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Interventionelle Kegelstrahl-CT mit beliebigen Aufnahme-Orbits: Simulation und
Rekonstruktion

Die Cone-Beam-CT (CBCT) wird aufgrund ihrer Geschwindigkeit, Mobilität und räum-
lichen Auflösung häufig in der bildgestützten Chirurgie eingesetzt. Das Aufkommen robo-
tischer interventioneller Röntgensysteme hat die Flexibilität beim Design von CBCT-
Aufnahmeorbits drastisch erhöht. Alternative Umlaufbahnen ermöglichen es, das CBCT-
System um störende chirurgische Geräte herum zu steuern und strahlenundurchlässige
Strukturen in der Nähe von Bildgebungsinteressen zu vermeiden, um die Bildqualität zu
verbessern. Aufgrund der zeitlichen Beschränkungen im Operationssaal werden Echtzeit-
Algorithmen zur Bestimmung der idealen Aufnahmegeometrie und zur Rekonstruktion der
entsprechenden Projektionsdaten benötigt, um beliebige Trajektorien in der klinischen
Praxis umzusetzen. In dieser Arbeit wird die beste Alternative zu einer kreisförmigen
Standardgeometrie durch die Simulation von CBCT-Bildern mit Hilfe eines Projektions-
operator-Ansatzes ermittelt, der mit robusten Monte-Carlo-Simulationen (MC) validiert
wird. Die Vorhersagen der beiden Simulationsmethoden stimmen überein, wobei der Pro-
jektionsoperator-Ansatz nur sieben Minuten benötigt. Zweitens wird eine Methode zur
schnellen Rekonstruktion beliebiger Orbits auf der Grundlage von Convolutional Neu-
ral Networks (CNNs) vorgestellt. Das vorgeschlagene Rekonstruktionsverfahren liefert
eine ähnliche Bildqualität (nRMSE=0.060) im Vergleich zu state-of-the-art Rekonstruk-
tionen (nRMSE=0.045) und reduziert gleichzeitig die Rechenzeit drastisch um 90%. In
der vorliegenden Arbeit werden schnelle Methoden entwickelt, um geeignete Alternativen
zur Standardkreisbahn zu bestimmen und adäquate Rekonstruktionen zu erstellen. Diese
Methoden fördern die Implementierung beliebiger CBCT-Orbits, um die Flexibilität und
Präzision während bildgesteuerter Operationen zu erhöhen.

Interventional Cone-Beam CT with Arbitrary Acquisition Orbits: Simulation and
Reconstruction

Cone-beam CT (CBCT) is commonly used in image-guided surgery due to its speed,

mobility and spatial resolution. The advent of robotic interventional X-ray systems has

opened the door to dramatically increased flexibility in the design of CBCT acquisition

orbits. Alternative orbits allow to steer the CBCT system around interfering surgical

equipment and to avoid radiopaque structures near imaging tasks to improve image quality.

Due to time constraints in the operating room, real-time algorithms to determine the

ideal acquisition geometry and reconstruct the corresponding projection data are needed

to implement arbitrary trajectories in clinical practice. In this thesis, the best alternative

to a standard circular orbit is determined by simulating CBCT images using a projection

operator approach, which is validated with robust Monte Carlo (MC) simulations. The

predictions of both simulation methods coincide, with the projection operator approach

requiring only seven minutes. Second, a method for fast reconstruction of arbitrary orbits

based on convolutional neural networks (CNNs) is presented. The proposed reconstruction

technique provides similar image quality (nRMSE=0.060) when compared to state-of-the-

art reconstructions (nRMSE=0.045), while drastically reducing the computation time by

90%. The presented work develops fast methods to determine suitable alternatives to the

standard circular orbit and to provide adequate reconstructions. These methods facilitate

the implementation of arbitrary CBCT orbits to increase flexibility and precision during

image-guided procedures.
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1. Introduction

Cone-beam computed tomography (CBCT) is commonly used in image-guided sur-
gery [1],[2],[3], image-guided radiation therapy [4],[5] as well as for imaging of mus-
culoskeletal extremity [6], breast [7], head and dental imaging [8],[9] due to its speed,
mobility, spatial resolution and contrast. For image-guided procedures, CBCT sys-
tems installed on mobile C-arms are highly flexible imaging solutions and support
minimally invasive surgeries, which are increasingly performed with robotic assis-
tance in the modern, hybrid intervention room; such surgeries are designed to min-
imize tissue damage for improved patient recovery times and comfort. Common
image-guided procedures include pedicle screw insertion, percutaneous needle place-
ment and endovascular aneurysm repair, to name a few. In particular, robot-assisted
surgeries have become increasingly popular in recent years - in Germany alone, the
number of robot-assisted surgeries has been rising from 8600 in 2013 to more than
37000 in 2020 [10],[11] - due to their potential to improve precision, accuracy and
safety during interventions, as well as overall procedure time [12],[13]. Previously,
robot-assisted image-guided interventions have been shown to reduce imaging dose
and procedure duration while providing comparable accuracy and complication rates
[14],[15],[16].

The abundance of surgical equipment limits the available space in the intervention
room. In most scenarios, the standard circular trajectory used in CBCT imaging is
not feasible without rearranging equipment and/or personnel. Not only interfering
equipment, but also patient size can impose such challenges [17]. Alternative data
acquisition orbits can help by steering the CBCT system around any interfering
structure. Even in cases with sufficient range of motion, suboptimal positioning of
the imaging task near metal implants, surgical tools, or other radiopaque structures
such as bone can result in inadequate image quality for CBCT images acquired with
the standard circular trajectory [18]. The deterioration of image quality originating
from metal artifacts and radiopague structures results from a bias and/or discrep-
ancy between the actual physical processes of image formation (i.e. the forward
model) and the assumed model used for reconstruction of the projections (i.e. the
inverse model) [19]. In some cases, non-circular orbits can be used to substantially
improve image quality [20].

The advent of robotic interventional X-ray systems has opened the door to dramat-
ically increased flexibility in the design of CBCT acquisition orbits. As a result,
a variety of alternative orbits - all of which can theoretically be implemented on
a robotic C-arm CBCT - have recently been investigated to address various is-
sues: Sinusoidal orbits of different frequencies and combinations thereof to improve
image quality [21],[22],[20], a combination of multiple arcs to avoid otherwise inter-
fering structures [23],[17], circular tomosynthesis to reduce imaging dose [24], and
line-ellipse-line or reverse helical orbits to increase the field-of-view (FOV) for long
objects [25],[26],[27]. It has also been generally stated that the adjustment of the
orbit to the specific patient anatomy, surgical procedure, and available actuation
space should be based on pre-interventional imaging [21],[23]. Consequently, the
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ideal X-ray source trajectory can be determined either between pre-interventional
imaging and surgery (i.e. offline) or intra-interventional (i.e. online).

Adaptive orbit optimization algorithms attempt to find the best possible source tra-
jectory, typically by exhaustively testing possible candidates from a general class of
geometries. In recent years, there has been continuous work on the formulation of
sophisticated objective functions for orbit optimization. Cascaded systems analysis
as well as local noise and spatial resolution approximations have been used to calcu-
late the detectability index of tomosynthesis [28],[29] and task-based orbits [30],[21]
to optimize data collection. The detectability index incorporates knowledge of the
imaging task, as well as the spatial-frequency dependent transfer of the spatial res-
olution and noise by the imaging system; the use of these quantities is generally
accepted as the ideal definition of imaging performance [31]. In general, such com-
putations are very time consuming.

However, there is an urgent need for an optimization algorithm that accommodates
the severe time constraints of intra-interventional implementation; due to unantici-
pated changes in surgical equipment placement and/or patient size, orientation, and
fixation [32], online trajectory optimization is a particularly valuable tool. Recently,
efforts have been made to perform orbit optimization on-the-fly to reduce metal arti-
facts by leveraging the speed of convolutional neural networks (CNN) to predict the
next best view angle [33] and to match circular CBCT image quality while acquiring
undersampled projection data by combining multiple arc trajectories [17]. To the
author’s knowledge, an online algorithm for predicting the general image quality for
arbitrary source orbits under actuation space constraints has not been developed yet.

To validate the prediction of the imaging outcome, most studies use data acquired
with clinical CBCT devices [29],[34],[22]. Evaluating the quality of clinical images
is primarily done by comparing spatial resolution metrics such as the modulation
transfer function (MTF) and noise metrics such as the noise power spectrum (NPS).
However, the experimental acquisition of such data presents some challenges, as
manufacturers currently do not fully support the implementation of arbitrary source
orbits on their devices. Consequently, the implementation of arbitrary trajectories
on clinical devices is an ongoing effort [20],[35],[27] and faces major challenges such
as robust calibration due to geometrical instabilities of CBCT systems [36],[24]. As
a result, CBCT simulation can be a valuable tool in the study of arbitrary source
orbits. For this reason, a fast but robust simulation strategy is needed to optimize
and validate data acquisition strategies with non-circular CBCT orbits. The first
goal of this thesis is to establish an online optimization scheme for arbitrary CBCT
orbits by performing computed tomography (CT) simulation and subsequent image
quality evaluation studies.

Modeling of fundamental physical processes such as photon scattering is essential
for CT image simulation. The current gold standard for robust photon interaction
simulations is the integration of morphological photon attenuation data into a Monte
Carlo (MC) framework [37]. The general idea of MC analysis is to model a specific
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CT imaging system, i.e. X-ray spectrum, pre-filtering, collimation, detector pix-
els, etc., and to propagate each X-ray photon through the system by sampling the
probability density functions of the physical interactions involved (e.g. photoelectric
effect, etc.). This process is computationally expensive as it is repeated for the huge
number of photons normally involved in CT imaging (around 20 billion per CBCT
projection) to form a projection image [38].

A common research effort has been the development of open-source MC techniques,
which resulted in the availability of multiple alternatives such as MCNP [39], EGS4
[40] and GEANT4 [41]; however, most implementations require intricate knowledge
of FORTRAN or C++ languages to run. The GEANT4 application for tomographic
tmission (GATE) on the other hand, provides a framework for MC algorithms based
on GEANT4 [42]. GATE was developed to accommodate the unique simulation
needs of medical imaging and is executed using an easy-to-learn script language that
provides the ability to design a wide range of experimental configurations. GATE
was originally developed for emission tomography, but was later revised for CT sim-
ulation [43]. Since these simulations are very time consuming (around 7000 photons
per second per central processing unit (CPU) core/thread), there are ongoing efforts
to increase the computation speed of GATE using graphical processing units (GPU)
[44] and the European Grid Infrastructure [45],[46].

Recent progress in the field of machine learning demonstrated results comparable
to MC simulations, for instance when estimating the extent of photon scattering
artifacts based on digital phantom data [47]. The use of generative adversarial
networks (GAN) for simulating photo-realistic retinal images from morphological
data also showed promising results [48]. In general, simulating medical images, for
instance via the synthesis of magnetic resonance imaging (MRI) with the GAN ar-
chitecture, achieves image quality close to real-world data. However, a major issue
of this technique is that the generated images often fail to preserve anatomical fea-
tures [49]; this can be partly addressed by modifying the objective function during
network training, as Olut et al. have shown for the synthesis of MRI angiography
data based on T1- and T2-weighted images [50]. Especially for medical imaging ap-
plications, where matched training data is scarce, the GAN architecture is not ideal
due to the need for paired training samples. An extension of the GAN in the form of
the Cycle-consistent generative-adversarial networks (CycleGAN) architecture can
overcome this limitation by learning a reciprocal mapping between the two domains
using unpaired samples [51]. Using this architecture already showed feasible results
for the translation from the MRI to the CT domain [52].

An often used alternative to MC simulations and CNNs are projection operators, es-
pecially for CT reconstruction. The fastest way to compute a forward projection is a
voxel-ray intersection approach based on the Siddon ray-tracing algorithm [53],[54];
it computes the distance of two intersection points of orthogonal, uniformly spaced
and parallel planes (as an alternative representation of pixels) of an infinitesimally
narrow ray within a given voxel and multiplies it by the voxel intensity. However, due
to the finite voxel size, Siddon ray-tracing is known to cause discretization artifacts,
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especially for larger voxels. Therefore, alternative algorithms have been proposed
based on trilinear interpolation methods [55] or on approximating the voxel foot-
print by two separable functions [56]. In this way, projection operators remain a fast
way to compute CBCT projections while maintaining geometric accuracy. However,
additional processing is required to account for physical effects such as beam hard-
ening or noise.

Apart from the prospective optimization of orbit geometry before or during surgery,
the subsequent reconstruction of the projections acquired with non-circular trajecto-
ries remains a challenge in the operating room. In general, reconstruction algorithms
for non-circular data rely on both analytical and model-based methods. Theories
for exact solutions exist for certain classes of non-circular orbits; some are a type of
filtered backprojection [57],[58] or differentiated backprojection - with a subsequent
inverse Hilbert transform in the image domain [59]. However, for an accurate re-
construction of a region, there is a general requirement that the region is covered in
so-called R-lines; therefore, analysis of R-line coverage is essential when investigat-
ing new source trajectories [60],[61].

Alternatively, model-based iterative reconstruction (MBIR) techniques can be ap-
plied to arbitrary orbit data without the need for adjustments; MBIR provides a
general best-estimate based on the available data, as it can incorporate knowledge
of the stochastic process of image formation and thus improved noise suppression
[62],[21]. However, due to their iterative nature and the associated repeated forward
and backprojections, these algorithms are computationally expensive, which is a ma-
jor limitation, especially for interventional applications. The recent proliferation of
data-driven and machine learning-based reconstruction methods offers opportunities
for increased reconstruction speed and image quality comparable to MBIR.

Data-driven methods for 3D CT reconstruction have attracted much interest after
the recent success of deep learning techniques, mainly because of their speed and
accuracy. There are several types of proposed network architectures, for instance
the direct reconstruction of sinogram data using CNNs [63]. Another approach is to
use CNNs to unroll iterative algorithms, which can improve convergence paths for
MBIR, among others [64],[65]. Since these algorithms are still iterative in nature and
often combine CNN processing with domain transfers in the form of forward- and
backprojection operators, they are still computationally intensive, especially for the
huge image matrices associated with 3D image reconstruction. Consequently, the
second goal of this thesis is to develop a data-driven approach for fast reconstruction
of projection data acquired with arbitrary source orbits.

This dissertation’s main goal is to facilitate the clinical implementation of arbitrary
CBCT orbits for interventional imaging. To this end, this thesis addresses two
important scientific questions:
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1. Can CT simulations using either CNN deployment or projection operators
predict the imaging performance for specific imaging tasks and acquisition
orbits online, and can these predictions be verified by robust MC simulations?

2. Can the computational efficiency of CNNs be used to accelerate the reconstruc-
tion of arbitrary CBCT projections and provide image quality comparable to
MBIR for a variety of different orbits without requiring adjustments?

To explore different CT simulation options for image quality predictions, three dif-
ferent methods are evaluated. First, a CNN-based approach using the CycleGAN
architecture to generate CT images from the digital extended cardiac-torso phantom
(XCAT) [66] is investigated. Specifically, various CNN configurations and architec-
ture specifications are tested and optimized, including novel adaptions of the loss
function to produce more accurate, task-specific CT images. A novel evaluation
framework is proposed, consisting of already established image quality and simi-
larity metrics, as well as newly introduced means to evaluate anatomical accuracy
and noise realism in the simulated CT images. Second, an approach utilizing the
MC algorithm to simulate CBCT projections is investigated. The potential of the
European Grid Infrastructure is exploited with GateLab to accelerate GATE simu-
lations. Third, CBCT projections are simulated using projection operators with the
Astra toolbox [67],[68] in combination with a realistic noise model. The simulation
methods are then applied to predict the imaging performance of a standard circular
orbit and two alternative orbits for a specific imaging scenario in which the available
actuation space is insufficient to realize a circular orbit. A digital phantom in the
form of a slanted tungsten wire surrounded by a water cylinder was used to evaluate
imaging performance using a supersampling scheme of line-spread function (LSF)
curves to determine the MTF and thereby image quality.

To address the second goal of this thesis, a reconstruction procedure that uses CNNs
is proposed for the fast reconstruction of arbitrary CBCT projections. In particular,
a processing chain is developed in which the backprojection of the projection data
is followed by a shift-invariant deconvolution step to both capture the dependence
on the system geometry and to remove the blur associated with backprojection, fol-
lowed by CNN processing. The deconvolution is based on the orbital trajectory and
the intrinsic system response, but is only approximate. The CNN step is trained
to mitigate the deficiencies in this approximate deconvolution. Each of these steps
is computationally efficient and non-iterative, resulting in a fast processing chain.
First, this technique is applied to individual (or pairs of) predefined orbits. Then,
this technique is improved by training the networks on a variety of random or-
bits to facilitate the processing of new random orbits that were not used in CNN
training. The proposed reconstruction scheme is applied to procedurally generated
tetrahedral phantoms as well as to anthropomorphic data. The simulated data were
further refined by adding low frequency textures (i.e., Gaussian peaks) to the tetra-
hedral phantoms and using a realistic noise model for all simulated projections. The
proposed pipeline is compared to iterative reconstruction techniques in terms of
quantitative performance measures relative to ground truth (GT).
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2. Theoretical Background

This chapter first outlines some mathematical basics in Section 2.1, gives a brief
overview of the fundamental CT concepts in Section 2.2, describes the methods for
simulation and reconstruction used in this thesis in Section 2.3 and introduces basic
principles when applying CNNs for image processing in Section 2.4.

2.1 Mathematical Basics

2.1.1 Fourier Transform

The Fourier transform F{·} of a real or complex function f(x) of an n-dimensional
vector x = (x1, ..., xn) is defined as

F{f(x)} =
( α

2π

)n/2 +∞∫
−∞

...

+∞∫
−∞

f(x)e−αiux dx1... dxn = F (u). (2.1)

If the constant α is set to 2π, the Fourier transform simplifies to

F (u) =

+∞∫
−∞

...

+∞∫
−∞

f(x)e−2πiux dx1... dxn. (2.2)

In the sense of a change of basis, the Fourier transform of a spatial signal can be
understood as a decomposition into basis frequencies e−2πiξ. The inversion of F (u)
is equally defined as a decomposition

F−1{F (u)} =

+∞∫
−∞

...

+∞∫
−∞

F (u)e2πiux du1... dun = f(x). (2.3)

In image processing, Fourier transforms are commonly used to extract and analyze
the frequency content, i.e. periodic basis functions, of images. This is done by
discrete Fourier transformation (DFT) due to the discrete nature of the voxel-based
image representations in medical imaging. In the case of a one-dimensional discretely
sampled function fa(n) Equation 2.2 can be rewritten as:

Fa(u) =
+∞∑

n=−∞

fa(n∆ξ)e−2πiun∆ξ, (2.4)

where the discretely sampled function is expressed via dirac-delta sifting:

fa(n∆ξ) = f(ξ)
+∞∑

n=−∞

δ(ξ − n∆ξ) (2.5)
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2.1.2 Convolution Theorem

The convolution of two functions f(x) and g(x) is a particular kind of integral
transform and defined as

(f ∗ g)(x) =

+∞∫
−∞

f(ξ)g(x− ξ) dξ = h(x). (2.6)

The convolution theorem states that

F{(f ∗ g)(x)} = F (u) ·G(u),

F{(f · g)(x)} = F (u) ∗G(u),
(2.7)

holds and its inverse is given by

F−1{F (u) ·G(u)} = (f ∗ g)(x),

F−1{F (u) ∗G(u)} = (f · g)(x).
(2.8)

This process can be inversed to yield a so-called deconvolution operation:

(f ∗ g)(x) = h(x),

F−1{F (u) ·G(u)} = F−1{H(u)},

F−1{F (u)} = F−1

{
H(u)

G(u)

}
,

f(x) = F−1

{
H(u)

G(u)

} (2.9)

2.2 Computed Tomography (CT)

Wilhelm Conrad Röntgen discovered a new form of radiation he called X-ray in 1895,
and was promptly awarded the first Nobel Prize in Physics for his discovery shortly
after in 1901. His observations: X-rays are invisible to the human eye, they can
penetrate matter and they are able to create biological changes in living tissue [69].
It did not take long until the first medical X-ray images were taken. Although the
idea for cross-sectional imaging was already existing and a mathematical basis to
calculate cross-sections from transmission measurements was already established by
Johann Radon in 1917 [70], the first CT scanner was developed much later in 1972 by
Godfrey N. Hounsfield. Together with Allan M. Cormack, Hounsfield received the
Nobel Prize in Physiology or Medicine for the invention of the CT scanner in 1979.
In medical CT imaging, the patient is irradiated with X-rays from multiple direc-
tions and the number of X-rays transmitted through the patient are recorded. The
X-ray measurements are then used to calculate cross-sectional distributions of the
attenuation coefficient, allowing for a non-invasive study of the patient’s anatomy.

The following subsections briefly introduce the physical concepts of CT imaging,
i.e. relevant electron and photon interactions with matter, which are based on the
books by Buzug, Hsieh and Maier et al. [71],[72],[73]. In addition, some concepts
of interventional cone-beam CT, CT image noise and common image artifacts are
summarized.
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Figure 2.1: Production of X-rays in the X-ray tube. Free electrons are created
at the anode by heating the filament. Electrons are accelerated towards the
anode, where there kinetic energy is partly converted to X-ray radiation. As
most of the energy is converted to heat, an anode material with high melting
point is chosen and cooling systems are implemented. Figure reprinted from
[73] under Creative Commons Attribution 4.0 International License: https:
//creativecommons.org/licences/by/4.0/

2.2.1 Production of X-rays

The X-rays used for CT imaging are commonly produced in an X-ray tube by ir-
radiating a metal anode with an accelerated beam of electrons. The electrons are
generated in a previous step by heating a filament at the cathode. In the heating
process, the thermal energy of the electrons in the filament exceeds the binding
energy (or work function) of the material and free electrons are ejected from the
filament. Subsequently, electrons are accelerated in the X-ray tube via an external
electric field of voltage U. After acceleration, the electrons possess a kinetic energy
Ee,kin calculated via:

Ee,kin =
1

2
mec

2 = e · U, (2.10)

where me denotes the electron mass and e the elementary charge of 1.602·1019

Coulomb. The X-ray tube and its components are depicted in Figure 2.1. The ki-
netic energy of the electrons is converted into different forms of energies via several
interaction mechanisms. X-rays are generated mainly by Bremsstrahlung (braking
radiation) and ionisation of atomic (mainly inner-shell due to higher binding energy)
electrons. Most of the primary electron’s energy, however, is lost to the anode mate-
rial via inelastic scattering with atomic electrons of the outer shells. Consequently,
the secondary electrons are ejected and create so-called delta rays, cascades of low
energy electrons. Eventually, these electrons are converted to vibrations of anode
atoms, i.e. heat. Bremsstrahlung is the phenomenon of X-ray emission by decelera-
tion of the primary electrons in the electric field of anode atoms and electrons. This
deceleration of a charged particle is known to create an electrical dipole which in
turn emits electromagnetic radiation. In case of a complete stopping of the primary

https://creativecommons.org/licences/by/4.0/
https://creativecommons.org/licences/by/4.0/
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Figure 2.2: X-ray spectra of a tungsten anode at various tube voltages/electron
energies. Note that the spectra are filtered by 2 mm of aluminum to remove
low energy X-rays. The characteristic Kα and Kβ lines are shown in the
form of photon intensity peaks. The physical processes responsible for the
production of the X-ray spectra are depicted: (a) Deflection/Deceleration in
the electric field of the atom/electron producing Bremsstrahlung; Ionisation of
inner-shell electron followed by filling of vacant position by outer-shell electron
and subsequent X-ray emission (b) or emission of an Auger electron (c); (d)
Direct collision of electron with atomic nucleus, thereby transferring maximum
energy in the form of Bremsstrahlung. Reprinted with permission from [71].
Copyright ©2008, Springer-Verlag Berlin Heidelberg.
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electron, the maximum energy of the electron is converted to X-ray radiation. The
maximum energy of the emitted photons Eγ,max can thus be calculated as follows:

Eγ,max = hνmin = h
c

λmax

= e · U, (2.11)

where h denotes the Planck constant, c the speed of light, νmin corresponds to the
minimal photon frequency and λmax to the maximum photon wavelength. As the
deceleration of electrons is a cascaded process, a continuous X-ray spectrum is gener-
ated. Example X-ray spectra are illustrated in Figure 2.2. In addition, characteristic
peaks in the X-ray spectrum are observed, which originate from ionisations of atomic
electrons in the inner shells. If for instance an electron is ejected from the K-shell
(innermost shell), the resulting vacant position is filled by an electron from the outer
shells. The difference in binding energy of both electron levels is emitted as X-rays
of energies that are characteristic for the respective anode material.

2.2.2 Photon Interactions with Matter

The X-rays produced at the anode are subsequently traversing the imaged object.
To understand the CT image formation process, the concepts of photon-matter in-
teractions have to be studied. This subsection introduces the concepts involved in
X-ray attenuation.

The macroscopic phenomenon of photon attenuation in matter can be described by
the Lambert-Beer law. The difference in photon number ∆N between transmitted
and initial number of photons N per traversed unit path length ∆x in a medium is
defined by the linear photon attenuation coefficient µ via

µ = −
∆N
N

∆x
. (2.12)

In principle, the comparison of the radiation intensity I before (I0) and after travers-
ing a medium of thickness d yields the linear photon attenuation coefficient µ of the
traversed medium

I(d) = I0(E) · e−µd. (2.13)

However, the Lambert-Beer law does not fully capture the forward model for CT
imaging as it does assume that the X-rays traverse only one material and does not
consider a spatially varying attenuation coefficient µ(s), which can be done via:

I(d) = I0 · e−
∫ d
o µ(s) ds. (2.14)

Additionally, it does assume a mono-energetic X-ray beam instead of a multi-
energetic X-ray spectrum I0(E) (see Figure 2.2) and does not incorporate any knowl-
edge on the energy dependence of the attenuation coefficient µ(E, s). In reality, the
forward model for the intensity of X-rays is calculated as follows:

I(d) =

∫ Emax

0

I0(E) · e−
∫ d
o µ(E,s) ds dE. (2.15)
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In CT images the photon attenuation coefficient of the tissue µt is represented by
the CT number ξ given in Hounsfield unit (HU):

ξ =
µt − µw

µw

× 1000 = (µ̂t − 1)× 1000, (2.16)

where the linear attenuation coefficient of pure water at standard pressure and tem-
perature is denoted µw and the hat indicates a quantity that is relative to water.

Brief Derivation of Beer’s Law of Attenuation

The intensity I of photon radiation after traversing a distance ∆x through a medium
with attenuation coefficient µ can be described by

I(x+ ∆x) = I(x)− µI(x)∆x. (2.17)

Taking the limit of (Equation 2.17) as ∆x approaches zero leads to

lim
∆x→0

I(x+ ∆x)− I(x)

∆x
=

dI

dx
= −µI(x). (2.18)

By reordering of (Equation 2.18) an ordinary linear and homogeneous, first order
differential equation is obtained

dI

I(x)
= −µ dx, (2.19)

which can be solved via separation of variables in combination with the initial con-
dition of I(0) = I0

I(x) = I0e
−µx. (2.20)

This is known as Beer’s law of attenuation.

The Three Interaction Mechanisms at Diagnostic Energies

The linear attenuation coefficient can be factorized into the electron density n of the
medium and the cross section per electron σe:

µ = n · σe, (2.21)

The three dominating interaction processes in the so-called diagnostic photon energy
window (15 keV up to 150 keV) can be divided into their specific cross sections per
electron, as all interactions involve atomic electrons:

• Photoelectric absorption: σphoto
e ,

• Compton scattering: σCom
e ,

• Rayleigh scattering: σRay
e ,

which add up to the total cross section per electron σtot
e

σtote = σphoto
e + σCom

e + σRay
e . (2.22)

Their respective contribution to the total cross section is illustrated in Figure 2.3.
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Figure 2.3: The contributions from Rayleigh-scattering σcoh, photoelectric ab-
sorption τ and Compton scattering σincoh on the total measured cross section
σtot (circles) in carbon are depicted. It is observable, that the dominant in-
teraction process at low energies is the photoelectric effect and incoherent
scattering (Compton) for higher energies of the diagnostic energy window (15-
150 keV). ©Institute of Physics and Engineering in Medicine. Reproduced by
permission of IOP Publishing Ltd. All rights reserved [74].



14 2. Theoretical Background

Rayleigh scattering or Thomson scattering is a type of coherent, elastic scattering,
meaning it does preserve the wavelength of the incident photon. This interaction
is observed if they diameter of the interacting atomic nucleus is smaller than the
photon’s wavelength. The classical explanation for this phenomenon is that the elec-
tromagnetic field of the incident photon interacts with the electric field of the mostly
inner-shell atomic electrons, setting them into oscillation. As discussed above, the
corresponding acceleration and deceleration of charged particles create an electric
dipole, which emits electromagnetic radiation of the same frequency as the incident
photon. The interaction probability can be described by the Thomson cross-section
[75]:

σRay
e = σThom =

8πr2
e

3

ν4

(ν2 − ν2
0)2

, (2.23)

where re denotes the classical electron radius, ν the photon frequency and ν0 the
natural frequency of the atomic electrons. Please note that the above descriptions
and formulas only incorporate a classical scattering model and don’t include quan-
tum mechanical interaction principles. Rayleigh scattering is only relevant for low
X-ray energies.

The interaction of photons with outer-shell electrons, i.e. weakly bound, quasi-free
electrons, in which the incident photon imparts some kinetic energy to the electron -
thereby ejecting it from the atom shell - is called Compton scattering. This process
is incoherent, meaning the wavelength of the scattered photon λs does not match the
wavelength of the incident photon λi. The change in wavelength ∆λ is dependent
on the scattering angle Θ:

λs − λi = ∆λ =
h

mec
(1− cos(Θ)). (2.24)

Both the ejected electron and the scattered photon can partake in following ion-
ization events. The probability of Compton scattering can be described by the
Compton cross-section derived from the Klein-Nishina formula [76]:

σCom
e = 2πr2

e

[(
1 + Eγ,s
E2
γ,s

)(
2

(1 + Eγ,s)

1 + 2E2
γ,s

− ln(1 + 2Eγ,s)

Eγ,s

)
+

ln(1 + 2Eγ,s)

2Eγ,s
− 1 + 3Eγ,s

(1 + 2Eγ,s)2

]
,

(2.25)

where Eγ,s denotes the energy of the scattered photon. Because the cross-section of
Compton scattering does not involve any additional dependency on the material the
photon interacts with, the probability of Compton events is only dependent on the
electron density (Equation 2.21). Compton scattering only produces low-contrast
information in the CT image formation process, as the difference in electron density
of tissues is small. In this regard, Compton scattering is a rather disadvantageous
interaction mechanism for conventional CT imaging, as it contributes to patient
dose and scatter artifacts because the scattered photon is not locally absorbed and
can still reach the detector (see Section 2.2.5). In addition, photons can be back-
scattered from the back panel of the detector and thereby produce ghost images of
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the panel further distorting the image.

In contrast to the partial energy transfer during Compton scattering, all of the
photon energy is absorbed by the atom via photoelectric absorption. During this
process, the atomic electron is ejected from the atom. Consequently, the energy
of the photon is deposited locally to the lattice in the form of heat by cascaded
processes of the ejected photoelectron. The interaction probability can be described
by the absorption coefficient α and approximated via:

α ∝ ρ

A

Z4

E3
γ

, (2.26)

where ρ, A, Z denotes the density, atomic wight and atomic number of the absorber
material, respectively, and Eγ the incident photon energy. The interaction proba-
bility decreases for higher X-ray energies. The Z-dependence of the photoelectric
effect is the reason for the distinct contrast between bones (consisting of hydroxyap-
atite) and soft tissues as well as for the choice of contrast agents for X-ray imaging.
Compared to Rayleigh and Compton scattering, photoelectric absorption does not
contribute to scatter artifacts as the photon energy is locally absorbed.

2.2.3 Interventional Cone-Beam CT (CBCT)

Standard clinical CT machines consist of an X-ray tube and a multi-slice detector
(usually up to 64 detector rows) rotating around the patient, those scanners are
consequently called multi-detector computed tomography (MDCT). At the same
time, the patient table is translated along the longitudinal axis, resulting in a helical
motion of the X-ray source around the patient. Interventional imaging settings
require highly mobile CT machines, that can acquire anatomical information in a
flexible, fast way. For this purpose, X-ray source and detector can be installed on
robotic C-arms. In contrast to MDCT scanners, flat-panel detectors are used, which
consist of a 2D array of detectors with high spatial resolution. Because considerably
more than 64 detector rows are used, usually up to 2000, those scanners are called
cone-beam CT due to the corresponding shape of the X-ray beam, while MDCT
is also referred to as fan-beam CT. CBCT machines conventionally use short-scan
circular trajectories (180° + cone angle) around the imaged object to reconstruct
3D cross-sectional images of the patient. 360° acquisition is not necessary for full
angular coverage due to data redundancies.

2.2.4 Image Noise

To understand the fundamentals of noise in CT images, one has to consider the
stochastic nature of the image formation process inherent to electron-matter and
photon-matter interactions. In the focus volume of the tube anode X-rays are gen-
erated from interactions of the incident electron beam with the anode material.
Assuming that N electrons arrive at the anode in the time interval, [0, T], and
partake in an X-ray producing interaction with probability p, the probability that
the number of produced photons N is exactly n can be described by a Bernoulli
distribution

P (N = n) =

(
N

n

)
pn(1− p)N−n, (2.27)
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with the binomial coefficient (
N

n

)
=

N !

n!(N − n)!
. (2.28)

The number of electrons arriving at the anode can be determined from the anode
current I via N = T · I/e, with e corresponding to the elementary charge. With the
expectation value E[N ] = n∗ and the assumption Np = n∗ in the limit of N →∞,
(Equation 2.27) simplifies to the Poisson distribution density function

P (N = n) =
(n∗)n

n!
e−n

∗
. (2.29)

The number of emerging photon quanta from the X-ray tube are thus Poisson dis-
tributed. For a Bernoulli detector irradiated with Poisson distributed quanta, the
probability that n photons are detected PD(N = n) can again be described by a
Poisson distribution

PD(N = n) =
(pn∗)n

n!
e−pn

∗
(2.30)

In combination with the attenuation of the generated photons in the scanned ob-
ject, which also follows binomial statistics, this statistical chain is called a cascaded
Poisson process. This leads to an expectation value of the random variable, which
equals the variance of the random variable

E[N ] = E[(N − n∗)2]. (2.31)

For the signal-to-noise ratio (SNR) of a Poisson-distributed signal this yields

SNR(N ) =
µ

σ
=

n∗√
n∗

=
√
n∗, (2.32)

where µ corresponds to the mean (which is an estimate of the expectation value) of
the signal and σ to the standard deviation. For a high number of X-ray quanta the
Poisson distributed number of detected quanta approaches a Gaussian distribution

PD(N = n) ≈ 1√
2πn∗

e−
(n∗−n)2

2n∗ (2.33)

The scintillation detectors used in state-of-the-art CT systems are irradiated by
multiple photons coincidentally and therefore work as energy-integrating detectors.
This leads to deviations of the detected number of quanta from a Poisson distributed
quantity.

2.2.5 Image Artifacts

This subsection briefly describes some common CBCT image artifacts.
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Figure 2.4: Four source orbits are illustrated by black lines together with the
spherical FOV to be reconstructed. The standard circular CBCT orbit (a)
does not fulfill the Tuy-Smith sufficiency condition, as not all planes through
the FOV intersect the source trajectory at least once. In contrast, the two-
circles plus line (the center of both circles are located outside the FOV) orbit
(b), the double-circle (both circles are orthogonal) orbit (c) and the helical
trajectory used in conventional MDCT all fullfill the Tuy-Smith condition.
Note that all orbits share the common isocenter in the center of the spherical
FOV. Reprinted with permission from [71]. Copyright ©2008, Springer-Verlag
Berlin Heidelberg.
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Cone-Beam Artifacts

The standard circular trajectory used for CBCT imaging does not capture suffi-
cient projection data for an exact 3D reconstruction along the longitudinal axis.
In contrast, the helical trajectory of conventional MDCT scanners does fulfill the
Tuy-Smith-condition [77] for data completeness and enables an exact reconstruction
of the axially covered FOV. An illustration of different source orbits is shown in
Figure 2.4. The Tuy-Smith-condition states that for an exact reconstruction of a
FOV, all planes through the FOV need to intersect the source trajectory at least
once. For all planes through the FOV that do no intersect the source trajectory,
undersampling artifacts in forms of streaks arise. In the case of the standard CBCT
trajectory, such artifacts are called cone-beam artifacts.

Beam Hardening Artifacts

In the diagnostic energy range the total photon attenuation coefficient decreases for
increasing energies. As a consequence, the mean energy of the photon spectrum is
increased while traversing a medium, thereby decreasing the effective attenuation.
For scanned media completely surrounded by photon absorbing matter, their atten-
uation coefficient is underestimated, if this knowledge is not incorporated into the
backward model, (i.e. image reconstruction). Beam hardening artifacts basically
arise from the difference between Equation 2.14 and Equation 2.15.

Photon Scattering Artifacts

Photon scattering artifacts arise when photons scattered either via Rayleigh or
Compton scattering are detected in pixels and mistakenly assumed to have arrived
from the position of the X-ray source. As a result, the measured signal on the de-
tector is distorted. This phenomenon is more pronounced for CBCT in comparison
to MDCT, as the opening angle of the photon beam is increased to irradiate the full
flat-panel detector. As a result, image noise is substantially increased.

2.3 CT Image Simulation and Reconstruction

This section explains the theoretical background of the CBCT projection simulations
and reconstruction algorithms used in this thesis.

2.3.1 Monte-Carlo (MC) Method for Medical Imaging

The MC method provides a numerical solution to address complex computational
problems and is applied in many research fields, ranging from fluid dynamics to solid-
state physics. The idea of using MC simulations for medical imaging is to model the
process of image formation by simulating singular photon pathways. This is done
via a random sampling of the interaction probability functions of the underlying
physical effects, i.e. photoelectric absorption, Rayleigh and Compton scattering.
First, a pseudo-random number is generated using a generator such as the Mersenne-
Twister algorithm for instance [78]. Second, a technique to select the photon step
size is applied, for instance by deriving the step size with the inverse distribution
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method, which uses the inverse of the cumulative distribution function to sample a
step size from each individual interaction probability. In the third step, the photon
is moved to the point of lowest interaction length and either absorbed or scattered,
depending on the interaction with lowest interaction length. These three steps are
repeated until either the photon energy falls below a selected threshold or leaves
the boundaries of the predefined volume. Due to the stochastic nature of photon-
matter interactions, a very large number of photons have to be simulated to achieve
sufficient accuracy.

2.3.2 Projection Operators

Another approach to simulate CBCT projections is the use of projection operators.
The most simple and fast version is a voxel-ray intersection approach that is based
on the Siddon ray-tracing algorithm [53],[54]. It computes the distance of two inter-
section points of orthogonal, uniformly spaced and parallel planes (as an alternative
representation of pixels) of an infinitesimally narrow ray within a given voxel and
multiplies it by the voxel intensity. Extensions of this algorithm include trilinear
interpolation methods [55] or approximating the voxel footprint by two separable
functions [56] to address geometrical inaccuracies such as discretization artifacts.
Conversely, the backprojection operator is carried out by linking the inspected voxel
with the source position via a ray that is prolonged until it reaches the detector.
The corresponding pixel value is then assigned to the voxel via bilinear interpolation
[79].

2.3.3 CT Image Reconstruction

This subsection briefly describes the iterative reconstruction techniques used in this
thesis. All of the below algorithms do not require a standard circular trajectory.
Instead, they can be used to reconstruct projection data acquired with arbitrary
source orbits.

Simultaneous Algebraic Reconstruction Technique (SART) and Simulatenous It-
erative Reconstruction Technique (SIRT)

In algebraic image reconstruction methods, the discrete inverse problem is consid-
ered. ART sets up linear equation systems in order to obtain pixel values. In
contrast to Fourier based reconstruction these techniques enable the consideration
of physical properties during reconstruction in the form of weighting factors aij, for
instance. With the weighting factors

aij =
illuminated area of pixel j by ray i

total area of pixel j
(2.34)

the reconstruction can incorporate knowledge on the finite size of image voxels and
detector pixels when before, infinitesimally small rays on point voxels and pixels
were assumed. The linear equation system can be adjusted in order to account for
the varying interaction lengths in each pixel as follows

N∑
j=1

aijfj = pi. (2.35)
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Figure 2.5: The first three Algebraic reconstruction technique (ART) iter-
ations of the exemplary using f (0) = (0, 0, 0, 0)T as an initial image. The
correct image values are f = (8, 0, 5, 2)T . Reprinted with permission from [71].
Copyright ©2008, Springer-Verlag Berlin Heidelberg.
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This can be rewritten with the M ×N matrix

A =


a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aM1 aM2 . . . aMN

 , (2.36)

where M corresponds to the number of obtained projections and N to the number
of pixels, such that the system of equation becomes

p = Af . (2.37)

In CT the matrix A is called the system matrix. Thus p contains all values of the
projection space and f contains all attenuation pixel values. So in order to obtain f
one has to find the inverse of A. One method is the singular value decomposition,
where the M ×N pseudo-inverse A+ is decomposed

A+ = V

(
diag

(
1

σj

))
UT (2.38)

into the N × N orthogonal matrix V, the M × N orthogonal matrix U and the
singular values σj. The solution can be found by

f̃ = A+p. (2.39)

ART solves this problem iteratively. In a first step, a forward projection of the n-
th image approximation f (n) is performed and compared with the actual measured
projection p. This comparison yields a correction term which is applied to f (n) via
backprojection resulting in the (n+ 1)-th image approximation as follows

f (n) = f (n−1) − λn
(
f (n−1)ai − pi

)
ai(ai)T

(ai)
T, (2.40)

where the heuristic relaxation parameter λn is introduced to speed up the conver-
gence. A simple example of three ART iterations is shown in Figure 2.5. The
simultaneous algebraic reconstruction technique (SART) [80] and the simultaneous
iterative reconstruction technique (SIRT) are both of the ART family, but differ
in the way the voxel values are updated. While SIRT updates the voxel values
simultaneously from all projections in one iteration step, SART updates the voxel
values projection by projection. This leads to some minor differences: SIRT per-
forms slightly better in terms of overall computation time than SART, while SART
provides slightly more accurate solutions.

Model-Based Iterative Reconstruction (MBIR)

MBIR algorithm incorporate more prior knowledge on the image formation process
into the reconstruction routine. This is done to increase reconstruction accuracy.
The MBIR method used in this thesis incorporates knowledge on the Poisson statis-
tics of photon noise and penalizes image roughness R(µ) at the same time [81]. The
available projection measurements (forward model) are assumed to be modeled via:

ȳi = giexp (− [A(Ω)µ]i) , (2.41)
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where the index i denotes measures related to the i-th measurement, µ̂ the expected
mean photon count at an individual detector pixel, Ω incorporates knowledge on
the underlying image geometry, µ the vector corresponding to the distribution of
attenuation values in the imaged object and g incorporates knowledge on the pixel
gain (bare beam fluence, detection efficiency, etc.). Deriving the log-likelihood func-
tion L(y|µ) via Equation 2.30 then yields the objective function to arrive at a best
estimate µ̂:

µ̂ = argmaxL(y|µ)− βR(µ), (2.42)

with the log-likelihood function

L(y|µ) =
∑
i

yilog (giexp (− [A(Ω)µ]i))− giexp (− [A(Ω)µ]i) , (2.43)

and the Huber penalty R(µ)[82]. Because log(yi!) is only a constant, it does not mat-
ter for the maximization routine and can therefore be excluded from the penalized-
likelihood estimator.

2.4 Convolutional Neural Networks (CNN) for Image

Processing

This section gives a brief overview of some CNN concepts used for this thesis. For
a more detailed introduction to machine learning with deep neuronal networks, the
interested reader is referred to [83].

Generally speaking, artificial neuronal networks imitate the physiological function of
an arrangement of interconnected neurons, each node is modeled as consisting of an
input signal vector sj (coming from an arbitrary number of nodes) that is modulated
with a weighting factor vector wj, with a bias vector bj and eventually yields the
output signal vector sj+1 via an activation function fact to the next neuron (node)
in the processing chain:

sj+1 = fact(wj · sj + bj). (2.44)

Most machine learning approaches for image processing are supervised, meaning
that the output of the network of neurons for one specific input vector is connected
to one specific input vector. During the network training procedure, the weight
and bias parameters are updated iteratively according to a training scheme called
backpropagation by comparing input and output vectors. The training procedure
aims to minimize the loss function calculated between matched input and output
vectors. CNNs are a specific type of neuronal networks, which mainly consist of
convolutional layers. If data processing is performed with networks made up of
more than one of such layers (the definition is vague), the technique is referred to
as ’Deep Learning’.

2.4.1 Convolutional Layer

One powerful tool in machine learning for image processing is the connection of one
vector (set of nodes) to the next via convolutional layers:

sj+1 = fact(wj ∗ sj + bj). (2.45)
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Figure 2.6: A residual block for image processing consists of multiple weight
layers such as convolutional layers, in this case two. The input to the first
layer in the block is stored and added to the output of the last layer.

A convolutional layer connects nodes of subsequent layers via a sliding window
operation with specific window size and stride. The number of convolutions per
convolutional layer determines the so-called channel dimension of the output vec-
tor. Because these convolution operations are highly parallelizable, the execution of
CNNs on GPUs is really fast.

2.4.2 Max-Pooling Layer

Most CNN architectures for image processing incorporate upsampling and downsam-
pling steps. A max-pooling layer is a form of downsampling operation. A sliding
window operation is performed, similar to the convolutional layer above. Instead
of summing up the weighted contributions from each vector element, the maximum
value of all values in the window is assigned to the subsequent vector element.

2.4.3 Residual Blocks

Residual blocks have gained recent popularity in image processing. In principle, it’s
a series of convolutional layers, where the input to the first convolutional layer is
temporarily stored and combined with the output of the last convolutional layer. A
visualization of a residual block is shown in Figure 2.6.

2.4.4 Rectified Linear Unit (ReLU)

The rectified linear unit (ReLU) is a type of activation function that is often used in
image processing to introduce non-linearities into CNN processing [84]. The ReLU
activation function is applied after the weight and bias vectors:

fact,ReLU = max(0, sj) (2.46)
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3. Materials and Methods

This chapter is divided into six sections. Section 3.1 details the network configura-
tions utilized in this thesis. Section 3.2.1 describes the different CT data - clinical
CT scans and digital phantoms - used for network training, the simulation studies
and the reconstruction experiments. Section 3.3 introduces the concept of the novel
reconstruction scheme proposed in this thesis. Section 3.4 specifies how the used
evaluation metrics are calculated. Section 3.5 outlines the conducted reconstruction
and simulation experiments. Parts of this chapter have been published in [85]1, [86],
[87], [88] and [89] and the corresponding figures and descriptions are adapted and
partly replicated thereof.

3.1 Network Architectures

This section introduces the used network architectures, namely the U-Net (Sec-
tion 3.1.1) and the ResNet (Section 3.1.2) architectures as well as the CycleGAN
(Section 3.1.3) architecture.

3.1.1 U-Net

The U-Net is a type of encoder-decoder CNN, which can be divided into two
halves. On one hand, the encoding branch consists of convolutional layers and
down-sampling operations such as max-pooling layers, which are supposed to ”fold”
the information of the input image (n dimensions) into n+1 dimensions, effectively
decreasing the image dimensions and increasing the number of the so-called side
channels or feature maps. The decoding branch on the other hand consists of
convolutional layers and transposed convolutional layers with a stride higher than
one, thereby effectively up-sampling the information in the channels to eventually
yield the size of the input images [90]. The U-net specifically incorporates skip-
connections, which extract the feature maps before each down-sampling operation
of the encoder branch and append it to the corresponding feature maps of same
size in the decoding branch after each up-sampling step. Visual representations of
U-nets can be seen in Figure 3.4 and in Figure 3.7.

3.1.2 ResNet

The ResNet utilized in this thesis is another form of encoder-decoder network like
the U-net. In contrast to the U-net, however, the ResNet does not necessarily
incorporate skip-connections but is rather characterized by its residual blocks [91], in
this case the residual blocks are implemented between encoder and decoder branch.
A visual representation of a ResNet can be seen in Figure 3.7.

1Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Na-
ture International Journal of Computer Assisted Radiology and Surgery ©2019
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3.1.3 CycleGAN

CycleGAN allow the supervised mapping between two domains X and Y given un-
paired training samples [51]. The mapping functions G : X → Y and F : Y → X
are called generators. Two additional adversarial networks DX and DY, called dis-
criminators, aim to distinguish between real and generated images (X and F (Y ) are
distinguished by DX and Y and G(X) are distinguished by DY ); both discriminator
networks are trained on both real and generated images simultaneously. In this way,
the generator networks learn to synthesize data which are more likely to be classi-
fied as real data by the discriminator networks while the discriminator is adversely
trained to better discriminate between real and generated images. Specifically, the
adversarial loss for generator network G and its discriminator network DY can be
formulated as:

LGAN(G,DY , X, Y ) = Ex∼pdata(x)[log(1−DY (G(x))]

+ Ey∼pdata(y)[log(DY (y)],
(3.1)

where E denotes the expectation value, x, y ∼ pdata(x, y) the data distributions.
While the generator G tries to minimize this objective function, its adversary DY

tries to maximize it. This is calculated in the same way for the mapping function
F . Figure 3.6 shows the complete CycleGAN network architecture for the case of
XCAT (X) and CT image (Y ) domain. Both adversarial losses are then combined
with the so-called cycle-consistency loss, which is calculated by comparing both
pathway outputs of the consecutively applied generator networks, F (G(X)) and
G(F (Y )), to their original input via:

Lcyc(G,F,X, Y ) = Ey∼pdata(y)[‖F (G(y))− y‖1]

+ Ex∼pdata(x)[‖G(F (x))− x‖1],
(3.2)

where ‖·‖1 denotes the L1 norm.

3.2 CT Data

This section details the CT images (Section 3.2.1) and digital phantoms (Section 3.2.2)
utilized in this thesis.

3.2.1 CT Images

The clinical CT image data are obtained from four different sources. The first data
set consists of in-house CT images, which are retrospectively utilized for this thesis.
The remaining three sources are publicly available. One CT image per data set is
exemplary illustrated in Figure 3.1.

In-House Scans

The in-house CT data set consists of 20 contrast-enhanced abdominal CT images
from different patients. The scans were acquired at 90 kVp with a dual source CT
system (Somatom Force, Siemens Healthineers, Erlangen, Germany). A voxel spac-
ing of 0.82× 0.82× 1.5 mm3 and the reconstruction kernel Br36 (standard medium-
smooth) were chosen. Patients were male and female of various ages. Most of those
scans contained contrast enhanced blood vessels.
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Figure 3.1: Overview of the clinical CT image data sets used in this thesis, one
image is shown for each data set. From top to bottom row: Axial, sagittal,
coronal views; each column corresponds to another CT image data set: in-
house CT, liver tumor segmentation challenge (LiTS), 3D image reconstruc-
tion for comparison of algorithm database (IRCAD), Lung image database
consortium image collection (LIDC).
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Liver Tumor Segmentation Challenge (LiTS)

The data set of the LiTS is comprised of 130 abdominal CT images of patients with
liver lesions [92]. Imaging parameters and blood vessel contrast enhancement varied
widely between scans.

3D Image Reconstruction for Comparison of Algorithm Database (IRCAD)

The first IRCAD database consists of 20 CT image, 10 of male patients and 10
of female patients [93]. 75 % of patients suffered from hepatic tumors. Imaging
parameters as well as blood vessel contrast enhancement varied widely between
scans.

Lung Image Database Consortium Image Collection (LIDC)

LIDC is a data set consisting of 1018 CT and CBCT scans acquired to screen the
respective patient for lung cancer [94]. 800 thoracic CT and CBCT images are
resampled to yield 128x128x128 cubic voxels with 0.5 mm edge length via nearest-
neighbor interpolation. The utilized scan protocols varied widely between patients
because the scans were conducted at various medical facilities with different scanner
types.

3.2.2 Digital Phantoms

This subsection details the utilized digital phantoms. One exemplary XCAT phan-
tom, the slanted wire phantom and one realization of the tetrahedral phantom are
shown in Figure 3.2.

XCAT Phantom

The digital 4D XCAT phantom allows for the generation of cross-sectional photon
attenuation images [66]. The anatomy of the phantom is based on the Visible Human
Male and Female data sets of the National Library of Medicine [95], thereby creating
a higher spatial resolution than that of standard CT protocols. The phantom is
then realized using nonuniform rational B-splines to construct the organ shapes
[96]. Multiple modifications can be made to the phantom including but not limited
to: gender, different simulated X-ray tube energies, adjustment of the volume and
position of various organs. The phantom also provides the segmentations of all
included structures.

Slanted Wire Phantom

One experimental method to calculate the MTF of a CT imaging system consists of
measuring a slanted wire phantom. This is why slanted metal wires are included in
various image quality phantoms such as the widely used Catphan 500 (The Phan-
tom Laboratory, Salem, NY, USA). To emulate such a phantom, a water cylinder of
70 mm radius, 140 mm length and 0.0215 1/mm linear attenuation coefficient - the
attenuation of water for 70 keV photons - is generated using Matlab code (Math-
Works, Natick, MA, USA). Inside the phantom, a tungsten wire of 50µm diameter
(linear attenuation of tungsten: 49.25 1/mm) is placed at an 22.5°angle.
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Figure 3.2: Overview of the digital phantoms used in this thesis. From top to
bottom row: Axial, sagittal, coronal views; each column corresponds to an-
other phantom: XCAT phantom, slanted tungsten wire phantom, tetrahedral
phantom, tetrahedral phantom with low frequency noise.
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Figure 3.3: Flow chart illustrating the proposed reconstruction pipeline. First,
an approximation of the system response is deconvolved, then a CNN is de-
ployed to remove residual artifacts. Before CNN deployment, the deconvolu-
tion is divided by the ray density.

Tetrahedral Phantom

A scheme to procedurally generate tetrahedron phantoms is proposed. In an initial
step, 40 vertex locations are sampled from a 3D normal distribution (ND) with a
standard deviation of σ = 80 voxels around the center of the volume. After connect-
ing the vertices using the Delaunay triangulation algorithm, the resulting mesh is
voxelized on a 128x128x128 grid with 0.5x0.5x0.5 mm3 voxel spacing. 3D Delaunay
triangulation is used to connect a set of four discrete vertices to construct tetrahe-
drons in such a way, that no vertex is inside the circumcircle of any tetrahedron
[97]. Within each voxelized tetrahedron, a uniform attenuation coefficient µP is ran-
domly assigned based on the distribution of voxel values in a reference abdomen
CT scan (sans background), which was acquired at 100kVp. To avoid the use of
piecewise-constant phantom data, the option to add/subtract a random number (3D
ND, mean µ = 30, σ = 10) of Gaussian peaks with random center locations (3D ND,
µ = 64, σ = 32), widths given by a standard deviation uniformly distributed in the
interval [256,1280] and random (signed) amplitude (ND, µ = 0, σ = max(µP)/4), is
implemented.

3.3 Proposed Reconstruction Pipeline

This section outlines the novel reconstruction scheme proposed in this thesis. The
algorithm is visualized in Figure 3.3 and additional processing steps are detailed.

Recalling the basics from Section 2.3.3 and presuming log-transformed projection
data, tomographic reconstruction seeks to solve the following inverse problem:

y = A(Ω)µ, (3.3)

where y denote the measured line integrals of attenuation (e.g., projections) and
µ is the distribution of attenuation values in the object. Here, the dependence of
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Figure 3.4: U-net architecture in the last step of the proposed pipeline. Num-
bers over feature channel blocks indicate the number of channels. Max pooling
halves the size of each dimension, whereas transposed convolution with stride
two doubles the size of each dimension. The ReLU is chosen as an activation
function after the staple 3x3x3 convolutional layers.

the projection matrix, A, on some parameterization of the acquisition orbit Ω is
identified. Classic inversion approaches often seek to find the pseudo-inverse:

µ = (ATA)−1ATy. (3.4)

The pseudo-inverse has the advantage that solutions can be found for non-square
and rank-deficient A that are possible for arbitrary trajectories.

It is noted that AT represents a backprojection operation. Thus, the operator
(ATA)−1 represents a kind of generalized filtering operation. In fact, under ide-
alized imaging conditions (parallel beam, sufficient sampling, etc.) and a circular
acquisition geometry, (ATA) represents the operator that applies the well-known
intrinsic response of tomography - a 1/r blur function. Thus, in the ideal case,
(ATA)−1 is the inverse filter that removes 1/r blur. For non-circular orbits, diver-
gent beams, etc., the blur induced by (ATA) is not generally shift-invariant nor of
the form 1/r.

Motivated by the observations above, a novel reconstruction pipeline is proposed
leveraging the speed and performance of CNNs and combining it with what is al-
ready well known about the required reconstruction process. Specifically, the back-
projection step is maintained and the operator (ATA)−1 is addressed. While one
could develop a CNN to learn this inverse transformation directly, there is a way
to provide a better network input. It is assumed that the geometry, and therefore
A and AT of the considered non-circular acquisitions, are known a priori. For this
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reason, network inputs are devised to leverage this prior information. In the case
of a shift-invariant imaging system, the system response, ATA, can be deconvolved
from the backprojection, ATy; with this deconvolution the dependence on the ac-
quisition geometry can be effectively removed in the reconstruction process. There
are, however, several deficiencies (deviations from ideal conditions) in the proposed
reconstruction scheme, including but not limited to: Voxel sampling effects during
backprojection, divergent beam geometry, redundancies in the projection data, shift-
variant acquisition geometry. In addition, the proposed deconvolution procedure is
noise amplifying and prone to artifacts. For these reasons, a post-deconvolution
CNN is deployed to remove any residual artifacts.

To implement the deconvolution with the system response, it is assumed to be
approximately shift-invariant, which is true for small objects and/or long geometries.
The system response is approximated as ATAej, where ej denotes an impulse at
the center of the image. In a first step, ATAej is deconvolved from ATy via direct
Fourier inversion, i.e.:

F−1

{
F
{
ATy

}
bF {ATAej}c

}
. (3.5)

However, a practical difficulty of using this method originates in the fact that the
ideal deconvolution kernel needs an unbounded support [98]. This requires to in-
crease the backprojection volume of both system response and backprojected mea-
surements onto a support considerably larger than the support of the true object,
which makes the computation less efficient. For this reason, several techniques are
implemented to mitigate artifacts associated with the deconvolution process, they
are detailed in Section 3.5.3. First, a regularization operation is used in the denomi-
nator of Equation 3.5 to avoid division by zero and to suppress high frequency noise.

Second, the backprojection volume is expanded to approximately four times the re-
construction volume to mitigate spurious frequencies as a result of the DFT of signals
with discontinuities at the boundaries; this helps to better satisfy the periodic bound-
ary conditions necessary for fast Fourier transforms free of spurious frequencies. This
is done in one of two ways: either by increasing the backprojection volume during
the calculation of the impulse response by a factor of approximately 64 (approx.
quadrupling number of voxels per dimension to 511x511x511), or by increasing the
backprojection volume by a factor of 8 (doubling number of voxels per dimension to
256x256x256) and subsequently zero-padding the impulse response to yield another
volume increase by factor of approximately eight (approx. doubling the number of
voxels per dimension to 511x511x511). The uneven image output sizes are chosen
to center the impulse response. Third, to mitigate artifacts in F

{
ATAej

}
due to

the combined effect of voxel sampling and ray-based projection operator, ATAej
is computed at eight voxel locations around the central voxel of the image and the
responses averaged.

After the deconvolution, the image is corrected for the sampling density by perform-
ing an element-wise division of the volume by ATA1, where 1 denotes a volume
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Figure 3.5: Visualization of the MTF, in this case the modulation of a periodic,
one-dimensional signal composed of only one frequency. The input line pairs
shown above the function can be understood as a combination of multiple of
such periodic basis functions. After processing through the imaging system,
understood as the mapping function H : y(x) → g(x), the amplitude of the
periodic function is suppressed; the value of the suppression can be obtained
exactly by a linear weighting with the value of the MTF at this frequency. As
a result, the output line pairs are blurred. Figure adapted from [99].

of 1s. Finally, the image is truncated to the same size as the reconstruction image
volume to save memory. The resulting image volume is used as input to the CNN.
In summary, the input x to the CNN is represented mathematically as:

x = F−1

{
F
{
ATy

}
bF {ATAej}c

}
1

ATA1
. (3.6)

For the CNN processing step, a U-Net architecture consisting of seven convolutional
blocks, illustrated in Figure 3.4, is chosen. The U-net architecture is chosen due
to its successful application in image deconvolution and CT reconstruction. The
network is trained to predict the GT phantom images. The Adam optimizer with a
learning rate of 0.001 is used and the root-mean-square error (RMSE) (Section 3.4.2)
calculated between network output and GT phantom is chosen as a loss function.

3.4 Evaluation Metrics

This section details several image quality evaluation metrics used throughout the
experiments of this thesis. The section is divided into two subsections: Section 3.4.1
details the metrics of absolute image quality, measures that do not need reference
images; Section 3.4.2 introduces the relational metrics, which are calculated with
respect to a reference image.

3.4.1 Absolute Metrics

The following metrics are calculated in CT images without the need for any reference
image.

Modulation Transfer Function (MTF)

The MTF is commonly considered one of the most important measures to quan-
tify spatial resolution of imaging systems. The MTF T (f) is a measure of how an
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imaging system (corresponding to a mapping function) H suppresses the incom-
ing frequencies of a spatial signal y(x) in the resulting measurement g(x). When
considering a periodic, 1D spatial signal defined by only one frequency f1, such as
y(x) = Asin(2πf1x) + B the so-called modulation in the original signal my and in
the measurement mg are defined as:

my =
ymax − ymin
ymax + ymin

=
A

B

mg =
gmax − gmin
gmax + gmin

=
A

B

H(f1)

H(0)
=
A

B
· T (f1),

(3.7)

where ymax = B + A and ymin = B − A. In Fourier domain, the MTF can be
understood as the linear scaling of each signal frequency component. This behavior
is illustrated in Figure 3.5. The MTF is commonly understood as a universal image
quality metric to characterize the performance of an imaging system, because it is
calculated with respect to a specific imaging task [31]. On one hand, the MTF can
be theoretically derived, for instance by performing a comprehensive cascaded sys-
tems analysis for CT imaging systems [100],[101]. On the other hand, the MTF can
be experimentally determined by measuring either the point-spread function (PSF),
LSF or edge-spread function (ESF) [102],[103],[104]. In most cases, oversampling
the LSF or ESF is performed to prevent aliasing artifacts, which arise due to the
finite sampling scheme in digital imaging systems [105].

In this thesis, the one-dimensional MTF in x-direction is obtained using the slanted
tungsten wire phantom described in Section 3.2.2, in this case the wire is slanted in
x-direction. In a first step, the center of mass (COM) location of the wire (i.e. voxel
with maximum attenuation) in y-dimension is determined in every z-slice incorpo-
rating wire. This is done by cropping the image volume to yield a cuboid volume
of interest (VOI) of minimum size, which still contains all of the wire. Afterwards,
each attenuation voxel µi in the VOI is weighted with their respective y-position yi
and the COM in y-direction is calculated according to:

COMy(µi, yi) =

∑
i µiyi∑
i yi

. (3.8)

In the second step, the LSF in this z-slice is obtained by only considering the voxels
in the row of the COM in y-dimension. Subsequently, a Gaussian peak is fitted
to the LSF to obtain the COM in x-direction. An alternative way to calculate
the COM in x-direction - instead of fitting a Gaussian peak - the weighting method
used in y-dimension described above can be utilized for the x-dimension. In the third
step, a linear regression based on the minimization of least-squares is performed on
the COM positions in x dimension COMx to obtain the linear equation fx(z) that
describes the linear path of the tungsten wire. In addition, the quality of the linear
regression is determined using the coefficient of determination R2:

R2 = 1− SSres

SStot

, (3.9)

where the residual sum of squares is calculated as

SSres =
∑
i

(COMx,i − fx,i)2, (3.10)
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and the total sum of squares as

SStot =
∑
i

(COMx,i − COM
2

x). (3.11)

COMx denotes the mean of all COMx. In the fourth step, the LSFs of every slice
are arranged in one vector based on their COMx determined by the linear fit. In the
last step, the oversampled LSF is Fourier transformed and divided by its integral to
yield MTF(fx)(0) = 1:

MTF(fx) =
F{LSF(x)}∫

LSF(x)dx
. (3.12)

Finally, the full width at half maximum (FWHM) in units of mm−1 is calculated
to assign a scalar image quality metric to the calculated MTF. This is done by
inferring the frequency at which the MTF has a value of 0.5. Because this point
might not necessarily be covered by a value of the MTF, a cubic spline interpolation
is performed on the MTF frequency.

Noise Power Spectrum (NPS)

Similarly to the MTF, the NPS is a Fourier metric and can either be theoretically
derived or experimentally determined. To analyze any distortion (Poisson statistics
of photon absorption, scattered photons, electronic jitter, etc.) of the original signal,
i.e. noise, and its frequency content, the NPS is utilized. It is defined as the Fourier
transform of the auto-covariance function, which is obtained by removing the sig-
nal mean from the auto-correlation [99]. In other words, the noise texture, which
is characteristic for certain CT acquisition protocols (circular acquisition geometry,
filtered backprojection based reconstruction), can be analyzed. It is considered to
provide the most comprehensive approach to analyzing CT image noise. Typically,
the 3D NPS is determined experimentally by Fourier transforming mean-detrended
noise-only realizations, i.e. image regions of a homogeneous signal such as water or
polymethyl methacrylate [104].

In this thesis, the radial NPS is calculated in patient MDCT scans, under the as-
sumption of radial symmetry. A few adaptions to the usual approach have to be
made. In the case of patient CT scans, the noise texture can be evaluated using
an estimation of the NPS. For this purpose, a refined version of the approach from
Walek et al. [106] is proposed here. In a first step, liver segmentation maps are
obtained by applying a dedicated segmentation network [107]. The remaining non-
stochastic information in the resulting axial slices Ii is removed by subtracting the
respective Gaussian filtered slice IG. The detrended slices are Fourier transformed
using DFT and averaged afterwards to assess the axial NPS:

NPSax = bxby

〈
1

LGi
|DFT(Ii − IGi )|2

〉
i

. (3.13)

The NPS is normalized globally using the pixel spacing bx,y and slice-wise by the
number of non-zero pixels in the Gaussian filtered slice LG. Subsequently, the axial
NPS is radially averaged to yield the radial NPS (Figure 4.2).
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Noise Magnitude (NM)

The noise magnitude (NM) of CT images is usually quantified by calculating the
standard deviation σ (in Hounsfield Units) in noise-only realizations. In this thesis,
however, there is interest in quantifying the NM in patient CT scans. For this reason,
the NM is calculated in the liver Iliver, which is segmented using a CNN:

NM = σ(Iliver). (3.14)

NPS Maximum-Maximum Ratio (NMMR)

Since CNNs in general, and generative adversarial networks in particular, are prone
to generate grid structures in the output images, a metric to quantify the extent of
such grid structures is introduced. To achieve this, the extent of global maxima in
the axial NPS (presumably caused by grid structures) are quantified using the NPS
maximum-maximum ratio (NMMR). The maximum value of the axial NPS NPSax
is divided by the maximum of the radial NPS NPSrad:

NMMR =
max(NPSax)

max(NPSrad)
(3.15)

3.4.2 Relational Metrics

The following metrics are obtained by comparing the image to be evaluated, here
abbreviated as the studied image s, to a reference image r.

Mean Absolute Error (MAE)

The mean absolute error (MAE) is calculated by voxel-wise subtraction of r from s
and subsequent averaging:

MAE(s, r) =

n∑
i=1

|ri − si|

n
, (3.16)

where n indicates the overall voxel count.

Root-Mean-Square Error (RMSE)

Similarly to the MAE, the RMSE is calculated via:

RMSE(s, r) =

√√√√ n∑
i=1

(ri − si)2

n
, (3.17)

Normalized Root Mean Squared Error (nRMSE)

The normalized root-mean-square error (nRMSE) is obtained by normalizing the
RMSE with the mean of all attenuation values of the reference image s̄:

nRMSE =
RMSE

s̄
(3.18)
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Structural Similarity Index Measure (SSIM)

Wang et al. introduced the structural similarity index measure (SSIM) to quantify
the structural similarity of two images s, r [108]. The SSIM considers luminance,
contrast as well as structure and can be calculated as follows:

SSIM(s, r) =
(2µsµr + T1)(2 cov(s, r) + T2)

(µ2
s + µ2

r + T1)(σ2
s + σ2

r + T2)
, (3.19)

where µs,r, σs,r and cov(s, r) correspond to the respective mean, variance and co-
variance values of the images. The variables Ti include the dynamical range of the
pixel values.

Feature Similarity Index Measure (FSIM)

Zhang et al. introduced the feature similarity index measure (FSIM) in order to
quantify the distortion of important low level features [109]. The metric is based
on the identification of low level features using phase congruency (PC) and gradient
magnitude (GM) maps. The subsequent calculation of their similarity (SPC, SGM),
is followed by their combination reusing the PC as a weighting function:

FSIM(s, r) =

∑
s,r∈Ω

S(SPC, SGM) · PCm(s, r)∑
s,r∈Ω

PCm(s, r)
, (3.20)

where Ω corresponds to the whole image spatial domain and
PCm(s, r) = max[PC(s),PC(r)].

Edge Generation Ratio (EGR)

Since the investigated generative adversarial networks are prone to randomly gener-
ate structures in the output CT images, the extent of additionally produced edges is
explored by the introduction of the edge generation ratio (EGR). For this purpose,
binary edge maps (EM) are extracted from the studied image and the reference
image using the Canny algorithm [110]. Subsequently, the ratio of edge content is
calculated:

EGR(s, r) =
num(EMs)

num(EMr)
. (3.21)

Edge Preservation Ratio (EPR)

The edge preservation ratio (EPR) was proposed by Chen et al. to quantify the
extent of edges preserved after deblurring [111]. It is obtained by calculating the
intersection of the binary EM of both reference and studied image:

EPR(s, r) =
num(EMs

⋂
EMr)

(EMr)
(3.22)

Chen et al. also concluded, that the Canny algorithm is best suited to extract the
binary EM in order to calculate the EPR.
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Ratio of Corrupted Background Voxel (RCBV)

Since the investigated GAN are prone to randomly generate structures in the output
CT images, a new metric to analyze the extent of artificially generated structures is
introduced in this thesis. It is supposed to quantify the ratio of corrupted background
voxel (RCBV), i.e. the number of voxels outside the patient contour that exhibit
attenuation values substantially above background level. This is done by selecting
an acceptance threshold according to 3σ of the background noise in the reference
CTs (100 HU):

RCBV(s, r) =
num(µs > −900 HU)

num(µr = −1000 HU)
. (3.23)

MTF Mean Percentage Error (MPE)

To compare the calculated MTF to a reference, the mean percentage error (MPE)
is calculated by subtracting the cubic spline interpolation of the studied MTF
MTFs,interp from the reference MTF MTFr,interp according to:

MPE(s, r) = 100 · MTFs,interp −MTFr,interp

MTFr,interp

(3.24)

NPS Correlation Coefficient (NCC)

In order to compare the NPS of a simulated CT image to a reference, the NPS cor-
relation coefficient (NCC) is introduced here. It is supposed to evaluate if the noise
texture in the simulated CT image follows the characteristic NPS in a reference data
set. For this reason the radial NPS NPSs (calculated as described in Section 3.4.1)
is compared to the mean of the NPS array of the reference data set NPSr,mean in
terms of monotonic Pearson correlation, further called NCC:

NCC(s, r) =
cov(NPSs,NPSr,mean)

σNPSsσNPSr,mean

, (3.25)

where cov(·) indicates the covariance

cov(s, r) = E[(NPSs − µNPSs)(NPSr,mean − µNPSr,mean)] (3.26)

and σ denotes the standard deviation, E the expectation value and µ the mean value.

NPS Mean Percentage Error (NMPE)

To compare the calculated NPSs to the reference NPS data, the NPS mean percent-
age error (NMPE) is calculated according to:

NMPE(s, r) =
100

n ·max(NPSr,mean)

n∑
i=1

|NPSs − NPSr,mean| , (3.27)

where n is the total number of NPS values.
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Figure 3.6: CycleGAN network architecture: The generators GXCAT→CT and
FCT→XCAT map images from the XCAT domain to the CT domain and vice
versa. Two additional adversarial networks DXCAT and DCT, called discrim-
inators, are trained to distinguish between real and synthetic images: XCAT
and F (CT) are distinguished by discriminator network DXCAT and CT and
G(XCAT) are distinguished by discriminator network DCT. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer
Nature International Journal of Computer Assisted Radiology and Surgery
©2019.

Dice Similarity Coefficient (DSC)

The Dice similarity coefficient (DSC) is used to compute the accuracy of a predicted
segmentation map segms by comparing it to a GT segmentation map segmr. The
DSC is defined as the ratio of the doubled number of intersection voxels divided by
the number of the total segmentation voxels in both segmentations combined:

DSC(s, r) =
2 · num(segms

⋂
segmr)

num(segms) + num(segmr)
(3.28)

3.5 Experimental Design

This section is divided into three parts. Section 3.5.1 explains the experiments con-
ducted to investigate CycleGAN-based CT Synthesis. Section 3.5.2 outlines the
simulation frameworks, experimental setting and evaluation performed to prospec-
tively optimize CBCT acquisition orbits. Section 3.5.3 details how the reconstruc-
tion pipeline proposed in Section 3.3 is applied to arbitrary CBCT orbit data and
subsequently evaluated.

3.5.1 CT Synthesis Using CycleGAN

In this subsection, the CT synthesis experiments using CycleGAN are explained.
First, the training routine, the utilized data as well as the applied evaluation met-
rics are described. The subsequent explanation of experiments is divided into three
studies. In an initial, broader configuration study with reduced training and testing
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data set size, the ideal CycleGAN network configuration for CT synthesis is investi-
gated. The optimized configuration is subsequently utilized for a task-based study
with an extended training data set as well as a task-based loss function. In the
last step, the synthetic images from the task-based study are utilized to train blood
vessel segmentation networks as a form of data augmentation in a proof-of-principle
experiment. The last study is performed to investigate alternative uses for the gen-
erated CT images, besides the optimization of CBCT acquisition orbits.

Training and Evaluation

Image patches with 256×256 pixels are used for the training of the networks. In
contrast to the original CycleGAN [51], the image translation from the XCAT to the
CT domain is emphasized. Therefore, multiple adjacent slices in the XCAT domain
are used, but the number of slices in the CT domain is reduced to one. For each axial
slice, one random patch is extracted. The possible patch centers are sampled from a
uniform distribution inside the body contour of the image to avoid too many back-
ground samples in the training data. Data augmentation is performed by randomly
rotating the slices between -20 ° and +20 ° followed by a bi-linear interpolation. Most
of the training configurations of the CycleGAN are adopted from Zhu et al. [51], see
Section 3.1.3. Deviating from the original network, the deconvolution operations in
the generator network are substituted by up-sampling operations in order to avoid
checkerboard artifacts [112]. The Python-based TensorFlow library, setup on Keras,
is used to implement the networks. For the implementation, an already developed
software framework was adapted [113]. Training is carried out on an Nvidia Titan
XP (Nvidia, Santa Clara, CA, USA).

All used data sets (in-house, LiTS, IRCAD, see Section 3.2.1) contain varying voxel
spacing, spatial orientation and scan parameters. For this reason, all images are
resampled to a voxel spacing of 0.75 × 0.75 × 1.5 mm3. Aside from the variations
in the voxel spacing, the magnitude of the contrast-enhancement fluctuates between
patients and vessel branches. These fluctuations are due to the time dependent pro-
gression of the contrast agent through the blood vessels of the patient, which is not
coherently distributed in every CT image. As input for the generative network, 120
XCAT abdomen phantoms with a tube voltage U ∈ [70, 80, 90] kVp, a voxel spacing
of 0.75 × 0.75 × 1.5 mm3, and varying anatomical parameters are simulated. The
intensity values of all input data are normalized from [−1024, 2000] HU to [−1, 1].

Each trained network is evaluated by comparing a set of evaluation metrics between
the generated CT images and either the original XCAT input or real patient CT im-
ages. The RCBV, MAE, SSIM, FSIM, EPR and EGR are computed with respect to
the corresponing XCAT volume. NCC, NMPE, NMMR are calculated with respect
to the mean values of real CT images.

Configuration Study

The network architecture of the CycleGAN is visualized in Figure 3.6. Three param-
eter variations are investigated and the eight possible configurations are compared.
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(a)

(b)

Figure 3.7: a U-Net and b Res-Net generator architectures. In this case, the
U-Net architecture consists of 16 convolutional layers, eight encoding and eight
decoding. The Res-Net consists of three encoding and three decoding convolu-
tional layers and nine residual blocks. Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer Nature International Jour-
nal of Computer Assisted Radiology and Surgery ©2019

As a first variation, a Res-Net architecture is compared to a U-Net generator archi-
tecture (Figure 3.7). Secondly, the influence of the number of input slices C ∈ 3, 5
is explored. Finally, the effect of pre-processing the CT data with a body contour
mask is tested. In all cases, the networks are trained using samples obtained from
six XCAT abdomen phantoms (Section 3.2.2) and six patient CT scans originating
from the in-house CT data (Section 3.2.1). The testing data set consisted of six
additional XCAT phantoms.

Task-Based Study

For the task-based study, the training data set is increased to 60 XCAT phantoms
and 60 patient CT images. The testing data set consists of 60 additional XCAT
phantoms. The patient CT training data set is composed of in-house CT, IRCAD
and LiTS data. Additionally, a regularization term to enforce HU-consistency in
selected image regions is added to the standard loss function [114]. In particular,
the adaption penalizes deviations between the original XCAT and the generated CT
image in the contrast-enhanced vessels as well as deviations in both image domains
in the background region. These deviations are determined using dedicated segmen-
tation masks Mves and Mbg for vessels and background, respectively. The additional
regularization term is implemented as an HU-consistency loss using the L1-norm:

LHU =λbg||(G(x)− x) ·Mbg||1 + λbg||(F (y)− y) ·Mbg||1
+λves||(G(x)− x) ·Mves||1. (3.29)

The aim of this study is to investigate the influence of the proposed loss and the in-
corporation of public source CT images on the synthesis performance. In total, three
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task-based networks are trained, one with the full training data set but without the
HU-consistency loss (further called TASKNET1), the second with the full training
data set and with the HU-consistency loss (TASKNET2), and the third with only
in-house CT images and with the HU-consistency loss (TASKNET3).

Segmentation Study

For the vessel segmentation, three networks are trained on different data configura-
tions: the first on 15 synthetic CTs from the best-performing network of the task-
based study, the second using 15 real CT images acquired in-house, and the third on
a combination of both sources adding up to 30 CT images. The data set size for the
combined training is increased to incorporate this particular advantage of the gen-
erated data as a means for data augmentation. Each segmentation model is tested
on the same five in-house CT images. The GT for the in-house CT images is de-
termined semi-automatically by comparing various stages of contrast-enhancement
followed by further processing steps. This is possible due to the availability of a time
series for each in-house CT. For the synthetic CT images, the annotation masks of
the corresponding XCAT phantom are used as GT. In particular, a 2.5D U-Net ar-
chitecture with residual connections is deployed [107] and the Tversky loss function
with α = 0.3 is used. Image patches of 256× 256 pixels are extracted from the axial
plane for training and a three-slice input is used to predict the center slice. The
patches are randomly rotated between -15 ° and +15 ° for data augmentation. Inten-
sity values are normalized from [−200, 1000] HU to [−1, 1]. The L1 regularization
and batch normalization with a batch size of 16 is used. Each network is trained for
100 epochs. Eventually, the segmentation performance is evaluated using the DSC.

3.5.2 Orbit Optimization

This subsection describes the experiments performed for CBCT orbit optimization.
The goal of these experiments is - under consideration of a specific imaging scenario
in the intervention room - to find the better of two alternative source orbits to a
standard circular trajectory: a tilted circular orbit consisting of a 360° rotation and
a simultaneous 40° elevation angle change as well as a triple-arc geometry consisting
of two 180° arcs and one orthogonal 40° arc. A visualization of the investigated orbit
geometries is shown in Figure 3.8. In the specific imaging scenario considered here,
the right-back-top octant is considered blocked space, i.e. a standard circular source
orbit is not feasible. The experiment geometries such as size of the detector, mag-
nification, etc., are chosen to imitate the imaging setting of a Siemens artis zeego
device (Siemens Healthineers, Forchheim, Germany).

The subsection starts with a brief explanation of the GATE software used for MC
projection simulation. Afterwards, the reconstruction and evaluation processes are
detailed.

MC Simulations Using GATE

The following paragraphs are intended to give a brief overview on GATE and its
code basis, GEANT4. For further information, the reader is referred to the asso-
ciated publications [41],[43]. In its essence, GATE is a script language providing
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Figure 3.8: Visualization of the considered CBCT source orbit geometries.
The image isocenter is at position (0,0,0). Alternative orbits to a standard
circular geometry are investigated. In this case, the available actuation space
is limited (due to personnel or interventional equipment). In this specific view,
the right-back-top octant is considered to be blocked space, preventing the
realization of a circular orbit. Instead, a tilted circular orbit with a maximum
tilt angle of 20° relative to a circular orbit and a triple-arc orbit consisting of
two 180° arcs and one orthogonal 40° arc on the bottom of the point sphere
are evaluated as potential alternatives.
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Figure 3.9: Simulation setup in GATE with the path of 1000 simulated photons
visualized (green). The X-ray source produces a photon beam with circular
base area. With the use of a lead collimator (grey), the beam shape is mod-
ulated into rectangular shape. The collimator has an opening, a trapezoid
volume, which is designed in such a way, that the outermost photons hit the
detector’s (red) edge.



3.5. Experimental Design 45

an easy-to-learn interface to create MC simulations (Section 2.3.1) suited for the
needs of medical imaging. GATE is setup on the object-oriented C++ code of
GEANT4, a toolkit that adapts the MC approach to interactions of particles with
matter and provides particle detector models. GEANT4 also includes graphical
drivers for visualization purposes. Due to the high computation time associated
with GEANT4-based MC simulations, the Gatelab cluster is used for faster execu-
tion times [45],[46]. Gatelab is setup on the European Grid Infrastructure, which is
a EU funded institution delivering computation services in the form of cloud com-
puting and federated data centers.

Each GATE simulation follows a workflow consisting of multiple steps. First, a
material database is setup, incorporating material-specific quantities such as the el-
emental composition of compounds, their density and state (solid, fluid, etc.). The
second step consists of setting up the geometries, the world volume, the phantom,
the collimator and the detector. For this, a detector panel consisting of 1240x960
Caesium Iodide (CsI) scintillator detectors of 0.5 mm thickness and 0.308 mm edge
length is created. A source-axis distance (SAD) of 785 mm and a source-detector
distance (SDD) of 1197 mm is chosen. The lead collimator of 5 mm thickness is
placed within a 65 mm distance of the source. All parameters are chosen accord-
ing to Siemens data on the artis zeego. A visualization of the simulation setup is
illustrated in Figure 3.9. Besides the zeego model, a water cylinder phantom encom-
passing a slanted tungsten wire is created according to Section 3.2.2. Alternatively,
an XCAT phantom is incorporated into the simulation framework to demonstrate
the ability to simulate dose deposition maps depending on the source orbit geome-
try. In addition, a so-called dose-sensitive volume, a module provided by GATE, is
attached to each XCAT phantom voxel; this enables the tracking of the imparted
physical dose per voxel.

After the geometries are setup, the digitizer is initialized, a tool to mimic realistic
photon detector properties. In this case, only an ’adder’, ’thresholder’ and a ’read-
out’ module are used, which means that all simultaneous events in the detector are
grouped together (given that they stem from the same original X-ray), and their
deposited energy calculated and added up to produce a signal pulse, but only if
the detected deposited energy is higher than the selected threshold of 10 keV. After
the detector readout setup, the source position and spectrum are chosen. Here, an
X-ray spectrum of 100kVp is simulated for a tungsten anode, an anode angle of 12°
and 25 mm of aluminum pre-filtration, using the SpekCalc software [115],[116],[117].
Again, the parameters are chosen based on Siemens data on the artis zeego. The
lower cutoff spectrum energy is set to 10 keV, which resembles exactly the value of
the thresholder module in the detector model, and an energy bin size of 1 keV is
selected. In the last step, the movement of the geometry according to the simulated
source orbit is implemented by rotating the phantom.

Projection Simulation, Reconstruction and Evaluation

200 projections are simulated for each of the three investigated geometries. In total,
20 billion primary photons sampled from 100 keV spectrum are used per projec-
tion, amounting to 4 trillion primary photons in total. As an imaging phantom, the
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slanted tungsten wire embedded in the water cylinder described in Section 3.2.2 is
incorporated into the simulation in order to extract the MTF after reconstruction.
The values of photons per projection are chosen based on the observed photon count
number on the detector after traversing the maximum distance through the water
cylinder; the photon counts are supposed to be of the order of several hundreds to
guarantee sufficient contrast in the resulting CBCT image. Each simulated projec-
tion is normalized by dividing through a projection acquired with the same imaging
settings but without the phantom in the beam line.

As an alternative method to MC simulations, an approach based on the projection
operators described in Section 2.3.2 is investigated. The Astra toolbox is utilized to
simulate CBCT projections acquired with arbitrary source orbits [67]. The Astra
toolbox allows for the incorporation of the full projection matrix, which contains a set
of vectors sufficient to unambiguously define the imaging geometry. The projection
operator systematically sums up the attenuation values in each traversed image voxel
of the ray incident on the detector pixels and returns the weighted sum as a result.
In contrast to the MC simulations above, there is no need to normalize this data.
The line attenuation values in the projections are translated into photon counts by
using the Beer-Lambert law (Equation 2.13) and a bare beam fluence of 100000
photons per detector pixel. Subsequently, a noise model is applied by sampling each
detector pixel value Ni,noise from a Poisson distribution with mean λ equal to the
respective photon count Ni and a probability mass function fPoisson given by:

fPoisson(Ni,noise = n,Ni) =
Nn
i e
−N
i

n!
(3.30)

and adding a random variable sampled from a normal distribution fGauss with mean
µ and standard deviation σ equal to 0 and 7, respectively:

fGauss(n) =
1

σ
√

2π
e−

1
2(n−µσ )

2

(3.31)

To compare raw fluence data simulated with the projection operators to the MC
simulations, the fluence data simulated with the MC method has to be corrected
with the factor C(x, y) - for pixel counts in x and y direction with origin at the
center of the detector - due the inverse square law according to:

C(x, y) =
SDD2 + R(x, y)2

SDD2 , (3.32)

where SDD denotes the source-detector distance and R the distance of the respective
detector pixel from the detector origin calculated via:

R(x, y) = edet
√
x2 + y2, (3.33)

where edet denotes the detector pixel edge length. After comparison of the fluence
data, both data have to be log-transformed again, using their associated bare beam
fluence, to carry out reconstruction.
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After projection simulation, each set of normalized projections is reconstructed on
a grid of 512x512x512 voxels with 0.3 mm cubic voxels. The SIRT algorithm (Sec-
tion 2.3.3) is applied to the projection data for a total of 100 iterations using the
CUDA supported implementation of the Astra toolbox. Finally, the evaluation of
the reconstructed images is performed by calculating the FWHM and the MPE
of the MTF, which is obtained using the LSF oversampling method described in
Section 3.4.1.

3.5.3 Reconstruction Experiments

This subsection details the experiments conducted to train and validate the novel
reconstruction pipeline proposed in Section 3.3. The subsection starts with a descrip-
tion of the parametrization leveraged to generate a general class of random orbits.
Subsequently, the conducted experiments are divided into three parts. The first
part investigates three different means of regularization to suppress artifacts in the
deconvolution operation. The second part explains the initial series of experiments
performed to study the performance of the proposed reconstruction scheme when
trained with and applied to only one specific geometry at a time. The third part
details the experiments conducted to research the pipeline’s ability to reconstruct
orbits it has not seen during the training procedure. Moreover, the complexity of
the reconstruction task is substantially increased.

Orbit Parametrization

Reconstruction is exclusively performed on simulated data. The forward- and back-
projection operators of the Astra toolbox are used with the option to incorporate
the noise model described in Section 3.5.2. As an imaging geometry, a SAD of 1 m,
a SDD of 1.5 m and a 256x256 pixel detector consisting of 0.75x0.75 mm pixel are
chosen. The detector size is selected so that the projection data of the phantom,
consisting of 128x128x128 cubic image voxels with 0.5 mm edge length, do not suf-
fer from truncation. For the imaging geometry, 512 rotation angles, θ, are evenly
distributed (in terms of rotation angle) between 0° and 360°. The elevation angles,
φ, are parameterized as a linear combination of K = 9 sinusoidal basis functions:

φ(θ) =
K∑
j=1

Ωjbj(θ), bj(θ) =

{
cos
(
j−1

2
θ
)
, if j is odd

sin
(
j
2
θ
)
, if j is even,

(3.34)

with coefficients sampled from a uniform distribution Ωj ∈ [−1, 1]. The first four
basis functions b are illustrated in Figure 3.10. An example of a random orbit
generated using this scheme is shown in Figure 3.11. 25° are chosen as a maximum
elevation angle according to the actuation space measured for a specific patient table
position on a Siemens artis zeego, visualized in Figure 3.12.

Regularization Methods

Due to calculation issues inherent to the proposed reconstruction algorithm (ex-
plained in Section 3.3) three different means of regularization with the strength λ
in Fourier domain and before the actual deconvolution operation are investigated.
Parameter sweeps to determine the ideal λ are performed. In particular, the term

bF
{
ATAej

}
c (3.35)



48 3. Materials and Methods

Figure 3.10: Periodic basis functions used for the parametrization of orbits.
Top left shows the b1, top right the b2, bottom left b3 and bottom right b4
according to Equation 3.34.
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Figure 3.11: Random orbit geometry parametrized using Equation 3.34 and
randomly generated coefficients: Ω1 = −0.40, Ω2 = 0.02, Ω3 = 0.45, Ω4 =
−0.42, Ω5 = −0.25, Ω6 = 0.07, Ω7 = 0.32, Ω8 = 0.15, Ω9 = 0.13

Figure 3.12: Experimentally determined actuation space available on the
Siemens artis zeego. Black area indicates non-available, white area available
actuation space.
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is penalized. The first investigated methods adds a term that acts as a low pass filter
and thereby penalizes high frequencies, as they are amplified by the deconvolution
operation. The penalty term is obtained by generating a matrix the size of the
impulse response (511x511x511) and calculating the quadratic penalty R(µ) via
[21]:

R(µ) = λµTRµ, (3.36)

where µ denotes an image matrix and the matrix R denotes a matrix, which is
defined to yield the penalization of the form:

R(µ) =
1

2

∑
i

∑
j

wi,j(µi − µj)2, wi,j =

{
1, for the six nearest neighbors

0, otherwise.
(3.37)

In the case of the impulse response, this penalization is formulated as:

F
{
ATAej + λRej

}
. (3.38)

This can also be described by effectively setting the six nearest neighbor voxels to
the center voxel to the value ’-1’ whilst setting the center voxel value to ’+6’. The
strength of the regularization is tuned with the parameter λ.

The second investigated method is a simple thresholding operation, where every
absolute value (values possess an imaginary term) in Equation 3.35 that is lower
than the threshold value λ is set to the value of λ, without the preservation of the
imaginary part. The third investigated method is also composed of a thresholding
operation, but instead of resetting the values with a modulus smaller than λ (µres),
they are rescaled instead by the factor:

λ

|µres|
(3.39)

to preserve the imaginary part.

Application to Single Geometries

For the application to single geometries, the thresholding regularization described
above is performed. Initially, four networks are trained on data of only one orbit,
while one network is trained on data of two different geometries in a common pool.
This is done to investigate if our proposed approach is able to reconstruct data of
more than one geometry. The five acquisition geometries are as follows:

• circular, φ = 0 for all θ
• φ = sin(2θ),
• φ = sin(3θ),
• φ = sin(2θ) and φ = sin(3θ),
• one random orbit (generated as explained above).

For training, validation and testing, 1000 tetrahedral phantoms are procedurally
generated without the addition of low frequency noise as described in Section 3.2.2.
The projections are simulated without incorporating image noise. 800 of the result-
ing data is used for training, 100 for validation and 100 for testing. Each network is
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trained for 100 epochs (i.e. 80000 steps). Training is carried out on an Nvidia V100
GPU (Nvidia, Santa Clara, CA, USA) provided by the bwForCluster computing
cluster. The V100 has 16GB of dedicated GPU memory, which is necessary to carry
out the training procedure due to its particularly high memory demand (3D model
and resulting number of parameters take up GPU memory). The bwForCluster is
a service provided by the bwHPC, a consortium of universities in the German state
of Baden-Württemberg. The reconstruction pipeline is evaluated in terms of FSIM,
SSIM and nRMSE (Section 3.4.2), calculated relative to GT. For comparison, an
iterative reconstruction scheme, the SART described in Section 2.3.3, is also applied
and quantitative performance measures (relative to truth) are computed.

Application to Random Geometries

In this paragraph, the reconstruction technique is improved by training the networks
on a variety of randomized orbits to facilitate processing of new arbitrary orbits that
are not used in CNN training. This is done by assigning a unique random orbit
geometry to each generated phantom (1000 tetrahedron phantoms and 800 LIDC
phantoms). For this study, the rescaling regularization of the Fourier term is chosen.
Furthermore, the reconstruction pipeline is not only applied to tetrahedral phan-
toms, as in the previous experiments, but also to anthropomorphic data in training
and evaluation. Further refinements of the simulated data are applied including low
frequency textures (i.e., Gaussian peaks) added to the tetrahedral phantoms as well
as a realistic noise model for all simulated projections. Two networks are trained,
distinguished by the ratio of epochs trained on LIDC data (see Section 3.2.1). While
the first network is only trained and evaluated on the tetrahedron phantoms, a sec-
ond network is trained on tetrahedral data (70 epochs and each epoch consists of
800 update steps), and subsequently fine-tuned (30 epochs/640 steps) and evaluated
with anthropomorphic LIDC data.

In order to provide a baseline comparison with state-of-the-art algorithms, penalized-
likelihood reconstruction (see Section 2.3.3) with a Huber penalty is utilized with
100 iterations, Huber penalty parameters of δ = 1 and β = 105. For evaluation of
the reconstruction performance, the nRMSE, the FSIM and the SSIM are calculated
between the network output/MBIR reconstructions and the GT phantom.
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4. Results
The experiments conducted below aim to find novel methods to implement inter-
ventional CBCT with non-circular acquisition orbits into clinical routine. The main
focus is to investigate faster simulation and reconstruction schemes that still per-
form comparably to current standards. The investigation of different CT simulation
methods aims to determine an appropriate method to prospectively optimize the ac-
quisition geometry of arbitrary CBCT orbits depending on a specific interventional
imaging tasks and restrictions of the robotic actuation range - all in a reasonable
time frame. The reconstruction studies aim to provide insights on how the poten-
tial of CNNs can be exploited for faster reconstruction methods of arbitrary CBCT
orbits. This chapter is divided into two parts: The first part starts with the results
of the optimization studies consisting of three different methods of CT simulation:
CycleGAN, MC approach, and projection operator; performed to investigate the
prospective optimization of arbitrary CBCT acquisition orbits (Section 4.1). The
second part represents the results of the novel CNN-based reconstruction method,
consisting of a deconvolution operation with the shift-invariant system response and
a posterior deployment of a CNN (Section 4.2). Parts of the results have been pub-
lished in [85]1, [86], [87], [88] and [89] and the corresponding figures and descriptions
are adapted and partly replicated thereof.

4.1 Simulation and Evaluation of CT Images
This section shows the results for the three methods investigated for CT simulation.
In Section 4.1.1, a CycleGAN network architecture is utilized to perform a direct
domain translation from images of digital body phantoms to CT images. In Sec-
tion 4.1.2 two means of CBCT projection simulation are compared: MC method
and projection operator. Subsequently, the simulated projections are used for re-
construction and evaluation.

4.1.1 CT Synthesis Using CycleGAN

This investigation is divided into two studies. First, a configuration study is per-
formed to determine the ideal network configuration for CT simulation (Section 4.1.1).

1Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Na-
ture International Journal of Computer Assisted Radiology and Surgery ©2019

Table 4.1: The averaged anatomical accuracy metrics (± standard deviation)
using modified data as input to provide a baseline for the CT Synthesis eval-
uation framework

Metric CT-CT Rigid-Transfo. Poisson
RCBV 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
MAE 228 ± 104 197 ± 139 30 ± 1
SSIM 0.57 ± 0.16 0.76 ± 0.07 0.92 ± 0.02
FSIM 0.55 ± 0.13 0.34 ± 0.05 0.98 ± 0.01
EPR 0.24 ± 0.21 0.09 ± 0.02 0.88 ± 0.02
EGR 1.05 ± 0.34 1.01 ± 0.13 1.87 ± 0.60
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(a)

(b)

(d) (e)
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Figure 4.1: (b), (c), (d) and (e) axial slices of the synthetic CT images gen-
erated with the Res-Nets trained in the configuration study (C =̂ number of
input slices) and (a) the corresponding XCAT slice. Reprinted by permis-
sion from Springer Nature Customer Service Centre GmbH: Springer Nature
International Journal of Computer Assisted Radiology and Surgery ©2019.
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(a)

Figure 4.2: Noise power spectrum (NPS) estimation of a reference patient CT
in the liver, (a) the axial NPS and (b) radially averaged NPS. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer
Nature International Journal of Computer Assisted Radiology and Surgery
©2019.

Secondly, the simulation approach is adapted to investigate task-based loss functions
- specifically, for providing accurate HU in the blood vessels - for the training proce-
dure and include public data sets to quantify changes in performance (Section 4.1.1).
Evaluation is performed with several metrics determining anatomical accuracy and
realistic noise properties.

In order to provide a baseline to compare the metrics of anatomical accuracy to, the
associated evaluation framework is tested with modified data. A CT-CT evaluation
is performed by randomly assigning in-house CT images to each other and subse-
quently calculating the associated anatomical accuracy metrics. In addition, XCAT
phantoms are modified by (1) applying random rigid transformations and (2) adding
Poisson noise. Afterwards, the anatomical accuracy metrics are calculated with re-
spect to the original XCAT slices. The baseline metrics are shown in Table 4.1.
The anatomical accuracy metrics calculated for synthetic CT images are supposed
to range between the ones obtained by CT-CT comparison as the minimum, and up
to the ones obtained by added Poisson noise as the maximum. This is true for every
metric except the EGR, which is sensitive to noisy inputs, as no additional edges
are generated for the baseline calculations.

Configuration Study

Several configurations are evaluated and compared to determine the best perform-
ing network configuration, an overview of evaluation metrics is shown in Table 4.2.
First, the evaluation metrics of both network architectures are compared. Only in
the EGR metric, the U-Net showed a performance improvement of approximately
10 %. Apart from this, the Res-Net performed similarly or better than the U-Net in
all other metrics, ranging from 20 % for the NCC to up to 55 % for the MAE and
even up to 95 % for the NMPE. As a consequence of these substantial deviations,
the U-Net based networks are excluded from the following comparisons.
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(a)

(d)(c)

(b)

Figure 4.3: Noise realizations and NPS. (a) Synthetic, (b) real noise realization
as well as (c) synthetic axial NPS (x-axis shows the frequency in x-direction,
y-axis in y-direction, fN denotes the Nyquist frequency) where and (d) compar-
ison of synthetic and real radial NPS. The colored areas represent the convex
hull of all calculated NPS, respectively. Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer Nature International Jour-
nal of Computer Assisted Radiology and Surgery ©2019.

Table 4.2: A comparison of the evaluation metrics from the configuration study
in terms of mean values ± standard deviation. The number of network cases
considered for each comparison is stated in brackets, it is reduced from 8 to 4
due to the exclusion of U-Nets. The NM in the reference patient CTs amounts
to (33.26 ± 4.21) HU. Bold values indicate superior performance

Network architecture [8] Nr. input slices [4] Body contour [4]
Metric Res-Net U-Net 3 5 without with
RCBV ↓ 0.30 ± 0.16 0.80 ± 0.34 0.22 ± 0.07 0.38 ± 0.19 0.42 ± 0.16 0.18 ± 0.03
MAE ↓ 143 ± 116 606 ± 294 115 ± 26 172 ± 158 113 ± 25 174 ± 157
SSIM ↑ 0.69 ± 0.05 0.66 ± 0.05 0.69 ± 0.05 0.68 ± 0.05 0.69 ± 0.05 0.68 ± 0.05
FSIM ↑ 0.59 ± 0.05 0.55 ± 0.10 0.61 ± 0.04 0.56 ± 0.06 0.61 ± 0.03 0.56 ± 0.06
EGR ↓ 2.32 ± 0.43 1.88 ± 0.35 2.38 ± 0.39 2.26 ± 0.46 2.36 ± 0.43 2.28 ± 0.43
NCC ↑ 0.99 ± 0.01 0.72 ± 0.14 0.99 ± 0.00 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01
NMPE ↓ 9.6 ± 5.3 927 ± 686 8.7 ± 4.5 10.5 ± 6.1 8.7 ± 4.4 10.5 ± 6.1
NMMR ↓ 6.03 ± 3.52 5.68 ± 4.84 7.38 ± 4.37 4.69 ± 1.63 4.35 ± 1.50 7.72 ± 4.16
NM 32.0 ± 4.2 61.9 ± 42.8 35.0 ± 4.0 28.9 ± 1.2 33.9 ± 4.8 30.0 ± 2.3
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(a) (b) (c)

Figure 4.4: One axial slice of (a) XCAT phantom, (b) corresponding synthetic
CT generated with TASKNET3 and (c) patient CT obtained from a similar
body region. Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Springer Nature International Journal of Computer Assisted
Radiology and Surgery ©2019.

Secondly, the influence of the number of input slices on the Res-Nets is evaluated.
Here, the NMMR showed a performance degradation of approximately 40 % for the
training with three instead of five input slices. However, the configuration using
three input slices yielded a performance improvement for both the EPR and the
RCBV of about 15 % and 55 %, respectively. Both improvements can be observed in
Figure 4.1. Here, (b) and (c) show a lower extent of structures outside the body con-
tour as well as a better edge preservation in artery and bone regions when compared
to (d) and (e). Finally, the use of a body contour mask is evaluated. While this
approach demonstrated an improvement in the RCBV of up to 65 %, performance
reductions of 10 % for the MAE as well as 20 % for the SSIM are observed.

Based on these observations, the Res-Net architecture using three input slices and no
additional pre-processing step is identified as the ideal network configuration. This is
underlined by the corresponding accurate modeling of CT noise in the liver, which is
illustrated in Figure 4.3. Here, a synthetic noise realization (a) is directly compared
to a real one (b), demonstrating only minor deviations from radial symmetry (c)
as well as similar noise spatial correlation and magnitude (d) when comparing the
distributions of the radial NPS to reference data.

Task-Based Study

The synthetic CT images generated with the task-based networks are compared to
study the impact of the dedicated loss function and the use of additional CT im-
ages from public sources as training data. The corresponding results are shown in
Table 4.3. The computation time to simulate CT data from a digital body phantom
is around one second per slice, amounting to around five minutes for a typical CT
image with 300 to 500 slices.

When comparing the performance of TASKNET1 to TASKNET2, an improvement
in the MAEves of 55 % in the contrast-enhanced vessels can be observed. Simultane-
ously, some metrics show a degradation in anatomical accuracy. However, these is-
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Table 4.3: The averaged evaluation metrics (± standard deviation) of the
task-based networks. Bold values indicate superior performance.

Metric TASKNET1 TASKNET2 TASKNET3
RCBV ↓ 0.07 ± 0.02 0.02 ± 0.00 0.05 ± 0.01
MAE ↓ 172 ± 47 159 ± 49 82 ± 15
SSIM ↑ 0.80 ± 0.10 0.61 ± 0.06 0.64 ± 0.08
FSIM ↑ 0.64 ± 0.05 0.53 ± 0.05 0.76 ± 0.03
EPR ↑ 0.22 ± 0.03 0.23 ± 0.03 0.47 ± 0.04
EGR ↓ 1.31 ± 0.19 1.49 ± 0.27 2.29 ± 0.45
NCC ↑ 0.45 ± 0.04 0.63 ± 0.10 0.92 ± 0.04

NMPE ↓ 30.3 ± 1.2 24.1 ± 4.1 20.8 ± 3.5
NMMR ↓ 2.08 ± 0.32 2.46 ± 0.77 2.38 ± 0.36

NM 24.4 ± 1.6 29.1 ± 2.1 30.4 ± 1.8
MAEves ↓ 256 ± 144 119 ± 47 71 ± 34

sues are not observed in the performance of TASKNET3. For TASKNET3, anatom-
ical accuracy metrics indicate superior performance closer to the Poisson baseline
values, while at the same time improving the generation of realistic noise properties.
Consequently, the output images of TASKNET3 are chosen for the following proof-
of-principle experiment.

In Figure 4.4, a graphical comparison of (b) a synthetic CT slice to (a) the corre-
sponding XCAT slice and (c) a real CT image obtained from a similar body region
is shown. In particular, the synthetic slice accurately depicts the anatomy provided
by the XCAT phantom, from high contrast structures such as bones and contrast-
enhanced vessels, down to low contrast in soft tissue regions. In comparison to the
real CT, however, major similarities regarding realistic CT noise as well as the CT
characteristic imaging performance in the bone regions are observed. Moreover, the
blurred appearance of the lung vessels are also reproduced. One apparent difference,
however, can be seen in the left cardiac chamber, which is contrast-enhanced in the
XCAT phantom, but not in the in-house CT images.

Apart from the similarities, it is also clearly observable, that certain features from
the XCAT slice are in fact not preserved during CycleGAN processing. This is
particularly noticeable in the bony regions, where for example the spine structure
is substantially altered by the CycleGAN when comparing to the original XCAT
input. Furthermore, bony structures are artificially generated, which is visible in
the central right region, near the ribs. Here, bony structures are generated with
no baseline in the corresponding XCAT slice. This behaviour is also observed via
higher values in the EGR metric. Due to this behavior, the CycleGAN approach is
not further investigated for the simulation of CBCT images. Instead, the simulated
CT images are used to study the benefits of incorporating simulated CT images
when training neural networks for segmentation (Section 4.1.1).
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(a) (b)

Figure 4.5: Segmentation by the U-Nets trained on (a) a real data set and
(b) combined data set of both real and synthetic CT images. Green indicates
where the segmentation matches the GT, red indicates false negatives and
blue false positives. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature International Journal of Computer
Assisted Radiology and Surgery ©2019.

(a) (b)

Figure 4.6: Bare beam fluence on the detector simulated with GATE using 20
billion photons emitted in conical shape from the source towards the detector.
The bare beam fluence in (a) can be corrected for the inverse-square law to
yield a stable noise level (b).
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(a) (b)

Figure 4.7: Fluence values on the detector simulated with the slanted tungsten
wire phantom for (a) the MC approach and (b) the Astra projection operator
plus noise model.

Table 4.4: Coefficient of determination (R2) for the linear regression model
applied to the center-of-mass positions, FWHM of the one-dimensional MTF
and MPE of the alternative orbits in relation to the circular orbit are tabulated.

GATE Projection operator
Metric Circular Tilted Triple-arc Circular Tilted Triple-arc

R2 ↑ 0.999 0.996 0.995 0.999 1.000 0.997
FWHM [mm−1] ↑ 0.667 0.600 0.534 1.101 0.881 0.561

MPE [%] ↓ / 15.1 20.3 / 6.5 30.4

Segmentation Study

In the segmentation study, a DSC of 0.72 ± 0.05 is obtained with the U-Net trained
on synthetic images (from TASKNET3), 0.78 ± 0.11 with the U-Net trained on
in-house CT images and 0.83 ± 0.05 with the U-Net trained on a combined data
set of both sources. Figure 4.5 shows the vessel graphs segmented by the U-Nets
trained on (a) real data and (b) the combined data set compared to the GT. Here,
the largest vessels are correctly segmented. However, all networks showed a high
abundance of false negatives for smaller blood vessels.

4.1.2 Comparison of Monte-Carlo and
Projection Operator Simulations

To investigate adequate simulation of CBCT projections two different methods are
compared: MC simulations and a projection operator based approach. For the MC
simulations, a bare beam fluence of 20 billion photons is simulated without any
object between source and detector and the resulting detector counts are shown in
Figure 4.6a. Upon visual inspection, the fluence level is observed to decrease with
increasing distance from the image center, which coincides with the center of the
detector. Compared to the bare beam fluence projection that is corrected for the
inverse-square law, this behavior virtually disappears and a stable noise level is ob-
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(a) (b)

Figure 4.8: Axial slices and magnified central regions of the reconstructions
calculated via SIRT of (a) the MC simulations and (b) of the projection op-
erator simulations.

(a) (b)

Figure 4.9: Linear regression model applied to the COM positions in each
slice in z-dimension (a) and the resulting LSF in x-direction with sub-voxel
precision (b) obtained using the projections simulated with GATE for a tilted
circular orbit.
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(a) (b)

Figure 4.10: One dimensional MTF for (a) GATE simulations and (b) projec-
tion operator simulations of the circular, the tilted circular and the triple-arc
orbit.

served in all regions of the projection.

By averaging 20 realizations of bare beam fluence simulations a baseline bare beam
fluence I0 is calculated, which is then used for the log-transformation of the simu-
lated projections before reconstruction, yielding attenuation line integrals. In the
next step a water cylinder containing a slanted tungsten wire is incorporated as the
imaged object in the simulation. One exemplary projection of the circular orbit is
shown in Figure 4.7a with a grayscale window adapted to underline the contrast in
photon counts. The slanted tungsten wire is clearly visible with lower photon counts,
i.e. more attenuation. A decrease in photon counts for increasing distance from the
center can be observed in the profile along the longitudinal axis of the cylinder.

On a local, non-optimized machine with four CPU cores 4 ∗ 105 particles can be
simulated per minute (4 ∗ 105 particles per core) amounting to a calculation time of
about five weeks per projection, consisting of 20 billion particles each. Processing
time for 200 projections would therefore be around 20 years with this hardware. In
comparison to the local machine, GateLab provides 500 cores per submitted job and
allows ten simultaneous jobs per user, amounting to the availability of 5000 cores.
In total, the calculation of 200 projections using GateLab takes about eight days.

To investigate a faster method for simulation, a projection operator based method
with an added noise model is evaluated. In contrast to the MC method, the bare-
beam fluence can be incorporated directly in the noise model and no bare beam
fluence simulations are needed. An exemplary projection of the slanted tungsten
wire phantom is depicted in Figure 4.7b. Reduced photon counts behind the slanted
tungsten wire are clearly visible, while the water cylinder throws a clear rectangle
’shadow’ with increasing counts towards the upper and lower edge of the cylinder.
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In comparison to the GATE simulations, the photon count values behind the water
cylinder are fluctuating in a similar range interval between 450 and 550 counts. In
contrast to the MC projections, there is no inverse-square law to be corrected for.
The simulation of a whole set of 200 projections including the noise model takes 7.5
minutes on the local machine, 0.7 ‰ of the GateLab calculation time. Ten seconds
of those seven minutes are needed for the projections and the remainder for the
noise simulation. A substantial reduction in calculation time can be achieved by
decreasing the number of detector pixels.

The above described projections are simulated for three different orbits: standard
circular, tilted circular and a triple-arc orbit, illustrated in Figure 3.8. The 100
iterations of SIRT reconstruction performed on the simulated projection data take
around one hour per set of projections. Axial slices of the SIRT reconstruction ob-
tained with the tilted circular orbit are shown in Figure 4.8, one each for the MC
and for the projection operator simulations. While the reconstruction obtained from
the MC simulations exhibits beam hardening artifacts in the form of underestimated
attenuation coefficients towards the center of the cylinder, no such artifacts can be
found in the volume reconstructed from the projection operator simulations. Fur-
thermore, a minor ring artifact around the tungsten wire can be observed in the
magnified region of the MC reconstruction. At the same time, the tungsten wire
appears slightly more blurry in the reconstruction simulated with the projection
operator.

From these reconstructions, the MTF in the direction longitudinal to the x-dimension
(dimension perpendicular to the tilt of the tungsten wire) can be calculated using
the oversampled LSF approach. The linear regression model applied to the COM
positions for each reconstruction slice is shown in Figure 4.9 together with the result-
ing oversampled LSF, both exemplary depicting the evaluations of the tilted circular
orbit. It can be observed, that there are some outliers in the COM data that did
not fit the linear regression model. The obtained oversampled LSF exhibits a peak
with sub-voxel precision (sampling rate of 10/voxel) overlayed with noise. The LSF
is Fourier-transformed to yield the one-dimensional MTF, depicted in Figure 4.10.
An overview of the evaluation metrics (R2, FWHM and MPE) is provided in Ta-
ble 4.4. For both methods, there is the most favourable values for the circular orbit,
indicating the best performance. The tilted circular orbit yields the second-most
favorable outcome, while in general the predicted MTF is higher for the projection
operator based method. The least favorable results are predicted for the triple-arc
orbit, while the MPE metric for this orbit is slightly worse for the projection opera-
tor based simulations. The implementation of the MTF evaluation takes around 15
seconds of calculation time per reconstructed image.

Summarizing computation time, the simulation of each set of projections takes 8
days for the MC method and 7.5 minutes for the projection operator approach.
In addition, the SIRT reconstruction is computed in one hour and the final MTF
evaluation in 15 seconds. In comparison, an implementation of a state-of-the-art de-
tectability calculation (without Fourier plane optimization) [21] takes around three
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Figure 4.11: Sagittal slice of an XCAT phantom overlaid with a relative dose
map simulated using GATE.

days on the same hardware.

Apart from simulating the signal on the detector, GATE simulations can be used
to calculate the physical dose imparted in the imaged object. To demonstrate this
capacity for anthropomorphic data, one realization of the digital XCAT phantom
is incorporated and the relative dose in each image voxel is calculated. A sagittal
slice of the phantom overlaid with a relative dose map is depicted in Figure 4.11.
A distinctly conical dose distribution in the central torso region can be observed.
bony structures and regions more closely located to the body surface show more
pronounced dose values.

4.2 Fast Reconstruction of Arbitrary CBCT Orbits Us-

ing CNNs

This section shows the results for the experiments performed for a novel method
to reconstruct CBCT images from arbitrary orbit geometries. The proposed algo-
rithms consists of a deconvolution operation with the system response followed by
CNN processing. First, the appropriate method for regularizing the deconvolution
operation is investigated (Section 4.2.1), the algorithm is applied to single geometries
(Section 4.2.2) and ultimately to arbitrary geometries (Section 4.2.3).

4.2.1 Regularization of Deconvolution

To evaluate different methods of regularization in Fourier domain, a parameter
sweep is performed and the resulting deconvolved volumes are qualitatively assessed.
Specifically, a quadratic penalty, a complex rescaling to threshold value and a fix-
ating to threshold value approach are compared. A representative comparison of



4.2. Fast Reconstruction of Arbitrary CBCT Orbits Using CNNs 65

Figure 4.12: The first row shows the central slice of the Fourier transformed
system response F

{
ATAej

}
of a φ = sin(3θ) orbit - divided into real (left

column) and imaginary part (right column). The second to fourth rows show
the profile through the central row of the Fourier transformed system response
for unregularized (second row), complex rescaled (third row) and thresholded
regularization data. The x-axis in these 3 rows shows the column number.
Note the regularized regions in columns 90-130 and 380-420, where modulus
values exceed the selected threshold of 0.0015.
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Figure 4.13: Axial slices of deconvolved image volumes obtained via differ-
ent Fourier regularization methods for one random orbit. Each column cor-
responds to a specific method, from left to right: original phantom volume;
quadratic penalty; fixed values at threshold; values rescaled to threshold. Rows
from top to bottom increase in regularization strength λ, each image contains
the utilized regularization value in white.
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methods and regularization strengths is illustrated in Figure 4.13, obtained with
one random orbit.

At the low end of the regularization strength, there is substantial amount of high-
frequency noise distorting the images and thereby complicating the recovery of the
original features by the CNN. This is particularly noticeable in an alternating grid
structure at the upper left corner as well as stripe artifacts throughout the whole de-
convolved volume of the deconvolution obtained with the quadratic penalty method.
In addition, the center sagittal slices show a major decrease in attenuation values
while the sagittal slices neighboring the central slice show an increase. This behavior
is noticeable for all regularization methods and is consistently less visible for higher
regularization strengths. When increasing regularization strength for the quadratic
penalty method, the high-frequency grid starts transforming into a randomly di-
rected composition of sinusoidal waves of decreasing frequency. At the same time,
high-frequency features such as edges become less visible. The latter is true for all
regularization methods when increasing regularization strength.

A point of ideal trade-off between lost high-frequency content, dominant high-
frequency noise and sagittal artifacts is selected for each method; namely regu-
larization strengths of λ = 0.0002, λ = 0.0008 and λ = 0.0008 for the quadratic
penalty, complex rescaling and the thresholding method, respectively, are chosen
based on qualitative inspection. In comparison with the rescaling and thresholding,
the regularization strength for the quadratic penalty approach can not be satisfac-
tory chosen in order to match the qualitative performance of both other methods.
For the latter, a common ideal value of the regularization strength lead to compa-
rably good performance.

One disparity of the rescaling method compared to the thresholding regularization is
illustrated in Figure 4.12. Here, an exemplary Fourier transformed system response
is depicted - divided into real and imaginary part. The profiles through the central
row of the image are also shown. In the real part of the profile, the differences be-
tween regularized and non-regularized in the thresholded regions (λ < 0.0015 in this
case) are noticeable, namely for column numbers around 90-130 and 380-420. While
the non-regularized profile contains some oscillations in this region, the regularized
profiles are fixated to the threshold value. In contrast to the real part, the imaginary
part of the profile obtained with the rescaling approach is perfectly preserved. This
is not the case for the thresholding approach, where all values in the above described
region are set to zero.

For the following reconstructions, the thresholding regularization is chosen for our
initial study where the proposed reconstruction pipeline is applied only to single
geometries (Section 4.2.2), but eventually the rescaling method is favored for the
application to arbitrary orbits (Section 4.2.3).
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Figure 4.14: Intermediate image volumes and final reconstruction outputs from
the reconstruction pipeline. Each column corresponds to a set of imaging
geometries. Rows from top to bottom: elevation angle φ as a function of
rotation angles θ; backprojected volume; volume after deconvolution; CNN
reconstruction; zoomed in region of interest (ROI) within the slice; difference
image between the reconstructions and GT phantom images (axial slices). The
backprojection volumes underline the suppression of high-frequency content by
the ATA operation. Note the central slice artifacts in the deconvolved volumes
of the sin(3θ) and the random orbit. They are not noticeable in the circular
and the sin(2θ) orbit volumes.
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Table 4.5: Evaluation metrics for the proposed pipeline compared with SART.
All metrics are evaluated between the reconstructions and GT phantom im-
ages. The better of two values is marked bold.

circular sin(2θ) sin(3θ)

P
ro

p
. nRMSE ↓ 0.033± 0.005 0.048± 0.007 0.060± 0.008

FSIM ↑ 0.991± 0.005 0.983± 0.010 0.979± 0.010
SSIM ↑ 0.994± 0.002 0.987± 0.004 0.984± 0.003

S
A

R
T nRMSE ↓ 0.116± 0.013 0.105± 0.016 0.109± 0.015

FSIM ↑ 0.937± 0.019 0.943± 0.015 0.940± 0.015
SSIM ↑ 0.941± 0.011 0.963± 0.011 0.956± 0.011

sin(2θ)&sin(3θ) random

P
ro

p
. nRMSE ↓ 0.062± 0.007 0.061± 0.009

FSIM ↑ 0.977± 0.013 0.979± 0.013
SSIM ↑ 0.944± 0.013 0.985± 0.007

S
A

R
T nRMSE ↓ 0.107± 0.016 0.108± 0.015

FSIM ↑ 0.942± 0.015 0.941± 0.015
SSIM ↑ 0.960± 0.011 0.958± 0.010

(a) (b)

Figure 4.15: Plot of the loss functions for training and validation data sets of
(a) the reconstruction CNN applied to both sin(2θ) and sin(3θ) orbits as well
as (b) the reconstruction CNN trained on tetrahedral data for 70 epochs (red,
vertical line indicates 70 epochs), fine-tuned on LIDC data for 30 epochs and
applied to random orbits.
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4.2.2 Application to Single/Dual Geometries

To investigate the feasibility of the proposed reconstruction pipeline, the initial focus
is on its application to data from single orbits. Starting with circular orbits, this
approach is applied to simple sinusoidal orbits and eventually a linear combination
of sinusoidal basis functions with randomly generated coefficients. To investigate
the ability of the proposed approach to generalize to more than one orbits, its ap-
plication to two different sinusoidal orbits at the same time is also investigated.
Intermediate images and final reconstruction outputs are illustrated in Figure 4.14.

The evaluation metrics are calculated for 10 test cases the networks have not seen
before; they are compared in Table 4.5, for both the proposed reconstruction pipeline
as well as SART. To illustrate training convergence and check for differences in the
loss metric between training and validation data sets, the network loss metric of
both data sets is plotted logarithmically in Figure 4.15a exemplary for the network
trained on both sin(2θ) and sin(3θ) orbits. As the decrease of the loss function of
both data sets is reaching a plateau, the metric values are simultaneously reaching
convergence at an nearly identical loss level.

To mitigate artifacts originating from the boundary value problem, the size of the
backprojected volumes (system response, ray density, backprojection of projection
data) is increased to 512 voxels in every dimension. Note the residual artifacts in
the deconvolved volumes of the sin(3θ) and the random orbit, which are not notice-
able in the circular and the sin(2θ) data. Further investigations also show, that the
deconvolved volumes obtained with a sin(4θ) orbit exhibit none of these artifacts.
This indicates that the proposed regularization methods and the increase of back-
projected volumes are not sufficient to consistently mitigate artifacts.

The CNN-based approach consistently outperforms the SART reconstructions in
terms of nRMSE and FSIM. This is also the case for SSIM except for the network
trained on two sinusoidal geometries. After CNN processing, the tetrahedron out-
lines and attenuation values are well recovered for all orbit geometries. While SART
performs comparably for all geometries with only slight deviations, the performance
of the CNNs show noticeable differences for the different geometries. Specifically,
reconstruction performance decreases with increasing orbital complexity. This is ap-
parent in the slightly decreasing evaluation metrics, in the magnified areas and the
difference images in Figure 4.14. The magnified regions contain fine-grain details,
which every CNN struggles to reconstruct accurately, while the best performance is
observed for the circular orbit and a decrease is observed for increasing orbital com-
plexity. Compared to the networks trained on single geometries, visual inspection
and the calculated metrics indicate only minor performance decrease of the network
trained on two different geometries - sin(2θ) & sin(3θ).

To evaluate the performance consistency, the standard deviation of the calculated
evaluation metrics can be examined. Compared to SART, the proposed reconstruc-
tion pipeline shows generally lower standard deviations, i.e. more consistent re-
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Figure 4.16: Axial slices of intermediate image volumes and reconstruction
outputs obtained with a random orbit and tetrahedral data. Columns from
left to right: phantom input; volume after deconvolution; CNN reconstruction;
MBIR reconstruction. Rows from top to bottom: Axial slice; zoomed in ROI
within the slice; axial slice of the difference image between the respective
volume and GT.

construction performance. While performance consistency seems to be independent
of the type of reconstructed orbit geometry for the SART algorithm, the proposed
approach performs less consistent with increasing orbit complexity.

The majority of the computation time for the proposed method is spent on the cal-
culation of the system response (five minutes), the remainder for the backprojection
(3.5 seconds), the calculation of the ray density (30 seconds), and ultimately for the
deconvolution operation (20 seconds). The CNN prediction itself takes around 1
second, resulting in 6 minutes of overall computation time. In comparison, SART
reconstructions take approximately 50 minutes for 50 iterations on a workstation
with comparable specifications. Aside from the CNN processing, which has been
performed on a computing cluster with optimized software, the mentioned imple-
mentations have not been optimized for runtime.

4.2.3 Application to Random Geometries

This section outlines the experiments performed to apply the proposed reconstruc-
tion pipeline to a general class of random acquisition orbits, with some minor adap-
tions compared to the single orbit approach. Here, the networks are trained on 1000
unique phantoms matched with the same number of unique orbits. This means that
the orbits in training, validation and test data set are composed of data obtained
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Figure 4.17: Axial slices of intermediate image volumes and reconstruction
outputs obtained with a random orbit and LIDC data. Columns from left to
right: phantom input; volume after deconvolution; CNN reconstruction; MBIR
reconstruction. Rows from top to bottom: Axial slice; zoomed in ROI within
the slice; axial slice of the difference image between the respective volume and
GT.

Table 4.6: Evaluation metrics calculated between the reconstructions and GT.
The results of the proposed reconstruction pipeline are reported for the tetra-
hedral data and for the LIDC data, where the network is pre-trained on tetra-
hedral data and then fine-tuned on anthropomorphic data. The better of two
values is marked bold.

Proposed Tetrahedrons LIDC

nRMSE ↓ 0.073± 0.016 0.060± 0.012
FSIM ↑ 0.978± 0.017 0.988± 0.006
SSIM ↑ 0.983± 0.007 0.977± 0.012

MBIR Tetrahedrons LIDC

nRMSE ↓ 0.033± 0.006 0.045± 0.006
FSIM ↑ 0.992± 0.005 0.992± 0.002
SSIM ↑ 0.986± 0.006 0.969± 0.011
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with different orbits. The network therefore needs to learn to handle data obtained
with orbits it has not been previously trained on. In addition, the regularization in
Fourier domain has been adapted to the complex rescaling method instead of the
thresholding operation used for the application to data obtained with single orbits.
To mitigate artifacts originating from the periodic boundary conditions - instead of
increasing the size of the backprojected volumes during the calculation of the system
response as performed above for single orbits - the impulse responses are zero-padded
in Fourier domain, doubling the size of the volumes from 256 to 512 voxels before
inverse Fourier transformation. Compared to the experiments for single orbits, the
implementation of the proposed reconstruction routine was improved to yield faster
computation times.

The intermediate (deconvolution only) images and the final reconstruction outputs
are illustrated in Figure 4.16 for the reconstruction pipeline applied to tetrahe-
dral data and random acquisition orbits. The same illustrations are depicted in
Figure 4.17 for the application to anthropomorphic data and arbitrary geometries.
Performance is quantified with the calculated evaluation metrics, shown in Table 4.6.

Notable differences between the deconvolved volumes and the phantoms can be
observed, especially at the edges. After CNN processing, differences at the edges
are substantially reduced. Similar observations can be made in the magnified re-
gions, where the CNN manages to recover some of the fine detail from the blurry
deconvolved volumes. Performance differences are also observed between the re-
construction of tetrahedral and anthropomorphic data. Specifically, the proposed
reconstruction technique performed more accurately and consistently for anthropo-
morphic data.

In comparison, MBIR provides generally improved noise-suppression, better recon-
structing fine details. While MBIR consistently outperforms the CNN-based ap-
proach in terms of nRMSE, FSIM and SSIM, performance differences are not par-
ticularly large with most differences appearing at the finest level of detail. In terms
of consistency, MBIR performs comparably for all test cases, resulting in low stan-
dard deviations for the calculated evaluation metrics. Compared to the proposed
reconstruction approach, MBIR performs more consistently. Also, MBIR performs
notably superior on tetrahedral data than on anthropomorphic data.

There is substantial difference in computation time between the iterative reconstruc-
tion technique and the proposed reconstruction scheme. The MBIR needs twelve
seconds of computation time per iteration, amounting to 20 minutes for 100 itera-
tions. The proposed reconstruction approach took 20 seconds for the calculation of
the system response. In combination with the backprojection (3 seconds), the cal-
culation of the ray density (30 seconds), the deconvolution operation (20 seconds),
and the CNN prediction (one second) this amounts to below 90 seconds of overall
computation time.
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To illustrate training convergence and check for differences in the loss metric between
training and validation data sets, the network loss metric of both data sets is plotted
logarithmically in Figure 4.15b for the network trained on tetrahedral data and
anthropomorphic data. After 70 epochs, or 44800 steps, training is restarted with
anthropomorphic data. There is no notable jump in the loss metric after 70 epochs,
which indicates consistent performance regardless of the object to be reconstructed.
As the decrease of the loss function of both data sets nearly reached a plateau
after 70 epochs, there is only minor decrease in the loss metric after the switch to
anthropomorphic data, indicating overall convergence.



5. Discussion
The main goal of this dissertation is to facilitate the implementation of arbitrary
CBCT orbits in clinical applications. To better exploit the full potential of arbi-
trary acquisition orbits, two algorithmic steps are optimized in this work: 1) three
different methods of simulating CT images are investigated to prospectively opti-
mize imaging performance, and allow faster identification of viable alternatives to
the standard circular trajectory; and 2) the investigation of novel methods for fast
reconstruction of arbitrary CBCT orbits based on exploiting the speed of CNNs to
reduce computation time.

In the past, it has been shown that the study of task-based detectability provides
the most comprehensive approach to prospectively optimize the orbit geometry to
achieve superior image quality, taking into account information about both the im-
aged object as well as the imaging task [21],[22]. This procedure can be applied to
optimize performance for very general imaging scenarios, but is very time consum-
ing as it exhausts a wide solution space. Alternatively, a smaller selection of orbits
can be compared to explore some viable options for specific imaging scenarios in
a shorter time. In addition, the detectability method has not yet been applied to
cases, where interfering surgical equipment is blocking parts of the actuation/solu-
tion space. In combination with its computational complexity, these issues prevent
the detectability approach from being implemented into routine clinical practice.
Therefore, a faster approach to prospectively optimize acquisition geometries based
on the available actuation space needs to be investigated and validated.

In addition to prospective optimization, time consuming image reconstruction tech-
niques are another major limitation to the optimization and eventual implementa-
tion of arbitrary acquisition orbits in routine clinical practice. Analytically exact
solutions are available for specific cases of geometries such as saddle trajectories and
line-ellipse-line orbits [59],[118] but cannot be applied to a general class of orbits
without modifications. Instead, time consuming MBIR is often performed to pro-
vide a best estimate based on the available data. Faster reconstruction techniques
are needed to accommodate the time constraints in interventional imaging.

This chapter is comprised of two main sections. In the first section, three CT image
simulation methods are evaluated and compared. First, a CNN-based approach in
the form of a CycleGAN architecture is used to transform digital body phantoms
directly into the CT image domain. A novel framework of already established and
newly proposed evaluation metrics is developed to evaluate accurate anatomical fea-
tures and realistic noise characteristics. Second, a MC approach is implemented
and optimized for runtime to simulate arbitrary CBCT orbit projections using only
publicly available algorithms and resources. Third, a projection operator algorithm
is used in combination with an additive noise model to simulate projections of ar-
bitrary CBCT orbit geometries. This is done to investigate a fast alternative while
having a baseline state-of-the-art MC algorithm available for validation purposes.
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In the second section, the results of the proposed fast reconstruction technique for
non-circular CBCT geometries are discussed. For the first time - to the best of the
author’s knowledge - a deconvolution operation with the geometry-dependent system
response in the backprojection domain is combined with a CNN post-processing
step. Parts of the discussion were published in [85]1, [87], [86], [88] and [89] and the
corresponding descriptions are adapted and partly replicated thereof.

5.1 CT Simulation and Evaluation

5.1.1 CT Synthesis Using CycleGAN

A CT synthesis framework based on the CycleGAN architecture is presented and
evaluated using various already established as well as newly developed image quality
metrics. The synthetic CT images are evaluated in terms of anatomical accuracy
and realistic noise properties compared to the XCAT phantom input and reference
CT images.

In the configuration study, the performance of eight CycleGANs are compared using
the proposed image evaluation framework. Lower performance is found for networks
using the U-Net architecture as generators, particularly for the MAE. Consequently,
the U-Net architecture is considered inappropriate for the task of CT synthesis based
on digital body phantoms. One possible explanation for the inferiority of the U-Net
is that the skip connections of the U-Net do limit synthesis performance in this sce-
nario. More research is needed to explore this hypothesis. The Res-Net architecture
proves to be an ideal generator network, not only in the context of this work, but
also during other studies carried out in our group on the synthesis of CT, CBCT
and MRI images [119],[120],[121],[122].

The comparison in terms of the different number of input slices and the use of body
contours yields favorable results for the networks trained with three input slices
and without any pre-processing using the body contour. In particular, the realistic
noise properties are accurately modeled. Apparently, it is not beneficial to show
the network more than three input slices at a time to learn dependencies between
slices. This is intuitive for the process of reproducing realistic noise properties, since
there is no correlation of noise in the z-dimension for the MDCT images used in this
study. However, more information from adjacent slices can potentially contribute to
the recovery of anatomical features. In fact, the inclusion of additional information
does not improve the synthesis performance in terms of anatomical accuracy. A pos-
sible explanation for this is that the network learns to synthesize anatomical features
exclusively from the input XCAT phantom and not from the interdependences of
anatomical structures in the training CT image, since the training samples are not
matched. Based on these observations, the Res-Net architecture with three input
slices and no body contour is considered for the subsequent task-based study, during
which the training data set is extended and a task-based loss function is used for

1Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Na-
ture International Journal of Computer Assisted Radiology and Surgery ©2019



5.1. CT Simulation and Evaluation 77

training.

The comparison of three task-based networks shows substantial improvements in the
form of more accurate vessel annotations, observed via the MAEves metric. These
improvements are facilitated by the adaption of the loss function, which can be
observed in a direct comparison of a network without (TASKNET1) and one with
(TASKNET2) the use of this loss function. Moreover, the use of additional CT
images from public sources as training data for the synthesis networks is investi-
gated. The public source images contain a variety of noise textures due to varying
scan properties such as the used reconstruction kernel. The results show that the
scan-specific training with in-house CT images (TASKNET3), which also uses the
modified loss function, performs better than the network trained with public CT
images (TASKNET2). The characteristic noise is modeled most accurately and the
XCAT anatomy is preserved most accurately by TASKNET3. This is due to the
diversity of reconstruction kernels and thus noise texture in the training data of
TASKNET2. Consequently, the training of scan specific networks and the adaption
of the CycleGAN loss with a task-based loss function is recommended for future
studies. The XCAT phantom provides segmentations for most anatomical struc-
tures, which allows the adaption of the loss function to many tasks, i.e. body regions
or anatomical structures, such as liver contour preservation to generate training data
for liver segmentation.

However, in all studies, the generation of arbitrary anatomical structures without
any connection to the corresponding XCAT phantom is observed, which is clearly
noticeable in the generated images as well as the EGR metric. Although CycleGAN
is the fastest simulation method studied (one second per CT slice, i.e. around three
to five minutes per CT image), this is a major shortcoming. Such arbitrary changes
in anatomy can not be avoided by refining the network architecture or adjusting
the loss function. Synthesis of MDCT images with this method is a first step be-
fore moving to standard CBCT images and eventually CBCT images obtained with
non-circular acquisition orbits. However, the random generation of morphological
structures in the simulated images substantially compromises their intended pur-
pose, namely the evaluation of imaging performance, and is therefore considered
to be impractical. Furthermore, to train CycleGANs for the synthesis of CBCT
obtained with non-circular trajectories, training data in the form of images of pa-
tients and/or objects is required. A comprehensive data set is not yet available
because the implementation of such orbits on clinical devices is an ongoing effort
[24],[20],[35],[27]. Therefore, the synthesis of CBCT images acquired with arbitrary
acquisition geometries using CycleGANs needs to be explored in future research.

Instead of using this method to simulate CBCT images to evaluate the image quality
of different acquisition orbits, CT images are synthesized and subsequently used as
training data for CT image segmentation tasks. In particular, a proof-of-principle
experiment is performed using the synthetic CT images generated with TASKNET3
and real CT scans to train blood vessel segmentation networks. Performance eval-
uation with DSC revealed that training the segmentation network exclusively on
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real data performed superior than training exclusively on synthetic data. However,
combined training on both real and synthetic data showed the best performance,
underlining the applicability of synthetic CTs as a form of data augmentation for
segmentation networks.

5.1.2 CBCT Simulations using Monte-Carlo
and Projection Operator Methods

Projection Simulations

The projection data are simulated and compared using two approaches that differ
substantially in terms of physical precision and computational cost. At the high
end of physical precision, an MC approach is used that is able to incorporate the
relevant physical interaction processes in the image formation process, simulating
each photon emitted from the X-ray source separately. In a first step, the bare beam
fluence on the detector is simulated. Due to the flat shape of the detector and thus
the different distances of the pixels to the source, the fluence decreases with increas-
ing distance from the detector center. This effect can be accounted for by correcting
with the inverse-square law. To this end, the counts in each pixel are multiplied by
the ratio of the squared distance of the pixel from the source over the squared dis-
tance of the detector center from the source. For the following processing steps, each
CBCT projection simulated with objects in the beam line is divided pixel-wise by
the average value resulting from 20 realizations of the uncorrected bare-beam fluence.

In addition to MC simulations, a distance-driven projection operator is used to sim-
ulate CBCT projections. Here, each detector pixel value is the sum of the traversed
image voxel values, weighted by a factor dependent on the distance of the virtual ray
(from the source to the detector pixel) from the respective voxel center. The result-
ing line integrals are then converted to photon fluence values using the Lambert-Beer
law. This allows the incorporation of a noise model based on the photon counts.
Apart from this, no further refinements are made to imitate a realistic image forma-
tion process.

When comparing the two projection simulation approaches, there are noticeable
beam hardening artifacts in the reconstructions obtained from the MC projection
data, which are not present in the data obtained from the projection operator. In
addition, the MC data exhibits minor ring artifacts around the tungsten wire that
are not reproduced by the projection operator data. However, modeling this behav-
ior is critical to ensure realistic prediction of the imaging performance for different
orbits. Therefore, these are considered to be major constraints on the projection
operator based CBCT simulations.

In the next step, 200 projections are simulated with each method for three different
acquisition orbits, a standard circular orbit and two alternative trajectories, which
would increase the flexibility of the CBCT system to maneuver the CBCT device
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around potentially interfering surgical equipment. Compared with the MC projec-
tions, the projection operator simulations yielded a stable mean of attenuation values
along the longitudinal axis of the cylinder phantom, as bare beam fluence is set to
a constant value of 7800 for each detector pixel; this value is chosen to match the
bare beam fluence values observed for the MC data. Furthermore, the fluence values
behind the phantom range from 350 to 450 counts per pixel for both MC and pro-
jection operator simulations, indicating that the choice of phantoms and ultimately
the simulation methods provide consistent results in terms of absolute numbers.

In the context of modeling a realistic image formation process during projection
simulation, there are some limitations to the simulation methods studied. In the
MC approach, the simulations can be closer to reality if accelerated electrons are
selected as primary particles. In combination with the inclusion of the tungsten
anode in the scenario, no assumptions need to be made on the number of photons
or the expected X-ray spectrum. However, the use of SpekCalc data is considered
to be sufficient for the intended purpose of the simulations since their data was
validated using MC simulations. Additionally, the modeled X-ray spectrum does
not include any pre-filtration that might be implemented in the simulated CBCT
device. However, no detailed information about pre-filtration is publicly available
for the modeled artis zeego system. Another limitation in the MC simulations is
the lack of inclusion of the detector time resolution caused by the dead time of the
detector crystals. Instead, the temporal independence of all incident photons on
the detector is assumed. This leads to an overestimation of the number of detected
photons, since sometimes multiple photons hit the sensitive area of the detector
coincidentally, leading to a signal build-up and detection of only one event instead
of the actual number of events. In reality, electronic noise introduces a Gaussian
distribution around the expected number of photon counts in the detector, which is
not modeled in the GATE simulations, but can be added to the simulated projection
images in the future.

For the projection operator based simulations, a more realistic approach can incor-
porate the simulation of beam hardening artifacts. This can be done by considering
the fluence distribution of the X-ray spectrum and setting up energy bins with their
respective photon fluence. Due to the non-linear energy dependence of the attenu-
ation coefficients of different materials at different energies, multiple realizations of
the phantom need to be generated for different energy ranges. This approach can
then merge mono-energetic projection simulations for different energy bins to obtain
multi-energetic projections by using the fluence as weighting factors [123].

MTF Evaluation

The one-dimensional MTF is calculated from the reconstructed volumes using the
oversampled LSF approach for all orbits and both simulation methods. In the case
of circular orbits, the MTF calculated with this method should match in x- and y-
direction due to the internal symmetry of the imaging system. However, in the case
of non-circular orbits, the MTF in x-, y- and z-direction can deviate. For simplicity,
the MTF is only considered and compared in the x-direction. A calculation of MTF
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in y- and z-direction requires separate phantoms with wires slanted in orthogonal
directions as well as separate time consuming GATE simulations.

To obtain the MTF, the first step is to calculate the COM for each slice, determin-
ing the point of maximum attenuation. A linear regression model is fitted to the
COM data and the sub-voxel position of the tungsten wire is determined. However,
pronounced noise levels in the reconstructed volumes around the wire resulted in
some mislocalized COM positions. The goodness of fit indicated robust fitting per-
formance and can confirm COM positions regardless of these outliers. Determining
the position of the tungsten wire in each slice allowed to arrange all LSF curves in
z-dimension. In this way, a combined LSF curve with a sub-voxel sampling rate of
10 samples per voxel is produced.

Finally, the oversampled LSFs are Fourier transformed to yield one-dimensional
MTFs for all orbits and both simulation methods. This experiment is conducted to
determine the most favorable alternative orbit for the case where a circular orbit is
not feasible due to constraints on the available actuation range, for instance due to
interfering surgical equipment. The predicted MTFs indicate the best imaging per-
formance for a circular orbit with a FWHM of 0.667 mm−1 using GATE simulations
and 1.101 mm−1 with the projection operator. Both simulation approaches pre-
dict the second-best performance for the tilted circular orbit (FWHM=0.600 mm−1,
MPE =15.1 % with GATE, and FWHM=0.881 mm−1, MPE =6.5 % with projection
operator), favoring it over the triple-arc trajectory (FWHM=0.534, MPE =20.3 %
with GATE, and FWHM=0.561, MPE =30.4 % with projection operator). This
difference in performance is more distinct in the projection operator based data,
which generally predicted better performance than the GATE data. This is intu-
itive because the GATE approach is able to model beam hardening and scattering
artifacts that result in poorer image quality in the reconstructed images. The MTF
evaluations clearly show that the tilted circular orbit is a better alternative to the
standard circular orbit when compared to the triple-arc trajectory.

The presented method of oversampling an LSF to calculate the one dimensional
MTF for the prediction of imaging performance is subject to certain limitations. A
major limitation is the high level of noise in the vicinity of the tungsten wire. This
considerably hinders accurate calculation of the MTF. In future simulations, this
can be avoided by substituting the water surrounding the tungsten wire with air.
Furthermore, in CBCT systems, the divergent beam geometry, insufficient sampling,
etc. lead to a system response that is not shift-invariant, i.e. imaging performance
varies over different image regions. Spatially varying results are to be expected
when evaluating MTFs. As a consequence, imaging performance must be evaluated
at various locations in the image, and not only in the center regions, as is the case
in the presented study.

Furthermore, the used approach of MTF calculation only yields one-dimensional
data, while a 3-dimensional approach is necessary to capture the imaging perfor-
mance more comprehensively. A possible solution to the mentioned limitations might
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be the calculation of the 3D PSF, based on locally distributed impulses in a water
cylinder. This allows the assessment of the extent of shift-variance as well as pro-
vide 3D information. However, this method is less accurate than the oversampled
LSF approach due to the use of less densely sampled PSFs. The MTF calculation
has recently been found to be insufficient for capturing task-specific imaging perfor-
mance of non-linear imaging systems [124]. An imaging system is considered to be
linear when the imaging output from a weighted sum of input signals is equal to the
weighted sum of the output from each individual input. An example for a non-linear
imaging system is a CT system incorporating an iterative reconstruction technique.
In these non-linear cases, imaging performance depends on the imaged signal, for
instance on its contrast. Therefore, a major step towards task-based imaging pre-
diction for non-linear systems is the calculation of the task transfer function (TTF),
which is obtained by computing the MTF from signals that resemble the actual
imaging task. For example, to predict task-based imaging performance in the case
of a biopsy needle localization task, high-contrast LSFs must be used (such as in
the presented method), while for tumor localization, low-contrast spheres must be
used instead to obtain the TTF.

By using GateLab to access the European Grid Infrastructure, the GATE simula-
tion time can be substantially reduced by a factor of 1200. Since the Astra-based
projection simulations take seven minutes of simulation time - about a thousandth
of the GateLab calculation time - this method is considered more favorable to select
adequate orbit designs. Reducing the computation time for prospective orbit op-
timization is particularly important given: 1) The abundance of recently proposed
orbits and thus the extent of the search space; and 2) the application of this ap-
proach in an intra-interventional imaging context in the form of real time prediction
of imaging performance, when time is of the essence. Compared to the time needed
for projection simulation, however, the 60 minutes required for 100 iterations of
SIRT reconstruction still make up most of the total computation time and underline
the need for a faster reconstruction technique in this context. Further reduction in
calculation time of the projection operator simulations can be achieved by omitting
the noise model, which takes 98 % of the calculation time. However, the inclusion
of this noise model in the projections is essential when comparing the imaging per-
formance of various orbit designs, as it plays an important role when predicting
imaging performance.

In summary, the presented method of prospective CBCT simulation and evaluation
of a selection of orbit designs can be used to predict imaging performance and iden-
tify adequate alternatives to standard circular orbits. Comparing the outcome of
both simulation methods, both lead to identical conclusions regarding orbit selec-
tion. This means that, notwithstanding the observed issues arising from inadequate
modeling of the underlying physical processes, the projection operator-based method
provides accurate simulation results in the cases studied. It is not only accurate, but
also fast enough to provide real-time orbit solutions in the future. However, further
validation in the form of more imaging scenarios and more orbits studied is required
for the use of this optimization method in routine clinical practice. A state-of-the-
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art MC approach is presented, which can be used for validation purposes in more
comprehensive studies. In addition, recently proposed orbit optimization schemes in
literature need to be included in such studies for comparison. At the same time, real
measurements on clinical CBCT devices are needed to verify the simulation results.
Due to their limited scope, the presented experiments can only be considered as
proof-of-concept.

Dose Deposition

Aside from the simulation of projection data, the capability of the GATE framework
to calculate the deposited dose is demonstrated. This is achieved by tracking indi-
vidual photon capture and scattering events in the digital XCAT phantom, which
is incorporated in the simulation scenario. The FOV of a CBCT resulting from a
circular orbit is clearly noticeable as a distinct conical dose distribution inside the
phantom, where most photon interactions are happening. Furthermore, deposited
dose is observed to increase closer to the phantom surface as well as in bones. The
former can be explained by the fact that the position of the maximum dose depo-
sition of photons in matter is close to the object surface. The deposited dose is
higher in bones because of the Z-dependency (Equation 2.26) of the photoelectric
effect, which is the predominant interaction mechanism in the lower diagnostic pho-
ton energy range. Bones consist of a matrix of hydroxyapatite, which is a compound
of calcium (Z=20) and phosphorus (Z=15), both high Z elements compared to ele-
ments most prevalent in body tissue such as oxygen (Z=8) or carbon (Z=6). The
higher electron density of bones further increases photon cross-section for Rayleigh,
Compton scattering as well as for the photoelectric effect.

In future research, this framework can be used to investigate orbit dependent dose
distributions and identify favorable trajectories in terms of choosing more tolerable
scenarios. When extending this approach to investigate dose deposited to the sur-
roundings, orbits can be selected to spare medical personnel that might be present
next to the patient during the imaging procedure. Avoiding dose exposure is partic-
ularly critical for medical personnel, as they are exposed repeatedly when conducting
interventional procedures which - under certain circumstances - require them to be
present in the room during imaging.

5.2 Fast Reconstruction of Arbitrary CBCT

Orbits Using CNNs

In this part, the experimental results of the presented reconstruction pipeline are
discussed. Fundamentally, the reconstruction scheme consists of an approximate
deconvolution operation with the geometry-dependent system response followed by
CNN processing to correct for any residual artifacts. Initially, different means of
deconvolution regularization in Fourier domain are evaluated and compared in Sec-
tion 5.2.1. In a first study in Section 5.2.2, the proposed pipeline is applied to single
orbit geometries to investigate the approach’s capability to reconstruct arbitrary
CBCT orbits and to generalize to handle more than one orbit. During the second
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study in Section 5.2.3, the reconstruction algorithm is applied to a general class of
orbits to investigate its generalizability to a wide range of different orbits.

5.2.1 Deconvolution Regularization

It is well known, that image deconvolution operations performed with discrete
Fourier transformations are sensitive to various forms of artifacts, which need to be
adequately corrected [125],[126],[127],[128],[129]. This is mainly due to the periodic
boundary conditions of the fast Fourier transform but also due to the overemphasis
of high frequency noise when deconvolving with a function that approaches zero at
its edges. To mitigate artifacts originating from the boundary value problem, the
impulse responses in Fourier domain is zero-padded to yield volumes with double
the edge length. This also helped to reduce computation time and further reduce
artifacts during the random orbit experiments.

To address further issues during image reconstruction, three methods of regulariza-
tion in Fourier domain are evaluated. To keep computational complexity as low
as possible, the regularization approaches need to be simplistic. First, a quadratic
penalty function, which is frequently applied to suppress high-frequency noise in CT
image reconstruction [130], is investigated. During a parameter sweep of the regular-
ization strength for this method, however, substantial artifacts persisted throughout
the deconvolved image volume regardless of regularization strength. These artifacts
appeared as stripes of varying frequency as well as grid artifacts, depending on the
regularization strength. With increasing regularization strength, a decrease in the
frequency of the stripe artifacts is observed. The extent of these artifacts does not
reach acceptable levels, because the high frequency content such as edges is increas-
ingly suppressed. Consequently, the quadratic penalty approach investigated here is
considered inadequate because no ideal trade-off value for the regularization strength
can be found.

In addition, two types of thresholding regularizations are investigated. The first
approach consists of setting each value below the threshold to the threshold value.
This procedure produced visually superior outcomes than the quadratic penalty reg-
ularization. A point of ideal trade-off between the sagittal stripe artifacts, which are
increasingly prominent for lower regularization strength, and the loss of edge content
when using higher regularization strength is found. For this reason the method is
utilized as a regularization scheme for the application of the reconstruction approach
to single orbit geometries. However, it is also observed that this technique set the
imaginary part of the Fourier transform to zero for the thresholded values. As a
consequence, phase information is lost. A method preserving phase information is
expected to produce superior results.

To preserve phase information, a rescaling operation is investigated, which consisted
of rescaling the real and imaginary part of all voxels with a modulus below the
threshold to yield this threshold value. While this approach resulted in grid artifacts
and sagittal stripes for low regularization strength, a parameter sweep is able to
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reveal an ideal trade-off point when increasing regularization strength before too
much edge content is lost. Consequently, this approach is utilized for the application
to arbitrary orbit geometries.

5.2.2 Reconstruction of Single/Dual Geometries

The experiments performed with single orbit geometries symbolize an initial valida-
tion step for the proposed reconstruction scheme. Circular and sinusoidal orbits as
well as one linear combination of sinusoidal basis functions with randomly generated
coefficients are investigated. The calculated evaluation metrics show that the pro-
posed reconstruction pipeline is able to perform robustly for each orbit geometry.
Compared to a standard SART reconstruction, the proposed reconstruction pipeline
performs superior, regardless of the orbit geometry. However, a slight decrease in
performance for increasing orbit complexity is observed (order of orbit complexity:
circular < sinusoidal (even frequency) < sinusoidal (odd frequency) < random).
The consistency of the reconstruction performance of the proposed reconstruction
approach is also higher than for SART, whilst also slightly decreasing with orbit
complexity. At the same time, consistency remained on the same level for SART.
This slight decrease in reconstruction performance and consistency of the proposed
algorithm is due to the assumption of a shift-invariant system response in the de-
convolution operation. This assumption becomes less and less accurate with higher
orbit complexity as the system response becomes increasingly more shift-variant.
This leads to an increasing extent of artifacts in the deconvolved volumes. The pos-
terior CNN processing step is not able to fully correct these artifacts.

In terms of deconvolution artifacts, there are substantial deviations for different or-
bit geometries. In the case of the circular and the sinusoidal orbit with even-valued
frequencies, there are no apparent artifacts in the central-most slices. This is be-
cause the symmetric system responses of even-numbered sinusoidal functions meet
the requirements for periodic boundary conditions during Fourier transformations.
The artifacts arising from asymmetric system responses can not be corrected by
the chosen regularization methods and can be partly addressed by quadrupling the
voxel number in each dimension of the system response. For this reason, a different
form of regularization is chosen for the following studies with arbitrary geometries
to suppress these artifacts more consistently.

Apart from deficiencies in the deconvolution operation, a limitation of the previous
experiments is the use of piecewise-constant phantoms. A possible implication of
exclusively using piecewise-constant phantoms is that the network, instead of learn-
ing to recover high-frequency content and correcting residual artifacts, might learn
to segment the constant-valued tetrahedrons. This shortcoming is addressed in the
following experiments with the inclusion of Gaussian peaks in the tetrahedral phan-
toms as well as the inclusion of anthropomorphic training data. Furthermore, the
initial study does not include a noise model, which is added in the experiments for
random orbits.
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Summarizing the experiments with single/dual orbits, the proposed reconstruction
pipeline outperforms an iterative reconstruction algorithm whilst reducing the cal-
culation time by approximately 90 %. This is shown with networks that have been
trained on specific cases of one or two orbits. Note that both algorithmic imple-
mentations are evaluated on a common hardware platform without fine-tuning or
optimization for runtime. However, the relative computation times are expected
to be consistent with additional optimization. In addition, the robust performance
of the network trained on data from two different sinusoidal orbits underlined the
potential of the algorithm to generalize to deconvolution data obtained from more
than one orbit.

5.2.3 Reconstruction of Random Geometries

The following experiments extend the proposed reconstruction algorithm and ad-
dress the issues observed during the investigations above. Specifically, the following
improvements are made: 1) Inclusion of a noise model to the projection data; 2) In-
corporation of non-piecewise constant tetrahedral as well as anthropomorphic train-
ing data; 3) Complex rescaling regularization in Fourier domain; 4) Zero padding at
the edges of the system response volume; 5) Increase to 1800 unique random orbit
geometries, one for each set of projections. Due to these changes, the following ex-
periments are a major step towards applying the proposed reconstruction pipeline to
real clinical data. In addition, the reconstructions are compared to a state-of-the-art
MBIR algorithm instead of SART.

The deconvolved volumes show less artifacts than during the experiments with sin-
gle orbit geometries due to the changes discussed above. However, the difference
images of the deconvolved volume to GT phantom reveal distinct deviations, partic-
ularly at high contrast edge locations. This is due to a position mismatch because
the deconvolution operation is performed on odd-valued matrices and the original
phantom matrix is even-valued. This means that in contrast to the original phan-
tom images, the deconvolved volumes are translated about half a voxel edge length
from the original image center. This mismatch is easily corrected by the posterior
CNN processing step. However, this limits the performance of the CNN - as some
capacity has to go into the inverse translational operation - but might also lead to
local minima in the loss function. Therefore, this mismatch needs to be corrected
for in future studies. This can be done by having both GT and deconvolved volumes
with odd-valued matrix sizes and then appending one zero slice in all dimensions
prior to CNN processing.

When inspecting the loss function over the course of the training procedure, the
accuracies of the training and validation data sets decrease at the same rate, which
is an indication that the network did not overfit to the training data. If this were the
case, the accuracy for the training data set would be considerably higher than for
the validation data set. In such a case, the network would learn representations or
characteristics specific for the training data and would not be able to generalize to
new data. When fine-tuning the network, which has been trained with tetrahedral
data for 70 epochs, with the anthropomorphic data, no accuracy deterioration at
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the 70 epoch mark of the loss function is noticeable. This implies that the network
has learned to correct the residual artifacts originating from tetrahedral data, but
can also abstract what it had learned to new sorts of training data. It is therefore
concluded that the types of phantoms as well as the splitting of epochs into pre-
training and fine-tuning were adequately chosen.

The calculated evaluation metrics for 10 new test cases - data simulated for orbits
the networks has not trained on - indicate slightly worse performance and consis-
tency for the proposed method when compared to the MBIR reconstructions. This
can also be observed in the reconstructed images, especially in the magnified regions,
where the proposed routine is not able to recover high frequency content accurately.
However, the proposed reconstruction pipeline performs robustly over all orbit ge-
ometries with an nRMSE of 0.073 and 0.060 for tetrahedral and anthropomorphic
data, respectively, compared to 0.033 and 0.045 for MBIR. This slight decrease in
performance in comparison to MBIR is acceptable especially when considering the
reduction of calculation time from 20 minutes with MBIR down to less than 90
seconds with the proposed method. The same decrease in performance can also
be observed in the calculated SSIM and FSIM metrics. The reduction in compu-
tational complexity allows the application of the proposed reconstruction pipeline
for various intra-operational tasks. First, the fast availability of a reconstructed
image for the surgeon, which would otherwise take substantially more time when
using MBIR. Second, the proposed method can provide a prior image for the MBIR
routine to speed up convergence of the iterative reconstruction procedure. Third,
the fast reconstruction procedure can be used in combination with the above eval-
uated method for simulation and evaluation of arbitrary geometry orbits. When
omitting noise simulation in the projections, one can obtain a prediction of image
quality and a reconstructed image in less than 2 minutes (10 seconds simulation, 90
seconds reconstruction and 15 seconds evaluation) per orbit. The calculation time
can be further reduced if the orbit geometry is known in advance. In such a case,
the system response and the corresponding ray density can be pre-computed; this
leads to a computation time below 40 seconds.

In this work, random orbits are generated as combinations of nine periodic basis
functions with a frequency of up to four. This is somewhat limiting the generaliz-
ability of the trained reconstruction networks. An increase in the number of basis
functions can increase orbit arbitrariness in future studies. Alternatively, arbitrary
orbits can be parametrized by randomly sampling a set of vertex locations and sub-
sequently connecting them using B-spline interpolation. Another possible extension
of the presented reconstruction pipeline is the inclusion of more classes of orbits.
Random combination of arcs or other forms of non-continuous orbits can be ex-
plored.

Further studies are needed to validate the presented reconstruction routine for clini-
cal applications. A next step is the application to real projection data. In its current
state, no truncation is present in the simulated projections, which needs to be in-
cluded in the simulation data before moving to real data. The application to real
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projections should start with the reconstruction of data obtained with circular orbits
to reveal any issues before moving to more complex geometries. Another important
step for evaluating non-linear imaging systems - like the ones using neural networks
for reconstruction - is the analysis of image properties. In imaging systems where
the linear approximation still holds true, conventional image contrast metrics such
as the edge-spread-function can be used. However, for non-linear systems, new eval-
uation methods such as perturbation response analysis need to be applied to fully
capture imaging performance in the future studies [131].

Future research should also investigate new methods to move to a deconvolution
operation that captures the shift-variance of the system response of arbitrary orbits.
While the performance of the proposed reconstruction pipeline is consistent for more
complex geometries, a further increase in performance is expected when moving to
shift-variant deconvolution kernels. This is expected to help removing more of the
geometry-dependent artifacts in the deconvolved volumes. A possible implementa-
tion is to move from a deconvolution in Fourier domain to an image domain-based
convolution with spatially varying kernels. Such kernels need to be calculated be-
forehand by forward- and backprojection of impulses localized in different regions
of the image volume, for instance. Another advantage of this technique is the elimi-
nation of artifacts originating from the periodic boundary conditions during Fourier
transformation. In this work, matrices consisting of 128 voxels in each dimension
are utilized while in standard CBCT imaging, 512 voxel edge lengths are preferred.
A lower extent of artifacts in the deconvolved volumes leads to lower expectations
on the capabilities of the CNN. Therefore, more shallow networks can be deployed;
this can help to save GPU memory to accommodate larger matrix sizes instead.
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6. Conclusion and Outlook
The two main objectives of this thesis were (1) to investigate methods to simulate
CBCT images acquired with arbitrary acquisition orbits, and prospectively optimize
the orbit geometry by predicting the associated imaging performance; and (2) to de-
velop a fast reconstruction routine for non-circular CBCT source orbits. These goals
have been achieved in the two parts of this thesis.

In the first part, three different means of CT simulation were investigated with the
goal of predicting imaging performance. The first investigated method uses CNNs
in a CycleGAN architecture to synthesize CT images from digital XCAT phantoms.
The network architecture was optimized by introducing an evaluation framework,
which consisted of multiple metrics to determine anatomical accuracy and realistic
noise properties. The CycleGAN was the fastest investigated simulation method,
with around three to five minutes computation time per CT image. However, arti-
ficially generated anatomical structures were observed in the simulated CT images,
which did not correspond to any morphology in the input XCAT phantom. For this
reason, the CycleGAN method was considered to be impractical for CT simulation
and was therefore excluded from the subsequent image quality prediction studies.
Instead, the use of CT images simulated with CycleGAN as training data for artery
segmentation networks was shown to improve the performance of these networks;
this highlights the applicability of the CycleGAN approach as an additional method
of data augmentation in cases where clinical training data are scarce. Future inves-
tigations of the CycleGAN method for simulating CBCT with arbitrary acquisition
orbits will require training data in the form of measurements and clinical patient
images.

The second investigated method uses GATE, which is based on GEANT4 code, to
simulate CBCT projections acquired with arbitrary acquisition orbits via the MC
method. When executed on the Gatelab cluster, a computation time of around eight
days was achieved for 200 projections. Due to the computation time, this approach
in its current form is not suitable for clinical practice. Since MC simulations are
considered the current gold standard for modeling the physical interactions underly-
ing the stochastic process of CBCT image formation, the MC projections served as
validation images for the third studied simulation method. Here, a distance-driven
projection operator is combined with a noise model to simulate CBCT projections.
This approach achieved a substantially lower execution time of seven minutes per
set of projections. However, several important imaging phenomena such as beam
hardening and photon scattering - which are simulated by the MC method - are not
reproduced.

Both projection simulation methods were used to determine the better of two alter-
native geometries, emulating a clinical imaging scenario in which a circular orbit is
not possible. This was done by calculating the MTF in CBCT images reconstructed
from projections, which were simulated for a tungsten wire phantom. Both simula-
tion methods identified the circular orbit as the best-performing with a MTF FWHM
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of 0.667 mm−1 using GATE simulations and 1.101 mm−1 with the projection opera-
tor and also agreed on the best alternative: a tilted circular instead of a triple-arc
orbit. This agreement highlights the capability of the projection operator approach
to predict the CBCT imaging performance based on the acquisition orbit. However,
to further validate the robustness of the proposed simulation and evaluation frame-
work, more orbits need to be considered. Moreover, the obtained results need to be
verified by real measurements in the future. While only requiring seven minutes for
the simulations of the projections and 15 seconds for the MTF evaluation, most com-
putation time (60 minutes) was used for the reconstruction, underlining the need for
a faster reconstruction approach. In summary, the presented method provides a fast
but robust approach to determine suitable alternatives to the standard circular orbit.

In the second part, a fast reconstruction scheme for non-circular CBCT acquisi-
tion orbits was presented. The pipeline consists of a deconvolution operation of the
backprojected data with an approximated system response and a posterior CNN
processing step to remove residual artifacts. The proposed approach is first ap-
plied to single geometries and then trained and tested on projection data simulated
with 1000 different orbits using the projection operator-based method evaluated in
the first part of this thesis. Non-piecewise constant training and evaluation data
are created via the addition of low frequency noise to the procedurally generated
tetrahedral phantoms in the form of multiple Gaussian peaks. Furthermore, an-
thropomorphic data in the form of 800 CT and CBCT images from the LIDC is
incorporated in training and testing.

While penalized-likelihood reconstructions perform slightly superior in terms of
nRMSE, FSIM and SSIM, the proposed algorithm can reduce the computation time
by 90ß %, namely from 20 minutes for MBIR to under 90 seconds for the proposed
method. In case the geometry is known in advance, pre-computations can reduce
the reconstruction time to below 40 seconds. The proposed approach was found to
perform better on the LIDC data than on the tetrahedral phantoms, which may be
due to more structural similarities in these anthropomorphic data. Consequently,
caution is advised when training such networks, and such a behavior underscores the
need for diversity in the training data to obtain robust performance. Nonetheless,
these results demonstrate the applicability of the reconstruction pipeline to a broad
class of orbits and indicate that the network can robustly reconstruct data from
orbits on which it has not been trained. Furthermore, these results represent an
important step toward providing a fast alternative to state-of-the-art reconstruction
techniques for interventional applications.

In future research, some limitations of the presented reconstruction algorithm need
to be addressed. First, the proposed algorithm needs to be applied to physical pro-
jection measurements acquired in real imaging settings. In particular, projection
data obtained on an experimental test-bench can provide further validation. Fur-
thermore, image-based deconvolution strategies with shift-variant kernels for specific
image regions will be investigated to potentially remove the artifacts resulting from
the Fourier domain approach. By incorporating shift-variant kernels, this can help



to reduce the dependence of the deconvolved data on the acquisition orbit and im-
prove reconstruction performance. Moreover, shift-variant processing using patch
sub-volumes during the CNN step allows processing of larger matrix sizes than the
limited volume sizes (128x128x128) used in this work.

The presented work provides a framework to predict the orbit-dependent CBCT
image quality, consisting of the simulation, evaluation and reconstruction of CBCT
images acquired with arbitrary acquisition trajectories. In the first part, a projec-
tion operator-based approach is used to determine the best alternative to a standard
circular orbit; the approach is verified using MC simulations. In the second part, the
speed of CNNs is exploited to reconstruct projection data from arbitrary source or-
bits within 90 seconds, while achieving image quality comparable to state-of-the-art
reconstructions. All computation steps can be performed in less than ten minutes
per CBCT image, when the algorithms developed in the two parts of this thesis are
combined. Consequently, the presented work is a promising step toward the imple-
mentation of arbitrary CBCT orbits for interventional clinical practice.
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