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Abstract

Event extraction is the task of automatically finding events in texts. It is an impor-

tant step towards automatic text understanding because events not only describe what
happens, but also assign roles to participating entities. Events are complex semantic

structures. Finding events in an information extraction setting consists of finding a

word which indicates the event on the lexical surface, called the trigger, and a set of

arguments, entity mentions which play a role in the event, along with the roles they

play.

Many event extractors published to date capture only intra-sentential contexts and

rely on shallow features like the neighbor words and immediate dependency relations.

This thesis is concerned with expanding the information available to an event extrac-

tor. We propose a method to make the global (document-wide) context available to

the decoding process of a local (intra-sentential) state-of-the-art event extractor. The

resulting system shows the best evaluation results to date (summer 2018). Our system

improves overall performance because it can improve the identification and classifica-

tion of triggers. We could not devise successful features for a global event argument

detection. This is the starting point for the second part of the thesis.

We investigate the argument prediction performance of the base system we improve

with global inference and find that the performance is strongly tied to the distance

of a potential argument: Arguments which are closer to the trigger can be predicted

much more reliably than arguments which are far from it. We hypothesize that this

effect is due to data sparseness – a system can learn to predict arguments close to the

trigger better because it involves less divergence in the words and the relevant syntac-

tic relations. A system which has the ability to represent syntax structures of arbitrary

length and independently of their prominence during training has an advantage. We

show that such a system has indeed a considerably better argument classification per-

formance compared to the baseline. However, this system operates under laboratory

conditions: Because we want to evaluate the performance of our system on argument
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predictions in isolation, without interference of noisy triggers, we assume that triggers

are already given.

Finally, we extend this system to a full event extractor which also predicts triggers.

This final system also depends on syntax structures – where we used shortest depen-

dency paths for laboratory conditions, we now operate on entire dependency graphs

instead and perform trigger and argument extraction based on these structures. Our

final event extractor also provides a common event extraction framework (same pre-

processing, same infrastructure) to directly compare two graph encoding methods,

namely Graph Convolutional Networks and tree-shaped Long Short-Term Memory Net-

works, in terms of their ability to provide useful information for event extraction. We

again find that syntax representations do help event extraction, even with predicted

and noisy triggers. Additionally, we again show that improving trigger classification

recall has a great influence on argument classification performance – a method can

improve argument classification performance solely by improving trigger recall.

We also propose various methods to combat the small amount of training data we

have. We make the training process of neural networks more stable by averaging

parameters across training epochs. Additionally, we train our final system with bagging

– a method which uses multiple versions of the training data to produce an ensemble

of predictors. Finally, we propose a new undersampling method to directly address

the high class imbalance during trigger prediction training.

In the last years, neural networks had a renaissance in the form of Deep Learning.

Two factors which led to this development are new random initialization methods

which considerably increase learning ability, and faster training on Graphics Process-

ing Units. Both factors introduce randomness into the training process, which has a

profound impact on the reliability of scientific evaluations – the same network with

the same hyperparameters can produce different, statistically significant evaluation

results when training it multiple times. Whenever we use deep learning methods, we

train five models, evaluate five times and report average results and sample standard

deviations in order to report more reliable results.
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Zusammenfassung

Eventextraktion bezeichnet die Aufgabe, automatisch wichtige Ereignisse (Events) in

texten zu finden. Als solche ist die Aufgabe ein unverzichtbarer Schritt hin zum auto-

matischen Textverstehen. Events sind komplexe semantische Strukturen: Sie bestehen

aus einem Wort, welches das Event an der Textoberfläche anzeigt, genannt der Trigger

und einer Anzahl von Argumenten, Erwähnungen von Entitäten welche eine Rolle in

den Events spielen, zusammen mit den Rollen, die sie einnehmen.

Viele bislang publizierte Event Extraction-Systeme operieren nur satzintern und nut-

zen flache Features wie Nachbarwörter und eigene Dependenzrelationen. Diese Arbeit

befasst sich mit der Erweiterung der Information, die einem Event Extraction-System

zur Verfügung steht. Wir präsentieren eine Methode, die den dokumentweiten Kontext

einem ansonsten nur lokal (satzintern) arbeitenden Event Extraction-Programm ver-

fügbar macht. Das daraus resultierende neue System zeigt die besten bisher gezeigten

Evaluationsergebnisse (Stand: Sommer 2018). Unser System verbessert die Gesamt-

performanz weil es die Identifizierung und Klassifizierung von Triggern verbessern

kann. Wir konnten jedoch keine erfolgreichen Features konstruieren, die eine globale

(dokumentweite) Verbesserung der Detektion von Argumenten ermöglichen. Dies ist

der Startpunkt für den zweiten Teil der vorliegenden Arbeit.

Wir untersuchen die Argumentextraktions-Performanz desjenigen Basissystems, wel-

ches wir mit globaler Inferenz verbessern und finden, dass sie stark zusammenhängt

mit der Distanz eines potentiellen Arguments: Argumente, welche näher am Trigger

stehen, können viel besser erkannt werden als solche, die weit weg stehen. Wir stellen

die Vermutung auf, dass dies spärlichen Trainingsdaten geschuldet ist – ein System

kann besser lernen, dem Trigger nahe Argumente zu erkennen, weil weniger Variabi-

lität hinsichtlich relevanter Wörter und Sytaxrelationen besteht. Ein System, welches

Syntax auf eine von der Länge der Struktur und ihrer Trainingsverfügbarkeit unabhän-

gigen Weise repräsentieren kann, hat hier einen Vorteil. Wir zeigen, dass ein solches

System in der Tat zu einer besseren Performanz der Argumentklassifikation führt.
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Jedoch operiert dieses System unter künstlichen Bedingungen. Es nimmt an, dass

Trigger schon gegeben sind, weil wir die Systemperformanz nur hinsichtlich der Argu-

mentfindung untersuchen wollen, ohne Interferenzen von verrauschten Triggervorher-

sagen. Wir erweitern dieses System zu einem vollständigen Event Extraction-System.

Dieses finale System operiert direkt auf Syntaxstrukturen – wo wir vorher kürzeste

Dependenzpfade nutzten, repräsentieren wir nun auf ganzen Dependenzgraphen und

führen Trigger- und Argumentvorhersagen basierend auf diesen Repräsentationen aus.

Wir stellen ein gemeinsames Framework auf (mit einheitlicher Vorverarbeitung und In-

frastruktur), um zwei Methoden zur Graphrepräsentation, nämlich Graph Convolutio-

nal Networks und baumförmige Long Short-Term Memory Networks hinsichtlich ihrer

Nützlichkeit für Event Extraction zu vergleichen. Wir zeigen, dass solche Repräsenta-

tionen Event Extraction helfen, dieses Mal auch mit verrauschten Triggervorhersagen.

Außerdem zeigen wir, dass ein System, welches nur den Recall von Triggervorhersagen

erhöht, auch eine wesentlich bessere Argumenrvorhersage erreichen kann.

Wir stellen auch mehrere Methoden vor, um mit der geringen Trainingsdatenmenge

besser umzugehen. Wir machen den Trainingsprozess Neuronaler Netzwerke stabi-

ler, indem wir ihre Parameter über verschiedene Trainingsepochen hinweg mitteln.

Zusätzlich trainieren wir unser finales System mit Bagging, einer Methode, welche

unterschiedliche Versionen der Trainingsdaten verwendet, um ein Prädiktorenensem-

ble zu trainieren. Schließlich schlagen wir noch eine neue Methode zur Unterabtas-

tung von Trainingsdaten vor um direkt das Ungleichgewichtsproblem während des

Triggervorhersage-Trainings anzugehen.

In den letzten Jahren haben Neuronale Netzwerke eine Renaissance in der Form

von Deep Learning erlebt. Zwei Faktoren, die zu dieser Entwicklung beigetragen ha-

ben sind neue Methoden zur zufälligen Initialisierung, welche die Lernfähigkeit stark

erhöhen und schnelleres Training auf Grafikprozessoren (GPUs). Beide führen Zu-

fallsprozesse ins Training ein, was wiederum profunde Auswirkungen auf die Ver-

lässlichkeit von Evaluierungen hat – das gleiche Netzwerk kann statistisch signifikant

unterschiedliche Ergebnisse liefern, wenn es mehrfach trainiert wird. Wann immer

wir Deep Learning-Methoden benutzen, trainieren wir fünf Modelle, evaluieren fünf

Mal und berichten durchschnittliche Zahlen zusammen mit Standardabweichungen

um verlässlichere Evaluationszahlen zu erhalten.
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1 Introduction

A large amount of our knowledge is encoded as unstructured information, mainly in

the form of texts. Natural Language Processing (NLP) research creates computational

methods and systems which can access this knowledge, from the meaning of a word

to the meaning of a discourse. The ultimate goal of NLP is text understanding: to

automatically and reliably infer structure (and thus meaning) in unstructured texts.

An important and popular task in this endeavor is event extraction, the task of auto-

matically predicting ‘what happened, to whom, when, and where’.

The exact definition of an event is part of rich philosophical debates.1 In this thesis,

we adopt a task-centric and pragmatic view of events: An event is identical to a special

kind of text annotation consisting of a word which indicates the event, called the

trigger, and zero or more mentions of entities which play a role in the event, called

arguments. Event extraction is the task of automatically producing these annotations

in texts.

Another view on events, or event annotations, is that of a template. In event ex-

traction, we are given a finite set of templates we want to automatically fill, one for

each event type. An event template consists of a trigger and a set of roles an entity (a

person, organization, etc.) can play in the event. Triggers and arguments have a label;

the trigger label is the kind of event which is being triggered; the argument label is

the role the respective entity mention plays in the event.

In the following example, the word “returned” is a trigger and indicates a trans-

portation event. “Bush” and “Ireland” are two entity mentions, namely the mention

of a person and of a location, which also play a role in the event: They are the entity

being moved and the origin of the transport.

(1) Bush returned from a summit in Ireland.

1See, e.g., Davidson (1969); Mourelatos (1978); Moens and Steedman (1988); Pustejovsky (1991)
and a very brief discussion in Section 2.1.
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1 Introduction

Event extraction seeks to automatically fill the abstract ‘transport template’, which

consists of a trigger placeholder and all the roles the respective event has (agent,

artifact, origin, destination, time, and vehicle), with concrete occurrences in the text

(transport trigger: “returned”, artifact: “Bush”, origin: “Ireland”, other arguments

unfilled).

Event extraction as template assignment corresponds to the setting used in the 2005

Automatic Content Extraction conference (henceforth, ACE 2005). ACE defines event

extraction in terms of three sub-tasks: Entity mention detection, finding mentions of

predefined entity types like persons and organizations; event trigger identification and
classification, finding words which indicate an event and predicting which event they

trigger; and event argument identification and classification, finding the entities playing

a role in an event together with their roles. Entity mention detection is commonly

omitted, which enables research to better focus on the core problems in event extrac-

tion.

In this thesis, we treat event extraction as a prediction task: Given a text, find event

triggers along with the event types they evoke, and find all their arguments along with

the roles they play. In order to carry out such a task, we make extensive use of machine
learning methods which we describe in more detail below.

Section 1.1 states our motivation for this thesis and the research questions we ad-

dress. Section 1.2 discusses the contributions of our work and Section 1.3 states

our publications which underlie this thesis. Finally, Section 1.4 mentions all machine

learning methods we use. However, they are formally introduced and defined in the

chapters where they occur in first.

1.1 Motivation and Research Questions

ACE events never cross sentence boundaries. If an event argument is not mentioned

in the same sentence as the trigger, it is not part of the respective event mention. This

characteristic of ACE enables a more concise representation of event mentions and it

simplifies the automatic extraction, but it also leads most research to predict events

based on single sentences, ignoring the document-wide context. Research which incor-

porates entire documents relies either on rigid, hand-crafted rules or multiple machine

learning models which cooperate in complex ways. Furthermore, a great part of publi-
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1.1 Motivation and Research Questions

cations focus on new prediction methods and use similar information to carry out the

actual predictions, ignoring important intra-sentential information like syntax graphs.2

The motivation for this thesis is based on two observations: (1) Often, there is not

enough information to successfully predict events based on single sentences. (2) Most

event extractors are not able to fully grasp the available intra-sentential information,

especially on the syntactical level. The two points correspond to the two main research

questions in this thesis.

1. Can we enable a state-of-the-art intra-sentential event extractor to easily access

information from the entire document during prediction?

2. Can we learn a useful and flexible syntax representation which is able to cope

with syntactical structures never seen during training?

We answer Question 1 in Chapter 3 where we introduce a global inference method

which enables a local system to draw information from similar event assignments

throughout a document. We show that this considerably enhances performance.

However, we also find that improving argument classification performance with

global information is difficult once the base system reaches a certain reliability in

its argument predictions. Chapters 4 and 5 are dedicated to answer Question 2. To

the best of our knowledge, we are the first to analyze argument identification and

classification performance per se.

Chapter 4 starts with an analysis of our base system’s argument prediction perfor-

mance. We show that syntactical distance is a crucial factor in predicting arguments.

The farther away a potential argument is from the trigger, the more difficult it becomes

to predict it correctly. This is not only true for individual argument assignments, but

also for entire argument types. Victim arguments for example tend to be expressed

nearer to their trigger compared to Place arguments. Consequently, our base sys-

tem predicts them considerably better (+18 F1 points). We hypothesize that a system

can better predict arguments close to their trigger because it has seen most syntax

structures which connect the two during training. Most systems either use local syn-

tax information (like the subject of a word) or they decompose a syntax graph (the

2Syntactical information is of course an important part of event extractors, but they use it either in the
form of local word-to-word dependencies, or in the form of categorical syntax paths. Categorical
features are the information used in feature-based machine learning algorithms. They have the
drawback that new features, e.g., syntax paths never seen during training, do not have a meaning
for prediction.
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syntactical analysis of a sentence) in more simple categorical features. This has the

disadvantage that syntactical constructions never seen during system training cannot

be used for prediction. Question 2 directly addresses this issue: How can we devise

better representations of syntax structures which can assign meaning to any syntac-

tical structure, even those never seen in training? We show that, when inspected in

isolation without noise from wrong trigger prediction, such a representation improves

event argument classification performance considerably. In Chapter 5, we extend the

representation from linear syntactical paths to general syntax graphs and show that

such complex structures can improve the performance of event extractors in general.

1.2 Contributions

Chapter 3 proposes a global decoding method for event extraction (Section 3.2) which

can enable an intra-sentential event extractor to access information from the entire

document during prediction. We use it with two versions of an intra-sentential event

extractor in two different settings (Sections 3.3.1 and 3.3.2). Furthermore, we intro-

duce new feature types to event extraction (Section 3.2.2).

In Chapter 4, we present an analysis of event argument classification performance.

To the best of our knowledge, we are the first to investigate this aspect in isolation

(without interference from trigger predictions). One main finding is that event ar-

gument performance is strongly influenced by trigger predictions – we show that im-

proving trigger prediction recall usually leads to improved argument prediction per-

formance (Sections 3.3.1 and 5.7.2). This is true even if the argument prediction

per se is not better. Increasing trigger recall enables a system to find more arguments,

which, given a good argument prediction mechanism, usually leads to better argument

performance.

In Chapter 4, we find that argument prediction performance is strongly connected

to syntactical distance – arguments which stand far from their triggers are less likely

to be predicted correctly. This observation leads us to the second subject in this thesis:

a representation which can encode arbitrary syntax structures, even those which were

never encountered during training. In Chapter 4 we show that such a representation

improves argument predictions considerably when investigated in isolation.

In Chapter 5, we investigate two more complex syntax encoders (Graph Convolu-

tional Networks and tree-shaped Long Short-Term Memory Networks) with respect to
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1.3 Publications

their usefulness for event extraction. In this chapter, we also address the problem that

ACE 2005 provides only little training data and use Bootstrap Aggregating (bagging)

to train our models.

The final contribution we want to mention here is that Chapters 4 and 5 address

reliability and comparability of scientific evaluations. Section 2.5 discusses two of the

issues involved in this complex area: Sometimes, a better preprocessing can consider-

ably improve performance even if the involved system does not change. This leads us

to the practice that we compare systems and settings with identical preprocessing in

our work, e.g., when we compare our local and our global event extractors, or when

we compare the different syntax encoders. We cannot however test other published

systems in this way because we have, with the exception of our base system in Chap-

ter 3, no other runnable event extractor. The second point we discuss is related to

indeterministic training. Training deep learning methods involves randomness. This

has a profound impact on determinism: The same method produces different models

given the exact same input, and these models in turn may perform very differently

in the same test set. A way to increase reliability of evaluations is to report average

evaluation metrics across multiple training and testing rounds. However, it is common

practice in the ACE event extraction literature (and in other computer science pub-

lications) to report only one training and testing round. This raises questions about

the reliability of evaluations. Whenever we use indeterministic training, we report the

average of 5 training and testing round, as well as sample standard deviations where

appropriate.

1.3 Publications

This thesis is in large parts based on three of our publications. In Section 2.3.3 we

mention Judea and Strube (2015) when we talk about tasks which are structurally

identical to event extraction, most notably frame-semantic parsing.

Judea and Strube (2016) is the foundation of Chapter 3, especially for the setting

with predicted entity mentions. However, we extend this study by also exploring the

gold entity mention setting.

Judea and Strube (2017) corresponds to the argument performance analysis and

the dependency-path encoder we present in Chapter 4. Therefore, this publication
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also constitutes the foundation of Chapter 5 where we explore syntax representations

of broader syntactical structures.

We publish accompanying code for Chapter 4 on the heiDATA servers for a more

persistent, long-time archiving with the DOI 10.11588/data/CZZEKX (Judea, 2021a).

Accompanying code and models for Chapter 5 are also published on heiDATA with

the DOI 10.11588/data/Z1RKOI (Judea, 2021b).

Furthermore, we publish both code repositories (without models) on GitHub (https:

//github.com/m-alexj/argumentor.git and https://github.com/m-alexj/eventor.

git respectively).

1.4 Methodological Overview

This section briefly describes the methods we use and references them to the chapters

and sections where they are introduced and defined.

We heavily rely on supervised machine learning to carry out event extraction. We

have a set of documents with manually produced event annotations. Machine learn-

ing algorithms analyze the annotations and produce models which abstract from the

information they were produced on, making them able to annotate events in new sen-

tences. The machine learning methods we use can be divided into two broad groups:

feature-based and Deep Learning. The former relies on hand-crafted features which de-

compose the problem into single characteristics, e.g., the left and right lexical context

of a word (when computing event triggers) or the syntactical relations of a head noun

(when computing event arguments). Deep Learning methods on the other hand learn

latent representations of the problem, without the need for manual feature engineer-

ing. They only rely on an input, an architecture of different processing layers, and an

output. During learning, the weights in the architecture are formed in a way that the

input likely results in the desired output.

Chapter 3 uses a feature-based machine learning method, namely the structured

perceptron (Collins, 2002; Huang et al., 2012). Section 3.1 introduces and formalizes

the structured perceptron in the context of event extraction. In Section 3.2, we propose

a multi-pass inference method to incorporate global (document-wide) decisions into

the local (intra-sentential) structured perceptron we use.

In terms of machine learning methods we have a turning point from Chapter 3 to

Chapters 4 and 5. This turning point coincides with the recent popularity of Deep
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1.4 Methodological Overview

Learning (DL) in computer science. DL methods do not rely on manually engineered

features; they only require an input and a known output – training procedures ensure

that the system automatically learns to produce the right output, without the necessity

of telling it explicitly what to pay attention to.

DL offers an important advantage for our work: it can produce representations of ar-

bitrary syntax structures, from linear dependency paths to general dependency graphs.

Instead of decomposing such structures into features and learning weights for them,

DL methods embed them more directly into a high-dimensional, continuous space such

that similar structures (with respect to event extraction) stand close together. We in-

vestigate the use of such syntax representations for event argument classification in

particular (Chapter 4) and for event extraction in general (Chapter 5).

In Chapter 4, we introduce Long Short-Term Memory networks (LSTMs) (Section

4.3.3). LSTMs have the ability to encode an arbitrarily long sequence into one fixed-

size vector. In Chapter 5, we extend simple LSTMs to general graphs. We test the

use of syntax graph encoding methods for event extraction, namely the use of Graph

Convolutional Networks (Section 5.5.3) and tree-shaped LSTMs (Section 5.5.4).

Section 4.3.4 introduces and formalizes Convolutional Neural Networks (CNNs).

CNNs efficiently learn patterns from their inputs, e.g. to recognize specific objects

in images – we use them to learn patterns in the lexical context of potential event

arguments.

We also use auxiliary methods. Most notably, we use parameter averaging in each

chapter. Instead of predicting event triggers and arguments using the latest weights,

we average them with previously obtained weights. This has the advantage that

weights which oscillate heavily during training are smoothed out, while weights which

are nearly constant remain unaltered. This method was introduced in Collins (2002)

and further formalized in Huang et al. (2012) to considerably improve the perfor-

mance of perceptrons, and to bring them in a par with more sophisticated feature-

based learning algorithms like Support Vector Machines (Hearst et al., 1998). We also

use parameter averaging for our DL systems (Section 4.3.8).
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2 ACE Event Extraction: Task and
Data

In this thesis, we work with the popular event schemes used by the Automatic Content

Extraction (ACE) program and its subsequent version, the Text Analysis Conference

(TAC)1. The ACE event scheme was developed by the US-American National Institute

of Standards and Technology (NIST). TAC annotations are based on a lighter scheme,

namely on ‘Entities, Relations, and Events’ (ERE, Song et al., 2015) developed in the

Deep Exploration and Filtering of Text (DEFT) program, financed by the Defense Ad-

vanced Research Projects Agency (DARPA), a US agency. Both schemes have in com-

mon that they view event extraction as an information extraction task. In this chapter,

we present the annotation schemes and put them in a broader context, including a

short discussion of viewing the task in computational and scientific terms.

We briefly establish events as philosophical entities (Section 2.1) before we adopt

a pragmatic view and define an event to be identical to the ACE annotation of an

event. Section 2.2 describes the ACE annotation scheme in detail. Section 2.3 locates

event extraction in the space of Natural Language Processing tasks and mentions other

event annotation schemes. Finally, Sections 2.4 and 2.5 describe event extraction as a

computational task and as a scientific pursuit, respectively.

2.1 Establishing Events

The exact definition of an event is subject to ongoing philosophical debates (Davidson,

1969; Mourelatos, 1978; Moens and Steedman, 1988; Pustejovsky, 1991, i.a.). David-

son (1969) for example replaces the question ‘what are events’ with the question ‘when

are two events identical’. He proposes to treat events the same as entities – they are

1We discuss and use the event trigger annotations in the TAC 2015 data. The TAC argument anno-
tations differ from their ACE counterparts in a fundamental (and for us unusable because out of
scope) way: They are based on coreference chains and can occur anywhere in a document.
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2 ACE Event Extraction: Task and Data

located in space and time and have attributes which specify them further; when they

are used in sentences, one can define that two event mentions are coreferent (refer to

the same event) when they refer to the same ‘event-entity’. This view makes events

easier to understand because they are treated similar to entities like cars and birds.

However, it also leads to problems on a conceptual level because some events do not

fit well in this entity-centric view. Two events can share the same point in spacetime

for example, or continuously blend into each other.

The formal notion of events is deeply rooted in language philosophy, and beyond the

scope of this thesis. We will not define events formally, but we will report and adopt

the notion of events used in creating the datasets we operate on. These notions are

pragmatic in nature and thus leave out many important philosophical and linguistic

aspects, but they help to define events in such a way that they become intuitively un-

derstandable by humans (which is important for manual annotation) and processable

by software (which is the ultimate goal of the effort). In the following, all quotes are

from the ACE 2005 event annotation guidelines (Linguistic Data Consortium: Events,

2005).

An Event is a specific occurrence involving participants. An Event is some-

thing that happens. An Event can frequently be described as a change of

state.

Events connect entities, times, and places and therefore constitute a higher semantic

level than these categories. There is a basic distinction between events and event men-
tions. The latter are concrete mentions of an event in texts. Two event mentions are

connected by a coreference link if they refer to the same event, potentially revealing or

highlighting different aspects of the event. It is possible for example that one mention

talks about the attacker of an event, while another mention talks about the victims of

the same event without mentioning the attacker. Knowing which mentions refer to the

same event allows to properly aggregate all the information reported in a document,

or even a document collection. In this thesis, we are exclusively concerned with the

extraction of event mentions and leave the interesting and fundamental problem of

event coreference aside.
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2.2 Describing ACE Events

2.2 Describing ACE Events

Above, we ‘defined’ events following the ACE annotation guidelines. In this section,

we want to describe the underlying annotation scheme and the ACE data. We also

describe the annotation of the Text Analysis Conference (TAC) 2015 because they are

strongly related to ACE and we use them for evaluation in Chapter 3.

An event template consists of a type, a set of specific roles, and placeholders for a

trigger and arguments. For example, the movement template has the type MOVEMENT

and the roles Agent, Artifact, Origin, Destination, Time, and Vehicle, as well as

the mentioned placeholders.2 Event templates are organized in eight broad categories,

namely LIFE, MOVEMENT, TRANSACTION, BUSINESS, CONFLICT, CONTACT, PERSONNEL

and JUSTICE. The word which “most clearly” (Linguistic Data Consortium: Events,

2005) indicates an event is the trigger. An argument is a role filler. More precisely, an

argument of an event is an entity mention which plays one of the roles predefined by

the respective event template. This means that ACE ignores all event types which are

not of interest, and it ignores all entities which do not play one of the predefined roles

in an event.

An event is a specific instance of a template. It consists of a trigger and arguments,

each associated with a type. The trigger type is the event type. An argument type is

the role the respective entity mention plays in the event. An event mention is the occur-

rence of an event in the text. To be more concise however, we will mostly talk about

‘events’ and only write ‘event mentions’ where the distinction is necessary. Consider

the following example of an event mention.

(2)
The [plane]VEH arrivedTRANSPORT back to [base]LOC safely

Vehicle

Destination

In Example (2) we can find one TRANSPORT event triggered by “arrived” with the

two arguments “plane” and “base”. “Plane”, the mention of a vehicle entity, fills the

Vehicle role. “Base”, the mention of a location entity, fills the Destination role. In

order to be more concise, we will say that “arrived” is a TRANSPORT trigger (we omit

2In this thesis, event types are always in SMALL CAPS and roles in Typewriter font. Entity mentions
stand in square brackets, the entity type comes afterwards as a subscript: [he]PER for example is the
mention of “he”, a PER (person) entity.
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the event supertype), and that “plane” and “base” are Vehicle and Destination argu-

ments, respectively. Other mentions of this event might specify additional arguments

in other places of the document. The totality of such arguments constitutes the ab-

stract event, which in turn is an instance of the transport event template. We will

discuss all categories introduced so far in more detail in the following subsections.

In (2) we have only one event. The next example contains multiple events and

shared arguments.

(3)
A series of [anthrax]WEAPON attacksATTACK killedDIE five [people]PER

Target

Victim

Instrument

Instrument

In (3), “attacks” triggers an ATTACK event and “killed” triggers a DIE event. All of the

arguments in (3) are shared by the two events. “Anthrax” is an Instrument to both.

“People” fills different roles in the two events: It is the Target of the ATTACK, but the

Victim of the DIE event.

We will now give more detailed explanations of the three components of ACE event

extraction: event mentions, triggers, and arguments. Afterwards, we discuss entity

mentions and some of the difficulties and errors with ACE annotations we observed

during development.

2.2.1 Event Mentions

We introduced event mentions above and demarcated them from events. Here, we

describe additional information associated with event mentions in the ACE data.

ACE and subsequent annotation schemes define an extent of the event, which is

equal to all tokens which include the trigger and all arguments. The scope of an event

is a sentence, meaning that ACE events do not cross sentence boundaries. For ‘Entities,

Relations, Events’ (ERE) in contrast, the scope is the entire document, meaning that

events do cross sentence boundaries. An argument in TAC for example can occur

anywhere in the document. Finding TAC arguments makes it necessary to compute

entity mentions coreference, a hard NLP problem in itself.

There is more information associated with an event: Polarity refers to the actuality of

the event. Positive polarity means the event actually happened, negative polarity refers

12
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to the opposite case. This is important because ACE allows the annotation of ‘non-

real events’, i.e. hypothetical, commanded/requested, threatened/proposed/discussed

events (encoded as the event’s modality). Tense indicates if the event is a past or future

event with respect to the document’s publication time. Finally, Genericity indicates if

an event is generic or specific. Specific events are those happening at a specific point

in spacetime; all other events (e.g., repetitive) are generic.

2.2.2 Event Triggers

Event triggers are words or phrases that express an event occurrence within a sentence.

Identifying triggers is an essential part of both ACE and TAC. In ACE, triggers always

have a head consisting of only one word. In TAC, the trigger may consist of multiple

(contiguous) words.

For a better understanding of triggers, we analyze part-of-speech (POS) distributions

in ACE and TAC, more specifically in the training set we use throughout this thesis. We

apply a POS tagger to both sets and gather statistics about the trigger head words.

Table 2.1 reports the results. We discuss triggers from each part-of-speech and give

examples afterwards.

ACE05 TAC15
part-of-speech % # % #

verb 49.1 2169 51.4 3027
noun 45.6 2014 43.2 2544

adjective 3.1 138 3.7 216
pronoun 0.9 42 0.6 30

other 1.3 56 1.1 70

Table 2.1: The distribution of the four most frequent part-of-speech tags for event triggers in
the ACE 2005 and the TAC 2015 training set. ‘%’ refers to fractions, ‘#’ to frequen-
cies.

As we can see in Table 2.1, the part-of-speech tag distribution is similar in both

datasets. Around 50% of all triggers are verbs. Consider the following examples.

(4) Orders went out today to deploy 17,000 U.S. Army soldiers . . .

(5) At least 19 people were killed and 114 people were wounded . . .

13
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With around 45%, nouns are the second most frequent POS category for event trig-

gers. Most of them are verb nominalizations, many of which also occur as verbs in the

training set.

(6) After Christmas, I got a call from the wife of one of my former bosses

. . .

(7) The toughest fight, though, may lie ahead in the heart of the Iraqi

capital.

Besides common nouns, the noun category also includes proper nouns. Most are

tagging errors, e.g., capitalized triggers like ‘Murdered’ which were confused with

proper nouns by the automatic POS tagger. Correct proper noun triggers include

salient military events (‘Operation Iraqi Freedom’, ‘World War II’) and dates which

are used metonymically (‘September 11’). One group which does not occur in ACE or

TAC are places where a salient event occurred and which are used metonymically, e.g.,

“Fukushima”. It is an interesting problem to analyze metonymically used triggers in

particular. Unfortunately, they are very rare in ACE and TAC.

(8) Famed World War II reporter Ernie Pyle

Pronouns are responsible for less than 1% of event triggers. This part-of-speech

includes only ‘it’ and ‘them’ if they refer to another event mention in the text. Consider

the following example.

(9) A student fatally shot a principal before killing himself this morning. It

happened in the cafeteria of red lion area junior high school about 30

miles southeast of Harrisburg.

In (9), “it” is a DIE trigger and refers back to the event expressed by “killing”.

2.2.3 Event Arguments

As we outlined above, event templates specify a set of roles. By extension, each event

has the same set of roles to fill as the respective template. Most of the roles are

template-specific. For example, ATTACK events have the roles Attacker, Target and
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Instrument to fill, whereas DIE events have the roles Agent, Victim and Instrument

to fill. Common to all are the roles Time and Place.3

In ACE, roles can only be filled by entity mentions.4 If a role filler exists, it is called

an argument. Therefore, we will use the term ‘argument type’ synonymously to ‘role’.

Please note that one role can be filled by zero or more fillers; more than four fillers

however are very rare. In Example (10), both arguments (“bombs” and “missiles”) fill

the same role (Instrument) of the ATTACK event.

(10)
. . . those sorties will be strike sorties using Bombs and Missiles . . .

Instrument

Instrument

Arguments can be further subdivided into two classes: Participants and attributes.

Participants are persons (per), organizations (org), geo-political entities (GPE), facili-

ties (fac), locations (loc), vehicles (veh) or weapons (wea). Attributes are subdivided

into event-specific and general. Event-specific are the attributes Crime and Sentence

(JUSTICE events), and Position (PERSONNEL events). General atrributes are Place

and Time, which apply to every event type.

The event argument annotation for TAC 2015 follows a different intention: Argu-

ments are annotated per event (as opposed to per event mention), meaning that the

arguments of an event are the most specific role fillers which occur anywhere in the
document. To illustrate this, consider the following text from the TAC argument linking

task description draft (from July 14, 2015):

(11) A separatist group called the Kurdistan Freedom Falcons (TAK) claimed

responsibility for an explosion late on Monday which wounded six peo-
ple, one of them seriously, in an Istanbul supermarket. Istanbul gover-

nor Muammer Guler told Anatolia news agency the explosion in the
Bahcelievler district of Turkey’s largest city injured six people. The

agency said 15 other people had been hurt. "We consider the explosion

that took place tonight in an Istanbul supermarket to be a response to

the barbaric policies against the Kurdish people

3For MOVEMENT events, Origin and Destination very often substitute Place.
4In this thesis, we expand the notion of an entity, see Section 2.2.4.
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Two events are mentioned multiple times in (11), an ATTACK and an INJURE event.

We focus on the former. The event is indicated by multiple trigger words (“explo-

sion”). Its arguments are spread across multiple sentences. For example, the Attacker

(“Kurdistan Freedom Falcons (TAK)”) is in another sentence than the two Targets “six

people” and “15 other people”. In the case of competing fillers (e.g., “late on Monday”

vs. “tonight”) the most specific one is selected.

2.2.4 Entity Mentions

As mentioned above, roles can only be filled by entity mentions (under a broader

notion of ‘entity’, see below). When we write ‘entity mention’, we mean the seven

ACE entity types as well as times, numbers, and event-specific attributes (crimes, legal

sentences, and employee positions) for the sake of simplicity.

One would assume that entity mention prediction is a fundamental task in event

extraction. It is, however, mostly ignored in the literature. The standard setting in ACE

event extraction is that entity mentions are given. Therefore, most event extractors

operate in a somewhat artificial setting and cannot be used ‘in the wild’ to extract

events.5 In the following, we want to briefly discuss entity mentions. We start with an

example.

(12) Orders went out [today]TIME to deploy 17,000 [U.S.]GPE [army]ORG [soldiers]PER

We have four entity mentions in (12). “Today” is a point in time, “U.S.” a geo-

political entity, “army” an organization, and “soldiers” are persons.

ACE defines two annotations for entity mentions: the extent and the head. The ex-

tent is a nominal phrase (Linguistic Data Consortium: Entities, 2005). In the example

above, the extent of “soldiers” is “17,000 U.S. Army soldiers” and the head just “sol-

diers”. The head is either the syntactic head of a nominal phrase or the full extent of

a proper noun. Heads seldomly overlap. In (13) we report the extents of all entity

mentions in (12).

(13) Orders went out [today] to deploy [17,000 [U.S. Army] soldiers]

The three event extractors which work with predicted entity mentions (Li et al.,

2014; Yang and Mitchell, 2016, our work in Chapter 3) predict heads, not extents.
5Yang and Mitchell (2016) and our global event extractor in the ‘predicted entity mention’ setting

(Section 3.3.2) are exceptions.
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As mentioned above, we include the fillers of event-specific attributes like crimes

in our notion of entities to be more concise. In terms of annotation however, there

is an important difference between entities and these fillers: Fillers of event-specific

attributes (called values in ACE) only have extents. This poses a serious problem for

prediction. Entity heads are usually short, but value extents tend to be very long, e.g.,

“those attacks that killed five people and sickened 13 others”. Li et al. (2014) circum-

vent the problem by ignoring all values. Consequently, our global event extractor in

the ‘predicted entity mention setting’, which uses this system as its local predictor, also

ignores values. Yang and Mitchell (2016) do not mention how they treat values.

2.2.5 Annotation Difficulties and Errors

Reliably annotating rich structures like event mentions in texts is demanding. In this

section, we analyze some salient annotation difficulties and errors in the ACE 2005

training set, as well as principal difficulties with the annotation scheme itself.

The first difficulty we address is multiple potential triggers for one event. Consider

the following example.

(14) The company was ordered to pay a fine

Here, “pay” and “fine” refer to the same event, but the ACE annotation guidelines

forbid to annotate multiple triggers for one event. Instead, they specify rules which of

the possible triggers to select. The annotation guidelines list a few examples of con-

curring triggers, but we speculate that these examples are not enough to produce an-

notations with high inter-annotator agreement whenever the annotators decide which

of two potential triggers to keep. Often, the rules state to select some trigger over

another based on its part-of-speech and if it can refer to the event by itself. In our

opinion, the latter criterion is rather subjective. Whenever a noun and a verb are pos-

sible triggers, the noun is preferred if it can refer to the event by itself. In our example

above, only “fine” would be annotated as a trigger.

(15) The explosion left at least 30 dead

In Example (15), a verb (“left”) concurs with an adjective (“dead”) for the trigger

position. According to the guidelines, the adjective is preferred over the verb, but

again only if it can refer to the event by itself.

Another problem arises when one word could potentially trigger multiple events.

Consider the following example.
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(16) The gunmen shot Smith and his son

Here, “shot” triggers an ATTACK and a DIE event. The ACE guidelines do not mention

such cases which might introduce a source of annotation inconsistencies because an-

notators are free to choose one over the other. In contrast, ERE guidelines, especially

the TAC guidelines, explicitly allow and encourage one word to trigger multiple events

if appropriate.

We will now discuss annotation errors. Consider the following example.

(17) Police are now considering the possibility that the remains are those of

Laci Peterson and her unborn child.

“Unborn” in (17) is a BE-BORN trigger. The annotation guidelines state that a BE-

BORN event only occurs if an entity is born (Linguistic Data Consortium: Events, 2005).

They fail to mention however that planned, commanded, or negated events are explic-

itly allowed, meaning that “unborn” can indeed be the trigger of a BE-BORN event.

This contradiction in the guidelines causes annotator disagreement: ‘Unborn’ occurs

13 times in the ACE training set, 10 times mentioning the same event as in (17).

However, it was annotated only twice as a trigger.

(18) . . . calling on Muslims to wage jihad against the United States and its

allies.

Here, “jihad” is an ATTACK trigger with “Muslims” as the Attacker. The phrase

“wage jihad against the United States and its allies” suggests that the geopolitical

entity mentions “United States” and “allies” are Targets of the event, but the anno-

tation guidelines forbid to annotate them as such because geopolitical entities cannot

be Targets, only persons, organizations, vehicles, facilities, and weapons can. Never-

theless, it seems incomplete to just discard “United States” and “allies” as arguments.

There are two possibilities to overcome this: Either the constraints in the guidelines are

to be rescinded, or the entity types of “United States” and “allies” are to be changed to

per (person) because in this context the two mentions mentonymically stand for “the

people living in the US and its allied countries”.

2.2.6 ACE Documents

ACE offers 599 annotated documents, grouped into six genres: Usenet newsgroups

(un; newsgroups), broadcast conversations (bc; conversations), telephone conversa-

tion transcripts (cts; transcripts), weblogs (wl), broadcast news (bn; broadcasts), and
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un (447) bc (765) cts (352) wl (422) bn (976) nw (1144)

business.declare-bankruptcy (25)
transaction.transfer-ownership (99)

transaction.transfer-money (144)
movement.transport (643)

conflict.attack (1121)
life.die (465)

business.merge-org (10)
business.end-org (34)
business.start-org (41)

personnel.end-position (176)
justice.extradite (4)

justice.charge-indict (91)
justice.sentence (80)
justice.arrest-jail (73)

justice.release-parole (22)
justice.trial-hearing (69)

life.divorce (14)
life.marry (55)

justice.sue (48)
conflict.demonstrate (59)

contact.phone-write (100)
personnel.elect (109)

personnel.start-position (101)
contact.meet (212)

life.injure (121)
life.be-born (33)

justice.convict (63)
justice.fine (22)

personnel.nominate (12)
justice.execute (21)

justice.acquit (5)
justice.appeal (32)
justice.pardon (2)

2 0 1 3 17 2
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9 16 11 14 48 114
6 35 3 13 27 37
7 2 5 6 9 4
2 0 15 4 14 28
1 6 0 2 6 7
0 2 4 3 1 2
0 4 3 1 6 7
0 0 1 1 0 3
0 0 1 1 7 23
0 0 0 0 1 1

0

60

120

180

240

300

Figure 2.1: A heat map (darker colors mean higher values) representation of event types (y
axis) per ACE genre (x axis) distribution. Genres are: Usenet newsgroups (un),
broadcast conversations (bc), telephone conversation transcripts (cts), weblogs
(wl), broadcast news (bn), and newswire (nw). Numbers in parentheses are the
sums of the respective row or column values.
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newswire (nw). Figure 2.1 depicts the distribution of events to genres. Event types

are on the y axis and genres on the x axis. In parentheses, we report the total num-

ber of instances per row (of event types in total) and column (of event types in the

respective genre). For example, there are 25 DECLARE-BANKRUPTCY events in ACE, 2

in newsgroups, 1 in transcripts, 3 in weblogs, 17 in broadcasts, and 2 in newswire.

Newsgroups has 447 events, broadcasts 762, etc.

In total, we have 4106 event annotations – a low number for a complex task like

event extraction. Some of the events are infrequent. DECLARE-BANKRUPTCY has only

25 instances, MERGE-ORG 10, and EXTRADITE 4. ATTACK is the most frequent, PAR-

DON the most infrequent event type (1121 and 2 annotations, respectively). ATTACK

is the most frequent event type in five of the six genres; the only exception is tran-

scripts, which contains more TRANSPORT events. ATTACK, TRANSPORT, and DIE clearly

dominate the other event types in terms of frequency.

Conversations, broadcasts, and newswire have similar event distributions – with

the notable exception of a considerably higher amount of MEET events in newswire.

Newsgroups, transcripts, and weblogs are also similar to each other, with the exception

of considerably less TRANSPORT events in weblogs.

In Chapter 5, we directly address the low amount of training data by introducing

bagging as a training regime to event extraction (Section 5.6.3). Scarce training data

also makes indeterministic training effects more severe (Section 2.5).

Most publications use the train-dev-test split introduced by Ji and Grishman (2008).

This split uses 30 documents as development data, and 40 documents as test data.

Note that the test set consists only of newswire articles and ignores all other genres.

We introduce two additional data splits which follow ACE’s genre distribution more

closely in Chapter 5.

2.3 ACE Events in a Bigger Context

In ACE, event extraction is an information extraction task, and events are entities with

a trigger word, a set of roles, and arguments. Furthermore, ACE documents only

cover news and political discussions. In this section, we want to outline event tasks

from other domains (Section 2.3.1) as well as other event formalisms (Section 2.3.2).

Finally, we describe tasks which are similar to event extraction (Section 2.3.3).
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2.3.1 Other Domains

The BioNLP’09 event shared task (Kim et al., 2009) is prominent in the bio(medical)

NLP community. The task resembles ACE event extraction in many aspects. Both

assume gold entities are given, and both require the identification and classification of

triggers and arguments. Furthermore, both schemes encode event modifications like

negations or speculations. However, the domains differ. In the BioNLP shared task,

events are concerned with protein biology; triggers express biological processes (e.g.,

gene expression), arguments are proteins and other biological events. The last point

(other events as arguments) is a fundamental difference between the BioNLP shared

task and ACE (including subsequent annotation schemes like ERE): ACE explicitly

neglects event-event interactions.

2.3.2 Other Event Formalisms

TimeML (Pustejovsky et al., 2003a) is an annotation formalism which highlights the

temporal aspects of events. It was developed for question answering, especially for

questions involving temporal expressions (e.g., ‘currently’) or asking about points in

time (‘when did’). TimeML addresses four temporal event problems: (a) identify an

event and anchor it in time, (b) order events either based on their absolute temporal

order or based on their ‘lexical’ ordering in a discourse, (c) reason about underspeci-

fied temporal expressions (e.g., ‘last week’), and finally (d) reason about the duration

of an event. It also includes event-event relations: Temporal relations (before/after),

subordinations (e.g., if one event provides evidence for another: ‘he said he did’), and

aspectual relations (e.g., if one event initiates the other: ‘he started to read’).

TimeML was used to produce the TIMEBANK corpus (Pustejovsky et al., 2003b),

which provides several thousand events and information about events as described

above. It also served as the foundation of SemEval 2007 Task 15 (Verhagen et al.,

2007), a shared task about identification of temporal relations, and its successor,

SemEval 2010 Task 13 (Verhagen et al., 2010).

2.3.3 Structurally Similar Tasks

In this section, we want to discuss two semantic formalisms which are structurally

identical to event extraction (both have equivalents for triggers and arguments). Both

encode predicate-argument structures, a more general concept than events. From a

21



2 ACE Event Extraction: Task and Data

computational point of view, the three tasks are equivalent. At least in theory, they can

use the same infrastructure and inference procedures.6

Semantic Role Labeling, or SRL (Gildea and Jurafsky, 2002; Màrquez et al., 2008),

is an NLP task and a semantic formalism. SRL is usually introduced as a formalism

describing events. However, this notion of ‘event’ is different from the one used in

event extraction. In the latter, an event is something important that happens – in the

former, an event is something that happens. In other words, SRL is concerned with

characterizing all events which occur in natural language, whereas event extraction

seeks for the extraction of an exclusive list of pre-defined events of interest.

SRL aims to bridge syntax and semantics in a ‘useful’ way (Palmer et al., 2005) by

mapping semantic relationships onto predicate-argument structures, e.g. by indicat-

ing the agent among all arguments of a predicate. The predicate (typically a verb)

determines the event. The event schema also serves as a disambiguation schema – it

encodes polysemy for example. As in event extraction, different events have different

role sets. The totality of the roles for some event is called a frameset. Framesets come

in two versions. One consist of numbered roles: Arg0, Arg1, etc., where Arg0 is simi-

lar to a Prototypical Agent (Dowty, 1991) and Arg1 is similar to a Prototypical Patient

or Prototypical Theme. The other consists of predicate-specific roles. However, SRL

systems usually only predict general roles only.

Frame semantic parsing (FSP) is based on frame semantics (Fillmore, 1982) and

FrameNet (Fillmore et al., 2003). Like SRL, FSP encodes semantic information in

predicate-argument structures. Unlike SRL, there are no prototypical role sets. In

this respect, FSP is more similar to event extraction. The task is to predict frames

(‘event types’) for lexical units (trigger equivalents) and their frame elements (argu-

ment equivalents). Lexical units are mostly nouns or verbs. Other parts-of-speech

also include adjectives and prepositions. Frame elements are frame-specific, much like

the event-specific role sets in event extraction, or the predicate-specific framesets in

Semantic Role Labeling.

Judea and Strube (2015) retrain SEMAFOR, a well-known frame-semantic parser

(Das et al., 2014), to extract events. With only a new frame element feature set, the

retrained system can rival the then-state-of-the-art in event extraction on predicted en-

tity mentions (Li et al., 2014). Judea and Strube (2015) identify two major problems

in re-training SEMAFOR for event extraction, which can be interpreted as two major

differences between event extraction and frame-semantic parsing. First, in frame-

6If the system is feature-based however, each task would need its own feature set.
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semantic parsing, there is no ‘negative class’ – each lexical unit triggers some frame,

whereas in event extraction, many eligible trigger candidates are in fact not a trigger

for any of the pre-defined event types. Second, ACE event arguments are always en-

tity mentions, whereas frame elements often correspond to syntactically well defined

structures like noun phrases, which makes it easier to identify frame elements because

they can be deduced from syntax parser output.

2.4 ACE Event Extraction as a Computational Task

In this section, we describe the computational task ‘event extraction’. Afterwards, we

define technical terms regarding the decoding process of event extractors. In the next

section, we will look at event extraction as a scientific pursuit. In the following, we

have some information overlap with previous sections. Here, we are only interested

to introduce event extraction as a computational task and to describe the implications

and structures we face.

There are different names for the actual task: ACE speaks of ‘Event Detection and

Recognition’ (ACE2005, 2005). Some of the publications in the field have only ‘event

detection’ in their titles if they only predict event triggers (Feng et al., 2016; Liu et al.,

2017, i.a.). However, the task is most frequently referred to as ‘Event Extraction’.

Event extraction consists of two sub-tasks, corresponding to the two main structures

of ACE events, namely detecting and classifying triggers and arguments. Detection

refers to finding words and entity mentions which are triggers and arguments of some

event. Classification also involves to predict the respective trigger and argument types.

Most publications report evaluation numbers for both tasks. In this thesis, we will

continue this mode. Please note that there is also an increasing number of publications

for trigger-only systems (Section 6.2).

ACE events (or rather event mentions) are defined intra-sententially: The trigger

and all arguments of an event can always be found in the same sentence. Therefore,

most event extractors operate within sentences. Finding event mentions is usually

cast as a two-stage approach: A system first classifies each word in the sentence as

belonging to one of the 33 ACE event types or a negative class. If an event type

is predicted, the system looks for an argument type given the trigger and all entity

mentions in the sentence, again including a negative class. However, the task can also
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be modeled jointly. In Section 2.4, we formalize the different ways an event extractor

can approach the task.

In terms of evaluation, most publications follow the procedures introduced in Ji and

Grishman (2008): Triggers are correctly identified if their span matches that of any

gold trigger. They are correctly classified if the event type is also correct. Similarly,

arguments are correctly identified if their span matches that of any gold argument and

they are correctly classified if the respective argument type/the role is correct. We

follow most publications and usually report both, ‘identification’ and ‘classification’

scores for triggers and arguments.

In most publications, entity mentions are given, meaning that the extractors rely on

gold entity mentions. There are only a few systems which predict entity mentions (Li

et al., 2016, and our work in Section 3.3.2).

One of the main findings of this thesis is strongly related to the computational task:

Trigger prediction has a fundamental impact on argument prediction. This is intu-

itively clear: For every missed trigger, we also miss all its arguments, and for every

spurious trigger we may introduce spurious arguments. In Sections 3.3 and 5.7 we

show that it is trigger recall which bears the most impact, and not trigger prediction

performance in general. It is especially true that a system can significantly increase its

argument prediction performance solely by increasing trigger prediction recall.7 This

has some implications for comparability, especially if one claims that a system has a

better argument prediction performance than another: The effect can be solely based

on increased trigger recall. In Chapter 3 for example, we present a system which

improves trigger prediction by global inference – this in turn substantially increases

argument predictions as well. However, the system actively only improves trigger

predictions. To the best of our knowledge, we are the first to explicitly mention and

investigate this effect. In Chapter 4, we devise a setting where trigger predictions have

no effect on argument predictions in order to reliably evaluate the impact of syntax

encodings to argument predictions.

Terminological Clarifications

In the following, we introduce six technical terms (organized in three categories)

which we frequently use in this thesis. Four of them describe the prediction process.

7Clearly, the positive effects of increased trigger recall diminish if the loss in precision is too severe.
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We also use the distinctions we make here while introducing the terms to characterize

the most influential event extractors published before 2018 (Section 6.1).

We first describe decoding, before we introduce the terms joint vs. disjoint and local
vs. global to characterize how most event extractors model the decoding process. We

also introduce and formalize the terms static vs. dynamic for feature templates.

‘Decoding’ refers to the process of creating and labeling event structures (triggers

and their arguments); we use the term interchangeably with ‘inference’. Joint vs.
disjoint refers to the decoding type and local vs. global to the decoding scope.

Decoding type is a qualitative dimension – are triggers and arguments predicted

jointly or consecutively? In joint decoding, predictions influence each other. Joint event

decoders typically predict the event structure of an entire sentence. They do not settle

for a definitive answer on any trigger or argument labeling until the entire sentence

is labeled for triggers, and all entity mentions are assigned a label with respect to

each trigger. Disjoint decoding on the other hand predicts triggers and arguments,

or arguments among themselves, independently and consecutively. The decision for a

trigger label is made before the argument labeling begins. In other words, the decisions

do not influence each other. A special type of inference is given if future decisions are

informed by previous ones, without the possibility to revoke the previous ones. We

characterize this as disjoint decoding.

Decoding scope a quantitative dimension – how far does information flow within a

document? Local decoding is only informed about the current sentence, or even only

about smaller contexts. Global decoding crosses sentence boundaries and can draw

information from the entire document, or even multiple documents.

Most event extractors can be characterized using the two dimensions above. To

further clarify the distinctions, consider the following example.

(19) . . . demonstrating against military strikes on Iraq and calling on Mus-

lims to wage jihad against the United States and its allies.

. . .

I don’t think America will win this war, as our jihad and our resistance

will teach the Americans and British a lesson they will never forget,”

he said.

Local and disjoint systems (which applies to most published event extractors) would

first predict triggers and then arguments for each trigger. They may first predict that
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“demonstrating” probably triggers a DEMONSTRATE event. We will assume argument

prediction returns no arguments for this trigger. Then, local and disjoint systems may

predict that “strikes” is an ATTACK trigger. Argument predictions follows. They may

predict that “Iraq” is a Target. They may also predict that “United States” is a Target

because they would not be informed that they already predicted a better Target – in

this example, “Iraq” and “United States” look very similar to each other in terms of

features.

Local and joint systems on the other hand operate on a joint search space, prefer-

ably encompassing all possible decisions for the entire sentence. Here, the presence

of “Iraq” as a possible Target would also inform the decision for “strikes” and vice

versa, and the presence of “strikes” as an ATTACK trigger would inform the decision

for “demonstrating”. Furthermore, a joint system would be able to determine that

“Iraq” is a better Target than “United States” for this event, and may not assign the

role twice. Joint systems have a clear advantage over disjoint ones because they are

less prone to error propagation – false decisions can be revised as more information

becomes available.

A special kind of joint decoding is pattern matching. For example, Grishman et al.

(2005) collect training data patterns which characterize the connection of a trigger to

all arguments, and apply pattern matching at test time to check if events are present in

new sentences. If a pattern matches, the respective trigger and argument assignments

constituting the pattern are believed to be present in the sentence as well. This means,

that trigger and argument decisions are performed jointly without the need to search

through a large joint decoding space.8

However, local systems (regardless of decoding type) would predict all occurrences

of “jihad” as ATTACK triggers, because the word never appeared as such in the training

data. Local systems might get the first occurrence right, but the second seems to be

more difficult. Global systems are not limited to a sentence. They can draw infor-

mation from all occurrences of “jihad” and inform all of them in turn. They can also

harvest information from other events throughout a document. In Section 3.2, we

present a joint and global system.

Handling a joint or global hypotheses space is demanding. Even for short sen-

tences, searching the entire space is not possible without approximate methods like

beam search. Furthermore, joint search spaces require dynamic features, i.e., fea-

tures capturing interactions of classification decisions. We call the templates gener-

8However, Grishman et al. (2005) refine their argument decisions disjointly in subsequent steps.

26



2.5 ACE Event Extraction as a Scientific Pursuit: Comparability and Reliability

ating such joint features dynamic because their actual values change over time and

across hypotheses. Dynamic features either model trigger-argument, trigger-trigger,

or argument-argument interactions (e.g., argument roles one entity fills in different

events). We can note that joint and/or global systems need dynamic feature templates.

The ideal event extractor is joint and global because trigger and argument decisions

influence each other and depend on other event decisions throughout the document.

The ideal system uses the entire information in ACE documents to produce coherent

event assignments. To the best of our knowledge, there are only two clearly joint and

global event extractors, Yang and Mitchell (2016) and our work in Chapter 3.

2.5 ACE Event Extraction as a Scientific Pursuit:

Comparability and Reliability

The standard evaluation setting for most event extraction papers is to report num-

bers for trigger and argument identification and classification. Most papers and this

thesis adopt the evaluation scheme presented in Ji and Grishman (2008): A trigger

is correctly identified, if its span matches any gold span; it is correctly classified, if

its event span and event type match those of any gold trigger. An argument is cor-

rectly identified, if its span matches any gold span; it is correctly classified, if its span

and argument type (role) match those of any gold argument. Both, identification and

classification scores are usually reported.9 Evaluation measures are always precision,

recall, and F1 (Manning and Schütze, 1999). We agree with and mostly follow es-

tablished evaluation procedures. However, we want to address some problems which

weaken the reliability of evaluation results, especially in the context of deep learning

methods. We will present the problems and then propose a solution. In addition to

the measures we take here, we also motivate and use new data splits in Chapter 5.

The common belief in NLP is that testing on the same test set enables comparability.

The usual conclusion is that one system, and as an extension the underlying method,

is better than another if it increases the same evaluation metric on the same test set,

given that the evaluation measure and the test set represent the task adequately. How-

ever, we believe that it is not enough to just use the same test set in order to ensure

comparability in a strict (scientific) sense, and to claim that method B (in contrast to

9Entire events are almost never evaluated in publications. The only exception we are aware of is Miwa
et al. (2014).
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system B) is better than method A. We believe that preprocessing and the indetermin-

istic training procedures of deep learning systems have a great impact on results and

weaken direct comparability between different systems. We raise the following two

questions and discuss them in the following sections.

1. Do the systems use the same preprocessing? Better preprocessing might lead to

better results, even for identical systems. We believe that it is difficult to claim

the superiority of a method without identical preprocessing (Section 2.5.1).

2. Is training deterministic? Indeterministic training produces different models for

the same data and hyperparameters, and these models might have significantly

different evaluation numbers, even though they are instantiations of the same

method, system, and preprocessing (Section 2.5.2).

2.5.1 Preprocessing

Preprocessing takes place before the actual input is presented to the system. It can

involve manipulating (scaling, normalizing, etc.) or producing information (part-of-

speech tagging, dependency parsing, word embeddings, etc.). Crone et al. (2006)

investigate preprocessing effects for multiple classifiers (Decision Trees, Support Vec-

tor Machines, and Neural Networks) on different data mining problems. They find

that the preprocessing (which was only of the manipulating kind in their case) has a

significant impact on all methods and parametrizations. They also find that perfor-

mances are as sensitive to preprocessing as they are to hyperparameters. Reimers and

Gurevych (2017) report that the choice of word embeddings (another preprocessing

input) has a great influence on six NLP tasks, across a wide range of hyperparameters.

We draw the conclusion that our systems/system versions have to use the same pre-

processing if we directly compare their results. This especially includes comparisons

to baselines. For example, we carry out a comparison of different syntax encoders in

Chapter 5, and we use the exact same preprocessing and system to support them, and

to enable direct comparability.

2.5.2 Indeterministic Training

Indeterministic training became common with the renaissance of neural networks.

Neural network weights are typically initialized by drawing from a normal or uniform
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distribution (Glorot and Bengio, 2010; LeCun et al., 2012). Initial weights are different

each time training is started. This is the main reason why training neural networks is

an inherently indeterministic process: It produces a different output (weights) for the

same input (training data and hyperparameters). We quantify this effect in Chapter 5

where we compare different syntax encoders.

Note that one can force neural network training to be deterministic in the sense

above (same input = same output) by fixing random seeds. However, this does not

solve the problem of indeterminism because the output now depends on the exact

random seed and the method which was used to produce pseudorandom numbers.

Additionally, disabling randomness is not possible when training on GPUs because

atomic GPU operations are asynchronous by design.10

Reimers and Gurevych (2017) and Reimers and Gurevych (2018) investigate this

point thoroughly for a variety of NLP tasks, preprocessings, and hyperparameters. For

example, they find that on the same data split identical Named Entity Recognition sys-

tems produce significantly different evaluation results 26% of the time, solely because

their weights are initialized randomly.

ACE trigger classification is even worse – Reimers and Gurevych (2018) report that

34.5% of the time identical systems produce significantly different evaluation results,

with fluctuations up to 9 test set F1 points (4.3 F1 points difference in the 95% per-

centile). In Chapters 4 and 5, where we also use deep learning methods, we observe

fluctuations of up to 2 F1 points, even though we use a variety of methods to reduce

weight fluctuations during training. Please note that the typical new state-of-the-art

improvement in papers which report ACE 2005 evaluations is around 1-2 F1 points

for trigger and argument classification, meaning that we can surpass state-of-the-art

results by sheer luck.

We can conclude that there is a very high risk in reporting only one test set evalua-

tion when using non-deterministic training procedures – the numbers may very well be

due to chance. As Reimers and Gurevych (2017), Reimers and Gurevych (2018), and

Chapters 4 and 5 show, even identical deep learning systems produce very different

evaluation results when trained and evaluated multiple times. This hinders repro-

ducibility and enables false conclusions about the superiority of a system or method.

To overcome this problem, we follow Peters et al. (2018) and always report evalua-

tion numbers averaged over five models (and consequently five evaluation runs); we

10This is true for NVIDIA GPUs and the predominant CUDA framework, especially when using cuDNN,
as of September 2018.
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also report sample standard deviations for almost all evaluation numbers. Chapter 5

also reports evaluation of two additional, randomly drawn data splits to increase the

reliability of our comparisons there.

We will not present the three main chapters of this thesis. We start with Chapter

3 which proposes a new inference method to make the global context of a document

available to the decoding process of a local system. We use it with a joint base system

to reach new state-of-the-art results in ACE event extraction.
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Tens of thousands of [people]PER took to the [streets]LOC across the [Middle
East]GPE [Thursday]TIME, demonstrating against [military]ORG strikes on [Iraq]GPE

and calling on [Muslims]PER to wage jihad against the [United States]GPE and

[its]GPE [allies]GPE.

A sentence and its entity mentions are the starting point for most ACE event extrac-

tors. The task is to predict which tokens trigger events of interest, and which entity

mentions play roles in them. We can find three events in the sentence above, triggered

by the words “demonstrating”, “strikes”, and “jihad”. We depict them below.

[people]PER [streets]FAC [Thursday]TIME demonstratingDEMONSTRATE

Entity

Place

Time

(a) First

[military]ORG strikesATTACK [Iraq]GPE

TargetAttacker

(b) Second

[Muslims]PER jihadATTACK

Attacker

(c) Third

Figure 3.1: All three event structures occurring in the introductory sentence.

The first is a DEMONSTRATE event (Figure 3.1a) triggered by “demonstrating”. It has

three arguments: “people” filling the Entity role, “streets” filling the Place role, and

“Thursday” filling the Time role. The other events are ATTACKs triggered by “strikes”

(Figure 3.1b) and “jihad” (Figure 3.1c), with “Iraq” as the Target and “military” as the

Attacker of the first event, and “Muslims” as the Attacker of the second.1

1The event triggered by “jihad” seems to be incomplete because the sentence suggests that “United
States” and “allies” should both be Targets. See the discussion to Example (18) in Section 2.2.5 for
further details. From world knowledge and other parts of the same article, we can also infer that
“United States” and the “allies” are Attacker of the first ATTACK event triggered by “strikes”.
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ACE events are exclusively intra-sentential in their scope. However, a single sen-

tence often lacks important information. “jihad” for example occurs only twice as an

event trigger in the entire training data, and the above sentence alone does not give

strong clues that the word triggers an ATTACK event. This lack of information makes it

hard for an intra-sentential event extractor to make a correct prediction.

Missing triggers do not only negatively impact trigger performance, they also inter-

fere with argument classification, because all arguments of an unrecognized trigger

become unaccessible for prediction. Especially missing triggers have a negative impact

on argument predictions (Sections 3.3 and 5.7.3).

In this chapter, we present a system which casts event extraction as a structured pre-

diction problem and employs global, document-wide inference to increase the overall

performance of a local and joint predictor. The new system finds considerably more

events in the sentences and increases both, trigger and argument performance. With

global inference, “jihad” is not an isolated word anymore; it has semantic relations

to other words in the document like “war” which help to correctly recognize it as an

ATTACK trigger. Our contributions in this chapter are the following.

1. We present an efficient global inference method which enables a joint and local

base system to access information from the entire document (Section 3.2). This

method is in agnostic to the actual base system. We use it with two related but

different base systems, one which uses gold, and one which uses predicted entity

mentions. The evaluation in Section 3.3.1 shows that our system outperforms

even the most recent deep learning methods .

2. We introduce a new feature set to event extraction (Section 3.3.1). Some are

specifically designed for our global decoding method.

In Section 3.1 we present our main base system – a state-of-the-art event extractor

which predicts event triggers and arguments jointly and locally. In Section 3.2 we

argue that a system which operates on individual sentences is often not enough. We

present a method to access the global (document-wide) context, and we present a set

of new features to guide global inference. Section 3.3 reports experiments and results.

Finally, Sections 3.4 and 3.5 discuss and conclude our findings, respectively.
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3.1 Intra-Sentential Event Detection

3.1 Intra-Sentential Event Detection

In this section we describe and analyze our base system (Li et al., 2013), a local and

joint event extractor.2 Section 3.1.3 describes features which are only possible in the

joint setting and cannot be used by disjoint systems. Among other things, these fea-

tures model the interaction between different event types within a sentence. With

these features, joint systems have a theoretical advantage over any disjoint system.

However, more recent, disjoint deep learning systems (Chen et al., 2015; Nguyen

et al., 2016, i.a.) outperformed our base system, presumably because of word em-

beddings and a better modeling of lexical contexts. In this thesis, we also come back

to disjoint, deep learning methods, mainly to explore the use of syntax encoders for

event extraction.

In Section 3.2 we show that joint event extraction is not sufficient, because it is

still limited to the actual sentence, which often lacks sufficient information to find

all events. In Section 3.2 we present a global decoding method which enables the

base system to use information from the entire document. With global decoding, our

system outperforms most recent event extractors without using word embeddings or

deep learning techniques. We will now describe the base system.

3.1.1 Decoding and Training

In the following, we describe our base system. This system is identical to Li et al.

(2013). However, we deviate from their description and formalize the system differ-

ently. We also provide additional information to the base system which is not reported

in their paper, but appears in their code.

Given a sentence s, our goal is to predict all event triggers and arguments for s. One

possible assignment containing all triggers and arguments of s is called a configuration.

Our problem can be rephrased: We want to find the best configuration ĉ given s:

ĉ = arg max
c∈C(s)

f(s, c) · w. (3.1)

C(x) is a function which enumerates configurations for s, f(s, c) is a feature func-

tion, and w a weight vector. Finding ĉ is a structured prediction problem: We search a

2‘Joint’ and ‘global’ are defined in Section 2.4.
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3 Global Event Extraction

large space for the best structure ĉ. We aim to solve this problem using a structured
perceptron (Collins, 2002; Huang et al., 2012).

An exact solution of Equation 3.1 is prohibitive. We cannot enumerate all possible

configurations. Given the 33 ACE event types, we already have 33m configurations for

a sentence of length m for trigger assignments alone. With argument assignments, the

number is much higher.

To mitigate this problem. we follow Li et al. (2013) in using approximate search for

decoding, more precisely beam search. Instead of having C(x) enumerate entire event

structures for a sentence, we construct configurations iteratively and prune the search

space after every iteration. In the following, we describe this process. Afterwards, we

describe the feature function f(s, c) and how to learn a good feature vector w.

Configurations are built word-by-word using two actions: trigger assignment and

argument assignment. The first action assigns labels to words (either an event type

or ∅), the second action assigns labels to entity mentions (either an argument type or

∅). In the settings where we avoid entity prediction (the predominant setting in ACE

event extraction), the configurations already contain all entity mentions. Figure 3.2

visualizes a snapshot of a decoding pass. We describe the process below and refer to

the figure where necessary.

Decoding starts with the first word3 in the sentence, “strikes” in our example. For

the sake of simplicity, we ignore all previous words from our descriptions and visual-

izations. TRIGGER ASSIGNMENT generates all possible labels for “strikes”, 34 in total

(33 event types plus ∅). In Figure 3.2, this is exemplified by the four event types be-

low the word. Each such assignment constitutes a new configuration which contains

all previous assignments plus the new one. “Strikes” as a DEMONSTRATE or as an Die

trigger are two assignments for example, and two different configurations. The new

configurations are scored and only the top n are retained. In Figure 3.2, n = 1, so we

only keep the best configuration [strikes : ATTACK].

After new trigger assignments are generated, ARGUMENT ASSIGNMENT is executed

for each event trigger. In our case, we assign only one event type, namely ATTACK,

to the word “strikes”. Now, we have to find arguments of this event. The procedure

assigns one of 29 labels (28 argument types plus ∅) to each entity mention in the

sentence. Each argument assignment again results in a new configuration. New con-

figurations are scored and only the top n retained. This process is visualized in Figure

3.2b, exemplified for the case that “strikes” is an ATTACK trigger. The procedure lists

3In this thesis, we use “word” and “token” interchangeably.
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3.1 Intra-Sentential Event Detection

strikes on Iraq

DEMONSTRATE

DIE

ATTACK

∅

1.2

0.02

8.3

5.6

DEMONSTRATE

DIE

ATTACK

∅

2.2

1.1

0.2

9.9

DEMONSTRATE

DIE

ATTACK

∅

. . .

. . .

. . .

. . .

(a) Illustrates TRIGGER ASSIGNMENT with three words, four possible labels, and beamsize 1. Words are
processed consecutively. At each word, all possible trigger labels (event types) are enumerated, and
each of them paired with all previously computed configurations. Each such pairing constitutes a new
configuration. After each word, only the best configuration (beamsize 1) is retained. Assignments in
bold are top (best-scoring) assignments, the bold path constitutes the best (and correct) configuration
at each position. Numbers in circles are assignment scores, accumulated over time.

strikes on

ATTACK ∅

[military]ORG

Attacker 2.2

Target −2.4

∅ 2.0

[muslims]PER

Attacker 1.2

Target −0.2

∅ 4.4

(b) Illustrates ARGUMENT ASSIGNMENT. For each event type in a configuration, argument label assignment
is triggered. Depicted is the case that “strikes” is an ATTACK trigger and there are two entity mentions
in the sentence. The system enumerates all roles for the event type (Attacker, Target, ∅) and assigns
the highest-scoring role to the respective entity mention.

Figure 3.2: Visualization of a hypothetical decoding pass.

35



3 Global Event Extraction

Algorithm 1: TRIGGER ASSIGNMENT(beam b, sentence s, token index i)
/* beam buffer */

1 bi ← ∅;
2 for c ∈ b(i− 1) do

/* Te is the trigger label set (33 event types and ∅) */
3 for te ∈ Te do

/* test if POS of word i is allowed, and if i overlaps with an
entity mention */

4 if IS ASSIGNABLE(c, i, te) then
/* create new trigger assignment for position i */

5 n← [i : te];
/* extract features */

6 EXTRACT FEATURES(n, s);
/* copy configuration c and add new trigger assignment */

7 bi ∪ (COPY(c) ∪ n);

8 return bi;

all allowed argument types for an ATTACK event (in pour example, Attacker, Target,

and ∅), scores them and keeps only the n highest scoring assignments (in our example,

n = 1). This is executed for both entity mentions ([military]ORG and [muslims]PER).

TRIGGER ASSIGNMENT and ARGUMENT ASSIGNMENT enumerate partial event struc-

tures (trigger and argument labels, respectively), with each new assignment resulting

in a new configuration which is then scored and discarded if it is not in the top n.

This is exactly the approximate beam search we use; instead of enumerating millions

of configurations for a sentence, we always restrict the search space to n hypotheses.

The lower n is, the more greedy and faster beam search becomes.

After we enumerate and score trigger and argument assignments for the first word,

the procedure moves to the second word, “on”. Again, TRIGGER ASSIGNMENT generates

all possible labels. Configurations without argument assignments constructed so far

include: [strikes : ATTACK, on : DEMONSTRATE], [strikes : ATTACK, on : DIE], etc. Again,

only the top n configurations (in our case, [strikes : ATTACK, on : ∅]) are kept for further

processing and ARGUMENT ASSIGNMENT takes place for each new trigger. Since “on”

is never a trigger in any new configuration, this step is omitted at this point in the

example.

After the last word in the sentence is decoded, n configurations remain, each with

event and argument label assignments for each word and entity mention in the sen-
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3.1 Intra-Sentential Event Detection

Algorithm 2: ARGUMENT ASSIGNMENT(beam b, sentence s, trigger index i, entity
mention index j )
/* beam buffer */

1 bi ← ∅;
2 for c ∈ b(i) do
3 bi ∪ COPY(c);
4 if IS TRIGGER(c(i)) then

/* Ta is the argument label set (28 argument types and ∅) */
5 for ta ∈ Ta do

/* test if trigger type c(i), entity type of mention j, and
role ta are compatible */

6 if IS ASSIGNABLE(c, i, j, ta) then
/* create new argument assignment for position i and

entity mention j */
7 a← [j, i : ta];

/* extract features */
8 EXTRACT FEATURES(a, s);

/* copy current configuration c and add new argument
assignment */

9 bi ∪ (COPY(c) ∪ a);

10 return bi;
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3 Global Event Extraction

tence. TRIGGER ASSIGNMENT is visualized in Figure 3.2a and formalized in Algorithm

1. ARGUMENT ASSIGNMENT is visualized in Figure 3.2b and formalized in Algorithm 2.

Following Li et al. (2013), we use the structured perceptron as a learning algorithm.

The perceptron is one of the oldest learning algorithms. It uses a hand-crafted set of

categorical features for which it learns weight – one per feature. Our perceptron is

‘structured’ because it learns to classify more complex structures than the usual, un-

structured classification samples; in our case, it learns to score correct configurations

higher than incorrect ones. Algorithm 3 formalizes the structured perceptron with

beam search, both during training and testing.

Input to Algorithm 3 is a sentence s, a gold configuration y, the beam size n and a

flag indicating training mode. The algorithm initializes an empty beam b. A beam is

a ranked list of (partial) configurations. Beams are indexable – b(i) returns configura-

tions containing trigger and argument assignments up to the word at index i.

After the beam initialization, the algorithm iterates through word positions 1 . . . |s|
and calls TRIGGER ASSIGNMENT (Line 3). Each time it assigns an event type, it iter-

ates through all entity mentions 1 . . . |mentions| and calls ARGUMENT ASSIGNMENT for

each (Line 10). New configurations are scored and only the top n configurations are

retained (Lines 4 and 5 for triggers, and 11 and 12 for arguments).

Lines 7, 14, and 17 are important for learning: As soon as the partial gold configu-

ration yi is not predictable because the beam does not contain it anymore, we update

feature weights and exit beam search. This is called early update (Collins, 2002; Huang

et al., 2012). Huang et al. (2012) show that updating only after decoding completed

leads to bad performance with inexact search strategies such as beam search. If the

model is not penalized as soon as the gold configuration is not predictable anymore,

we might perform updates which actually lower the score of the gold configuration –

such updates are called invalid updates. If we update immediately when the gold con-

figuration becomes unpredictable we drive the model towards predicting an increasing

portion of the correct configuration. If we update only after decoding is finished, we

might actually penalize parts of the model which would have lead to the correct so-

lution if previous errors would not have been made. Huang et al. (2012) show under

which conditions the structured perceptron converges. Their most important finding

is that the proof does not require exact inference; approximate inference like beam

search suffices, as long as the updates are guaranteed to contain violations. If the cor-

rect solution is not part of the beam anymore, we cannot guarantee that the current

best (and yet wrong) partial solution would be ranked higher than the correct partial
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3.1 Intra-Sentential Event Detection

Algorithm 3: BEAM SEARCH(sentence s, gold configuration y, beamsize n, training)

1 beam b← ∅;
2 for i = 1 . . . |s| do

/* make new configurations with new trigger assignments, compute
feautures */

3 b(i)← NODE ASSIGNMENT(b, s, i);
/* prune the beam */

4 SCORE AND SORT(b(i));
5 b(i)← TOPn(b(i));

/* update weights if we are in training mode and the gold label yi
fell out of the beam */

6 if training ∧ yi /∈ b(i) then
7 UPDATE(b(i, 1), yi);
8 exit;

9 for j = 1 . . . |mentions| do
10 b(i)← ARGUMENT ASSIGNMENT(b, i, j);

/* prune the beam */
11 SCORE AND SORT(b(i));
12 b(i)← TOPn(b(i));

/* if we are in training and the gold argument yji fell out of
the beam, update weights */

13 if training ∧ yji /∈ b(i) then
14 UPDATE(b(i, 1), yi);
15 exit;

/* update weights if we are in training mode and the top
configuration assigned to the last word, b(|s|, 1), is not equal to
the gold configuration y */

16 if training ∧ y 6= b(|s|, 1) then
17 UPDATE(b(|s|, 1), y);
18 exit;

19 return b(|s|, 1);
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3 Global Event Extraction

position; in other words, we cannot guarantee that the update fixes a violation. This

is the reason why early updates almost alway lead to better performance compared

to ‘late updates’ – early updates are guaranteed to contain a violation and therefore

always push the model towards the correct solution.

Note that TRIGGER ASSIGNMENT and ARGUMENT ASSIGNMENT use IS ASSIGNABLE to

test if trigger and argument label restrictions are met. For trigger labels, the function

tests if the respective word has the correct part-of-speech, and if it does not overlap

with entity mentions. Both factors are not mentioned in Li et al. (2013) but used in

their code. A word can only receive a trigger label if its part-of-speech matches the

regular expression in Appendix A.1. Mainly verbs, nouns (including proper nouns),

and adjectives can get a trigger label. Furthermore, if a word overlaps with an entity

mention, it cannot be a trigger candidate. The second test excludes event-specific

attributes like mentions of crimes (“the crimes he’s been convicted of”; “siphoning

millions of dollars from Project Coast to finance a lavish, globe-trotting lifestyle and

of selling drugs”) because they can span big parts of a sentence and usually contain

one or more triggers. For arguments the function tests if the combination of entity,

event, and argument types are compatible; for example, time, ATTACK, and Time are

compatible, but time, ATTACK, and Target are not, because time mentions cannot fill

the Target role. If a combination is not possible, the respective argument type is

omitted from ARGUMENT ASSIGNMENT.

If BEAM SEARCH is not in training mode, or if it did not make any prediction errors,

it returns the top hypothesis ending at the last token position. For a sentence with m

tokens this would be b(m, 1).

3.1.2 Learning Weights

After each call of TRIGGER ASSIGNMENT or ARGUMENT ASSIGNMENT we check if the

partial gold configuration yi is still in the beam. If so, we continue processing. If

not, we have to update feature weights and continue with the next training instance

(UPDATE in Algorithm 3).

For each training instance (sn, yn), where sn is the sentence and yn the gold config-

uration of sample n, we compute the best configuration ĉn according to Equation 3.1,

implemented in Algorithm 3. If we have to update because yn fell out of the beam, or

because ĉn is not the correct solution (Lines 7, 14, and 17 in Algorithm 3), we perform

perceptron updates:
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3.2 Incremental Global Inference

wt = wt−1 + αf(sn, yni )− αf(sn, cni ). (3.2)

wt is the new feature vector after, wt−1 the feature vector before weight updates. α is

the learning rate (we set α = 1), and f the feature function. f returns the features for

the gold and the top predicted configurations up to position i (yni and cni , respectively).

Features produced in the gold configuration yni are updated with a positive value,

features produced for the predicted configuration cni are updated with a negative value.

Features common to both are not updated. After weight updates were performed, we

continue with the next training sample. Note that it is imperative to randomize the

order of training samples to reduce overfitting and to increase generalization.

When we apply the system to test data, we employ feature averaging (Collins,

2002): Instead of using wt, we average over all feature vectors encountered during

training. This has the effect that weights with high oscillation are smoothed. It has

been shown that averaging yields considerably better performance for perceptrons.

Weight averaging can also benefit probabilistic learning (Section 4.3.8).

3.1.3 Features

Our base system uses two types of feature templates. Static templates apply exclusively

to one trigger or argument assignment. Features produced by these templates capture

decoding-invariant properties like words, lemmas, part-of-speech tags, etc. Dynamic
templates on the other hand produce features which capture decoding-variant proper-

ties like the event type of a previous trigger, or the roles an entity mention plays across

events within a sentence. To put it in other words: Static features do not vary over

time, in contrast to dynamic features.4 Tables A.1 and A.2 in the appendix report all

features of the base system.

3.2 Incremental Global Inference

Event extraction decoders can be classified according to their type and scope. Decoding

type refers to joint vs. disjoint decoding – are triggers and arguments predicted jointly,

or iteratively? Decoding scope on the other hand refers to local vs. global decoding

4Li et al. (2013) and Li et al. (2014) use the terms “local” and “global” instead of “static” and “dy-
namic”; however, we have to reserve the term “global” for our cross-sentence inference method
described in Section 3.2.
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– does the extractor predict events only intra-sententially, or does it cross sentence

borders? Section 2.4 discusses these terms in more detail.

Our base system uses joint and local decoding: It predicts triggers and arguments

jointly, but does not cross sentence boundaries. Local decoding is the most obvious

limitation here. In some cases, local decoding may be sufficient. There are words (e.g.,

‘attack’) which strongly indicate the presence of event types in news texts without the

need for more context. However, there are many cases which cannot be inferred

correctly from the information within a sentence. Consider the following example,

which is an extension of our introductory sentence, and which we already used in

Section 2.4.

(20) . . . demonstrating against military strikes on Iraq and calling on Mus-

lims to wage jihad against the United States and its allies.

. . .

I don’t think America will win this war, as our jihad and our resistance

will teach the Americans and British a lesson they will never forget,”

he said.

Here, “jihad” is an ATTACK trigger and appears twice in the document. However,

the word appeared only twice as an event trigger in the entire training data. Because

the base system did not see the word often as a trigger during training, it has to rely

heavily on context, more specifically on the local context. We can see that the first

“jihad” is embedded in the phrase “wage jihad against”, providing important clues for

its prediction. Furthermore, there are demonstrate and attack triggers in the sentence,

which is an additional (although weak) clue that “jihad” is an attack trigger. The

base system is limited to this information. Only the global (document-wide) context

provides additional clues.

Our assumption about event trigger distributions within one document is that the

same word tends to trigger the same event type. This is similar to the one-sense-per-

discourse assumption (Gale et al., 1992) and holds for 99.4% of the ACE triggers (Liao

and Grishman, 2010). If we can classify the first “jihad” correctly, document-wide

inference is able to infer that the second occurrence triggers the same event type.

There are also a few counterexamples. Consider the following sentence.

(21) That preemptive strike they put, I think somewhat elegantly, trying to

strike at the head of the snake.
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In example (21), there are two different parts-of-speech for the word “strike”. Fur-

thermore, the second “strike” is used figuratively, also supported by its object: “strike

at the head of the snake”. In contrast to the first occurrence, the second “strike” does

not trigger a CONFLICT event. However, our method likely labels both as triggers. It

seems very difficult to distinguish between such cases. It also seems not worth the

effort because these cases are rather infrequent.

The second, less obvious limitation of our base system is that it can only consider

what it already processed. This means that the local decoding is not only limited

to sentences, but also to the current processing position. This limits the power of

features capturing intra-sentential event-event interactions. One such feature for ex-

ample is the bigram ‘last-event-type, current-event-type’. In our example above, this

feature indicates that the system already decoded a DEMONSTRATE event when it at-

tempts to decode the word “strikes”. However, the baseline system cannot have a

reversed feature – indicating that “strike” is an ATTACK trigger when it decodes the

word “demonstrating”.

In the following section, we clarify some terminology, before we present a method

to make the entire document-wide context available to our baseline. Instead of one

decoding pass per sentence, this method performs multiple passes per document and

draws features from information made available by previous decoding passes.

3.2.1 Method

Our global decoding method Incremental Global Inference, or IGI (Judea and Strube,

2016) makes the entire document accessible for decoding. It consists of two inter-

leaved parts: global inference and global features. The main idea is to increase trigger

and argument classification performance by taking the classes of semantically related

triggers and arguments into account. Instead of searching through a vast, document-

wide hypotheses space, we refine classification for semantically related cases incre-

mentally: We produce a first labeling of all trigger and argument candidates using the

base system. Then, we use the event labels of semantically related words assigned in

the previous pass to refine their event type classifications and start the next pass, again

refining decisions, etc.

Global features are based on two principles. First, the one sense per discourse as-

sumption – one word form tends to trigger the same event type throughout a document

(Liao and Grishman, 2010). We extend this notion: Semantically and morphologically
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related words tend to express related event types. Consider our example: “war” is an

ATTACK trigger; its hyponym “jihad” (as a kind of war) also triggers the same event

type. If we can capture such relationships between words distributed in a document,

we can better infer the labels of words which occur in low-information contexts. Sec-

ond, we use a feature set new to event extraction which captures a kind of semantic

similarity between a word and the semantic field of an event type, represented by all

trigger words for this type. This feature group enables Incremental Global Inference

to better infer the labels of words never encountered during training.

We will now describe and then formalize Incremental Global Inference. Section

3.2.3 discusses other global inference methods reported in the NLP literature and iden-

tifies IGI as an collective classification algorithm.

First, IGI performs standard decoding as described in Section 3.1 for all sentences

in the document. Then, an iterative process informs new passes about the decisions

made in previous decoding passes. This information is used to refine decisions. The

process is repeated a fixed number of times. During training, weights are updated only

after the last pass was performed. Incremental Global Inference is depicted in Figure

3.3 and formalized in Algorithm 4.

Algorithm 4: INCREMENTAL GLOBAL INFERENCE(document D, beamsize n, global
decoding passes m, training)

/* r holds top configurations for the entire document; each sentence
has none or exactly one top configuration, new top configurations
overwrite older ones */

1 r = ∅;
/* collection */

2 for i = 1 . . .m do
3 for sentence s ∈ D do

/* no feature updates */
4 r ∪ GLOBAL BEAM SEARCH(s, ys, n, training = false, r);

/* prediction */
5 for Sentence s ∈ D do

/* feature updates if in training mode */
6 r ∪ GLOBAL BEAM SEARCH(s, ys, n, training, r);

7 return r;

Input to Algorithm 4 is a document d, the beamsize n, the number of global passes

m, and a flag indicating training mode. Output is a structure r holding all top con-
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wage jihad
this war our jihad

∅
ATTACK ∅

wage jihad
this war our jihad

ATTACK

ATTACK ATTACK

hy
pe
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ym
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pass 1, no global features

pass 2, global features

Figure 3.3: Visualization of Incremental Global Inference unrolled over time (from top to bot-
tom). Depicted are two global decoding passes, and three trigger assignments in
each pass (for two “jihad” and one “war” assignment). If two trigger assignments
are on the same height, they are in the same sentence. Arrows represent global
features. They point in the direction of the last known assignments of a word. Null
assignments (∅) are excluded from global features.

figurations for the document. The algorithm is divided in two parts, collection and

prediction.

In collection (Lines 2-4), IGI iteratesm times through the document and calls GLOBAL

BEAM SEARCH, a version of BEAM SEARCH (Section 3.1.1) which takes r into account,

by drawing global features from the top configurations it contains. r is updated in-

crementally: In each pass, old top configurations are replaced with new (possibly

refined) versions. Note that in the first pass, r = ∅; in this case, the global and local

beam search versions are identical. Note further that we do not update features during

collection.

In prediction (Lines 5-6), IGI calls GLOBAL BEAM SEARCH and refines r a last time. If

it was called in training mode, decoding weight updates where necessary. Incremental

Global Inference employs early updates within the structured perceptron framework.

Figure 3.3 visualizes the process. Depicted are two Incremental Global Inference

passes and three trigger assignments in two sentences. The first “jihad” occurs in

one sentence, “war” the second “jihad” (which are depicted on the same level, but

higher) in another. All three are ATTACK triggers. As outlined above, the word “jihad”

occurs only twice in the training data as an ATTACK trigger. Both occurrences were

labeled as non-events in the first pass (which is identical to the base system). In the
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second pass, Incremental Global Inference draws global features from r, i.e., from all

top configurations it collected during the last pass, depicted as arrows with labels.

Some arrows point upwards to information from the previous pass, and some arrows

point to information from the current pass. This depends on whether the respective

configuration was already replaced with the top configuration from the current pass

or not. “jihad” and “war” stand in an hypernymy/hyponymy relation (with jihad being

a kind of war). Furthermore, the two “jihad” occurrences stand in a ‘string match’

relation. Both relations help IGI to correctly classify both “jihad” occurrences as ATTACK

triggers.

3.2.2 New Features

In addition to base system features (Section 3.1.3), Incremental Global Inference uses

new features developed specifically for global decoding. We again use the distinction

between static vs. dynamic features (Section 2.4).

Table 3.1 summarizes the new features. The first column reports the feature type

(static or dynamic), the second column reports the condition under which features

are generated, and the last column reports the actual features. The features belong

to two broad groups: The first captures semantic similarity between words and is

used to encourage the assignment of the same label to the same word (one sense

per discourse). The second captures semantic relatedness of a word to the semantic

fields of all event types and is used to infer labels of words never encountered during

training.

Base system features are concatenated with event types to adapt a feature template

to each of these types. Our features are not instantiated for single event types because

they capture type-independent information. For example, one of the features captures

the semantic relation between two words – we hypothesize that it is more important

to indicate relations like ‘A is hypernym of B’ than ‘A, a MEET trigger, is hypernym of B,

also a MEET trigger’. The first form abstracts from (possibly infrequent) event types.

3.2.2.1 New Static Features

The new static feature we introduce is based on so-called hidden units (HUs), a concept

from SEMAFOR, a state-of-the-art frame-semantic parser (Das et al., 2014). HUs are

very similar to Bronstein et al. (2015).
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Feature type Condition Feature

Static WORD(n) related to HU(TYPE(n))
(1) HU-relation exists
(2) HU-relation

Dynamic
WORD(n)==WORD(m) and TYPE(n)==TYPE(m)

and WORD(n)
strmatch_same_type

WORD(n) related to {x ∈ HU(TYPE(n)) and x is trigger} HU-relation

Table 3.1: New features for a trigger assignment n. Dynamic features are for trigger assign-
ment pairs (n,m), where assignment m may come from the entire document. The
function WORD returns the word string of its argument, the function HU the hidden
units of its argument, and the function TYPE the respective event type.

a meeting withsentence

event type assignments

hidden units

ATTACK MEET . . .

meet convention summit . . .

morph hy
pe

r

hyper . . .

Figure 3.4: Visualization of our static hidden unit features. The first level of the figure is a
part of a sentence. The word under consideration is “meeting”. The middle level
represent event type assignments. The upper part represents hidden units. Here,
we have hidden units for “meeting” as a MEET trigger.
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Identity, synonym, antonym, hypernym, hyponym, derivedForm, morphSet, verb-
Group, entailment, entailedBy, seeAlso, causalRelation, sameNumber

Figure 3.5: WordNet relations used by our new local and global HU features.

The hidden units of an event type are the triggers we have seen in the training data

for this type. HU features capture semantic relations of the word under consideration

with all hidden units of an event type. For example, if the candidate trigger is meet-
ing and the event type is MEET, we have several hidden units which share semantic

relations with it: convention and summit as hypernyms, and meet as a morphological

variant.

Figure 3.4 visualizes this. Here, we have the short phrase “a meeting with” and some

exemplary event type assignments for “meeting”. We know that ‘meet’, ‘convention’,

‘summit’ and others are hidden units of MEET triggers, and we also know the seman-

tic relations holding between “meeting” and ‘meet’ (depicted ‘morph’), “meeting” and

‘convention’ (‘hyper’), “meeting” and ‘summit’ (‘hyper’), and so on because we col-

lected this information from the training data. For “meeting” as an ATTACK trigger for

example we have no hidden unit features because “meeting” has no semantic relations

with any hidden unit of ATTACK. If hidden units fire, they help IGI to determine some

kind of similarity of a trigger candidate to the semantic field spanned of an event type.

We have a HU feature which indicates that there is a semantic relation between the

word under consideration and at least one HU, and a feature which also includes the

actual relation.

We use WordNet (Fellbaum, 1998) as our semantic resource. We do not consider all

possible WordNet relations, but restrict them to the ones used by Das et al. (2014).

Figure 3.5 reports all relations. The set includes actual semantic relations (hyponymy,

antonymy, etc.) as well as syntactic relations (derivedForm, morphSet, etc.).

3.2.2.2 New Dynamic Features

We now describe the dynamic features for Incremental Global Inference. They are

defined for a tuple of word-trigger type assignments (n,m), where n is the assignment

under consideration and m may come from the entire document.

The first feature is based on the one-sense-per-discourse assumption. If a word

triggers a specific event type, the same word tends to trigger the same event type

within one document. Liao and Grishman (2010) found that this is true for 99.4%
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of the ACE triggers. The respective feature fires if two trigger assignments share the

same word and the same event type. This feature promotes trigger assignments which

are in accordance to the one-sense-per-discourse assumption.

The second feature captures semantic relatedness of a word to all the triggers in a

document. This feature is similar to the local HU features because it captures semantic

relatedness of a word. The dynamic version however looks at semantic relations to all

triggers in a document, instead of looking at relations to all known triggers of an event

type. This feature has the ability to capture semantic relations to words which never

occurred in the training data, and which are therefore not in any hidden unit set.

3.2.2.3 Missing Global Argument Features

The features described so far capture document-wide event-event interactions, i.e.,

global trigger relations. We were not able to devise features for global event argument

relations. IGI improves argument identification and classification nevertheless because

trigger performance, especially trigger recall, is considerably improved. We investigate

argument classification performance of IGI’s base system in Chapter 4. Here, we de-

scribe how IGI behaves with global argument inference. The following table compares

IGI (Line 1) against a version with a global argument feature (Line 2) which fires if

two coreferent entity mentions play the same role in matching event types.

Trigger
Classification

Argument
Classification

P R F1 P R F1
IGI 71.0 70.7 70.8 64.5 50.9 56.9
IGI+arg 71.2 67.5 69.3 61.7 48.1 54.1

IGI with global argument features (Line 2) performs worse in terms of trigger and

argument classification performance compared to not using global argument features

(Line 1). The drop is 1.5 F1 points for triggers and 2.8 F1 points for arguments. All

evaluation measures dropped in fact. This is a surprising results; we expected to see

at least an increase in argument classification recall with global argument features.

The starting point of our global argument feature design is similar to the starting

point of our global trigger feature design: Within one document, one entity plays

one role for one event – which manifests itself on the textual level as: Coreferent

entity mentions play the same role in coreferent events. Our global argument feature
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3 Global Event Extraction

however only incorporates entity mention coreference. Our experiments show that

also incorporating event coreference (which is in itself a complex task) is crucial here.

The feature we test here – ‘coreferent entity mentions play the same role in coref-

erent events – is effective because it captures an important characteristic of the event

extraction task, at least in theory. Consider the following example.

(22) Officials say the pilot reported ice on the plane and planned to land

in Massachusetts when the Plane left radar. . . . The family had been

heading to New Hampshire from Lakeland, Florida when their Plane

went down.

The entity mention in question is “plane”. It plays the same role in both TRANSPORT

events (triggered by “land” and “heading”). In this case, the same entity plays the same

role in events with the same type. The problem is that this feature starts to introduce

wrong trigger assignments if it surpasses a certain weight. Consider the next example.

(23) The 7th Cavalry has pushed onward in the general direction of Bagh-

dad. . . . the 7th Cavalry came upon three Soviet vintage 20-millimeter

anti-aircraft guns

Here, “7th Cavalry” is the entity mention under consideration. Suppose our global

argument feature has a high weight. The system now favors that every possible trig-

ger for “7th Cavalry” has the same type as the others, meaning that the system starts

to wrongly favor a TRANSPORT label for “came” in order to enable the global argu-

ment feature to fire. Training tries to compensate by increasing the bias towards the

non-trigger class (∅), effectively dropping trigger recall, and this immediately lowers

argument performance (because every missed trigger leads to missed arguments, see

also Section 5.7.3), which training again tries to compensate by increasing the bias

towards predicting arguments, which increases the amount of spurious predictions. A

negative process which deteriorates overall prediction performance.

We can try to remedy this behavior during training by restricting the feature to coref-

erent events – ‘two entity mentions play the same role in coreferent events’. The effect

of this is even more severe because now we use gold information (about event coref-

erence) which is not available during testing. The global argument feature with gold

event coreference information receives a very high weight, because it only fires for cor-

rect event assignments during training. During testing, it strongly favors hypotheses
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where the feature can be active, meaning that it again massively introduces spurious

triggers. This is a good example why it is usually important to expose a system to its

own errors during training.

Our problem with devising effective a global argument feature is that we cannot

judge event coreference, we can only approximate it with the assumption that two

events are coreferent if they express the same event type, which is clearly wrong. It

seems beneficial to model event extraction and event coreference jointly.

3.2.3 Other Global Decoding Methods

In this section, we want to investigate IGI’s relations to other global inference methods

used in NLP literature. We focus on two methods in particular: the Iterative Classifica-
tion Algorithm (Lu and Getoor, 2003; Sen et al., 2008; also strongly related to Neville

and Jensen, 2000) and Markov Logic Networks (Richardson and Domingos, 2006; Poon

and Vanderwende, 2010). Both methods exploit a graph structure to improve predic-

tions for individual nodes. IGI falls into the same method class because it tries to im-

prove the prediction of individual triggers based on their connection to semantically

similar or related words.

The Iterative Collective Algorithm (ICA) leverages the structure of a graph to itera-

tively improve the classification of its nodes. It consists of two stages: bootstrap and

iteration. Bootstrap assigns an initial labeling to all nodes given node features. Itera-

tion updates node labels given their features and their incoming and outgoing edges

until some termination criterion is met. For each stage a classifier is trained.

In principle, ICA can be applied to event extraction if we regard its predictions as

some kind of (disconnected) graph. More precisely, we would have a bipartite graph

with words and entity mentions as nodes, and syntactic and semantic relations (e.g.,

syntactic dependencies, WordNet relations, coreference links) as edges. Such a graph

could be built for sentences or entire documents. ICA could first assign trigger and

argument labels to all words and entity mentions, respectively, and refine them given

the graph structure.

Incremental Global Inference and ICA are both collective classification algorithms.

ICA’s two-stage approach resembles Incremental Global Inference, where we also pro-

duce an initial classification of triggers and arguments and refine it given global fea-

tures (Algorithm 4). However, there are important differences between the two.
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First, to ensure that information from neighbor nodes are exploited optimally during

training, ICA always relies on their gold labels. This means that, during training,

the prediction of a node label is always based on the true labels of all other nodes,

regardless of their predicted values. While this training regime makes optimal use of

the graph structure during training, the model is faced with a very different situation

during testing: predicted and noisy neighbor labels. However, since it never had to rely

on wrong graph structure information, an ICA model tends to rely disproportionally on

it. If the node labeling performance is not high enough, overall performance quickly

degenerates for all predictions. IGI circumvents this problem by using predicted labels

throughout, for training and testing. IGI can either be very cautious or heavily rely on

related nodes, depending on the relation type. Exact string matches to hidden units for

example (Section 3.2.2) have a big weight and tend to force the labels of the respective

words to be the same; lemma matches have a rather small weight and influence the

labels of related words less compared to exact string matches.

Second, ICA typically uses only simple ‘edge features’ like link counts (Lu and

Getoor, 2003; Sen et al., 2008). In contrast, IGI uses more complex features like

the semantic relation type.

An apparent difference is that ICA uses two, while IGI uses only one classifier. Lu

and Getoor (2003) report that training two logistic regression models (one for node

attributes, one for graph structure) and combining their predictions via a joint maxi-
mum a posteriori (MAP) estimate gives significantly better results on three document

classification datasets compared to using one logistic regression model which takes

node attributes and graph edges into account. However, IGI in its current formulation

and implementation is based on the perceptron, a non-probabilistic, non-normalized

learner. Combining node and graph perceptrons via a MAP equivalent is the same as

having one perceptron with both feature sets. In every case, two perceptron scores are

summed. This means that for IGI (and for perceptrons in general), it is equivalent to

train two perceptrons and combine their scores or to train one with both feature sets.

Collective classification algorithms like ICA or IGI aim to refine an initial classifica-

tion based on collective, global information. Markov Logic Networks (MLNs) on the

other hand model a globally optimal labeling directly. Riedel et al. (2009) use MLNs

for the BioNLP’09 event extraction shared task. Poon and Vanderwende (2010) further

increase performance of MLNs on the same dataset.

Markov Logic is a framework for global inference. The problem is stated in the

form of tuples (Fi, wi) and constants, where Fi are first-order logic statements and wi
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are weights. Constants are equivalent to feature values. Logic statements are either

defined over constants by forming atomic or compound feature templates, or they im-

pose restrictions on the inference problem. In event extraction for example constants

could be trigger and argument candidates as well as their lexical, semantic, or syn-

tactic properties, and (instantiated) statements could either encode simple or complex

features like ‘if word==attack then label=ATTACK’, or they could encode constraints

like ‘ATTACK has no Adjudicator role’. Each such instantiated statement has an associ-

ated learnable weight5. Inference assigns probabilities to ‘possible worlds’. A possible

world is a consistent instantiation of all logic statements (features and constraints)

and their constants, e.g., a possible labeling of all trigger and argument candidates

within a sentence or within a document. This framework is powerful in its expres-

siveness. However, it quickly becomes intractable to learn with increasing number

of constants. Very efficient (and often proprietary) solvers have to be used to keep

learning tractable.

3.3 Experiments and Results

In the following we describe the evaluation we devised for Incremental Global Infer-

ence. Please refer to Section 2.2.6 for a description of the train-dev-test split and to

Section 2.4 for criteria when trigger and argument decisions are correct. Specificaly,

in this section we evaluate

• Experiment 1: micro-averaged ACE performance using gold entities (standard

setting)

– Experiment 1a: IGI vs. the most recent reported event extractors

– Experiment 1b: IGI vs. other systems with global inference

• Experiment 2: micro-averaged ACE performance using predicted entity men-

tions

• Experiment 3: micro-averaged TAC performance

5This means that constraints can be soft.
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Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1
Li et al. (2013) 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
Chen et al. (2015) 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
Nguyen et al. (2016) 68.5 75.7 71.9 66.0 73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4
IGI 73.7 73.4 73.6 71.0 70.7 70.8† 69.4 54.8 61.3 64.5 50.9 56.9†
Zhang et al. (2017) n/a n/a n/a 75.1 64.3 69.3 n/a n/a n/a 63.3 50.1 55.9
Chen et al. (2017) 79.7 69.6 74.3 75.7 66.0 70.5 71.4 56.9 63.3 62.8 50.1 55.7

Table 3.2: Micro-averaged precision, recall, and F1 for Experiment 1a: Incremental Global In-
ference (IGI) vs. five of the most recent event extractors. Numbers in bold are
the best for the respective measure. Evaluation numbers published after IGI are re-
ported in the lower half of the table. † means statistically significant compared to Li
et al. (2013) at the p < 0.05 level. We only measured significance for ‘classification’
F1 scores.

3.3.1 Experiment 1: ACE 2005, Standard Setting

Experiment 1 compares Incremental Global Inference against other systems in what

we call the ‘standard setting’ of ACE event extraction: using gold entity mentions (Li

et al., 2013; Chen et al., 2015; Nguyen et al., 2016, i.a.) and evaluating on the data

split introduced in Ji and Grishman (2008). Experiment 1a evaluates the method

against the best reported systems. Experiment 1b evaluates it against other global

inference methods for event extraction.

Table 3.2 reports evaluation results for Incremental Global Inference (Line 4) and

five other systems (Experiment 1a), two of which were published after IGI (Lines 5-6).

Line 1 (Li et al., 2013) is our base system.

In terms of F1, IGI performs better than all systems, including recent deep learning

approaches (Chen et al., 2015; Nguyen et al., 2016; Zhang et al., 2017; Chen et al.,

2017). It provides the best balance between precision and recall for trigger classifica-

tion, resulting in the highest trigger classification F1 for a full event extractor.

Compared to the base system, IGI has a better F1 score in all evaluation categories.

It improves trigger identification by 3.2, trigger classification by 3.3, argument iden-

tification by 4.5, and argument classification by 4.2 F1 points. We measured signifi-

cance for the ‘classification’ F1 scores – the differences are statistically significant at

the p < 0.05 level.6 This increase is due to a much higher trigger recall (+8.4 points)

compared to the base system, without losing too much precision. Nguyen et al. (2016)

6We measured significance using approximate randomization (Noreen, 1989).
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Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1

Ji and Grishman (2008) cross-sent 64.3 59.4 61.8 54.6 38.5 45.1 49.2 34.7 40.7

Ji and Grishman (2008) cross-doc 60.2 76.4 67.3 55.7 39.5 46.2 51.3 36.4 42.6
Liao and Grishman (2010) 68.7 68.9 68.9 50.9 49.7 50.3 45.1 44.1 44,6
Hong et al. (2011) 72.9 64.3 68.3 53.4 52.9 53.2 51.6 45.5 48.4
IGI 71.0 70.7 70.8 69.4 54.8 61.3 64.5 50.9 56.9

Table 3.3: Micro-averaged precision, recall, and F1 for Experiment 1b: Incremental Global
Inference (IGI) vs. four systems which are not limited to intra-sentential inference.
Numbers in bold are the best for the respective measure. Yang and Mitchell (2016)
is not reported here because they use predicted entity mentions.

is the only system with a higher trigger classification F1 than IGI. However, it also has

a considerably lower precision.

The increased argument performance of IGI is enabled by the increased trigger recall

it provides – a system which increases recall without decreasing precision too much

has a good chance to also increase argument performance, because it has a chance

to correctly predict arguments for each additional trigger it finds. This can be seen

for IGI, but also for Nguyen et al. (2016). We test this hypothesis in Section 5.7.3

where we find that there is a moderate positive correlation between trigger recall and

argument F1.

Compared to the best system published before IGI (Nguyen et al. (2016), Line 3),

our approach improves trigger identification by 1.7, trigger classification by 1.5, and

argument classification by 1.5 F1 points.7

Table 3.3 reports evaluation result for IGI (Line 5) and four other systems which

use some kind of inter-sentence decoding. Ji and Grishman (2008) use either cross-

sentence (Line 1) or cross-document decoding (Line 2). Liao and Grishman (2010)

(Line 3) is a system which uses multiple classifiers to perform document-wide infer-

ence. Finally, Hong et al. (2011) use cross-entity inference to predict event arguments.

In this evaluation setting we cannot report trigger identification performance because

it was not reported in the other publications.

7Nguyen et al. (2016) report the highest argument recall, with a wide margin to the second-highest
value. We speculate that the improvement here is either a result of their word embeddings, or the
result of a recall-driven optimization procedure. However, the authors give no insight into what
caused their high recall.
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We can see that IGI outperforms all previous systems with global inference capabili-

ties by a wide margin. It improves trigger classification by 2.5, argument identification

by 8.1, and argument classification by 8.5 F1 points.

From a scientific point of view, it is difficult to compare different global decoding

procedures themselves because their performance heavily depends on the performance

of their base systems.

Liao and Grishman (2010) and Hong et al. (2011) have a higher trigger classifi-

cation F1 than our base system (+1.4 and +0.8, respectively). However, IGI trigger

classification F1 outperforms both (+1.9 and + 2.5, respectively), indicating that our

method is superior.

The high argument performance improvement is partially due to the better argu-

ment extraction performance of our base system (4.3 F1 points better than Hong et al.),

and partially due to the increased trigger performance.

3.3.2 Experiment 2: ACE 2005, Predicted Entity Mentions

We now present evaluation numbers for IGI using predicted entities. These numbers

are published in Judea and Strube (2016).

The main difference between Experiments 1 and 2 is the handling of entity men-

tions. While Experiment 1 (standard setting) allows to use gold entity mentions, Ex-

periment 2 requires to predict them. Entity mention prediction constitutes a difficult

problem in itself. ACE defines seven entity types which can be used as event argument

fillers. Refer to Section 2.2.4 for a detailed discussion of ACE entity mentions.

To evaluate Incremental Global Inference in this setting, we use a reimplementation

of Li et al. (2014) as our base system. In contrast to the base system we used so far,

a base system for Experiment 2 not only enumerates possible triggers at each token

position, but also possible entity mentions. The new base system generates hypotheses

which not only encompass triggers, but also entity mentions of varying length. On top

of the hypotheses building described in Section 3.1, this base system also performs

the following actions. At each token position i which is not a trigger in the current

hypothesis, this base system enumerates segments (entity mention candidates) of in-

creasing length ending at this position. Each segment is paired with each entity type,

each such pairing constituting a new hypothesis. For a segment-type pair, we generate

the features reported in Li et al. (2014). A maximum segment length for each entity

type is collected from the training data. Li et al. (2014) omit the generation of values
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Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

Baseline 67.2 62.2 64.6 64.7 59.9 62.2 70.7 36.6 48.2 57.3 29.7 39.1
IGI 67.0 65.9 66.5 64.2 63.1 63.7 76.1 40.8 53.1 59.9 32.1 41.8

Table 3.4: Micro-averaged precision, recall, and F1 for Experiment 2: Incremental Global In-
ference (IGI) vs. our base system, both using predicted entity mentions. The base
system is a reimplementation of Li et al. (2014). Numbers in bold are the best for
the respective measure.

(e.g., Crime) and times because “they can be most effectively extracted by handcrafted

patterns.” We follow them in this regard.

Table 3.4 reports micro-averaged precision, recall, and F1 for Experiment 2. We

compare a baseline (Li et al., 2014) to Incremental Global Inference using predicted

entity mentions. Please note that we evaluate on the same test set as Li et al. (2014)

to ensure comparability; this test set differs from the more widespread test set used in

Experiment 1.

Here, we see the same trends as in Experiment 1: IGI leads to increased trigger

prediction recall, which also has a positive effect on argument prediction. The relative

increase in trigger classification F1 is on the same scale as in Experiment 1: About 1.5

points improvement. Argument classification F1 increased a bit more in Experiment 2,

namely 2.7 F1 points.

3.3.3 Experiment 3: TAC 2015, Standard Setting

Experiment 3 evaluates Incremental Global Inference on different annotations than

Experiments 1 and 2, namely on TAC data. The TAC 2015 data set was released in

the context of the TAC shared task. It uses a different, but related annotation scheme

than ACE 2005. Please refer to Section 2.2 for a detailed description of the TAC 2015

dataset and its relations to ACE 2005. The numbers presented here were published in

Judea and Strube (2016).

The biggest differences between ACE and TAC (apart from different event types) is

that TAC includes multiple event labels per word. For example, the word “murder”

usually triggers both, an ATTACK and a DIE event. Our system cannot deal with such

cases. For training, we randomly drop one of the labels. For evaluation, we include all

labels, meaning that we always produce one error in multi-label cases.
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Trigger
Identification

Trigger
Classification

P R F1 P R F1

Baseline 87.3 47.0 61.1 73.3 39.5 51.3
IGI 77.1 54.7 64.0 64.1 45.5 53.3

Table 3.5: Micro-averaged precision, recall, and F1 for Experiment 3: Incremental Global In-
ference (IGI) vs. our base system on the TAC 2015 dataset. Numbers in bold are the
best for the respective measure.

Table 3.5 reports precision, recall, and F1 for trigger identification and classification

on the TAC 2015 data set (Experiment 3). Again, IGI increases trigger recall and

consequently trigger F1 considerably compared to the local baseline.

3.4 Error Analysis

We begin error analysis by a confusion heat map depicted in Figure 3.6. An analogous

heat map for the base system is depicted in A.1. The heat map uses a darker color for

higher values. The labels on the y axis are the true labels (or gold labels), and ones on

the x axis are the predicted labels. Cells contain frequencies. We also report the sum

of rows and columns in parentheses after the event type in addition to frequencies.

For example, there are 6 END-ORG events in the test set, 5 of which were classified

correctly and one which was confused with START-ORG. The label “null” represents ∅,
or ‘no event’.

From the diagonal of the heat map (which represents correct assignments) we can

see that ATTACK, MEET, and TRANSPORT events have the highest amount of correct

classifications. They belong to the most frequent event types in ACE (Section 2.2.6).

However, DIE, which is in the overall data the third most frequent event type, is un-

derrepresented in the test set, and MEET is a bit overrepresented.

IGI rarely confuses two event types, the vast majority of errors are confusions with ∅.
IGI has nearly as many false positives (123) as false negatives (133). A false positive is

given when the system predicted an event type, but the true label is ∅. A false negative

is the exact opposite case. We will now discuss errors specific to global inference.

In some cases like “fighting running battles”, IGI assigns the ATTACK label to “battles”

(as it does for “fighting”) – not a wrong decision per se. However, a wrong decision ac-
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Figure 3.6: A heat map (darker colors mean higher values) representation of the confusion
matrix for Incremental Global Inference. Gold labels are on the Y axis, predicted
on the X axis. In Appendix Figure A.1, we depict an analogous heat map for the
base system.
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cording to the ACE annotation guidelines which forbid annotating two triggers within

one sentence for the same event.

Sometimes, an alleged trigger is part of a name, e.g., “Win Without War”, where

the final word was confused with an ATTACK trigger. Many such cases can be excluded

as error sources in the standard evaluation setting with gold entity mentions because

they tend to be annotated as organizations and are therefore excluded from the set of

possible event triggers.

Another error source is polysemy. Compare the sentences “fire on the Palestine ho-

tel” vs. “killed by friendly fire” from one document. The second “fire” was mistakenly

classified as an ATTACK trigger because the first was classified as such within the same

document. This is a case where the one-sense-per-discourse assumption leads to a

wrong classification. However, this can (arguably) also be regarded as a case where

the annotators overlooked an annotation.

Global features can sometimes be clearly misleading. Consider the following sen-

tences: “Toyoda, who joined Toyota” and “He joined the board”. Here, only the first

sentence indicates a START-POSITION event, the second however does not trigger any

ACE event. IGI tags also the second case as a START-POSITION trigger because the fea-

tures which fire here (most notably exact string match) are strong indicators that the

same event type should be assigned to both. The only way to distinguish such cases is

to look at syntactic relations. In one case, “Toyota” is the object of the potential trigger,

in the other, it is “board”. Only in the first case the object is an entity mention with

an appropriate entity type, org. Theoretically, IGI’s joint inference can handle such

cases, because they are covered by appropriate features (e.g., ‘which entity type does

the object of the potential trigger have’). However, global features often outvote the

respective local features because of their higher weights. In our example, the exact

string match feature has an especially high weight. Future research has to investigate

ways to incorporate more context sensitivity into global features.

Figurative speech may be challenging for IGI as well. For example, in “Blair faces an

uphill battle to win Bush over”, “battle” is used as a metaphor and does not indicate

an ATTACK event as the system predicted. Such cases are not only difficult to IGI, but

to any event extractor, because they look very similar to actual ACE event triggers, and

even their contexts do sometimes not bear enough information to revise the decision

for a strong ATTACK trigger like “battle”.
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3.5 Conclusion

Trigger prediction is highly sensitive to lexical features (either categorical or in form

of word embeddings). The fact that our method outperforms deep learning methods

without word embeddings suggests that a global, document-wide inference is comple-

mentary and might also benefit these systems. We outline and continue this thought

in Section 7.2, where we sketch a system which uses IGI in combination with a neural

event extractor based on syntax encoders (Chapter 5).

IGI can work with different base systems to produce the initial labeling – we use

it with the base system (Section 3.1.1) as well as with a variant which uses predicted

entity mentions (3.3.2); in both cases, IGI adopts the capabilities of both base systems.

Similarly, it might be used in more recent ‘neural’ event extractors as base systems, e.g.,

with our neural syntax encoders (Chapter 5). We discuss this point in Section 7.2 in

more details.

Systems with a high trigger classification recall have a good chance to show in-

creased argument classification performance merely because of the additional triggers

they find, and not because they actually predict arguments better. We show in Section

5.7.3 that there is a positive correlation between trigger recall and argument perfor-

mance across multiple methods and data splits. IGI considerably improves trigger

classification recall (and performance in general), and this in turn leads to a consid-

erably increased argument classification performance because IGI is able to actually

perform argument classification for more correct triggers compared to the base sys-

tem. This might also hold for Nguyen et al. (2016). They have a very high trigger

classification recall paired with a low precision – however, they report a good argu-

ment classification F1. Zhang et al. (2017) and Chen et al. (2017) on the other hand

have lower trigger classification recalls, but an argument performance comparable to

Nguyen et al. (2016). This may be an indicator that the latter two can predict argu-

ments better than the first. However, it is hard to disentangle trigger and argument

performances because of their strong interdependencies.

We could not devise effective global features which help argument prediction di-

rectly (Section 3.2.2.3). In Chapter 4, we look closely on argument prediction, espe-

cially on difficulties and possible solutions. We devise experiments to evaluate argu-

ment performance in isolation, without any interference from trigger prediction.
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In this chapter, we analyze event argument identification and classification – the task

of identifying entity mentions which are arguments of a given event and assigning the

role they play in the event (Section 2.4). Based on our findings, we explore distributed

syntax representations. We build a system which learns to represent syntactic struc-

tures for event argument identification and classification.1 The ultimate goal of this

chapter is to investigate how to improve argument classification performance on the

one hand, and how to make better use of syntax information on the other. We use the

knowledge acquired here to build a syntax-based event extractor in Chapter 5.

When we look at the evaluations in three of the most influential event extraction

papers (Li et al., 2013, 2014; Chen et al., 2015; Nguyen et al., 2016) we note that

argument classification performance is low, ranging from 52.7 to 55.4 F1. There are

multiple reasons for this.

First, argument classification suffers from error propagation. Missed or spurious

event triggers may lead to missed or spurious event arguments. Second, event struc-

ture is complex. Multiple entities can play the same role in the same event. Addition-

ally, one entity can play different roles across events (and thus cause multiple event

arguments). Consider the following example.

A Palestinian Boy as well as his Brother and a Sister were wounded late

Wednesday by Israeli gunfire.

Here, the three entity mentions “boy”, “brother”, and “sister” are all Victims of the

INJURE event triggered by “wounded”, as well as Targets of the ATTACK event triggered

by “gunfire”. Such structures can become even more complex when more events and

more entities are involved. See Chapter 2 for a more thorough discussion.

1In the following, we will only write about argument classification, but mean both tasks.
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The third reason for low argument classification performance is syntactic complex-

ity. Many arguments are syntactically far away from their triggers, making it hard to

construct meaningful syntactic features. Section 4.1 shows that performance is tied to

the length of the shortest dependency path connecting trigger and argument.

The first two error sources are addressed by joint inference: If we assign entire event

structures to sentences, we have no error propagation because trigger and argument

decisions influence each other. Additionally, it becomes easier to leverage the fact that

the roles one entity plays in related events are coherent: The Victim of one event for

example can also be a Target in another, but it is probably never the Attacker. In

joint inference over entire event structures, we can have features which capture the

roles an entity mention plays in all the events within a sentence.2 This line of work is

investigated in more detail in Chapter 3.

To the best of our knowledge, no previous work identified syntactic complexity as

the third key problem for argument classification performance, and no previous system

decomposes syntactic structure in order to learn better classifiers for the task. Our

contributions in this chapter are the following.

1. We observe that syntactic complexity is a crucial factor for argument classifica-

tion – performance highly correlates with dependency path length (Section 4.1).

2. We represent dependency paths (Section 4.2) with Recurrent Neural Networks

(Section 4.3.3) in order to account for their sequential and compositional nature.

Using RNNs to learn dependency path representations proved effective in other

areas like relation extraction (Xu et al., 2015b) and semantic role labeling (Roth

and Lapata, 2016). We investigate their use for argument classification.

3. We represent lexical contexts of event arguments with Convolutional Neural Net-

works (Section 4.3.4). Together with RNNs, they form an effective and simple

argument identifier which beats a state-of-the-art, feature-based system without

any manual feature engineering.

Section 4.1 analyses event argument classification performance for our baseline.

Section 4.2 presents lexicalized shortest dependency paths and consider the most im-

portant difficulties. Section 4.3 presents the problem formulation and the system ar-

2Note that such features have to use coreference resolution (Martschat and Strube, 2015) to determine
which mentions belong to the same entity.
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chitecture. Section 4.4 reports our experiments and the respective results. Finally,

Section 4.5 gives the conclusion.

4.1 Baseline Performance Analysis

Here, we analyze the performance of our base event extractor form Chapter 3 (Li et al.,

2013, 2014) with regard to argument performance. We decided to use this system

because it is still one of a few joint event extractors, making it a challenging baseline

and an apt candidate for a good performance analysis. In the following, we omit a

description of this system. Please refer to Section 3.1 for a thorough presentation.

However, we briefly mention its argument features below.

The baseline system uses a rich, hand-engineered feature set to predict event argu-

ments. The set can be divided into features produced by static and dynamic feature

templates.

Static feature templates characterize a single argument, and they involve only the

entity mention and the trigger of this argument. They capture, e.g., the trigger and en-

tity types, the words of the potential argument, its lexical context, and the dependency

path connecting it to the trigger.

Features produced by dynamic templates characterize multiple arguments in terms

of the entity mentions and roles they share. They also capture characteristics of the

entity mentions within one event, e.g., the words between two entity mentions sharing

a role in one event, or the head and modifier of nominal modifications like ‘IBM’

in ‘IBM CEO’. Other templates capture characteristics of events with shared entity

mentions, e.g., all the roles it plays in events. The system uses a total of two dozen

feature templates, resulting in 150,000 features for argument classification.

Below, we analyze its performance before we propose a new system which specifi-

cally targets one of its blind spots – long dependency paths which connect triggers and

their arguments.

We start the analysis of argument classification performance with the observation

that despite the low overall scores, some argument types perform reasonably well.

Table 4.1 reports development set F1 of our baseline for the three best and the three

worst performing argument types in the development set.
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4.1 Baseline Performance Analysis

Argument type Supporttrain F1dev

Victim 578 79.0
Instrument 256 77.1
Artifact 605 75.6
Agent 357 48.3
Attacker 574 47.3
Target 438 42.6

Table 4.1: Training set support and development set baseline F1 for the three best and three
worst performing argument types. We excluded types with less than 20 samples in
the development set.

Performance for the upper half of argument types is quite good (77 F1 points on

average), while performance for the lower half is worse (40 F1 points on average).

What is the reason for this big difference?

Our first assumption is that the best performing types have more training data. In-

deed, the best-performing type Victim has considerably more samples than the worst-

performing type Giver. Attacker however has nearly the same amount of training

samples as Victim but a much lower performance (-31.7 F1). Instrument on the

other hand has only half the training samples but a better performance (+29.8 F1).

To further investigate this, Figure 4.1a plots training set support in decreasing mag-

nitude against development set F1 for the 12 most frequent argument types. The plot is

not conclusive: More training data does not automatically lead to better performance.

The most frequent argument type Place with 881 training samples has an F1 of 61.1,

whereas Victim with 34% less training samples has an F1 of 79.0. Instrument has

about 70% less training samples and an F1 of 77.1. If the number of training samples

is not an important factor for performance, what else could be?

One answer is semantic variety: Some roles can only be filled by one or two entity

types, and many of the respective entity mentions are role fillers. This is especially

true for Instrument which can only be filled by vehicles and weapons in ACE 2005;

in turn, many weapons are Instruments. This is reflected in the good performance of

Instrument in Table 4.1 and Figure 4.1a.

However, most roles can be filled by more than two entity types, and their poten-

tial fillers are more frequent than vehicles and weapons: Entity for example can be

filled by persons, organizations, and geopolitical entities. At the same time, most of the

respective mentions are not Entities. Even if a role can only be filled by one entity
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Type Count Argument Count Ratio

FAC 1797 453 0.25
GPE 9454 1301 0.14
LOC 1363 264 0.19
ORG 6875 421 0.06
PER 33278 3496 0.11
TIME 5469 1095 0.20
VEH 1048 146 0.14
WEA 1009 253 0.25

Table 4.2: Entity types with total occurrences (“Count”), as event arguments (“Rolecount”),
and a ratio of occurrences as arguments to total occurrences.

type, it may be that most occurrences are not role fillers, making it harder to correctly

fill those roles. Consider Time for example, which can only be filled by time men-

tions, yet it has only a mediocre performance of 67.7 F1 points on the development

set. Semantic variety alone cannot explain the big performance differences between

argument types. To make this point more clear, Figure 4.2 depicts a heatmap of entity

type distributions for the twelve most frequent argument types, and Table 4.2 reports

how many entity mentions of the respective type occur, how often they are event ar-

guments, and a ratio between the two (high values mean frequent occurrence as event

arguments). The figure and the table report complementary information. For example,

80% of Instrument fillers are wea (weapons) and 20% are veh (vehicles). In fact, WEA

can only fill Instrument roles. In turn, 25% of all wea mentions are Instruments.3

Time roles can also only be filled by one entity type, namely time, and 20% of all time
occurrences are role fillers. Even though we have a similar semantic variety as with

wea and Instrument, the performance of Time is about 10 F1 points lower than that of

Instrument. Semantic variety alone cannot explain the performance differences.

Another important factor is syntactic complexity: How long and diverse are depen-

dency paths connecting arguments and triggers? To investigate the effect of syntactic

complexity, Figure 4.1b depicts length of dependency paths connecting triggers and

arguments in decreasing magnitude against development set F1. In this plot, we see

a much clearer trend: Shorter syntactic distance leads to better performance. Length-

3If we count the number of wea mentions in sentences with events which have an Instrument role,
the percentage is most likely considerably higher.
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1 paths (direct trigger-argument dependency) have an F1 of 78.2. Length-2 path F1

drops to 56.4, and to 30.8 for length-3 paths. Length-4 and length-5 paths have an F1

of 21.3 and 12.5, respectively.

This trend is also reflected in the performance of individual argument types. The

most frequent type Place has a high average path length of 2.2 and a low F1 of 61.1.

Victim on the other hand has considerably less training data, but an average path

length of 1.5 and an F1 of 79.0. And Time, the example we discussed above, has an

average path length of 1.9. For the three best performing types, the average path

length is 1.7 vs. 2.3 for the three worst performing types.

Dependency path length is related to lexical distance – the longer a dependency

path, the more words are usually between trigger and argument. To investigate the

effect of lexical distance, Figure 4.1c depicts the number of words between trigger and

argument in increasing magnitude against development set performance. Here, we see

a somewhat less clearer trend: Increasing lexical distance leads to lower performance,

with a considerable increase between distances 4 and 5, and a performance plateau

between 8 and 11.

We decided to favor syntactic over lexical structure because dependency paths ab-

stract from the actual words and ignore many which are irrelevant for argument classi-

fication, like adjectives and adverbs. This in turn alleviates data sparsity. A dependency

path like returned
nmod:from−−−−−−→summit nmod:in−−−−→Ireland is more concise and relevant for the

task than a word sequence like “returned from a summit in Ireland”.

We conclude that syntactic complexity is a crucial factor for argument classification.

Therefore, it is inevitable to reduce or better handle syntactic complexity. Most systems

incorporate dependency paths merely as strings, or rely on direct dependencies of

triggers and arguments. They do not decompose or further analyze dependency paths

in order to find relevant substructures, or to deal with data sparsity of long paths. In

Section 4.3, we present a simple and efficient system which directly addresses syntactic

complexity. It will mainly operate on dependency paths between potential arguments

and triggers.
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4.2 Dependency Paths

We will present dependency paths in more depth in this section. We first start with a

definition of ‘dependency path’ and illustrate afterwards the benefits and difficulties

of using dependency paths for argument classification.

Dependency paths are paths in a graph of grammatical dependencies. A dependency

is a triple (w1, d
1:2, w2) where w1 is called the governor, w2 the dependent, and d is a

grammatical relation like nsubj (subject) or dobj (direct object), further specified by

the word indices it connects. Grammatical dependencies are based on the work of

De Marneffe and Manning (2008) and Schuster and Manning (2016) (enhanced++

dependencies). Each dependency triple connects two words in a sentence with a gram-

matical relation; however, governor and dependent may also participate in relations

with other words. In total, a relation graph is formed. We will use this graph to

compute grammatical paths which connect triggers with potential arguments.

Dependencies as formalized above are directed. Paths of directed triples are also

directed. In such a directed graph however, there may be no path between two words.

For this reason, we do not distinguish between governor and dependent position in

dependency relations. We will encode the direction of a relation by introducing two

dependency labels for each original label, denoted with a← and→ suffix.

A dependency path consists of tuples as defined above. More formally, a dependency

path Pw1→wn between words w1 and wn is defined by

Pw1→wn = (w1, d
1:2, w2, . . . , d

n−1:n, wn). (4.1)

Our dependency paths are lexicalized, meaning that we include the words which

participate in a grammatical relation. We explicitly call our paths lexicalized to distin-

guish them from sequences of dependency labels. Paths as defined here are input to

the Long Short-Term Memory Network we describe in Section 4.3.3.3.

Our paths always start with the trigger word and end with a mention word (w1

and wn, respectively in the equation above).4 We say that a path has length 1 if trig-

ger and argument are directly related, length 2 if the path includes one intermediate

dependency, etc.

Often, short dependency paths directly reflect event argument structure:

killed
nsubj−−−→ father-in-law (Agent)

4For multiword expressions, the path connects trigger and entity mention head.
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killed
dobj−−→ him (Victim)

The trigger “killed” (a DIE event) has two dependencies, “father-in-law” being the

subject and “him” being the object. Even without looking at more context we can say

with confidence that the subject must be the Agent of the event and the object must

be the Victim. Even longer paths may be quite clear:

returned
nmod:from−−−−−−→summit nmod:in−−−−→Ireland (Origin)

Here, “returned” triggers a TRANSPORT event. The path conveys the information

that some entity returns from a summit in Ireland, making “Ireland” the Origin of the

event.

Unfortunately, not all short paths clearly indicate an event argument and its role.

The biggest problem is polysemy. A path like killed
dobj−−→him in the sentence ‘the ar-

gument killed him’ does not indicate a Victim, because the verb is used figuratively.

Polysemy is not a problem for the system presented in this chapter, because we use

gold triggers here to investigate event argument classification in isolation, but it is a

problem for the full event extractor presented in Chapter 5.

Of course, not all dependency paths are as easy to interpret. The following exam-

ples show the necessity to decompose dependency paths in order to catch similarities

between them.

war
dobj←−− fighting

nsubj−−−→ forces (“coalition forces fighting the war”) (Attacker)

war nmod:to←−−−− go
nsubj−−−→ we (“‘we go to war”) (Attacker)

To make the last two paths more readable, we included the phrases they encode.

These paths are more complex than previous ones because trigger and argument are

governed by other words, namely by “fighting” and “go”. In both cases, “war” triggers

an ATTACK event and the subject is an Attacker argument. Humans can easily spot

similarities in the two paths. The arguments are in both cases the subjects of the

governing verbs: “forces” is the entity fighting a war and “we” is the entity going to

war. However, the left sides of the paths look quite different: In one case, “war” is

the direct object of the governing verb, in the other it is a prepositional complement.

A system must learn that “fighting the war” and “go to war” are roughly the same,

even though “fighting” and “go” do not share meaning, and even though “war” is

embedded by different syntactic constructs in the dependency tree. A system needs
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the ability to decompose the paths and to learn the meaning of sequences of words

and dependencies.

Another problem is given by the sole length of a path – long paths require long sen-

tences, and parsing accuracy for long sentences is worse than for short sentences (Liu

and Zhang, 2017).5 Furthermore, long paths are more likely to contain elements never

encountered during training. Even a short path like go nmod:to−−−−→war may be expressed

as went nmod:to−−−−→ war or went nmod:to−−−−→fight, which are both not part of the training data.

In the following, we will present a system which uses at its core a sequence models to

learn distributed representations of dependency paths. We will first state the problem

and formalize it before we present and describe the system architecture. Section 4.3.3

describes how we represent dependency paths and how this information is used by the

system to predict event arguments.

4.3 biLSTM/CNN: Problem Formulation and System

Architecture

Input to our system (biLSTM/CNN) are instances as described in Section 4.3.1. An

instance has three information groups, each is processed by one component. The first

produces a representation of the event type, mention type, and text genre (Section

4.3.2). The second produces a representation of the lexicalized dependency path (Sec-

tion 4.3.3). The third extracts valuable information from the lexical context (Section

4.3.4).

Figure 4.3 depicts the system architecture. The figure is split in four (bottom, middle

left/right, and top), each part visualizing one of the components we describe and

formalize below. We will first specify the input before we describe each component in

detail. In the remained of this chapter, ⊕ means the concatenation of vectors.

4.3.1 Problem Formulation and Input Specifications

We start this section by formalizing the problem before we specify the input. In the

next section, we begin to describe our system.

5Interestingly, the same is true for governor-dependent offset distance: the higher it is, the lower pars-
ing accuracy. Our notion of path length ignores such distances. It may be interesting to investigate
if they have an impact on argument classification performance.
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a1 a3 a5a2 a4

e
disttrigger
distmention

k

returned nmod:from summit nmod:in Ireland Bush returned from . . .

e
disttrigger
distmention

k

c1,1c1,2
c1,3 c2,1c2,2

c2,3 cn,1cn,2
cn,3

maxmaxmax

ĉ1 ĉ2 ĉ3

0110

0.7.30

argument type mask

probability distribution

entity event genre

A

biLSTMs CNN

background

Masked softmax

Figure 4.3: biLSTM/CNN architecture. Process flow is depicted from bottom to top. The back-
ground vector (background) is input to the bi-directional dependency path LSTM
(biLSTM) and the lexical context CNN (cnn). Both produce representations, which
are finally subject to a softmax distribution over argument types (softmax). Em-
beddings e depicted in white are fixed during training, every other node with
learnable weights receives backpropagation updates. Section 4.3 describes each
component in detail.
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Bush returned to the US from his summit in Ireland
TRANSPORT loc

nmod:from→ nmod:in→

event argument type?

Figure 4.4: A training/test instance. Depicted in red is given information, depicted in blue is
requested information. Given are (from top to bottom) the sentence, an event trig-
ger and its event type, the entity type of the argument candidate, and the shortest
dependency path connecting trigger and argument candidate.

Even though we call the task in this chapter argument classification, it is not inher-

ently clear how it should be formulated. It could be stated as a structured prediction

problem, for example (Chapter 3). However, in this chapter we want to focus on im-

proving the prediction of individual arguments. To remove all influence from other

factors than the actual argument as good as possible, we neither want our system to

have features which interact with other argument decisions, nor do we want to have

the problem of error propagation in any form, be it from other arguments or from trig-

ger predictions. To avoid error propagation from wrong trigger decisions, we decided

to divert from the traditional evaluation mode and to use gold triggers and therefore

gold event types. To the best of our knowledge, we are the first to investigate argument

classification prediction in isolation. We believe that our ‘laboratory’ conditions (es-

pecially gold triggers) are crucial to improve performance in this area, and to directly

compare event argument performance. We will show in Chapter 5, that argument

classification performance is strongly dependent on trigger classification recall.

For a trigger-entity mention pair (t,m) we make one (train/test) instance consisting

of (a) event type, mention type, and text genre, (b) the shortest lexicalized depen-

dency path Pt→m and (c) the sentence. Figure 4.4 visualizes such a pair (“returned”,

“Ireland”). Event type (TRANSPORT), entity type (loc) and genre (newswire, not de-

picted) constitute the first information group. The second group is the lexicalized

dependency path (returned nmod:from−−−−−−→ summit nmod:in−−−−→ Ireland). The third group is the

sentence. Given such information, the task is to predict a probability distribution over

all argument types. Finally, we select the argument type with the highest probability.

The three groups described above correspond to the most valuable information

sources of the baseline. However, the baseline draws only categorical features from

them. Most notably, it relies on dependency paths seen during training because it

cannot decompose them into meaningful subpaths, which is crucial for better classi-

fication performance (Section 4.2). The neural network architecture we present in
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Section 4.3 is able to automatically construct more meaningful features by decom-

posing dependency paths and by learning embeddings for all information sources. In

contrast to categorical features, where each feature has typically one weight, we learn

more complex, multi-dimensional representations which enable the system to combine

information on more than one scale.

We will now present the system architecture and formalize the three information

groups and their respective component.

4.3.2 Background Vector

The background vector k provides a joint representation of the event type, entity type,

and genre. The intuition behind the background vector is that arguments are ex-

pressed differently across event types, entity types, and genres; having a representa-

tion of the three information sources helps to capture these differences. k is input to

the other two components and helps to learn better representations.

More formally, k is the last layer of a fully-connected three-layered feed-forward

neural network6 A linear layer ni with input x is defined by

ni(x) = σ (Wx+ b) , (4.2)

where σ is a so-called non-linearity (typical choices are the tanh or sigmoid func-

tions), W is a weight matrix, and b is a bias. Feed-wordward neural networks typically

consist of multiple such layers. k in our case consists of three: input, hidden, and

output, where the final layer is connected to all other parts of our system.

k is defined as

k = σ(n1(n2(e(n)⊕ e(v)⊕ e(g))), (4.3)

where σ is a non-linearity, n1 and n2 are two linear layers, e is an embedding function

which assigns a different vector to each of its inputs, and n, v, and g are the entity type,

event type, and genre. e assigns vectors drawing from a special random distribution

(Glorot and Bengio, 2010) which is determined by the connections to the next layer,

in our case to the input layer of k.

6In other terms, this is a fully connected, feed-forward network with one hidden layer.
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4.3.3 Representations of Lexicalized Dependency Paths

In this section we come to the core of our system, the component that produces rep-

resentations of lexicalized dependency paths. In the following, we motivate, describe,

and define all methods used for this component. We start with recurrent neural net-

works, and introduce the concepts of bi-directionality and especially Long Short-Term

Memory networks afterwards.

4.3.3.1 Recurrent Neural Networks and Their Use

We observe that for our feature-based baseline argument classification performance

drastically drops with the length of the dependency paths which connect trigger-

argument pairs (Section 4.2). Our baseline encodes dependency paths as categorical

features. It misses all paths which it has never seen during training. We hypothe-

size that a system which learns to capture similarities in dependency paths has a clear

advantage because it can draw conclusions from dependency paths it never encoun-

tered during training; in other words, such a system can use dependency information

more efficiently than feature-based systems like our baseline. Recurrent Neural Net-

works (RNNs) are particularly useful to learn (long-range) dependencies in sequences

of varying length. They show good results in a variety of tasks similar to event extrac-

tion, such as relation extraction (Xu et al., 2015b) and semantic role labeling (Roth

and Lapata, 2016).

We use RNNs to represent lexicalized dependency paths (Section 4.3.1). RNNs are

trained to output high-dimensional vectors for input dependency paths, such that sim-

ilar paths result in similar vectors. They offer the benefit that small variations in a path

can either be ignored or completely change the overall representation, depending on

the actual variation. For example, modifications like nmod:from may not change the

overall ‘meaning’ of a dependency path; dobj and nsubj on the other hand sometimes

encode antithetic roles like Target and Attacker. RNNs create a distributed (or con-

tinuous) representation of syntax paths, meaning that the path is processed element-

wise and placed in a high-dimensional and latent space based on its elements. This

stands in contrast to local (or discrete) representations of dependency paths which

typically occur when they are used as categorical features for feature-based methods

like logistic regressors or Support Vector Machines.7 In other words, feature-based

methods assign one weight to a path whereas RNNs embed the path in a latent, high-

7See Hinton et al. (1986) for a discussion of local vs. distributed representations.

77



4 Syntax Encoding for Event Argument Classification

dimensional space. Feature-based methods can only assign weights to paths which

they encountered during training. RNNs can assign a vector to arbitrary paths, even if

they were never encountered during training.

RNNs process a linear sequence ‘through time’. For each time step i, they produce

a state vector hi (also called the hidden state), which is a combination of the input xi,

the previous state vector hi−1 and a bias b. Formally,

hi = σ(Wxi + Uhi−1 + b) (4.4)

where W and U are weight matrices, and σ is a non-linearity, e.g, the tanh function.

The hidden state hi encodes information about the input at position i and about all

previous time steps. In contrast to other deep learning methods, RNNs are able to

produce a fixed-size representation for input of varying length.

We hypothesize that in many cases similar dependency paths lead to the same

argument type. For example, attacked
nsubj−−−→US and attacked

nsubj−−−→Iraq are very simi-

lar and are both instances of Attacker arguments. Similarly, attacked
nsubj−−−→US and

attacked
nsubj−−−→US

appos−−−→jets are similar and both instances of the same argument type.

A change in grammatical relations however might lead to a different argument type.

attacked
dobj−−→Iraq for example indicates a Target instead of an Attacker because of

the change from nsubj to dobj. The method we use to represent these paths needs

to be able to capture both aspects – it needs to produce similar representations for

paths which indicate the same argument type, and dissimilar representations for paths

indicating different types. The same requirements hold for Semantic Role Labeling,

where RNNs successfully improved performance. We believe that they improve argu-

ment classification performance as well. However, we do not put the entire modeling

burden on our RNNs alone. Instead of using only the final representation vector they

produce, we use every representation of every time step in the dependency path and

let the higher classification layers decide about the relevance of individual segments.

4.3.3.2 Bi-directional Recurrent Neural Networks

RNNs encode information from previous time steps. In other words, they do not ‘see’

ahead. Only the last element contains information about the entire sequence. This is a

drawback in our case because we use all the hidden states of the RNN for classification.

Ideally, each of them would encode information about the entire sequence.
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Bi-directional RNNs overcome the limitation of standard RNNs by processing their

input from both directions – left to right, and right to left – and combining the rep-

resentations afterwards. More formally, they produce two hidden states
−→
h i and

←−
h i,

and combine them via some composition function: hi = �(
−→
h i,
←−
h i). � may be, for

example, concatenation or averaging.

4.3.3.3 Bi-directional Long Short-Term Memory Networks

Unfortunately, standard RNNs are limited in their ability to learn long range depen-

dencies because of the vanishing or exploding gradients (Bengio et al., 1994). These

problems occur only during training and arise when using the (predominant) back-

propagation algorithm: In order to backpropagate through RNN states, they are un-

folded over time, forming a linear chain of hidden states, inputs, and outputs. The

gradients are computed for the last time step, then for the second-to-last timestep with

respect to the last, etc. Depending on the numerical values and activation functions

involved, the gradients may either vanish (go towards zero) or explode (go towards

infinity), the more time steps are considered. Exploding gradients lead to numerical

overflows and effectively break training. Vanishing gradients have a more subtle ef-

fect: They greatly limit the learning ability of RNNs because errors have no influence

on states further back in time.

LSTMs, short for Long Short-Term Memory Networks (Hochreiter and Schmidhu-

ber, 1997), mitigate this problem by introducing the concept of gates. Gates control

the information they let through. Coupled with an architecture which is able to carry

information either changed or unchanged from one state to another, LSTMs effectively

bypass the vanishing or exploding gradient problem. They are able to carry important

information through the entire sequence, or block irrelevant information from pro-

cessing. It becomes part of the learning problem which information is important or

not for which states.

We will now present the formal definition of an LSTM and explain the gates after-

wards. In the following, � means the Hadamard product, a kind of matrix multiplica-

tion where the value a, b is the product of elements a, b in the original matrices.
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ij = σ(W d
i xj + Ud

i hj−1 + bdi ), (4.5)

uj = σ(W d
uxj + Ud

uhj−1 + bdu), (4.6)

fj = σ(W d
f xj + Ud

f hj−1 + bdf ), (4.7)

oj = σ(W d
o xj + Ud

ohj−1 + bdo), (4.8)

cj = ij � uj + fj � cj−1, (4.9)

hj = oj � tanh(cj), (4.10)

Note that the gate definitions in Equations 4.5 to 4.8 strongly resemble the definition

of a simple RNN in Equation 4.4. Each gate has two weight matrices W and U , one

for the input xj, one for the previous state at j − 1, and one bias b. The superscript d

refers to the directionality (left or right). Effectively, one LSTM per direction is used.

Finally, σ is the sigmoid function.

cj (Eq. 4.9) is called the memory state. This state depends on the input gate ij (Eq.

4.5) and the update gate uj (Eq. 4.6) on the one hand, and the forget gate fj (Eq. 4.7)

and the previous memory state on the other. To build cj, the LSTM can control how

much of the current input it wants to consider (input gate), and how strongly (update

gate). It can also control what to forget about the previous memory state (forget gate).

Once cj is built, the final hidden state hj (Eq. 4.10) only depends on a transformation

of cj through the output gate oj (Eq. 4.8).

Input to our LSTM is a lexicalized dependency path P as introduced in Section

4.2. Each element in P (words and dependency labels) is represented by a vector

containing an embedding (either a word or a dependency label embedding), the lexical

surface distance to the trigger and to the mention, and the background vector. More

formally, for every element i in P we define

x(i) = e(i)⊕ disttrigger(i)⊕ distmention(i)⊕ k, (4.11)

where e(i) is either a pre-trained word embedding if i is a word or a randomly ini-

tialized dependency embedding otherwise. By randomly initialized we again mean

that the initial values are randomly sampled from a special distribution (Glorot and

Bengio, 2010) which depends on the number of connections to the next layers in our

system. disttrigger(i) and distmention(i) are also randomly initialized embeddings of lexi-
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cal surface distances of an element to the trigger or the argument word, respectively8,

and k is our background vector as defined above.

P is processed by a bidirectional LSTM (biLSTM). As described in Section 4.3.3.2,

using biLSTMs has the advantage that each hidden state contains information from the

entire sequence; using only a forward LSTM limits the representations at each position

to the left context. For a path element i, the biLSTM produces two hidden states
−→
hi (by the forward LSTM) and

←−
hi (by the backward LSTM). These vectors contain

information about the respective input xi, as well as the hidden states of previously

processed elements, i.e. elements to the left of i for
−→
hi and elements to the right for

←−
hi . We average the hidden states belonging to the same input vector to produce the

final output of the biLSTM:

ai =
1

2

(−→
hi +

←−
hi

)
(4.12)

One could combine the vectors differently, e.g., concatenating them. In fact, con-

catenation and averaging performed similarly in our experiments. We decided to

average the vectors because concatenation doubles the representation size, whereas

averaging keeps it constant.

The final outcome is a sequence A of averaged forward-backward representations

of elements in P . Along with the output of our CNNs (Section 4.3.4), A is input

to a fully connected linear layer which produces a probability distribution over valid

argument types. The middle-left part of Figure 4.3 depicts the biLSTM and its final

output A, the sequence of averaged forward-backward representation of P . LSTM

cells are represented by circles. Inputs are either word embeddings (white dots) for all

words like “returned”, “summit”, etc., or dependency embeddings (black dots) for the

dependency labels “nmod:from” and “nmod:in”. Furthermore, we have embeddings

for distances to the trigger and to the argument head word (blue and red dots), and our

background vector (light green). The arrows which connect the circles with themselves

and with their inputs and outputs visualize how LSTMs operate. For the forward

LSTM, one circle is connected to the next. For the backward LSTM, the direction is

exactly opposite. The hidden states of both are averaged (light blue dots above) and

forwarded to final classification.

8We encode this similarly to, e.g., entity type embeddings where each entity type corresponds to one
embedding vector. Here, each distance value corresponds to one embedding vector. Path elements
representing dependencies have the same distance vector as the previous element.
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4.3.4 Representations of Lexical Contexts

In contrast to RNNs, which are designed to capture the meaning of sequences, Convo-

lutional Neural Networks (CNNs) are often used to produce bag-of-words-like repre-

sentations. They were successfully applied to many NLP problems (Kim, 2014; John-

son and Zhang, 2015, inter alia).

CNNs are designed to recognize patterns in their input. In our case, the input is

a sequence of word vectors, one vector for each word in the sentence. Our CNNs

learn to recognize (lexical) patterns relevant for argument classification. For example,

words like ‘from’ or ‘out of’ in the vicinity of an appropriate entity mention may indi-

cate the presence of an Origin argument. Our CNN component captures information

similar to categorical features like lexical contexts (words to the left and to the right of

the argument candidate), except that we do not have a fixed window from which we

collect them but regard the entire sentence as ‘context’. As we will show in our evalua-

tions (Section 4.4.1), CNNs contribute to the overall system a significant performance

increase (1.4 micro-averaged F1 points on average).

CNNs mainly consist of learnable weight matrices (called filters or kernels). CNNs

compute the dot product (or: the convolution) of filters and subsequences of their

input in a sliding window manner. The outcome of this dot product is higher, if the

current input exhibits a pattern similar to what a filter learned to recognize.

The application of the same filter to different subsequences of the input makes the

recognition more robust. It has the effect of abstracting from the exact position of a

pattern to its mere presence. Furthermore, it typically leads to less parameters com-

pared to LSTMs, and this in turn leads to better performance with less training data.

However, CNNs only capture local regularities and dependencies.

A CNN can be defined by the number and size (width and height) of its filters,

and by the offset difference of the sliding window (called the stride). A CNN with 100

filters of size (2, 2) and stride 1 for example computes the dot product of 100 randomly

initialized weight matrices of size (2, 2) with the input [x0, x1], [x1, x2], [xn, xn+1] (xi ∈
R2), etc. Generally for the above CNN, a stride of stride leads to a convolution of

[xn, xn+1], [xn+stride, xn+stride+1], etc.

In image processing, filters can be easily understood and visualized: In the lower

layers of a visual classifier, they typically learn to recognize simple features like edges,

in higher regions they typically learn to recognize more complex features (eyes, car
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tires, leaves, etc.). Here, the absolute position of features is of little interest, as long

as their relative distance to other features is known.

In our case, filters learn patterns in sequences of word vectors. As for most NLP

problems, our convolution height is equal to the dimensionality of the input vectors,

mainly meaning that we do not learn patterns across embedding dimensions, only

across embedding vectors.

We use CNNs to represent the lexical context of an event argument candidate. In our

case, filters learns to recognize (lexical) patterns over sequences of word embeddings.

We apply filters over the entire sentence (enriched with information about the lexical

distance of a word the current trigger and argument candidate). A filter c at position

i is defined as

ci = σ (Wxi:i+h−1 + b) , (4.13)

where σ is a non-linearity, W is a weight matrix (the filter), b is a bias, and xi:i+h−1
is a subset the entire input sequence x of size h beginning at position i. The filter

is applied as a sliding window of width h across x; the new position of the sliding

window is defined by the tunable hyperparameter stride.

We apply max-pooling afterwards, i.e., the final output of one CNN filter is maxi-

mum value it produced after it processed the entire dependency path. Our CNN uses

50 filters for filter widths 2, 3, and 4. The middle-right part of Figure 4.3 exemplifies a

CNN with 3 filters and filter width 2: Input to the CNN is a tokenized sentence where

each word at position i is replaced by a vector xi, which is almost identical to the def-

inition of vi above – the only difference being that xi contains only word embeddings

(white dots). In the figure, x1 for example consists of the word embedding for “Bush”,

x2 for “returned”, etc., both enriched with the distance embeddings and the back-

ground vector (red, blue, and light green dots, respectively). Filter are represented by

ellipses; they are stacked for each position to indicate that we use multiple filters. For

the same reason, they are also numbered: c1,3 for example is filter number 3 applied to

the first two inputs. Behind it is c1,2, etc. Afterward all filters are applied to the entire

sequence, we only keep the maximum values (indicated by the “max” rectangles). ĉ1,1
(the first element in vector ĉ1) for example is given by ˆc1,1 = max(c1,1), c1,2, c1,3). ĉ1

has the same dimensionality as the number of filters – since we use CNNs with three

different filter widths, we have three vectors ĉ1, ĉ2, ĉ3 as the final output of the CNN
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component. The last two are connected with dashed arrows because their filters and

applications are not visualized in the figure.

4.3.5 Final Classification

Finally, the concatenation of the LSTM and CNN components outputs serve as input

to a softmax layer which produces a probability distribution over all argument types

(upper part in Figure 4.3). We pick the class with the highest probability as our final

result.

However, choosing between all classes is unnecessary because not all combinations

of event type, entity type and argument type are possible. For example, the argument

type Vehicle can only be assigned to TRANSPORT events, and only mentions with entity

type veh can be possible fillers. We modify softmax to assign zero probability to classes

which are disallowed:

yi =
mie

xi∑
jmjexj

(4.14)

The above equation gives the probability for a particular argument type, yi, where

x ∈ R29 is the input vector to softmax, and m is a binary vector indicating allowed

types. m depends on the event type, because the possible roles also depend on them.

ATTACK has a different m than Be-born, for example. Note that yi > 0 only if the

respective argument type is allowed.

We need the masked version because with standard softmax9 we cannot fully control

which argument types get zero (or near-zero) probability. The problem with standard

softmax stems from the fact that e0 = 1, meaning that we cannot zero out forbidden

types; xi = 0 would get a higher probability than xi < 0, but we want the opposite:

Values xi = 0 should always have lowest probability. One possibility to circumvent

this without modifying softmax is to set forbidden values to a large negative number,

preferably to negative infinity. However, this is only possible if the framework allows

computations with infinity; specifically, one would need the framework to compute

e−∞ = 0.

The top part of Figure 4.3 visualizes the softmax component. The input vector is

first reduced to 29 dimensions (28 for each argument type, and one for ∅), multiplied

with the restriction mask, and forwarded to our modified softmax.

9Standard softmax is defined as yi = exi∑
j exj , using the same symbols as above.

84



4.3 biLSTM/CNN: Problem Formulation and System Architecture

When we are in training, we can update parameter weights given the softmax dis-

tribution and a loss function.

4.3.6 Loss

We tried different loss functions and found cross entropy to work best. Formally, we

minimize

L = −
N∑
n

k∑
i=0

yn,i(x) log(ŷn,i(x)), (4.15)

where N is the sample size (number of training instances), k is the number of

classes, and y and ŷ are the true and the predicted probability of a specific class.

We have a learning problem with multiple, mutually exclusive classes. In such a case,

the cross entropy loss can be simplified, because yn,i = 1 if class i is the correct class

of sample n, and 0 otherwise. With this observation, we can rewrite Equation 4.15 to

L = −
N∑
n

log(yn), (4.16)

where yn is the predicted probability of the true class of sample n. This is 0 if true

label probabilities for the entire training set are 1. Maximizing this loss corresponds

to maximizing the true label probability for each training sample. Note that Equation

4.16 is also known as the negative log likelihood loss.

4.3.7 Training

We train over shuffled minibatches. During training, we keep word embeddings fixed,

but dependency embeddings receive backpropagation updates. LSTMs are trained via

backpropagation through time (Mozer, 1995). We use NADAM as the optimizer, an

extension of ADAM (Kingma and Ba, 2014) with Nesterov momentum (Dozat, 2016).

We optimize hyper parameters for biLSTM/CNN using Random Search (Bergstra

and Bengio, 2012) on the development set. Specifically, we can set the batch size,

the learning rate, the bias vector and the LSTM hidden state dimensionalities, and the

number of CNN filters. We found that the learning rate has a much lower effect on per-

formance than the batch size and the weight for non-null training samples (explained
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below). We always use a learning rate of 0.002. We use a batch size of 450, 20 CNN

filters, 150 LSTM hidden state, and 130 background vector dimensions.

In order to deal with class imbalance, we set the weight of non-null training samples

to 2; this value is used to scale the loss accordingly. Note that these weights have a

direct impact on the gradients which are computed during backpropagation. In Section

5.6.2 we present a new undersampling method which has the same effect as increasing

the weights of some classes without changing the gradients.

We used Keras (Chollet et al., 2015) version 2.0.2 with the TensorFlow backend as

the learning framework. Training the network on an NVIDIA P40 GPU takes about 20

seconds per epoch.

4.3.8 Parameter Averaging

Inspired by the Averaged Perceptron (Freund and Shapire, 1999; Collins, 2002) we do

not use the learned parameters θ directly for prediction. Instead, in each epoch we

keep a moving average of the parameters:

θTµ =

αθT + (1− α)θT−1µ , if T > 1

θT , otherwise.

θTµ is the current averaged weight vector, θT is the current (non-averaged) weight

vector after training epoch T , and θT−1µ is the version of θµ from the previous epoch

(after averaging weights for epoch T − 1).

Please note that we do not use θµ for training, we use it only for prediction. We

produce one averaged weight vector per epoch; for the final test set evaluation, we

use those averaged weights which produced the highest development set F1.

Using θµ instead of the non-averaged weights θ stabilizes training. More precisely,

it reduces variance/overfitting by not allowing weights to oscillate unbounded and

fit spurious characteristics of the training set. In this respect, it is similar to popular

regularization techniques like L1 or L2; however, instead of pushing the weights to-

wards zero, parameter averaging pushes them towards the average of all the versions

encountered during training.

Figure 4.5 visualizes the effects of parameter averaging. Depicted are several train-

ing rounds with and without parameter averaging, represented by the green and blue

areas, respectively. The areas are defined by min/max F1 values against training
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Figure 4.5: Development set F1 against training epochs when training with (green) and with-
out (blue) parameter averaging. Areas are defined by min/max F1 values of several
training runs.

epochs. The green area (parameter averaging) remains quite narrow across train-

ing epochs while the blue area diverges heavily, starting around epoch 18, indicating

that there is a high variance. Furthermore, the green area indicates that training with

parameter averaging maintains a better performance on the development set across

multiple models and more training epochs, while training without parameter averag-

ing produces worse results with a much higher variance more quickly. Both areas show

the onset of overfitting; the blue area indicates that overfitting starts earlier without

averaging (around epoch 20) than with averaging (around epoch 28). We can con-

clude that training with parameter averaging leads to better model generalization.

Parameter averaging is largely ignored in the machine learning literature. We leave

for to future research to investigate the realtions between parameter averaging, L2

regularization and dropout.

We have now defined biLSTM/CNN in terms of its architecture and training meth-

ods. The next section presents evaluation results.

4.4 Experiments and Results

Please refer to Section 2.2.6 for a description of the train-dev-test split we use here

and to Section 2.4 for criteria when trigger and argument decisions are correct. We

also adopt the proposal we make in Section 2.5.2 here: We always train and evaluate
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4 Syntax Encoding for Event Argument Classification

five times, and report evaluation numbers averaged over these five runs. Furthermore,

we report sample standard deviations.

As we already discussed in Section 4.3.1, we are interested in a feasibility study in

this chapter – is it possible to enhance argument classification performance by learn-

ing to represent syntax structures? In order to evaluate this properly, we have to

isolate argument classification from other related tasks. The task has two dependen-

cies: entity mentions and event triggers. We must ensure that the systems we want to

compare use the same entity mentions and event triggers, by ensuring that both are

set to gold values. A drawback of this setting is that we have evaluation numbers only

for biLSTM/CNN and our baseline, meaning that there is no direct comparability with

previous work other than Li et al. (2013).10

Our baseline and biLSTM/CNN were both trained on the same training set using

enhanced++ dependencies (Schuster and Manning, 2016), and hyperparameters were

optimized on the same development set. We follow standard evaluation procedures:

An event argument is correct if its span and role match a reference argument (Ji and

Grishman, 2008).

Training neural networks is usually a non-deterministic process. As we discussed in

Section 2.5, it does not suffice to train one model and report one test set evaluation.

In order to increase the reliability of our evaluations, training was performed five

times, and test set evaluation was carried out for each of the five models. All numbers

we mention in the following are averages of the five test set runs we performed. We

additionally report sample standard deviations of all F1 scores to give a more complete

performance overview.

4.4.1 The Numbers

We report the results of four experiments. Specifically, we evaluate

• Experiment 1: micro-averaged performance

• Experiment 2: micro-averaged performance without context CNNs

• Experiment 3: performance per argument type

• Experiment 4: micro-averaged performance per path length.

10We discussed some possible influences of trigger detection on argument performance in Section
3.2.2.3 in more detail. Here, we must eliminate any such influence.
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Baseline biLSTM/CNN
P R F1 P R F1 ∆F1±σ Support

Micro 67.7 58.7 62.9 63.1 68.2 65.5† 2.7±0.5 916
no CNN 66.2 62.5 64.2† 1.3±0.8 916
Time 69.9 70.9 70.4 70.9 80.1 75.2 4.8±1.2 134
Entity 63.7 56.7 60.0 57.7 65.2 61.2 1.2±2.9 127
Place 64.0 41.7 50.5 52.1 48.0 49.9 −0.6±1.7 115
Person 74.6 61.7 67.6 69.1 78.3 73.4 5.8±2.1 81
Artifact 78.5 71.8 75.0 70.3 77.2 73.5 −1.5±1.2 71
Destination 63.4 66.7 65.0 65.6 80.0 72.1 7.1±1.0 39
Crime 84.4 100.0 91.6 82.5 99.5 90.2 −1.3±0.6 38
Attacker 60.7 47.2 53.1 52.4 66.6 58.6 5.5±3.2 36
Defendant 70.0 63.6 66.7 67.6 75.2 71.1 4.4±1.5 33
Agent 64.7 34.4 44.9 55.9 40.6 46.8 1.9±6.8 32

Table 4.3: Test set argument classification precision, recall, and F1 for the baseline and biL-
STM/CNN, ordered by argument type frequency. Reported are argument types with
more than 30 instances. biLSTM/CNN numbers are averaged over five test set runs.
“Micro” and “no CNN” report micro-averaged numbers for Experiments 1 and 2,
respectively; the other rows report numbers for Experiment 3. “∆F1±σ” reports the
difference in F1 between biLSTM/CNN and the baseline, as well as the respective
sample standard deviation. “Support” reports the number of instances. † means sta-
tistically significant for all test runs at the p < 0.05 level. We measured significance
only for micro-averaged numbers (Lines 1 and 2).

Experiment 1 is our main experiment – here, we evaluate how well biLSTM/CNN

can predict event arguments compared to the baseline. We report micro-averaged

evaluation measures, excluding ∅ (the ‘null’ class). Extensions of this are Experiments

3 and 4, where we report the same micro-averaged measures, but grouped per argu-

ment type and per dependency path length. We exclude lengths > 5 because of data

sparsity. Experiment 4 compares biLSTM/CNN and the baseline not only against each

other, but also performances for short vs. long paths. Finally, Experiment 2 checks the

contribution of lexical context CNNs to the overall performance.

Table 4.3 reports evaluation numbers (precision, recall, F1) for the baseline and biL-

STM/CNN. Lines 1 and 2 correspond to Experiments 1 and 2, respectively, all other

lines to Experiment 3.11 Column “∆F1±σ” reports the difference in F1 between biL-

STM/CNN and the baseline – positive numbers meaning better biLSTM/CNN perfor-

mance – as well as standard deviations.

11We omitted all argument types with less than 30 instances from Experiment 3. Appendix A.3 reports
evaluation results for all argument types.
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4 Syntax Encoding for Event Argument Classification

The structure of Table 4.3 is the following: Line 1 corresponds to Experiment 1, Line

2 to Experiment 2, and the following lines to Experiment 3. Experiment 4 is depicted

in Figure 4.6 for better clarity.

As we can see in Line 1, biLSTM/CNN has a lower precision and a considerably

higher recall than the baseline, resulting in an increase of 2.7 points in micro-averaged

F1 (with a standard deviation of 0.5 F1 points). This is statistically significant at the

p < 0.05 level.12 Note that biLSTM/CNN does not use any manually engineered fea-

tures, whereas the baseline uses two dozen feature templates, resulting in 150,000

argument features. In contrast to the baseline, biLSTM/CNN also performs disjoint

inference and cannot avoid certain error types (e.g., assigning the same role to two

different entity mentions). The clear increase in argument classification performance

is therefore encouraging.

When we compare performances without context CNNs (Line 2), we note that the

system has a statistically significant improvement of 1.3 F1 points over the baseline.

However, compared to the full system, recall drops by 5.7 points, while increasing

precision by 3.1 points, resulting in a decrease of 1.4 F1 points. The main advantage

of the CNN is that it makes the lexical context outside of the shortest dependency path

available to the system, which reflects itself in the increased recall. However, a loss

of 1.3 F1 points on average is important – we can conclude that modeling the lexical

context is important for the overall performance, even though lexicalized dependency

paths contribute most to it.

When we look at individual argument types, we note that biLSTM/CNN improves

performance for all but three types. Destination has the highest performance im-

provement (7.1 F1 points), Artifact the highest loss (-1.5 F1 points). Time as the

most frequent type in the test data has a high improvement of 4.8 F1 points. Standard

deviations are low for most F1 scores. However, they increase considerably for the

lower half of the table where support falls under 40 samples – this reflects the uncer-

tainty in the evaluation for infrequent argument types. Note that Place biLSTM/CNN

F1 is almost identical to baseline F1; we can see from the standard deviation that biL-

STM/CNN performance may well be above baseline performance if we would increase

the evaluated number of models.

Figure 4.6 reports micro-averaged F1 for the baseline and biLSTM/CNN per depen-

dency path length (Experiment 4). Figure 4.6a is a visualization of Table 4.6b. In total,

12We measured significance using approximate randomization (Noreen, 1989). Each of the 5 models
we trained performed significantly better than the baseline.
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(a) Test set F1 plotted against dependency path length. The red curve depicts base-
line F1, the blue curve depicts biLSTM/CNN F1 averaged over five evaluations.
The pale blue area reports min/max F1 scores (best and worst scores for each
path length across multiple models) for each path length.

Baseline biLSTM/CNN
Length F1 F1 ∆F1±σ Support

1 80.2 83.2 3.0±0.7 432
2 53.9 58.4 4.5±1.1 248
3 27.8 34.5 6.7±4.1 123
4 31.5 28.5 −3.0±1.8 59
5 29.3 14.5 −14.8±6.2 26

(b) Test set F1 by dependency path length for the baseline and
biLSTM/CNN. “∆F1±σ” reports the difference in F1 between
biLSTM/CNN and the baseline, as well as the respective
standard deviation. “Support” reports the respective num-
ber of instances.

Figure 4.6: Test set F1 by dependency path length for the baseline and the averaged numbers
of five biLSTM/CNN models (Experiment 4).
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4 Syntax Encoding for Event Argument Classification

888 arguments (out of 916) were connected to their triggers by dependency paths of

length 5 or less. biLSTM/CNN performs considerably better for lengths 1-3, especially

for paths of length 2 (+4.5 F1) and 3 (+6.7 F1). Length-1 paths, which are nearly

as frequent as all other path lenghts together, have an increased performance of 3.0

F1 points. For length 4 and 5, biLSTM/CNN performance is lower than the baseline.

However, there are few samples in these categories (59 and 26, respectively). The

standard deviation for length-5 paths for example is very high (6.2).

The pale blue area in Figure 4.6a visualizes F1 range: The lower bound consists of

all min F1 values for each path length, the upper bound of all max values. As we can

see, the gap between min and max F1 generally increases with path length; in other

words, it generally increases as support decreases. biLSTM/CNN’s entire performance

interval lies well above the baseline for path lengths up to 3. These cases constitute

87.7% of all arguments in the test set. For path length 4, it is quite undecided: half of

the times, performance is close to the baseline, half of the times, it is farther away. For

length 5, biLSTM/CNN performance is well below baseline performance. However,

there are only 59 and 26 length-4 and length-5 paths, respectively – these numbers

seem too low to provide a reliable performance estimate.

4.4.2 Error Analysis

Figure 4.7 shows a confusion heat map for the predictions made on the ACE 2005

test set of a randomly selected model from the five models we used to produce the

evaluation numbers above. The figure reports the number of classifications known

to be in class i but predicted to be in class j. For example, there are 82 instances

with gold and predicted label Entity, and 39 instances with gold label Entity but

predicted label Null. The value (Null, Null) (in the figure’s center) is truncated to the

numerical value 100, every other point is unmodified.

There are two noticeable structures in Figure 4.7: The diagonal, meaning that in

many cases the predictions are correct, and the cross shape, meaning that from all the

errors made, the vast majority are confusions with the Null class, either in terms of

false positives (wrongly assigned argument type) or false negatives (wrongly assigned

null type). These cases constitute 93.3% of all errors (545 out of 584 cases). False

positives and false negatives are comparably frequent: 48.5% out of all errors are false

negatives, 44.8% are false positives. Form the remaining errors, Entity and Place are

confused the most (6 times in total). In fact, Entity was only confused with Place.

92



4.4 Experiments and Results

A
D

JU
D

IC
A

TO
R

A
G

E
N

T
A

R
TI

FA
C

T
A

TT
A

C
K

E
R

B
E

N
E

FI
C

IA
R

Y
B

U
Y

E
R

C
R

IM
E

D
E

FE
N

D
A

N
T

D
E

S
TI

N
A

TI
O

N
E

N
TI

TY
G

IV
E

R
IN

S
TR

U
M

E
N

T
N

U
LL

O
R

G
O

R
IG

IN
P

E
R

S
O

N
P

LA
C

E
P

LA
IN

TI
FF

P
O

S
IT

IO
N

P
R

O
S

E
C

U
TO

R
R

E
C

IP
IE

N
T

S
E

LL
E

R
S

E
N

TE
N

C
E

TA
R

G
E

T
TI

M
E

V
E

H
IC

LE
V

IC
TI

M

VICTIM

VEHICLE

TIME

TARGET

SENTENCE

SELLER

RECIPIENT

PROSECUTOR

POSITION

PLAINTIFF

PLACE

PERSON

ORIGIN

ORG

NULL

INSTRUMENT

GIVER

ENTITY

DESTINATION

DEFENDANT

CRIME

BUYER

BENEFICIARY

ATTACKER

ARTIFACT

AGENT

ADJUDICATOR

0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 18

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 94 0 0

0 0 0 1 0 0 0 0 0 0 0 0 5 0 0 0 1 0 0 0 0 0 0 9 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0

0 0 3 0 0 2 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 6 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 3 0 0 0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 60 0 0 0 53 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 20 0 0 60 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 3 0 6 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 6 16 0 0 0 0 0 0 0 0 0 0 0 0 0

8 7 14 15 0 8 8 7 9 44 3 1 100 8 4 27 40 2 3 0 2 0 3 2 36 2 5

0 0 0 0 0 0 0 0 0 0 0 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 7 0 1 0 0 0 1 0 0 0 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 82 0 0 39 0 0 0 6 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 31 0 0 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 22 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 10 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 21 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 54 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 13 1 0 0 0 0 0 0 0 0 0 13 0 2 0 1 0 0 0 0 0 0 0 0 0 2

7 0 0 0 0 0 0 2 0 1 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

20

40

60

80

100

Figure 4.7: Confusion heat map (darker colors mean higher values) for biLSTM/CNN as mea-
sured on the ACE 2005 test set. A row-column value (i, j) represents the number
of observations known to be in group i but were predicted to be in group j. The
value at position (Null, Null) was truncated to 100 in order to make the relative
differences between the other argument types clearer. All other values remained
unchanged.
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4 Syntax Encoding for Event Argument Classification

4.5 Conclusion

Event argument classification performance fluctuates quite heavily between different

types – for the baseline, it is much harder to predict TARGET than VICTIM. We identified

dependency path length as a main factor of this fluctuation. Based on this finding, and

on the hypothesis that it is beneficial to be able to decompose long dependency paths

in order to deal with paths never seen during training, we built a neural network

which learns to represent shortest lexicalized dependency paths connecting triggers

and potential arguments. We could show that such a system outperforms the baseline

in terms of micro-averaged precision, recall,and F1, in terms of individual argument

types, and in terms of dependency paths up to length 3.

We eliminated the effects of trigger prediction on event argument classification by

using gold triggers. In such a setting, we could prove that representing syntax is

beneficial for the task. The next step is to research if syntax representations can help

event extraction in general.
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Extraction

In Chapter 4, we show that distributed representations of syntax structures are useful

for event argument classification. More specifically, we show that lexicalized shortest

dependency paths help to better classify event arguments. However, in Chapter 4

we evaluate under laboratory conditions – when triggers are given. We therefore

leave two major questions unanswered: (1) Will distributed syntax representations

also benefit argument classification when triggers are predicted and noisy? (2) Do

syntax representations also benefit trigger predictions?

The best way to answer both questions is to build a full event extractor which uses

distributed syntax representations as a major information source. Most event extrac-

tors use syntax information in the form of categorical features or shallow local de-

pendency relations. As we discuss in Chapter 4, categorical features have the disad-

vantage that they need to be encountered during training, otherwise a system cannot

learn weights for them. Local dependency relations have the disadvantage that they

may not bear enough information, especially for event argument classification.

The system and the methods we propose here address the two problems described

above. Similar to Chapter 4, we strive for syntax representations which can assign

meaning with respect to the event extraction task to arbitrary syntax structures and

which are not limited to structures encountered during training. In contrast to Chapter

4 however we want to have representations suitable for the whole event extraction

task, and these representations are necessarily more complex because, e.g., triggers

may have more connections than one and thus require more than single, chain-like

shortest dependency paths. We could encode multiple shortest dependency paths, one

for each path connecting the trigger to one of the entity mentions in the sentence. We

decided to unify such a representation and to encode the dependency graph of the

sentence instead.
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In this chapter, we explore different syntax encoders for event extraction. In partic-

ular, we analyze two methods in detail: Graph Convolutional Networks (Kipf and

Welling, 2017; Marcheggiani and Titov, 2017) and tree-shaped LSTMs (Tai et al.,

2015; Miwa and Bansal, 2016). A Graph Convolutional Network (GCN) encodes a

graph node in terms its neighbor nodes. GCNs produce their encoding fast, but they

only capture the immediate neighborhood of a node – neighbors of neighbors can only

be encoded if two GCN layers are stacked. A tree-shaped LSTM (treeLSTM) on the

other hand encodes the entire graph recursively, but need more computation time for

the encoding, and typically more training data to perform well.

Our contributions in this chapter are the following.

1. We develop a modular event extractor which can be equipped with different syn-

tax encoders. In its most basic form (without syntax encoders) this system is

similar to the current state-of-the-art. We can plug in syntax encoders to the sys-

tem and directly compare their performances with each other and the baseline,

using the exact same preprocessing and infrastructure. This eliminates one of

the most important sources of incomparability – different preprocessing.

2. We complete the work in Chapter 4 and investigate the use of distributed syntax

representations for event extraction in general: Given the same preprocessing

and the same underlying neural architecture, we compare the performance of

different syntax encoders, namely Graph Convolutional Networks (Section 5.5.3)

and tree-shaped Long Short-Term Neural Networks (Section 5.5.4).

3. We propose repeated negative undersampling, a method to increase trigger clas-

sification recall, and as a consequence also increase argument classification per-

formance. We show that this undersampling strategy increases the performance

of all methods across all data splits.

4. We show that training event extractors on the ACE 2005 data suffers from high

variance. Therefore, we use Bootsrap aggregating, or bagging (Breiman, 1996)

for event extraction. Bagging leverages the high variance of our training data

by randomly sampling different versions of it, and training a classifier on each

sample. Classifiers form an ensemble which is then used to predict triggers and

arguments. The ensemble shows a smaller variance across different training runs

and reliably increases performance.
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Bush returned to the US from his summit in Ireland
per gpe loc

nsubj nmod:to

nmod:from nmod:in
nmod:poss

root

Origin

Artifact Destination

TRANSPORT

Figure 5.1: Input (red) and output (blue) for EVENTOR. The sentence, the corresponding en-
hanced++ dependency parse, and all entity mentions are input. Output is the
entire event structure, i.e., all trigger and argument assignments. Note that a
particular entity mention can bear multiple argument labels if it is argument to
multiple events.

5. We evaluate not only on the widely used data split, but also on two other random

splits which follow the distribution of the entire ACE 2005 data set more closely.

We train and evaluate multiple models for each new split and gain a more reliable

evaluation than the usual evaluation standard reported in the literature.

This chapter is structured as follows. Section 5.1 formulates the problem. Sections

5.2, 5.3, and 5.4 describe the general architecture of the system, how the context, and

how categorical features are encoded, respectively. Section 5.5 formalizes the main

methodological part of this chpater: the syntax encoders. Section 5.6 describes details

of the training procedure, including repeated negative undersampling and bagging. Fi-

nally, Sections 5.7 and 5.8 describe the experiments and results in detail, and give the

conclusion, respectively.

5.1 Problem Formulation

Before we present the actual system, we want to define inputs and outputs. Figure 5.1

visualizes them. All inputs are in red: the sentence (“Bush returned to the US from

his summit in Ireland”), its enhanced++ dependency parse (Schuster and Manning,

2016), and all entity mentions ([Bush]PER, [US]GPE, and [Ireland]LOC). Given all this in-

formation, we want to predict the full event structure, including all triggers and the

respective arguments.

Our main contribution is the focus on the syntactic structure. The syntax encoders

we present in the following can place the entire dependency graph in a high-dimensional
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vector space such that similar graphs are close in the space. Furthermore, we can ex-

change the syntax encoders or leave them out within the same system, using the same

infrastructure and the same preprocessing. This gives us the possibility to directly and

reliably compare the syntax encoding methods we want to investigate, and show their

use for event extraction. We will now describe our system (EVENTOR).

5.2 System Architecture

EVENTOR is composed of two encoding layers and two classifiers, one for triggers, one

for arguments. The first encoding layer produces a sentence encoding. The second layer

produces a syntax encoding. The syntax encoding, along with categorical features and

context word vectors, is used as input for the trigger and argument classifiers. If the

trigger classifier predicts that a word is a trigger, all entity mentions in the sentence

are subject to argument classification with respect to this trigger.

Figure 5.2a visualizes the system architecture. Processing flow is depicted from

bottom to top. Word vectors (blue) and entity type embeddings (green) are input to

the sentence encoder, a bi-directional LSTM (Section 4.3.3.2), represented by circles

and left-ro-right arrows. Entity embeddings are randomly initialized and learned dur-

ing training. The sentence encoding is input to the syntax encoder, represented by

diamonds and bi-directional edges between dependents and governors. Dotted self-

connections are needed for Graph Convolutional Networks, but omitted otherwise.

Once we produce the syntax encoding, we are ready to predict triggers and argu-

ments. Figure 5.2b illustrates the process. The lower part (‘trigger classification’) has

as input the context word vectors (Section 5.3, blue), a feature hash (Section 5.4,

lime), and the syntax encoding (Section 5.5, red). The concatenated vectors are then

input to a feed-forward neural network with one hidden layer. Finally, a probabil-

ity distribution over event types (including ∅) is computed. If an event is predicted,

the upper part of the figure is triggered (‘argument classification’). Here, we iterate

through every entity mention in the sentence and compute its argument type (includ-

ing ∅). Input to the argument classifier is the same type of vector as above (concate-

nation of context words vectors, feature hash, and syntax encoding). For multi-word

entity mentions we let the last word represent the entirety. Please note that we again

follow the standard setting in event extraction and make use of gold entity mentions.
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Bush returned to the US . . . Ireland

entity type embeddings

word vectors

sentence encoding

syntax encoding

final vectors

(a) EVENTOR’s encoding layers. Green dots are entity type embeddings, blue dots are word
embeddings. Circles represent LSTM cells, diamonds syntax encoder cells. For LSTMs,
each word is connected to the previous and next word. For syntax encoding, each word
is connected to its dependents and governors.

“returning”

0.2 0.7 0.1

“Bush”

0.3 0.2 0.1 0.4 0.1 0.5 0.2 0.2

“Ireland”

0.3 0.5 0.1 0.1

“US”

argument classification

trigger classification

(b) EVENTOR final classification layer. Red dots represent the output of the syntax encoder. Lime dots represent
categorical features. Blue dots represent context word vectors. The final output of each classification step is a
probability distribution over trigger or argument types, respectively.

Figure 5.2: EVENTOR system architecture. The lower part visualizes the sentence and syntax
encoders, the upper part the trigger and argument classification. Argument classi-
fication is only executed if the trigger classificator predicted an event type.
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We will now formalize the system architecture from least to most complex, start-

ing with context and categorical feature vectors, before formalizing the sentence and

syntax encoders.

5.3 Context Vectors

The least complex information type we use for trigger and argument classification

is context word vectors. Following Chen et al. (2015) and Nguyen et al. (2016),

we use word vectors corresponding to the words left and right of word i (the word

of interest), as well as the word vector of word i itself as input for the trigger and

argument classifiers. Formally, we produce a context vector

c = vi−n ⊕ vi−n+1 ⊕ . . .⊕ vi ⊕ vi+1 ⊕ . . . vi+n, (5.1)

where vx is the word vector of word x, n is the context window size, and ⊕ is the

concatenation operator. Note that c is not input to the sentence or the syntax encoder

described below, it only contributes to the final trigger and argument classifiers.

5.4 Categorical Features

Li et al. (2013) developed a predictive and diverse feature set for event extraction.

Nguyen et al. (2016) and Zhang et al. (2017) show that these features also benefit

deep learning systems. We follow them by incorporating argument classification fea-

tures into our system. The ‘argument’ part of Table A.1 reports all features which are

used here. Note that this feature set is identical to the static features used by the base

system in Chapter 3.

The feature set size is in the order of 100,000 features. To keep classification

tractable, we employ feature hashing (Weinberger et al., 2009). The idea is simple

– instead of using the entire feature vector with 100,000 dimensions, we hash each

feature string (i.e., produce a number for the string) and map it to a much smaller

numerical range than the dimensionality of the initial vector.

Suppose we have a categorical feature vector F ∈ Rm, where m ≈ 100, 000. Neural

networks usually use such a categorical feature vector in the form of a binary encod-

ing, B ∈ Bm, where B(ξ(f)) = 1 if feature f applies. ξ is a function ξ : F → N, f 7→ x

which transforms a feature f into an index x. When B is used in a neural network, it is
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usually multiplied with many hundreds of weights, resulting in a great computational

overhead. The feature hashing trick replaces ξ with a hashing function ξ′ : F → [0, n],

with n� m. In this way, the feature vectors are much smaller and computation equiv-

alently faster. The drawback of this method is that sometimes distinct and probably

unrelated features are mapped to the same index (feature collision). Weinberger et al.

(2009) prove for many tasks that collisions have no great impact on performance.

We use MurmurHash3 (Wikipedia contributors, 2018) with a liner transformation ξ(x)

mod n as ξ′.

5.5 Encoders – From Word Vectors to Syntax

Representations

In the following sections, we define and explain our encoders. We employ two types:

The sentence encoder (Section (5.5.1)) produces a representation of the sentence and

forwards it to the syntax encoder (Section 5.5.2), which adds a representation of the

dependency structure. The sentence encoder operates on words and entity mentions,

the syntax encoder operates on dependency relations. Please note that whenever we

write that a vector or matrix is randomly initialized, we refer to a normal random

initialization Glorot and Bengio (2010). We will now describe both in detail, with a

focus on syntax encoders.

5.5.1 Sentence Encoder – Forming Word Representations

Input to the sentence encoder is a vector sequence. Each vector is the concatenation

of a word and an entity type embedding. Formally, for a sentence of length n,

I = (x0, x1, . . . , xn), (5.2)

where I is the input sequence and

xi = vi ⊕ ei. (5.3)

vi is a word embedding, ei is an entity type embedding for the word at position

i. Word embeddings are pre-trained and not updated, entity type embeddings are

randomly initialized and updated during training. ⊕ is the concatenation operator.
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5 Syntax Encoding for Event Extraction

Each word in the sentence is assigned an entity type label using the BILOU scheme

(Ratinov and Roth, 2009): The first word of a multi-word entity mention receives the

label ‘B’ (begin), the last ‘L’, and the others ‘I’ (inside). Single-word mentions receive

the label ‘U’ (unity). If a word does not belong to any entity mention, it receives the

label ’O’ (outside). These labels are paired with the respective entity type: ‘B-PER’,

‘U-FAC’, etc. If multiple entities span one token, all applicable labels are sorted and

joined to form a single label, e.g., ‘B-NUMERIC-I-SENTENCE’.

The sentence encoder produces the representation of a word in terms of its word

vector, entity type label, and the word sequence before and after it. Input to the

sentence encoder is I, as defined above. The actual encoder is a bi-directional LSTM

(Section 4.3.3.3). The sentence encoder produces a sentence encoding H or for input

I, where

H = (h1, h2, . . . , hn) = φ(I). (5.4)

φ is a bi-directional LSTM. Each hi is the concatenation of the forward and backward

output of the bi-directional LSTM, hi =
−→
hi ⊕

←−
hi . Note that an LSTM hidden state hi

belongs to the word at position i.

5.5.2 Syntax Encoder – Forming Syntax Representations

The sentence encodingH is input to the syntax encoder. The task of the syntax encoder

is to link syntactically related words which may otherwise we far apart; furthermore,

it also provides the dependency relation (nsubj, dobj, etc.) between the words. In

Chapter 4, we show that syntax representations benefit argument classification. Here,

we follow the same argumentation – syntax representations provide a condensed view

on word relations, they bring the words which are most important to event extraction

and which may be expressed far apart in a sentence closer together. Consider again the

input and output visualization in Figure 5.1. The lower part shows the enhanced++

dependency graph, the upper part the event structure. It is immediately apparent that

one is mirrored in the other. For example, the subject of the trigger word (“returned”)

is also the Artifact of the event, and its ‘to’-modifier is the Destination.

In Chapter 4 however, we investigated the use of syntax representations for argu-

ment classification. Here, want to investigate its use for event extraction as a whole.

Our intention is twofold: Can the finding from Chapter 4 also hold with predicted and

noisy triggers, and can syntax representations help to improve trigger classification?
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Our system from Chapter 4 (biLSTM/CNN) uses bi-directional LSTMs to encode

lexicalized dependency paths connecting triggers and arguments. There, we encode

a one-to-one relation between a trigger and an argument. Here, we want to model

a one-to-many relation between one trigger and all argument candidates in the sen-

tence. The representations we build are therefore more complex than in Chapter 4.

On an abstract level, we go from representing linear chains to representing non-linear

graphs. On a more concrete level, we go from representing lexicalized dependency

paths to lexicalized dependency graphs. We call the representation of each node in

the dependency graph a syntax encoding, and the component producing the represen-

tation a syntax encoder.

More formally, the syntax encoder produces a representation S = (s1, s2, . . . , sn) =

θ(H,D) for the sentence representationH and a (directed, cyclic, labeled) dependency

graph D = (V,E) with V as the words in the sentence and E as dependency relations

between these words. Words which do not participate in any enhanced++ depen-

dency (e.g., prepositions) are omitted from all computations in the syntax encoder;

they are, however, captured by the sentence encoder.

We decided to use two different syntax encoders which differ in scope: On the one

hand, we use Graph Convolutional Networks (Kipf and Welling, 2017; Marcheggiani

and Titov, 2017) which produce a syntax encoding based on the input and on the

immediate neighbors of the current node. On the other hand, we use treeLSTMs (Tai

et al., 2015; Miwa and Bansal, 2016) which produce an encoding based on the entire

minimum spanning tree of the dependency graph. In the following, we will qualify the

dependency graph D and its attributes before we present our syntax encoders.

5.5.2.1 D is directed

D is directed because dependencies distinguish between governor and dependent.

This poses an important design problem for computation – should the direction be

considered or discarded? We want to exemplify some of the implications related to

directionality on the dependency graph of our example sentence, depicted in more

readable form below:

Bush returned to the US from his summit in Ireland
nsubj nmod:to

nmod:from nmod:in
nmod:poss

root
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5 Syntax Encoding for Event Extraction

If θ, the syntax encoder, respects directionality directly in the form of computational

direction, it misses syntax information when it encodes words in dependent relations.

In other words, it cannot look back: When θ encodes “returned” for example it sees

“Bush” as the subject, but when in encodes “Bush”, it misses that the word is the

subject of “returned”. To make the encoding of “Bush” also see “returned”, we can

only transform D to an undirected graph. We can, however, regain the directionality

information by introducing an extended, direction-sensitive set of dependency labels.

For the nsubj relation between “Bush” and “returned”, we add two new labels,← nsubj

and→ nsubj, which point in the direction of the governor. The syntax representation

for “Bush” encodes the relation Bush
nsubj−−−→returned; the representation for “returned”

on the other hand includes (among others) the relation returned
nsubj←−−−Bush.

5.5.2.2 D is cyclic

Because we use enhanced++ dependencies (Schuster and Manning, 2016),D is cyclic.

Cycles are introduced by relative clauses. Enhanced dependencies add the dependency

‘ref’ to a word and its relative pronoun, and the governor of the relative clause is at-

tached to the predicate of the clause (Enhanced Dependencies Website, 2017):

The boy who lived

acl:relcl

nsubj

vs. The boy who lived

acl:relcl

nsubj

ref

Local syntax encoders deal with cycles naturally because they produce an encoding

before they move on to encode neighbors of the current node. A Graph Convolutional

Network for example captures the connections boy acl:relcl−−−−→lived and boy
nsubj←−−−lived when

it produces the representation of “boy”. Recursive methods like treeLSTMs however

cannot handle cycles because they follow an entire graph before they produce an en-

coding. This means that they fall into an infinite loop if the graph is cyclic.

We resolve cycles by computing a minimum spanning tree with regard to root node

distance. The root node in our example is “lived”. If a recursive method follows

the enhanced dependency graph, it reaches “boy” via the nsubj relation first – the

minimum spanning tree does not contain the reverse edge connecting “boy” to “lived”

via the acl:relcl relation, because it only keeps the edge it encounters first.
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Please note that the minimum spanning tree is input to all syntax encoders. This

means that we transform the dependency graph to a dependency tree before be pro-

duce any syntax representations. We decided to always use the minimum spanning

tree instead of the graph to ensure all methods operate on the same structure.

5.5.2.3 D is labeled

When encoding dependency graphs, we do not only have to consider the graph struc-

ture, but also the edge labels (dependencies). There are at least three intuitive meth-

ods to incorporate syntax labels into neural networks: binary dependency vectors,

embeddings or label-dependent weight tensors. In the following, we will use d as the

number of dependency labels.

A binary dependency vector has d elements, one for each direction-sensitive depen-

dency label (
nsubj←−−−,

nsubj−−−→,
dobj←−− etc.). Each dimension either contains a 1 or 0, meaning

that the corresponding dependency label is present or not, respectively. On the one

hand, such a vector is compact, on the other it only provides the information that a

dependency label is present. The representations we describe below associate more

information with each label which can be leveraged by the trigger and argument clas-

sifiers. In all our experiments, binary dependency vectors gave no measurable perfor-

mance increase. We suspect that they do not contain enough information for event

extraction on the ACE data.1

Dependency embeddings are similar to word embeddings. Each dependency label

corresponds to some embedding vector; the totality of these vectors forms a m × d

matrix where m is the representation dimensionality and d the size of the direction-

sensitive dependency label vocabulary. This matrix is randomly initialized and receives

backpropagation updates during training, meaning that the system learns dependency

embeddings in a way useful for the task at hand. In contrast to dependency vectors,

dependency embeddings can assign a ‘meaning’ to labels and not only indicate their

presence. In contrast to label-dependent weight tensors (see below), they need consid-

erably less training data to produce meaningful representations. In our experiments,

dependency embeddings proved better than the other two representation forms. Both,

our GCNs and treeLSTMs will make use of such embeddings.

Label-dependent weight tensors refer to the possibility that weight matrices are con-

ditioned on dependency labels. The treeLSTM for example could have a child weight

1They are however used in Nguyen et al. (2016).
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matrix for the nsubj relation, one for the dobj relation, etc. Conditioning weights

on dependency labels gives the finest level of dependency encoding – it increases the

number of weights drastically, however, because all relevant weight matrices need to

be copied d times. Such tensors can be prohibitively large, at least for GPU training.

Furthermore, they need a much higher amount of training data to produce reliable

results compared to the other two methods described above.

5.5.3 Syntax Encoder: θGCN

The first syntax encoder we explore are Graph Convolutional Networks, or GCNs. We

will denote this encoder frequently by θGCN. Graph convolution was successfully ap-

plied to a variety of tasks similar to event extraction, e.g., Semantic Role Labeling

(Marcheggiani and Titov, 2017) or document classification on citation networks (Kipf

and Welling, 2017).

The key feature of GCNs is that they encode a graph node in terms of its input

features and local neighborhood. In this respect, it strongly resembles collective clas-

sification algorithms (Section 3.2.3). In fact, Kipf and Welling (2017) use a collective

classification algorithm (ICA) as a comparative baseline for their GCNs. They find that

GCNs outperform ICA across four datasets and two tasks.

GCNs produce the syntax representation si of a node i based on its neighbors N (i)

and its input hi. Formally,

si = σ

 ∑
n∈N (i)

(Whn + b)

 , (5.5)

where σ is a non-linearity, N is a function which enumerates all neighbors of a

node, W ∈ Rl×m is a weight matrix, hn ∈ Rm is the input vector, b ∈ Rl is a bias, l is

the representation dimensionality, and m the input dimensionality. Note that i ∈ N (i);

otherwise, the input vector hi of node i would not affect its own representation.

From Equation 5.5 we can see that the representation of a node only depends on

the representations of its neighbors and its own representation (because i ∈ N (i)).

If we want to encode the information provided by neighbors of neighbors, we have

to perform a second GCN encoding pass, whose input is the output of the first pass.

Similar to Marcheggiani and Titov (2017) we find no benefit in stacking GCN layers

for event extraction. We follow their argumentation and suspect that our sentence

encoder, which is input to the GCN layer, already provides ‘global’ information to some
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extent; at least to an extent which makes additional, higher-order GCN encodings

redundant. This might change with more training data.

In order to incorporate dependency labels, we can parametrize the GCN weight ma-

trix W by labels, resulting in a label-dependent weight tensor, or we could parametrize

the bias b by labels, resulting in a dependency embeddings matrix.

Marcheggiani and Titov (2017) find in their experiments that a hybrid method

works best: Instead of parametrizing the weight matrix by dependency labels, they

parametrize it by dependency directions (left, right, self-loop).2 Additionally, they

parametrize the bias by dependency labels. In our initial experiment, this model

version did not perform better than one where only the bias is parametrized by de-

pendency labels (making it equivalent to dependency embeddings, Section 5.5.2.3).

Formally,

si = σ

 ∑
n∈N (i)

(
Wsn + bdep(i,n)

) , (5.6)

where dep(i, n) is a function specifying the dependency between nodes i and n.

W ∈ Rl×m is the weight tensor, and bdep(i,n) ∈ Rl×d is the bias. l is the representation

dimensionality, m the input dimensionality, and d the number of dependency labels.

Please note that i ∈ N (i) and s0i = hi. Finally, σ is a non-linearity. Leaky ReLU (Xu

et al., 2015a) gives the best results in our experiments.

The standard GCN as defined in Kipf and Welling (2017) gives uniform importance

to each edge. However, this is usually not desired for NLP applications, especially

when processing dependency graphs. On the one hand, dependency edges are not

equally important for every task. E.g., a nsubj edge is presumably more important

for event argument identification than a det edge. On the other hand, parsers do not

produce perfect output. By weighting edges differently, the system may be able to

compensate prediction weaknesses of the syntax parser. To introduce edge weights,

we follow Marcheggiani and Titov (2017) and use scalar gates:

gi,n = sigmoid
(
si · v̂ + b̂dep(i,n)

)
, (5.7)

2Remember that we transform the directed dependency graph to an undirected version by introducing
a ‘reversed version’ of each dependency edge with switched governor and dependent, and with a
direction marker.

107



5 Syntax Encoding for Event Extraction

hBush hreturned hUS

sBush sreturned sUS
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, b nsubj→
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nmod:to→
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Figure 5.3: 1st-order Graph Convolutional Network. Processing direction is from bottom to
top. Input to the GCN layer is H, the sentence representation. Edges are labeled
with the exact weights and biases involved in the computations. Gates are omitted
from visualization.

where v̂ ∈ Rm is a weight vector and bdep(i,n) ∈ Rd is a bias. Again, the bias is

parametrized by dependency labels. gi,n is a scalar representing the importance of the

corresponding edge.3 The final GCN state of node i is then defined by

si = σ

 ∑
n∈N (i)

gi,n
(
Wsi + bdep(i,n)

) . (5.8)

Figure 5.3 visualizes a 1st-order GCN. Process flow is depicted from bottom to top.

Input to the GCN layer isH, the sentence representation. Output is SGCN, the first-order

syntax representation of the dependency graph, consisting of the syntax representation

sBush for “Bush”, etc. Edges are labeled with the exact weights and biases involved in

the computation. We omit all gates from the figure for brevity.

As we can see, sBush is influenced by hBush via a self-loop (we add the respective label

to our dependency set) and by hreturned through the nsubj← relation and the respective

weights, especially the respective bias weights corresponding to this relation.

3In their GitHub repository (https://github.com/diegma/neural-dep-srl/blob/master/nnet/
models/GraphConvolutionalLayer.py), Marcheggiani and Titov (2017) compute a softmax prob-
ability distribution over all edges instead of using gates as defined in their paper. It is worth to
evaluate gating against softmax distributions in future work.
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5.5.4 Syntax Encoder: θtreeLSTM

The second syntax encoder we explore is an extension of the tree-shaped Long Short-
Term Memory Network, or treeLSTM. Similar to a GCN, it models graph nodes in terms

of their input vectors and the tree structure. While a GCN models the local neighbor-

hood, a treeLSTM models the entire tree. The root node of an encoded tree contains

information about the entire tree, and leaf nodes contain information about their path

to the root node. We will refer to the treeLSTM syntax encoder as θtreeLSTM.

By stacking enough GCN layers to capture the depth of the entire tree, we can

achieve a similar effect. However, up to five stacked GCN layers are needed to fully

represent most dependency graphs in the ACE data.4 It is more natural to treat GCNs

as local syntax encoders, with a few layers, and compare them to treeLSTMs, which

are inherently designed to encode long-range dependencies.

The treeLSTM we use is an extension of the child-sum tree LSTM (Tai et al., 2015). In

contrast to methods which only encode n-ary trees, it can encode trees with a varying

number of children.5 It was specifically designed to encode syntactic trees. However,

we need to extend it in two directions. First, we need to account for dependency labels.

In its standard formulation, the child-sum treeLSTM only encodes tree structure, but

discards edge labels. Second, we need to define the node representation in terms of

children and parents. Tai et al. (2015) only look at tasks which require a bottom-up

syntax encoding (e.g., sentiment classification in the Stanford Sentiment Treebank,

[Socher et al. 2013]), but this is clearly insufficient for event extraction, since many

argument candidates are leaves and have no children.

We solve the first problem by incorporating dependency embeddings into the for-

malism (Section 5.5.2.3). The second problem requires a bi-directional tree encoding.

Similar to bi-directional chain-like LSTM, where each node contains information about

the entire sequence, a bi-directionally encoded treeLSTM node contains information

about all its parents and children.

Before we give the formal definition of our treeLSTM, we want to introduce it in a

simpler, ungated form for better apprehension. Consider the following tree.

4As described in Section 4.4.1, 888 out of 916 (97%) dependency paths connecting triggers and argu-
ments are of length 5 or less in the ACE test set.

5N-ary tree encoding, when applicable, has an advantage over general-tree encoding: Each child
position can have its own weights. For example, in binary tree encoding, one can have a left-
child and a right-child weight matrix, effectively distinguishing and learning from both. However,
dependency graphs cannot be transduced to n-ary trees.
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ihi

↑ sparent

↓ scchild1

. . . ↓ scchildn

si = 1
2

(↑ si + ↓ si)

Here, we consider the bi-directional treeLSTM syntax encoding si of the node i,

which is defined as the average of an ‘up’ encoding ↑ si and a ‘down’ encoding

↓ si state. Up and down refer to the processing (or composition) direction of treeL-

STMs: The former incorporates the parent state sparent and the latter child states

(schild1 , . . . , schildn). A state in a standard bi-directional LSTM (Section 4.3.3.3) is de-

fined by previous and following states. Similarly, a state in a bi-directional treeLSTM

is defined by the states of its parent and children. Besides these, i is also defined by its

input, hi (the sentence representation).

To further illustrate this, consider Figure 5.4. The upper part (5.4a) visualizes the

processing flow of a treeLSTM, the lower part (5.4b) illustrate processing flow when

computing two syntax-encoded states.

In Figure 5.4a, encoding starts with the only child of the root node (“returned”)

and its input vector (hreturned). The up-treeLSTM processes the parent state of the

root node (sroot), which is a learnable parameter for the up-treeLSTM. The down-

treeLSTM encodes child states, that is, sBush, sus, and ssummit. To produce them, the

down-treeLSTM descends to the children of “Bush”, “US”, and “summit”. The children

of the former two nodes are leaf nodes, and their state (sleaf) is a learnable parameter.

To produce the state for the last node (“summit”), the down-treeLSTM must descend

once more to “Ireland”, which is again a leaf node. After the down-treeLSTM descends

to all leafs, it produces representations for them and uses these representations to

build the representations of their parents, etc. The down-representation of “returned”

contains information about the entire tree.

Figure 5.4b exemplifies the computation of two states: On the left, we want to

produce a syntax encoding for “returned” – we have the input vector hreturned, which

is produced by the sentence encoder, and the dependency tree. The final encoding

state is the average of the respective up- and down-states, produced by the up- and

down-treeLSTM. The up-version follows parents until it reaches the root, the down-

version follows children until it reaches the leaves. The information flow is depicted

by arrows – red represents parent information, blue child information. The encoding
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(a) Visualization of treeLSTM processing flow. The
dependency tree is depicted in black. Blue edges
represent down (↓), red edges up (↑) processing
flow. sroot and sleaf are learnable parameters;
they ensure that every node has a parent and at
least one child.

returnedhreturned

↑ sroot

↓ sBush ↓ sUS ↓ ssummit

sreturned = 1
2

(↑ sreturned + ↓ sreturned)

↓ sIrelandsleaf sleaf

sleaf

nsubj nmod:to nmod:from

nmod:inleaf leaf

leaf

root

↑ sreturned

↑ ssummit

Ireland sIreland = 1
2

(↑ sIreland + ↓ sIreland)hIreland

↑ sroot

sleaf

root

nmod:from

nmod:to

leaf

(b) Visualization of producing sreturned and sIreland.

Figure 5.4: Visualization of treeLSTM processing flow (upper part) and information flow when
producing two syntax-encoded states (lower part).
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state sreturned contains the information that its only parent is the root node, and about

its subject and nominal modifiers. This information (along with the lexical context, the

word vector, and the entity embedding encoded in hreturned) help the system to predict

that “returned” is a TRANSPORT trigger.

sIreland (illustrated on the right side of Figure 5.4b) is produced in same way as

sreturned, using information from parent and child nodes. However, the state encodes

less information because “Ireland” is a leaf in the dependency tree. The encoding state

contains information about the dependency path to the root, the input vector, hIreland,

and that its only child is the leaf node.

We will now formalize treeLSTMs. We will proceed in the same way we introduced

LSTMs in Chapter 4: We first give the definition of a syntax-encoded state ∗si produced

by a treeRNN (basically a treeLSTM without gates) and define the respective state

produced by treeLSTMs afterwards.

∗ si = σ

∗Whi + ∗U
∑

n∈∗N (i)

(∗sn + di,n) + ∗b

 . (5.9)

In Equation 5.9, σ is a non-linearity, ∗W , ∗U , and ∗b are weight matrices and a

bias, respectively, ∗N (i) reports the ‘neighbors’ of node i, and di,n gives the embedding

vector of the dependency between nodes i and n. Since we use two RNNs to produce

the final state si (up and down), ∗ is either replaced by ↑ or ↓. Note that ↑ N returns

only parents, and ↓ N only children. We combine a dependency embedding and the

parent or child state by addition. Conceptually, this is similar to the dependency-

parametrized bias of θGCN. We also tried other composition operators (concatenation,

multiplication, abstraction by a one linear layer), but addition gave the best results in

all initial experiments. The final syntax-encoded state si is the average of the up and

down states:

si =
1

2
(↑ si+ ↓ si) . (5.10)

We now give the full definition of our treeLSTM. The equations below will strongly

resemble Equation 5.9 above. Note that we cannot use the treeRNN model instead

of the treeLSTM because of the same reasons we cannot use RNNs instead of LSTMs:

vanishing and exploding gradients (Bengio et al., 1993, Section 4.3.3.2).

Formally,

112



5.6 Training

ỹi =
∑

n∈∗N (i)

∗sn + di,n, (5.11)

pi = σ(∗Wpxi + ∗Uiỹi+ ∗bp), (5.12)

oi = σ(∗Woxi + ∗Uoỹi+ ∗bo), (5.13)

ui = σ(∗Wuxi + ∗Uuỹi+ ∗bu), (5.14)

fi,k = σ(∗Wfxi + ∗Uf (∗sk + di,k) + ∗bf ), (5.15)

ci = pi � ui +
∑
n∈Ni

fi,n � cn, (5.16)

∗ si = oi � tanh(ci), (5.17)

where in Eq. 4.7, k ∈ ∗N (i). � is the Hadamard product. ∗ is again replaced by ↑ or

↓, depending on whether it is an up- or a down-treeLSTM. ↑ N (i) returns the parents

of i, ↓ N (i) its children.

As with standard LSTMs, the final state ∗si of i depends on the interaction of the

output gate o (Eq. 4.8) with the memory state c, which is itself dependent on the

interaction of the other four gates, namely input p (Eq. 4.5), update u (Eq. 4.6)

and forget f (Eq. 4.7). ỹi accumulates hidden states of parents or children and the

respective dependency embeddings. The final system computes two hidden states per

node, one up and one down state.

5.6 Training

EVENTOR is sensitive to hyperparameters. It has a narrow range of learning rates

for example. We quickly run into exploding gradients even with the treeLSTM if the

learning rate is too high. We use a learning rate of 0.0008 (determined by grid search),

no weight decay and no regularization.6 However, regularization is used in the form of

online learning and parameter averaging (Section 4.3.8). Again, parameter averaging

proves useful to introduce more stability into the training process. Online learning

(updating weights after each sample) is necessary because the trees we process with

the treeLSTM rarely coincide in shape and therefore are not batchable. We could use

6Regularization in the form of L2 or dropout did not improve accuracy (Section 5.6.1).
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batching with θGCN and would probably get better performance, but we decided to

train both syntax encoders online to increase comparability.

Online training (batch size of 1) is an uncommon training paradigm for deep learn-

ing methods. Batch size has a direct effect on training. One would assume that higher

batch size increases performance, because parameter updates depend on higher pro-

portions of the training data and therefore lead to a better approximation of the ‘ideal

classifier’ for this data. However, the best performance is sometimes achieved with

smaller batch sizes (Keskar et al., 2017; Goyal et al., 2017). Smaller batches introduce

more randomness, effectively increasing model generalization. If the batch size is too

small however, the positive effect is lost. Smith and Le (2018) show that the scale of

introduced randomness is proportional to the batch size, and that there is an optimal

batch size, which is much lower than the training set size, but greater than 1. Since

we use online learning, our batch size is 1 – this value is probably too low to achieve

the best possible performance. We leave it to future research to investigate the effect

of online vs. batched learning on our system. In Section 5.6.3 we explain that estab-

lished methods to decrease overfitting (L2 regularization and dropout) do not help

our system. We suspect that the reason is online learning. The small batch size masks

the effects of L2 regularization and dropout.

In the following, we first define our loss function before we report how we deal

with class imbalance for trigger types. Finally, we introduce and formalize bagging

(Breiman, 1996) – an efficient method to increase performance of complex models

when training data is scarce.

5.6.1 Loss

Our loss is the joint negative log-likelihood of all trigger and argument decisions.

Specifically, we minimize

L = −
n∑
i=1

log pi −
n∑
i=1

1 (pi 6= ∅ ∨ p∗i 6= ∅)
k∑
j=1

log pai,j , (5.18)

for each training instance (event structure within one sentence), where n is the

sentence length, k is the entity mention count, pi is the probability of the correct

trigger label at position i, p∗i is the maximum softmax probability at position i, pai,j is

the correct argument label of entity mention j with respect to trigger label i, and 1 is

the indicator function. The ‘null’ label is assignable to both, triggers and arguments.
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Our loss function is similar to the loss used by Nguyen et al. (2016), with one

(major) difference: They only consider argument losses if the trigger label at position

i is not ∅. This effectively ignores all argument decisions if they rely on false positive

triggers and this in turn hinders a system to cope with false positive trigger decisions

when predicting arguments. We found a clear preference for our loss in our initial

experiments.

The loss described in Equation 5.18 makes an assumption about the learning prob-

lem which is violated for event extraction: statistical independence. As Liao and Gr-

ishman (2010) show, neither event nor argument type occurrences are independent.

The presence of ATTACK for example makes the presence of DIE more likely. Assuming

independence keeps the loss function simple however; this is a simplification often

made in NLP, and usually performs reasonably well.

Modeling interdependencies is beneficial for event extraction. In fact, this is an im-

portant building block of all systems which perform global inference (Li et al., 2013;

Yang and Mitchell, 2016; and our work in Chapter 3). One way to model interdepen-

dencies, at least within sentences, is to replace the (locally normalized) joint negative

log-likelihood by a (globally normalized) conditional random field loss (Andor et al.,

2016). We leave this interesting aspect to future research.

5.6.2 Repeated Negative Undersampling

Here, we propose a new random undersampling strategy to overcome class imbalance

problems. We apply this method to trigger detection training only.

One problem in training neural networks for event extraction is the high class imbal-

ance for triggers. From the 252.212 words in the ACE train set, only 1.3% are triggers

(3322), meaning that 98.7% of the words are negative examples7. If we break this

down to individual event types, the class imbalance becomes even more severe.

There are different possibilities to address this imbalance: Li et al. (2013) ignore

sentences which do not contain any events.8 This is an instance of class undersam-

pling, where the undersampling is not due to chance, but due to some heuristic. This

method introduces a high bias towards event types, at least for our system. In our

initial experiments, the strategy lowered performance considerably due to an increase

in false positive triggers.
7The actual number is a bit lower because not each word is allowed as a trigger candidate, e.g„ words

within entity mentions cannot be triggers.
8This is not reported in their paper, but part of the code we received from them.
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Another possibility to overcome class imbalance is to scale the loss: giving non-null

classes a higher weight in the final loss drives the model to put more emphasis on these

classes. Unfortunately, this resulted in a similar increase in false positives as the first

method. Note that loss scaling is equivalent to cost-sensitive learning (Elkan, 2001).

There are also more elaborate methods to lower class imbalance. SMOTE (Chawla

et al., 2002) for example adds new minority class examples by randomly interpolating

between pairs of closest neighbors. Liu et al. (2009) present and discuss a few over-

and undersampling methods.

We experiment with an easier and presumably more robust method which we call

repeated negative undersampling. Similar to standard undersampling, we present only

a small subset of the majority class (in our case the negative, or non-event class) during

training. In contrast to standard undersampling and to the method used in Li et al.

(2013), we do not produce one undersampled training set. Instead, we repeatedly

undersample negative instances throughout training.

Initially, we set an undersampling probability pn. For each non-trigger word in the

training set, we draw a number n ∈ R, 0 < n < 1 from a uniform distribution. If

n < pn, we skip the word from training. In the next epoch however, when a new n is

drawn for the same word, it might not be lower than the threshold, meaning that this

time we would use the negative sample for training.

This method is easy to implement, considerably reduces training time (in contrast

to oversampling methods like SMOTE), directly decreases negative effects of class

imbalance while still exposing the learner to most negative samples in the training

set. This has a positive effect on performance, because it introduces a bias towards

non-null cases, but exposes the model to a higher and more diverse amount of null

cases compared to exclusive procedures like standard undersampling. We can show

in Section 5.7 that repeated negative undersampling has a positive effect on trigger

recall, and this in turn positively affects event argument performance. We can measure

positive effects across all data splits and syntax encoders.

Initially, we also experimented with repeated negative undersampling for event ar-

gument prediction. However, none of our experiments improved performance. The

class imbalance problem is less severe for event arguments, because there are more

entity mentions which are arguments compared to words which are event triggers. If

we undersample the negative arguments class and bias the model towards predict-

ing non-null roles, we introduce many false positive arguments, which in turn greatly

weakens argument classification precision.
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5.6.3 Bagging

One of the biggest problems with the ACE 2005 data is sparsity – from the 599 an-

notated documents, 30 are used for development and 40 for testing. There are only

529 documents reserved for training. Data sparsity results in two problems. Limited

training data leads to increased model variance and overfitting, resulting in models

which do not generalize well because they model spurious characteristics of the train-

ing data. Limited test data leads also to higher confidence intervals of evaluation

measures, limiting their meaning. Here, we describe how we tackle the first problem.

The second problem is addressed by the two new data splits we additionally use for

evaluation (Sections 5.7.1 and 5.7).

A common approach to combat variance is to use regularization (James et al., 2013)

like L2 or dropout (Hinton et al., 2012; Srivastava et al., 2014): Some sort of con-

straint is applied to the weights during learning, preventing them from growing or

shrinking unbounded. L2 regularization for example adds the sum of the squared

weights to the objective function, with the effect that small weights (close to zero) are

preferred over (positively or negatively) large weights. This typically increases gener-

alization. In our initial experiments, regularization in the form of L2 and dropout did

not increase performance. Either the regularization strength was too low to show ef-

fects, or it quickly became too high and deteriorated performance. We suspect that our

system needs parameters in a narrow value range not centered around 0 to perform

well. Higher L2 regularization forces values to be small and fall out of that range. Due

to online learning, we cannot use common methods like batch normalization (Ioffe

and Szegedy, 2015) to combat this behavior.

Another method to combat variance is to use ensembles. All ensemble methods have

in common that they train and use multiple kinds of classifiers. Boostrap aggregating,

or bagging (Breiman, 1996) in particular was designed to minimize variance in the

context of limited training data using only one type of classifier trained on multiple

versions of the training data, sampled randomly.

High variance goes along with ‘instability’. In Breiman (1996), a stable training

procedure is one which converges to similar solutions when the training set is altered

slightly. Consequently, an unstable procedure reaches to very different solutions for

small changes. Training neural networks is an indeterministic process, and the mod-

els usually consist of a large number of parameters. We expect variance to be high if

we train such models on a limited amount of training data. To test if our training is
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stable, we train five models on the training set. We then measure cosine similarity of

the resulting pre-softmax trigger and argument layers of our system.9 To be more spe-

cific, we concatenate the upmost weight vectors for trigger and argument classification

(without syntax encoders) for the five models we train and compute their mean cosine

similarity. Each vector has 37800 elements, each a trainable parameter. We measure

an average similarity of 0.43 between the five vectors. To see if this number itself is

stable, we train another 25 models and measure an average similarity of 0.42. Note

that the parameter averaging we use (Section 4.3.8) smooths noise out and lowers

variance. Training yet another 25 models without parameter averaging results in an

average cosine similarity of 0.30. A stable training would produce a similarity close to

1. From this, we can conclude that our training is rather unstable, and small variances

to the training set result in different weight vectors high up in the neural architecture.

With bagging, we can leverage this fact and train dissimilar models which vote for the

final class, effectively improving over single models.

Bagging itself is simple: Combine and randomize the training and development sets,

split it into a new training and development sets, and select the best model trained on

the new split. This is repeated k times, resulting in k classifiers. Note that one docu-

ment may be (by chance) part of up to k train sets, or excluded from all. The ensemble

of k models uses majority voting to come to a final conclusion when predicting. This

ensemble is the final form of our system. We will now formalize bagging.

9Cosine similarity is defined as

sim(~u,~v) =
~u · ~v

‖~u‖2 ‖~v‖2
,

where ~u and ~v are two vectors (in our case, the concatenated weights of the two highest layers
in our system) and ‖•‖2 is the 2-norm of the vector. Cosine similarity ranges from -1 to 1, with 0
meaning ‘no similarity’.
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Algorithm 5: BAGGING (training set T , folds k, split ratio r, training epochs e)

1 ensemble← ∅ ;

2 for 1 . . . k do

3 T̂ ← RANDOMIZE(T );

/* The split ratio determines the size of τdev compared to τtrain */

4 τtrain, τdev = SPLIT(T̂ , r);
/* train returns the best model on τdev */

5 model = TRAIN(τtrain, τdev, e) ;

6 ensemble ∪model

7 return ensemble

Input to Algorithm 5 is a training set T , the number of train set subsamples k (which

is also the number of classifiers in the ensemble), the ratio r between (subsampled)

training and development documents, and the number of training epochs e. Note that

T contains all documents which are not part of the widely used test set; bagging en-

ables us to have 30 more documents for training compared to the standard procedure.

5.7 Experiments and Results

Please refer to Section 2.4 for criteria when trigger and argument decisions are correct.

We again adopt the proposal we make in Section 2.5.2 here: We always train and

evaluate five times, and report evaluation numbers averaged over these five runs.

Furthermore, we report sample standard deviations.

In this section, we want to analyze different aspects of EVENTOR’s performance.

First, we show the effects of parameter averaging and obtain an optimal value for

repeated negative undersampling on the development set of the widely used data

split. Then, we come to the main experiment of this chapter, the comparison of the

different syntax encoders (θ∅, θGCN, θtreeLSTM). Throughout this section, we follow the

same evaluation standards we used in Chapter 4, introduced and discussed in Section

2.5. However, to make the numbers obtained in our main experiment more reliable,

we additionally construct two new data splits and evaluate the syntax encoders on all

three, the newly constructed as well as the well established splits. The problem with

the latter is that its test set ignores most genres in ACE and only consists of newswire
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articles. Section 5.7.1 describes how we construct the new splits and reports genre

distribution statistics. Then, we evaluate the best syntax encoders against the current

state-of-the-art. Finally, we analyze the effects of bagging.

In particular, we devise the following experiments.

• Experiment 1: Test effects of parameter averaging and repeated negative un-

dersampling on the development set of Split 1 for the base system (θ∅)

• Experiment 2: Evaluate trigger and argument classification performances of all

encoders (θ∅, θGCN, θtreeLSTM) on the test sets of all three splits

• Experiment 3: Compare θGCN and θtreeLSTM against the state-of-the-art on the test

set of Split 1

• Experiment 4: Compare the effects of bagging for the base system (θ∅) on the

test set of split 1

Experiment 1 has the purpose to investigate the effects of parameter averaging and

repeated negative undersampling on the base system, i.e., EVENTOR without a syn-

tax encoder (θ∅). We find that both factors have a great impact on performance.

The effects of parameter averaging are not surprising because no other regulariza-

tion method worked in our online training setting. We were surprised however to find

that our undersampling approach has a profound impact on results. As we will dis-

cuss, the effect is linked to an increase in trigger recall, which in turn positively affects

argument performance – something we already observed in Chapter 3.

Experiment 2 is the main experiment in this chapter. It answers the question if

syntax encoders can help event extraction as a whole. We already showed that such

encodings can benefit event argument classification (Chapter 4), at least under ‘labora-

tory conditions’ with given event triggers. We find a positive effect, which is, however,

smaller than in chapter 4 in terms of absolute numbers. Because our undersampling

method has such a profound impact on results, we do not only report numbers for the

optimal undersampling probability we obtained in Experiment 1, but also for the other

tested probabilities.

Experiment 3 is a follow-up to Experiment 2 and tests the average and best evalu-

ation runs of θGCN and θtreeLSTM against five other event extractors, including the base

system from Chapter 3. We find that both encoders perform on average on a par with

the best event extractors published to date. One problem with this comparison is that
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Split 1 Split 2 Split 3
total train dev test train dev test train dev test

documents 599 529 30 40 399 100 100 399 100 100
broadcast news 0.38 0.41 0.27 0.00 0.37 0.47 0.30 0.39 0.33 0.39
weblogs 0.20 0.22 0.17 0.00 0.20 0.20 0.20 0.20 0.22 0.18
newswire 0.18 0.11 0.27 1.00 0.17 0.17 0.20 0.16 0.22 0.20
broadcast conversation 0.10 0.10 0.17 0.00 0.11 0.05 0.12 0.09 0.10 0.13
usenet newsgroups 0.08 0.09 0.12 0.00 0.08 0.05 0.12 0.09 0.07 0.04
telephone speech 0.06 0.07 0.0 0.00 0.07 0.06 0.06 0.07 0.06 0.06

Table 5.1: Split statistics for the widely used data split (‘Split 1’) and two additional splits
which follow the distribution of ACE genres more closely. The first line reports the
numbers of document for each train/dev/test set, the other lines report ratios of
documents belonging to the respective genre (ratios for one column add up to 1).

we do not have information about the exact nature of the experiments carried out in

the other publications. They do not report standard deviations and do not mention

multiple training and testing runs. This leaves us with two assumptions: They either

reported the first and only evaluation run, or they reported the best out of a few runs.

Therefore, we also report the best evaluation run of both encoders.

Experiment 4 finally is a side experiment which shows the effects of bagging on the

standard test set. This is hard to evaluate on the development set because bagging

re-splits data n times, resulting in n different development sets. However, the test set

remains unchanged.

Before we discuss results, we want to specify why and how the additional data splits

we use for Experiment 2 are constructed.

5.7.1 Resampling New Splits

The standard test set introduced by Ji and Grishman (2008) and discussed in Sec-

tion 2.2.6 ignores five of the six genres in ACE. It consists only of newswire articles

and neglects weblogs, broadcast news, broadcast conversations, Usenet newsgroups,

and telephone conversation transcripts. Furthermore, it is quite small: 40 documents

(6.7% of ACE) consisting of 440 triggers and 916 arguments. We believe that this

test set alone is not enough to represent the ACE data. We decided to produce two

additional data splits, such that each new train/development/test set closely follows

the overall genre distribution. The procedure is formalized in Algorithm 6.
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Algorithm 6: SPLIT DATA (ACE 2005 data A, dev set size ndev, test set size stest)

1 mle←MAXIMUM LIKELIHOOD GENRE ESTIMATES(A);

/* initially, every document is in the train set */

2 train← A;

3 dev← ∅;
4 test← ∅;
5 while |dev| < ndev do

/* draw random document */

6 a← RANDOM(A);

/* get the genre probability (maximum likelihood estimate) */

7 pgenre ← mle(GENRE(a));

/* {r ∈ R|0 < x < 1} */

8 if random number r < p then

/* add a with a certain probability */

9 dev=dev∪a;

10 train=train∧a;

11 while |test| < ntest do

12 . . .

13 return train, dev, test

Table 5.1 reports statistics about the original, widely-used split (‘Split 1’), as well as

the two new splits (‘Split 2’ and ‘Split 3’). There are two main points encoded in Table

5.1: First, the new splits use more than twice as many documents for development and

testing than the original split. Second, the new train/dev/test sets follow the overall

genre distribution, whereas the original sets do not – especially the original test set

only contains newswire articles. In the following, make extensive use of the new splits

and devise a thorough evaluation of syntax encoding methods for event extraction.

Randomly re-sampling data splits is akin to bootstrapping for validation (Efron,

1992) with a non-uniform, genre-based maximum likelihood sampling probability. We

want our new splits to closely follow the overall ACE genre distribution in order to

evaluate method and model behavior more accurately compared to the standard split,

where the test set ignores most document genres. This approach is similar to stratified
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Trigger Classification Argument Classification
pn 0.0 0.5 0.9 0.0 0.5 0.9
prm avg - + - + - + - + - + - +
1 62.6 68.5 59.2 69.5 66.2 70.6 46.1 53.7 44.1 53.3 46.3 56.3
2 63.3 68.7 56.0 68.3 64.9 70.4 46.9 54.2 43.9 53.0 47.3 56.5
3 63.4 69.2 59.9 68.2 64.4 69.8 46.7 52.8 45.7 52.4 47.0 55.6
4 63.6 69.8 61.0 69.1 63.0 70.8 45.2 54.6 44.4 53.7 44.7 55.9
5 64.1 69.1 60.2 69.0 67.0 70.6 47.0 55.2 42.1 53.9 50.0 55.3
x̄ 63.4 69.1 59.3 68.8 65.1 70.4 46.4 54.1 44.0 53.3 47.1 55.9
σ 0.5 0.5 1.9 0.6 1.6 0.4 0.7 0.9 1.3 0.6 1.9 0.5

Table 5.2: Experiment 1. Development set F1 for trigger and argument classification on the
standard split (Split 1) for θ∅. “pn” reports the repeated negative undersampling
probability. “prm avg” specifies whether parameter averaging is used. “x̄” reports
the average of the five training/testing runs and “σ” the respective sample standard
deviation.

cross validation.10 We decided to produce two new random splits because this signifi-

cantly reduced the amount of training and testing time compared to, e.g., 10-fold cross

validation. Furthermore, we are not interested in aggregated evaluation results over

multiple folds but in the relative performance differences of different syntax encoders

for event extraction.

5.7.2 Experiment 1

Experiment 1 tests the effects of parameter averaging (Section 4.3.8) and repeated

negative undersampling (Section 5.6.2) on the development set of Split 1. We evaluate

EVENTOR with no syntax encoder (θ∅) and no bagging.

Table 5.2 reports trigger and argument classification F1 scores on the development

set of the standard Split 1 for three repeated negative undersampling probabilities

(0.0, 0.5, 0.9, indicated in Line 1) without and with parameter averaging (indicated by

“-” and “+” in Line 2). We report the F1 scores of all five training and testing rounds,

as well as an average score (“x̄”) and the sample standard deviation (“σ”).

The first thing we notice is that the difference without and with parameter averag-

ing is very large. For trigger classification, the improvement with parameter averaging

is about 6, for argument classification it is around 8 F1 points. Please note that we

optimized the learning rate for the system with parameter averaging, meaning that

10However, in contrast to cross validation, we sample with replacement.
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in the optimal case the absolute difference is probably smaller. However, we consis-

tently measure a significantly better performance when using parameter averaging.

All further experiments are carried out using it.

Repeated negative undersampling also has a positive effect on performance. While

we notice a performance drop for undersampling probability pn = 0.5, we notice an

increase for both, trigger and argument predictions for pn = 0.9. Therefore, we choose

pn = 0.9 as the undersampling probability for all other experiments. In Experiment 2

however, where we test the contributions of syntax encoding in general, we also report

evaluation results for other pn values to get a more complete view of the contributions

of our undersampling method. We also discuss its impact on event extraction in more

detail there. We can note however that we get an increase in about 1.5 F1 points for

triggers and arguments on the development set when using pn = 0.9.

5.7.3 Experiment 2

Here, we evaluate trigger and argument classification performance of our syntax en-

coders, including no encoding. The purpose of this experiment is to investigate the

contribution of syntax encodings to event extraction. We evaluate their contribution

on the test sets of all three data splits. Furthermore, we use parameter averaging,

bagging, and set pn = 0.9. We also report results for the other undersampling prob-

abilities to get a more complete picture of the impact of negative undersampling on

event extraction. The setting with pn = 0.9 is our main setting and the only one we

use in Experiment 3, where we compare our syntax encoders to the state-of-the-art.

Tables 5.3 and 5.4 report trigger and argument classification performances across

the three data splits, the three syntax encoders, and three negative undersamplig prob-

abilities. In order to make the vast amount of numbers more easily understandable,

we visualize them in Figure 5.5 for trigger classification and in 5.6 for argument clas-

sification. Numbers for pn = 0.9, our actual evaluation setting, are printed in bold.

As mentioned above, we also report numbers for pn = 0.0 and pn = 0.5 to get a more

complete picture of the impact of negative undersampling.

The main question we want to answer with Experiment 2 is if and how much our

syntax encoders contribute to improving event extraction performance. Figures 5.5

and 5.6 show trigger and argument classification precision, recall, and F1 for each

syntax encoder (blue: θ∅, red: θGCN, green: θtreeLSTM) on all data splits. The points at

0.9 represent the main evaluation points because we determined that pn = 0.9 is the

124



5.7 Experiments and Results

θ∅ θGCN θtreeLSTM

pn 0.0 0.5 0.9 0.0 0.5 0.9 0.0 0.5 0.9

Split 1
P 77.5 77.0 68.7 78.1 76.1 68.5 78.5 76.9 69.2
R 63.1 65.2 68.8 63.7 64.6 69.9 61.6 64.2 69.6
F1 69.5 70.6 68.7 70.2 ‡ 69.9 69.2 † 69.0 69.9 69.4

Split 2
P 71.7 72.2 63.2 70.9 70.7 63.0 71.9 72.2 65.1
R 62.3 63.8 71.0 63.7 65.1 71.2 62.2 63.0 69.9
F1 66.6 67.8 66.9 67.1 † 67.8 66.8 66.7 67.3 67.4 ‡

Split 3
P 74.4 74.4 67.1 73.8 73.8 67.0 73.3 73.1 67.0
R 63.5 64.1 72.0 63.4 65.5 72.4 64.6 66.0 72.4
F1 68.5 68.9 69.5 68.3 69.4 † 69.6 68.7 ‡ 69.4 † 69.6

Table 5.3: Experiment 2. Trigger classification precision (P), recall (R), and F1 for our three
syntax encoders (θ∅, θGCN, θtreeLSTM) and three negative undersampling probabilities
(0.0, 0.5, 0.9). The columns where pn = 0.9 are our main evaluation numbers and
printed in bold. Each evaluation number is the average of five independent training
and testing rounds. † means better F1 score compared to the respective θ∅ score,
statistically significant with p < 0.05 (‡ : p < 0.1). For significance, we average
evaluation numbers across the five models.

θ∅ θGCN θtreeLSTM

pn 0.0 0.5 0.9 0.0 0.5 0.9 0.0 0.5 0.9

Split 1

P 59.4 61.2 58.0 58.9 59.4 57.6 58.5 59.5 57.4
R 48.0 50.3 51.5 50.8 51.0 54.2 48.8 50.9 52.8
F1 53.0 55.2 54.5 54.5† 54.9 55.8† 53.2 54.9 55.0

Split 2

P 57.9 59.3 54.4 57.7 57.4 53.8 56.7 58.3 55.5
R 48.0 47.9 54.0 49.7 50.5 55.7 49.5 48.4 54.4
F1 52.4 53.0 54.2 53.4 † 53.7 54.7‡ 52.8 52.9 55.0

Split 3

P 65.5 65.3 63.4 64.4 65.3 62.0 64.8 64.2 62.4
R 50.6 51.3 57.3 52.5 53.4 59.2 53.2 54.9 58.2
F1 57.1 57.5 60.1 57.9 ‡ 58.7 † 60.5 58.4 † 59.2 † 60.2

Table 5.4: Experiment 2. Argument classification precision (P), recall (R), and F1 for our three
syntax encoders (θ∅, θGCN, θtreeLSTM) and three negative undersampling probabilities
(0.0, 0.5, 0.9). The columns where pn = 0.9 are our main evaluation numbers and
printed in bold. Each evaluation number is the average of five independent training
and testing rounds. † means better F1 score compared to the respective θ∅ score,
statistically significant with p < 0.05 (‡ : p < 0.1). For significance, we average
evaluation numbers across the five models.
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Figure 5.5: Experiment 2. Trigger classification performance. Each point reports the average
results of five models for θ∅ (blue), θGCN (red), and θtreeLSTM (green) on the same
test set. Y axes report evaluation scores. X axes report negative undersampling
probabilities (0.0, 0.5, 0.9). The points at 0.9 represent our main evaluation num-
bers. Each row reports results on a different data split, with the first row (“Split
1”) being the widely adopted split. Error bars are sample standard deviations.
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Figure 5.6: Experiment 2. Argument classification performance. Each point reports the av-
erage results of five models for θ∅ (blue), θGCN (red), and θtreeLSTM (green) on the
same test set. Y axes report evaluation scores. X axes report negative undersam-
pling probabilities (0.0, 0.5, 0.9). The points at 0.9 represent our main evaluation
numbers. Each row reports results on a different data split, with the first row (“Split
1”) being the widely adopted split. Error bars are sample standard deviations.
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Trigger
Classification

Argument
Classification

pn 0.0 0.5 0.9 0.0 0.5 0.9

Split 1
θGCN 0.09 0.64 0.02 0.00 0.66 0.03
θtreeLSTM 0.97 0.58 0.53 0.97 0.58 0.53

Split 2
θGCN 0.04 0.11 0.09 0.04 0.12 0.09
θtreeLSTM 0.47 0.60 0.07 0.46 0.58 0.10

Split 3
θGCN 0.00 0.00 0.50 0.09 0.01 0.50
θtreeLSTM 0.06 0.00 0.95 0.00 0.00 0.96

Table 5.5: Statistical significance scores (p-values) for trigger and argument classification. We
test the null hypothesis that the differences in F1 of a syntax encoder (θGCN or
θtreeLSTM) and θ∅ are due to chance. We always compare a syntax encoder with
θ∅ on the same split and with the same pn values. We print all values with p < 0.1 in
bold, and we additionally underline all values with p < 0.05. We use approximate
randomization (Noreen, 1989).

optimal undersampling probability on the development set. We will discuss results for

the other points afterwards. The numbers for triggers and arguments are reported in

Tables 5.3 and 5.4, respectively.

We start with the analysis of trigger classification performance (Figure 5.5, Table

5.3). In terms of F1, θtreeLSTM (green) is either better (for Splits 1 and 2) or on a par

with θ∅ (Split 3). The improvements are +0.7 F1 for Split 1, +0.5 F1 for Split 2, and

+ 0.1 for Split 3. θGCN is either on a par (Splits 2 and 3) or above θ∅. We can note that

the syntax encoders have a slight positive effect on trigger classification performance,

especially θtreeLSTM.

When we look at argument classification performance (Figure 5.6, Table 5.4), we

see a similar trend: syntax encoders improve results. However, here, θGCN works better

than θtreeLSTM on Splits 1 and 3. The improvement compared to θ∅ is +0.4 F1 for

both. For split 2, θtreeLSTM has an increased performance of +0.8 and θGCN of +0.5

F1. In general, argument recall is better for syntax encoders, suggesting that syntax

representations enable the event extractor to find more arguments. This also includes

the observation that syntax encoders lead to more false positives,which is reflected in

a lower argument precision compared to θ∅.

Table 5.5 reports statistical significance (p-values, approximate randomization) for

trigger and argument classification F1 scores of θGCN and θtreeLSTM compared to θ∅. We

compare the methods/systems on the same split and pn value. The p-value is the

probability that we observe similarly or more extreme differences if the null hypothesis
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(differences in F1 score is due to chance) is true. The difference in trigger classification

F1 of θ∅ and θGCN on Split 1 is 1.5 points for example. We have a chance of about 9%

(0.09) that we would observe such a difference by random luck. We print all values

with p < 0.1 in bold, and additionally underline all values with p < 0.05.

Please note that it is not straightforward to compute statistical significance in our

case because we report evaluation scores which are averaged across five different train-

ing and testing rounds. We decided to average the evaluation scores as well before we

execute approximate randomization instead of, e.g., computing significance for each

run compared to each θ∅ run and averaging the scores afterwards, or regard an aver-

aged difference as significant if most of the individual differences are significant. Av-

eraging the scores beforehand makes it more difficult to reach statistical significance

because extreme values are averaged out. Therefore, we decided to include p < 0.1-

values if we speak of significance. Usually, only values with p < 0.05 are regarded

‘statistically significant’ in a strict sense.

Usually, trigger and argument classification F1 score differences are both either sig-

nificant or not. For pn = 0.9, θGCN produces significant results for triggers and argu-

ments on Splits 1 and 2. For pn = 0.0, θGCN has significant results for all splits. θtreeLSTM

on the other hand has only significant results on Split 3 if pn < 0.9, and on Split 2 for

trigger classification if pn = 0.9. We can conclude that θGCN tends to have better and

more significant results compared to θtreeLSTM.

The second point we want to investigate in Experiment 2 is a side-question: How

severe is the impact of negative undersampling on event extraction? To answer this,

we also report results for pn = 0.0 and pn = 0.5. For trigger classification (Figure

5.5), the results are clear: undersampling improves results considerably across splits

and methods. However, Splits 1 and 2 show the best performance at 0.5 and not at

0.9, as we determined on the development set. Such deviations between development

and test set are to be expected. Nevertheless, argument classification performance

(Figure 5.6) is always best at 0.9 across almost all splits and methods. This is counter-

intuitive: We expect argument performance to be best where trigger F1 is best. The

reason why this is not the case is trigger recall, a result we also have in Chapter

3 where we improve argument performance because we can improve trigger recall.

The argument decoder profits considerably from finding more triggers (or: increasing

trigger recall) because every missed trigger automatically leads to missing all of the

respective arguments. A few false positive triggers which come into play when trigger

recall is increased do not change this effect. As already mentioned, we already observe
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this effect in Chapter 3. Here, we want to investigate it further, since it appears again

in a very different system.

To measure the dependence of trigger recall and argument F1, we measured the

Pearson correlation between all trigger recall and their respective argument F1 scores

across all splits and pn values. We measure a correlation of 0.5, which is usually inter-

preted as a ‘moderate positive correlation’. The correlation between trigger precision

and argument F1 is −0.2, a slightly negative correlation.

Please note that correlation does not imply causation. The positive correlation of

trigger recall and argument F1, as well as the inverse relationship between trigger

precision and trigger recall on the one hand (trigger precision always drops when

recall increases), and the negative correlation between trigger precision and argument

F1 on the other, which hold across all splits and methods, lead us to our second finding:

Increasing trigger recall leads to better argument classification performance.

To come back to our undersampling method: Increasing pn leads to increasing trig-

ger recall, and by extension to increasing argument prediction performance. In gen-

eral, syntax encoders improve argument classification F1 scores more for pn values 0.0

and 0.5, although absolute numbers are best for 0.9. Another observation is that the

higher argument classification recall of θtreeLSTM and θGCN is more pronounced for lower

pn values. This is an effect of the downside of increasing trigger recall by increasing a

system’s bias towards predicting events – recall rises, but precision decreases, mean-

ing that the system predicts more false positive events along with the increased true

positive set, and these false positives lead to false positive arguments. With lower pn,

this effect is also smaller. From this, we can conclude that a method which increases

overall performance of trigger classification (precision and recall) would greatly bene-

fit from syntax representations – concluding from our three test sets, on average about

0.6 F1 points for trigger and more than 1 F1 point for argument classification.

We can conclude the main question of this experiment and of the entire chapter:

Syntax encoders have a positive effect on argument predictions, although not as clear

cut as in Chapter 4, where we used gold triggers. We expect that syntax encoder

benefits increase with higher trigger performance, especially if the increase is not only

in trigger recall, but also in trigger precision. In this evaluation, the effect of syntax

encoders at least partially masked by the high impact of negative undersampling.
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Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

θ∅ avg 71.5 71.6 71.5 68.7 68.8 68.7 60.6 53.8 57.0 58.0 51.5 54.5
θGCN avg 71.7 72.6 71.8 68.5 69.9 69.2 † 59.9 56.3 58.1 57.6 54.2 55.8 †
θtreeLSTM avg 71.7 72.1 71.9 69.2 69.6 69.4 59.9 55.2 57.4 57.4 52.8 55.0
θ∅ max 72.0 72.0 72.0 68.9 68.9 68.9 61.8 54.3 57.8 59.3 52.1 55.5
θGCN max 72.4 72.7 72.6 69.7 70.0 69.8 † 60.0 58.8 59.4 57.6 56.6 57.1 †
θtreeLSTM max 80.2 65.5 72.1 78.6 64.1 70.6 † 62.5 55.1 58.6 60.5 53.4 56.7 †
Li et al. (2013)* 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
Chen et al. (2015)? 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
Nguyen et al. (2016)? 68.5 75.7 71.9 66.0 73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4
Zhang et al. (2017)? n/a n/a n/a 75.1 64.3 69.3 n/a n/a n/a 63.3 50.1 55.9
Chen et al. (2017)?‡ 79.7 69.6 74.3 75.7 66.0 70.5 71.4 56.9 63.3 62.8 50.1 55.7

Table 5.6: Micro-averaged performance of EVENTOR against most recent systems. “Avg” refers
to result averaged over five training/testing runs. “Max” refers to the overall best
run. All EVENTOR numbers are obtained with pn = 0.9. * means that the system
uses the same feature set as EVENTOR. ? means that the evaluated models are pro-
duced by non-deterministic training, but it was not specified in the publication how
the evaluation numbers were obtained (average across multiple runs, best, random,
etc.). ‡ means that non-ACE data was additionally used for training. † means statis-
tically significant score (p < 0.05) compared to θ∅. We only tested significance for
classification F1 scores.

5.7.4 Experiment 3

Experiment 3 compares our syntax encoders against the state-of-the-art. Table 5.6

reports the results for EVENTOR against the most recent neural event extractors. We

also include evaluation results from Li et al. (2013) for reference because EVENTOR

uses the same argument feature set as they do.

All reported numbers are obtained with parameter averaging, bagging, and pn = 0.9.

“Max” refers to the best EVENTOR run using the respective encoder; “avg” lines report

results averaged over five runs. ? means that the respective publication does not

specify how results were obtained (averaging across multiple runs, best run, random

run, etc.). It is therefore not clear how the evaluation numbers marked with ? compare

to our results. All evaluations in Table 5.6 are obtained on the standard split (Split 1).

When we compare θGCN and θtreeLSTM against θ∅, we see that the syntax encoders

perform better on average as well as in the best case (max). The max and the average
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Trigger
Classification

Argument
Classification

P R F1 P R F1

no bagging 70.8±1.4 66.3±0.7 68.5±0.6 53.9±1.7 51.8±1.1 52.8±1.1
bagging 68.7±1.0 68.8±0.9 68.7±0.5 58.0±1.2 51.5±1.4 54.5±0.8

Table 5.7: Experiment 4. Test set trigger and argument classification precision (P), recall (R),
and F1 with and without bagging for θ∅. Each evaluation number is the average of
five independent training and testing rounds.

θGCN F1 differences to θ∅ are statistically significant with p < 0.05 using approximate

randomization. As previously, we only test classification F1 significance.

Average θGCN results are comparable to all other neural event extractors, with max-

imum argument prediction results well above the current state-of-the-art. Average

θtreeLSTM results show a similar trend, even though argument performance is a bit un-

der the current state-of-the-art.

However, as we discuss in Section 2.5, maximum results are not a proper represen-

tative of a neural system’s performance. Further evidence for this claim comes from

a recent publication (Liu et al., 2018) which reports average trigger classification re-

sults for Chen et al. (2015), a seminal paper for ‘neural’ event extraction, obtained via

five-fold cross validation instead of the original unspecified setting: The original paper

reports a 69.1 trigger classification F1 (see also Line 6 in Table 5.6), while Liu et al.

(2018) report 64.9 F1 score for the same system and five-fold cross validation.

5.7.5 Experiment 4

In our last experiment, we want to show the effects of bagging on θ∅ on the standard

test set (Split 1) with pn = 0.9.

Table 5.7 reports trigger and argument classification results (precision, recall, F1)

with and without bagging on the standard test set (Split 1). As we can see, bagging

improves trigger recall (+2.5) and argument precision (+4.1). Please note that these

performance improvements are on top of the improvements from parameter averag-

ing. We test the effect of bagging on the test set because the method re-splits training

and development set for each fold anew, resulting in n different development sets.

Fixing the development set would require that bagging works with less training data,

and this in turn might destroy performance differences. The test set however is always

fix and does not change because of bagging.
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5.8 Conclusion

In contrast to Chapter 4, we investigate the use of syntax representations for the entire

event extraction task, including trigger identification and classification. Additionally,

we transform the points we discuss in Section 2.5 into evaluation schemes and extend

standard evaluation procedures to two new data splits which closely follow the overall

ACE genre distribution for each train/dev/test set, reaching a reliable evaluation of

our work. We evaluate all methods we compare (θ∅, θGCN, θtreeLSTM) within one system,

especially using the same preprocessing, on multiple data splits, always averaging five

runs of five independently trained models before we report an evaluation number.

We find that increasing the negative undersampling probability to pn = 0.9 gives

the best overall performance. Increasing pn leads to increased trigger recall – and this

in turn enables the argument decoder to find more arguments, leading to an increase

in argument classification F1. Systems with higher trigger F1 are not guaranteed to

have better argument classification performance if they do not specifically increase

trigger recall. We can show that trigger recall has a positive Pearson correlation with

argument classification F1 across all splits and pn values. These findings are supported

by the evaluation in Chapter 3 where we can show that using global decoding also

leads to increased trigger recall, and this in turn leads to better argument performance.

Perpendicular to this we find that syntax encoding increases argument performance

even when there is no increased trigger recall involved (for pn = 0). θGCN usually per-

forms better than θtreeLSTM for finding arguments. Overall, using syntax representations

leads to an increased argument recall without lowering precision too much.

We can also show the need for proper evaluation – the numbers we measure consid-

erably fluctuate across models, regardless of data splits, pn values, or syntax encoders.

Only reporting best scores is clearly overstating a method’s performance.
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In this chapter, we summarize the publications and methods which are most relevant to

our work. Section 6.1 begins with related event extractors – we first group them based

on the decoding schemes we define in Section 2.4 and discuss the resulting groups

as well as the relevant publications afterwards. A special line of work if concerned

with predicting triggers only – we discuss the most interesting developments there in

Section 6.2. Section 6.3 touches interesting developments in general event extraction.

Finally, Section 6.4 discusses syntax representations in other NLP fields.

6.1 Related Event Extractors

In the following, we want to characterize and describe the most related event extrac-

tors published before early 2018. Table 6.1 gives an overview according to our decoder

classification scheme (2.4). We distinguish between local vs. global and disjoint vs.

joint decoding. Local decoding incorporates information from single sentences or even

shorter contexts; global decoding can draw information from the entire document or

even other documents. Joint decoding refers to methods which select trigger and ar-

gument assignments jointly; disjoint decoders usually predict triggers first, and based

on these decisions arguments. We will describe each point in this two-dimensional

scheme, starting with local and disjoint event extractors.

6.1.1 Local and Disjoint Event Extractors

Many event extractors use local and disjoint decoding. This also includes most ‘event

detectors’ which predict only triggers. Systems in this category are limited to single-

sentence inference, and they usually first predict triggers and then arguments. Hong

et al. (2011) slightly deviate from this classification because their system draws infor-

mation from groups of entity mentions – decoding arguments is not strictly disjoint in
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Local Global

Disjoint

Ahn (2006)
Hong et al. (2011)
Chen et al. (2015)

Nguyen et al. (2016)
Chapter 4†
Chapter 5

Joint
Grishman et al. (2005)*

Li et al. (2013)/Li et al. (2014)

Ji and Grishman (2008)*
Liao and Grishman (2010)*
Yang and Mitchell (2016)

Chapter 3

Table 6.1: Characterization matrix of event extractors. We characterize systems based on de-
coding scope (local vs. global) and type (joint vs. disjoint); see Section 2.4 for a
discussion of this scheme. Our work is printed in bold. † marks system which pre-
dict arguments only. * marks systems which do not clearly fall in their respective
categories. See their description for further details.

their case, it is more akin to argument extraction templates or entity mention distri-

bution patterns. Nguyen et al. (2016) also use information about previous argument

decisions to inform current decisions. However, they do not revise previous decisions

if a better argument role assignment could be inferred. Both systems show (weak)

characteristics of joint argument decoding.

6.1.1.1 Ahn (2006)

The local and disjoint pipeline in Ahn (2006) is similar to most systems in the local-

disjoint class of systems: They first identify and classify triggers, and then arguments

for each trigger. Ahn (2006) devise an interesting experiment: They evaluate if assign-

ing an event type directly to words (including a ‘none’ type) is better than a two-stage

approach where the ‘triggerness’ is determined before an event type is assigned. They

test both approaches using a nearest-neighbor classifier (TiMBL, Daelemans et al.,

2004) or a maxent classifier (MegaM, Daumé III, 2005). They find no clear perfor-

mance difference between the two approaches. They find, however, that the k-nearest

neighbors classifier outperforms the maxent classifier by a wide margin (about 20 F1
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points). The reason might be a bug in MegaM’s bias computation1. Maxent classifiers

are used in many event extraction publications with no reported performance issues.

Ahn (2006) sketch the (local and disjoint) system architecture which many subse-

quent publications used: One classifier classifies words according to their ACE event

type (including ∅), and a second classifier assigns each entity mention a role (again

including ∅) for each trigger in the sentence.

6.1.1.2 Hong et al. (2011)

Hong et al. (2011) are the first and only to use cross-entity information for event

extraction. More precisely, they cluster all entity types into 266 subtypes; for each

subtype, relevant documents for the web are retrieved, and the most important key-

words are extracted from these documents. Such keywords are used to represent the

centroid of each entity type cluster. Then, they apply a standard disjoint event extrac-

tion pipeline: First, triggers are predicted, then arguments, and finally the role of each

argument. The entity type clusters are used to refine the argument and role decisions

– the idea is to characterize an event by its event type and by the entity type clusters it

usually contains in the training data. The system incorporates the information that a

TRIAL event usually mentions a defendant, judge, etc. Furthermore, if the system finds

that, e.g., citizens occur with terrorists as arguments of an ATTACK event, it can more

easily infer that the former is the Target and the latter the Attacker of the event.

6.1.1.3 Chen et al. (2015)

To the best of our knowledge, Chen et al. (2015) are the first to use deep learning

methods for event extraction. Their approach is based on Convolutional Neural Net-

works (Section 4.3.4). They use CNNs to capture lexical features from the contexts of

triggers and arguments, and from word sequences between them. Instead of applying

standard pooling of CNN outputs, they employ what they call dynamic multi-pooling:

When they predict arguments, they take the max values from three regions of CNN

outputs: left from the trigger or argument (depending on which comes first in the sen-

tence), right from the trigger or argument, and in between. In contrast to EVENTOR,

they do not use any syntax features.

1http://legacydirs.umiacs.umd.edu/~hal/megam/version0_4/
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6.1.1.4 Nguyen et al. (2016)

Nguyen et al. (2016) were the first to use LSTMs (Section 4.3.3.3) for event extraction.

Architecture-wise, this system is similar to EVENTOR without a syntax encoder (i.e.,

θ∅). However, θ∅ is not identical to their system. First, we use a slightly different loss.

Second, we use negative undersampling, bagging, and parameter averaging. Another

difference is that we do not use their ‘memory matrices’. These matrices represent past

decoding decisions. For example, there is an entity mention by argument role matrix.

It contains an 1 whenever the system already decoded that mention to play that role,

otherwise it contains 0. These matrices are fed together with the feature set from Li

et al. (2013) to a final feed forward network, which combines it with information from

the sentence encoder to produce final decisions. We implemented memory matrices as

well, but we found no evidence that they help our system as well. 2

6.1.2 Local and Joint Event Extractors

Local and joint systems predict event structures of an entire sentence, without crossing

the sentence boundary however. The two systems we place in this category either per-

form joint inference by searching through a large space of (potentially multiple) event

assignments for entire sentences, or they match event assignment patterns against

sentences and predict the respective assignments if a match is found.

6.1.2.1 Grishman et al. (2005)

Grishman et al. (2005) present a local and (partially) joint event extractor. This is one

of the earliest publications for ACE 2005. The system consists of two stages. First,

it searches for matches of high precision/low recall patterns which characterize the

connection between a trigger and all arguments. Second, it tries to increase recall by

applying three logistic regression models after the pattern matching.

The patterns characterize the syntactic and semantic connections between triggers

and arguments. One pattern type is based on the constituency head sequence between

trigger and arguments, another is based on the GLARF graph (Meyers et al., 2001),

a predicate-argument structure graph. Patterns are collected from the training data.

2Nguyen et al. (2016) is one of very few event extractors with published code (https://github.com/
anoperson/jointEE-NN). Unfortunately, the code is not usable because it lacks critical information.
There is no script published which converts the ACE data into the required input format. More
severe, the actual evaluation script seems to be missing from the release.
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When they are tested against test data, partial overlaps are allowed, meaning that not

all arguments in the pattern need to match in the test sentence. If multiple patterns

match a sentence, they are ranked by how many arguments they match, and only

the best pattern is retained. Pattern matching also accounts for trigger classification

– a trigger is only found if some pattern matches the current sentence. There is no

dedicated trigger identification and classification stage in the system. Triggers and

arguments are identified jointly. However, argument decisions are refined in a disjoint

manner as described below.

Pattern matching assigns some of the entity mentions in a sentence to a potential

event. All other mentions are processed by classifiers. The argument classifier predicts

for a trigger-entity mention pair, if the mention is an argument of the respective event.

If so, the role classifier predicts the actual role the mention plays in the event. Finally,

the event classifier predicts if a trigger and a set of arguments constitute a ‘presentable

event’ or not. The event classifier is applied to all potential events.

The sequential application of high to low precision and low to high recall compo-

nents is akin to the Stanford Sieve approach (Raghunathan et al., 2010). Note that

using patterns which are collected from all training documents makes brings the de-

coding scope more to the global side. However, decoding draws no information from

other decisions it made so far. We decided against this classification to distinguish it

from system which clearly perform global inference by drawing information from at

least the entire current document.

The highest relevance and similarity to our work can be found in event patterns: Our

dependency paths in Chapter 4 and our syntax encoders in Chapter 5 are based on a

similar intuition – to grasp the syntactic relations between a trigger and its arguments.

In contrast to them, however, we do not rely on immutable syntactical representations

like patterns. Our representations are continuous and constitute decompositions of

syntactic structures to some extent. Additionally, they can handle structures never

encountered during training, while patterns can only capture information also present

in the document collection they were derived from.

6.1.2.2 Li et al. (2013) and Li et al. (2014)

Li et al. (2013) and its extension Li et al. (2014) are both discussed in Chapter 3

because they constitute the base systems for IGI (the former for the setting with gold

entity mentions, the latter for predicted mentions). EVENTOR (Chapter 5) uses the
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static features as well. We avoid to repeat ourselves and refer the interested reader to

Chapter 3 for a thorough description of Li et al. (2013) – and by extension of Li et al.

(2014).

6.1.3 Global and Disjoint Event Extractors

Global and disjoint systems draw global information for improving trigger or argument

decisions – they do not, however, predict triggers and arguments jointly. To put it in

other words: If a disjoint base system is refined with global information, the overall

system is disjoint and global; if a joint system is refined by global information, the

overall system is joint and global.

We did not place any event extractor in this category. Two systems, Ji and Grishman

(2008) and Liao and Grishman (2010) are candidates however because their base

system (Grishman et al., 2005, Section 6.1.2.1) is not clearly joint – it uses a joint

inference step, but increases argument prediction recall by an additional disjoint step.

However, we decided to classify the base system as joint, because the joint aspects are

more pronounced.

6.1.4 Global and Joint Event Extractors

Global and joint event extractors draw information from the entire document, or even

a document collection to produce an event assignment which is globally coherent, e.g,

where the same entity plays the same role in the same event.3 However, no system

performs ‘true’ global inference (searching a document-wide optimal event labeling),

presumably because of the immense search space.

Most systems in global and joint category produce an initial (disjoint) decoding

and refine it (Ji and Grishman, 2008; Liao and Grishman, 2010), or they produce

perform joint decoding while enriching the local decisions with global information

(IGI). Yang and Mitchell (2016) is an exception because their trigger assignment is

already globally optimal.

Ji and Grishman (2008) and Liao and Grishman (2010) also refine argument deci-

sions using global information (using a disjoint initial labeling however), while Yang

and Mitchell (2016) and IGI only refine trigger assignments globally, but rely on joint

inference locally.

3Note that such a system would ideally model event and entity coreference as well.
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6.1.4.1 Ji and Grishman (2008)

Ji and Grishman (2008) build their global decoding on the ‘one sense per discourse’ as-

sumption, similar to our work in Chapter 3; in contrast to all other publications we are

aware of, they extend global decoding to a collection of topically related documents.

Similar to Incremental Global Inference, they employ a base system (Grishman et al.,

2005) and refine its decisions based on a list of rules with global (document-wide and

cross-document-wide) scope. The rules follow two principles: Remove decisions with

low confidence and refine local decisions first.

Similar to Incremental Global Inference, the global decoding in Ji and Grishman

(2008) is also based on the ‘one sense per discourse’ assumption. However, this as-

sumption is only a staring point for our work in Chapter 3. We also model relations

between semantically related words.

Ji and Grishman (2008) start with an initial event extraction and refine the deci-

sions based on global information. In contrast to Incremental Global Inference, the

rules they employ propagate information based on hard decisions – for example, they

have a rule to propagate an event type to all identical strings in a document or a col-

lection; this propagation is made regardless of local features and base confidences.

For IGI, a local decision may not be overruled by global features, either if the local

features are strong indicators of an event type, or if the global feature is a rather weak

indicator. Incremental Global Inference also distinguishes between different types of

global information – global string match is assigned a higher weight during training

than a hidden unit match. Furthermore, Ji and Grishman (2008)’s base system can

only recognize event-argument patterns it learned during training whereas IGI’s base

system encodes more flexible information in its feature set and searches through a

joint (sentence-internal) trigger-argument space. Finally, Ji and Grishman (2008) use

only global information about events of the same type, whereas IGI also uses global

information of heterogeneous event types.

Ji and Grishman (2008) are the first to use the widely adopted test set (‘Split 1’ in

Chapter 5, and the test set in Chapters 3 and 4). They were also the first and (to our

knowledge) only to use inter-document inference for event extraction.

6.1.4.2 Liao and Grishman (2010)

Liao and Grishman (2010) present a global and disjoint event extractor to perform

easy-first inference. They use the same base system as Ji and Grishman (2008) (Grish-
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man et al., 2005, Section 6.1.2.1) to get an initial event assignment for a document.

Then, they use high-confidence assignments to inform other event assignments in the

document, using two maximum entropy classifiers, one to propagate global trigger

information, one to propagate global argument information. Their global trigger clas-

sifier is based on the observation that certain event types are more likely to occur

together. Their global argument classifier is based on the observation that within a

document entities play coherent roles across events. More specifically, an entity most

often plays the same role in events of the same type, and it plays related roles in

related events (Target and Victim in ATTACK and DIE, for example).

For Incremental Global Inference all initial event decisions are subject to global re-

finement, as information sources and as targets. Two event decisions with a low score

might cause a third decision with a higher score to be reverted for example. Further-

more, our feature set is richer than the features reported in Liao and Grishman (2010):

they use only (pairs of) event types and roles as features, whereas we incorporate fea-

tures which also capture semantic relations.

IGI improves the entire event extraction task by improving trigger identification and

classification. In contrast to Ji and Grishman (2008) and Liao and Grishman (2010),

we could not successfully devise global argument features (Section 3.2.2.3).

6.1.4.3 Yang and Mitchell (2016)

Yang and Mitchell (2016)’s system is one of a few which uses predicted entity men-

tions. The others are Li et al. (2014) and IGI in Experiment 2, Section 3.3.2. Yang and

Mitchell (2016) first decompose the task of jointly learning to predict events and entity

mentions into three subtasks: learning within-event structures, learning event-event

relations, and learning to extract entities. The first part corresponds to what we call

joint inference. The second part corresponds to what we call global inference.

IGI with Li et al. (2014) as its base system also performs event extraction and entity

mention prediction jointly. However, Yang and Mitchell (2016) go a step further: They

find globally optimal assignments for both, events (with triggers and arguments) and

entity mentions. They show that modeling all tasks jointly and globally improves re-

sults compared to joint and local decoding, and this in turn improves results compared

to a local and disjoint system.
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6.2 Event Detection

A special body of work within event extraction is concerned with predicting only trig-

gers – a task commonly referred to as ‘event detection’. Some of the reported trigger

classification performances are well above the performances published for full event

extractors. However, it is probably not the case that these systems, augmented with

argument classification capabilities, would lead to better event extractors. We show in

Section 5.7.3 that trigger recall is key to a good argument classification performance.

Event detectors tend to have very high trigger classification precision and lower recall,

meaning that they are probably not better suited as trigger detectors in an event de-

tection pipeline, even if they show better trigger performance. This is also the reason

why we do not compare trigger detection performances to our work.4 In the following,

we want to summarize the most interesting aspects published in this line of work in

chronological order.5

Li et al. (2015) propose to use Abstract Meaning Representation (Banarescu et al.,

2013) to improve event detection. AMR is a formalism which encodes the semantics of

a sentence in a rooted, directed, and acyclic graph. They find that using AMR features

(drawing information from AMR labels, node distances, and graph structure like par-

ent nodes) improves over a baseline feature set, which is similar to the local feature set

in Li et al. (2013). It seems straightforward to combine AMR with EVENTOR’s syntax

encoder: Instead of encoding dependency graphs, we could encode AMR graphs. This

has the benefit that we do not have to characterize the semantic graph by any feature

set – we could learn to represent structural information in a continuous space. We will

leave this interesting idea for future research.

Bronstein et al. (2015) show that is possible to produce a reliable classifier for an

event type with only a small amount of annotated triggers. The idea is very similar

to the hidden unit features we present in Section 3.2.2.1: They have a small list of

seed trigger words (4.2 per event type on average, collected from the ACE annotation

guidelines) and build a classifier with semantic similarity and relatedness features.

The classifier learns that, e.g., hyponyms of any of the seeds are likely also triggers of

4The ‘event detection’ community usually includes work from the ‘event extraction’ community in
their contrastive evaluations. To the best of our knowledge, the opposite was never the case for
publications until early 2018.

5Since we only include publications before 2018, and exclude most pre-prints like arXiv, we do not
cover a plethora of papers which are concerned solely with event detection. It seems that this task
is gaining much attention from the research community lately, especially since the deep learning
paradigm shift.
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the same event type. Even though Bronstein et al. (2015) report the highest trigger

classification performance to date, their work has been largely ignored by the event de-

tection community. Unfortunately, the method improves trigger precision in particular,

which makes it less useful for a full event extractor.

Liu et al. (2016) use Probabilistic Soft Logic (PSL) to perform global inference of

trigger assignments. PSL is similar to Markov Logic (Section 3.2.3): Soft constraints

and rules can be used to search for an optimal global trigger assignment. They use a

base classifier with the combined feature sets of Ahn (2006) and Hong et al. (2011)

(especially the fine-grained entity types) for the base system. Global inference features

include co-occurrence of triggers and LDA topics.

Finally, we want to summarize the most interesting publication which uses deep

learning methods. Liu et al. (2017) introduce neural attention (Vaswani et al., 2017,

i.a.) to event detection. More precisely, they work with the assumption that trigger

classification can be improved if the system puts more training focus on the argu-

ments of the respective events. Their system classifies triggers based on a word, its

lexical context in a fixed-sized window, all entity types in this neighborhood, plus an

attention mechanism which scores the importance of context elements. During train-

ing, they bias this scoring mechanism to assign higher scores if the words correspond

to arguments of the trigger under consideration. During testing (when there are no

arguments available), the system applies the same biased model to the surrounding

words and entities. Liu et al. (2017) show that this in fact improves trigger classifi-

cation results. Similar to Bronstein et al. (2015) this method mainly improves trigger

precision.

6.3 Interesting Developments

In this Section, we present two interesting developments which were recently pub-

lished. The first is a method to automatically extract large amounts of additional ACE-

like training data; the other is a multi-modal event extractor which includes visual on

top of textual information.

Chen et al. (2017) propose a method to automatically extract large amounts of

training data. Their starting point are Compound Value Types (CVTs) in Freebase (Bol-

lacker et al., 2008). These CVTs are mapped to ACE 2005 events, e.g., people.marriage
is mapped to MARRY. Then, they define a centrality score for CVT arguments and ex-
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tract all sentences which show all central arguments of a CVT within one sentence.

All verbs which occur in as many of the people.marriage sentences as possible are con-

sidered triggers. Finally, all sentences which contain a people.marriage trigger and

all corresponding central arguments are extracted as training data and mapped to the

corresponding ACE structure when used for training. Only the mapping has to be done

manually, all other steps involve no manual labor. Chen et al. (2017) can show that

only using automatically generated training data already leads to competitive event

extraction performance. It would be interesting to see how other event extractors

perform with this additional training data.

Zhang et al. (2017) present a multimodal event extractor. Besides the ACE 2005

data, they also incorporate representations of visual information (pictures) of potential

arguments into the feature set of Li et al. (2013). They use a pretrained VGG16

(Simonyan and Zisserman, 2015) model to get a numerical representation of images,

and incorporate the respective vectors into the system proposed by Li et al. (2013).

Zhang et al. (2017) show that visual representations greatly improve baseline event

extraction results.

6.4 Syntax Representations in Other Fields

We want to discuss publications related to deep representations of dependency paths

in different NLP tasks. Afterwards, we sketch other non-neural methods to decompose

trees and graphs into meaningful features.

Xu et al. (2015b) and later Miwa and Bansal (2016) use dependency graphs for

relation extraction. The task requires to find semantic relations between two entity

mentions. Xu et al. (2015b) use shortest dependency paths and LSTMs to learn good

path representations for the task at hand. This is similar to our shortest dependency

path computation for event argument classification in Section 4.3.3. Instead of pro-

cessing one path however, Xu et al. (2015b) split it into two parts if the path contains

a change in dependency direction, i.e., if it contains a common subsumer for the two

entity mentions. They use two LSTMs to process the two path parts, doubling the

number of parameters in comparison to our work. They further increase the num-

ber of parameters because they use different LSTMs for different information types:

words, part-of-speech tags, dependency relations and WordNet hypernyms. Our bi-

directional LSTM encodes most of this information (excluding hypernyms, but includ-
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ing entity types along the way) in one pass, meaning that the representation of a word

like ‘we’ is different if it is a subject or an object of a verb, for example.

Miwa and Bansal (2016) extend the representation from multiple LSTMs for left

and right path parts and different information channels to one tree which contains

both entity mentions which are involved in a semantic relation as end points. Similar

to our θtreeLSTM syntax encoder, their tree LSTM is an extension of the child-sum tree

LSTM (Tai et al., 2015) to a bidirectional tree LSTM with dependency labels along

the tree. In contrast to our work, they use label-dependent weight tensors, while we

use dependency label embeddings to encode syntax labels (Section 5.5.2.3). Label-

dependent weight tensors are equivalent to one weight matrix per dependency label

– such tensors are much bigger than standard LSTM weight matrices. Our depen-

dency embeddings only introduce d × e new parameters, where d is the number of

dependency labels and e the embeddings dimensionality.

Roth and Lapata (2016) use LSTM representations of shortest dependency paths for

Semantic Role Labeling (Section 2.3.3). Similar to our work in Section 4.3.3, they fix

the endpoint types of their paths: predicates always come first, potential arguments

last. However, they only use the last hidden state of the LSTM to represent the entire

path, while we always forward all hidden states for final classification, relieving the

burden for the LSTM to encode everything into one final vector.

Marcheggiani and Titov (2017) also work on Semantic Role Labeling, but they oper-

ate on the entire dependency graph. For this, they use Graph Convolutional Networks.

We discuss their work when we introduce θGCN (Section 5.5.3).

Finally, we want to mention two non-neural methods which make trees (or graphs

in general) accessible to Support Vector Machines (Hearst et al., 1998), namely Tree

Kernels (Culotta and Sorensen, 2004) and Graph Kernels (Gärtner et al., 2003). Both

work similarly: They define a similarity function between two trees/graphs essentially

by counting how many substructures (subtrees/subgraphs) of varying length they have

in common. While this operation can be implemented efficiently for trees, it is ineffi-

cient for general graphs. Such kernels can be used in combination with Support Vector

Machines to directly operate on trees/graphs without the necessity to translate them

into shallow features, similarly to treeLSTMs.
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We want to end this thesis by summarizing our most important contributions, and by

giving an outlook into interesting future research.

7.1 Conclusions

ACE casts event extraction as an information extraction task. First, we have to identify

triggers – words which most clearly indicate the presence of an event. For each trigger,

we have to identify its arguments, that is, the entities playing some role in the event.

The overall task is demanding. There is a strong inter-dependency between trigger

and argument detection – missed triggers imply missed arguments, spurious triggers

imply spurious arguments.

Furthermore, ACE triggers are scarce: Only 1.3% of words in the widely used train-

ing set are event triggers. In similar tasks like Semantic Role Labeling or Frame-

semantic Parsing, the percentage of words which bear categories of interest is much

larger. However, many triggers are strong indicators of their events, e.g, the words

‘attack’ or ‘marry’. Most systems heavily rely on lexical features for trigger identifica-

tion and classification. For example, most event detection (trigger-only) systems rely

exclusively on word embeddings and elaborate deep learning architectures to identify

and classify triggers.

In Chapter 3, we investigate if and how the global, document-wide context can im-

prove a local and joint event extractor. We find that we can greatly improve trigger

recall by incorporating global (document-wide) information about semantically re-

lated words. We refine the local (intra-sentential) trigger decisions of a system which

predicts triggers and arguments jointly by drawing information about semantically

related words which were classified as event triggers somewhere in the document.

In this thesis, we also show that improving argument identification and classification

performance is challenging. First, it does not suffice to claim that a method improves
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argument performance by showing that the respective evaluation numbers improved.

As we show in Chapter 3, and again in Chapter 5, improving trigger classification recall

has a high chance to result in better argument performance, without the necessity to

actually improve argument performance methodologically. It seems crucial for a good

overall event extraction performance to have a high trigger recall. Trigger precision

is of course also important – systems which assigns some event type to every eligible

word do not have a good argument performance because they would introduce too

many spurious arguments. Nevertheless, we find trigger recall to be more important,

given that the system has a reasonable trigger precision.

Because of this strong interdependency between trigger and argument predictions,

and because we cannot devise effective global argument features (Section 3.2.2.3),

we analyze argument identification and classification performance in isolation (Chap-

ter 4) and set all trigger decisions to their gold value. We perform the investigation

with our base system from Chapter 3 and find that performance rapidly drops with in-

creasing distance of an argument to its trigger. Performance loss is about 10 F1 points

per additional dependency edge. This observation is the foundation for our work in

Chapters 4 and 5. Our idea is to devise methods which operate on syntax structures

to better handle long-range dependencies between triggers and arguments.

We propose a deep learning architecture which (1) learns to identify which parts

of dependency paths conveying useful information and (2) deals with unseen paths

(Chapter 4). Both points are insufficiently handled by most event extractors, which

rely on categorical features or on simple (direct) dependency relations. Using simple,

short-range (mostly direct) dependency relations is problematic because they cannot

capture long-range dependencies of arguments which are farther away. Some argu-

ment types tend to be expressed more distant to their triggers than others, which

leads to a worse performance when predicting them. Our methods encode entire de-

pendency paths, or even dependency graphs, to represent as much syntax information

as needed. We can show that Long Short-Term Memory networks operating on lexical-

ized dependency paths increase argument performance, especially on paths of lengths

1-3.1

This finding is again validated in Chapter 5, where we use syntax encoders on de-

pendency graphs for full event extraction. Chapter 5 complements our investigation of

syntax representations in particular, and of event extraction with deep learning meth-

ods in general. The chapter is dedicated to three major questions: Do the results in

1Longer dependency paths are scarce, leading to unreliable evaluation numbers.
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Chapter 4 also hold ‘in the wild’, that is, with predicted and noisy triggers? Does syntax

encoding also benefit trigger prediction? And finally, how can we derive a scientifically

reliable answer to the previous questions?

First, we propose a base system for event extraction which is similar to a state-

of-the-art ‘neural’ event extractor. The base system is on the one hand our baseline,

on the other a common framework for the two syntax encoders we use. A common

framework addresses the first point to ensure the best evaluation reliability (systems

have to use the same preprocessing, Section 2.5.1). The second point (indeterministic

training procedures lead to significantly better evaluation results by pure luck, Section

2.5.2) is addressed by our strategy to always train five models and average their per-

formances for all evaluation measures. We use this procedure every time we use deep

learning methods (Chapters 4 and 5). This gives us a better performance estimate and

some quantification of the error involved in every evaluation measure. We can show

(Appendix A.5) that the evaluation procedure described above is necessary: F1 score

fluctuations of 1 point are common for all methods and data splits. In some cases,

fluctuations are 2 F1 points or higher. Given that published event extraction numbers

are quite close together, a 2 F1 points performance increase may already constitute a

new state-of-the-art.

The general idea of our system in Chapter 5 is to encode the entire dependency

structure of a sentence along with its lexical content, and to derive better event de-

cisions based on this information. On top of the base system, we use Graph Con-

volutional Networks and tree-shaped Long Short-Term Memory networks as syntax

encoders. The first focuses on the local dependency relations of a word. The latter

produces a more global representation where each node in the dependency graph en-

codes syntactic relations to all its children and to the root node, and the root node

encodes the entire graph.2 We show that argument identification and classification

benefits from higher-order syntax representations even with predicted and noisy trig-

gers. Trigger identification and classification however seems to benefit only marginally

from it. We suspect that for triggers and most important syntax information is already

present in their local dependency relations, since many triggers are verbs. In terms

of syntax encoders, we find a slight benefit of Graph Convolutional Networks, pre-

sumably because they have less parameters, which complies with the low amount of

training data in ACE 2005.

2For simplicity, we compute our dependency graph representations on a minimum spanning tree of
the graph, rooted at the dependency root node.
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Besides more complex syntax encoders, we also investigate methods to better handle

class imbalance and scarce training data in Chapter 5. The first problem is mitigated

by a new undersampling method we propose (Section 5.6.2), named repeated nega-

tive undersampling. The idea is simple: We avoid to train on a non-trigger word with

a certain probability. A higher probability leads to more triggers which the system

sees during training compared to non-triggers, effectively biasing the system towards

paying more attention to trigger prediction and increasing trigger recall. Our main

contribution however is the observation that it is beneficial to re-evaluate the under-

sampled non-trigger words anew during training, meaning that the system is exposed

to different non-triggers, but to only a small amount of them in each training epoch.

This strategy considerably increases trigger recall for all methods we evaluate, and

this in turn increases also argument performance. The other method we investigate is

bagging. Bagging constructs n different versions of the training data by withholding

a certain amount of data points from the sampling procedure – we use these points

as a development set. Then, bagging trains n classifiers (optimized on n development

sets) and averages their predictions during testing. Bagging has a positive effect when

training data is scarce – this was shown for a multitude of tasks and data sets. We can

also show a positive effect on event extraction and the ACE data.

7.2 Future Work

We outlined future work throughout the thesis. Here, we want to collect the most

important suggestions for future research. This section will conclude the thesis.

The most obvious research line is the combination of Incremental Global Inference

with the syntax encoders we present in Chapter 5. To the best of our knowledge, there

is no global and deep event extractor published to date. IGI as a method can work

with any base system. The idea is to inform a neural, intra-sentential base system

about semantically related words in the document in an incremental way. We suspect

that the resulting event extractor would be superior in terms of performance. IGI as
a concrete implementation however is tailored towards structured perceptrons. More

work is needed to adapt it to gradient optimization training.

Another line of work we suggest for future work is concerned with improving the

local event extractor in general. In Section 5.6.1, we discuss the limitations of our

loss function, mainly its assumption that trigger and argument decisions are inde-
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pendent. This assumption is clearly wrong. To model the inter-dependency between

triggers and arguments however, one has to change the loss function to a globally

normalized version, e.g., using the conditional random field (CRF) loss described in

Andor et al. (2016). CRFs model sequences in terms of transition probabilities, mak-

ing certain transitions very unlikely while promoting others. CRFs proved useful for

many sequence prediction tasks in NLP, e.g., part-of-speech tagging and named en-

tity recognition. We think however that the standard linear chain CRF is not enough

for event extraction (even though is a good first approximation); a structured CRF is

more appropriate to model the interdependencies between all arguments and a po-

tential trigger. The system would not compute softmax distributions for a dependency

graph, but CRF probability distributions, which take the entire graph structure into

account. This would have the effect that spurious double or triple assignments of roles

occur less often.

A last suggestion targets the structure of our syntax encoders: The syntax itself. We

already placed event extraction as a task into the vicinity of semantic parsing tasks like

Semantic Role Labeling and Frame-Semantic Parsing (Section 2.3.3). An interesting

line of research in event extraction is to encode semantic structures instead or on top

of syntactic structures. Semantic structures can be readily processed with the methods

we describe in chapter 5. Semantic Role Labeling for example produces a tree-like

structure with the predicate as the root and its arguments as children. More complex

semantic structures like AMR (Section 6.2) could also be readily processed. The new

semantic encoders would produce valuable information for event extraction.

We also believe that event extraction and semantic parsing tasks can inform each

other – a perfect training regime would be a multi-task setting where one system

predicts both, events and predicate-argument structures. However, no such dataset

is currently available. Another strategy could be to pre-train an event extractor on

predicate-argument structures, before training it on the ACE data (or vice versa).
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A Appendix

A.1 Allowed Trigger Parts-of-speech

As mentioned in Section 3.1, a trigger label is only assignable to words which match

the following regular expression:

“IN|JJ|RB|DT|VBG|VBD|NN|NNPS|VB|VBN|NNS|VBP|NNP|PRP|VBZ”

The part-of-speech tags are the Penn Treebank tags Marcus et al. (1994).

A.2 Chapter 3: Base System Features

Table A.1 presents features of the base system we use in Chapter 3. The argument

features are also used for the event extractor in Chapter 5.

A.3 Confusion Heat Map for Incremental Global

Inference’s Base System

Figure A.1 presents a heat map for Incremental Global Inference’s base system (Chap-

ter 3).

A.4 Event Argument Classification Evaluation

Table A.3 presents the full version of Table 4.3.
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A Appendix

Category Type Feature Description

Trigger
Lexical

1. unigrams/bigrams of the current and context words within the window of size 2
2. unigrams/bigrams of part-of-speech tags of the current and context words within the
window of size 2
3. lemma and synonyms of the current token
4. base form of the current token extracted from Nomlex (Macleod et al., 1998)
5. Brown clusters that are learned from ACE English corpus
(Brown et al., 1992; Miller et al., 2004; Sun et al., 2011). We used the clusters with prefixes
of length 13, 16 and 20 for each token.

Syntactic

6. dependent and governor words of the current token
7. dependency types associated the current token
8. whether the current token is a modifier of job title
9. whether the current token is a non-referential pronoun

Entity
Information

10. unigrams/bigrams normalized by entity types
11. dependency features normalized by entity types
12. nearest entity type and string in the sentence/clause

Argument
Basic

1. context words of the entity mention
2. trigger word and subtype
3. entity type, subtype and entity role if it is a geo-political entity mention
4. entity mention head, and head of any other name mention from co-reference chain
5. lexical distance between the argument candidate and the trigger
6. the relative position between the argument candidate and the trigger: {before, after,
overlap, or separated by punctuation}
7. whether it is the nearest argument candidate with the same type
8. whether it is the only mention of the same entity type in the sentence

Syntactic

9. dependency path between the argument candidate and the trigger
10. path from the argument candidate and the trigger in constituent parse tree
11. length of the path between the argument candidate and the trigger in dependency graph
12. common root node and its depth of the argument candidate and parse tree
13. whether the argument candidate and the trigger appear in the same clause

Table A.1: Static feature templates of our base system used in Chapter 3. The argument fea-
tures are also used in Chapter 5. This table is an exact reproduction of the local
feature table in Li et al. (2013).
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A.4 Event Argument Classification Evaluation
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Figure A.1: A heat map (darker colors mean higher values) representation of the confusion
matrix for Incremental Global Inference’s base system. Gold labels are on the Y
axis, predicted on the X axis.
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A Appendix

Category Feature Description

Trigger
1. bigram of trigger types occur in the same sentence or the same clause
2. binary feature indicating whether synonyms in the same sentence have the same trigger label
3. context and dependency paths between two triggers conjuncted with their types

Argument

4. context and dependency features about two argument candidates which share the same role within the
same event mention
5. features about one argument candidate which plays as arguments in two event mentions in the same
sentence
6. features about two arguments of an event mention which are overlapping
7. the number of arguments with each role type of an event mention conjuncted with the event subtype
8. the pairs of time arguments within an event mention conjuncted with the event subtype

Table A.2: Dynamic feature templates of our base system used in Chapter 3. This table is a
reproduction of the global feature table in Li et al. (2013).

A.5 Chapter 5: All Evaluation Tables

Here, we present all evaluation numbers of all runs we otherwise present in aggregated

form (mean evaluation numbers with standard deviations) in Chapter 5. The following

tables report all numbers for data splits 1, 2, and 3.

A.5.1 Split 1

Tables A.4-A.12 report evaluation numbers for θ∅ (no syntax), θGCN, and θtreeLSTM for

Split 1 and pn values 0.0, 0.5, and 0.9.

A.5.2 Split 2

Tables A.13-A.21 report evaluation numbers for θ∅ (no syntax), θGCN, and θtreeLSTM for

Split 2 and pn values 0.0, 0.5, and 0.9.

A.5.3 Split 3

Tables A.22-A.30 report evaluation numbers for θ∅ (no syntax), θGCN, and θtreeLSTM for

Split 3 and pn values 0.0, 0.5, and 0.9.
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A.6 Chapter 5: Average Significance

A.6 Chapter 5: Average Significance

Table A.31 reports statistical significance scores (lower is better) for the respective F1

trigger or argument score of θGCN and θtreeLSTM compared to θ∅. We have five models for

θGCN, θtreeLSTM, and θ∅. Before we compute significance, we average the performance

scores per sentence across the five models and then we compute significance using

approximate randomization (Noreen, 1989). This procedure is a very strict measure

because it averages individual strong models out. Normally, scores are regarded sig-

nificant if p < 0.05. In this case however, higher p values might also be regarded

significant, although we cannot make a guess for a concrete threshold.

A.7 Code and Data Used in this Thesis

The code and data used in this thesis has been published with the following digital

object identifiers (DOI):

• Alex Judea. 2021a. Accompanying Code for Chapter 4 of the PhD Thesis

“Global Inference and Local Syntax Representations for Event Extraction”. doi:

10.11588/data/CZZEKX. URL https://doi.org/10.11588/data/Z1RKOI

• Alex Judea. 2021b. Accompanying Code and Models for Chapter 5 of the PhD
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Baseline EVENTOR

P R F1 P R F1 ∆F1±σ Support
Micro 67.7 58.7 62.9 63.1 68.2 65.5† 2.7±0.5 916
no CNN 67.7 58.7 62.9 66.2 62.5 64.2† 1.3±0.8 916
Time 69.9 70.9 70.4 70.9 80.1 75.2 4.8±1.2 134
Entity 63.7 56.7 60.0 57.7 65.2 61.2 1.2±2.9 127
Place 64.0 41.7 50.5 52.1 48.0 49.9 −0.6±1.7 115
Person 74.6 61.7 67.6 69.1 78.3 73.4 5.8±2.1 81
Artifact 78.5 71.8 75.0 70.3 77.2 73.5 −1.5±1.2 71
Destination 63.4 66.7 65.0 65.6 80.0 72.1 7.1±1.0 39
Crime 84.4 100.0 91.6 82.5 99.5 90.2 −1.3±0.6 38
Attacker 60.7 47.2 53.1 52.4 66.6 58.6 5.5±3.2 36
Defendant 70.0 63.6 66.7 67.6 75.2 71.1 4.4±1.5 33
Agent 64.7 34.4 44.9 55.9 40.6 46.8 1.9±6.8 32
Victim 65.0 56.5 60.5 69.9 82.6 75.7 15.3±4.3 23
Org 68.2 68.2 68.2 67.9 78.2 72.6 4.4±1.9 22
Buyer 36.8 38.9 37.8 35.9 45.5 40.1 2.2±6.1 18
Target 20.0 6.3 9.5 61.4 55.0 57.8 48.3±2.0 16
Seller 63.6 43.8 51.9 100.0 7.5 13.9 −38.0±4.7 16
Adjudicator 57.1 26.7 36.4 42.8 48.0 45.1 8.8±3.3 15
Position 72.7 61.5 66.7 84.5 100.0 91.6 25.0±1.8 13
Instrument 73.3 84.6 78.6 71.0 78.4 74.5 −4.1±2.1 13
Giver 63.6 58.3 60.9 68.0 63.3 65.2 4.4±4.9 12
Money 68.8 91.7 78.6 87.9 83.3 85.5 6.9±2.0 12
Origin 50.0 27.3 35.3 34.6 49.1 40.4 5.1±2.6 11
Recipient 50.0 50.0 50.0 41.4 54.0 46.7 −3.3±7.5 10
Sentence 64.3 100.0 78.3 61.8 100.0 76.4 −1.9±3.0 9
Plaintiff 100.0 37.5 54.5 72.2 67.5 69.3 14.8±3.8 8
Price 83.3 83.3 83.3 59.3 46.7 51.0 −32.3±15.5 6
Beneficiary 0.0 0.0 0.0 0.0 0.0 0.0 0.0±0.0 5
Vehicle 0.0 0.0 0.0 0.0 0.0 0.0 0.0±0.0 1
Prosecutor 0.0 0.0 0.0 0.0 0.0 0.0 0.0±0.0 0

Table A.3: Test set precision, recall, and F1 for the baseline and EVENTOR, ordered by argument
type frequency. Reported are argument types with more than 30 instances. EVENTOR

numbers are averaged over five test set runs. “Mirco” and “no CNN” report micro-
averaged numbers for Experiments 1 and 2, respectively; the other rows report
numbers for Experiment 3. “∆F1±σ” reports the difference in F1 between EVENTOR

and the baseline, as well as the respective standard deviation. “Support” reports the
respective number of instances. † means statistically significant for every training
and testing round at the p < 0.05 level. We measured significance only for micro-
averaged numbers.
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A.7 Code and Data Used in this Thesis

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 78.9 67.0 72.5 76.5 65.0 70.3 61.3 52.0 56.3 58.0 49.1 53.2
2 78.7 65.7 71.6 76.0 63.4 69.1 60.5 51.1 55.4 57.0 48.1 52.2
3 82.1 63.6 71.7 79.5 61.6 69.4 64.7 47.5 54.8 63.2 46.4 53.5
4 80.9 64.3 71.6 78.9 62.7 69.9 61.9 51.5 56.2 58.6 48.8 53.2
5 78.9 64.5 71.0 76.7 62.7 69.0 63.1 50.1 55.9 60.0 47.6 53.1
x̄ 79.9 65.0 71.7 77.5 63.1 69.5 62.3 50.4 55.7 59.4 48.0 53.0
σ 1.5 1.3 0.5 1.6 1.3 0.6 1.6 1.8 0.6 2.4 1.1 0.5

Table A.4: Split 1, θ∅;0.0

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 78.0 68.4 72.9 75.4 66.1 70.5 63.3 52.9 57.7 60.7 50.8 55.3
2 78.7 68.0 72.9 76.6 66.1 71.0 64.9 51.3 57.3 62.3 49.2 55.0
3 80.8 66.1 72.8 78.6 64.3 70.8 64.8 51.5 57.4 62.8 49.9 55.6
4 78.4 69.1 73.4 76.0 67.0 71.3 61.9 54.8 58.1 58.3 51.6 54.8
5 80.3 63.9 71.1 78.3 62.3 69.4 63.4 51.0 56.5 62.0 49.9 55.3
x̄ 79.2 67.1 72.6 77.0 65.2 70.6 63.7 52.3 57.4 61.2 50.3 55.2
σ 1.2 2.1 0.9 1.4 1.9 0.7 1.2 1.6 0.6 1.8 0.9 0.3

Table A.5: Split 1, θ∅;0.5

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 70.7 71.4 71.0 67.8 68.4 68.1 59.0 55.2 57.0 56.1 52.5 54.2
2 70.6 73.2 71.9 67.8 70.2 69.0 59.9 55.0 57.4 57.7 52.9 55.2
3 72.7 70.7 71.7 70.3 68.4 69.4 61.6 52.6 56.8 58.6 50.0 53.9
4 72.0 72.0 72.0 68.9 68.9 68.9 61.8 54.3 57.8 59.3 52.1 55.5
5 71.3 70.7 71.0 68.6 68.0 68.3 60.7 52.1 56.1 58.3 50.0 53.8
x̄ 71.5 71.6 71.5 68.7 68.8 68.7 60.6 53.8 57.0 58.0 51.5 54.5
σ 0.9 1.0 0.5 1.0 0.9 0.5 1.2 1.4 0.6 1.2 1.4 0.8

Table A.6: Split 1, θ∅;0.9
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Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 80.7 65.5 72.3 78.4 63.6 70.3 60.9 54.5 57.5 58.5 52.4 55.3
2 79.3 67.7 73.0 76.9 65.7 70.8 60.6 56.8 58.6 58.0 54.4 56.1
3 78.9 67.0 72.5 76.5 65.0 70.3 60.1 52.7 56.2 57.2 50.2 53.5
4 82.3 62.5 71.1 79.9 60.7 69.0 63.7 49.3 55.6 61.1 47.4 53.4
5 81.1 65.5 72.5 78.9 63.6 70.4 62.6 52.3 57.0 59.5 49.7 54.1
x̄ 80.5 65.6 72.3 78.1 63.7 70.2 61.6 53.1 57.0 58.9 50.8 54.5
σ 1.4 2.0 0.7 1.4 1.9 0.7 1.5 2.8 1.2 1.5 2.7 1.2

Table A.7: Split 1, θGCN;0.0

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 79.3 66.1 72.1 77.1 64.3 70.1 60.7 52.8 56.5 58.9 51.3 54.8
2 78.5 66.4 71.9 75.8 64.1 69.5 61.3 52.2 56.4 58.3 49.7 53.7
3 79.5 68.0 73.3 76.6 65.5 70.6 62.0 54.0 57.7 60.3 52.6 56.2
4 77.7 68.2 72.6 75.1 65.9 70.2 62.5 54.1 58.0 59.9 52.0 55.7
5 78.5 65.5 71.4 76.0 63.4 69.1 62.5 51.7 56.6 59.5 49.2 53.9
x̄ 78.7 66.8 72.3 76.1 64.6 69.9 61.8 53.0 57.0 59.4 51.0 54.9
σ 0.7 1.2 0.7 0.8 1.0 0.6 0.8 1.1 0.8 0.8 1.5 1.1

Table A.8: Split 1, θGCN;0.5

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 70.5 73.0 71.7 67.7 70.0 68.8 60.2 56.3 58.2 58.0 54.3 56.1
2 72.4 72.7 72.6 69.7 70.0 69.8 60.0 58.8 59.4 57.6 56.6 57.1
3 69.9 73.4 71.6 67.3 70.7 69.0 57.5 57.9 57.7 54.9 55.2 55.1
4 70.9 72.0 71.5 68.0 69.1 68.5 59.7 53.9 56.7 58.0 52.4 55.0
5 71.8 71.8 71.8 69.8 69.8 69.8 62.3 54.8 58.3 59.7 52.5 55.9
x̄ 71.1 72.6 71.8 68.5 69.9 69.2 59.9 56.3 58.1 57.6 54.2 55.8
σ 1.0 0.7 0.4 1.2 0.6 0.6 1.7 2.1 1.0 1.7 1.8 0.9

Table A.9: Split 1, θGCN;0.9
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A.7 Code and Data Used in this Thesis

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 80.0 64.5 71.4 77.7 62.7 69.4 61.1 52.6 56.5 58.4 50.3 54.1
2 80.5 63.6 71.1 78.2 61.8 69.0 59.9 52.4 55.9 57.4 50.2 53.6
3 81.4 62.7 70.9 80.2 61.8 69.8 61.1 50.4 55.3 58.7 48.5 53.1
4 80.7 61.8 70.0 78.3 60.0 68.0 62.2 48.3 54.3 60.3 46.8 52.7
5 79.5 62.7 70.1 78.1 61.6 68.9 60.4 50.3 54.9 57.8 48.1 52.5
x̄ 80.4 63.1 70.7 78.5 61.6 69.0 60.9 50.8 55.4 58.5 48.8 53.2
σ 0.7 1.0 0.6 1.0 1.0 0.7 0.9 1.8 0.9 1.1 1.5 0.7

Table A.10: Split 1, θtreeLSTM;0.0

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 78.1 66.4 71.7 75.7 64.3 69.5 61.3 52.3 56.5 59.3 50.5 54.6
2 78.0 65.9 71.4 76.1 64.3 69.7 61.9 53.7 57.5 58.9 51.1 54.7
3 80.2 65.5 72.1 78.6 64.1 70.6 62.5 55.1 58.6 60.5 53.4 56.7
4 78.7 65.7 71.6 76.3 63.6 69.4 61.5 50.7 55.6 59.7 49.1 53.9
5 80.1 66.6 72.7 77.6 64.5 70.5 62.4 53.2 57.4 59.3 50.5 54.6
x̄ 79.0 66.0 71.9 76.9 64.2 69.9 61.9 53.0 57.1 59.5 50.9 54.9
σ 1.1 0.5 0.5 1.2 0.3 0.6 0.5 1.6 1.1 0.6 1.6 1.1

Table A.11: Split 1, θtreeLSTM;0.5

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 70.0 73.6 71.8 67.4 70.9 69.1 57.8 56.6 57.2 54.8 53.6 54.2
2 71.6 71.1 71.4 69.3 68.9 69.1 58.8 55.2 57.0 56.6 53.2 54.8
3 72.7 71.4 72.0 70.4 69.1 69.7 62.8 54.7 58.5 60.4 52.6 56.2
4 71.1 71.6 71.3 68.4 68.9 68.6 60.0 53.6 56.6 57.5 51.4 54.3
5 73.1 73.0 73.0 70.4 70.2 70.3 60.3 55.8 57.9 57.5 53.3 55.3
x̄ 71.7 72.1 71.9 69.2 69.6 69.4 59.9 55.2 57.4 57.4 52.8 55.0
σ 1.2 1.1 0.7 1.3 0.9 0.7 1.9 1.1 0.8 2.0 0.9 0.8

Table A.12: Split 1, θtreeLSTM;0.9
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Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 79.5 62.6 70.1 75.2 59.2 66.2 65.5 48.5 55.7 60.7 45.0 51.7
2 75.5 66.2 70.6 71.4 62.6 66.7 63.2 52.0 57.1 58.8 48.4 53.1
3 72.3 69.1 70.7 68.2 65.2 66.6 59.6 53.1 56.1 55.7 49.6 52.4
4 75.8 65.2 70.1 71.8 61.8 66.4 62.6 52.1 56.9 58.0 48.3 52.7
5 75.9 66.2 70.7 72.1 62.9 67.2 60.7 52.6 56.4 56.3 48.9 52.3
x̄ 75.8 65.9 70.4 71.7 62.3 66.6 62.3 51.7 56.4 57.9 48.0 52.4
σ 2.6 2.3 0.3 2.5 2.2 0.4 2.3 1.8 0.6 2.0 1.8 0.5

Table A.13: Split 2, θ∅;0.0

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 75.4 68.1 71.5 71.4 64.4 67.7 62.1 52.8 57.1 58.7 49.8 53.9
2 75.7 68.7 72.0 71.4 64.7 67.9 63.1 52.0 57.0 58.8 48.4 53.1
3 76.5 66.2 71.0 72.7 62.9 67.5 63.1 52.0 57.0 58.8 48.4 53.1
4 76.1 67.7 71.7 72.6 64.6 68.4 65.6 50.7 57.2 61.0 47.2 53.2
5 77.2 66.1 71.2 72.9 62.5 67.3 63.5 48.9 55.2 59.3 45.7 51.6
x̄ 76.2 67.4 71.5 72.2 63.8 67.8 63.5 51.3 56.7 59.3 47.9 53.0
σ 0.7 1.2 0.4 0.7 1.0 0.4 1.3 1.5 0.8 1.0 1.5 0.8

Table A.14: Split 2, θ∅;0.5

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 66.9 74.5 70.5 63.0 70.1 66.3 59.2 56.1 57.6 55.7 52.8 54.2
2 68.9 74.5 71.6 65.1 70.3 67.6 59.5 56.7 58.0 55.4 52.8 54.0
3 66.0 76.4 70.8 62.3 72.1 66.9 58.1 59.1 58.6 53.5 54.4 53.9
4 66.6 76.6 71.2 62.8 72.2 67.2 58.1 60.2 59.1 54.3 56.2 55.3
5 67.3 75.1 71.0 63.0 70.3 66.5 57.3 57.9 57.6 53.2 53.7 53.4
x̄ 67.1 75.4 71.0 63.2 71.0 66.9 58.4 58.0 58.2 54.4 54.0 54.2
σ 1.1 1.0 0.4 1.1 1.1 0.5 0.9 1.7 0.7 1.1 1.4 0.7

Table A.15: Split 2, θ∅;0.9
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A.7 Code and Data Used in this Thesis

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 74.9 66.0 70.2 70.8 62.4 66.3 61.8 52.6 56.9 57.9 49.3 53.2
2 76.4 67.4 71.6 72.2 63.7 67.7 63.2 55.1 58.9 59.2 51.6 55.1
3 74.9 67.6 71.1 70.9 64.0 67.3 62.2 52.4 56.9 57.9 48.7 52.9
4 74.5 67.2 70.7 70.6 63.7 67.0 63.0 51.3 56.5 58.7 47.8 52.7
5 74.2 68.6 71.3 69.8 64.5 67.1 59.4 55.3 57.2 55.0 51.3 53.1
x̄ 75.0 67.4 71.0 70.9 63.7 67.1 61.9 53.3 57.3 57.7 49.7 53.4
σ 0.8 0.9 0.5 0.9 0.8 0.5 1.5 1.8 0.9 1.6 1.7 1.0

Table A.16: Split 2, θGCN;0.0

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 72.7 70.3 71.5 68.5 66.2 67.4 59.7 57.0 58.3 55.0 52.6 53.8
2 73.4 69.3 71.3 69.0 65.2 67.0 60.6 53.6 56.9 56.5 50.0 53.0
3 76.5 69.4 72.8 72.8 66.1 69.3 62.8 54.3 58.2 59.0 51.0 54.7
4 74.5 69.2 71.8 70.5 65.5 67.9 63.7 53.4 58.1 59.0 49.5 53.8
5 76.6 66.1 71.0 72.6 62.7 67.3 62.0 53.5 57.4 57.6 49.6 53.3
x̄ 74.7 68.9 71.7 70.7 65.1 67.8 61.8 54.4 57.8 57.4 50.5 53.7
σ 1.8 1.6 0.7 2.0 1.4 0.9 1.6 1.5 0.6 1.7 1.3 0.6

Table A.17: Split 2, θGCN;0.5

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 65.1 76.8 70.5 61.0 72.0 66.0 55.8 61.7 58.6 51.8 57.3 54.4
2 68.5 74.8 71.5 64.5 70.4 67.3 58.8 60.0 59.4 55.2 56.3 55.7
3 67.1 75.4 71.0 63.6 71.5 67.3 57.9 59.0 58.4 53.9 55.0 54.4
4 66.2 75.2 70.4 62.4 70.8 66.3 58.0 59.3 58.6 54.4 55.6 55.0
5 67.5 75.9 71.4 63.4 71.3 67.1 58.0 58.4 58.2 53.8 54.1 53.9
x̄ 66.9 75.6 71.0 63.0 71.2 66.8 57.7 59.7 58.6 53.8 55.7 54.7
σ 1.3 0.8 0.5 1.3 0.6 0.6 1.1 1.3 0.5 1.3 1.2 0.7

Table A.18: Split 2, θGCN;0.9
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Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 76.9 65.0 70.4 72.8 61.5 66.7 60.6 53.4 56.8 56.1 49.5 52.6
2 76.7 64.1 69.8 72.8 60.8 66.2 61.8 52.0 56.5 58.3 49.0 53.3
3 75.2 65.1 69.8 71.2 61.6 66.1 60.9 52.0 56.1 57.2 48.9 52.7
4 76.4 65.9 70.8 72.3 62.4 67.0 61.5 51.1 55.8 57.1 47.5 51.8
5 74.5 68.5 71.4 70.5 64.7 67.5 59.8 57.2 58.5 55.0 52.6 53.8
x̄ 75.9 65.7 70.4 71.9 62.2 66.7 60.9 53.1 56.7 56.7 49.5 52.8
σ 1.0 1.7 0.7 1.0 1.5 0.6 0.8 2.4 1.1 1.2 1.9 0.8

Table A.19: Split 2, θtreeLSTM;0.0

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 76.1 64.6 69.9 72.3 61.4 66.4 62.6 51.1 56.3 58.3 47.6 52.4
2 77.2 65.4 70.8 73.1 62.0 67.1 63.5 50.4 56.2 59.4 47.1 52.5
3 76.6 67.4 71.7 72.6 63.9 68.0 63.2 51.1 56.5 59.5 48.1 53.2
4 76.8 66.5 71.2 72.7 62.9 67.5 61.1 53.7 57.2 56.9 50.1 53.3
5 74.7 69.0 71.7 70.3 65.0 67.5 61.8 52.9 57.0 57.4 49.2 53.0
x̄ 76.3 66.6 71.1 72.2 63.0 67.3 62.4 51.8 56.6 58.3 48.4 52.9
σ 1.0 1.7 0.8 1.1 1.4 0.6 1.0 1.4 0.4 1.2 1.2 0.4

Table A.20: Split 2, θtreeLSTM;0.5

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 68,4 73,9 71,1 64,5 69,7 67,0 58,5 58,4 58,4 54,6 54,6 54,6
2 70,9 72,5 71,7 67,0 68,6 67,8 59,3 57,5 58,4 55,3 53,6 54,5
3 68,4 75,5 71,8 64,6 71,4 67,8 60,3 58,7 59,5 56,8 55,2 56,0
4 68,1 74,4 71,1 64,1 70,0 66,9 58,3 58,1 58,2 55,1 54,9 55,0
5 68,9 73,7 71,2 65,1 69,7 67,3 59,7 57,6 58,6 55,6 53,7 54,7
x̄ 68.9 74.0 71.4 65.1 69.9 67.4 59.2 58.1 58.6 55.5 54.4 55.0
σ 1.1 1.1 0.3 1.1 1.0 0.4 0.8 0.5 0.5 0.8 0.7 0.6

Table A.21: Split 2, θtreeLSTM;0.9
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A.7 Code and Data Used in this Thesis

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 78.9 66.5 72.2 75.4 63.5 68.9 70.6 53.5 60.9 66.7 50.5 57.5
2 77.4 66.4 71.5 73.8 63.3 68.2 69.0 55.2 61.3 65.0 52.1 57.8
3 79.4 65.1 71.5 75.7 62.1 68.2 70.5 51.8 59.7 65.8 48.3 55.8
4 76.1 67.9 71.8 72.6 64.8 68.5 69.7 54.6 61.2 64.4 50.4 56.5
5 78.3 66.7 72.0 74.6 63.6 68.7 69.8 55.4 61.8 65.4 51.9 57.8
average 78.0 66.5 71.8 74.4 63.5 68.5 69.9 54.1 61.0 65.5 50.6 57.1
stdev 1.3 1.0 0.3 1.3 1.0 0.3 0.7 1.5 0.8 0.9 1.5 0.9

Table A.22: Split 3, θ∅;0.0

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 77.0 68.0 72.2 73.5 64.9 68.9 68.5 57.1 62.3 64.4 53.7 58.5
2 79.0 67.2 72.6 75.6 64.3 69.5 72.6 52.4 60.9 67.6 48.8 56.7
3 78.5 66.3 71.9 74.9 63.2 68.6 68.9 55.0 61.1 63.9 51.0 56.7
4 77.5 66.8 71.8 74.0 63.8 68.5 69.5 54.7 61.2 64.6 50.9 57.0
5 77.5 67.3 72.1 74.1 64.3 68.8 69.9 55.3 61.7 66.1 52.3 58.4
average 77.9 67.1 72.1 74.4 64.1 68.9 69.9 54.9 61.4 65.3 51.3 57.5
stdev 0.8 0.6 0.3 0.8 0.6 0.4 1.6 1.7 0.6 1.5 1.8 0.9

Table A.23: Split 3, θ∅;0.5

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 71.1 74.0 72.5 67.9 70.7 69.3 68.1 60.2 63.9 63.8 56.4 59.8
2 69.7 76.8 73.1 66.6 73.4 69.9 68.0 60.1 63.8 63.7 56.2 59.7
3 70.8 74.1 72.4 67.7 70.9 69.3 68.4 59.6 63.7 64.7 56.4 60.2
4 70.6 75.4 72.9 67.6 72.2 69.8 67.3 63.0 65.1 62.8 58.9 60.8
5 69.2 76.4 72.6 65.9 72.8 69.2 66.4 62.5 64.4 62.1 58.4 60.2
average 70.3 75.3 72.7 67.1 72.0 69.5 67.6 61.1 64.2 63.4 57.3 60.1
stdev 0.8 1.3 0.3 0.9 1.2 0.3 0.8 1.6 0.6 1.0 1.3 0.4

Table A.24: Split 3, θ∅;0.9
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Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 77.3 67.0 71.8 73.7 63.9 68.5 67.9 57.3 62.1 63.8 53.8 58.4
2 77.2 65.8 71.0 73.5 62.6 67.6 69.1 56.1 61.9 64.9 52.7 58.2
3 78.0 66.8 72.0 74.5 63.8 68.8 68.3 57.9 62.7 63.4 53.7 58.2
4 77.5 66.8 71.8 73.9 63.7 68.4 69.8 56.0 62.1 65.0 52.2 57.9
5 76.9 66.2 71.2 73.4 63.2 68.0 69.1 53.4 60.2 65.0 50.2 56.6
average 77.4 66.5 71.6 73.8 63.4 68.3 68.8 56.1 61.8 64.4 52.5 57.9
stdev 0.4 0.5 0.4 0.4 0.5 0.5 0.7 1.7 0.9 0.8 1.5 0.7

-0.6 0.0 -0.2 -0.6 0.0 -0.2 -1.1 2.0 0.8 -1.0 1.9 0.8

Table A.25: Split 3, θGCN;0.0

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 76.9 68.0 72.2 73.5 65.0 69.0 68.8 57.1 62.4 64.4 53.4 58.4
2 77.0 68.8 72.6 73.6 65.8 69.5 70.4 57.3 63.2 66.0 53.8 59.3
3 77.8 68.2 72.7 74.4 65.3 69.6 69.0 58.0 63.1 64.5 54.2 58.9
4 77.1 68.7 72.7 73.9 65.8 69.6 69.7 57.3 62.9 65.5 53.9 59.1
5 77.2 68.9 72.8 73.6 65.7 69.4 70.2 54.9 61.6 66.0 51.6 57.9
average 77.2 68.5 72.6 73.8 65.5 69.4 69.6 56.9 62.6 65.3 53.4 58.7
stdev 0.4 0.4 0.2 0.4 0.4 0.2 0.7 1.2 0.7 0.8 1.0 0.6

-0.7 1.4 0.5 -0.6 1.4 0.6 -0.3 2.0 1.2 0.0 2.0 1.3

Table A.26: Split 3, θGCN;0.5

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 70.2 74.8 72.4 67.2 71.7 69.4 66.3 63.0 64.6 62.1 59.0 60.5
2 69.4 75.7 72.4 66.5 72.6 69.4 67.2 63.1 65.1 63.2 59.4 61.2
3 69.4 76.6 72.8 65.9 72.8 69.2 65.7 63.6 64.6 61.1 59.1 60.1
4 70.2 76.0 73.0 66.9 72.5 69.6 65.7 63.3 64.5 61.3 59.1 60.1
5 71.5 75.7 73.5 68.3 72.3 70.2 66.5 63.4 64.9 62.2 59.2 60.7
average 70.1 75.8 72.8 67.0 72.4 69.6 66.3 63.3 64.7 62.0 59.2 60.5
stdev 0.9 0.7 0.5 0.9 0.4 0.4 0.6 0.2 0.3 0.8 0.2 0.5

-0.1 0.4 0.1 -0.2 0.4 0.1 -1.4 2.2 0.6 -1.4 1.9 0.4

Table A.27: Split 3, θGCN;0.9
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A.7 Code and Data Used in this Thesis

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 76.7 66.8 71.4 73.3 63.8 68.2 70.1 53.2 60.5 66.1 50.2 57.0
2 76.6 67.5 71.8 73.2 64.5 68.6 69.0 58.2 63.1 64.7 54.6 59.2
3 75.6 68.9 72.1 72.2 65.8 68.8 68.0 59.2 63.3 63.3 55.1 58.9
4 77.8 66.9 71.9 74.3 63.9 68.7 68.5 57.1 62.3 64.4 53.6 58.5
5 77.2 68.4 72.5 73.6 65.2 69.1 70.2 56.3 62.5 65.5 52.6 58.3
average 76.8 67.7 71.9 73.3 64.6 68.7 69.2 56.8 62.3 64.8 53.2 58.4
stdev 0.8 0.9 0.4 0.8 0.9 0.3 1.0 2.3 1.1 1.1 1.9 0.8

Table A.28: Split 3, θtreeLSTM;0.0

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 75.0 68.9 71.8 71.4 65.6 68.4 67.1 60.5 63.6 63.2 57.0 60.0
2 77.1 69.4 73.0 73.8 66.3 69.9 68.8 59.5 63.8 64.5 55.9 59.9
3 77.7 68.6 72.8 74.1 65.4 69.4 68.6 58.1 62.9 64.6 54.7 59.3
4 76.5 69.0 72.5 72.8 65.7 69.0 68.8 57.5 62.7 64.3 53.7 58.5
5 76.8 69.9 73.2 73.5 66.9 70.1 70.2 58.0 63.5 64.3 53.1 58.2
average 76.6 69.2 72.7 73.1 66.0 69.4 68.7 58.7 63.3 64.2 54.9 59.2
stdev 1.0 0.5 0.5 1.1 0.6 0.7 1.1 1.2 0.5 0.6 1.6 0.8

Table A.29: Split 3, θtreeLSTM;0.5

Trigger
Identification

Trigger
Classification

Argument
Identification

Argument
Classification

P R F1 P R F1 P R F1 P R F1

1 70.4 74.7 72.5 67.2 71.3 69.2 66.1 62.6 64.3 62.0 58.8 60.4
2 70.7 76.1 73.3 67.5 72.7 70.0 68.4 60.4 64.1 64.1 56.6 60.1
3 70.4 75.8 73.0 67.2 72.5 69.7 67.1 61.7 64.3 62.7 57.6 60.1
4 68.1 76.7 72.1 65.0 73.2 68.9 64.6 63.2 63.9 60.5 59.2 59.8
5 70.9 75.5 73.1 67.9 72.3 70.0 66.9 62.6 64.7 62.9 58.8 60.8
average 70.1 75.8 72.8 67.0 72.4 69.6 66.6 62.1 64.3 62.4 58.2 60.2
stdev 1.1 0.7 0.5 1.1 0.7 0.5 1.4 1.1 0.3 1.3 1.1 0.4

Table A.30: Split 3, θtreeLSTM;0.9
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Split 1
θGCN

argument F1 0.028971028971029
trigger F1 0.228771228771229

θtreeLSTM
argument F1 0.569430569430569

trigger F1 0.150849150849151

Split 2
θGCN

argument F1 0.244755244755245
trigger F1 0.867132867132867

θtreeLSTM
argument F1 0.223776223776224

trigger F1 0.081918081918082

Split 3
θGCN

argument F1 0.521478521478521
trigger F1 0.839160839160839

θtreeLSTM
argument F1 0.939060939060939

trigger F1 0.744255744255744

Table A.31: Statistical significance of the respective F1 measure averaged over all five evalua-
tion runs compared to the same θ∅ measure. Lower numbers mean higher signifi-
cance. We use approximate randomization as a test (Noreen, 1989)
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