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Abstract

Event extraction is the task of automatically finding events in texts. It is an impor-
tant step towards automatic text understanding because events not only describe what
happens, but also assign roles to participating entities. Events are complex semantic
structures. Finding events in an information extraction setting consists of finding a
word which indicates the event on the lexical surface, called the trigger, and a set of
arguments, entity mentions which play a role in the event, along with the roles they
play.

Many event extractors published to date capture only intra-sentential contexts and
rely on shallow features like the neighbor words and immediate dependency relations.
This thesis is concerned with expanding the information available to an event extrac-
tor. We propose a method to make the global (document-wide) context available to
the decoding process of a local (intra-sentential) state-of-the-art event extractor. The
resulting system shows the best evaluation results to date (summer 2018). Our system
improves overall performance because it can improve the identification and classifica-
tion of triggers. We could not devise successful features for a global event argument
detection. This is the starting point for the second part of the thesis.

We investigate the argument prediction performance of the base system we improve
with global inference and find that the performance is strongly tied to the distance
of a potential argument: Arguments which are closer to the trigger can be predicted
much more reliably than arguments which are far from it. We hypothesize that this
effect is due to data sparseness — a system can learn to predict arguments close to the
trigger better because it involves less divergence in the words and the relevant syntac-
tic relations. A system which has the ability to represent syntax structures of arbitrary
length and independently of their prominence during training has an advantage. We
show that such a system has indeed a considerably better argument classification per-
formance compared to the baseline. However, this system operates under laboratory

conditions: Because we want to evaluate the performance of our system on argument



predictions in isolation, without interference of noisy triggers, we assume that triggers
are already given.

Finally, we extend this system to a full event extractor which also predicts triggers.
This final system also depends on syntax structures — where we used shortest depen-
dency paths for laboratory conditions, we now operate on entire dependency graphs
instead and perform trigger and argument extraction based on these structures. Our
final event extractor also provides a common event extraction framework (same pre-
processing, same infrastructure) to directly compare two graph encoding methods,
namely Graph Convolutional Networks and tree-shaped Long Short-Term Memory Net-
works, in terms of their ability to provide useful information for event extraction. We
again find that syntax representations do help event extraction, even with predicted
and noisy triggers. Additionally, we again show that improving trigger classification
recall has a great influence on argument classification performance — a method can
improve argument classification performance solely by improving trigger recall.

We also propose various methods to combat the small amount of training data we
have. We make the training process of neural networks more stable by averaging
parameters across training epochs. Additionally, we train our final system with bagging
— a method which uses multiple versions of the training data to produce an ensemble
of predictors. Finally, we propose a new undersampling method to directly address
the high class imbalance during trigger prediction training.

In the last years, neural networks had a renaissance in the form of Deep Learning.
Two factors which led to this development are new random initialization methods
which considerably increase learning ability, and faster training on Graphics Process-
ing Units. Both factors introduce randomness into the training process, which has a
profound impact on the reliability of scientific evaluations — the same network with
the same hyperparameters can produce different, statistically significant evaluation
results when training it multiple times. Whenever we use deep learning methods, we
train five models, evaluate five times and report average results and sample standard
deviations in order to report more reliable results.
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Zusammenfassung

Eventextraktion bezeichnet die Aufgabe, automatisch wichtige Ereignisse (Events) in
texten zu finden. Als solche ist die Aufgabe ein unverzichtbarer Schritt hin zum auto-
matischen Textverstehen. Events sind komplexe semantische Strukturen: Sie bestehen
aus einem Wort, welches das Event an der Textoberfliche anzeigt, genannt der Trigger
und einer Anzahl von Argumenten, Erwdhnungen von Entitdten welche eine Rolle in
den Events spielen, zusammen mit den Rollen, die sie einnehmen.

Viele bislang publizierte Event Extraction-Systeme operieren nur satzintern und nut-
zen flache Features wie Nachbarworter und eigene Dependenzrelationen. Diese Arbeit
befasst sich mit der Erweiterung der Information, die einem Event Extraction-System
zur Verfiigung steht. Wir prasentieren eine Methode, die den dokumentweiten Kontext
einem ansonsten nur lokal (satzintern) arbeitenden Event Extraction-Programm ver-
fligbar macht. Das daraus resultierende neue System zeigt die besten bisher gezeigten
Evaluationsergebnisse (Stand: Sommer 2018). Unser System verbessert die Gesamt-
performanz weil es die Identifizierung und Klassifizierung von Triggern verbessern
kann. Wir konnten jedoch keine erfolgreichen Features konstruieren, die eine globale
(dokumentweite) Verbesserung der Detektion von Argumenten ermoglichen. Dies ist
der Startpunkt fiir den zweiten Teil der vorliegenden Arbeit.

Wir untersuchen die Argumentextraktions-Performanz desjenigen Basissystems, wel-
ches wir mit globaler Inferenz verbessern und finden, dass sie stark zusammenhéangt
mit der Distanz eines potentiellen Arguments: Argumente, welche ndher am Trigger
stehen, konnen viel besser erkannt werden als solche, die weit weg stehen. Wir stellen
die Vermutung auf, dass dies sparlichen Trainingsdaten geschuldet ist — ein System
kann besser lernen, dem Trigger nahe Argumente zu erkennen, weil weniger Variabi-
litdt hinsichtlich relevanter Worter und Sytaxrelationen besteht. Ein System, welches
Syntax auf eine von der Lange der Struktur und ihrer Trainingsverfiigbarkeit unabhén-
gigen Weise reprasentieren kann, hat hier einen Vorteil. Wir zeigen, dass ein solches
System in der Tat zu einer besseren Performanz der Argumentklassifikation fiihrt.
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Jedoch operiert dieses System unter kiinstlichen Bedingungen. Es nimmt an, dass
Trigger schon gegeben sind, weil wir die Systemperformanz nur hinsichtlich der Argu-
mentfindung untersuchen wollen, ohne Interferenzen von verrauschten Triggervorher-
sagen. Wir erweitern dieses System zu einem vollstdndigen Event Extraction-System.
Dieses finale System operiert direkt auf Syntaxstrukturen — wo wir vorher kiirzeste
Dependenzpfade nutzten, reprasentieren wir nun auf ganzen Dependenzgraphen und
fiihren Trigger- und Argumentvorhersagen basierend auf diesen Repréasentationen aus.
Wir stellen ein gemeinsames Framework auf (mit einheitlicher Vorverarbeitung und In-
frastruktur), um zwei Methoden zur Graphreprasentation, ndmlich Graph Convolutio-
nal Networks und baumférmige Long Short-Term Memory Networks hinsichtlich ihrer
Niitzlichkeit fiir Event Extraction zu vergleichen. Wir zeigen, dass solche Reprasenta-
tionen Event Extraction helfen, dieses Mal auch mit verrauschten Triggervorhersagen.
AulRerdem zeigen wir, dass ein System, welches nur den Recall von Triggervorhersagen
erhoht, auch eine wesentlich bessere Argumenrvorhersage erreichen kann.

Wir stellen auch mehrere Methoden vor, um mit der geringen Trainingsdatenmenge
besser umzugehen. Wir machen den Trainingsprozess Neuronaler Netzwerke stabi-
ler, indem wir ihre Parameter iiber verschiedene Trainingsepochen hinweg mitteln.
Zusatzlich trainieren wir unser finales System mit Bagging, einer Methode, welche
unterschiedliche Versionen der Trainingsdaten verwendet, um ein Pradiktorenensem-
ble zu trainieren. Schlief3lich schlagen wir noch eine neue Methode zur Unterabtas-
tung von Trainingsdaten vor um direkt das Ungleichgewichtsproblem wihrend des
Triggervorhersage-Trainings anzugehen.

In den letzten Jahren haben Neuronale Netzwerke eine Renaissance in der Form
von Deep Learning erlebt. Zwei Faktoren, die zu dieser Entwicklung beigetragen ha-
ben sind neue Methoden zur zufilligen Initialisierung, welche die Lernfahigkeit stark
erhohen und schnelleres Training auf Grafikprozessoren (GPUs). Beide fiihren Zu-
fallsprozesse ins Training ein, was wiederum profunde Auswirkungen auf die Ver-
lasslichkeit von Evaluierungen hat — das gleiche Netzwerk kann statistisch signifikant
unterschiedliche Ergebnisse liefern, wenn es mehrfach trainiert wird. Wann immer
wir Deep Learning-Methoden benutzen, trainieren wir fiinf Modelle, evaluieren fiinf
Mal und berichten durchschnittliche Zahlen zusammen mit Standardabweichungen

um verldsslichere Evaluationszahlen zu erhalten.
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1 Introduction

A large amount of our knowledge is encoded as unstructured information, mainly in
the form of texts. Natural Language Processing (NLP) research creates computational
methods and systems which can access this knowledge, from the meaning of a word
to the meaning of a discourse. The ultimate goal of NLP is text understanding: to
automatically and reliably infer structure (and thus meaning) in unstructured texts.
An important and popular task in this endeavor is event extraction, the task of auto-
matically predicting ‘what happened, to whom, when, and where’.

The exact definition of an event is part of rich philosophical debates.! In this thesis,
we adopt a task-centric and pragmatic view of events: An event is identical to a special
kind of text annotation consisting of a word which indicates the event, called the
trigger, and zero or more mentions of entities which play a role in the event, called
arguments. Event extraction is the task of automatically producing these annotations
in texts.

Another view on events, or event annotations, is that of a template. In event ex-
traction, we are given a finite set of templates we want to automatically fill, one for
each event type. An event template consists of a trigger and a set of roles an entity (a
person, organization, etc.) can play in the event. Triggers and arguments have a label,
the trigger label is the kind of event which is being triggered; the argument label is
the role the respective entity mention plays in the event.

In the following example, the word “returned” is a trigger and indicates a trans-
portation event. “Bush” and “Ireland” are two entity mentions, namely the mention
of a person and of a location, which also play a role in the event: They are the entity
being moved and the origin of the transport.

(D Bush returned from a summit in Ireland.

1See, e.g., Davidson (1969); Mourelatos (1978); Moens and Steedman (1988); Pustejovsky (1991)
and a very brief discussion in Section 2.1.
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Event extraction seeks to automatically fill the abstract ‘transport template’, which
consists of a trigger placeholder and all the roles the respective event has (agent,
artifact, origin, destination, time, and vehicle), with concrete occurrences in the text
(transport trigger: “returned”, artifact: “Bush”, origin: “Ireland”, other arguments
unfilled).

Event extraction as template assignment corresponds to the setting used in the 2005
Automatic Content Extraction conference (henceforth, ACE 2005). ACE defines event
extraction in terms of three sub-tasks: Entity mention detection, finding mentions of
predefined entity types like persons and organizations; event trigger identification and
classification, finding words which indicate an event and predicting which event they
trigger; and event argument identification and classification, finding the entities playing
a role in an event together with their roles. Entity mention detection is commonly
omitted, which enables research to better focus on the core problems in event extrac-
tion.

In this thesis, we treat event extraction as a prediction task: Given a text, find event
triggers along with the event types they evoke, and find all their arguments along with
the roles they play. In order to carry out such a task, we make extensive use of machine
learning methods which we describe in more detail below.

Section 1.1 states our motivation for this thesis and the research questions we ad-
dress. Section 1.2 discusses the contributions of our work and Section 1.3 states
our publications which underlie this thesis. Finally, Section 1.4 mentions all machine
learning methods we use. However, they are formally introduced and defined in the
chapters where they occur in first.

1.1 Motivation and Research Questions

ACE events never cross sentence boundaries. If an event argument is not mentioned
in the same sentence as the trigger, it is not part of the respective event mention. This
characteristic of ACE enables a more concise representation of event mentions and it
simplifies the automatic extraction, but it also leads most research to predict events
based on single sentences, ignoring the document-wide context. Research which incor-
porates entire documents relies either on rigid, hand-crafted rules or multiple machine
learning models which cooperate in complex ways. Furthermore, a great part of publi-



1.1 Motivation and Research Questions

cations focus on new prediction methods and use similar information to carry out the
actual predictions, ignoring important intra-sentential information like syntax graphs.2

The motivation for this thesis is based on two observations: (1) Often, there is not
enough information to successfully predict events based on single sentences. (2) Most
event extractors are not able to fully grasp the available intra-sentential information,
especially on the syntactical level. The two points correspond to the two main research
questions in this thesis.

1. Can we enable a state-of-the-art intra-sentential event extractor to easily access
information from the entire document during prediction?

2. Can we learn a useful and flexible syntax representation which is able to cope
with syntactical structures never seen during training?

We answer Question 1 in Chapter 3 where we introduce a global inference method
which enables a local system to draw information from similar event assignments
throughout a document. We show that this considerably enhances performance.

However, we also find that improving argument classification performance with
global information is difficult once the base system reaches a certain reliability in
its argument predictions. Chapters 4 and 5 are dedicated to answer Question 2. To
the best of our knowledge, we are the first to analyze argument identification and
classification performance per se.

Chapter 4 starts with an analysis of our base system’s argument prediction perfor-
mance. We show that syntactical distance is a crucial factor in predicting arguments.
The farther away a potential argument is from the trigger, the more difficult it becomes
to predict it correctly. This is not only true for individual argument assignments, but
also for entire argument types. Victim arguments for example tend to be expressed
nearer to their trigger compared to Place arguments. Consequently, our base sys-
tem predicts them considerably better (+18 F; points). We hypothesize that a system
can better predict arguments close to their trigger because it has seen most syntax
structures which connect the two during training. Most systems either use local syn-
tax information (like the subject of a word) or they decompose a syntax graph (the

2Syntactical information is of course an important part of event extractors, but they use it either in the
form of local word-to-word dependencies, or in the form of categorical syntax paths. Categorical
features are the information used in feature-based machine learning algorithms. They have the
drawback that new features, e.g., syntax paths never seen during training, do not have a meaning
for prediction.



1 Introduction

syntactical analysis of a sentence) in more simple categorical features. This has the
disadvantage that syntactical constructions never seen during system training cannot
be used for prediction. Question 2 directly addresses this issue: How can we devise
better representations of syntax structures which can assign meaning to any syntac-
tical structure, even those never seen in training? We show that, when inspected in
isolation without noise from wrong trigger prediction, such a representation improves
event argument classification performance considerably. In Chapter 5, we extend the
representation from linear syntactical paths to general syntax graphs and show that

such complex structures can improve the performance of event extractors in general.

1.2 Contributions

Chapter 3 proposes a global decoding method for event extraction (Section 3.2) which
can enable an intra-sentential event extractor to access information from the entire
document during prediction. We use it with two versions of an intra-sentential event
extractor in two different settings (Sections 3.3.1 and 3.3.2). Furthermore, we intro-
duce new feature types to event extraction (Section 3.2.2).

In Chapter 4, we present an analysis of event argument classification performance.
To the best of our knowledge, we are the first to investigate this aspect in isolation
(without interference from trigger predictions). One main finding is that event ar-
gument performance is strongly influenced by trigger predictions — we show that im-
proving trigger prediction recall usually leads to improved argument prediction per-
formance (Sections 3.3.1 and 5.7.2). This is true even if the argument prediction
per se is not better. Increasing trigger recall enables a system to find more arguments,
which, given a good argument prediction mechanism, usually leads to better argument
performance.

In Chapter 4, we find that argument prediction performance is strongly connected
to syntactical distance — arguments which stand far from their triggers are less likely
to be predicted correctly. This observation leads us to the second subject in this thesis:
a representation which can encode arbitrary syntax structures, even those which were
never encountered during training. In Chapter 4 we show that such a representation
improves argument predictions considerably when investigated in isolation.

In Chapter 5, we investigate two more complex syntax encoders (Graph Convolu-
tional Networks and tree-shaped Long Short-Term Memory Networks) with respect to



1.3 Publications

their usefulness for event extraction. In this chapter, we also address the problem that
ACE 2005 provides only little training data and use Bootstrap Aggregating (bagging)
to train our models.

The final contribution we want to mention here is that Chapters 4 and 5 address
reliability and comparability of scientific evaluations. Section 2.5 discusses two of the
issues involved in this complex area: Sometimes, a better preprocessing can consider-
ably improve performance even if the involved system does not change. This leads us
to the practice that we compare systems and settings with identical preprocessing in
our work, e.g., when we compare our local and our global event extractors, or when
we compare the different syntax encoders. We cannot however test other published
systems in this way because we have, with the exception of our base system in Chap-
ter 3, no other runnable event extractor. The second point we discuss is related to
indeterministic training. Training deep learning methods involves randomness. This
has a profound impact on determinism: The same method produces different models
given the exact same input, and these models in turn may perform very differently
in the same test set. A way to increase reliability of evaluations is to report average
evaluation metrics across multiple training and testing rounds. However, it is common
practice in the ACE event extraction literature (and in other computer science pub-
lications) to report only one training and testing round. This raises questions about
the reliability of evaluations. Whenever we use indeterministic training, we report the
average of 5 training and testing round, as well as sample standard deviations where
appropriate.

1.3 Publications

This thesis is in large parts based on three of our publications. In Section 2.3.3 we
mention Judea and Strube (2015) when we talk about tasks which are structurally
identical to event extraction, most notably frame-semantic parsing.

Judea and Strube (2016) is the foundation of Chapter 3, especially for the setting
with predicted entity mentions. However, we extend this study by also exploring the
gold entity mention setting.

Judea and Strube (2017) corresponds to the argument performance analysis and
the dependency-path encoder we present in Chapter 4. Therefore, this publication
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also constitutes the foundation of Chapter 5 where we explore syntax representations
of broader syntactical structures.

We publish accompanying code for Chapter 4 on the heiDATA servers for a more
persistent, long-time archiving with the DOI 10.11588/data/CZZEKX (Judea, 2021a).

Accompanying code and models for Chapter 5 are also published on heiDATA with
the DOI 10.11588/data/Z1RKOI (Judea, 2021b).

Furthermore, we publish both code repositories (without models) on GitHub (https:
//github.com/m-alexj/argumentor.git and https://github.com/m-alexj/eventor.
git respectively).

1.4 Methodological Overview

This section briefly describes the methods we use and references them to the chapters
and sections where they are introduced and defined.

We heavily rely on supervised machine learning to carry out event extraction. We
have a set of documents with manually produced event annotations. Machine learn-
ing algorithms analyze the annotations and produce models which abstract from the
information they were produced on, making them able to annotate events in new sen-
tences. The machine learning methods we use can be divided into two broad groups:
feature-based and Deep Learning. The former relies on hand-crafted features which de-
compose the problem into single characteristics, e.g., the left and right lexical context
of a word (when computing event triggers) or the syntactical relations of a head noun
(when computing event arguments). Deep Learning methods on the other hand learn
latent representations of the problem, without the need for manual feature engineer-
ing. They only rely on an input, an architecture of different processing layers, and an
output. During learning, the weights in the architecture are formed in a way that the
input likely results in the desired output.

Chapter 3 uses a feature-based machine learning method, namely the structured
perceptron (Collins, 2002; Huang et al., 2012). Section 3.1 introduces and formalizes
the structured perceptron in the context of event extraction. In Section 3.2, we propose
a multi-pass inference method to incorporate global (document-wide) decisions into
the local (intra-sentential) structured perceptron we use.

In terms of machine learning methods we have a turning point from Chapter 3 to
Chapters 4 and 5. This turning point coincides with the recent popularity of Deep
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1.4 Methodological Overview

Learning (DL) in computer science. DL methods do not rely on manually engineered
features; they only require an input and a known output - training procedures ensure
that the system automatically learns to produce the right output, without the necessity
of telling it explicitly what to pay attention to.

DL offers an important advantage for our work: it can produce representations of ar-
bitrary syntax structures, from linear dependency paths to general dependency graphs.
Instead of decomposing such structures into features and learning weights for them,
DL methods embed them more directly into a high-dimensional, continuous space such
that similar structures (with respect to event extraction) stand close together. We in-
vestigate the use of such syntax representations for event argument classification in
particular (Chapter 4) and for event extraction in general (Chapter 5).

In Chapter 4, we introduce Long Short-Term Memory networks (LSTMs) (Section
4.3.3). LSTMs have the ability to encode an arbitrarily long sequence into one fixed-
size vector. In Chapter 5, we extend simple LSTMs to general graphs. We test the
use of syntax graph encoding methods for event extraction, namely the use of Graph
Convolutional Networks (Section 5.5.3) and tree-shaped LSTMs (Section 5.5.4).
Section 4.3.4 introduces and formalizes Convolutional Neural Networks (CNNs).
CNNs efficiently learn patterns from their inputs, e.g. to recognize specific objects
in images — we use them to learn patterns in the lexical context of potential event
arguments.

We also use auxiliary methods. Most notably, we use parameter averaging in each
chapter. Instead of predicting event triggers and arguments using the latest weights,
we average them with previously obtained weights. This has the advantage that
weights which oscillate heavily during training are smoothed out, while weights which
are nearly constant remain unaltered. This method was introduced in Collins (2002)
and further formalized in Huang et al. (2012) to considerably improve the perfor-
mance of perceptrons, and to bring them in a par with more sophisticated feature-
based learning algorithms like Support Vector Machines (Hearst et al., 1998). We also
use parameter averaging for our DL systems (Section 4.3.8).






2 ACE Event Extraction: Task and
Data

In this thesis, we work with the popular event schemes used by the Automatic Content
Extraction (ACE) program and its subsequent version, the Text Analysis Conference
(TAC)!. The ACE event scheme was developed by the US-American National Institute
of Standards and Technology (NIST). TAC annotations are based on a lighter scheme,
namely on ‘Entities, Relations, and Events’ (ERE, Song et al., 2015) developed in the
Deep Exploration and Filtering of Text (DEFT) program, financed by the Defense Ad-
vanced Research Projects Agency (DARPA), a US agency. Both schemes have in com-
mon that they view event extraction as an information extraction task. In this chapter,
we present the annotation schemes and put them in a broader context, including a
short discussion of viewing the task in computational and scientific terms.

We briefly establish events as philosophical entities (Section 2.1) before we adopt
a pragmatic view and define an event to be identical to the ACE annotation of an
event. Section 2.2 describes the ACE annotation scheme in detail. Section 2.3 locates
event extraction in the space of Natural Language Processing tasks and mentions other
event annotation schemes. Finally, Sections 2.4 and 2.5 describe event extraction as a

computational task and as a scientific pursuit, respectively.

2.1 Establishing Events

The exact definition of an event is subject to ongoing philosophical debates (Davidson,
1969; Mourelatos, 1978; Moens and Steedman, 1988; Pustejovsky, 1991, i.a.). David-
son (1969) for example replaces the question ‘what are events’ with the question ‘when
are two events identical’. He proposes to treat events the same as entities — they are

!We discuss and use the event trigger annotations in the TAC 2015 data. The TAC argument anno-
tations differ from their ACE counterparts in a fundamental (and for us unusable because out of
scope) way: They are based on coreference chains and can occur anywhere in a document.
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located in space and time and have attributes which specify them further; when they
are used in sentences, one can define that two event mentions are coreferent (refer to
the same event) when they refer to the same ‘event-entity’. This view makes events
easier to understand because they are treated similar to entities like cars and birds.
However, it also leads to problems on a conceptual level because some events do not
fit well in this entity-centric view. Two events can share the same point in spacetime
for example, or continuously blend into each other.

The formal notion of events is deeply rooted in language philosophy, and beyond the
scope of this thesis. We will not define events formally, but we will report and adopt
the notion of events used in creating the datasets we operate on. These notions are
pragmatic in nature and thus leave out many important philosophical and linguistic
aspects, but they help to define events in such a way that they become intuitively un-
derstandable by humans (which is important for manual annotation) and processable
by software (which is the ultimate goal of the effort). In the following, all quotes are
from the ACE 2005 event annotation guidelines (Linguistic Data Consortium: Events,
2005).

An Event is a specific occurrence involving participants. An Event is some-
thing that happens. An Event can frequently be described as a change of
state.

Events connect entities, times, and places and therefore constitute a higher semantic
level than these categories. There is a basic distinction between events and event men-
tions. The latter are concrete mentions of an event in texts. Two event mentions are
connected by a coreference link if they refer to the same event, potentially revealing or
highlighting different aspects of the event. It is possible for example that one mention
talks about the attacker of an event, while another mention talks about the victims of
the same event without mentioning the attacker. Knowing which mentions refer to the
same event allows to properly aggregate all the information reported in a document,
or even a document collection. In this thesis, we are exclusively concerned with the
extraction of event mentions and leave the interesting and fundamental problem of

event coreference aside.

10



2.2 Describing ACE Events

2.2 Describing ACE Events

Above, we ‘defined’ events following the ACE annotation guidelines. In this section,
we want to describe the underlying annotation scheme and the ACE data. We also
describe the annotation of the Text Analysis Conference (TAC) 2015 because they are
strongly related to ACE and we use them for evaluation in Chapter 3.

An event template consists of a type, a set of specific roles, and placeholders for a
trigger and arguments. For example, the movement template has the type MOVEMENT
and the roles Agent, Artifact, Origin, Destination, Time, and Vehicle, as well as
the mentioned placeholders.? Event templates are organized in eight broad categories,
namely LIFE, MOVEMENT, TRANSACTION, BUSINESS, CONFLICT, CONTACT, PERSONNEL
and JUSTICE. The word which “most clearly” (Linguistic Data Consortium: Events,
2005) indicates an event is the trigger. An argument is a role filler. More precisely, an
argument of an event is an entity mention which plays one of the roles predefined by
the respective event template. This means that ACE ignores all event types which are
not of interest, and it ignores all entities which do not play one of the predefined roles
in an event.

An event is a specific instance of a template. It consists of a trigger and arguments,
each associated with a type. The trigger type is the event type. An argument type is
the role the respective entity mention plays in the event. An event mention is the occur-
rence of an event in the text. To be more concise however, we will mostly talk about
‘events’ and only write ‘event mentions’ where the distinction is necessary. Consider

the following example of an event mention.

The [planelyyy arrived back to [base] .o safely

TRANSPORT

(2)

In Example (2) we can find one TRANSPORT event triggered by “arrived” with the
two arguments “plane” and “base”. “Plane”, the mention of a vehicle entity, fills the
Vehicle role. “Base”, the mention of a location entity, fills the Destination role. In
order to be more concise, we will say that “arrived” is a TRANSPORT trigger (we omit

2In this thesis, event types are always in SMALL CAPS and roles in Typewriter font. Entity mentions
stand in square brackets, the entity type comes afterwards as a subscript: [he]yez for example is the
mention of “he”, a PER (person) entity.

11
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the event supertype), and that “plane” and “base” are Vehicle and Destination argu-
ments, respectively. Other mentions of this event might specify additional arguments
in other places of the document. The totality of such arguments constitutes the ab-
stract event, which in turn is an instance of the transport event template. We will
discuss all categories introduced so far in more detail in the following subsections.

In (2) we have only one event. The next example contains multiple events and
shared arguments.

F‘ﬂ

A series of [anthrax|wgapon attacks, .,

3) killed, . five [people]pr

In (3), “attacks” triggers an ATTACK event and “killed” triggers a DIE event. All of the
arguments in (3) are shared by the two events. “Anthrax” is an Instrument to both.
“People” fills different roles in the two events: It is the Target of the ATTACK, but the
Victim of the DIE event.

We will now give more detailed explanations of the three components of ACE event
extraction: event mentions, triggers, and arguments. Afterwards, we discuss entity
mentions and some of the difficulties and errors with ACE annotations we observed
during development.

2.2.1 Event Mentions

We introduced event mentions above and demarcated them from events. Here, we
describe additional information associated with event mentions in the ACE data.

ACE and subsequent annotation schemes define an extent of the event, which is
equal to all tokens which include the trigger and all arguments. The scope of an event
is a sentence, meaning that ACE events do not cross sentence boundaries. For ‘Entities,
Relations, Events’ (ERE) in contrast, the scope is the entire document, meaning that
events do cross sentence boundaries. An argument in TAC for example can occur
anywhere in the document. Finding TAC arguments makes it necessary to compute
entity mentions coreference, a hard NLP problem in itself.

There is more information associated with an event: Polarity refers to the actuality of
the event. Positive polarity means the event actually happened, negative polarity refers

12



2.2 Describing ACE Events

to the opposite case. This is important because ACE allows the annotation of ‘non-
real events’, i.e. hypothetical, commanded/requested, threatened/proposed/discussed
events (encoded as the event’s modality). Tense indicates if the event is a past or future
event with respect to the document’s publication time. Finally, Genericity indicates if
an event is generic or specific. Specific events are those happening at a specific point
in spacetime; all other events (e.g., repetitive) are generic.

2.2.2 Event Triggers

Event triggers are words or phrases that express an event occurrence within a sentence.
Identifying triggers is an essential part of both ACE and TAC. In ACE, triggers always
have a head consisting of only one word. In TAC, the trigger may consist of multiple
(contiguous) words.

For a better understanding of triggers, we analyze part-of-speech (POS) distributions
in ACE and TAC, more specifically in the training set we use throughout this thesis. We
apply a POS tagger to both sets and gather statistics about the trigger head words.
Table 2.1 reports the results. We discuss triggers from each part-of-speech and give
examples afterwards.

ACEO5 TAC15
part-of-speech | % # % #
verb 49.1 2169 51.4 3027
noun 45.6 2014 43.2 2544

adjective 3.1 138 3.7 216
pronoun 0.9 42 0.6 30
other 1.3 56 1.1 70

Table 2.1: The distribution of the four most frequent part-of-speech tags for event triggers in
the ACE 2005 and the TAC 2015 training set. ‘%’ refers to fractions, ‘#’ to frequen-
cies.

As we can see in Table 2.1, the part-of-speech tag distribution is similar in both
datasets. Around 50% of all triggers are verbs. Consider the following examples.

4) Orders went out today to deploy 17,000 U.S. Army soldiers ...

(5) At least 19 people were killed and 114 people were wounded ...

13
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With around 45%, nouns are the second most frequent POS category for event trig-
gers. Most of them are verb nominalizations, many of which also occur as verbs in the
training set.

(6) After Christmas, I got a call from the wife of one of my former bosses

(7) The toughest fight, though, may lie ahead in the heart of the Iraqi
capital.

Besides common nouns, the noun category also includes proper nouns. Most are
tagging errors, e.g., capitalized triggers like ‘Murdered’ which were confused with
proper nouns by the automatic POS tagger. Correct proper noun triggers include
salient military events (‘Operation Iraqi Freedom’, ‘World War II’) and dates which
are used metonymically (‘September 11’). One group which does not occur in ACE or
TAC are places where a salient event occurred and which are used metonymically, e.g.,
“Fukushima”. It is an interesting problem to analyze metonymically used triggers in
particular. Unfortunately, they are very rare in ACE and TAC.

(8) Famed World War II reporter Ernie Pyle

Pronouns are responsible for less than 1% of event triggers. This part-of-speech
includes only ‘it’ and ‘them’ if they refer to another event mention in the text. Consider
the following example.

% A student fatally shot a principal before killing himself this morning. It
happened in the cafeteria of red lion area junior high school about 30
miles southeast of Harrisburg.

In (9), “it” is a DIE trigger and refers back to the event expressed by “killing”.

2.2.3 Event Arguments

As we outlined above, event templates specify a set of roles. By extension, each event
has the same set of roles to fill as the respective template. Most of the roles are
template-specific. For example, ATTACK events have the roles Attacker, Target and

14
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Instrument to fill, whereas DIE events have the roles Agent, Victim and Instrument
to fill. Common to all are the roles Time and Place.?

In ACE, roles can only be filled by entity mentions.* If a role filler exists, it is called
an argument. Therefore, we will use the term ‘argument type’ synonymously to ‘role’.
Please note that one role can be filled by zero or more fillers; more than four fillers
however are very rare. In Example (10), both arguments (“bombs” and “missiles”) fill
the same role (Instrument) of the ATTACK event.

(10) those sorties will be strike sorties using Bombs and Missiles ...

Arguments can be further subdivided into two classes: Participants and attributes.
Participants are persons (per), organizations (org), geo-political entities (GPE), facili-
ties (fac), locations (loc), vehicles (veh) or weapons (wea). Attributes are subdivided
into event-specific and general. Event-specific are the attributes Crime and Sentence
(JUSTICE events), and Position (PERSONNEL events). General atrributes are Place
and Time, which apply to every event type.

The event argument annotation for TAC 2015 follows a different intention: Argu-
ments are annotated per event (as opposed to per event mention), meaning that the
arguments of an event are the most specific role fillers which occur anywhere in the
document. To illustrate this, consider the following text from the TAC argument linking
task description draft (from July 14, 2015):

1D A separatist group called the Kurdistan Freedom Falcons (TAK) claimed
responsibility for an explosion late on Monday which wounded six peo-
ple, one of them seriously, in an Istanbul supermarket. Istanbul gover-
nor Muammer Guler told Anatolia news agency the explosion in the
Bahcelievler district of Turkey’s largest city injured six people. The
agency said 15 other people had been hurt. "We consider the explosion
that took place tonight in an Istanbul supermarket to be a response to
the barbaric policies against the Kurdish people

3For MOVEMENT events, Origin and Destination very often substitute Place.
“In this thesis, we expand the notion of an entity, see Section 2.2.4.
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Two events are mentioned multiple times in (11), an ATTACK and an INJURE event.
We focus on the former. The event is indicated by multiple trigger words (“explo-
sion”). Its arguments are spread across multiple sentences. For example, the Attacker
(“Kurdistan Freedom Falcons (TAK)”) is in another sentence than the two Targets “six
people” and “15 other people”. In the case of competing fillers (e.g., “late on Monday”
vs. “tonight”) the most specific one is selected.

2.2.4 Entity Mentions

As mentioned above, roles can only be filled by entity mentions (under a broader
notion of ‘entity’, see below). When we write ‘entity mention’, we mean the seven
ACE entity types as well as times, numbers, and event-specific attributes (crimes, legal
sentences, and employee positions) for the sake of simplicity.

One would assume that entity mention prediction is a fundamental task in event
extraction. It is, however, mostly ignored in the literature. The standard setting in ACE
event extraction is that entity mentions are given. Therefore, most event extractors
operate in a somewhat artificial setting and cannot be used ‘in the wild’ to extract
events.” In the following, we want to briefly discuss entity mentions. We start with an
example.

(12) Orders went out [today|: to deploy 17,000 [U.S.]epe [army|ore [soldiers]per

We have four entity mentions in (12). “Today” is a point in time, “U.S.” a geo-
political entity, “army” an organization, and “soldiers” are persons.

ACE defines two annotations for entity mentions: the extent and the head. The ex-
tent is a nominal phrase (Linguistic Data Consortium: Entities, 2005). In the example
above, the extent of “soldiers” is “17,000 U.S. Army soldiers” and the head just “sol-
diers”. The head is either the syntactic head of a nominal phrase or the full extent of
a proper noun. Heads seldomly overlap. In (13) we report the extents of all entity
mentions in (12).

(13) Orders went out [today] to deploy [17,000 [U.S. Army] soldiers]

The three event extractors which work with predicted entity mentions (Li et al.,
2014; Yang and Mitchell, 2016, our work in Chapter 3) predict heads, not extents.

>Yang and Mitchell (2016) and our global event extractor in the ‘predicted entity mention’ setting
(Section 3.3.2) are exceptions.
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As mentioned above, we include the fillers of event-specific attributes like crimes
in our notion of entities to be more concise. In terms of annotation however, there
is an important difference between entities and these fillers: Fillers of event-specific
attributes (called values in ACE) only have extents. This poses a serious problem for
prediction. Entity heads are usually short, but value extents tend to be very long, e.g.,
“those attacks that killed five people and sickened 13 others”. Li et al. (2014) circum-
vent the problem by ignoring all values. Consequently, our global event extractor in
the ‘predicted entity mention setting’, which uses this system as its local predictor, also
ignores values. Yang and Mitchell (2016) do not mention how they treat values.

2.2.5 Annotation Difficulties and Errors

Reliably annotating rich structures like event mentions in texts is demanding. In this
section, we analyze some salient annotation difficulties and errors in the ACE 2005
training set, as well as principal difficulties with the annotation scheme itself.

The first difficulty we address is multiple potential triggers for one event. Consider
the following example.

(14) The company was ordered to pay a fine

Here, “pay” and “fine” refer to the same event, but the ACE annotation guidelines
forbid to annotate multiple triggers for one event. Instead, they specify rules which of
the possible triggers to select. The annotation guidelines list a few examples of con-
curring triggers, but we speculate that these examples are not enough to produce an-
notations with high inter-annotator agreement whenever the annotators decide which
of two potential triggers to keep. Often, the rules state to select some trigger over
another based on its part-of-speech and if it can refer to the event by itself. In our
opinion, the latter criterion is rather subjective. Whenever a noun and a verb are pos-
sible triggers, the noun is preferred if it can refer to the event by itself. In our example
above, only “fine” would be annotated as a trigger.

(15) The explosion left at least 30 dead

In Example (15), a verb (“left”) concurs with an adjective (“dead”) for the trigger
position. According to the guidelines, the adjective is preferred over the verb, but
again only if it can refer to the event by itself.

Another problem arises when one word could potentially trigger multiple events.
Consider the following example.
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(16) The gunmen shot Smith and his son

Here, “shot” triggers an ATTACK and a DIE event. The ACE guidelines do not mention
such cases which might introduce a source of annotation inconsistencies because an-
notators are free to choose one over the other. In contrast, ERE guidelines, especially
the TAC guidelines, explicitly allow and encourage one word to trigger multiple events
if appropriate.

We will now discuss annotation errors. Consider the following example.

(17) Police are now considering the possibility that the remains are those of
Laci Peterson and her unborn child.

“Unborn” in (17) is a BE-BORN trigger. The annotation guidelines state that a BE-
BORN event only occurs if an entity is born (Linguistic Data Consortium: Events, 2005).
They fail to mention however that planned, commanded, or negated events are explic-
itly allowed, meaning that “unborn” can indeed be the trigger of a BE-BORN event.
This contradiction in the guidelines causes annotator disagreement: ‘Unborn’ occurs
13 times in the ACE training set, 10 times mentioning the same event as in (17).
However, it was annotated only twice as a trigger.

(18) ...calling on Muslims to wage jihad against the United States and its
allies.

Here, “jihad” is an ATTACK trigger with “Muslims” as the Attacker. The phrase
“wage jihad against the United States and its allies” suggests that the geopolitical
entity mentions “United States” and “allies” are Targets of the event, but the anno-
tation guidelines forbid to annotate them as such because geopolitical entities cannot
be Targets, only persons, organizations, vehicles, facilities, and weapons can. Never-
theless, it seems incomplete to just discard “United States” and “allies” as arguments.
There are two possibilities to overcome this: Either the constraints in the guidelines are
to be rescinded, or the entity types of “United States” and “allies” are to be changed to
per (person) because in this context the two mentions mentonymically stand for “the
people living in the US and its allied countries”.

2.2.6 ACE Documents

ACE offers 599 annotated documents, grouped into six genres: Usenet newsgroups
(un; newsgroups), broadcast conversations (bc; conversations), telephone conversa-
tion transcripts (cts; transcripts), weblogs (wl), broadcast news (bn; broadcasts), and
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business.declare-bankruptcy (25)
transaction.transfer-ownership (99)
transaction.transfer-money (144)
movement.transport (643)
conflict.attack (1121)

life.die (465)
business.merge-org (10)
business.end-org (34)
business.start-org (41)
personnel.end-position (176)
justice.extradite (4)
justice.charge-indict (91)
justice.sentence (80)
justice.arrest-jail (73)
justice.release-parole (22)
justice.trial-hearing (69)
life.divorce (14)

life.marry (55)

justice.sue (48)
conflict.demonstrate (59)
contact.phone-write (100)
personnel.elect (109)
personnel.start-position (101)
contact.meet (212)

life.injure (121)

life.be-born (33)
justice.convict (63)
justice.fine (22)
personnel.nominate (12)
justice.execute (21)
justice.acquit (5)
justice.appeal (32)
justice.pardon (2)
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Figure 2.1: A heat map (darker colors mean higher values) representation of event types (y
axis) per ACE genre (x axis) distribution. Genres are: Usenet newsgroups (un),
broadcast conversations (bc), telephone conversation transcripts (cts), weblogs
(wl), broadcast news (bn), and newswire (nw). Numbers in parentheses are the

sums of the respective row or column values.
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newswire (nw). Figure 2.1 depicts the distribution of events to genres. Event types
are on the y axis and genres on the x axis. In parentheses, we report the total num-
ber of instances per row (of event types in total) and column (of event types in the
respective genre). For example, there are 25 DECLARE-BANKRUPTCY events in ACE, 2
in newsgroups, 1 in transcripts, 3 in weblogs, 17 in broadcasts, and 2 in newswire.
Newsgroups has 447 events, broadcasts 762, etc.

In total, we have 4106 event annotations — a low number for a complex task like
event extraction. Some of the events are infrequent. DECLARE-BANKRUPTCY has only
25 instances, MERGE-ORG 10, and EXTRADITE 4. ATTACK is the most frequent, PAR-
DON the most infrequent event type (1121 and 2 annotations, respectively). ATTACK
is the most frequent event type in five of the six genres; the only exception is tran-
scripts, which contains more TRANSPORT events. ATTACK, TRANSPORT, and DIE clearly
dominate the other event types in terms of frequency.

Conversations, broadcasts, and newswire have similar event distributions — with
the notable exception of a considerably higher amount of MEET events in newswire.
Newsgroups, transcripts, and weblogs are also similar to each other, with the exception
of considerably less TRANSPORT events in weblogs.

In Chapter 5, we directly address the low amount of training data by introducing
bagging as a training regime to event extraction (Section 5.6.3). Scarce training data
also makes indeterministic training effects more severe (Section 2.5).

Most publications use the train-dev-test split introduced by Ji and Grishman (2008).
This split uses 30 documents as development data, and 40 documents as test data.
Note that the test set consists only of newswire articles and ignores all other genres.
We introduce two additional data splits which follow ACE’s genre distribution more
closely in Chapter 5.

2.3 ACE Events in a Bigger Context

In ACE, event extraction is an information extraction task, and events are entities with
a trigger word, a set of roles, and arguments. Furthermore, ACE documents only
cover news and political discussions. In this section, we want to outline event tasks
from other domains (Section 2.3.1) as well as other event formalisms (Section 2.3.2).
Finally, we describe tasks which are similar to event extraction (Section 2.3.3).
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2.3.1 Other Domains

The BioNLP’09 event shared task (Kim et al., 2009) is prominent in the bio(medical)
NLP community. The task resembles ACE event extraction in many aspects. Both
assume gold entities are given, and both require the identification and classification of
triggers and arguments. Furthermore, both schemes encode event modifications like
negations or speculations. However, the domains differ. In the BioNLP shared task,
events are concerned with protein biology; triggers express biological processes (e.g.,
gene expression), arguments are proteins and other biological events. The last point
(other events as arguments) is a fundamental difference between the BioNLP shared
task and ACE (including subsequent annotation schemes like ERE): ACE explicitly
neglects event-event interactions.

2.3.2 Other Event Formalisms

TimeML (Pustejovsky et al., 2003a) is an annotation formalism which highlights the
temporal aspects of events. It was developed for question answering, especially for
questions involving temporal expressions (e.g., ‘currently’) or asking about points in
time (‘when did’). TimeML addresses four temporal event problems: (a) identify an
event and anchor it in time, (b) order events either based on their absolute temporal
order or based on their ‘lexical’ ordering in a discourse, (c) reason about underspeci-
fied temporal expressions (e.g., ‘last week’), and finally (d) reason about the duration
of an event. It also includes event-event relations: Temporal relations (before/after),
subordinations (e.g., if one event provides evidence for another: ‘he said he did’), and
aspectual relations (e.g., if one event initiates the other: ‘he started to read’).

TimeML was used to produce the TIMEBANK corpus (Pustejovsky et al., 2003b),
which provides several thousand events and information about events as described
above. It also served as the foundation of SemEval 2007 Task 15 (Verhagen et al.,
2007), a shared task about identification of temporal relations, and its successor,
SemEval 2010 Task 13 (Verhagen et al., 2010).

2.3.3 Structurally Similar Tasks

In this section, we want to discuss two semantic formalisms which are structurally
identical to event extraction (both have equivalents for triggers and arguments). Both

encode predicate-argument structures, a more general concept than events. From a
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computational point of view, the three tasks are equivalent. At least in theory, they can
use the same infrastructure and inference procedures.®

Semantic Role Labeling, or SRL (Gildea and Jurafsky, 2002; Marquez et al., 2008),
is an NLP task and a semantic formalism. SRL is usually introduced as a formalism
describing events. However, this notion of ‘event’ is different from the one used in
event extraction. In the latter, an event is something important that happens — in the
former, an event is something that happens. In other words, SRL is concerned with
characterizing all events which occur in natural language, whereas event extraction
seeks for the extraction of an exclusive list of pre-defined events of interest.

SRL aims to bridge syntax and semantics in a ‘useful’ way (Palmer et al., 2005) by
mapping semantic relationships onto predicate-argument structures, e.g. by indicat-
ing the agent among all arguments of a predicate. The predicate (typically a verb)
determines the event. The event schema also serves as a disambiguation schema - it
encodes polysemy for example. As in event extraction, different events have different
role sets. The totality of the roles for some event is called a frameset. Framesets come
in two versions. One consist of numbered roles: Arg0, Argl, etc., where Arg0 is simi-
lar to a Prototypical Agent (Dowty, 1991) and Arg1 is similar to a Prototypical Patient
or Prototypical Theme. The other consists of predicate-specific roles. However, SRL
systems usually only predict general roles only.

Frame semantic parsing (FSP) is based on frame semantics (Fillmore, 1982) and
FrameNet (Fillmore et al., 2003). Like SRL, FSP encodes semantic information in
predicate-argument structures. Unlike SRL, there are no prototypical role sets. In
this respect, FSP is more similar to event extraction. The task is to predict frames
(‘event types’) for lexical units (trigger equivalents) and their frame elements (argu-
ment equivalents). Lexical units are mostly nouns or verbs. Other parts-of-speech
also include adjectives and prepositions. Frame elements are frame-specific, much like
the event-specific role sets in event extraction, or the predicate-specific framesets in
Semantic Role Labeling.

Judea and Strube (2015) retrain SEMAFOR, a well-known frame-semantic parser
(Das et al., 2014), to extract events. With only a new frame element feature set, the
retrained system can rival the then-state-of-the-art in event extraction on predicted en-
tity mentions (Li et al., 2014). Judea and Strube (2015) identify two major problems
in re-training SEMAFOR for event extraction, which can be interpreted as two major

differences between event extraction and frame-semantic parsing. First, in frame-

®If the system is feature-based however, each task would need its own feature set.
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semantic parsing, there is no ‘negative class’ — each lexical unit triggers some frame,
whereas in event extraction, many eligible trigger candidates are in fact not a trigger
for any of the pre-defined event types. Second, ACE event arguments are always en-
tity mentions, whereas frame elements often correspond to syntactically well defined
structures like noun phrases, which makes it easier to identify frame elements because
they can be deduced from syntax parser output.

2.4 ACE Event Extraction as a Computational Task

In this section, we describe the computational task ‘event extraction’. Afterwards, we
define technical terms regarding the decoding process of event extractors. In the next
section, we will look at event extraction as a scientific pursuit. In the following, we
have some information overlap with previous sections. Here, we are only interested
to introduce event extraction as a computational task and to describe the implications
and structures we face.

There are different names for the actual task: ACE speaks of ‘Event Detection and
Recognition’ (ACE2005, 2005). Some of the publications in the field have only ‘event
detection’ in their titles if they only predict event triggers (Feng et al., 2016; Liu et al.,
2017, i.a.). However, the task is most frequently referred to as ‘Event Extraction’.

Event extraction consists of two sub-tasks, corresponding to the two main structures
of ACE events, namely detecting and classifying triggers and arguments. Detection
refers to finding words and entity mentions which are triggers and arguments of some
event. Classification also involves to predict the respective trigger and argument types.
Most publications report evaluation numbers for both tasks. In this thesis, we will
continue this mode. Please note that there is also an increasing number of publications

for trigger-only systems (Section 6.2).

ACE events (or rather event mentions) are defined intra-sententially: The trigger
and all arguments of an event can always be found in the same sentence. Therefore,
most event extractors operate within sentences. Finding event mentions is usually
cast as a two-stage approach: A system first classifies each word in the sentence as
belonging to one of the 33 ACE event types or a negative class. If an event type
is predicted, the system looks for an argument type given the trigger and all entity
mentions in the sentence, again including a negative class. However, the task can also
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be modeled jointly. In Section 2.4, we formalize the different ways an event extractor
can approach the task.

In terms of evaluation, most publications follow the procedures introduced in Ji and
Grishman (2008): Triggers are correctly identified if their span matches that of any
gold trigger. They are correctly classified if the event type is also correct. Similarly,
arguments are correctly identified if their span matches that of any gold argument and
they are correctly classified if the respective argument type/the role is correct. We
follow most publications and usually report both, ‘identification’ and ‘classification’
scores for triggers and arguments.

In most publications, entity mentions are given, meaning that the extractors rely on
gold entity mentions. There are only a few systems which predict entity mentions (Li
et al., 2016, and our work in Section 3.3.2).

One of the main findings of this thesis is strongly related to the computational task:
Trigger prediction has a fundamental impact on argument prediction. This is intu-
itively clear: For every missed trigger, we also miss all its arguments, and for every
spurious trigger we may introduce spurious arguments. In Sections 3.3 and 5.7 we
show that it is trigger recall which bears the most impact, and not trigger prediction
performance in general. It is especially true that a system can significantly increase its
argument prediction performance solely by increasing trigger prediction recall.” This
has some implications for comparability, especially if one claims that a system has a
better argument prediction performance than another: The effect can be solely based
on increased trigger recall. In Chapter 3 for example, we present a system which
improves trigger prediction by global inference — this in turn substantially increases
argument predictions as well. However, the system actively only improves trigger
predictions. To the best of our knowledge, we are the first to explicitly mention and
investigate this effect. In Chapter 4, we devise a setting where trigger predictions have
no effect on argument predictions in order to reliably evaluate the impact of syntax
encodings to argument predictions.

Terminological Clarifications

In the following, we introduce six technical terms (organized in three categories)
which we frequently use in this thesis. Four of them describe the prediction process.

’Clearly, the positive effects of increased trigger recall diminish if the loss in precision is too severe.
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We also use the distinctions we make here while introducing the terms to characterize
the most influential event extractors published before 2018 (Section 6.1).

We first describe decoding, before we introduce the terms joint vs. disjoint and local
vs. global to characterize how most event extractors model the decoding process. We
also introduce and formalize the terms static vs. dynamic for feature templates.

‘Decoding’ refers to the process of creating and labeling event structures (triggers
and their arguments); we use the term interchangeably with ‘inference’. Joint vs.
disjoint refers to the decoding type and local vs. global to the decoding scope.

Decoding type is a qualitative dimension — are triggers and arguments predicted
jointly or consecutively? In joint decoding, predictions influence each other. Joint event
decoders typically predict the event structure of an entire sentence. They do not settle
for a definitive answer on any trigger or argument labeling until the entire sentence
is labeled for triggers, and all entity mentions are assigned a label with respect to
each trigger. Disjoint decoding on the other hand predicts triggers and arguments,
or arguments among themselves, independently and consecutively. The decision for a
trigger label is made before the argument labeling begins. In other words, the decisions
do not influence each other. A special type of inference is given if future decisions are
informed by previous ones, without the possibility to revoke the previous ones. We
characterize this as disjoint decoding.

Decoding scope a quantitative dimension — how far does information flow within a
document? Local decoding is only informed about the current sentence, or even only
about smaller contexts. Global decoding crosses sentence boundaries and can draw
information from the entire document, or even multiple documents.

Most event extractors can be characterized using the two dimensions above. To
further clarify the distinctions, consider the following example.

(19) ... demonstrating against military strikes on Iraq and calling on Mus-

lims to wage jihad against the United States and its allies.

I don’t think America will win this war, as our jihad and our resistance

will teach the Americans and British a lesson they will never forget,”
he said.

Local and disjoint systems (which applies to most published event extractors) would
first predict triggers and then arguments for each trigger. They may first predict that
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“demonstrating” probably triggers a DEMONSTRATE event. We will assume argument
prediction returns no arguments for this trigger. Then, local and disjoint systems may
predict that “strikes” is an ATTACK trigger. Argument predictions follows. They may
predict that “Iraq” is a Target. They may also predict that “United States” is a Target
because they would not be informed that they already predicted a better Target — in
this example, “Iraq” and “United States” look very similar to each other in terms of
features.

Local and joint systems on the other hand operate on a joint search space, prefer-
ably encompassing all possible decisions for the entire sentence. Here, the presence
of “Iraq” as a possible Target would also inform the decision for “strikes” and vice
versa, and the presence of “strikes” as an ATTACK trigger would inform the decision
for “demonstrating”. Furthermore, a joint system would be able to determine that
“Iraq” is a better Target than “United States” for this event, and may not assign the
role twice. Joint systems have a clear advantage over disjoint ones because they are
less prone to error propagation — false decisions can be revised as more information
becomes available.

A special kind of joint decoding is pattern matching. For example, Grishman et al.
(2005) collect training data patterns which characterize the connection of a trigger to
all arguments, and apply pattern matching at test time to check if events are present in
new sentences. If a pattern matches, the respective trigger and argument assignments
constituting the pattern are believed to be present in the sentence as well. This means,
that trigger and argument decisions are performed jointly without the need to search
through a large joint decoding space.®

However, local systems (regardless of decoding type) would predict all occurrences
of “jihad” as ATTACK triggers, because the word never appeared as such in the training
data. Local systems might get the first occurrence right, but the second seems to be
more difficult. Global systems are not limited to a sentence. They can draw infor-
mation from all occurrences of “jihad” and inform all of them in turn. They can also
harvest information from other events throughout a document. In Section 3.2, we
present a joint and global system.

Handling a joint or global hypotheses space is demanding. Even for short sen-
tences, searching the entire space is not possible without approximate methods like
beam search. Furthermore, joint search spaces require dynamic features, i.e., fea-
tures capturing interactions of classification decisions. We call the templates gener-

8However, Grishman et al. (2005) refine their argument decisions disjointly in subsequent steps.
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ating such joint features dynamic because their actual values change over time and
across hypotheses. Dynamic features either model trigger-argument, trigger-trigger,
or argument-argument interactions (e.g., argument roles one entity fills in different
events). We can note that joint and/or global systems need dynamic feature templates.

The ideal event extractor is joint and global because trigger and argument decisions
influence each other and depend on other event decisions throughout the document.
The ideal system uses the entire information in ACE documents to produce coherent
event assignments. To the best of our knowledge, there are only two clearly joint and
global event extractors, Yang and Mitchell (2016) and our work in Chapter 3.

2.5 ACE Event Extraction as a Scientific Pursuit:
Comparability and Reliability

The standard evaluation setting for most event extraction papers is to report num-
bers for trigger and argument identification and classification. Most papers and this
thesis adopt the evaluation scheme presented in Ji and Grishman (2008): A trigger
is correctly identified, if its span matches any gold span; it is correctly classified, if
its event span and event type match those of any gold trigger. An argument is cor-
rectly identified, if its span matches any gold span; it is correctly classified, if its span
and argument type (role) match those of any gold argument. Both, identification and
classification scores are usually reported.® Evaluation measures are always precision,
recall, and F; (Manning and Schiitze, 1999). We agree with and mostly follow es-
tablished evaluation procedures. However, we want to address some problems which
weaken the reliability of evaluation results, especially in the context of deep learning
methods. We will present the problems and then propose a solution. In addition to
the measures we take here, we also motivate and use new data splits in Chapter 5.
The common belief in NLP is that testing on the same test set enables comparability.
The usual conclusion is that one system, and as an extension the underlying method,
is better than another if it increases the same evaluation metric on the same test set,
given that the evaluation measure and the test set represent the task adequately. How-
ever, we believe that it is not enough to just use the same test set in order to ensure
comparability in a strict (scientific) sense, and to claim that method B (in contrast to

Entire events are almost never evaluated in publications. The only exception we are aware of is Miwa
et al. (2014).
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system B) is better than method A. We believe that preprocessing and the indetermin-
istic training procedures of deep learning systems have a great impact on results and
weaken direct comparability between different systems. We raise the following two
questions and discuss them in the following sections.

1. Do the systems use the same preprocessing? Better preprocessing might lead to
better results, even for identical systems. We believe that it is difficult to claim
the superiority of a method without identical preprocessing (Section 2.5.1).

2. Is training deterministic? Indeterministic training produces different models for
the same data and hyperparameters, and these models might have significantly
different evaluation numbers, even though they are instantiations of the same
method, system, and preprocessing (Section 2.5.2).

2.5.1 Preprocessing

Preprocessing takes place before the actual input is presented to the system. It can
involve manipulating (scaling, normalizing, etc.) or producing information (part-of-
speech tagging, dependency parsing, word embeddings, etc.). Crone et al. (2006)
investigate preprocessing effects for multiple classifiers (Decision Trees, Support Vec-
tor Machines, and Neural Networks) on different data mining problems. They find
that the preprocessing (which was only of the manipulating kind in their case) has a
significant impact on all methods and parametrizations. They also find that perfor-
mances are as sensitive to preprocessing as they are to hyperparameters. Reimers and
Gurevych (2017) report that the choice of word embeddings (another preprocessing
input) has a great influence on six NLP tasks, across a wide range of hyperparameters.

We draw the conclusion that our systems/system versions have to use the same pre-
processing if we directly compare their results. This especially includes comparisons
to baselines. For example, we carry out a comparison of different syntax encoders in
Chapter 5, and we use the exact same preprocessing and system to support them, and
to enable direct comparability.

2.5.2 Indeterministic Training

Indeterministic training became common with the renaissance of neural networks.

Neural network weights are typically initialized by drawing from a normal or uniform
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distribution (Glorot and Bengio, 2010; LeCun et al., 2012). Initial weights are different
each time training is started. This is the main reason why training neural networks is
an inherently indeterministic process: It produces a different output (weights) for the
same input (training data and hyperparameters). We quantify this effect in Chapter 5
where we compare different syntax encoders.

Note that one can force neural network training to be deterministic in the sense
above (same input = same output) by fixing random seeds. However, this does not
solve the problem of indeterminism because the output now depends on the exact
random seed and the method which was used to produce pseudorandom numbers.
Additionally, disabling randomness is not possible when training on GPUs because
atomic GPU operations are asynchronous by design.!°

Reimers and Gurevych (2017) and Reimers and Gurevych (2018) investigate this
point thoroughly for a variety of NLP tasks, preprocessings, and hyperparameters. For
example, they find that on the same data split identical Named Entity Recognition sys-
tems produce significantly different evaluation results 26% of the time, solely because
their weights are initialized randomly.

ACE trigger classification is even worse — Reimers and Gurevych (2018) report that
34.5% of the time identical systems produce significantly different evaluation results,
with fluctuations up to 9 test set F; points (4.3 F; points difference in the 95% per-
centile). In Chapters 4 and 5, where we also use deep learning methods, we observe
fluctuations of up to 2 F; points, even though we use a variety of methods to reduce
weight fluctuations during training. Please note that the typical new state-of-the-art
improvement in papers which report ACE 2005 evaluations is around 1-2 F; points
for trigger and argument classification, meaning that we can surpass state-of-the-art
results by sheer luck.

We can conclude that there is a very high risk in reporting only one test set evalua-
tion when using non-deterministic training procedures — the numbers may very well be
due to chance. As Reimers and Gurevych (2017), Reimers and Gurevych (2018), and
Chapters 4 and 5 show, even identical deep learning systems produce very different
evaluation results when trained and evaluated multiple times. This hinders repro-
ducibility and enables false conclusions about the superiority of a system or method.

To overcome this problem, we follow Peters et al. (2018) and always report evalua-
tion numbers averaged over five models (and consequently five evaluation runs); we

10This is true for NVIDIA GPUs and the predominant CUDA framework, especially when using cuDNN,
as of September 2018.
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also report sample standard deviations for almost all evaluation numbers. Chapter 5
also reports evaluation of two additional, randomly drawn data splits to increase the
reliability of our comparisons there.

We will not present the three main chapters of this thesis. We start with Chapter
3 which proposes a new inference method to make the global context of a document
available to the decoding process of a local system. We use it with a joint base system
to reach new state-of-the-art results in ACE event extraction.

30



3 Global Event Extraction

Tens of thousands of [people|,s; took to the [streets| o across the [Middle
East|gpe [Thursday] e, demonstrating against [military|oge strikes on [Iraq]epe

and calling on [Muslims],z; to wage jihad against the [United States]qp; and
[its]pe [allies]gpg-

A sentence and its entity mentions are the starting point for most ACE event extrac-
tors. The task is to predict which tokens trigger events of interest, and which entity
mentions play roles in them. We can find three events in the sentence above, triggered
by the words “demonstrating”, “strikes”, and “jihad”. We depict them below.

Entity

Place

/, Time

[people]pir [streets]pc [Thursday|w: demonstrating, .. ovsrrare

(a) First
/—(Attacker)—\/—(Target)—\
[ml.ll.tal’y] ORG StrikeSATTACK [Iraq] GPE [MUSlimS] PER jihadATTACK
(b) Second (c) Third

Figure 3.1: All three event structures occurring in the introductory sentence.

The first is a DEMONSTRATE event (Figure 3.1a) triggered by “demonstrating”. It has
three arguments: “people” filling the Entity role, “streets” filling the Place role, and
“Thursday” filling the Time role. The other events are ATTACKs triggered by “strikes”
(Figure 3.1b) and “jihad” (Figure 3.1c), with “Iraq” as the Target and “military” as the
Attacker of the first event, and “Muslims” as the Attacker of the second.!

!The event triggered by “jihad” seems to be incomplete because the sentence suggests that “United
States” and “allies” should both be Targets. See the discussion to Example (18) in Section 2.2.5 for
further details. From world knowledge and other parts of the same article, we can also infer that
“United States” and the “allies” are Attacker of the first ATTACK event triggered by “strikes”.
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ACE events are exclusively intra-sentential in their scope. However, a single sen-
tence often lacks important information. “jihad” for example occurs only twice as an
event trigger in the entire training data, and the above sentence alone does not give
strong clues that the word triggers an ATTACK event. This lack of information makes it
hard for an intra-sentential event extractor to make a correct prediction.

Missing triggers do not only negatively impact trigger performance, they also inter-
fere with argument classification, because all arguments of an unrecognized trigger
become unaccessible for prediction. Especially missing triggers have a negative impact
on argument predictions (Sections 3.3 and 5.7.3).

In this chapter, we present a system which casts event extraction as a structured pre-
diction problem and employs global, document-wide inference to increase the overall
performance of a local and joint predictor. The new system finds considerably more
events in the sentences and increases both, trigger and argument performance. With
global inference, “jihad” is not an isolated word anymore; it has semantic relations
to other words in the document like “war” which help to correctly recognize it as an
ATTACK trigger. Our contributions in this chapter are the following.

1. We present an efficient global inference method which enables a joint and local
base system to access information from the entire document (Section 3.2). This
method is in agnostic to the actual base system. We use it with two related but
different base systems, one which uses gold, and one which uses predicted entity
mentions. The evaluation in Section 3.3.1 shows that our system outperforms
even the most recent deep learning methods .

2. We introduce a new feature set to event extraction (Section 3.3.1). Some are
specifically designed for our global decoding method.

In Section 3.1 we present our main base system — a state-of-the-art event extractor
which predicts event triggers and arguments jointly and locally. In Section 3.2 we
argue that a system which operates on individual sentences is often not enough. We
present a method to access the global (document-wide) context, and we present a set
of new features to guide global inference. Section 3.3 reports experiments and results.
Finally, Sections 3.4 and 3.5 discuss and conclude our findings, respectively.
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3.1 Intra-Sentential Event Detection

In this section we describe and analyze our base system (Li et al., 2013), a local and
joint event extractor.? Section 3.1.3 describes features which are only possible in the
joint setting and cannot be used by disjoint systems. Among other things, these fea-
tures model the interaction between different event types within a sentence. With
these features, joint systems have a theoretical advantage over any disjoint system.
However, more recent, disjoint deep learning systems (Chen et al., 2015; Nguyen
et al., 2016, i.a.) outperformed our base system, presumably because of word em-
beddings and a better modeling of lexical contexts. In this thesis, we also come back
to disjoint, deep learning methods, mainly to explore the use of syntax encoders for
event extraction.

In Section 3.2 we show that joint event extraction is not sufficient, because it is
still limited to the actual sentence, which often lacks sufficient information to find
all events. In Section 3.2 we present a global decoding method which enables the
base system to use information from the entire document. With global decoding, our
system outperforms most recent event extractors without using word embeddings or
deep learning techniques. We will now describe the base system.

3.1.1 Decoding and Training

In the following, we describe our base system. This system is identical to Li et al.
(2013). However, we deviate from their description and formalize the system differ-
ently. We also provide additional information to the base system which is not reported
in their paper, but appears in their code.

Given a sentence s, our goal is to predict all event triggers and arguments for s. One
possible assignment containing all triggers and arguments of s is called a configuration.
Our problem can be rephrased: We want to find the best configuration ¢ given s:

¢ = argmax f(s,c) - w. (3.1)
ceC(s)

C(z) is a function which enumerates configurations for s, f(s,c) is a feature func-
tion, and w a weight vector. Finding ¢ is a structured prediction problem: We search a

2Joint’ and ‘global’ are defined in Section 2.4.
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large space for the best structure ¢. We aim to solve this problem using a structured
perceptron (Collins, 2002; Huang et al., 2012).

An exact solution of Equation 3.1 is prohibitive. We cannot enumerate all possible
configurations. Given the 33 ACE event types, we already have 33™ configurations for
a sentence of length m for trigger assignments alone. With argument assignments, the
number is much higher.

To mitigate this problem. we follow Li et al. (2013) in using approximate search for
decoding, more precisely beam search. Instead of having C'(z) enumerate entire event
structures for a sentence, we construct configurations iteratively and prune the search
space after every iteration. In the following, we describe this process. Afterwards, we
describe the feature function f(s, ¢) and how to learn a good feature vector w.

Configurations are built word-by-word using two actions: trigger assignment and
argument assignment. The first action assigns labels to words (either an event type
or (), the second action assigns labels to entity mentions (either an argument type or
(). In the settings where we avoid entity prediction (the predominant setting in ACE
event extraction), the configurations already contain all entity mentions. Figure 3.2
visualizes a snapshot of a decoding pass. We describe the process below and refer to
the figure where necessary.

Decoding starts with the first word® in the sentence, “strikes” in our example. For
the sake of simplicity, we ignore all previous words from our descriptions and visual-
izations. TRIGGER ASSIGNMENT generates all possible labels for “strikes”, 34 in total
(33 event types plus (). In Figure 3.2, this is exemplified by the four event types be-
low the word. Each such assignment constitutes a new configuration which contains
all previous assignments plus the new one. “Strikes” as a DEMONSTRATE or as an Die
trigger are two assignments for example, and two different configurations. The new
configurations are scored and only the top n are retained. In Figure 3.2, n = 1, so we
only keep the best configuration [strikes : ATTACK].

After new trigger assignments are generated, ARGUMENT ASSIGNMENT is executed
for each event trigger. In our case, we assign only one event type, namely ATTACK,
to the word “strikes”. Now, we have to find arguments of this event. The procedure
assigns one of 29 labels (28 argument types plus )) to each entity mention in the
sentence. Each argument assignment again results in a new configuration. New con-
figurations are scored and only the top n retained. This process is visualized in Figure
3.2b, exemplified for the case that “strikes” is an ATTACK trigger. The procedure lists

3In this thesis, we use “word” and “token” interchangeably.
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strikes on Iraq

ATTACK @
7 1, .

(a) Mlustrates TRIGGER ASSIGNMENT with three words, four possible labels, and beamsize 1. Words are
processed consecutively. At each word, all possible trigger labels (event types) are enumerated, and
each of them paired with all previously computed configurations. Each such pairing constitutes a new
configuration. After each word, only the best configuration (beamsize 1) is retained. Assignments in
bold are top (best-scoring) assignments, the bold path constitutes the best (and correct) configuration
at each position. Numbers in circles are assignment scores, accumulated over time.

strikes on

Attacker }—)@

] ATTACK ‘

[military]org

[muslims|pex

@

(b) Hlustrates ARGUMENT ASSIGNMENT. For each event type in a configuration, argument label assignment
is triggered. Depicted is the case that “strikes” is an ATTACK trigger and there are two entity mentions
in the sentence. The system enumerates all roles for the event type (Attacker, Target, () and assigns
the highest-scoring role to the respective entity mention.

Figure 3.2: Visualization of a hypothetical decoding pass.
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Algorithm 1: TRIGGER ASSIGNMENT (beam b, sentence s, token index i)

/* beam buffer */
2 forceb(i—1)do
/* T, is the trigger label set (33 event types and () */
3 fort. ¢ T, do
/* test if POS of word ¢ is allowed, and if ¢ overlaps with an
entity mention */
4 if IS ASSIGNABLE(c, 7, t.) then
/* create new trigger assignment for position 1 */
5 n < [i:te);
/* extract features */
6 EXTRACT FEATURES(n, 5);
/* copy configuration ¢ and add new trigger assignment */
7 b; U (COPY(c) Un);

8 return b;;

all allowed argument types for an ATTACK event (in pour example, Attacker, Target,
and ()), scores them and keeps only the n highest scoring assignments (in our example,
n = 1). This is executed for both entity mentions ([military|ore and [muslims|pgz).

TRIGGER ASSIGNMENT and ARGUMENT ASSIGNMENT enumerate partial event struc-
tures (trigger and argument labels, respectively), with each new assignment resulting
in a new configuration which is then scored and discarded if it is not in the top n.
This is exactly the approximate beam search we use; instead of enumerating millions
of configurations for a sentence, we always restrict the search space to n hypotheses.
The lower n is, the more greedy and faster beam search becomes.

After we enumerate and score trigger and argument assignments for the first word,
the procedure moves to the second word, “on”. Again, TRIGGER ASSIGNMENT generates
all possible labels. Configurations without argument assignments constructed so far
include: [strikes : ATTACK, on : DEMONSTRATE], [strikes : ATTACK, on : DIE|, etc. Again,
only the top n configurations (in our case, [strikes : ATTACK, on : (}]) are kept for further
processing and ARGUMENT ASSIGNMENT takes place for each new trigger. Since “on”
is never a trigger in any new configuration, this step is omitted at this point in the
example.

After the last word in the sentence is decoded, n configurations remain, each with

event and argument label assignments for each word and entity mention in the sen-
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3.1 Intra-Sentential Event Detection

Algorithm 2: ARGUMENT ASSIGNMENT(beam b, sentence s, trigger index i, entity
mention index j )

A OWN =

10

/* beam buffer

for c € b(i) do

b; U COPY(c);

if 1S TRIGGER(c¢(i)) then

/*