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Abstract
In this thesis we investigate the possibility that gravitational waves emitted from a
first-order phase transition exhibit enough power to alter or generate fluctuations in the
primordial plasma of the early universe and in turn imprint new features into the matter
power spectrum. We approach this task by performing a second order perturbative
expansion of two coupled non-linear equations that monitor the evolution of energy
density gradients in the 1+3 covariant formulation of cosmology. As a result, we find that
adiabatic density fluctuations at second order can be generated from inhomogeneities
in the gravitational wave energy density on sub-horizon scales. We interpret these
fluctuations as baryon acoustic oscillations seeded by gravity radiation and derive their
transferfunction to study their impact on the matter power spectrum. Strength and
scale of the imprinted signatures depend on three phase transition parameters, namely
the latent heat, the duration and the time at which gravitational waves are released.
The amplitude of the signatures is limited by the cosmic variance bound on the matter
power spectrum. We use this constraint to deduce limits for these three parameters and
translate them into a new exclusion region for the relic stochastic gravitational wave
background today. Finally, we discuss our results in the context of first-order phase
transitions occurring in particle models.

Zusammenfassung
In dieser Arbeit untersuchen wir die Möglichkeit, ob Gravitationswellen, die von Pha-
senübergängen erster Ordnung erzeugt wurden, stark genug sind, Fluktuationen im
primordialen Plasma zu verändern oder zu erzeugen und dadurch neue Merkmale im
Materie-Leistungsspektrum zu hinterlassen. Dazu führen wir an zwei gekoppelte, nicht-
lineare Gleichungen, welche die Entwicklung von Energiedichtegradienten in der 1+3
kovarianten Formulierung der Kosmologie beschreiben, eine störungstheoretische Rech-
nung in zweiter Ordnung durch. Das Ergebnis zeigt, dass adiabatische Dichtefluktuationen
in zweiter Ordnung von Inhomogenitäten in der Gravitationswellenenergiedichte auf sub-
Horizont Skalen erzeugt werden können. Wir interpretieren diese Fluktuationen als
von Gravitationswellen hervorgerufene baryonische, akustische Oszillationen und bestim-
men ihre Transferfunktion, um ihre Auswirkung auf das Materie-Leistungsspektrum
zu untersuchen. Stärke und Skala der Signaturen hängt von drei Parametern des Pha-
senüberganges ab, nämlich der latenten Hitze, der Dauer und der Zeit, zu welcher die
Gravitationswellen erzeugt wurden. Die Amplitude dieser Spuren ist beschränkt durch
die kosmische Varianz des Materie-Leistungsspektrums, die wir benutzen, um Grenzwerte
für die drei Parameter zu ermitteln. Anschließend werden diese neuen Ausschlussbereiche
für den heutigen stochastischen Gravitationswellenhintergrund übersetzt. Schließlich
diskutieren wir unsere Ergebnisse im Kontext von Phasenübergängen erster Ordnung,
die in Teilchenmodellen auftreten.
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[6] Christian Döring, Rasmus S. L. Hansen, and Manfred Lindner. Stability of three
neutrino flavor conversion in supernovae. JCAP, 08:003, 2019.

vii





Acknowledgments
First of all, I owe a great gratitude to my supervisor Prof. Dr. Dr. h.c. Manfred Lindner
for accepting me as a PhD student although I almost hadn’t had any knowledge in
particle physics when I applied. His trust in my ability to learn new topics was always
encouraging to me. Especially, I would also like to thank him for the possibility to take
part in many summer schools and conferences where I met many remarkable people,
some of whom became good friends. It has been a great pleasure to be part of his group
at the Max-Planck-Institut für Kernphysik.

Furthermore, I would like to thank Prof. Dr. Jörg Jäckel for many illuminating discussions
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Chapter 1
Introduction

“The Starry Night” by Vincent van Gogh.
From [7] - ©Public Domain.

“Ich betrachtete nur das, was mir das Universum
zeigte.”— Claude Moneta

a*14.11.1840-†5.12.1926 [8].

T
he painting “The Starry Night” by Vincent van Gogh1 is one of the most famous
examples for the inspiring nature of the night sky to humankind. Certainly, one

reason for the remarkable effect of the picture is caused by the structures created from
the brush work that complements the arrangement of objects like clouds, the moon and
stars. While van Gogh could only observe these small scale structures on the sky, today
the objects we can describe range from galaxies to nebula’s and quasars. With an ever
deeper gaze into space, we have gained an ever deeper insight into the nature of these
objects but also an understanding of their distribution. Remarkably, as sky surveys have
measured, most of the matter is organized in a web-like structure where galaxies and

1*30.3.1853-†29.7.1890 [9].
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Figure 1.1.: The history of the universe according to current theory. Shown are some of
the most important events with a special focus on the two phase transitions. The graphic
is inspired by [13, 14] and uses parts of pictures from Planck [15] and the Millennium
Simulation [16, 17].

clusters of galaxies are arranged in huge halos and filaments enclosing large empty voids
[10–12] and therefore draw a very different picture of the night sky, see right part of Fig.
1.1. The origin of the structure relies on the two pillars of fundamental physics today,
namely the Standard Model of Particle Physics (SM) and the Cosmological Standard
Model (ΛCDM). With the detection of the Higgs particle [18] by the Large Hadron
Collider (LHC) [18–20] the particle family of the SM [21–23] is very much complete.
The rise of the ΛCDM on the other hand began with the measurement of the Cosmic
Microwave Background (CMB) [24–26] and its capability to explain this earliest snapshot
of the universe drawn from temperature fluctuations in the oldest photons to a very high
accuracy [15, 27]. These two pillars allow us to reconstruct the history of the universe
(Fig. 1.1) and reproduce the emergence and evolution of the large scale structure we
observe today [28, 29] from small initial perturbations in the primordial soup.

However, tests from new (observational) perspectives of these two concepts are in dire
need, as until now both theories still evaded any attempt to unfold some of their greatest
remaining mysteries by our classical methods: Despite many experimental efforts ( see
e.g. [30]) the origin of Dark Matter (DM) [31] still remains unrevealed though it is an
essential ingredients of the ΛCDM and its existence is supported by many observational
hints including galaxy rotation curves [32], gravitational lensing [33] and the synthesis
of light elements during Big Beng Nucleosynthesis (BBN) [34, 35]. The nature of dark
energy poses a similar puzzle [36] which makes up 70% [15, 27] of the energy budged
of our universe and has been found to cause the accelerated expansion of the cosmos
[37, 38]. Due to these and many other open issues, physicists opened the hunt for physics
beyond the SM to tackle the intertwined challenges both fundamental theories still flaw.

From the experimental side an ever increasing arsenal of technical instruments and
methods has been developed to circle the secrets of the universe from new perspectives.
Most prominently, the newest of them are Gravitational Wave (GW) interferometers
such as the LIGO-VIRGO collaboration [39, 40] which in 2015, for the first time, directly
measured a GW signal from a black hole binary merger [41]. Until then only indirect





hints for the existence of GWs had been found [42]. Not only do these detectors provide
a new channel to the cosmos but they also complement our present instruments based
on electromagnetic signals as the famous observation of merging neutron stars [43, 44] in
both channels has proven.

Beyond the astrophysical sources that have been explored so far the aim for the future
is to extend GW searches also to signals potentially arising from the birth and early
childhood of the cosmos. This offers the possibility to look beyond the CMB and therefore
opens a new window to explore fundamental physics. A number of earth- and space
based experiments are under consideration to tackle this challenge, such as LISA [45],
ETH [46, 47], DECIGO [48] and BBO [49]. Meanwhile, efforts are also invested to
detect indirect effects caused by the stochastic waves in the pulsation period of pulsars
[50–53] which recently attracted some attention when one of the timing pulsar arrays –
NANOGrav – reported deviations from background [54]. By their ability to look beyond
the current limits GW experiments have the potential to probe the fundamentals of
physics and draw a renewed picture of the cosmos.

One of the earliest possible process that is capable to generate a relic stochastic
background of gravitational radiation is inflation, see e.g. Refs. [55–58] where they
arise from vacuum fluctuations of the gravitational field. In recent years, however, the
possible occurrence of a First-Order Phase Transition (FOPT) during the evolution of
the universe and its potential as a seed for gravity radiation has gained rising attention.
FOPTs are a special type of phase transitions in which the phase changes discontinuously
and is initially taken on at random locations by the formation of vacuum bubbles instead
of a smooth transition. The motion through the plasma and their collision emits GWs.
In cosmology these transitions can occur when particles acquire non-zero masses by
Spontaneous Symmetry Breaking (SSB). However, to current knowledge neither the
Electroweak (EW) [19, 20] nor the Quantum Chromo Dynamics (QCD) phase transition
[59] in the SM are of first order (see Fig. 1.1 for chronological context). Therefore,
one extensively investigates the nature of transition in models beyond the SM, see e.g.
[60–69]. While these models primarily seek to provide explanations for DM, the masses of
neutrinos and other SM puzzles, the possibility of GW production offers a promising and
complementary way to test if the involved symmetry breaking occurs via a FOPT. Beyond
the measurement of GWs as messengers from early exotic physics the presence of bubbles
can also have direct effects. For example, the environment close to the bubble walls can
fulfill the Sakharov conditions [70] and thus lead to the generation of a baryon-asymmetry
in the universe [71, 72]. Since a FOPT would constitute a violent event in the life of
our universe it potentially may effect further processes directly. This brings us back
to the beginning of this paragraph and the question how the structures we observe in
the sky today have formed. In our current understanding, the structures emerged from
small perturbations in the cosmic fluid seeded by inflation and then evolved according
to the laws of the ΛCDM. However, adding events like a FOPT might have affected
the formation of structure and therefore might have left imprints in it today. In this
work we will address this question using second order cosmological perturbation theory.
We will focus on effects induced by GWs emitted from the bubble collisions. If these
are strong enough, fluctuations in the early plasma might gain or loose power. In Fig.
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Figure 1.2.: Sketch of the process that is under investigation in this thesis. If a FOPT
is triggered by some particle model (hatched box) during the radiation dominated epoch,
this results in the generation of GW (blue curved lines). Can these be strong enough to
disturb the present plasma fluctuations or even creat additional ones? If yes, how would
the formation of structure be affected?

1.2 we have summarized the system that we want to investigate graphically. It should
be noted that there had been similar efforts in the literature in the past. For example,
Schmid et al. [73–75] pointed out that the QCD phase transition can lead to significant
decrease in the speed of sound of preexisting perturbations and hence make them gaining
strength as they freely fall. However, in beyond the SM theories it is more likely that the
sound speed remains almost constant as long as not too many fermions are involved in
the transition [76]. Another example is Ref. [77] in which direct effects on the collapse
time of perturbations have been considered but also effects due to GWs are discussed.
However, in both references the transition occurs during the matter dominated era.

The thesis is structured into three segments each containing two chapters: In the first
part we discuss and summarize the foundations upon which our work is built. In chapter
2 we review two different approaches to cosmological perturbation theory, namely the
standard Bardeen formalism based on space-time slicing and the 1+3 covariant viewpoint
originating from space-time threads. Chapter 3 then addresses the dynamics of FOPTs
in the early universe triggered in particle models and the succeeding generation of GWs.
If and how these two processes interact is the quest we pursue in the second part of this
work. Therefore, we perform in chapter 4 a perturbative expansion to second order of
the non-linear equations of motions for density gradients obtained in the 1+3 covariant
framework. In chapter 5 the resulting equation is adapted to the environment of generic
FOPTs such that we eventually can draw conclusions about the consequences for the
formation of structure induced by the generated GWs. With our findings we constrain
the strength and duration of FOPTs which should not be in conflict with the cosmic
variance limit of the linear matter power spectrum. In the next part the first chapter 6
is devoted to the evaluation of the obtained results and includes a critical discussion of
the assumptions made as well as an outlook about potentially future work. Finally, in
chapter 7 we summarize and conclude. Additional information and subsidiary material
are listed in the appendix.
Tools: In this work we used Python [78] Mathematica [79] and Inkscape [80].
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Foundations





Chapter 2
Cosmological Perturbation

Theory

Linear perturbation theory is the standard tool to investigate the formation of structure
in the early life time of the universe. In the first part of this chapter we present the
formalism developed by Bardeen [81] upon which most works in the recent years are
based on. Thereby, we follow closely Refs. [82, 83]. The variance of perturbations
as a function of length scale is measured by the matter power spectrum and we are
guided by Refs. [82, 84] to review it’s definition and main features. At the end of this
chapter we introduce the 1+3 covariant approach to linear perturbation theory, which
provides geometrical quantities that are naturally gauge invariant at linear order. The
discussion is tightly aligned with two reviews on the topic and the present author’s recent
paper [5, 85, 86].



Chapter 2. Cosmological Perturbation Theory 

Looking at the world surrounding us, at the first glance it seems pretty oversimplified
and even presumptuous to claim a homogeneous1 and isotropic2 Universe. No one would
do so for the solar system nor for our local group. Nonetheless, this so called Cosmological
principle [88] is a long-standing pillar of cosmology and for most of the time was based
on the Copernican principle, which was developed in the 1960’s when the cosmologist
Hermann Bondi initiated the idea that the Earth and our solar system is not a special,
not a distinct place from any other in the Universe. Today, a number of surveys like
the Sloan Digital Sky Survey (SDSS) [89], the 2-degree Field Galaxy Redshift Survey
(2dfGRS) [10] and the measurement of the CMB by COBE [24] have concluded that on
scales of ∼ 100 Mpc and bigger, which roughly corresponds to the sice of superclusters3,
the assumptions of isotropy and homogeneity are reasonably well fulfilled [90, 91].

On these large scales gravity is certainly the by far dominating force and thus Albert
Einstein’s theory of General Relativity (GR) is the tool to develope a cosmological
model. For reasons that will become apparent later, let us review some details of the
construction of cosmology. Consider spacetime (M, g) as a four-dimensional, pseudo-
Riemannian manifold M accompanied by a metric gµν . To form the spacetime (M, g)
to a cosmological model, it must obey the two symmetries discussed in the previous
paragraph. The translation of homogeneity to the language of Riemannian differential
geometry slices the manifold into 3-dimensional layers that are threaded along the time
line. The time t, called cosmic time, is a parameter that lables each hypersurfaces
Σt = {x|(t,x) ∈M} and we call the orientation of the vector uµ that is tangent to the
world line of a fundamental observer the direction of time [83, 92]. Isotropy then implies
that these spacelike hypersurfaces are maximally symmetric and for each time-point t the
respective spacelike hypersurface is also perpendicular to the world lines’ tangent vector
uµ [83]. These properties fix the form of the spacetime manifold to R× Σt. In comoving
spherical coordinates xµ = (x0, x1, x2, x3) = (t, r,Θ, φ) on the spatial hypersurfaces the
metric gµν takes the form [93]

ds2 := gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dΩ2(φ,Θ)

]
, (2.1)

which is the well-known Friedman-Lemâıtre-Robertson-Walker (FLRW) [94–97] metric,
named after A. Friedmann, G. Lemâıtre, H. P. Robertson and A. Walker. The curvature
constant of the spacelike hypersurface K is usually normalized such that it takes the
values K = −1 for an open universe with hyperbolic spatial geometry, K = 0 for a flat
universe with Euclidian spatial geometry and K = +1 for a closed universe with the
geometry of the three-sphere. All time dependence of the spatial part of the metric is
condensed in the scale factor a(t). The concrete form of this function depends on the

1Homogeneity means, that their is no prominent position in the Universe at any given time.
2Isotropy means, that there is no outstanding direction in the Universe. Or as S. Weinbergs [87] states

it a bit more precise:

“[...] the Universe seems the same in all directions to a family of ”typical” freely falling observers.”
3See, e.g. the very nice introductory discussion in Barbara Ryden’s book [84].
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last ingredients needed, namely the field content of the universe. The equations that
determine the dynamics of the universe by an interplay of geometry and physical fields
are Einstein’s field equations [98, 99]

Rµν −
1

2
Rgµν = 8πGTµν + Λgµν . (2.2)

Here Rµν is the Ricci tensor and R is the Ricci scalar which are both derived from the
metric tensor gµν . On the right hand side we have the cosmological constant Λ and the
energy-momentum tensor Tµν . Due to the space-time symmetries the latter takes on
the form of the energy-momentum tensor of a perfect fluid with energy density ρ(t) and
pressure p(t) [100], namely

Tµν = (ρ+ p)uµuν + pgµν . (2.3)

Plugging this energy-momentum tensor into Einstein’s field equations Eq. (2.2) leads
to equations that govern the dynamics of the scale factor - the Friedmann equations
[94, 101] (see e.g. Ref. [102])

Ḣ = −H2 − 8πG

6
(ρ+ 3p) +

1

3
Λ , (2.4)

H2 =
8πG

3
ρ− K

a2
+

1

3
Λ , (2.5)

where H(t) := ȧ/a is the Hubble parameter. Additionally, momentum energy conservation
∇νTµν = 0 demands

ρ̇ = −3H(ρ+ p). (2.6)

The fluid type is specified by the equation of state ρ(t) = ω p(t) where ω = 1/3 stands
for radiation, w = 0 for (dark) matter and w = −1 for dark energy. The expansion
rate at any time can then be determined from Friedmann Eqs. (2.4) and (2.5) and the
composition of the total cosmic fluid via

H2(a) = H2
0

√∑

i

Ωi(t0)

a3(1+ωi)
, (2.7)

where Ωi(t) := ρi/ρcrit is the dimensionless density parameter of the ith species and

ρcrit(t) := 3H2(t)
8πG

is the cirtical density.

2.1. Linear perturbation theory

The emergence of structure in the universe requires a departure from a perfectly ho-
mogeneous and isotropic universe. Therefore, one studies small perturbations on this
background [103] which evolve after being seeded during inflation. The “standard” for-
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malism used today was introduced by Bardeen [81] but in this work we will make use
of a different approach mainly developed by Marco Bruni, George F. R. Ellis, Peter
K. S. Dunsby and different coauthors [104]. In the standard relativistic treatment of
perturbations it has become common to work in conformal time η and express the time
derivative f ′ := df/dη = a df/dt with respect to it. In contrast, the literature using the
”Bruni-Ellis-Dunsby” approach prefers to use the cosmic time derivative ḟ . Throughout
this work we will stick to the respective convention of the literature.

2.1.1. Bardeen formalism

Perturbation theory requires two space-time manifolds. The first one is called the
background manifold Mb. It is homogeneous and isotropic and therefore equipped
with the FLRW metric g

(0)
µν . The other space-time manifold Mp carries the metric

gµν and is slightly perturbed compared to the latter one. If the deviation from the
background is small, then we can decompose the metric gµν into the background and a

small perturbation g
(1)
µν =: δgµν , such that4

gµν = g(0)
µν + δgµν . (2.8)

On the perturbed space-time the decomposition is adopted by the Einstein tensor
Gµν := Rµν − 1

2
Rgµν and the energy momentum tensor Tµν whose small perturbations

δGµν and δTµν linearize the Einstein field equations

δGµν = 8πGδTµν . (2.9)

Famously, this equation can be solved in an elegant way by using a parametrization
of the two tensors proposed by James M. Bardeen in 1980 [81] and elaborated on by
Ref. [105]. In this approach, the metric is decomposed into two scalar variables A(η, xi)
(lapse function) and D(η, xi) = −1/6 · δijδgij, a vector B(η, xi) and a tensor Eij(η, x

i)
with δijEij = 0 and reads for the spatially flat case K = 0 [81]

ds2 = a2(η)
{
−(1 + 2A) dη2 −Bi dη dxi + [(1− 2D)δij + 2Eij] dxidxj

}
,

or : gµν = g(0)
µν + δgµν = a2


ηµν +

(
−2A −Bi

−Bi −2Dδij + 2Eij,

)
 ,

(2.10)

where ηµν is the Minkowski metric. On the other side of Einstein’s equation, the cosmic
ingredients in the energy momentum tensor behave like a fluid, but it doesn’t necessarily
has to be a perfect fluid. With respect to the fluid four velocity uµ the energy momentum
tensor is written in terms of the fluid energy density ρ, pressure p and anisotropic stress
Πµν and reads Tµν = (ρ + p)uµuν + pgµν + Πµν . Inserting into this equation the first

4As emphasized before we closely follow Refs. [82, 83] in this subsection.
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order expansion of these quantities, i.e.

ρ(x, t) = ρ(0)(t) + δρ(x, t) , p = p(0)(t) + δp(x, t),

uµ(x, t) = u(0)
µ + δuµ(x, t) and Πµν(x, t) = Π(0)

µν︸︷︷︸
=0

+Πµν(x, t) , (2.11)

the linear perturbation δT µν becomes [81, 105]

δT µν =

(
−δρ (ρ(0) + p(0))(vi −Bi)

−(ρ(0) + p(0))vi δp δij + Πi
j

)
. (2.12)

Here vi := a δui denotes the peculiar velocity. Note that the anisotropic stress is absent
at zero order and thus we omit the label to mark the linear perturbation. Also note that
due to gµνu

µuν = −1 the perturbed energy momentum tensor picks up a B contribution
from the parametrization of the perturbed metric. Also, due to the orthogonality of the
anisotropic stress tensor to the fluid flow Πµνu

µ = 0 we only need to consider its spatial
part.

Isotropy and homogeneity of the background enable us to isolate the scalar, vector
and tensor degrees of freedom by splitting the vector B and the tensor Eij into their
SO(3) irreducible components according to the Helmoltz theorem [92, 103]. The vector
B = B⊥ + B|| divides into a transverse ∇ ·B⊥ = 0 part and a longitudinal ∇×B|| = 0
part that originates from a scalar potential B|| = −∇B. The tensor Eij splits into three

components Eij = E⊥ij + E
||
ij + ET

ij . The first one can be derived from a vector potential
E, the second one from a scalar E and the last one is traceless and transverse.

E
||
ij = (∂i∂j −

1

3
δij∇2)E , (2.13)

E⊥ij = −1

2
(∂jEi + ∂iEj) with ∇ · E = 0 , (2.14)

δil∂lE
T
ij = 0 and δijET

ij = 0 . (2.15)

In this way tensor, vector and scalar perturbations can be discussed separately. In the
following, we will do so by focusing on the scalar ones only.

However, the decomposition into background and small perturbations suffers from
the well known gauge issue. It states that this decomposition is not unique due to
various choosable diffeomorphisms that send a point on the background space-time
to some close by point on the perturbed space-time (see, e.g. [82]). To see how such
gauge transformations (coordinates transformation) act on tensors like the metric5 one
has to compare a diffeomorphism f : Mb → Mp with a family of diffeomorphisms
defined by a vector field ξµ and a small parameter ε that map hε : Mb → Mb such
that xµ → xµ + εξµ. Imposing that f and its pullback f ∗ respect the smallness of the
perturbation δgµν = (f ∗g)µν − g(0)

µν , i.e. |δgµν | � 1, the metric transforms under the

5This discussion is adapted from [93].
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coordinate transformations hε as

δg[ε]
µν = [h∗ε(f

∗g)]µν ]− g(0)
µν = h∗ε(δgµν) + h∗ε(g

(0)
µν )− g(0)

µν . (2.16)

For infinitesimal ε < 1 gauge transformations we have h∗ε(δgµν) ≈ δgµν and the last two
terms merge into the Lie derivative

δgµν → δg[ε]
µν = δgµν + εLξg

(0)
µν . (2.17)

This transformation behavior generalizes to any tensor and causes statements about the
perturbations to be dependent on the coordinate frame. However, it also allows to built
gauge invariant variables. For later use in the second part of this work we will state them
here for adiabatic δs = 0 (no entropy perturbations), scalar perturbations. To do so, we
define the overdensity and the sound speed

δ :=
δρ

ρ(0)
and δp = c2

sδρ+ σδs ≡ c2
sδρ , (2.18)

respectively, with σ := (∂p/∂s). All scalar quantities in the perturbed metric (Eq. (2.10))
transform non trivial under a gauge transformation, e.g. A→ A− ξ0 ′−a′/a ξ0. However,
famously, the four scalars A,B,D and E can be combined to two gauge invariant
quantities – the Bardeen potentials [81]

Φ := A+H(B − E ′) + (B + E ′)′ , (2.19)

Ψ := ψ −H(B − E ′) , (2.20)

where ψ = D + 1
3
∇2E is the curvature perturbation and H := Ha. The scalar of the

energy momentum tensor δ, the scalars inferred from the longitudinal parts of the velocity
vector v|| =: −∇v and the anisotropic stress tensor Π

||
ij =: (∂i∂j − 1

3
δij∇2)Π change as

δ → δ̃ := δ + 3H(1 + ω)ξ0 , (2.21)

v → ṽ := v + ξ′ , (2.22)

Π→ Π , (2.23)

where ξ|| =: −∇ξ. Note that the background fluid is perfect Π(0) = 0, thus its Lie
derivative LξΠ

(0) = 0 and Π is gauge invariant. However, solving the perturbed Einstein
equation Eq. (2.9) requires us to chose a gauge. A typical and insightful gauge is the
Newtonian or Poisson gauge. It demands that ξ0 = −B + E ′ and ξ = −E where B can
be set to zero. In this gauge, the two constraining and two evolution field equations in
Fourier space f(x) =

∫
fk e

−ik·xdk3 (k is the spatial comoving wave number) deduced
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from Einstein’s equations read [82]

(
k

H

)2

Ψk = −3

2

[
δk + 3(1 + ω)

H
k
vk

]
, (2.24)

(
k

H

)2

(Ψk − Φk) = 3ωΠk , (2.25)

H−1Φ′k + Φk =
3

2
(1 + ω)

H
k
vk , (2.26)

H−2Ψ′′k +H−1(Φ′k + 2Ψ′k) +

(
1 +

2H′

H2

)
Φk −

1

3

(
k

H

)2

(Φk −Ψk) =
3

2
c2
s , (2.27)

where k = |k|. The equations of motion for pressure and energy density arise from the
energy-momentum conservation equation ∇νTµν = 0 and read

δρ′k + 3H(δρk + δpk) = −(ρ(0) + p(0))
(
kvk − 3Ψ′k

)
, (2.28)

(∂η + 4H)

[
vk
k

(ρ(0) + p(0))

]
= δpk −

2

3
Πk + (ρ(0) + p(0))Φk . (2.29)

In the case of a perfect fluid Πk ≡ 0⇒ Ψ = Φ such that the equation of motion for the
Bardeen potential obeys

Φ′′k + 3(1 + c2
s)HΦ′k + 3(c2

s − ω)H2Φk + (csk)2Φk = 0 . (2.30)

Furthermore, Eq. (2.24) becomes the Poisson equation (4πGa2ρ(0) = 3
2
H2)

−k2Φk = 4πGa2δρk . (2.31)

Thus, we are back to an ordinary Newtonian treatment where the gravitational potential
arises from an inhomogeneous density distribution. Consequently, we obtain the wave
equation for an adiabatic instability under the influence of Newtonian gravity in an
expanding universe:

δ′′k + 2Hδ′k +
(
c2
sk

2 − 4πGa2ρ(0)
)
δk = 0 . (2.32)

2.1.2. Matter power spectrum

With the differential equations for the perturbations, in principle, the evolution of the
universe could be fully determined to first order if the initial conditions for each dynamical
variable would be known. This is, however, not the case. Instead the initial overdensity
δ(x, t) =

∫
dk3δ(k, t)e−ik·x is generated by quantum fluctuations of the inflaton field which

constitutes a statistically homogeneous and isotropic random process6 [82]. Therefore, we
should rather see δ(x, t) as a random field. Statistical homogeneity implies that Fourier

6For original work on statistics of random fields see e.g. Refs. [106, 107].
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modes δ(k) = |δ(k)|eiφk are uncorrelated to each other [83, 84]

〈δ(k)δ∗(k′)〉 = (2π)3δD(k− k′)P(k) with P(k) =

∫
ξ(x)e−ik·xdx3 , (2.33)

where δD denotes the Dirac delta, ξ(x) is the autocorrelation function ξ(x,x′) =
〈δ(x)δ(x′)〉 and 〈•〉 denotes the expectation value. Gaussianity means that the ran-
dom fields are normally distributed with width σk

7 [82]

p(δ(k)) =
1

2πσ2
k

exp

(
−|δ(k)|2

2σ2
k

)
(2.34)

and thus all information about the random field is fully encoded in the variance (2nd

moment) [82]

〈δ(k)δ(k′)〉 =

∫
p(δ)δ2dδ = 2σ2

kδ
K
kk′ ≡ P(k)δK

kk′ , (2.35)

where δK denote the Dirac and Kronecker delta, respectively. We call P(k) the power
spectrum and in the case of matter fields, the matter power spectrum. Thanks to isotropy
the direction of k is irrelevant such that only the magnitude k plays a role and the power
spectrum becomes P(k) = P(k).

The linear matter power spectrum today can be described by the fitting formula
(BBKS) [108]

P0(k) = A0 k ·
ln(1 + c1q)

c1q
·
(
1 + (c2q) + (c3q)

2 + (c4q)
3 + (c5q)

4
)− 1

4 , (2.36)

with

q :=
k

Ωm0h · exp
(
−Ωbaryon0

−
√

2h · Ωbaryon0

Ωm0

) ≈ 0.073
k

keq

, (2.37)

where c1 = 2.34, c2 = 3.89, c3 = 16.1, c4 = 5.46 and c5 = 6.71. Here keq denotes the
comoving wave number at matter-radiation equality and Ωm0 = 0.3 is the abundance of
matter today which partitions into the DM abundance and baryon abundance Ωbaryon0

=
0.05 [109]. The shape of the matter power spectrum is caused by the different growth
behavior of matter modes inside and outside the Hubble horizon. While the amplitude
of modes outside of the horizon increases linearly with time, once they enter the horizon
their amplitudes remain almost constant (grow only logarithmically) during the radiation
dominated era. For this reason modes that entered the horizon before equality are
suppressed with regards to the primordial spectrum Pprim ∼ k. After matter-radiation

7Here we follow Ref. [82] and choose the normalization such that real and imaginary part of the
overdensity are distributed each with normalization 1/

√
2πσ2

k and hence the distribution of the full
complex variable is normalized according to Eq. (2.34).



 2.1. Linear perturbation theory

equality the magnitude of the matter power spectrum grows in the same way for all
modes and therefore the shape is not altered anymore.

The amplitude A0 of P0(k) is calibrated to the total variance, which is measured to
be [109]

0.82 = σ2
8 =

∫ ∞

0

dk̃
k̃2

2π2
P0(k̃)×

(
3j1(k̃R)

k̃R

)2

. (2.38)

Here j1(x) := sin(x)/x2 − cos(x)/x and R = 8 Mpc/h is the typical top hat filter radius.
Any effects by additional physical processes during the propagation of the modes is
captured by the transferfunction δ(k, tout) = T (k)δ(k, tin).

Let us briefly summerize here the two most important effects on the matter power
spectrum.

Baryon Acoustic Oscillations: The first one is of special importance for this work.
It concerns the propagation of baryon δb and photon δγ perturbations on sub-horizon
scales. At high temperatures photons and baryons scatter on each other and hence
their momenta are not independent v′b = −Hvb − kΦ + aσTne/Rbγ(vγ − vb) and vice
versa for v′γ. Here σT = 6.65 × 10−25 cm2 is the Thomson cross section [110], ne the

number density of free electrons and Rbγ := 3ρ
(0)
b /(4ρ

(0)
γ ) is the baryon-to-photon energy

density ratio. The coupling is even so tight that their velocities almost coincide vb ≈
vγ−Rbγ(aσTne)

−1(v′γ+Hvγ−kΦ). Together with the equations for energy and momentum
conservation Eqs. (2.28) and (2.29) and the Poisson Eq. (2.32) on sub-horizon scales this
yields a wave equation for both, the photon and the baryon overdensity8 [111, 112]

δ′′γ +
R′bγ

1 +Rbγ

δ′γ + c2
sk

2δγ =
4

3
4πG

(
ρ

(0)
d δd + ρ

(0)
b δb

)
, (2.39)

where the sound speed is c2
s := (3(1 +Rbγ))

−1. This collective oscillation of baryons and
photons is imprinted in the CMB via the photons and also in the matter power spectrum
via the baryons. It is known as baryon accoustic oscillations [113] and imposes a wavy
pattern upon the spectrum. The oscillation ends when photons and baryons decouple at
tdec which defines the sound horizon, the biggest distance that a mode can travel before
contraction [15, 114]

rs :=

∫ tdec

0

dt
cs(a)

a
≈ 147 Mpc . (2.40)

Neutrino Free Streaming: Secondly, the matter power spectrum can experience sup-
pression on small scales due to neutrino free streaming [115, 116]. When the neutrino
velocity transitions from the relativistic to the non-relativistic regime their thermal
velocity is controlled by their mass mν and neutrino perturbations on scales smaller than

8One can approximately interchange δγ and δb here.
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the free streaming length k > kfs

kfs(z) ≈ 0.81

√
ΩΛ + Ωm0(1 + z)3

(1 + z)2

(
mν

1 eV

)
hMpc−1 , (2.41)

are damped. This in turn reduces the depth of the potential Φ and as a consequence
dark matter perturbations grow slower. Depending on the neutrino mass small scales in
the matter power spectrum therefore experience suppression.

2.2. The 1+3-covariant formulation

2.2.1. Threading of the space-time manifold

In the preluding words to this chapter we repeated the observation that the symmetries
homogeneity and isotropy allow for a 3+1 slicing of the space-time manifold into a one
parameter family of spacelike hypersurfaces Σt.

However, the symmetries also allow for the dual approach9. Instead of slicing space-
time we can also thread it by introducing a family of observers whose world lines we
denote in local coordinates as Lxα(t) = xa(τ) and use as affine parameter the proper
time τ . In our labeling of space-time indices we follow the standard literature [86] and
use Latin variables for a four-vector a ∈ {0, 1, 2, 3} and Greek ones α, β, γ = 1, 2, 3 for
three-vectors to emphasize the duality between threading and slicing. How do these
two approaches differ concretely? In the 3+1 decomposition time t was just a label of
spacelike slices Σt with space coordinates xi. In contrast, in the 1+3 splitting, the time
like world lines Lxα(t) have coordinate t and are labeled by xα. This has two important
implications [117]

a) In the case of threading the distance of two points is defined by the distance of nearby
fundamental observers Lxα and Lxα+∆xα and the spatial metric hαβ∆xα∆xβ. While
for slicing two close by points differ by the gap between the space like hypersurfaces
Σt and Σ∆t where the distance is given by a lapse function N(xα, t)∆t (see Fig.
2.1).

b) In the 3+1 formulation the construction only required space like hypersurfaces but
did not demand causality of the time curves. Vice versa, in the 1+3 approach, we
considered time like curves but did say nothing about the causality conditions on
the spatial distances.

Though the two approaches provide different points of view, it has been shown that they
are equivalent [117]. For us, in this work, the benefit of the 1+3 approach originates
from a different point. As it turns out, it provides a very transparent way of constructing
gauge invariant quantities in cosmological perturbation theory that allow for much easier

9This paragraph is based upon the very nice Ref. [117] which we encourage the reader to have a look
at.



 2.2. The 1+3-covariant formulation

Figure 2.1.: Left: Sketch that shows how distances are calculated when space-time is
sliced in the 3+1 point of view. The world line intersects the hypersurfaces orthogonally if
they are homogeneous. Both sketches reproduced and modified from [117]. Right: Sketch
that shows the dual approach to the previous one. Distances are calculated between the
time like curves of fundamental observers.

geometrical and physical interpretation, in contrast to Bardeen’s formulation, cf. Sec.
2.1.1. These variables are constructed with regards to the four-velocity - the time direction
- of the world lines of the comoving, fundamental observers

ua =
dxa

dτ
, (2.42)

with the usual normalization uaua = −1. In a cosmic setup the world lines are just
the fluid flow lines. The orthogonal projector at fixed t that measures the distance
between such lines mentioned in a) projects at each point (event) each tensor onto the
instantaneous rest space of ua and reads [86]

hab := gab + uaub , (2.43)

where gab denotes the metric tensor with signature (−+ ++). It is easy to see that hab
is indeed orthogonal to the four velocity

habu
b = gabu

b + uaubu
b = ua − ua = 0 . (2.44)

Both ua and hab can therefore be used to uniquely split space-time quantities into time
and space components. As an important example, consider the covariant derivative ∇a.
Projecting it onto the flow lines yields the time derivative, while the spatial gradient can
be obtained from projecting with hab, which gives

Ṡab...
cd... := ue∇eSab...

cd... and DeSab...
cd... := he

sha
fhq

c · · · ∇sSf ···
q··· , (2.45)

for a general tensor Sab...
cd.... In the literature it is common to stick within this framework
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to cosmic time and hence so we do here too.

2.2.2. Kinematic variables and gauge invariance in the 1+3
covariant formulation

Looking at cosmology from the 1+3 standpoint was first done in the pioneering papers by
Heckmann and Schücking (Ehlers) [118, 119], Raychaudhuri [120] and Hawking [121]. The
variables that determine the motion of a test particle emerge from applying the covariant
derivative to the four-velocity vector yielding the following irreducible decomposition

∇bua = σab + ωab +
1

3
Θhab − Aaub . (2.46)

Here σab := D〈bua〉 denotes the tracefree shear tensor, ωab := D[bua] is the antisymmetric
(hence tracefree) vorticity tensor, the scalar Θ := Daua describes volume expansion and
finally Aa = u̇a = ub∇bua is the four-acceleration. The shear tells us how the shape of
a volume is distorted while vorticity corresponds to spinning and twisting of it. The
brackets used in the definitions above are defined for a tensor Sab in the following way

S(ab) :=
1

2
(Sab + Sba) , S[ab] :=

1

2
(Sab − Sba) , (2.47)

S〈ab〉 := h c
ah

d
b Scd −

1

3
hcdScdhab, V〈a〉 := h b

aVb . (2.48)

A list of frequently used identities for this brackets can be found in Appendix B.1.

The shear, the vorticity and the four-acceleration are quantities orthogonal to the fluid
velocity uaσab = uaωab = uaAa = 0 and identically zero in a pure FLRW universe (the
volume expansion is in this case just the Hubble function Θ(t) = 3H(t)). They only start
to play a role once we consider perturbations. A little bit more intuition for these variables
can be gained by recalling that the distance between two time like curves can be measured
using hab. With the help of the shear, the vorticity and the volume expansion scalar we
can derive the relative motion of two such world lines vab = Dbua = σab + ωab + Θ/3hab.
Note that in FLRW this simply reduces to vab = Dbua = H(t)hab as expected and hence
the relative velocity for world lines with distance ξa is va := H(t)habξ

b = H(t)ξa, restoring
Hubble’s law [122].

The absence of shear, vorticity and acceleration in a perfectly homogeneous and
isotropic universe makes them automatically gauge invariant to first order10. As for the
metric tensor in Eq. (2.17), an arbitrary tensor field S when expanded to first order11

S = S(0) + ε S(1) transforms under an infinitesimal change of coordinates x̃µ = xµ + ε ξµ

as (see also [92, 123, p.59])

S(1) → S(1) + εLξS
(0) , (2.49)

10We will often refer to the term “gauge invariant” and mean by that gauge invariant to first order.
11The notations δS ≡ ε S(1) are equivalent and interchangeably used when suitable.
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where Lξ denotes the Lie-derivative of the background term S(0) along ξµ. Building upon
this rule, the conditions for gauge invariance are condensed in the Stewart & Walker
Lemma [123, 124].

Stewart & Walker Lemma:

A tensor is gauge invariant if and only if it either vanishes in the background,

is a constant scalar in the background or can be written as a sum of products

of Kronecker-deltas with constant coefficients.

Based on this Lemma, Marco Bruni, George F. R. Ellis, Peter K. S. Dunsby and
coauthors substantially extended the 1+3 covariant description of space-time to a gauge
invariant cosmological perturbation theory [104, 125–128], which we review in the fol-
lowing paragraphs. We use the short hand κ := 8πG, where G is the gravitational
constant.

2.2.3. Space-time geometry and matter fields

The behavior of the kinematic variables under the influence of matter fields is deduced
from Einstein’s equation. In contrast to the approach by Bardeen this is done with the
curvature variables directly rather than the gravitational potentials [126]. The total
information about the curvature of a space-time manifold is encoded in the Riemann
tensor that measures how much a parallel transported vector is altered with regard to
its original orientation. The tensor can be split into a tracefree part and a part with
trace. The tracefree part is the Weyl tensor12 Cabcd that depicts the propagating degrees
of freedom (e.g. GWs). Volume changes due to a local matter source and hence the local
deviation of the curvature from flat space is reflected by the Ricci tensor Rab and its
trace, the Ricci scalar R. The splitting of the Riemann tensor then reads

Rabcd = Cabcd +
1

2
(gacRbd + gbdRac − gbcRad − gadRbc)−

1

6
R(gacgbd − gadgbc) . (2.50)

In a homogeneous background the Weyl tensor is identically zero and therefore according
to the Stewar & Walker Lemma gauge invariant. Consequently, so are the electric and
magnetic part in which the Weyl tensor can be split [129, 130]

Eab = Cacbdu
cud and Hab =

1

2
εcda Ccdbeu

e . (2.51)

Physically, the electric tensor Eab describes tidal forces while the magnetic part Hab is
essential for the description of GWs.

Let us now turn to the right hand side of Einstein’s equation. In the 1+3 framework
we adopt the decomposition of the energy momentum tensor as before, but with respect

12The Weyl tensor and the Riemann tensor obey the same symmetries Rabcd = Rcdcb, Rabcd = R[ab][cd]

and Ra[bcd] = 0.
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to the four velocity field ua and the orthogonal projection hab:

Tab = ρuaub + 2u(aqb) + phab + πab . (2.52)

In terms of the four velocity the energy density and the pressure are given as ρ := T abuaub
and p := Tabh

ab/3, the traceless, symmetric anisotropic stress is labeled with a small
letter in the literature πab = T〈ab〉 and qa := h b

aTbcu
c denotes the energy current density.

The latter two, as they vanish in the background, are gauge invariant quantities while
ρ and p are gauge dependent. Plugging the energy momentum tensor Eq. (2.52) into
Einstein’s field equations Rabu

aub = Tab− 1
2
Tab + Λgab yields three equations that connect

curvature to cosmic fluid [86]

Rabu
aub = κ

1

2
(ρ+ 3p)− Λ , (2.53)

ha
bRbcu

c = −κqa and (2.54)

ha
chb

dRcd = κ
1

2
(ρ− p)hab + κπab + Λhab . (2.55)

These relations between the Ricci tensor and the fluid content form the basis to derive
the evolution and constraint equations of the involved variables from Bianchi- and Ricci
identities in the next sections.

2.2.4. Constraint and evolution equations

We have now collected a set of dynamical variables upon which a description of cosmolog-
ical perturbation theory can be based. What remains to be done is to derive for each of
them the equation of motion and the constraint equations as we have done before for the
gravitational potentials in the Bardeen formalism. To do so, we make use of the Bianchi
and Ricci identities and combine them with Eqs. (2.53), (2.54) and (2.55) deduced from
Einstein’s field equations. For details of this calculation see [86] which has originally
been done by Refs. [85, 131]. In the following equations we denote by ωa := εabcω

bc/2 the
vorticity vector that in the Newtonian limit corresponds to ω = −∇× v/2, where the
orthogonal projected tensor εabc is the contraction εabc := ηabcdu

d of ud with the totally
antisymmetric pseudotensor ηabcd depicting the space-time volume element. The Bianchi
identities for the Weyl tensor

∇dCabcd = ∇[bRa]c +
1

6
gc[b∇a]R (2.56)
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together with Eq. (2.55) lead to the evolution equations for the electric and magnetic
components of the Weyl tensor

Ė〈ab〉 =−ΘEab −
1

2
κ (ρ+ p)σab + curlHab −

1

2
κ π̇ab −

1

6
κΘπab −

1

2
κD〈aqb〉 − κA〈aqb〉

+ 3σ〈a
c

(
Eb〉c −

1

6
κπb〉c

)
+ εcd〈a

[
2AcHb〉

d − ωc
(
Eb〉

d +
1

2
κπb〉

d

)]
, (2.57)

Ḣ〈ab〉 =−ΘHab − curlEab +
1

2
κ curlπab + 3σ〈a

cHb〉c −
3

2
κω〈aqb〉

− εcd〈a
(

2AcEb〉
d − 1

2
κσcb〉q

d + ωcHb〉
d

)
. (2.58)

and to a constraint equation for each of them

DbEab = κ

[
1

3
Daρ−

1

2
Dbπab −

1

3
Θqa +

1

2
σabq

b

]
− 3Habω

b + εabc

(
σbdH

cd − 3

2
κωbqc

)
,

(2.59)

DbHab = κ(ρ+ p)ωa −
1

2
κ curl qa + 3Eabω

b − 1

2
κπabω

b − εabcσbd
(
Ecd +

1

2
κπcd

)
.

(2.60)

Here, the operator curl on a four-vector va is defined as curl va := εabcD
bvc. Like we

have done in the previous section, we find the equation of motion for the energy density
from ∇aTab = 0, which demands the conservation of energy

ρ̇ = −Θ(ρ+ p)−Daqa − 2Aaqa − σabπab . (2.61)

The same equation leads also to the propagation equation of the energy current density

q̇〈a〉 = −Dap− (ρ+ p)Aa −
4

3
Θqa − (σab + ωab)q

b −Dbπab − πabAb . (2.62)

In order to obtain the evolution equations for the three covariant kinematical quantities
that we inferred from the decomposition of the four-velocity, we apply the separated
Riemann tensor Eq. (2.50) to the Ricci-identities 2∇[a∇b]uc = Rabcdu

d. In combination
with Eqs. (2.53), (2.54) and (2.55) the purely geometric kinematics relate to the matter
fields via

Θ̇ = −1

3
Θ2 − 1

2
κ (ρ+ 3p)− 2(σ2 − ω2) + DaAa + AaA

a + Λ, (2.63)

σ̇〈ab〉 = −2

3
Θσab − σc〈aσcb〉 − ω〈aωb〉 + D〈aAb〉 + A〈aAb〉 − Eab +

1

2
κπab, (2.64)

ω̇〈a〉 = −2

3
Θωa −

1

2
curlAa + σabω

b . (2.65)
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Here σ2 := 1
2
σabσ

ab and ω2 := 1
2
ωabω

ab denote the magnitudes of the shear and the
vorticity, respectively. Observe that in the first line we have rediscovered the Raychaudhuri
equation, which measures the rate by which the volume expansion changes due to the
cosmic ingredients. At zeroth order (σ2 = ω2 = Aa = 0) it is just the Friedman equation.
Additionally, the spacelike part forces the kinematics to satisfy the conditions

Dbσab =
2

3
DaΘ + curlωa + 2εabcA

bωc − κqa, Daωa = Aaω
a, (2.66)

Daωa = Aaω
a , (2.67)

Hab = curl σab + D〈aωb〉 + 2A〈aωb〉 . (2.68)

With this, we have all needed tools to develop a gauge invariant perturbation theory
based on the 1+3 covariant framework. However, the only quantity in our discussion
escaping from a gauge invariant dual version until now is the energy density ρ. We shall
see in the next subsection how this issue can be solved.

2.2.5. Linear density perturbations

In the background of a FLRW universe, all discussed quantities vanish except for the
volume expansion Θ and the energy density ρ(p). In fact in the background both
variables are functions solely depending on time. This, however, implies that their
spatially projected gradients are zero Daρ(t) = DaΘ(t) = 0 and thus provide gauge
invariant variables for inhomogeneities in matter and space. The resulting comoving
fractional gradient of the energy density and the comoving expansion gradient therefore
become central to our discussion [104]

∆a :=
a

ρ
Daρ , (2.69)

Za := aDaΘ . (2.70)

It is tempting to think of the former as the density contrast δ := δρ/ρ at first order, but
it should be kept in mind that it is rather the Laplacian of δ. All information about
scalar, vector and tensor perturbations are combined in the comoving fractional density
gradient and thus it can be decomposed into these three irreducible parts: The density
distortion ∆〈ab〉 := aD〈b∆a〉 measures shape changes of a clump of matter, the vorticity
perturbation ∆[ab] := aD[b∆a] determines rotational variations and ∆ := aDa∆a denotes
scalar over- and under densities . They emerge from the splitting

aDb∆a =
1

3
∆hab + ∆〈ab〉 + ∆[ab ] . (2.71)

Their propagation equations can be determined from the propagation equation for ∆a. To
find the latter, we simply have to take the spatial derivative Da of the energy conservation
law Eq. (2.61), multiply with the scale factor a(t) and divide by ρ in order to convert
all ρ-terms to ∆a-terms and finally apply this and Eq. (2.62) to ∆̇. Together with
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Raychaudhuri’s equation (2.63) this culminates in two coupled, non-linear equations that
dictate the evolution of spatial inhomogeneities and the volume expansion gradient [86]

∆̇〈a〉 =
p

ρ
Θ∆a −

(
1 +

p

ρ

)
Za + a

Θ

ρ

(
q̇〈a〉 +

4

3
Θqa

)
− a

ρ
DaD

bqb + a
Θ

ρ
Dbπab

−
(
σba + ωba

)
∆b −

a

ρ
Da

(
2Abqb + σbcπbc

)
+ a

Θ

ρ
(σab + ωab) q

b + a
Θ

ρ
πabA

b

+
1

ρ

(
Dbqb + 2Abqb + σbcπbc

)
(∆a − aAa) , (2.72)

and

Ż〈a〉 = −2

3
ΘZa −

1

2
κρ∆a −

3

2
κaDap− a

[
1

3
Θ2 +

1

2
κ(ρ+ 3p)− Λ

]
Aa + aDaD

bAb

−
(
σba + ωba

)
Zb − 2aDa

(
σ2 − ω2

)
+ 2aAbDaAb

− a
[
2
(
σ2 − ω2

)
−DbAb − AbAb

]
Aa . (2.73)

To show how these equations work, we seek to recover the equation of motion of linear
density variations. We choose the same assumptions as before: a FLRW background,
Θ = 3H(t), and a barotropic, p = ωρ, perfect, qa = πab = 0, fluid without any shear and
vorticity currents, ωab = σab = 0. Setting all these variables to zero reduces Eqs. (2.72)
and (2.73) to (we follow here again Ref. [86])

∆̇a =3ωH∆a − (1 + ω)Za, (2.74)

Ża =− 2HZa −
1

2
κρ∆a −

3

2
κaDap (2.75)

− a
[
3H2 +

1

2
κρ(1 + 3ω)− Λ

]
Aa + aDaD

bAb . (2.76)

To linear order the four-acceleration is determined from Eq. (2.62) and Da p = ρ
a
c2
s∆a by

−c2
s∆a = a(1 + ω)Aa. Taking the orthogonal projected gradients of these equations and

applying the Friedman equations simplifies the system to

∆̇ = 3ωH∆− (1 + ω)Z, (2.77)

Ż = −2HZ −

[
1

2
κρ+

3Kc2
s

a2(1 + ω)

]
∆− c2

s

1 + ω
D2∆ , (2.78)
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Figure 2.2.: Time dependence of the linear comoving fractional gradient modes as a
function of cosmic time during radiation- and matter domination for super- and sub-
horizon scales. The green shaded region symbolizes the transition zone between radiation
and matter domination.

which can be combined to (recall K is the curvature scalar) [125]

∆̈ =− 2

(
1− 3ω +

3

2
c2
s

)
H∆̇

+ κ

[(
1

2
+ 4ω − 3c2

s −
3

2
ω2

)
ρ+ (5ω − 3c2

s)Λ−
12(ω − c2

s)K

a2

]
∆

+ c2
sD

2∆ . (2.79)

Recall that ∆ ≡ ∆(1), Z ≡ Z(1) due to a vanishing zeroth order and that we must
have ρ ≡ ρ(0) in order to preserve the first order perturbation. To find the solution of
this equation for different scales, we transform the expression into k-space. Therefore,
we decompose ∆ into spherical harmonics Qk which obey the conditions DaQk = 0,
Q̇k = 0 and D2Qk = −k2

a2
Qk. These spherical harmonics are a generalized versions of

the standard Fourier basis e−ikx (see appendix B.2). In a flat, K = 0, universe without
cosmological constant, Λ = 0, filled with DM, ω = 0, and DM perturbations, c2

s = 0, we
rediscover Eq. (2.32)

∆̈k + 2H∆̇k + 4πGρ∆k = 0 . (2.80)

In a matter dominated universe we have H = 2/(3t) and ρ = 4/(3t2) the solution of
Eq. (2.80) has a growing and a decaying mode ∆k ∼ ∆1,kt

2/3 + ∆2,kt
−1. In contrast, the
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Variable Symbol
Perturbative Expansion

S = S(0) + ε S(1) First order GI

Energy density ρ ρ(t) + ρ(x, t) Daρ(x, t)
Pressure p p(t) + p(x, t) Dap(x, t)

Anisotropic stress π 0 + π(x, t) π(x, t)
Energy density current q 0 + q(x, t) q(x, t)

Volume expansion Θ Θ(t) + Θ(x, t) DaΘ(x, t)
Shear σ 0 + σ(x, t) σ(x, t)

Vorticity ω 0 + ω(x, t) ω(x, t)
Acceleration A 0 + A(x, t) A(x, t)

Long range grav.
field (Weyl tensor)

C 0 + Cabcd(x, t) Cabcd(x, t)

Table 2.1.: The central variables in the 1+3 covariant approach, their perturbative
decomposition and their gauge invariant version. Taken from [5].

equation for radiation fluctuations in a radiation dominated universe, c2
s = ω = 1/3, with

H = 1/(2t) and κρ = 3/(4t2) leads to the equation

d2∆k

dt2
+

1

2t

d∆k

dt
− 1

2t2

[
1− 1

6

(
k

a(t)H(t)

)2
]

∆k = 0 . (2.81)

This yields an oscillatory solution for sub-horizon modes k/aH � 1 [86]

∆
(1)
k = C(1)

1,k sin

[
1√
3

k

a0H0

(
t

t0

)1/2
]

+ C(1)
2,k cos

[
1√
3

k

a0H0

(
t

t0

)1/2
]
, (2.82)

where t0, a0 and H0 denote initial values and C(1)
1/2,k are given by the initial conditions.

Hence, during radiation domination density perturbations on sub-horizon scales do not
grow but rather oscillate with respect to time and scale. Instead for super-horizon scales,
k/aH � 1, the amplitude of the growing mode increases linearly with time ∆k ∼ t. In
Fig. 2.2 the solutions of Eq. (2.79) in different regimes are sketched. Conclusively, for
this section we give a summary of the main variables in the 1+3 covariant framework in
Tab. 2.1 including their first order gauge invariant version.

2.2.6. Gravitational waves

The evolution of GWs is mainly dictated by the magnetic part of the Weyl tensor while
the electric part resembles tensors in Newtonian gravity that monitor tidal forces [132].
Neglecting all quadratic terms of gauge invariant variables linearizes the propagation
Eqs. (2.57), (2.58) and the constraint Eqs. (2.59), (2.60) automatically. Note again that
gauge invariant variables in the following are of first order and hence we omit the label
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for sake of shortness. As a result, we have [133, 134]

Ėab = −Θ(0)Eab + curlHab −
1

2
κ

[
(ρ(0) + p(0))σab −D〈aqb〉 + π̇ab +

1

3
Θ(0)πab

]
, (2.83)

Ḣab = −Θ(0)Hab − curlEab −
1

2
κπab , (2.84)

DbEab = κ

(
1

3
Θ(0)qb +

1

3
Daρ

(1) +
1

2
Daπab

)
, (2.85)

DbHab =
1

2
κ
[
2(ρ(0) + p(0))ωa + curl qb

]
. (2.86)

In order to describe GWs we need to isolate the transverse part of the tensors. As the
two latter constraint equations show, electric and magnetic part of the Weyl tensor are
transverse if and only if they do not originating from gradients of density variations
Daρ = 0, non transverse parts of anisotropic stresses Daπab = 0, energy density currents
in the fluid qa = 0 and vorticity ωa = 0. If this is the case these two fields are transverse,
DaEab = 0 and DaHab = 0. The same is true for the shear tensor, Daσab = 0 and together
with the linearized version of Eq. (2.64) we arrive at

σ̇ab = −2

3
Θσab − Eab −

1

2
κπab . (2.87)

Now we can remove Hab and Eab completely from the discussion and merge all information
into an equation of motion for the shear tensor [132, 135]

σ̈ab + 5H(t)σ̇ab +
1

2
κρ(1− 3ω)σab −D2σab = 0 . (2.88)

Again we assumed a perfect fluid, qa = πab = 0, on a FLRW background Θ = 3H(t)
without spatial curvature, K = 0. This shows that the shear tensor is the appropriate
quantity in the 1+3 covariant framework to describe GWs. This will become important
later in the next part of this thesis.

2.2.7. Comparing the formalisms

As we noted before, slicing and threading are two equivalent approaches to cosmology.
Consequently, it is also possible to find equations that relate quantities in the 1+3
covariant formalism to quantities in the Bardeen formulation. These equations have been
worked out by Goode [136] and Bruni et al. in Ref. [123] for all types of perturbations
from which we will quote here a limited selection of relations that are of later use. The
spatial comoving density variations ∆ relate to the density contrast δ in a flat space-time
K = 0 via

∆(x, t) = ∇2
(
δ + 3H(1 + ω)ξ0

)
= ∇2δ̃(x, t) , (2.89)
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where we have used that the Laplace-Beltrami operator DaDa corresponds to the Laplacian
in a spatially flat space space-time

DaDa =
∇2

a2
. (2.90)

If ∆(x, t) ≡ ∆(1)(x, t) constitutes a linear perturbation then δ̃(1) := δ + 3H(1 + ω)ξ0 is
Bardeen’s gauge invariant version of δ [123, 136]. We will need this connection in the next
part of this work. The second interesting relation for our purposes is between the spatial
part of the shear tensor σαβ and the transverse, traceless linear tensor perturbations ET

αβ.
It is given by

σαβ = a(∇αβ ṽ +∇(αṽβ) + ET ′
αβ) , (2.91)

where ∆αβ := ∇α∇β − 1
3
δαβ∇2. By ṽ = v + ξ′ we denote the gauge invariant version

of the scalar velocity v and by ṽα = v⊥α + ξ′α the gauge invariant version of the spatial
component of the solenoid velocity vector. With this, we are equipped with all necessary
tools for the perturbative analysis in the result part of this work. However, before moving
on, we briefly review FOPTs in particle physics.





Chapter 3
Gravitational Waves from

First-Order Phase Transitions

This chapter is devoted to the study of first-order phase transitions in particle physics
and cosmology and their presumably most famous byproduct: Gravitational waves. After
briefly discussing phase transitions in the context of the early universe and the standard
model we review the major building blocks to derive the effective, temperature-dependent
potential for a given particle model and how to investigate its phase structure from it.
Then we illustrate how the nucleation temperature, the duration and the strength of
a first-order phase transition can be deduced from the bubble nucleation rate. In this
first part we closely follow Ref. [137]. These three parameters determine the energy
spectrum of gravitational waves from bubble collisions. In order to see how the collision
of bubbles and the generation of gravity waves is linked, we present the major steps of
such a deviation in a two-bubble model, based on Refs. [138, 139]. Then we proceed with
the presentation of an analytical model of the gravitational wave energy density spectrum
[140] which we will use in the next part of this work.
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Be it the conversion from liquid water to ice, the transition from paramagnetism to
ferrormagnetism or the generation of a non-zero Vacuum Expectation Value (VEV) of
the Higgs particle – phase transitions occur in many types of physical systems from
the macroscopic scale to the quantum world. Characteristic for the different phases is
the degree of order (associated with a symmetry) that they exhibit which is typically
represented by an order parameter φ that is zero in the disordered phase (symmetric
phase) and non-zero in the ordered one (asymmetric phase). A transition between the
old phase φold and the new phase φnew occurs when - with changing temperature T -
the configuration of the new phase begins to minimize the system’s free energy density
instead of the old phase [141]

f(φ, T ) = −T
V

lnZ(φ, T ). (3.1)

Here V is the system volume and Z(φ, T ) the partition function. The change in the value
of the order parameter implies a change in the symmetry that the free energy density
obeys. In the case that the system converts from a high temperature phase to a low
temperature phase the symmetry is reduced, while the opposite transition restores the
full symmetry of the system.

One distinguishes between different types of phase transitions. According to the
classification by Paul Ehrenfest [142] a phase transition is of second order when the

second derivative of the energy density ∂2f
∂T 2 is discontinuous at the critical temperature Tc

at which the two minima are degenerate f(φold, Tc) = f(φnew, Tc), while it is of first-order
when the entropy density s = − ∂f

∂T
is discontinuous at Tc. Especially, this is the case

when the two minima are separated by a barrier which hinders the order parameter
to take on the value of the forming global minimum. The state in which the system
is kept in the old phase while the new phase would be energetically preferred is called
supercooling. In order to end the supercooling phase the barrier must be overcome.
Classically, this requires either sufficiently large temperature fluctuations, impurities or
external energy [141]. In quantum systems however, there exists also the possibility for
the field φ to reach the new phase by tunneling through the barrier. This process is of
special importance for particle models in which particle masses are generated by a FOPT
driven by a scalar field in the early universe that involves the spontaneous breaking
of the model symmetry (SSB). As a consequence of this discontinuous process in real
space the system does not convert smoothly to the new phase (like it does in a second
order phase transition) but rather experiences the nucleation of bubbles that contain
the new VEV of φ and expand in space until the new phase is reached everywhere. In
case of cosmological FOPTs this process has a striking consequence. While expanding,
the bubbles collide and thereby produce GWs [143, 144], which remain as relics in the
universe and thus offer today a potentially measurable window to the past.

In our current understanding, cosmological phase transitions have happened at least
twice during the history of the universe. The first one is the EW phase transition
(see e.g. [145–148]) which was driven by the Higgs field and occurred around TEW ≈
159.5± 1.5 GeV [149]. In this transition the EW symmetry of the standard model was





spontaneously broke SU(2)L × U(1)Y → U(1)QED when the Higgs acquired a VEV of
vEW = 246 GeV [19, 20, 150] resulting in masses for all fields that are coupled to it,
especially the gauge bosons W± and Z0. If the Higgs mass had been smaller than ∼
80 GeV, the EW phase transition would have been of first-order [151, 152]. However, as the
value of the Higgs mass has been measured by the LHC to be mH ≈ 125 GeV [19, 20, 150],
the EW phase transition turns out to be a crossover. In these transitions all derivatives
of the free energy density with respect to temperature are continuous, leading to smooth
conversion between the phases.

The second phase transition in the SM took place at the QCD scale ΛQCD ≈
100 MeV [153] which corresponds roughly to 10−5 s after the big bang (e.g. in a re-
cent calculation the authors find Tc = 132+3

−6 MeV [154]). The QCD phase transition is
subject to extensive current research and many important questions about its nature
are still not understood [59], which is mainly due to its non-perturbative nature at these
scales. It separates the deconfined and confined phases of quarks and gluons and features
the SSB of chiral symmetry when the chiral condensate 〈Ψ̄Ψ〉 = 〈Ψ̄RΨL + Ψ̄LΨR〉, which
serves as the order parameter, becomes non-zero [155]. Here R and L refer to right- and
left handed fields. In Tab. 3.1 we give an overview of the two transitions.

However, it has been shown by many authors that extensions of the SM can make
the EW as well as the QCD phase transition a FOPT, see e.g. [72, 156]. Moreover, it
is very likely that there have been even more phase transitions in the history of the
universe. Investigating these beyond the SM theories especially for FOPTs has become
a lively field, especially those offering explanations for DM, neutrino masses and the
matter-antimatter asymmetry of the universe [60–64, 68, 69]. For recent reviews see
[72, 157–160].

The aim of this section is to review the standard procedure from building the effective
temperature-dependent potential, inferring the phase transition parameters up to the
calculation of the GW energy density from them. We start with the effective potential in
the next section.

PT driving field SSB type
critical

temperature
features

EW Higgs field H
EW

symmetry
crossover ∼ 160 GeV

generation of
masses for

gauge bosons
and fermions

QCD
chiral condensate

〈Ψ̄Ψ〉
chiral

symmetry
unknown ∼ 130 MeV

confinement
of quarks

and gluons

Table 3.1.: Comparison of the SM phase transitions.
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3.1. First-order phase transition in particle physics

3.1.1. The effective temperature-dependent potential

Typically in particle models a phase transition occurs when the VEV of a scalar field
changes due to the formation of a new minimum in the free energy density with decreasing
temperature. For scalar fields the free energy density coincides with the scalar potential
(see e.g. [161]) and hence studying the phase structure of a model requires knowledge
about the temperature evolution of the potentials of all involved scalar fields that acquire
a VEV. However, the essentials of the mechanism can be understood from a phase
transition driven by a single field at which we want to look in the following. The
discussion is partially based on appendix A in [162]. Consider a particle model with a
scalar field φ that is coupled to a set of vector fields (gauge bosons) V , Weyl fermions
F and real scalar fields S with 〈s〉(T ) = 0 ∀ s ∈ S at all temperatures T . The model
Lagrangian is denoted L(φ) and the tree-level potential1 V (0)(φ) ⊂ L(φ) has a non-zero
minimum at T = 0 such that the VEV is 〈φ〉

∣∣
T=0

=: vφ 6= 0. Most phenomenological
studied models are weakly coupled and hence temperature effects can be added to the
zero order potential using thermal perturbation theory. In that case the first-order,
finite-temperature effective potential of the (classical) field φ is given as the following
sum

Veff(φ, T ) = V (0)(φ) + V (1)(φ) + V
(1)
T (φ, T ) + Vc.t. . (3.2)

In this sum the tree-level potential (zeroth order) is given by the Lagrangian V (0)(φ) ⊂
L(φ) and the second term is given by the Coleman-Weinberg potential [163] in the MS
renormalization scheme at scale µ and degrees of freedom n{V,F,S}. It reads

V (1)(φ) =
1

64π2




∑

v∈V

(m2
v)

2 · nv

[
ln
m2
v

µ2
− 5

6

]
+
∑

s∈S

(m2
s)

2 · ns

[
ln
m2
s

µ2
− 3

2

]

−
∑

f∈F

(m2
f )

2 · nf

[
ln
m2
f

µ2
− 3

2

]
 , (3.3)

where m2
i ≡ m2

i (φ) are the squared field-dependent masses of the particles. The next
term denotes the one-loop temperature contributions [137]

V
(1)
T (φ) =

T 4

2π2


∑

b∈B

nb J
B
T (mb(φ))−

∑

f∈F

nf J
F
T (mf (φ))


 , (3.4)

1The tree-level potential depends also on the scalar fields s. For brevity we omit writing this dependence
explicitly. In cases where more than one scalar field acquire a VEV multistep phase transitions can
occur.
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where we have introduced the set of bosons B := {V, S} and the thermal functions
JBT (mb) and JFT (mf ) which are respectively given by

J
B/F
T (mb/f ) :=

∫ ∞

0

dq q2 ln


1∓ exp


−

√

q2 +
m2
b/f

T 2





 . (3.5)

If the particle mass is larger than the temperature, m2 � T 2, the thermal functions can
be expanded as [137]

J
B/F
T (mb/f � T ) = ∓

(
m

2πT

) 3
2

e−
m
T

[
1 +O

(
T

m

)
+O

(
e−

m
T

)]
(3.6)

and thus thermal effects experience exponential suppression in this regime. In the
relativistic regime m2 � T 2 on the other hand the expansion reads [137, 164]

JBT (mb � T ) = −π
2

90
+

m2

24T 2
− m3

12πT
+O(m4), (3.7)

JFT (mf � T ) =
7π2

720
− m2

48T 2
+O(m4) . (3.8)

The interesting observation in this limit is the occurrence of a cubic term for bosons
m3(φ)/T which is essential for the emergence of a barrier in the effective potential.
Obviously, if the critical temperature is much higher than the particle masses at that
temperature one can benefit from Eq. (3.7) and Eq. (3.8) and avoid using Eq. (3.5).

Due to the one-loop corrections the minimum of the effective potential at zero tem-
perature does not coincide with the minimum of the tree-level potential. It is useful,
however, to have the zero temperature VEV at the tree-level position. To ensure this one
shifts the effective potential by the constant counter term Vc.t. upon which one imposes
the conditions

∂(V (1)(φ) + Vc.t.(φ))

∂φ

∣∣∣∣∣
φ=vφ

= 0 and
∂2(V (1)(φ) + Vc.t.(φ))

∂φ2

∣∣∣∣∣
φ=vφ

= 0 . (3.9)

and thus the minimum position 〈φ〉
∣∣
T=0

= vφ and the tree-level mass remain untouched.
Depending on the model one may also impose further counter term conditions [165].
With these formulae the first-order potential can be derived for any weakly coupled
particle model. There is, however, one important last issue that has to be taken into
account before the discussion is complete. It turns out that the thermal perturbation
of the free energy density suffers from an infrared divergence which occurs in the limit
of massless bosonic fields mb → 0 [137]. The reason for this are the terms with odd
powers of mass which originate from the Matsubara zero mode that is zero, in contrast
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Figure 3.1.: Daisy diagrams showing the zero mode dressed by non-zero modes. While
each diagram by in itself is infrared divergent, summing over all diagrams with N − 1
rings attached yields a finite result (see e.g. Eq. (3.91) in [137])).

to fermions2 and thus mimics a massless degree of freedom at high temperatures [166].
This obstacle can be solved by resumming Daisy-diagrams, see Fig. 3.1, which reflect
the thermal self energy at high temperatures. As a result each boson mass acquires a
thermal contribution3, called the Debye mass

m2
b(φ)→ m2

b(φ) + Πb(T ) . (3.10)

The Debye mass must be calculated for each boson and receives contributions from
all couplings of this boson to other fields. It is therefore a sum of terms of the form
Πb(T ) ∼ giT

2, where gi depicts the coupling constant to the ith field. The replacement of
the boson masses can be rewritten by means of an additional contribution to the effective
potential which reads [166–168]

∆VDaisy(φ, T ) =
∑

b∈B

nbT

12π

[
(m2

b(φ))3/2 − (m2
b(φ) + Πb(T ))3/2

]
(3.11)

and has to be added to the effective potential [169]. Overall the temperature evolution
of the effective potential and the VEV is illustrated in Fig. 3.2. The finite temperature
contributions lead to a restoration of the unordered vacuum 〈φ〉(T � mφ) = 0 and the
full symmetry of the Lagrangian at high temperatures.

If the effective potential in Eq. (3.2) possesses a barrier for a certain set of coupling
parameters in L(φ) and thus allows for a FOPT the old vacuum may decay into the new
vacuum via the nucleation of bubbles. These bubbles enclose the new vacuum and are
surrounded by the old one. The probability that the field tunnels into the new minimum
is given by the bubble nucleation rate per unit time and unit volume Γ and is of the form
[170–172]

Γ = A(t) exp(−S4E(φ̄, t)) , (3.12)

2In thermal quantum field theory the field is Fourier decomposed with respect to imaginary frequencies
ωn, called Matsubara frequencies, in the domain 0 ≤ τ ≤ ~/(kBT ). For bosons ωbn ∼ 2πnT = 0 for
n = 0 while ωfn = (2n+ 1)πT 6= 0 for all n. The frequencies enter into the partition function and are

summed over, leading to the thermal functions J
B/F
T (mb/f ).

3More precisely, one has to add the thermal mass matrix to the tree-level boson mass matrix.
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"Today"

Phase 1
Minimum at zero

Phase 2
Minimum evolves to 
VEV

Tunneling

Figure 3.2.: Left: Sketch of the thermal evolution of the effective potential Veff(φ, T ) as
function of the field value φ for a FOPT. Right: General temperature-dependent behavior
of the VEV 〈φ〉 for a FOPT. Highlighted are the most important temperatures. Adapted
from Ref. [5].

where A(t) is the amplitude and S4E(φ̄, t) is the O(4) symmetric Euclidean action of a
spherical, critical bubble φ̄ (the instanton solution) which is especially important for
vacuum transitions [159]. In most applications the temperature is relatively large, such
that the time integration in the action can be carried out and one can replace S4E by the
O(3) symmetric action S3E/T which reads

S3 = 4π

∫ ∞

0

r2dr

(
1

2

(
dφ

dr

)2

+ Veff(φ, T )

)
. (3.13)

The action is minimized by the field configuration that solves the equation of motion

d2φ

dr2
+

2

r

dφ

dr
=
∂Veff(φ)

∂φ
, (3.14)

with boundary conditions

φ(r →∞) = 0,
dφ

dr

∣∣∣∣
0

= 0 . (3.15)

The form of the instanton solutions at different temperatures are shown in in Fig. 3.3.
At low temperature the solution is O(4) symmetric and then gets constantly compressed
as temperature increases. One can gain some intuition for the form of the action in the
thin wall limit. We denote the region of the bubble where the derivative dφ/dr is large
as bubble wall [173]. The wall is called thin, when the width |V (0, T )− V (vφ, T )| = ∆p
(pressure difference between the phases) is smaller than the hight of the barrier. For large
enough bubbles, the second term in Eq. (3.14) can be neglected since 2/rdφ/dr � 1 and
the action becomes [137, 173, 174]

S3(r) = −4

3
πr3∆p+ 4πr2S1(T ) ≡ 4πr2σ − 4

3
πr3∆p , (3.16)
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Figure 3.3.: Typical form of instanton solutions as functions of “time” τ := 1/T and
radius r(T ). For T = 0 the instanton solution of S4E respects 4D rotational symmetry
whereas for high temperatures much bigger than the inverse bubble radius the solution
get squeezed such that it ultimately respects only a spatial 3D rotational symmetry (last
picture) and one uses S3/T . Plot has been reproduced from [137] and [173].

where σ := S1 =
∫ vφ

0
dφ
√

2V (φ, T ) is the surface tension. Extremizing this action with
respect to the radius, one finds rex = 2σ/∆p, such that the action becomes4 [137]

S3(rex) =
16π

3

σ3

(∆p)2
. (3.17)

For the purpose of this work there are three important parameters that are deduced
from the previous discussion so far. The first one is the nucleation temperature Tnuc (or
time tnuc) which is defined as the temperature at which the probablity Γ(t) to nucleate
one bubble per Hubble volume is unity [159]. For example, for phase transitions around
the EW scale the three-dimensional action has to fulfill the condition5 S3/Tnuc ≈ 100
[174, 177].

Another important parameter is the duration of the phase transition β−1. It can be
inferred from the action and is defined as [173, 178]

β := − dS(t)

dt

∣∣∣∣
tnuc

(3.18)

under the assumption that time-dependent changes in the nucleation rate are mainly due
to the action. For practical applications this is reformulated by means of the temperature
and relative to the Hubble time at tnuc [179]

β

Hnuc

= Tnuc
dS

dT

∣∣∣∣
Tnuc

. (3.19)

4Note that the derivation requries ∆p 6= 0 and thus at least a small phase of supercooling.
5A more general condition for the three-dimensional action for phase transitions in a radiation dominated

universe can be found in [175] and [176].
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With this definition the nucleation rate can also be rephrased

Γ = Γnuc e
β(t−tnuc) , (3.20)

where β plays the role of the decay rate.

Finally, the third parameter is the strength α of the transition and is closely related to
the latent heat. The latter describes the energy density difference ∆ρ at the transition
that appears due to the discontinuous behavior of the entropy density and therefore is
inherent to any FOPT. From the energy density ρ = Ts− p and the continuity of the
pressure at Tc one finds [137]

L := −δρ = −Tc∆s = −Tc
d∆p

dT
. (3.21)

However, it has become conventional to define α as the ratio of the stored energy in the
vacuum and the radiation energy density at the nucleation temperature

α :=
ρvac

ρrad(Tnuc)
, (3.22)

where ρvac ∼ ∆p(Tnuc). In cases of a strong transition where the derivative d∆p/dT ∼
∆p/Tc the definitions coincide for Tc = Tnuc. In the right plot of Fig. 3.2 we have
illustrated the meaning of α and the other transition parameters by reference to the
temperature evolution of the order parameter. If α > 1, then the phase transition is
subject to a lot of supercooling and the expansion of bubbles proceeds into a universe
dominated by vacuum energy6. A FOPT is called strongly first-order if the value of
the VEV exceeds the critical temperature 〈φ〉(Tc)/Tc > 1 [175] which is for example a
necessary condition for successful baryogenesis [71, 180–183].

We have seen in this section how one determines the nucleation temperature (time),
the duration and the strength of a FOPT from a particle theory. Next, we will discuss
how these parameters translate into the released energy density of GWs by a FOPT.
To do so, we first have to recall how anisotropic stresses actually produce gravitational
radiation.

3.2. Gravitational wave production

The creation of bubbles during a FOPT has a striking consequence. After nucleation the
bubbles expand due to the pressure difference ∆p between the symmetric and asymmetric
phase and eventually collide until the whole space acquired the new VEV. The expansion
into the surrounding plasma and the collisions, however, leads to anisotropic stresses in
the fluid which serve as seeds of GWs. These in turn provide a potentially observable
relic signal today from a FOPT in the early universe. It is this feature which makes the
study of FOPTs in particle models so interesting and prominent and has experienced

6As we will see later this is the relevant regime for the purpose of this work.
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increasing attention due to the advent of GW astrophysics. This section is devoted to
summarizing the literature on this topic with a special focus on on GW production in a
supercooled phase transition.

Let us denote by t∗ the percolation time when GWs are produced. The treatment
of GWs inherits two important simplifications from the nature of phase transitions
(H∗ = H(t∗) is the Hubble time at t∗):

• Phase transitions occur on sub horizon scales k > H∗.

• Phase transitions complete in less than a Hubble time β−1 � H−1
∗ .

Thus the background metric is well described by the Minkowsikian one and any fric-
tion and damping due to the expansion of the universe ∼ H ḟ(t) can be neglected.

For a Minkowsikian background metric g
(0)
µν = ηµν the line element that feels a linear

perturbation by a traceless ET i
i = 0 and transverse ∂jET

ij = 0 tensor reads

ds2 = −dt2 + (δij + 2ET
ij)dx

idxj , (3.23)

where δij is the Kronecker delta and latin indices denote spatial coordinates. From
Einstein’s equations one deduces that the tensor ET

ij(x, t) obeys the wave equation
[184, 185] which is driven by the transverse and tracefree component of the anisotropic
stress tensor ΠT

ij(x, t). Transforming the latter and the tensor ET
ij(x, t) into Fourier space,

yields the equation of motion

ËT
ij(k, t) + k2ET

ij(k, t) = 16πGΠT
ij(k, t) , (3.24)

where k := |k|. Suppose the source is active for a time interval [t∗, tf ], then the solution
can be expressed by means of a Green’s function and matched on the boundaries to the
homogeneous solution. This results in a wave function [140, 186, 187]

ET
ij(k, t) = Aij(k) sin(k(t− tf )) +Bij(k) cos(k(t− tf )) , (3.25)

with source-dependent coefficients

Aij(k) =
8πG

k

∫ tf

t∗

dt cos(k(tf − t))ΠT
ij(k, t) and

Bij(k) =
8πG

k

∫ tf

t∗

dt sin(k(tf − t))ΠT
ij(k, t) . (3.26)

For observational purposes the interesting quantity is the energy density ρGW(t) which is
deduced from Eq.’s (3.25) and (3.26) using

ρGW(t) :=
〈ĖT

ijĖ
T
ij〉

8πG
=

∫ ∞

0

k3

2π
|ĖT (k, t)|2d ln k , (3.27)

where we have used the isotropy of the system. The stochastic backgrounds of GWs that
could be detected by future interferrometer experiments is given in terms of the GW
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abundance per logarithmic frequency interval and follows from the total energy density
Eq. (3.27) to be

Ωlog
GW(k, t) :=

1

ρtot

dρGW

d ln k
= κ2

eff

(
H∗
β

)2(
α

1 + α

)2

∆(k, β, t, vw) . (3.28)

Hereby is ∆(k, β, t, vw) the dimensionless GW power spectrum which depends on the
wave number k, the bubble wall velocity vw and the decay rate β and is determined
from ΠT

ij(k, t). The efficiency factor κeff only plays a role when the bubbles expand into
a radiation dominated universe and accounts for the loss of energy to the surrounding
plasma [188, 189].

From Eqs. (3.27) and (3.26), it becomes clear that the energy density is of the form
ρGW(tf) ∼ ΠT 2 [160] and therefore the challenge lies in an accurate modeling of the
anisotropic stress. In the case of transitions into the radiation plasma of the early
universe it is additionally necessary to acquire a deep understanding of the bubble wall
velocity and dynamics. In this case also magnetohydrodynamic effects and the formation
of sound waves play an essential and in some regimes even dominant role [159]. The
total anisotropic stress in a realistic study of the GW spectrum from a FOPT accounts
for all these sources and therefore the total GW spectrum includes a contribution from
bubble collision ΩBC(k), sound waves produced by bulk fluid motion ΩSW(k) [190–192]
and magnetic and hydrodynamical effects ΩMHD-turb(k) [193, 194] such that

ΩGW(k) = ΩBC(k) + ΩSW(k) + ΩMHD-turb(k) . (3.29)

Which of these sources dominates the spectrum highly depends on the bubble wall
dynamics which is commonly divided into the following categories [159]:

• Weak supercooling: In a surrounding plasma, bubbles can either reach a terminal
velocity or keep accelerating and run away γ := (1− v2

w)−1/2 � 1 [195]. In the first
case the ΩBC(k) can be neglected while in the latter all contributions matter. In all
cases the efficiency factor κeff has to be taken into account. To good approximation,
one can assume that the nucleation temperature and the temperature at which
the GWs are released, called percolation temperature, are approximately equal
T∗ ≈ Tnuc.

• Strong supercooling: If the supercooling is strong enough to have α > 1, the
universe turns temporarily into vacuum domination. In that case all plasma-related
contributions as well as the efficiency factor is unity. In this case it will take some
time after bubble nucleation until GWs are released Tnuc � T∗ ≈ Treh and the
universe is reheated. However, it still holds H∗ ≈ Hnuc. The only relevant term
in Eq. (3.29) is ΩBC, since the vacuum energy dominates and thus plasma effects
vanish.

In this work we focus on the latter case in which bubbles expand into a vacuum dominated
universe. The reason will become clear in the next part of this thesis. Therefore, we
are interested in the calculation of ΩGW ≡ ΩBC. In order to show, how we come from
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the collision of bubbles to the generation of anisotropic stress and in turn to GWs, we
present in the following subsection the result for a simplified model for two colliding
bubbles from the beginning of the 1990s. This model, however, only provides a rough
idea. Over the last decades, more and more elaborated studies have been performed with
ever refined modeling of the anisotropic stress and the dimensionless power spectrum
∆(k, β, t, vw), both numerically [196–198] and analytically [186, 187, 199–201] .

3.2.1. Vacuum collision of two bubbles

In order to gain some intuition how bubble collisions produce anisotropic stress and
in turn source GWs we show here a simplyfied derivation of ΠT

ij(t, k) first presented
in Refs. [138, 139] which we closely follow. When talking about the generation of
gravitational radiation, in the first thought that is immediately triggered one would ask
for the occurrence of a time varying quadrupole moment. To reflect this, we will single
out the quadrupole term in the energy momentum tensor and use it to derive the GW
energy density.

The energy momentum tensor of a spherically symmetric bubble is given by

Tµν = ∂µφ∂νφ− gµνL(φ) . (3.30)

However, the second term does not possess any spatial anisotropy and is thus irrelevant
for the generation of gravitational radiation. Therefore, it is sufficient to look at

Tij = ∂iφ∂jφ . (3.31)

Transforming the energy momentum tensor Eq. (3.31) to Fourier space both in time and
space one obtains (we follow here the convention used in the literature for the Fourier
transforms.)

Tij(k, ω) =
1

2π

∫
dt eiωt

∫
d3x ∂iφ∂jφ e

−ik·x , (3.32)

where frequency ω and wave number kµ are related via the null-condition kµk
µ =

|k|2 − ω2 = 0. Next, we apply two approximations to the energy momentum tensor.
First, we employ the quadrupole approximation which states eikx → 1. Second, we
assume that the contribution to the GW energy density of already collided bubble wall
segments is negligible. This is called envelope approximation and allows us to separate the
surface integration from the integration over the bubble radius. Imposing also spherical
symmetry on the uncollided bubbles, φ and its derivatives are purely radial. Applying
these assumption to the energy momentum tensor leads to

TQij =
1

2π

∫
dt eiωt

∫

S
dΩ

∫
dr r2(ei ⊗ ej)

(
∂φ

∂r

)2

, (3.33)

where ei is the unit vector ((ei ⊗ ej) ≡ eiej) in the ith direction and S is the bubble
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Figure 3.4.: Schematic illustration of two colliding bubbles with equidistant centers
from the origin aligned on the z-axis. The right bubble has a hole in its north pole
measured by the angle α. From the point of view of the other bubble the hole is at its
south pole.

surface. Next, we have to deal with the radial derivative of φ. To this end, let us have a
look to the zero-zero component of the energy momentum tensor

T00(x, t) =
1

2

[(
∂φ

∂t

)2

+

(
∂φ

∂r

)2
]

+ V (φ, t) . (3.34)

It has been shown in Ref. [139] that the gradient energy of the field roughly corresponds
to the kinetic energy of the system and also that the potential becomes successively
irrelevant once the bubble radius becomes bigger and the bubble wall thinner (thin wall
approximation). Consequently the energy E(t) of the bubble is

E(t) =
4π

3
r(t)3ρvac ≈ 4π

∫
dr r2

[
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂r

)2
]
≈ 4π

∫
dr r2

(
∂φ

∂r

)2

,

(3.35)

where r(t) is the time-dependent bubble radius and ρvac is the energy density difference
between disordered and ordered vacuum. Replacing the radial derivative using Eq. (3.35)
we observe that we have isolated a quadrupole moment like term of the energy momentum
tensor of a collided bubble

TQij =
1

6π

∫
dt eiωt

∫

S
dΩ

∫
dr r2 eiej T00︸︷︷︸

E(t)

=
ρvac

6π

∫
dt r3(t) eiωt

∫

S
dΩ eiej . (3.36)

For vacuum transitions, the bubbles are expected to expand with the speed of light,



Chapter 3. Gravitational Waves from First-Order Phase Transitions 

r(t) = ct, and thus it remains to solve the spherical integration. The latter is the origin
of the breaking of spherical symmetry and hence the source of anisotropy: due to the
collision with another bubble, in the envelope approximation, our probe bubble can be
viewed as a sphere with a circular hole in it which expands with time. To account for
this consider the following configuration: The center of two bubbles nucleated at t = 0
are separated by the distance d and aligned along the z-axis. When the bubbles touch at
t = d/2 at z = 0 the bubble at z = +d/2 obtains a hole at its south pole and the bubble
placed at z = −d/2 develops a hole at the north pole. The polar angle of the hole shall
be denoted by α and changes with time like cosα(t) = d/(2t) for t > d/2 (see Fig. 3.4).
For the two bubble system the energy momentum tensor becomes

TQij =
ρvac

6π

∫ ∞

0

dt eiωtt3

[ ∫ π−α(t)

0

dθ sin θ

∫ 2π

0

dφ eiej
︸ ︷︷ ︸

Bubble at−d/2

+

∫ π

α(t)

dθ sin θ

∫ 2π

0

dφ eiej

︸ ︷︷ ︸
Bubble at+d/2

]
.

(3.37)

Expressing the normed basis vectors ei in terms of spherical coordinates and performing
the integration over φ and θ gives

Txx = Tyy =
ρvac

3

∫ ∞

d/2

dt eiωt

[
2

3
t3 +

d

2
t2 − d3

24

]
C(t) , (3.38)

Tzz =
2ρvac

9

∫ ∞

d/2

dt eiωt

(
t3 +

d3

8

)
C(t) , (3.39)

where the function C(t) is a time cutoff that accounts for the finite duration of the phase
transition and is non-zero between tnuc (here = 0) and tf = β−1 (see Ref. [188] for an
example). Finally, with this we are ready to calculate the total energy released in form of
GWs. Within our approximations the total GW energy per frequency interval is simply
the contraction of the anisotropic stresses which emerge from the traceless and transverse
projector Λij,lm(k) of the energy momentum tensor

dE

dωdΩ
= 2Gω2 Λij,lm(k)T ∗ij(k, ω)Tlm(k, ω)

︸ ︷︷ ︸
∼Π2(k,ω)

, (3.40)

where Λij,lm(k) = PikPjl−1/2PijPkl and Pij := δij−kikj and Πij(k, ω) = Λij,lmTlm(k, ω) .
From this the GW energy liberated from the collision of two bubbles in the envelope and
quadrupole approximation is Tij = ∆(ω)δizδjz

dE

dω
=

32π

15
Gω2|∆(ω)|2 , with ∆(ω) := Tzz −

1

2
(Txx − Tyy) . (3.41)

Let us emphasize that it turns out that the quadrupole approximation overestimates the
result of the full linearized gravity calculation, see appendix B in Ref. [138]. According to
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the same Ref. this is due to the fact that we have not performed a far field approximation,
distance � wavelength (and hence also the result does not exactly coincide with the
quadrupole moment, see Ref. [202]). In this section we have closed the gap between the
collision of bubbles and the appearance of anisotropic stresses in a simple model. We
close the discussion with Eq. (3.41) that estimates the energy liberated into GWs from
the transverse parts of the anisotropic stress tensor.

3.2.2. Model of the gravitational wave spectrum in vacuum
transitions

An appropriate analytic model of the GW dimensionless power spectrum ∆(k, β, t, vw)
was given by Caprini et. al. in Ref. [140]. It especially applies to the case of bubbles
expanding into a vacuum dominated universe, which as we discussed, is related to a
phase transition with a substantial amount of supercooling. As it will turn out this most
suitable for the purpose of this work [5]. In Ref. [140] the dimensionless power spectrum
for a phase transition starting at time t∗ and lasting until tf := t∗ + β−1 producing
bubbles with velocity vw is modeled by a broken rational function f(k, t) of the form

f(k, t)2 = L(t)2

(
vwε

β

)(
1 + (kL

3
)2

1 + (kL
2

)2 + (kL
3

)6

)
, (3.42)

where ε is a small parameter and L(t) is the characteristic length scale of the transition

L(t) =
vw
β
g(t). (3.43)

The function g(t) incorporates all time dependencies

g(t) = 4β2(t− t∗)
(

1

β
− (t− t∗)

)[
ΘHv (t− t∗) ·ΘHv

(
1

β
− t∗

)]
, (3.44)

where ΘHv denotes the Heaviside step function. Then the dimensionless power spectrum
at a time t ≤ tf is given by

∆(k, β, t, vw) = β2k3

∣∣∣∣∣

∫ t

t∗

f(k, t̃)eit̃kdt̃

∣∣∣∣∣

2

≈ k3β2(t− t∗)2f 2(k, (t+ t∗)/2) , (3.45)

where in the last step we have approximated the integral by its mean value. The functions
above use the fact that phase transitions are taking place on sub-horizon scales and that
they proceed within a Hubble time β � H∗. This allows to omit the scale factor from
the calculation and work in Minkowsiki space. However, for transparency reasons we will
keep the scale factor in our calculations in the next part of this work and therefore we
replace k → k/a∗ here. Also it is convenient to rescale the time and the wave number
variables by means of the Hubble constant H∗ at the transition (note that also for vacuum
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Figure 3.5.: Left: Approximated form of the dimensionless power spectrum in the
middle of the phase transition τ = τ∗ + 0.5 · H∗/β and its small and high κ behavior.
Right: The peak of the dimensionless power spectrum as a function of rescaled time. The
mean time is τ̄ev := τev+τ∗

2
and ∆τev := τev − τ∗ is the time difference. Adopted from [5].

transitions H∗ ≈ Hnuc holds [159]). Introducing also the dimensionless, inverse duration
ratio rβ, we have

τ := H∗ · t , κ :=
ck

a∗H∗
and rβ :=

β

H∗
. (3.46)

We have also reintroduced the speed of light c for better readability. Obviously, the
length scale L(t) times the wave number is a scale invariant product which we can easily
rescale:

k/a∗ · L(t) =
k

a∗H∗
·H∗ ·

c

β

(
vw
c

)
g(t) = κ

(
vw
c

)(
H∗
β

)
g̃(τ) = κL(τ) . (3.47)

The rescaled version of the time dependence g̃(τ) reads

g̃(τ) = 4r2
β(τ − τ∗)

(
1

rβ
− (τ − τ∗)

)
ΘHv(τ∗, τ∗ + r−1

β ) , (3.48)

and the broken rational function f(κ, τ) yields

k3f(k, t) = κ3f 2(κ, τ) =
(
κL(τ)

)2

(
κ
vw
c

ε

rβ

)



1 +
(
κL(τ)

3

)2

1 +
(
κL(τ)

2

)2

+
(
κL(τ)

3

)6


 . (3.49)
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Figure 3.6.: The dimensionless power spectrum with and without the approximation
of the time integration (bold and light lines) in Eq. (3.45) almost at the end and the
beginning of the phase transition (red and green). The horizon mode is indicated by the
yellow line. Adopted from [5].

With this we obtain the rescaled GW energy density fraction at time τ from the energy
density fraction per logarithmic frequencies interval Eq. (3.28) and find

ΩGW(κ, τ) = κ2
eff(τ − τ∗)2

(
α

1 + α

)2 ∫ κ

1

dκ̃κ̃2f 2

(
κ̃,

(τ + τ∗)

2

)
, (3.50)

where k∗ := a∗H∗/c is the mode entering the horizon at t∗ and thus κ∗ = 1. Note, that
for vacuum transitions vw = c and κeff = 1 as mentioned earlier.

Comparing this model with more elaborated works like [187] suggests that ε = 0.01 is
a good choice. This results in the dimensionless power spectrum shown in the left plot in
Fig. 3.5 in the middle of the transition τev = τ∗ + 0.5 r−1

β . We have highlighted the three
major features that GW spectra typically appreciate. Namely,

• The peak of the spectrum is approximately around ∼ kpeak(τ∗) = 1.3π β
c·L(τ(ev+τ∗)/2)

and

approaches 2π β
c

at the end of the transition.

• The spectrum behaves as k3 for small wave numbers.

• For large wave numbers the spectrum decreases as k−1.

The progression of the maximum ∆(κpeak(τ), τ) is presented in the right plot in Fig. 3.5
and reflects the growth of GW energy density towards the end of the FOPT. Finally, in
Fig. 3.6 we have plotted the resulting ∆(κ, τ) from the approximation of the time-integral
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used in Eq. (3.45) against the full solution. Apart from an overall oscillation pattern
which is also not found in numerical calculations [187], the approximation we propose
here resembles the full solution to a satisfying degree.



Part II

Results





Chapter 4
Density Perturbations at Second

Order

The goal of this chapter is to derive an equation of motion for density perturbations
related to gravitational waves. Since at linear order density fluctuations and tensor
perturbations do not interact with each other, we need to go to second order in perturbation
theory. Therefore, we perform a second order expansion in perturbation theory using the
non-linear Eqs. (2.72) and (2.73), which drive the evolution of the density gradient in
the 1+3 covariant approach. To do so, we first introduce our fluid model and adapted
the non-linear equations to the two essential quantities we are interested in, namely the
comoving density gradient and the transverse shear tensor, which corresponds to GWs.
Then, we carry out the perturbation and finally find a wave equation for second order
density perturbations driven by various types of couplings between the shear tensor and
first order density perturbations. On a FLRW background, we investigate the equation
in the matter dominant regime and the radiation dominant regime. In the former case
we compare our results with existing literature Ref. [135] in which a similar calculation
was performed. The equation found for a radiation dominated universe, however, is the
relation which we will use in the next chapter to analyze the impact of gravitational
radiation from a first-order phase transition on structure formation. This chapter is built
upon chapter 3 in Ref. [5].
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From inflationary models we are familiar with the concept that GWs are sourced by
density perturbations, e.g. Ref. [57, 203–205]. In this context, Einstein’s equations are
expanded to second order in perturbation theory and, under certain assumptions, one
derives a wave equation for the second order transverse tensor E

T (2)
ij , sourced by linear

perturbations of the Bardeen potentials. Conversely, in this work, we seek for an equation
in which second order density perturbations δ(2) are directly connected to GWs.

We chose to tackle this task by using the 1+3 covariant formulation of cosmological
perturbation theory, which we introduced in Sec. 2.2.5. There we discovered that the role
of GWs is played by the shear tensor σab while the comoving density contrast ∆ resembles
what we usually denote as density fraction δ. By a first observation of the non-linear
Eqs. (2.72) and (2.73) we notice that they feature several promising terms like σba∆b or
−2aDaσ

2 (recall the magnitude of the shear σ2 = 1/2σabσab). Potentially, if these terms
survive the perturbative calculation, they could serve as the desired coupling. Thus
we aim to isolate the shear together with the density gradient and derive an equation
that connects both such that the evolution of the latter is affected by the presence of
the former1. However, we need to expand the equation to second order to make more
concrete statements. To do so, we employ the following strategy: First we outline our
model by introducing several requirements that are chosen such that they can also apply
for the typical situation of a phase transition in the early universe. Then we expand
the remaining quantities to second order. By doing so, we lose the property of gauge
invariance2 (see Ref. [207, 208] for a discussion of gauge invariant perturbation theory at
second order). The resulting equation is given in most possible generality (we neither
specify the background nor neglect the cosmological constant Λ at first) before we fix the
background to a FLRW space-time and investigate the radiation and matter dominated
regime. For brevity we set κ = 8πG = 1 in this chapter.

4.1. Second order expansion of the comoving density
gradient

For better clarity, in this first part of the calculation we condense the zeroth, first and
second order series elements of a variable f into one label,

f = f (0) + f (1) + f (2)

︸ ︷︷ ︸
≡f

+O(ε3) . (4.1)

If the variable f is gauge invariant to first order in our cases this implies f (0) = 0 and thus
triple combinations of these variables are at least of third order f 3 ≤ O(ε3). Therefore,
such terms can already be excluded in the following without explicitly carrying out the
expansion of the variables.

We impose to our fluid the following conditions [5]:

1For a relation between the density gradient and the vorticity tensor, see Ref. [206].
2We will comment on this in the next chapter.



 4.1. Second order expansion of the comoving density gradient

Assumption 1 The background fluid is perfect and to the relevant perturbative orders
the contributions of the current density and the anisotropic stress are
negligible qa = πab = 0.

Assumption 2 There is no vorticity ωab = ωa = 0.

Assumption 3 The fluid is barotropic, which means the equation of state can be written
in the form p = ωρ.

Assumption 4 The density perturbations are adiabatic δp/δρ = c2
s and we demand that

derivatives vanish Daω = ω̇ = Dac
2
s = ċ2

s = 0.

Assumption 5 The background is FLRW.

From Assumption 1 - Assumption 4 we draw the immediate and important conse-
quence from the conservation Eq. (2.62) that the four-acceleration is

A(i)
a = − c2

s∆
(i)
a

a(1 + ω)
with Dap

(i) =
ρ

a
c2
s∆

(i)
a , (4.2)

for the ith = 1, 2 order. Applying this relation and setting πab = ωab = qa = 0 due to
Assumption 1 - Assumption 2 the non-linear Eqs. (2.72) and (2.73) simplify to

∆̇〈a〉 = ωΘ∆a − (1 + ω)Za − σab∆b, (4.3)

Ż〈a〉 =− 2

3
ΘZa −

(
1 + 3c2

s

) ρ
2

∆a −
c2
s

1 + ω
Θ̇∆a −

c2
s

a(1 + ω)
Da∆− σabZb

− 2aDaσ
2 +

c4
s

a(1 + ω)2
Da

(
∆b∆b

)
. (4.4)

Recall that the angled brackets denote projected quantities, or to be more precise
∆̇〈a〉 := hba∆̇b. Though ∆a is a projected quantity by itself, it’s time derivative can
exhibit parts that are locally parallel to the fluid flow lines. Resolving the derivative
using the inverse product rule makes this apparent

∆̇〈a〉 = ˙(h b
a∆b)− ḣ b

a∆b . (4.5)

However, the spatial projection of a spatial quantity leaves it unchanged ha
b∆b = ∆a

and furthermore its projection along the velocity vector vanishes ua∆a = uah b
a∇b = 0.

The latter applies to the second term in

ḣ b
a∆b = (uaA

b + ubAa)∆b = uaA
b∆b , (4.6)

where we have used the identity for ḣab given in appendix B.1. In total, the projected
time variation of the comoving density gradient becomes

∆̇〈a〉 = ∆̇a − uaAb∆b . (4.7)
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This result reflects what we would expect. Namely that the total time derivative of
the density gradient splits into the temporal variation between the world lines and a
contribution along the fluid flow. Using Eq. (4.2), the projected time variation of the
density gradient is entirely determined by density gradients

∆̇〈a〉 = ∆̇a + ua
c2
s

a(1 + ω)
∆b∆b . (4.8)

With the same arguments, the time variation of the comoving volume gradient separates
in an analog manner

Ż〈a〉 = h b
a Żb = ˙(

h b
aZb
)
− ḣ b

aZb = Ża − uaAbZb . (4.9)

Replacing the projected time derivatives in Eqs. (4.3) and (4.4) leads us to the first
interim result

∆̇a + ua
c2
s

a(1 + ω)
∆b∆b = ωΘ∆a − (1 + ω)Za − σab∆b, (4.10)

Ża + ua
c2
s

a(1 + ω)
∆bZb =− 2

3
ΘZa −

(
1 + 3c2

s

) ρ
2

∆a −
c2
s

1 + ω
Θ̇∆a −

c2
s

a(1 + ω)
Da∆

− σabZb − 2aDaσ
2 +

c4
s

(1 + ω)2a
Da (∆a∆a) . (4.11)

4.2. Scalar density variations

We find the scalar density variation from the comoving density gradient by acting with
the comoving divergence on the latter ∆ := aDa∆a. The analog holds true for scalar
part of the comoving volume gradient Z := aDaZa. Therefore, in order to convert the
equations for the gradients Eqs. (4.10) and (4.11) to scalar equations, we need to apply
the comoving divergence to them. We first address Eq. (4.10) and then turn to Eq. (4.11).
Each time we go through the equations term by term.

4.2.1. Comoving divergence of the comoving fractional density
gradient

The comoving divergence of the first term on the left hand side of Eq. (4.10) has already
been calculated in the literature3. Quoting the result [135]

aDa∆̇a =ahab∇bu
c∇c∆a + ahabuc∇b∇c∆a

=∆̇ + σab∆〈ab〉 − ωab∆[ab] +
1

3
aΘAa∆a − aAa∆̇a − aqa∆a

+ a
(
σab + ωab

)
∆aAb .

(4.12)

3In general Daḟ = Lu(Daf)− ḟAa [86].



 4.2. Scalar density variations

Note that here we made use of the splitting of ∆a into shear distortions and rotational
variations, Eq. (2.71), and that the properties of these components naturally assigns
σab to ∆〈ab〉 and ωab to ∆[ab ]. Thanks to Assumption 1 and Assumption 2 most of
the terms on the right hand side vanish. Additionally Eq. (4.2) allows us to replace the
acceleration by the density gradient and thus Eq. (4.12) reduces at second order to

aDa∆̇a = ∆̇ + σab∆〈ab〉 −
c2
s

3(1 + ω)
Θ∆a∆a +

c2
s

1 + ω
∆a∆̇a +O(ε3)

= ∆̇ + σab∆〈ab〉 +
c2
s

1 + ω

[
1

2

d

dt
− 1

3
Θ

]
∆a∆a .

(4.13)

Moving on to the second term in Eq. (4.10), we observe that although the product rule
generates three terms only the derivative of ua survives due to uaDa = 0 and hence

aDaua
c2
s

a(1 + ω)
∆b∆b =

c2
s

a(1 + ω)
∆b∆b aDaua =

c2
s

(1 + ω)
∆b∆bΘ . (4.14)

Turning to the right hand side of Eq. (4.10), we calculate the divergence of the first term
to be

aDaωΘ∆a = ω(Za∆a + Θ∆) , (4.15)

while the second term becomes

−(1 + ω)aDaZa = −(1 + ω)Z . (4.16)

Recall that the scalars are defined as ∆ := aDa∆a and Z := aDa∆a. The last term
concerns the derivative of the shear tensor. First of all, it should be noted that the
coupling σab∆

b is at least of second order due to the fact that the shear as well as the
density gradient vanish at zeroth order. The space-like constraint Eq. (2.66) requires
that Dbσab 6= 0 in general and thus the shear would not be transverse. However, since
here we only consider gravitational radiation as a source of shear distortions we can
demand Dbσab = 0 in accordance with Ref. [86, 132, 135]. As a result the divergence of
the shear-densiy gradient coupling simplifies significantly

aDa(−σab∆b) = −(aDaσab︸ ︷︷ ︸
=0

∆b + a σabD
a∆b)

= −σab
(

1

2
∆hba + ∆〈ba〉 + ∆[ba]

)

= −σab∆〈ab〉 . (4.17)

In the second term we have again applied the splitting Eq. (2.71) from which two parts
vanish since the shear is tracefree, σabh

ab = σaa = 0, and because the complete contraction
of an antisymmetric with a symmetric tensor is zero. Inserting Eqs. (4.14), (4.15), (4.16)
and (4.17) into the comoving divergence of Eq. (4.10) leads us to the intermediate result
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of this subsection

∆̇ = ω(Za∆a + Θ∆)− (1 + ω)Z − 2σab∆
〈ab〉 − c2

s

1 + ω

(
2

3
Θ +

1

2

d

dt

)
∆a∆a . (4.18)

4.2.2. Comoving divergence of the volume expansion gradient

Similar to the last section, we now calculate the comoving divergence of Eq. (4.11). The
first term on the left hand side of the equation behaves identically to Eq. (4.12) and thus
we have

aDaŻa = Ż + σabZ〈ab〉 +
1

3
aΘAaZa − aAaŻa

= Ż + σabZ〈ab〉 −
c2
s

3(1 + ω)
Θ∆aZa +

c2
s

1 + ω
∆aŻa .

(4.19)

Likewise, we can adapt Eq. (4.14) to the comoving volume gradient. Recall that Θ := Daua
was the definition of the volume expansion, enabling us to write

aDaua
c2
s

a(1 + ω)
∆bZb =

c2
s

1 + ω
∆bZbΘ . (4.20)

We proceed with the first line on the right hand side of Eq. (4.11). The comoving
divergence of the first two terms yields either a pure scalar contribution ΘZ and ρ∆,
or a self-coupling ZaZa and ∆a∆a. Using additionally aDaρ = ρ∆a and DaDa = D2, in
total we obtain for the terms in that line

− 2

3
(ZaZa + ΘZ)− (1 + 3c2

s)
1

2
(ρ∆ + ρ∆a∆a)

− c2
s

1 + ω

(
a∆aD

aΘ̇ + Θ̇∆
)
− c2

s

1 + ω
D2∆ .

(4.21)

For the moment we keep the DaΘ̇-term in its current form and come back to it later.
Continuing with the three terms in the second line of Eq. (4.11), we observe that the last
two terms become projected Laplacians4 and the first term obeys the same calculation as
performed for the shear Eq. (4.17) in the previous subsection. Thus, taking the comoving
divergence of the second line of Eq. (4.11) produces

−σabZ〈ab〉 − 2a2D2σ2 +
c4
s

(1 + ω)2
D2 (∆a∆a) . (4.22)

Here, we used the splitting for the volume expansion gradient aDbZa = 1/3Zhab +Z〈ab〉+
Z[ab]. All in all, the comoving divergence of Eq. (4.11) leads at second order to the

4The operator D2 is called Laplace-Beltrami operator and applies for a general space-time. For a
FLRW space-time it differs from the usual spatial Laplacian for K 6= 0.
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equation

Ż =− 2

3

c2
s

1 + ω
Θ∆aZa −

c2
s

1 + ω
∆aŻa

− 2

3
(ZaZa + ΘZ)− 1

2
(1 + 3c2

s)(ρ∆ + ρ∆a∆a)

− c2
s

1 + ω
D2∆− 2σabZ

〈ab〉 − 2a2D2σ2

− c2
s

1 + ω
(∆aaDaΘ̇ + Θ̇∆)

+
c4
s

(1 + ω)2
D2 (∆a∆a) .

(4.23)

This equation forms together with Eq. (4.18) a set of coupled equations for the scalar part
of the comoving density gradient and the comoving volume expansion gradient. Next, we
want to merge them into a single second order differential equation for the scalar density.

4.3. Evolution of second order density perturbations

The two Eqs. (4.18) and (4.23) can be decoupled by taking the time derivative of
the former equation and then insert the latter into the result. By doing so, we take
Assumption 4 into account, which demands ω̇ = ċ2

s ≈ 0. Hence, taking the time
derivative of Eq. (4.18) yields

∆̈ =ω(Ża∆
a + Za∆̇a + Θ̇∆ + Θ∆̇)− (1 + ω)Ż

− 2
d

dt

(
σab∆

〈ab〉
)
− c2

s

1 + ω

(
2

3
Θ̇ +

2

3
Θ

d

dt
+

1

2

d2

dt2

)
∆a∆a.

(4.24)

Due to the occurrence of Z-terms, the equation is still coupled to Eq. (4.23). Our
next efforts shall be invested to resolve this dependence and merge both equations into
one. This requires several steps. We begin by replacing Ż with our intermediate result
Eq. (4.23) and sort the result such that scalar couplings are aligned in the first line,
shear tensors of any form are summarized in the second line, while contractions between
gradient quantities are listed in the last two lines,

∆̈ =
2

3
(1 + ω)ΘZ + ωΘ∆̇ + (ω + c2

s)Θ̇∆ +
(1 + ω)(1 + 3c2

s)

2
ρ∆ + c2

sD
2∆

− 2
d

dt

(
σab∆

〈ab〉
)

+ 2(1 + ω)σabZ
〈ab〉 + 2a2(1 + ω)D2σ2

− c2
s

1 + ω

[
2

3
Θ̇− (1 + ω)2(1 + 3c2

s)

c2
s

ρ

2
+ c2

sD
2 +

2

3
Θ

d

dt
+

1

2

d2

dt2

]
∆a∆a

+ (ω + c2
s)Ż

a∆a + (ω∆̇a +
2

3
c2
sΘ∆a +

2

3
(1 + ω)Za)Z

a + c2
s(∆aaDaΘ̇) .

(4.25)
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The last remaining dependencies on Z left are volume expansion distortion Z〈ab〉, the
volume expansion gradient Za, the scalar Z and derivatives of the volume expansion
scalar Θ. In order to eliminate the latter one, we replace it by Raychaudhuri’s Eq. (2.63)

Θ̇ = −1

3
Θ2 − 1

2
(1 + 3ω)ρ− 2σ2 − c2

s

a2(1 + ω)
∆ +

c4
s

a2(1 + ω)2
∆a∆

a + Λ . (4.26)

The temporal change of the volume expansion experiences also the action of a spatial
gradient in the last term of Eq. (4.25). From Eq. (4.26) it can be easily calculated as

c2
s∆aaDaΘ̇ = −c2

s

2

3
Θ∆aZ

a − c2
s

2
(1 + 3ω)ρ∆a∆

a − c4
s

(1 + ω)a
∆aD

a∆ . (4.27)

For the scalar Z we find an equation by rearranging Eq. (4.18) and isolate Z on the left
hand side such that

Z = − 1

1 + ω

(
∆̇− ωZa∆a − ωΘ∆ + 2σab∆

〈ab〉 +
c2
s

1 + ω

(
2

3
Θ +

1

2

d

dt

)
∆a∆a

)
. (4.28)

With these formlae we can reduce the dependences of Eq. (4.25) on volume expansion
variables to the gradient Za and the tensor contribution Z〈ab〉. So far, scalar part of the
comoving fractional density gradient evolves according to

∆̈+

(
2

3
− ω

)
Θ∆̇−
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a∆a +

(
ω∆̇a +

2

3
Θω∆a +

2

3
(1 + ω)Za

)
Za

− c2
s

ω + c2
s

(1 + ω)a2
∆2 − c4

s

(1 + ω)a
∆aD

a∆ .

(4.29)

This equation is already quite similar to what we were looking for: A second order
differential equation of scalar density perturbations that are coupled to, or sourced by,
shear terms. Still, there remain three volume expansion gradient related terms in it,
which will be eliminated in the next subsection.
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4.3.1. Second order perturbative expansion

Up to here we have stuck to our compact notation in which we compressed the zeroth,
first and second order terms in one variable, f := f (0) + f (1) + f (2). To proceed, we now
resolve this notation

∆ ≈ ∆(0) + ∆(1) + ∆(2) ≡ ∆(1) + ∆(2) ,

Z ≈ Z(0) + Z(1) + Z(2) ≡ Z(1) + Z(2) ,

σ ≈ σ(0) + σ(1) + σ(2) ≡ σ(1) + σ(2) ,

Θ ≈ Θ(0) + Θ(1) + Θ(2) ,

ρ ≈ ρ(0) + ρ(1) + ρ(2) .

(4.30)

Note again that first order gauge invariant variables do not possess a zeroth order
term. Furthermore, we observe, that the shear tensor appears only in combination with
quantities, which are gauge invariant at first order. Since these variables lack a zeroth
order component, only the linear perturbation of the shear can appear in Eq. (4.29)
σ ≈ σ(1), if we neglect terms higher than second order. Thus, we can omit the second
order perturbation of the shear completely. For the same reason, we do not need to take
care of the second order perturbations of the two gauge dependent variables ρ(2) and
Θ(2). Inserting the perturbative expansions into Eq. (4.29) reveals
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To make the structure of the result more apparent, we have organized the equation
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above such that second order perturbations are on the left hand side of the equation and
first order perturbations are on the right hand side. This shows that we have achieved
to get a second order wave equation for the second order density perturbation gradient
which is driven by various combinations of first order comoving density gradients and the
shear. Apart from them, also the volume expansion gradient Z

(1)
a and Z

(1)
〈ab〉 still appear

in Eq. (4.31). For Z
(1)
a we reorganize Eq. (4.3) such that
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(4.32)

Inserting this into the second term in the second to last line in Eq. (4.31) generates an
equation consisting only of self-contractions of comoving density gradients
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(4.33)

We can replace the time derivative of Z
(1)
a occurring in Eq. (4.31) by reorganizing Eq. (4.11)

and replace appearing Z
(1)
a -terms with Eq. (4.32). This gives us the equation
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(4.34)

With this result at hand we can proceed and finally erase all dependencies on the volume
expansion gradients from Eq. (4.31) (only Z〈ab〉 remains for reasons that become apparent
later on). The first term in the second to last line of the latter becomes
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(1) a∆(1)
a =

1

3

ω + c2
s

1 + ω
(c2
s − 2ω)Θ(0) 2∆(1)

a ∆(1) a +
1

3

ω + c2
s

1 + ω
Θ(0) d

dt
(∆(1) a∆(1)

a ) (4.35)
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Now, inserting Eqs. (4.32), (4.33), (4.34) and (4.35) into Eq. (4.31) culminates in our
final result:
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4.4. Second order scalar perturbations in the radiation
and matter dominated era

Let us now examine our result in specific epochs. First we fix the background cosmology
by making use of Assumption 5. By doing so, the zeroth order volume expansion
becomes the Hubble constant Θ(0) = 3H(t). We emphasize that the zeroth order density
perturbation only depends on time, ρ(0) = ρ(0)(t). However, this was assumed already
in the calculation above. With the Friedmann Eqs. (2.4) and (2.5) for the zeroth order
quantities we obtain
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Next, we aim to specify this equation in the matter dominated era and the radiation
dominated one. While the latter is of special interest to this work, the former enables
us to compare our result with the literature [135] in which the calculation has been
performed by working in the matter dominated regime right from the beginning. For a
better orientation in the equations we reintroduce κ := 8πG.

Matter dominated universe: In Ref. [135] the sourcing of density perturbations from
GWs has been considered. The authors proceed in rather different way than we do and
assume a FLRW universe in a matter dominated era right away. Also they only study
super-horizon modes which considerably simplifies the calculation. However, in this
era our results should coincide. In a matter dominated universe the equation of state
parameter is ω = 0 and the sound speed vanishes as well c2

s = 0, if we only consider
matter perturbation. In Ref. [135] the result is given in terms of the Ricci tensor, which
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emerges when applying the Gauss-Codazzi equation [135]

R〈ab〉 = −3Hσab − σ̇ab (4.38)

to the shear tensor. For a matter dominated universe the four-acceleration vanishes
(this does not mean ∆ = 0 ! It means that the pressure is zero p = 0.) and the relation
Eq. (2.73) simplifies substantially

∆̇〈ab〉 = −Z〈ab〉 and ∆̇a = −Za . (4.39)

Focusing on super-horizon modes means that the source from which the GWs emerge
on sub-horizon scales is irrelevant, D2σ2 = 0. In a flat universe, K = 0, (details see
Ref. [135]) our result shown in Eq. (4.37) reduces substantial
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2
ρ(1)∆(1) . (4.40)

This almost reproduces the result in [135] for Λ = 0. In contrast to the reference, we find
two further terms in which the first order perturbations of the gauge dependent variables
couple, −2/3Θ(1)∆̇(1) and 1

2
ρ(1)∆(1). The origin of this discrepancy lies in the reduction

procedure which is commonly used in the 1+3 covariant theory. In it, the non-linear
equations are perturbed by directly taking into account that gauge independent variables
only exhibit a first order term while occurring ρ’s and Θ’s can only appear to zeroth order.
This is due to the fact, that they always occur in combination with a gauge invariant
variable. While this works perfectly well in the context of first order perturbations, it fails
at second order, since the product of a gauge invariant variable and a gauge dependent
variable does not uniquely fix the occurring perturbative order anymore. This is why
these variables have escaped the calculation in the reference. From the comparison we
therefore deduce that our equation can reproduce the result in the literature apart from
well justified deviations.

Radiation dominated universe: In this work we want to study FOPT in particle models
which typically take place during the early phase of the universe in the era dominated by
radiation. In this regime the barotropic equation of state is governed by photon pressure
and thus the equation of state parameter is ω = 1/3 and the photon perturbations travel
at the speed of sound c2

s = 1/3. To completely remove the dependence on the comoving

volume gradient in Eq. (4.37), we replace the still remaining term Z
(1)
〈ab〉 by acting with

the comoving divergence on the equation

(1 + ω)Z(1)
a = ωΘ∆(1)

a − ∆̇(1) +O(ε2) . (4.41)
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Making use of the splitting aDbZa = 1/3habZ + Z〈ab〉 + Z[ab], this equations translates to
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+O(ε2) . (4.42)

Inserting this into Eq. (4.37) and assuming a flat, K = 0, universe without a substantial
amount of cosmological constant, Λ = 0, we finally find
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Pure density sources

(4.43)

This equation is the central result of this chapter. It describes second order density
fluctuations sourced by first order density perturbations and the shear tensor. We can
understand this equation as implied by the categorization of the source terms on the right
hand side. The first category involves the shear-terms, which fall into two subcategories.
In the first one are couplings between the shear and primordial tensor modes in the
density contrast, while the second one includes only a pure shear term. As we will see
in the next chapter, the shear is directly related to GWs and therefore, terms in this
first group are seeds set by GWs. The second category involves only couplings of linear
density perturbations and the coupling with Θ(1). These terms are quite complex as
they involve various different coupling types. However, if the gravitational radiation
is stronger than the linear perturbations, these terms should be suppressed. We will
investigate this point in the next chapter, too. Finally, we can see, that the produced
density perturbations obey the damped wave equation and thus oscillate.

We now turn to the next chapter, where we discuss this equation in the context of
FOPTs and how we can deduce impacts on the matter power spectrum from it.



Chapter 5
Gravitational Wave induced
Baryon Acoustic Oscillation

In chapter 4 we have found an equation that governs the evolution of second order
density perturbations from shear and linear density fluctuation sources. From that, we
determine the first-order phase transition parameters α, rβ and t∗ that generate sufficiently
strong gravitational waves to affect density perturbations and in turn modify the matter
power spectrum. To do so, we isolate the most relevant source term and adapt the
equation to the environment and conditions that prevail during generic transitions. The
equation is then converted from the 1+3 covariant formulation into familiar quantities
from the Bardeen formalism which enable a comfortable way to compare the results with
the linear matter power spectrum. The adapted equation is then solved and the result
interpret in terms of gravitational wave driven baryon acoustic oscillations. From the
solution we deduce the transferfunction and in turn the modifications that the linear
matter power spectrum experiences. Demanding that the spectrum may not be altered
stronger than cosmic variance allows, we extract limits on the strength and duration of
the generated perturbations and translate these bounds to a new constraint on a potential
gravitational wave signal today. As for the last chapter the results presented here have
been first derived in the authors’ Ref. [5] which we closely follow.
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5.1. The gravitational wave seed of second order density
perturbations

With Eq. (4.43) we have found a relation in which gravitational shear in conjunction with
first order density variations drives the production of density perturbations at second
order. The next step is to embed this system into the scenario of interest to this work
where GWs emerge from a FOPT. Partially, we use slightly different conventions in this
subsection for reasons that will become clear later. They are listed in appendix A.

Summarizing from the previous chapters, the physical situation reveals itself as follows:
Assume that during the radiation dominated era the dropping temperature of the universe
unleashes a FOPT. The adaption of the new VEV proceeds by the formation of bubbles
which nucleate at time tnuc. Suppose, the strength of the transition is sufficiently large
such that the universe becomes temporarily vacuum dominated, while the bubbles expand.
Eventually, the bubbles collide producing GWs at time t∗ and reheating the universe
back into radiation domination. Via Eq. (4.43) the GWs seed in form of shear distortions
the generation of second order density perturbations. If strong enough, these additional
perturbations manipulate the linear matter power spectrum and hence may modify the
formation of structure.

In order to gain a first impression of the effect, let us for the moment assume that
the transition is so strong that it’s relict, the shear, constitutes the dominating source
in Eq. (4.43) and thus the generation of second order density perturbations is solely
governed by the pure shear term

∆̈(2) +H∆̇(2) − 2H2

(
1 +

1

6

D2

H2

)
∆(2) =

8

3
a2D2σ(1) 2 . (5.1)

We shall investigate later the conditions under which this assumption is satisfied. The
physical circumstances allow for further simplifications. Recapitulating from chapter 3
we assess that for FOPTs in particle physics the following conditions hold:

• The transitions occur in the radiation dominated era ω = 1/3 .

• They take place on sub-horizon scales k > Hnuc .

• The transition may complete within a Hubble time β−1 � H−1
nuc .

• Strong phase transitions occasionally render the universe vacuum dominated ΩGW ≡
ΩBC. In that case the GW production (percolation) time t∗ and the bubble
nucleation time tnuc may differ but still H∗ ≈ Hnuc.

Eq. (5.1) already incorporates the assumption that the fluid neither exhibits any vorticity
nor relevant remaining anisotropic stresses once the GWs are produced. Furthermore,
we consider a spatially flat K = 0 universe. Some of these aspects together with a
comprehensive view of the described system are illustrated in Fig. 5.1. These properties
have the following simplifying implications that reduce the complexity of our equation:
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Figure 5.1.: Schematic flow chart of the processes triggered by a FOPT put into
chronological perspective as described in the text. The green line marks the duration
of the transition since bubble collision. The sequence of processes shown in the chain
diagram take place during the whole period of the transition. Adapted from [5].

• On sub-horizon scales the effects of gauge transformations become negligible. Hence
the gauge issue becomes unimportant and we do not need to worry about the loss
of gauge invariance due to the second order expansion (see, e.g. page 33 in [82].).

• Additionally, on sub-horizon scales and for relatively short phase transitions the
Hubble fricition can be omitted H∆̇(2) ≈ 0 and the scale factor as well as the
Hubble constant remain almost constant a(t) ≈ a(t∗) ≈ a(t∗ + β−1) and H(t) ≈
H(t∗) ≈ H(t∗ + β−1), respectively.

• For sub-horizon modes k/(a∗H∗)� 1 and hence (1− 1
6
(k/a∗H∗)

2) ≈ −1
6
(k/a∗H∗)

2.

Adjusting Eq. (5.1) to the physical situation outlined here and decomposing the variables
into Fourier modes1 f(x, t) =

∫
k
fk e

−ik·x leads to
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k2

a2
∗
∆

(2)
k = −8

3
k2
(
σ(1) 2

)
k
, (5.2)

where we have used DaDa = ∇2/a2. It turns out, that a very transparent way to analyze
this equation is to translate the 1+3 variables back to Bardeen’s formulation by means
of Eqs. (2.89) and (2.91). Let us start with the translation of the shear tensor. In a
comoving frame, the transverse part of the shear tensor σab converts to it’s dual version
of the GW tensor ET

αβ according to Eq. (2.91), see also Ref. [86, 209, 210]. They admit
the relation

σab = a2ĖT
αβ and σab = a−2ĖT αβ . (5.3)

From Eq. (3.27) we recall that the square of the linear, transverse tensor perturbations

1Recall that for a flat space-time the generalized harmonic function Qk often used in the context of
the 1+3 covariant theory become ordinary Fourier-modes, see also appendix B.2. Also note, that k
and x denote the comoving wave vector and the comoving space vector, respectively.
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gives the GW energy density

ρGW(x, t) =
ĖT
αβ(x, t)ĖT αβ(x, t)

16πG
. (5.4)

This implies together with Eq. (5.3) that the magnitude of the shear σ2 := (1/2)σabσ
ab is

ρGW(x, t) =
1

8πG
σ2(x, t) or

σ2(x, t) = 3H∗ΩGW , (5.5)

where in the last step we have converted the GW energy density to the GW density
parameter ρGW = ρtotΩGW with the total energy density at the transition time ρcrit ≈
ρtot = 3H2

∗
8πG

(assuming that Λ ≈ 0).

In a similar manner we can deal with the comoving divergence of the fractional density
gradient ∆ and the density variations δ. In Eq. (2.89) of Sec. 2.2.7 we have already seen
that for a spatially flat space-time

∆(x, t) = ∇2δ̃(x, t) , (5.6)

where tilde denoted the gauge invariant version of δ. However, since we work on sub-
horizon scales, the gauge issue is not relevant and we can omit the tilde. The definition
of the scalar ∆ := aDa(a/ρDaρ) suggests that the same relation also applies for the
second order perturbative level2. In Fourier space the relations (5.5) and (5.6) read
(σ2)k = ρGW(k/a∗, t) and ∆k = −k2δ(k, t), respectively. Applying them to Eq. (5.2)
yields

δ̈
(2)
k (t) +

1

3

k2

a2
∗
δ

(2)
k (t) = 8H2

∗ΩGW(k/a∗, t) for t ∈ [t∗, t∗ + 1/β], (5.7)

This equation applies only during the transition. In appendix D we discuss, if the
produced GW abundance can also generate significant perturbations after the transition.
Here, one has to take into account that the magnitude of the GWs redshifts fast with
a−4 and the scale factor as well as the Hubble constant change with time. In appendix D
we show that this leads to a negligible contribution to the overall production of second
order density variations.

5.2. Solution and interpretation

In order to solve Eq. (5.7) we first employ the transformation to dimensionless variables
for the time, the wave number and nucleation rate that we have already introduced in

2For a second order version of δ see e.g. [211].
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Sec. 3.2.2:

τ := H∗t , κ :=
c

a∗H∗
k and rβ :=

β

H∗
. (5.8)

In the following we denote with primes derivatives with respect to τ . Let us emphasize
again that we reintroduced the speed of light c in the definition of κ for better readability.
In terms of these dimensionless variables Eq. (5.7) reaches its final form

δ(2) ′′(κ, τ) +
1

3
κ2δ(2)(κ, τ) = 8 · ΩGW(κ, τ) . (5.9)

This equation represents the main result of this work and permits the following
interpretation. Recall, that we chose c2

s = 1/3 which in first order perturbations theory
defines perturbations in the radiation fluid. At second order the pressure is approximated
as

p(2) = c2
sρ

(2) + σs(2) +
∂c2

s

∂ε
ρ(1) 2 +

∂c2
s

∂s
s(1) 2 +

∂σ

∂s
s(1) 2 ≈ c2

sρ
(2), (5.10)

where σ :=
(
∂p/∂s

)
[212]. For adiabatic perturbations, s(1) = s(2) = 0, and constant

sound speed, the pressure-energy density relation remains unchanged compared to the
first order approximation. Therefore, they obey the same equation as at first order with
the same proportionality factor and thus the studied perturbations are identified as
variations in the photon plasma δ(2) ≡ δ

(2)
γ . Recall, that first order photon perturbations

follow Eq. (2.39) which reads in the notation of this chapter

δ(1) ′′
γ +

1

3
κ2δ(1)

γ = κ2Φ = 2
(

Ω
(0)
d δ

(1)
d + Ω

(0)
b δ

(1)
b

)
. (5.11)

Comparing this equation with Eq. (5.9) we observe that they obey the same logic:
Photon perturbations on the left hand side are related to energy abundances of other
fluid components on the right hand side. As we have mentioned before, the photon
perturbations are tightly coupled to the baryons during radiation domination and thus
also the second order photon perturbations we have found will induce acoustic oscillations
of baryon perturbations. In contrast to the case of first order Baryon Acoustic Oscillations
(BAO)s, these oscillations are induced by inhomogeneities in the GW energy density.
Another difference concerns the origin of the initial perturbations. While the initial values
of first order perturbations on sub-horizon scales are determined from the perturbations
from super-horizon scales in our situation we shall assume that the initial values of the
second order perturbations are negligibly small and hence perturbations arise solely
from the source term. Therefore, we interpret Eq. (5.9) as second order BAOs driven by
inhomogeneities in the GW energy density.

The density parameter of GWs, ΩGW, can be deduced from Eq. (3.28) by simple
integration over logarithmic wave number. To account for the sub-horizon nature of the
spectrum, we set the lower integration boundary to the size of the horizon at τ∗, which
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Figure 5.2.: The fractional GW density as a function of dimensionless scale, evaluated
in an intermediate stage of the phase transition. The prefactors in Eq. (5.12) are chosen
to unity. Shown are also the peak position and asymptotic behavior as two relics of the
integrand in Eq. (5.12), the GW energy density per logarithmic frequency. Adapted from
[5].

demands κ∗ = 1. The frequency dependent total GW density parameter then reads3

ΩGW(κ, τ) =

(
1

rβ

)2(
α

1 + α

)2 ∫ κ

1

∆rβ(κ′, τ) d lnκ′ . (5.12)

In Fig. 5.2 we show ΩGW(κ, τ) as a function of wave number for a fixed time and
for maximal strength α → ∞ as well as maximal duration rβ = 1. We observe that
ΩGW(κ, τ) grows until it becomes constant close to peak position κpeak of the GW density
per logarithmic frequency interval. The function then forms a plateau with magnitude
∼ 0.1 which renders the maximal possible fraction of energy stored in GWs.

With this input for the source term we are ready to calculate the perturbations caused
by the inhomogeneities in the GW energy spectrum. We insert Eq. (5.12) into Eq. (5.9)
and demand that the contribution of primordial second order perturbations is of negligible
size. Therefore, we set the initial conditions δ(2)(κ, τ∗) = δ(2) ′(κ, τ∗) = 0 to zero. The
resulting spectrum at the end of the transition δ(2)(κ, τ∗ + r−1

β ) is presented in Fig. 5.3.
We observe that the solution features a prominent peak due to the rise of the GW
energy density which is superimposed with a small oscillation pattern originating from

3Recall that for transitions which exhibit a long phase of supercooling the bubbles expand with the
speed of light vw = 1 into a vacuum dominated universe and hence do not lose energy to the
surrounding plasma κeff = 1.
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Figure 5.3.: Left: The blue line shows the solution of Eq. (5.9) as a function of di-
mensionless wave number and at the end of the transition. For comparison we also
show the source term (orange) and the asymptotic behavior of the flanks. Again, we
have put α → ∞ and rβ = 1. Right: The same as the left plot but as a function of
comoving wave number. We show the solution exemplary for three different times close to
matter-radiation equality together with their peak position and horizon mode. Adapted
from [5].

the wave-like form of the equation. The strongest perturbation is generated roughly at
the peak position κpeak of Ωlog

GW which corresponds to the average bubble distance at
nucleation. Beyond the peak, the power of the perturbations decreases with κ−2. Besides
a numerical solution, we provide in appendix C also analytic solutions for the high and
the low wave number regime. Note, that the numerical solution shown in Fig. 5.3 ensures
that even for the strongest possible phase transition we can not leave the linear regime
δ(2) � 1.

Next, let us discuss under which conditions the additional perturbations can alter the
linear matter power spectrum. Since their generation is bound to sub-horizon scales they
can only impact scales of galaxies and lager when they occur at times that correspond to

t : 106 s− 1012 s ∼ T : (O(100)−O(1)) eV . (5.13)

The upper bound is given by matter-radiation equality teq ∼ 1012 s and is due to our
restriction to the radiation dominated era. The scale, at which the peak of the density
deviation spectrum occurs, is roughly set by the source term. The latter develops a
plateau around the scale where the density parameter per logarithmic frequency exhibits
its maximum which lies at (see Sec. 3.2.2)

kpeak =
2πrβH∗a∗

c
, or

κpeak = 2πrβ . (5.14)

Therefore, the largest impact of the generated density perturbations shown in Fig. 5.3
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depends on the production time of GWs (5.13) and the inverse duration of the transition.
As shorter the transition as smaller the length-scales which are effected most. In order
to compare the time of occurrence and the comoving scale which is affected, we show in
Fig. 5.3 the solution of Eq. (5.9) for three different times t∗.

Since we identified our perturbations as perturbations in the baryon-photon plasma,
we can also deduce a typical sound horizon of the oscillations. In contrast to the first
order perturbations, which immediately start oscillating when they enter the horizon,
our oscillations emerge from a single kick. Therefore, we derive the sound horizon for
baryon oscillation due to δ(2) by restricting the integral to the time interval in which the
transition proceeds and hence

rGW
s :=

∫ t∗+1/β

t∗

dt

a∗
cs =

1√
3a∗β

2π√
3 kpeak

. (5.15)

For a transition that occurs around t∗ = 1010 s this leads to an horizon of size

rGW
s = 3 Mpc , (5.16)

Comparing this to the value of the standard BAOs rs = 147 Mpc [109, 114], we note that
a strong phase transition around this time would lead to circular distributions of extra
structure on much smaller scales.

In the calculations above we adjusted Eq. (2.7) for the Hubble time such that it holds
close to equality where the DM abundance successively takes over

H(t) =
ȧ

a
= H0

√
Ωm0

√
a+ aeq

a2
. (5.17)

For the Hubble time today we used H0 ≈ 70 Mpc/(km s) ≈ 2.27 · 10−18s−1 and from

Planck data we deduced the scale factor at equality as aeq =
Ωγ0
Ωm0

= 8.5·10−5

0.3
= 2.4 · 10−4

[109]. In order to convert between cosmic time and scale factor we use the implicit
relation

t ·H0 =
2

3

1√
Ωm0

[√
a+ aeq(a− 2aeq) + 2a3/2

eq

]
, (5.18)

which reduces to a(t) =
√

3 ·H0

√
Ωγ0 · t for times long before matter-radiation equality,

a� aeq.
Before ending this section let us come back to the assumption we made in the beginning,

namely that there exist a region in parameter space in which the pure shear term dominates
all other source terms. Indeed, with the methods developed above we can estimate this
region now. From the relation between the magnitude of the shear and the GW energy
density we deduce that roughly |H−1

∗ σ(1)| ∼
√

3ΩGW(κ, τ). The size of the first order
scalar fractional density gradient, however, is of order |∆| ∼ 10−4 (see also next section)
as suggested by the temperature fluctuations in the Planck data [15]. Therefore, the
couplings of shear and ∆〈ab〉 are at most of order

√
3ΩGW(κ, τ)× 10−4. The pure shear
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term dominates this and the terms of order |∆|2 if |σ(1)| > |∆(1)| ∼ 10−4. This turns out
to be valid for a rather big set of values. We find that for strong transitions α → ∞
it can proceed as fast as β/H∗ ≈ 100 until the maximal value of ρGW is of order 10−4.
Vice versa, for a very long transition β/H∗ = 1, the strength can be as small as α ≈ 0.1
before being comparable to the magnitude of ∆. This estimation subsequently motivates
the ansatz of Eq. (5.1) and confirms that the pure shear term is the most interesting in
case of strong phase transitions.

5.3. Imprints on the matter power spectrum

In Sec. 2.1.2 of chapter 2 we have seen that we can account for modifications of the
matter power spectrum P(k) caused by extra perturbations δ(2) with the help of the
transferfunction T (k) . Since in our case the additional variations are induced on sub-
horizon scales, the transferfunction encodes the relative change they induce on sub-horizon
primordial perturbations δ

(1)
∗ (k) at time t∗. Therefore, we define the transferfunction

with the ratio of second order and first order perturbation:

T 2
δ(2)(k) := 1 +

(
δ(2)(k)

δ
(1)
∗ (k)

)2

. (5.19)

The information about the altered density fluctuations is then transmitted to the matter
power spectrum via the relation

P̃(k) ∼ T 2
δ(2)(k)P(k) . (5.20)

With the perturbations δ(2)(k) derived in the last section, the function δ
(1)
∗ (k) remains to

be estimated. One possible way is to estimate this function as the standard deviation
from the linear matter power spectrum. To do this, we use the fitting formula Eq. (2.36)
of the present linear matter power spectrum P0(k) and transport it back to the time
of the phase transition. Essentially, the spectrum went through two stages since then.
First, shape changes during the last part of the radiation dominated era between the
occurrence of the phase transition until equality, and secondly mode-independent steady
growth in magnitude during matter domination. We accounted for the latter phase by
multiplying the spectrum today, P0(k), with the linear growth function

D+(a) ≈ 5

2

aΩm0

Ω
3/4
m0 − ΩΛ + (1 + Ωm0/2)(1 + ΩΛ/70)

, (5.21)

which allows to transport the matter power spectrum back to equality P̃eq(k) =
P0(k)D2

+(aeq). With the values for the density parameters of total matter Ωm0 and
dark energy ΩΛ measured by Planck [109] the growth factor evaluates at equality to
D+(aeq) ≈ 2.5 · 10−4. Before equality, however, sub-horizon modes remained almost
constant in size, but at the time, when the phase transition happened, those modes
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Figure 5.4.: The primordial first order density perturbations estimated from the linear
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smaller than k∗ had not yet entered the horizon. Thus, we shall restrict ourselves only to
modes lager than k∗. Joining these two facts we estimate the primordial modes as

δ(1)
∗ (k) ∼= D+(aeq)

√∫ ∞

0

dk̃
k̃2

2π2
P0(k̃)W 2

k (k̃) for k∗ ≤ k , (5.22)

where Wk(k̃) := 3
(k̃/k)3

(sin(k̃/k)− k̃/k cos(k̃/k)) is the window function typically used for

truncating the spectrum at some scale k. For later use we reformulate δ
(1)
∗ (k) in terms of

the dimensionless wave number δ
(1)
∗ (κ · k∗) and display the result in Fig. 5.4 for different

transition times. We observe, that the amplitude of the primordial perturbations is of
order 10−4 and can even exceed 10−3 at high wave numbers.

The resulting form of the transferfunction Eq. (5.19) using Eqs. 5.9 and 5.22 is presented
on the left hand side of Figs. 5.6, 5.7, and 5.8 for different choices of percolation times t∗,
durations r−1

β and strength α, respectively. As expected, for transitions providing smaller
amounts of supercooling and strength the transferfunction approaches unity, while the
peak position is determined by the time and duration of the transition. In order to
illustrate how these effects modify the matter power spectrum at equality, we adjust it
by T 2

δ(2)
such that it reads

P̃eq(k) = T 2
δ(2)(k)P0(k)D2

+(aeq) . (5.23)

On the right hand side of Figs. 5.6, 5.7, and 5.8 we show the altered matter power spectra
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associated with the transferfunctions on the left hand side. In Fig. 5.5 we have graphically
summarized and illustrated the procedure that we conducted to reach Eq. (5.23) for an
easier replicability. Next, we aim to derive limits on the transition paramters α and rβ

Figure 5.5.: Graphical explanation of our strategy to find the modified linear matter
power spectrum. Starting from the upper right, using the growth function we reproduce
the amplitude of the matter power spectrum at equality. Then, we estimate the linear
perturbations at the scale k∗ from it and use the result in order to derive the transfer-
function. Finally, we find the modified matter power spectrum. Graphic modified from
[5].

for different percolation times t∗. Obviously, the height of the induced peak is mainly
controlled by the former two parameters which becomes apparent from the prefactor in
Eq. (5.12). As maximally allowed deviation from the linear matter power spectrum we
choose to demand that any change to the spectrum should not exceed the limit set by
cosmic variance, which constitutes a statistical uncertainty on the precision to which the
matter power spectrum can be measured [213]. In the case of Gaussian random fields and
an observational volume V ≈ 1(Gpc/h)3, which contains N modes, the cosmic variance
of the spectrum is defined as

σ(k) :=
√

cov(P0(k),P0(k)) = P0(k)

√(
2

N
+

1

n

)
, (5.24)

where n is related to the so called band-averaged trispectrum. According to Ref. [214] this
spectrum is approximately of size 1/n ≈ 0.00792 (Gpc/h)3/V and the number of modes
can be estimated as 2/N = (2π)2/(V · k2∆k), where ∆k ∼ 0.02 · log (kMpc) (Mpc/h)−1
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Figure 5.6.: Left: The transferfunction for δ(2) for different times t∗ (red shades) and
the cosmic variance limit (blue area). Right: The modified linear matter power spectrum
for different times t∗ (red shades). We have set the values for the other parameters to
r−1
β = 3 and α = 3 . Adapted from [5].

represents the typical distance between galaxies. Imposing this bound upon the modified
matter power spectrum P̃(k) creates the blue areas in Figs. 5.6, 5.7, and 5.8 which are
hardly seen in the right hand side of the plots. Using this, the cosmic variance bound can
be translated into exclusion regions on α-β parameter pairs in dependence on the time t∗.
In Fig. 5.9 we show a parameter scan in which red shaded regions denote excluded values
and white regions denote allowed choices of α and β. As a main result of this work, we
can exclude a combination of long rβ < 5− 6.8 and very strong α > 1 FOPTs to have
taken place during these times. The bounds on the parameter triples (α, β, t∗) can be
also translated into a new limit on GW signals today. To do so, we use the formula for
the logarithmic GW abundance today given by [201]

h2Ωlog
GW0

(f) = 1.67× 10−5 · r−2
β ·

(
α

1 + α

)2(
100

g∗

) 1
3
(

0.11

0.42 + 1

)
3.8(f/fpeak)2.8

1 + 2.8(f/fpeak)3.8
,

(5.25)

where the peak frequency fpeak today reads

fpeak = 16.5× 10−6 Hz
0.62

1− 0.1 + 1.8
rβ

(
T∗
100

)(
g∗

100

) 1
6

, (5.26)

and g∗ denotes the number of relativistic degrees of freedom at the time of the transition.
Here we take the value of the standard model g∗ which is true after the QCD phase
transition [215]. However, since we investigate here FOPTs from models beyond the SM
this value may change depending on the field content. Therefore, g∗ must be adapted
to the specific model. During radiation domination the temperature of the plasma at a
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certain time is given by the relation

T∗ =
30

π2

3

4g3
∗

(
1

8πGt2∗

) 1
4

. (5.27)

With this we can convert the bounds on the phase transition parameters due to linear



Chapter 5. Gravitational Wave induced Baryon Acoustic Oscillation 

structure formation to bounds on the maximal magnitude of GW signals. The result is
shown in Fig. 5.10 and constitutes the another central result of this work. The frequency
band of f ≈ 1.5× 10−16 Hz to f ≈ 1.5× 10−14 Hz in Fig. 5.10 corresponds approximately
to the scales on the right flank of the matter power spectrum where our method applies.
Also shown are the present and future limits that are or will be set by various experiments.
We show here the space-interferometer LISA [45] which is a planned experiment and
the timing pulsar arrays [50] NANOGrav [51, 54], PPTA [52] and EPTA [53] which
have already set bounds. Additionally we show indirect bounds emerging from the
CMB [216–218] which constraints the maximal allowed effective number of neutrino
species Nν + ∆Nν where Nν = 3 in the SM. Since these constitute radiation energy, the
number can be translated into a bound on the maximal amount of radiation and thus on
GWs via [160, 219, 220]

h2ΩGW(f) ≤ 5.6 · 10−6∆Nν . (5.28)

Besides the CMB also BBN induces a limit to relativistic neutrino species which reads
∆Nν ≤ 0.2 [221] and is added to Fig. 5.10. We show the abundance of a stochastic GW
background as measured today against the frequency f and the comoving wave number
k. Note that the bound is other than expected larger for α = 1 than for α ≥ 20. This
originates from the fact that for larger α also larger rβ values are excluded, see Fig. 5.9.
In turn, for α = 1 the inverse duration ratio is smaller, which has much bigger influence
on the amplitude of the GW signal than α, see Eq. (5.25). With this result we close this
section. In the next part we put our findings into context and conclude.
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Chapter 6
Discussion

Let us now turn to the interpretation of our results. First, we put them into context
with regards to generic particle models and then generally evaluate our approach to
investigate interactions between GWs from FOPTs and density perturbations.

As we have found, to have an impact on the matter power spectrum, the phase
transition is required to take place at relatively late times t∗ & 106 s; much later than for
example BBN, taking place at ∼ 102 s. This certainly constitutes an untypical time for
phase transitions usually considered in particle physics. As depicted in Tabs. 6.1 and 6.2
most models place them at the GeV or TeV scale. However, late phase transitions have
been considered in the literature in recent years, usually refer to the matter dominated
era [222–230]. For the discussion, we want to pay special attention to Ref. [77], which
we mentioned already in the introduction. In this paper the generation of density
perturbations by a FOPT and the accompanying GWs is considered during the matter
dominated phase and at first order, where the extra energy density affects the collapse
dynamics of overdensities. This, in turn, changes the amount of enclosed fluctuations in
a spherical shell as a function of the transition duration. As a future project, it would be
interesting to study if this approach is also viable during radiation domination and if one
can connect it to parameters inferred from the underling particle model.

Besides the transition time, we were also able to put stringent limits on the strength
and duration, as shown in Fig. 5.9. In Tabs. 6.1 and 6.2 we have listed the corresponding
quantites for some exemplary models. Most models, especially those around the EW
scale, predict smaller values for the latent heat, α < 1, and very fast completion,
rβ ∼ 100 − 1000. We observe that especially singlet extensions of the SM modifying
the EW phase transition require a huge amount of additional scalars (∼ 60) to acquire
a latent heat larger than unity. However, in Tab 6.2 we have also listed a model that
reaches comparably strong, α = 0.2, and long, rβ = 6.42, transitions in a Higgs portal
model. In contrast to the EW scale models, we find the most stringent limit for α > 1 on
the inverse duration to be rβ . 6.8 . Due to the low scale behavior of the cosmic variance,
which becomes smaller at higher wave numbers, earlier FOPTs are less constrained.
Remarkably, such extreme supercooling conditions can be achieved particularly in models
that are almost or fully scale invariant1 [159]. Therefore, conformal models are of special

1See e.g. the discussion of the Dilaton model in Ref. [159].
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Model Ref. Tnuc (GeV) α rβ

Majoron inverse seesaw [68] 293 0.5 4.9
183 7.7× 10−4 7.2× 104

77 0.1 231
122 1.4× 10−2 3.1× 103

92 9.4× 10−3 3× 104

SM + 1 scalar [63] 100 10−2 2× 104

100 6× 10−2 103

100 10−1 102

SM + 4 scalars [63] 100 2× 10−2 4× 104

100 10−1 103

100 4× 10−1 102

SM + 60 scalars [63] 100 6× 10−2 105

100 8× 10−1 2× 103

100 2 2× 102

EW with Higgs portal [159] 56.4 0.20 6.42
2 HDM [159] 68.71 0.046 2446

Table 6.1.: Benchmark values for phase transition parameters for a selection of models.

interest to the scenario described in this work and certainly require a more detailed
investigation in this context. Scale invariance would also allow to place the transition at
the scales we characterized as relevant for imprints in the structure. However, it remains
to be studied if such a model still can address open issues in the ΛCDM or the SM. Other
models exhibiting long lasting phase transitions are for example proposed in the context
of Super Symmetry (SUSY) by Ref. [231] (rβ ∼ 6.0) and models with extraordinary
strong transitions (α = 5) are of Randall-Sundrum type or possible in composite Higgs
theories (α = 10, rβ = 3) [232]. At the moment, we are not aware of models that meet all
conditions at once. Namely, taking place around the mentioned scales with the necessary
strength and duration. Therefore, with the exclusion regions of Fig. 5.10 we could not
yet exclude a specific model.

After having discussed our result in the context of generic particle models, we now
address the limitations of our work. Most of them arise from the second order perturbation
procedure. In the perturbative expansion we assumed that the fluid is perfect and thus
that anisotropic stress contributions vanish, πab = 0. However, the gravitational radiation
emerges from non-zero anisotropic stress Ω(k, t) ∼ Λij,mnTijT

∗mn ∼ Π2. In Ref. [77], a
similar problem is briefly discussed. Here the author argues that the gravity waves will
fill the space uniformly and instantaneously, while the anisotropic stress would remain
a localized source. If we would allow in the perturbation calculation for a non-zero,
transverse anisotropic stress due to the conservation laws Eqs. (2.61) and (2.62), this

would constitute a coupling to the acceleration A
(1)
a . Since A

(1)
a ∼ Dap

(1), which induces
a direct connection between the pressure gradient at second order and at first order,





Model Ref. Tnuc (GeV) α rβ

Conformal B-L [233] 103 5× 104 20
8× 103 105 18

105 108 8

Warped spacetime [234] 200 5 120
320 3 250

Dark sector with gauged U(1) [61] 10−2 − 100 ≥ 0.1 ≥ 180

DSFZ-Axion [235] 9× 106 3.5 150
6× 107 106 15

General NMSSM [231] 76.4 0.143 6.0
112.3 0.037 277

SM + dim. 6 operator [236] 26 2.3 5
Composite Higgs [232] 150 ≥ 10 ∼ 3

Table 6.2.: Benchmark values for phase transition parameters for a selection of models.

fluctuations would not propagate independently. As our calculation very much relied on
the direct proportionality of acceleration and density gradient, this would significantly
complicate the calculation and require additional investigations. Besides this, a coupling
∼ πabA

b also appears in the time-dependent evolution of the density gradient in Eqs. (2.72)
and (2.73). It is likely that this coupling will not generate large effects similar to the
direct coupling of density perturbations and shear stresses. This might also be true for
the couplings discussed before.

Another possible limitation originates from the duration of the transition, which lasts
almost a Hubble and therefore friction effects could become important. However, we have
tested this in our numerical calculations and couldn’t find any significant deviations from
the solution without the friction term. Moreover, we assumed that the sound speed c2

s

and the equation of state parameter ω remain constant in time. Close to matter-radiation
equality at t∗ ≈ 1011 s, we find a mild deviation of the equation of state from a pure
radiation fluid with ω ≈ 0.27, which do not alter our result significantly. We therefore
expect that the equation of state parameter is approximately constant during the short
time of a phase transition. Additionally, as we have discussed, at second order the sound
speed is in good approximation the relation between pressure and density perturbations,
if the sound speed remains constant. For the short transition and in models involving
more scalars than fermions this is a reasonable assumption, see Ref. [76].

Further limitations could arise from the fact, that we set Λ = 0 in our perturbation
calculation. However, the FOPTs we focus on generate a strong supercooled phase
producing Λ > 0 during the propagation of bubbles. Since the phase of bubble collision,
which turns the universe back to radiation domination, and the production of second
order density perturbations coincide, it is difficult to clearly separate the two regimes.
Thus, in a more realistic scenario it might be best to account for the reheating time.
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Let us emphasize that the scale on which we excluded a stochastic GW background in
Fig 5.10 could be further tested by Lyman-α-forest data, see Refs. [12, 237, 238]. Since
the cosmic variance is the most conservative bound on the matter power spectrum, using
these measurements would exclude a smaller region in the α − β plane, which can be
tested further in the future2.

All in all, though we could show that effects of FOPTs transmitted via GWs are possible,
we lack models in the found parameter region to compare our result to. Furthermore,
perturbing the non-linear equations to second order requires many simplifications that
each might be fulfilled better or worse. Nevertheless, based on the acquired results here
and in the literature, there is room for future work. We present some possible topics in
the next section.

6.1. Outlook

The results we have found in this thesis can be studied further, especially some assumptions
and simplifications could be investigated in more depth. From the point of view of
cosmological perturbation theory, it would be interesting to redo the second order
perturbation analysis in the Bardeen formalism where Einstein’s equations are perturbed
directly and compare the result with ours. Furthermore, the photon oscillations induced
will also be imprinted in higher multipoles of the CMB. Therefore, one could test if this
leads to additional constraints.

Certainly, it is also interesting to extend already existing approaches in the future, e.g.
Ref. [77] to the case of radiation domination and different particle models. Moreover,
one could apply the findings of Schmid et. al. [73, 74] to particle models and effects
on primordial perturbations due to a changing speed of sound c2

s(t) in fermion rich
models [76]. The benefit of these approaches is that density perturbations are already
affected at first order, which might lead to stronger effects. Furthermore, the linear
perturbations could also be altered by the phase of supercooling itself. Since the universe
becomes vacuum energy dominated, Λ > 0 and ω = −1, this changes the equation of
motion of δ(1), see Eq. (2.79).

More direct effects on already existing linear perturbations could also arise in a similar
manner as they do for neutrinos. Since the collision of bubbles induces an anisotropic
stress to the fluid, it’s scalar part Π induces a difference in the Bardeen potentials
Ψ− Φ ∼ Π. By using the CAMB code [239–241] and the analytic results we found in
Sec. 3.2.1 one could deduce the effects on the matter power spectrum by this channel.
The effect of additional anisotropic stress in the fluid on the CMB has been studied in
the past, see e.g. [242].

However, one should always bear in mind that FOPTs are events on sub-horizon scales
and therefore the time on which they have to occur to effect structure formation is
tightly constrained to late times. Early phase FOPTs could have altered the structure
only by the production of primordial black holes at very small scales [243]. In these
models the collision of bubbles excites the density fluctuation amplitude to exceed the

2We thank Matteo Viel for pointing this out.
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critical collapse value and thus black holes form. This has been extensively studied in
the literature as a possibility and it would be interesting to see if one can derive general
bounds on α and rβ from the bounds on primordial black hole masses.

Lastly, let us mention a recently proposed interaction between density fluctuations
and GW in the opposite direction, where the GW signal experiences modifications from
density perturbations [244]: Still a lot of interesting work can be done!





Chapter 7
Conclusion

In conclusion we have shown that FOPTs exhibit the ability to imprint a peak-like
feature in the matter power spectrum via GWs, if they are strong α ≥ 1, long lasting
β/H∗ . 6.8 and occur at length-scales of galaxies and larger. The feature is caused
by second order fluctuations seeded from inhomogeneities in the GW energy density.
The radiation fluid adopts this inhomogeneity and is excited to oscillations, which are
dominated by the slope of the GW energy density. Before decoupling, the photons are
tightly coupled to the baryons and thus we identify the perturbations as second order
baryon acoustic oscillations driven by inhomogeneities in the energy density of GWs,
which leads to an enhanced probability to observe structures on Mpc-scales.

We have established these results by perturbing two coupled non-linear equations
monitoring the evolution of density gradients in the 1+3 covariant framework. Our
calculation culminated into the aforementioned wave-like equation for second order
density perturbations where we have singled out the fractional energy density in GWs as
the most important source term in presence of a strong FOPT. Therewith, we provide
a direct link between GWs and density perturbations. Using this equation we have
derived bounds on the maximal allowed duration and strength of the phase transition by
comparing the resulting fluctuations altering the matter power spectrum with the bound
put by cosmic variance on it. Moreover, these bounds also translate to an exclusion
region for a relic stochastic GW background today, which is not reached by planned GW-
experiments. However, further research tackling the problem from different perspectives
is needed. Especially, a deeper comparison with proposals in which density fluctuations
are altered already at the linear level should be addressed next. Beyond cosmological
considerations, the investigation of particle models that have the ability to offer solutions
to the most prominent problems of the SM, such as the identity of DM, and also exhibit
a FOPT at these late times should be carried out.

All in all, this work shows that extracting additional information from different
concepts is a promising way to go. The interaction between phase transitions and
structure formation is such a way and has the potential to enable insights into the deepest
secrets of modern fundamental physics. As it is “[...] a tough time for fundamental
physics.” as the recently deceased Steven Weinberg1 put it [246] and the parameter

1*3.5.1933-†23.7.2021 [245].
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spaces for many current theories beyond the SM become increasingly under pressure,
new, exotic and unexpected paths have to be pursued. The picture of the structure of
the universe has evolved a lot since Vincent van Gogh drew his famous painting of a
starry night; it is thrilling to await what will be added next on the canvas in the near
future and maybe the next new element is the footprint of a first-order phase transition
in the large scale structures of our universe.
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Appendix A

Notation and Conventions

Throughout this work we use natural units c = ~ = 1. However, for better readability
we restore the light speed c where appropiated. This is mainly done in the figures in
chapter 5. Newtons constant is taken as G = 6.674 × 10−11 m3

kg s2
and for the slope of

the primordial power spectrum we take ns ≈ 1. Conformal time is denoted by η and
cosmic time by t. Note, that primes on a variable have two different meanings: In the
first part of this work primes denote derivatives with respect to conformal time, while in
the second part they denote derivatives with respect to the dimensionless cosmic time τ .
Sometimes we use the reduced Hubble parameter H = h× 100 km

s Mpc
whose value today

is taken to h0 ≈ 70. We use the metric signature (−+ ++) common in cosmology and
relativistic physics.

We distinguish between 3+1 slicing and 1+3 threading of space-time by using opposite
letter types for the index. In the 3+1 framework we use Greek indices for four-vectors
µ, ν, · · · = 0, 1, 2, 3 and Latin indices for spatial vectors i, j = 1, 2, 3. In the 1+3 splitting,
Latin indices denote four-vectors a, b, · · · = 0, 1, 2, 3 and Greek indices three-vectors
αβ, · · · = 1, 2, 3. Additionally, if we do not refer to the components, but to the full vector,
we write spatial vectors in bold letters V.

Transformation into Fourier space are preformed according to

f(x) =

∫
dx3f(k)e−ik·x , (A.1)

while the inverse transformation is

f(k) =
1

(2π)3

∫
dk3f(x)eik·x . (A.2)

Note, however, that in Sec. 3.2.1 we use a slightly different Fourier convention for
transforming from time to frequency space ω in order to be consistent with the respective
literature.
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Identities and Harmonic
Decomposition

B.1. Identities in the 1+3 decomposition of space-time

The behavior of the orthogonal projection operator hab under the action of the projected
gradient and the time derivative fulfills the relations [86, 123]

Dahbc = 0, (B.1)

Dahab = ubΘ, (B.2)

ḣab = ubAa + uaAb . (B.3)

The decomposition of the four-velocity with respect to the spatial gradient reads

Dbua = σab + ωab +
1

3
Θhab . (B.4)

In general, different components of the spatial derivative do not commute. They are
non-zero in the presence of vorticity ωab and of the Riemann tensor in the local rest space
of the observer Rabcd. For a scalar f , a vector Va and a tensor Sab the commutation laws
are [86]

D[aDb]f = −ωabḟ , (B.5)

D[aDb]Vc = −ωabV̇〈a〉 +
1

2
RdcbaV

d , (B.6)

D[aDb]Scd = −ωabhcehdf Ṡef +
1

2
(RecbaS

e
d +RedbaSc

e) . (B.7)

In a similar manner the time and the spatial derivative also obey a non-zero commutation
law

Daḟ − hab ˙(Dbf) = −ḟAa +
1

3
ΘDaf + Dbf

(
σba + ωba

)
. (B.8)
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B.2. Harmonic decomposition

In the presence of non-zero curvature, the mode expansion of scalars, vectors and tensors
in terms of harmonic functions does not reduce to a standard Fourier transform. In
the covariant formalism one uses general harmonic functions Q‖ to account for this fact.
They are defined as eigenfunctions with eigenvalue −k2/a2 of the orthogonal projected
Laplace operator (Laplace-Beltrami operator)

D2Qk,{ ,a,ab} = −k
2

a2
Qk,{ ,a,ab} , (B.9)

where Qk denotes scalar harmonics, Qk,a denotes vector harmonics and tensor harmonics
are denoted by Qk,ab. In a flat space-time, K = 0, the harmonic functions have the usual
plane wave form and the Laplace-Beltrami operator D2 becomes the Laplace operator
∇2/a2 [92, 247]. Choosing an orthonormal basis, e1 and e2, in the plane orthogonal to
the wave vector k, the harmonic functions read in flat space

Qk = exp (−ik · x) ,

Q[±1]
k,α =

−i√
2

(e1 ± ie2)α exp (−ik · x) ,

Q[±2]
k,αβ = −

√
3

8
(e1 ± ie2)α(e1 ± ie2)β exp (−ik · x) .

Thus the harmonic decomposition of scalars, vectors and tensors simply becomes the
Fourier transform

f(x, t) =

∫
dk3 fk(t)Qk , Va(x, t) =

∫
dk3

∑

m=−1,1

V
[m]
k Q

[m]
k,a , (B.10)

Sab(x, t) =

∫
dk3

∑

m=−2,2

S
[m]
k Q

[m]
k,ab , (B.11)

where the sums account for the different polarization states. In both appendices we
closely followed [5].
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Analytic Solution to the
Inhomogeneous Wave Equation

An analytic solution to Eq. (5.9) evaluated at the end of the transition τf can be found
in the limit of small wave number κ � κpeak and big wave number κ � κpeak, where

κpeak ≈ 2πrβ denotes the position of the maximum of the source term Ωlog
GW in Eq. (3.45).

To do so, we first investigate ΩGW in the two limits and then apply the result to Eq. (5.9).
The easiest one is the low κ regime. Expanding Ωlog

GW around small κ and then performing
the logarithmic κ-integration yields

Ωlow
GW = C low

GW(κ− κmin)3(τ∗ − τ)4(τ + τ∗ − 2τf )
2 , with

C low
GW =

1

3
rβ

α2

(1 + α)2
ε .

(C.1)

For the high κ case the situation is more complicated, since the integration over κ depends
on the small κ behavior. Therefore, we split the integration into two parts with respect
to κpeak and find

Ωhigh
GW =

∫ κpeak

κmin

(
Ωlog

GW(κ, τ)
)low

d log κ′ +

∫ κ

κpeak

(
Ωlog

GW(κ, τ)
)high

d log κ′

= C low
GW(κpeak − κmin)3(τ∗ − τ)4(τ + τ∗ − 2τf )

2

+ Chigh
GW

κ− κmin

κκmin

1

(τ + τ∗ − 2τf )2
,

(C.2)

where we have introduced the coefficient in the high κ regime Chigh
GW = 81

r3β

α2

(1+α)2
ε. Note

that the source terms are only defined within the interval τ∗ < τ < τf .

The analytic solution of Eq. (5.9) in the two limits can now be deduced by using the
variation of parameter method. Solving first the homogeneous equation δ(2) ′′(κ, τ) +
1
3
κ2δ(2)(κ, τ) = 0 yields the solution

δ
(2)
h (κ, τ) = Aκ cos

(
κ√
3
τ

)
+Bκ sin

(
κ√
3
τ

)
, (C.3)
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where Aκ and Bκ are constants, which need to be specified by the initial conditions1.
With this, the general inhomogeneous solution is then given by

δ(2)(κ, τ) = δ
(2)
h (κ, τ)+

8
√

3

κ

[
sin

(
κ√
3
τ

)∫ τf

τ∗

cos

(
κ√
3
τ̃

)
ΩGW(τ̃ , κ) dτ̃

− cos

(
κ√
3
τ

)∫ τf

τ∗

sin

(
κ√
3
τ̃

)
ΩGW(τ̃ , κ) dτ̃

]
.

(C.4)

The time integrations can now be solved in the high or low wave number regime by
inserting Eq. (C.2) or Eq. (C.1), respectively. The low-κ solution δ(2) low becomes

δ(2) low(κ, τ) =
(
Aκ + Alow

GWκ

)
cos

(
κτ√

3

)
+
(
Bκ +Blow

GWκ

)
sin

(
κτ√

3

)
, (C.5)

where the modified coefficients Alow
GWκ and Blow

GWκ read

Alow
GWκ = −

24C low
GW

(
κ3 − κ3

min

)

κ8
2
√

3r−1
β κ

(
2160 sin

(
κτ∗√

3

)
+
(

1080 + 36r−2
β κ2 + r−4

β κ4
)

sin

(
κτf√

3

))

+
(

19440 + 216r−2
β κ2 − 6r−4

β κ4 − r−6
β κ6

)
cos

(
κτf√

3

)

+ 432
(

2r−2
β κ2 − 45

)
cos

(
κτ∗√

3

)]

(C.6)

and

BGWκlow =
24C low

GW

(
κ3 − κ3

min

)

κ8
2
√

3r−1
β

(
2160κ cos

(
κτ∗√

3

)
+ κ

(
1080 + 36r−2

β κ2 + r−4
β

)
cos

(
κτf√

3

))

+
(
−19440− 216r−2

β κ2 + 6r−4
β κ4 + r−6

β κ6
)

sin

(
κτf√

3

)

+ 432
(

45− 2r−2
β κ2

)
sin

(
κτ∗√

3

)]
.

(C.7)

In the same manner we derive the analytic solution for high dimensionless wave numbers.

1In this work we assumed no preexisting second order density perturbations and therefore zero initial
conditions.





The general inhomogeneous solution is

δ(2) high(κ, τ) =
(
Aκ + Ahigh

GWκ

)
cos

(
κτ√

3

)
+
(
Bκ +Bhigh

GWκ

)
sin

(
κτ√

3

)
, (C.8)

where the modified coefficients Ahigh
GWκ and Bhigh

GWκ are given by

Ahigh
GW =Alow

GWκpeak
− 4Chigh

GW (κ− κpeak)

3
√

3κ2κpeak

[
6rβ sin

(
κτf√

3

)
− 3rβ sin

(
κτ∗√

3

)
+

2
√

3κ





Ci

(
κ√
3rβ

)
− Ci

(
2κ√
3rβ

)
 cos

(
κ(2τf − τ∗)√

3

)
+


Si

(
κ√
3rβ

)
− Si

(
2κ√
3rβ

)
 sin

(
κ(2τf − τ∗)√

3

)






(C.9)

and

Bhigh
GW =Blow

GWκpeak
− 4Chigh

GW (κ− κpeak)

3
√

3κ2κpeak

[
6rβ cos

(
κτf√

3

)
− 3rβ cos

(
κτ∗√

3

)
+

2
√

3κ





Ci

(
2κ√
3rβ

)
− Ci

(
κ√
3rβ

)
 sin

(
κ(2τf − τ∗)√

3

)
+


Si

(
κ√
3rβ

)
− Si

(
2κ√
3rβ

)
 cos

(
κ(2τf − τ∗)√

3

)




 .

(C.10)

The functions Ci(x) and Si(x) denote the trigenemetric integrals defined by Ci(x) :=∫ x
0

cos t
t

dt and Si(x) :=
∫ x

0
sin t
t

dt, respectively.
We evaluate the analytic solutions Eqs. (C.5) and (C.8) at the end of the transition

τ = τf with zero initial conditions and compare the result with the numerical solution in
Fig. 5.3. While we observe a very good agreement of the low wave number approximation
with the numerical solution, we find a small phase shift in the oscillation pattern of the
high-κ solution. This might be due to the use of κpeak for splitting the integrals, which
we took as constant but in fact also changes with time. Nevertheless, the overall slope of
the numerical and analytical solutions do coincide perfectly. This appendix is based on
Ref. [5].
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Figure C.1.: Comparison of the analytic solutions in the high (red) and low wave
number (green) regime with the numerical solution of Eq. (5.9) (blue). For demonstration
reasons we choose rβ = 1 and α→∞. Adapted from Ref. [5].
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Post Transition generated Second
Order Perturbations

After the FOPT is completed, space is filled with gravitational radiation and hence the
source term of Eq. (5.9) remains active. However, due to the expansion of the universe,
the amplitude of density parameter is redshifted with ∼ a−4(t). In the following we show
that this justifies to assume that no further second order perturbations are produced
from ΩGW(κ) after the transition has ended and therefore to put the right hand side in
Eq. (5.7) to zero.

After the transition Eq. (5.9) reads

δ′′(κ, τ) +
a(t)′

a(t)
δ′(κ, τ) +

1

3

a2
∗

a(τ)2
κ2δ(κ, τ) = 8

H(τ)2

H2
∗

a4
∗

a(τ)4
· ΩGW

(
κ

(
a∗
a(τ)

)
, τ

)
.

(D.1)

Since all bubbles are collided, there is no further source of GWs and therefore the
amplitude of the GW density parameter only changes due to redshift. Thus the amplitude
of the bare parameter is constant in time ΩGW(κ, τf) = ΩGW(κ). We here omit the

redshift
(

a∗
a(τ)

)
in κ, since it does not alter the amplitude. We split the calculation

into two parts. First, we solve the homogeneous differential equation and use as initial
conditions the amplitudes of second order density perturbations at the end of the phase
transition, which we have derived in the result part of this work. Then, we deduce the
inhomogeneous solution and compare it’s amplitude with the one of the homogeneous
solution. The homogeneous solution of Eq. (D.1) for a general a(τ) yields

δh(κ, τ > τf ) = Cκ cos

[
a∗κ√

3

∫ τ

τf

1

a(τ̃)
dτ̃

]
+Dκ sin

[
a∗κ√

3

∫ τ

τf

1

a(τ̃)
dτ̃

]
, (D.2)

where Cκ and Dκ are integration constants. In a radiation dominated universe the scale
factor and the Hubble parameter evolve as

a(τ) = a∗

√
τ

τ∗
and H(τ) = H∗

1

2τ
, (D.3)
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Figure D.1.: Relative amplitudes of second order perturbations sourced during the
FOPT and afterwards by the GW density parameter. The amplitude of perturbations
that the relic GWs produce until matter-radiation equality is much smaller than the
amplitudes produced during the transition. As benchmark value we have used t∗ = 1010 s.
Adapted from Ref. [5].

respectively. Plugging these into Eq. (D.2) we can perform the integration

δh(κ, τ > τf ) = Cκ cos

[
2τ∗κ√

3

(√
τ −√τf

)]
+Dκ sin

[
2τ∗κ√

3

(√
τ −√τf

)]
. (D.4)

Applying the variation of parameter method to the differential equation yields the
inhomogeneous solution

δnh(κ, τ > τf ) =

CΩ(κ, τ) cos

[
2
√
τ∗κ√
3

(√
τ −√τf

)]
+DΩ(κ, τ) sin

[
2
√
τ∗κ√
3

(√
τ −√τf

)]
,

(D.5)

with coefficients

CΩ(κ, τ) = −
∫ τ

τf

√
38H(τ̃)2

H2
∗

a4∗
a(τ̃)4
· ΩGW(κ)

√
τ̃
τ∗

sin

(
2κ
√
τ∗(
√
τ̃−√τf)√
3

)

κ
dτ̃ (D.6)

and

DΩ(κ, τ) =

∫ τ

τf

√
38H(τ̃)2

H2
∗

a4∗
a(τ̃)4
· ΩGW(κ)

√
τ̃
τ∗

cos

(
2κ
√
τ∗(
√
τ̃−√τf)√
3

)

κ
dτ̃ . (D.7)





We simplify Eqs. (D.4) and (D.5) by using the trigonometric identity

C cosx+D sinx = A sin(x+ φ) , (D.8)

where the combined amplitude A and the phase φ are defined as A :=
√
C2 +D2 and

φ := arctan C
D

, respectively. The homogeneous and inhomogeneous solution then read

δh(κ, τ > τf ) = Aκ sin

[
2τ∗κ√

3

(√
τ −√τf

)
+ φκ

]
, (D.9)

δnh(κ, τ > τf ) = AΩ(κ, τ) sin

[
2
√
τ∗κ√
3

(√
τ −√τf

)
+ φΩ

]
. (D.10)

In Fig. (D.1) we have plotted the ratio of the amplitude of the perturbations generated
during the transition Aκ and the perturbations generated after the transition AΩ(κ, τeq)
until matter-radiation equality. We have ignored changes in the scale factor and the
Hubble rate close to equality here for simplicity. We observe, that the amplitude of the
perturbations produced after the transition is much smaller than the amplitude of the
fluctuations produced after the transition. This rough estimate justifies to set the right
hand side in Eq. (5.7) to zero in good approximation. This appendix is based on Ref. [5].
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