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Introdution

Di�erential Galois theory is a generalization of the usual Galois theory for poly-

nomials to linear di�erential equations. The analog of a �eld in this ontext is a

di�erential �eld, i.e., a �eld with a derivation. There is the notion of a splitting

�eld (a Piard-Vessiot extension) of a linear di�erential equation and the di�eren-

tial Galois group is the group of automorphisms of this Piard-Vessiot extension

over the base di�erential �eld whih respet the derivation. Just as usual Galois

groups ome equipped with a standard permutation representation given by the

ation on the roots of a polynomial de�ning the extension, the di�erential Galois

groups have a faithful linear representation over the �eld of onstants K of the dif-

ferential �eld under onsideration, given by the ation on the solution spae of the

di�erential equation. Moreover, it an be shown that the image of this representa-

tion is Zariski-losed, i.e., that any di�erential Galois group is isomorphi to the set

of K-rational points of a linear algebrai group.

Still in analogy with lassial Galois theory, it is a very natural question to ask

whih linear algebrai groups our in this way as di�erential Galois groups. This

is the so-alled inverse problem. Even in the most natural setting, namely when the

�eld is just a rational funtion �eld K(t) over the algebraially losed �eld K with

derivation � =

d

dt

, no general answer was known.

Up to now, several ases of this problem have been solved:

� The lassial ase where K = C , the �eld of omplex numbers, was solved

in 1979. Using analyti methods, Tretko� and Tretko� showed ([TT79℄) that

any linear algebrai group ours as the di�erential Galois group of some linear

di�erential equation over C (t). The main idea is to hoose a �nitely gener-

ated Zariski-dense subgroup of the group under onsideration and to employ

Plemelj's solution to Hilbert's 21st problem (also alled the Riemann-Hilbert

problem) to onlude that this latter group is the monodromy group of a linear

di�erential equation of Fuhsian type. Sine for Fuhsian type equations, the

monodromy is Zariski-dense in the di�erential Galois group, this equation will

realize the original group.

� In 1993, M. Singer solved the inverse problem for ertain lasses of groups

([Sin93℄) over arbitrary algebraially losed �elds of harateristi zero, ex-

tending the result of Tretko� and Tretko�. The spae L of all linear di�eren-

tial equations of bounded order and with polynomial oeÆients of bounded
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degree an be identi�ed with an aÆne spae. For a linear algebrai group

G, Singer de�nes KerX(G

0

) to be the intersetion of the kernels of all linear

haraters of G

0

. He shows that this is a normal subgroup of G, and that

G

0

=KerX(G

0

) is a torus (in partiular, it is abelian). The ation of G on

G

0

then indues an ation of G=G

0

on G

0

=KerX(G

0

). Singer proves that if

this ation is trivial, the set of linear di�erential equations of bounded order

with solution spae a �xed G-module, bounded polynomial oeÆients, and

partly presribed singularities, is a onstrutible subset of L (in the sense of

algebrai geometry). For suh groups, he is then able to vary the oeÆient

�eld C to any algebraially losed �eld of harateristi zero. In partiular,

sine all linear haraters of a semisimple group are trivial, his result implies

that any linear algebrai group with semisimple onneted omponent of the

identity is a di�erential Galois group over K(t) (see Theorem 4.3).

� In 1996, C. Mitshi and M. Singer gave a onstrutive solution of the on-

neted ase (i.e., the ase when the group under onsideration is onneted),

[MS96℄. The use of the Lie algebra suggested in Kovai's ground breaking

work ([Kov69℄, [Kov71℄) is the most important tool for their solution: If the

matrix de�ning a di�erential equation is ontained in the Lie algebra of a lin-

ear algebrai group, then the di�erential Galois group is (up to onjugation) a

subgroup of that group (Proposition 2.5), and one also has a partial onverse

(Proposition 2.9). This upper bound redues the task to �nding a suÆiently

general element of the Lie algebra as the de�ning matrix of the di�erential

equation (here the strategy is that the generality of an element should prevent

the di�erential Galois group from being too small). The proof an be simpli-

�ed by using reent results of T. Oberlies on onneted embedding problems

([Obe01℄).

� Finally, C. Mitshi and M. Singer found a proof of the fat that all groups with

solvable onneted omponent our as di�erential Galois groups ([MS00℄).

This was the �rst algebrai treatment of non onneted groups. Some of the

ideas used in this thesis an already be found there. Sine the preprint [MS00℄

is unpublished and not in �nal form, we give our own proofs of the results we

use.

In this ontext, we also mention that the orresponding inverse problem in positive

harateristi di�erential Galois theory (so-alled iterative di�erential Galois theory)

has reently been solved by B.H. Matzat ([Mat01℄).

The main result of this thesis is the following (Theorem 4.17):

Theorem 1. Let K be an algebraially losed �eld of harateristi zero and let

G be a linear algebrai group de�ned over K. Then there exists a Piard-Vessiot

extension E=K(t) suh that Gal(E=K(t))

�

=

G(K).
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This thesis is organized as follows. In Chapter 1, we provide the preliminaries from

di�erential Galois theory needed for the later hapters and thereby introdue the

notation we use.

Chapter 2 deals with onneted groups. We explain the onept of e�etivity and the

use of the Lie algebra, and show how this applies to so-alled embedding problems.

In the last setion of Chapter 2, we sketh a proof of the onneted inverse problem.

In Chapter 3, we turn to non onneted groups. We reall some basi de�nitions and

results from the theory of algebrai groups over non algebraially losed �elds. This

will be needed for the treatment of split embedding problems with onneted kernel

and �nite okernel given in the following two setions. In the non onneted ase,

the Lie algebra does not enode enough information about the group. However, if

we restrit ourselves to the situation when the onneted omponent of the group

has a �nite omplement, the Lie algebra inherits an ation of this omplement by

onjugation. This ation gives rise to a semilinear ation whih is given by omposing

the onjugation with a Galois ation. In Setion 3.2, we show that a neessary

ondition for a group of the type desribed above to be a di�erential Galois group is

that there exists a realization of the onneted omponent over its �xed �eld whih

is given by a matrix whih is invariant under this ation (the so-alled equivariane

ondition). Setion 3.3 ontains a partial onverse of this statement, whih redues

the realization of suh groups to e�etive equivariant realizations of their onneted

omponents over an algebrai extension of the di�erential �eld under onsideration.

The equivariane ondition also allows us to generalize some results on embedding

problems from the onneted ase, whih is done is Setion 3.4. In the last setion

of the hapter, we state what remains true in the general situation.

The last hapter is devoted to the proof of the above main theorem. We make

several redution steps using the struture theory of linear algebrai groups. These

steps are ombined in Setion 4.4 to prove the main result.

Note: The bibliography is ordered by label.
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Chapter 1

Preliminaries

In this hapter, we provide the preliminary material from di�erential Galois theory

whih is needed to develop the results of the later hapters. The reader familiar

with the onept of Piard-Vessiot extensions and their basi properties may skip

this hapter. We do not give proofs of the standard results. As a general referene,

we suggest [vdP99℄.

1.1 Di�erential Fields and Di�erential Equations

De�nition 1.1. Let R be a ommutative ring with a unit. A map � : R ! R is

alled a derivation if it is additive and satis�es the Leibnitz rule

�(a � b) = �(a) � b+ a � �(b)

for all a; b 2 R. An element of R on whih � vanishes is alled a onstant, and

the set of all suh elements is denoted by Const(R). A di�erential ring is a ring

R equipped with a derivation.

The notion of a di�erential �eld is analogous. One easily heks that the set of on-

stants of a di�erential ring (resp. di�erential �eld) forms a subring (resp. sub�eld).

De�nition 1.2. A ring homomorphism ' 2 Hom(R; S) of di�erential rings (R; �

R

)

and (S; �

S

) is alled a di�erential homomorphism if it ommutes with the deriva-

tions, i.e., if ' Æ �

R

= �

S

Æ'. An ideal in R whih is stable under the derivation �

R

is alled a di�erential ideal.

If R is a di�erential ring and 0 =2 S � R a multipliatively losed subset, the

derivation on R has a unique extension to S

�1

R. In partiular, a di�erential integral

domain allows a unique extension of the derivation to its �eld of frations.

De�nition 1.3. Let (F; �

F

) be a di�erential �eld. An element ` =

n

P

i=0

a

i

�

i

2 F [�℄

with oeÆients a

i

2 F , a

n

6= 0 is alled a di�erential operator of order n over F .
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Let (E; �

E

) � (F; �

F

) be a di�erential �eld extension (i.e., E � F is a �eld extension

and �

E

j

F

= �

F

). An element y 2 E suh that `(y) = 0 is alled a solution of ` in

E.

It is not hard to see that the set of solutions of a di�erential operator ` in a di�erential

extension E � F forms a vetor spae over the �eld of onstants of E of dimension

at most the order of `.

A solution y 2 E leads to a solution y = (y; �(y); �

2

(y); : : : ; �

n�1

(y))

tr

2 E

n

of the

matrix di�erential equation

�(Y ) =

0

B

B

B

B

B

�

0 1 0 : : : 0

0 0 1 : : : 0

0 0 0

.

.

.

0

0 0 0 : : : 1

�a

0

�a

1

�a

2

: : : �a

n�1

1

C

C

C

C

C

A

Y

(where the di�erentiation on the left hand side is omponent-wise). The matrix

assoiated to a di�erential operator in this way is sometimes alled a ompanion

matrix. On the other hand, any matrix A 2 F

n�n

de�nes a (matrix) di�erential

equation �(Y ) = AY .

If B 2 GL

n

(F ) and y is a solution of �(Y ) = AY , then

�(By) = �(B)y +B�(y) = (�(B)B

�1

+BAB

�1

)By;

i.e., By is a solution of the di�erential equation

�(X) = (�(B)B

�1

+BAB

�1

)X =:

~

AX:

Sine the solutions of the di�erential equations de�ned by A and

~

A an be trans-

formed into one another by multipliation with a matrix in GL

n

(F ), the two di�er-

ential equations have the same number of Const(E)-linearly independent solutions

in every di�erential �eld extension E � F . This motivates the following de�nition.

De�nition 1.4. Two matries A and

~

A in F

n�n

are alled equivalent if there

exists a matrix B 2 GL

n

(F ) suh that

~

A = �(B)B

�1

+BAB

�1

:

It an be shown (see [Kat87℄) that every matrix with oeÆients in F is equivalent

to the ompanion matrix of some di�erential operator over F . Sine the matrix

form of a di�erential equation is more suitable for our approah, we will use this

formulation for all further onsiderations.

We will be partiularly interested in extensions E of F in whih a given di�erential

equation de�ned by a matrix in A 2 F

n�n

has n Const(E)-linearly independent

solutions, i.e., when the solution spae has the largest possible dimension. If E � F

is suh an extension, there exists a matrix Y 2 GL

n

(E) satisfying �(Y ) = AY .
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De�nition 1.5. A matrix Y 2 GL

n

(E) suh that �(Y ) = AY is alled a funda-

mental solution matrix of the di�erential equation de�ned by A.

One an also translate the above de�nitions into the setting of di�erential modules

and onnetions (see, for example, [vdP99℄, Appendix A.4), but sine we will make

no use of this theory, we omit its treatment here.

1.2 Piard-Vessiot Extensions

In this setion we will de�ne the analog of a splitting �eld for di�erential equations

and see that suh �elds always exist.

De�nition 1.6. A Piard-Vessiot ring for a di�erential equation de�ned by the

matrix A 2 F

n�n

is a di�erential ring R � F suh that

1. R is a simple di�erential ring (i.e., ontains no nontrivial di�erential ideals),

2. there exists a fundamental solution matrix Y 2 GL

n

(R) and

3. R is generated over F by the oeÆients of Y and det(Y )

�1

.

It an be shown that beause of the �rst ondition, a Piard-Vessiot ring is always

an integral domain, whih allows us to onsider its �eld of frations (equipped with

the unique extension of the derivation).

De�nition 1.7. The �eld of frations of a Piard-Vessiot ring for a di�erential

equation over F is alled a Piard-Vessiot �eld. We also all suh a �eld a

Piard-Vessiot extension of F without referring to a partiular di�erential equa-

tion.

The �rst ondition of De�nition 1.6 also guarantees that the �eld of onstants of a

Piard-Vessiot extension of F oinides with that of F ([vdP99℄, Lemma 3.2). It

is shown in [vdP99℄ (Proposition 3.9), that a di�erential �eld extension E=F is a

Piard-Vessiot �eld for a di�erential equation if and only if E=F is generated by

the oeÆients of a fundamental solution matrix of this equation and Const(E) =

Const(F ).

Proposition 1.8. Let F be a di�erential �eld with algebraially losed �eld of on-

stants. Then for every di�erential equation over F there exists a Piard-Vessiot

ring whih is unique up to di�erential isomorphism. The �eld of onstants of the

orresponding Piard-Vessiot �eld oinides with the �eld of onstants of F .

The idea of onstrution of a Piard-Vessiot extension is very basi: We onsider

the oordinate ring F [GL

n

℄ = F [X

ij

; det(X

ij

)

�1

℄ of the general linear group and

endow it with a derivation given by �(X) = AX, X = (X

ij

). In this universal

solution algebra, the matrix di�erential equation learly has a fundamental solution
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matrix (namely X). Condition 3 of De�nition 1.6 is also satis�ed. Fatoring by

a maximal di�erential ideal P guarantees di�erential simpliity and therefore gives

the desired Piard-Vessiot ring. For details of the proof, see for example [vdP99℄,

Proposition 3.6.

Remark 1.9. If in the above notation R = F [GL

n

℄=P is a Piard-Vessiot ring for a

di�erential equation and E = Quot(R), the fundamental solution matrix obtained in

the onstrution just desribed an be onsidered as an E-rational point of Spe(R),

and then P is the ideal of all f 2 F [GL

n

℄ whih vanish on Y .

1.3 The Di�erential Galois Group

De�nition 1.10. Let E=F be a Piard-Vessiot extension. The set of all di�erential

automorphisms of E over F is alled the di�erential Galois group of the extension

and is denoted by Gal(E=F ).

In lassial Galois theory, Galois groups ome with a natural permutation represen-

tation given by the ation on the roots of a polynomial de�ning the extension. In dif-

ferential Galois theory, we have (as seen in Setion 1.1) a fullK-vetor spae of solu-

tions with oeÆients in a Piard-Vessiot extension E (where K is the ommon �eld

of onstants of E and F ) and hene the di�erential Galois group is equipped with

a linear representation. Expliitly, this an be desribed as follows. Let A 2 F

n�n

denote the matrix de�ning the di�erential equation and let Y 2 GL

n

(E) be a fun-

damental solution matrix. Then sine � 2 Gal(E=F ) �xes A, it sends Y to another

fundamental solution matrix. Therefore, Y and �(Y ) an only di�er by a onstant

matrix (this an easily be heked), i.e., C

�

:= Y

�1

�(Y ) 2 GL

n

(K). This de�nes a

faithful representation Gal(E=F ) ,! GL

n

(K).

Proposition 1.11. The image of the di�erential Galois group under the monomor-

phism Gal(E=F ) ,! GL

n

(K) is a losed subgroup of GL

n

(K). In partiular, there

exists a linear algebrai group G suh that Gal(E=F )

�

=

G(K).

In lassial Galois theory, the permutation representation is only de�ned after num-

bering the solutions. In di�erential Galois theory, the linear representation is only

de�ned up to a hoie of basis (sine it depends on the fundamental solution matrix,

whih we an always modify by multipliation with a onstant matrix on the right).

The di�erential Galois orrespondene works as follows (ompare [vdP99℄, Proposi-

tion 3.13.):

Theorem 1.12. Let F be a di�erential �eld with algebraially losed �eld of on-

stants K, A 2 F

n�n

and E a Piard-Vessiot extension for A. Let G be a linear

algebrai group over K with Gal(E=F )

�

=

G(K).

1. There exists an anti-isomorphism between the lattie of losed subgroups H(K)

of G(K) and the lattie of intermediate di�erential �elds E � L � F given by

H(K) 7! E

H(K)

; L 7! Gal(E=L):
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2. If H E G is a normal subgroup, E

H(K)

=F is a Piard-Vessiot extension with

Galois group isomorphi to (G=H)(K).

3. Let G

0

denote the onneted omponent of the identity of G. Then L := E

G

0

(K)

is a �nite Galois extension of F with Galois group isomorphi to (G=G

0

)(K).

Moreover, L is the algebrai losure of F in E.

In the above theorem, we wrote E

H(K)

for the �xed �eld under '

�1

(H(K)), where

' : Gal(E=F )! G(K) is the given isomorphism. In the sequel, we will also use this

notation without further explanation.

1.4 Torsors

For the proof of the above di�erential Galois orrespondene one usually uses a stru-

tural theorem whih is due to Kolhin (see, for example, [vdP99℄, Corollary 5.9).

It states that after a �nite �eld extension the Piard-Vessiot ring R beomes iso-

morphi to the oordinate ring of the di�erential Galois group G(K). This is a

onsequene of the fat that the aÆne sheme Spe(R) over F is a G

F

-torsor (the

subsript indiates extension of salars to F ). Sine we are going to make use of

this latter fat, we inlude it here.

De�nition 1.13. Let G be a linear algebrai group de�ned over the �eld F . A G-

torsor (or a prinipal homogeneous spae over G) is an aÆne sheme X over

F with a right G-ation

� : X �

F

G ! X ; (x; g) 7! xg

suh that id�� : X �

F

G ! X �

F

X is an isomorphism.

A G-torsor X is alled a trivial G-torsor if X

�

=

G where the ation is given by

multipliation.

Note that a G-torsor X is trivial if and only if its set of F -rational points X (F ) is

non empty. Beause of this, an element in X (F ) is sometimes alled a trivialization

of the torsor.

Theorem 1.14. Let F be a di�erential �eld of harateristi zero with algebraially

losed �eld of onstants. Let further A 2 F

n�n

be the de�ning matrix of a di�erential

equation with Piard-Vessiot ring R and let G be a linear algebrai group de�ned over

K suh that Gal(Quot(R)=F )

�

=

G(K). Then Spe(R) is a G

F

-torsor.

For a proof, see [vdP99℄, Theorem 5.6. Sine any torsor beomes trivial after a �nite

�eld extension, Kolhin's theorem is a diret onsequene of Theorem 1.14.

We are also going to use the orrespondene between torsors and the �rst ohomology

groups (see for example [Ser97℄, I.5.2, Prop. 33):

Proposition 1.15. Let G be a linear algebrai group de�ned over F . There is

a bijetion between the set of G-torsors and H

1

(Gal(F=F );G(F )) (F denotes the

algebrai losure of F ).





Chapter 2

Conneted Di�erential Galois

Groups

Throughout this hapter, F always denotes a di�erential �eld with algebraially

losed �eld of onstants K.

2.1 The Notion of E�etivity

Given a linear di�erential equation in matrix form de�ned by some matrix A 2 F

n�n

and a fundamental solution matrix Y with oeÆients in a Piard-Vessiot extension

E of F , we an reover the original matrix A as A = �(Y )Y

�1

. This motivates the

following de�nition.

De�nition 2.1. The map

� : GL

n

(F )! Mat

n

(F ); X 7! �(X)X

�1

is alled the logarithmi derivative.

The following formula (whih an easily be heked) is frequently used for alula-

tions.

Lemma 2.2. For A;B 2 GL

n

(F ) we have that �(AB) = �(A) + A�(B)A

�1

.

If we restrit � to a linear algebrai group G � GL

n

, we an say more about its

image. First, we need a de�nition.

De�nition 2.3. The F -algebra

D := F [X℄=(X)

2

= F + Fe; e

2

= 0

is alled the algebra of dual numbers over F .
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Note that the map F ! D, a 7! a + �(a)e is a homomorphism of K-algebras. For

a linear algebrai group G � GL

n;F

over F the Lie algebra of G may be de�ned as

the F -vetor spae

Lie

F

(G) :=

�

A 2 F

n�n

j 1 + eA 2 G(D)

	

provided with the Lie braket

[�; �℄ : Lie

F

(G)� Lie

F

(G)! Lie

F

(G); (A;B) 7! [A;B℄ := AB � BA:

It an be shown that the de�nition given above is equivalent to the usual de�nition

of the Lie algebra as the tangent spae at the identity element (in partiular, it is

independent of the embedding G � GL

n

).

Proposition 2.4. Let G � GL

n;K

be a linear algebrai group. Then

�j

G

: G(F )! Lie

F

(G)

is a map from G(F ) to its Lie algebra.

A proof an be found in [Kov69℄, Setion 1. The Lie algebra of a linear algebrai

group plays an important role in di�erential Galois theory, as the following propo-

sition (see [vdP99℄, Corollary 4.3) indiates.

Proposition 2.5. Let G � GL

n;K

be a linear algebrai group over K and let A 2

Lie

F

(G). Then the Galois group of the di�erential equation de�ned by A injets into

G(K).

This proposition is ruial to the approah of the inverse problem, beause it redues

the problem to �nding a suÆiently general element inside the Lie algebra of the

group we want to realize. The main ingredient in the proof is the following lemma,

whih we will need later. It assures that under the hypothesis of Proposition 2.5, the

de�ning ideal I of G in F [GL

n

℄ is a di�erential ideal with respet to the derivation

de�ned by A. In the onstrution of the Piard-Vessiot ring skethed in Setion 1.2,

we may therefore hoose the maximal di�erential ideal so that it ontains I. The

rest of the proof of Proposition 2.5 is straightforward.

Lemma 2.6. Let G � GL

n;K

be a linear algebrai group over K and let A 2

Lie

F

(G). Endow F [GL

n

℄ = F [X

ij

; det(X)

�1

℄ with the struture of a di�erential

ring via �(X) = AX, X = (X

ij

). Then the extension of the de�ning ideal of G to

F [GL

n

℄ is a di�erential ideal.

Combining the above lemma with Remark 1.9, we obtain the following.

Corollary 2.7. Let G � GL

n;K

be a onneted linear algebrai group over K and

let A 2 Lie

F

(G). Let E be the Piard-Vessiot extension de�ned by A. Then there

exists a fundamental solution matrix in G(E).



2.2 Embedding Problems 13

De�nition 2.8. Let G be a onneted linear algebrai group de�ned over K and

let A 2 Lie

F

(G). The di�erential equation de�ned by A is alled e�etive if the

assoiated di�erential Galois group is isomorphi to G(K). In this ase, we also all

the de�ning matrix e�etive.

A Piard-Vessiot extension E=F is alled e�etive if it an be de�ned by an e�etive

equation or matrix, respetively.

Note that beause of Proposition 2.5 and the fat that the Lie algebra of a linear

algebrai group oinides with the Lie algebra of its onneted omponent, only

onneted groups an possibly have e�etive realizations. Proposition 2.5 has a

partial onverse if the �eld F has ohomologial dimension at most one. This partial

onverse is a onsequene of the Torsor Theorem (Theorem 1.14) and the fat that

over a �eld of ohomologial dimension at most one, all prinipal homogeneous

spaes for a onneted group are trivial by the theorem of Springer and Steinberg

(see [Ser97℄, III.2.3, Theorem 1'), ombined with Proposition 1.15. If R is a Piard-

Vessiot ring for a di�erential equation with Quot(R) = E and onneted di�erential

Galois group isomorphi to G(K), it follows that the G

F

-torsor X = Spe(R) has

a trivialization Z 2 X (F ). A fundamental solution matrix Y 2 X (E) an then

be transformed into Z

�1

Y 2 G(E), whih is a fundamental solution matrix for an

equivalent di�erential equation.

Proposition 2.9. Suppose that d(F ) � 1. Then all Piard-Vessiot extensions of F

with onneted di�erential Galois group are e�etive. Moreover, if E=F is a Piard-

Vessiot extension with onneted di�erential Galois group isomorphi to G(K), there

exists a fundamental solution matrix Y 2 G(E).

For details, see [vdP99℄, Corollary 5.10.

2.2 Embedding Problems

There is a slightly more general question than the inverse problem whih is some-

times alled the lifting problem: Given a realization of a quotient of a linear algebrai

group by a normal subgroup, is there a realization of the full group ontaining the

given Piard-Vessiot extension as a sub�eld?

De�nition 2.10. Let

1!A!

~

G ! G ! 1

be an exat sequene of linear algebrai groups de�ned over K (in partiular, the

maps are morphisms) and suppose that E=F is a Piard-Vessiot extension with dif-

ferential Galois groups isomorphi to G(K). The orresponding embedding prob-

lem asks for the existene of a Piard-Vessiot extension

~

E=F ontaining E and a
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monomorphism  : Gal(

~

E=F )!

~

G(K) suh that the diagram

1

A(K)

~

G(K)

G(K)

1

Gal(

~

E=F )



res

Gal(E=F )

�

=

ommutes. The kernel of the exat sequene is also alled the kernel of the embed-

ding problem. A monomorphism  as above is alled a solution of the embedding

problem. It is alled proper if it maps Gal(

~

E=F ) onto

~

G(K). The embedding prob-

lem is e�etive, if E=F is an e�etive extension. If in addition the Piard-Vessiot

extension

~

E=F is e�etive we say that the solution is e�etive. An embedding prob-

lem is alled a Frattini embedding problem if A has no other supplement in

~

G

than

~

G itself. We say that an embedding problem is onneted, if all groups in the

underlying exat sequene are onneted. It is alled split, if the underlying exat

sequene splits.

Note that in ase

~

G is �nite, the embedding problem is Frattini if and only if the

kernel is ontained in the Frattini subgroup �(

~

G) of G (see [Hal76℄, Setion 10.4).

Embedding problems will be a very powerful tool for solving the inverse problem.

We require the following lemma.

Lemma 2.11. Let � :

~

G ! G be a morphism of linear algebrai groups de�ned over

K, and let d� : Lie

F

(

~

G)! Lie

F

(G) be the orresponding Lie algebra homomorphism.

Then for all A 2 Lie

F

(

~

G), we have that

�(1 + eA) = 1 + ed�(A);

where we use the dual number de�nition of the Lie algebra as in Setion 2.1 and

extend � and d� to G(D) and Lie

F

(G) 


F

D (by abuse of notation, both identity

elements are denoted by 1).

Proof. Suppose that

~

G � GL

n

and G � GL

m

, respetively. Let

~

X

ij

and X

ij

be the

(i; j)-th oordinate funtions of F [GL

n

℄ and F [GL

m

℄, respetively. Let �

ij

= �

�

(X

ij

).

Then

X

ij

(�(1 + eA)) = �

ij

(1 + eA) = �

ij

(1) + e

n

X

r;s=1

��

ij

�

~

X

rs

(1)A

rs

= Æ

ij

+ ed�(A)

ij

from whih the laim follows (see [Hum98℄, Setion 5.4, for the omputation of the

di�erential of a morphism).

The following proposition makes embedding problems partiularly useful when the

groups under onsideration are onneted.
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Proposition 2.12. Suppose that � :

~

G ! G is a surjetive homomorphism of linear

algebrai groups de�ned over K and let d� : Lie

F

(

~

G)! Lie

F

(G) be the orresponding

Lie algebra homomorphism. Let

~

A 2 Lie

F

(

~

G) and de�ne A := d�(

~

A). Then the

Piard-Vessiot extension E

~

A

of F for the di�erential equation X

0

=

~

AX ontains

the Piard-Vessiot extension E

A

of F for the di�erential equation X

0

= AX (up to

di�erential isomorphism) and there is a ommutative diagram

~

G(K)

G(K)

Gal(E

~

A

=F )

res

Gal(E

A

=F )

where res denotes the restrition homomorphism and the vertial arrows are the

monomorphisms given by Proposition 2.5.

Proof. On oordinate rings, we obtain the following diagram (the notation will be

explained in the ourse of the proof):

I

F

J

F

F [GL

n

℄

�

~

G

F [GL

m

℄

�

G

F [

~

G℄

�

~

A

	

F [G℄

�

�

�

A

R

~

A

R

A

�

�

�

Here �

~

G

and �

G

denote the anonial projetions, I

F

and J

F

denote the extensions

of the de�ning ideals of the two linear algebrai groups from K to F , so that I

F

=

Ker(�

~

G

), J

F

= Ker(�

G

), and Ker(�

�

Æ �

G

) = J

F

(note that �

�

is injetive beause

� is surjetive ([Spr98℄, 1.9.1)). As explained in Setion 1.2, F [GL

n

℄ an be given

a di�erential ring struture by de�ning �

~

A

(

~

X) =

~

A

~

X, where

~

X = (

~

X

ij

)

n

i;j=1

is the

matrix of oordinate funtions

~

X

i;j

, and F [GL

m

℄ beomes a di�erential ring via

a derivation �

A

indued by A in the same fashion. By Lemma 2.6, I

F

and J

F

are di�erential ideals and thus �

~

G

and �

G

are di�erential epimorphisms with the

indued derivations on F [

~

G℄ and F [G℄, respetively. Further, �

�

is a di�erential

homomorphism. To see this, let

~

f

ij

denote the image of the oordinate funtions of

F [GL

n

℄ in F [

~

G℄, let f

ij

be the image of the oordinate funtions of F [GL

m

℄ in F [G℄,
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and ompute that for g 2

~

G(K)

(�

�

(f

ij

) + e�

�

(�

A

f

ij

)) (g) = �

�

(1 + eA)(f

ij

)(g)

= �

�

(1 + ed�(

~

A))(f

ij

)(g)

= (1 + ed�(

~

A))(f

ij

)(�(g))

= f

ij

((1 + ed�(

~

A))�(g))

= f

ij

(�((1 + e

~

A)g)) by Lemma 2.11

= �

�

(f

ij

)((1 + e

~

A)g)

= (1 + e

~

A)�

�

(f

ij

)(g) = (�

�

(f

ij

) + e�

~

A

�

�

(f

ij

)) (g)

where we have extended �

�

to F [G℄


F

D (D is the algebra of dual numbers over F

de�ned in Setion 2.1). Comparing the oeÆients of e proves the laim.

As a onsequene, �

�

Æ �

G

is a di�erential homomorphism with kernel J

F

. Let

P E F [GL

n

℄ be a maximal di�erential ideal ontaining I

F

. Then R

~

A

:= F [GL

n

℄=P is

a Piard-Vessiot ring for the di�erential equation de�ned by

~

A as seen in Setion 1.2.

The map

�

~

A

: F [

~

G℄ = F [GL

n

℄=I

F

! R

~

A

= F [GL

n

℄=P

is the anonial epimorphism, its kernel Ker(�

~

A

) /F [

~

G℄ is a di�erential ideal, and so

�

~

A

is a di�erential homomorphism with the indued derivation on R

~

A

. Consequently,

the map

	 = �

A

Æ �

�

Æ �

G

: F [GL

m

℄! R

~

A

obtained by omposition is a di�erential homomorphism with J

F

� Ker(	) = Q,

whih is a di�erential ideal. This allows us to de�ne R

A

:= F [GL

m

℄=Q so that 	

fators through R

A

and the map

�

�

�

: R

A

,! R

~

A

is a di�erential monomorphism

with the inherited derivation on R

A

.

Next, we want to show that R

A

is in fat a Piard-Vessiot ring for A. Sine R

A

inludes into the integral domain R

~

A

, it annot ontain any zero divisors. The

di�erentiation on F [GL

m

℄ was de�ned in suh a way that the matrix X = (X

ij

)

n

i;j=1

of the oordinate funtions X

ij

is a fundamental solution matrix, and F [GL

m

℄ is

generated by its entries and the inverse of the determinant. Sine Q is a di�erential

ideal, these properties are inherited by R

A

. By the remark following De�nition 1.7, it

remains to hek that E

A

= Quot(R

A

) does not ontain any new onstants. This last

ondition is satis�ed sine the map

�

�

�

indues a unique di�erential monomorphism

�

�

�

: E

A

,! E

~

A

:= Quot(R

~

A

).

We have already de�ned the required inlusion E

A

,! E

~

A

. By onstrution, we have

an inlusion Gal(E

~

A

=F ) ,!

~

G(K) (the maximal ideal ontains the de�ning ideal of

the group). The same is true for Gal(E

A

=F ) ,! G(K). Finally, we hek that

the diagram ommutes. Again by onstrution, the fundamental solution matrix

Y

~

A

2 Spe(R

~

A

) �

~

G(E

~

A

) (whih is the image of

~

X modulo P ) maps to a matrix Y

A

under � whih is a fundamental solution matrix for E

A

=F . Suppose that ~�(Y

~

A

) =
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Y

~

A

C

~�

and �(Y

A

) = Y

A

C

�

for all ~� 2 Gal(E

~

A

=F ) and � 2 Gal(E

A

=F ), respetively

(C

~�

2

~

G(K), C

�

2 G(K)). Then

Y

A

�(C

~�

) = �(Y

~

A

C

~�

) = �(~�(Y

~

A

)) = ~�(�(Y

~

A

))

= res(~�)(�(Y

~

A

)) = res(~�)(Y

A

) = Y

A

C

res(~�)

for all ~� 2 Gal(E

~

A

=F ), from whih the laim follows.

2.3 The Conneted Inverse Problem

In this setion, we give a sketh of proof of the onneted inverse problem over

F = K(t) using the tehnique of embedding problems. The main di�erene to the

solution of the general inverse problem given in Setion 4.4 is that the following

proposition (see [MS96℄, Proposition 3.5) provides us with onstrutive realizations

of onneted semisimple groups.

Proposition 2.13. Let S be a semisimple group. There exist matries A

0

and A

1

in the Lie algebra Lie

K

(S) suh that the matrix A = A

0

+A

1

t realizes S(K) over F .

In fat, one hooses A

0

and A

1

to be what is alled a regular pair of generators of

the Lie algebra Lie

K

(S) ([MS96℄, remarks following Lemma 3.4). In partiular, the

matrix A is expliitly given.

The step from onneted semisimple groups to onneted redutive groups is based

on the fat that any onneted redutive group is the quotient of a diret produt

of a torus and a semisimple group by a �nite group.

The problem is thereby redued to an embedding problem with unipotent kernel

and redutive okernel. This embedding problem may be deomposed into a split

e�etive embedding problem with unipotent abelian kernel and an e�etive Frattini

embedding problem. The former an be split up further into split embedding prob-

lems with so-alled minimal unipotent abelian kernel. Suh embedding problems

have proper e�etive solutions as shown in [Obe01℄, Proposition 2.1. E�etive Frat-

tini embedding problems always have proper e�etive solutions (see, for example,

[MvdP02℄, Prop. 4.13), and these results may be ombined to yield a solution of the

onneted inverse problem.





Chapter 3

Non Conneted Di�erential Galois

Groups

We have already seen how to realize onneted groups as di�erential Galois groups.

One of the most important tools was the Lie algebra and the onept of e�etivity.

In the non onneted ase, the Lie algebra does not enode enough information

about the group. However, when we are in the luky situation that the onneted

omponent of the group under onsideration has a �nite omplement, i.e., the group

is a semidiret produt of its onneted omponent by a �nite group, we an still

reover all the information we need. We will restrit ourselves to this ase from

Setion 3.2 on exept for the very last setion, where we turn bak to the general

ase.

3.1 Algebrai Groups over non Algebraially

Closed Fields

Most of the textbooks that provide material on algebrai groups assume the �eld

of de�nition to be algebraially losed. The reason is that a linear algebrai group,

de�ned over a non algebraially losed �eld, might not have enough rational points

over that �eld to ompletely determine its struture. For example, the elements of

a torus need not be diagonalizable over the �eld of de�nition of the torus. We �nd

that a good referene for the general ase are the additional hapters in the seond

edition of Springer [Spr98℄.

An aÆne variety over a (not neessarily algebraially losed) �eld F is an algebrai

set over the algebrai losure F of F (together with its ring of regular funtions)

whose de�ning equations have oeÆients in F . We will all suh a variety an

F -variety for short.

De�nition 3.1. Let F be a �eld and L � F be a �eld extension. A morphism of

aÆne F -varieties whih is de�ned over L is alled an L-morphism.
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Let X be an aÆne variety de�ned over the �eld F . An aÆne F -variety is alled an

L=F -form of X if it is L-isomorphi to X .

We will only onsider the ase when L=F is a �nite Galois extension. It an be shown

that F -isomorphism lasses of L=F -forms of an aÆne F -variety X are parametrized

by the elements of H

1

(Gal(L=F );Aut

L

(X )) (see [Spr98℄, 11.3.3.).

De�nition 3.2. Let L � F be a �nite Galois extension and let V be an L-vetor

spae. An ation � : Gal(L=F )� V ! V is alled semilinear, if

� � (� � v) = �(�) � (� � v)

for all � 2 Gal(L=F ), � 2 L and v 2 V .

Lemma 3.3 (Speiser's Lemma). Let L=F be a �nite Galois extension and let V be

an L-vetor spae on whih Gal(L=F ) ats semilinearly. Then V

Gal(L=F )




F

L = V .

In partiular, V has a basis of invariant vetors.

Proof. Let v 2 V be an arbitrary vetor. Number the elements of Gal(L=F ) by

1 = �

1

; : : : ; �

s

(s = [L : F ℄) and let a

1

; : : : ; a

s

be a basis of L over F . De�ne

v

i

:=

s

X

j=1

�

j

(a

i

)�

j

(v) =

X

�2Gal(L=F )

�(a

i

v);

and note that all these vetors are invariant. The automorphisms �

1

; : : : ; �

s

are

linearly independent over F , whih implies that the matrix A = (�

j

(a

i

))

s

i;j=1

is

invertible. Let B = (b

ij

) denote its inverse, then

s

X

i=1

b

1i

v

i

=

s

X

i=1

s

X

j=1

b

1i

�

j

(a

i

)�

j

(v) = v;

whih writes v as an L-linear ombination of vetors in V

Gal(L=F )

.

De�nition 3.4. As before, let L=F be a �nite Galois extension. An F -vetor spae

V

0

inside an L-vetor spae V is alled an F -struture on V if the anonial map

V

0




F

L! V is an isomorphism.

If A is an L-algebra, and the underlying vetor spae arries an F -struture whih

is an F -subalgebra of A, we say that this is an F -struture on A.

As a onsequene of Speiser's Lemma 3.3, any semilinear Gal(L=F )-ation on an

L-vetor spae de�nes an F -struture. If a semilinear ation on an L-algebra A is

by automorphisms of the ring A, it de�nes an F -struture on A.

Let us lose this setion by larifying the onnetion between F -strutures and forms

(notation as above): If X is an aÆne F -variety, and L[X ℄

0

is an F -struture on the

oordinate ring L[X ℄ := L


F

F [X ℄ of X , then by de�nition (X

0

)

L

�

=

X

L

, where X

0

is the F -variety de�ned by L[X ℄

0

. That is, X

0

is an L=F -form of X .
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3.2 The Equivariane Condition

Assume that we have a Piard-Vessiot extension E=F with non onneted di�erential

Galois group isomorphi to G(K), where G is a linear algebrai group de�ned over the

�eld of onstants K. Assume further that G has a deomposition into a semidiret

produt G = G

0

o H where G

0

is the onneted omponent of G and H is a �nite

group. By the Galois orrespondene 1.12, the �xed �eld L := E

G

0

(K)

is a �nite

Galois extension of F with Galois group Gal(L=F )

�

=

H. Consequently, we have two

di�erent ations of the �nite group H on the Lie algebra Lie

L

(G) = Lie

K

(G)


K

L:

one via onjugation (the adjoint ation) and one via the oeÆient-wise Galois

ation. The next proposition shows that in our situation, the two ations must be

ompatible on the de�ning matrix of the Piard-Vessiot extension E=L. We pause

for a de�nition.

De�nition 3.5. Let L=F be a �nite Galois extension with Galois group isomorphi

to H and assume that there is a monomorphism � : Gal(L=F ) ,! GL

n

(K), � 7!

C

�

. A matrix A 2 L

n�n

is alled H-equivariant, if �(A) = C

�1

�

AC

�

for all � 2

Gal(L=F ), where the ation on the left hand side is the (oeÆient-wise) Galois

ation.

If the group H is lear from ontext, we will also just all the matrix equivariant.

The ondition above will be referred to as the equivariane ondition.

Remark 3.6. With notation as above, let � : Gal(L=F )! G(K) be the omposite

Gal(L=F )

�

=

H

�

�! G(K), where � is a regular homomorphi setion. We de�ne a

new ation of H on G

0

(L) via

� � g = C

�

�(g)C

�1

�

; g 2 G

0

(L); � 2 Gal(L=F ):

The equivariane ondition may then be reformulated as an invariane ondition:

g = � � g for all � 2 Gal(L=F ) (g 2 G

0

(L)):

The homomorphism � de�nes an element � in H

1

(Gal(L=F );G(L)). There is a

anonial map from G to its automorphism group sending an element to the inner

automorphism it de�nes. The indued map on ohomology maps � to an element

Int(�) 2 H

1

(Gal(L=F );Aut

L

(G)). Any automorphism of G stabilizes the onneted

omponent, i.e., we obtain an element in H

1

(Gal(L=F );Aut

L

(G

0

)), whih is again

denoted by �.

We may also de�ne a twisted ation as above on the oordinate ring L[G

0

℄ by

(� � f)(g) = �(f)(C

�1

�

gC

�

); f 2 L[G

0

℄; g 2 G

0

(L)

where �(f) denotes the Galois ation on the oeÆients of f . Note that this �-ation

is semilinear in the sense of De�nition 3.2, and thus de�nes an L=F -form G

0

�

of G

0

,

on whih the �-ation is the Galois ation (see also [Spr98℄, 12.3.7.)
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All of this translates to the Lie algebra: The respetive ation on the Lie algebra

(de�ned in the very same way as on the group) is also semilinear and therefore

de�nes an F -struture Lie

L

(G)

�

on Lie

L

(G). In fat, we have Lie

L

(G)

�

= Lie

L

(G

�

).

To see this, use the dual number de�nition of the Lie algebra given in Setion 2.1:

For a matrix A, we have that 1 + eA is in G(L[e℄) and equivariant for some e with

e

2

= 0 if and only if 1 + eA is in G(L[e℄) and A is equivariant.

Therefore, equivariant elements in Lie

L

(G) are the same as �-invariant elements in

Lie

L

(G) whih in turn are just F -rational points of Lie

L

(G

�

).

Let G = G

0

oH be the semidiret produt of a onneted group by a �nite group,

both de�ned over K. In the sequel, we will assume that we have �xed a regular ho-

momorphi setion � : H ! G. If we are further given a �nite Galois extension of F

with Galois group isomorphi to H, equivariane is to be understood as equivariane

with respet to the representation of H de�ned by � .

The following statement (in slightly di�erent form) an also be found in [MS00℄.

Proposition 3.7. Let G = G

0

oH � GL

n;K

be a linear algebrai group de�ned over

K, and assume that d(F ) � 1. Suppose that E=F is a Piard-Vessiot extension with

Galois group isomorphi to G(K). Then E

G

0

(K)

=: L is a �nite Galois extension of

F with Galois group isomorphi to H. Further, E=L is a Piard-Vessiot extension

of a di�erential equation given by a matrix A 2 Lie

L

(G

0

) whih is equivariant.

Proof. Sine G

0

(K) is normal in G(K), L is a Piard-Vessiot extension of F and E

is a Piard-Vessiot extension of L by the Galois orrespondene 1.12. Also by the

Galois orrespondene, L=F is a �nite Galois extension with Galois group isomorphi

to (G=G

0

)(K)

�

=

H. This proves the �rst laim.

Let � : H ! G be a regular homomorphi setion. Let

~

Y be a fundamental solution

matrix for the equation given over F on whih the Galois group ats via �(

~

Y ) =

~

Y C

�

,

� 2 Gal(E=F ), C

�

2 G(K). The isomorphism � : Gal(L=F ) ! �(H), � 7! C

�

de�nes a oyle � 2 H

1

(Gal(L=F );GL

n

(K)). By Hilbert's Theorem 90 ([Ser97℄,

III.1.1, Lemma 1), this oyle is trivial, i.e., there exists an element Z 2 GL

n

(L)

with the property �(Z) = ZC

�

for all � 2 Gal(L=F ). As a onsequene, the

logarithmi derivative of Z has oeÆients in F . This shows that F (Z) is a Piard-

Vessiot extension of F , and it is learly ontained in L. No element of Gal(L=F )

�xes Z, from whih we onlude that L = F (Z).

We laim that Y := Z

�1

~

Y is a fundamental solution matrix for E=L. Clearly, we

have that E = L(Y ). For � 2 Gal(E=L), the restrition of the representation above

to Gal(E=L) shows that �(Y ) = Y C

�

, C

�

2 G

0

(K). Consequently, the logarithmi

derivative of Y has oeÆients in L and de�nes a di�erential equation with Piard-

Vessiot extension E=L. Note that Y satis�es the equivariane ondition (although

Y does not have oeÆients in L, this statement makes sense sine we may onsider

Gal(L=F ) as a subgroup of Gal(E=F )):

�(Y ) = �(Z

�1

)�(

~

Y ) = C

�1

�

Z

�1

~

Y C

�

= C

�1

�

Y C

�

; � 2 Gal(L=F ):
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Let R be a Piard-Vessiot ring for the extension E=L. The ring R may be ob-

tained from L[GL

n

℄ as the quotient by the maximal di�erential ideal P = ff 2

L[GL

n

℄j f(Y ) = 0g (this follows from the onstrution explained in Setion 1.2, see

also Remark 1.9). We an de�ne a twisted ation on L[GL

n

℄ via

(� � f)(g) = �(f)(C

�1

�

gC

�

); f 2 L[GL

n

℄; g 2 GL

n

(L);

and this indues an F -struture on R sine ��P � P for all � 2 Gal(L=F ). Namely,

for � 2 Gal(L=F ) and f 2 P we have that

(� � f)(Y ) = �(f)(C

�1

�

Y C

�

) = �(f)(�(Y )) = �(f(Y )) = �(0) = 0

sine Y is equivariant.

By Theorem 1.14, X := Spe(R) is a G

0

L

-torsor. The F -struture on R de�nes a form

X

�

of X and we also have a form G

0

�

as explained in Remark 3.6 above. Moreover,

X

�

is a G

0

�

-torsor. To see this, we need to de�ne a morphism

� : X

�

� G

0

�

! X

�

; (x; g) 7! x � g;

whih gives X

�

the struture of a G

0

�

-variety. To de�ne �, we use the restrition of

the G

0

L

-variety struture.

For elements x; x

0

2 X (F ), there exists an element g 2 G

0

(F ) suh that x � g = x

0

.

Suppose that both x and x

0

are invariant under the �-ation. Then x � g = x

0

=

� �x

0

= (� � x) � (� � g) = x � (� � g) and thus g = � � g for all � 2 Gal(L=F ) beause

X is a G

0

L

-torsor. This shows that X

�

is in fat a G

0

�

-torsor.

Sine G

0

�

is onneted and d(L) � 1, there exists an F -rational point B 2 X

�

(F ) by

the theorem of Springer and Steinberg ([Ser97℄, III.2.3., Theorem 1') in ombination

with Propositon 1.15; and X

�

(F ) = BG

0

�

(F ). The matrix Y satis�es the equivariane

ondition and is by the above equivariantly equivalent to an equivariant matrix in

G

0

(E): We an replae Z by ZB and Y by B

�1

Y , and the ation of the Galois

groups Gal(L=F ) and Gal(E=F ), respetively, remain unhanged. In partiular,

ZB and B

�1

Y have the same properties stated above for Z and Y . The logarithmi

derivative A of B

�1

Y is then an equivariant matrix in Lie(G

0

(L)) as laimed:

C

�

�(A)C

�1

�

= C

�

�(�(B

�1

Y ))C

�1

�

= C

�

�(�(B

�1

))C

�1

�

+ C

�

�(B

�1

�(Y )B)C

�1

�

= A

for all � 2 Gal(L=F ).

Remark 3.8. The orresponding (weaker) statement for general non onneted

groups an be found in Setion 3.5.

3.3 Embedding Problems with Finite Cokernel

Let us begin this setion by stating one of the onsequenes of the equivariane

ondition.
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Lemma 3.9. Let G = G

0

oH be a linear algebrai group de�ned over K with a reg-

ular homomorphi setion � : H ! G. Suppose that L=F is a Galois extension with

Galois group isomorphi to �(H) via � 7! C

�

. Let A 2 Lie

L

(G) be an equivariant

matrix de�ning a Piard-Vessiot extension E of L with fundamental solution matrix

Y 2 G

0

(E) (see Corollary 2.7).

1. There exists a matrix Z 2 GL

n

(L) suh that L = F (Z) and �(Z) = ZC

�

for

all � 2 Gal(L=F ).

2. The di�erential equation de�ned by A desends to a di�erential equation given

by

~

A = �(Z)+ZAZ

�1

2 F

n�n

over F , and

~

Y := ZY is a fundamental solution

matrix for this equation.

3. We have E = F (

~

Y ), i.e., the Piard-Vessiot extension of F de�ned by

~

A is E.

In partiular,

~

A de�nes a Piard-Vessiot extension of F whih ontains L.

Proof. The �rst part is shown as in Proposition 3.7.

The seond laim follows from straightforward alulation:

�(

~

A) = Z

0

C

�

C

�1

�

Z

�1

+ ZC

�

�(A)C

�1

�

Z

�1

=

~

A for all � 2 Gal(L=F );

i.e.,

~

A has oeÆients in F . Moreover,

~

Y

0

= (ZY )

0

= Z

0

Y + ZY

0

= Z

0

Y + ZAY = (Z

0

Z

�1

+ ZAZ

�1

)ZY =

~

A

~

Y ;

i.e., the matrix

~

Y = ZY 2 GL

n

(E) is a fundamental solution matrix for the di�er-

ential equation given by

~

A.

Next, we want to show that E is in fat a Piard-Vessiot extension of F . To this

end, onsider the blok diagonal matrix

�

~

A 0

0 �(Z)

�

2 F

2n�2n

:

Let

~

E=F be the Piard-Vessiot extension de�ned by this matrix. Over L, the matrix

is equivalent to A (or rather to the blok diagonal matrix A � 0), from whih we

onlude that

~

EL = E. Sine

~

E ontains L by onstrution, this implies

~

E = E.

Clearly, we have that F (

~

Y ) is a Piard-Vessiot extension and it is ontained in

E. To prove the last part, it is therefore suÆient to show that no (nontrivial)

element of the Galois group Gal(E=F ) �xes

~

Y . First, no nontrivial element of

Gal(E=L) �xes

~

Y , sine for 1 6= " 2 Gal(E=L), we have that "(

~

Y ) = "(ZY ) =

Z"(Y ) = ZY C

"

=

~

Y C

"

for some matrix C

"

2 G

0

(K) with C

"

6= 1. Suppose

that " 2 Gal(E=F ) n Gal(E=L) �xes

~

Y . Then the restrition res(") of " to L is

nontrivial, and we have that "(

~

Y ) = res(")(Z)"(Y ) = ZC

res(")

"(Y ). We onlude

that C

res(")

= Y "(Y )

�1

. Sine Y 2 G

0

(E) and G

0

is de�ned over K, we have that

"(Y ) 2 G

0

(E), and thus C

res(")

2 G

0

(K). But we also have C

res(")

2 �(H), from

whih we onlude that C

res(")

= 1 and thus res(") is trivial, a ontradition.
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The following proposition will be the main ingredient for solving the inverse problem.

It may be obtained as a orollary of Proposition 3.12, but to make lear how the

ation of the �nite part on the onneted part is obtained in this speial situation we

give an independent proof (whih we believe is more oneptual). This proposition

may also be seen as a partial onverse to Proposition 3.7 (see also [MS00℄, Prop. 4.3)

Proposition 3.10. Let G = G

0

o H � GL

n;K

be a linear algebrai group de�ned

over K with a regular homomorphi setion � : H ! G. Suppose that L=F is a

�nite Galois extension with an isomorphism � : Gal(L=F )

�

=

H. Let � := � Æ � :

Gal(L=F ) ! G(K), � 7! C

�

, be the omposite. Consider the assoiated embedding

problem

1

G

0

(K)

G(K)

�

 

�

H

1

Gal(L=F )

�

=

�

Let Z 2 GL

n

(L) be a fundamental solution matrix for L=F suh that �(Z) = ZC

�

for all � 2 Gal(L=F ) (see Lemma 3.9).

1. Let E=L be a Piard-Vessiot extension with Galois group isomorphi to G

0

(K)

via an isomorphism

 : Gal(E=L)

�

=

�! G

0

(K) E G(K); " 7! C

"

:

Then there exists an element Y 2 G

0

(E) satisfying "(Y ) = Y C

"

for all " 2

Gal(E=L) and E = L(Y ), i.e., Y is a fundamental solution matrix for the

extension E=L on whih the Galois group Gal(E=F ) ats via .

2. Suppose in addition that the logarithmi derivative A of Y is equivariant. Then

E=F is a Piard-Vessiot extension with Galois group isomorphi to G(K) and

~

Y := ZY is a fundamental solution matrix for this extension. The isomor-

phism  of part 1 may be extended to an isomorphism

~ : Gal(E=F )! G(K) with � Æ res = � Æ ~;

i.e., ~ is a proper solution of the above embedding problem (res denotes the

restrition homomorphism Gal(E=F )

res

�! Gal(L=F )).

Proof. For Part 1, we have to show that the representation an be adjusted. Let

^

Y 2 GL

m

(E) be a fundamental solution matrix for the di�erential equation de�ning

the extension E=L, and suppose that the di�erential Galois group ats on

^

Y via

a representation � : G

0

! GL

m

suh that "(

^

Y ) =

^

Y �((")) =

^

Y �(C

"

) for all

" 2 Gal(E=L). Sine d(L) = d(F ) � 1 and �(G

0

) is onneted, Proposition 2.9

implies that we may assume without loss of generality that

^

Y 2 �(G

0

(E)). Setting

Y = �

�1

(

^

Y ) 2 G

0

(E), we have "(Y ) = Y C

"

as desired.
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By Lemma 3.9,

~

A := Z

0

Z

�1

+ ZAZ

�1

has oeÆients in F , the matrix

~

Y = ZY 2

GL

n

(E) is a fundamental solution matrix for the di�erential equation given by

~

A,

and E = F (

~

Y ).

Any element � 2 Gal(L=F ) de�nes an automorphism of G

0

by onjugation with

C

�

and hene an automorphism of K[G

0

℄ in the standard way. This extends to an

automorphism ~� of L[G

0

℄ = L


K

K[G

0

℄ via

~�(f

ij

)(D) = f

ij

(C

�1

�

DC

�

); D 2 G

0

(K);

~�(f) = �(f); f 2 L;

where f

ij

2 K[G

0

℄ denotes the (i; j) oordinate funtion (ompare Remark 3.6).

Sine G

0

is onneted, L is algebraially losed in E by the Galois orrespon-

dene 1.12 and E = Quot(L[G

0

℄) by Kolhin's Theorem (see Setion 1.4). Con-

sequently, ~� uniquely extends to E.

By de�nition, ~�j

L

= �, and in partiular, F remains �xed under ~�. Further, ~� om-

mutes with the derivation: Any element � of Gal(L=F ) is a di�erential automor-

phism and the same is true for onjugation with onstant matries. Consequently,

~� 2 Gal(E=F ) is a di�erential automorphism and it is easy to see that we have in

fat de�ned a monomorphism

' : Gal(L=F ) ,! Gal(E=F ); � 7! ~�

whih is a setion to the restrition homomorphism Gal(E=F ) ! Gal(L=F ). This

implies that Gal(E=F ) = Gal(E=L) o Gal(L=F ). On the fundamental solution

matrix, the ation is then

~�(

~

Y ) = �(Z)~�(Y ) = ZC

�

C

�1

�

Y C

�

=

~

Y C

�

for � 2 Gal(L=F ) sine Y 2 G

0

(E).

Next, we hek that the Galois group Gal(E=F ) is in fat the orret semidiret

produt G

0

(K)oH. To this end, we onsider the ation on

~

Y :

("

1

; ~�

1

)(

~

Y ) = �

1

(Z)"

1

~�

1

(Y ) = ZC

�

1

"

1

(C

�1

�

1

Y C

�

1

) = ZY C

"

1

C

�

1

=

~

Y C

"

1

C

�

1

;

and similarly

("

2

; ~�

2

)("

1

; ~�

1

)(

~

Y ) =

~

Y C

"

2

C

C

�1

�

2

"

1

C

�

2

C

�

1

;

for "

1

; "

2

2 Gal(E=L), �

1

; �

2

2 Gal(L=F ), whih proves the laim (the supersript

denotes onjugation).

De�ning ~ : Gal(E=F ) = Gal(E=L)oGal(L=F )

�

=

�! G(K), ("; ~�) 7! C

"

C

�

, we �nd

� Æ ~("; ~�) = �(C

�

) = �(�(�)) = �(�(�(�))) = �(�) = � Æ res("; ~�);

whih shows that ~ is a proper solution of the embedding problem.
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3.4 Equivariant Embedding Problems

In Setion 2.2, we enountered embedding problems for onneted groups. Using

the equivariane ondition de�ned in Setion 3.2, we an generalize this mahinery

to the type of groups under onsideration (semidiret produts of onneted groups

by �nite groups).

To be able to translate the results from the onneted ase, one has to ensure that

the equivariane ondition is preserved when solving an embedding problem. We

start by setting up the stage. Let H be a �nite group de�ned over K.

De�nition 3.11. Let L=F be a �nite Galois extension with Galois group isomorphi

to H. Let

1! A(K)!

~

B(K)! B(K)! 1

be an exat sequene of onneted linear algebrai groups de�ned over K and suppose

that eah of the groups arries an ation of (a group isomorphi to) H by onjuga-

tion. Assume moreover that all homomorphisms in this sequene are de�ned over K

and are equivariant with respet to these ations (this will ensure that they are equiv-

ariant under the orresponding twisted ations as well). Suppose further that N=L

is a Piard-Vessiot extension with Galois group isomorphi to B(K), and that this

Piard-Vessiot extension is de�ned by some equivariant matrix in Lie

L

(B). An em-

bedding problem of this kind is alled an equivariant embedding problem. It is

alled a split equivariant embedding problem, if the underlying exat sequene

splits and the setion is H-equivariant. An e�etive solution of suh an embedding

problem whih is given by an equivariant matrix will be alled an equivariant so-

lution. The kernel of a split equivariant embedding problem is alled minimal, if

it has no proper subgroup whih is both

~

B-stable and H-stable.

The above de�nition allows us to formulate a generalization of Proposition 2.12 to

non onneted groups.

Proposition 3.12. Let L=F be a �nite Galois extension with Galois group isomor-

phi to H. Let

1

A(K)

~

B(K)

�

B(K)

1

Gal(N=L)

�

=

�

be a onneted H-equivariant embedding problem. Assume that this embedding prob-

lem has an e�etive equivariant solution de�ned by an equivariant matrix A

~

B

2

Lie

L

(

~

B) with Piard-Vessiot extension

~

N � N . Suppose further that d�(A

~

B

) =

A

B

2 Lie

L

(B) is the matrix whih realizes N=L.
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Then

~

N is a Piard-Vessiot extension of F and Gal(

~

N=F ) injets into

~

B(K) oH.

Moreover, we have a ommutative diagram

1

A(K)

~

B(K)oH

~�

B oH

1

1
Gal(

~

N=N) Gal(

~

N=F )

res

N

�

Gal(N=F )

�

=

~

�

1

where

~

� is the isomorphism given by Proposition 3.10. (Note that the de�nition of

an equivariant embedding problem requires ations of the �nite group H on

~

B and

B, respetively. The semidiret produts are de�ned with respet to these ations.)

Proof. Let ~� : H !

~

BoH and � : H ! BoH denote the given regular homomorphi

setions (whih de�ne the equivariane ondition) and let � : Gal(L=F ) ! H be

the given isomorphism. Let ~� := ~� Æ � and � := � Æ � be the omposites. The

homomorphism ~� in the above diagram is de�ned by ~�(b � ~� (h)) = �(b) � �(h) for

b 2

~

B, h 2 H. Note that this is a homomorphism beause � is equivariant. Moreover,

we have ~� Æ ~� = ~� Æ (~� Æ �) = � Æ � = �.

By Lemma 3.9, there exists matries

~

Z 2 GL

n

(L) and Z 2 GL

m

(L) suh that

�(

~

Z) =

~

Z ~�(�) and �(Z) = Z�(�) for all � 2 Gal(L=F ), and

~

N=F is a Piard-

Vessiot extension with fundamental solution matrix

~

ZY

~

B

, where Y

~

B

2

~

B(

~

N) is a

fundamental solution matrix for the di�erential equation de�ned by A

~

B

over L.

Sine L � N �

~

N is a tower of Piard-Vessiot extensions, we have restrition

homomorphisms res

L

: Gal(

~

N=F )! Gal(L=F ) and res

N

: Gal(

~

N=F )! Gal(N=F ),

respetively. For � in Gal(

~

N=F ), there exists a C

�

2 GL

n

(K) suh that �(Y ) =

Y C

�

. We want to show that C

�

2

~

B(K)oH for all � 2 Gal(

~

N=F ). We have that

Y C

�

= �(Y ) = �(

~

ZY

~

B

) = res

L

(�)(

~

Z)�(Y

~

B

) =

~

Z ~�(res

L

(�))�(Y

~

B

)

from whih we onlude that

C

�

= Y

�1

~

B

~�(res

L

(�))�(Y

~

B

):

We have written C

�

as a produt of matries in (

~

BoH)(

~

N), but it also has onstant

oeÆients, whih proves that Gal(

~

N=F ) ,!

~

B(K)oH via a homomorphism � given

by the formula �(�) = Y

�1

�(Y ).

It remains to hek that the diagram ommutes. The fundamental solution matrix

Y

~

B

maps to a fundamental solution matrix Y

B

2 B(N) for A

B

under � as seen in the

proof of Proposition 2.12. From the proof of Proposition 3.10, it follows that ZY

B

is

a fundamental solution matrix for N=F with Galois group ating as B(K)oH via

~

�. For � 2 Gal(

~

N=F ), we have that

(~� Æ �)(�) = ~�(Y

�1

�(Y )) = ~�(Y

�1

~

B

~

Z

�1

res

L

(�)(

~

Z)�(Y

~

B

))

= �(Y

�1

~

B

)~� (~�(res

L

(�)))�(�(Y

~

B

)) = Y

�1

B

�(res

L

(�)) res

N

(�)(Y

B

)

= Y

�1

B

Z

�1

res

L

(�)(Z) res

N

(�)(Y

B

) = (ZY

B

)

�1

res

N

(�)(ZY

B

)

= (

~

� Æ res

N

)(�)
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whih proves the laim (there is then a anonial way to de�ne the arrows on the

left hand side so that the big diagram ommutes).

Note 3.13. In the above proof, we identi�ed

~

B with its image in

~

BoH (and B with

its image in BoH). This might require an adjustment of the fundamental solution

matrix (to the new representation). Sine

~

B is onneted and the fundamental

solution matrix an be hosen as a rational point of this group in some extension of

F , this is always possible (as seen in the proof of Proposition 3.10). Moreover, the

homomorphisms in the exat sequene as well as the equivariane arry over to the

new representations. In the sequel, we will make this kind of identi�ation without

further indiation.

In the speial ase when B = 1, we obtain a Kovai-type result (f. Proposition 2.9)

in the non onneted ase.

Corollary 3.14. Let G = G

0

o H be a linear algebrai group de�ned over K and

let L=F be a �nite Galois extension with Galois group isomorphi to H. Let further

A 2 Lie

L

(G

0

) be an equivariant matrix. Then the Piard-Vessiot extension N=L

de�ned by A is also a Piard-Vessiot extension of F and Gal(N=F ) injets into

G(K). Moreover, we have a ommutative diagram

1

G

0

(K)

G(K)

H

1

1

Gal(N=L) Gal(N=F ) Gal(L=F )

�

=

1

Remark 3.15. Although the above diagram ommutes, Gal(N=F ) need not be a

semidiret produt of Gal(N=L) and Gal(L=F ), i.e., the lower sequene does not

neessarily split.

3.5 Non-split Extensions

We onlude this hapter by briey mentioning what happens if the group under

onsideration is a nontrivial extension of its onneted omponent by a �nite group.

Proposition 3.16. Let G be a linear algebrai group de�ned over K and let R=F

be a Piard-Vessiot ring with �eld of frations E. Suppose that Gal(E=F )

�

=

G(K),

and let X = Spe(R).

1. E

G

0

(K)

=: L=F is a �nite Galois extension with Galois group Gal(L=F )

�

=

(G=G

0

)(K) and E=L is a Piard-Vessiot extension with Gal(E=L)

�

=

G

0

(K).

2. Let

~

Y be a fundamental solution matrix for the extension E=F . There exists a

fundamental solution matrix Y 2 G

0

(E) for the extension E=L and Z :=

~

Y Y

�1

is an L-rational point of X .
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3. The assignment

� 7! �(�) = Z

�1

�(Z)

de�nes a oyle � 2 Z

1

(Gal(L=F );G(L)).

Proof. The �rst laim follows from the Galois orrespondene 1.12. Sine G

0

is

onneted, there exists by 2.9 a fundamental solution matrix Y 2 G

0

(E) for the

extension E=L. By de�nition, Z 2 X (E)G

0

(E) � X (E)G(E) = X (E) (reall that

X is a G

F

-torsor by Theorem 1.14). A omputation then shows that Z is �xed by

Gal(E=L)

�

=

G

0

(K), i.e., has oeÆients in L:

"(Z) = "(

~

Y Y

�1

) =

~

Y C

"

C

�1

"

Y

�1

= Z

for all " 2 Gal(E=L) with image C

"

2 G

0

(K). To see the last laim, let �; " 2

Gal(L=F ). Then

�(�") = Z

�1

�"(Z) = Z

�1

�(Z)�(Z)

�1

�"(Z) = �(�)�(�("))

as we had to show.



Chapter 4

The Inverse Problem

In this hapter, we solve the inverse problem over the di�erential �eld (F; �) =

(K(t); �

t

=

d

dt

), where K is an algebraially losed �eld of harateristi zero. Our

approah onsists of three main steps, whih orrespond to the �rst three setions

of this hapter:

The onneted omponent of the identity of a linear algebrai group is a normal

subgroup of �nite index, in partiular, the quotient of the algebrai group by this

normal subgroup is �nite. Sine �nite groups are realizable over �elds of the type

under onsideration, the inverse problem will be solved one we an solve embedding

problems with onneted kernel and �nite okernel. A theorem of Borel and Serre

will allow the redution to the ase of split embedding problems of this type. As

seen in Chapter 3, suh embedding problems an be solved by �nding equivariant

realizations of the onneted omponents.

Every linear algebrai group may be deomposed as the semidiret produt of a

unipotent group (the unipotent radial) by a maximal redutive subgroup (a so-

alled Levi fator). Consequently, the realization of arbitrary linear algebrai groups

an be split into the equivariant realization of a maximal onneted redutive sub-

group and the solution of equivariant embedding problems with unipotent kernel.

This will be the subjet of the seond and third setion, respetively.

In the fourth setion, we will ombine the previous results to prove the main theorem.

The last setion of this hapter is devoted to some onluding remarks on the proof

and possible generalizations.

4.1 A First Redution

Our �rst redution is based on the following theorem ([BS64℄, Lemme 5.11):

Theorem 4.1. Let G be a linear algebrai group de�ned over an algebraially losed

�eld of harateristi zero. Then G ontains a �nite supplement to the onneted

omponent of the identity, i.e., there exists a �nite subgroup H of G suh that G is

generated as a linear algebrai group by G

0

and H.
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For our purposes, we need to �nd a supplement whih satis�es an additional ondi-

tion, namely, whih respets the semidiret produt deomposition of the onneted

omponent into unipotent radial and Levi fator.

Lemma 4.2. Let G be a linear algebrai group de�ned over K. Then there exists

a deomposition G

0

= U o P of G

0

into unipotent radial U and maximal redutive

subgroup P, and a �nite supplement H of G

0

in G whih normalizes P.

Proof. By [Mos56℄ (�rst theorem of the artile, whose theorems are unfortunately

not numbered), G an be deomposed into the semidiret produt G = U o G

red

of its unipotent radial U by a maximal redutive subgroup G

red

. The onneted

omponent of the identity P of G

red

is then a omplement to U in G

0

. By Theo-

rem 4.1 above, P has a �nite supplement H in G

red

. This supplement H is likewise

a supplement to G

0

in G. In addition, it normalizes the onneted redutive group

P.

4.2 Realization of Redutive Groups

In this setion, G denotes a redutive linear algebrai group over K whih is the

semidiret produt of its onneted omponent of the identity P E G by a �nite

group H. By [Spr98℄, Cor. 8.1.6, P an be written as the produt T � S of a torus

T , the radial of P, and the ommutator subgroup S, whih is semisimple.

Moreover, both subgroups are stabilized by H (the radial T is a harateristi

subgroup and S is a ommutator subgroup). This allows us to onsider the two

groups S oH and T oH.

4.2.1 Equivariant Realizations of Semisimple Groups

As before, let S o H be a semidiret produt of a onneted semisimple group

by a �nite group. We are going to make use of the following theorem whih is a

onsequene of [Sin93℄, Theorem 4.4 (using that all linear haraters of a semisimple

group are trivial).

Theorem 4.3. Groups with semisimple onneted omponent of the identity are

realizable over F .

By the above theorem, there exists a Piard-Vessiot extension E=F with di�erential

Galois group S(K) o H. The �xed �eld L := E

S(K)

under S(K) is a �nite Galois

extension of F with Galois group (isomorphi to) H. By Proposition 3.7, there

exists a matrix A

S

2 Lie

L

(S) whih de�nes the Piard-Vessiot extension E=L and

is equivariant in the sense of De�nition 3.5. We have thus shown:

Lemma 4.4. Let S oH be the semidiret produt of a onneted semisimple linear

algebrai group by a �nite group, both de�ned over K. There exists a �nite Ga-

lois extension L=F with Galois group isomorphi to H and an e�etive equivariant

realization of S over L.
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4.2.2 Equivariant Realizations of Tori

Next, we turn to the torus T .

De�nition 4.5. An element x of a torus is alled regular if no nontrivial harater

of the torus evaluates to 1 on x. Similarly, an element of the Lie algebra is alled

regular if no di�erential of a nontrivial harater vanishes on this element.

It is more or less folklore that to realize a torus, it is (up to a slight modi�ation)

suÆient to use a regular element of the Lie algebra of the torus as the de�ning

matrix of the di�erential equation. For our purposes, we need a regular element

whih also satis�es the equivariane ondition. The existene of suh an element is

guaranteed by the next lemma.

Lemma 4.6. Let T oH be the semidiret produt of a torus by a �nite group, both

de�ned over K. Let L=F be a �nite Galois extension with Galois group isomorphi

to H. Then the set of equivariant matries in Lie(T (L)) ontains a regular element.

Proof. Let w

1

; : : : ; w

r

be a normal basis of L=F , r := [L : F ℄ (see, for example,

[Lan84℄, Theorem 13.1), and let d := dim(T ). We laim that the elements of the

set ft

i

w

j

ji = 1; : : : ; d; j = 1; : : : ; rg are linearly independent over Q . To see this,

suppose that

P

i;j

�

ij

t

i

w

j

= 0 is a relation with oeÆients �

ij

2 Q , then

r

X

j=1

 

d

X

i=1

�

ij

t

i

!

w

j

= 0;

whih implies that

d

P

i=1

�

ij

t

i

= 0 for j = 1; : : : ; r sine the w

j

are linearly independent

over F = K(t) > Q (t). This, in turn, may only happen if all �

ij

are zero (ompare

oeÆients).

Let � : H ! T oH be a regular homomorphi setion. For � 2 Gal(L=F ), denote

by C

�

the image of � in �(H), and let � : Gal(L=F ) ! Aut(Lie

L

(T )) be the

homomorphism given by �(�)(g) = C

�

�(g)C

�1

�

, g 2 Lie

L

(T ).

Let

� : T (L)! G

d

m

(L); x 7! (�

1

(x); : : : ; �

d

(x))

be an isomorphism and de�ne b := (d�)

�1

(tw

1

; : : : ; t

d

w

1

). Let moreover

~

b =

P

�2Gal(L=F )

�(�(b)). We laim that

~

b is a regular element (its equivariane is lear).

We need to show that no di�erential of a harater of T vanishes on

~

b. Suppose that

� is a harater, then �

�1

��(�) is again a harater: � is a rational funtion in the

oordinate funtions f

ij

, onsequently, �

�1

��(�)(f

ij

) = �(C

�

(f

ij

)C

�1

�

) and this is

again a rational funtion in the f

ij

. Therefore, we may write �

�1

��(�) =

d

Q

i=1

�

�

i

(�)

i
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for exponents �

i

(�) 2 Z. Moreover, �

�1

d��(�) = d(�

�1

��(�)) =

d

P

i=1

�

i

(�)d�

i

. Here

the �rst equality is valid sine

(d(�

�1

��(�))(a

ij

)) =

X

i;j

�(�

�1

��(�))

�f

ij

(1)a

ij

=

X

i;j

�

�1

�(�)

��(�)(f

ij

)

(1)f

ij

(�(�)(a

ij

)) = (�

�1

d��(�))(a

ij

)

for (a

ij

) 2 Lie(T (L)) (see [Hum98℄, Setion 5.4 for the omputation of the di�erential

of a morphism). The seond equality just uses the fat that the di�erential of

multipliation in the group is addition in the Lie algebra. Consequently, we �nd

that

d�(

~

b) =

X

�2Gal(L=F )

d�(�(�)(b))

=

X

�2Gal(L=F )

�

 

d

X

i=1

�

i

(�)d�

i

(b)

!

=

X

�2Gal(L=F )

d

X

i=1

�

i

(�)�(t

i

w

1

)

and this is nonzero sine the elements t

i

w

j

are linearly independent over Q as shown

above.

With this at hand, we an prove the following (ompare to [MS00℄, 5.1):

Lemma 4.7. Let T oH be the semidiret produt of a torus and a �nite group, both

de�ned over K. Let L=F be a �nite Galois extension with Galois group isomorphi

to H. Then there exists an e�etive equivariant realization of T (K) over L.

Proof. Assume without loss of generality that L=F is unrami�ed at1 (replae t by

a linear frational transformation of t). Let A

T

be a regular equivariant element in

Lie(T (L)) (suh an element exists by Lemma 4.6 above), and let � : T (L)! G

d

m

(L),

x 7! (�

1

(x); : : : ; �

d

(x)) be an isomorphism, where d := dim(T ). As a onsequene

of Proposition 2.12, the Galois group G of the di�erential equation X

0

= d�(A

T

)X

has dimension less than or equal to the Galois group of the equation X

0

= A

T

X

(ompare transendene degrees of the orresponding �elds over L), whih in turn

has dimension at most d. Sine A

T

is regular, the values g

i

2 L of the d�

i

on A

T

are linearly independent over Z. By [MS96℄, Prop. 2.10, G has dimension d if every

relation of the form �

1

g

1

+ : : :+ �

d

g

d

= f

0

=f with oeÆients �

i

2 Z and f 2 L is

trivial. After replaing A

T

by an F -multiple if neessary, we may assume that the

g

i

in suh a relation are regular exept for points above 1 and that they have poles

at points above 1. This adjustment of the matrix hanges neither its equivariane

nor its regularity. Every element of the form f

0

=f has a zero at points above 1.

Thus a relation of the form above implies a Z-linear dependene of the g

i

, whih



4.2 Realization of Redutive Groups 35

shows that the relation has to be trivial. Consequently, the dimension of G is in fat

d and hene the same holds for the dimension of the Galois group we are interested

in. Sine it is ontained in the onneted group T (K) of the same dimension, it has

to equal T (K) as required.

4.2.3 Realizations of Arbitrary Redutive Groups

Combining the results on semisimple groups and tori, we obtain the following propo-

sition.

Proposition 4.8. Let P o H be the semidiret produt of a onneted redutive

linear algebrai group and a �nite group, both de�ned over K. Then there exists

a �nite Galois extension L=F with Galois group isomorphi to H and an e�etive

equivariant realization of P over L.

Proof. Let � : H ! P o H be a regular homomorphi setion. By [Spr98℄, Corol-

lary 8.1.6., P is the produt of a semisimple group S and a torus T both normalized

under �(H), and we have a surjetive homomorphism � : T � S ! P with �nite

kernel given by multipliation in P.

Both S and T are losed in P, ([Hum98℄, 17.2. and [Spr98℄, 6.4.14., respetively),

whih implies that the inlusions of these subgroups are morphisms of linear alge-

brai groups. Consequently, the omposition of the inlusions and multipliations �

is also a morphism.

We onsider the semidiret produts SoH and T oH as subgroups of PoH, so that

we an work with the same setion � as above. By Lemma 4.4, there exists a �nite

Galois extension L=F with Galois group isomorphi to H and an equivariant matrix

A

S

2 Lie

L

(S) whih realizes S. By Lemma 4.7, there exists an equivariant matrix

A

T

2 Lie

L

(T ) whih realizes T (K) over L. It is shown in [MS96℄, Prop. 2.10, that

the blok diagonal matrix A

S

� A

T

then realizes the diret produt T (K) � S(K)

over L.

By Lemma 2.12, the matrix d�(A

T

� A

S

) = A

T

+ A

S

2 Lie

L

(P) realizes G over L,

and as a sum of equivariant matries (with respet to the same setion), this matrix

is equivariant.

All in all, we have found equivariant realizations of onneted redutive groups

over L. Before turning to the remaining part, namely the solution of equivariant

embedding problems with unipotent kernel, we state the following partial solution

of the inverse problem.

Corollary 4.9. Let G be a redutive linear algebrai group. Then G is realizable as

a di�erential Galois group over F .

Proof. By Theorem 4.1, there exists a �nite subgroup H of G whih is a supplement

for G

0

in G. Let

~

G = G

0

o H be the semidiret produt. Note that we have a

morphism of linear algebrai groups � :

~

G � G with �nite kernel H \ G

0

given by
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inlusion of the two losed subgroups and multipliation. By Proposition 4.8, there

exists a �nite Galois extension L=F and an e�etive equivariant realization of G

0

over L. By Proposition 3.10, this gives a realization of

~

G(K) over F as the Galois

group of some Piard-Vessiot extension

~

N=F . By the Galois orrespondene, the

�xed �eld N �

~

N under Ker(�) is a Piard-Vessiot extension of F with di�erential

Galois group isomorphi to G(K).

4.3 Equivariant Embedding Problems with

Unipotent Kernel

Throughout this setion, L=F denotes a �nite Galois extension of F with Galois

group isomorphi to the �nite K-group H.

Let us onsider the onneted split equivariant embedding problem

1

U(K)

~

B(K)

�

 

Æ

B(K)

1

Gal(M=L)

�

=

(4.10)

with unipotent kernel U and redutive okernel B. The aim of this setion is to show

that embedding problems of this type have proper e�etive equivariant solutions.

To this end, we will break up this embedding problem into smaller ones as follows.

The ommutator subgroup U

0

:= (U ;U) is normal in

~

B. We obtain two new short

exat sequenes

1! U=U

0

!

~

B=U

0

! B ! 1 (4.11)

and

1! U

0

!

~

B !

~

B=U

0

! 1: (4.12)

Sine U

0

is stable under H (it is a ommutator subgroup), the quotients

~

B=U

0

and

U=U

0

inherit an ation of H by onjugation. Note that by de�nition, all homomor-

phisms in the two exat sequenes are equivariant homomorphisms with respet to

this ation.

It is well known that in the above situation, it suÆes to solve the two embedding

problems assoiated to the new exat sequenes separately. Namely, if we �nd a

proper e�etive solution of the embedding problem assoiated to the sequene (4.11)

with some Piard-Vessiot extension N of L ontaining M , and then a proper e�e-

tive solution of the embedding problem assoiated to the sequene (4.12) (with

�

~

B=U

0

�

(K)

�

=

Gal(N=L)), this will be a proper e�etive solution of the initial em-

bedding problem. Moreover, if the matries in both steps are equivariant, we will

have solved the initial problem by an equivariant matrix.
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4.3.1 Equivariantly Split Embedding Problems with

Unipotent Abelian Kernel

First, we turn to the embedding problem assoiated to the sequene (4.11). This

sequene splits and the setion is H-equivariant. The kernel of this embedding

problem is unipotent abelian and stable under theH-ation. Sine Æ(B)oH �

~

BoH

is redutive (this group is de�ned sine Æ is equivariant), we may write

U=U

0

�

=

A

1

� � � � � A

r

where the A

i

are minimal Æ(B) o H-stable diret sums of additive groups. Note

that this deomposition is a deomposition as linear algebrai groups (i.e., the iso-

morphism is in fat a morphism) and exists over the algebraially losed �eld K. In

partiular, all A

i

are de�ned over K.

As before, we may suessively fator by suh A

i

and redue the problem to an

embedding problem with a lower dimensional kernel. The key observation is that all

resulting embedding problems are split by H-equivariant setions (with the inherited

ation on the fator groups).

Lemma 4.13. Let

1! A

1

�A

2

�

�!

~

B

 

�!

 

Æ

B ! 1

be a split exat sequene of onneted linear algebrai groups, and suppose that eah

of the groups in the exat sequene arries an ation of the �nite group H by K-

automorphisms. Suppose further that �, Æ and  are equivariant with respet to

these ations. Moreover, assume that the diret sum deomposition is Æ(B)-stable

and H-stable (in partiular, this fores A

1

to be normal in

~

B). Then the sequenes

1!A

2

�

1

�!

~

B=A

1

 

1

�! B ! 1

and

1!A

1

�

2

�!

~

B

 

2

�!

~

B=A

1

! 1

also split, and the setions are H-equivariant (with respet to the indued H-ation

on the fator groups).

Proof. Note that sine all groups under onsideration are de�ned over K, it suf-

�es to de�ne the homomorphisms on K-rational points and to make sure they are

morphism. De�ne a setion Æ

1

to  

1

by the omposite

Æ

1

: B

Æ

�!

~

B

 

2

�!

~

B=A

1

;

this is a setion sine  

1

(Æ

1

(b)) =  

1

( 

2

(Æ(b))) =  (Æ(b)) = b for b 2 B(K). As a

omposition of morphisms, Æ

1

is a morphism. As a omposition of H-equivariant

maps, it is H-equivariant.
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Next, we de�ne a setion to  

2

. Sine

~

B=A

1

�

=

A

2

o B (H-equivariantly) as shown

above, we an de�ne Æ

2

:

~

B=A

1

�

=

A

2

oB !

~

B = (A

1

�A

2

)oB by (a

2

; b) 7! (1�a

2

; b),

a

2

2 A

2

(K), b 2 B(K). Note that this a morphism of linear algebrai groups and

gives a setion to  

2

.

Finally, we hek that

Æ

2

(a

2

; b)

h

= (1� a

2

; b)

h

= (1� a

h

2

; b

h

)

= Æ

2

(a

h

2

; b

h

) = Æ

2

((a

2

; b)

h

)

for a

2

2 A

2

(K), b 2 B(K) and h 2 H (the supersript stands for the orresponding

H-ations), i.e., Æ

2

is H-equivariant.

By indution on the dimension of the kernel, the above lemma allows the redution

to a split equivariant embedding problem with minimal unipotent abelian kernel. It

remains to show that suh embedding problems have proper equivariant (e�etive)

solutions. This is the aim of the following proposition whih mimis Proposition 2.1

of [Obe01℄.

Proposition 4.14. A split equivariant embedding problem

1

A(K)

~

B(K)

 

Æ

B(K)

1

Gal(N=L)

�

=

with minimal unipotent abelian kernel has an e�etive proper equivariant solution.

Proof. Let ~� : H !

~

BoH be the regular homomorphi setion de�ning the equivari-

ane ondition for

~

B. Let A

B

2 Lie

L

(Æ(B)) be an equivariant matrix realizing N=L.

Let Y

B

2 Æ(B)(N) be a fundamental solution matrix for the di�erential equation

de�ned by A

B

, and let � : A(L) ! L

m

be an isomorphism (whih exists sine A

is ommutative). Let d� be the assoiated homomorphism of Lie algebras. Conju-

gation with elements of Æ(B) o H �

~

B o H on A(L) indues an automorphism of

L

m

, the orresponding representation Æ(B)oH ! GL

m

will be denoted by � (this

is indeed a morphism beause it is given by onjugation). We have a twisted ation

of H on L

m

via � � a := �(C

�

)�(a) (� 2 Gal(L=F ), C

�

the orresponding element

of ~� (H), a 2 L

m

) indued by the twisted ation on Lie

L

(A). This ation is learly

semilinear, and a vetor invariant under this ation is the image of an equivariant

element in Lie

L

(A) under d�. Therefore, we will all suh vetors equivariant.

Assume for a moment that there exists a vetor a 2 L

m

whih is equivariant suh

that the di�erential equation X

0

= �(Y

B

)

�1

a has no solution with oeÆients in N .

Set

~

X := �(Y

B

)X. A alulation shows that

X

0

= �(Y

B

)

�1

a () (�(Y

B

)

�1

~

X)

0

= �(Y

B

)

�1

a

() (�(Y

B

)

�1

)

0

~

X + �(Y

B

)

�1

~

X

0

= �(Y

B

)

�1

a

()

~

X

0

� d�(A

B

)

~

X = a;
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so by assumption, the latter equation has no solution with oeÆients in N . Let

b be a solution in an extension �eld of N . Let �

�1

(b) =: Y

A

2 A(N) and A

A

:=

d�

�1

(a) 2 Lie

L

(A). Note that A

A

is equivariant by de�nition of the twisted ation

on L

m

: Sine

d�(A

A

� C

�

�(A

A

)C

�1

�

) = a� �(C

�

)�(a) = a� a = 0

and d� is an isomorphism, we have that C

�

�(A

A

)C

�1

�

= A

A

for all � 2 Gal(L=F )

with image C

�

2 ~� (H). Moreover, we have that (ompare [MS00℄, remark following

Proposition 3.7)

d�(A

A

) = �(Y

A

)

0

� d�(A

B

)�(Y

A

)

= �(Y

B

)

�

�(Y

B

)

�1

�(Y

A

)

0

� �(Y

B

)

�1

�(Y

B

)

0

�(Y

B

)

�1

�(Y

A

)

�

= �(Y

B

)

�

�(Y

B

)

�1

�(Y

A

)

�

0

= �(Y

B

)�(Y

B

Y

A

Y

�1

B

)

0

= �(Y

B

)d�(�(Y

B

Y

A

Y

�1

B

)) = d�(Y

�1

B

�(Y

B

Y

A

Y

�1

B

)Y

B

)

from whih we onlude that

A

A

= Y

�1

B

�(Y

B

Y

A

Y

�1

B

)Y

B

= �A

B

+ Y

A

Y

0

A

+ Y

A

A

B

Y

A

sine d� is an isomorphism. With the help of the last equality, it an easily be

heked that the matrix Y

A

Y

B

is a fundamental solution matrix of the di�erential

equationX

0

= (A

A

+A

B

)X. Let

~

N=L be the orresponding Piard-Vessiot extension

with N �

~

N so that Y

A

Y

B

2

~

B(

~

N).

The matrix A

A

+ A

B

is equivariant, so by Proposition 3.10, the extension desends

to a Piard-Vessiot extension of F . By Proposition 3.12, Gal(

~

N=F ) injets into

~

B(K)oH and we obtain a ommutative diagram

1

A(K)

~

B
(K)oH

�

B(K)oH

1

1
Gal(

~

N=N) Gal(

~

N=F )

�

Gal(N=F )

�

=

'

1 :

Sine Gal(

~

N=N) is normal in Gal(

~

N=F ) and normal in A(K) (reall that this is a

ommutative group), it must be normal in

~

B(K) o H (whih is generated by the

two groups). In partiular, it is

~

B-stable and H-stable. Consequently, Gal(

~

N=N)

�

=

A(K) by minimality. The �ve lemma then implies that Gal(

~

N=L)

�

=

~

B(K).

It remains to show the existene of the vetor a as above. Let ~a be any nonzero

equivariant vetor in L

m

(whih exists, for example, by Speiser's Lemma 3.3) and

let (�(Y

B

)

�1

~a)

i

be a non vanishing omponent of �(Y

B

)

�1

~a. By Lemma A.1 of the

Appendix, there exists a  2 K suh that X

0

=

(�(Y

B

)

�1

~a)

i

t�

has no solution in N .

Let a :=

1

t�

� ~a and note that this vetor is still equivariant by semilinearity. Then

X

0

= �(Y

B

)

�1

a has no solution with oeÆients in N .
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4.3.2 Equivariant Frattini Embedding Problems

Let us now onsider the embedding problem assoiated to the sequene (4.12)

1

U

0

(K)

~

B(K) (

~

B=U

0

)(K)
1

Gal(N=L)

�

=

whih is an equivariant Frattini embedding problem (see [Kov69℄, Lemma 2). The

following proposition guarantees that this problem has a proper equivariant solution.

Proposition 4.15. An equivariant Frattini embedding problem has a proper (e�e-

tive) equivariant solution.

Proof. We keep the notation we have been using in this hapter. Let

1

A(K)

~

B(K)

�

B(K)

1

Gal(N=L)

�

=

be an equivariant Frattini embedding problem, and suppose that Gal(N=L) is real-

ized by an equivariant matrix B 2 Lie

L

(B). Sine � is H-equivariant and de�ned

over K (in partiular, it ommutes with the Galois ation), the �ber d�

�1

(B) is

losed under the twisted ation of H. Consequently, if we let B

0

be any element in

this �ber, we may de�ne

~

B :=

1

jGal(L=F )j

X

�2Gal(L=F )

C

�

�(B

0

)C

�1

�

2 d�

�1

(B);

where as usual C

�

is the image of � in the given representation of H. Note that

~

B is

equivariant by de�nition. By Proposition 2.12,

~

B de�nes an equivariant solution of

the embedding problem whih is proper sine the problem is a Frattini problem.

4.3.3 The General Case

From the results above, we immediately obtain the following

Proposition 4.16. A split equivariant embedding problem of the form (4.10) with

unipotent kernel and redutive okernel has a proper e�etive equivariant solution.
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4.4 The Main Result

We have now olleted all neessary ingredients to prove the main result of this

thesis.

Theorem 4.17. Let G be a linear algebrai group de�ned over K. There exists

a Piard-Vessiot extension of K(t) with di�erential Galois group (isomorphi to)

G(K).

Proof. By Lemma 4.2, the onneted omponent of the identity G

0

(K) has a deom-

position G

0

= U o P into unipotent radial and redutive omplement, and there

exists a �nite supplement H in G whih normalizes P. Consequently, we have

~

G := (U o P)oH = U o (P oH):

By Proposition 4.8, there exists a �nite Galois extension L=F with Galois group

isomorphi to H and an equivariant realization of P over L as the Galois group

of some Piard-Vessiot extension M=L. By Proposition 4.16, the resulting split

equivariant embedding problem

1

U(K)

G

0

(K)

 

P(K)

1

Gal(M=L)

�

=

has a proper e�etive equivariant solution. All in all, we obtain an equivariant re-

alization of G

0

(K) as the di�erential Galois group of some Piard-Vessiot extension

~

E of L. By Proposition 3.10,

~

E is also a Piard-Vessiot extension of F with Ga-

lois group isomorphi to

~

G(K). Let ~ : Gal(

~

E=F ) !

~

G(K) be the orresponding

isomorphism. Let further � :

~

G(K) ! G(K) denote the morphism of algebrai

groups given by omposition of the inlusion of the losed subgroups G

0

and H

with multipliation. Then E =

~

E

Ker(�)

is the desired Piard-Vessiot extension with

Gal(E=F )

�

=

G(K) by the Galois orrespondene 1.12.

4.5 Conluding Remarks

The main result of this thesis (or rather its proof) has two drawbaks. First, it is

not onstrutive. In partiular, the use of Singer's result (Theorem 4.3) �xes the

�nite extension we work over, and we have no ontrol what this extension looks

like. To have a onstrutive proof at least in the split ase one would have to

�nd (onstrutive) equivariant realizations of onneted semisimple groups. There

is some evidene that an approah similar to the one given by Mitshi and Singer

in [MS96℄ might also work in this more general setting. Namely, the Lie algebra

deomposition they use an be performed equivariantly; in partiular, there exists
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a regular pair of generators of the Lie algebra over L whih is equivariant (this an

be seen using Theorem 13.3.6 of [Spr98℄ in ombination with Speiser's Lemma 3.3).

Although we don't know how to prove that a suitable F -linear ombination of these

matries provides us with a realization of arbitrary onneted semisimple groups,

we an at least give an ad ho proof for the ase of SL

2

over L = K(

p

t).

Example. The group SL

2

is the natural example of a semisimple group. There is

only one nontrivial lass (modulo inner automorphisms) of outer automorphisms, a

representative of whih is given by the matrix � =

�

0 1

1 0

�

. This matrix generates an

order two subgroup of GL

2

. Let us onsider the quadrati extension L = K(

p

t)=F

with Galois group isomorphi to the opy of Z=2 in GL

2

just desribed.

We work with the standard representation of SL

2

and the standard (diagonal) torus

T � SL

2

. The adjoint representation of T on Lie

K

(SL

2

) gives a deomposition

Lie

K

(SL

2

) = Lie

K

(T )�X

�

�X

+

where X

�

and X

+

are the two root spaes assoiated to the nontrivial roots.

Note that the ation of Z=2 stabilizes the maximal torus T and therefore also stabi-

lizes this deomposition. Moreover, the matrix A

0

=

�

0 1

1 0

�

2 X

�

�X

+

together

with any regular element of Lie

K

(T ) forms a regular pair of generators for Lie

K

(SL

2

)

(ompare [MS96℄, onsiderations following Lemma 3.4.). Note that A

0

is equivariant

with respet to the given Z=2-ations (indeed, it is �xed by the Galois ation as well

as by onjugation with �). It is of ourse not possible to �nd a regular equivariant

element in Lie

K

(T ), but we may hoose A

1

=

�
p

t 0

0 �

p

t

�

2 Lie

L

(T ).

We de�ne A :=

1

2

(A

0

+

1

t

A

1

) and laim that the di�erential Galois group given by

this matrix over L is SL

2

(K).

Let u =

p

t and onsider the matrix

~

A = A

0

+ A

1

over the di�erential �eld

(K(u); �

u

=

�

�u

). By the alulation in [MS96℄, Example 2,

~

A realizes SL

2

over K(u).

Let Y be a fundamental solution matrix for this equation and let C =

�

1 1

1 �1

�

.

Then

�

t

(CY ) = �

u

(CY )

1

2u

=

1

2u

C

~

AC

�1

(CY ) = A(CY )

whih shows that the di�erential Galois group de�ned by A over (K(u); �

t

) is also

SL

2

(the matries CY and Y de�ne the same Piard-Vessiot extension of L).

As noted above, the lak of a onstrutive way of realizing semisimple groups makes

it impossible to ontrol the �nite extension we work with, and therefore implies

the seond drawbak of our approah: It does not generalize to �elds of higher

transendene degree over K.

In any ase, it remains an interesting problem to �nd a ompletely onstrutive

proof of Theorem 4.17.
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Sine we make use of a Lemma of T. Oberlies whih hasn't been published so far,

we inlude the proof here (ompare [Obe01℄, Prop. 2.2.).

Lemma A.1. Let E=F be a Piard-Vessiot extension and w 2 E. There exist

in�nitely many elements 

1

; : : : ; 

r

2 K suh that the solutions y

i

of y

0

i

=

w

t�

i

are

algebraially independent over K(t). In partiular, there exists a  2 K suh that

y

0

=

w

t�

has no solution in E.

Proof. Let T be a transendene basis of K over Q and let Q := Q(T ). Then Q

is a Hilbertian �eld ([FJ86℄, Theorem 12.9). Let n 2 N be minimal suh that w

(n)

is algebrai over Q(t; w; : : : ; w

(n�1)

) (suh n exists sine E is of �nite transendene

degree over K(t) and thus also over Q(t)). Consider the minimal polynomial of w

(n)

over Q(t; w; : : : ; w

(n�1)

) and lear denominators to obtain an equation of the form

r

X

i=1

g

i

(w

(n)

)

i

= 0

with oeÆients g

i

2 Q[t; w; : : : ; w

(n�1)

℄. Applying the derivation to this equation

gives

r

X

i=1

g

0

i

(w

(n)

)

i

+ w

(n+1)

r

X

i=1

g

i

i(w

(n)

)

i�1

| {z }

h

= 0; (�)

whih shows that w

(n+1)

2 F := Q(t; w; : : : ; w

(n)

), i.e., F is a di�erential sub�eld of

E. Let N := Q(w; : : : ; w

(n�1)

). Then v := g

r

w

(n)

is integral over N [t; v℄.

We laim that there exist in�nitely many  2 Q suh that (t � )N [t; v℄ is a prime

ideal. Assuming this, we proeed as follows. Given m 2 N , we hoose 

i

2 Q

(i = 1; : : : ; m) suh that (t� 

i

)N [t; v℄ is prime and g

r

; h =2 (t� 

i

)N [t; v℄. Let y

i

be

a solution of the di�erential equation y

0

i

=

w

t�

i

(i = 1; : : : ; m) and assume that the y

i

are algebraially dependent over Q(t). Then they are also algebraially dependent

over F . By the Kolhin-Ostrowski-Theorem ([Kol76℄, Setion 2) this implies the

existene of a relation of the form

m

X

i=1

d

i

y

0

i

= f

0



44 Appendix

for some f 2 F and oeÆients d

i

2 Z whih are not all zero. Without loss of

generality we may assume that d

1

6= 0. Let S be the multipliatively losed subset

of N [t; v℄ generated by h; g

r

and ft� 

i

; i � 2g. Note that N [t; v℄ is not a di�erential

ring, but S

�1

N [t; v℄ is a di�erential ring beause of equation (�) above. Moreover,

(t � 

1

)S

�1

N [t; v℄ is a prime ideal. Sine the quotient �eld of S

�1

N [t; v℄ is F , we

may write f = (t � 

1

)

z

p

q

where p; q 2 S

�1

N [t; v℄ n (t � )S

�1

N [t; v℄ and z 2 Z.

Substituting this into the relation above and multiplying by q

2

, we �nd that

q

2

w

m

X

j=1

d

j

t� 

j

= z(t� 

1

)

z�1

pq + (t� 

1

)

z

(p

0

q � pq

0

) (��):

If z < 0, we multiply (��) with (t� 

1

)

1�z

to onlude that zpq 2 (t� 

1

)S

�1

N [t; v℄,

whih is a ontradition sine the ideal is prime. Therefore we onlude that z � 0.

Multiplying (��) with (t � 

1

) then shows that q

2

wd

1

2 (t � 

1

)S

�1

N [t; v℄ (note

that for z = 0, the �rst term on the right hand side vanishes). If n > 0, we obtain

a ontradition sine w 2 N in this ase. If n = 0, w is algebrai over Q(t) and

N = Q. Then if w 2 (t � )S

�1

Q[t; v℄, there exists an element s 2 S suh that

sw 2 (t � )Q[t; v℄ and sine this is a prime ideal, w 2 (t � )Q[t; v℄. Note that

w = v=g

r

2 N [t; v℄. Consequently, v 2 (t � )Q[t; v℄, i.e., there exists an element

k 2 Q[t; v℄ suh that v = k(t� ). Sine v is integral of degree r over Q[t℄, we may

write k =

r�1

P

i=1

l

i

v

i

for polynomials l

i

2 Q[t℄. Then we onsider the oeÆient of v to

obtain 1 = (t� )l

1

, whih is a ontradition.

It remains to prove the laim. Consider the integral losure O

M

of N [t℄ in M :=

Quot(N [t; v℄). Note that sine v is integral over N [t℄, O

M

ontains N [t; v℄. We prove

the laim in two steps.

First, we show that there are in�nitely many  2 Q suh that (t � )O

M

is prime.

The minimal polynomial f

v

of v in N [t; X℄ = Q(w; : : : ; w

(n�1)

)[t; X℄ is irreduible

of degree r and sine Q is Hilbertian, f

v

remains irreduible for in�nitely many

speializations t 7! . We laim that for all suh speializations, (t� )O

M

is prime.

Let p be any prime ideal of O

M

in the deomposition of (t�)O

M

(O

M

is a Dedekind

ring). The redution of f

v

modulo (t�) is irreduible over N [t℄=(t�) and has root

v modulo p in O

M

=pO

M

, onsequently, the residue lasse degree equals the degree

r of the extension of N [t℄ de�ned by f

v

, whih by the produt formula implies that

(t� )O

M

has to be prime.

The seond part is to show that for all but �nitely many  2 Q, if (t�)O

L

is prime,

then so is (t � )N [t; v℄. Sine O

M

is �nite over N [t; v℄ ([Mat86℄, Lemma 33.1),

and N [t; v℄ ontains generators for M , there exists an element a 2 N [t; v℄ suh

that aO

M

� N [t; v℄. There are only �nitely many  2 Q suh that the norm

N

M=N [t℄

(a) 2 (t � )N [t℄. We want to show that for all other , (t � )N [t; v℄ is

prime. Let x; y 2 N [t; v℄ suh that xy 2 (t � )N [t; v℄. Sine the extension of the

ideal to O

M

is prime, we may without loss of generality assume that x 2 (t� )O

M

.

Then ax 2 (t � )N [t; v℄. The elements 1; v; : : : ; v

r�1

form a basis of L over N(t)
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as a vetor spae. Let x be the vetor representing x in this basis. Consider the

linear transformation on L given by multipliation with a. Sine v is integral over

N [t℄, all oeÆients of the matrix representation T of this transformation in the

given basis are in N [t℄. By assumption, Tx redues to zero modulo (t � ), but

det(T ) = N

M=N(t)

is nonzero when redued modulo (t� ) by the hoie of . This

implies that x redues to zero, proving that x 2 (t� )N [t; v℄.
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