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Abstract

This work presents methods and results of an initial step towards full text extraction
from a Republican Chinese newspaper. My basis is a small fraction of the image corpus
for which text ground truth exists. I introduce a character segmentation method which
produces over 90,000 labeled images of single characters. Then I pre-train a GoogLeNet
classifier as an OCR model on character images extracted from font files and randomly
augmented on the fly, whereafter I fine-tune it on the previously segmented character
images. I show that the pre-training step is able to increase OCR accuracy from 95.49% to
96.95% on the test set and finally, how post-processing using a masked language model
corrects up to 16% of remaining errors, increasing accuracy on the test set to 97.44%.

Zusammenfassung (German Abstract)

Diese Arbeit präsentiert Methoden und Ergebnisse eines ersten Schrittes zur Extrak-
tion des Volltextes aus einer chinesischen Zeitung aus republikanischer Zeit. Als Basis
fungiert ein kleiner Anteil des Bildkorpus, für den Textannotationen bestehen. Ich stelle
eine Segmentierungsmethode vor, die reichlich 90,000 gelabelte Bilder einzelner Schrift-
zeichen produziert. Dann verwende ich ein GoogLeNet, um einen Klassifizierer auf
künstlich aus Font-Dateien erzeugten und randomisiert augmentierten Schriftzeichen-
bildern vorzutrainieren, wonach Finetuning auf den echten Schriftzeichenbildern vorge-
nommen wird. Ich zeige, dass das Pre-Training die Korrektklassifikationsrate auf dem
Testset von 95,49% auf 96,85% erhöht, und zuletzt, wie mittels eines maskierten Sprach-
modells übrige Fehler korrigiert werden können, was einer weiteren Erhöhung der Ko-
rrektheit auf 97,44% und der Korrektur von reichlich 16% der OCR-Fehler entspricht.

v



1. Introduction

With the emergence of large-scale archives of digitized historical documents in the past
decades, there has been a growing interest in efficient automatic information extrac-
tion. Among various kinds of documents, historical newspapers have been of particular
interest as a representation of an era’s zeitgeist—both from a content-driven and a lin-
guistically motivated perspective.

Following two projects aimed at collecting Chinese tabloids (小報 Xiǎobào) and Chi-
nese women’s magazines, the Centre for Asian and Transcultural Studies (CATS) at Hei-
delberg University has been collecting a large amount of Republican Chinese newspa-
pers, mainly consisting of image scans. As part of these collection projects, the platform
“Early Chinese Periodicals Online” (ECPO)1 was set up with the goal of providing free
and location-independent access to more than 300,000 digital images of historical Chi-
nese newspapers and additional metadata (Arnold and Hessel, 2019; Sung et al., 2014).
It should be noted that digitized historical resources do not only help answer existing
questions, but often also put up new ones: ECPO constantly poses new research oppor-
tunities, such as a new author and title index that will soon allow researches to obtain
entirely new perspectives on interaction between historical agents that might not have
been associated with each other in previous historical research.

Collections similar to ECPO include the NewsEye project2 funded by various univer-
sities and national libraries from Germany, Austria, France and Finland3; “Chronicling
America”4, a fully searchable site put up by the United States’ National Digital Newspa-
per Program; the impresso project5 funded by the Swiss National Science Foundation;
and VD16, VD17 and VD18, a German national bibliography collection which laid the
basis for the OCR-D project6.

One of the newspapers accessible on the ECPO project website is the晶報 Jīngbào,

1https://uni-heidelberg.de/ecpo
2https://www.newseye.eu
3https://cordis.europa.eu/project/id/770299
4https://chroniclingamerica.loc.gov/
5https://impresso-project.ch/
6https://ocr-d.de/en/about, a full text transformation project coordinated by the Berlin-

Brandenburg Academy of Sciences and Humanities, the Herzog-August Library Wolfenbüttel, the
Berlin State Library and the Karlsruhe Institute of Technology.

1
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1. Introduction

“The Crystal”7, with 9,385 scans of mostly double pages from March 3, 1919 to May 23,
1940. While the browser interface allows for improved navigation between issues and
pages and provides essential metadata, this still only permits limited access to the actual
textual information conserved in the image data. One entire month’s issues have been
annotated by native speakers using double-keying, a method that requires considerable
financial and time expenditure. On the other hand, automated full text extraction is fast
and more affordable by several orders of magnitude, yet non-trivial due to the newspa-
per’s complex layout with text blocks strongly varying in position, shape, size and order
of reading, surrounded by differently-sized headings, advertisements and marginalia.
Apart from page segmentation, there is a need for a strong OCR model trained to deal
with the recognition of characters printed in Jīngbào’s particular font, featuring varying
degrees of brightness and contrast due to inconsistent printing and scan quality as well
as antiquated glyph variations and obsolete variant characters.

The following chapters and sections are structured as follows: Chapter 2 and 3 will
give the reader the necessary knowledge to understand the basics of Chinese writing
and printing as well as how Chinese character recognition has been addressed in related
work. Chapter 4 will present the methods employed in this work and particularly go
into great detail about the following contributions:

• character image segmentation and automatic labeling using existing ground truth,
• generation of additional synthetic OCR training data from Chinese fonts,
• and OCR post-processing (error correction using Bidirectional Encoder Represen-
tations from Transformers (BERT)).

Chapter 5 shows the concrete experiments done using these methods and discusses the
obtained results. Finally, Chapter 6 presents a conclusion and an outlook on possible
future work.

The source code for all implementation involved in this thesis can be found on GitLab
at https://gitlab.com/konstantinhenke/bachelor-thesis.

7https://uni-heidelberg.de/ecpo/publications.php?magid=1

2

https://gitlab.com/konstantinhenke/bachelor-thesis
https://uni-heidelberg.de/ecpo/publications.php?magid=1


2. Chinese Writing, Fonts and
Character Encoding

In order for the reader to be able to follow along during the next chapters, it is im-
perative to have a basic understanding of how written Chinese models the vernacular
language and functions as a morphosyllabic system. Furthermore, this chapter will also
touch upon Chinese character encoding in information technology, which is needed for
understanding how the OCR classifier works.

2.1. Written Vernacular Chinese

When in non-scientific contexts one casually speaks about “Chinese” as a language, one
usually refers to one of the two following concepts: 1. the entirety of the Sinitic lan-
guages spoken in Greater China as a branch of the Sino-Tibetan language family, in-
cluding all its varieties and dialects, or 2. Mandarin Chinese, the most-spoken Sinitic
language whose Beijing dialect was standardized and adopted as the national language
of the People’s Republic of China. The written language used throughout the later pub-
lishing years of the Jīngbào is one that closely mirrors the vernacular Mandarin dialects
and thus mostly adheres to this national standard.1 With the notable exception of Can-
tonese (mainly spoken inHong Kong), most other Sinitic languages do not have a unitary
standardized writing system2, and while there is ongoing research on the representation
of writing in other Chinese varieties in the Jīngbào, this workwill solely focus onwritten
vernacular Mandarin.

1Before the May 4th Movement in 1919 (and, to some extend, even later), most formal writing still used
Classical Chinese, which is based on Old Chinese syntax. Starting from the Qin dynasty (221 BC),
spoken Chinese evolved away from its written counterpart to such an extent that Classical Chinese is
now largely unintelligible to modern Chinese speakers not educated in it. However, Classical Chinese
reading (not writing) is an essential part of compulsory primary and secondary education in China,
Hong Kong and Taiwan, and even nowadays a certain amount of fixed classical expressions are used
throughout formal writing. Most notably,成語 chéngyǔ, four-character classical idioms, are found in
everyday use—both written and spoken.

2However, efforts are made for many Chinese languages such as Taiwanese Hokkien, a variety of South-
ern Min spoken in Taiwan (cf. also Lin (1999) and Lua and Iunn (2012) (in Chinese)). The Taiwanese
Ministry of Education has published a standard character set for recommended use in Hokkienwriting,
titled臺灣閩南語推薦用字 (Taiwanese Southern Min Recommended Characters).

3



2. Chinese Writing, Fonts and Character Encoding

2.2. Chinese Characters

2.2.1. Characters as Morphemes

Chinese—with Mandarin in particular—features a writing system based on an extraor-
dinarily extensive set of characters. Wilkinson (2018) calls it morphosyllabic, meaning

1 spoken syllable = 1 character = 1 morpheme,

where what we understand as a “word” is usually comprised of one or two (in some cases
more) morphemes. The most frequently used pronouns, verbs and prepositions are usu-
ally monosyllabic, like我 wǒ “I”/“me” or去 qù “to go”, while most nouns are disyllabic
and—contrary to many multisyllabic words in European languages—often make sense
as compound words joining the meaning of their component syllables:

• 眼鏡 yǎnjìng “glasses” =眼 yǎn “eye” +鏡 jìng “lens/glass”;

• 手機 shǒujī “mobile phone” =手 shǒu “hand” +機 jī “machine”;

• 冰箱 bīngxiāng “fridge” =冰 bīng “ice” +箱 xiāng “case/trunk/box”.

This feature will be relevant for Section 3.4.

2.2.2. Characters as Components of Other Characters

To understand the challenge that comes with applying OCR systems to Chinese text,
one also has to be aware of the low visual intra-class variance of the characters. This
arises from the fact that character components reoccur inmultiple—sometimes hundreds
of—characters, especially in so-called phono-semantic compounds (ibid., ch. 2.3):

Looking at the character箱 xiāng “box” again, it can be decomposed as⺮ +相. The
former component is an abbreviated version of 竹 zhú “bamboo”, which hints at the
meaning of 箱 xiāng “box”. The latter (相) is also pronounced xiāng and hints at the
pronunciation of箱 xiāng “box”. This way of adding meaning components (like⺮) to
a character (like 相) to create a new character with different meaning but similar or
equal pronunciation (like 箱) is the fundamental concept to how the vast majority of
Chinese characters are composed. As a consequence, many characters share the same
components, especially those within one phonetic series (a set of characters created from
the same phonetic component), like箱 xiāng,廂 xiāng,霜 shuāng,想 xiǎng,葙 xiāng,
etc. Furthermore, this phenomenon can be of recursive nature, as in 礴 bó, which is
composed of a semantic石 and a phonetic薄 bó/báo, which itself features a semantic艹
and a phonetic溥 pǔ/bó, which again is氵 + phonetic尃 fū, which is phonetic甫 fǔ +

semantic寸 (cf. e.g. Zhengzhang (2003)).
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2. Chinese Writing, Fonts and Character Encoding

Figure 2.1.: Regional glyph variations (allographs) of the grapheme返4

While it is difficult to exactly specify the percentage of phono-semantic compounds in
all of Chinese characters, it is obvious that the vast majority of characters consist of reoc-
curring parts—no matter if in a phonetic, semantic or ideographic function (Wilkinson,
2018, Ch. 2.3). This results in a high visual confusability and proposes a big challenge
for Chinese OCR systems, in contrast to systems processing Latin-alphabet-based doc-
uments.

2.2.3. Unicode and Fonts

With the rise of machine-processed text arose the need for suitable character encoding.
In alphabetic writing, this involves nothing other than the minor step of assigning a
number (usually called “code point”) to every letter, even though occasionally, the vi-
sually same glyph is mapped to multiple code points across different alphabets, such as
latin capital letteR a (U+0041), cyRillic capital letteR a (U+0410) and gReeK cap-
ital letteR alpha (U+0391) which in most fonts should look exactly the same: A, Α, Α.
That is, these are not the same graphemes—abstract functional units of writing—although
the glyphs—their visible surface forms—look the same. Opposingly, “ɑ” would usually be
perceived as the same grapheme as “a”3, though these are two different glyphs. Different
glyphs representing the same grapheme are also called allographs.

Unicode treats characters based on the principle of assigning code points to graphemes,
not to glyphs; hence the creator of a font must decide upon the exact placement, angle,
thickness etc. of every stroke when designing a glyph for a certain code point. This
poses a problem when dealing with Chinese characters: Fig. 2.1 shows an example of
variations in the glyph representations of the grapheme 返 across various regions. In
the course of the so-called Han unification (Allen et al., 2012), all of the allographs in
Fig. 2.1 have been assigned the same code point, leaving it up to the font designer to
choose a standard to follow, and at the same time making it impossible for anyone to

3Usually known from handwritten text or italic printing (where a → a), since “ɑ” is not commonly seen
in non-italic printing and has its own meaning when used as a character of the IPA.

4Source: https://w.wiki/3s9f

5
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2. Chinese Writing, Fonts and Character Encoding

Figure 2.2.: The most common Chinese font styles (left to right):
黑體 hēitǐ (sans-serif / gothic);
明體 míngtǐ (Ming) a.k.a. 宋體 sòngtǐ (Song);
楷書 kǎishū (regular script);
隸書 lìshū (clerical script)

type a specific variant without the right font at hand. Some of the unified5 variants are
quite considerable in their structural dissimilarity, such as直 (PRC/ROC standard) vs. 直
(Japanese standard) which are both encoded at U+76F4. Inconsistently, their descendants
值 and値 were each given their own code point (U+503C and U+5024, respectively).6 At
the time of writing, Unicode provides code points for 93,779 characters (Table 2.1).

As for font styles, most of Chinese text elements are covered by three main styles (see
Fig. 2.2): Sans-serif and Ming/Song can be seen as the direct equivalent of sans-serif and
serif fonts known for Latin-based typography, where the former is more commonly seen
on websites and (in variations) on posters etc. with shorter textual elements, while the
latter is used for printing longer continuous texts as found in books and newspapers.
Regular script is closer to handwritten character shapes, but still strictly standardized
in terms of stroke length and position, hence it is largely used in language teaching
material. It is also commonly seen as an equivalent to italic printing in Latin-based
texts, as simply “obliquing” Chinese characters is a rather obvious typographic faux pas.

A fourth style, the clerical script, originates from Han-dynasty calligraphy, but since
it is still highly legible to modern readers, it can still be found wherever some kind of
artistic flavor or antique and classical appeal is strived for.

All of the printing in the Jīngbào’s text blocks is done in a Song font.

5= considered the same abstract grapheme and thus encoded at the same code point
6Hence, I have to used two different fonts to type out直 vs. 直 but can use a single font for值 and値

as long as it provides glyphs for both code points.
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2. Chinese Writing, Fonts and Character Encoding

Block range Block name number of
characters

U+2E80…U+2EFF CJK Radicals Supplement 115
U+2F00…U+2FDF Kangxi Radicals 214
U+3400…U+4DBF CJK Unified Ideographs Extension A 6,592
U+4DC0…U+4DFF Yijing Hexagram Symbols 64
U+4E00…U+9FFF CJK Unified Ideographs 20,989
U+20000…U+2A6DF CJK Unified Ideographs Extension B 42,718
U+2A700…U+2B73F CJK Unified Ideographs Extension C 4,149
U+2B740…U+2B81F CJK Unified Ideographs Extension D 222
U+2B820…U+2CEAF CJK Unified Ideographs Extension E 5,762
U+2CEB0…U+2EBEF CJK Unified Ideographs Extension F 7,473
U+2F800…U+2FA1F CJK Compatibility Ideographs Supplement 542
U+30000…U+3134F CJK Unified Ideographs Extension G 4,939

Σ 93,779

Table 2.1.: CJK (Chinese, Japanese, Korean) characters in Unicode

2.2.4. Traditional vs. Simplified Chinese

There are two standardized character sets for modern written Chinese: Traditional and
simplified characters. The latter were promoted by the People’s Republic of China’s
government for official use in printing, writing and education since the 1960s under the
expectation of increasing literacy in the population. They are now in official use in the
PRC, Malaysia and Singapore, whereas traditional Chinese remains in use in Taiwan,
Hong Kong and Macau (Chu et al., 2012). Simplification was done with the ultimate
goal of reducing written strokes, which was approached by various methods:

1. modifying existing cursive shapes for use in printing, e.g. 書→书,樂→乐;

2. merging homophones, e.g. 復/複/覆/复→复 (all pronounced fù);

3. omitting entire components, e.g. 廣→广,飛→飞,習→习,滅→灭;

4. replacing phonetic components by others that have less strokes: 鄰 lín →邻 lín
(with the phonetic components粦 lín →令 lìng);

5. re-adopting obsolete ancient variants or adopting variants already in use:
從→从,眾→众,網→网,與→与,卻→却;
etc.

Point 5 is particularly relevant to working with the Jīngbào: The parts of the image
corpus I will use for the methods described in Chapter 4 are from April 1939 and hence

7



2. Chinese Writing, Fonts and Character Encoding

all printed before the government introduced the simplified character set, however some
characters are already printed in a form later adopted during the simplification. For
instance, the Jīngbào prints 幇, 强, 温 and 却 while the traditional characters used in
the modern Taiwanese standard are幫,強,溫 and卻, respectively (cf. Table 4.5 on 30).

The absolute number of traditional characters that were simplified is hard to tell, as
simplification is applied recursively:馬 (“horse”) is simplified to马, which is then further
conducted at component level in媽,碼,騎,駛,驗7 etc. There is, however, a consider-
able number of trivially simplifiable characters not in modern use like 騿8, for which
Unicode only provides one code point for the traditional form. This is to say, recursive
simplification is not done for every traditional character encoded in Unicode, and as
soon as one leaves the boundaries of Unicode, Chinese characters become very difficult
to quantify. To still provide a reference point on the impact of character simplification:
Around 29% of the characters in the ground truth section presented in Chapter 4 have a
different form in the two character sets, not excluding multiple occurrences of the same
character.

7i.e. in simplified Chinese,妈,码,骑,驶,验 etc. are used
8According to zdic.net, a name of a horse. Presumably from some pre-modern work of literature.
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3. Related Work

While at some point in the future, the ultimate goal for historical document processing
will be to create a single pipeline that takes any document image as an input and is able
to output all content information in a suitable format such as PAGE-XML (Pletschacher
and Antonacopoulos, 2010), at the moment most research is still focused on producing
efficient approaches for smaller substeps. This chapter is dedicated to giving exemplary
insight into this.

3.1. Document Image Segmentation

Even though this thesis focuses solely on the character segmentation and recognition
steps following below, one should not neglect the necessity for accurate page segmen-
tation techniques. A survey presented by Eskenazi et al. (2017) gives a comprehensive
overview on approaches to these challenges. Generally, one can differentiate between
techniques that work top-down (starting from the entire page, segmenting it into its
components) and those that work bottom-up (finding components that belong together
to aggregate them). Their paper presents a detailed collection of both classical and deep
learning algorithms, where the former often achieve surprisingly competitive results, al-
though they rely on strict assumptions about various layout elements. Within the realm
of the ECPO project, the historical nature of the document scans poses additional chal-
lenges. However, first bottom-up segmentation experiments using morphology-based
methods as described by Liu et al. (2010) yield acceptable results.1

On the other hand, methods involving neural networks obviously require a sufficient
amount of accordingly annotated data but allow for less strict layout assumptions, as
shown in Chen et al. (2017), or the dhSegment tool (Oliveira et al., 2018), who treat page
segmentation as a pixel labeling problem. Recently, more tools like eynollah2 (part of the
Qurator project (Rehm et al., 2020)) allow for straightforward training and even out-of-
the-box usage. As for ECPO, first results using dhSegment look promising as well.3

1https://github.com/exc-asia-and-europe/ecpo-full-text/wiki/
Finding-and-Connecting-Separators

2https://github.com/qurator-spk/eynollah
3https://github.com/exc-asia-and-europe/ecpo-segment
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3. Related Work

3.2. Chinese Character Detection and Segmentation

Once a document image is segmented into smaller structurally connected units, the next
step is to detect the textual elements. One has to be aware of the fact that especially
for Chinese characters, detection/segmentation and recognition are trivially separable
steps, so it’s reasonable to seek independent optimization. While Chinese characters can
generally appear in all different kinds of fonts and styles (Yuan et al., 2018), in printed
text, character shapes are never connected to each other and their squared appearance
often yields an implicit grid layout. This allows for classical non-neural segmentation
techniques using projection profiles (Fan et al., 1998; Lin et al., 2001). Mei et al. (2013)
also build on projection profiles and leverage their use for single lines with connected
component analysis, as do Xu et al. (2017) as well as Van Phan et al. (2011) for Vietnamese
chữ Nôm4 characters. In addition to character segmentation for grid-layout text blocks,
projection profiles can also be used for skew detection and correction (Li et al., 2007).

It is out of question, though, that writing style, skew, noise or other issues concerning
document image quality oftentimes produce layout situations that hamper these rule-
based approaches, even to a degree that renders them completely unusable, e.g. for
unconstrained handwriting or even calligraphy. Fortunately, thanks to deep learning in
computer vision, object detection has overcome the problem of fixed hyperparameters.
Generally speaking, U-Net (Ronneberger et al., 2015) has become popular for segment-
ing text areas and object detection models like the anchor-based YOLO (Redmon and
Farhadi, 2018) to find the exact bounding boxes. Yang et al. (2018) employ what they call
a recognition guided proposal network (RGPN) after segmenting single columns using
projection profiles to propose regions of characters, and another CNN-based detection
network to obtain their precise bounding boxes. Tang et al. (2020) propose HRCenter-
Net5, an anchorless object detection network.

Finally, there do exist all-in-one solutions like Tesseract6 (Smith, 2007) that apart from
line finding also provide OCR functionality including language-model-based correction
algorithms. (Ma et al., 2020) also present a framework that can jointly conduct layout
detection, character detection and recognition.

3.3. Chinese Character Recognition

This section is about the actual OCR step. Depending on whether one deals with printed
or handwritten Chinese characters, academic literature also often refers to the recog-

4a logographic writing system based on Chinese characters formerly used for the Vietnamese language
5https://github.com/Tverous/HRCenterNet
6http://code.google.com/p/tesseract-ocr
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nition step as PCCR (printed Chinese character recognition) and HCCR (handwritten
Chinese character recognition). While for obvious reasons the former is more relevant
for dealing with the Jīngbào image data, the latter has received more attention through-
out the past few decades (cf. related work in Melnyk et al., 2020), mainly due to the fact
that individual handwriting styles pose a greater challenge to OCR techniques than the
rather low variability in standard fonts used in printing. Zhong et al. (2015a) also bring
up the fact that there exist more database resources for HCCR (e.g. Liu et al., 2011).
Regardless of this, most methods presented in either field are generally applicable to
both.

3.3.1. Early Work on PCCR

Probably the earliest approach to PCCR is the one of Casey and Nagy (1966), who employ
simple template matching techniques. One of the authors later published a “Twenty-five
Year Retrospective” on the field (Nagy, 1988) in which he describes the need for “special
templates to detect radicals for subgrouping”, referring to the component-assembled na-
ture of Chinese characters. Considering reoccurring components to recognize Chinese
characters intuitively does seem reasonable, however with the use of artificial neural
networks (NN), it becomes more straightforward to simply regard characters as inde-
pendent output classes – regardless of any shared components.7 Xu and Ding (1992)
were among the early pioneers to employ NN-based techniques for PCCR, followed by
other approaches using traditional feedforward NNs (Khawaja et al., 2006a,b). Dai et al.
(2007) give a great overview on the early stages of Chinese OCR before the use of CNNs).

3.3.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) are inspired by the receptive fields found in an-
imal vision and try to emulate the neurons in animals’ visual cortices (Fukushima and
Miyake, 1982). Consequently, they have been used with great success in many different
subfields of computer vision, specifically image recognition and classification. CNNs
date back to LeCun et al. (1989), who were the first to train the weights of a convolu-
tional kernel (Fig. 3.1) using the backpropagation algorithm8 known from traditional
NNs. LeCun et al.’s use case also happened to be OCR, specifically digit recognition: Fig.
3.2 illustrates the digit image as an input, the convolutional layers at the bottom and the
ten output units (one for every digit) at the top.

7There does exists more recent work concentrating on component structure on a sub-character level (He
and Schomaker, 2018; Wang et al., 2017; Zhang et al., 2018).

8Independently discovered multiple times, but usually attributed to Rumelhart et al. (1986).
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Figure 3.1.: Example for a convolutional filter (purple) with arbitrary numbers (1–9). A
CNN optimizes the values itself through automated learning. Image as pre-
sented by Reynolds (2019).

Figure 3.2.: The CNN architecture presented by LeCun et al. (1989)
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Throughout the following decades, the basic principle of learning multiple kernels per
layer and thus reducing dimensions until a fully connected layer predicts the output class
largely stayed the same, though networks became deeper and addedmore attributes such
as max pooling layers, ReLU activation and dropout, as seen e.g. in AlexNet (Krizhevsky
et al., 2012). AlexNet won the 2012 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) (Russakovsky et al., 2015), and in the following years, any other architectures
continued to be outperformed by deeper and more sophisticated CNNs, such as ZFNet
(Zeiler and Fergus, 2014), an improved version of AlexNet and winner of ILSVRC 2013,
and GoogLeNet (Szegedy et al., 2014), winner of ILSVRC 2014.

Following their great success in image recognition, these CNNs have subsequently
been employed in OCR, e.g. both Zhong et al. (2015b) and Xu et al. (2017) use a (slightly
modified) GoogLeNetwith great success. Motivated by these approaches and the demon-
stration of GoogLeNet’s superiority in Chinese OCR as demonstrated in Yuan et al.
(2018), this thesis will rely on a GoogLeNet as well (cf. Section 4.6.3). The ILSVRC did
continue until 2017, and ever more powerful NNs have been presented in recent years
for various vision tasks such as image classification and object detection. New state-
of-the-art results on ImageNet are achived using transformer architectures known from
NLP (Dosovitskiy et al., 2021; Zhai et al., 2021), which however is far beyond the scope
of this thesis.

3.3.3. Artificial Image Generation and Image Augmentation

In machine learning, the training set is desired to independently represent the input and
output space ideally in identical distribution to the test set. This results in the need to
generate additional data if the training set would else not be of sufficient size or de-
sired distribution, and the creators of competition-winning classifiers like AlexNet and
GoogleNet all employed methods to artificially increase the number of training samples.

Chinese OCR generally faces a problem of data shortage due to the fact that a large
number of input samples and their corresponding label in the output space for each
of some thousand output classes are needed in order to model the target distribution.
While suitable datasets for HCCR (Liu et al., 2011) exist, it is often cumbersome to obtain
this amount of properly annotated printed character image data. This is where two
techniques come into play:

1. producing entirely synthetic training images from scratch to increase the size of
the training set;

2. augmenting existing training images to obtain a more diverse training set.

Augmentations often include geometric transformations, which themselves can be di-
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vided into affine transformation (preserving lines and parallelism but not necessarily
distances and angles, such as translations, rotations, shearing, etc.) and elastic transfor-
mations or non-linear distortions (not generally preserving lines and parallelism). One
of the significant improvements in classifiers trained for handwritten digit recognition
on the MNIST dataset has been obtained by the addition of elastic deformations (Simard
et al., 2003) to already existing affine transformations (Wong et al., 2016).

In related work, the two above steps are usually applied jointly: de Campos et al.
(2009) synthesize 62992 character images for the English alphabet from 254 fonts in 4
different styles and Jaderberg et al. (2014) produce images of entire English words using
an elaborate generation procedure. With regard to Chinese, Ren et al. (2016) generate
character images from 32 fonts and present their entire augmentation pipeline:

1. random selection of character and background color,
2. adding borders and/or shadows,
3. distorting the characters using projective transformations,
4. adding scene background patches to imitate real-word reflections,
5. adding Gaussian noise and Gaussian blur with random intensity.

Following these approaches, Xu et al. (2017) design a synthetic character engine that
starts from clean images extracted from 28 fonts and then adds either random noise or
erosion and blur. Zhong et al. (2015a) also employ non-linear transformations, demon-
strating their effectiveness in increasing CNN performance and arguing that affine trans-
formations are mostly unsuitable for Chinese characters.

3.4. OCR Post-Processing for Error Correction

Since predicting the right one among thousands of Chinese characters based on context-
less pixel information is a notoriously difficult task, the output of any Chinese OCR
model is likely to be subject to a considerable number of errors. Hence, there is a need
for OCR post-processing. Languages with alphabetic writing systems allow for correc-
tion methods fundamentally different from what is needed for Chinese; for instance,
Kissos and Dershowitz (2016) propose a method for misspelled words in Arabic OCR:
On a word-level, they find correction candidates using Levenshtein distance, then train
a classifier which decides whether or not to replace the OCR output with the highest
ranked correction candidate with regard to OCR confidence, term frequency and dictio-
nary features. Similar approaches are imaginable for English or other Indo-European
languages with alphabetic writing systems.
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Even though Chinese writing is fundamentally different, word-level approaches have
not been entirely out of question for it, especially before powerful language models have
come into existence: Tseng (2002) presents an algorithm that simply clusters confusing
pairs (pairs of frequently seen two- or three-character sequences that only differ in one
character) together and assumes the one with higher document frequency as correct.

Ultimately, the problem of correcting an OCR model’s wrong character predictions
can be generalized to Chinese spell checking (CSC), which over the last years has often
been addressed by simply having a language model predict the right character from a
previously obtained candidate set. This is reasonable due to the fact that visually similar
characters often only differ in one of their components (cf. also Section 2.2.2), which
means that characters in the candidate list are particularly unlikely to be semantically
similar and thus—intuitively—easy to be corrected by a language model that takes con-
text into account. Generally however, it is not trivial to find a good heuristic for

a) deciding which characters are likely to need correction at all and
b) deciding which candidates to have the language model choose from.

For example, Zhuang et al. (2004) use an n-gram model and an LSA9 language model,
then address problem a) by taking all characters into consideration and problem b) by
generating a candidate list of visually similar characters as follows:

1. Record n(F,C) in the training corpus. n(F,C) is the times that F is the first
choice in the candidate list produced by the OCR engine while the correct (“gold”)
character is C .

2. Calculate the confusion probability P (C|F ) = n(F,C)/n(F ) where n(F ) is the
times that F is the first choice in the candidate list.

3. Sort all possible C according to the probability.
4. Save the first M possible characters as the similar characters of F , and save their

confusion probabilities.

Apart from that, various other approaches have been proposed: Zhuang and Zhu (2005)
use the OCRmodel’s candidate distance instead of a fixed k to both decide which charac-
ters to correct (a) and to reduce the search space (b). Then they combine various n-gram
models to find the most likely candidate. Similarly, Wang and Liu (2019) manually set
an OCR confidence threshold of 95% (a) and have the language model choose the most
likely candidate among the top 5 OCR candidates (b).

CSC is however not only needed for OCR post-processing (with a search space of visu-
ally similar characters), but also for post-processing of e.g. Chinese text typed on com-
puters with a search space of phonetically similar characters (as Chinese character input

9Short for “latent semantic analysis”, for further information cf. Zhuang et al.’s work mentioned above.
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methods are usually based on character pronunciation) and eventually most methods are
applicable to both. Hong et al. (2019) generate the search space (b) from databases of both
visually and phonetically similar characters and use a masked language model similar
to BERT (Devlin et al., 2019) for correction. Yang et al. (2019) demonstrate a technique
for character correction in speech recognition: They train a Bi-LSTM model operating
on single characters to identify erroneous characters (a) and then replace them with the
most likely candidate from a list of homophones (b). The top candidate is predicted by
another Bi-LSTM model.

While the fact that most Chinese words are disyllabic (cf. Section 2.2.1) allows for
efficient use of n-gram models as shown above, there are plenty of situations where
switching single characters (especially those that aren’t part of a disyllabic word) will
still result in a meaningful and grammatical sentence, e.g.

• 他不喜歡你 ”he doesn’t like you”,
• 他也喜歡你 ”he also likes you”,
• 他們喜歡你 ”they like you”,

where only the second character is changed (不 ”not”, 也 ”also”, 們 (plural marker)).
Relying on masked language models such as BERT trained on single characters as to-
kens might therefore yield superior performance, as more context is taken into account.
Hence, in this work I will employ a BERT language model for OCR post-processing.
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This chapter will give insight into the concrete methods I implemented in this work.
As the focus of this thesis lies in segmenting single characters to train and post-process
an OCR classifier, all the algorithms below are proposed under the premise that auto-
matic text block segmentation has already been completed. All of the image processing
methods described in the following sections of this chapter are implemented using the
OpenCV library1 for Python.

4.1. Text Block Segmentation

In order to emulate the segmentation results, several hundred text blocks as seen in Fig.
4.1 are manually cropped from the 40 issues of April 1939 which text ground truth exists
for.2 The corresponding section of the ground truth is manually extracted and assigned
the same index as the text block image. Several crops are sorted out due to inconsistent
layout (see next two sections) or bad scan quality. Table 4.1 gives an overview over the
remaining data after a rough 50–25–25 split for training, validation and test.

Figure 4.1.: Examples of text blocks manually cropped from the Jīngbào

1cf. https://pypi.org/project/opencv-python/ and https://opencv.org/
2https://github.com/exc-asia-and-europe/ecpo/tree/master/jingbao/1939/04
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total training validation test
number of crops 840 426 183 231
total number of characters 92,039 47,986 21,676 22,377
number of unique characters 3,045 2,797 2,074 2,187

Table 4.1.: Statistics on the ground truth sections assigned to the text block crops

Figure 4.2.: Projection profiles after binarization using a 125px kernel

4.2. Deskewing

Due to Chinese characters being printed into near-squares, it is common to find that
resulting text blocks feature an implicit grid usable for segmentation (as can be seen in
Fig. 4.1). Deviation from this grid is oftentimes subject to the need for more characters
to be squeezed into one column, the desire to not have new columns start with certain
punctuation marks, the need to fill available space, or simply inaccurate printing. In
order for the method described below to work, any text blocks that don’t adhere to the
grid layout for any of the above reasons are manually sorted out or not cropped in the
first place.

To perform deskewing, I employ adaptive binarization (Fig. 4.2; cf. also Section 4.4)
and then calculate horizontal and vertical projection profiles similar to Fan et al. (1998).
Roughly following Li et al. (2007), I subsequently aim to find a rotation angle α with
α ∈ [−2.0°,−1.5°, . . . , 2.0°] such that image rotation by α maximizes the criterion S:

S =
w−1∑
i

(ci+1 − ci)
2 +

h−1∑
j

(li+1 − li)
2 (4.1)

where w and h are the width and height of the image, ci is the number of black pixels
in the i-th column (= the corresponding value of the vertical projection profile) and,
analogously, lj the number of black pixels in the j-th line. S grows for bigger differences
between adjacent values and will thus be maximized for an α that yields an extremal
projection profile, which is the case if the text block is fully derotated.
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Figure 4.3.: Separators generated using only global projection profiles

Figure 4.4.: Separators generated using only local projection profiles for columns

Figure 4.5.: Separators generated using hybrid approach combining global and local pro-
jection profiles

4.3. Character Segmentation

After deskewing, I cut the original (= gray-scale, non-binarized) text block image into
single character images along separators defined by the following heuristic:

1. Use the valleys of the vertical projection profile to define separators between the
columns.

2. Use the valleys of the horizontal (global) projection profile to define separators
between the lines.

3. For every column, produce another (local) projection profile.
4. If a local separator defined by 3. lies within 7px distance of a global separator

defined by 2., discard the global separator and only use the local separator; else
only use the global separator.

The positions of the valleys are obtained by scipy.signal.find_peaks3 (using a min-
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
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imum distance of 22 (1.), 20 (2.) and 14 (3.)). The motivation for treating column seg-
mentation separately is the wider margins between them, making segmentation using
projection profiles easier, as can also be seen in Yang et al. (2018). Figs. 4.3–4.5 demon-
strate the failures of using only global (Fig. 4.3) or only local projection profiles (Fig. 4.4)
to segment single columns. Problematic cases are marked in red, local improvements in
green. All problematic cases are solved by the hybrid approach (step 4. above, Fig. 4.5).

Subsequently, the resulting fields can be easily mapped to the ground truth text (1 field
= 1 character). Any indentation has to be manually marked in the annotation in order
for the mapped characters to shift to the right position within the column. Further,
it must be noted that the method entirely relies on correct ground truth annotation.
Missing lines are easily detected, as this will cause the number of detected columns in the
image to surpass the number of lines in the corresponding annotation. Missing or extra
characters within a line are not automatically detected and would cause the character
assignment to shift by one slot (disastrous!), so annotations have to be double-checked,
e.g. by confirming that every line corresponding to a single crop is of the same length.
Wrong or swapped characters that don’t affect the line length (e.g. phonetic typos such
as莫 mò instead of墨 mò) are hard to be detected without careful proof-reading of the
entire ground truth. Hence they will, if existent, invariably lead to lower accuracy.

4.4. Binarization vs. Contrast Enhancing

For noisy input data it is challenging to identify foreground pixels (usually any pixels that
belong to the to-be-OCR’ed characters) and background pixels (any other pixels, e.g. the
document background or any noise). Image binarization is themethod used for this iden-
tification, meaning that ideally, all foreground pixels are assigned the value 0 (black) and
all background pixels the value 255 (white). A significant amount of research has sought
to improve binarization directly, as for high-resolution images and less complex charac-
ter sets such as the Latin alphabet binarized input largely improves OCR results (Gupta
et al., 2007). The International Conference on Document Analysis and Recognition (ICDAR)
and the International Conference on Frontiers in Handwriting Recognition (ICFHR) even
hold an annual document image binarization competition (DIBCO)4, presenting increas-
ingly elaborate methods. The next few paragraphs will however present more straight-
forward approaches and critically evaluate their usefulnesswithin the realm of thiswork.

The most intuitive approach to binarization, global thresholding, simply does the fol-
lowing: Given a grey-scale image, i.e. one whose pixel values are of one channel (single
numbers), usually between 0 and 255, find a threshold t such that setting every pixel

4For the most recent DIBCO, cf. Pratikakis et al. (2019) and https://vc.ee.duth.gr/dibco2019/.
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to 0 or 255 depending on whether its value is greater or smaller than t means for all
foreground pixels to turn black and all background pixels turn white. Formally, for an
image A with

A = (aij)i=1,...,I;
j=1,...,J

=


a11 · · · a1J
... . . .

aI1 aIJ

 , (4.2)

we obtain the values bij of the binary image B through

bij =

0 if aij < t

255 otherwise
. (4.3)

Unfortunately, contrast and brightness may vary considerably within the same docu-
ment, sometimes to a degree that makes it impossible to find a single value t that reliably
separates foreground and background in the entire image, even with advanced threshold
selection techniques like the well-known Otsu’s method (Otsu, 1979) which is included
in most modern image processing libraries.

Hence, other than global thresholding, more advanced techniques have arisen to face
this challenge. One of these is adaptive mean thresholding: Instead of using one global
t, the threshold is set separately for every pixel as the average of the pixel values in its
proximity (cf. Fig. 4.6). We thus obtain a threshold matrix T̄ = (t̄kij) whose entries are
the moving averages within a squared kernel of size k around every pixel aij in an image
A as defined in Equation 4.2. Formally, these threshold values are computed by

t̄kij =

pmax∑
p=pmin

qmax∑
q=qmin

apq

(pmax − pmin) ∗ (qmax − qmin)
with

k′= k−1
2

;

pmin=max(1,i−k′);
qmin=max(1,j−k′);
pmax=min(i+k′,I);
qmax=min(j+k′,J)

. (4.4)

The kernel (the outer blue box in Fig. 4.6 (a)) is cut off at the edges of A if necessary,
hence the need to specify pmin, qmin, pmax, qmax. This means for the values b′ij of the
adaptively thresholded binary image B′:

b′ij =

0 if aij < t̄kij

255 otherwise
. (4.5)

Fig. 4.6 shows an example computation: Assuming at the position i = 17, j = 42 of an
image A we find the pixel a17,42 = 98 and set k = 7 (a): The average of the surrounding
kernel t̄717,42 ≈ 177 (b) and finally the thresholding step a17,42 = 98 < 117 ≈ t̄717,42 =⇒
b17,42 = 0 (c).
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(a) A: original image and 7px kernel (b) T̄ : averages for k = 7 (c) B′: binary image

Figure 4.6.: Adaptive thresholding: 98 is lower than 177, the average of its surrounding
7px kernel, and is thus set to 0.

As with choosing a suitable t in global thresholding, the difficulty for adaptive mean
thresholding lies in setting k. Larger values for k will make sure the background stays
white, but due to higher values all over T̄ , the result B′ is darker and might even cause
foreground elements to “clump together” (Fig. 4.7 (a)). As k gets lower, individual fore-
ground elements appear cleaner and more detailed, but wherever the kernel fits between
them covering only background areas, some background pixels will be set to 0. This ef-
fect grows stronger the lower k is chosen (Fig. 4.7 (b–d)).

In order to counter this effect, I propose amethod that ensuresmost background pixels
stay white: Assuming that across the entire image, the number of background pixels is
greater than the number of foreground pixels, pixels brighter than the median m of
all pixel values are marked as part of the background and will always be set to white
after the mean thresholding computations, no matter what the mean thresholding would
originally suggest for the marked pixels to be set to (Fig. 4.7 (e)):

b′′ij =

0 if aij < t̄kij and aij < m

255 otherwise
(4.6)

While using the globally computed median works well for the small text block crops in
this thesis, it intuitively seems reasonable to use a (k̄-sized; k̄ ≫ k) running kernel for
the median thresholding as soon as images get bigger and more likely to suffer from
larger variance in contrast and brightness.

Finally, after manual evaluation I deemed

• adaptive mean binarization with k = 125 most suitable for deskewing, as the
projection profile is more stable across the entire image for “clumpier” binarization
results,
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(a) k = 125px

(b) k = 25px

(c) k = 15px

(d) k = 7px

(e) k = 7px; median thresholding for background preservation

Figure 4.7.: Adaptive mean thresholding using different kernel sizes (a–d) and additional
median thresholding for background preservation at small kernel sizes (e)
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• adaptive mean binarization with a low kernel size (k = 7) combined with addi-
tional median thresholding (cf. Fig 4.7 (e)) most suitable for separator finding as
described in Section 4.3, as the resulting projection profile is more fine-grained
since characters don’t grow together as much, leaving enough spaces to find pos-
sible separators within single columns.

There is, however, always a certain amount of information loss involved with binariza-
tion (Yousefi et al., 2015), and while binarization is certainly inevitable to create projec-
tion profiles as needed for deskewing and character segmentation, the low resolution
at character level makes good OCR results unlikely after binarization in my particular
case. Even in Fig 4.7 (e) binarization renders many characters unreadable to the human
eye, as close strokes in characters like體 in the left-most column will invariably become
all-white or all-black patches. In order to preserve a maximum of pixel information but
still allow for normalized character images of similar brightness distribution, I further
propose a partial thresholding and contrast enhancing method applied to the resulting
character images for the OCR step:

1. Globally (for the whole crop): Employ partial adaptive mean thresholding: Every
pixel whose gray-scale value is larger (= brighter) than the average of a surround-
ing 7x7-kernel is set to 255 (white). Separately, every pixel whose value is greater
than the median of the image (called threshold below) is assumed to be a back-
ground pixel and also set to 255. Every other pixel keeps its gray-scale value:

b′′′ij =

0 if aij < t̄kij and aij < m

aij otherwise
(4.7)

2. Locally (after cropping B′′′ along the separators into rectangles containing one
character each): Ignoring white pixels, linearly re-scale pixel values from [cmin,m]

to [0, 255], where cmin refers to the darkest pixel in C , a single character image.
This allows even for very lightly printed characters to appear darker and have the
decisive features more strongly separated from the background, cf. Fig. 4.8 (a).
Thus, we eventually obtain a fully-processed character image C ′ = (c′ij) through:

c′ij =
cij − cmin

m− cmin

∈ [0, 255] (after rounding) (4.8)

Furthermore, since the CNN described in Section 4.6.3 will need squared images as input,
I add white padding to transform the rectangular character images into squares without
distorting them. This results in slight size differences, as can be seen in Fig. 4.8 (b).
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(a) Contrast enhancing (b) Segmented samples of the character當

Figure 4.8.: Results after character segmentation and contrast enhancing

4.5. Character Image Generation and Augmentation

The training data automatically extracted by the method described in Section 4.3 is very
limited in size – partly due to lack ofmore annotations, partly due to the effort of creating
the crops and finding the corresponding section in the text ground truth. Tables 4.2 and
4.3 give an idea about the effective size of the training set: Table 4.2 shows the number
of characters that have at least x training samples, put into perspective by Table 4.3,
which shows how many of the most frequently used characters cumulatively amount
for what percentage of a representative corpus. Assuming that, say, x = 10 samples of
every character are needed during training in order for the CNN to predict it correctly at
all, then Table 4.2 suggests there are not enough characters in the training data to later
achieve a top-1 accuracy of over 95% (900 < 1389). Of course, there is no way to specify
an exact minimum definitely needed for x, as it would largely depend on

• the number of target classes: more classes =⇒ higher confusability =⇒ need
for more samples;

• intra-class variance: larger variance =⇒ harder to generalize =⇒ need for
more samples;

• inter-class variance: lower variance due to e.g. low image resolution or blurry
quality =⇒ higher confusability =⇒ need for more samples;

and other parameters, including the fact that some characters are harder to recognize
than others. Ren et al. (2016) address this question with the following statement:

“To train a CNN to recognize all the Chinese characters used nowadays,
which is counted more than 10,000, the size of training dataset is demanded
to be millions. Even for the most common used 1,200 Chinese characters,
the size of training dataset is also demanded to be several hundreds of thou-
sands.”
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x

number of
characters that
appear at least
x times

1 2,797
2 2,124
3 1,752
... ...
10 900
... ...
20 527
... ...
50 209
... ...

100 70

Table 4.2.: Overview over number of
training samples after
character image extraction

index character cumulative
perc. (%)

1 的 3.804
2 是 5.666
3 不 7.313
4 我 8.816
5 一 10.296... ... ...
28 也 25.365... ... ...
129 實 50.078... ... ...
408 黃 75.005... ... ...
928 毛 90.008... ... ...
1,389 瞭 95.001... ... ...
2,558 削 99.000

Table 4.3.: Cumulative character
frequency in a corpus
presented by Tsai (1996)

In other words, they demand that the training set be at least two orders of magnitude
larger than the number of target classes. While at 47,986 training samples my extracted
training set only reaches one order of magnitude in that respect (cf. also Section 4.6.2),
intra-class variance is rather low as all the characters are printed in the same font (see
Fig. 4.8), which might to some degree make up for the shortage in training data.

Apart from that, when training a NN on a fixed set of samples, there is generally a risk
of overfitting: As the training proceeds over multiple epochs, the NN “memorizes” the
very details of the training data distribution, eventually negatively affecting performance
on a validation or test set not seen during training, an effect commonly referred to as
“lack of generalization”. Overfitting tends to be more problematic for smaller training
sets (Perez and Wang, 2017), as more training epochs are needed until convergence is
reached, thus the same samples are seen more often.

Among methods like regularization, dropout and batch normalization, one way to
combat overfitting commonly seen in computer vision is data augmentation: By making
randomized transformations to the training images on the fly (i.e. during, not before
training), a CNN can be fed with any desired or needed amount of additional input. It
goes without saying that these transformations should emulate the training data as well
as possible, i.e. ideally represent the same distribution of features.

26



4. Implementation

Taking all of the above into account, and motivated by related work on synthetic data
generation and augmentation for PCCR (Ren et al., 2016; Xu et al., 2017; Zhong et al.,
2015a), I develop a method to generate additional character image data capable of em-
ulating the distribution of real character images. One fundamental set of operations is
used from the field of mathematical morphology. This term summarizes a set of algo-
rithms and techniques in image processing, with the main operations being dilation,
erosion, opening and closing. Their origins lead back to the works of Georges Matheron
and Jean Serra (Haas et al., 1967), but a more comprehensible description of the four
main operations can be found in Haralick et al. (1987). Without going into too much
detail, one can imagine these operations on binary images as follows:

• Dilation: Make every black pixel adjascent to a white pixel white as well.
• Erosion: Make every white pixel adjascent to a black pixel black as well.
• Opening: Erosion followed by dilation.
• Closing: Dilation followed by erosion.

In binary images, these algorithms are designed (and named) for white content pixels on
black background pixels. In my case (black characters on white background), the terms
are swapped pairwise.

After manually setting hyperparameters (see below) for the randomized elements in
the algorithm below, an arbitrary number of character images can be sampled. Fig. 4.10
(on page 29) juxtaposes synthetic and real character images. Padding is added to the
former in a way that it is randomly distributed to the top, bottom, left and right, such that
after all images are resized to the same size, the small size variations (as visible in Fig. 4.8
(b)) are also emulated. Randomization hyperparameters are set under manual evaluation
of the resulting output, which is naturally desired to have the largest similarity to the
real-life images possible. The resulting parameters are as follows:

Let s denote the size of the image, where s = width = height. Let ∈R denote random
sampling of a single number and ∈R=n random sampling of n numbers. Now set:

m ∈R {1, 2, 3}

k ∈R {8, 9, . . . , 17}

b ∈R {−100,−99, . . . ,+50}

Then use these hyperparameters to augment each glyph image using the following pro-
cedure (Fig. 4.9):
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Figure 4.9.: Steps to creating the synthetic character images

a. Extract PNG images of a predefined set of glyphs from a traditional Chinese Song-
style font (cf. Sections 2.2.3 and 2.2.4).

b. Add random noise (“peppering”): Sample X,Y ∈R=⌈0.01∗m∗s2⌉ {0, 1, ..., s}, then
turn all pixels (x1, y1), (x2, y2), ... (with xi ∈ X, yi ∈ Y ) to black (0).

c. Usemorphological opening to enlarge noise pixels, grow them to close black pixels
(other noise or the actual character), and closing to remove useless noise again.
Employ m iterations for both opening and closing. The kernel size is (2, 2).

d. Use morphological erosion to thicken lines (kernel size (3, 3)).
e. Emphasize vertical lines while blurring and staining the remaining parts:

1. Extract vertical elements of a certain minimum length using dilation with a
vertical kernel of size (7, 1).

2. Separately apply the following to d:
1. Further conduct erosion (3, 3) and blur (10, 10).
2. Generate random patches using the following algorithm:

A. Create a new image of size (s, s) (same size as the character image).
B. Set the number of patches np = 10, size sp = 12 and brightness

bp = 150.
C. Sample X,Y ∈R=np {0, 1, ..., s}.
D. Draw rectangles with brightness bp: For pixels (x1, y1), (x2, y2), ...

(with xi ∈ X, yi ∈ Y ), the upper left corner is (xi, yi), the lower
right corner is (xi + sp, yi + sp).

E. Blur the image (kernel size (15, 15)).
3. Add the patches to the image: Increase the pixel values of the original

image by the values obtained from the steps A–E above (component-
wise addition with cut-off at 255).

3. Join the result and the previously extracted vertical lines back together using
bitwise AND between e1 and e2.3.

f. Increase/decrease the brightness by b (not done in the above example image). Blur
the image once more (kernel size (k, k)). Linearly rescale the resulting grey-scale
values to [0, 255], just like the real-life images.

g. Apply randomized elastic distortion as described in Simard et al. (2003).
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(a) Synthetic character images sampled using the
algorithm presented in Fig. 4.9

(b) “Real” character images extracted from the image
scans.

Figure 4.10.: Comparison between synthetic and real character images.

4.6. Character Recognition

4.6.1. Unicode and Fonts

Both Xu et al. (2017) and Ren et al. (2016) generate synthetic character images from a
rather large selection of fonts (the former use 28 and the latter 32 fonts). This is rea-
sonable in so far as their test sets are more diverse, thus requiring better generalization
across the larger intra-class variance. Within this thesis, images of only one specific
font style need to be recognized, but one has to be aware that there are still considerable
differences between individual traditional Chinese Song fonts, just like in Latin-script
serif fonts. These differences are characterized by

1. slight variation in stroke thickness, character size and height-width ratio;
2. position and rotation of strokes due to regional variations of the same character.

1. can be addressed by simply training on images generated from multiple fonts, hop-
ing that the augmentations will help the NN generalize enough to make up for these
differences. As for 2., there are more striking differences in the way certain characters
are supposed to be shaped according to different countries’ standards and across histor-
ical development. Table 4.4 presents a selection of various character shapes (allographs)
that are mapped to the same code point in Unicode (with the exception of columns 1 and
3). The variants true to the one printed in the Jīngbào are black, the others are greyed
out. For the detailed explanation on graphemes, glyphs and Unicode see Section 2.2.3.
Finally, I settle with using the four fonts shown in Table 4.4 for training.

5https://data.gov.tw/dataset/5961
6http://fonts.jp/hanazono/
7https://github.com/adobe-fonts/source-han-serif
8https://github.com/ichitenfont/I.Ming
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1 2 3 4 5 6 7 8 9 10 11 12 13
Unicode point →

Font name ↓ U+
97

52
U+

97
51

U+
8A

CB

U+
70

BA
U+

72
32

U+
72

2D

U+
76

CA

U+
73

36

U+
75

76

U+
66

FE

U+
5E

73

U+
4E

E4

U+
7D

05

U+
90

19

U+
79

8F

TW-Sung5 青靑 請 為爲 爭 益 猶 當 曾 平 令 紅 這 福
HanaMin A6 青靑 請 為爲 爭 益 猶 當 曾 平 令 紅 這 福

SourceHanSerif JP7 青靑 請 為爲 爭 益 猶 當 曾 平 令 紅 這 福
I.Ming8 青靑 請 為爲 爭 益 猶 當 曾 平 令 紅 這 福

Jīngbào

Table 4.4.: Glyphs as designed in four different Song fonts for several Unicode points

4.6.2. Target classes modern
variant

Jīngbào
variant

值 (U+503C) 値 (U+5024)
偽 (U+507D) 僞 (U+50DE)
即 (U+5373) 卽 (U+537D)
卻 (U+537B) 却 (U+5374)
啟 (U+555F) 啓 (U+5553)
回 (U+56DE) 囘 (U+56D8)
夠 (U+5920) 够 (U+591F)
幫 (U+5E6B) 幇 (U+5E47)
強 (U+5F37) 强 (U+5F3A)
既 (U+65E2) 旣 (U+65E3)
款 (U+6B3E) 欵 (U+6B35)
汙 (U+6C59) 汚 (U+6C5A)
污 (U+6C61) 汚 (U+6C5A)
清 (U+6E05) 淸 (U+6DF8)
溫 (U+6EAB) 温 (U+6E29)
為 (U+70BA) 爲 (U+7232)
真 (U+771F) 眞 (U+771E)
眾 (U+773E) 衆 (U+8846)
鎮 (U+93AE) 鎭 (U+93AD)
青 (U+9752) 靑 (U+9751)

Table 4.5.: Variants
(modern vs. Jīngbào)

It is not trivial to decide how many and precisely which
of Unicode’s 93,779 CJK characters an OCR system should
be able to recognize. Xu et al. (2017) opt for 3,755 Chi-
nese characters (presumably the 3,755 Chinese characters
of the first level of GB2312-809), as well as Zhong et al.
(2015a). The same set of 3,755 characters is also commonly
found in HCCR (Melnyk et al., 2020). GB2312-80 is estab-
lished for simplified Chinese characters of contemporary
use, though, whereas the Jīngbào (1) features traditional
Chinese and (2) may contain a certain number of charac-
ters no longer (or less) commonly used today, e.g. those
appearing in personal and place names frequently used at
the time of printing. Hence, I settle with a union of

1. those of the 4,199 unique characters in the ground
truth that are not encoded in or beyond the Unicode
block CJK Unified Ideographs Extension B (starting
with U+20000, cf. Table 2.1)10 and

2. the most common 4,000 characters as in Tsai (1996).

9cf. the Chinese ideogram coded character set for information interchange (basic set) by the Standardization
Administration of the People’s Republic of China (1980)

10Other than that, there are only two instances of characters in CJK Unified Ideographs Extension A,
namely one occurrence of each 㜬 (U+372C) and 㗖 (U+35D6). All other characters not in Extension
B are within the 20,992 characters of the block CJK Unified Ideographs.
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Furthermore, in some cases the scans show certain variant characters (異體字 yìtǐzì)
with own code points (like in columns 1 and 3 of Table 4.4) whose modern traditional
Chinese equivalent has to be manually excluded (see Table 4.5). Finally, this approach
yields 4,806 classes for the OCR model to recognize.

4.6.3. Neural Network Architecture

As previously explained in Section 3.3.2, I use a GoogLeNet as proposed by Szegedy et
al. (2014). The original GoogLeNet implementation in PyTorch11, a library commonly
used for machine learning with Python, however assumes RGB-images as an input, and
consequently the first convolutional layer is designed for 3 input channels.12 Since all
of the Jīngbào’s scans are grey-scale images, I modify this layer to accept images with
only 1 input channel. Furthermore, the input images need to be resized to the required
input dimension of 224 × 224 pixels. The last layer is a fully connected layer outputting
the logits for the 4,806 classes.

4.7. OCR Output Correction

In Section 3.4, I explained how for OCR error correction, one needs to find a heuristic
for

a) deciding which characters are likely to need correction at all and
b) deciding which candidates to have the language model choose from.

The section referred to above presents different approaches to a) and b) across related
work in the field. In this thesis, I will address these issues as follows:

a) In order not to “mis-correct” correct OCR predictions, I aim to separate right from
wrong predictions by setting a threshold t for the difference in the confidence score
of the top 1 and top 2 OCR candidate. This follows the assumption that wrongOCR
predictions are likely to be of lower confidence (for experiments confirming this
assumption cf. Section 5.4). Since applying the softmax to the logit outputs of the
OCRmodel results in very high confidence scores for most predictions (> 0.9999),
I employ the log-softmax instead. In fact, computing the difference between the
log-softmax scores of the top 1 and the top 2 candidate is equivalent to computing
the difference between the raw logits. This is because for an output vector x ∈ Rn

11cf. https://pypi.org/project/torch/ and https://pytorch.org/
12for the implementation of Szegedy et al.’s architecture in torchvision.models see https://pytorch.

org/vision/stable/models.html#id23
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(n = 4806) containing the logits for a single prediction, the log-softmax simply
lowers every entry xi by a value log

(∑
j e

xj

)
which is constant for all i:

log(softmax(xi))− log(softmax(xk))

= log

(
exi∑
j e

xj

)
− log

(
exk∑
j e

xj

)
(4.9)

= xi − log

(∑
j

exj

)
−

(
xk − log

(∑
j

exj

))
(4.10)

= xi − xk (4.11)

In short: Given a character image, the OCRmodel will produce a list of predictions.
Let x be the vector containing the prediction logits in descending order, then the
language model will be employed for correcting all characters where x1 − x2 < t.
Hence, this approach is somewhat similar to the work of Zhuang and Zhu (2005).

b) The search space for the language model to predict the right character from will
be set as the top k predictions of the OCR model. Section 3.4 argued for the suit-
ability of a masked language model like BERT. To test this hypothesis, I test the
performance of a pretrained BERT model13 (trained on single traditional Chinese
characters as tokens) on a fill-mask task: For every character in the ground truth
text, mask and predict it. Results are shown in Table 4.6. As can be seen, in more
than half of the cases the BERT model predicts the correct candidate in the top
position and in about 4 of 5 cases it is among the top 10 predictions. I thus assume
that, provided enough correct context, a BERT model could reliably improve the
OCR output if the search space is suitably restricted. Just like with t, Section 5.4
in the next chapter will present experiments on choosing k.14 Finally, it has to be
noted that the variants shown in Table 4.5 have to be replaced back to the modern
ones, which are those the BERT model was most likely trained on.

n 1 2 3 4 5 6 7 8 9 10 · · · 20
p(n) 56.83 67.44 72.37 75.32 77.43 78.87 80.14 81.15 82.00 82.71 · · · 82.71

Table 4.6.: p(n) :=
perc. (%) of masked tokens whose gold label was among
the top n candidates predicted by the BERT model

13https://huggingface.co/ckiplab/bert-base-chinese, provided by CKIP (https://ckip.iis.
sinica.edu.tw/) at the Academia Sinica in Taiwan.

14Note that here and in the next chapter, t and k are unrelated to binarization thresholds (t) and kernel
sizes (k) defined for the methods in Section 4.4.
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Training on the images generated as described in Section 4.5 means training on data
randomly augmented on the fly. As ever new images are generated with a large number
of parameters for randomization, it is highly unlikely for the CNN to see the same input
image twice. On the other hand, during training on the fixed set of previously extracted
“real-life” character images, the CNN sees the same set of images in every epoch. As
a consequence, convergence is estimated to be considerably slower for training on the
synthetic data.

Furthermore, no matter how well the synthetic images emulate real-life data, they
are not likely to surpass it in terms of distribution congruence with the validation set.
Consequently, training on real-life images is likely to lead to a higher accuracy than
training on only synthetic data.

From these two assumptions I derive the strategy to carry out extensive pre-training
on synthetic data first, and to fine-tune the network on the real-life character images
after. I conduct experiments with andwithout pre-training before passing the best model
on to post-processing using BERT. Finally, using the optimal hyperparameters I evaluate
the best models on the test set and discuss results.

5.1. Pre-training on Synthetic Data

I use a batch size of 4 and set up training using stochastic gradient descent as an optimizer
with a fixed learning rate of 0.001 and a momentum of 0.5. One epoch equals training
on those of the 4,806 classes that the individual fonts provide a glyph for. The fonts
lack glyphs for between 9 (TW-Sung) and 128 (SourceHanSerif JP) of the classes, which
I consider negligible as the missing characters can be safely assumed to be rare ones and
the upper bound for the resulting accuracy loss during pre-training is only 128/4806 =

2.66%.
Every image is augmented using the method described on page 28 and then passed to

the CNN. After every epoch, the network is evaluated on the validation set and saved
with the current parameters. It is then trained for as many epochs as needed until no
improvement is made over 50 epochs. The model with the highest validation accuracy
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is kept, all other checkpoints are discarded. The CNN is trained on an Nvidia GTX 1080
Ti. For the pre-training, one epoch takes roughly 4.2 minutes, amounting to between 24
and 48 hours for one model to finish training.

Fig. 5.1 (a) shows the validation accuracies during training on the individual fonts
vs. on the entire set of glyph images from all fonts. The following observations can be
made:

1. The font that performs best individually, SourceHanSerif JP, is not the one that
seems the closest to the real-life data in terms of character variants (arguably
I.Ming, cf. Table 4.4). This suggests that contrary to intuition, the rather limited
number of variants with deviant stroke positions (cf. 2. in Section 4.6.1) is less
important for emulating the real-life characters than the general structure of the
entire font’s glyphs (stroke width and length, character height/width ratio, size of
certain components in relation to character size etc.; 1. in Section 4.6.1).

2. Training on all fonts combined yields slight improvement over training on only the
best performing font (SourceHanSerif JP). Higher peaks after some epochs yield
considerably higher accuracies. These “lucky catches” are most likely based on
the strong randomization (and thus variability) of the training set.

3. As assumed, the validation accuracy barely decreases after converging, suggesting
that there is not a lot of overfitting. Longer training times might reveal a more
pronounced decline, which was not tested for practical and resource reasons.

5.2. Fine-tuning on Extracted Character Images

Using the same training settings (batch size, optimizer, learning rate, momentum) as for
pre-training, I continue training on the set of 47,986 characters—once from scratch, once
continuing from the maximum accuracy model yielded during pre-training on all fonts
(the red dot in Fig. 5.1 (a), which is equivalent to the light blue dot in Fig. 5.1 (b)). This
time, the training images are natural and not augmented, hence they are seen repeatedly
in every epoch. As a consequence of differing epoch sizes, epochs are not a suitable
measure of training time, which is why Fig. 5.1 instead refers to the number of seen
training samples for comparability. Fig. 5.1 (b) allows for the following observations:

1. With pre-training, the model achieves higher accuracy. This is presumably due to
the greater amount of diverse training data leading to better generalization even
on the specific font in the validation data and justifies the motivation and method
presented in Section 4.5.
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(a) Pre-training on artificial image data

(b) Training on real-life data with and without pre-training

Figure 5.1.: Development of validation accuracies during training. Maxima are marked
with a larger dot, for numerical values cf. Table 5.1.
“All fonts” in (a) is equivalent to “pretraining on all fonts” in (b).

font name k = 1 2 3 4 5 6 7 8 9 10

sy
nt
he

tic

TW-Sung 54.40 64.86 69.51 72.19 74.18 75.65 76.79 77.76 78.57 79.30
HanaMin A 47.69 59.45 64.87 68.10 70.42 72.17 73.46 74.60 75.54 76.22

SourceHanSerif JP 62.62 70.64 74.09 76.23 77.76 78.94 79.93 80.61 81.24 81.69
I.Ming 55.60 66.41 70.90 73.84 76.09 77.62 78.83 79.86 80.60 81.23

(∗) all fonts 69.73 78.30 81.68 83.65 84.99 86.06 86.87 87.49 87.97 88.46

re
al without pre-training 96.54 97.32 97.49 97.58 97.64 97.65 97.70 97.70 97.71 97.71

after pre-tr. on (∗) 97.63 98.57 98.78 98.91 98.98 99.01 99.07 99.10 99.12 99.13

Table 5.1.: Top-k accuracy of the OCR classifier on the validation set
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2. Themodel converges faster after pre-training, even when taking the time spent on
pre-training into account: Once the maximum is reached, no improvement is ob-
servable for more than 4 million seen samples. The model trained on real-life data
from scratch however shows very slow convergence and new slight improvements
(mostly by 0.01%) are reached over a long time.

3. During fine-tuning, the amplitude of accuracy values between epochs is visibly
lower than during pre-training, where peaks and lows are deviating stronger from
each other. This can be ascribed to the randomization which leads to a training
set changing between epochs, in contrast to the static real-life training set.

5.3. OCR Results

Extending what can be seen in Fig. 5.1, Table 5.1 quantifies the entire results on the
validation set. Most importantly, top k accuracy is presented for k = 2, . . . , 10, too,
which will be important for error correction using the BERT model. Generally, it is
evident that accuracies are substantially lower when only training on synthetic data.
This is supposedly due to the fact that the feature distribution will always be worse
than that of real-life data which is naturally more similar to the validation set the model
is evaluated on. As stated before, the best results are achieved when pre-training on
randomly augmented glyph images of all four fonts and fine-tuning on the segmented
real-life character images: Pre-training raises the top-1 validation accuracy from 96.54%
to 97.63% which is equivalent to an error reduction of 31.5%. Final results on the test set
will be presented in the next section.

As mentioned above, Table 5.1 also shows top k accuracy values for k > 1. Unsur-
prisingly, a higher k leads to a considerably higher accuracy for all of the models. This is
because for incorrect OCR predictions, the correct candidate is often predicted in second
or third place, as can be seen in the examples in Table 5.2. This intuitively justifies the
approach described in the next section.

sample top 10 candidates

肯 貴 骨 片 督 昔 皆 貨 旨 嘗
胎 貽 船 貼 晤 賠 始 販 斯 脂

油 汕 別 遇 洲 勃 海 前 西 効

棒 梭 慘 核 稼 橡 桂 俸 梓 控

蒲 蓮 薄 通 滯 謝 浦 逝 蕩 鼎
數 歎 歌 欵 歡 欽 教 歉 默 歔

sample top 10 candidates

開 閱 聞 則 閔 題 圍 四 期 閡
廖 麼 慶 廳 鑒 豐 麽 應 禦 農
買 貲 貨 質 賞 贊 貸 貿 賢 實
盛 懿 驚 盤 璇 離 鑑 蓬 蹤 蘇
換 撲 模 摟 瑛 摸 漢 搜 樓 揍
申 甲 中 串 弔 早 冉 里 叩 官

Table 5.2.: Examples of wrong OCR predictions
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5.4. OCR Error-Correction Using a BERT Model

Let x1 and x2 denote the logit scores of the top 2 candidates output by the OCR model.
As introduced in the last chapter (Section 4.7), I now aim to find characters likely to have
been predicted incorrectly by the OCR model by setting a threshold t for the difference
between x1 and x2. Any OCR prediction where x1 − x2 < t is treated as likely to be
incorrect and is passed on to the correction step. This step works by having a pre-trained
BERT model1 re-predict the character from the top k OCR candidates. If x1−x2 > t, the
OCR prediction is assumed to be correct and will serve as part of the context necessary
for the language model (LM). This section will deal with finding suitable values for t and
k and present results.

First, I check the assumption that x1 − x2 is smaller if the top candidate is not correct
( ̸= the gold label). Fig. 5.2 (a) and (b) show histograms of the values of x1−x2 for every
character in the validation set (bin size on the x-axis: 0.2). While the different scaling
of the y-axis has to be taken into account, it is evident that the above assumption holds,
which is congruent with the intuition that correct predictions are higher in confidence—
or less formally, the model is “surer” about its prediction when it’s correct than when
it’s wrong. Supporting this finding, manual evaluation revealed that among wrong pre-
dictions with high confidence there is a considerable amount of annotation errors—i.e.
the model predicted the correct character but the prediction was classified as wrong due
to an incorrect gold label. However, there are only 227 cases (1% of the validation set)
where for a wrong prediction x1 − x2 > 3.

Depending on the threshold t, a differently sized proportion of the OCR output is
re-evaluated by the LM. The extremal cases are trivial:

1. t = 0 =⇒ The entire OCR output is assumed to be correct, the LM is never used.
2. t ≥ max

i,j
(xi − xj) =⇒ The entire OCR output is re-evaluated by the LM:

a) k = 1 =⇒ The LM only gets one candidate to choose from, equivalent to 1.
b) k = |V | (k is equal to the LM’s vocabulary size) =⇒ Every character is

re-evaluated, the final accuracy would be somewhere near p(1) in Table 4.6.

Systematically testing different values of t and k with t ∈ [0, 0.5, . . . , 10] and k ∈
[0, 1, . . . , 18], I obtain the results shown in Fig. 5.2 (c). For comparison, the original OCR
accuracy of 97.63% is marked as a horizontal line. It is evident that within certain inter-
vals of t and k, the LM indeed lowers the error on the validation set, i.e. post-processing
is successful. Optimal values for t and k are obtained by the following observations:

1cf. the footnote on page 32
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5. Experiments and Discussion

Figure 5.2.: Values for x1 − x2 for right (a) and wrong (b) predictions and accuracy on
validation set for different t after LM-correction (c) (numeric values up to
k = 18 along with k = |V | can be found in Appendix A.1).
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t: Independent of k, the best performance is consistently obtained for 2.0 ≤ t ≤ 3.0,
which is in line with the observations in Fig. 5.2 (a) and (b) where this is the region
that intuitively best separates correct from incorrect predictions. As within this
interval there is no clear tendency of a specific maximum (cf. also Appendix A.1),
I settle with the midpoint of t = 2.5.

k: The best performance is obtained for k = 7, albeit by a very slight margin over
any 3 ≤ k ≤ 18. As for lower and higher k: At k = 2 the LM correction does
improve performance over the basic OCR model, but while in wrong predictions
the correct candidate is often in second place (cf. Table 5.2 on page 36), this misses
out on the cases where it is further back. Within 3 ≤ k ≤ 18, the LM reveals its
full potential: The small number of visually similar characters are not likely to be
semantically similar and thus easily identifiable by the context-aware LM. For k >

7, the top accuracy value (2.0 ≤ t ≤ 3.0) slowly decreases, presumably because
given greater choice, the LMbecomes evermore likely to find a semantically fitting
(but incorrect) candidate, until more and more initially correct OCR predictions
are “mis-corrected” and the overall accuracy drops below the initial OCR accuracy.
At k = |V |, no improvement over the OCR model is made for any t (cf. A.1).

5.5. Final Results on the Test Set

Resulting from the observations described in the last section, the best model (as of Table
5.1) was evaluated on the test set using t = 2.5 and k = 7. Of the 22,377 images in
the test set, 96.95% were correctly identified by the OCR model. 767 characters were
passed to the LM for re-evaluation (see paragraph below), whereafter a total accuracy
of 97.44% is achieved. As becomes apparent in Table 5.3, these values are lower than
on the validation set, where for t = 2.5, k = 7 accuracies of 97.63% and 98.05% were
attained, respectively. Presumably, the crops in the test set happened to originate from
less clearly printed sections of the newspaper. Nevertheless, the overall correction rate

val. set test set
only OCR w/o pre-training 96.54 95.49
only OCR w/ pre-training 97.63 96.95
OCR w/ pre-training + LM 98.05 97.44

Table 5.3.: Classification accuracy (%) on validation
and test set

after applying LM:
right wrong

O
CR

re
su

lt: right 292 82
wrong 174 54+165*

Table 5.4.: Confusion table for the LM cor-
rection step (*54 left unchanged,
165 changed to another wrong
character)
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5. Experiments and Discussion

of the LM step is consistent between validation and test set, with error reduction rates
of 18.1% (validation set) and 16.1% (test set).

Finally, Table 5.4 gives additional insight into what happens at the LM correction step:
Of the OCR output passed to the LM, correct and incorrect characters nearly make up
one half each (374 right, 393 wrong). After applying the LM, this ration shifts to about
60–40 (466 correct, 311 incorrect). Precisely, 44% of wrong OCR output passed to the
LM is corrected, but also 22% of the characters correctly predicted by the OCR model
are changed to incorrect ones. Though ultimately, positive changes outweigh negative
ones, the absolute amount of correct OCR output “botched” by the LM leaves room for
improvement.
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6. Conclusion and Outlook

This thesis investigated an approach to building a character-level OCR classifier and re-
ducing errors in the output by using a pre-trained BERT languagemodel. In the course of
the experiments, I have shown how pre-training on large amounts of synthesized image
data and LM post-processing considerably reduce the classification error, and how to set
hyperparameters for the latter. The results allow for optimistic outlooks on extracting
the full text from the Jīngbào and similar newspapers, as they will significantly reduce
human annotation work (at 97.5% accuracy, only one out of 40 characters is wrong).
There is, however, still an urgent need for efficient segmentation methods on higher
layout levels which this work did not address. Existing NN-based architectures such as
eynollah presented in the related work section might solve this remaining problem in
the future. Apart from that, future challenges also include:

• the fact that the grid layout is not generally given throughout the entire Jīngbào or
other newspapers, hence NN-based character detection such as the HRCenterNet
(cf. Section 3.2) will be necessary;

• the fact that other parts of the Jīngbào and other newspapers use different fonts
that even vary within the same structurally connected segments, such as head-
ing fonts vs. text fonts in article blocks or different fonts in advertisements and
marginalia;

• possible improvements in LM-based error correction, e.g. by increasing search
space beyond the top k candidate list of the OCR model, considering that it does
not generally output all visually similar characters in question;

• the question if, in the case of totally absent training data, synthetic data alone
would be able to provide enough correct output that post-processing using LMs is
effective. Table 5.1 yields 88.46% top 10 accuracy when training on only synthetic
data, but a masked LM like BERT might not have enough correct context for re-
liable mask prediction. Chapter 3 of this work however presents other methods
that–in combination with BERT–may still be able to identify a sufficient number
of correct candidates.
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A. Appendix

A.1. Numeric Values for Fig. 5.2 (c)
k = 2:

t v. a.*
0.0 97.63
0.5 97.73
1.0 97.81
1.5 97.90
2.0 97.93
2.5 97.95
3.0 97.96
3.5 97.94
4.0 97.90
4.5 97.90
5.0 97.88
5.5 97.84
6.0 97.79
6.5 97.74
7.0 97.69
7.5 97.64
8.0 97.59
8.5 97.51
9.0 97.41
9.5 97.33

10.0 97.23

k = 3:

t v. a.*
0.0 97.63
0.5 97.75
1.0 97.83
1.5 97.96
2.0 98.01
2.5 98.00
3.0 98.01
3.5 97.98
4.0 97.93
4.5 97.92
5.0 97.88
5.5 97.82
6.0 97.75
6.5 97.70
7.0 97.61
7.5 97.56
8.0 97.49
8.5 97.37
9.0 97.24
9.5 97.11

10.0 96.95

k = 4:

t v. a.*
0.0 97.63
0.5 97.75
1.0 97.84
1.5 97.97
2.0 98.02
2.5 98.01
3.0 98.02
3.5 97.97
4.0 97.92
4.5 97.90
5.0 97.86
5.5 97.79
6.0 97.70
6.5 97.63
7.0 97.53
7.5 97.45
8.0 97.35
8.5 97.20
9.0 97.04
9.5 96.85

10.0 96.66

k = 5:

t v. a.*
0.0 97.63
0.5 97.76
1.0 97.85
1.5 97.98
2.0 98.04
2.5 98.03
3.0 98.04
3.5 98.00
4.0 97.93
4.5 97.91
5.0 97.87
5.5 97.79
6.0 97.67
6.5 97.60
7.0 97.50
7.5 97.41
8.0 97.29
8.5 97.13
9.0 96.94
9.5 96.74

10.0 96.53

k = 6:

t v. a.*
0.0 97.63
0.5 97.76
1.0 97.85
1.5 97.98
2.0 98.04
2.5 98.03
3.0 98.05
3.5 98.01
4.0 97.94
4.5 97.92
5.0 97.85
5.5 97.76
6.0 97.64
6.5 97.56
7.0 97.46
7.5 97.37
8.0 97.24
8.5 97.05
9.0 96.82
9.5 96.59

10.0 96.35

k = 7:

t v. a.*
0.0 97.63
0.5 97.76
1.0 97.86
1.5 97.99
2.0 98.06
2.5 98.05
3.0 98.06
3.5 98.02
4.0 97.94
4.5 97.92
5.0 97.83
5.5 97.73
6.0 97.62
6.5 97.53
7.0 97.44
7.5 97.36
8.0 97.21
8.5 97.01
9.0 96.77
9.5 96.51

10.0 96.25

*v. a. = validation accuracy
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k = 8:

t v. a.*
0.0 97.63
0.5 97.74
1.0 97.85
1.5 97.98
2.0 98.04
2.5 98.04
3.0 98.05
3.5 98.00
4.0 97.92
4.5 97.90
5.0 97.81
5.5 97.70
6.0 97.58
6.5 97.49
7.0 97.40
7.5 97.30
8.0 97.15
8.5 96.95
9.0 96.66
9.5 96.41

10.0 96.16

k = 9:

t v. a.*
0.0 97.63
0.5 97.75
1.0 97.86
1.5 97.99
2.0 98.05
2.5 98.05
3.0 98.06
3.5 98.01
4.0 97.92
4.5 97.89
5.0 97.80
5.5 97.68
6.0 97.57
6.5 97.49
7.0 97.38
7.5 97.26
8.0 97.11
8.5 96.91
9.0 96.61
9.5 96.36

10.0 96.11

k = 10:

t v. a.*
0.0 97.63
0.5 97.75
1.0 97.86
1.5 97.99
2.0 98.04
2.5 98.04
3.0 98.05
3.5 98.00
4.0 97.91
4.5 97.89
5.0 97.79
5.5 97.67
6.0 97.55
6.5 97.45
7.0 97.34
7.5 97.20
8.0 97.04
8.5 96.82
9.0 96.53
9.5 96.27

10.0 96.00

k = 11:

t v. a.*
0.0 97.63
0.5 97.74
1.0 97.85
1.5 97.97
2.0 98.03
2.5 98.03
3.0 98.03
3.5 97.98
4.0 97.90
4.5 97.87
5.0 97.77
5.5 97.65
6.0 97.53
6.5 97.43
7.0 97.32
7.5 97.18
8.0 97.01
8.5 96.78
9.0 96.47
9.5 96.20

10.0 95.92

k = 12:

t v. a.*
0.0 97.63
0.5 97.74
1.0 97.87
1.5 97.98
2.0 98.03
2.5 98.04
3.0 98.04
3.5 97.99
4.0 97.91
4.5 97.88
5.0 97.79
5.5 97.66
6.0 97.55
6.5 97.45
7.0 97.35
7.5 97.20
8.0 97.03
8.5 96.80
9.0 96.50
9.5 96.21

10.0 95.91

k = 13:

t v. a.*
0.0 97.63
0.5 97.75
1.0 97.87
1.5 97.98
2.0 98.03
2.5 98.03
3.0 98.03
3.5 97.98
4.0 97.90
4.5 97.87
5.0 97.77
5.5 97.65
6.0 97.54
6.5 97.43
7.0 97.31
7.5 97.16
8.0 97.00
8.5 96.74
9.0 96.41
9.5 96.15

10.0 95.85

k = 14:

t v. a.*
0.0 97.63
0.5 97.74
1.0 97.88
1.5 98.00
2.0 98.05
2.5 98.04
3.0 98.03
3.5 97.98
4.0 97.90
4.5 97.87
5.0 97.78
5.5 97.65
6.0 97.54
6.5 97.43
7.0 97.31
7.5 97.17
8.0 96.99
8.5 96.72
9.0 96.40
9.5 96.15

10.0 95.87

k = 15:

t v. a.*
0.0 97.63
0.5 97.74
1.0 97.87
1.5 98.00
2.0 98.05
2.5 98.04
3.0 98.04
3.5 97.98
4.0 97.90
4.5 97.87
5.0 97.78
5.5 97.65
6.0 97.54
6.5 97.42
7.0 97.31
7.5 97.16
8.0 96.99
8.5 96.71
9.0 96.38
9.5 96.13

10.0 95.84

k = 16:

t v. a.*
0.0 97.63
0.5 97.74
1.0 97.87
1.5 98.00
2.0 98.04
2.5 98.04
3.0 98.03
3.5 97.98
4.0 97.91
4.5 97.88
5.0 97.79
5.5 97.66
6.0 97.55
6.5 97.43
7.0 97.31
7.5 97.16
8.0 96.99
8.5 96.71
9.0 96.38
9.5 96.14

10.0 95.85

k = 17:

t v. a.*
0.0 97.63
0.5 97.74
1.0 97.88
1.5 98.00
2.0 98.04
2.5 98.03
3.0 98.03
3.5 97.97
4.0 97.90
4.5 97.87
5.0 97.78
5.5 97.65
6.0 97.53
6.5 97.42
7.0 97.30
7.5 97.14
8.0 96.97
8.5 96.68
9.0 96.36
9.5 96.11

10.0 95.81

k = 18:

t v. a.*
0.0 97.63
0.5 97.74
1.0 97.86
1.5 97.99
2.0 98.01
2.5 98.01
3.0 98.00
3.5 97.95
4.0 97.89
4.5 97.85
5.0 97.76
5.5 97.62
6.0 97.51
6.5 97.39
7.0 97.27
7.5 97.12
8.0 96.94
8.5 96.64
9.0 96.32
9.5 96.07

10.0 95.74

k = |V |:
t v. a.*
0.0 97.63
0.5 97.62
1.0 97.55
1.5 97.49
2.0 97.35
2.5 97.16
3.0 96.95
3.5 96.73
4.0 96.45
4.5 96.19
5.0 95.81
5.5 95.34
6.0 94.82
6.5 94.34
7.0 93.74
7.5 92.94
8.0 92.18
8.5 91.09
9.0 89.99
9.5 88.82

10.0 87.59
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