach flux functions are prone to develop spurious, self-amplifying checkerboard-like struc-
tures in the pressure and density fields. The resulting unphysical flow then often dominates
over the flow of interest (e.g., see Miczek, 2013, Edelmann, 2014, and the publication below).
One possible explanation for this numerical artifact is the reduced pressure-velocity coupling
of low-Mach flux functions such that the checkerboard modes are not damped efficiently
enough. The excessive dissipation prevailing in conventional numerical flux functions makes
them robust against checkerboard modes but inadequate for simulations of low-Mach flows.

The simulations presented in the following paper use a variant of the low-Mach AUSM+−up
flux which applies an explicit pressure-diffusion term to enhance pressure-velocity coupling.
But this pressure-diffusion term may lead to spurious flows in the vertical direction in astro-
physical setups because of the involved strong pressure gradient. The AUSM+−up flux is
therefore not directly applicable to astrophysical setups. However, the ability of a numerical
scheme to maintain hydrostatic equilibrium and the performance of the AUSM+−up flux
can be significantly improved through the application of “well-balancing” techniques. Three
novel methods are investigated in the publication presented in this section. These schemes
utilize the prior knowledge of the hydrostatic stratification such that only perturbations of the
hydrostatic background enter the flux. Thus, in the absence of perturbations, the flux is zero
up to machine precision. Furthermore, applying these methods is beneficial in combination
with the AUSM+−up scheme: With well-balancing, the stabilizing pressure-diffusion term
of AUSM+−up only acts on the perturbations but not on the general background stratifica-
tion. This prevents the scheme from artificially generating vertical velocities in astrophysical
setups.

The presented publication first describes the three tested well-balancing schemes and the
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modified AUSM+−up hydro flux. Subsequently, each combination of the AUSM+−up scheme
with the tested well-balancing schemes is applied to four test-scenarios which involve hydro-
static stratifications and low-Mach flows similar to those expected inside real stars. The
results are analyzed regarding hydrostatic stability and physical expectation. It is found that
the AUSM+−up flux in combination with the Deviation well-balancing method is a promising
approach which is able to keep a hydrostatic atmosphere stable for long enough times and
to simulate convection at Mach numbers expected in stellar interiors. While the schemes are
tested with the AUSM+−up flux and the SLH code, they can also be used in different codes
and combined with other numerical flux functions.
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ABSTRACT

Context. Accurate simulations of flows in stellar interiors are crucial to improving our understanding of stellar structure and evolution.
Because the typically slow flows are merely tiny perturbations on top of a close balance between gravity and the pressure gradient,
such simulations place heavy demands on numerical hydrodynamics schemes.
Aims. We demonstrate how discretization errors on grids of reasonable size can lead to spurious flows orders of magnitude faster than
the physical flow. Well-balanced numerical schemes can deal with this problem.
Methods. Three such schemes were applied in the implicit, finite-volume Seven-League Hydro code in combination with a low-
Mach-number numerical flux function. We compare how the schemes perform in four numerical experiments addressing some of the
challenges imposed by typical problems in stellar hydrodynamics.
Results. We find that the α-β and deviation well-balancing methods can accurately maintain hydrostatic solutions provided that grav-
itational potential energy is included in the total energy balance. They accurately conserve minuscule entropy fluctuations advected
in an isentropic stratification, which enables the methods to reproduce the expected scaling of convective flow speed with the heating
rate. The deviation method also substantially increases accuracy of maintaining stationary orbital motions in a Keplerian disk on long
timescales. The Cargo–LeRoux method fares substantially worse in our tests, although its simplicity may still offer some merits in
certain situations.
Conclusions. Overall, we find the well-balanced treatment of gravity in combination with low Mach number flux functions essential
to reproducing correct physical solutions to challenging stellar slow-flow problems on affordable collocated grids.

Key words. hydrodynamics – methods: numerical – convection

1. Introduction

Astrophysical modeling often involves self-gravitating fluids.
They are commonly described by the equations of fluid dynamics
with a gravitational source term – viscous effects are negligible
in most astrophysical systems and therefore the nonviscous Euler
equations are used. Such systems can attain stationary equilib-
rium configurations in which a pressure gradient balances grav-
ity, that is hydrostatic equilibrium. A prominent example are
stars, modeled in classical approaches as spherically symmet-
ric gaseous objects. Apart from this dimensional reduction, the
assumption of hydrostatic equilibrium considerably simplifies the
modeling of the – in reality rather complex – structure of stars.
The resulting equations of stellar structure (e.g., Kippenhahn et al.
2012) enable successful qualitative modeling of the evolution
of stars through different stages. The price for this success is
a parametrization of multidimensional and dynamical processes
that limits the predictive power of such theoretical models and

requires their calibration with observations. Recent attempts to
simulate inherently multidimensional and dynamical processes,
such as convection in stellar interiors (e.g., Browning et al. 2004;
Meakin & Arnett2006,2007;Woodward et al.2015;Rogers et al.
2013; Viallet et al. 2013; Pratt et al. 2016; Müller et al. 2016;
Cristini et al. 2017; Edelmann et al. 2019; Horst et al. 2020), have
tried to overcome this shortcoming.

Such simulations pose a number of challenges to the under-
lying numerical techniques. Not only is the range of relevant spa-
tial and temporal scales excessive, but the flows of interest arise
in a configuration that is often close to hydrostatic equilibrium.
This has two implications: (i) The schemes must be able to pre-
serve hydrostatic equilibrium in stable setups over a long period
of time compared to the typical timescales of the flows of inter-
est. (ii) The flow speed v expected to arise from a small perturba-
tion of the equilibrium configuration should be slow compared
to the speed of sound c, thus the corresponding Mach number,
M ≡ v/c, is expected to be low.
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If we decide to avoid approximating the equations and
include all effects of compressibility, aspect (ii) above calls for
special low-Mach-number solvers in numerical fluid dynam-
ics combined with time-implicit discretization to enable time
steps determined from the actual fluid velocity instead of the
speed of sound as required by the CFL stability criterion
(Courant et al. 1928) of time-explicit schemes. The propagation
of sound waves is irrelevant for the problems at hand. Sev-
eral suitable methods are implemented in the Seven-League
Hydro (SLH) code. Numerical and theoretical details are dis-
cussed in Barsukow et al. (2017b,a), Edelmann & Röpke (2016),
Miczek et al. (2015), Edelmann (2014), and Miczek (2013), and
examples of the application to astrophysical problems can be
found in Horst et al. (2020), Röpke et al. (2018), Edelmann et al.
(2017), Michel (2019), and Bolaños Rosales (2016).

Aspect (i), however, also requires attention. The condition
for hydrostatic equilibrium is part of the equations of stel-
lar structure, that are discretized and numerically solved in
classical stellar evolution modeling approaches. In contrast,
hydrostatic equilibrium is only a special solution to the full
gravo-hydrodynamic system at the level of the partial differen-
tial equations, but it is not guaranteed that discretizations of these
equations can reproduce the physically correct equilibrium state.
This is in particular the case because gravitational source terms
are usually treated in an operator-splitting approach, resulting
in different discretizations of the pressure and gravity terms.
Astrophysical fluid dynamics simulations often employ finite-
volume schemes, in which hydrodynamical flows are modeled
with a Godunov-type flux across cell interfaces. Hydrodynam-
ical quantities are therefore determined at these locations. The
gravitational source term, in contrast, is discretized in a com-
pletely different and independent way. In a second-order code,
for example, it is often calculated using cell-averaged densi-
ties assigned to cell centers. In general, this procedure does not
lead to an exact cancellation of gravity and pressure gradient
in hydrostatic configurations. Spurious motions are introduced
that mask the delicate low-Mach-number flows arising from per-
turbations of this equilibrium, such as, for instance, convection
driven by nuclear energy release.

To overcome the problem of aspect (i), so-called well-
balancing methods have been introduced, which are numerical
methods that ensure exact preservation of certain station-
ary states. Methods of this type have predominantly been
developed for the simulation of shallow-water-type models in
order to resolve stationary solutions such as the lake-at-rest
solution without numerical artifacts (e.g., Brufau et al. 2002;
Audusse et al. 2004; Bermudez & Vázquez 1994; LeVeque
1998; Desveaux et al. 2016a; Touma & Klingenberg 2015;
Castro & Semplice 2018; Barsukow & Berberich 2020). These
stationary states can be described using an algebraic relation,
which favors the development of well-balanced methods. In the
simulation of hydrodynamics under the influence of a gravi-
tational field, the situation is different, since hydrostatic solu-
tions are described by a differential equation that admits a large
variety of solutions that depend on temperature and chemical
composition profiles, as well as the equation of state (EoS). In
practice, the concrete hydrostatic profile is determined by equa-
tions describing physical processes other than hydrodynamics
and gravity, such as thermal and chemical transport and the
change in energy and species abundance due to reactions.

Different approaches can be used to deal with this: The
majority of well-balanced methods for the Euler equations
with gravity, for example Chandrashekar & Klingenberg (2015),
Desveaux et al. (2016b), Touma et al. (2016), and references

therein, are designed to only balance certain classes of hydro-
static states, often isothermal, polytropic, or isentropic strat-
ifications, under the assumption of an ideal gas EoS. How-
ever, for many astrophysical applications, in particular, cases
involving late stellar evolutionary stages and massive stars, non-
ideal effects of the gas may be important. In stellar interiors,
the most important additions to the ideal gas EoS are radia-
tion pressure and electron degeneracy effects. This requires a
more complex – often in parts tabulated – EoS to properly
describe the thermodynamical properties of the gas. We dis-
cuss an example of such an EoS in Sect. 2.2.2. Well-balanced
methods which are capable of balancing hydrostatic states for
general EoS have been introduced by Cargo & Le Roux (1994),
Käppeli & Mishra (2014, 2016), Grosheintz-Laval & Käppeli
(2019), Berberich et al. (2018, 2019, 2020, 2021), and Berberich
(2021).

Most methods that have been discussed in the astrophysi-
cal context and literature (e.g., Zingale et al. 2002; Perego et al.
2016; Käppeli et al. 2011; Käppeli & Mishra 2016; Popov et al.
2019) balance a second-order approximation of the hydrostatic
state rather than the hydrostatic state itself. Another recent
approach is the well-balanced, all-Mach-number scheme by
Padioleau et al. (2019). None of these publications tested a low-
Mach-number, well-balanced method in more than one spatial
dimension in a stable stratification over long timescales. As we
show in this paper, long-term stability cannot be automatically
inferred from one-dimensional (1D) tests, yet it is of fundamen-
tal importance for applications in stellar astrophysics.

Using a staggered grid, which in this context means storing
pressure on the cell interfaces instead of the cell centers, can alle-
viate some of the problems of well-balancing the atmosphere,
as shown, for example, in the MUSIC code (Goffrey et al. 2017,
Sect. 6). For this approach, it still has to be shown that convective
velocities scale correctly with the strength of the driving force
at low Mach numbers, which we found very challenging in our
approach, see Sect. 5.3.

The methods introduced in Berberich et al. (2018, 2019,
2021) can balance any hydrostatic stratification exactly. The only
assumption is that the hydrostatic solution to be balanced is
known a priori. This poses no severe restriction for many astro-
physical applications where the initial condition is often con-
structed under the assumption of hydrostatic equilibrium. An
example are simulations of stellar convection, where the initial
model is commonly derived from classical stellar evolution cal-
culations that by construction impose hydrostatic equilibrium.
In this context exact well-balancing refers to preserving an ini-
tial state, which can be calculated to arbitrary precision, and not
to the exactness of other input physics, such as the EoS.

Here, we discuss three possible well-balancing methods that
follow rather different approaches. The first method extends the
work of Cargo & Le Roux (1994) which only applied to 1D
setups into the three-dimensional (3D) case and achieves well-
balancing by modifying the pressure part of a general EoS. We
refer to this as the Cargo–LeRoux (CL) well-balancing method.
The other two methods modify how variables are extrapolated to
the cell interfaces. We refer to them as the α-β well-balancing
(Berberich et al. 2018, 2019) and the deviation well-balancing
method (Berberich et al. 2021). For these three schemes, we
describe their theoretical background and study their impact
on the accuracy of solutions to a set of simplified test prob-
lems, which are designed to resemble typical situations in astro-
physics.

The structure of the paper is as follows: Sect. 2 reviews the
basic set of equations of fluid dynamics and their implications.
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It also introduces the notation that is used in the subsequent sec-
tions. In Sect. 3 we discuss the discretization of these equations
and describe the AUSM+-up flux used in the later tests. The well-
balancing schemes are introduced in Sects. 4.1–4.3. In Sect. 5 we
test the applicability of the well-balancing methods and their per-
formance in an extensive suite of simple application examples.
Conclusions are drawn in Sect. 6.

2. Equations of compressible, ideal hydrodynamics

This section introduces the general set of equations that are
solved with the SLH code in their formulation in general coordi-
nates. The following subsections closely follow the presentation
of Miczek (2013).

2.1. Compressible Euler equations

We employ curvilinear coordinates x = (x, y, z) = (x1, x2, x3)
with a smooth mapping,

x : R3 → R3, x 7→ x(ξ), (1)

to Cartesian coordinates ξ = (ξ, η, ζ) = (ξ1, ξ2, ξ3). The rea-
soning here is that the coordinates ξ simplify the computations,
while the coordinates x are adapted to the physical object, such
as a spherical star.

The compressible Euler equations on curvilinear coordinates
then read

J
∂u
∂t

+ Aξ

∂ f ξ
∂ξ

+ Aη

∂ f η
∂η

+ Aζ

∂ f ζ
∂ζ

= Js, (2)

with the vector u of conserved variables and the fluxes f ξl given
by

u =


%
%u
%v
%w
E

 , f ξl =



% nT
ξlu

%u nT
ξlu + (nξl )x p

%v nT
ξlu + (nξl )y p

%w nT
ξlu + (nξl )z p

nT
ξiu (E + p)


, (3)

for l = 1, 2, 3. Here, density and pressure are denoted by % and
p, respectively. The velocity vector, expressed through its curvi-
linear components, reads u = (u, v,w) and enters the equation for
the total energy density E = %ε + 1

2%|u|
2 + %φ with the specific

energy ε and the gravitational potential φ. The inclusion of the
potential in the total energy does not lead to numerical difficul-
ties here because it is similar in magnitude to the internal energy
in a stellar context in general and in all the test problems pre-
sented in Sect. 5 in particular. This is possibly different in other
situations, where one of the energies is much larger and cancel-
lation errors can become a problem.

The Euler Eq. (2) in their curvilinear form in depend on the
derivatives of the coordinate transformation. Its Jacobi determi-
nant is

J =

∣∣∣∣∣∂x
∂ξ

∣∣∣∣∣ =

3∑
l,m,n=1

εlmn
∂xl

∂ξ

∂xm

∂η

∂xn

∂ζ
, (4)

where εlmn is the three-dimensional Levi-Civita symbol. The nor-
mal vector nξl and interface area Aξl in ξl-direction are

nξl =
J

Aξl


∂ξl

∂x
∂ξl

∂y
∂ξl

∂z

 , Aξl =

√(
J
∂ξl

∂x

)2

+

(
J
∂ξl

∂y

)2

+

(
J
∂ξl

∂z

)2

. (5)

External forces that enter Eq. (2) are – with an exception dis-
cussed below – collectively denoted by the source term s. While
there are different possible contributions, for example energy
generation due to nuclear burning, gravity inevitably appears in
any astrophysical setup. At the same time it might pose diffi-
culties for hydrodynamical codes to maintain hydrostatic solu-
tions to Eq. (2) (see Sect. 2.3) if it includes a strong gravitational
source term as is common in the interior of stars. When gravity
is the only source term, the expression for s reads

s =


0
−% ∂φ

∂x
−% ∂φ

∂y

−% ∂φ
∂z

0


. (6)

This adds gravitational forces to the momentum part of Eq. (2).
The presence of a gravitational field also affects the evolution
of total energy. We include this effect in the definition of the
total energy rather than the source term, since this treatment sig-
nificantly improved our accuracy in numerical experiments. We
found this to be crucial in simulations of low Mach number con-
vection.

The source term adds gravitational force to the momentum
equations. For our current treatment and test setups, the gravi-
tational potential φ is fixed in time and changes the mass distri-
bution during the simulation is excluded, meaning self-gravity
is neglected. It is a reasonable simplification if the setup is very
close to hydrostatic equilibrium and the change in the mass dis-
tribution is negligible. Such an approximation, however, fails for
stellar core simulations at later evolutionary stages, where asym-
metries in the mass distribution may arise due to violent con-
vective motions. However, these setups are not the typical use
cases of the well-balancing techniques presented in this paper
as deviations from hydrostatic equilibrium are nonnegligible. In
our notation lower indices do not indicate partial derivatives to
avoid confusion.

2.2. Equation of state

The common choice to close the Euler system Eq. (2) is using
an EoS. There are few physically relevant EoS which can be
given in a short, explicit analytical form. Two of these are dis-
cussed in the following. We assume that all components of the
gas are in local thermodynamic equilibrium, that is they can all
be described with a common temperature.

2.2.1. Ideal gas

The ideal gas is one of the simplest EoS, yet with a wide range
of applications. It describes an ensemble of randomly moving,
noninteracting particles in thermodynamic equilibrium. It is an
acceptable model for terrestrial gases, such as air, for which the
interactions between the particles are small. It serves well in the
case of a fully ionized plasma, such as in the interior of stars,
as long as the effects of degeneracy and radiation pressure are
small.

The ideal gas pressure is given by

p(%, ε) = p(%,T (%, ε)) =
R
µ
%T (%, ε), (7)

with the temperature

T (%, ε) =
(γ − 1)µ

R
·
ε

%
· (8)
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The gas constant R for the ideal gas is 8.31446261815324 ×
107 erg K−1 mol−1. The specific heat ratio γ depends on the inter-
nal degrees of freedom in the underlying gas mixture, typical
values are 5/3 for monatomic gases and 7/5 for diatomic gases.
For our treatment, it is convenient to write the ideal gas EoS in
the form of Eq. (7) depending on the temperature T instead of
the explicit dependence of ε. We use this form of the EoS to for-
mulate hydrostatic equilibria with certain temperature profiles.

2.2.2. Helmholtz equation of state

While the ideal gas is a useful approximation of the EoS of stellar
interiors, it does not capture the effect of partially or fully degen-
erate electrons or of radiation pressure. A commonly used EoS
that includes these effects to great precision is the Helmholtz
EoS (Timmes & Swesty 2000). It relies on a interpolation of
the Helmholtz free energy from tabulated values using biquintic
Hermite polynomials. All other quantities are then derived from
expressions involving derivatives of the Helmholtz free energy.
This approach ensures that all thermodynamic consistency rela-
tions are fulfilled automatically. This EoS has a wide range of
applicability and serves as a typical example of a general tab-
ulated EoS, contrasting our approaches to some well-balanced
methods relying on using a specific EoS, such as the ideal gas.

2.3. Hydrostatic solutions

Except for the very late stages of stellar evolution, stars can be
considered as gaseous spheres, which change only over very
long timescales, much longer that those of the fluid motions.
Dynamical processes acting in the interiors, as for example con-
vective motions, however, evolve on much shorter timescales.
Thus, in hydrodynamical simulations that aim to follow such fast
processes, a star can, to first order, be described as a static strat-
ification with pressure and density profiles constant in time, that
is

u ≡ 0, %(t, x) = %(x), and p(t, x) = p(x). (9)

These conditions reduce the first and the last part of Eq. (2) to
the trivial relations

∂t% = 0 and ∂t(%E) = 0. (10)

The momentum equations lead to the hydrostatic equation

∇p(%,T ) = −%∇φ. (11)

This equation is invariant under transformations between differ-
ent sets of curvilinear coordinates. A pair of constant-in-time
functions % and p, which satisfy Eq. (11) together with the cho-
sen EoS is called hydrostatic solution or hydrostatic equilibrium.
Since the EoS usually depends on temperature, there is in many
cases a whole continuum of hydrostatic solutions rather than
uniqueness.

Convective stability

Depending on the stratification, perturbations to the hydrostatic
solution may lead to dynamical phenomena. One important
example is convection, where hydrostatic equilibrium is not per-
fectly fulfilled anymore but deviations are small.

The criterion for stability against convection is typically
derived by considering the behavior of a small fluid element
being perturbed from the surrounding stratification. The fre-
quency at which the element oscillates around its equilibrium

position χ0 is called the Brunt–Väisälä frequency N. Its square
is given by

N2 =
∂φ

∂χ

1
%ext

(
∂%int

∂χ
−
∂%ext

∂χ

)∣∣∣∣∣∣
χ0

, (12)

where χ denotes the vertical coordinate1, %int is the density of
the small fluid element, and %ext is the density of the background
stratification. It is assumed that the fluid element changes its state
adiabatically, that is without exchanging heat with its surround-
ing, and the derivative ∂%int/∂χ is interpreted as the adiabatic
change of density while maintaining pressure equilibrium with
the background stratification at height χ. For the full derivation
of Eq. (12) we refer the reader to any textbook on stellar astro-
physics (e.g., Maeder 2009; Kippenhahn et al. 2012).

It is common to express the gradients in Eq. (12) in terms
of different variables. In the case of homogeneous composition
(µ(x) = const.) Eq. (12) is equivalent to

N2 = −
∂φ

∂χ

∂

∂χ

(
s

cp

)
= −

∂φ

∂χ

δ

T

[
∂T
∂χ
−

(
∂T
∂χ

)
ad

]
, (13)

with specific entropy s and specific heat at constant pressure cp
and the equation of state derivative,

δ = −
∂ ln %
∂ ln T

, (14)

which is 1 in the ideal gas case. The subscript “ad” denotes the
adiabatic derivative as mentioned above.

Another common form of this equation is using a variant of
the temperature gradients expressed using pressure as a coordi-
nate,

∇ =
∂ ln T
∂ ln p

. (15)

Using this definition Eq. (12) is equivalent to

N2 = −
∂φ

∂χ

δ

Hp
(∇ − ∇ad) , (16)

with the pressure scale height,

Hp = −
∂χ

∂ ln p
= −p

∂χ

∂p
. (17)

We call a hydrostatic equilibrium stable with respect to convec-
tion or convectively stable, if N2 ≥ 0. Otherwise we call it unsta-
ble with respect to convection or convectively unstable. This is
a local definition, which means that a hydrostatic solution can
be convectively stable in one region and convectively unstable in
another. A suitable reference time for convectively stable setups
is the minimal Brunt–Väisälä time

tBV = min
x∈Ω

tloc
BV(x) =

2π
maxx∈Ω N(x)

. (18)

It seems to be a natural timescale for the evolution of small per-
turbations as explained for example in Berberich et al. (2019).
For any hydrostatic solution, the value of N2 can be either cal-
culated analytically (for simple EoS, like the ideal gas EoS) or
numerically for more complex EoS.

1 That is the direction opposing the vector of gravitational acceleration.
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Another useful timescale is the sound crossing time tSC
through the domain. Similar to Käppeli & Mishra (2016), we
define tSC in the direction of coordinate ξl as

tSC = 2 min
ξi,i,l

∫ ξl
U

ξl
L

dξl 1
c
(
ξ1, ξ2, ξ3) , (19)

with ξl
L and ξl

R being the lower and upper boundaries of the
domain in that direction. The speed of sound c is calculated using
the equation of state. An expression for the sound speed using a
general equation of state is given by

c(%, ε) =

√
∂p(%, ε)
∂%

+
∂p(%, ε)
∂ε

·
ε + p(%, ε)

%
, (20)

where the function for the pressure p comes from an equation of
state (see Sect. 2.2).

3. Discretization

Analytic solutions to Eq. (2) as for example given by the hydro-
static solution of Sect. 2.3 are exceptions and require special
initial conditions. To obtain more general solutions, which also
allow for more complex dynamics such as turbulent convec-
tion developed from perturbations in a hydrostatic stratification,
Eq. (2) needs to be solved numerically. While there are several
different numerical approaches, this section focuses on the meth-
ods that are employed by the SLH code. For a more general
introduction on this topic, see Toro (2009).

3.1. Finite-volume scheme

For the numerical solution, the underlying equations have to be
discretized on a, possibly curvilinear, mesh that resembles the
physical spatial domain. This grid is then mapped to Cartesian
coordinates on which the computations are conducted. A set of
integers (i, j, k) denotes the center of the (i, j, k)-th cell while,
for example, (i + 1/2, j, k) denotes the interface between cell
(i, j, k) and (i + 1, j, k). The semi-discrete finite-volume scheme
is obtained by integrating Eq. (2) over the cell volume in com-
putational space, leading to

Vi jk
∂Ui jk

∂t
= − Ai+ 1

2 , j,k
(F̂ξ)i+ 1

2 , j,k
+ Ai− 1

2 , j,k
(F̂ξ)i− 1

2 , j,k

− Ai, j+ 1
2 ,k

(F̂η)i, j+ 1
2 ,k

+ Ai, j− 1
2 ,k

(F̂η)i, j− 1
2 ,k

− Ai, j,k+ 1
2
(F̂ζ)i, j,k+ 1

2
+ Ai, j,k− 1

2
(F̂ζ)i, j,k− 1

2
+ Vi jkŜi jk,

(21)

where Vi jk is the volume of the corresponding cell in physical
space and Ai+ 1

2 , j,k
, Ai, j+ 1

2 ,k
, and Ai, j,k+ 1

2
are the interface areas of

the interfaces in ξ, η, and ζ-direction respectively. Details on the
computation of cell volumes and interface areas are computed
to second order following Kifonidis & Müller (2012). The cell-
averaged source term is approximated to second order by

Ŝi jk = %i jk


0

(gx)i jk
(gy)i jk
(gz)i jk

0

 , (22)

where %i jk is the cell-averaged value of density and the cell-
centered gravitational acceleration (gχ)i jk = −

∂φ
∂χ

∣∣∣∣
xi jk

is com-

puted analytically from the given gravitational potential φ.

In Eq. (21), F̂ξl is an approximation of the interface flux for
l = 1, 2, 3. There is some freedom in constructing the approxi-
mate flux function that calculates F̂ξl and many approaches can
be found in the literature. However, the specific choice is crucial
for the accuracy of the numerical solution. This is further dis-
cussed in Sect. 3.2 in the context of flows at low Mach numbers

M =
|u|

c
, (23)

where c is the speed of sound given by Eq. (20).
The values that enter the approximate flux function need to

be reconstructed from the center of the cells to the corresponding
interfaces. The reconstruction and the evaluation of the flux is
done for each coordinate direction separately, before the result-
ing fluxes over the surfaces are added for each cell.

The semi-discrete scheme is then evolved in time using an
ODE solver, such as a Runge–Kutta method. With an at least
linear reconstruction and a sufficiently accurate ODE solver
this discretization yields a second-order accurate scheme as
has been numerically verified by Berberich et al. (2019). For
the tests in this article we mainly use the implicit second-
order accurate three step Runge–Kutta method ESDIRK23 of
Hosea & Shampine (1996).

We chose an advective CFL time step (CFLu), not strictly for
reasons of stability, but as a good compromise between accuracy
and efficiency. In curvilinear coordinates it takes the form

∆tCFLu = cCFL min
i jkl

(∆ξl)i jk

|nξl · u|i jk
, (24)

with a constant cCFL of order unity and an estimate of the cell
length in direction ξl given by

(∆ξ1)i jk =
Vi jk

1
2

(
Ai− 1

2 , j,k
+ Ai+ 1

2 , j,k

) , (25)

and accordingly for (∆ξ2)i jk and (∆ξ3)i jk.
This time step criterion generally works well when the flow

is fully developed, but it has problems when the Mach numbers
on the grid are very small (e.g., in the beginning of a simula-
tion with zero initial velocities), because this yields very large
or infinite time steps. As a way to prevent this, Miczek (2013)
suggests to include the free-fall signal velocity in the time step
calculation. The so-called CFLug time step is then given by

∆tCFLug = cCFL min
i jkl

(∆ξl)i jk

si jkl
, (26)

with the signal velocity

si jkl =
1
2

(
al|nξl · u| +

√
|nξl · u|2 + 4alcCFL(∆ξl)nξl · g

)
i jk
. (27)

The parameter al selects the right branch of the quadratic solu-
tion and is given in Table 1.

For Mach numbers close to M = 1, however, it is usually
more efficient to use explicit time stepping. For this we use the
third-order accurate RK3 scheme of Shu & Osher (1988) with a
CFLuc time step controlled by the fluid velocity and sound speed.
It is given by

∆tCFLuc =
cCFL

Ndim
min
i jkl

(∆ξl)i jk

|nξl · u|i jk + ci jk
, (28)
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Table 1. Parameter al used in the computation of the signal velocity in
Eq. (27).

Condition al

nξl · u > 0, nξl · g > 0 +1
nξl · u ≤ 0, nξl · g ≤ 0 −1

nξl · u > 0, nξl · g ≤ 0,
(
nξl ·u

)2

4nξl ·g
+ cCFL(∆ξl) ≤ 0 +1

nξl · u > 0, nξl · g ≤ 0,
(
nξl ·u

)2

4nξl ·g
+ cCFL(∆ξl) > 0 −1

nξl · u ≤ 0, nξl · g > 0,
(
nξl ·u

)2

4nξl ·g
+ cCFL(∆ξl) > 0 −1

nξl · u ≤ 0, nξl · g > 0,
(
nξl ·u

)2

4nξl ·g
+ cCFL(∆ξl) ≤ 0 +1

where Ndim denotes the spatial dimensionality of the equations.
In contrast to the previous criteria, this is a strict stability cri-
terion for the explicit time stepping. We note that the use of
a third-order scheme is not strictly necessary for the presented
results. A second-order time integration scheme, such as RK2
(Shu & Osher 1988), yields virtually identical results in combi-
nation with second-order spatial reconstruction.

3.2. Numerical flux functions

A fundamental part of the discretization is the choice of a numer-
ical two-state flux. These fluxes give approximate solutions of
the two-state Riemann problem at the cell interfaces. Choos-
ing different numerical fluxes yields different properties for the
scheme. Many of the typically used Riemann solvers or other
flux functions suffer from excessive Mach number dependent
diffusion. In the case of the Roe solver (Roe 1981) the origin
of this is an upwind term in the schemes that is needed for
numerical stability (e.g., Turkel 1987; Guillard & Viozat 1999;
Miczek et al. 2015). Other Godunov-type schemes are subject to
similar issues (Guillard & Murrone 2004). To correct this behav-
ior, a number of low Mach number fixes have been proposed that
aim on reducing the excessive diffusion and make it independent
of the Mach number (e.g., Turkel 1987; Li & Gu 2008; Rieper
2011; Oßwald et al. 2015; Miczek et al. 2015; Barsukow et al.
2017a; Berberich & Klingenberg 2020).

One peculiarity of astrophysical setups compared to, for
example, setups in the engineering community is the presence of
strong stratifications where pressure and density may change by
orders of magnitudes within the computational domain. In such
setups, the reduction of diffusion comes with the risk of reducing
stability and many of the schemes found in the literature develop
instabilities. The SLH code is designed in a modular fashion that
facilitates the implementation and testing of different types of
flux functions. In numerical tests we find the so-called AUSM+-
up method to yield appropriate results in the low-Mach regime
in combination with the well-balancing method discussed here.
The basic construction and a modification for improved low-
Mach behavior is discussed here.

An approach to numerical flux functions that can easily be
extended to flows at low Mach numbers is followed in the class
of Advective Upstream Splitting Methods (AUSM), which have
been first introduced by Liou & Steffen (1993). In Liou (1996)
the AUSM scheme was extended to AUSM+, the idea of which
we briefly describe in the following. To be consistent with the
original publication, we use dimensionalized quantities.

The central idea is to split the analytical flux function fχ of
Eq. (2) into a pressure and a mass flux via

f xi
= p ei+1 + ṁiψ, (29)

with

ṁi = %vi, ψ =


1
u
v
w

E +
p
%

 , i ∈ [1, 2, 3] (30)

and the i-th canonical basis vector in the five-dimensional flux
vector space ei. This formulation is given for Cartesian coordi-
nates, a transformation to curvilinear coordinates is possible.

The pressure and mass flux of Eq. (29) are discretized sepa-
rately which results in the numerical flux function

F̂xi (UL,UR) = p1/2(UL,UR) ei+1 + ṁ1/2(UL,UR)ψup(UL,UR),
(31)

where the upwind term ψup is given by

ψup(UL,UR) =

{
ψ(UL) if ṁ1/2(UL,UR) ≥ 0,
ψ(UR) otherwise. (32)

The core properties of this numerical flux function are deter-
mined by the definition of the interface values p1/2 and ṁ1/2
of the pressure p and the mass flux ṁi. With the initially pro-
posed definitions of Liou (1996), this flux function is not capa-
ble of resolving low Mach number flows. However, Liou (2006)
extended the AUSM+ scheme to AUSM+-up with enhanced low
Mach number capability.

For AUSM+-up, the interface pressure is defined as

p1/2 = P+
(5)(ML)pL + P−(5)(MR)pR

− KuP
+
(5)(ML)P+

(5)(MR)(%L + %R)( fa c1/2)(uR − uL), (33)

where P±(5) are fifth degree polynomial functions, c1/2 is an
approximation for the interface speed of sound, and Ku is a con-
stant that can be set to a value between zero and unity. We refer
the reader to Liou (2006) for the detailed definitions of the terms.
The third term on the right hand side of Eq. (33) that includes
velocity-diffusion is called u-term and is designed to reduce the
numerical dissipation at low Mach numbers. It involves a scaling
factor fa defined as

fa = Mo(2 − Mo), (34)

with

Mo = min [1,max (Ma,Mcut)] , (35)

where Mcut is a cut-off Mach number that ensures that fa does
not approach 0 in the limit of very small Mach numbers. This
is necessary to prevent singularities as the inverse of fa enters
into the mass-flux part (see Eq. (36)) in the original definition
of AUSM+-up. However, as described below, the SLH code sets
the scaling in these two parts independently such that Mcut can
be theoretically set to zero. In SLH, for implementation reasons
the value is set to a small value, typically to 10−13, to avoid diver-
gence at smaller Mach numbers. This could easily be changed,
but does not have a practical influence on our calculations. The
mass flux in AUSM+-up is given by

ṁ1/2 = c1/2M1/2

{
%L if Ṁ1/2 > 0,
%R otherwise, (36)
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with the interface Mach number

M1/2 =M+
(4)(ML) +M−(4)(MR) −

Kp

f p
a

max
(
1 − σM̄2, 0

) pR − pL

%1/2c2
1/2

.

(37)

Here, M±(4) are fourth degree polynomial functions and M̄ =

(u2
L +u2

R)/(2c2
1/2). Kp and σ are constants between zero and unity.

The last term is called the p-term and is a pressure diffusion
term that was introduced to ensure pressure–velocity coupling at
low speeds (Edwards & Liou 1998). In the original AUSM+-up
scheme the Mach number dependent scaling of the p-term, f p

a ,
was chosen identical to that of the u-term, fa. Similar to Miczek
(2013) we chose independent cut-off values for fa and

f p
a = Mp

o (2 − Mp
o ), Mp

o = min
[
1,max

(
M,Mp

cut

)]
. (38)

This way, f p
a can be defined with a significantly higher cut-off

Mach number (typically around 10−1) compared to fa. This pre-
vents stability issues, which can occur at locally very low Mach
numbers when 1/ f p

a becomes exceedingly large. We use this
modified scheme in the presented tests and refer to it as AUSM+-
up. Still even this scheme is struggling with maintaining a simple
hydrostatic stratification as shown in Sect. 5.1.

It is important to note that the role of the effect of the pres-
sure diffusion is altered by combining AUSM+-up with any of
the well-balancing methods described in the following: well-
balancing techniques lead to an exact reconstruction of the
hydrostatic pressure. Only the nonhydrostatic pressure devia-
tions are captured by the reconstruction and given to the numer-
ical flux. Hence, when well-balancing is applied, the pressure
diffusion acts on the nonhydrostatic pressure only.

We define a corresponding basic scheme called AUSM+
B-up

by setting Mcut = Mp
cut = 1. This scheme does have high dis-

sipation at low Mach numbers and we just use it to assess the
interaction of the various well-balanced schemes with low Mach
number flux functions.

4. Well-balancing methods

To illustrate the issue with configurations close to hydrostatic
equilibrium in finite-volume codes we consider the effect of one
time step on an initial configuration in perfect hydrostatic equi-
librium. For simplicity we discretize the time derivative using the
forward Euler method and only consider the one-dimensional
Euler equations. From the analytic result we expect that this
step will not alter the states and any subsequent steps will also
keep the hydrostatic equilibrium intact. To this end we associate
a discrete stationary solution that provides a good approxima-
tion to the hydrostatic equilibrium. If starting from a discrete
hydrostatic equilibrium, the solution of the time evolutionary
problem does not change for a numerical scheme, we call it
well-balanced.

The density, momentum, and total energy after one time step
of length ∆t (denoted by the superscript “1”) are calculated from
the previous values (denoted by the superscript “0”), the inter-
face fluxes F̂, and the cell-centered source term Ŝ. The result for
cell i is

%1
i = %0

i −
∆t
∆x

[(
F̂0

i+ 1
2

)
1
−

(
F̂0

i− 1
2

)
1

]
, (39)

(%u)1
i = (%u)0

i −
∆t
∆x

[(
F̂0

i+ 1
2

)
2
−

(
F̂0

i− 1
2

)
2

]
+ ∆t

(
Ŝi

)
2
, (40)

E1
i = E0

i −
∆t
∆x

[(
F̂0

i+ 1
2

)
3
−

(
F̂0

i− 1
2

)
3

]
, (41)

where the indexes outside the parentheses stand for the vec-
tor component of the flux or source term. To be well-balanced,
a scheme needs to guarantee that the step leaves the state
unchanged, which leads to the conditions

0 =

(
F̂0

i+ 1
2

)
1
−

(
F̂0

i− 1
2

)
1
, (42)

0 =

(
F̂0

i+ 1
2

)
2
−

(
F̂0

i− 1
2

)
2
− ∆x

(
Ŝi

)
2
, (43)

0 =

(
F̂0

i+ 1
2

)
3
−

(
F̂0

i− 1
2

)
3
. (44)

As the fluxes are evaluated at different states, none of these con-
ditions is fulfilled automatically. A consistent numerical flux will
automatically satisfy Eqs. (42) and (44) because the 1- and 3-
components of the fluxes are zero for u = 0. The case of Eq. (43)
is less straightforward. Here, the discretization of the source term
must be constructed to match the flux difference in the hydro-
static case. The methods described in the following subsections
achieve this in different ways.

4.1. Cargo–LeRoux method

4.1.1. The one-dimensional Cargo–LeRoux method

One method to turn almost any hydrodynamics scheme into
a well-balanced scheme was suggested by Cargo & Le Roux
(1994) (see also Le Roux 1999). The only prerequisites it needs
are support for a general equation of state and flux func-
tions that resolve contact discontinuities. For completeness we
describe the original method, which is only applicable in the
one-dimensional case, and turn to the multidimensional exten-
sion in Sect. 4.1.2. The one-dimensional Euler equations with
gravity read

∂

∂t

 %%u
E′

 +
∂

∂x

 %u
%u2 + p

u(E′ + p)

 =

 0
%g
%gu

 , (45)

with g being the, possibly negative, gravitational acceleration in
the x-direction. The 1D method presented here relies on gravity
being constant in space and time. Furthermore, E′ = %ε + 1

2%|u|
2

is the total energy excluding potential energy. It is only used in
the one-dimensional method in this subsection. The multidimen-
sional extension in Sect. 4.1.2 follows a slightly different princi-
ple using the total energy E including the potential as defined in
Sect. 2.

Cargo & Le Roux (1994) suggest the introduction of a
potential q defined by its spatial and temporal derivatives

∂q
∂x

= %g,
∂q
∂t

= −%ug. (46)

Numerically, this potential is treated like a composition vari-
able, meaning that its time evolution is determined by the advec-
tion equation,

∂(%q)
∂t

+
∂(%qu)
∂x

= 0. (47)

This ensures that the conditions of Eq. (46) are fulfilled at all
times if they are satisfied initially.

Expressing the right side of Eq. (45) using q yields

∂

∂t

 %%u
E′

 +
∂

∂x

 %u
%u2 + p

u(E′ + p)

 =


0
∂q
∂x
−
∂q
∂t

 . (48)
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Collecting derivatives with respect to the same variable and
inserting 0 = q − q results in

∂

∂t

 %
%u

E′ + q

 +
∂

∂x

 %u
%u2 + p − q

u(E′ + q + p − q)

 =

00
0

 . (49)

At this point we introduce a modified EoS based on an arbitrary
original EoS by defining a new pressure, Π, and total energy per
volume, F, as

Π = p − q, F′ = E′ + q. (50)

With this definition Eq. (49) takes the form of the homogeneous
Euler equations for a modified EoS,

∂

∂t

 %%u
F′

 +
∂

∂x

 %u
%u2 + Π

u(F′ + Π)

 =

00
0

 . (51)

The physical meaning of q is that of hydrostatic pressure, except
for an arbitrary constant offset. This means that the modified
pressure Π of an atmosphere in perfect hydrostatic equilibrium
is spatially constant, making the solution of the Euler equations
trivial.

This new EoS does not change the speed of sound. This can
easily be seen from rewriting the expression for the speed of
sound for a general EoS (20) in terms of Π and F′. Because
q does not depend on any other thermodynamic variables, the
rewritten expression takes the same form as the original.

4.1.2. A multidimensional extension

An obvious multidimensional extension of the aforementioned
method would be introduce a potential q with the defining
properties

∇q = %g,
∂

∂t
q = −%g · u. (52)

While the algebra shown in Eqs. (48)–(51) is still valid for this
new potential, the problem with this definition is the mere exis-
tence of this potential q. From Eq. (52) follows that

∇ × (∇q) = ∇ × %g = 0, (53)

and using the fact that ∇ × g = 0, due to g being derived from a
gravitational potential, we can simplify this equation to

∇ × %g = %∇ × g − g × ∇% = −g × ∇% = 0. (54)

This means that a potential only exists if the cross product g×∇%
vanishes. This only happens for any of the following three con-
ditions: the trivial case of gravity being globally zero, the case of
constant density, and the case where the gradient of density has
the same equilibrium with its surroundings. Thus, the approach
of Eq. (52) is not suitable.

In order to construct a general, but approximate, multidimen-
sional extension of the well-balanced method from Sect. 4.1.1,
we restrict ourselves to problems in which % does not vary
strongly on equipotential surfaces of the gravitational potential
φ. We denote an average on these equipotential surfaces, which
we call horizontal average, with the operator 〈·〉, so we can define
an averaged density

%0 = 〈%〉. (55)

By definition of the horizontal average, the gradient of %0 is par-
allel to g. This allows us to define the potential by

∇q = %0g,
∂

∂t
q = 0, (56)

for which Eq. (54) is fulfilled automatically.
The fluxes (Eq. (3)) and the source term (Eq. (6)) in the com-

pressible Euler equations (Eq. (2)) can then be rewritten as

f ξl =



% nT
ξlu

%u nT
ξlu + (nξl )xΠ

%v nT
ξlu + (nξl )yΠ

%w nT
ξlu + (nξl )zΠ

nT
ξiu (F + Π)


, s =


0

−(% − %0) ∂φ
∂x

−(% − %0) ∂φ
∂y

−(% − %0) ∂φ
∂z

0


. (57)

There are two fundamental differences between this form and
Eq. (51). First, F = E + q is defined including the poten-
tial energy. This is different from the one-dimensional case in
Eq. (50). q is now temporally constant, but because of the differ-
ent definition of the total energy, the source term in the energy
equation still vanishes. Second, the source term in the momen-
tum equation does not completely vanish anymore. It is now
proportional to the local deviation of density from its horizon-
tal average. Even though this scheme loses some of the advan-
tageous properties of the one-dimensional version, it is still
a significant improvement for multidimensional simulations of
stratified atmospheres.

A positive side effect of q being temporally constant is that,
in contrast to the original Cargo–LeRoux method, the grav-
itational acceleration, g, is now allowed to vary spatially. A
temporal variation of g is also possible, for example through
self-gravity, but that necessitates a recomputation of q to keep
the well-balanced property.

Because it only requires to a slight modification of the EoS,
it is expected that the Cargo–LeRoux well-balancing method
can be implemented into an existing hydrodynamic code rather
easily, provided it supports a general EoS. Cargo–LeRoux well-
balancing generally only works with flux functions that preserve
contact discontinuities. It works well with the AUSM+-up family
of fluxes used in this paper.

4.2. The α-β method

Another approach to balance any hydrostatic solution is the α-
β well-balancing method presented by Berberich et al. (2018).
Similar to the Cargo–LeRoux method, the hydrostatic solution
needs to be known a priori. An advantage of the α-β well-
balancing however is, that it permits an arbitrary, even multi-
dimensional, structure of the hydrostatic target solution. Hence,
the α-β method is able to deal with the example of a low-density
bubble in pressure-equilibrium with its surrounding of Sect. 4.1
that could not be balanced with the Cargo–LeRoux method.

The key idea of this method is to replace the physical val-
ues of % and p by their respective relative deviation prior to the
reconstruction at the cell interfaces. The reconstructed values are
then multiplied by the known hydrostatic solution at the inter-
faces. The second-order approximation of gravity is constructed
such that the source term exactly cancels the flux over the inter-
face and hence that the initial hydrostatic stratification is main-
tained to machine precision.

For convenience, the working principle of the α-β well-
balancing method is demonstrated for the one-dimensional Euler
equations in Cartesian coordinates. The extension to higher
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dimensional curvilinear grids follows the same principle and can
be found in Berberich et al. (2019) together with a mathemati-
cally more rigorous formulation of the method.

For a given gravitational potential φ(x), we denote %̃ and p̃ as
the solution to the hydrostatic equation (Eq. (11)) in one dimen-
sion, that is

∂p̃
∂x

= −%̃
∂φ(x)
∂x

. (58)

The solutions are written as

%̃ = %0 α(x), p̃ = p0 β(x), (59)

where α(x), β(x) are dimensionless profiles and %0, p0 carry the
physical dimension of density and pressure, respectively. It is
assumed that the profiles in Eq. (59) are known at least at coor-
dinates that coincide with cell centers and interfaces.

The numerical solution of the one-dimensional Euler equa-
tion in the finite volume approach requires the reconstruction
of the quantities from each cell center i of the computational
domain to the respective cell interfaces i + 1

2 . In general, there
is some freedom in choosing the set of quantities that is recon-
structed in addition to the velocities. This is exploited by the α-β
well-balancing method, which considers the relative deviation
from the hydrostatic solution. The set of quantities at cell i that
are reconstructed is hence chosen to be

Wi =
(
W%

i ,W
u
i ,W

p
i

)
=

(
%i

α(xi)
, ui,

pi

β(xi)

)
. (60)

There is no restriction on the specific choice of the reconstruc-
tion scheme that calculates the value of Wi at the interface, that
is Wi± 1

2
. After reconstruction, the variables are transformed back

to their physical counterpart by multiplication with the known
hydrostatic solution at the interfaces,

%L/R
i+ 1

2
= α

(
xi+ 1

2

) (
W%

i+ 1
2

)L/R
, uL/R

i+ 1
2

=

(
Wu

i+ 1
2

)L/R
,

pL/R
i+ 1

2
= β

(
xi+ 1

2

) (
W p

i+ 1
2

)L/R
. (61)

Here, L/R denotes the value at the interface when reconstruct-
ing from the left or right side, respectively. The values given by
Eq. (61) enter into the numerical flux function (see Sect. 3.2).

If density % and pressure p on the computational grid corre-
spond to the hydrostatic solution Eq. (59) and u ≡ 0, it follows
that the quantities reconstructed from the left and right side are
equal for all cell interfaces and hence

UL
i+ 1

2
= UR

i+ 1
2

= Ui+ 1
2
. (62)

If the left and right interface state are the same, any numerical
flux function has to equal the analytical flux function to ensure
the consistency of the method. Thus,

F̂x

(
UL

i+ 1
2
,UR

i+ 1
2

)
= f x

(
Ui+ 1

2

)
=

 0
p̃(xi+ 1

2
)

0

 , (63)

which immediately follows from Eq. (3) for vanishing velocities.
In order to maintain hydrostatic equilibrium, the residual flux

of Eq. (63) has to be balanced exactly by the source term s in
Eq. (2). To achieve this, the α-β method expresses the gravita-
tional potential in Eq. (6) with the aid of the hydrostatic equation
Eq. (58) as

−
∂φ

∂x
=

p0

%0 α(x)
∂β(x)
∂x

. (64)

The one-dimensional source term for gravity (see Eq. (22)) is
then given by

Ŝi =

0
si
0

 , si =
p0

%0

βi+ 1
2
− βi− 1

2

∆x
%i

αi
, (65)

which is a second-order accurate discretization. If the states on
the computational grid correspond to the hydrostatic solution,
then Eq. (65) reduces to

si =


0

p̃
(
xi+ 1

2

)
− p̃

(
xi− 1

2

)
0


= F̂x

(
UL

i+ 1
2
,UR

i+ 1
2

)
− F̂x

(
UL

i− 1
2
,UR

i− 1
2

)
(66)

and the discretized source term exactly cancels the interface
fluxes. This leads to zero residual and thus to a well-balanced
scheme. The well-balanced property for the one-dimensional α-
β method is formally shown in Berberich et al. (2018).

4.3. The deviation method

In the following we give a short description of the simple
and general well-balanced method introduced in Berberich et al.
(2021). For more details we refer the reader to this reference.
The core of the method is the target solution ũ, which must be
known a priori. It has to be a stationary solution to the Euler
equations (2), that is it has to satisfy the relation

Aξ

∂ f ξ(ũ)

∂ξ
+ Aη

∂ f η(ũ)

∂η
+ Aζ

∂ f ζ(ũ)

∂ζ
= Js(ũ). (67)

It is noteworthy that, in contrast to other well-balancing meth-
ods, it can include a nonzero velocity. In the numerical applica-
tions in Sect. 5 we are going to store the hydrostatic or stationary
solution which shall be well-balanced in ũ. Subtracting Eq. (67)
from Eq. (2) yields the evolution equation

J
∂(∆u)
∂t

+Aξ

(
∂ f ξ(ũ + ∆u)

∂ξ
−
∂ f ξ(ũ)

∂ξ

)
+Aη

(
∂ f η(ũ + ∆u)

∂η
−
∂ f η(ũ)

∂η

)
+Aζ

(
∂ f ζ(ũ + ∆u)

∂ζ
−
∂ f ζ(ũ)

∂ζ

)
= J (s(ũ + ∆u) − s(ũ))

(68)

for the deviations ∆u = u − ũ from the target solution ũ. In
order to obtain a well-balanced scheme which exactly maintains
the stationary target solution ũ, we discretize Eq. (68) instead of
Eq. (2). This yields

Vi jk
∂(∆U)i jk

∂t
= − Ai+ 1

2 , j,k
(F̂dev

ξ )i+ 1
2 , j,k

+ Ai− 1
2 , j,k

(F̂dev
ξ )i− 1

2 , j,k

− Ai, j+ 1
2 ,k

(F̂dev
η )i, j+ 1

2 ,k
+ Ai, j− 1

2 ,k
(F̂dev

η )i, j− 1
2 ,k

− Ai, j,k+ 1
2
(F̂dev

ζ )i, j,k+ 1
2

+ Ai, j,k− 1
2
(F̂dev

ζ )i, j,k− 1
2

+ Vi jkŜdev
i jk , (69)
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where the numerical flux differences(
F̂dev
ξ

)
i+ 1

2 , j,k
=

(
F̂ξ

)
i+ 1

2 , j,k
− f ξ

[
ũ
(
xi+ 1

2 , j,k

)]
,(

F̂dev
η

)
i, j+ 1

2 ,k
=

(
F̂η

)
i, j+ 1

2 ,k
− f η

[
ũ
(
xi, j+ 1

2 ,k

)]
,(

F̂dev
ζ

)
i, j,k+ 1

2

=
(
F̂ζ

)
i, j,k+ 1

2
− f ζ

[
ũ
(
xi, j,k+ 1

2

)]
are the differences between the numerical fluxes evaluated at the
states ũ + ∆UL/R and the exact fluxes evaluated at the values
of the target solution at the interface centers. The interface val-
ues ∆UL/R are obtained via reconstruction. To reconstruct in the
set of variables uother = T (u) that is different from conserved
variables u, the reconstruction is applied to the transformed
deviations

∆Uother
i jk = T

(
ũ
(
xi jk

)
+ ∆Ui jk

)
− T

(
ũ
(
xi jk

))
. (70)

After reconstruction, the interface values are transformed back.
For the left interface values, this reads

UL
i+ 1

2 , j,k
= T −1

(
T

(
ũ
(
xi+ 1

2 , j,k

))
+ ∆Uother

i+ 1
2 , j,k

)
, (71)

and right interface values are calculated likewise. The source
term difference discretization in Eq. (69) is

Ŝdev
i jk = Ŝ

(
ũ
(
xi jk

)
+ ∆Ui jk

)
− Ŝ

(
ũ
(
xi jk

))
, (72)

where Ŝ(U) means that the source term discretization Eq. (22)
is evaluated at the state U. It has been shown in Berberich et al.
(2021) that this modification of the scheme (21) renders it well-
balanced in the sense that the residual vanishes if u = ũ and that
the method can be applied in arbitrarily high order finite-volume
codes.

This method follows ideas already published elsewhere
in the literature. Veiga et al. (2019) introduce a similar well-
balanced scheme in the context of finite element methods. The
method introduced in Dedner et al. (2001) for stratified MHD
flows with gravity also shares many features with the devia-
tion method. The key difference is that the Dedner et al. (2001)
method subtracts the residual of the initial state of the simulation,
while the deviation method subtracts a known background state
during the spatial reconstruction step, which is at an earlier stage.
While we have not quantified this in tests, it is expected that
the deviation method will produce a more accurate reconstruc-
tion close to equilibrium because it is essentially reconstructing
a constant function.

5. Numerical tests and application examples

This section presents simple test simulations that verify that
the presented well-balancing methods in combination with a
low-Mach flux function are stable and do enable correct rep-
resentation of slow flows in stellar-type stratifications. This
is done for steady-state and dynamical test problems. Unless
stated otherwise, time integration is performed with the implicit
ESDIRK23 scheme in combination with the CFLug time step
criterion (Eq. (26)). The corresponding value of cCFL is stated
for each of the simulations individually. For the numerical flux,
the AUSM+-up scheme (Sect. 3.2) is used with f p

a = 0.1 and
fa = 10−13. Interface values are calculated from cell averages by
applying linear reconstruction without any slope or flux limiters.

The set of reconstructed quantities is either %-P or %-T , depend-
ing of the well-balancing method, and will be stated explicitly
for the respective simulations. The choice of appropriate bound-
ary conditions depends on the specific setup, hence they are
given for each setup individually. All of our test cases are two-
dimensional for computational reasons, although the methods
are equally valid in three spatial dimensions. Qualitatively dif-
ferent results for the 3D case are not expected.

5.1. Simple stratified atmospheres

A useful test problem for the quality of a well-balanced scheme
is a stably stratified atmosphere. A zero-velocity initial condition
should be maintained perfectly, at least down to rounding errors.
However, in a not well-balanced scheme the pressure-gradient
force and gravity do not cancel exactly and the systems ends up
in a state with small, but nonzero, acceleration. Depending on the
details of the numerical flux, this acceleration may prevent the
simulation of flows at very low Mach numbers or it may cause
unphysical convection in formally stable stratifications. In any
case, keeping a hydrostatic stratification stable is a necessary,
but not a sufficient condition for a well-balanced scheme to be
useful for the simulation of stratified atmospheres.

We start with the one-dimensional (1D), isothermal test case
of Käppeli & Mishra (2016) on the domain [0, 2 cm]. Gravity is
points into negative x-direction and the gravitational potential is
given by

φ = s0x, (73)

with a steepness s0 of 1 cm s−2. The constant temperature profile
is convectively stable for any equation of state with a positive
value of δ (Eq. (14)). The density and pressure profiles fulfilling
Eq. (11) are given by,

% = %0 exp
(
−
%0

p0
φ

)
, p = p0 exp

(
−
%0

p0
φ

)
. (74)

This expression holds for any form of the gravitational potential,
not just Eq. (73). The reference density and pressure are set to
%0 = 1 g cm−3 and p0 = 1 Ba, respectively. We use Dirichlet
boundary conditions, which are initialized with the hydrostatic
profile and then left unchanged throughout the simulation. The
equation of state is that of an ideal gas with an adiabatic exponent
γ = 5/3.

Figure 1 shows the time evolution of the maximum Mach
number for this isothermal configuration in 1D simulations with
64 grid cells using a variety of well-balancing methods and two
different flux functions. The simulations use linear reconstruc-
tion in %-P variables, cCFL = 0.9 for the time step size, and they
were run until t = 5000 tBV. The figure shows that runs without
well-balancing immediately reach Mach numbers between 10−6

and 10−5, while all of the tested well-balancing methods man-
age to keep the Mach number below 10−12. The choice of flux
function does not qualitatively affect the results here, in partic-
ular it does not play a role if we use a low Mach number flux,
such as AUSM+-up, or a standard flux, such as AUSM+

B-up (see
Sect. 3.2).

Certain phenomena, such as convection, are inherently mul-
tidimensional and cannot develop in 1D geometry. Therefore we
repeat this test using a two-dimensional (2D) atmosphere. For
simplicity we keep gravity pointing in the negative x-direction.
The horizontal boundaries are periodic. Figure 2 shows the evo-
lution of the maximum Mach number and horizontal density
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Fig. 1. Time evolution of the maximum Mach number in a 1D atmo-
sphere with an isothermal temperature profile (Eq. (74)) and a lin-
ear gravitational potential (Eq. (73)). The colors indicate different
well-balancing (WB) methods, the markers different flux functions.
CL stands for Cargo–LeRoux. Time is given in units of the Brunt–
Väisälä time tBV = 9.93 s (Eq. (18)) and sound-crossing time tSC =
3.10 s (Eq. (19)). The curves have been slightly smoothed for better
visibility.
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Fig. 2. Same as Fig. 1, but for a 2D atmosphere. The solid lines repre-
sent the maximum Mach numbers on the grid and the dotted lines the
horizontal density fluctuations according to Eq. (75). The curves have
been slightly smoothed for better visibility.

fluctuation ∆% over time. The latter is defined as

∆% = % − 〈%〉y, (75)

with 〈·〉y denoting an average over the y direction.
Similar to the 1D case, we see that the simulations without

well-balancing immediately reach Mach numbers around 10−5.
All simulations using any well-balanced method start from very

low Mach numbers (≈10−13), but the ones using the low Mach
number AUSM+-up flux show an exponential growth over the
next few thousand tBV. The growth of the Mach number is linked
to that of ∆%. This growth even affects the Mach numbers in
the simulation without well-balancing, where the Mach number
increases further after about 4000 tBV. The well-balanced sim-
ulations using the AUSM+

B-up flux do not show this behavior
and retain the very low Mach numbers. We found that other low
Mach number fluxes, such as the one by Miczek et al. (2015) and
Li & Gu (2008), show a growth similar to AUSM+-up, although
the rate varies between the different schemes. These spurious
velocities are likely due to pressure–velocity decoupling, which
is a common issue with compressible low Mach number meth-
ods. In combination with a gravity source term this can lead to
an instability very similar to convection, but in stable stratifica-
tions. The reason is that pressure does not immediately return to
its horizontal equilibrium. A common way to partially alleviate
this effect is to introduce a form of pressure diffusion, such as the
one suggested by Edwards & Liou (1998), which is also used in
the AUSM+-up solver.

While the standard flux seems to perform better in this static
test case, it is ultimately not suited for the simulation of dynamic
phenomena at low Mach numbers, such as convection or waves,
due to its high numerical dissipation.

Figure 3 shows the typical pattern of the exponentially grow-
ing perturbation in both Mach number and ∆%. In both quantities
we see a resolved pattern in the horizontal direction, but a grid-
level oscillation in the vertical direction. One hypothesis for this
behavior is that it is due to unresolved internal gravity waves in
combination with pressure–velocity decoupling, see Sect. 5.3.

We run the same tests for polytropic stratifications. Here the
profiles of density, pressure, and temperature are

% = %0θ
1
ν−1 , p = p0θ

ν
ν−1 , T =

p0µ

%0R
θ = T0θ, (76)

with

θ = 1 −
ν − 1
ν

%0

p0
φ. (77)

We set µ = 1 g mol−1. The polytropic index ν determines the
slopes of the profiles. If ν is less than the adiabatic exponent γ,
the atmosphere is stable. If ν > γ, it is unstable. If both are equal
the atmosphere is isentropic and therefore marginally stable.

Figure 4 shows the maximum Mach number and ∆% for an
isentropic atmosphere. Here the Brunt–Väisälä time tBV is not
well defined because N = 0. Instead we use the sound-crossing
time tSC = 4.28 s for reference. α-β and deviation well-balancing
stay at very low Mach numbers below 10−7, independently of the
choice of flux function. This result suggests that the issue with
the exponential growth of perturbations in combination with low
Mach number flux functions is more severe in more stable strat-
ifications. In contrast to the isothermal test we see that Cargo–
LeRoux well-balancing behaves quite similarly to the not well-
balanced case. Both quickly reach Mach numbers of about 10−1

with flow patterns that resemble 2D convection. It is likely that
this marginally unstable stratification experiences the growth of
convection due to the less than ideal well-balancing properties
of the Cargo–LeRoux method.

As a last test we run a polytropic stratification with ν =
1.6 < γ = 5/3, which is stably stratified, but less so than the
isothermal case. The relevant timescales here are tBV = 20.1 s
and tSC = 4.13 s. The results are shown in Fig. 5. Here we see
that the cases without well-balancing and with Cargo–LeRoux
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Fig. 3. Mach number (top panel) and horizontal density fluctuation ∆%
(bottom panel) of the 2D isothermal simulation using the AUSM+-
up flux and deviation well-balancing at time t = 1000 tBV. Gravity is
directed in negative x-direction.

well-balancing fail to preserve the hydrostatic equilibrium in
combination with the low Mach number flux. For the other two
well-balancing methods there is a much clearer difference in the
growth rate of the perturbation with deviation well-balancing
growing significantly more slowly, reaching only Mach numbers
of 10−7 after 5000 tBV. Any of the well-balancing methods man-
ages to keep the Mach numbers below 10−11 when combined
with the AUSM+

B-up flux, which does not have low Mach number
properties. This is in agreement with the findings in the isother-
mal case.

Appendix A shows the same isentropic and polytropic tests
as in Figs. 4 and 5, but in the 1D case. In contrast to the 2D
cases, the Mach numbers stay at low values for the runs using
well-balancing also when using the AUSM+-up solver. This is
consistent with the hypothesis that these velocities are a form of
unphysical convection caused by pressure–velocity decoupling,
which is obviously not possible in only one spatial dimension.

The spurious growth we found in combination with low-
Mach-number fluxes is likely not a problem particular to
the well-balanced methods we presented. We considered very
long timescales of thousands of sound-crossing and Brunt–
Väisälä times. This is much longer than the timescales typi-
cally used to test well-balancing methods. Käppeli & Mishra
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Fig. 4. Same as Fig. 2, but for an isentropic stratification. The solid lines
represent the maximum Mach numbers on the grid and dotted lines the
horizontal density fluctuations according to Eq. (75). Time is given in
units of the sound-crossing time tSC = 4.28 s. The curves have been
slightly smoothed for better visibility.
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Fig. 5. Same as Fig. 2, but for a polytropic stratification with ν = 1.6.
The adiabatic exponent is γ = 5/3. The solid lines represent the max-
imum Mach numbers on the grid and dotted lines the horizontal den-
sity fluctuations according to Eq. (75). Time is given in units of Brunt–
Väisälä time tBV = 20.1 s and sound-crossing time tSC = 4.13 s. The
curves have been slightly smoothed for better visibility.

(2016), for example, ran their hydrostatic setup only for 2 tSC
2.

While this would definitely show any major issues with the basic

2 Käppeli & Mishra (2016) show another test of a 3D simulation that
covers several convective turnover times and contains a stable layer. The
simulation shows strong, unphysical flows in the stable layer when run
without a well-balanced method, but these disappear when their well-
balanced method is used. Considering they did not use a low Mach num-
ber method, this is consistent with our results.
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well-balanced property of the scheme, it does not reveal the long-
term growth of instabilities in the stable region. This is some-
thing to bear in mind when applying such methods to partly
convectively stable configurations, such as stars. Whether the
described phenomenon is an issue for real-world applications
depends on many factors, such as how well the stratification is
resolved and what timescales are of relevance. In particular for
applications with large stable regions and long simulation times,
such as in asteroseismological hydrodynamics simulations, this
has to be carefully considered. The most promising method in
this test is the deviation well-balancing method in combination
with the AUSM+-up flux.

5.2. Hot bubble

Convection in the stellar interior is usually slow and almost adi-
abatic. A typical convection zone is nearly isentropic, although
the stratification in the star’s gravitational field can span orders
of magnitude in pressure and density. The buoyant acceleration
of a fluid parcel is given by its entropy fluctuation with respect
to the mean entropy at any given radius. Entropy fluctuations
are constantly created by sources of heating or cooling. How-
ever, once the fluid parcel has left the heating or cooling layer
and travels through the rest of the convection zone, the parcel’s
entropy must be preserved except for those parts that have mixed
with their surroundings. If the flow is slow, all entropy fluctua-
tions inside the convection zone are also small and it becomes
numerically challenging to preserve their exact values when den-
sity and pressure change by large factors as the fluctuations are
advected along the gravity vector.

We test the numerical schemes’ entropy-preservation prop-
erties under the conditions described above by simulating the
buoyant rise of a “bubble” with an adjustable initial entropy fluc-
tuation embedded in a layer of constant entropy. The layer is
strongly stratified in pressure and density due to the presence of
gravity. We call this setup “hot bubble”, because we use positive
initial entropy fluctuations. Negative initial entropy fluctuations
would make the bubble fall, but everything else would work in
the same way. Our setup is similar to that used by Almgren et al.
(2006) to test their MAESTRO code, although their equation of
state and stratification differ from our setup. We also test our
methods down to much lower Mach numbers.

We construct the stratification in a two-dimensional box
106 cm wide and spanning the vertical range from y = 0 to
y = ymax = 1.5 × 106 cm. To avoid any influence of boundary
conditions, we use periodic boundaries and a periodic profile of
gravitational acceleration

gy = g0 sin(kyy), (78)

where g0 is a constant to be specified later and ky = 2π/ymax. The
box is filled with an ideal gas with the ratio of specific heats γ =
5/3 and mean molecular weight µ = 1 g mol−1. At y = 0, we set
the pressure to p0 = 106 Ba and the temperature to T0 = 300 K.
The stratification is isentropic, that is

%(y) =

(
p(y)
A

)1/γ

, (79)

where A = A0 = const. everywhere outside of the bubble. Inside
the bubble, we perturb the entropy via

A = A0

1 +

(
∆A
A

)
t=0

cos
(
π

2
r
r0

)2 , (80)

where (∆A/A)t=0 is the bubble’s amplitude and r =[
(x − x0)2 + (y − y0)2

]1/2
is the distance from the bubble’s center

with x0 = 5× 105 cm and y0 = 1.875× 105 cm. The bubble has a
radius of r0 = 1.25 × 105 cm. We do not perturb the hydrostatic
pressure stratification, which is given by the expression

p(y) =

p
1− 1

γ

0 +

(
1 −

1
γ

)
g0

A
1
γ

0 ky

[
1 − cos(kyy)

]
γ
γ−1

. (81)

The amplitude g0 of the gravity profile sets the ratio of the max-
imum to the minimum pressure in the periodic pressure profile.
To make the problem numerically challenging, we use a pres-
sure ratio of 100, which is achieved with g0 = −1.09904373 ×
105 cm s−2. This stratification is stronger than that in the convec-
tive core of a typical massive main-sequence star, in which the
pressure changes by a factor of a few. On the other hand, the
relative pressure drop from the bottom of the solar convective
envelope to the photosphere is ≈109.

We start with a moderate initial entropy perturbation of
(∆A/A)t=0 = 10−3, which makes the bubble rise at moderately
low Mach numbers of a few times 10−2. This allows us to per-
form simulations with all three well-balancing methods as well
as simulations without any well-balancing at modest grid reso-
lution of 128 × 192, see Fig. 6. We run this series of simula-
tions with fixed time steps of 0.2 s. With the exception of the
Cargo–LeRoux and α-β methods, which require %-P reconstruc-
tion, we test both %-P and %-T reconstruction. The central, most
buoyant, part of the bubble accelerates fastest. The bubble gets
deformed into a mushroom-like shape with two trailing vortices
and it expands as it rises into layers of lower pressure. Ideally,
the initially positive entropy fluctuations ∆A/A should mix with
the isentropic (∆A/A = 0) background stratification, creating
smaller but still positive entropy fluctuations. The entropy fluctu-
ations may locally increase a bit as kinetic energy is slowly dissi-
pated into heat, but there is no physical way for them to become
negative. Any negative entropy fluctuations in the numerical
solution result from numerical errors.

Figure 6 shows that both the absence of well-balancing
and the Cargo–LeRoux method generate large areas of nega-
tive entropy fluctuations comparable to or even larger in abso-
lute value than the bubble’s initial amplitude. Large-scale posi-
tive entropy fluctuations also occur far from the bubble and they
clearly do not result from hydrodynamic mixing. They rather
seem to be caused by entropy nonconservation as the bubble
pushes the surrounding stratification upwards and downwards. In
the no-well-balancing case, errors in ∆A/A are smaller when %-T
reconstruction is employed as compared with %-p reconstruction.
This may be due to the fact that the pressure changes by a fac-
tor of 100 in the computational domain whereas the temperature
only changes by a factor of 6.3. In any case, α-β and deviation
well-balancing clearly provide far superior results with only a
mild and highly localized undershoot in ∆A/A above the bubble.
With the deviation method, this success is independent of the
choice of reconstruction.

All of the methods tested converge upon grid refinement,
although not in the same way, see the series of runs shown in
Fig. 7. In this series, we keep the 0.2 s time steps for all runs
except those on the finest (256×384) grid, for which we use 0.1 s.
When there is no well-balancing or the Cargo–LeRoux method
is used, the amplitude of the large-scale entropy-conservation
errors around the bubble decreases upon grid refinement and
the bubble’s shape slowly approaches that obtained with the
α-β and deviation methods. The errors are still substantial even
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Fig. 6. Time evolution (top to bottom) of the hot-bubble problem when solved using different well-balancing and reconstruction schemes (left
to right) on a 128 × 192 grid. In all of the cases, entropy fluctuations ∆A/A are shown on the same color scale ranging from −10−3 (dark blue)
through 0 (white) to 10−3 (dark red). The minimum and maximum values of ∆A/A in the whole simulation box are given in each panel’s inset. The
amplitude of the initial entropy perturbation is (∆A/A)t=0 = 10−3.

on the finest (256 × 384) grid tested. The slight entropy under-
shoot produced by the α-β and deviation methods does not
decrease in amplitude but it does decrease in spatial extent as
the grid is refined. Surprisingly, we do not observe any signifi-
cant entropy fluctuations far from the bubble even on the coarsest
grid (64 × 96) with these two methods.

As the bubble’s initial amplitude (∆A/A)t=0 is decreased, the
typical Mach number in the flow field decreases as

Ma ∝
(
∆A
A

)1/2

t=0
. (82)

This scaling results from the fact that the bubble’s acceleration
is proportional to ∆%/% ∝ ∆A/A and the velocity an object
in uniformly accelerated motion reaches over a fixed distance
(i.e., until the bubble has reached the same evolutionary stage)
is proportional to the square root of the acceleration. Although
the bubble’s acceleration is not constant, the bubble always
evolves in the same way, just slower, when its initial amplitude
is decreased and the scaling still holds.

The scaling is also demonstrated in Fig. 8, which shows a
series of runs performed on a 128 × 192 grid with (∆A/A)t=0
ranging from 10−3 down to 10−11. As (∆A/A)t=0 decreases, we
increase time steps in this order: 0.2 s, 1 s, 10 s, 25 s, 25 s.
The solver’s convergence worsens as all fluctuations become
smaller, limiting the maximum time step size. We only include
the α-β and deviation well-balancing methods in this experi-
ment, because entropy-conservation errors quickly dominate the
solution when the initial amplitude is decreased and the Cargo–
LeRoux or no well-balancing method is used. Because the Mach
number is expected to scale according to Eq. (82), we scale the
time when the simulation is stopped with (∆A/A)−1/2

t=0 . This way,
we compare the results when the bubble has reached approx-
imately the same height and evolutionary stage as the previ-

ously discussed case with (∆A/A)t=0 = 10−3 at t = 300 s
(Fig. 6). Both the α-β and deviation well-balancing methods pro-
vide essentially the same solutions, reproducing the expected
Mach-number scaling down to Ma ∼ 10−6. The amplitude of the
entropy undershoot above the bubble is 24% lower when the α-
β method is used as compared with the deviation method. The
most extreme run with (∆A/A)t=0 = 10−11 reaches the limits
of our current implementation and we can see numerical noise
developing in the stratification, see Figs. B.1 and B.2. Figure 8
also shows that the minimum and maximum entropy fluctuations
in the evolved flow scale in proportion to the initial amplitude of
the bubble.

5.3. Simple convection setup

The previous section demonstrated the capabilities of the α-β
and deviation well-balancing schemes to evolve the rise of a bub-
ble with an entropy excess in an isentropic stratification at low
Mach numbers. This can be interpreted as a test for the funda-
mental mechanism of convection. The purpose of this section
is to also assess the benefit from well-balancing techniques for
fully developed convection in a realistic stellar scenario.

The prototype of a convective region in stellar interiors
includes a steady heating source in the form of nuclear burning
that injects energy over a long period in time. If radiative trans-
port of energy is not efficient enough, the temperature gradient
will steepen until it reaches the adiabatic temperature gradient.
According to Eq. (16), this region will become unstable and con-
vection will set in. As convection is very efficient in transporting
energy, a common assumption is that the stratification settles to
an nearly adiabatic temperature gradient in the steady state.

In stars, a convective region is typically adjacent to con-
vectively stable regions. The mixing processes across the inter-
faces of convectively stable and unstable regions have a profound
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Fig. 7. Same as Fig. 6, but showing the solutions’ resolution dependence (top to bottom) at t = 300 s.

impact on stellar evolution, yet it is particularly difficult to
parametrize these processes in one-dimensional stellar evolu-
tion codes. A common strategy for improving the current 1D
description is to investigate the dynamics at the interfaces of
convection zones by means of multidimensional hydrodynami-
cal simulations (Jones et al. 2017; Cristini et al. 2019; Pratt et al.
2020; Higl et al. 2021; Horst et al. 2021).

The Mach number of convection deep in the stellar interior is
estimated to be on the order of 10−4 in early stages of stellar evo-
lution. Accurate modeling of the early phases is, however, cru-
cial as it determines the whole subsequent evolution of the star
and inaccuracies will propagate to later stages. Thus, numerical
experiments that address convection in stellar interiors rely on
schemes that accurately maintain hydrostatic stratifications and
that are able to follow convection at low Mach numbers for a
sufficient amount of time.

The initial stratification for the test series presented in this
section consists of a convective region with a stable layer on
top. One possibility to set up this configuration would be to
use realistic initial conditions from a 1D stellar evolution code.
However, such 1D profiles usually require some extra treat-
ment before they can be used for hydrodynamical simulations,
for example a smoothing of sharp composition gradients or to
properly impose a flat entropy profile in the convection zone.
Instead, we use analytical initial conditions to be able to test the

numerical methods under well-defined but realistic conditions.
This way, any numerical artifacts that may arise can solely be
attributed to the methods applied rather than to inadequate ini-
tial conditions.

To construct the initial hydrostatic stratification, we follow
the procedure described by Edelmann et al. (2017). It imposes
the profile of the superadiabaticity ∆∇ = ∇ − ∇ad while integrat-
ing the equation of hydrostatic equilibrium (Eq. (11)). Accord-
ing to Eq. (16), ∆∇ determines the sign of the Brunt–Väisälä fre-
quency. It is therefore possible to precisely control which regions
are convectively stable (∆∇ < 0) and unstable (∆∇ > 0) as well
as the respective transitions between these regions. A marginally
stable stratification is imposed inside the convection zone by set-
ting ∆∇CZ = 0. In the stable region, we impose ∆∇SZ = −∇ad,
which corresponds to an isothermal stratification.

To connect the two regions, we use a sinusoidal transition,
which ensures that the transition between the two ∆∇-values is
well-defined and can be resolved numerically. The profile with
a transition between the convection and stable zones then takes
the form

∆∇(y) = ∆∇CZ

+
1
2

[
1 + sin

(
π

2
η(y,K, yCZ,SZ)

)]
(∆∇SZ − ∆∇CZ) , (83)
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Fig. 8. Dependence of the maximum Mach number Ma and mini-
mum and maximum entropy fluctuations ∆A/A on the bubble’s initial
amplitude (∆A/A)t=0. All measurements are taken when the bubble has
evolved to a stage comparable to that shown in the bottom row of Fig. 6.
Open and filled symbols correspond to runs with α-β and deviation well-
balancing, respectively. The lines show that the Mach number scales
according to Eq. (82) and the minimum and maximum entropy fluctua-
tions scale in proportion to the bubble’s initial amplitude.

with

η(y,K, yi) =


−1 if K(y − yi) < −1,

1 if K(y − yi) > 1,
K(y − yi) otherwise,

(84)

where the constant K determines the steepness of the transition.
It is set such that the transition is resolved by at least 20 grid
cells. The coordinate yCZ,SZ denotes the middle of the transi-
tion starting at yCZ,SZ − 1/K and ending at yCZ,SZ + 1/K. The
value of yCZ,SZ is given in Table 2. The computational domain
spans 2yCZ,SZ in the horizontal direction. The profiles of tem-
perature T , pressure p and density % then follow from integrat-
ing the equation of hydrostatic equilibrium Eq. (11) as described
by Edelmann et al. (2017) with a spatially constant gravitational
acceleration of |g| = 6.6× 104 cm s−2. The initial values required
for the integration are listed in Table 2. They are representative of
the conditions expected in the convective core of a 25 M� main
sequence star with a mean atomic weight of A = 1.3 and a mean
charge of Z = 1.1.

Figure 9 shows the resulting profiles of ∆∇, T , and % as well
as the fact that the transition between the convective and stable
zone is well resolved even on the coarsest SLH grid. Because
cores of massive stars are hot, a considerable fraction of the total
pressure is contributed by the radiation field. The relative impor-
tance of radiation pressure is given in the lower panel of Fig. 9. It
ranges from roughly 20% in the bottom region to about 60% in
the top region where the density is low. This test setup is there-
fore also an example where the ideal gas EoS is not sufficient
to describe the thermodynamic behavior of the gas and which
requires well-balancing methods that can handle general EoS.

To trigger convection in the initially marginally stable con-
vection zone, a heat source is placed at the bottom of the convec-
tion zone that continuously injects energy into the system with
a sinusoidal profile peaking at the bottom of the domain. The
heating profile is given by

ėh(y) = ė0 a sin
(
π

2
[
1 + η (y,K, 0)

])
erg s−1 cm−3, (85)

Table 2. Parameters of the convection test setup.

Quantity Value

T0 3.7 × 107 K
p0 2.4 × 1016 g cm−1 s−2

|g| 6.6 × 104 cm s−2

ybot, ytop 0, 2.6 × 1011 cm
yCZ,SZ 0.66 ytop
xright − xleft 2 yCZ,SZ
∆∇CZ, ∆∇SZ 0,−∇ad

A, Z 1.3, 1.1
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Fig. 9. Initial stratification of the convection setup. The red curve illus-
trates the position and shape of the energy injection which has nonzero
values only at the bottom of the convection zone. Its actual amplitude is
set for the different simulations individually. Dots denote the positions
of cell centers on a grid with 144 vertical cells, the lowest resolution
used in the SLH simulations presented in this section.

with

a =
4 sin(πK∆y/4)

πK∆y
, K =

1
0.2 yCZ,SZ

, (86)

where ∆y denotes the grid spacing in the vertical direction. As
introduced here, ė0 is dimensionless. The factor a ensures that
the total heating rate is independent of grid resolution. In a sta-
tionary state, the convective velocity is expected to scale with
the heating rate,

Marms ∝ ė0
1/3. (87)

This scaling can be motivated using dimensional arguments
(e.g., see Jones et al. 2017) or the mixing-length theory
(Kippenhahn et al. 2012) and has been confirmed in numeri-
cal experiments (e.g., Cristini et al. 2019; Edelmann et al. 2019;
Andrassy et al. 2020).

To test the low-Mach capabilities of the methods that are
presented in this paper, the amplitude of the heating factor ė0
is decreased successively while the root mean square (rms)
Mach number measured from the simulation is compared to the
expected scaling Eq. (87). The upper limit of ė0 is chosen such
that the resulting Mach number is in a regime where also sim-
ulations without well-balancing follow the scaling. A deviation
from the expected scaling at lower values of ė0 and correspond-
ingly lower Mach number then indicates that numerical errors
have become significant and the method has reached its limit of
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applicability. The scaling test is performed for all available well-
balancing methods and also in the absence of well-balancing.
The domain is discretized by 72 × 144 cells. This rather coarse
resolution is chosen to assess the ability of the well-balancing
method to balance hydrostatic stratifications even with a moder-
ate number of cells. While any consistent method will ultimately
be able to follow low-Mach-number flows given a sufficiently
fine grid, this is computationally not feasible, especially in 3D.
The simulations use periodic boundary conditions in the hori-
zontal direction. At the top and bottom of the domain solid-wall
boundaries are employed that do not allow mass to enter or leave
the domain. For the time stepping, we set cCFL = 0.5. The initial
stratification is perturbed by random density fluctuations at the
O

(
10−14

)
level to facilitate the growth of the convective insta-

bility. Additionally, the heating profile Eq. (85) is modulated by
a sinusoidal function along the horizontal direction to break the
initial horizontal symmetry. The wavelength is one fourth of the
horizontal extent and the amplitude is set to 0.01 ėh(y). The mod-
ulation is switched off after the flow has reached a substantial
fraction of its final speed.

For all simulations, a grid file is saved every 200 time steps.
For each saved grid, the mass-weighted rms Mach number Marms
is calculated. To this end, only the fixed region from ybot to yCZ,SZ
is considered, although the position of the boundary between
convective and stable zone is dynamical and may change over
time. However, for the simulation presented in this section, this
effect is negligible and a fixed region is chosen for convenience.
For all simulations, Marms is then averaged over the same time
span in terms of the convective turnover time τconv, which we
define as

τconv =
2 yCZ,SZ

vrms
, (88)

where vrms is the rms velocity. This ensures that the stochastic
fluctuations, which have different typical timescales for different
flow speeds, are accounted for in a similar way for all simu-
lations. Due to the steady heat injection and the small amount
of numerical dissipation in 2D simulations, the value of τconv
slightly decreases over time as velocities slightly increase. Thus,
the average of τconv depends on the time interval considered and
is not clear how to chose the proper time interval for the differ-
ent simulations. Instead, the number of turnover times Nτ as a
function of physical time t,

Nτ(t) =

∫ t

0

1
τconv(t′)

dt′, (89)

is used to determine the respective time intervals and the aver-
aging is done in the time interval t ∈ [t(Nτ = 5), t(Nτ = 10)].
The resulting Marms as functions of the heating rate are depicted
in Fig. 10. For the two highest values of ė0, that is at Marms
around 9 × 10−3 and 4 × 10−3, all methods agree and Marms fol-
lows the scaling given by Eq. (87). This is not the case at lower
heating rates. For ė0 . 105, the simulation using the Cargo–
LeRoux well-balancing method considerably deviates from the
expected scaling by giving a value of Marms that does not cor-
relate with the energy input anymore but stays rather constantly
slightly below 4× 10−3. Almost identical results are found when
no well-balancing is applied in combination with %-p as recon-
struction variables. At this point, it seems that Cargo–LeRoux
well-balancing is not able to improve the behavior at lower Mach
numbers. The results slightly improve if %-T are used for recon-
struction and no well-balancing is used. In this case, the Mach
number settles slightly below Marms = 2 × 10−3 for an energy
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heating rate ė0

10−3

10−2

M
a r

m
s

Marms ∝ ė1/3
0

Deviation WB %-T rec.
α-β WB %-p rec.
Cargo-LeRoux WB %-p rec.
no WB %-p rec.
no WB %-T rec.

Fig. 10. Root mean square Mach number Marms as a function of
the heating rate ė0. The dashed line represents the expected scaling
according to Eq. (87). All values correspond to time averages over
t ∈ [t(Nτ = 5), t(Nτ = 10)] (see text). The vertical error bars denote one
standard deviation of the temporal average of Marms.

input rate lower than ė0 = 105. The reason for this could be
the nonnegligible contribution of radiation-pressure to total pres-
sure. As prad ∝ T 4, a more accurate reconstruction of T could
lead to an interface pressure that is closer to the hydrostatic solu-
tion and hence artifacts from imperfect balancing are reduced.

By definition, α-β well-balancing requires %-p to be recon-
structed while the variables can be chosen freely for deviation
well-balancing. Hence we have chosen %-T for the deviation
runs for comparison. However, no major differences can be
seen between α-β and deviation in Fig. 10. Both Marms pro-
files closely follow the scaling down to the smallest value of
ė0. Due to the hydrostatic solution’s being stored at cell inter-
faces in these two methods, the particular choice of variables
for reconstruction seem to be less important. In contrast, the
Cargo–LeRoux method reconstructs the potential q at the inter-
faces using values at the cell centers, which can introduce an
error in the total energy over many time steps. A possible fix for
this would be to store q at the cell interfaces, however this is
currently not implemented in our code.

It is not obvious how to assess the accuracy at which hydro-
static equilibrium is maintained within the convective region.
Convection will inevitably introduce ram pressure, pram. Its
ratio with thermal pressure, pthermal, is expected to scale as
pram/pthermal ∼ Marms

2. This gives an order-of-magnitude esti-
mate for the expected minimal deviation from the initial hydro-
static pressure stratification caused by convective motion alone,
independent of the choice of well-balanced method. We have
verified that the respective relative deviation from the hydro-
static pressure at t(Nτ = 7.5) scales as Marms

2 for all sets of
simulations. The only exception is the simulation with devia-
tion well-balancing at the lowest heating rate, which may be a
result of sound waves excited by the strong flow field in the
stable zone (see Fig. 11 and the next paragraph). Table C.1
lists the ratio exemplarily for the simulations using α-β well-
balancing. There, the relative deviation ranges from about 10−7

at the smallest heating rate to roughly 10−4 at the largest rate.
At t = 0 we measure a mean relative deviation of 2.7 × 10−8,
which originates entirely in the discretization error of the pres-
sure gradient. The fact that the relative deviations from hydro-
static equilibrium are of the same order of magnitude as the
ram pressure implies that they are not an artifact of the well-
balancing method, but physically caused by the convective
motions.
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Fig. 11. Mach number of the flow for different values of the heating rate ė0 (left to right) and different well-balancing methods (top to bottom).
The dashed black lines denote the boundaries of the convection zone at y = ytop, see Table 2 for an overview of simulation parameters. The insets
displays the rms Mach number Marms within the convection zone for the snapshot shown. All snapshots are taken at t(Nτ = 7.5).

To also add a qualitative visual verification of the aris-
ing convection, the flow patterns are shown in Fig. 11 in the
middle of the time frame considered. For the highest heating
rate, all simulations show the typical flow morphology of two-
dimensional convection: A pair of large eddies form with a size
that is determined by the vertical extent of the convection zone.
At lower heating rates, the flow pattern remains basically the
same for deviation and α-β well-balancing, which strengthens
our confidence in these solutions. In contrast, the flow patterns
obtained with Cargo–LeRoux well-balancing or without any
well-balancing are dominated by incoherent, small-scale struc-
tures. While for the “no WB” run with %-T reconstruction, the
Mach numbers achieved are somewhat smaller, the general flow
pattern is similar. We assume that these motions are caused by
the imperfect hydrostatic equilibrium.

Convective regions are known to excite internal gravity
waves (IGW) in adjacent stable layers (see e.g., Rogers et al.
2013; Edelmann et al. 2019; Horst et al. 2020). Assuming that
IGW are predominantly generated at periods close to the
convective turnover time τconv (cf. Edelmann et al. 2019), we
can estimate their vertical wavelength λv using the dispersion
relation of IGW in the Boussinesq approximation (see, e.g.,
Sutherland 2010),

λv =
λh√

[Nτconv/(2π)]2 − 1
, (90)

where λh is the horizontal wavelength. It follows that the verti-
cal wavelength decreases with increasing τconv for λh = const.
and the waves will become unresolved when the heating rate is
decreased on the same computational grid.
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Fig. 12. Expected typical vertical wavelength (Eq. (90)) in grid cells of
internal gravity waves as a function of Marms in two series of simulations
with the deviation well-balancing method. Black crosses correspond to
simulations at fixed resolution but increasing heating rate. Blue crosses
correspond to simulations at a fixed heating rate but different resolution.
The two encircled data points result from the same simulation but Marms
has been determined at a different time.

We estimate the vertical wavelengths according to Eq. (90)
exemplarily for the simulations with deviation well-balancing
shown in Figs. 10 and 11. To calculate λv, the value of the
Brunt–Väisälä frequency is taken at the top of the box domain
and λh = 2 yCZ,SZ, which corresponds to the maximal horizon-
tal wavelength that fits into the computational domain. The ratio
of λv to the vertical grid spacing is shown in Fig. 12 as black
crosses. At all but the two highest heating rates, the vertical
wavelength is less than two cells and it follows from the Nyquist
sampling criterion that such waves cannot be represented on our
coarse grid. Indeed, for these runs strange patterns appear in the
stable zone as can be seen in Fig. 11. A peculiar pattern is visi-
ble in the stable zone for deviation well-balancing at the lowest
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Fig. 13. Mach number for a heating rate of ė0 = 104 and deviation well-balancing at different resolutions. The upper left box in each panel indicates
the change in the vertical resolution relative to the resolution used for the Mach number scaling. The lower right box gives the total number of
cells of the particular simulation. All snapshots are taken as soon as convection has fully developed. The dashed white line illustrates the profile
of the Brunt–Väisälä frequency as a function of height with arbitrary units on the x-axis.

heating rate. While its origin is not completely understood, we
have verified that the results look similar to the other runs when
%-p reconstruction or a higher grid resolution is applied. Our
estimate gives typical wavelengths of two to six cells in the two
simulations with the highest heating rates. Hence, the flow pat-
terns in Fig. 11 for these two simulation probably include some
real internal gravity waves, but they are still dominated by arti-
facts.

To confirm that our interpretation is correct, we run another
series of simulations with increasing vertical resolution at
ė0 = 104. Deviation well-balancing is used in this experiment.
Because of the higher computational costs, there is not enough
data to perform meaningful averages and Marms is extracted for a
single snapshot as soon as convection has developed in the whole
convective zone. The results are shown as blue crosses in Fig. 12.
Because Marms is measured at earlier times compared with the
corresponding simulation in the heating series, the Marms of the
lowest-resolution run does not coincide with the (red circled)
black cross corresponding to the same simulation. We see that
the expected typical vertical wavelength is resolved by more than
eight cells on the finest grid. Figure 13 shows the flow pattern
for the different grid resolutions. In the center and right panel of
the lower row, the resolution in the convective zone corresponds
to the resolution of the upper right panel (288 × 576). Close to
the transition to the stable zone, the vertical spacing is smoothly
reduced to 1/32 of the starting resolution. This saves computing
resources and also illustrates that the patterns do not depend on
the resolution in the convective zone. The transition is shown in
Fig. C.1.

Our resolution study indicates that with increasing vertical
resolution in the stable zone artifacts are diminished. For the
highest resolution fine wave patterns are observed. As grid res-
olution increases, nearly horizontal wave patterns first appear
close to the convective boundary, where N gradually increases
from zero to relatively large values higher up in the stable
zone.

While our findings can be explained by unresolved IGW, we
cannot exclude that at least to some extent also numerical arti-
facts contribute to the flows in the stable zone. Nevertheless,
our tests with the simple convective box show that, as soon as
we resolve the IGW sufficiently, artifacts tend to disappear and
any instabilities possibly still present do not visibly dominate
the flow. At the same time, this illustrates that, depending on
the actual stellar profile, rather high grid resolution is needed to
properly resolve the waves.

5.4. Keplerian disk

Some astrophysical problems involve stationary solutions that
are not at rest, for example a rotating star that is partially sta-
bilized by the centrifugal force (e.g., Tassoul 2000; Maeder
2009). Another case is the Keplerian motion around a central
gravitational mass m in its gravitational potential φ(r) = −Gm

r .
Gaburro et al. (2018) describe a nondimensional test setup of a
circular disk with %0 = p0 = 1 around a massive object. Neglect-
ing its own gravitational field, such a disk can be stabilized by a
flow velocity of

u(x, y) = − sin
[
atan2 (y, x)

]√ Gm
r(x, y)

(91)

v(x, y) = cos
[
atan2 (y, x)

]√ Gm
r(x, y)

, (92)

where r =
√

x2 + y2 and atan2 (y, x) is the typical shortcut for
choosing the quadrant of arctan (y/x) correctly. For convenience
we set G = m = 1. We simulate the Keplerian disk from
radius r = 1 to 2 on a polar grid with 20 radial and 70 angular
cells as well as on a finer grid with 100 radial and 350 angular
cells. Polar coordinates are the appropriate choice for the prob-
lem’s geometry and should therefore lead to the least amount
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Fig. 14. Time evolution of the angle-averaged density profiles % − 1
in the Keplerian disk setup. Top panel: results with a grid resolution of
20 × 70 cells, where the dots on top of the lines represent correspond-
ing results computed with implicit time stepping. Bottom panel: same
quantity computed on a much finer grid of 100 × 350 cells. The black
dashed lines in each panel show the respective initial density profiles.

of numerical errors. We use periodic and solid-wall boundaries
in the angular and radial directions, respectively. The flow has
a maximum Mach number of 1 at the inner domain boundary
dropping to ≈0.6 at the outer boundary. We perform most of our
simulations with the explicit RK3 scheme (see Sect. 3) because
it is more efficient in this Mach number range. The time step
of explicit runs is set by the CFLuc criterion (Eq. (28)) with
cCFL = 0.4. For the lower-resolution setup we also perform sim-
ulations with implicit time stepping and the CFLug time step cri-
terion (Eq. (26)) with cCFL = 0.4. We find that the results of the
implicit runs are identical to the explicit time stepping (see dots
in upper panel of Fig. 14). Tests with the explicit, second-order
RK2 scheme also give almost identical results.

Since the disk is isobaric, we use %-p reconstruction for
this test case. Here we only compare simulations without well-
balancing to runs with deviation well-balancing, since the other
methods presented in this work are not capable of stabilizing a
target solution with a nonzero velocity field (see Sect. 4.3).

In order to asses the stability of the setup we add a density
perturbation with % = 2 in the circular region (x + 1.5)2 + y2 <
0.152 and follow its evolution up to 10 000 orbital periods, where
the orbital period is taken at the central point of the perturbation.
A perfect solution will maintain the initial radial density distri-
bution of the perturbation at all times. However, due to its radial
extent there will be a phase shift between the innermost and
outermost regions of the perturbation. Furthermore, numerical
diffusion will spread the perturbation predominantly in the direc-
tion of its movement. Therefore the perturbation evolves into a
homogeneous ring orbiting the central object with a density that
corresponds to the initial angle-averaged density %.

In Fig. 14 we show how the profile of %−1 evolves with time.
The target solution is given as a black dashed line. For a grid
resolution of 20 × 70 cells the run without well-balancing only
shows small deviations from the target solution after 10 orbital

periods. However, we already see that mass starts to accumulate
in the center. The mass can not leave the domain and accrete onto
the central object due to our wall boundaries. Over time, more
and more mass flows to the inner boundary. After 100 orbits the
center has approximately the same density as the initial pertur-
bation, and after 1000 orbits the profile has completely shifted
toward the inner boundary. This is also clearly visible in the
two-dimensional density distribution shown in Fig. D.1. With
deviation well-balancing the profile remains mostly stable up to
1000 orbits. The perturbation is slowly diffusing symmetrically
around the initial peak, maintaining the general shape of the ini-
tial density profile. After 10 000 orbits we see that also the run
with deviation well-balancing has become noticeably asymmet-
ric toward the center. The regions where the density falls bellow
the initial density profile are most likely related to the fact that
we do not use flux limiters for these runs. Undershoots at steep
gradients are a common consequence of this omission.

Increasing the resolution improves the stability of the runs
without well-balancing (see bottom panel in Fig. 14). At a reso-
lution of 100 × 350 cells the distribution is still almost identical
to the initial perturbation even after 100 orbits. Only after 1000
orbits we start to notice the accumulation of mass at the inner
boundary similar to the low-resolution case. After 10 000 orbits,
however, the distribution has again completely shifted towards
the center and the initial perturbation is not recognizable any
longer. The high-resolution run with deviation well-balancing,
on the other hand, is almost identical to the target solution even
after 1000 orbits. The increased radial resolution has reduced the
radial diffusion observed in the low-resolution runs. The density
undershoots become more noticeable at the 10 000 orbit mark.
There we again identify a tendency for a slow drift towards the
center. However, thanks to the use of well-balancing the shape
of the initial perturbation is still retained approximately.

This test shows that the flexibility of the deviation well-
balancing method also allows to maintain stable configurations
other than hydrostatic equilibrium. This is particularly important
for the long-term evolution of such systems. Without well-
balancing stability can only be achieved by increasing grid res-
olution, which leads to substantially higher computational cost.

6. Summary and conclusions

We have presented the deviation, the α-β, and the Cargo–LeRoux
well-balancing methods that aim to improve the ability of finite-
volume codes to maintain hydrostatic stratifications even at mod-
erate grid resolution. The performance of these methods were
assessed in a set of test simulations of static and dynamical
setups. Special emphasis was given to flows at low Mach num-
bers. They are particularly challenging to evolve because they
require special low-Mach hydrodynamic flux solvers, which in
turn come with reduced dissipation and hence are prone to
numerical instabilities. Also, it seems natural that slight devia-
tions from hydrostatic equilibrium lead to low-Mach flows, as
is the case, for example, in stellar convection. All simulations
were performed with the time-implicit SLH code that solves the
fully compressible Euler equations using a modified version of
the low-Mach AUSM+-up hydrodynamic flux solver. Our expe-
rience shows that the inclusion of gravitational potential energy
in the total energy is essential to correctly representing slow
flows in stratified atmospheres in the cell-centered discretiza-
tion of gravity implemented in SLH; see Mullen et al. (2021)
for an alternative approach. To the best of our knowledge, the
present study is the first to reach Mach numbers as low as
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2 × 10−4 in stratified convection using the fully compressible
Euler equations.

The first test of the well-balancing schemes is to evolve a 1D
hydrostatic atmosphere in time at low resolution for an isother-
mal, an isentropic, and a polytropic stratification. In all cases,
the absence of a well-balancing scheme quickly led to spuri-
ous velocities at significant amplitudes. The application of any
of the considered well-balancing methods removed this problem
and managed to keep the flow below Mach numbers of 10−12

for very long times. Repeating the same test in 2D revealed that
low Mach number flux functions, such as AUSM+-up, are sub-
ject to an exponential growth of the Mach number and horizontal
density fluctuations, which is not physically expected in a stably
stratified atmosphere. This effect became less pronounced the
closer the stratification was to the marginally stable, isentropic
profile. In the isentropic case α-β and deviation well-balancing
in combination with the low-Mach flux remained stable (Ma .
10−8) for long times, while with Cargo–LeRoux well-balancing
the setup developed a flow at Mach numbers of about 10−1.
These examples showed that it is important to test well-balanced
schemes in more than one spatial dimension and for more than
just a few sound-crossing times, as only then slowly grow-
ing instabilities become noticeable, especially in very stable
stratifications.

While it is a necessary condition to maintain an initially
static setup, only dynamical setups are of actual interest in mul-
tidimensional simulations. In a second test, we considered the
rise of a hot bubble in a periodic background stratification span-
ning two orders of magnitude in pressure at constant entropy.
We tuned the bubble’s entropy excess to reach different ris-
ing speeds. With Cargo–LeRoux well-balancing and without
any well-balancing, unphysical entropy fluctuations appeared in
large parts of the atmosphere and a relatively fine grid (256×384)
was required to make their amplitude smaller than that of even
the hottest bubble considered. The corresponding Mach number
of Ma ∼ 3×10−2 seemed to be close to a limit of practical appli-
cability of these two methods in such a strong stratification. The
α-β and deviation methods fared much better with no entropy
changes far from the bubble and only a slight entropy undershoot
right above the bubble even on a coarse (64 × 96) grid. Equally
good results were obtained with the initial amplitude decreased
by a factor of 106, leading to Ma ∼ 3 × 10−5. Numerical effects
started to dominate only at Ma ∼ 3 × 10−6 after the amplitude
was decreased by another factor of 102.

We proceeded with a setup involving a convection zone with
a stable zone on top. The stratification was chosen to be represen-
tative of core convection in a 25 M� main-sequence star. Radi-
ation pressure was a substantial fraction of the total pressure,
testing the methods’ capability to deal with a general EoS. We
used volume heating of adjustable amplitude to drive the con-
vection. With Cargo–LeRoux well-balancing and without well-
balancing, the rms Mach number of the convective flow ceased
to correlate with the heating rate at Marms ∼ 4×10−3 and the flow
became dominated by small-scale structures of numerical origin.
The lowest reachable value of Marms dropped by about a factor
of two when switching from %-p to %-T reconstruction in the
absence of well-balancing. Only the α-β and deviation methods
were able to reproduce the expected scaling of Marms with the
heating rate (Eq. (87)) down to the slowest flows tested (Marms ∼

2 × 10−4). We observed spurious patterns in the stable layer and
demonstrated that they were caused by unresolved internal grav-
ity waves, whose vertical wavelength becomes extremely short
with increasing period. The patterns disappeared when the typi-
cal vertical wavelengths of waves with periods close to the con-

vective turnover frequency became resolved by 8 to 10 cells (grid
of 288 × 2380 cells).

The deviation method, unlike the other methods presented
in this work, can deal with arbitrary stationary states. We illus-
trated this capability in our last test, in which we followed many
orbits of a density perturbation in a Keplerian disk around a point
mass. The angle-averaged density profile should ideally remain
constant in this model. Without any well-balancing, imperfect
balance between the centrifugal force and gravity led to mass
redistribution towards inner parts of the disk after many orbits.
Deviation well-balancing much improved the solutions with only
slight radial broadening of the initial perturbation even after 104

orbits with a moderate resolution of 100 × 350 cells.
In summary, our results show that well-balancing can sub-

stantially reduce the grid resolution needed to correctly follow
tiny perturbations in situations in which the stationary back-
ground state involves the balance of two large opposing forces.
We obtained comparable results with the α-β and deviation
methods, both far surpassing the Cargo–LeRoux method in accu-
racy in the low-Mach-number regime. The α-β and deviation
methods are also expected to be more accurate than the majority
of other well-balanced methods present in astrophysical litera-
ture (e.g., Zingale et al. 2002; Perego et al. 2016; Käppeli et al.
2011; Käppeli & Mishra 2016; Padioleau et al. 2019), because
they exactly balance the stationary solution rather than an
approximation to it. Although an analytical prescription is often
not available, the stationary solution can be computed to an arbi-
trary degree of accuracy in many astrophysical applications. This
statement only holds in the case that the hydrostatic background
state does not change in time. In this case an update is necessary,
which we do not discuss in this paper. This step would likely
involve a local approximation to hydrostatic equilibrium, simi-
lar to the ones suggested in the other aforementioned methods.
It should be noted, however, that such an update is unnecessary
in the case of very slow flows, such as in earlier phases of stel-
lar evolution, because the background state hardly changes over
time, even after hundreds of convective turnover times.

We prefer to use the deviation method, because it is more
general and does not impose any restrictions on reconstruction
variables. The method can be applied both to nearly hydro-
static cases and to cases in which rotation becomes impor-
tant. The latter can have strong impact on stellar evolution
(Maeder & Meynet 2000) as well as on the propagation of IGW
in stars (Rogers et al. 2013).

The Cargo–LeRoux method still has its place, though.
Horst et al. (2021) show for the case of convective helium-shell
burning that this method considerably reduces numerical diffu-
sion of the hydrostatic background stratification as compared to
the unbalanced case if the gravitational energy is not included
in the total energy. Therefore we consider the Cargo–LeRoux
method as a valid method that leads to improvements already
with little development effort.

This paper focuses on setups with simple grid geometries,
but the SLH code can use general curvilinear grids. This allows
us to adapt grid geometry to the problem at hand. Standard
spherical grids adapt to the geometry of slowly or nonrotat-
ing stars, but they suffer from singularities at the center and at
the poles. A star can be inscribed in a simple Cartesian grid
(e.g., Woodward et al. 2015), but this requires to also impose
a spherical boundary condition on the grid. When done on the
cell level, the sphere is rough on small scales and can gener-
ate spurious vorticity. We have implemented the cubed-sphere
grid proposed by Calhoun et al. (2008) in our SLH code. The
grid is logically rectangular but geometrically spherical with a
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Fig. 15. Left panel: geometry of the cubed-sphere grid. The number of cells has been reduced compared to grids used in the other two panels to ease
the identification of individual cells and their shapes. Middle and right panel: shell convection in a setup comparable to that in Sect. 5.3 but with
a shallower stratification and ideal gas EoS. Middle panel: color coded Mach number in a run without well-balancing. Numerical discretization
errors quickly lead to spurious flows in the central region and the maximum Mach number reaches 3×10−2. In the run with deviation well-balancing
shown in the right panel the convective shell is clearly maintained. The maximum Mach number is 2 × 10−3.

smooth outer boundary, see Fig. 15 for a 2D version. Discretiza-
tion errors along the grid’s strongly deformed diagonals make
it almost impossible to follow nearly hydrostatic flows without
any well-balancing method. Figure 15 shows an SLH simulation
with a convective shell embedded between two stably stratified
zones. With deviation well-balancing, we obtain the expected
convective shell with convection-generated IGW propagating in
the stable zones. If we turn the well-balancing off, a convection-
like flow of numerical origin appears and mixes the convection
zone with the whole inner stable zone. This result is promising,
but limits of applicability of the deviation method on the cubed-
sphere grid are still to be investigated.

Acknowledgements. PVFE was supported by the U.S. Department of Energy
through the Los Alamos National Laboratory (LANL). LANL is operated by
Triad National Security, LLC, for the National Nuclear Security Administration
of the U.S. Department of Energy (Contract No. 89233218CNA000001). PVFE,
LH, JPB, RA, JH, GL, and FKR acknowledge support by the Klaus Tschira
Foundation. The work of FKR and PVFE was supported by the German Research
Foundation (DFG) through the graduate school on “Theoretical Astrophysics and
Particle Physics” (GRK 1147). The work of CK and FKR is supported by DFG
through grants KL 566/22-1 and RO 3676/3-1, respectively. JPB acknowledges
the grants HITS 21.03.2018, HITS 18.12.2018 and HITS 26.08.2020. This work
has been assigned a document release number LA-UR-21-21056.

References
Almgren, A. S., Bell, J. B., Rendleman, C. A., & Zingale, M. 2006, ApJ, 637,

922
Andrassy, R., Herwig, F., Woodward, P., & Ritter, C. 2020, MNRAS, 491, 972
Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., & Perthame, B. 2004,

SIAM J. Sci. Comput., 25, 2050
Barsukow, W., & Berberich, J. P. 2020, J. Sci. Comput., submitted
Barsukow, W., Edelmann, P. V. F., Klingenberg, C., Miczek, F., & Röpke, F. K.

2017a, J. Sci. Comput., 72, 623
Barsukow, W., Edelmann, P. V. F., Klingenberg, C., & Röpke, F. K. 2017b, in

ESAIM: Proceedings and Surveys, Vol. 58, Workshop on low velocity flows,
Paris, 5–6 November 2015, ed. S. Dellacherie, 27

Berberich, J. P. 2021, Doctoral Thesis, Universität Würzburg, Germany
Berberich, J. P., & Klingenberg, C. 2020, SEMA SIMAI Series: Numerical

Methods for Hyperbolic Problems Numhyp 2019, submitted
Berberich, J. P., Chandrashekar, P., & Klingenberg, C. 2018, Theory, Numerics

and Applications of Hyperbolic Problems I, Springer Proceedings in
Mathematics & Statistics, ed. C. Klingenberg, & M. Westdickenberg, 236

Berberich, J. P., Chandrashekar, P., Klingenberg, C., & Röpke, F. K. 2019,
Commun. Comput. Phys., 26, 599

Berberich, J. P., Käppeli, R., Chandrashekar, P., & Klingenberg, C. 2020,
Commun. Comput. Phys., submitted [arXiv:2005.01811]

Berberich, J. P., Chandrashekar, P., & Klingenberg, C. 2021, Comput. Fluids,
219, 104858

Bermudez, A., & Vázquez, M. E. 1994, Comput. Fluids, 23, 1049
Bolaños Rosales, A. 2016, Dissertation, Julius-Maximilians-Universität

Würzburg, Germany
Browning, M. K., Brun, A. S., & Toomre, J. 2004, ApJ, 601, 512
Brufau, P., Vázquez-Cendón, M., & García-Navarro, P. 2002, Int. J. Numer.

Methods Fluids, 39, 247
Calhoun, D. A., Helzel, C., & Leveque, R. J. 2008, SIAM Rev., 50, 723
Cargo, P., & Le Roux, A. 1994, Comptes rendus de l’Académie des sciences

Série 1, Mathématique, 318, 73
Castro, M. J., & Semplice, M. 2018, Int. J. Numer. Methods Fluids, 89, 304
Chandrashekar, P., & Klingenberg, C. 2015, SIAM J. Sci. Comput., 37, B382
Courant, R., Friedrichs, K. O., & Lewy, H. 1928, Math. Ann., 100, 32
Cristini, A., Meakin, C., Hirschi, R., et al. 2017, MNRAS, 471, 279
Cristini, A., Hirschi, R., Meakin, C., et al. 2019, MNRAS, 484, 4645
Dedner, A., Kröner, D., Sofronov, I. L., & Wesenberg, M. 2001, J. Comput.

Phys., 171, 448
Desveaux, V., Zenk, M., Berthon, C., & Klingenberg, C. 2016a, Math. Comput.,

85, 1571
Desveaux, V., Zenk, M., Berthon, C., & Klingenberg, C. 2016b, Int. J. Numer.

Methods Fluids, 81, 104
Edelmann, P. V. F. 2014, Dissertation, Technische Universität München,

Germany
Edelmann, P. V. F., & Röpke, F. K. 2016, in JUQUEEN Extreme Scaling

Workshop 2016, eds. D. Brömmel, W. Frings, & B. J. N. Wylie, JSC Internal
Report No. FZJ-JSC-IB-2016-01, 63

Edelmann, P. V. F., Röpke, F. K., Hirschi, R., Georgy, C., & Jones, S. 2017,
A&A, 604, A25

Edelmann, P. V. F., Ratnasingam, R. P., Pedersen, M. G., et al. 2019, ApJ,
876, 4

Edwards, J. R., & Liou, M.-S. 1998, AIAA J., 36, 1610
Gaburro, E., Castro, M. J., & Dumbser, M. 2018, MNRAS, 477, 2251
Goffrey, T., Pratt, J., Viallet, M., et al. 2017, A&A, 600, A7
Grosheintz-Laval, L., & Käppeli, R. 2019, J. Comput. Phys., 378, 324
Guillard, H., & Murrone, A. 2004, Comput. Fluids, 33, 655
Guillard, H., & Viozat, C. 1999, Comput. Fluids, 28, 63
Higl, J., Müller, E., & Weiss, A. 2021, A&A, 646, A133
Horst, L., Edelmann, P. V. F., Andrássy, R., et al. 2020, A&A, 641, A18
Horst, L., Hirschi, R., Edelmann, P. V. F., Andrassy, R., & Roepke, F. K. 2021,

A&A, in press, https://doi.org/10.1051/0004-6361/202140825
Hosea, M., & Shampine, L. 1996, Appl. Numer. Math., 20, 21, Method of Lines

for Time-Dependent Problems
Jones, S., Andrassy, R., Sandalski, S., et al. 2017, MNRAS, 465, 2991
Käppeli, R., & Mishra, S. 2014, J. Comput. Phys., 259, 199
Käppeli, R., & Mishra, S. 2016, A&A, 587, A94
Käppeli, R., Whitehouse, S. C., Scheidegger, S., Pen, U. L., & Liebendörfer, M.

2011, ApJS, 195, 20

A53, page 22 of 27



P. V. F. Edelmann et al.: Well-balancing in astrophysical hydrodynamics

Kifonidis, K., & Müller, E. 2012, A&A, 544, A47
Kippenhahn, R., Weigert, A., & Weiss, A. 2012, Stellar Structure and Evolution

(Berlin, Heidelberg: Springer-Verlag)
Le Roux, A. Y. 1999, ESAIM: Proc., 6, 75
LeVeque, R. J. 1998, J. Comput. Phys., 146, 346
Li, X.-S., & Gu, C.-W. 2008, J. Comput. Phys., 227, 5144
Liou, M.-S. 1996, J. Comput. Phys., 129, 364
Liou, M.-S. 2006, J. Comput. Phys., 214, 137
Liou, M.-S., & Steffen, C. J. J. 1993, J. Comput. Phys., 107, 23
Maeder, A. 2009, Physics, Formation and Evolution of Rotating Stars,

Astronomy and Astrophysics Library (Berlin Heidelberg: Springer)
Maeder, A., & Meynet, G. 2000, ARA&A, 38, 143
Meakin, C. A., & Arnett, D. 2006, ApJ, 637, L53
Meakin, C. A., & Arnett, D. 2007, ApJ, 667, 448
Michel, A. 2019, Dissertation, Ruprecht-Karls-Universität Heidelberg, Germany
Miczek, F. 2013, Dissertation, Technische Universität München, Germany
Miczek, F., Röpke, F. K., & Edelmann, P. V. F. 2015, A&A, 576, A50
Mullen, P. D., Hanawa, T., & Gammie, C. F. 2021, ApJS, 252, 30
Müller, B., Viallet, M., Heger, A., & Janka, H.-T. 2016, ApJ, 833, 124
Oßwald, K., Siegmund, A., Birken, P., Hannemann, V., & Meister, A. 2015, Int.

J. Numer. Methods Fluids, 81, 71
Padioleau, T., Tremblin, P., Audit, E., Kestener, P., & Kokh, S. 2019, ApJ, 875,

128
Perego, A., Cabezón, R. M., & Käppeli, R. 2016, ApJS, 223, 22

Popov, M. V., Walder, R., Folini, D., et al. 2019, A&A, 630, A129
Pratt, J., Baraffe, I., Goffrey, T., et al. 2016, A&A, 593, A121
Pratt, J., Baraffe, I., Goffrey, T., et al. 2020, A&A, 638, A15
Rieper, F. 2011, J. Comput. Phys., 230, 5263
Roe, P. L. 1981, J. Comput. Phys., 43, 357
Rogers, T. M., Lin, D. N. C., McElwaine, J. N., & Lau, H. H. B. 2013, ApJ, 772,

21
Röpke, F. K., Berberich, J., Edelmann, P. F. V., et al. 2018, NIC Series, NIC

Symposium 2018, Jülich (Germany), 22 Feb 2018–23 Feb 2018 (Jülich:
Forschungszentrum Jülich GmbH, Zentralbibliothek), 49, 115

Shu, C.-W., & Osher, S. 1988, J. Comput. Phys., 77, 439
Sutherland, B. 2010, Internal Gravity Waves (Cambridge University Press)
Tassoul, J. L. 2000, Stellar Rotation
Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501
Toro, E. F. 2009, Riemann Solvers and Numerical Methods for Fluid Dynamics:

A Practical Introduction (Berlin, Heidelberg: Springer)
Touma, R., & Klingenberg, C. 2015, Appl. Numer. Math., 97, 42
Touma, R., Koley, U., & Klingenberg, C. 2016, SIAM J. Sci. Comput., 38, B773
Turkel, E. 1987, J. Comput. Phys., 72, 277
Veiga, M. H., Romero Velasco, D. A., Abgrall, R., & Teyssier, R. 2019,

Commun. Comput. Phys., 26, 1
Viallet, M., Meakin, C., Arnett, D., & Mocák, M. 2013, ApJ, 769, 1
Woodward, P. R., Herwig, F., & Lin, P.-H. 2015, ApJ, 798, 49
Zingale, M., Dursi, L. J., ZuHone, J., et al. 2002, ApJS, 143, 539

A53, page 23 of 27



A&A 652, A53 (2021)

Appendix A: Simple stratified atmospheres

These are the 1D counterparts of the isentropic and polytropic
tests in Sect. 5.1.
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Fig. A.1. Same as Fig. 4, but as a 1D simulation. The adiabatic exponent
is γ = 5/3. The solid lines represent the maximum Mach numbers on
the grid. Time is given in units of the sound-crossing time tSC = 4.28 s.
The curves have been slightly smoothed for better visibility.
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and sound-crossing time tSC = 4.13 s. The curves have been slightly
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Appendix B: Hot bubble

This appendix explores the amplitude dependence of the hot bubble test from Sect. 5.2.
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Appendix C: Simple convective box setup

Table C.1 shows that the relative deviation from hydrostatic
equilibrium in the convective box test from Sect. 5.3 scales with
the square of the rms Mach number in the convection zone.

Table C.1. Relative deviation from hydrostatic equilibrium, rms Mach
number, and ratio of the squared Mach number to the deviation at dif-
ferent heating rates.

ė0
(∂p/∂y)−% g

(∂p/∂y) Marms Marms
2
[

(∂p/∂y)−% g
(∂p/∂y)

]−1

1002 2.03 × 10−07 2.07 × 10−04 0.21
1003 1.10 × 10−06 4.54 × 10−04 0.19
1004 3.71 × 10−06 9.50 × 10−04 0.24
1005 1.45 × 10−05 2.04 × 10−03 0.29
1006 3.79 × 10−05 4.33 × 10−03 0.49
1007 1.88 × 10−04 9.21 × 10−03 0.45

Notes. The data is derived from the simulations using the α-β well-
balancing method, spatially averaged over the convection zone, and
averaged over a time frame spanning 5 τconv. The results confirm the
expected scaling of the relative deviation from hydrostatic equilibrium
with ∼ Marms

2 (see text) within the accuracy of our order-of-magnitude
estimate.
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Fig. C.1. Varying vertical grid spacing as a function of the vertical coor-
dinate y for the simulations shown in the center and right panels of the
lower row in Fig. 13. The superadiabaticity is shown as a blue line, a
negative value indicates a convectively stable stratification. The spacing
changes smoothly to a finer resolution slightly before the transition to
the stable zone starts.
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Appendix D: Keplerian disk

Figure D.1 shows the time evolution of density in the Keplerian disk problem from Sect. 5.4.
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Fig. D.1. Snapshots of the density distribution during the evolution of the Keplerian disk. Shown are runs with deviation well-balancing and
without well-balancing using explicit time stepping and resolutions of 20× 70 cells as well as 100× 350 grid cells. The bottom two rows show the
same setup evolved with implicit time stepping at a resolution of 20 × 70 cells. To emphasize the deviation from the initial background density of
%0 = 1 we show here % − 1 and give the maximum and minimum of this quantity in an inset for each snapshot.
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2.2 Publication II: Helium shell burning

The publication in this section reports on 3D SLH simulations of convection in a 25 M⊙ star.
It assesses the performance of the AUSM+−up flux compared to non low-Mach flux functions
and quantifies the amount of CBM.

In the previous section, the SLH code was applied to 1D and 2D test scenarios in order to
validate the benefits of using well-balancing techniques. In this section, 3D simulations of
convection in a 25 M⊙ star are performed. The initial conditions are based on a realistic
model obtained from stellar evolution calculations. The model is taken at a time when core
helium burning has ceased in the center of the star but continues in a shell around the core
(see figure 1 of the publication below). A shellular convection zone has the advantage that
two interfaces between a convective and radiative zone can be investigated in a single setup.
This increases the covered parameter space at the same computational costs compared to a
setup of core convection.

As discussed in Section 1.2, convective mixing is crucial for stellar evolution but difficult to
parametrize in 1D evolution codes. Therefore, multidimensional hydrodynamic simulations
can help to test, calibrate, and develop descriptions like the ones presented in Section 1.2.3.
Recent studies of entrainment consider convective-radiative boundaries for carbon shell burn-
ing (Cristini et al., 2017, 2019), oxygen shell burning (Meakin and Arnett, 2007b; Jones et al.,
2017; Andrassy et al., 2020), core hydrogen burning (Meakin and Arnett, 2007b; Gilet et al.,
2013; Higl et al., 2021), or mixing at the bottom of the surface convection zone in a pre-MS
star (Pratt et al., 2016, 2020). Extending these studies to other evolutionary stages will help
to find possible dependencies of mixing on stellar parameters.

In the publication presented in this section, the case of convective helium shell burning
is simulated for the first time in the context of CBM. For the chosen setup, MLT predicts
convection at a Mach number of about 10−4 which seems to be accessible according to the
results obtained in the previous Section 2.1. However, at the time when the simulations
of helium shell burning were performed, only the Cargo-LeRoux well-balancing method was
fully available in SLH. The tests presented in Section 2.1 indicate that results with Cargo-
LeRoux are only reliable for Mach numbers above 10−3. Therefore, the Mach number was
increased by artificially boosting the energy generation by factors of about 104. This is a
common method in order to shift the velocities into regimes that are more feasible for the
respective numerical methods (e.g., Rogers et al., 2013; Edelmann et al., 2019; Cristini et al.,
2019) but might change the relative importance of different processes compared to the actual
star as discussed in Section 1.5.

While the presented simulations do not yet overcome the common problem of boosting, the
Cargo-LeRoux well-balancing method allows the application of the low-Mach AUSM+−up
flux and to carefully analyze its performance in a realistic stellar setup. This is an important
step since low-Mach fluxes are required for the ultimate goal to simulate low-Mach convection,
but, as demonstrated in Section 2.1, they are not guaranteed to work in astrophysical setups
in general. Furthermore, the study presented below contributes to the current effort to cover
a wide range of different convective setups within stars.

In the publication, after a description of the general setup, the resulting convective flow is
analyzed regarding properties of the turbulent velocity spectrum and the kinetic energy in
the context of Reynolds-averaged implicit large eddy simulations (RA-ILES) (Mocák et al.,
2014, 2018; Arnett et al., 2019). The key idea of RA-ILES is to close higher order terms in
the spatially and time averaged Euler equations (in the limit of vanishing viscosity) with the
results from ILES. This allows, for example, identifying the different terms that contribute
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to the evolution of kinetic energy and to quantify the amount of numerical dissipation. In
this way, it is also a diagnostic for potential unphysical behavior of the applied numerical
scheme. Furthermore, the entrainment rate of material in the convective region is measured
for different boosting strengths and corresponding different convective velocities. Because
RiB depends on the velocity, the measured entrainment rate at different values of RiB can be
used to obtain best fitting values for (A,n) in Eq. (1.22).

It is found that the low-Mach AUSM+−up flux can be successfully applied to astrophysical
setups and that its results are superior compared to a non low-Mach scheme already at
intermediate Mach numbers. The extracted mass entrainment rates are in a similar regime
as the rates reported by other studies. Furthermore, also the extracted rates in this simulation
indicate an unrealistic fast growth of the convection zone if it is applied over evolutionary
timescales.
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ABSTRACT

Context. A realistic parametrization of convection and convective boundary mixing in conventional stellar evolution codes is still the
subject of ongoing research. To improve the current situation, multidimensional hydrodynamic simulations are used to study convec-
tion in stellar interiors. Such simulations are numerically challenging, especially for flows at low Mach numbers which are typical for
convection during early evolutionary stages.
Aims. We explore the benefits of using a low-Mach hydrodynamic flux solver and demonstrate its usability for simulations in the
astrophysical context. Simulations of convection for a realistic stellar profile are analyzed regarding the properties of convective
boundary mixing.
Methods. The time-implicit Seven-League Hydro (SLH) code was used to perform multidimensional simulations of convective helium
shell burning based on a 25 M� star model. The results obtained with the low-Mach AUSM+-up solver were compared to results when
using its non low-Mach variant AUSM+

B-up. We applied well-balancing of the gravitational source term to maintain the initial hydro-
static background stratification. The computational grids have resolutions ranging from 180 × 902 to 810 × 5402 cells and the nuclear
energy release was boosted by factors of 3 × 103, 1 × 104, and 3 × 104 to study the dependence of the results on these parameters.
Results. The boosted energy input results in convection at Mach numbers in the range of 10−3–10−2. Standard mixing-length theory
predicts convective velocities of about 1.6×10−4 if no boosting is applied. The simulations with AUSM+-up show a Kolmogorov-like
inertial range in the kinetic energy spectrum that extends further toward smaller scales compared with its non low-Mach variant. The
kinetic energy dissipation of the AUSM+-up solver already converges at a lower resolution compared to AUSM+

B-up. The extracted
entrainment rates at the boundaries of the convection zone are well represented by the bulk Richardson entrainment law and the corre-
sponding fitting parameters are in agreement with published results for carbon shell burning. However, our study needs to be validated
by simulations at higher resolution. Further, we find that a general increase in the entropy in the convection zone may significantly
contribute to the measured entrainment of the top boundary.
Conclusion. This study demonstrates the successful application of the AUSM+-up solver to a realistic astrophysical setup. Compress-
ible simulations of convection in early phases at nominal stellar luminosity will benefit from its low-Mach capabilities. Similar to
other studies, our extrapolated entrainment rate for the helium-burning shell would lead to an unrealistic growth of the convection
zone if it is applied over the lifetime of the zone. Studies at nominal stellar luminosities and different phases of the same convection
zone are needed to detect a possible evolution of the entrainment rate and the impact of radiation on convective boundary mixing.

Key words. stars: massive – stars: interiors – convection – methods: numerical – hydrodynamics

1. Introduction

Mixing induced by convection in the stellar interior plays an
essential role in the evolution of stars. Parametrizing its com-
plex multidimensional nature in one-dimensional (1D) stellar
evolution codes is, however, particularly difficult. A reliable pre-
scription of convective effects in 1D codes is still lacking today
and the resulting stellar evolution models depend on the spe-
cific choice of the employed paramterization and the particular
parameter values. This is, for example, demonstrated in recent
studies by Kaiser et al. (2020) and Davis et al. (2019) on uncer-
tainties in core properties and nucleosynthesis for massive stars.

With asteroseismic data of observed stars, it is possible to
determine properties of the stellar interiors (see Aerts 2021 for
a detailed review). They can be utilized to narrow down the
range of possible parameters. It is now possible to determine
that some convective boundary mixing models provide a bet-
ter fit to certain asteroseismic observations than others (e.g.,
Viani & Basu 2020; Angelou et al. 2020; Michielsen et al. 2019;
Pedersen et al. 2018, 2021), but probing the small-scale physics
of the mixing is beyond the reach of even state-of-the-art astero-
seismology.

A complimentary approach to improve the current situa-
tion is to perform multidimensional simulations by numerically
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Fig. 1. Convective regions during the evolution of an 1D 25 M� star
model simulated with the MESA code. Shaded regions correspond to
convection zones. The color-shading represents the mixing-length the-
ory (MLT)-predicted Mach number. The black solid line denotes the
total mass of the model. The red vertical line indicates the point in the
evolution at which the SLH simulations start and the mass extent of the
initial model. The green lines indicate the mass entrainment at the upper
and lower boundaries as extracted from the 3D hydrodynamic simula-
tions. See discussion in Sect. 5.4.

solving the equations of fluid dynamics for realistic stellar mod-
els. In such simulations, convection develops self-consistently
and their detailed analysis provides insights into the fundamen-
tal processes at play. This way, currently used parametrizations
of convection in 1D codes can be constrained or discarded and
new prescriptions may be developed.

The complex problem of convection and associated mixing
of material across the interfaces into stable zones in the stellar
context is subject of active, ongoing research. Numerical simu-
lations become particularly challenging when the flow of interest
is slow compared to the speed of sound, that is for small values
of the Mach number

Ma =
v

csound
, (1)

where v is the flow velocity and csound is the local speed of sound.
One challenge is the restricted step size of conventional explicit
time stepping schemes which must be smaller than the sound
crossing time of a single grid cell for numerical stability. Thus,
at low Mach numbers, an excessively large number of time steps
is needed to evolve the slow flow and explicit schemes become
inefficient. Additionally, artifacts of the numerical discretization
must be kept at a very low level because inaccuracies can quickly
lead to spurious velocities at the same order as the flow of inter-
est. Hence, appropriate numerical techniques must be chosen
carefully.

For massive stars, low-Mach number flows typically arise in
convection during the early phases of stellar evolution, see for
example the evolution of the 25 M� star depicted in Fig. 1. Inac-
curacies in the 1D prescription of convection in these phases
propagate to all subsequent evolutionary phases and also enter
predictions for the final stages of stars and observables. We

therefore believe that successful simulations of these challeng-
ing settings are crucial to further improve the agreement between
stellar modeling and observations.

One approach to meet the challenges of low-Mach flows is
to modify the underlying hydrodynamic equations. This is, for
example, done in the MAESTRO code (Almgren et al. 2007;
Nonaka et al. 2010; Fan et al. 2019), where the Euler equations
are modified to exclude the physics of sound waves and to ensure
the correct scaling of leading-order terms in the low-Mach limit.
This permits larger time steps and increases the efficiency for
slow flows. An example for low-Mach simulations with the
MAESTRO code are the three-dimensional (3D) simulations of
core hydrogen burning by Gilet et al. (2013). Another approach
is to perform implicit time stepping while solving the unmodi-
fied Euler equations, including sound waves. The time step size
is then only restricted by the desired accuracy at which the flow
is to be followed. This is for example employed by the MUSIC
code in combination with a staggered spatial grid. Benchmark
tests have shown that the code is able to evolve flows at Mach
numbers down to Ma ≈ 10−6 (Viallet et al. 2016) and that a
hydrostatic atmosphere remains stable (Goffrey et al. 2017).

The Seven-League (SLH) hydro code, which is used for the
simulation presented here, is designed to tackle the numerical
difficulties of low-Mach flows. It uses implicit time stepping
and solves the fully compressible Euler equations. Further-
more, it applies special numerical flux functions with enhanced
low-Mach capabilities in combination with well-balancing tech-
niques to improve the representation of slow flows. This way,
the SLH code is able to capture flows at low and moderate Mach
numbers on the same grid.

The work we present in this paper aims at contributing to
the recent effort to improve the understanding of the complex
behavior of convection by means of hydrodynamic simula-
tions. We demonstrate the benefits from using the low-Mach-
number flux AUSM+-up even at moderate Mach numbers. For
this, 3D simulations of convective He-shell burning in a 25 M�
star are presented and analyzed regarding general properties of
the turbulent convection. In addition, we complement recent
efforts to characterize convective boundary mixing by means
of multidimensional simulations (e.g., Meakin & Arnett 2007;
Woodward et al. 2015; Jones et al. 2017; Cristini et al. 2017,
2019; Pratt et al. 2017, 2020; Higl et al. 2021).

The paper is structured as follows: In Sect. 2 we briefly
describe the basic properties of the SLH code. In Sect. 3 the
initial conditions for the simulations are presented along with a
detailed description of mapping the 1D model to the SLH grid
and the applied energy boosting. In the 1D and two-dimensional
(2D) test simulations presented in Sect. 4 we assess the hydro-
static stability of the initial profile using the Cargo–LeRoux
well-balancing method and determine the required amount of
artificial energy boosting. The corresponding 3D simulations are
analyzed in Sect. 5 regarding properties of the turbulent convec-
tive flow and boundary mixing. Section 6 summarizes the results.

2. The Seven-League Hydro (SLH) code

The hydrodynamic simulations presented in this paper are per-
formed with the SLH code (Miczek 2013; Edelmann 2014). It
solves the fully compressible Euler equations in a finite volume
approach. The underlying equations are formulated in general,
curvilinear coordinates and mapped onto a logically rectangular
computational grid, following the method of Kifonidis & Müller
(2012). This allows one to construct almost arbitrary grid
geometries that can be adapted to the physical setup that is
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investigated (Miczek 2013). The Helmholtz equation of state
(EoS) (Timmes & Swesty 2000) is implemented and accounts
for radiation pressure and degeneracy effects. The hydrodynamic
equations are coupled to a nuclear reaction network (Edelmann
2014).

The SLH code is designed to simulate hydrodynamic phe-
nomena in the context of stellar astrophysics for flows at
low and intermediate Mach numbers. The following discus-
sion briefly summarizes how the numerical challenges, espe-
cially for low-Mach flows, are approached in SLH. For a more
in-depth description of the applied methods we refer the reader
to Edelmann et al. (2021), Edelmann (2014), and Miczek (2013).

2.1. Flux Solver

Miczek et al. (2015) and Barsukow et al. (2017) demonstrated
that low-Mach flows require special numerical flux functions
because common schemes, as for example the popular Roe
solver (Roe 1981), suffer from excessive numerical dissipation.
A variety of flux functions with improved low-Mach capabili-
ties can be found in the literature. One promising method that
seems to be applicable to problems in stellar astrophysics is
the AUSM+-up scheme (Liou 2006) which is implemented into
SLH with a slight modification. As described in Edelmann et al.
(2021), the SLH implementation uses two independent parame-
ters to control the velocity diffusion ( fa) and pressure diffusion
( f p

a ), respectively. The original AUSM+-up scheme only uses a
single parameter. It has been demonstrated by Horst et al. (2020)
that compared to the classical Roe scheme the AUSM+-up solver
significantly improves the accuracy at which internal gravity
waves can be followed for group velocities at low Mach num-
bers. For all simulations with the AUSM+-up solver presented
in this paper, we set the parameters to the values f p

a = 0.1 and
fa = 10−10, which has proven to yield robust results in previous
test simulations.

In Sect. 5 we compare simulations with the AUSM+-up
solver with its basic variant AUSM+

B-up in order to demonstrate
the improved results when using AUSM+-up. The AUSM+

B-up
scheme is a subclass of the AUSM+-up scheme and is obtained
by disabling the scaling of the incorporated velocity and pres-
sure diffusion with Mach number. This scaling ensures the cor-
rect behavior of leading terms of the pressure field in the limit of
Ma→ 0 (see Liou 2006, Sec. 3.2 for details). Hence, AUSM+

B-up
does not have enhanced low-Mach capabilities. In SLH, the
AUSM+

B-up solver option is obtained by setting f p
a = fa = 1.

2.2. Well-balancing

Maintaining hydrostatic equilibrium is not trivial in finite vol-
ume codes because commonly gravity is discretized differently
than the conserved variables and enters the equations in an
operator-split approach. Hence, even if the initial data on the
computational grid is formally in perfect hydrostatic equilib-
rium, a residual source term in the momentum and energy parts
of the Euler-equations will remain (see, e.g., Käppeli & Mishra
2016; Popov et al. 2019; Berberich et al. 2021; Edelmann et al.
2021). For the SLH code, Edelmann et al. (2021) demonstrate
that proper well-balancing techniques allow to simulate convec-
tion at Ma ∼ 10−4. However, this requires methods that have
become available only after the simulations of helium shell burn-
ing were carried out. In the simulations presented here, we use
the multidimensional extension (Edelmann et al. 2021) of the
1D Cargo–LeRoux well-balancing scheme (Cargo & Le Roux
1994). Edelmann et al. (2021) show that it is not possible to per-

form simulations at Mach numbers considerably smaller than
Ma ∼ 10−3. At Mach numbers below this threshold the flow
is deteriorated by discretization errors. Thus, for our study, the
energy generation from helium burning that drives the convec-
tion has to be boosted by three orders of magnitude to increase
the convective velocities, see Sects. 3.2 and 4.2. Still, Cargo–
LeRoux well-balancing is crucial to maintain the background
stratification, as demonstrated in Sect. 4.1.

2.3. Time stepping

To circumvent the small time step sizes of explicit time march-
ing schemes, the SLH code applies implicit time stepping.
Here, the time step size is not restricted by numerical stabil-
ity requirements but only by the desired accuracy at which the
flow is to be followed. At low Mach numbers, the large time
steps and hence smaller number of total steps overcompensates
the higher computational costs of a single step compared with
explicit schemes. For the simulations presented in this paper the
ESDIRK23 scheme (Hosea & Shampine 1996) is used, which is
second order accurate in time. The resulting system of nonlinear
equations is solved with the Newton-Raphson method.

For all simulations presented here, linear reconstruction is
used. Slope limiter are usually required to diminish oscillations
at steep gradients. However, the partially discontinuous spatial
derivatives of common limiters deteriorate the convergence rate
of the Newton-Raphson method. Further tests are needed to
explore their possible applications in implicit SLH simulations.

3. Model setup

3.1. Construction of the initial model

The initial conditions for the hydrodynamic SLH simulation are
based on an 1D model obtained with the open-source stellar evo-
lution code MESA (Paxton et al. 2011, 2013, 2015, 2019),

The model corresponds to a 25 M� star at solar metallic-
ity (Z = 0.014) evolved until the exhaustion of core oxygen
burning. The model develops a convective helium burning shell
(at log10(time left). 4 in Fig. 1) following core helium burning.
The numerical settings are similar to Kaiser et al. (2020) (see
their Sect. 3) and briefly summarized here. Convective zones are
determined using the Schwarzschild criterion, which neglects
chemical gradients. It states that regions are convective if the
superadiabaticity ∆∇ is positive, that is

∆∇ := ∇ − ∇ad > 0, (2)

where ∇ad denotes the adiabatic temperature gradient while
the actual temperature gradient of the gas is given by ∇ =
d ln T/d ln P.

Convection is parametrized using MLT and a mixing length
of `MLT = 1.6 HP, where HP denotes the pressure scale height

HP = −
dr
dP

P. (3)

To model convective boundary mixing (CBM), the
exponentially-decaying diffusion approach of Freytag et al.
(1996) and Herwig et al. (1997) is used. The corresponding
diffusion coefficient is (Herwig et al. 1997):

DCBM = D0( f0) exp
−2

[
r − r0( f0)

]
fCBM HCB

P

 , (4)
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where the free parameter fCBM determines the extent of the
CBM in terms of the pressure scale height at the boundary of
the convection zone HCB

P . For the top boundary of convective
regions, D0( f0) is the MLT diffusion coefficient evaluated at
r0( f0) = rCB − ( f0 Hp) where rCB is the radius of the boundary as
given by Eq. (2). The free parameter f0 ensures that the diffusion
coefficient is calculated inside the convection zone to avoid the
sharp drop in D in the immediate vicinity of the boundary. The
diffusion coefficient DCBM is applied for radii larger than r0( f0)
until it drops below 102 cm s−1. For the bottom boundary of con-
vective regions, the scheme is adapted to apply CBM below the
convective boundary. The initial 1D model was obtained with
the parameters fCBM = 0.022 and 0.0044 for the top and bottom
boundaries, respectively. At both boundaries, f0 = 0.025 was
used. We refer to Kaiser et al. (2020) for a discussion of these
parameters and the related uncertainties.

Our simulations focus on convection in the helium-burning
shell. The red vertical line in Fig. 1 indicates the evolutionary
point at which the SLH simulations start and the extent in mass
coordinates of the simulation domain. It corresponds to the early
phase of helium-shell burning when the radial extent of the shell
is still relatively small. Compared with later phases, this enables
a better resolution at convective boundaries for a fixed comput-
ing budget. Choosing the convective shell also allows us to study
two boundaries rather than only one for convective cores.

Models from stellar evolution codes typically exhibit step-
like transitions in the 1D profiles, for example in the profiles
of species abundances or thermodynamic quantities such as
entropy. Even with moderate CBM parameters, such as used
in the 1D input models, convective boundaries are very narrow.
This is problematic for conventional hydrodynamic simulations
because, if possible at all, a high number of grid cells is neces-
sary to spatially resolve such transitions. Furthermore, we found
in preliminary 2D test simulation that the steep gradients lead to
strong initial flows in the convection zone. This effect was dimin-
ished, yet not fully resolved, for low resolution runs by applying
rather strong smoothing to the initial profiles.

SLH simulations require the initial conditions to accurately
fulfill the equation of hydrostatic equilibrium. This is not guar-
anteed for the 1D input profiles after they have been smoothed.
Therefore, the equation of hydrostatic equilibrium needs to be
integrated again while prescribing the profile of one thermody-
namic quantity from the 1D MESA profiles. It is important that
in this process the convection zone, characterized by a negative
Brunt-Väisälä frequency (BVF), is maintained. For a nonrotating
star, the BVF is given by (e.g., see Maeder 2009, Sect. 6.4.1)

N2 =
gδ
HP

(
∇ad − ∇ +

ϕ

δ
∇µ

)
, (5)

where g is the magnitude of the gravitational acceleration, δ =
−(∂ ln ρ/∂ ln T )P,µ, ϕ = (∂ ln ρ/∂ ln µ)P,T , and the gradient in
mean molecular weight µ reads ∇µ = d ln µ/d ln P. These quan-
tities are determined by the EoS. For the simulations presented
here, we follow the approach of Edelmann et al. (2017) to repro-
duce a given 1D profile of the superadiabaticity ∆∇. This allows
one to directly control the extent of the convective region in the
initial condition if the chemical gradient can be neglected in the
convection zone, as is the case for our model. It also ensures that
the value of ∆∇ is reasonably close to zero and does not lead to
an initial convective flow that is mainly driven by an excess in
superadiabaticity. We construct the initial model on a radial grid
that is much finer than the actual computational grid in SLH. For
the computational grid, the initial state is obtained by interpo-
lating from the fine grid to the positions of the respective cell
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the mapped SLH model (solid lines). The shaded areas mark the con-
vection zone for mapped profiles (blue) and MESA profiles (orange).
The oscillatory behavior of the energy generation is a numerical artifact
at negligible amplitudes.

centers. Because of the fine input grid, interpolation errors are
negligibly small.

Preliminary SLH simulations revealed that setting the
superadiabaticity on the SLH grid to a value of −1.5 × 10−5

whenever ∆∇MESA > −10−3 leads to a gentle transition from
the initial hydrostatic stratification to fully developed convection
and avoids a large initial peak in kinetic energy at the onset of
convection. The slightly stable stratification would considerably
hinder convection if the nominal luminosity was used. Because
we have to increase the energy input anyway, this is not an issue
for the simulations presented here.

In addition to the convective shell, parts of the radiative
zones which lie above and below the convection zone are
included in the computational domain. Their respective radial
extent is chosen to be one half of the extent of the convection
zone itself. This way, the impact of the top and bottom boundary
conditions will be reduced while keeping the computational cost
at a moderate level.

The resulting profiles after smoothing and mapping the
region of interest from the 1D stellar model to the computational
grid are shown in Fig. 2. The density closely follows the profiles
as given by the 1D MESA input model. However, smoothing
changes the profile of the BVF and alters the size of the con-
vection zone (shaded areas in Fig. 2). Especially the position of
the bottom boundary changes and the convection zone starts at a
somewhat larger radius in the mapped model.

In Sect. 5.4 we measure the mass entrainment across the
boundaries of the convective zone. An often employed quan-
tity to characterize the resistance to such a mixing (also called
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stiffness) is the bulk Richardson number RiB. For comparability,
we follow the notation of Cristini et al. (2017, 2019) (C+17 and
C+19 hereafter) and write

RiB =
∆B l
v2

rms
, (6)

where vrms is the rms velocity of the convection and the integral
length scale l of the convection is set to one half of the pressure
scale height at the boundary. The buoyancy jump ∆B is given by

∆B =

∫ rc+∆r

rc−∆r
N2 dr, (7)

where rc is the radial position of the respective boundary. The
integration width ∆r is a somewhat arbitrary parameter but
should be chosen such that it includes the full region of the
evanescent convective flow at the boundaries. Following C+19,
we set ∆r to a quarter of the local pressure scale height. Com-
pared to our measurements of the boundary widths given in
Sect. 5.6 (see Table 5), this seems to be an appropriate value for
the top boundary but might overestimate the bottom boundary.

The definition of C+17 for l and ∆r is not applicable for
convection zones that are thinner than a pressure scale height
and some form of correlation function of the turbulent flow field
might be more appropriate. This, however, is not easily obtained
in 1D stellar evolution codes. Generally, the definition of l and
∆r is ambiguous in the astrophysical literature which makes it
difficult to directly compare the values of the bulk Richard-
son number in simulations carried out by different groups
(see for example Meakin & Arnett 2007; Arnett et al. 2009;
Salaris & Cassisi 2017; Cristini et al. 2017; Collins et al. 2018;
Higl et al. 2021).

To assess the impact of the applied smoothing on the stiff-
ness, we compare the numerator of Eq. (6) for the original 1D
MESA input model and the mapped SLH model at the respec-
tive top and bottom boundary. We find

(∆B l)MESA

(∆B l)SLH

∣∣∣∣∣
bot
≈ 2.9,

(∆B l)MESA

(∆B l)SLH

∣∣∣∣∣
top
≈ 1.6, (8)

which indicates that the mapping only has a moderate impact on
the stiffness of the boundary.

Due to the computational costs involved, not all nuclear
species of the MESA nuclear network can be included to the
SLH simulation. Instead, we only account for 4He, 12C, 16O,
20Ne, and 22Ne. The abundance profile of each species, except
for 22Ne, is taken directly from the MESA model and smoothed
in the same way as the other input profiles. The abundance of
22Ne follows from the condition

∑
i Xi = 1 in every cell, where

Xi is the mass fraction of species i. The resulting profiles are
shown in the middle panel of Fig. 2.

Although the smoothing procedure causes the SLH model to
slightly deviate from the original 1D MESA model, the MESA
model involves uncertainties of its own. Therefore, we still con-
sider the SLH model to be representative of typical conditions
expected in He-burning shells of massive stars.

3.2. Energy generation and boosting

The energy release is calculated using the JINA REACLIB reac-
tion files (Cyburt et al. 2010) and displayed in the lowest panel
of Fig. 2. From the profile of the energy generation rate as given
directly by the MESA model (dashed line) it is apparent that the
peak of nuclear burning does not coincide with the convection

zone (orange shade) but instead is located somewhat beneath.
This is common for burning shells, which develop convection
above the energy peak where the temperature gradient becomes
steeper than the adiabatic one.

To ensure that convection is driven by the actual energy input
and not by numerical artifacts, the nominal energy input must be
boosted. The strength of the required boosting is determined in
Sect. 4.2. We couple the boosting of the energy generation to the
abundance of 4He such that only regions are boosted where the
mass fraction of 4He is higher than 90% of the initial abundance
in the convection zone, that is for abundances higher than 0.87.
The energy input is turned off everywhere else.

3.3. Thermal diffusion

Thermal radiation is treated in the diffusion limit in SLH. This
is justified by the high optical depth in the interior regions of
stars. While the 1D input profile from the MESA code is in ther-
mal balance, that is the energy flux equals the integrated energy
generation, this is not true anymore within the convection zone
of the SLH simulations with boosted energy generation. Radia-
tive effects certainly are crucial over the long timescales cov-
ered in simulations of stellar evolution. However, for the much
shorter dynamical timescales we expect the imbalance to be of
minor importance: Following the same arguments as Horst et al.
(2020), we calculate the thermal adjustment timescale (e.g.,
Maeder 2009, Sect. 3.2.) via

τdiff(∆xdiff) ∼
(∆xdiff)2

K
, K =

4 a clight T 3

3 κ ρ2 CP
, (9)

where ∆xdiff is a typical diffusion length scale, the radiation con-
stant a = 7.57 × 1015 erg cm−3 K−4 and CP denotes the specific
heat of the gas at constant pressure. All other values have their
usual meanings. The opacity κ that enters the thermal diffusivity
K is taken from the 1D MESA profile. Because advective and
diffusive processes have a different temporal and spatial scaling,
it is not clear how to scale the opacity with our energy boosting.
Therefore, we keep the opacity at its stellar value in this study.

Assuming as typical length scale the radial grid spacing
of the finest resolution that will be used (810 radial cells, see
Sect. 5), we find a mean adjustment timescale of τdiff(δr810) =
5×102 h. The timescale is shortest at the outermost regions where
the opacity is the smallest, but is always larger than 102 h (see
Fig. B.1). This is at the order of our longest runs, which, how-
ever, have lower radial resolution than what is assumed in this
estimate. Taking the convection zone as typical length scale we
obtain τdiff(δrCZ) ≈ 4 × 107 h ≈ 4.5 × 103 yr which is orders of
magnitude longer than all of our simulations. We therefore con-
clude that for the particular simulations presented here the effect
of thermal diffusion is negligible and that the thermal imbalance
due to our increased energy input does not impact the global
structure of the star over the duration of our simulations.

3.4. Discretizing the computational domain

To reduce the computational costs, we have to use a
spherical-wedge grid geometry, although this choice elimi-
nates the large-scale flows seen in comparable 4π simulations
of Woodward et al. (2015), Jones et al. (2017), Andrassy et al.
(2020), and Gilet et al. (2013). The chosen wedge geometry
reduces the computational cost by a factor of 32 compared to a
full 4π simulation at the same vertical and horizontal resolution.

For the 4π simulations mentioned above, we calculate the
aspect ratios (we adopt here the formulation of Jones et al. 2017)
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as (rtop − rbot)/rtop, where rtop, rbot denote the radial position of
the bottom and top boundary of the convection zone. The aspect
ratio for the He-flash simulation of Woodward et al. (2015) is
about 0.67, for the O-shell simulation of Jones et al. (2017),
Andrassy et al. (2020) it is about 0.5 and for the H-core burn-
ing of Gilet et al. (2013) it is 1. With decreasing aspect ratio,
the maximum possible size of convection cells decreases and
so does the impact of restricting the flow to a spherical wedge.
The He-shell simulation presented here has an aspect ratio of
only 0.32. Furthermore, the study by Gilet et al. (2013) indicates
that, while the flow morphology differs distinctly between their
hydrogen core simulations for full 4π and single octant domains,
basic turbulent properties and mixing rates are in a reasonable
agreement. From this, we expect that the imprint of the restricted
geometry on our results is sufficiently small. However, the influ-
ence of the domain size should be assessed in more detail in
future studies.

We set the horizontal extent of the computational domain to
be as twice as large as the vertical extent of the convection zone.
This enables the formation of two large vortices, a typical phe-
nomenon we observe in 2D and 3D simulations. The correspond-
ing opening angle is about 45◦. The constant grid spacing giving
cell aspect ratios ranging from roughly unity at the bottom to one
half at the top of the domain.

The lowest resolution that will be used in this study has 180
vertical cells and 90 horizontal cells. This ensures that the pres-
sure scale height is resolved by at least 25 cells and that the initial
transitions from radiative to convective regions as given by the
profile of the BVF are resolved by at least 20 cells.

Periodic boundary conditions are employed in horizontal
direction. In both radial directions, layers of two cells are added
(ghost cells). They are initialized with the mapped hydrostatic
state but are not evolved in time.

4. 1D and 2D test simulations

While proper turbulent behavior of convection can only be fol-
lowed in 3D simulations, much cheaper 1D and 2D simula-
tions are well suited to test stability and basic properties of the
initial hydrostatic stratification. Such low-dimensional simula-
tions are utilized in this section to demonstrate that applying
the Cargo–LeRoux well-balancing method successfully stabi-
lizes the hydrostatic stratification described in Sect. 3, even at
low resolution. Furthermore, a series of 2D simulations is pre-
sented to estimate the required strength of the artificial boost of
the nuclear energy release.

4.1. Testing the impact of the Cargo–LeRoux well-balancing
in 1D and 2D

To demonstrate the capabilities of well-balancing, we performed
1D simulations with and without the Cargo–LeRoux method.
For these simulations, the energy input was switched off.

In Fig. 3, the change in the BVF and the pressure are shown
after simulating 10 h of physical time (about 500 sound cross-
ing times) in 1D. If the hydrostatic stratification was perfectly
maintained, the initial profiles would stay constant in time. How-
ever, for a grid with 180 radial cells, it is obvious that the for-
mally static setup changes considerably if no well-balancing
is applied. The BVF has increased its value in the convection
zone and the top boundary of the convection zone has moved
inward. The relative pressure change is on the order of 10−3

throughout the domain. In contrast, the BVF profile does not vis-
ibly change in the run with Cargo–LeRoux well-balancing. The
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Fig. 3. Profiles of the BVF (upper panel) and relative change in pressure
(lower panel) after simulating 10 h of physical time with and without
well-balancing. Nr denotes the number of radial cells that are used for
the discretization.
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Fig. 4. Flow morphology in terms of Mach number in a 2D wedge after
simulating 10 h of physical time. The nuclear energy release has been
boosted by a factor of 1 × 104. The left panel corresponds to a simula-
tion that applies Cargo–LeRoux well-balancing while well-balancing is
absent in the simulation shown on the right. The domain is discretized
by 180 × 90 cells.

relative pressure changes are about 10−8 which is 4 orders of
magnitude smaller. The simulations shown in Fig. 3 apply the
lowest radial resolution that is used for the 3D simulations in
Sect. 5. The spurious change of the background stratification
is expected to decrease at higher resolutions even if no well-
balancing is applied. Indeed, for 540 radial cells, the overall
changes decrease considerably. Yet, deviations from the ini-
tial stratification are still visible and the change in pressure is
significant.

Hence, the 1D simulations indicate that, especially at low
resolution, well-balancing is necessary to maintain hydrostatic
equilibrium at a sufficient accuracy. This is further confirmed in
the heated 2D counterparts of the 1D simulations. For a moderate
energy input the setup is evolved for 10 h of physical time in 2D
wedge geometry. The resulting flow is depicted in Fig. 4. The
simulation with Cargo–LeRoux well-balancing has developed
the typical large coherent convective eddies inside the convec-
tion zone that are driven by the energy input. This is clearly dif-
ferent from the flow that develops if no well-balancing is applied.
Because of the changing background, the BVF has become too
large, such that the energy input is not sufficient to establish con-
vection. Instead, only at the base of the convection zone where
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the heating has its maximum a narrow band of small-scale eddies
emerges.

4.2. Testing artificial boosting of nuclear burning in 2D
simulations

Boosting the physical energy generation from nuclear burning is
a common technique in multidimensional simulations of steady
convection, especially in early stellar evolutionary phases. As
predicted by mixing-length theory and confirmed in numerical
studies (see, e.g., C+19 or Andrassy et al. 2020) the convective
velocity vconv scales as

vconv ∝ L1/3, (10)

where L is the luminosity in the convection zone. Thus, increas-
ing the energy input leads to larger velocities.

Higher velocities can be beneficial for several reasons. As
discussed in Sect. 2, convectional finite-volume schemes based
on Riemann solvers have difficulties to resolve flows at low
Mach numbers. Therefore, artificial boosting can be used to
move the flow-velocities to regimes that are more suitable for the
applied numerical scheme. Furthermore, if explicit time stepping
is used, higher velocities improve the ratio of permitted time step
size to the timescale of the flow. This reduces the computational
costs.

Another purpose of applying energy boosting is to run simu-
lations with the same setup but different boosting strengths. This
allows one to investigate the properties of mixing at the bound-
aries and the entrainment rate as functions of convective veloci-
ties for a single stratification. This has been done in later phases
of stellar evolution for example by C+19 or Andrassy et al.
(2020) and is also utilized in Sect. 5.

The obvious downside of the artificial energy boosting is that
the simulations do not represent the physical situation in the
original stellar model anymore. In 1D stellar evolution codes,
the structure of a star critically depends on the balance between
energy generation (e.g., by nuclear burning), cooling processes
(e.g., by escaping neutrinos) and energy transport within the star
(e.g., by radiation or convection). This balance is disturbed if
the energy input is changed. While we think it is still possible
with such simulations to assess the effect of dynamical phenom-
ena such as turbulent mixing and excitation of waves, they are
probably not suitable to study the long-term behavior of convec-
tion where the interplay between turbulence and thermal diffu-
sion might become important.

Apart from the reasons mentioned above, a sufficient energy
boosting is also necessary to increase the velocity above the
numerical threshold at about Ma ≈ 10−3 for SLH simulations
with the Cargo–LeRoux well-balancing method. To assess by
how much the energy generation has to be increased for the 3D
simulations, a set of 2D wedge simulations is performed with
varying strengths of the energy boosting. The resolution is set to
180 × 90 cells (lowest resolution in the 3D runs) and the sim-
ulations are performed for boosting factors ranging from 1 (no
boosting) to 3 × 104. The resulting temporal mean of the root-
mean square (rms) Mach number Marms as a function of energy
input is then compared to the scaling law in Eq. (10). In order to
determine the region for which the rms value of the Mach num-
ber is calculated, the convection zone is identified by means of
the gradient of the advected passive scalar, as will be explained
in Sect. 5.1. For the size of the time frame, we consider the
convective turnover time
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Fig. 5. Measured rms Mach number as function of the input energy rate
ė in 2D (blue) and 3D simulations (orange). Vertical error bars corre-
spond to the standard deviation of the average over the time frame of
∆Nτconv = 10. The dashed lines reflect the scaling law in Eq. (10). Num-
bers given in the boxes correspond to energy boosting factors for the
lowest and the three highest boostings. The green cross marks the Mach
number of Ma ≈ 1.6 × 10−4 as predicted by MLT at the nominal energy
generation rate in the original MESA model.

τconv =
2∆CZ

vrms
, (11)

where ∆CZ is the radial extent of the convection zone and vrms
the rms velocity within the area spanned by ∆CZ and the horizon-
tal extent of the domain. By taking τconv as the underlying unit
of time, we account for the different speed at which the hydro-
dynamical processes evolve for different driving strengths. To
finally determine the time frame for which vrms is determined,
we calculate the number of covered turnover times Nτconv as

Nτconv (t) =

∫ t

t0

1
τconv(t′)

dt′. (12)

Using Eq. (12) automatically accounts for different lengths and
characteristics that may arise for initial transients for different
luminosity boosting and resolutions. Therefore, we find it more
convenient to define a time frame in terms of Nτconv instead of
finding a suitable physical time interval by hand.

To account for the fact that the boosted region may change
during a simulation, the energy release is integrated over the
domain and averaged for the considered time frame of t ∈[
t(Nτconv = 10), t(Nτconv = 20)

]
.

As shown in Fig. 5, the data points of the three highest boost-
ings (3 × 103, 1 × 104, and 3 × 104) closely follow the expecta-
tion of Eq. (10). For lower energy boosting, we find deviations
from the scaling. The corresponding flow patterns along with
the detected boundaries are shown in Fig. B.2. The flow of the
2D simulation with the lowest boosting clearly differs from the
other 2D simulations. The appearance of incoherent, small-scale
patterns in SLH simulations of convection is likely an indi-
cation that the flow is driven by numerical artifacts (see also
Edelmann et al. 2021). Based on these results, we conclude that
the set of boosting factors b ∈

[
3 × 103, 1 × 104, 3 × 104

]
is suit-

able for the subsequent 3D simulations.

5. 3D SLH results

After the basic properties of the stellar model have been tested
in 1D and 2D hydrodynamic simulations, this section presents
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Table 1. Properties of the 3D simulations with a boosting factor of 3 × 104.

Resolutions 180 × 902 360 × 1802 540 × 3602 810 × 5402

num. flux AUSM+-up AUSM+
B-up AUSM+-up AUSM+

B-up AUSM+-up AUSM+
B-up AUSM+-up AUSM+

B-up

∆ttot [h] 128.45 65.70 18.27 18.41 10.87 14.53 3.32 2.38
∆Nconv 44.88 21.87 6.24 5.51 3.16 4.62 1.32 0.87
τconv [h] 3.04 2.93 2.25 2.42 2.68 2.63 2.35 2.84
Marms

[
10−2

]
1.07 1.01 1.08 0.98 0.86 0.88 1.00 0.81

Notes. Simulations with 810×5402 cells are restarted from the corresponding 540×3602 simulations at Nτconv = 3.1 (AUSM+-up) and Nτconv = 3.6
(AUSM+

B-up). Legend: ∆ttot: total covered stellar time. ∆Nτconv : total number of turnover times. τconv: mean convective turnover time averaged for
the last available 0.5Nτconv , respectively. Marms: rms Mach number corresponding to τconv.

Table 2. Properties of the 3D simulations with a grid size of 180 × 902 cells.

Boosting 3 × 103 1 × 104 3 × 104

num. flux AUSM+-up AUSM+
B-up AUSM+-up AUSM+

B-up AUSM+-up AUSM+
B-up

∆ttot [h] 199.92 183.11 139.68 97.45 128.45 65.70
∆Nconv 30.61 22.61 34.00 20.70 44.88 21.87
τconv [h] 6.13 7.24 4.27 4.61 3.04 2.93
Marms

[
10−2

]
0.40 0.33 0.65 0.56 1.07 1.01

Notes. Quantities have the same meaning as in Table 1.

Table 3. Properties of the 3D simulations with a grid size of 360× 2402

cells.

Boosting 3 × 103 1 × 104 3 × 104

num. flux AUSM+-up AUSM+-up AUSM+-up

∆ttot [h] 9.48 15.86 10.20
∆Nconv 1.40 4.05 4.06
τconv [h] 6.86 3.85 2.39
Marms

[
10−2

]
0.33 0.61 1.09

Notes. Quantities have the same meaning as in Table 1.

the results regarding turbulent flow properties and entrainment
obtained from 3D simulations. We analyze the results for varying
resolution and convective driving. To demonstrate that the low-
Mach AUSM+-up flux scheme is beneficial even for moderate
Mach numbers, the respective results are compared to its basic
version AUSM+

B-up that is not expected to show enhanced low-
Mach capabilities. A comparison to more commonly used flux
functions, such as the Roe solver, would have been a more obvi-
ous choice. This was not possible as the applied Cargo–LeRoux
well-balancing method is not fully compatible with the Roe
scheme. However, in Sect. 5.2, we show for a reduced domain
that the numerical diffusivity is similar for AUSM+

B-up and the
Roe scheme.

A major restriction for our 3D simulations is posed by the
available computational resources. While a higher resolution is
certainly desirable, it considerably reduces the physical time for
which we could follow convection. However, convection has to
be covered for several turnover times τconv in order to analyze
mixing processes at the boundaries of the convection zone. We
therefore can only investigate the effect of boundary mixing at
the lowest resolution of 180×902. At higher resolution, our sim-
ulations only cover a few multiples of τconv which is too short to
track mixing at the boundaries but is sufficient to extract prop-

erties of turbulence. In this section we present simulations with
resolutions ranging from 180 × 902 to 810 × 5402. The basic
properties of the simulations are summarized in Tablea 1–3. We
note that the radial resolution from 360 × 1802 to 540 × 3602

cells changes by a factor of 1.5, while the corresponding num-
ber of horizontal cells changes by a factor of 2. This was done
inadvertently, but we are confident that it does not prevent the
comparison of the results between the different resolutions. The
simulations at a resolution of 810× 5402 cells are restarted from
the corresponding simulations at 540 × 3602 at a stage of fully
developed convection. This avoids the slow initial transients and
hence reduces computational costs.

To conclude the 2D scaling test of the previous section, the
scaling relation Eq. (10) is shown for the lowest resolution and
the AUSM+-up solver in Fig. 5 (orange crosses). The 3D data is
in good agreement with the expected scaling. The corresponding
flow patterns are found in Fig. B.2 at a resolution of 180 × 902.
From MLT, a convective velocity of MaMLT ≈ 1.6 × 10−4 is pre-
dicted. If we extrapolate from the 3D results to stellar luminosity
we find a value of Maext ≈ 4.0× 10−4. The ratio Maext/MaMLT ≈

2.5 is similar to what has been obtained by Jones et al. (2017).
This ratio indicates a reasonable agreement, taking into account
that MLT only provides an order-of-magnitude estimate and that
the results from our simulations need to be extrapolated to nom-
inal luminosity.

5.1. Tracing the boundaries of the convection zone

For the analysis that is presented in the subsequent sections, the
top and bottom radii of the convection zone, rCZ,0 and rCZ,1, have
to be extracted from the simulations. This can be done in differ-
ent ways, for example by considering the radii where the decline
in the horizontal velocity is steepest (Jones et al. 2017), where
the species abundance gradient is steepest (Meakin & Arnett
2007), or where the mean atomic weight is equal to its averaged
value within the convective and adjacent stable zone (C+17).
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Furthermore, to avoid the use of averages which might underes-
timate the effect of strong but rare mixing events, extreme value
statistics could be used (Pratt et al. 2017) or the standard devia-
tion of a dynamical quantity like the kinetic energy (Higl et al.
2021).

Our approach is to advect ρX with the fluid flow where X is a
passive scalar. Its initial distribution increases at a constant slope
from −1 at the bottom boundary of the computational domain
to 1 at the top (dashed line in Fig. 6). The passive scalar will
quickly be mixed within the convection zone while forming a
transition between the initially linear decrease and a flat region.
The position of the boundaries is then defined as the radius where
the spatial gradient of the horizontally averaged passive scalar is
largest. We find that after an initial redistribution of the scalar by
the onset of convection our method gives robust results.

This definition of the boundary position is similar to using
the abundance gradient. However, it does not depend on the ini-
tial 1D structure in terms of strength and position of the gradi-
ents. Furthermore, the abundance and passive scalar profiles are
immediate measurements of the mixing compared to measuring
for example overshooting events or standard deviations, which
are linked to mixing only indirectly.

For an exemplary simulation, Fig. 6 shows the profile of the
advected passive scalar at the start of the simulation and around
t
(
Nτconv = 10

)
. The efficient mixing by convection has homoge-

nized the passive scalar within the convection zone. At the top
and bottom boundary of the computational domain, the profile
of the passive scalar is almost not distinguishable from the initial
distribution. The orange shaded area denotes the convection zone
according to the criterion N2 < 0 and it is clearly visible that this
definition underestimates the extent of the convection zone. The
bottom and top boundaries of the convection zone as given by
the maximum absolute value of the radial gradient of the passive
scalar are shown as blue dots. There are small amounts of numer-
ical under- and overshoots in the profile of the passive scalar.
This is due to a lack of slope-limiter for reconstruction for the
implicit time stepping.

5.2. Kinetic energy spectra and comparison with turbulence
theory

Kolmogorov (1941) (see also Landau & Lifshitz 1987) predicts
that the spectrum of kinetic energy εkin in 3D isotropic turbu-
lence follows

εkin(`) ∝ v̂2(`) ∝ `−5/3, (13)

where ` is the angular order. Although stellar convection is not
isotropic on large scales, many numerical experiments reveal
spectra similar to this prediction on sufficiently small scales
(Porter & Woodward 2000; Gilet et al. 2013; Verma et al. 2017,
C+17). The spectra of turbulent convection in 3D typically
divide into three regions (see Arnett et al. 2015 for a more
detailed discussion): At large spatial scales, that is at small val-
ues of the angular order `, the energy from heating is injected
into the flow, forming the integral range. At somewhat smaller
scales, or equivalently for larger `, the inertial range forms that
follows the scaling of Eq. (13). The inertial range extends down
to the small scales where dissipating effects such as viscosity
become relevant and turbulent kinetic energy is transformed into
internal energy. This leads to a steeper drop in εkin(`) for larger
` and marks the dissipation range. In the stellar context, it is
impossible to resolve the spatial scales where physical viscos-
ity takes place. Thus, in implicit large eddy simulations (ILES),
the effect of viscosity is not modeled explicitly but follows from
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Fig. 6. Horizontal mean of the advected passive scalar for a simulation
with a resolution of 180 × 902. The initial distribution of the scalar is
shown as dashed line, the solid line represents the time-averaged profile
for t ∈

[
t
(
Nτconv = 9.9

)
, t

(
Nτconv = 10.1

)]
. The blue shaded area corre-

sponds to the minimal and maximal value of the passive scalar at the
corresponding radius for the latest considered snapshot. The radii at
which the absolute value of the radial derivative is largest are indicated
by dots. They define the position of the top and bottom boundaries.
The shaded orange area marks the convective region according to the
stability criterion N2 < 0. Vertical dashed lines denote the respective
boundary widths which are defined in Sect. 5.6.

the numerical viscosity inherent in the applied numerical scheme
at small scales (see, e.g., Arnett et al. 2015, 2018). This is the
case for the SLH code that solves the Euler equations which fol-
low from the Navier-Stokes equations for vanishing viscosity but
does not apply any subgrid scale model for turbulent dissipation.
It therefore is desirable to resolve the scaling Eq. (13) to the
smallest scales possible while still having a numerically stable
scheme. Hence, one way to compare the quality of numerical
schemes is to compare their respective range in ` for which they
reproduce an inertial range with a scaling according to Eq. (13).

In the following, we present the spectra for the 3D SLH
simulations and compare the low-Mach AUSM+-up solver to
the AUSM+

B-up scheme. In setups with an approximate spheri-
cal symmetry, the spatial spectra of turbulent flows are typically
given in terms of power spectra for spherical harmonics. This
makes use of the fact that a given function F(ϑ, ϕ) on the spher-
ical surface can be decomposed into spherical harmonics as

F(ϑ, ϕ) =

∞∑
`=0

∑̀
m=−`

f`mY`m(ϑ, ϕ), (14)

where f`m is the amplitude for the corresponding spherical har-
monic Ylm of angular degree ` and angular order m. For our anal-
ysis we apply the open-source shtools1 (Wieczorek & Meschede
2018), a collection of Fortran90 and Python libraries for spher-
ical harmonics data analysis. To decompose the velocity fields
that result from our simulations, we proceed as follows:

The shtools assume that the input data is provided for the
whole spherical surface. The computational domain in our sim-
ulations, however, is a spherical wedge. We therefore expand the
ϕ − ϑ plane covered by our simulations to the full spherical sur-
face. For this, the data from our simulation is repeated periodi-
cally to fill the regions that are not covered by the computational
domain, see Fig. 7. This gives slightly weaker artifacts than zero-
padding.

To further reduce the artifacts introduced by our limited
domain, we make use of the ability of shtools to apply an arbi-
trary window function to extract localized spectra. The shtools
construct the windows automatically and provide the user the

1 https://shtools.oca.eu
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Fig. 7. Expansion of the velocity data for one exemplary 3D wedge sim-
ulation. Color coded is the velocity component in ϕ-direction. The red
square marks the actual computational domain. The rest of the plane is
filled by periodically repeating the simulation data in ϑ and ϕ direction.
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Fig. 8. Spectra of the radial kinetic energy component. The blue and
orange line correspond to simulations with the Roe and AUSM+

B-up
schemes of a reduced domain that only contains a fraction of the con-
vection zone. The gray line shows the spectrum for a simulation of the
full domain with the AUSM+

B-up solver, the same grid spacing, but a
different energy boosting. The amplitudes have been normalized such
that they are unity at ` = 200 to ease the comparison. The dashed line
marks the Kolmogorov-scaling according to Eq. (13). The vertical dot-
ted line at `max = 60 denotes the spectral width of the applied window
functions for the runs with 270 × 1802 cells. For ` ≤ `max, their spectra
are dominated by the convolution with the window function and do not
reflect real data. The horizontal axis is truncated at the spectral width
of the window function for the 540 × 3602 run which corresponds to
`max = 25.

option to restrict the bandwidth of the created windows by an
upper limit `max. The necessary bandwidth of the window func-
tion increases with smaller localized areas. The shtools then cal-
culate different realizations of window functions that have their
power concentrated in the considered region within the ϑ − ϕ
plane. The spectra of all windows are averaged (multitaper, see
also Wieczorek & Simons 2005). For the input of the multita-
per spectrum, we set `max to a sufficiently high value to obtain
at least 10 window realizations from shtools which have 99% of
their power localized in the computational domain.

The spectra that are presented in the following are taken at a
constant radius in the middle of the convection zone. This is jus-
tified if the flow is isotropic, which is not the case at large scales
(small `) but a reasonable assumption at small scales. Isotropy is
also a necessary condition for the Kolmogorov-scaling Eq. (13)
to form. The extracted spectra are averaged over roughly one
convective turnover time.

In order to demonstrate the improved performance of the
low-Mach AUSM+-up solver, we compare it to its basic vari-
ant AUSM+

B-up. The AUSM solver family is not yet widely used
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Fig. 9. Spectra of the radial kinetic energy component for the
AUSM+

B-up and AUSM+-up solver at a resolution of 810 × 5402 cells
and an energy boosting of b = 3×104. The amplitudes are normalized to
unity at ` = 50 for better comparability. Dotted vertical lines mark the
angular degree ` at which the relative deviation from the Kolmogorov-
law is one decade. For the AUSM+

B-up solver this happens at ` ≈ 470,
for the AUSM+-up solver at ` ≈ 920. The horizontal axis is truncated at
the spectral width of the applied window function (`max = 25).

in the astrophysical community. To get an idea how AUSM+
B-up

compares to the well-known Roe scheme, we compare their
spectra for a reduced domain, which only contains a subset of
the convection zone. This is necessary because we find numer-
ical artifacts for Roe in combination with Cargo–LeRoux well-
balancing that lead to spurious flows in the stable regions at radii
where abundances change.

Their spatial resolutions are the same as for the 540 × 3602

simulations of the full domain. The result is shown in Fig. 8.
The spectra demonstrate that, at least within the convection zone,
the AUSM+

B-up and the Roe solver are both dissipative and do
not show an inertial range. For comparison, the spectrum of
a simulation which has the same spatial resolution but using
the AUSM+

B-up scheme is added to the figure along with the
Kolmogorov-law Eq. (13). The similarity between the Roe and
AUSM+

B-up solver is also evident in the flow pattern, Fig. B.3.
The spectra for the highest available resolution and the full

domain are shown in Fig. 9. We find that the AUSM+
B-up and

AUSM+-up solver both show a well-defined inertial range where
the slope closely follows the prediction of a Kolmogorov spec-
trum. The vertical dotted lines in Fig. 9 mark the scale at which
there is a significant deviation from the Kolmogorov-law. From
this measure we find that the inertial range of the AUSM+-up
solver extends toward scales that are about a factor two smaller
compared to the AUSM+

B-up solver.
In Fig. 10 the turbulent convective velocity field is depicted

for a slice through the three-dimensional domain for a single
snapshot. The AUSM+-up scheme clearly shows smaller struc-
tures in the flow field as compared with AUSM+

B-up on the same
computational grid. This is also apparent in Fig. 11 which shows
the magnitude of vorticity |∇ × u|, where u is the velocity vec-
tor. To further illustrate the advantages of the low-Mach flux
AUSM+-up over AUSM+

B-up, we compare in Fig. 12 the spectra
at different resolutions. We find that for the AUSM+-up solver,
a grid resolution of 360 × 1802 gives an inertial range that is
comparable to the 810 × 5402 resolution of simulations with
AUSM+

B-up.

5.3. Comparing numerical dissipation from RA-ILES results

The comparison of the kinetic energy spectra is comple-
mented by analyzing the different simulations in the terms of
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Fig. 10. Mach number for a slice through the domain for simulations at a resolution of 810 × 5402 cells with the AUSM+
B-up solver (left) and

AUSM+-up solver (right). The data is taken from the latest available snapshot, respectively.

Reynolds averaged implicit large eddy simulations (RA-ILES)
(Mocák et al. 2014; Arnett et al. 2019). The fundamental idea
is to separate the different components of the Navier-Stokes
equations into mean and fluctuating parts and to determine them
by analyzing numerical simulations. The physical interpretation
of these parts then gives useful insight into the complex interplay
between different processes that act in turbulent convection and
at the boundaries of the convection zone.

While the RA-ILES framework provides a wealth of equa-
tions (see Mocák et al. 2014 for an extensive overview), we
focus on analyzing the equation for turbulent kinetic energy. It
allows one to quantify the effect of implicit numerical dissipa-
tion of kinetic energy that is inherent in all ILES. This equa-
tion has been used in several publications in the past (see, e.g.,
Arnett et al. 2009; Mocák et al. 2014, 2018), and aided the anal-
ysis of the effects of resolution and convective driving (C+17,
C+19) or different strengths of stratification (Viallet et al. 2013).
Following the formulation of Mocák et al. (2014), the time evo-
lution for the kinetic energy of an inviscid fluid can be written
as

∂t(ρ̄ε̃k) + ∇r(ρ̄ ṽr ε̃k) = −∇r ( fP + fk) + Wb + WP, (15)

where εk is the specific kinetic energy, fP = P′v′r the acoustic flux,
fk = ρvr

′′εk
′′ the turbulent kinetic energy flux, Wb = ρ vr

′′ g̃r the
buoyancy work, WP = P′d′′ the turbulent pressure dilatation, and
d = ∇ · u. The radial component of the gravitational acceleration
is denoted by gr. The definition of the Reynolds average q, Favre
average q̃, and the corresponding fluctuations q′, q′′ for a quan-
tity q are given in Appendix A. For a more detailed discussion
of the individual terms, see for example Meakin & Arnett (2007),
Viallet et al. (2013), or Mocák et al. (2014).

Because numerical solutions are only approximations to the
true solution, Eq. (15) will in general not be fulfilled exactly in
hydrodynamic simulations. Instead, there will be a residual Nεk

between the left-hand and right-hand side. In energy conserv-
ing methods like finite volume schemes, Nεk then measures the
numerical dissipation of kinetic energy into internal energy, the
fundamental property of ILES. The exact value of Nεk depends
on the details of the numerical scheme, the resolution, but also
on the specific physical problem at hand. Generally, the value
of Nεk cannot be controlled in ILES. However, extracting the
terms in Eq. (15) from a hydrodynamic simulation, the strength
of numerical dissipation that acted for the considered time in a
specific simulation can be determined from the average value of
Nεk .

We calculate all the terms in Eq. (15) for the AUSM+
B-up

and AUSM+-up solver at different resolutions. Third-order cen-
tral differences are used to evaluate the gradients. Except for the
highest resolution, the results are averaged over the time inter-
val of t ∈

[
t
(
Nτconv = 2

)
, t

(
Nτconv = 3

)]
which is the maximum

overlapping time frame. For the highest resolution, the simula-
tions are averaged over only ∆Nτconv = 0.6. Ideally, the averages
would be performed over several turnover times to improve the
statistics. While our short time frames probably make a quanti-
tative comparison of the components less robust, we think that
a qualitative comparison is still meaningful and that the main
characteristics of Eq. (15) are captured.

In Fig. 13 the profiles of the individual terms of Eq. (15)
are depicted for successively increasing resolutions2. We find

2 In the RA-ILES analysis framework of SLH, all required fluctua-
tions are calculated and stored already during the simulation, such that
we have data for every single time step. However, there was a flaw in
the calculation of the velocity divergence for the simulations presented
here. Therefore, the velocity divergence had to be re-calculated in a
post-processing step, for which the 3D velocity data is only available
for the stored grid files but not for every time step. Fortunately, only
the value of WP is affected which is, however, small in general and the
impact of the post-processing is negligible.
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B-up and AUSM+-up solver at different resolutions and an
energy boosting of b = 3 × 104.

our results in qualitative agreement with simulations of oxygen
burning (Viallet et al. 2013, Fig. 8) and carbon burning (Fig. 9 of
C+17, see also C+19). The small but noticeable nonzero values
for the left-hand side of Eq. (15) (dashed lines in Fig. 13) are due
to the short time interval considered. For comparison, we recal-
culated in Fig. 14 the results for the lowest resolution but a time
interval that covers ∆Nτconv = 10. Here, the time evolution of the
kinetic energy is close to zero.

The dominant part on the right-hand side is the buoyancy
work Wb that is positive in the convection zone and changes sign
at the boundaries to the stable layers. The acoustic and turbulent
kinetic energy fluxes show a more complex behavior and change
signs several times in the convection zone. The pressure dilata-
tion term WP takes a rather low value for all simulations owing
to the fact that the density stratification within the convection

zone is small. As shown by Viallet et al. (2013), the situation
can be different in other setups. They find that in the convec-
tive envelope of a 5 M� red giant star, pressure dilatation con-
tributes a significant part to the overall budget of Eq. (15) as the
convection zone spans several pressure scale-heights. In general,
we do not find significant qualitative differences between dif-
ferent resolutions and between the AUSM+

B-up and AUSM+-up
solver. At the lowest resolution with AUSM+-up, small oscilla-
tions on the grid level are visible for the acoustic flux fP within
the convection zone. However, they vanish for increasing resolu-
tion. At high resolution, we find oscillations in fP at the domain
boundaries, the origin of which is not completely clear. We sus-
pect an interplay of better resolved internal gravity waves with
the constant ghost cell boundaries. This inevitably leads to shear
because velocities are set to zero in the boundary cells.

The dotted lines in Fig. 13 correspond to the numerical dissi-
pation of kinetic energy Nεk acting in the respective simulation.
In general, the dissipation is distributed over the whole convec-
tion zone and vanishes in the stable layers. For the AUSM+-up
solver, some smaller oscillations are visible near the bound-
aries which stem from the oscillations in fP. Comparing the
results of the AUSM+

B-up and AUSM+-up solver at each reso-
lution, the profiles of Nεk have similar amplitudes in the main
part of the convection zone. However, for the simulations using
the AUSM+

B-up solver, the numerical dissipation shows a dis-
tinct peak at the bottom boundary. The peak height and width
decreases with increasing resolution. The same behavior was
found by C+17 for carbon-shell burning and by Viallet et al.
(2013) for oxygen-shell burning. However, this peak is absent
in the simulations using the AUSM+-up solver. From the shape
and position of the peak of Nεk in the plots for the AUSM+

B-up
solver it seems that the peak is due to an imbalance between the

A55, page 12 of 24



L. Horst et al.: Helium shell burning

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
AUSM+

B -up 180× 902

−∇rfk −∇rfp +Wb +Wp ∂t(ρ̄ε̃k) +∇r(ρ̄ ṽr ε̃k) res ∼ Nεk
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Fig. 13. Profiles of the different components of kinetic energy equation in the RA-ILES framework, Eq. (15). The resolution increases from top
to bottom. The left column corresponds to results using the AUSM+

B-up solver and the right column to results using the AUSM+-up solver. All
simulations boost the nuclear energy generation by a factor of 3× 104. The profiles are averaged for roughly one convective turnover time. Similar
to Viallet et al. (2013), the components are multiplied by the geometrical factor 4πr2.

acoustic flux fp and Wb. Although the peak in fp appears to be
similar in shape and amplitude for the two solvers, a more pro-
nounced opposed peak in Wb seems to counteract the gradient of
fp in the AUSM+-up runs.

We directly compare the numerical dissipation Nεk for the
different simulations in Fig. 15. For AUSM+-up, the amplitudes
seem to be converged already for the lowest resolution, although
low-resolution runs show oscillations in the numerical dissipa-
tion. Also for the AUSM+

B-up solver, the dissipation in the bulk
of the convection zone seems not to depend strongly on the res-
olution. This is consistent with the expected independence of

the turbulent dissipation rate from the effective viscosity, which
is set by the grid scale. However, at the bottom boundary, the
peak decreases with increasing resolution and seems to con-
verge toward a value that is similar to the dissipation of the
AUSM+-up solver. These results are fully in line with the simu-
lations shown in Figs. 1 and 2 of Arnett et al. (2018) which sum-
marize the numerical dissipation in oxygen- and carbon-shell
burning simulations with the PROMPI code. For their highest-
resolution run, they find that the peak at the bottom boundary
seems to merge with the bulk dissipation. This indicates that
the low-Mach AUSM+-up solver improves the behavior at the
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bottom boundary, even at moderate Mach numbers and moder-
ate resolution.

5.4. Convective boundary mixing

An important process in stellar interiors is the entrainment of
material from stable layers at the boundaries of a convection
zone into the convective region. This has implications for the
star’s further evolution because the entrained material serves as
fuel for the burning region. Despite its importance, it needs to
be parametrized in conventional 1D stellar evolution simulations
due to its inherently multidimensional nature. For the various
types of convection, for example in shallow zones in the stellar
interior or extended regions in the envelope of solar-like stars,
different physical mechanisms are dominant. It is therefore of
interest to develop and validate different possible parametriza-
tions with the help of multidimensional simulations.

Viallet et al. (2015) suggest to use the local Pécletnumber,
the ratio of advective and diffusive timescales, in the bound-
ary region to distinguish between different types of convective
boundary mixing. Estimating the typical velocity v and length
scale l of convection through MLT, we find a minimum Péclet-
number within the convection zone of

Pe =
ul
K

=
3Dmlt

K
≈ 5 × 104 � 1, (16)

where K is the thermal diffusivity (see Eq. (9)) and DMLT =
1/3 uMLT lMLT is the diffusion coefficient obtained from MLT.
The large Pécletnumber implies minor importance of radiation
for the mixing, in accordance with our estimates in Sect. 3.3.
The artificial boosting will increase the Pécletnumber even fur-
ther in the hydrodynamic simulations. Following Viallet et al.
(2015), at Pe � 1 mixing can be thought to occur via turbulent
entrainment, where small-scale instabilities are caused by the
shear created by overturning convective cells at the boundaries
(see Viallet et al. 2013 for a detailed description). As demon-
strated by Meakin & Arnett (2007) for stellar convection, tur-
bulent entrainment can be characterized in terms of the bulk
Richardson entrainment law

ve

vrms
= A Ri−n

B , (17)

where ve is the entrainment velocity of the top or bottom con-
vective boundary, vrms the rms velocity in the convection zone,
and RiB the bulk Richardson number (see Eq. (6)). For the
results presented in the following, we have checked by visually
inspecting the time evolution of the density and boundary pro-
files that ve is dominated by mass entrainment and the impact
of thermal expansion is negligible. The analysis with respect to
Eq. (17) is reported in various other studies which generally find
an agreement with the measured entrainment (e.g., Gilet et al.
2013, Müller et al. 2016, C+17, C+19, Higl et al. 2021). In the
following, we extend these studies for the case of helium shell
burning.

By fitting Eq. (17) to simulations of mixing across bound-
aries at different RiB, the value of A and n can be determined.
In shell simulations, this is possible either by measuring the
entrainment at the bottom and top boundary in a single simula-
tion (different RiB because of different BVF profiles, e.g., C+17),
by measuring entrainment in simulations with different convec-
tive driving (different RiB because of varying vrms), or both (e.g.,
C+19).

To extract meaningful results, such simulations need to be
run for multiple convective turnover times. Furthermore, as
pointed out by Woodward et al. (2015), the resolution must
be sufficiently high for obtaining converged entrainment rates
across the boundaries. To relate the different grid sizes that
have been used in the aforementioned studies, we compare the
number of vertical grid cells (#CZ) that are located within the
convection zones. Only grids that have been used to derive an
entrainment rate are considered here. This simple comparison
neglects the impact of restricted domains and does not consider
the different stiffness of transitions from stable to convection
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Eq. (17) to the data. The fit is shown as solid blue line. The dashed line at high RiB marks the regime of extrapolation.
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Fig. 17. Same as Fig. 16 but for simulations using the AUSM+
B-up solver.

zones. However, it still gives an estimate of the scales that are
resolved by the grid compared to the global scale of the con-
vection zone. Woodward et al. (2015) find entrainment rates that
are in reasonable agreement for simulations with #CZ = 219
(grid sizes of 7683) and more cells. Most of the simulations
presented by Jones et al. (2017) have #CZ = 170, while they
show for one particular case that entrainment agrees with the
results of a simulation with #CZ = 341 (grid sizes of 7683 and
15363, respectively). The highest resolution used by C+17 to
determine the entrainment rate has #CZ = 256 (for a grid of
5123). Our computational resources only allow to run simula-
tions long enough on grids with 180 × 902 cells which corre-
sponds to #CZ = 105. This resolution might not be sufficient and
we cannot test whether the results presented in this section are
converged. However, our analysis still provides a first glimpse
on what coefficients might be expected for the He-shell burn-
ing. Moreover, we are able to compare the results from the
low-Mach AUSM+-up solver to AUSM+

B-up and assess whether
the bulk Richardson scaling can be reproduced even at low
resolution.

We determine the entrainment rate ve in Eq. (17) from the
mean radial position over time of the top and bottom bound-
ary, respectively. The positions of the boundaries are extracted
as described in Sect. 5.1, the values for vrms consider the entire
convection zone.

The plots on the left of Fig. 16 show the evolution of the
boundary positions for the boosting factors 3 × 103, 1 × 104,
and 3 × 104 when using the AUSM+-up solver. Qualitatively,
the behavior is as expected: A higher boosting factor leads to
stronger convection, faster entrainment of the passive scalar, and
thus to a faster moving boundary. The entrainment velocity at the
bottom boundary is considerably smaller than at the top bound-
ary. According to Eq. (17) this is expected for a larger value of
RiB which is indeed confirmed in the right panel, where the data
for the bottom boundary reside at RiB > 103. A similar situation
is observed for simulations with the AUSM+

B-up solver, shown
in Fig. 17.

In order to fit Eq. (17) to the data, we consider the time
frame of t ∈

[
t
(
Nτconv = 10

)
, t

(
Nτconv = 20

)]
. The lower limit is

given by the end of the initial transient in the evolution of the
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Table 4. Summary of the basic properties of the simulations shown in Figs. 16 and 17.

Boosting factors 3 × 104 1 × 104 3 × 103

num. flux function AUSM+-up AUSM+
B-up AUSM+-up AUSM+

B-up AUSM+-up AUSM+
B-up

τconv [h] 2.69 2.86 3.96 4.32 6.21 7.40
vB

e

[
102 cm s−1

]
−6.14 −6.05 −4.86 −4.52 −2.54 −2.55

vT
e

[
103 cm s−1

]
7.80 7.60 2.60 2.20 0.77 0.71

vT
e /v∆s 0.45 0.54 0.39 0.52 0.34 0.41

uB
cell

[
cell τ−1

conv

]
−0.10 −0.10 −0.11 −0.12 −0.09 −0.11

uT
cell

[
cell τ−1

conv

]
1.23 1.28 0.61 0.56 0.28 0.31

vrms

[
106 cm s−1

]
1.08 1.04 0.66 0.62 0.40 0.35

RiB
B

[
103

]
1.74 1.99 3.29 4.07 6.76 9.44

RiTB
[
102

]
0.44 0.43 1.02 1.09 2.62 3.35

Notes. All data is obtained by considering a time interval of ∆Nτconv = 10. Legend: τconv : mean convective turnover time. vB
e , vT

e : entrainment
velocities at the bottom and top boundary. vT

e /v∆s: Ratio of the entrainment velocity at the top boundary to the velocity estimated by a general
entropy increase within the convection zone, see text and Eq. (21). uB

cell, uT
cell : number of vertical grid cells crossed by the bottom (top) boundary

over the period of one τconv. vrms : rms velocity in the convection zone. RiB
B, RiT

B : bulk Richardson number at the bottom and top boundary.

passive scalar. The length of the shortest simulations constitutes
the upper limit, such that the same time frame can be used for
both sets of simulations. The extracted values listed in Table 4
reveal that the bottom boundaries move only by about one cell
during the entire considered time frame of ∆Nτconv = 10.0. This
indicates that our grid is not fine enough to properly track this
subtle shift, which is also suggested from the thin boundary
widths measured for the bottom boundary, see Sect. 5.6. An
additional complication arises by the profile of energy genera-
tion (Fig. 2) which has its peak beneath the convection zone.
Because we do not increase the efficiency of radiative diffu-
sion in accordance with the artificial boosting, internal energy
will accumulate below the convection zone. This leads to a
local increase in the BVF and the boundary gets stiffer. Hence,
the entrainment velocity decreases when the bottom boundary
approaches the peak of the energy generation. Because of this
artificial phenomenon and the unresolved boundary motion we
exclude the data points of the bottom boundaries from the anal-
ysis.

Using a least-square fit of Eq. (17) to the extracted data, we
find

ln AA+-up = −2.15 ± 0.04, nA+-up = 0.74 ± 0.01,
ln AA+

B-up = −2.64 ± 0.39, nA+
B-up = 0.62 ± 0.08, (18)

where the errors correspond to the standard deviation of the fit-
ting parameters. We note that the errors are obtained without
taking the individual error bars shown in Figs. 16 and 17 into
account. The standard deviation in RiB and the spread in the
entrainment velocity are likely correlated between some of the
data points and subject to systematic shifts. Therefore, we think
a treatment in terms of proper error propagation could be mis-
leading. The error bars are shown nonetheless in the figures to
give an idea of the general variability of the data points. The
small uncertainties given in Eq. (18) thus indicate only that our
data is well represented by Eq. (17) but should not be taken as a
measure of the overall accuracy of our analysis.

The results with the AUSM+-up and AUSM+
B-up schemes

are similar, but the dependence of the entrainment on the bulk
Richardson number is somewhat steeper for AUSM+-up. As
a rough test for convergence, the set of simulations with the

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
central N conv

3.5

3.0

2.5

2.0

1.5

ln
A

N conv = 5
0.4

0.5

0.6

0.7

0.8

n

Fig. 18. Time evolution of the fit parameters A (blue solid line) and n
(orange dashed line) for a fixed time frame of ∆Nτconv = 5 and moving
central time.

AUSM+-up solver has been restarted after the initial transient
on grids with a resolution of 360 × 2402. The flow state is inter-
polated to the finer grids using constant interpolation. The cor-
responding tracks of the radial boundary positions are shown as
thick red lines in Fig. 16. For the top boundary, the entrainment
rate is similar to the low resolution runs. At the bottom bound-
aries, entrainment appears to be slightly faster. Generally, the
better resolved simulations follow a similar trend as the low res-
olution runs. However, more data is needed for a stronger state-
ment on convergence and to extract meaningful estimates for A
and n also from the better resolved simulations. Another parame-
ter that impacts the results is the considered time interval. Using
the full data of the AUSM+-up runs shown in Fig. 16, we extract
the parameters A and n for a fixed length of ∆Nτconv = 5 but
for a changing central time (Fig. 18). We find that the value of
the exponent n increases from n ≈ 0.4 and settles to a value of
n ≈ 0.75 for central times later than t

(
Nτconv = 20

)
. The value

of ln A changes in a very similar way from ln A ≈ −3.5 to
ln A ≈ −2.5. Figure 18 reveals that the values settle after cen-
tral Nτconv ≈ 20. Therefore, it seems more appropriate to consider
the time interval of t ∈

[
t
(
Nτconv = 17.5

)
, t

(
Nτconv = 25

)]
to deter-

mine best-fitting values of A and n. The upper limit is given by
the time the top boundary reaches the top of the computational
domain and boundary conditions will start to affect the results.
We obtain

ln AA+-up = −2.24 ± 0.45, nA+-up = 0.76 ± 0.10, (19)

A55, page 16 of 24



L. Horst et al.: Helium shell burning

see also Fig. B.4. These values are similar to the previous
result. However, considering the peak in the evolution in Fig. 18
between Nτconv = 10 and Nτconv = 20, this might be a coinci-
dence. There is not sufficient data for the simulations with the
AUSM+

B-up solver to repeat this calculation but we expect it to
show a similar trend.

The results given in Eqs. (18) and (19) are within the regime
0.5 ≤ n ≤ 1, which is compatible with values reported in lab-
oratory and numerical experiments (see, e.g., Meakin & Arnett
2007 and C+17 for a discussion and corresponding references).
Our fitting parameters are similar to the findings of C+19 for the
carbon shell. They obtain parameters3 of ln AC19 = −2.98± 0.13
and nC19 = 0.74 ± 0.04. In contrast, Meakin & Arnett (2007)
report ln AM07 = 0.062 ± 0.87 and nM07 = 1.05 ± 0.21 and also
the results of Jones et al. (2017) and Andrassy et al. (2020) agree
with an exponent of n ≈ 1, as pointed out by Müller (2020). Fur-
ther simulations are needed to scrutinize the values of A and n,
also keeping in mind that different values may exist for different
stellar convection zones.

Combining the results of Eq. (19) with the MLT prediction
of MaMLT ≈ 10−4 and RiB = 7 × 104 for the 1D MESA model,
we find a mass entrainment rate of

ṁe = 4πr2ρMaMLT csound ARi−n
B

= 9.6 × 10−11 M� s−1, (20)

for the top boundary. The value for the bottom boundary is
about a factor ten smaller. This confirms the finding of previ-
ous 3D hydro simulations (e.g., C+17) that lower boundaries
of convective shells are stiffer and thus have less entrainment
than the top boundaries. The associated growth of the convec-
tive region at the upper and lower boundaries using these rates
until the end of the evolution is indicated by green lines in Fig. 1.
This illustrates that, while the much stiffer lower boundary only
slightly changes, the upper boundary considerably moves out-
ward. At the rate of the mass entrainment of Eq. (20), the total
mass of the initial convection zone of 1.1 M� is doubled within
350 yr. However, a substantial growth of the convection zone
leads to different bulk Richardson numbers at the boundaries
and thus change the mass entrainment rate. Moreover, as seen
in Fig. 1, the convection zone is growing also in the 1D evolu-
tion calculation. The mass entrainment rate given in Eq. (20) is
therefore only representative for a short fraction of the shell’s
lifetime at the evolutionary time the simulation was calculated.
It is also a warning that one cannot simply use numerical val-
ues like entrainment rates extracted from single 3D simulations
and apply them at different phases of stellar evolution. Instead, it
is best to use theoretical prescriptions like the entrainment law.
Recently, 1D stellar evolution models using the entrainment law
on the main-sequence have been computed by Scott et al. (2021)
and better reproduce the mass dependence of the main-sequence
width. New 1D models during other phases of stellar evolution
will be needed to assess the ability of the entrainment law to
represent convective boundary mixing in 1D models throughout
stellar evolution.

The expansion of the convection zone seen in the 1D evolu-
tion is part of a global restructuring of the star after core helium
burning. Turbulent entrainment does not contribute as it is not
included in our 1D calculation. However, the growth may be

3 We note that the value and error of A given in their Fig. 14 mix linear
(for A value) and logarithmic (for the uncertainty) scales. The values
presented here are recalculated from the same data set in terms of the
natural logarithm.
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turnover times for the 3D simulation with a grid of 180 × 902 cells,
the AUSM+-up solver, and an energy boosting of b = 3 × 104. Vertical
dotted lines mark the region that is considered to calculate the mean
entropy gradient in the radiation zone ∆sRZ/∆r from the initial entropy
profile.

attributed to a process that is likely also present in our hydrody-
namic simulations: In a simplified picture, the heating through
nuclear burning successively increases the entropy within the
convection zone. This leads to a small region at the top boundary
where it exceeds the entropy at the immediate beginning of the
radiation zone. This region is unstable and will merge with the
convection zone. We estimate the speed v∆s at which this process
would move the outer boundary by

v∆s =

(
∆sCZ

∆t

)/ (
∆sRZ

∆r

)
, (21)

where ∆sCZ/∆t is the ratio of the mean temporal increase in
entropy inside the convection zone and sRZ/∆r corresponds to
the mean entropy gradient at t = 0 for a region above the top
boundary. For the simulation with the highest boosting that was
used to obtain the results in Eq. (19) we find a ratio of

v∆s

vT
e
≈ 60%, (22)

where vT
e is the entrainment velocity at the top boundary as mea-

sured from the advected passive scalar. The considered profiles
to calculate v∆s are plotted in Fig. 19, the spatial entropy gradient
is calculated considering the initial model. The ratios of our other
simulations range between 30% to 50% and are listed in Table 4.
This is similar to the value of 49% found by Andrassy et al.
(2020) for carbon-shell burning while Meakin & Arnett (2007)
find a maximum ratio of 17% for oxygen shell burning4. These
values suggest that a considerable fraction of the entrainment
speed could be contributed through increasing entropy. Conse-
quently, this process needs to be disentangled from the growth
through turbulent entrainment before the entrainment accord-
ing to Eq. (17) is used in stellar evolution codes or compared
between simulations of different convection zones.

5.5. Characterizing the mixing

It is not trivial to determine the details of the – possibly small-
scale – events that lead to turbulent mixing. In their PPMstar

4 It is not clear to us whether Meakin & Arnett (2007) calculated the
spatial entropy gradient in the radiation zone or at the transition from
convection to radiation zone. In the latter case, the gradient is much
steeper, the estimated velocity will be smaller, and we would obtain a
ratio similar to that of Meakin & Arnett (2007). However, we think that
only the gradient above the boundary transition is relevant.
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simulations, Woodward et al. (2015), Jones et al. (2017), and
Andrassy et al. (2020) find that trains of small Kelvin-Helmholtz
rolls emerge at the boundary. However, they do not appear in
regions of largest shear but rather at the point where two convec-
tive cells turn and move back into the convection zone.

From our 2D visualizations we are not able to easily find
large scale, coherent modes. In order to identify possible corre-
lations between the strength of shear and the amount of mixing
in our simulations, we use a simple analysis of the velocity field
at the top boundary: For a narrow region below the top boundary,
we measure along radial rays the volume-weighted deviation of
the passive scalar from its mean in the convection zone

P̃S(ϑ, ϕ) =

∑
r∈[rPS,rP] V(r, ϑ, ϕ)

[
PS(r, ϑ, ϕ) − PS(ϑ, ϕ)

]∑
r∈[rPS,rP] V(r, ϑ, ϕ)

, (23)

where PS denotes the value of the passive scalar, PS(ϕ, ϑ) is
the average over the middle third of the convection zone, and
V the volume of the grid cell. The radii rPS, rP define the con-
sidered radial domain, where rP corresponds to the beginning
of the transition to the stable zone at the top of the convection
zone, as defined in Sect. 5.6 and rPS = 0.95 rP. The value of the
passive scalar is larger above the top boundary compared to its
mean (see Fig. 6). Hence, a positive deviation from the mean cor-
responds to an entrainment event. The considered domain does
not include mixing directly at the boundary because there, devi-
ations are usually large but do not necessarily descend into the
convection zone.

In addition, we estimate the strength of shear by

S h(ϑ, ϕ) =

∫ rS

rPS

√(
∂rvϕ

)2
+ (∂rvϑ)2 dr, (24)

where vϑ, vϕ denotes the ϑ, ϕ-velocity components. Because the
shear at the boundary matters here, we extend the considered
zone to rS which coincides with the end of the transition to the
radiation zone as defined in Sect. 5.6. The different regions are
indicated in Fig. 20. With the described procedure we obtain data
pairs that correlate shear strength to mixing strength. Our sim-
ple approach does not consider that the mixing events will also
depend on the history of the velocity field and its gradient along
the individual downflows. However, it still gives some measure
of the correlation between shear and mixing: The characteristic
time scale for global changes of the flow field is given by the turn
over time. The animated versions5 of Fig. 20 illustrate that the
mixing events detected between the dashed-dotted line and the
dashed line happen on time scales which are much shorter. If
the mixing were caused by Kelvin-Helmholz instabilities over-
turning the whole boundary layer one may assume that they grow
fastest in regions of strongest shear. We then would expect the
rapidly-growing Kelvin-Helmholz rolls to become detectable in
the layer where we measure P̃S after a fraction of the global
turnover time scale. However, the shear layers caused by the
overturning of the large scale flows at the convective boundary
should be present for as long as the global turnover time scale.
The extracted data pairs can therefore be used to investigate a
possible correlation between shear strength and mixing.

The result for the AUSM+-up solver at a resolution of
180 × 902 is shown in Fig. 21 for increasing energy boostings.
In all simulations, the counts of positive passive scalar fluctu-
ations cluster at the lower end of the measured shear strength
range. At slightly negative deviations, a narrow band with a

5 https://zenodo.org/record/4776452
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high number of counts forms which stretches over a larger range
of shear strengths. As indicated by the blue lines, at smaller
shear strengths mixing events dominate over “no mixing” events.
The noisy profile at the strongest shear can be attributed to the
small number of total counts (thin line) and corresponding poor
statistics.

The evidence of mixing at the lower end of the range is in line
with the fact that the horizontal velocity naturally has to decrease
where strong downflows form because the velocity is redirected
inward there. The narrow band corresponds to rays with no mix-
ing events such that the contained passive scalar is slightly below
but very close to the average within the convection zone. If the
energy boosting is increased, convection gets more vigorous and
hence the narrow band extends toward larger shear strengths.
Mixing follows this trend, but still dominantly appears at lower
shear strengths. By visually inspecting the flow morphology of
their 3D simulations, Woodward et al. (2015) find that mixing
predominately occurs in regions where two large convective cells
meet and overturn. The premixed material that accumulates in
the wedge between two cells somewhat beneath the boundary
has a sufficiently small buoyancy force with respect to the bulk of
the convection zone such that the downflows are strong enough
to bring the material inward. Because of the decreasing horizon-
tal velocity of the turning cells, this premixed region will neces-
sarily have weaker shear (as measured by Eq. (24)) compared to
the region where the fluid moves almost horizontally. The results
of our analysis seem to support this picture.

In Fig. 22 we compare in a similar histogram the results of
the AUSM+-up and AUSM+

B-up solver at the runs with high-
est resolution. The direct comparison shows that shear values
spread over a larger range for the AUSM+-up solver, which can
be attributed to its better-resolved turbulent flow (see Figs. 9
and 10). The AUSM+

B-up solver shows slightly stronger mixing
events. The apparent return toward positive deviations at large
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to the total number of events for the respective shear strength. The
width of the lines is scaled linearly with the relative contribution of the
counts at the respective shear strength to the global number of counts.
A thick line therefore indicates a significant contribution while the thin
lines at very small and large shear strengths indicate a negligible con-
tribution to the total amount of events. The considered time frame is
t ∈

[
t
(
Nτconv = 17.5

)
, t

(
Nτconv = 25

)]
.

shear is insignificant due to the small number of total counts at
larger shear, as indicated by the thin line.

5.6. Boundary width

Another characteristic of convection is the shape of the boundary
layers between the convection zone and the convectively stable
zones. While the boundary width has to be parametrized in 1D
stellar evolution codes, it develops self-consistently in hydrody-
namic simulations. As can be seen in Fig. 6, the transition that
forms during the simulation is not sharp but rather changes grad-
ually across a certain vertical width. This is due to at least two
processes. The first, and most important, is partial mixing across
the boundary layer by turbulent entrainment. The second, which
is less important in the simulations presented in this study, is the
deformation of the boundary layer producing an undulated sur-
face rather than a perfectly spherical surface. Neither of these
processes exist in most 1D models, which generally assume a
sharp step-like boundary. The exception is 1D models using par-
tial mixing beyond the convective boundary such as the prescrip-
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Fig. 22. Same as Fig. 21, but here for the AUSM+
B-up (top panel) and

AUSM+-up (bottom panel) solver at a resolution of 810 × 5402 and
an energy boosting of 3 × 104. The considered time frame spans over
∆Nτconv = 0.5, including the respective latest snapshot of each run.

tions of exponentially decaying mixing by Freytag et al. (1996)
and Herwig et al. (1997).

Comparisons to asteroseismology (e.g., Moravveji et al.
2016; Arnett & Moravveji 2017; Michielsen et al. 2019;
Pedersen et al. 2021) also support smoother over step-like
boundaries. More work is needed to better understand the shape
boundaries since they can have a decisive impact on the evolution
and nucleosynthesis (e.g., Battino et al. 2016).

In this section we compare the transition layer widths for sim-
ulations with different resolutions, flux solvers and boostings.
Our approach to extract the widths is similar to the procedure
described by C+17 but instead of abundance profiles we use the
passive scalar as tracer. We define the inner radii of the transitions
at the bottom (top) of the convection zone as the radii at which the
horizontal mean of the passive scalar is larger than its initial value
at this radius plus (minus) 0.05. The outer radius of the transitions
at the bottom (top) is taken to be the radius at which the horizontal
mean of the passive scalar is below (above) the spatial mean over
the inner third by 0.05. To determine the corresponding radii, the
profile of the passive scalar is interpolated. The resulting widths
are shown exemplarily in Fig. 6, marked by vertical dashed lines.
The absolute value of the width depends on the particular choice
of the thresholds for the deviations from the initial profile. How-
ever, it still gives a measure for the relative dependence on resolu-
tion, boosting strength and numerical flux solver. We have verified
that the trends found for the boundary widths do not depend on the
specific choice of the threshold value.

In Table 5 the resulting widths are listed for simulations
applying the AUSM+

B-up and AUSM+-up solver at a fixed res-
olution of 180 × 902 for varying boosting strength. We find
that generally the top boundary width is larger than the bottom
boundary. This is in line with the much higher bulk Richard-
son number at the bottom boundary (Table 4). The top boundary
broadens with increasing energy input because stronger driving
leads to stronger convection and eventually to enhanced mixing
that reaches further into the stable zone. In addition, the inter-
face gets more deformed. This is in accordance with the results
reported by C+17. Also the transition of the bottom boundary
widens with increasing driving and is generally narrower for runs
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Table 5. Boundary widths of the bottom and top boundaries for different energy boosting factors at a resolution of 180 × 902 cells.

AUSM+
B-up AUSM+-up

Boost δr, bot δr, top δr, bot δr, top[
108 cm

] [
108 cm

]
3.0 × 103 1.57 ± 0.07 5.27 ± 0.22 2.11 ± 0.11 3.70 ± 0.05
1.0 × 104 1.72 ± 0.07 6.51 ± 0.37 2.25 ± 0.08 4.51 ± 0.12
3.0 × 104 1.93 ± 0.06 8.88 ± 0.37 2.30 ± 0.09 5.71 ± 0.33

δr, bot δr, top δr, bot δr, top[
10−2 Hp

] [
10−2 Hp

]
3.0 × 103 5.58 ± 0.25 15.41 ± 0.63 7.52 ± 0.40 10.81 ± 0.15
1.0 × 104 6.17 ± 0.24 18.94 ± 1.07 8.11 ± 0.29 13.13 ± 0.36
3.0 × 104 7.01 ± 0.23 25.63 ± 1.08 8.40 ± 0.31 16.48 ± 0.96

Notes. The upper set shows the widths in units of cm while the lower set shows the widths in terms of the mean pressure scale height over the
boundary width. The values are averages taken over a time interval of ∆Nτconv = 10, starting at t

(
Nτconv = 10

)
. Errors correspond to the standard

deviation of the temporal averages.
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Fig. 23. Profiles of the advected passive scalar for different energy input
boostings. All simulations use the AUSM+-up solver. The profiles are
taken at t

(
Nτconv = 15

)
, crosses denote the beginning and end of the

boundary transition zone, as defined in the text. Following the approach
of C+17, the profiles are shifted by the radial position of the bottom
(rb,bot) and top (rb,top) boundary, respectively. The different amplitudes
of the passive scalar below the bottom and above the top boundary are
due to the fact that the initial profile is linear, see Fig. 6. Larger boost-
ing leads to faster entrainment and the top boundary will have already
moved toward larger radii, that is larger values of the passive scalar, for
the snapshot shown in Fig. 23.

with the AUSM+
B-up solver. However, because of the stiffness of

the bottom boundary, changes are only subtle. With a radial grid
spacing of about 0.6×108 cm, the bottom boundaries are resolved
by a few cells only. The relative changes are even on the sub-
grid level and can only be followed by interpolation. Hence, the
robustness of these results is difficult to assess.

Figure 23 illustrates the boundary widths for one particular
point in time. This is similar to Fig. 12 of C+17 for the carbon-
burning shell simulations: For the top boundary, the broadening
with increasing energy input is clearly visible but it is less obvi-
ous at the bottom boundary.

The time evolution of the boundary widths is shown in
Fig. 24. The upper transition exhibits some variability over
time with an amplitude that increases with the driving strength.
Almost no fluctuations are visible for the bottom boundary. A
slight trend toward shallower transitions is noticeable. These
results confirm the general dependence of the boundary width
on the stiffness and driving strength.

To assess the impact of resolution, we compare the widths at
a boosting factor of 3× 104 for simulations on successively finer
grids in Table 6. Because the finer resolved simulations cover
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Fig. 24. Widths of the upper (dashed lines) and lower (solid lines)
boundary for different strengths of the energy generation boosting as
a function of convective turnover times τconv. All simulations use the
AUSM+-up flux.

less convective turn over times, the averages are taken at earlier
times compared to the data listed in Table 5.

For both flux functions we find that the widths of the upper
boundary noticeably decrease when the grid is refined from a
resolution of 180 × 902 to 360 × 1802. For even finer grids, the
width changes only slightly, which is confirmed in the bound-
ary profiles shown in Fig. 25. While the results seem to be
converged for the respective flux functions, there is still a dis-
crepancy between the solvers at the bottom boundary which per-
sists even for the highest resolution. This offset is much larger
than the small fluctuations of the width for the lower boundary
(Fig. 26). However, we note that the boundaries for the high-
est resolution runs need some time to adapt to the increased
grid resolution and that boundary widths at early times may still
change, as indicated in Fig. 24. Therefore, larger time intervals
are needed for a stronger statement on the convergence.

6. Conclusion

Our study complements the exploration of convective boundary
mixing in stellar interiors with multidimensional hydrodynamic
simulations of convective helium-shell burning. The initial strat-
ification is based on an 1D MESA model of a 25 M� star.
Gilkis & Soker (2016) use the MAESTRO code to perform
hydrodynamic simulations of convective helium-shell burning
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Table 6. Boundary widths of the bottom and top boundaries for different resolutions and a boosting factor of 3 × 104.

AUSM+
B-up AUSM+-up

Resolution δr, bot δr, top δr, bot δr, top[
108 cm

] [
108 cm

]
180 × 902 2.10 ± 0.03 7.22 ± 0.12 1.94 ± 0.04 5.65 ± 0.12
360 × 1802 1.93 ± 0.08 5.35 ± 0.19 1.38 ± 0.03 4.41 ± 0.09
540 × 3602 1.73 ± 0.04 4.88 ± 0.16 1.26 ± 0.04 4.76 ± 0.20
810 × 5402 1.49 ± 0.04 4.60 ± 0.13 1.07 ± 0.03 4.61 ± 0.10

δr, bot δr, top δr, bot δr, top[
10−2 Hp

] [
10−2 Hp

]
180 × 902 7.52 ± 0.12 21.10 ± 0.34 6.96 ± 0.16 16.53 ± 0.35
360 × 1802 6.90 ± 0.30 15.64 ± 0.55 4.94 ± 0.09 12.87 ± 0.27
540 × 3602 6.17 ± 0.14 14.26 ± 0.47 4.48 ± 0.16 13.96 ± 0.57
810 × 5402 5.30 ± 0.15 13.44 ± 0.39 3.83 ± 0.11 13.47 ± 0.29

Notes. Quantities have the same meaning as in Table 5. The values are averages over a time range of ∆Nτconv = 0.5, the central time is t
(
Nτconv = 4.2

)
.

Due to insufficient data, the central time is set to t
(
Nτconv = 2.9

)
for the run with the AUSM+-up solver at a resolution of 540 × 3602 cells.
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Fig. 25. Similar to Fig. 23 but for a fixed energy boosting factor of 3 ×
104 and varying resolution. All simulations use the AUSM+-up solver.
The profiles are taken at Nτconv = 4.5, except for the run with a grid of
540 × 3602 cells. Here, the profile is taken at Nτconv = 3.1, the latest
available snapshot.

in a 15 M� star. Their study, however, focuses on the angu-
lar momentum distribution within the convection zone and the
boundaries to stable layers above and below the convective shell
are not analyzed in detail.

Our 2D and 3D hydrodynamic simulations in spherical-
wedge geometry are performed with the time-implicit, finite-
volume Seven-League Hydro (SLH) code. We calculate the
hydrodynamic fluxes with the low-Mach AUSM+-up scheme
in combination with Cargo–LeRoux well-balancing. Because
previous SLH simulations with this combination had shown
that convection is represented properly only for Mach numbers
above 10−3, the energy input had to be boosted to increase the
velocities. We applied boosting factors ranging from 3 × 103 to
3×104. This results in Mach numbers ranging from ∼5×10−3 to
∼1 × 10−2. The employed grid resolutions range from 180 × 902

cells up to 810 × 5402 cells.
In order to assess the performance of the AUSM+-up solver,

we compare different diagnostic values to a variant of this
scheme, denoted as AUSM+

B-up, that does not employ the
improved low-Mach capabilities. The flow morphology of fully
developed convection at a resolution of 810 × 5402 reveals that
AUSM+-up reproduces significantly more small-scale structures
than the AUSM+

B-up scheme (Fig. 10). This is confirmed by the
corresponding kinetic energy spectrum (Fig. 9). The spectrum
obtained with the AUSM+-up scheme has an inertial range that
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Fig. 26. Same as Fig. 24 but for a resolution of 810 × 5402 and a fixed
energy boosting of 3 × 104.

reaches down to scales a factor of two smaller than in the spec-
trum for the AUSM+

B-up scheme. The numerical dissipation as
obtained from the RA-ILES kinetic energy equation shows an
improved behavior at the bottom boundary and indicates that
the dissipation is converged already at rather low resolution
(Fig. 13). For the AUSM+

B-up solver, convergence is found only
at the highest resolution of 810 × 5402 cells. These results indi-
cate that a low-Mach method is beneficial already at moderate
Mach numbers. In a future study, simulations of convection with
the AUSM+-up solver will be compared in detail to more widely
used approaches, as, for example, to the PPM method.

We analyzed the entrainment rate at the boundaries of the con-
vection zone in terms of the bulk Richardson number (Eq. (6)).
For this, a series of simulations with varying boosting strength
has been carried out on grids with 180 × 902 cells. We found
an exponent of n = 0.76 (Fig. 16) which is compatible with
C+17 and C+19 but smaller than results reported for example
by Meakin & Arnett (2007) or Andrassy et al. (2020) who find
n ≈ 1. Furthermore, in our simulations a considerable frac-
tion of the measured entrainment velocity may be attributed to
entropy increase in the convection zone due to the energy release.
This is an important aspect if the results of entrainment studies
from hydrodynamic simulations are to be used in 1D calculations.
Recently, the Bulk-Richardson entrainment scaling was applied
to stellar evolution calculations (Staritsin 2013; Scott et al. 2021).
Scott et al. (2021) show that it naturally leads to a mass-dependent
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efficiency of CBM, which is suggested by observations. However,
their study indicates that values of n < 1 result in a too effi-
cient mixing and that the values for A that are commonly found
in hydrodynamic simulations are too large. Future simulations,
especially at nominal luminosity, may help to identify the origins
of this discrepancy, also regarding the question whether it is appli-
cable only to a subset of convection zones during stellar evolution
as suggested by Viallet et al. (2015).

Measuring the widths of the transitions from the convection
zone to the adjacent stable zones showed that the transition is
wider for the 180 × 902 resolution compared with simulations
on finer grids. This indicates that our results may not be numeri-
cally converged and that our higher-resolution simulations need
to be continued to verify the robustness of our result for the
entrainment rate. We further assessed the relation between shear
strength and mixing events in our simulations and found that
mixing occurs not in the regions of strongest shear but rather at
lower values in the range of measured shear strengths (Fig. 21).
This is consistent with the findings of Woodward et al. (2015).

Our study has demonstrated that the low-Mach AUSM+-up
solver is suitable to address setups that base on realistic stellar
models if well-balancing is used. Recently, the Deviation well-
balancing scheme of Berberich et al. (2021) was added to the
SLH code. In simplified convective test simulations presented by
Edelmann et al. (2021), the achieved Mach numbers reach Ma ≈
10−4. These velocities are in the regime of convective veloci-
ties predicted by MLT in early evolutionary phases of stars. The
combination of the new Deviation well-balancing method and the
AUSM+-up solver is a promising approach for future SLH simu-
lations of stellar convection in the low-Mach regime without the
need of artificially boosted energy generation.
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Appendix A: Reynolds and Favre decomposition

The Reynolds decomposition splits a quantity q(r, ϑ, ϕ, t) in its
mean value q(r) averaged over space and time

q(r) =
1

∆t∆Ω

∫
∆t

∫
∆Ω

q(r, ϑ, ϕ, t) dΩ dt, (A.1)

where dΩ = sinϑ dϕ dϑ and the fluctuation q′ is defined as

q′(r, ϑ, ϕ, t) = q(r, ϑ, ϕ, t) − q(r). (A.2)

The Favre decomposition separates a quantity q into the density-
weighted average

q̃(r) =
ρq
ρ

(A.3)

and the corresponding fluctuation q′′ defined via

q′′(r, ϑ, ϕ, t) = q(r, ϑ, ϕ, t) − q̃(r). (A.4)

Appendix B: Supplementary plots
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Fig. B.1. Thermal adjustment timescale τdiff according to Eq. (9). The
typical length scale is taken to be the radial grid spacing of the 3D sim-
ulation run with the highest resolution presented in Section 5.
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2.3 Publication III: Simulating waves excited by core convection

The publication in this section presents 2D SLH simulations of waves propagating in a sim-
plified test setup and in a realistic stellar model. Different wave properties are extracted from
the simulations and compared to expectations from linear theory and observations.

Convection in stars provides a possible source of wave excitation. For solar-like stars it is
known that the convective envelope stochastically excites waves which can be observed at the
surface (Aerts, 2021). While linear theory provides estimates of eigenfrequencies and their
relation to properties of the stellar interior, it is not able to quantitatively predict which
frequencies will be excited and what amplitudes can be expected. Furthermore, non-linear
effects are difficult to treat in an analytical way.

For example, comparisons to observations of stellar oscillation suggest that additional mix-
ing in radiative zones is required to obtain best fitting models (e.g., Moravveji et al., 2015;
Pedersen et al., 2021). However, its parametrization remains unclear. Hydrodynamic simula-
tions of waves propagating inside stars help to assess the importance of waves in this context.
Indeed, recent studies for example indicated that IGW can contribute to angular momentum
transport and mixing in the radiative zone (e.g., Rogers et al., 2013; Rogers and McElwaine,
2017; McNeill and Müller, 2020; Higl et al., 2021).

However, simulations that address wave excitation in detail are often performed considering
the Euler equations in the anelastic approximation which filters out the physics of sound
waves. Recently, spectral methods have been used to solve the anelastic equations which
required enhanced viscosity and thermal diffusivity (e.g., Rogers et al., 2013; Alvan et al.,
2014; Edelmann et al., 2019). The SLH code follows a finite-volume approach to solve the
unmodified Euler equation. Although viscosity is not a controllable parameter in the ILES
framework, it is thought to be smaller compared to the aforementioned simulations using
spectral codes. It can be therefore expected that SLH simulations are closer to actual stellar
conditions. While there have been some reports on waves excited in compressible simulations
of stellar convection (Meakin and Arnett, 2006, 2007a; Herwig et al., 2006; Gilet et al., 2013),
none of them included a larger part of the radiation zone and investigated the wave properties
in detail.

The simulations presented in this section are based on a 3 M⊙ MS-star model with a
convective core and a radiative envelope. Convective motions in the core excite waves at
the interface to the envelope which then propagate toward the surface. Properties of these
waves, as for example their dispersion relation, can be extracted from the simulations and
compared to predictions from linear theory. The SLH simulations are done in 2D because of
the high computational costs of more realistic 3D simulations. The reduced dimensionality
changes the eigenfrequencies of the waves and also the turbulent spectrum of convection.
Still, 2D simulations can give an at least qualitative picture of the excitation mechanism and
the reduced computational costs allow the inclusion of a large part of the radiative envelope
and following wave excitation for longer times.

The chosen setup is well suited to assess the quality of simulations with the AUSM+−up
flux and, despite its simplicity, enables qualitative comparison to observations of stellar os-
cillations. Furthermore, the initial setup is the same as in the 3D study of Edelmann et al.
(2019) who use a pseudo-spectral code. In this way, some comparison between the different
numerical methods is possible.

The publication first describes and analyzes the test setup and compares the results ob-
tained with the AUSM+−up flux to the Roe solver. Because only the Cargo-LeRoux well-
balancing scheme was available when the simulations of the 3 M⊙ model were carried out, a
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luminosity boosting by a factor of 103 was required to reach Mach numbers in the regime
of 10−3. The waves excited in the simulation are analyzed in detail regarding fundamental
properties. It is found that the AUSM+−up flux is well suited to simulate wave propaga-
tion at low Mach numbers and that the results are compatible with theory and observations.
Furthermore, the resulting frequency spectra support the hypothesis that the low-frequency
excess observed in massive stars is due to IGW excited by core convection.
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ABSTRACT

Context. Recent, nonlinear simulations of wave generation and propagation in full-star models have been carried out in the anelas-
tic approximation using spectral methods. Although it makes long time steps possible, this approach excludes the physics of sound
waves completely and requires rather high artificial viscosity and thermal diffusivity for numerical stability. A direct comparison with
observations is thus limited.
Aims. We explore the capabilities of our compressible multidimensional Seven-League Hydro (SLH) code to simulate stellar oscilla-
tions.
Methods. We compare some fundamental properties of internal gravity and pressure waves in 2D SLH simulations to linear wave
theory using two test cases: (1) an interval gravity wave packet in the Boussinesq limit and (2) a realistic 3 M� stellar model with a
convective core and a radiative envelope. Oscillation properties of the stellar model are also discussed in the context of observations.
Results. Our tests show that specialized low-Mach techniques are necessary when simulating oscillations in stellar interiors. Basic
properties of internal gravity and pressure waves in our simulations are in good agreement with linear wave theory. As compared
to anelastic simulations of the same stellar model, we can follow internal gravity waves of much lower frequencies. The temporal
frequency spectra of velocity and temperature are flat and compatible with the observed spectra of massive stars.
Conclusion. The low-Mach compressible approach to hydrodynamical simulations of stellar oscillations is promising. Our simula-
tions are less dissipative and require less luminosity boosting than comparable spectral simulations. The fully-compressible approach
allows for the coupling of gravity and pressure waves in the outer convective envelopes of evolved stars to be studied in the future.

Key words. hydrodynamics – methods: numerical – stars: interiors – convection – waves

1. Introduction

The study of the excitation and propagation of waves within
stars has greatly helped to shape stellar structure and evolution
theory over the last century. Today, this area of astronomy is
called asteroseismology, and it includes the study of oscillations
across the Hertzsprung–Russell diagram. For example, pressure
modes (p-modes) provide important constraints on the envelopes
of stars. Modes of a consecutive radial order (n) and the same
angular degree (`) have a characteristic frequency separation
known as the large frequency separation, which is sensitive to
the average density of a star (Aerts et al. 2010). This applica-
tion of asteroseismology using p-modes has been extremely suc-
cessful for low- and intermediate-mass stars (Chaplin & Miglio
2013; Hekker & Christensen-Dalsgaard 2017; García & Ballot
2019). Specifically, the measurement of envelope rotation using
rotationally-split pressure modes has facilitated the discovery
that stars with masses of about 2 M� have approximately rigid
interior rotation profiles (see Kurtz et al. 2014; Saio et al. 2015;
Van Reeth et al. 2016, 2018). Hence, current angular momentum

theory already needs significant improvement on the main
sequence (MS; Aerts et al. 2019).

For later evolutionary stages, including subgiant, red giant,
and red clump stars, pulsations that behave as gravity modes
(g-modes) near the core and as p-modes near the surface have
been detected in thousands of stars (see Beck et al. 2011). These
“mixed modes” can be used to distinguish different stages of
nuclear burning (Bedding et al. 2011). Hence, understanding
pressure modes is not only crucial for measuring interior proper-
ties of main sequence stars, but also for post-MS stars (see, e.g.,
Beck et al. 2012; Mosser et al. 2012).

On the upper main sequence, stars with spectral types O and
B (M > 3 M�) observed in µmag precision space photometry
show coherent opacity-driven p- or g-modes as well as stochas-
tic variability caused by internal gravity waves. This occurs
in slowly pulsating B (SPB) stars with masses between 3 M�
and 9 M� (Pápics et al. 2017; Bowman et al. 2019a; Pedersen
2020), in βCep stars with masses between 8 M� and 25 M�
(Briquet et al. 2011; Burssens et al. 2019), and in young and
evolved O-type dwarfs and blue supergiants with masses up to
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∼50 M� (Buysschaert et al. 2015; Bowman et al. 2019b, 2020;
Pedersen et al. 2019). This overwhelming observational evi-
dence from CoRoT, Kepler/K2, and TESS photometry motivated
the development and study of our simulation setup.

The typical numerical approach to model the excitation of
waves generated within stars is to solve the Navier–Stokes equa-
tions in the anelastic approximation (e.g., Rogers et al. 2013;
Alvan et al. 2014; Edelmann et al. 2019). This method allows for
large time steps while still being a mostly explicit method and is
therefore computationally efficient. While being suitable to sim-
ulate internal gravity waves (IGWs) where gravity is the dom-
inant restoring force, some important phenomena, such as the
excitation of p-modes, cannot be followed. Furthermore, com-
mon numerical methods to solve the equations in the anelas-
tic approximation require to introduce an artificial viscosity to
achieve numerical stability. To balance the effect of high viscos-
ity, the stellar luminosity and the thermal diffusivity have to be
increased by orders of magnitude. This leads to a damping of the
waves, especially in the low frequency regime.

Some of these drawbacks are avoided or reduced by perform-
ing compressible simulations of stellar interiors. Here, the full
Navier–Stokes equations are solved, most commonly in the finite
volume approach. This includes the physics of sound waves and
allows the luminosity and the thermal diffusivity to be kept much
closer to stellar values. Viscosity is implicitly introduced by the
numerical scheme, and is lower than the viscosity typically used
by spectral codes (nevertheless still orders of magnitudes higher
than the astrophysical value). This is why we commonly speak
of solving the Euler equations, which follow from the Navier–
Stokes equations without an explicit viscosity term, in this con-
text. On the other hand, this kind of simulations comes with
higher computational costs compared to their anelastic counter-
parts. That compressible simulations show excited IGWs and
p-modes has already been reported in the past. For example,
Meakin & Arnett (2006, 2007) show a spectrum of the velocity
for a simulation of carbon and oxygen burning in a 3D wedge
geometry. They compare the form of a wave with predominately
g-mode character and a coupled p- and g-mode to the predic-
tions from linear theory and find good agreement for both. Also
Herwig et al. (2006) indicate the excitation of p- and g-modes
for the case of He-shell burning. They find the frequency of the
different modes to be independent of resolution and boosting.

These prior studies focus on the effects of convective bound-
ary mixing rather than the physics of waves. Thus, the compu-
tational domains only contain small parts of the radiative zone
below and above the convective shells in evolved stars. The fre-
quency spectrum might therefore differ considerably compared
to a full star model and comparison to observations is difficult.
Also, the analysis of internal waves mainly consists of comput-
ing the resulting spectra without further investigations.

Therefore, to further assess the advantages of compress-
ible simulations, we use our finite volume Seven-League Hydro
(SLH) code (for a description see Sect. 2) to examine in
more detail the properties of excited waves. To ease the val-
idation and comparison of our results, we repeat the simu-
lation of a 3 M� zero-age main-sequence (ZAMS) model by
Edelmann et al. (2019, EM19 hereafter). For their simulation,
EM19 applied the anelastic approximation and a comparison
between these two approaches is therefore possible. We note that
many of the diagnostics presented in the main part of this work
originate from EM19.

Because 3D simulations of an entire stellar model are costly
even on today’s supercomputer facilities, we use 2D simulations
in this initial verification experiment. The 2D approach allows us

to cover almost the entire stellar radius in our simulation domain,
excluding only a small part in the core and the outermost layers,
and to follow the evolution for an extended period of time. The
computational costs are low enough to run the simulations on
the local computer cluster of the Heidelberg Institute for The-
oretical Studies (HITS), Germany. Convection is known to be
only accurately described in three spatial dimensions (see, e.g.,
Meakin & Arnett 2007 for a comparison of 2D and 3D oxygen
burning). However, as pointed out by EM19, the results of their
3D simulation are compatible with those of a 2D simulation by
Rogers et al. (2013) for a different, but similar 3 M� model. This
indicates that 2D simulations may still serve useful results for
excited wave properties despite their reduced dimensionality.

This work is intended as a proof-of-concept: We present
and validate in detail the results of simulating IGWs with the
compressible hydrodynamics code SLH. The lack of the third
dimension may not allow for a full quantitative comparison with
observations, but some characteristics of 2D simulations are still
expected to match observations of the integrated variability at
the surface in a qualitative way. The main questions we aim
to answer are therefore: Can the excited waves be identified as
pressure waves and IGWs and do they comply with the theo-
retical expectations? Additionally, we compare the excited wave
spectra to previous 2D work by Rogers et al. (2013) and perform
qualitative comparisons to observations of frequency spectra of
massive stars.

The paper is organized as follows: in Sect. 2 we give a brief
overview on the numerical methods that are used in the SLH
code. In Sect. 3 we describe and apply a simple test setup to
benchmark the capability of SLH to treat IGWs. The 2D results
for the 3 M� ZAMS model are discussed in Sect. 4. Section 5
summarizes the most important aspects and gives an outlook for
future simulations.

2. The SLH code

We use the SLH code for all simulations presented in this paper.
It was developed initially by Miczek (2013) and solves the fully
compressible Euler equations in a finite volume framework. It
allows us to choose between an ideal gas and a more gen-
eral equation of state that includes contributions from radiation
and electron degeneracy (Timmes & Swesty 2000). The hydro
solver is coupled to a nuclear reaction network (Edelmann 2014).
Radiation is treated in the diffusion limit, which is appropri-
ate in the optically thick regions of the star covered here. The
implemented mapping procedure between the uniform Carte-
sian computational grid and a general curvilinear physical grid
introduces flexibility regarding grid geometry. Our implementa-
tion of the mapping is based on Kifonidis & Müller (2012) and
Colella et al. (2011), examples for curvilinear grids can be found
for example in Calhoun et al. (2008).

The SLH code was developed with a focus on flows at
very low Mach numbers. One complication in this regime is
the need of specialized flux scheme as common approaches are
dominated by artificial dissipation (see, e.g., Miczek et al. 2015;
Barsukow et al. 2017). For the simulations presented here, we
use the AUSM+-up solver (Liou 2006). It splits the flux func-
tion into a pressure and an advective part and has improved low-
Mach capabilities. An artificial diffusive component for both
parts is introduced for stability. To avoid divergence at very low
Mach numbers, the scaling of the diffusion terms is limited by a
cutoff Mach number Mcut, which is a free parameter. For tech-
nical reasons, a separate cutoff number Mcutpdiff for the pressure
diffusion term is used in SLH. In the simulations presented here,
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we use Mcut = 10−10 and Mcutpdiff = 0.1. For lower values of
Mcutpdiff , the convergence rate of the implicit solver decreases
considerably.

Due to the large pressure gradient in stars, the AUSM+-up
solver quickly destroys the hydrostatic stratification. To resolve
this problem, SLH applies a variant of the Cargo–Leroux well-
balancing technique. The basic idea is to remove the static back-
ground stratification from the conserved variables before they
enter the numerical flux function. This considerably reduces
the “effective” pressure gradient. The scheme was developed by
Cargo & Le Roux (1994) for one-dimensional setups. Edelmann
(2014) describes how this approach can be extended to multi-
dimensional setups.

The flexible modular design of SLH facilitates the imple-
mentation of new developments such that newly published flux
functions or reconstruction schemes can be easily implemented
and tested. This makes SLH well suited to push hydrodynam-
ical simulations toward low Mach numbers. For the 2D sim-
ulation of core hydrogen burning at the ZAMS presented in
Sect. 4, mixing-length theory predicts convection at Mach num-
bers around 10−4 which calls for a numerical scheme optimized
for slow flows. For a more detailed description of the code
we refer the reader to Miczek (2013), Miczek et al. (2015) and
Edelmann (2014).

At low Mach numbers, a common drawback of conventional
explicit time stepping methods is that for stability the maximum
possible time step size δtCFLuc is limited to the acoustic Courant–
Friedrich–Lewy (CFL) criterion

δtCFLuc =
CFLuc

Ndim
min

(
∆x

|u| + csound

)
· (1)

Here, Ndim is the number of dimensions, ∆x is the grid spac-
ing in the different coordinate directions, u is the fluid velocity
and csound is the speed of sound. CFLuc is a dimensionless num-
ber which needs to be smaller than unity. The factor 1/Ndim in
combination with the minimum over all cells for the cell cross-
ing time in all directions gives a lower limit for the time step.
For low-Mach flows, u � csound and the time step size is domi-
nated by the speed of sound. As a consequence, many small time
steps are needed to resolve the fluid flow. Although the compu-
tational costs for one explicit time step are low, the large number
of necessary steps makes explicit time stepping inefficient in this
regime.

The great advantage of implicit time stepping is that there is
no restriction for the step size required for stability. The main
constraint arises from the question of how well the flow is to be
resolved in time. This leads to the “advective” CFLu criterion
which results from Eq. (1) by omitting the speed of sound:

δtCFLu =
CFLu

Ndim
min

(
∆x
|u|

)
· (2)

For illustration purposes, setting CFLu = 0.5 corresponds to a
time step which does not allow the fluid to cross more than half
of a cell per step.

Implicit time integration, however, requires to solve nonlin-
ear systems of equations in each step. This greatly increases
the computational costs for one implicit time step compared to
explicit time stepping.

In SLH, the family of Explicit first stage, Singly Diago-
nally Implicit Runge-Kutta (ESDIRK) time steppers is imple-
mented following the description of Hosea & Shampine (1996)
and Kennedy & Carpenter (2001). For the simulations in this
paper, the ESDIRK23 scheme is applied. It consists of three

Table 1. Parameters of the Boussinesq IGW simulation.

Temperature T0 = 300 K
Mean mol. weight µ = 1
Adiabatic index γ = 5/3
Density at zero height ρ0 = 1 g cm−3

Gravity g = −103 cm s−2 ey
Resolution 288(x) × 288(y)
Domain [0, (2π/|kx|)] ×

[
y1, y2

]
Boundary conditions x-direction: periodic

y-direction: constant ghost cells
Time stepping ESDIRK23
Time step size δt = 1

20
2π
N0

Reconstruction Linear, second order in space

computing stages and is up to second order accurate in time.
This results in two nonlinear systems of equations. SLH applies
the Newton-Raphson method which finds their solution in an
iterative way. Each iteration itself needs the solution of a linear
system of equations. For these, SLH offers a variety of different
methods (e.g., Krylov-Subspace schemes and multigrid solvers).

At low Mach numbers, the increased computational costs per
time step are overcompensated by the benefit of a larger step
size. Numerical tests with SLH imply that implicit time step-
ping becomes more efficient than explicit time stepping at Mach
numbers smaller than about 0.1 to 0.01.

Apart from accuracy requirements, the length of implicit time
steps is also limited by the Newton-Raphson solver, which may
converge slowly or even diverge if the time step becomes too long.
This limit depends on the problem solved and on details of the
numerical scheme and needs to be determined experimentally.

The choice of the time step size for the 2D simulation pre-
sented in Sect. 4 is discussed in Sect. 4.7 along with an efficiency
comparison between implicit and explicit time stepping.

3. Testing internal gravity waves in SLH

In this section, we scrutinize the capability of SLH to cor-
rectly reproduce the propagation of IGWs. The base setup is a
2D Cartesian domain containing an isothermal ideal gas in a
hydrostatic stratification. A wave packet of small amplitude is
evolved for several oscillation periods. The group velocity and
the change of the wave shape are then extracted from the simu-
lation and compared to the theoretical prediction which follows
from the linear Boussinesq approximation. With this simple but
well-defined test setup we verify whether SLH is able to repro-
duce the prediction accurately enough before applying it to the
more complex case of a realistic stellar profile in Sect. 4.

3.1. Boussinesq IGW setup

The theoretical basics of the benchmark test are presented in
Appendix A and follow Sutherland (2010). The actual exper-
imental SLH setup closely follows the idea of Miczek (2013)
and is extended up to Mach numbers of Ma = 10−2. The basic
parameters of the setup are listed in Table 1.

Assuming the ideal gas law p = ρR/µT , where R is the uni-
versal gas constant, the profiles for density, pressure, and poten-
tial temperature in hydrostatic equilibrium are given by

ρhse = ρ0 exp
(
−
y

Hp

)
, (3)
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phse = ρ0
R

µ
T0 exp

(
−
y

Hp

)
, (4)

ϑhse = T0 exp
(
y

Hp

γ − 1
γ

)
, (5)

where the pressure scale height Hp is defined as

H−1
p = −

∂ ln p
∂y

=
gµ

RT0
· (6)

The Brunt–Väisälä frequency (BVF) according to Eq. (A.10) is
spatially constant and reads

N0 =

√
g

Hp

γ − 1
γ
· (7)

We perturb this hydrostatic stratification with a monochromatic
internal gravity wave packet. The wavelength λ = 2π/|k| = βHp
of the packet is set in terms of the fraction β of the pressure
scale height and is inclined by −60◦ with respect to the horizon-
tal direction. We therefore have

|k| =
2π
βHp

, θ = −
60◦

180◦
π (8)

and

kx = |k| cos θ, ky = |k| sin θ. (9)

We set the vertical domain of the Cartesian box such that it
corresponds to 13 times the wavelength λ

y1 = −5βHp, y2 = 8βHp (10)

in order to provide enough space for the wave to move upward in
y-direction. The horizontal extent is set to contain one horizon-
tal wavelength λx = 2π/|kx|, which, in combination with periodic
boundary conditions, allows for the plane wave approach. At the
top and bottom boundary we apply a layer of two cells which are
filled with the hydrostatic initial condition but kept constant in
time (constant ghost cells). The amplitude for the vertical veloc-
ity component Av is modulated by a Gaussian function according
to

Av(x, t = 0) = fMa
√
γRT0/µ︸      ︷︷      ︸
=csound

exp

−1
2

(
y

βHp/2

)2· (11)

The parameter fMa therefore sets the peak Mach number in the
vertical velocity amplitude. Using the relations Eqs. (A.11)–
(A.13) from the theory described in Appendix A one finds for
the initial conditions

ϑ(x, t = 0) = ϑhse + R

{
−

i
ω

dϑhse

dy
Aveik·x

}
, (12)

u(x, t = 0) = R

{
−

ky
kx

Aveik·x
}
, (13)

v(x, t = 0) = R
{
Aveik·x

}
, (14)

p(x, t = 0) = phse + R

{
−ρ0ω

ky
k2

x
Aveik·x

}
, (15)

where R {.} denotes the real part of a complex expression.
In Appendix A, the time evolution of an initial amplitude

modulation of the form of Eq. (11) is derived while consider-
ing the IGW dispersion relation Eq. (A.9) up to second order in

k. The result given by Eq. (A.28) shows that the initial profile
broadens in time and moves at a vertical velocity of

cgy = |sin θ cos θ |
N0

|k|
(16)

which corresponds to a vertical Mach number of

Magy = |sin θ cos θ |

√
γ − 1
γ

β

2π
(17)

≈ 0.034 β. (18)

In Sect. 3.2 we compare the predicted to the simulated evolution
of the velocity amplitude to assess the accuracy of our numeri-
cal schemes. In order to extract the velocity amplitude function
from the simulation, Miczek (2013) suggests the following pro-
cedure: It is assumed that the horizontal velocity field can be
decomposed as

u(x, y) = û(y) sin (kxx + ϕ(y)) . (19)

This is fulfilled for the ansatz Eq. (A.6) and the amplitudes
as defined above. Accordingly, also the evolved initial data
should at least approximately fulfill this decomposition. How-
ever, directly comparing this to the prediction is not straight for-
ward. To simplify the interpretation, the square of Eq. (19) is
integrated over the full horizontal width∫ 2π/kx

0
u(x, y)2 dx =

π

kx
û(y)2. (20)

The integral can be calculated numerically using the data from
the simulation and therefore provides the possibility to recover
the vertical profile û(y).

The normalized amplitude

r j =

√
kx
π

∑
i u2

i, j ∆x∣∣∣∣ ky
kx

Av(y = 0)
∣∣∣∣ (21)

then measures the change of the evolved data relative to the max-
imum of the initial data. In Eq. (21), i and j are the indices in hor-
izontal and vertical direction, respectively; ∆x refers to the size
of the uniform grid spacing. The velocity by which the peak of
r j moves upward is interpreted as the group velocity in Eq. (16).

As discussed in Sect. 4.6, one can define a nonlinearity
parameter,

ε =
u
ω

kx, (22)

where u and kx denote the horizontal velocity and wave number,
respectively. If ε & 1 one expects nonlinear effects to become
dominant. Inserting the corresponding expressions into Eq. (22)
gives

εB = sin2 θ
fMa

Magy
(23)

for the Boussinesq IGWs.
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3.2. IGW SLH results

In this section we present simulations of the IGW setup
described above for different parameter settings. For compari-
son, we show the results for the low-Mach solver AUSM+-up
and the classical Roe solver (Roe 1981).

The possible parameter space is restricted by two conditions:
(a) We require εB � 1 to stay within the linear regime;
(b) The Boussinesq approximation requires β � 1.
As free parameters we choose εB = 10−2 and vary Magy. The val-
ues for β and fMa are then calculated accordingly. This way, we
are able to assess the capabilities of both schemes for different
Mach numbers. The numerical settings for all of the simulations
presented in this section are listed in Table 1. In particular we
have chosen the time step size of the implicit time stepping such
that the period corresponding to the BVF is resolved by 20 time
steps.

We perform simulations for vertical group velocities of
Magy = 10−4, 10−3, and 10−2. Whereas condition (b) is well ful-
filled for Magy = 10−4, with Magy = 10−2, which is closer to
the typical velocity we find in the simulation presented in Sect. 4
(see Fig. 4), we have β = 3 × 10−1 and the stratification does
not strictly follow the Boussinesq approximation anymore. Press
(1981) shows that for the locally Boussinesq but globally anelas-
tic equations the amplitude scales during the propagation with√
ρ0/ρ where ρ0 is the density at the starting point (cf. Eq. (42)).

We therefore multiply equation Eq. (A.28) by the correction
factor

fρ =

√√
ρ
(
y − cgyt

)
ρ(y)

(24)

to account for the amplification due to varying density.
The results for the AUSM+-up and Roe solvers are visual-

ized in Figs. 1–3, respectively. The left columns show snapshots
of the horizontal velocity u at the end of the simulation. The right
columns compare at three points in time the amplitude and shape
of the vertical velocity distribution as extracted from the simu-
lation using Eq. (21) with the approximate prediction given by
Eq. (24) and (A.28).

In Fig. 1, we have set Magy = 10−4, which corresponds to
a vertical velocity amplitude of fMa = 10−6. For the AUSM+-
up solver the velocity field in the left column clearly shows
the effect of dispersion: waves of longer vertical wavelengths
move faster and therefore appear at larger y values compared
to smaller vertical wavelengths. The amplitude function broad-
ens over time and is compatible with the prediction in terms of
width and peak amplitude. We attribute most of the small devi-
ations from the prediction to our neglect of third order effects in
the dispersion relation, which are responsible for the amplitude
function’s skew. In contrast, the Roe solver heavily damps the
initial amplitude within the first few time steps and it becomes
impossible to determine a unique peak in the remaining veloc-
ity field. This illustrates that the classical Roe solver fails in the
very low Mach regime whereas AUSM+-up still gives excellent
results.

We continue by increasing the vertical group velocity to
Magy = 10−3. According to Eq. (17) this can only be achieved by
increasing β, which sets the fraction of the pressure scale height
covered by one wavelength, to β = 3.0 × 10−2. The results are
shown in Fig. 2. The relative peak amplitudes and shapes for
AUSM+-up do not change considerably compared to Fig. 1. The
results of the Roe solver show distinguishable, but still strongly
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Fig. 1. Results for the IGW test setup as described in Sect. 3 for the
AUSM+-up solver (upper row) and the classical Roe solver (lower row).
The parameters for the simulation are shown at the top of the plot and
described in the main text. Left column: horizontal velocity u in the 2D
domain at the end of the simulation at t = 6 2π

N0
. Blue color corresponds

to a positive value, and red color to a negative value of the velocity.
The scale is adjusted to the maximum amplitude for each run. Right
column: amplitude extracted according to Eq. (21) at the beginning of
the simulation and at two later points in time (solid lines). The shaded
areas correspond to the predicted shape of the amplitude modulation
function according to Eqs. (24) and (A.28). Dashed horizontal lines
mark the position of the peak amplitude for the prediction that moves at
the group velocity accordingto Eq. (17).

damped, peaks and their vertical group velocity considerably
disagrees with the theoretical prediction.

The effect of increasing the vertical group velocity further
to Magy = 10−2 is depicted in Fig. 3: Again, the shape and
peak amplitudes for AUSM+-up are compatible with the predic-
tion. For this setup, β = 3 × 10−1 and consequently the density
varies noticeably in the simulation volume. This is reflected by
the smaller decrease in the expected peak amplitudes in Fig. 3
compared to the amplitudes shown Figs. 1 and 2 for which the
amplification according to Eq. (24) is negligible. With the Roe
solver, the results are better as compared to those obtained at
lower vertical group velocities and the broadening is closer to the
prediction. However, significant damping of the velocity ampli-
tude is still evident.

In summary, the results for the classical Roe solver, which
we present here solely for comparison, clearly suffer from high
damping and show that the wave packages move at the wrong
speed. Our tests therefore confirm the need for specialized low-
Mach solvers in order to treat IGWs in the regime of velocities
below Ma ∼ 10−2. A variety of such solvers are readily available
in SLH. A promising example is the AUSM+-up solver for which
our tests demonstrate its capability to treat IGW in the low-Mach
regime.
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Fig. 2. See Fig. 1 for a description of the quantities shown.

To assess the relevance of this finding we estimate the order
of magnitude of the group velocity we expect for the simulation
of the real stellar setup presented in Sect. 4. We take the abso-
lute value of Eq. (A.14) and rewrite it in terms of vertical and
horizontal components of the wave vector. For the polar coor-
dinates used in the 2D simulation, the horizontal wave number
corresponding to the angular degree ` is given by

kh =

√
`(` + 1)

r
(25)

and the absolute value of the group velocity is

|cg(r)| =
rω2

N
√
`(` + 1)

√
N2

ω2 − 1, (26)

where r denotes the radial position within the model. In Fig. 4
we show the group velocity for ` = 4 when inserting the values
from the stellar model used in Sect. 4 into Eq. (26). It illustrates
that there are large regions at low frequencies with Mach num-
bers around and below 10−2. These regions become even more
extended at higher `-values. We conclude that low-Mach solvers
are needed to correctly describe the wave field in simulations
such as that presented in Sect. 4, especially in the low-frequency
regime dominated by internal gravity waves.

4. 2D simulation of a 3 M� ZAMS star

The previous section demonstrates the capabilities of the SLH
code and the methods implemented therein to propagate IGWs in
the low-Mach regime whereas classical approaches fail. In this
section, the SLH code is applied to a real stellar setup, which
encompasses both the generation and propagation of IGWs and
sound waves.
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Fig. 3. See Fig. 1 for a description of the quantities shown.
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Fig. 4. Expected group velocity according to Eq. (26) expressed in
terms of Mach number for values of the stellar model used in Sect. 4.
Contour lines mark regions of different typical Mach numbers. There
are no IGWs for frequencies above the BVF (white area). Instead, one
expects the excitation of sound waves only which have Mach numbers
of unity.

4.1. Initial model

For the simulation presented here we use the identical initial
1D model as EM19. It describes a nonrotating 3 M� star at
the ZAMS with a metallicity of Z = 10−2 and an outer radius
of R? = 1.42 × 1011 cm. The model has been calculated with
the open-source stellar evolution code MESA (see Paxton et al.
2019 for the latest report on code updates).

The 1D data provided by the MESA model needs to be
mapped onto the SLH grid while accurately fulfilling the equa-
tion of hydrostatic equilibrium

∇P = gρ. (27)

To do so, we reintegrate Eq. (27) while imposing the radial pro-
file of one thermodynamic quantity from the 1D code (using the
1D density profile for this would be a simple example). All other
thermodynamic quantities then follow from the equation of state.
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the mapped SLH model and the 1D MESA model.

The particular choice of the imposed quantity depends on the
specific setup. For the case presented here, it is important to keep
the position of the convection zone as close as possible to the 1D
input MESA model. Convective instability is characterized by a
negative sign of the BVF. In regions without any or with only a
small gradient in composition (well fulfilled in ZAMS stars) it is
essentially determined by the sign of ∇−∇ad. Therefore, we fol-
low the approach of Edelmann et al. (2017) to integrate Eq. (27)
while enforcing

(∇ − ∇ad)SLH = (∇ − ∇ad)MESA. (28)

This way the initial spatial extent of the convective zone on the
SLH grid exactly matches the 1D input model. Consequently,
other quantities might deviate from the 1D model. In Fig. 5 we
exemplarily compare the profiles of the SLH model and the 1D
input for density and BVF. Both quantities are reproduced rea-
sonably well considering that we cover several orders of mag-
nitudes.There is a deviation of a factor of ten in the convection
zone which we attribute to differences in the technical details of
the equation of state and the calculations of gradients between
MESA and SLH. It is not expected that enforcing N2

SLH = N2
MESA

will improve the result as this will only translate the differences
into other quantities. However, in the SLH simulation the value
of N2 in the convection zone will self-consistently adjust to a
value that corresponds to the equilibrium between energy input,
for example due to nuclear burning, and the convective flux. The
small initial deviation is therefore not relevant. For the BVF, the
mean differences in the radiation zone between the 1D MESA
model and the mapped profiles is 0.56% with a maximum value
of 1.5% at r = 0.87 R? and we therefore consider the applied
method to be sufficiently accurate.

The underlying 1D MESA model is in thermal equilibrium.
The reintegration of Eq. (27) for hydrostatic equilibrium changes
the 1D stratification only slightly and we expect the mapped SLH
stratification in the radiative envelope to be sufficiently close to
the equilibrium model. This, however, is not true for the convec-
tive core where we have to artificially boost the nuclear energy
release (see Sect. 4.2). A stratification that is not in thermal equi-
librium will readjust on the thermal-diffusion time scale τdiff . It
can be estimated as (e.g., Maeder 2009)

τdiff(∆xdiff) ∼
(∆xdiff)2

K
, K =

4 a clight T 3

3 κ ρ2 CP
, (29)

where ∆xdiff is a typical length scale. The thermal diffusivity K
introduces the radiation constant a = 7.57 × 10−15 erg cm−3 K−4
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Fig. 6. Blue lines: profiles of the opacity κ for the underlying 1D MESA
model (dotted blue line) and the value applied for the mapped 2D SLH
model (solid blue line). Orange lines: characteristic diffusion time scale
according to Eq. (29) when assuming the radial spacing δr of the SLH
grid as typical length scale.

and the specific heat at constant pressure CP for the ideal gas.
The opacity κ is a function of radius and determined by the phys-
ical properties of the gas. However, for the mapped SLH model,
we set κSLH such that we achieve KMESA = KSLH. Therefore,
the value of κSLH is not fully consistent in a physical sense but
it allows us to stay closer to the stellar values of thermal diffu-
sion. The blue lines in Fig. 6 show the profiles of κSLH (solid)
and κMESA (dashed) and indicate that deviations are reasonably
small.

Following Eq. (29), we estimate the thermal-diffusion time
scale taking the radial grid spacing δr to be the typical length
scale, see Fig. 6. Due to the energy boosting in the convection
zone, deviations from thermal equilibrium are expected to be
largest there. From Fig. 6 it can be seen that the diffusion time
scale is on the order of 105 h and thus two orders of magnitude
larger than what is covered by our 2D simulation (about 103 h,
see Sect. 4.2). Furthermore, as the grid spacing δr is already
the smallest possible scale, our estimate is a lower limit on the
time scale. In the outer parts, the time scale becomes compara-
ble to the simulation time. Thermal flux scales with 1/r in the
cylindrical geometry of our 2D simulation (see below for more
details on the numerical setup) and therefore differs from the
MESA model where spherical geometry is assumed. Thus, the
thermal flux is not accurately balanced in our simulation. How-
ever, we do not recalculate the equilibrium state while consider-
ing the correct scaling of the flux in cylindrical geometry as this
would lead to large deviations from the 1D MESA input model.
For example, this would likely change the profile of the BVF
and therefore alter the dynamics of sound and gravity waves.
For our simulations, however, we are interested in waves gen-
erated in a stratification as close as possible to a realistic stellar
stratification.

From Fig. 6 it is clear that slightly imbalanced initial condi-
tions most probably only impact the very outer part of our model
during the course of the 2D simulation. To further validate this,
we performed two 1D simulations. Although they do not include
convection and wave propagation, they reveal the impact of an
imbalanced energy flux. The initial conditions and the numerical
settings for both simulations are the same as for the 2D simula-
tion (see text below and Table 2) except that the heat input in the
convection zone is turned off. The 1D runs only differ in geom-
etry, which is cylindrical and spherical, respectively, and cover
the same time span as the 2D simulation.

In the 1D simulations, the maximum change in temperature
occurs close to the surface and is only 0.11%. Deviations in the
spherical run are slightly smaller but of the same order as in
the cylindrical run. Thus, the change is most probably due to
the Dirichlet boundary conditions for the temperature which we
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Table 2. Parameters of the 2D simulation.

Boosting L = 103 LMESA
Th. diffusivity K = KMESA
EoS Ideal gas + radiation pressure

Geometry Polar coordinates
Radial domain 0.007 R? to 0.912 R?

Resolution 960(r) × 720(ϕ)
Boundary conditions r-direction: solid-wall

ϕ-direction: periodic
Time stepping ESDIRK23
Time step size δt = 8 s
Time span 700 h
Reconstruction Linear, second order in space
Flux function AUSM+-up

Notes. R? = 1.42 × 1011 cm denotes the total radius of the underlying
1D model, LMESA the stellar luminosity, and KMESA the stellar thermal
diffusivity as given by MESA.
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Fig. 7. Predicted and simulated Mach numbers of the 2D model. The
orange lines correspond to the MLT prediction: the dashed profile shows
the original stellar values, whereas the solid line illustrates the velocities
scaled by 10, according to Eq. (30). The blue line shows the 2D results
averaged over roughly two convective turnover times, starting at t =
500 h. The profile ends at r ≈ 0.9 R? as our domain does not contain the
entire star model. The gray shaded areas mark the convective core and
the small region of surface convection in the 1D model.

have chosen for simplicity and that are used for all radial bound-
aries in the simulations presented here. To exclude any other
cause than radiative diffusion for the slight change in the back-
ground state we also ran additional 1D simulations where radia-
tive diffusion was disabled. The stratification remains essentially
unchanged in these simulations. For the 1D simulations with
enabled radiative diffusion, we show the resulting radial profiles
of temperature, temperature gradient, and BVF in Fig. B.1 and
list the corresponding maximum values in Table B.1.

While the inconsistent treatment of the thermal flux is cer-
tainly not desirable, the 1D tests show that its impact on this
particular simulation setup is negligible. Nevertheless, for future
2D simulations, we plan to implement the correct geometrical
scaling of the flux and to improve the flux boundary conditions.

EM19 do not need to modify the 1D input MESA model.
Therefore, Figs. 5 and 6 serve as a direct comparison between
the mapped model on the SLH grid and their initial data.

In Table 2 we list the parameters for the SLH simulation.
We use 2D polar geometry which corresponds to an infinite
cylinder. SLH currently does not support the geometry of a 3D
sphere with azimuthal and longitudinal symmetry. Because of
the singularity of polar coordinates at r = 0, we cannot include
the whole core. The minimum radius of the domain is mainly
determined by the decreasing cell sizes in horizontal direction

which affects the possible time step size according to the CFL
criterion (see Sect. 4.7). We have chosen rmin = 0.007 R? which
still allows for reasonably large steps. The upper boundary was
set to rmax = 0.91 R? which is close to the value of EM19 who
set the upper boundary to 0.9 R?. We apply solid-wall boundary
conditions at the inner and outer boundaries of the computational
domain. They enforce a vanishing velocity perpendicular to the
boundary interface. This prohibits mass flux and sound waves
from leaving the domain. Periodic boundaries are chosen in the
azimuthal direction, which is appropriate since we cover the full
azimuthal range of 2π. The number of 960 radial cells ensures
that the smallest pressure scale height (close to the outer bound-
ary) is still resolved by 16 grid cells. The number of horizontal
grid cells is set such that the cell width at the top of the convec-
tion zone δw = δϕrtop roughly matches the height δr of the cells,
where δϕ = 2π/Nϕ and δr = (rmax − rmin)/Nr denote the angular
and radial resolution, respectively.

4.2. 2D SLH results

For the stellar luminosity as given in the 1D MESA input model,
mixing-length theory (MLT, e.g., Kippenhahn et al. 2012)
predicts Mach numbers for the convective core of around Ma ∼
10−4. Simulations in this regime are numerically very challeng-
ing and the SLH code has several specialized low-Mach approxi-
mate Riemann solvers implemented. However, we have recently
noticed that for Mach numbers considerably below 10−3 the con-
vective flow seems not to be driven by heating but rather by
numerical instabilities. This problem is subject of ongoing inves-
tigations but there is no adequate solution available yet. As a
workaround, it was decided to artificially boost the energy gen-
eration in order to increase the convective velocity. From MLT
one finds that the convective velocity vconv scales with the lumi-
nosity L as

vconv ∝ L1/3 (30)

which has also been confirmed by numerous numerical studies
(e.g., Fig. 7 of Cristini et al. 2019 or Fig. 15 of Andrassy et al.
2019). We boost the stellar luminosity by a factor of 103 which
corresponds to a tenfold increase in velocity compared to the
MLT prediction. We note that this boosting is still a factor 103

smaller compared to the boosting in the simulations of EM19
and Rogers et al. (2013).

In Fig. 7 we compare the MLT prediction to the results of
our 2D simulation. The gray shaded area at small radii marks
the region of the core that is convectively unstable according to
the Schwarzschild criterion. In the input 1D model, an additional
small convection zone near the surface of the star is present but
our 2D model already ends at a smaller radius. We find our sim-
ulations in good agreement with this “scaled” MLT prediction.

However, outside of the convective core a velocity field
of considerable amplitude has developed. These velocities are
attributed to the excitation and propagation of IGWs and are
of main interest for the work presented here. In stark con-
trast to that, no velocities are assumed in the input 1D model.
This illustrates the shortcomings of 1D stellar evolution, where
these dynamical phenomena have to be parametrized (see, e.g.,
Aerts et al. 2019).

The speed of sound in our model ranges from 7 × 107 cm s−1

within the convection zone to 1 × 107 cm s−1 at the top of the
computational domain. Accordingly, the Mach number shown
in Fig. 7 corresponds to typical velocities of 2×105 cm s−1 (con-
vection zone) to 1.3 × 106 cm s−1 (near surface). For the mean
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Fig. 8. Radial velocity vr and temperature fluctuations Tfluc. As both quantities have larger amplitudes at the outer parts of the model (see further
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Fig. 9. Same quantities as in Fig. 8 but here for a 2D simulation with a viscosity and thermal diffusivity similar to the values used by EM19. We
note that the domain for this simulation is comparable to Fig. 8 but not identical. The radial resolution is slightly higher for the viscous simulation
and due to the high viscosity the energy input is boosted by 106 in order to get convection starting.

convective turnover time in the convection zone τconv we find

τconv =
2∆rcz

vrms
≈ 40 h (31)

where ∆rrc = 1.7 × 1010 cm is the depth of the convection zone
and vrms the root-mean-square of the absolute velocity. The spa-
tial mean has been taken over the convection zone and the tem-
poral mean includes the entire simulation except for the initial
transient phase, where convection has not yet developed (see also
Fig. 10). Hence, the 700 h of fully developed convection that we
follow in our simulation cover roughly 17 convective turnover
times.

The velocity field of the 2D simulation is further illustrated
in Fig. 8. It visualizes radial velocity (left panel) and tempera-
ture fluctuations from the azimuthal average (right panel). Both
quantities are scaled by their horizontal root-mean-square as the
amplitudes vary considerably between the outer and inner part
of the model. The relative amplitudes have maximum values of
four and are approximately equal at all radii for temperature and
velocity. In both panels of Fig. 8, the convective core is filled
with a few rather coherent structures which correspond to con-
vective eddies that induce wave-like motions. These waves form
spiral paths from the point of excitation at the boundary of the
convective core as they travel toward the surface. The spatial
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structures are smaller than those observed by EM19 (see, e.g.,
their Fig. 8). This is explained by the much smaller effective vis-
cosity of our simulation and further illustrated in Fig. 9 which
shows an SLH simulation of a similar domain and resolution
but with explicit viscosity and thermal diffusivity comparable
to those used by EM19. It is clearly visible how the enhanced
diffusive effects even out small scale structures and only large
patterns remain.

Figures 7 and 8 illustrate that the fundamental process of
generating internal waves, that is a convective core with plumes
that excite waves in the radiative envelope, is present in our 2D
simulation. In order to further validate our results in the subse-
quent sections, we closely follow the methods as presented in
EM19.

4.3. Frequency spectra

The fundamental properties of stellar oscillations can be probed
by investigating their temporal frequency spectrum. For this, we
perform a temporal Fourier transformation (FT) of the entire
velocity field in our 2D simulation.

The transformation is done for both the radial and horizon-
tal velocity. In order to select waves corresponding to a specific
angular degree `, we apply a filter prior to the temporal FT. For
the velocity of each stored snapshot, a spatial FT in the angle ϕ
is taken while using all available data points on the grid. Subse-
quently, all amplitudes are set to zero, except for the one corre-
sponding to the ` value we want to filter for. This manipulated
spectrum is brought back to real space via an inverse FT. The
resulting time sequence of the grid cells of each radial ray is then
multiplied by the Hanning window to reduce leakage effects and
serves as input for the temporal FT. To reduce the background
noise such that individual modes appear more clearly, the tem-
poral spectra are taken for 100 evenly distributed radial rays. The
squares of the amplitudes of the resulting Fourier coefficients are
then averaged. In principle, the average could be done for all
available angles but we experienced no improvement for a larger
number of rays. Keeping the numbers of rays low is desirable
regarding memory requirements.

The coefficients of the temporal FT are normalized in the
same way as in EM19 (see their Eqs. (12) and (13)), essen-
tially the amplitudes are divided by the number of the input data
points. This results in coefficients that are independent of the
number of bins and that have the same units as the input quan-
tity. Furthermore, for this normalization, the amplitude of a peak
across one single frequency bin corresponds to the actual ampli-
tude of that wave in the time domain which eases the direct inter-
pretation of the spectrum. For our spectra, the frequency bins
have a width of δ f = 1/(700 h) = 0.4 µHz. Spectral lines in
our spectra typically (except for a few broad p-modes) span two
to four frequency bins and the absolute amplitude is therefore
slightly underestimated when directly read off the spectral plots.
Finally, the amplitudes are multiplied by a factor of 2 to account
for the change in amplitudes in the frequency spectrum due to
the application of the Hanning window (see, e.g., Sect. 9.3.9 of
Brandt 2011).

We only use the time interval spanning 700 h from 400 h
to 1100 h for the spectral analysis (see the gray shaded area in
Fig. 10) to avoid the initial development of convection in the
core and of the wave field in the envelope.

In Fig. 11 we show the result for the radial velocity, which
is the dominant component for p-modes. The upper panel shows
the spectrum of the unfiltered velocity, the panels below show
the spectra of filtered velocities for some exemplary values
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Fig. 10. Maximum (blue) and root-mean-square (orange) Mach number
in the convection zone as a function of time. The gray shaded area marks
the time frame that has been used to extract the spectra that are presented
in this paper.

of `. This figure is the compressible counterpart of Figs. 24
and 27 in EM19. In Fig. 12, the same quantities are shown
for the horizontal velocity which is the dominant component
for g-modes. In these plots and in the further course of the
paper, a hat denotes quantities that have been obtained using a
temporal FT.

The white line in Fig. 11 indicates the profile of the BVF
at the start of the simulation, the black dashed line corresponds
to the profile averaged over the last 100 h of the simulation. A
magnified vision of the top of the domain is given for ` = 0 in
the gray box. An oscillatory behavior of the BVF is apparent at
the upper boundary of the computational domain which is not
removed by the time average. Over time, the oscillations tend to
affect a slightly wider range of radii but do not increase their
amplitudes considerably. In the 1D simulation (see Sect. 4.1,
Fig. B.1, and Table B.1), we find that the change in the BVF
is much smaller and does not develop an oscillatory behavior.
Thus, the oscillations apparent in the outer parts of the 2D sim-
ulation must be due to dynamics that are only captured in multi-
dimensional simulations.

While this behavior could be related for example to numer-
ical effects of our boundary conditions, grid resolution, or the
transport of angular momentum by propagating IGWs, the exact
cause is not fully understood at this point and still subject of
ongoing work. However, the deviation is only within a small
part of the whole model and we do not expect it to have a sig-
nificant impact on the general results nor the frequency spec-
trum of the waves in the envelope below R = 0.8 R?. To
resolve also the details of the outermost parts more accurately,
a more elaborate outer boundary condition is needed as well as
a higher resolution to resolve the small scale heights accurately
enough.

IGWs can only exist for frequencies below the BVF (see,
e.g., Sect. 3.4.2 in Aerts et al. 2010). This property is reflected in
the first panel of Fig. 11 by the fact that the whole possible IGW
regime (as defined by f < N/2π) shows a significant amplitude
which then suddenly drops for f > N/2π. This is in qualitative
agreement with Fig. 27 of EM19 and a clear indicator of the
excitation of IGWs in the 2D SLH simulation. An increasing
number of radial nodes (or, equivalently, a decrease in the radial
wavelength) for lower frequencies is another general property of
IGWs that is confirmed by the spectra in Fig. 11.

These features have already been seen and described in
EM19. However, our simulation also shows additional signals.
For ` = 0 (second panel in Fig. 11) no IGWs are excited because
they cannot be purely radial. Yet, distinct standing modes reach-
ing maximum velocity near the stellar surface are visible at fre-
quencies larger than the BVF. Therefore, they must be signals of
excited p-modes.
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Fig. 11. Frequency spectrum of the radial velocity for a time span of 700 h. The normalization is done in a way that the amplitude of a narrow line
of one frequency bin width corresponds to the velocity amplitude of the corresponding wave in the time domain. The data is stored in intervals
of 480 s. This allows us to capture frequencies up to fmax = 103 µHz with a resolution of δ f = 0.4 µHz. In order to reduce the background noise,
we show the average of the spectrum of 100 individual radial rays. The doublets for the modes with f & 700 µHz are due to aliasing, which we
verified with a simulation with a very short cadence of outputs. The three colored dots in the uppermost panel mark the radii for which the line
profiles are shown in Fig. 16. The white and black lines correspond to the BVF at start and end of the simulation, respectively. Colored dashed
lines correspond to the Lamb frequencies of different ` values according to Eq. (32). In the first row, the uppermost part of the model is magnified
(gray box) in order to illustrate the change in the BVF at the end of the simulation. For the magnification, the color scale was adapted to increase
the visibility of the lines. We show the spectra for the horizontal velocity in Fig. 12.
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Fig. 12. Frequency spectrum for the horizontal velocity, see Fig. 11 for details. The p-modes are less prominent as their dominant velocity
component is radial.

The colored dashed lines in the panels of Fig. 11 for ` > 0
correspond to the respective Lamb frequencies

S ` =
`(` + 1) c2

sound

r2 , (32)

(e.g., Sect. 3.3.2 of Aerts et al. 2010). They are derived for spher-
ical geometry using spherical harmonics and might not strictly

hold in our 2D geometry. However, we still use them here as an
estimate to characterize the general behavior of internal waves.
A p-mode of angular degree ` and frequency fp can only exist if
the frequency fulfills the conditions

fp >
N
2π

and fp >
S `

2π
· (33)
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Fig. 13. Color map of amplitudes at different frequencies as a function of the angular degree ` at a fixed radius of R = 0.3 R?. The blue dashed line
corresponds to the BVF at this radius. The white dashed line indicates the cutoff frequency ωc below which waves are expected to lose too much
kinetic energy due to damping to form standing modes.

The corresponding conditions for g-modes are

fg <
N
2π

and fg <
S `

2π
, (34)

(see Sect. 3.4 of Aerts et al. 2010 for further details). In regions
where the frequency does not fulfill these relations, p- and
g-modes are evanescent. This is most easily seen for p-modes
in the spectrum for ` = 5 and for g-modes in the spectrum for
` = 20 in Fig. 11.

The occurrence of p-modes is one of the key differences
between fully compressible codes and the anelastic approaches.
In the latter, p-modes cannot occur because sound waves are not
included in the equations. To bring the p-modes of our 2D simu-
lation into context with observations, we compare them to those
of the βCep stars presented in Aerts & De Cat (2003). They find
frequencies at low ` typically around f ≈ 6 d−1 ≈ 70 µHz. For
the particular star ω1 Sco observations indicate f = 15 d−1 ≈

174 µHz at ` = 9. Of course, the eigenfrequencies of a real star
depend on its stellar parameters and excitation mechanism, and
βCep stars have masses typically in the range of 8 M� to 20 M�.
Thus, the BVFs which set the minimum p-mode frequencies
(see Eq. (33)) are smaller compared to our 3 M� model. We find
amplitudes associated with p-modes starting at around 300 µHz.
Although our model is not directly comparable to the observed
βCep stars, this indicates that the waves, which are excited in our
simulations by the convective core, are compatible with those
observed in real stars of similar mass. We note, however, that this
cannot be seen as a proof for the correctness of the model or the
underlying excitation mechanism, especially since p-modes are
not typically observed in main-sequence 3 M� stars (Aerts et al.
2010).

For radii deep inside the convection zone (r . 0.14 R?) dis-
tinct modes are less pronounced in Figs. 11 and 12 (g-modes
generally cannot exist there and in our case the Lamb frequencies
prohibit also p-modes) but instead amplitudes in a wide range of
frequencies appear, a consequence of the turbulent convection in
the core. This is most easily seen for larger ` values in the spec-
trum of the horizontal velocity. On the other hand, also at the
largest radii, a band of high amplitudes is visible in the upper-
most panel which extends over all frequencies. This is due to
the development of a shear flow toward the end of the simula-
tion. As it is located very close to the outer boundary, we cannot
determine beyond doubt whether the shear flow is caused by the
boundary or by deposition of the IGW’s angular momentum due
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Fig. 14. Kinetic energy as a function of angular degree ` (left panel)
and angular frequency ω (right panel) at the top of the convection zone.
Dashed lines correspond to power-law fits. This figure is similar to the
second and third column in Fig. 6 of Rogers et al. (2013).

to nonlinear effects. This needs to be examined in more detail in
future simulations.

Another way of illustrating the emerging spectra of waves
is given in Fig. 13 (this is similar to Fig. 22 in Herwig et al.
2006 or Fig. 2 in Alvan et al. 2015). Here, the spectrum at a fixed
radius r = 0.3 R? is shown for the first 100 `-values. The hori-
zontal blue line indicates the BVF. One clearly observes distinct
modes for small ` and decreasing mode spacing for increasing `.
The amplitudes drop at the BVF as expected for gravity waves.
Alvan et al. (2015) estimate a cutoff frequency ωc below which
waves have lost a considerable amount of the kinetic energy due
to radiative diffusion (see their Eq. (26)). The corresponding
profile is shown as dashed white line. They argue that a trav-
eling wave without sufficient energy cannot reach the turning
point, travel back and interfere with another progressive wave
to form a standing mode. Their corresponding cutoff is rather
steep and reaches high frequencies, indicating a wide region
where they expect progressive waves. This is similar to Fig. 5
of Rogers et al. (2013). In contrast, for the simulation presented
here the profile of ωc is much flatter and stays at much smaller
frequencies. It is clear that the excitation of gravity waves from
core convection produces an entire spectrum of waves spanning
a broad range in frequency.

In Fig. 14 we plot the kinetic energies

v2(`) =
∑

f

v̂2
`, f , v2(ω) =

∑
`

v̂2
`,ω (35)
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Fig. 15. Ratio of the left and right side of the dispersion relation Eq. (36).The method to extract kh/k from the simulation is described in the text. A
ratio of unity corresponds to a perfect match and is reflected by white regions. A red color indicates a too large value of kh/k and correspondingly
the ratio is too small in blue regions. The white line is the BVF. For frequencies below the yellow line, IGWs are expected to be damped by
thermal diffusion. Below the magenta line, the radial wavelength is resolved by less than 10 grid cells. The left column zooms into the low
frequency region of the corresponding full plane on the right. The frequency given in the white boxes denotes the value of fmax which sets the scale
of the corresponding x-axis.

at the top of the convection zone. Here, v̂`,ω is the velocity at
angular degree ` and frequency ω which results from the spatial
and temporal FT. The sum over all degrees ` is terminated at
` = 100. The spectra are fitted by power-laws, as proposed in
Rogers et al. (2013). Their 2D simulation of a nonrotating model
gives similar values for v2(`), shown in our left panel. Also the
position of the transition between the two regimes is comparable.
However, our profiles for v2(ω) (right panel) are much steeper
(Rogers et al. 2013 find ω−1.2 and ω−4.8). In the 2D simulation
presented here the transition between the two regimes is at much
higher frequencies.

4.4. Dispersion relations

So far we have presented clear indications of the excitation of
IGWs and pressure waves. To further confirm this, we show in
the following section that the corresponding dispersion relations
are fulfilled for both g- and p-modes.

4.4.1. Dispersion for gravity waves

From theory, one finds a dispersion relation for IGWs of the form
(e.g., Sect. 3.1.4 Aerts et al. 2010 or Sect. 3.3.3 Sutherland 2010)

ω

N
=

kh

|k|
with |k| =

√
k2

h + k2
r , (36)

where ω = 2π f is the angular frequency of the gravity wave
and kh, kr are the horizontal and radial wave numbers. We note
that this expression is derived under the assumption of a spatially
constant value for the BVF. From Fig. 5 it is clear that this is not
the case for the stellar model presented here. Therefore, Eq. (36)

is expected to hold only for wavelengths that are short compared
to the scale height of the BVF.

To estimate how close our simulation follows Eq. (36), we
apply the method of EM19 which is briefly summarized in the
following:

The angular frequency ω and BVFare readily available quan-
tities. Because of the spatial FT filtering for specific `, we know
that k2

h = `(` + 1)/r2. The only quantity to determine in Eq. (36)
is therefore the vertical wave number kr = 2π/λr or equivalently
the radial wavelength λr. To determine the wavelength, the posi-
tions of peaks in the amplitude for the FT of the radial velocity
are identified for all available frequencies. The distance between
adjacent peaks is interpreted as one half of the wavelength at the
radial position at the midpoint between the two peaks. We deter-
mine the wavelengths starting just above the convection zone
until the upper boundary of the model for all frequencies and
interpolate in radius afterward. This gives for each frequency f
the wavelength λr,f(r). From that, we obtain kr and are finally
able to evaluate Eq. (36) in the entire radius-frequency plane for
a specific order `.

To visualize the results, the ratio of the left and right side
of Eq. (36) is plotted in Fig. 15 exemplarily for ` = 2, 4, 10,
and 20. Regions in which the dispersion relation is fulfilled,
that is the ratio is unity, appear white. This reproduces Fig. 28
of EM19. A magenta line denotes the frequency below which
one wavelength is resolved by less than 10 grid points: For a
given radial grid spacing δr, the corresponding wave number is
kr, n=10 = 2π/(10 δr) such that this frequency is defined as

fn=10 =
N
2π

kh√
k2

h + k2
r, n=10

· (37)
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The yellow line in Fig. 15 marks the frequency below which
one assumes the waves to be dissipated by thermal diffusion.
The estimate is based on the equality of the diffusion length
and the wavelength at the critical frequency as given by equa-
tion1 (27) of EM19. In comparison to EM19, the effect of dissi-
pation is greatly reduced in the SLH simulation. In our case, we
are mainly limited by the radial resolution when going to higher
`-values. We see agreement with the dispersion relation of lin-
ear internal gravity waves everywhere where such agreement can
be expected: for modes that are well resolved in space but with
radial wavelengths short enough that N2 as well as the radius
can be considered approximately constant over a single wave-
length. This is the case for low-frequency IGW and gets worse
for increasing radial wavelengths, corresponding to increasing
frequencies. In contrast to EM19, our results are mainly affected
by resolution effects rather than damping, yet broad spectra of
standing modes are clearly excited in both numerical setups. For
a better visibility, the low frequency regions are magnified in the
left column of Fig. 15. At frequencies below 5 µHz, it is diffi-
cult to determine if the dispersion relation is fulfilled because
the quality of the FT deteriorates as the number of wave periods
that fit into the time window of our analysis decreases. However,
we are able to reach much smaller frequencies than the anelas-
tic simulations and provide reliable results for wave frequencies
above 5 µHz.

Another way of testing the dispersion relation is to measure
the inclination of the IGW crests with respect to the radial direc-
tion. As the fluid velocity in an internal wave is parallel to the
wave crest, we can obtain the inclination by measuring the ratio
vh/vr in our simulation. Because the wave vector k is perpendic-
ular to the crests we have(
vr
vh

)
‖

(
−kh
kr

)
, where

(
−kh
kr

)
· k = 0. (38)

It follows that∣∣∣∣∣ vh

vr

∣∣∣∣∣ =

∣∣∣∣∣ kr

kh

∣∣∣∣∣ (39)

and with the aid of Eq. (36) we find the expression∣∣∣∣∣ vh

vr

∣∣∣∣∣ =

√
N2 − ω2

ω
, (40)

in which the left-hand side can be obtained from the simula-
tion and compared to the theoretical prediction on the right-hand
side.

In the top two panels of Fig. 16 we show a line plot rep-
resentation for the spectra of vr and vh at three different radial
positions. They are marked by colored dots in the upper panel of
Fig. 11. For radii well above the convection zone, the amplitudes
rapidly decrease for f > N/2π. This is expected for a signal
mostly made up of IGWs which cannot propagate in this fre-
quency range. Above frequencies of N/2π we can see clearly
isolated peaks corresponding to p-modes of various angular
degrees. The p-mode amplitudes are at least one order of mag-
nitude smaller than the IGW signal across a broad range of fre-
quencies. For the radial velocity, the spectrum is almost flat with
a subtle decrease toward higher frequencies. The spectrum for
the horizontal velocity shows a decrease already within the IGW
regime. Similar to the findings of EM19, these integrated spec-
tra composed of all angular degrees do not show distinct peaks.

1 Their equation is missing a factor
√

N2/ω2 − 1. It does not change
the result qualitatively but is included here for consistency.
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Fig. 16. Line plot representations of the spectra for horizontal and verti-
cal velocity at three different radii 0.14 R?, 0.4 R?, and 0.8 R? are shown
in the upper two panels. The dashed lines correspond to the power-
law fit as denoted in the labels. The lowest panel shows the ratio of
the velocity components at each radius (transparent line) and compares
them to the prediction according to Eq. (40) (solid lines).

However, our results do not have the steep drop in amplitude
at very low frequencies as seen in their Fig. 23, which can be
attributed to the lower viscosity and thermal diffusivity in our
simulation.

In the lowest panel of Fig. 16 we show the ratio of the veloc-
ity components as depicted in the two panels above (semitrans-
parent lines). The solid lines represent the prediction given by
Eq. (40). There is an excellent agreement for all three radial
positions for frequencies below the BVF. The line for 0.14 R?

is just beyond the boundary of the convective core and therefore
does not follow the steep drop in the ratio as convective motions
impact the data. Only for the smallest frequencies the simulation
deviates as a result of damping effects and a lack of independent
data points for the temporal FT. This result is another strong indi-
cation that IGWs are correctly represented in the 2D simulation.

Furthermore, we find the results of our simulations to be
comparable to observations of late-B SPB stars. De Cat & Aerts
(2002) report the ratio vh/vr for several SPB stars which are typ-
ical g-mode pulsators (this corresponds to the K-value in their
Fig. 17). The value ranges from 10 to 100. This observed range
is similar to the values shown in the lower panel of Fig. 16 for
frequencies to the left of the dip, that is below the BVF. For p-
mode pulsators De Cat (2002) (see also Aerts & De Cat 2003)
reports K-values for βCep stars which are typically in the range
of 0.01−1. Similar values are found in our 2D simulation at fre-
quencies of standing p-modes which is most easily seen as sharp
dips at frequencies above the BVF. Such a simplified comparison
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Fig. 17. Spectra for temperature at r = 0.80 R?. The orange line shows
the spectrum of the temperature fluctuations which have been averaged
over half of the circumference of our 2D model. The blue line corre-
sponds to the spectra averaged over 100 radial rays after the FT as it is
done for the velocity spectra. The dashed blue vertical line denotes the
position of the BVF. The gray line corresponds to a power-law fit for the
frequencies ranging from 10 µHz to 200 µHz resulting in an exponent of
b ≈ −2.

of values in the interior of our model to the observations at actual
stellar surfaces does not allow for a quantitative comparison or
stronger conclusions. However, it shows that the wave spectra
that self-consistently arise in our hydrodynamical simulation are
compatible with observations of oscillations in real stars of sim-
ilar mass and evolutionary stage (i.e., SPB stars; De Cat & Aerts
2002).

Besides surface velocities, the variation of the disk-averaged
luminosity of stars is another observable. It is supposed that con-
tributions from small-scale fluctuations (high `) are suppressed
in this quantity as they cancel out on average whereas large-scale
contributions are pronounced (e.g., Aerts et al. 2010, Sect. 6). As
a simple estimate of this effect we compute the average temper-
ature over half of the circumference of our 2D model prior to the
temporal FT. The result is shown as an orange line in Fig. 17 (for
comparison, we show as a blue line the spectra which have been
averaged similar to the velocity spectra, i.e., only after the tem-
poral FT). At high frequencies, pressure modes appear clearly
as individual peaks. This is, however, not the case in the low fre-
quency regime. We note that our spectrum is like those presented
in Bowman et al. (2019a, e.g., see their Fig. 3 for the observ-
ables of the O star HD 46150 and the figures in their appendix
for additional OB stars). The actual situation for observations is
more complex than the diagnostic value of our simulations can
be. For example, we do not account for limb darkening while
this phenomenon comes into play to determine the net flux vari-
ation. The limb darkening has more effect for flux observations
but far less for the net velocity variations in the line-of-sight.
However, our simple experiment illustrates that the net flux vari-
ations do not easily reveal any distinct peaks corresponding to
low-` modes in the low-frequency regime despite the expected
cancellation of the numerous high-` modes.

4.4.2. Dispersion for pressure waves

For the pressure waves, we perform a similar analysis as
described in the previous section except that we now check for
the usual dispersion relation of pressure waves

ω

csound
= |k| . (41)

The result is shown in Fig. 18 and the colors have the same
meaning as in Fig. 15. As expected, the dispersion relation is
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Fig. 18. Same quantities as in Fig. 15 but this time for the dispersion
relation of sound waves (Eq. (41)).

not fulfilled for f < N/2π. At frequencies corresponding to a
standing mode we get a good agreement with predictions from
theory. Furthermore, Fig. 18 indicates that pressure modes are
excited in the mixed-mode frequency regime, that is between
about 200 µHz and 300 µHz. This suggests that a coupling of
p- and g-modes is possible. The deviation between standing
modes is probably due to the same reasons as discussed in
Sect. 4.4.1. This is further illustrated in Fig. B.2 where we show
the amplitudes at two specific frequencies. When the frequency
matches a standing mode the wavelength can be detected easily
whereas this is not possible for frequencies in-between. These
results together with the fact that the modes for a particular angu-
lar degree are equidistant in frequency in the regime of high-
order p-modes give us confidence that the observed modes are
indeed p-modes.

4.5. Wave-amplification

From linear theory, one expects the amplification of IGW
toward the surface due to density stratification. As shown in
Ratnasingam et al. (2019) for spherical geometry, the prediction
for IGW amplification is given by (in the notation2 of EM19)

vh ∝

( r0

r

)3/2
√
ρ0

ρ

N2 − ω2

N2
0 − ω

2

1/4

exp(−τ/2), (42)

where r0 is the starting point of the wave and ρ0, N0 the corre-
sponding density and BVF. The damping factor τ is given by

τ =

∫ r

r0

dr
κ (`(` + 1))3/2N3

r3ω4

√
1 −

ω2

N2 · (43)

According to Eq. (42), waves are damped by the effects of
thermal dissipation and geometry, but amplified by decreas-
ing density. This ignores the damping effect of viscosity. For
consistency, Eq. (42) needs to be multiplied by a correction
factor (r0/r)−1/2 to account for our 2D polar geometry of
an infinite cylinder, which slightly increases the amplification
(Ratnasingam et al. 2020). For the radial velocity, Eq. (42) needs
to be scaled according to Eq. (40).

In Fig. 19 we compare the result of Eq. (42) for the 3 M�
MESA model to the 2D simulation, similar to Fig. 26 of EM19.
For both radial and horizontal velocity, the prediction from
linear theory and the simulation are in good agreement for

2 We note that there is an error in the corresponding Eq. (23) of EM19.
The expression holds for the horizontal velocity component vh instead
of the vertical velocity vr as stated.
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Fig. 19. Velocity amplitude for different frequencies and angular
degrees ` as function of radius. The amplitudes also include the con-
tribution of the two adjacent frequency bins to account for the fact that
peaks typically show a width of two to four bins in our simulation. The
expected amplification toward the surface according to Eq. (42) is rep-
resented by dashed lines; the 1D MESA profile data serve as input vari-
ables whereas the starting points are taken as the simulated amplitudes
at the first noticeable local maximum of the respective frequency and
angular degree.

short radial wavelengths and low frequencies ( f `=1 = 6.8 µHz,
f `=4 = 13.8 µHz), and we assume that the MESA extrapola-
tions toward the surface provide a reasonable estimate of sur-
face velocities. At the highest frequency and longest wavelength
( f `=1 = 76.2 µHz) prediction and simulation clearly differ. How-
ever, this is expected as the prediction assumes that wavelengths
are short compared to all relevant scale heights in the stratifica-
tion which is clearly not the case for the highest frequency shown
in Fig. 19.

Our extrapolation toward larger radii is a very simplified
approach and we do not account for the complex physics at the
surface, such as the existence of a subsurface convection zone.
Therefore, these numbers should only be seen as an approxima-
tion to the order of magnitude of the velocity at the surface due
to amplified stellar oscillations. The drop in the simulation data
at the very top of the computational domain is an artifact of the
numerical solid-wall boundary condition whereas the drop in the
prediction is an effect of stronger radiative damping near the sur-
face.

Also for the extrapolated velocities at the stellar surface, the
order of magnitude for the ratio of the horizontal velocity over
the radial one shown in Fig. 19 is compatible with what is found
in time-series spectroscopy of g-mode pulsators (De Cat & Aerts
2002).

4.6. Nonlinearity parameter

If all waves were to remain in the linear regime, a treatment
as in Sect. 4.5 would be a sufficient description of the physics
involved. Yet it is expected that the amplification toward the sur-
face causes nonlinearities to become relevant at least in certain
ranges of frequency and wavenumber. These nonlinearities lead
to a redistribution of energy between different wavenumbers and
frequencies. Additionally, wave breaking can cause transport of
angular momentum from the core, where the waves are excited,
to the envelope.
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Fig. 20. Nonlinearity parameter ε according to Eq. (44) for the same
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Fig. 21. Nonlinearity parameter at r = 0.4 R? for all available frequen-
cies up to an angular degree of ` = 40.

In Ratnasingam et al. (2019) the effect of different input
spectra on the expected nonlinearity of IGWs is examined. The
nonlinearity can be estimated by

ε =
vh

ω
kh (44)

(Press 1981; Barker & Ogilvie 2010). If ε & 1, nonlinear effects
are dominant. However, as demonstrated in Ratnasingam et al.
(2020), already rather small values of ε (≈10−3) can cause
noticeable energy transfer between different frequencies and
wavenumbers.

In Fig. 20 we show the result of Eq. (44) for the amplitudes
of the horizontal velocity extracted from the simulation and the
extrapolation to the surface as illustrated in Fig. 19. The apparent
increase in εwith decreasing frequency is caused by the stronger
convective wave excitation at lower frequencies. At even lower
frequencies, which are not shown here, wave damping becomes
dominant and ε decreases further. For the extrapolated ampli-
tudes we find a maximum value for the nonlinearity parameter
of ε = 2.2 for f `=4 = 13.8 µHz.

From this we conclude that nonlinear effects can be expected
at the surface in the frequency regime around 10 µHz. This is
further illustrated in Fig. 21, which shows the value for ε at
r = 0.4 R? as a function of frequency f and angular degree `.
A narrow range around 10 µHz is apparent where the nonlinear-
ity is highest. We note that this looks very similar to Spectrum K
and Spectrum LD in Fig. 5 of Ratnasingam et al. (2019) for con-
vective velocity boosted by a factor of three with respect to the
stellar models. The strongest nonlinearity in Fig. 21 is seen in the
frequency range in which gravity modes have been detected in
a sample of about 30 SPB stars in the Kepler data. For all these
pulsators, nonlinear behavior has been deduced from the Kepler
light curves and a low-frequency IGW power excess has been
detected after the removal of the coherent g-modes (Pedersen
2020).

We emphasize that the predictive power for the wave ampli-
fication and nonlinearity from this SLH simulation is limited.
The boosted energy generation in the core and the accompany-
ing increased velocities also impact the amplitudes of the excited
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Fig. 22. Time step size as a function of radius for different time step
criteria. Because of the polar geometry of the grid, the innermost cells
become narrower and thus require shorter time steps. The purple dashed
horizontal line denotes the time step size of δt = 8 s that is used in the
2D simulation. The dashed vertical line marks the radius below which
this step size is larger than a time step size according to Eq. (1) with
a CFL number of 50. The gray shaded area indicates the convective
region.

Table 3. Timings for the SLH code (implicit and explicit) and the
pseudo-spectral anelastic code SPIN to perform one time step per cell
and core.

Code Time/cell/step[
w−µs

]
SLH(impl) 3.3 × 102

SLH(expl) 7.3
SPIN 1.5

waves. Furthermore, convection is known to be faster in 2D sim-
ulations and we apply a simple extrapolation from the upper
boundary of our 2D model toward the surface. Nevertheless, we
believe that the results presented here at least give an idea of
what to expect at the stellar surface where we find indication for
the existence of nonlinear effects.

4.7. Time stepping and efficiency

After the detailed evaluation of the properties of the excited waves
in the previous sections, the paper is concluded with a discussion
of the time step sizes and the efficiency of the SLH code.

In Fig. 22, the radial profiles of the time step size
δtCFLuc=0.5(r) for explicit time stepping (see Eq. (1)) and the max-
imum implicit time step size δtCFLu=0.5(r) (see Eq. (2)) are shown
for values in the middle of the time span of the 2D simulation.
The time step sizes decrease toward the core due to the shrinking
azimuthal width of the cells in polar geometry. From the radial
profiles, the actual global time step is then given by the minimum
over the whole domain. We find min[δtCFLuc=0.5(r)] = 0.03 s and
min[δtCFLu=0.5(r)] = 21.4 s. Hence, for implicit time stepping,
the possible time step size is roughly 700 times larger than the
corresponding explicit time step. This might be counter intuitive
as the Mach numbers at the surface are of order unity and one
would therefore expect implicit time steps to be closer to the
explicit step sizes. In that sense, implicit time stepping helps to
overcome the general problem of very small step sizes in polar
and spherical geometries for large ratios of the outer to the inner
radius of the computational domain.

In Miczek (2013), the propagation of a simple 1D sound
wave in SLH is compared to predictions from linear wave the-
ory. The simulations are repeated while successively increas-
ing the implicit time step size. In this test setup, sound waves

are resolved without noticeable modification if δt ≤ δtCFLuc=5,
whereas they get considerably damped but still propagate at a
speed close to the theoretical prediction for δt ≈ δtCFLuc=50. For
δt ≥ δtCFLuc=500 sound waves cannot be followed at all anymore.

For the 2D simulation presented here, these findings indicate
that choosing a time step size of δtCFLu = 0.5 which corresponds
to δt ≈ δtCFLuc=350 at the lower boundary might lead to a strong
damping of the sound waves. Although the appropriate time step
size clearly depends on the details of the setup and the wave-
lengths of the considered waves, we follow Miczek (2013) in
choosing the time step size in this initial study. As will be shown
at the end of this section, this might give a value for the time step
size that is too conservative.

For the particular simulation presented here, the time step
size is chosen to be δtsim = 8 s (dashed purple horizontal line in
Fig. 22). For radii smaller than the vertical line, sound waves are
expected to suffer from damping as for these cells the time step
is larger than δtCFLuc=50. This, however, is only a tiny fraction of
the whole domain and we do not expect it to have a significant
impact on the results. Our choice is a compromise between effi-
ciency and accuracy as will be demonstrated in the following.

To quantify the gain in efficiency when using implicit time
stepping, we compare the wall clock time needed to cover a time
span of 80 min (2 convective turnover times) when using either
implicit or explicit time stepping. For this test, both simulations
are restarted at 500 h and all output routines of SLH are dis-
abled in order to minimize possible external effects like a slow
file system. We find that the explicit run requires a wall clock
time of 37.72 min to perform 15 900 steps on 360 Intel Skylake
cores. The implicit run finishes after 6.3 min while performing
600 time steps using the same number of cores. Accordingly, the
implicit run is roughly a factor of six faster than the explicit run
even though velocities at the top of the computational domain
are clearly not in the low-Mach regime, in which implicit time
stepping is usually advantageous.

We further compare the efficiency of the SLH code (implicit
and explicit) to the pseudo-spectral anelastic SPIN code (EM19).
For the comparison, the test runs presented in this section are
used for the SLH timings. For the same physical problem, a short
test simulation on 300 Ivy Bridge cores for a grid of 1500(r) ×
128(ϑ) × 256(ϕ) serves as input for the SPIN results.

In Table 3, the timings for the two codes to perform one time
step per cell and core are listed. From this measure, the explicit
SLH mode is roughly a factor of five slower than the SPIN code,
potentially reflecting the fact that SLH has not undergone any
substantial optimization effort. The implicit SLH mode is 220
times slower than SPIN with a time step size that is only eight
times larger. These numbers illustrates that, while our compress-
ible simulations capture the full set of physics described by the
full Euler equations, they come with considerably higher com-
putational costs. Because the SPIN and SLH simulations differ
in resolution, computational domain, and the energy boosting, a
quantitative comparison considering the wall-clock time needed
to evolve a cell by one unit of stellar time is not possible here.

We note that the settings of the SLH implicit mode may not
be optimal yet. As stated by Miczek (2013), fine tuning the linear
solver for the specific physical problem to be solved and apply-
ing a multigrid solver may lead to improved performance. This is
subject of ongoing work and the necessary algorithms are readily
available in SLH.

To put the computational costs of the SLH runs into con-
text of 3D simulations, we have performed first preliminary
low-resolution 3D simulations of the same initial stratification
as used for the 2D simulation in this paper on the JUWELS
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supercomputer in Jülich, Germany. The domain is discretized
in 280(r) × 90(ϑ) × 180(ϕ) cells while performing time steps
of δt = 8 s with the ESDIRK23 implicit time stepping scheme.
Based on these runs, we estimate that 8 × 105 core-h will be
needed to cover 700 h of simulation time. By scaling this number
with the number of grid cells, a simulation with 480× 180× 360
cells, which corresponds to half of the resolution of the 2D simu-
lation presented here, needs 5.5 × 106 core-h. The reference sim-
ulation applies the same time step size as the finer resolved 2D
simulation; therefore, a possible change in the step size is not
included in the scaling. However, depending on the desired accu-
racy, a much larger time step can be chosen and the computa-
tional costs decrease correspondingly.

This demand of computational resources is a realistic sce-
nario for applications at HPC facilities. A 3D simulation at the
same resolution as the 2D simulation requires 44 × 106 core-h
which is at the upper limit of common computing time propos-
als. However, these numbers show that SLH is efficient enough
to perform simulations of stellar oscillations also in 3D for suf-
ficiently long time spans.

As demonstrated, the implicit time stepping improves the
efficiency of the SLH code. At the same time it is important
to confirm that the accuracy at which sound waves are evolved
is sufficient. To this end, we restart the simulation from the 2D
implicit run at 500 h and evolve it using an explicit, three-stage
Runge-Kutta (RK3) scheme (Shu & Osher 1988) which is third-
order accurate in time. The time step is set to δtCFLuc=0.5, our
standard choice for explicit time stepping. The simulation is
evolved for 100 h of physical time which corresponds to roughly
80 sound crossing times tcross. We define the sound crossing time
to be the time a sound wave needs to travel from the innermost
point of the computational domain to the upper boundary,

tcross =

∫ r1

r0

1
csound(r)

dr = 1.26 h. (45)

We expect the time span of 80 tcross to be sufficient to reveal pos-
sible deviations in the spectra.

In Fig. 23, the spectra of the implicit and explicit run
are compared at different frequencies corresponding to g- and
p-modes. All spectra are based on the same time frame.

Almost no differences between the amplitudes from implicit
and explicit time stepping are visible. This result confirms that the
propagation of sound waves is treated correctly also in the implicit
run. Furthermore, our implicit time step size of 8 s appears to be a
rather conservative choice and larger steps sizes might be possi-
ble. This could reduce the computational costs considerably and
will be investigated in more detail in future simulations.

5. Conclusion

The main goal of this paper has been to verify the capabilities of
the time-implicit, compressible SLH code to correctly treat inter-
nal gravity waves (IGWs) and p-modes in stars with a convective
core. To this end, two test cases have been considered.

The first test is a simple 2D setup where an IGW packet
according to the Boussinesq approximation is evolved in time.

We first simulated the propagation of an IGW packet in a
weakly-stratified 2D atmosphere. The initial IGW was set up
with different expected group velocities. Velocity distributions
were extracted from simulations performed using the low-Mach
AUSM+-up solver and the classical Roe solver at a few points in
time. The ability of the two solvers to follow IGWs was assessed
by comparing the numerical solutions with approximate analytic
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Fig. 23. Amplitudes for the radial velocity spectra at four different fre-
quencies for explicit (blue) and implicit (dashed orange) time stepping.
The first two frequencies correspond to p-modes whereas the lower two
frequencies match g-modes. For radii above the convection zone, the
amplitudes completely overlap each other.

solutions. The Roe solver revealed strong damping and differ-
ent broadening of the initial wave packet and the packet’s group
velocity was incorrect. These effects were most pronounced at
Mach numbers Magy = 10−3. The AUSM+-up scheme showed
no significant damping and propagated the packet at a speed
close to the prediction. This indicates that a specialized solver
is necessary when treating IGWs at low Mach numbers.

Our second test case involving low-Mach-number flows was
core hydrogen burning in a 3 M� ZAMS star. We used the same
initial 1D model as Edelmann et al. (2019, EM19) to make the
simulations comparable. A 2D simulation of this setup was per-
formed using the AUSM+-up solver. The properties of IGW and
p-modes were studied following similar methods as in EM19. It
was shown that the spectra extracted from the 2D SLH simula-
tions reflect the basic properties of internal waves. A broad spec-
trum of IGWs is observed for the integrated spectrum whereas
individual standing modes can be identified in spectra for sin-
gle angular degrees `. Modes below the Brunt–Väisälä fre-
quency (BVF) have an increasing radial order with decreasing
frequency, a fundamental property of IGWs. Also the disper-
sion relation extracted from the simulation and the ratios of
vertical to horizontal velocities match the theoretical predic-
tion. Furthermore, we find the velocity ratios to be compatible
with observational diagnostics from time-series space photome-
try and high-resolution spectroscopy of slowly pulsating B stars
(De Cat & Aerts 2002).

For standing modes above the BVF, the radial order increases
with increasing frequency and the dispersion relation matches
the one of p-modes. This kind of waves cannot be seen in the
anelastic approximation as sound waves are removed from the
underlying equations.

Recently, Lecoanet et al. (2019) argued that if the observed
variability of stellar surfaces was due to the excitation of IGW
from core convection, one would expect to observe distinct peaks
in the spectrum which correspond to low ` values (see their
Fig. 2). We do not see such features in our simulation (see, e.g.,
Fig. 17). Our explanation for the broad and near-flat profile of
IGWs is the same as in EM19: we considered the entire ensemble
of waves with large range in radial order and `-values, resulting
in small spacings between the resonant frequencies. This “hides”
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frequency peaks due to individual low-` modes. We clearly see
the individual resonant mode frequencies showing up in the sim-
ulations when we limit to particular `-values, as illustrated in
Figs. 11 and 12. Moreover, stellar rotation, which is not included
in the simulations presented here, would cause spectral line split-
ting and a further increase in the number of lines in the spectrum.

The amplification of the waves toward the surface agrees
with the expectation given in Ratnasingam et al. (2019). In SLH,
the treatment of IGWs at very low frequencies is mainly limited
by radial resolution. In contrast, anelastic simulations are lim-
ited by radiative damping and viscous effects already at larger
frequencies. Irrespective of the numerical setup, this work and
that of EM19 demonstrate the importance of the excitation and
propagation of IGWs as a diagnostic tool for the interior physics
of stars burning hydrogen in a convective core.

The simulation of the 3 M� model presented here is intended
as a proof of concept and aids in the comparison of the simu-
lations of Rogers et al. (2013) and Edelmann et al. (2019). The
chosen 2D geometry reduces computational costs and allows
for parameter exploration. A validation of 2D results based on
selected 3D models is planned for future work. From the cost of
preliminary low-resolution 3D simulations we estimated a need
of 44 × 106 core-h to simulate a grid with a size of 960(r) ×
360(ϑ) × 720(ϕ) for 700 h physical time. Using only half of the
number of cells in each dimension reduces the estimated cost to
5.5 × 106 core-h. These estimates are based on a reference run
with the same time step size as the higher resolved 2D simulation
presented here. Thus, a change in the time step size is not consid-
ered in the scaling. Our tests indicate that the implicit time step
size could be increased while still resolving sound waves accu-
rately enough. This could considerably reduce the computational
costs. Finally, SLH has already proven an excellent scaling up to
a large number of cores (e.g., Edelmann & Röpke 2016) such that
this kind of 3D simulations are feasible on modern HPC facilities.

After having tested the methods on the 3 M� model, we will
extend our study to higher stellar masses and later evolution-
ary stages for which there are more observational data. Further-
more, we aim to use the velocity and temporal information from
our hydrodynamics data to extract synthetic observables by aver-
aging appropriately over the different wavenumber components.
Studying the dependence of wave amplitudes on different lumi-
nosity boosting will help us to estimate the amplitudes by extrap-
olating toward stellar values.
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Appendix A: Linear theory in Boussinesq
approximation

In order to get analytical expressions describing the behavior of
IGWs, the fully compressible Euler equations need to be lin-
earized. This can be done in the Boussinesq approximation. It
is based on the assumption that pressure and density vary only
little in the volume considered. Furthermore, one imposes a
time-independent hydrostatic background state and only follows
the temporal evolution of deviations from the background state.
Additionally, a divergence-free velocity field is assumed. This
approach removes the physics of sound waves. For a Boussinesq
gas it is convenient to introduce potential temperature ϑ as

ϑ = T
(

p
p0

)−(γ−1)/γ

, (A.1)

where p0 is the pressure at a specific reference height in the
atmosphere with ϑ0, ρ0 (see Sutherland 2010 for a detailed intro-
duction). The two-dimensional equations of motions can then be
written as

Dϑ̃
Dt

+ v
dϑhse

dy
= 0, (A.2)

Du
Dt

+
1
ρ0

∂p̃
∂x

= 0, (A.3)

Dv
Dt

+
1
ρ0

∂p̃
∂y

= −
g

ϑ0
ϑ̃, (A.4)

∂u
∂x

+
∂v

∂y
= 0, (A.5)

where quantities with a tilde denote fluctuations from the hydro-
static background state, for instance p̃ = p − phse. The letters u,
v refer to the horizontal and vertical components of the velocity
u = (v, u)T . Further, the notation above makes use of the material
derivative Dq/Dt = ∂q/∂t + u∇q.

A solution to this set of equations can be found using the
ansatz of a 2D plane wave
ϑ̃
u
v
p̃

 =


Aϑ

Au
Av

Ap

 exp [i(k · x) − iωt], (A.6)

which introduces the wave vector k = (kx, ky)T , the angular
velocity ω, and the complex amplitudes Ai. The absolute val-
ues of these amplitudes are assumed to be small, such that terms
with products of two or more amplitudes can be neglected. This
essentially removes the advection term in the material derivative.
Inserting the ansatz into Eqs. (A.2)–(A.5) results in a homoge-
neous system of linear equations of the form
−iω 0 dϑhse

dy 0
0 −iω 0 ikx

ρ0
g
ϑ0

0 −iω iky
ρ0

0 ikx iky 0

 ·

Aϑ

Au
Av

Ap

 = M · A = 0. (A.7)

Nontrivial solutions exist only if det(M) = 0 which leads to the
dispersion relation for Boussinesq IGWs

ω2 = −
dϑhse

dy
g

ϑ0

k2
x

|k|2
= −

dϑhse

dy
g

ϑ0
cos2(θ), (A.8)

where we have used k · ex = kx = |k| cos θ with ex being the unit
vector in horizontal direction and θ the angle between the wave

vector k and the horizontal direction. The dispersion relation is
usually written in the form

ω = N0 cos(θ), (A.9)

where

N0 =

√
−

dϑhse

dy
g

ϑhse
≈

√
−

dϑhse

dy
g

ϑ0
(A.10)

is the BVFin the Boussinesq approximation (see, e.g.,
Sutherland 2010, Sect. 3.2). This result shows that the angular
frequency does not depend on the absolute value of the wave
vector k and that IGWs do not propagate isotropically. The max-
imum frequency is ω = N0 for θ = 0◦ and no purely vertical
waves exist as ω = 0 for θ = 90◦.

For the specific solution of Eq. (A.7), we set the amplitude
of the vertical velocity as free parameter and express the other
amplitudes accordingly:

Aϑ = −
i
ω

dϑhse

dy
Av, (A.11)

Au = −
ky
kx

Av, (A.12)

Ap = −ρ0ω
ky
k2

x
Av. (A.13)

As Eq. (A.7) is a linear system, any superposition of solutions
remains a solution to the system. The group velocity of such a
wave packet is then given by

cg = ∇kω =
N0

kx
cos θ sin θ

(
sin θ
− cos θ

)
, (A.14)

if one uses sin θ = ky/|k|.
In order to describe the time evolution of a wave packet, we

follow the methods described in Sutherland (2010, Sect. 1.15)
which we generalize to 2D and apply to the specific setup pre-
sented in Sect. 3.

In linear theory, a quasi-monochromatic wave packet η(x, t)
is usually described as

η(x, t) = A(x, t) exp [i (k0 · x − ω (k0) t)] , (A.15)

where the amplitude modulation functionA(x, t) changes much
slower in space and time than the exponential function in
Eq. (A.15). The wave packet η(x, t) can be represented via a FT
as

η(x, t) =

∫ ∞

−∞

η̂(k) exp [i (k · k − ω (k) t)] dk (A.16)

and, by applying the inverse FT, its spectral representation reads

η̂(k) =
1

(2π)2

∫ ∞

−∞

η(x, 0) exp [−ik · x] dx. (A.17)

From Eqs. (A.15) and (A.17) it further follows that

A(x, t) = η(x, t) exp [−i (k0 · x − ω (k0) t)]

=

∫ ∞

−∞

η̂(k) exp [i∆k · x] exp [−i∆ωt] dk, (A.18)

where ∆k = k−k0 and ∆ω = ω (k)−ω (k0). For t = 0, Eq. (A.18)
illustrates that an initial amplitude modulation A(x, 0) intro-
duces waves with k , k0. Because the wave packet is quasi-
monochromatic with a typical wavenumber of k0, the amplitude
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η̂(k) must decrease quickly for k , k0. However, in the presence
of a nontrivial dispersion relation ω = ω (k), any superposition
of waves with different wavenumbers will lead to a broadening
of the initial wave packet over time. This will be explicitly shown
for the setup presented in Sect. 3.

Here, the initial vertical velocity modulation is a Gaussian as
given by Eq. (11):

η(x, 0) = A0 exp
[
−
y2

2σ2

]
︸             ︷︷             ︸

A(x,0)

exp [ik0 · x] (A.19)

with

A0 = fMa
√
γRT0/µ; σ = βHp/2. (A.20)

Evaluating the FT in Eq. (A.16) leads to

η̂(k) = δ(kx − kx,0)
√

2πσA0 exp
[
−

1
2
σ2∆k2

y

]
, (A.21)

where δ denotes the Dirac delta function. This specific form of
η(k) illustrates that a narrower Gaussian modulation in real space
leads to a broader distribution in wavenumber space and conse-
quently to a larger dispersion.

From Eqs. (A.18) and (A.21) the time evolution of A is
determined. To evaluate the FT in Eq. (A.18), we expand the
dispersion relation in a Taylor series up to second order

ω(k) =ω(k0) + ∇kω|k0∆k +
1
2

(
∂2

kx,kx
ω|k0∆k2

x + ∂2
ky,kyω|k0∆k2

y

)
+ ∂2

kx,kyω|k0∆kx∆ky + O
(
k3

)
(A.22)

where we have introduced the abbreviations ∂q = ∂
∂q , ∂

2
p,q =

∂2

∂p∂q for convenience. Inserting Eqs. (A.21) and (A.22) into
Eq. (A.18) gives

A(x, t) =
√

2πσA0

∫ ∞

−∞

exp
[
i∆kyy

]
× exp

[
−

1
2
σ2∆k2

y − i
(
∇kω|k0 + ∂2

ky,kyω|k0∆k2
y

)
t
]

dky.

(A.23)

This can be simplified to

A(X, t) =
√

2πσA0

∫ ∞

−∞

exp
[
−
σ̃2

2
∆k2

y

]
exp

[
i∆kyY

]
dky,

(A.24)

by transforming into a moving frame via

X = (X,Y)T = x − ∇kω|k0 t (A.25)

and setting

σ̃ =
√
σ2 + i∂2

ky,ky
ω|k0 t. (A.26)

The integral in Eq. (A.24) is again the FT of a Gaussian and leads
to the final expression

A(X, t) = A0
σ

σ̃
exp

[
−Y2

2σ̃2

]
(A.27)

where the absolute value ofA is given by

|A(X, t)| =
A0σ(

σ4 +
(
∂2

ky ,ky
ω|k0 t

)2
)1/4 · exp

−
Y2

2
1

σ2 +

(
∂2

ky,ky
ω|k0 t

σ

)2

 ·
(A.28)

Equations (A.27) and (A.28) describe the broadening and
decrease in amplitude of an initial Gaussian profile over time
when considering the dispersion relation up to second order in
k in a system of coordinates moving with the wave packet at its
group velocity ∇kω|k0 . For the dispersion relation of a Boussi-
nesq IGW according to Eq. (A.9), the group velocity is given by
Eq. (A.14) and

∂2
ky,kyω|k0 = N0k0,x

2k2
0,y − k2

0,x(
k2

0,x + k2
0,y

)5/2 · (A.29)

Appendix B: Supplementary plots and tables
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Fig. B.1. Relative deviation from the initial profile for the 1D sim-
ulations described in Sect. 4.1 at t ∼ 1100 h. Shown are results
for the temperature T , the BVF N, and the temperature gradient
∇ = ∂ log T/∂ log P, respectively. Solid lines correspond to cylindrical
geometry whereas dashed lines denote the results for spherical geome-
try. Only the surface of the computational domain is shown to empha-
size the change at the outer radial boundary. The deviations are even
smaller in the inner part which is not shown here.

Table B.1. Maximum deviations for the quantities shown in Fig. B.1.

Quantity Maximum

|1 − T/T0|cyl 1.1 × 10−3

|1 − T/T0|sph 7.5 × 10−4

|1 − N/N0|cyl 9.9 × 10−2

|1 − N/N0|sph 6.7 × 10−3

|1 − ∇/∇0|cyl 1.5 × 10−2

|1 − ∇/∇0|sph 1.1 × 10−2

Notes. The subscripts denote cylindrical and spherical geometry,
respectively.
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Fig. B.2. Check for the dispersion relation of sound waves. Upper
panel: amplitudes of the radial velocity at two different frequencies for
` = 0. Circles mark radii where our routine detects peaks in the ampli-
tude. The radial wavelengths are then estimated from the distance of
neighboring peaks. For the blue line, the frequency matches a standing
mode and it shows well defined, distinct peaks. The red line corresponds
to a frequency which is between standing modes and shows small-scale
incoherent oscillations with many peaks. Lower panel: resulting wave
numbers from the simulation are compared to the expectation for sound
waves ktheo = 2π f /csound. We find the blue line in good agreement with
theory for radii above the convection zone while the red line consider-
ably differs.
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CHAPTER 3
Conclusion

In this thesis, the finite-volume SLH code was used to simulate different hydrodynamic phe-
nomena regarding the stellar interior, with a focus on low-Mach flows. As discussed in
Chapter 1, such simulations are important in order to resolve the current difficulties of 1D
parametrization in conventional stellar evolution codes, but at the same time they are nu-
merically challenging. The results presented in Chapter 2 demonstrate that the combination
of elaborate numerical methods used in the SLH code alleviates some of these challenges.
The approach taken with the SLH code is therefore promising regarding more realistic, mul-
tidimensional simulations. In the following Section 3.1, each of the publications in Chapter 2
is separately summarized in a simplified fashion. The publications are then brought into
context and discussed in the light of current research in the field of stellar hydrodynamics in
Section 3.2. The thesis ends with a brief outlook on possible next steps in Section 3.3.

3.1 Summary of the individual publications
Well-balancing [Section 2.1]

Numerical codes for hydrodynamic simulations need to be able to maintain the hydrostatic
background stratification of stars accurately in order to evolve small dynamical perturbations
of the equilibrium, such as convection. However, due to the different discretization of the
hydrodynamic equations and the gravity source term in finite-volume schemes, spurious ve-
locities may deteriorate the physical flow. Well-balancing techniques enhance the accuracy at
which the equilibria are maintained. In Section 2.1, three well-balancing schemes were tested
in simulations with the SLH code. The Cargo-LeRoux well-balancing method (Edelmann,
2014; Edelmann et al., 2021) modifies the EoS such that only deviations from the initial
hydrostatic pressure and density profiles enter the numerical flux function. The α-β well-
balancing method (Berberich et al., 2018, 2019) scales the set of thermodynamic variables
that is reconstructed at the cell interfaces with their a priori calculated profiles in hydrostatic
equilibrium. For hydrostatic initial conditions, the left and right reconstructed states at the
cell interface are then identical and the numerical flux vanishes. Using the Deviation well-
balancing method (Berberich et al., 2021), only the difference between a stationary target
solution and the grid state are evolved in time. If the grid state is identical to the target
solution, the numerical flux vanishes. The target solution may be a hydrostatic solution, but
also stationary solutions that involve non-zero velocities are possible.

The three well-balancing schemes in combination with the AUSM+−up flux were bench-
marked for a suite of 1D and 2D test problems: (i) different hydrostatic atmospheres, (ii)
a slowly rising bubble in an isentropic hydrostatic atmosphere, (iii) a toy-model convection
zone, and (iv) a density perturbation orbiting a central mass.

Test case (i) demonstrates that without well-balancing, simulations of hydrostatic atmo-
spheres quickly develop spurious velocities. Applying well-balancing significantly improves
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the stability, while results obtained with α-β and Deviation well-balancing are generally
superior compared to Cargo-LeRoux well-balancing. However, the tests also reveal that in-
stabilities develop in all simulations that use the low-Mach AUSM+−up flux and, over long
timescales, some simulations eventually reach Mach numbers in the range of 10−4 to 10−2,
depending on the applied well-balancing scheme and type of the model atmosphere. It is
suspected that the instabilities are checkerboard modes due to a reduced pressure-velocity
coupling in combination with unresolved IGW. In simulations using a non low-Mach flux, the
atmospheres remain stable. Whether the instabilities are problematic in real astrophysical
applications depends on many factors, as, for example, the strength of the stratification, the
spatial dimensions and resolution, or the covered timescales. It is therefore important to
critically inspect the results obtained with the AUSM+−up flux when it is used to address
scientific questions.

Test cases (ii) and (iii) demonstrate that combining the AUSM+−up flux with α-β or
Deviation well-balancing enables simulations of dynamical phenomena at low-Mach numbers
also in strongly stratified setups. It was further noticed that a prerequisite for this is the
inclusion of the potential energy into the energy budget, such that it does not enter as energy
source term (e.g., see Miczek, 2013, Sect. 2.3). In this way, the sum of the internal, kinetic,
and potential energy is conserved and no source term appears in the energy equation. In
particular, test case (iii) validates that convection could be followed down to Mach num-
bers of Ma ∼ 10−4, reaching the expected regime for convection in actual stars.9 For the
Cargo-LeRoux well-balancing scheme, however, the flows in test cases (ii) and (iii) show an
unphysical behavior below Mach numbers of about 10−3.

Test case (iv) demonstrates the ability of the Deviation well-balancing scheme to balance
also non-static setups. In the non well-balanced simulation, mass quickly accumulates at
the inner boundary of the domain while the angular average of the initial perturbation is
maintained even after many orbits when Deviation well-balancing is used.

Overall, the results in the different test scenarios indicate that the most promising scheme
is the Deviation well-balancing method. It is the most flexible approach and produces rea-
sonable results for all test problems. This represents important progress toward realistic
simulations of stars. Without well-balancing, numerical instabilities generally prevent the
simulated flow from reaching Mach numbers below Ma ∼ 10−3.

Helium shell burning [Section 2.2]

In Section 2.2, the AUSM+−up flux was applied in combination with Cargo-LeRoux well-
balancing to the case of convective helium shell burning. At the time when the simulations
for this project were carried out, no other well-balancing method was readily available in the
SLH code. Because of the known deficiencies of Cargo-LeRoux well-balancing, the energy
generation was boosted by factors of 3 × 103, 1 × 104, and 3 × 104, leading to Mach numbers
between 10−3 and 10−2. The simulations were used to verify the results obtained with
the applied low-Mach methods and to obtain fitting values (A,n) for the Bulk-Richardson
entrainment law (Eq. (1.22)).

In the simulated flows, no signs of instabilities are apparent and the obtained convective
velocities scale with the input energy as expected. Comparing fundamental properties of
the turbulent convective flow between the AUSM+−up solver and its non low-Mach variant
AUSM+

B−up shows the superiority of AUSM+−up already at intermediate Mach numbers:
At the same resolution, it resolves the turbulent Kolmogorov-like spectrum toward scales
roughly two times smaller. Or, equivalently, it requires one eighth of the cells to resolve similar

9Further, unpublished results indicate that even lower Mach numbers can be achieved.
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scales as the AUSM+
B−up flux. Furthermore, the kinetic energy dissipation as obtained from

the RA-ILES equations and the width of the upper and lower transition from convective
to radiative regions seem to be converged already at smaller resolutions compared to the
AUSM+

B−up flux.
The simulations further confirm the findings of other publications, namely that the stiffness

of a boundary has a significant influence on the entrainment of material into the convection
zones. By measuring the entrainment rates for different energy boostings, the parameters
(A,n) of the Bulk-Richardson scaling (Eq. (1.22)) are determined. They are compatible with
values reported for carbon shell burning, but differ, for example, from values reported for
oxygen shell burning. The origin of the discrepancy, numerical or physical, has yet to be
addressed in detail. Furthermore, it was estimated that the increase of the mean entropy in
the convective region and the associated successively destabilization at the upper boundary
constitutes up to 50 % of the measured entrainment rate. This effect is already captured
in 1D evolution calculations and should therefore be subtracted from the measured mass
entrainment that is used to determine the Bulk-Richardson scaling for turbulent mixing.

An important phenomenon which has not been considered in these simulations are waves.
These are excited by convection, travel throughout the star and possibly contribute to mixing
and redistribution of angular momentum. Asteroseismology deduces information on prop-
erties of stellar interior from observations of their surface signatures. Therefore, they are
interesting phenomena to be followed in hydrodynamic simulations. Their detailed analysis
is prohibited by the restricted computational domain of the simulation presented.

Excitation of waves by core convection [Section 2.3]

The ability of the SLH code to evolve waves inside stars was specifically addressed in Sec-
tion 2.3 for a test scenario and a realistic stellar setup. The test consists of a 2D setup in
which an IGW packet is evolved on top of a weakly stratified atmosphere. For such a simpli-
fied setup, linear theory predicts the evolution of the amplitude function and group velocity
of the wave packet. The results obtained with the AUSM+−up flux are fully compatible with
the analytical solution, even at very low Mach numbers. In contrast, the standard Roe solver
evolves the wave packet at the wrong group velocities and the amplitude quickly decreases
due to high dissipation. This indicates that low-Mach methods are also of importance for the
proper propagation of waves insides stars.

In addition to the test setup, the excitation of waves by core convection in a 3 M⊙ star
has been studied by means of 2D simulations. The reduced computational costs compared to
3D simulations allowed the inclusion of more than 90 % of the star’s envelope and to follow
the propagation of the waves starting from their point of excitation near the core up to the
surface for roughly one month of physical time. The luminosity had to be boosted by a
factor of 103 in order to use Cargo-LeRoux well-balancing (the only well-balancing method
available at the time) with the AUSM+−up flux. This is, however, much smaller compared to
the required boosting in the simulations of the same initial model by Edelmann et al. (2019).
With their anelastic, pseudo-spectral approach to model fluid dynamics, artificial viscosity
and thermal diffusivity are required for numerical stability. To reach Reynolds numbers in
the turbulent regime, Edelmann et al. (2019) therefore boosted the luminosity by a factor of
106.

The analysis of the frequency spectrum of the simulated waves in the envelope of the star
reveals that they can be identified as standing IGW (g-modes), sound waves (p-modes), and
propagating waves. Various properties measured from the simulation are in good agreement
with linear theory and it can be concluded that they are represented in a physically correct
way in the simulation. Furthermore, the results show that mild nonlinear effects can be

117



Chapter 3 Conclusion

expected at the stellar surface, constituting a possible mechanism for transport of angular
momentum.

As the impact of viscosity and thermal diffusivity increases with decreasing frequency, the
SLH code is able to resolve waves at much smaller frequencies in addition to the inclusion of p-
modes compared to similar anelastic simulations. Furthermore, some qualitative agreements
between the surface spectra in the simulations and observations are found. For example, the
ratio of vertical to horizontal velocity components is in agreement with observations of SPB
stars. The flat shape of the frequency spectrum is also compatible with recent observations
of OB stars.

The implicit time stepping used in these simulations constitutes a major benefit when
using standard polar/spherical grids: The curvature of the grid leads to cells in the core
region which are much smaller compared to cells at the surface. For explicit time stepping,
the short sound crossing time for the small cells dictates a correspondingly small global time
step. The applied implicit time stepping enabled a step size that is about 260 times larger.
This reduces the computational cost by a factor of 6 compared to the explicit mode of the
SLH code.

3.2 Discussion
This thesis represents an important step toward more realistic simulations of astrophysical
flows at low Mach numbers. The foundation for this was already laid by the work of Miczek
(2013) and Edelmann (2014) who developed the main part of the SLH code, identified the
fundamental problems when simulating low-Mach flows, and suggested different methods to
tackle these problems, including the AUSM+−up flux function and the Cargo-LeRoux well-
balancing method. The value of the present thesis consists in finding working combinations of
the different components and the critical assessment of their performance. This way, several
problems, as for example implementation details or conceptional issues, could be identified
that prevented earlier SLH simulations from reaching low Mach numbers. Their manifestation
in the resulting flows are often subtle and hidden underneath a seemingly correct main flow.
In particular, it was recognized that the Cargo-LeRoux method is not suitable for low-Mach
simulations.

Regarding the numerical and technical aspects, the work presented in this thesis illustrates
that the SLH code has reached a solid, well-tested basis upon which further improvements
and more complex simulations are possible. Section 2.1 shows that the novel well-balancing
methods developed by Berberich et al. (2018, 2019, 2021) significantly improve the simulations
regarding stability and representation of convection. The detailed analysis of the properties
of the turbulent convective flow based on a realistic helium shell burning model in Section 2.2
validates that physically sound results can be obtained with the low-Mach AUSM+−up flux
also in astrophysical applications. The results are on par with current state-of-the-art finite-
volume codes developed by other groups. It further proves the ability of the SLH code to
perform simulations on large 3D grids using current high-performance computing facilities.
The simulation of waves in massive stars presented in Section 2.3 demonstrates the promising
prospects of fully compressible, finite-volume simulations.

In a recent study, Andrassy et al. (2021) compare the flow characteristics between 3D simu-
lations with five different hydrodynamic codes (including the SLH code using the AUSM+−up
flux), each of which follows a slightly different numerical approach. All codes are used to
simulate the same simplified convective setup which involves convective flows with a mean
Mach number of Ma ∼ 0.04. The authors show that fundamental properties, as for instance
mass entrainment rates or time averages of the kinetic energy, are consistent with each other
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already at the smallest considered grid size of 1283 cells. The good agreement for a turbulent
setup, for which no analytical solution exists, strengthens the general credibility of results ob-
tained from hydrodynamic simulations. This direct comparison also further demonstrates the
validity of the results obtained with the SLH code in the moderate Mach number regime. In
light of the results obtained in this thesis, this also illustrates the prospects of the “all-Mach”
approach followed by the SLH code.

After this summary of the thesis in a common context, each publication presented in
Chapter 2 will be reflected regarding its contribution to current research and remaining
challenges in the following.

Well-balancing

The methods presented in Section 2.1 ensure that the numerical flux vanishes for the initial
time steps of a hydrostatic atmosphere without source terms. The tests indicate that they
diminish the growth of checkerboard-like modes, probably because the driving by the gravity
source term is reduced. However, it is evident that they do not completely resolve the
problem. A possible solution could be to apply a staggered grid, where scalar quantities
are stored as cell averages but vector quantities are stored at the respective cell interfaces.
This lifts the pressure-velocity decoupling of conventional colocated grids and improves the
representation of hydrostatic balance. Goffrey et al. (2017) report for the MUSIC code,
which uses a staggered grid formalism, that they are able to keep a static atmosphere stable
at Ma ∼ 10−11. However, introducing a staggered grid into an already existing code requires
some coding effort. For the SLH code in particular, the formulation of the equation in
general coordinates (see publication in Section 2.1) and the enormous effort that is required
to adapt the Jacobian matrix of the Newton-Raphson scheme makes such an adaption very
time-consuming.

Moreover, an advantage of Deviation well-balancing is its ability to stabilize stationary
but non-static equilibria, including non-zero velocities. This can be particularly helpful if
simulations of rotating stars are of interest. Here, gravity is balanced by a pressure gradient
and centrifugal forces. Rotation impacts a star’s evolution as it leads to a wealth of possible
new mixing mechanisms, for instance dynamical and secular shear instabilities, meridional
circulation, or angular momentum transport (Maeder, 2009).

Convective boundary mixing in convective helium shell burning

The results presented in Section 2.2 complement recent studies of CBM in different convec-
tion zones (e.g., Meakin and Arnett, 2007b; Viallet et al., 2013b; Gilet et al., 2013; Cristini
et al., 2017; Jones et al., 2017; Pratt et al., 2017). Extending these studies over a range of
evolutionary stages helps to find possible dependencies of mixing on stellar parameters. For
oxygen burning, the dependence of mass entrainment ṁe on the driving luminosity L found
by Meakin and Arnett (2007b), Jones et al. (2017), and Andrassy et al. (2020) corresponds to
ṁe ∝ L which is equivalent to n = 1 for the Bulk-Richardson scaling.10 Gilet et al. (2013) re-
ports agreement within a factor of a few in 3D simulations of core hydrogen burning with the
entrainment predicted by Eq. (1.22) using the best fit values of Meakin and Arnett (2007b).
These findings are in line with the theoretical prediction of Spruit (2015) who argues that
the buoyancy of the entrained material sets an upper limit for the entrainment rate which
scales with the driving luminosity. In contrast, Cristini et al. (2019) find n = 0.74± 0.04 for
carbon burning and the present thesis n = 0.76± 0.10 for helium burning (Section 2.1) while
10According to Eq. (1.22), ve ∝ v1+2n

rms . Typically, vrms scales with the driving luminosity L as vrms ∝ L1/3

(see, for example, Section 2.2). Hence, ve ∝ L(1+2n)/3 and ṁe = 4πr2ρve ∝ L for n = 1.
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the simulations of core hydrogen burning by Higl et al. (2021) suggest n = 1.32± 0.79 (based
on 2D simulations).

Different values for n are found also in laboratory experiments, mostly ranging from 1 ≤
n ≤ 3/2 (see, e.g., the review by Fernando, 1991). However, some studies mentioned by
Fernando (1991) find values of n = 1/2, depending on the mechanism that drives turbulence.
A recent DNS simulation also finds n = 1/2 for shear-driven entrainment (Jonker et al.,
2013). Furthermore, some results indicate that n changes for different regimes of RiB (Strang
and Fernando, 2001; Guyez et al., 2007).

It is therefore of interest to further investigate the origin of the different values found
in hydrodynamic simulations, especially to exclude a numerical cause. One problem is the
current lack of a standard definition of the different terms in Eq. (1.22) which makes a direct
comparison between results from different groups difficult. For instance, the integral length
scale l required to calculate RiB (see Section 2.2) is sometimes assumed to be some fraction of
the pressure scale height (e.g., Cristini et al., 2017; Salaris and Cassisi, 2017), the horizontal
integral scale of turbulence near the interface (Meakin and Arnett, 2007b), the depth of the
convection zone (Collins et al., 2018), or an autocorrelation function of the average radial
velocity (Higl et al., 2021). The definition also differs for the other components involved.
For example, Müller et al. (2016) find that their value of A changes by a factor of 3 if the
convective velocity is taken to be the spatial average over the entire convection zone compared
to considering the convective velocity only near the radiative-convective boundary.

Analyzing the entrainment rate for the already published simulations in a standardized
way could help to validate a possible setup-dependence of the entrainment law in the as-
trophysical context. This is important for the application of Eq. (1.22) in stellar evolution
simulations. Furthermore, at nominal luminosity, RiB reaches values which are much larger
(for example RiB ∼ 105 for the setup presented in Section 2.2) than what has been addressed
in hydrodynamic simulations and laboratory experiments so far (typically RiB ≤ 103).11

With numerical tools like the SLH code it may be possible to explore the regime of very high
RiB in future simulations. This will be a crucial step in order to validate the applicability of
the simple entrainment law Eq. (1.22) over a broad parameter range. First studies present
stellar evolution calculations using the entrainment law (Staritsin, 2013; Scott et al., 2021).
These indicate that the values extracted from hydrodynamic simulations result in too efficient
mixing if it is used as a general prescription for convective entrainment and that the cur-
rent calibration of Eq. (1.22) needs further refinement. Also, other parametrizations of CBM
(Section 1.2.3) should be tested on a single data set in order to reveal possible differences to
the Bulk-Richardson entrainment at different evolutionary stages.

The impact of rotation has not been included in these studies to keep the setup as simple
as possible. However, rotation may alter the efficiency of mixing by convection (Rogers
et al., 2013; Brun et al., 2017; Constantino et al., 2021) and the dependence of convective
mixing on rotation is also suggested by the observed lithium depletion in solar-like stars (e.g.,
Constantino et al., 2021; Dumont et al., 2021). Furthermore, the inclusion of rotationally
induced instabilities into 1D evolution codes is even more complex due to the deviation from
spherical symmetry and typically, they are parametrized by diffusion coefficients with large
uncertainties (e.g., Heger et al., 2000; Maeder et al., 2013). The application of the Deviation
well-balancing method combined with the low-Mach methods of SLH opens the possibility to
simulate slowly progressing rotational phenomena and to contribute to recent simulations of
rotationally induced instabilities (e.g., Ballot et al., 2007; Matt et al., 2011; Edelmann et al.,
2017). A possible pathway could be to map 1D models of rotating stars that are assumed

11An exception is the simulation of core hydrogen burning by Gilet et al. (2013) where RiB ∼ 4 × 105.
However, Gilet et al. (2013) do not derive their own values for n and A.
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to be in shellular rotation (Meynet and Maeder, 1997) into 3D space, for example using
the method of Roxburgh (2006) in order to follow the dynamical evolution in hydrodynamic
simulations.

The recent study of Varma and Müller (2021) shows that also magnetic fields could in-
fluence the dynamics of convection in the stellar interior. While they find only a modest
impact on the bulk convective flow, magnetic fields seem to suppress rare but strong entrain-
ment events which appear in their pure hydrodynamic simulation. This could explain the
lower entrainment rate they find in their simulations with magnetic fields. Magneto hydro-
dynamic simulations at low-Mach numbers are, however, even more complicated than pure
hydrodynamic simulations and beyond the scope of this thesis.

Excitation of waves by core convection

The results presented in Section 2.3 contribute to the recent studies of stellar oscillations in
stars by hydrodynamic simulations. It provides insight into the formation and propagation
of sound waves and IGW in the context of wave excitation by core convection in a massive
star. The fully compressible approach includes pressure and gravity modes while the low-
Mach, finite-volume approach has reduced artificial viscosity compared to recent studies that
commonly use an anelastic formulation of the underlying equation of hydrodynamics (Alvan
et al., 2015; Rogers and McElwaine, 2017; Edelmann et al., 2019). The inclusion of sound
waves enables the self-consistent formation of mixed modes where p-modes and g-modes
couple. Interpretation of observed mixed mode frequencies allow probing the deep stellar
interior and can, for example, be used to distinguish different evolutionary phases in red
giants (Bedding et al., 2011), or to constrain rotation profiles in giant stars (Deheuvels et al.,
2014). While the proper representation of p-modes was verified in Section 2.3, a more detailed
analysis of the possible formation of mixed modes in the simulations remains to be done.

The simulations presented in Section 2.3 support the conjecture of Bowman et al. (2019a,b,
2020) that the low-frequency excess observed in massive stars is due to IGW excited by core
convection. However, also the SLH simulations required some artificial boosting, although
the boosting used in Section 2.3 is a factor of 103 smaller than in the comparable simulation
of Edelmann et al. (2019). The required boosting is one of the criticisms of Cantiello et al.
(2021) and Lecoanet et al. (2021) who suggest that surface convection is responsible for the
low-frequency excess. Without boosting, the convective turnover frequency and hence the
frequency of the predominately excited IGW will be lower than in the boosted case. IGW at
smaller frequencies have smaller spatial scales and smaller group velocities. This changes the
way these waves propagate through the stellar surface, for example because of the increased
relative impact of thermal diffusion. Furthermore, the more vigorous convection in boosted
simulations leads to larger wave amplitudes, which may enable non-linear effects that would
not occur otherwise.

With the improvements presented in Section 2.1, simulations of IGW excitation through
core convection at nominal luminosity have come into reach. However, the waves need to
be resolved spatially by at least a few grid cells. Taking the values from the 3 M⊙ model of
Section 2.3, the typical frequency ftyp at which IGW will be excited can be estimated by the
turnover frequency of the largest eddies in the convection zone as

ftyp =
vconv
2∆rCZ

≈ 0.2µHz, (3.1)

where ∆rCZ = 1.7 × 1010 cm is the radial extent of the convection zone and
vconv = 7 × 103 cm s−1 (Ma ∼ 10−4) the expected convective velocity from MLT. The typical
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Figure 3.1: Frequency-spectra of the horizontal velocity for the stellar model presented in
Section 2.3 for all ℓ (solid, semi-transparent lines) and ℓ = 1 (dashed, opaque
lines). The profiles are obtained at different times but for the same size of the
time interval of about 17 τconv. The velocity data is extracted at half of the
stellar radius. The spectra change only slightly for frequencies above 10µHz
while amplitudes increase visibly at lower frequencies.

radial wavelength λr is then given by

λr =
2π

kh
√
(N/(2π ftyp))2 − 1

, (3.2)

where N is the BVF and kh =
√
ℓ (ℓ+ 1)/r the horizontal wave number of angular degree

ℓ at radius r (see Section 2.3). For the 3 M⊙ model of Section 2.3 this yields for example
λr = 3 × 108 cm (if ℓ = 1 and evaluated at 30 % of the total stellar radius). Therefore, a
minimum of 8 × 103 radial grid cells are required if the wave is to be resolved by a minimum
of 10 radial cells and 90 % of the total stellar radius should be included in the simulation.
For comparison, boosting the luminosity by a factor of 103 shifts the characteristic frequency
such that the corresponding ℓ = 1 mode is resolved already with 0.8 × 103 radial cells. This
illustrates the high computational demands imposed by the physical properties of IGW which
can not be circumvented. It is therefore important to assess the impact of unresolved waves
on the resulting spectra as the required resolutions are hardly feasible in full 3D simulations.

Furthermore, sufficiently large time frames need to be covered by the simulations in order
to obtain realistic results for the spectra: In the simplified simulations of Lecoanet et al.
(2021), peaks from resonant modes only become distinguishable from the background signal
if the simulations cover more than 100 convective turnover times. The presence of distinct,
individual peaks is an important diagnostic as it is directly comparable to observations. The
simulations presented in Section 2.3 cover about 27 convective turnover times (700 h) and the
cumulative spectrum does not reveal any obvious peaks.

These simulations have now been extended to cover 75 turnover times (2600 h). The
spectrum for all ℓ does mainly change at very low frequencies, as apparent from Fig. 3.1. In
the IGW regime (10µHz to 200µHz), the spectrum does not change considerably. However,
individual resonant modes are best visible for filtered velocity and the spectra for ℓ = 1 in
Fig. 3.1 show that the amplitude of resonant peaks (e.g., at 50µHz) indeed slightly increases
over time. These peaks are buried underneath the background signal but it is possible that
they will grow sufficiently to eventually stand out. However, because of the applied boosting,
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the background stratification slightly changes over time, and a strong shear flow develops at
the top of the domain.12 It is therefore not meaningful to continue the simulations presented
in Fig. 3.1 even longer.

The wave amplitudes saturate if the energy injected by convection (independent of the
wave’s amplitude) equals the energy loss by radiative damping (proportional to the wave’s
amplitude), provided that the waves remain in the linear regime. Whether the final amplitude
of a resonant mode will protrude above the background therefore depends on the interplay
between the excitation mechanism, amplification, and damping. Simulations with parameters
as close as possible to actual stellar values will thus be a step forward to reveal the underlying
mechanism behind the low-frequency excess.

3.3 Outlook
Hydrodynamic simulations are an important tool for further understanding the details of
dynamical phenomena in stellar interiors. Their results can be interpreted to support or
challenge current theories and prescriptions that are applied in 1D evolution codes. The
present thesis demonstrated that the SLH code is suitable to address simulations of stars
which typically show highly turbulent, low-Mach flows on large spatial scales, including orders
of magnitude changes in density and pressure. The results of Chapter 2 constitute a step
forward toward the ultimate goal to simulate low-Mach phenomena in stellar interiors without
an artificially enhanced energy input.

In upcoming simulations the combination with the recently implemented Deviation well-
balancing scheme should be tested in real astrophysical applications. Already the comparison
between boosted and unboosted 2D simulations of the helium burning setup of Section 2.2
will be helpful to identify differences induced by boosting and to improve current CBM
prescriptions. Furthermore, the simulation of IGW excitation needs to be extended into 3D
as only then frequencies of standing waves will become directly comparable to real stars.
Preliminary 3D simulations with the SLH code show that the emerging p- and g-modes are
in good agreement with linear theory.

Furthermore, it will be crucial to explore scenarios and scientific questions which can be
addressed in such simulations with feasible computational resources. Of particular impor-
tance is the efficiency of the implicit time stepping schemes applied in the SLH code. As
described by Miczek (2013), the solution requires a combination of specialized linear solver
and matrix-preconditioning to achieve acceptable efficiency. Optimizing the parameter set of
the available iteration schemes has not yet been done with respect to individual applications.
Substantial improvements regarding efficiency of time stepping may therefore be achieved.

In future simulations, more complicated setups are possible with SLH. In particular, the
inclusion of rotational effects for convective mixing and IGW propagation will be beneficial:
The majority of stars rotate and current 1D modeling still struggles to reproduce observed
rotation rates and surface abundances, indicating that the current theory is incomplete. It
was shown in this thesis that simulations with the SLH code have the potential to include
the relevant processes, in particular convection and wave excitation, at improved accuracy.
To include also the evolution of magnetic fields is subject of a current PhD project.

12Some further numerical experiments indicate that this is a physical effect from angular-momentum deposition
of waves and not a numerical artifact of the boundaries: The shear flow does not occur in simulations with
smaller radial domains, and it also does not occur for lower resolution. Therefore, it seems possible that
better resolved waves lead to high enough amplitudes at the outer domain boundary. This may enable
mild non-linear effects which can cause the development of a shear flow over time. However, further tests,
especially with lower artificial boosting, are needed for confirmation.
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Glossary
1D one-dimensional.

2D two-dimensional.

3D three-dimensional.

BVF Brunt-Väisälä frequency.

CBM convective boundary mixing.

CFL Courant-Friedrichs-Lewy.

DNS direct numerical simulations.

EoS equation of state.

HR diagram Hertzsprung-Russel diagram.

IGW internal gravity waves.

ILES implicit large eddy simulations.

LES large eddy simulations.

MLT mixing-length theory.

MS main-sequence.

RA-ILES Reynolds-averaged implicit large eddy simulations.

SLH Seven-League Hydro.

SPB stars slowly pulsating B stars.
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