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1 | Introduction

1.1 Motivation

Surgical Data Science (SDS) is a relatively young research discipline, which was o�cially
defined for the first time in a consensus paper of an international consortium of leading
researchers [Maier-Hein et al., 2017b]. The authors, who have grouped themselves in the SDS-
initiative1, describe the main objective of SDS to "observe all that is occurring within and around
the treatment process [...] to improve the quality of interventional healthcare and its value by
capturing, organizing, analyzing and modeling data" [Maier-Hein et al., 2017b]. Example SDS
applications range from robotic assistance [Chen et al., 2020, Haidegger, 2019], context-aware
assistance, surgical skill assessment [Nguyen et al., 2019, Funke et al., 2019, Lin et al., 2019], to
educational and training systems [Augestad et al., 2020, Singh et al., 2015, Prebay et al., 2019].

In order to provide reliable assistance in a complex environment during surgery, SDS algorithms
have to deal with a dynamic and continuously changing system with huge variations. Examples
of such variations are, e.g., di�erences between patients, di�erent hardware setups (e.g., camera
type, surgical instruments), changes in anatomy due to surgical manipulation, surgeons’ pref-
erences, and di�erent types of surgeries (e.g., Proctectomy, Nephrectomy). Depending on the
use-cases, already small variations can have huge impacts on the algorithms’ performance and
make it challenging for an algorithm to meet the requirements of robust and reliable results
[Rozsa et al., 2016, Lei et al., 2018]. However, fulfilling these requirements became feasible for the
first time with the very recent success of deep learning, a method of machine learning, which led
to a breakthrough in the development of SDS applications [Maier et al., 2019, Maier-Hein et al.,
2017b]. Unlike conventional algorithms, machine learning algorithms can solve problems without
being explicitly programmed to do so. They do this with the help of mathematical models fit to
the data and the minimization of an objective [Koza et al., 1996].

1http://www.surgical-data-science.org
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10 CHAPTER 1. INTRODUCTION

Although machine learning methods have so far delivered promising results, the SDS-initiative
of leading scientists still failed in a follow-up conference 2019 to identify any SDS success stories
[Maier-Hein et al., 2020a]. The reasons for this are varied, but the scientists have particularly
emphasized one cause as being related to the way machine learning works [Maier-Hein et al.,
2020a]. Machine learning algorithms usually rely on statistical methods that have special
requirements on the data, namely (1) there has to be a vast amount of data available, (2) it
is representative of the actual problem the algorithm is intended to solve, and (3) consistent
targets (annotations) are required which are the solutions that the algorithm should present
as an outcome [Maier et al., 2019]. However, the target generation (labeling) is a resource and
cost-intensive process, especially in the medical domain, where for many use-cases, expensive
medical experts are needed, who usually are limited in time [Maier-Hein et al., 2016, Heim et al.,
2018]. Besides the target generation, there are organizational, ethical, and legal di�culties,
restricted access, and problems generating raw data [Esteva et al., 2021]. Even if annotations
are available, their quality is often not clear, since no quality control has taken place and clear
labeling instructions is not yet a standard [Maier-Hein et al., 2020a]. All of these challenges have
led to a delay in applying machine learning-based algorithms in the medical domain [Chapaliuk
and Zaychenko, 2020].
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Figure 1.1: This figure shows on the x-axis famous datasets and on the y-axis (log-scale) the number
of annotated data items per set. It can be seen that all SDS datasets (blue) have significantly less
data than all Natural domain datasets (orange). Concerning the complexity of the tasks to be
solved (e.g., MNIST: number classification vs. EndoVis-RobInstrSeg2015: instrument segmentation)
one would expect that the SDS task’s number of training data is larger.

This problem becomes even clearer when comparing datasets from the computer vision commu-
nity with datasets from the SDS domain2 (see Figure 1.1). While huge datasets like ImageNet [Deng
et al., 2009] or COCO [Lin et al., 2014a] with more than 30,000 images have led to a breakthrough

2A comprehensive list of available datasets can be found in [Maier-Hein et al., 2020a]
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in the computer vision community [Alom et al., 2018], the datasets available in the SDS often
contain annotated data items numbering in the thousands [Allan et al., 2019]), or even only
hundreds [Bodenstedt et al., 2018].

The existence of a data bottleneck is also reflected in publications that are related to SDS, where a
graph of the SDS research area is visualized in Figure 1.2. In this graph, each node represents a pa-
per, the size of the node is the number of citations, and the edges represent a citation. The graph
was constructed by following all citations that came from the original publication from Maier-Hein
et al. [Maier-Hein et al., 2017b]. To avoid too many edges, only papers with the following criteria
were included: (1) have an assignment to the research fields "Computer Science" and "Medical" on
Semantic Scholar and (2) have a maximum distance of five nodes to the seed paper. Interestingly,
the graph forms four main research topics, where three of them are attempting to deal with only
a small amount of available data, namely Data generation, Weak labels and Domain adaptation.
Since the generation of the graph is based on simplified conditions for including or excluding
literature, the graph does not claim to include all related publications. Possibly, literature that
was not correctly assigned to both research fields might have been missed. Nonetheless, the
graph still provides interesting insights. In total, more than 6470 papers were crawled with refer-
ences, so one can assume it provides, at least, a representative subset of the entire research area.

Summarizing the findings taken from this graph, it exposes a strong need for the community for
two main challenges:

C1: Data availability

This challenge is driven by the problem that the available number of datasets is limited.
One of the main reasons is that the generation of labels is time-intensive and access
to larger datasets is challenging. Besides the labeling issue, further factors limit the
availability of data for data science purposes, such as organizational rules or legal aspects
[Maier-Hein et al., 2020a]. In comparison to datasets from the computer vision community
often containing thousands or even millions of images (e.g., COCO [Lin et al., 2014b] with
20k images, ImageNet [Russakovsky et al., 2015] with 14 million images), medical datasets
often consists only of a few hundred [Bodenstedt et al., 2018] or thousands [Allan et al.,
2019]), which limits the representatives of the datasets. One additional problem is that
the available datasets often had not been subjected to any quality control. Accordingly,
they have inconsistencies because annotators might have labeled edge-cases di�erently
or even had a di�erent understanding/definition of the labeling subject. Thus, there is a
need for open, quality controlled datasets.

C2: Managing sparse data
This challenge is based on the same observation as C1: Data availability, namely, that
there is not enough training data available. For this reason, there is a need for methods
that enable the use of machine learning algorithms, despite the small amount of labeled
data, that can still deal with edge-cases and the missing representatives.



12 CHAPTER 1. INTRODUCTION

2020

2019

2018

2017

Legend Nodes

Ontologies, concrete

applications

Data generation

Weak labels

Domain adaptation

Legend Regions

Figure 1.2: Visualization of the SDS research area as a connected graph where each node is a
surgical data science paper and each edge a reference. The graph was generated by crawlinga all
papers from Semantic Scholarb, starting with the first surgical data science paper of Maier-Hein
et al. [Maier-Hein et al., 2017b] as seed. For all papers that cite the seed paper, a node was
created and connected via an edge. For all those newly created edges the process was recursively
repeated. It can be seen that the graph is clustered into four main SDS regions, where papers
in the blue area are mainly about a concrete medical application or ontologies, papers in the
green about generating more data, and the yellow and grey areas are papers that deal with the
problem of a small amount of data and labels.
a crawled on the 19.08.2020 b https://www.semanticscholar.org
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1.2 Objectives
Oriented on the two challenges C1: Data availability and C2: Managing sparse data, all the
concepts presented in this thesis are exemplarily shown using the SDS task to segment surgical
instruments in laparoscopic videos. The instrument segmentation task was chosen because a
sample application was sought that is as representative as possible of an SDS task. This task
is particularly useful because a large number of other SDS applications are based on it (e.g.,
[Su et al., 2018, Law et al., 2017, Lin et al., 2019, Wang et al., 2017, Burström et al., 2019, Shvets
et al., 2018, Kletz et al., 2019]), and progress in this area would therefore have a very large impact.
According to the task, the five objectives of this thesis are:

O1: Incorporation of unlabeled data into the training of deep learning models:
The objective of incorporating unlabeled data into the training of deep learning models is to
work towards C2 by creating a method than can manage sparse data. For this purpose, it should
be investigated whether unlabeled data that are massively produced during the daily routine
can be used to improve the performance of state-of-the-art deep learning algorithms.

O2: Generation of a quality controlled dataset for the task of multi-instance surgical instrument segmen-
tation:
The objective of generating a quality controlled dataset for the task of multi-instance surgical
instrument segmentation is increase the number of available datasets and thus work towards C1.

O3: Structured assessment of state-of-the-art performance for multi-instance surgical instrument segmen-
tation:
The objective of the structured assessment of state-of-the-art determination for the multi-
instance segmentation of surgical instruments is to work towards managing sparse data (C2).
For this purpose, the dataset that will be generated in O2, should be used for investigating the
performance of the available methods concerning their generalizability and robustness.

O4: Systematic problem analysis of state-of-the-art methods for multi-instance surgical instrument seg-
mentation:
The objective of a systematic problem analysis of state-of-the-art methods is to work towards
managing sparse data (C2). For this purpose the work from Q3 should be used for identifying
the weaknesses of state-of-the-art methods. For this purpose, the dataset from O2 should be
extended by labels that define certain image characteristics.

O5: Problem-driven multi-instance surgical instrument segmentation algorithm:
The objective of a problem-driven multi-instance surgical instrument segmentation algorithm
is to work towards solutions managing sparse data (C2). For this purpose an explicit attempt
should be made to solve problems that were identified in Q4, to show that a problem-driven
algorithm development can help to better manage sparse data.
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1.3 Outline
The thesis begins with an overview of the necessary topics to follow the results of this thesis
in Chapter 2 Materials and Methods. It provides an introduction into basic machine learning
models in Sec. 2.1.1 and continues with statistical modeling methods in Sec. 2.1.2. After that,
an introduction into the fundamentals of neural networks is provided in Sec. 2.1.3, followed
by the neural network architectures that are used in this thesis in Sec. 2.1.4. The chapter ends
with an overview of current state-of-the-art methods in Sec. 2.2 for self-supervised learning in
surgical data science, available datasets in surgical data science, and finally, the multi-instance
segmentation for medical instruments in laparoscopic videos.

Chapter 3 Results gives a detailed presentation of the work that has been conducted towards
the challenges C1 and C2, as outlined in the previous section. Work towards C1 is presented in
Sec. 3.2 and work towards C2 is presented in Sec. 3.1, Sec. 3.3, Sec. 3.4, and Sec. 3.5. In Sec. 3.1, a
concept is introduced as to how unlabeled data could be used to improve the performance of
instrument segmentation algorithms when only a small amount of labeled data is available. Sec.
3.2 describes the generation of a huge quality controlled dataset for the task of multi-instance
instrument segmentation and Sec. 3.3 describes how this data was used for a community state-
of-the-art determination for the task of multi-instance instrument segmentation. Finally, the
results of this challenge were further analyzed in Sec. 3.4 where a in-depth statistical analysis
was performed to estimate the e�ect of image artifacts on the algorithm performance to identify
open challenges. The results from this section where used to develop an algorithm in Sec. 3.5
that specifically tackles such challenges.
Chapter 4 Discussion considers all of the developed concepts and results presented in this thesis
and contains a general discussion of the advantages and limitations of these methods, and a
summary of the contributions of this thesis.

A summary of the findings presented in this thesis is given in chapters 5 (English version) and 6
(German version).



2 | Materials and Methods

This chapter gives an overview of the principles needed so as to follow the content of this thesis.
It is divided into two sections. The machine learning techniques used in this thesis are described
in Sec. 2.1. A brief review of the current state-of-the-art in Sec. 2.2 covers the related work and
explicitly points out the gaps that are addressed by the work presented in this thesis.
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2.1 | Machine learning

The area of machine learning is a part of the research field of artificial intelligence [Goodfellow
et al., 2016a]. The main property of Machine Learning (ML) algorithms is the ability to automatically
generate a model that improves itself without explicitly being programmed to do so. This is done
by learning from observations, also known as "training data", by actively using mathematical
concepts from the field of computational statistics and optimization [Goodfellow et al., 2016a,
Koza et al., 1996]. In the following, first the classification of machine learning algorithms is
described in Sec. 2.1.1, which is followed by the statistical modeling methods that were used
in this thesis in Sec. 2.1.2. The fundamentals of neural networks are explained in Sec. 2.1.3 and
the architectures of neural networks that are based on those fundamentals are described in
Sec. 2.1.4.

2.1.1 Basic machine learning models
Clustering of machine learning models is mainly achieved by either how or what models learn. In
this section, first the how is described by pointing out the di�erences between supervised and un-
supervised learning, followed by the what, which explains the di�erence between discriminative
and generative models.

Supervised and unsupervised learning Basically, there are (besides many mixed forms) two main
ways to train a model, either supervised or unsupervised (see Fig. 2.1) [Goodfellow et al., 2016a].
In the supervised setting, an algorithm learns to associate an input x with a defined output (label)
y, where the collection of y normally requires manual e�ort by a human annotator [Goodfellow
et al., 2016a]. Typical supervised tasks are, for example, the classification of animals within
pictures [Miao et al., 2019, Deng et al., 2009] or the segmentation of cars in a street scene
[Krause et al., 2013, Chang et al., 2015]. In the unsupervised setting, instead of manually creating
labels, algorithms attempt to capture some underlying distributions from where x is generated
[Goodfellow et al., 2016a]. Typical unsupervised tasks are, for example, the clustering [Mwangi
et al., 2014, Caron et al., 2018] or compression of data [Tellez et al., 2019, Hoang et al., 2020].

Discriminative and generative models There are two main groups of machine learning algorithms,
based on what they learn: discriminative and of generative models [Ng and Jordan, 2002]. The
di�erence between the two is that discriminative models are learning decision boundaries
between di�erent targets of y that are based on an observation x. Such decision boundaries are
learned in the form of the conditional distribution P (Y |X = x). Generative models, however, are
learning the conditional distribution P (X|Y = y) [Ng and Jordan, 2002]. Thus, discriminative
models are used to assign a corresponding label y to an unseen data sample x, while generative
models are used to generate new x, conditioned on y.

2.1.2 Statistical modeling methods
Machine learning and statistical modeling are two research areas with many methods and
problems in common, making it di�cult to draw a clear line between them [Boulesteix and
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(a) Supervised learning (b) Unsupervised learning

Figure 2.1: This figure shows the di�erence between supervised and unsupervised learning. In the
supervised settings (a) each data point has an assigned label (in this case, the labels are class
1-4), and the task is to assign unlabeled data points to the correct class. In the unsupervised
setting (b), no labels are given, and the task is to identify structures within the data. (In the
shown model there are four possible clusters in the data).

Schmid, 2014]. One principal di�erence, however, can be seen in the purpose. While machine
learning methods aim to make predictions that are as accurate as possible, and statistical
modeling focuses more on inferring the relationships between variables [Beam and Kohane,
2018, Boulesteix and Schmid, 2014]. This section starts with Linear Mixed E�ects Models, continues
with Generalized Linear (Mixed), and ends with Conditional Random Fields.

Linear Mixed E�ects Models

To better understand Linear Mixed Models (LMM), one should look at first on the traditional
simple linear model, as given by Eq. 2.1. Linear models consist of a target variable Y , that
should be predicted with the help of explanatory variables, also called covariates X , that are
weighted with an individual coe�cient β. The design of such models forces the assumption that
all covariates share the same slope and intercept [Bolker et al., 2009]. This is what is also called
"fixed e�ects".

Y = Xβ + ε (2.1)
Y is the target with shape [p × 1], X is a matrix of p explanatory variables with the shape
[N × p]; β a column vector of the regression coe�cients with shape [p × 1] and ε a [N × 1]
column vector of the residuals (error term) andN is the number of data used for fitting the model.

Because for ε the assumption is that IE[ε] = 0, Var[ε] = σ2 and ε ∼ N (0, σ2), it is important to
note that linear mixture models can not be used for non-normally distributed data, such as
binary outcomes or counts, as this data would violate the assumptions.

In comparison to a normal linear model, mixed e�ects models [McCulloch and Neuhaus, 2001]
contain, besides the fixed e�ects β, also random e�ects u, which are used to describe the



18 CHAPTER 2. MATERIALS AND METHODS

variations in the observed outcome Y for a group J of repeated measurements [Harrison et al.,
2018, McCulloch and Neuhaus, 2001]. The purpose of random e�ects is that linear models work
under the assumption of non-correlated errors. However, if there could be variance on group-
level assumed, the group should be included as an additional factor to avoid the correlation of
the error terms within such groups (see Eq. 2.2). Applied to the problem of estimating the e�ect
of image artifacts, based on the performance scores of multiple algorithms, fixed e�ects could
be the artifacts, while the groups would be the image (repeated scores for each image) and the
algorithm number.

Y = Xβ + Zu+ ε (2.2)

where X , Y , β and ε are the same as in Eq. 2.1; Z as the design matrix of shape [N × qJ ]
with q random e�ects and J groups and u with the random-e�ects regression coe�cients with
shape [qJ × 1]. One main assumption with this model is that u ∼ N (0,G), where G is the
variance-covariance matrix of the random e�ects [McCulloch and Neuhaus, 2001].

Generalized Linear Models

As already written above, linear mixture models cannot be used for non-normally distributed data,
such as binary outcomes or counts. At the same time, especially in the medical and biological
domain, often such distributions are not given [Bolker et al., 2009]. Generalized linear models
are a way to handle this issue by introducing a link and a variance function. The link function
g (see Eq. 2.3) describes how the mean IE[Yi] = µi depends on the linear predictor, while the
variance function V (see Eq. 2.4) describes how the variance Var(Yi) depends on the mean.

g(µ) = η (2.3)

Var(Yi) = φV (µ) (2.4)

where i ∈ [1, 2, . . . , Ndata] and Ndata is the total amount of data and φ being a constant dis-
persion parameter. For a general linear model η would be for example η = β0+β1x1p+ . . .+βpxip.

In case of a binomial distribution Yi ∼ B(pi, ni), with ni trials and a success probability of pi,
then IE

[
Yi

ni

]
= pi. This means that V should be V (µi) = µi(1− µi). As pi is a probability and thus

in a range between 0 and 1, the link function needs to map (0, 1)→](−∞,∞). For this reason,
the link function reparametrizes pi (see Eq. 2.6) with the logit function (see Eq. 2.5).

g(µi) = logit(µi) = log
µi

1− µi
(2.5)

By using the logit function, pi is defined as:

g(pi) =

k∑
j=0

βjxij + ε (2.6)

where xi is a vector of p predictor variables with the shape [1 × p]; β a column vector of the
regression coe�cients with shape [p× 1] and ε the residuals (error term).
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Because the number of parameters per sample can di�er, the likelihood that needs to be
maximized max

β
L(β) is given by the products of the independent samples.

L(β | y1, y2, . . . , yn ;n1, n2, . . . , nn ; x1,x2, . . . ,xn) =

NS∏
i=1

(
yi
ni

)g−1
 k∑
j=0

βjxij

yi 1− g−1
 k∑
j=0

βjxij

ni−yi
(2.7)

with NS being the number of samples and j ∈ {1, 2, . . . , NP }, with NP being the number of
parameters.

Generalized Linear Mixed Models

Generalized Linear Mixed Models (GLMM) combine the properties of LMMs that involve random
e�ects, with Generalized Linear Models (GLM)s, that enable the analysis of non-normal dis-
tributed data [Bolker et al., 2009]. In case of a binomial distribution like the GLM, the General
Linear Mixed Models (GLMM) use a link function that reparametrizes pi as a LMM and connects it
via the logit link (see paragraph above).

Conditional random fields

A Conditional Random Field (CRF) is a statistical modeling method, first presented by John
La�erty et al. [La�erty et al., 2001], where relationships of di�erent variables are modeled by a
discriminative undirected probabilistic graph [Tran, 2008, Liu et al., 2016]. The goal of a CRF is to
model the mapping from observations X (e.g., RGB colors, spatial locations) to the joint output
variable Y = (y1, y2, . . . , yNclass

) (with Nclass being the number of classes) via the conditional
distribution P (Y |X) [Liu et al., 2016].

For this purpose, Y is represented as a Markov random field G = (V, E), where E is a set of
edges, V a set of nodes (vertices) and each node corresponds to a y, with y ∈ Y [La�erty et al.,
2001]. An example of a Markov random field can be seen in Fig. 2.2. One important property
that has to be fulfilled when using Markov random fields is the Markov property, which states
that the conditional probability distribution of a state only depends on its neighbors N and is
independent of variables outside of this neighborhood (see Eq. 2.8) [Tran, 2008]. An illustration
of an CRF is shown in Fig. 2.3.

P (yi|X, yj , i 6= j) = P (yi|X, yj , j ∈ N (i)) (2.8)

where N (i) is the neighbourhood of i and i being the index of the vertices of G with i ∈ V . This
property applies to all yi.

The conditional property P (Y |X) can be characterized by the Gibbs distribution as written in
Eq. 2.9:

P (Y |X) =
1

Z
exp

−∑
c∈CG

Ec(yc|X)

 (2.9)
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Figure 2.2: Illustration of the graph of a Markov Random Field (MRF) with nine random variables,
where the vertices representing the random variables and the edges the dependencies between
them. The symbol φi denotes a factor function, defining the dependency between two notes.

where c is a clique in the set of cliques CG in graph G. Ec is the Gibbs energy (see Eq. 2.11),
that specifies how local variables interact and how this interaction contributes to the global
distribution. All of this is normalized with the normalization factor Z , as defined in Eq. 2.10) [Tran,
2008, Krähenbühl and Koltun, 2011]:

Z =
∑
y∈Y

∏
c∈CG

Ec(Yc|X) (2.10)

with c being a clique in the set of cliques CG in graph G and the Gibbs energy Ec (see Eq. 2.11) [Liu
et al., 2016]. The energy function E(Y |X) is defined as:

E(Y |X) =
∑
y∈Y

ψu(y|X)︸ ︷︷ ︸
unary potential

+
∑
i,j∈V

ψp(yi, yj |X)︸ ︷︷ ︸
pairwise potential

(2.11)

where the first term ψu(y|X) is the unary potential, which is usually the output of another
machine learning algorithm (in this thesis a neural network). The unary potential measures the
cost if the label assignment di�ers from the initial label for pixels i and j, with i, j ∈ V . The
second term ψp(yi, yj |X) is the pairwise potential that measures the cost if similar pixels get
di�erent labels assigned [Krähenbühl and Koltun, 2011].

ψp(yi, yj |X) = µ(yi, yj)

Nclass∑
l=1

w(l)k
(l)
G (fi, fj) (2.12)

where µ(yi, yj) is a label compatibility function that assigns a penalty when labels are di�erent
and kG is a Gaussian kernel applied on the feature vectors. Feature vectors can be e.g., RGB
values and/or spatial locations. The compatibility function µ(yi, yj) can be either a learned
function as in Krahenbuhl et al. [Krähenbühl and Koltun, 2011] or a simple comparison like
µ(yi, yj) = [yi 6= yj ] which is similar to the Potts model [Kohli et al., 2007].
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The kernel that was applied (same as in [Krähenbühl and Koltun, 2011]) takes the appearance
and smoothness into account (see Eq. 2.13).

k(fi, fj) = w1 · exp

(
−|pi − pj |

2

2θ2α
− |Ii − Ij |

2

2θ2β

)
︸ ︷︷ ︸

appearance kernel

+w2 · exp

(
−|pi − pj |

2

2γ2α

)
︸ ︷︷ ︸

smothness kernel

(2.13)

where pi/j are the spatial locations, Ii/j are color vectors and Wi/j are learnable parameters.
The variables θα/γ are to control the degree of nearness and similarity in the appearance kernel,
which is motivated by the observation that pixels of similar location and color often belong to
the same class [Krähenbühl and Koltun, 2011]. The γ factor in the smoothness kernel, however, is
motivated by the fact that pixel regions are usually compact. Thus, it removes isolated regions
[Krähenbühl and Koltun, 2011].
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(a) Structure of a conditional random field

Y1 Y2 Y3 Y4

φ́1(Y1, x1) φ́2(Y2, x2) φ́3(Y3, x3) φ́4(Y4, x4)

φ1(Y1, Y2) φ2(Y2, Y3) φ3(Y3, Y4)
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Yi for every xi

Figure 2.3: Illustration of the graph of a Conditional Random Field (CRF), where (a) shows the
chain structure of a CRF with four random variables and (b) shows the chain structure of a CRF,
conditioned on X . The symbol φi denotes a factor function, defining the dependency between
two notes.

Once the CRF was trained by estimating the distribution Pr(Y |X), the labels that minimize the
energy function E can be predicted by using Eq. 2.14 [La�erty et al., 2001, Tran, 2008]:

ŷ = arg max
Y

P (Y |X) (2.14)

2.1.3 Fundamentals of neural networks

Neural networks are a class of machine learning algorithms that are inspired by the functionality
of the brain [Rosenblatt, 1958], meaning it imitates the complex interactions between neurons
and their connections [Rosenblatt, 1958]. In neural networks, the unit that emulates those
neurons consists of two building blocks: first, a layer (see Sec. 2.1.3) that takes an input signal and
performs a mathematical transformation on it, and second a non-linear activation function (see
Sec. 2.1.3), applied on the output of the layer [Goodfellow et al., 2016a]. Typically, di�erent kinds
of multiple layers are ordered behind each other and are connected in the form of architecture
(see Sec. 2.1.4), where a signal goes into the first layer (also called input layer) and through all
layers (hidden layers) including the last layer (also called output layer) [Goodfellow et al., 2016a].
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In this section, first all variations of layers that are used in this work are described in Sec. 2.1.3
Layers, followed by a description of the activation functions in Sec. 2.1.3 Activation functions. As
neural networks are machine learning algorithms, how a signal is transformed can be learned
using statistical methods. How this training is performed and how neural networks are finally
applied is described in Sec. 2.1.3 Training and inferencing.

Layers

As described above, the lowest level of building blocks in neural networks is the layer where
input signals are transformed with a di�erentiable mathematical operation. Depending on the
intention of use, such operations typically contain learnable parameters adjusted during the
training process (see Sec. 2.1.3). As layers are an active field of research and many new layer
types are invented every year, this section will only give an overview of the layers used for this
thesis, namely the linear, convolutional, pooling, and batchnorm layers.

Linear layer The linear layer is the simplest layer form in a neural network and consists of a
learnable weight matrix W and a bias b. As input, the linear layer receives a 1-Dimensional (1D)
input vector x of length n = cin and transforms the signal according to Eq. 2.15. By choosing the
dimension of the weight matrix W , the output dimension cout of the transformed signal can be
defined [cout × cin]. Like the Principal Component Analysis (PCA) [Hotelling, 1933], the linear layer,
combined with the bias, can be used for dimensionality reduction and is thus a powerful layer
[Goodfellow et al., 2016a]. However, it can only learn linear relations.

f(x) = x ·WT + b (2.15)

Convolutional layer The intuition behind using the mathematical operation "convolution" is
that it can be of particular interest to locate a specific pattern within a signal. Defined is the
convolution as the integral of the product of two functions (f and g), with g being shifted and
reversed [Goodfellow et al., 2016b].

As this work deals with two-dimensional images, f will be an image I , and g will be a so-called
kernel K, containing the pattern of interest. In reality, it turned out that the flipped kernel
property of the convolution is not of interest for the concrete neural network implementation
[Goodfellow et al., 2016a]. Thus, often a cross-entropy is implemented, which is the same
operation but without flipping the kernel (see Eq. 2.16). [Goodfellow et al., 2016b]. The process is
illustrated in Fig. 2.4

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.16)

as written in [Goodfellow et al., 2016b], where I denotes a two dimensional image of size
[Iwidth × Iheight] and K a two dimensional kernel of the size [m× n]. The variables i and j are
indices to access a specific pixel in image I with i ∈ {0, 1, . . . , Iwidth} and j ∈ {0, 1, . . . , Iheight}
respectively.

Pooling layer Pooling layers are usually used to create a representation that is invariant to small
translations, which is an interesting property for classification. The presence of a feature is more
important than the exact location [Goodfellow et al., 2016a]. In contrast to the convolutional or
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Figure 2.4: Exemplary illustration of a convolution/cross-correlation process for an [6× 6] input
image I and a [3×3] kernelK . At first, zero-padding was applied to I , which changed its dimension
to [8× 8]. The kernel was then moved over the image (as described in Eq. 2.21), which produced
S. The operation zero-padding was used so that the dimensions of I and S are the same.

linear layer, this layer type does not contain any learnable parameters. Instead, it computes
statistics over a small subregion of an image using the maximum value (max pooling) or its
average (average pooling).

As pooling can be used for downsampling an image, there is also an inverted version, the
max/average unpool operation. All operations are exemplary shown in Fig. 2.5.

Batchnorm layer While previous layers (e.g., convolutional layer, pooling layer) are used to
transform the input signal into a new latent representation, the batchnorm layer is used to train
a neural network more easily [Io�e and Szegedy, 2015, Goodfellow et al., 2016a]. Modern deep
models are especially prone to unexpected e�ects caused by the way parameters are updated.
Ideally, gradients that are computed for each parameter assume that all the other parameters
remain constant. However, in practice, all parameters are updated simultaneously, which might
lead to an unstable training [Goodfellow et al., 2016a]. For this reason, the batchnorm scales
each output of a layer during the training, by standardizing the activations in each mini-batch
to have a standard deviation of one and a zero mean (see Eq. 2.17) [Goodfellow et al., 2016a].
During inferencing, running averages will replace IE[H] and Var[H] that were collected during
the training time [Io�e and Szegedy, 2015]. This technique leads to a much more stable training
and can lead to better performance of the network [Io�e and Szegedy, 2015].

H̀ =
H − IE[H]√
Var[H] + ε

· γ + β (2.17)

where ε is a small constant to avoid a division by zero, IE[H] and Var[H] are calculated per
dimension over the mini-batches and γ and β are learnable parameters.
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Figure 2.5: An exemplary illustration of the max and average pooling for an input of size [6× 6]
and a pooling operation over [2× 2] pixels. First, the image I is separated into nine fields of the
size [2× 2]. Then, for each field, either a max or average pooling is calculated, resulting in P with
shape [6 × 6]. After applying the inverse corresponding unpool operation, the original image
dimension is restored in U .

Activation functions

Activation functions σ(z) are the second main building block in neural networks. Each layer
is always followed by a fixed activation function, meaning that after the transformation of a
signal x by the transformation function z = g(x) of the layer, the signal goes into the activation
function σ(g(x)) [Goodfellow et al., 2016a].

Originally, the activation function was motivated by the brain’s biological functionality, where
it models whether a neuron fires or not [Goodfellow et al., 2016a]. Currently, neural networks
use non-linear activation functions that enable the possibility to manage complex data by
increasing the dimensionality of the model [Goodfellow et al., 2016a]. Not using activation
functions would cause a collapse into a linear system [Goodfellow et al., 2016a]. While it may be
desirable for smaller problems to spare parameters, especially complex problems, require a big
model capacity [Goodfellow et al., 2016a]. Besides this, activation functions help to normalize a
neuron’s output into a specific range, depending on the used activation function and the use-case.

For instance, classification tasks usually use a softmax activation on the last layer to generate
pseudo-probabilities in a range between [0, 1]. If the output has to be bounded, the sigmoid or
tanh activation can be applied, that produces values in a range of [0, 1] or [−1, 1] respectively.
The (leaky) ReLu activation is mostly used in input or hidden layers as they are less likely to
generate vanish gradients and seem to produce better results in practice [Krizhevsky et al., 2012].
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The range of ReLu is [0, inf]. As values of zero could lead to a total deactivation of certain parts in
a model, leaky ReLu has an additional factor a that prevents the e�ect by also allowing negative
values, resulting in a value range of [− inf, inf].

As there are many di�erent kinds of activation functions available [Goodfellow et al., 2016a],
Fig. 2.6 only shows the activation functions used in this work.
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leaky ReLU: σ(z) = max(a · z, z)),{σ(z)∈[− inf,inf]}

Figure 2.6: Activation functions used in this thesis with their formula and value range.

Losses

Like all machine learning algorithms, neural networks must be trained on data before being
applied to an actual problem. For this training process (as described in Sec. 2.1.3) there is a need
to quantify how well a network models the data by means of an objective function - also called
loss or cost function [Goodfellow et al., 2016a].

A loss function typically measures a model’s success in terms of how "wrong" a network is in its
predictions by computing a kind of di�erence between a predicted value ŷ and the true value y.
Thus, the lower the loss, the "better" the network describes the data. Therefore, it requires that
the value of the loss function is a good indicator for success concerning the given task and that
a decreasing loss leads to a better model [Reed and MarksII, 1999, Goodfellow et al., 2016a].

As mentioned above, the chosen loss function must be appropriate to quantify the quality.
Unfortunately, no loss function works for every kind of problem. Various factors play a role
in choosing the correct one (such as outliers in the data, calculation e�ort, etc.). Principally,
two major groups of losses exist, namely regression and classification losses [Goodfellow et al.,
2016a]. Regression is the task of predicting continuous values (e.g., how long a specific surgical
procedure lasts) while classification is the task of predicting from a set of finite categorical
values (e.g., the visible instrument in the current video frame is a scissor).

Because losses are so problem-specific, one cannot give a complete list of all losses used in the
literature. Thus, the following part presents only a selection of losses used in this thesis.
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Regression losses In this part, the two most common regression losses are described: the L1
also called Mean Absolute Error (MAE) and the L2 loss, also called Mean Squared Error (MSE).
Both are used to minimize the error between predictions ŷ and the true value y for a regression
task.

The L1 loss is defined as the average of the sum of absolute di�erences between ŷ and y and
measures the magnitude of error without its direction, with N being the number of data samples
and i ∈ [1, 2, . . . , N ] (see Eq. 3.2).

L1/LMAE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi) (2.18)

Also the L2 ignores the direction but uses the squared di�erences between ŷ and y with N being
the number of data samples and i ∈ [1, 2, . . . , N ] (see Eq. 3.3).

L2/LMSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)2 (2.19)

The main di�erences between L1 and L2 are that the L1 is more robust against outliers than the
L2 with its squared error. However, the L2 leads to more stable training than the L1 and has
only one solution, while L1 has more than one (see Fig. 2.7).
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Figure 2.7: This figure illustrates the L1 and L2 distance between two data points, A and B. While
the solution for the L2 norm (red) is unique, L1 (blue) has multiple possible solutions (dashed
arrows).

Classification losses This part describes two classification losses, the Cross Entropy (CE) and the
Sørensen Dice Similarity Coe�cient (DSC) loss [Sudre et al., 2017]. In contrast to regression losses
where continuous values are compared, classification losses encompass a finite set of categorical
values. In computer vision tasks, the comparison is mainly performed by predicting a probability
of each class by applying a softmax activation on the output (see Sec. 2.1.3). To compare the
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predicted probabilities with the reference, the reference is converted into a one-hot encoded
vector δ (see Eq. 2.20).

δi=c≡

{
1 if i = c

0 else
(2.20)

with δ is of length Nc, Nc is the number of classes, c is the reference class and i ∈ [0, 1, . . . , Nc].

After the conversion into a one-hot encoded vector, δy and ŷ can be interpreted as two distri-
butions. Comparison can now be done by the cross-entropy, which measures the total entropy
between two distributions (see Eq. 2.21). The closer both distributions are, the smaller the loss
will be.

LCE(y, ŷ) = −
∑
j∈c

δyj log ŷj (2.21)

One very important task in the computer vision community is the segmentation task, where
segmentation means that every single pixel in an image is assigned to a concept (e.g., foreground
vs background). In other words, the segmentation can be seen as a pixel wise classification. A loss
that is often used for training segmentation models is the DSC loss [Drozdzal et al., 2016], which
is defined as the harmonic mean of precision and recall. Usually, the DSC is used to compare the
overlap between two segmented regions and ranges from 0 to 1, where 1 denotes a complete
overlap (see Eq. 2.22). As during the training process of neural networks, the error is minimized,
and the DSC loss needs a small modification in its formula (see Eq. 2.23).

DSC(Y, Ŷ ) :=
2|Y ∩ Ŷ |
|Y |+ |Ŷ |

(2.22)

LDSC(y, ŷ) = 1−
2 ·
∑
pixel(y � ŷ)∑

pixel y +
∑
pixel ŷ + ε

(2.23)

where Y denotes the reference annotation and Ŷ the corresponding prediction of an image
frame, � denotes an element-wise multiplication and ε a small constant to avoid a division by
zero. There exists di�erent versions of the DSC loss, e.g., by using the squared sum for both terms
in the denominator [Milletari et al., 2016].

Training and inferencing

The heart of all machine learning algorithms is the training and inferencing steps. During the
training process the algorithm learns, based on the training data, a parameter setup that models
the data distribution by continuously updating all learnable parameters of the model. After the
training is done, the model can be used and applied to new data, the inferencing step.

The basis of the complete training procedure is formed by the loss function L (see Sec. 2.1.3) and
the principal goal is to perform optimization by updating the learnable parameters θ in such a
way that the loss decreases [LeCun et al., 2015]. Those parameters are updated with the help of
the loss gradients. The calculation of those gradients is called backpropagation.
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One of the first and most used algorithms to do the optimization of the parameter θ of a neural
network is the Gradient Descent (GD), which tries to find a minimum for a given cost/loss function
L [Kiefer et al., 1952]. It is based on the gradient descent optimization algorithm, which does the
parameter updates by (1) processing all training data x with the model, then (2) calculating the
average of the error IE[L(θ)] and finally, the resulting gradients are used in combination with a
learning rate α to update the model parameters (see Eq. 2.24).

θ = θ − α∇θIE[L(θ)] (2.24)

However, this process is very time-intensive as it requires the processing of all available training
images.

In comparison to the gradient descent, the Stochastic Gradient Descent (SGD) [Kiefer et al.,
1952] no longer relies on the expectation as it approximates by computing the gradients of the
parameters by using only a few samples of the training images, the so-called mini-batches (see
Eq. 2.25) [Kiefer et al., 1952].

θ = θ − α∇θL(θ;x(i), y(i)) (2.25)

with x(i) and y(i) being the i-th mini-batch from the training set. The learning rate α is the
same for all learnable parameters. At this time it has become the standard optimizer for neural
networks.

Additionally, the learning of the SGD might be slow, and a good learning rate of α might be
challenging to achieve. Thus, the Adam optimizer [Kingma and Ba, 2014] became increasingly
popular in the last years and is currently suggested as the default optimization [Karpathy et al.,
2016]. It allows individual adaptive learning rates, where the learning rate is adapted by how fast
the loss decreases [Karpathy et al., 2016]. Despite the fact that the adaptive learning rate leads
to faster training, it comes at the cost of a non-optimal convergence and worse generalization
[Keskar and Socher, 2017, Wilson et al., 2017].

2.1.4 Neural network architectures used in this thesis

After the description of the building blocks of neural networks (see Sec. 2.1.3), this part explains
all neural network architectures that were used in this work. Two discriminative models (U-Net
and a Residual Neural network), one generative model (GAN) and a Recurrent neural network.

U-Net

The U-Net is a deep learning architecture designed for image segmentation, where its architecture
aims to combine local and global context for improving the segmentation quality [Ronneberger
et al., 2015]. As the name suggests, the U-net has a "U" like form (see Fig. 2.8) and is oriented
on the Autoencoder [Ballard, 1987] architecture. The four main building blocks are a down-
sampling path, a bottleneck, an upsampling path, and skip connections [Ronneberger et al., 2015].

Like the Autoencoder, the U-Net first reduces stepwise the spatial information in the downsam-
pling path and compresses it into a smaller representation of the image (bottleneck). Afterwards,
it reconstructs stepwise the original image dimension in the upsampling path. In contrast to
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the Autoencoder, the U-Net uses skip connections between the same spatial resolutions [Ron-
neberger et al., 2015]. The U-net idea is that decreasing the spatial resolution enables the network
to encode neighboring pixels into global information, while the skip connections combine global
with local information [Ronneberger et al., 2015]. Each level in the downsampling path has three
consecutive blocks, where each block is first a convolutional layer, followed by a batchnorm and
a leaky ReLu activation. At the end of each level comes a MaxPooling operation that reduces
the spatial dimension. The upscaling path starts with an unpool operation, followed by the skip
connection. The skip connection concatenates the output of the level before with the output of
the same level hierarchy. Ultimately, again three times, the blocks are processing the signal.

𝐼  𝑦

Batchnorm 
+ 

leaky ReLU

Convolution

MaxPool UnPool

Skip connection

Figure 2.8: This figure illustrates the U-Net architecture, where the left part is called the down-
sampling path and the right part the upsampling part. Each level in the downsampling path has
three consecutive blocks, where each block is first a convolutional layer, followed by a batchnorm
and a leaky ReLu activation. At the end of each level comes a MaxPooling operation that reduces
the spatial dimension. The upscaling path starts with an unpool operation, followed by the skip
connection. The skip connection concatenates the output of the level before with the output of
the same level hierarchy. Ultimately, three more times, upsampling blocks are processing the
signal.

Residual neural networks

The group of residual neural networks is a group of networks that is used more often for
classification rather than segmentation; however, it can be used for both use cases [Wu et al.,
2019]. The main motivation for developing residual neural networks was that deep learning
models cannot arbitrarily consist of many layers, as it can lead to a problem called vanishing
gradients [He et al., 2016a]. Vanishing gradients are a phenomenon that occurs during the
backpropagation process, where the "error signal" decreases (or increases) exponentially as a
function of the distance from the "final layer" [Sussillo and Abbott, 2014]. Those unclear gra-
dients can lead to unstable training and thus, result in a bad overall performance [He et al., 2016a].

To avoid the vanishing gradients problem, the Residual Neural Network (ResNet) is a biologically
inspired form of architecture that incorporates a new kind of building block in the form of
shortcuts between layers (see Fig. 2.9), so-called skip connections [He et al., 2016a]. Like the
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pyramid cells in the cerebral cortex, this enables a signal to skip layers and thus reduces the
vanishing gradients’ e�ect. Those skip-connections enabled really deep architectures, starting
from a ResNet18, up to currently a ResNet152 [Tan and Le, 2019].

x

conv

batchnorm

conv

+

ReLU
x

ReLU

Figure 2.9: Exemplary illustration of a residual block with two convolutional layers.

Generative adversarial networks

In 2014, Goodfellow et al. introduced a new generative machine learning framework, the so-called
Generative Adversarial Network (GAN) [Goodfellow et al., 2014]. Despite discriminative models,
GANs can be used to generate new data from a learned distribution (see Sec. 2.1.1). Usually, GANs
are made up of two competing models, a generator G and a discriminator D that are trained
simultaneously. Both G and D contest each other in the form of a zero-sum game, meaning
G generating new data and D deciding whether the presented data is from the true training
data distribution or G generated data distribution [Goodfellow et al., 2014]. As D improves and
learns to di�erentiate real from generated data, G aims to fool D and thus has to adapt its
generation [Goodfellow et al., 2014]. As this thesis deals with images, the GAN will be explained
on image generation. An overview of the framework is shown in Fig. 2.10. In the following, the
discriminator and the generator will be further explained.

Discriminator D The discriminator is a model that is trained to di�erentiate between real and
fake images. As this is a classification task, where the discriminator should provide the probability
whether the input belongs to the true distribution, the authors used a sigmoid activation, such
that D(I) ∈ [0, 1], where 1 stands for the Yreal and 0 for the Ysynthetic class. Additionally, instead
of using a classification loss such as cross-entropy, typically, a regression loss is used, as shown
in the Eq. 2.26.

LD(I, Î) =
[
D(I)− Yreal

]2
+
[
D(Î)− Ysynthetic

]2 (2.26)

Generator G The generator G is a neural network that acquires as input a random vector r and
produces an output (in this case, a new image Î). The last layer has a tanh activation function,
thus G(z) ∈ [−1, 1], with a random input z, where z ∼ N (0, 1). While the discriminator has a
concrete error loss, G becomes optimized to maximize the error of D (see Eq. 2.27).
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𝑧  𝐼

𝐼

Generator

Discriminator

𝒀𝒔𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄

𝒀𝒓𝒆𝒂𝒍

Figure 2.10: Architecture of the Generative adversarial network (GAN).

LG(Î) =
[
D(Î)− Yreal

]2 (2.27)

Training of a GAN As already written above, the generator G and the discriminator D are jointly
trained in the form of a zero-sum game with the value function V (G,D), where the log probability
of the discriminator to correctly classify input data as either real or synthetic is maximized, and
the probability of the generator to produce a synthetic image that can be correctly classified by
D is minimized.

min
G

max
D

V (G,D) = IEI∼pT (I)[logD(I)] + IEz∼pz

[
LG
(
G(z)

)]
(2.28)

where pz is a prior and I ∼ pT a real image drawn from the training set and V the joint model of
G and D. The training itself should typically converge into a Nash equilibrium [Kreps, 1989], such
that neither the generator, nor the discriminator, are changing any more, given the action of the
others [Goodfellow et al., 2014].

The training of GANs comes with several di�culties: (1) slow learning, (2) a mode collapse,
(3) problem to converge, and (4) di�culties in balancing and controlling the learning process
[Arjovsky and Bottou, 2017, Goodfellow et al., 2016a].

Recurrent neural networks

Recurrent neural networks are a new class of neural networks that allow the use of previous
outputs to be used as input [Bengio et al., 1994]. In contrast to all the network architectures that
were described before (e.g., U-Net, GAN) whose inputs are fixed, RNNs enable the processing and
prediction of sequences by incorporating contextual information in the form of hidden states
[Bengio et al., 1994]. The di�erences between a traditional neural network and an Recurrent Neural
Network (RNN) are presented in Fig. 2.11. Typical applications of RNNs are speech recognition
[Graves et al., 2013], stock price prediction [Selvin et al., 2017] or text translation [Cho et al., 2014].
RNNs are usually trained with a loss function that sums up the error at every time step (see
Eq. 2.29).
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ŷ

(a) Traditional neural network
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ŷ0

x1

ŷ1

x2

ŷ2
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ŷT

(b) Recurrent neural network

Figure 2.11: This figure illustrates the di�erences between a traditional neural network (a) and an
example of a recurrent neural network (RNN) (b). It can be seen that traditional neural networks
take one fixed input x to produce a prediction y, while the RNN processes a sequence of inputs
{x0, x1, . . . , xT }. It does this by incorporating the contextual information in the form of hidden
states to produce the predictions {ŷ0, ŷ1, . . . , ŷT }, where T is the sequence length.

L(y, ŷ) =

Ty∑
t=0

L(yt, ŷt) (2.29)

where Ty is the number of time steps for the sequence of targets y.

Despite the many advantages of RNNs that enables the possibility to process the input of any
length, keeping the model size static even with increasing input length, and taking historical
information into account, in praxis, it turned out that RNNs su�er from a couple of drawbacks.
These drawbacks are di�culties in accessing information in long sequences and in the ability to
train RNNs due to vanishing and exploding gradients (explanation see Sec. 2.1.4 Residual neural
networks) [Bengio et al., 1994, Sak et al., 2014].

Motivated by the observation that the error flow in RNNs can lead to vanishing or exploding
gradients and thus hinder the access to information in long sequences [Graves and Schmidhuber,
2005], Hochreiter et al. developed the Long short-term Memory Network (LSTM) architecture
[Hochreiter and Schmidhuber, 1997].

The core idea behind the LSTM is a cell state c where information is stored and thus theoretically
accessible at any time during the sequence [Hochreiter and Schmidhuber, 1997]. The decision as
to should be stored is regulated by a gate mechanism, which is a sigmoid output of a network
layer and a pointwise multiplication. As sigmoid contains values in the range of [0, 1], it describes
how much information should be remembered or forgotten [Hochreiter and Schmidhuber, 1997].
After learning how much of the state should be forgotten, new information is added to the state
by pushing the output through a tanh activation function and multiplying it by the output of
the sigmoid [Hochreiter and Schmidhuber, 1997]. Finally, the output of the LSTM is based on the
new cell state, filtered by the tanh and again gated with the sigmoid activation [Hochreiter and
Schmidhuber, 1997]. The complete LSTM layer is illustrated in Fig. 2.12,
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Figure 2.12: Illustration of the building block of a Long short-term memory network (LSTM).

Mask R-CNN

While approaches like the U-Net can only be used to assign each pixel to a concept, the Mask
R-CNN [He et al., 2017] is motivated by the observation that the number of visible classes and
objects within an image can vary, making it challenging to train multi-instance segmentation/-
classification. Unlike the U-Net, the Mask R-CNN should be able to distinguish di�erent instances
from the same class. For this reason, the authors decided to combine the functionality of a
recurrent neural network with a segmentation/classification network [Ren et al., 2015, He et al.,
2017]. A Mask R-CNN’s principal architecture (see Fig. 2.13) is divided into two steps, both of
which are based on the backbone. In the following paragraphs, the backbone is first explained,
followed by a more detailed explanation of the two steps and ending with how a Mask R-CNN is
trained.

Backbone The backbone of a Mask R-CNN is usually a pre-trained network prepared to detect
objects in images on huge datasets such as ImageNet [Deng et al., 2009] or MS-COCO [Lin et al.,
2014a]. Examples of such backbones are ResNets [He et al., 2016a], the VGG network [Simonyan
and Zisserman, 2014] or a network that combines both architecture and a Feature Pyramid
Network [Lin et al., 2017]. As the pre-trained networks have already been trained to detect and
to di�erentiate between multiple classes, the assumption is that they already learned features
that are helpful to distinguish between objects. Using multiple layers of such low-level features
(features from layers in the very beginning) can help to transform an input image into a more
meaningful latent representation [He et al., 2017].

Step 1: Region proposals After transforming the input image into the latent representation, the
Mask R-CNN produces so-called proposals. Proposals are regions in the image of a particular
interest as they might contain objects that should be segmented. Those proposals are generated
by a Region Proposal Network (RPN), which, in most cases, is a lightweight network which
consists of only a few layers to proposes regions (Region of Interest (ROI)) in the form of anchor
boxes [He et al., 2017]. The size, aspect ratio, and scaling of such anchor boxes are predefined
parameters. During the training and inferencing, the RPN proposes thousands of boxes with
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di�erent combinations of the predefined size, aspect ratio, and scaling [He et al., 2017].

Step 2: Instance segmentation/classification The second step contains di�erent headers of small
specialized branches. These branches consist of lightweight CNNs that predict (1) the bounding
box coordinates, (2) the class of the object inside the bounding box, and finally (3) the segmenta-
tion of the object inside the bounding box [He et al., 2017]. In addition to the bounding box, the
architecture further predicts a score which is the estimated Intersection over Union (see Eq. 2.30
of the predicted bounding box with the real bounding box of an object [He et al., 2017].

IoU(Y, Ŷ ) :=
|Y ∩ Ŷ |
|Y ∪ Ŷ |

(2.30)

where Y is the reference and Ŷ is the prediction. By thresholding this score, one can di�erentiate
between good/bad proposals and use only objects with a high score for the final prediction [He
et al., 2017].

Training Other than the backbone which is usually not a vanilla network and thus does not need
to be retrained, all other network parts are jointly trained. The multi-task loss function is shown
in Eq. 2.31.

LMRCNN(Y, Ŷ ) = Lcls(Y, Ŷ ) + Lbox(Y, Ŷ ) + Lmask(Y, Ŷ ) (2.31)
where Lcls(Y, Ŷ ) and Lmask(Y, Ŷ ) are both classification cross entropy losses, where Lcls(Y, Ŷ ) is
the loss for the correct classification of a bounding box and Lmask(Y, Ŷ ) the loss for the correct
binary segmentation of the object inside of the bounding box. This was in order to learn correct
coordinates of the bounding box, the Lbox(Y, Ŷ ), which is a regression loss (either L1 or L2 loss)
[He et al., 2017].
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Figure 2.13: This figure shows an illustration of the Mask R-CNN architecture. Input is an image
which will first be processed by the pre-trained backend to extract low-level features. Those
features are then the input for a region proposal network (RPN) that produces regions of interest
(ROI). Those ROIs will then be further processed in the Mask R-CNN, which predicts bounding
boxes (BBoxes), binary masks, and each box’s class.
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2.2 | Related work

This section is intended to provide an overview of the relevant work and current state-of-the-art
for this thesis in accordance with objectives stated in the introduction. As this section it is
supposed to be an overview, not all aspects of the presented methodologies and papers can be
discussed in detail.

In this section, recent work in the field of self-supervised learning in surgical data science is first
presented in Sec. 2.2.1, followed by the most relevant datasets in the surgical data science in
Sec. 2.2.2. In Sec. 2.2.3 the most recent publications in the field of multi-instance segmentation
are presented. The last part (Sec. 2.2.4) reviews how the objectives O1 - O5 try to fill such "white
spots" on the "research map".

2.2.1 Self-supervised learning in surgical data science

Sparsity of labeled data is a problem that a�ects both communities, the computer vision
community, that deals with natural images and the SDS community [Zhang et al., 2016, Baur
et al., 2017, Chapaliuk and Zaychenko, 2020]. In the medical domain, it is even considered one
of the major bottlenecks for developing and translating deep learning-based models into the
clinical routine [Shen et al., 2017a, Miotto et al., 2018, Chapaliuk and Zaychenko, 2020]. When
dealing with small datasets, most of the models are semi-supervised learning approaches [Baur
et al., 2017, Chapaliuk and Zaychenko, 2020] that aim to learn a representation of a domain while
dispensing manually generated annotations [Zhang et al., 2016, Baur et al., 2017]. The idea of a
semi-supervised approach is, in principle, pre-training on a huge labeled dataset and a later
fine-tuning on a small set of training data from the target task [Ravishankar et al., 2016, Zhou
et al., 2017, Tajbakhsh et al., 2017]. An alternative technique that does not require a vast labeled
dataset is self-supervised learning. Instead of a massive amount of labels, raw data is used in
the auxiliary task as its own source of supervision [Agrawal et al., 2015a, Zhang et al., 2016, Zhang
et al., 2017a].

When the results of this thesis were developed and published in Ross et al. [Ross et al., 2018],
the related literature on pre-training with self-supervised learning was mainly presented by
the computer vision community. One of the first deep learning self-supervised learning papers
was from Agrawal et al. [Agrawal et al., 2015a], where the authors trained a neural network to
predict the camera transformation between pairs of images (egomotion). They could show that
features learned from the egomotion training are useful when fine-tuned on tasks that require
a visual understanding of the world, such as object classification [Agrawal et al., 2015a]. The
authors recommend that future research focus on identifying auxiliary tasks that could be used
for self-supervision.

Later publications followed the recommendation and proposed a set of auxiliary tasks: classi-
fication [Zhang et al., 2016, Noroozi and Favaro, 2016], re-ordering [Noroozi and Favaro, 2016],
prediction [Agrawal et al., 2015b]), in-painting [Pathak et al., 2016] and re-colorization [Zhang



2.2. RELATED WORK 37

et al., 2016, Zhang et al., 2017b, Larsson et al., 2017]. The first self-supervised learning paper in
the medical domain was from Zhan et al. [Zhang et al., 2017a]. The authors worked on CT and MR
images, where they selected from a random slice random patches and placed them into another
slice. After that, they trained a neural network to find the wrong patches and to predict the
slice number where they are taken from [Zhang et al., 2017a]. with this procedure, the authors
could learn spatial and contextual features that increased the organ segmentation an disease
classification.

While previous literature was outside the SDS domain, one publication in the SDS domain was
simultaneously developed to work presented in this thesis by Bodenstedt et al. [Bodenstedt
et al., 2017]. The authors introduced a new auxiliary task trained in a self-supervised manner
for a workflow recognition task. In their method, the authors first extracted image pairs from
a video and trained a CNN to determine their temporal order [Bodenstedt et al., 2017]. With
this method, the authors could show that the learned features improve the performance of a
workflow recognition task.

In the meantime, there are new publications that are partially based on the results of this thesis
that were published in [Ross et al., 2018]. Some of the most relevant new developments are
summarized in recent reviews, e.g., Chapaliuk et al. [Chapaliuk and Zaychenko, 2020], Jing et
al. [Jing and Tian, 2020], and Cheplygina et al. [Cheplygina et al., 2019]. The main contributions
of new approaches are the identification of further possible auxiliary tasks (e.g., multi-model
reconstruction tasks [Hervella et al., 2020] or predicting the optical flow [Zhao et al., 2020]).
Tajbakhsh et al. presents an approach where the authors use a combination of auxiliary tasks,
namely rotation, reconstruction, and colorization [Tajbakhsh et al., 2019]) and Bowles et al.
[Bowles et al., 2018] use self-supervision to learn possible data augmentation techniques to
enhance the availability of their training data. A completely new approach from Liu et al. [Liu et al.,
2020] is inspired by the idea of self-supervision (including no manual labeled data), in which
the authors present a setting where they automatically generate pseudo labels for instrument
segmentation. Those pseudo labels are based on anchors generated by an object detector and
the location of proposed objects. Those labels are then used to train a neural network to segment
instruments in images automatically.

2.2.2 Available datasets for surgical data science

As written before, the number of available datasets in the surgical data science community
generally is limited [Esteva et al., 2021, Maier-Hein et al., 2020a]. Beside datasets that provide
data from laparoscopic surgeries that focus on SDS tasks, e.g., EndoVis - Kidney [Hattab et al.,
2020], there are a couple of datasets address surgical instruments. Two of them is the datasets
Endovis - Workflow and Skill[EndoVis, 2019] and Cholec80 [Twinanda et al., 2016]. These two
datasets provide images from laparoscopic colorectal surgery and cholecystectomy, respectively.
However, both datasets only provide the type of surgical instrument (e.g., scissor, grasper) and
do not focus on the segmentation. The same holds true for the m2cai6-tool dataset [Stauder
et al., 2016] and CATARACTS [Endovis, 2018], where CATARACTS provides data from a microscopic
surgery. Also, the dataset from [Sznitman et al., 2012] contains data from a microscopic surgery
(retina microsurgery) and provides the instrument center and the scale. One dataset that gets
closer in the direction of the instrument segmentation is ATLAS Dione [Sarikaya et al., 2017],
which provides instrument bounding boxes. However, ATLAS Dione was recorded in a phantom,
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which limits the representativeness of the data.

Besides the mentioned datasets dealing with a related instrument task, a few datasets focus
directly on the segmentation. One of them is the EndoVis challenge instrument segmentation
dataset [Endovis, 2015], which comprises 310 annotated images from a colorectal surgery with
binary instrument segmentations. However, for state-of-the-art machine learning algorithms,
this amount of data is insu�cient to train a segmentation model that does generalize well (see
Fig. 1.1). As this amount of data was not big enough, Allan at al. provided the EndoVis - Rob
Instrument dataset [Allan et al., 2019], with 3,000 images. Even though the amount of data is now
much higher, The authors have mainly chosen images from a robotic nephrectomy that have no
problems, such as smoke, reflections, or excessive blood. Therefore, its representatives for real
surgeries is limited. The same holds for the EndoVis Rob Seg dataset [EndoVis, 2018]. However,
one dataset that got very recently published is the CATARACTS-SemSeg[Endovis, 2020] dataset,
but also this dataset does only provide binary segmentations.

Besides missing datasets for multi-instance segmentation, none of the previously mentioned
datasets had a clearly defined annotation protocol and a quality controlled annotation process.
Further, most of the datasets were only labeled by only one and in some cases by two annota-
tors. Thus, the data might contain inconsistencies and is biased towards the small number of
annotators’ preferences.

2.2.3 Multi-instance medical instrument segmentation

While the task of binary instrument segmentation has received much attention over the last
couple of years (e.g., [Allan et al., 2015, García-Peraza-Herrera et al., 2016, Garcia-Peraza-Herrera
et al., 2017a, Shvets et al., 2018, Lee et al., 2019, Jin et al., 2019]), there was no literature about
multi-instance segmentation up to the point where parts of this thesis had been published in
[Roß et al., 2020]. This lack of literature can be attributed to the fact that open data was only
available for binary segmentation, as shown in the dataset table, presented in Maier-Hein et al.
[Maier-Hein et al., 2020a]. For this reason, the first part of this section will present the state-
of-the-art of binary instrument segmentation, and the second part the recent multi-instance
segmentation. Because of the strong relatedness between the robotic instrument segmentation
and the laparoscopic instrument segmentation, the presented methods will be a mix of both tasks.

Binary instrument segmentation The task of binary instrument segmentation has a long history,
where first approaches were based on handcrafted features such as color and texture fea-
tures [Speidel et al., 2006, Zhou and Payandeh, 2014]. With the rise of machine learning, new
approaches such as Gaussian Mixture Models [Pezzementi et al., 2009] and Random Forests
[Bouget et al., 2015, Maier-Hein et al., 2016]) were commonly used. However, a real breakthrough
in the performance was achieved by the first deep learning models, such as [Garcia-Peraza-
Herrera et al., 2017a], [Shvets et al., 2018], and [Isensee and Maier-Hein, 2020], that are slightly
changed variants of the popular U-Net from Ronneberger et al. [Ronneberger et al., 2015]. Other
approaches attempt to use very deep networks, such as ResNets [Pakhomov et al., 2019] or
recurrent neural networks [Zhao et al., 2018]. In principal can the development of instrument
segmentation models be divided into two main branches: The first branch contains models which
attempt to maximize segmentation metrics to win challenges (e.g., [Isensee and Maier-Hein,
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2020]), but often perform slow as result [Shvets et al., 2018]. The second branch often achieves
lower performance results, but these smaller, and often specially designed models posses the
benefit of being able to used in real-time applications [García-Peraza-Herrera et al., 2016, Islam
et al., 2019].

Multi-instance segmentation Based on the review paper from from Hafiz et al. [Hafiz and Bhat,
2020] that provides an extensive overview overview of the current state-of-the-art for multi-
instance segmentation, almost all current approaches are based on the method detection
followed by segmentation, which means that first a detector network provides proposals of
possible object locations, followed by a segmentation network that further processes such
proposals [Hafiz and Bhat, 2020].

Overall, it can be said that the entire topic is currently the subject of intense research, where
almost every two months a new method is reported that outperforms top scores on the COCO
benchmarking1 by tiny margins (Average Precision [Zhang and Zhang, 2009] 0.491 vs. 0.485). The
latest best performing methods and currently most used approaches are the Mask R-CNN [He
et al., 2017], the Mask scoring R-CNN [Huang et al., 2019b], centermask [Lee and Park, 2020] and
Cascade R-CNN [Fang et al., 2019]. Although there are constantly new approaches, the R-CNN
mask is still the most widely used network for multi-instance segmentation [Hafiz and Bhat, 2020].

Up to this point, there are three very recent publications, all based on the results that were
published in [Roß et al., 2020]. The first one is from Kletz et al. [Kletz et al., 2019], which is based
on a Mask R-CNN. The authors propose an approach to use a multi-task training method, in which
they simultaneously detect and segment instruments in laparoscopic images. The second one is
by Gonzalez et al. [González et al., 2020], who is working on the label consistency, which means
that the same instrument can be tracked through several frames without identity switches. To
accomplish this, the authors propose ISINet, a Mask R-CNN that includes a temporal consistency
matching over several frames [González et al., 2020] in a post-processing step.

The last one is from Robu et al. [Robu et al., 2020] who is focusing on the temporal consistency.
In their approach, they produce for every frame object proposals, which are then assigned to
the objects of the previous frame. This assignment is done by the help of a geometric object
descriptor that can manage bounding box disambiguation to a certain degree[Robu et al., 2020].
However, this approach focuses on the tracking with bounding boxes instead of the segmentation.

1https://paperswithcode.com/sota/instance-segmentation-on-coco
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2.2.4 Conclusions
Self-supervised learning and labeled data: Self-supervised learning gained interest in the field
of general ML, but at the time this thesis was started, the benefit for SDS remained to be shown,
specifically in the context of object segmentation. Thus, in this thesis the potential of unlabeled
data will be further explored with a self-supervised learning approach.

Available datasets: At the time this thesis was started, there were only small datasets available,
but none of them for the task of multi-instance instrument segmentation in laparoscopic videos.
In addition, for most of these datasets, the labels were generated by only a small number of
annotators and the labels were neither subject to quality control, nor was there a predefined
labeling protocol to ensure consistent labels. Due to this, a high quality dataset will be generated
and released in form of a benchmarking competition to the SDS community in order to advance
the SDS research.

Multi-instance instrument segmentation: The literature revealed that due to missing open data,
only approaches for binary instrument segmentation were available and the top performing
methods in all instrument segmentation challenges are based on the U-Net architecture. For
multi-instance segmentation, the Mask R-CNN is the most used architecture, and its success has
been reported in the most recent literature. For this reason, the Mask R-CNN will be used and
extended for a multi-instance segmentation approach, based on a in-depth statistical analysis
from the benchmarking competition.



3 | Results

This chapter forms the central point of the entire work. It consists of five sections, each section
presenting concepts, experiments and results that were developed and carried out to work
towards the objectives presented in 1 Introduction:

Sec. 3.1 is aligned to the objection O1: Incorporation of unlabeled data into the training of deep
learning models by presenting an approach to how unlabeled data could be used to improve the
training of deep learning models when only a small amount of training data is available. The
core idea is to train a network that can re-colorize endoscopic images. The assumption is that
through this task, the network learns important context information about the images, which is
useful for the segmentation of medical instruments.

Sec. 3.2 is aligned to the objective O2: Generation of a quality controlled dataset for the task of
multi-instance surgical instrument segmentation. One lesson that could be learned from the
previous section was that the number of labeled data could possibly create a performance
boost. Thus, this section is about creating a representative, quality controlled multi-instance
segmentation dataset for surgical instrument segmentation.

Sec. 3.3 is aligned to the objective O3: Structured assessment of state-of-the-art performance
for multi-instance surgical instrument segmentation instrument segmentation by presenting a
community-aided state-of-the-art determination for binary and multi-instance segmentation.
The goal of this section was to enable a fair benchmark between di�erent methods and to see if
the performance with more data increases.
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Sec. 3.4 is aligned to the objective O4: Systematic problem analysis of state-of-the-art methods
for multi-instance surgical instrument segmentation instrument segmentation by presenting an
approach to how image properties (e.g., presence of blood, smoke) does a�ect the algorithm
performance of state-of-the-art algorithms from the previous section. For this purpose, first,
the image properties are annotated, and second, their e�ect on the algorithm performance is
statistically analyzed. The purpose was to identify properties that harm performance.

Sec. 3.5 is alignedthe objective O5: Problem-driven multi-instance surgical instrument segmen-
tation algorithm, where the results from Sec. 3.3 are used to design an algorithm that explicitly
tackles some of the properties that were identified in Sec. 3.4, which degrade the performance
of the instrument segmentation algorithms.



3.1 | Potential of unlabeled data

Disclosures to this work:

Lena Maier-Hein supervised this work and was, along with David Zimmerer, part
of the development of the methodology and involved in the writing process of
the related publication. This work has been published in the International Jour-
nal of Computer Assisted Radiology and Surgery [Ross et al., 2018]. The detailed
disclosure of this section can be found in Sec. 7.

3.1.1 Introduction

One key application in the research field SDS is the development of context-aware assistant
systems in minimally invasive surgery, such as skill-assessment, surgical phase recognition,
or organ segmentation and classification. With the recent success of deep learning-based
methods, promising results could be obtained for such computer vision tasks. However, as
the performance and learning success of those methods strongly depend on the availability of
training data, such algorithms’ current generalization capabilities are limited and can lead to
substantial performance di�erences. Exemplarily, this is shown in Fig. 3.1, where the model was
trained on data from the MICCAI instrument tracking challenge 20171 and tested once on test
data from the same challenge and once on a subset from the ROBUST-MIS challenge [Roß et al.,
2020]. Even though both datasets are videos of minimally invasive surgery, a performance drop
of more than 50% can be observed.

When this part of the thesis was developed, there were three main options mentioned in the
literature to address this problem: (1) domain adaptation by training, (2) domain generalization
by design, and (3) access to more data [Wang and Deng, 2018]. For the first approach, domain
adaptation by training, the co-variance shift is directly addressed using a small amount of
labeled data from the new domain to fine-tune the model with it [Wang and Deng, 2018]. The
second approach, generalization by design, aims to improve the ability to learn generalized and
transferable features (e.g., [Shen et al., 2017b]) [Wang and Deng, 2018]. Finally, the last method,
access to more data, would mean that either more new data would have to be recorded and
annotated or that additional data would somehow be incorporated into the training process.
However, since additional annotated data is very di�cult to generate, especially in the medical
domain, this part of the thesis specializes in the hitherto unexplored area of including additional
data in the training process by avoiding a big annotation e�ort.

While training data is rare raw data is massively generated during the daily routine. Inspired
by the recent achievements in the field of self-supervised learning [Pathak et al., 2016, Agrawal
et al., 2015b, Zhang et al., 2016, Bodenstedt et al., 2017], this section is driven by the hypothesis

1https://endovissub2017-roboticinstrumentsegmentation.grand-challenge.org/
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that such raw data could be used to learn a representation of the target domain that boost the
performance of state-of-the-art algorithms such that it leads to a reduced labeling e�ort.

In the following, first is an overview provided, followed by a prototype implementation of the
concept which is described in Sec. 3.1.2, followed by the experiments to investigate the hypothesis
in Sec. 3.1.2. The results of the experiments are presented in Sec. 3.1.3, discussed in Sec. 3.1.4 and
concluded in Sec. 3.1.5.

Figure 3.1: Distribution of the performance scores of a state-of-the-art deep learning model (U-
Net), evaluated on test data that is from the same distribution (orange) like the training domain
(e.g. same hospital) and the ones evaluated on test data that is from another distribution (blue)
like the training domain (e.g. di�erent hospital). It can be seen that the median performance
drops, due to missing generalization capabilities.

3.1.2 Methods

As written above, hospitals generate massive amounts of data during the daily routine, but there
still typically exists no reference annotations, and thus this data is unusable for traditional su-
pervised learning approaches. However, recent publications have shown that by using naturally
existing labels in the form of an auxiliary task that requires an understanding of the data, this
can be used to pre-train a model to learn the underlying data representation [de Sa, 1994, Pathak
et al., 2016, Agrawal et al., 2015b, Zhang et al., 2016, Bodenstedt et al., 2017].

This next section provides a conceptual overview of the developed self-supervision approach,
followed by a prototype implementation on the example of minimally invasive instrument
segmentation.
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Concept overview

The presented concept consists of six components and is organized in a four step process.
In general, there is a large representative amount of Nunlabeled unlabeled images Iunlabeled
and a comparatively small amount of Nlabeled labeled images Ilabeled for a target task (e.g.
computer-vision task), where Nunlabeled >> Nlabeled [Ross et al., 2018]. Following the concept
of self-supervision, there has to be an auxiliary task, that requires no manual labeling but still
forces the model to leverage information of the unlabeled data with the goal being to improve
the generalization capabilities of deep learning models [Ross et al., 2018].

On the example of instrument segmentation, a re-colorization of gray-scale images was chosen as
an auxiliary task, where the re-colorization was done with an adversarial approach. For the target
task (here: segmentation), the pre-trained model was used and fine-tuned on a small proportion
of images with reference annotations. The overall auxiliary training process is as follows (see Fig.
3.2): (1) raw data was extracted from videos of a minimally invasive procedure, then (2) references
for a very small portion of those frames were manually annotated, (3) the color information of
the remaining unlabeled data was removed and a model was trained to re-colorize such images.
For the target task training, the model used to re-colorize the images was fine-tuned with the
small proportion of images with reference annotations, and thus fine-tuned on the actual target
task.

III: PRE-TRAINING IV: FINE-TUNINGI: DATA EXTRACTION II: DATA ANNOTATION

Figure 3.2: The concept applied to the exemplary task of instrument segmentation of minimally
invasive surgery videos. First, the raw video data was taken, and all frames were extracted for
the second step, were a tiny proportion of video frames reference annotations were manually
created. In phase III, the extracted raw video frames were used for a self-supervised pre-training
step to leverage information about the target task. Finally, the model from step III is used and
fine-tuned with the small amount of training data, depending on the target task.

Prototype implementation

For the prototype implementation, the U-Net [Ronneberger et al., 2015] was chosen as a segmen-
tation network, as it is currently one of the most widespread networks in the medical community
[Twinanda et al., 2017, Garcia-Peraza-Herrera et al., 2017b, Pakhomov et al., 2017, García-Peraza-
Herrera et al., 2016]. It is important to mention that the chosen architecture should be suited to
solve both the auxiliary and the target task.

Auxiliary task The idea of an auxiliary task is to use naturally existing labels in the data, so that
the model has to learn an underlying distribution. Applied to the instrument segmentation
would mean that a task needs to be chosen where a model has to learn to di�erentiate between
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background and instruments, given the nature of the data. One example of such a task is the
re-colorization. Using only grayscale images and training a network to re-colorize them, the
model has to learn to distinguish between an instrument and background, that includes e.g.,
blood, tissue, and fat. However, the training of such a network is challenging due to the lack of
appropriate metrics to automatically assess the quality of the re-colorized image compared to
the original one. For example, small changes in the pixel values can have strong e�ects on an
error, whereby the generated coloring is semantically correct [Larsen et al., 2016].

The problem of the missing metrics was addressed by using a Generative Adversarial Network
(GAN) approach (see Sec. 2.1.4), as described in Larsen et al. [Larsen et al., 2016]. In comparison
to a normal GAN, the input was a grayscale image, rather than a random vector. As loss function
was only the discriminator output used, since most of the low level semantic information is
already encoded in the L-channel [Ross et al., 2018].

For the re-colorization task, the image was transformed from the RGB into the CIE 1976 L*a*b*
color space, where the (L, a, b) channels of the color space are defined by the luminescence
(L), the color gradient from green to red (a) and the color gradient from blue to yellow (b). The
generator of the GAN was therefore trained to predict the resulting a- and b-channel, conditioned
on the L-channel. In the following, the generator and discriminator are further described.

Generator The input of the U-Net [Ronneberger et al., 2015] is the luminescence channel IL and
the desired outputs are corresponding a and b channels I â,b̂. The activation function of the final
output layer was tanh, resulting in G(IL) ∈ [−1, 1] [Ross et al., 2018]. Compared to the target
task, which uses all three channels (L, a, b ), the pre-training only uses the L-channel. To this
end, two dummy channels were added to keep the input dimensions to three in total. During the
auxiliary task training those two channels were ignored, while during the target task training
they got used, and the network learned to include them into its decision. The training of the
generator was performed with the following loss functions, consisting of three terms:

LG = γL1 + λL2 + ϕL3 (3.1)

with γ, λ and ϕ as weighting factors. L1 (see Eq. 3.2) is the least squared GAN loss [Mao et al.,
2017], that measures how likely it is that a generated image Î = G(IL) is classified as a real
image Y Dreal, as given by the output of the discriminator D(Î) [Ross et al., 2018].

L1(Î , Y ) =
(
D(Î)− Y Dreal

)2
(3.2)

Depending on the dataset, the distribution of the two color channels ab are somewhat di�erent.
While in endoscopic images there is a strong imbalance towards red, yellow, and black values
(due to blood, fat, black background), the color distribution, especially in natural datasets, are
distributed di�erently (see Fig. 3.3). Due to that observation, the generator loss was extended
with the L2 term (Eq. 3.3) to compensate for the unbalanced values and to stop dominating a
re-colorization with the most frequented values [Ross et al., 2018]. Similar to Zhang et al. [Zhang
et al., 2016], the empirical color distribution p̃c for each channel c = {a, b} was obtained at a grid
size of 1. Thus, if the model should choose a high frequent color value, this would generate an
increased loss.
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(a) natural dataset (b) endoscopic dataset 1 (c) endoscopic dataset 2

Figure 3.3: Presented are the log color distributions for the a and b channel of all images of three
datasets, one natural dataset (a) and two endoscopic datasets (b, c). It can be seen that the
endoscopic datasets (b, c) contain only a subset of the appearing colors in the natural dataset
(a). However, red and white colors occur more frequently in endoscopic datasets (b, c) than in the
natural dataset (a). In addition to this, there are also di�erences between the two endoscopic
datasets, where the endoscopic dataset 2 (b) contains more red and yellow values than the
endoscopic dataset 1 (a).

L2(Î , I) =
1

2 · h · w
∑
c=a,b

[∑
h,w

((Îch,w − Ich,w) · P ch,w)2

]
(3.3)

with P c being a weighting factor as the complementary relative color frequency, given by p̃c
[Ross et al., 2018].

As learning of rare values would result in miscolored images, L3 is used as an antagonist to L2

in order to learn a colorization similar to the original image [Ross et al., 2018].

L3(Î , I) =
1

2 · h · w
∑
c=a,b

[∑
h,w

(Îch,w − Ich,w)2

]
(3.4)

Discriminator The discriminator was trained with real real images I and re-colorized images Î .
As architecture, a vanilla ResNet18 [He et al., 2016b] was used with a softmax activation function,
leading to D ∈ [0, 1], with the labels Y Dfake = 0 and Y Dreal = 1. The loss function was a MSE
error [Ross et al., 2018].

LD =
(
D(I)− Y Dreal

)2
+
(
D(Î)− Y Dfake

)2
(3.5)

Target task: Instrument segmentation Depending on the availability of training data, there are two
possible variants on how the training could be performed. The first variant (Td) assumes that
no additional data from other sources (e.g. other hospitals) are available. The second variant
(Ed-Td) includes further datasets into the training (see paragraph Validation data).
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Figure 3.4: Pre-training using self-supervised learning and a conditional generative adversar-
ial network (cGAN) approach. First the image is transformed into the Lab color space. The
luminescence layer L is fed into the generator G(IL) (U-Net) which is trained to generate the cor-
responding â and b̂ channels. The discriminator D (ResNet18) is trained to di�erentiate between
real images I = {L, a, b} from the target domain and synthetic images Î = {L, â, b̂} produced by
the generator.

1. Target domain training (Td): After the model was pre-trained on the re-colorization task,
it was fine-tuned for the instrument segmentation in the next stop. For this purpose,
all learned parameters of all layers were taken from the pre-training and only the last
layer was randomly assigned as it is responsible for the classification of each pixel as
either instrument or background. The loss-function used for training was the cross-entropy
between the output and the groundtruth (see Eq. 2.21) segmentation.

2. External domain target domain training (Ed-Td): When additional data is available, it might
be helpful to include it as it can lead the model to learn more generalized features. For
this reason, first the pre-trained network is trained on the additional data the same way as
described in TDi and in the second step fine-tuned on the sparsely labeled dataset.

Experimental design

This section starts with a list of all validation data and chosen hyperparameters used for the
experiments described below. In total, four di�erent experiments were performed to answer the
central hypothesis: "Raw data could be used to learn a representation of the target domain that
boosts the performance of state-of-the-art algorithms".

The first experiment was about identifying a potential increase in performance, depending on the
number of labeled training data. The second experiment was whether a potential performance
gain would still be existent if training data would be augmented. The third experiment is about
whether there are di�erent performances for the last experiment if the pre-training would
be done on data of other domains. Finally, the presented concept was compared to current
state-of-the-art pre-training methods.
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Validation data Experiments were performed on three publicly available datasets, coming from
the natural domain (images show content from the real world, e.g., cats or dogs), the target
domain (minimally invasive surgery with laparoscopic instruments), and another medical domain
(minimally invasive robotic surgery). For all three datasets, a labeled and unlabeled part was
defined.

• Unlabeled data
– COCO (natural domain): A subset of the COCO dataset [Lin et al., 2014b] of 20k images

was chosen, containing all images of the class cat and 16,692 additional randomly
selected images of the remaining classes to approximate the real underlying color
distribution.

– Robo (other medical domain): The 21 unpublished endoscopic videos of the EndoVis
instrument segmentation challenge in robotic surgeries2 were used as other medical
domain.

– HeiCo (target domain): 6 endoscopic videos used for EndoVis surgical workflow chal-
lenge3.

• Labeled data
– COCO (natural domain): A subset of the COCO dataset [Lin et al., 2014b] of 2,818 images

with the classification cat was chosen. The class was chosen as many other classes
su�er from poor references and ambiguities [Heim et al., 2017]. In addition, like the
instrument segmentation, the target object should be in the foreground.

– Robo (other medical domain): All 2,400 endoscopic images of the challenge dataset.
Training and testset were already defined by the challenge and were disjunct.

– HeiCo (target domain): 809 annotated images for the binary instrument segmentation,
extracted from 6 videos of the HeiCo dataset. The data was split into 413 (three
surgeries) training, 119 (one surgery) validation, and 277 (two surgeries) test images.
The sets of videos corresponding to testing images and training/validation images
were disjunct and randomly chosen.

Hyperparameters All hyperparameters were optimized based on 80% of the training data and a
fixed validation set, consisting of 20% of the training data. A preliminary hyperparameter space
search was performed in the beginning, and all parameters were kept fixed for all experiments.

The color distribution p̃ was generated by creating the histogram over all training images and
used for the re-colorization on the corresponding dataset. Re-colorization training was done
with a batch size of six and learning rates of 0.0005 (generator) and 0.002 (discriminator). Both
generator and discriminator were optimized with the Adam optimizer [Kingma and Ba, 2014]. The
weighting parameters γ, λ and ϕ for L1,L2 and L3 were set such that their scale was equally
ranked. Based on visual exploration, training was stopped after 20 epochs.

Like the generator, the optimizer for the instrument segmentation was the Adam optimizer, with a
learning rate and batch size identical to the generator. Besides, a scheduler reduces the learning
rate by a factor of 0.1 if a loss plateau lasts for ten steps was used. Due to visual exploration,
training was stopped after 150 epochs.

2https://endovissub2017-roboticinstrumentsegmentation.grand-challenge.org/
3https://endovissub2017-workflow.grand-challenge.org/
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Re-colorization of images As described in the methods concerning why a GAN approach was
chosen to re-colorize images, there is a lack of metrics to evaluate a possible valid colorization.
Thus, only a qualitative evaluation can be performed. When using the GAN approach, the main
question is to examine how the re-colorization of images depends on the domain. For this reason,
three models were trained on three di�erent datasets of di�erent domains. The first model
was trained on the target domain (HeiCo dataset), the second one on a related medical domain
(Robo dataset), and the last one on the natural domain (Coco dataset). Finally, the results were
qualitatively evaluated.

E�ect of training data size To investigate the potential benefit of the performance of the Td and
Ed-Td training, the HeiCo dataset was divided into five randomly selected disjunct subsets of
the training datasets, each of size k · N , where k ∈ {1, 12 ,

1
4 ,

1
8 ,

1
16} and N = 413, denoting the

number of labeled training images. For the Ed-Td pre-training, additionally the Robo dataset
was included. Testing was performed on the complete HeiCo test set. Target metric was the DSC.
The baseline model was compared with the Td and Ed-Td training procedure by training a model
on each of the five di�erent subsets of a single training dataset fraction. In the next step, all
those five models were applied to the test data, their DSC performance scores grouped per
image, and aggregated with the mean. A potential statistically significant better performance
than the baseline was examined by fitting linear mixed models [McCulloch and Neuhaus, 2001]
on the fractions 1

20 to 1
2 , with the training method as fixed and the test image as random e�ect

variables. Because linear models require normally distributed data, an arc-sine transformation
was applied on the mean DSC values. As multiple hypotheses were similarly tested, all p-values
were adjusted by Dunnett’s test and Bonferroni-Holm correction.

E�ect of data augmentation Data augmentation is one of the most commonly used techniques,
especially when little training data is available [Goodfellow et al., 2016a]. Thus, investigating
whether the presented concept is superior to the data augmentation, or even increasing the
performance, was conducted. For this reason, the same experimental setup as described in E�ect
of training data size was performed apart from the augmented training data. Training data was
augmented by 50% chance of mirroring, rotation (90°, 180°, 270°) and adding of Gaussian noise
(20%).

E�ect of the unlabeled data domain Especially when only a small amount of training data is avail-
able, including additional data from other domains would be an excellent opportunity to increase
the total training data to learn more generalized features. Thus, the Td training was performed
on datasets of di�erent domains, outside (COCO) and inside the medical domain (Robo), to
examine a possible e�ect. All experiments were performed as described in the paragraph E�ect
of training data size.

Comparison with other pre-training methods A comparison to other state-of-the-art pre-training
techniques is important so as discern a potential benefit of the presented methods. For this
reason, two approaches were implemented: (1) non medical pre-training, by using the non-
medical dataset (COCO), train a model on the available images and fine-tune it on the target
domain and (2) medical pre-training, that follows the same procedure but uses the labeled
dataset of the medical domain (Robo). Both methods were compared to the Td training approach.
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3.1.3 Results
Performance of re-colorization

According to the performed experiments, the cGAN-based approach generally produces realistic-
looking images. However, due to the di�erent underlying color-distributions, the re-colorization
strongly depends on the domain used for training. As can be seen in Fig. 3.5, the natural domain
especially produces slightly green images, while the images from the medical domain and the
target domain di�er only in the presence of red and yellow. How this a�ects the performance is
evaluated in the experiment E�ect of the unlabeled data domain.

Original COCO Robo HeiCo

Figure 3.5: This figure contains a visualization of re-colorized images that were trained on datasets
of di�erent domains. It can be seen that the color reconstructions are di�erent because not all
colors are represented equally in a given dataset. Predominant di�erences in red and yellow
values occur more frequently in endoscopic videos than outside of the endoscopic context.

E�ect of training data size

While there exists almost no di�erences in the median performance for the biggest fraction of 1
2 ,

for the smaller fractions the median di�erences of the DSC values for the Td pre-training lies
between [0.04, 0.06] and for Ed-Td between [0.04, 0.13]. This is also reflected in the significance,
where for the largest fraction of 1

2 there was no significant improvement (p-value for Td of 0.89
and Ed-Td of 0.53) over the baseline, with a significance level of α = 0.05. However, except for
the fraction 1

20 (p-value 0.01), which can be considered as an outlier, the performance of Td and
Ed-Td are significantly better than the baseline (p-values < 0.001) for the small fractions between
1
20 and 1

3 . This can also be seen in Fig. 3.6a.
In almost all experiments, the presented method boosted the performance of the segmentation
method by, at the same time, reducing the labeling e�ort. The labeling e�ort can be reduced
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by, at the same time, getting the same or even higher median performances than the baseline
(e.g., using 1

16 of the data with the Td method to get the same performance as with 1
8 with the

baseline, resulting in > 60% less data). Even better results can be achieved by using additional
data from a similar domain, as can be seen in Tab. 3.1 that provides descriptive statistics the DSC
when using 1

16 th and 1
8 th of the training set images.

E�ect of data augmentation

According to the results presented in Fig. 3.6b, data augmentation does not only substitute the
pre-training process but even improves the performance evenly for all methods. Especially
in fractions smaller than 1

6 , the Ed-Td training, that combines the pre-training with additional
labeled data from a similar domain led to better results than the baseline.

(a) No data augmentation (b) With data augmentation

Figure 3.6: Median Dice Similarity Coe�cient (DSC) and the Interquartile Range (IQR) as a function
of training data size for the two methods (Td and Ed-Td) in comparison to the baseline training
(training only on the available training data). It can be seen in that both methods (Td and Ed-Td)
outperform the baseline training in both cases when no data augmentation on the training data
is applied and also when there is data augmentation applied.

E�ect of pre-training domain

The results of the experiments, that are also presented in Fig. 3.7, show that the best performance
of the segmentation can be achieved when pre-training is performed on the same domain as the
final target domain, independent from the number of training data. While in smaller fractions
the use of related data from a medical domain seems to produce better results than using a
di�erent domain, this e�ect disappears as more data is available. However, regardless of the
domain used for pre-training, it always performs better than the baseline.

Comparison and combination with other pre-training methods

As presented in Tab. 3.1, SOA training with labeled images from the medical domain SOA (medical)
outperforms the pre-training on images from the non-medical domain SOA (non-medical) and
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Figure 3.7: E�ect of pre-training domain. For small training datasets, medical images yield better
results than non-medical images.

yielded even better results than pre-training exclusively on unlabeled data Td (target medical).
However, combining state-of-the-art pre-training on medical data with the re-colorization task
gave the best results (Ed-Td (target medical + other medical)). In general, the more training data
that was used, the closer the results of the individual training methods.

Table 3.1: Two state-of-the-art (SOA) methods are compared to three variants of the re-colorization
pre-training. The target metric DSC is given for the two fractions 1

8 th and 1
16 th of the training

set images. The mean, median and interquartile range (IQR) values are shown along with the
improvement in % compared to the baseline method (no pre-training).

Training type DSC for dataset fraction: 1
8

DSC for dataset fraction: 1
16

mean median IQR mean median IQR

baseline 0.62 (-) 0.66 [ 0.51 0.77] 0.57 (-) 0.61 [ 0.46 0.72]

SOA (non-medical) 0.63 (1%) 0.67 [ 0.52 0.78] 0.57 (-1%) 0.62 [ 0.43 0.73]
SOA (medical) 0.66 (6%) 0.71 [ 0.53 0.82] 0.59 (3%) 0.65 [ 0.47 0.75]

Td (target medical) 0.65 (5%) 0.69 [ 0.55 0.80 ] 0.61 (7%) 0.67 [ 0.50 0.77]
Ed-Td (other medical) 0.65 (5%) 0.68 [ 0.54 0.79] 0.60 (5%) 0.66 [ 0.49 0.75]
Ed-Td (target medical +
other medical)

0.68 (10%) 0.74 [ 0.58 0.83] 0.65 (13%) 0.71 [ 0.54 0.79]

3.1.4 Discussion
Approaches to use self-supervised or semi-supervised techniques to include unlabeled data into
the training that is of the same distribution as the training data is already a common technique
in the computer vision community and also in the field of medical image computing [Baur et al.,
2017]. Other state-of-the-art self-supervised methods, such as [Tajbakhsh et al., 2016, Zhou
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et al., 2017, Tajbakhsh et al., 2017, Ravishankar et al., 2016] or unsupervised methods [Kamnitsas
et al., 2017] are mainly focusing on how to find domain-invariant features to either generalize
better or boost the algorithm outcomes. For this, they mainly focus on the potential of various
auxiliary tasks, such as re-ordering [Noroozi and Favaro, 2016], classification [Zhang et al.,
2016, Noroozi and Favaro, 2016], and in-painting and re-colorization [Pathak et al., 2016, Zhang
et al., 2016, Zhang et al., 2017b, Larsson et al., 2017]. One of the closest work was authored by
Bodenstedt et al.[Bodenstedt et al., 2017], who pre-trained a deep learning model by estimating
the order of two random video frames in an auxiliary task to get a better prediction for surgical
workflow phase recognition.

While the previously mentioned techniques mainly try to improve the performance of a model,
the focus of this chapter was not to get a state-of-the-art performance algorithm for the segmen-
tation of instruments. This is also reflected in the fact that only very basic data augmentation
technologies were used, and no excessive hyperparameter-search was performed to achieve
a score that is better than other published techniques. Instead, the intention was to use the
concept of self-supervision to reduce the manual labeling e�ort, which has not been investigated
in the field of medical image analysis. Although no absolute top performance was sought, the
performance was nevertheless comparable with published results [Bodenstedt et al., 2018].

Based on the presented results, it can be concluded that the presented method is well-suited
to situations where only a small amount of training data is available. This shows that self-
supervised learning can generate additional features that cannot be generated only by applying
data augmentation techniques. Of course, it must be said that the data augmentation techniques
used for the baseline are only a small subset of all data augmentation techniques available.
However, the use of data augmentation also requires a good understanding of the domain, since,
for example, unrealistic augmentations (e.g. unrealistic deformations) would more likely worsen
rather than improve the performance. This bias is not required when using the self-supervised
approach. Fortunately, the results also suggest that data augmentation does not counteract
self-supervised learning, but actually complements it (at least the augmentation techniques
presented here). This would be a further possibility to improve the results again.

The results also show, however, that self-supervision and data augmentation is of particular ben-
efit when only a little data is available. The more training data that can be used, the smaller the
e�ect. It is particularly useful in the regions using only 1

6 of the training data. This can probably be
deduced from the fact that features that can be learned with more data are still di�cult to replace.

Regarding the results from the pre-training domain’s e�ect, it should be mentioned that the
selection of the segmentation class "cat" for pre-training segmentation tasks of the natural
domain data could have had an impact on the lower performance in comparison to the medical
domain. While a cat is a living being, choosing an artificial object might have produced a di�erent
result, one closer to the medical domain. Thus, a thoughtful selection of a related task or data
might increase the algorithm performance. This guess is in line with the publication from Zamir
et al. [Zamir et al., 2018]. It can also be said that the features that describe natural data are
very likely to di�er from the medical image data (this can also be seen in the di�erent color
distributions of the datasets in Fig. 3.3). However, exploring this further would have been outside
the scope of this work.
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When comparing the performances from the baseline for the two medical datasets, it can be
noticed that the performance on the HeiCo dataset is much lower than the performance on the
Robo dataset. However, this can be attributed to the comparatively low variability of the Robo
dataset in comparison to the images from the HeiCo dataset.

So far, no publication could be found in the literature which determines exactly which performance
an algorithm must achieve before it should be used in practice. Notwithstanding, it must
be assumed that a particularly reliable algorithm is required, especially in the field of SDS.
Accordingly, an algorithm should achieve at least a DSC metric value of 0.9. This value has,
however, not yet been achieved with this concept either.

3.1.5 Conclusion
In conclusion, the cGan-based re-colorization auxiliary task seems to be the right choice when
used as pre-training for the task of medical instrument segmentation when only a small amount
of labeled data is available. Besides, this method allows both labeled and unlabeled data to
be used. However, when looking at the final segmentation results it can be concluded that the
performance is not high enough for a successful transition to clinical practice. Although the
segmentation quality can be improved with this approach, it is still too low to be used in everyday
clinical practice. Because the methodological approach presented here does not yet produce
su�ciently good results, creating an improved and larger dataset yields the most promising way
to increase performance further.
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3.2 | Quality controlled dataset generation

Disclosures to this work:

Lena Maier-Hein supervised this work and was, along with Annika Reinke and Martin
Wagner, part of the development of the methodology and involved in the writing
process of related publications. Parts of this work have been published in the
Medical Image Analysis- Journal [Roß et al., 2020] and are currently subject to a
minor revision in Nature Scientific Data - Journal [Maier-Hein et al., 2020b]. The
detailed disclosure of this section can be found in Sec. 7.

3.2.1 Introduction

As described in Sec. 2.1 Machine learning, many machine learning-based algorithms require
vast amounts of labeled training data for training. However, especially in the medical domain,
there is a lack of such datasets, which is one of the major bottlenecks for the development of
novel methods [Chen et al., 2019]. Based on the findings of the previous section (see Sec. 3.1.5),
methodological approaches, such as self-supervised learning, can partially compensate for the
lack of such data. Nonetheless, the performance achieved with it (at least in the specific case of
instrument segmentation) is not yet su�cient to use the algorithms in the clinic.

As literature research on available datasets has shown, there are already a few datasets that
use medical instruments in laparoscopic or robotic operations. However, these datasets often
experience problems that they: (1) do not contain enough data and are therefore often not
representative, (2) are often not subjected to any quality control, and (3) do not use a clearly
defined annotation protocol for possible edge cases, which can lead to inconsistencies in the data.

In addition to this, the presented datasets often contain a pure binary segmentation of the
instruments, i.e., they classify a pixel whether it is an instrument or not. However, since more
than just one instrument can often be seen in an image, the binary classification would fail when
tracking multiple instrument instances.

This section aims to create a dataset that addresses the above-mentioned problems (repre-
sentativeness, size, quality) for the multi-instance segmentation of medical instruments in
laparoscopic image data.

In the following sections, the data recording, extraction and annotation are described in the
Methods (Sec. 3.2.2). The outcome of this process is then presented in the Results (Sec. 3.2.3) in
combination with statistical evaluations. Finally, a Discussion (Sec. 3.2.4) and the final Conclusion
is presented in Sec. 3.2.5.
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3.2.2 Methods
A couple of requirements need to be met in order to generate a high-quality SDS dataset. The
data must primarily represent the clinical application with a clearly defined target (e.g., the
definition of an instrument). Representative means that data has to include so-called edge
cases and all the potential di�culties that algorithms will face. Edge-cases are those which
are either challenging to decide or rarely occur, while examples for di�culties are blood or
smoke. There must then be enough data so that both the data itself and the high variability
of medical image data can adequately cover the occurrence of rare conditions. Data should
not show any inconsistencies (e.g., a visible instrument in a trocar is sometimes segmented,
sometimes skipped) so as to not confuse a model during training. The quality and consistency of
the segmentation must be ensured. Finally, data protection must be taken into account, both for
the privacy of the patient and that of the surgical team.

As mentioned above, a dataset must be representative, contain edge-cases and possible di�-
culties. However, this requires an understanding of edge-cases and di�culties. Laparoscopic
image data also have the peculiarity that several possible di�culties can occur at once. Thus, a
comprehensive examination of image characteristics, which have to be defined, is of particular
interest.

In the following sections, a method is described to produce a dataset that fulfills the above-
mentioned requirements, labels the tasks, and defines image characteristics.

Data recording

Thirty videos of three di�erent minimally invasive surgery procedures (proctocolectomy, rectal
resection, and sigmoid resection) with ten videos per surgery type were recorded during daily
routine at the Heidelberg University Hospital, Department of Surgery. The laparoscopic camera
was a Karl Storz4 Image 1, recorded with 25 frames per second (fps) and was equipped with a
30◦ optic lens and a light source Xenon 300 from Karl Storz. All parts of the video outside of the
human body were manually excluded to ensure the privacy of both the patient and the surgical
team. As the recorded video data has a HD resolution with 1920×1080 pixels, it was reduced to
960×540 to reduce the memory usage.

Data extraction

Since the annotation of all the video frames from all thirty videos would result in more than 10M
images, and thus would require an unmanageable amount of labeling e�ort, only a subset of
video frames was chosen. Considering that the information of neighboring video frames due
to the high fps is often highly redundant, all videos were resampled at a rate of 1 fps, resulting
in 4,456 video frames. Since surgeries typically follow a specific procedure and the so-called
phase transitions are of major interest for numerous applications such as workflow recognition
[Twinanda et al., 2017, Hashimoto et al., 2019] or surgeon skill assessment [Law et al., 2017, Lin
et al., 2019], additional 5,584 video frames were selected during those phase transitions. The
labels of the surgical phases were available from another challenge EndoVis Surgical Workflow
Analysis in the SensorOR5, which was based on the same videos.

4Karl Storz SE & Co. KG, Tuttlingen, Germany
5https://endovissub2017-workflow.grand-challenge.org/
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Instrument annotation

The initial segmentation of all instrument instances was performed by the professional labeling
company Understand AI6. However, the so generated reference annotations contained many
inconsistencies and would have degraded the performance of a machine-learning-based algo-
rithm. For this reason, all images were reviewed again, inconsistencies and ambiguities identified
and the annotation was standardized by the creation of a set of labeling rules, written down in a
labeling protocol.

In the labeling protocol, first, an instrument was defined as "elongated rigid object put into the
patient and manipulated directly from outside the patient" [Maier-Hein et al., 2020b], followed
by the instructions on how to label an instrument instance, which are in short [Maier-Hein et al.,
2020b]:

I Occlusions: Each pixel may correspond to exactly one structure. Specifically, the solid/liquid
matter that occurs first along the line of sight of the endoscope determines the label. This
may result in multiple contours for a single instrument that is occluded by another instrument,
object, blood or tissue.

II Transparencies: Medical instruments may be transparent. The occlusion rule holds in this
case as well.

III Overlays: Text overlays shall be ignored while image overlays are treated as being not part
of an instrument.

IV Holes in instruments: A hole is made up of pixels that do not show parts of the instrument, but
are either: a) completely surrounded by pixels of the same instrument or (b) are completely
surrounded by pixels of one instrument and the margin of the image where it is known,
from video context, that the instrument would close the hole outside the image. Following
recommendations of previous challenges and the given di�culties of localizing these holes,
they are regarded as part of the instrument. The sole exception is trocars when the camera
is placed inside of them.

The application of those rules is shown in Tab. 3.2, an excerpt of examples of the labeling
protocol as described in [Maier-Hein et al., 2020b].

Following definition of the rules, four medical students and 14 engineers reviewed and corrected
all annotations. In ambiguous or unclear cases, a team of two engineers and one medical
student generated a consensus annotation [Maier-Hein et al., 2020b]. To ensure the quality, first
a medical expert reviewed all refined images and, in case of an potential error, corrected it after
consultation with an engineer [Maier-Hein et al., 2020b].

6https://understand.ai
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Table 3.2: Excerpts from the labeling protocol [Maier-Hein et al., 2020b]. The visible instrument
instances in the images are labeled according to the defined rules.

IMAGE INSTRUCTIONS

The two holes of the medical instru-
ment are regarded as part of the in-
strument (rule IV).

A medical instrument is visible at the
end (opening) of the trocar. The part
covered by the transparent trocar is
not regarded as a visible part of the
instrument (rules II, III).

The instrument represented by the
green contour comprises two parts due
to image overlay (rule III).

A medical instrument is visible at the
end (opening) of the trocar. The part
covered by the transparent trocar is
not regarded as a visible part of the
instrument (rules II, III).

Image characteristic annotation

To define image characteristics, first a set of possible di�culties in images from minimally
invasive surgeries were identified in the literature (e.g., [Bodenstedt et al., 2018, Allan et al.,
2020]) and extended by the personal experience that was gained during the previous annotation
process. All characteristics were grouped into three classes (see table 3.3) that describe where a
characteristic can appear, namely (1) local characteristics of instruments or global characteristics,
either in (2) background, or (3) foreground. In the next step, a trained engineer annotated the
presence of such characteristics for all images in the dataset. The annotation was supported by
a framework that guided the entire process (see Fig. 3.8). While local characteristics (e.g. blood
on the instrument) were annotated individually for each instrument instance, global properties
were assessed for the complete image.
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Table 3.3: Overview of all image characteristics that a human annotator should assign to each
image in the training and test data. The table shows if the presence of a characteristic was
assessed for the background, for each instrument instance, or globally, for the complete image.

Characteristic Background Instrument Image

Covered by blood?
3 3 7

Covered by smoke?
3 3 7

Covered by tissue?
3 3 7

Subject to motion artifacts?
3 3 7

Covered by specular reflections?
3 3 7

Covered by another instrument?
3 7 7

Covered by any other object (non surgical)?
3 3 7

Too bright?
7 3 7

Too dark?
7 3 7

Is the image well-illuminated?
7 7 3

Does the lens seem dirty?
7 7 3

Figure 3.8: Illustration of the image characteristics annotation tool. The whole annotation process
is guided, the region that should be rated by a human expert is enclosed by a bounding box and
for all possible characteristics examples are given.
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3.2.3 Results

This presented method led to a total of 10,809 annotated instrument instances of 10,040 images.
A detailed summary is provided in Table 3.4. The verification of the annotations was already
part of the data annotation procedure. The image characteristics can be seen in Fig. 3.10 for
the entire dataset. It is noticeable that four properties are particularly common in the data,
namely bloody background, reflections in the background, instrument covered by reflections and
instrument covered by tissue. A moving background, material about instruments, or overexposed
instruments seem to be less common.

To make the data publicly available, it was uploaded on Synapse7, a website that o�ers a challenge
platform with an easy to use environment for participants and organizers, and is already used by
well-know challenges (e.g., DREAM 8). The structure of the data is shown in Fig. 3.9.

Procto-

colectomy

Rectal

resection
Sigmoid

resection
SURGERY 

TYPE

PROCEDURE

FRAME

FRAME-BASED 

DATA

Figure 3.9: This figure shows the structure for the presented dataset. It comprises four levels
corresponding to (1) surgery type, (2) procedure number, (4) frame number and (5) frame-based
data. Surgery types are e.g., Proctocolectomy, every procedure is a di�erent patient, with a frame
from the patient video. Frame based data is the annotation to the corresponding video frame
and a short video clip that shows the 10s before.

7https://www.synapse.org/#!Synapse:syn18779624
8http://dreamchallenges.org/
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Table 3.4: Number of annotated data per surgery type and number of visible instrument instances.

Surgery type Number
of
videos

Number of
annotated
frames

Number of frames with n instrument instances

0 1 2 3 4 5 6 7
Proctocolectomy 10 3,493 450 1,697 1,063 227 54 2 0 0
Rectal surgery 10 3,667 714 1,850 917 158 21 7 0 0
Sigmoid surgery 10 2,880 650 1,198 827 178 24 2 0 1
TOTAL 30 10,040 1,814 3,048 2,807 563 99 11 0 1

Figure 3.10: This figure shows the appearance of the image characteristic in the complete dataset.
The errorbars

3.2.4 Discussion
The provided dataset is the first that contains more than 10,000 annotated images with multi-
instance instrument segmentation in combination with the image characteristics. This was the
first time so many annotators were part of creating such a dataset with such an exact defined
annotation protocol and quality control.

Some points should be mentioned that might have an impact on the representativeness of
the dataset. While many images were randomly sampled, a considerable part of the dataset
was sampled around surgical phase transitions. However, these surgical phases, were only
annotated by one surgeon. Another potential bias could come from the corporate semi-automatic
pre-segmentation of all images, which were done by the segmentation company and then later
revised by the annotators. As a deep learning model was used from Understand AI to generate
their pre-segmentations, it might be that models trained on those segmentations are especially
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good, when they mimic the behaviour of the Understand AI model. Although this possibility
might theoretically exist, many images were corrected or even wholly newly segmented, making
that possibility unlikely. Besides this, the pre-segmentation was only a binary segmentation;
thus, the multi-instance itself is human-made, which also means that every single image was
reviewed multiple-times.

Possible quality di�erences concerning the annotation of the image characteristics should also
be noted. While 14 people contributed to the image annotations, the image characteristics
were only labeled by a single person and were not subsequently validated. In contrast to the
segmentation, the annotation process was entirely controlled, many examples were provided,
and the annotator was given explicit training. It can therefore be assumed that the labels
generated are consistent.

Last but not least, it should be mentioned that although di�erent types of operations have been
recorded, they are at least correlated. This is on one hand because they are very close together,
and on the other hand because they partly involve similar steps and treat the same organ.

3.2.5 Conclusion
For the first time a large labeled laparoscopic dataset is provided for the task of multi-instance
instrument segmentation, where the annotations were generated according to a predefined
labeling protocol. The complete annotation process was quality controlled, and the dataset
appears to correspond to the presented image characteristics representative of real scenarios.
Due to the data structure, the dataset could be the basis for various tasks (e.g., binary and
multi-instance segmentation). According to di�erent surgery types, it could enable the testing of
generalization capabilities of algorithms. As the raw videos are still available, video sequences
could be used in addition to raw image frames to improve instrument segmentation algorithms’
quality. Since there is no dataset of this type yet, it could be used as the first benchmarking
dataset for multi-instance and binary instrument segmentation.



3.3 | Comparative validation of multi-instance instrument
segmentation

Disclosures to this work:

Lena Maier-Hein supervised this work and was, along with Annika Reinke, part of
the development of the methodology and involved in the writing process. Parts
of this work are accepted for publication in the journal of Medical Image Analysis
[Roß et al., 2020]. The detailed disclosure of this section can be found in Sec. 7.

3.3.1 Introduction
In Sec. 3.1, one assumption was that the provision of an extensive dataset could improve the
performance of the binary instrument segmentation algorithms, which was the motivation to
generate such a dataset in the previous section (Sec. 3.2). As already written in the Conclusion
(Sec. 3.2.5), this dataset now o�ers two opportunities to advance the development of instrument
segmentation algorithms:

The first opportunity is that the data enables the first time to train a model on multi-instance
segmentation of surgical instruments and quantify its performance. Furthermore, the possibility
of this performance quantification facilitates the second opportunity, namely benchmarking.
Unfortunately, researchers often tend to evaluate their methods using private datasets when
they publish their work. As an result, the lack of shared data makes it di�cult for other re-
searchers to judge (1) which algorithm is the best and (2) which algorithm is the best to solve
their task [Ioannidis, 2005, Armstrong et al., 2009]. For this reason, researchers regularly have
to re-implement the most modern algorithms to perform a benchmarking, which is prone to
mistakes, as they may accidentally include an error in the implementation or have failed to select
the correct hyperparameters (e.g., due to a lack of coordination or incorrect assumptions). As
those di�culties are a major problem, there are now open challenges (e.g., EndoVis 2017 Robotic
instrument segmentation challenge [Allan et al., 2019], Brain Tumour Image Segmentation (BraTS)
challenge [Simpson et al., 2019]) with clearly defined rules and guidelines, training, testing
datasets, and metrics. Based on those metrics, such competition aims to find the best working
algorithm by generating rankings and enabling a fair and interpretable comparison [Maier-Hein
et al., 2018, Maier-Hein et al., 2019].

Therefore, the dataset should be made available to the community in the form of a challenge to
determine the current state of the art of binary and multi-instance segmentation algorithms
and to provide a basis for the development of further methods in this thesis. The challenge
was named Robust Medical Instrument Segmentation challenge 2019, and was part of the 4th
edition of the Endoscopic Vision Challenge9 and was held at the Medical Image Computing and
Computer Assisted Interventions (MICCAI) conference 2019 [Roß et al., 2020]. The challenge’s

9https://endovis.grand-challenge.org/
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defined purpose was to rank algorithms’ ability to accurately and robustly perform the binary
segmentation and multi-instance segmentation of surgical instruments. As already mentioned in
Sec. 3.1, a special focus was put on the algorithms’ ability to generalize.

The following sections consist of the Methods (Sec. 3.3.2), where first the challenge is described
(organization, training/test set definition, metrics, rankings), followed Results in Sec. 3.3.3, where
the outcome of the challenge is presented. In Sec. 3.3.4 the outcome of the challenge will be
discussed and the Conclusions presented in Sec. 3.3.5.

3.3.2 Methods

Challenge organization

The challenge was held, as written above, as part of the Endoscopic Vision Challenge at the
Medical Image Computing and Computer Assisted Interventions (MICCAI) conference 2019. The
training data was provided via the Synapse10 platform. Training data was released on August
5th, 2019. To avoid the risk of cheating, test data was not released to the participants. Instead,
participants submitted their solutions in the form of a docker until September 15th, 2019 to
enable an automatized testing on V100 server, sponsored by NVIDIA GmbH.
For maximum transparency, detailed submission instructions and a challenge design were
available for all participants. All challenge results were presented at the MICCAI conference in
the form of a publication [Roß et al., 2020] and are available online11.

Training and test set definition

The aim of the challenge was to test the ability of the algorithms to generalize for di�erent
procedures. In other words, all methods should be able to be trained on procedure A, but still
be usable on procedure B. The following test scheme was used to test this generalizability [Roß
et al., 2020, Maier-Hein et al., 2020b]:

• Stage 1 (highest similarity): Test data was taken from the procedures (patients) from which
the training data were extracted.

• Stage 2 (intermediate similarity): Test data was taken from the exact same type of surgery
as the training data but from procedures (patients) not included in the training.

• Stage 3 (lowest similarity): Test data was taken from a di�erent but similar type of surgery
(and di�erent patients) compared to the training data.

The stages were implemented by reserving the complete sigmoid surgery dataset for testing.
Of the remaining data, the two shortest videos per procedure were used for stage II. From the
remaining training data, always the first annotated video frame was used for stage I. All other
frames were available for training (see Fig. 3.11). Despite other challenges, no validation dataset
was explicitly defined by the challenge organizers and was thus up to the challenge participants
to decide on a splitting strategy for their hyperparameter tuning. The overall amount of available
data is illustrated in Tab. 3.5.

10https://www.synapse.org/
11https://www.synapse.org/#!Synapse:syn18779624
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Figure 3.11: Illustration of the three stages setup of the Robust Medical Instrument Segmentation
Challenge 2019. For Stage I, image frames of the same procedure and the same patient were kept
out for testing. In Stage II, all frames that belong to a specific patient were used for training and
in Stage III, a complete surgery type was held out as the test set.

Table 3.5: Case distribution of the data with frames per stage and surgery.

PROCEDURE TRAINING TESTING
Stage 1 Stage 2 Stage 3

proctocolectomy 2,943 325 225 -
rectal resection 3,040 338 289 -
sigmoid resection∗ - - - 2,880
TOTAL 5,983 663 514 2,880
∗unknown surgery

Metrics

As the goal of a challenge is a fair comparison between possible solutions for a given problem, it
requires the quantifiable definition of a good solution. This quantification was performed with
two metrics, first, the Sørensen Dice Similarity Coe�cient [Dice, 1945], which is a commonly used
metric in the domain of medical image computing that compares the overlap of two areas (see Eq.
2.22). Secondly, to reflect imperfect reference annotations, the Normalized Surface Dice [Nikolov
et al., 2018] was applied. Although there are several metrics available (e.g., IoU (see Eq. 2.30), the
DSC and the NSD were chosen because they are complementary measures. In comparison to
the DSC, the Normalized Surface Dice (NSD) measures the overlap of two surfaces instead of the
overlap of areas and includes an inter-rater variability τ of the annotators [Nikolov et al., 2018].
As the determination of the inter-variability τ is expensive, it is separately described in the next
section. For the NSD, the surfaces (mask boundary) of SY and SŶ are used.
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The DSC and the NSD are metrics that can compare binary masks only, and for the multi-instance
segmentation task there might be multiple instances in an image where even the number of
instances di�er to the given reference. For this reason, the references and the prediction have to
be matched with the Hungarian algorithm [Kuhn, 1955]. The Hungarian algorithm was applied
by minimizing the DSC value between matched pairs. Finally, the DSC for multiple instances
(MI_DSC) [Xu et al., 2017] and the NSD for multiple instances (MI_NSD) is the mean of all DSC/NSD
values per image.

Inter-rater agreement

As written in the previous section, the heart of every challenge is the choice of the metrics and
their aggregation in the form of a ranking that helps identify the best-suited algorithm for a
given problem. However, all metrics have in common that they compare a prediction (provided
by the algorithms) with the manual annotators’ reference. To interpret the corresponding results,
whether it is a good or a bad prediction, it is essential to understand the upper limit given
by the human annotators inter-rater agreement. The inter-rater agreement was estimated by
letting the same five annotators that curated the dataset annotate 20 images. All pictures were
randomly selected from di�erent surgeries and yielded up to three instrument instances. For the
estimation, the resulting references were pairwise compared between the annotators.

The quantification of the inter-rater agreement regarding a "closeness" of two annotations can
be achieved with a metric that is either area- or surface-based. Comparing areas is one of the
tasks of this challenge, so the same metric DSC was chosen. However, for comparing surfaces,
there exists a couple of similar metrics, such as the mean surface distance (MSD) or the residual
mean squared distance (RMS) (see Eq. 3.8) or the Haussdorf Distance (HD) [Huttenlocher et al.,
1993]. Nonetheless, due to a high Spearman correlation [Spearman, 1904] between the HD, MSD
and RMS is high, only the HD metric was used, as it is close to the concept of the NSD [Nikolov
et al., 2018].

The HD is defined as the maximum of the euclidean distance d(S, S′) between two contours S
and S′ (see Eq. 3.7). Since one image might contain more than one instrument instance, there is
a need to match instances between references and annotations, which was done by applying
the Hungarian algorithm [Kuhn, 1955] that minimizes the root mean squared distance between
matched pairs (see Eq. 3.8). Should the case arise that annotators have annotated a di�erent
number of instruments per image, the missing instances for the DSC are set to 0, and for the
HD to the maximum Euclidean distance dmax =

√
I2width + I2height that can be achieved with the

image resolution of Iwidth × Iheight.

D(p, S) = min{d(x, k)|k ∈ K} (3.6)

where d(s, s′) denotes the euclidean distance between two contour points.

HD(S, S′) = max {max {D(s, S′)|s ∈ S} ,max {d(s′, S)|s′ ∈ S′}} (3.7)

where S and S′ are contours.
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RMS =

√√√√√ 1

nS + nS′

∑
p∈S

D(p, S′)2 +
∑
p′∈S′

D(p′, S)2

 (3.8)

where S and S′ are contours.

Rankings

Apart from the right choice of metrics, a correct ranking is one of the most important decisions
that belongs to the design of a challenge. As presented by Wiesenfarth et al. [Wiesenfarth et al.,
2019b] the choice of how to aggregate the quantitative results of all test-cases has a huge impact
on outcome of the challenge.

Due to the two di�erent challenge goals (robustness and accuracy), two di�erent ways of aggre-
gating the quantitative results were applied:

1. Robustness: To put a special focus on the worst cases, the 5th percentile of all test-cases
was used to calculate the robustness rank [Roß et al., 2020].

2. Accuracy: For the accuracy, a high performance of the algorithms is crucial, thus for all
pairs of algorithms a Wilcoxon signed rank test (α = 0.05) was used to test for a significant
better performance [Roß et al., 2020, Wiesenfarth et al., 2019b].

Each ranking (robustness and accuracy) was computed for the MI_DSC and MI_NSD respectively,
producing 4 di�erent rankings. Missing cases were set to the worst possible value "0" [Roß et al.,
2020].

Expert baseline

Due to the fact that the references are produced by (several) human annotators, only imperfect
references (no perfect ground truth) are available. Besides the inter-rater agreement of the
annotators and with respect for the interpretation of the results, it is of special interest to identify
a plausible upper limit of what are actually good results (compared to the human baseline). For
this reason, one additional labeling expert, a medical student with six years of experience in
labeling, annotated all images from Stage 2. Inspired by a human vs. algorithms analysis for
natural image multi-label classification from [Shankar et al., 2020], two additional experiments
were performed. In the first experiment, the performance of the expert was compared with
the algorithms by investigating the performance as a function of the number of instruments
present in the image. In the second experiment, the performance of the algorithms and the
expert were compared with respect to the image characteristics (e.g., the presence of blood,
smoke, or reflections).

3.3.3 Results
While the ROBUST-MIS Challenge contained three tasks in total (see [Roß et al., 2020]), the
result reporting will be focused on the multi-instance segmentation task. Reports on the binary
segmentation task will comprise only the performance, but not the ranking. The reason for this
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is that the conclusions and rankings of the binary segmentation are similar to the multi-instance
segmentation task and only the rankings for the multi-instance segmentation tasks will be used
in the further course of the thesis.

In the following sections, first, the results of the inter-rater agreement are presented in paragraph
Inter-rater agreement, followed by a principal overview of the submitting teams with their ar-
chitectures in paragraph Method descriptions of participating teams. Their results are recorded
in paragraph Performance results of participating teams, and this is is followed by paragraph
Challenge ranking. Finally, the results of the comparison between algorithms and an expert
baseline are presented in the paragraph Expert baseline.

Inter-rater agreement

The inter-rater agreement of all five of the experts who annotated the same images is displayed
for the DSC and HD metrics in Fig. 3.12 as a function of the sorted metric values. It can be seen
that in more than 75% of the pairwise comparisons, the DSC was above 0.98, while the HD was
below 36.1. However, approximately the last 20% of the pairwise comparisons demonstrate
a huge disagreement in form of a low DSC and a high HD can be observed. Cases where the
inter-rater agreement was bad are displayed in Fig. 3.13.
Expressed as descriptive statistics, a median HD of 12.8 (mean: 89.3, 25-quantile: 7.6, 75-quantile:
36.1, 95-quantile: 170.6) over all comparisons of the surfaces, and a median DSC of 0.96 (mean:
0.88, 25-quantile: 0.91, 75-quantile: 0.98) for comparing the area overlap was observed.

Due to the results of these experiments, the inter-rater variability parameter for calculating the
NSD score was set to τ := 13.

(a) DSC (b) HD

Figure 3.12: Visualization of the sorted DSC and HD metrics as a function of the dataset percentage.
It can be seen that in approximately 80% of the data the metrics are close to each other. The
strong disagreement among the annotators in the remaining 20% is due to missed or only partially
segmented instrument instances.
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Figure 3.13: Visualization of images with the worst inter-rater agreement. It can be seen that in
the first case it is unclear whether the images show an opened instrument or two instruments.
Cases 2 and 3 show a small missed instance, case 4 shows an instance in motion and case 5 is
an unclear image. It can also be seen that annotator 2 did not follow the annotation guideline
exactly in the 4th and 5th cases (excluding tissue on an instrument).

Method descriptions of participating teams

Prerequisite to participate in the challenge was a working docker submission until September 28,
2019. Out of the 75 registered participants, there were seven valid and one invalid submissions.
Together with their submissions, all teams were encouraged to submit a short description of
their method that briefly described their intuition and findings when implementing their method.
In the following, the methods of all teams are presented and further implementation details are
given in Tab. 3.6.

Team caresyntax: Single network fits all The caresyntax team’s core idea was to apply a Mask R-CNN
[He et al., 2017] based on a single network with shared convolutional layers for both branches.
They hypothesized that the shared layers would increase the generalization capabilities of the
network. As their segmentation network, they used a pre-trained version of the Mask R-CNN
without including any videos’ temporal information. As a result of their experiments, they decided
to use a Mask R-CNN, as their approach outperformed a U-Net-based model by a significant
margin. The team worked out that tuning pixel-level and mask-level confidence thresholds on the
predictions were crucial for the performance. Furthermore, they acknowledged the importance
that the training set size had for improved predictions, both qualitatively and quantitatively.
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Team CASIA_SRL: Dense pyramid attention network for robust medical instrument segmentation The CA-
SIA_SRL team proposed a network named Dense Pyramid Attention Network [Ni et al., 2020] for
multi-instance segmentation. They noticed two main problems with the instrument segmen-
tation: first, changes in illumination and second, changes of the surgical instrument’s scale.
In order to cover the changes in illumination, they used an attention module which captured
second-order statistics. This was in order to cover semantic dependencies between pixels and
capture the global context [Ni et al., 2020]. As moving surgical instruments change their scale,
the team introduced dense connections across scales to capture multi-scale features for surgical
instruments. The team did not use the provided videos to complement the information contained
in the individual frames.

Table 3.6: Overview of submitted methods of all participating teams.

Team Basic architecture Video
used?

Additional data used? Loss functions Data augmentation

caresyntax Mask R-CNN [He
et al., 2017] (backbone:
ResNet-50 [He et al.,
2016a])

7
ResNet-50 pre-trained
on MS-COCO [Lin et al.,
2014a]

Smooth L1 loss, cross
entropy loss, binary
cross entropy loss

Applied in each epoch: Random
flip (horizontally) with probabil-
ity 0.5

CASIA_SRL Dence Pyramid Atten-
tion Network [Ni et al.,
2020] (backbone:
ResNet-34 [He et al.,
2016a])

7
ResNet-34 backbone
pre-trained on Ima-
geNet [Russakovsky
et al., 2015]

Hybrid loss:
cross entropy
−α log(Jaccard)

Data augmented once before
training: Random rotation, shift-
ing, flipping

fisensee 2D U-Net [Ron-
neberger et al., 2015]
with residual encoder

7 7
Sum of DSC and cross-
entropy loss

Randomly applied on the fly on
each batch: Rotation, elastic
deformation, scaling, mirroring,
Gaussian noise, brightness, con-
trast, gamma

SQUASH Mask R-CNN [He
et al., 2017] (backbone:
ResNet-50 [He et al.,
2016a])

3∗ 7
ResNet-50: Focal loss,
Mask R-CNN: Mask R-
CNN loss + cross en-
tropy loss

35% of total input for classifi-
cation: Gaussian blur, sharpen-
ing, gamma contrast enhance-
ment; additional 35% of images:
Mirroring (along x- and y-axes);
minority class: Translation (hor-
izontally); non-instrument im-
age frames are not processed

Uniandes Mask R-CNN [He
et al., 2017] (backbone:
ResNet-101 [He et al.,
2016a])

3∗∗
Pre-trained on MS-
COCO [Lin et al., 2014a]

Standard Mask R-CNN
loss functions

Applied on the fly on each
batch: Random flips (horizon-
tally), propagation of anno-
tation backwards to previous
video frames

VIE Mask R-CNN [He
et al., 2017] (backbone:
ResNet-50 [He et al.,
2016a])

3∗∗∗ 7
RPN class loss, MASK R-
CNN loss

Applied on the fly on each batch:
Image resizing (1024x1024),
bounding boxes, label genera-
tion

www9 Mask R-CNN [He
et al., 2017] (backbone:
ResNet-50 [He et al.,
2016a])

7
Pre-trained9 on Ima-
geNet [Russakovsky
et al., 2015]

Smooth L1 loss, focal
loss, binary cross en-
tropy loss

Applied on the fly on each batch:
Random flip (horizontally and
vertically), rotations of [0, 10]◦

∗ to estimate the probability that the last frame of video shows instrument instance
∗∗ for data augmentation
∗∗∗calculating the optical flow over 5 frames

Team fisensee: OR-UNet Team fisensee’s core idea was to optimize a binary segmentation algo-
rithm and then adjust the output with a connected component analysis in order to solve the
multi-instance segmentation and detection tasks [Isensee and Maier-Hein, 2020]. Inspired by the



3.3. COMPARATIVE VALIDATION OF MULTI-INSTANCE INSTRUMENT SEGMENTATION 73

recent successes of the nnU-Net [Isensee et al., 2018], the authors used a simple established base-
line architecture (the U-Net [Ronneberger et al., 2015]) and iteratively improved the segmentation
results through hyperparameter tuning. The method, referred to as optimized robust residual
2D U-Net (OR-UNet), was trained with the sum of DSC and cross-entropy loss and a multi-scale
loss. During training, extensive data augmentation was used to increase robustness. For the
final prediction, they used an ensemble of eight models. They hypothesized that ensembles
perform better than a single network. In their report, the team wrote that they attempted to
use the temporal information by stacking previous frames but did not observe a performance
gain. Additionally, they noticed that in many cases instruments did not touch; thus, they used a
connected component analysis [Shapiro, 1996] to separate instrument instances.

Team SQUASH: An ensemble of models, combining image frame classification and multi-instance segmenta-
tion Team SQUASH’s hypothesis was that they could increase the robustness and generalizability
of all challenge tasks simultaneously by using multiple recognition task training. In training their
method from scratch, they assumed that the network capabilities were fully utilized to learn
detailed instrument features. Based on a ResNet50 [He et al., 2016a], the team used the video
data provided and built a classification model to predict all instrument frames in a sequence of
video frames. On top of this classification model, they built a segmentation model by employing
a Mask R-CNN [He et al., 2017] to detect multiple instrument instances in the image frames. The
segmentation model was trained by leveraging the preliminary trained classification model on
instrument images as a feature extractor to deepen the learning of instrument segmentation.
Both models were combined in a two-stage framework to process a sequence of video frames.
The team reported that their method had trouble dealing with instrument occlusions, but on the
other hand, they were surprised to find that it handled reflections and black borders well.

Team Uniandes: Instance-based instrument segmentation with temporal information Team Uniandes
based their multi-instance segmentation approach on the Mask R-CNN [He et al., 2017]. For
training purposes, they created an experimental framework with a training and validation split
and supplementary metrics to identify the best version of their method and gain insight into
the performance and limitations. Data augmentation was performed by calculating the optical
flow with a pre-trained FlowNet2 [Ilg et al., 2017a] and using the flow to map the reference
annotation on to the previous frames. However, they did not find significant benefits in using
the augmentation technique. The team observed that their approach was limited in finding all
instruments in an image frame, but once an instrument was found it was segmented with a high
DSC score. Although the team achieved good metric scores, they stated that they fell short in
segmenting small or partial instruments and instruments covered by smoke.

Team VIE: Optical flow-based instrument detection and segmentation The VIE team approached the
multi-instance segmentation task with an optical flow-based method. The teams hypothesis was
that the detection of moving parts in the image enables medical instruments to be detected
and segmented. For their approach, they calculated the optical flow over the last five frames of
a case by using the OpenCV12 library and concatenated the optical flow with the raw image as
input for a Mask R-CNN [He et al., 2017]. The team assumed that this would reduce most of the
unnecessary clutter segmentation. The team hypothesized that the temporal data could have
been used more e�ectively.

12https://opencv.org/
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Team www: Integration of Mask R-CNN and DAC block Team www proposed a framework based on
Mask R-CNN [He et al., 2017] to handle the three tasks in the challenge. Based on the observation
that the instruments have variable sizes, their idea was to enlarge the receptive field and tune
the Mask R-CNNs anchor size. Besides this, the team integrated DAC blocks [Gu et al., 2019]
into the framework to collect more information. The team reported that including temporal
information might have helped to improve their performance. 13

Performance results of participating teams

Fig. 3.14 shows a comparison for the multi-instance segmentation task regarding the MI_DSC per-
formances of the participating algorithms over the three evaluation stages. A clear performance
drop is visible with the increasing di�culty of the stages, combined with a greater variance in
their distribution. Further descriptive statistics for binary and the multi-instance segmentation
task are provided in Tab. 3.7. The performance score for each test image of all participating
teams for Stage 3 is presented in Fig. 3.14, where every dot represents a test image and each dot
is color coded, depending on the number of visible instruments in the picture. The figure shows
clusters that correspond to the performance with respect to the visible number of instruments
in an image. While high metric values mainly correspond to only one visible instance, images
with more than one instance group multiple clusters around lower scores.

Figure 3.14: The change of the performance scores of all participating teams’ overall stages is
presented in this figure. It can be seen that with increasing di�culty from stage 1 to stage 3, the
performance drops and the variance increases.

13Please note that this team used data from the EndoVis 2017 challenge [Allan et al., 2019] to visually check their
performance on a di�erent medical dataset. The participation policies (see [Roß et al., 2020]) prohibit the use of other
medical data for algorithm training or hyperparameter tuning. The challenge organizers defined this case as a grey zone
but noted that the team may have had a competitive advantage in performance generalization.
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Figure 3.15: The performance score for each test image of all participating teams’ for stage 3 is
presented in this swarm plot. Every dot represents a test image, where the number of visible
instruments is color encoded. It can be seen that there are clusters present in the distribution
that correspond to the performance with respect to the visible number of instruments in an
image. While high metric values mainly correspond to only one visible instance, images with
more than one instance group multiple clusters around lower scores.

Challenge ranking

As described in Section Metrics and rankings, two di�erent rankings were used to compare the
algorithms regarding their accuracy and robustness. The rankings were performed for both
metrics MI_DSC and MI_NSD individually and on data from stage 3 (maximal di�culty) only. All
results of the rankings are presented in Tab. 3.8. To provide deeper insight into the ranking
variability, ranking blob plots (see Fig. 3.16) were used to visualize ranking stability based on
bootstrap sampling [Wiesenfarth et al., 2019b].

Expert baseline

To compare the expert with the algorithms’ performances, only the MI_DSC metrics are presented,
as the results with the MI_NSD metric are similar. Given the fact that in Stage 2 only a maximum
of three instrument instances are visible, the analysis covers only di�erences for n instances
where n ∈ {1, 2, 3}. The results are that Team fisensee shares the first rank with the expert in the
accuracy rankings for frames where only one instrument is visible. However, as it can be seen in
Fig. 3.17, the mean performance of all algorithms drops if more than one instrument is visible,
while the experts’ performance stays constant.

3.3.4 Discussion
This part of the thesis presented a challenge in the field of SDS which, in addition to the two
tasks of binary and multi-instance segmentation, focused on two additional aspects, namely
the robustness and generalizability of algorithms. The next sections will contain a detailed
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Table 3.7: Quantitative results of all participating methods for all three stages for the binary
and multi-instance segmentation tasks. The evaluation metric for the binary task was the DSC
and for the multi-instance segmentation task the MI_DSC metric. The table contains the mean,
median and the 5th (Q05), 25th (Q25) and 75th (Q75) quantile.

Metric CASIA_SRL caresyntax SQUASH Uniandes VIE fisensee www expert

BINARY INSTANCE SEGMENTATION

ST
AG

E
1

Mean 0.90 0.89 0.88 0.90 0.79 0.92 0.88 -
Median 0.95 0.94 0.93 0.94 0.87 0.96 0.92 -

Q5 0.70 0.69 0.55 0.71 0.30 0.76 0.68 -
Q25 0.91 0.91 0.88 0.91 0.76 0.93 0.88 -
Q75 0.96 0.96 0.95 0.96 0.92 0.97 0.94 -

ST
AG

E
2

Mean 0.89 0.88 0.85 0.89 0.77 0.90 0.86 0.91
Median 0.95 0.95 0.93 0.95 0.87 0.96 0.92 0.96

Q5 0.43 0.36 0.34 0.41 0.00 0.54 0.37 0.73
Q25 0.91 0.91 0.87 0.92 0.74 0.93 0.88 0.93
Q75 0.97 0.96 0.95 0.96 0.91 0.97 0.94 0.97

ST
AG

E
3

Mean 0.88 0.85 0.83 0.87 0.76 0.88 0.85 -
Median 0.94 0.94 0.92 0.94 0.86 0.95 0.91 -

Q5 0.50 0.00 0.22 0.28 0.00 0.34 0.52 -
Q25 0.89 0.89 0.85 0.90 0.73 0.91 0.86 -
Q75 0.96 0.96 0.95 0.96 0.91 0.97 0.94 -

MULTI-INSTANCE SEGMENTATION

ST
AG

E
1

Mean 0.65 0.82 0.78 0.84 0.67 0.80 0.81 -
Median 0.69 0.93 0.90 0.94 0.81 0.94 0.90 -

Q5 0.24 0.32 0.32 0.40 0.16 0.32 0.37 -
Q25 0.44 0.83 0.60 0.88 0.45 0.62 0.79 -
Q75 0.91 0.96 0.94 0.96 0.90 0.97 0.94 -

ST
AG

E
2

Mean 0.64 0.80 0.75 0.84 0.65 0.80 0.78 0.88
Median 0.68 0.94 0.91 0.94 0.77 0.94 0.91 0.95

Q5 0.18 0.32 0.26 0.39 0.00 0.28 0.30 0.47
Q25 0.43 0.68 0.48 0.88 0.43 0.61 0.63 0.91
Q75 0.91 0.96 0.95 0.96 0.90 0.97 0.94 0.97

ST
AG

E
3

Mean 0.60 0.77 0.73 0.80 0.65 0.76 0.76 -
Median 0.55 0.93 0.89 0.93 0.77 0.93 0.89 -

Q5 0.19 0.00 0.22 0.26 0.00 0.17 0.31 -
Q25 0.41 0.58 0.48 0.67 0.43 0.52 0.58 -
Q75 0.88 0.95 0.94 0.95 0.90 0.96 0.93 -

discussion of the challenge design and infrastructure, the challenge outcome, and finally the
comparison to the human expert.

Challenge design

Challenge infrastructure While recent challenges in the domain of biomedical imaging are pub-
lishing the test data and allowing the submission of the results (e.g. BraTS14, KiTS201915, PAIP
201916), the submission of docker containers is already quite common in other disciplines (e.g.
CARLA17). Suppose Docker is used for the challenge instead of releasing the test data. In that case,
there are a few decisive advantages, such as the prevention of fraud (manual labeling) or the
introduction of additional bias (assessment of the test results by the participants) [Reinke et al.,
2018]. However, it might have prevented participants from submitting a solution, as preparing a

14http://braintumorsegmentation.org/
15https://kits19.grand-challenge.org/rules/
16https://paip2019.grand-challenge.org/
17https://carlachallenge.org/
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Table 3.8: Multi-instance segmentation: Rankings for stage 3 of the challenge. The upper part of
the table shows the multi-instance Dice Similarity Coe�cient (MI_DSC) rankings and the lower
part shows the multi-instance Normalized Surface Distance (MI_NSD) rankings (accuracy rankings
on the left, robustness rankings on the right). Each ranking contains the team identifier, and
either a proportion of significant tests divided by the number of algorithms (prop. sign.) for the
accuracy ranking or an aggregated MI_DSC/MI_NSD value (aggr. MI_DSC/MI_NSD value) and a
rank.

MI_DSC: ACCURACY RANKING MI_DSC: ROBUSTNESS RANKING

Team identifier Prop. Sign. Rank Team identifier Aggr. MI_DSC Value Rank
fisensee 1.00 1 www9 0.31 1
Uniandes 0.83 2 Uniandes 0.26 2
caresyntax 0.67 3 SQUASH 0.22 3
SQUASH 0.33 4 CASIA_SRL 0.19 4
www9 0.33 4 fisensee 0.17 5
VIE 0.17 6 caresyntax 0.00 6
CASIA_SRL 0.00 7 VIE 0.00 6

MI_NSD: ACCURACY RANKING MI_NSD: ROBUSTNESS RANKING

Team identifier Prop. Sign. Rank Team identifier Aggr. MI_NSD Value Rank
Uniandes 1.00 1 www9 0.35 1
caresyntax 0.67 2 Uniandes 0.29 2
fisensee 0.50 3 CASIA_SRL 0.27 3
www9 0.50 3 SQUASH 0.26 4
SQUASH 0.33 5 fisensee 0.16 5
VIE 0.17 6 caresyntax 0.00 6
CASIA_SRL 0.00 7 VIE 0.00 6

docker is an additional overhead. Using docker containers requires extra time and organization
e�ort for an organizer, as su�cient hardware resources for the challenge evaluation are needed
and challenge participants request support.

Metrics and Ranking The choice of the two segmentation metrics DSC and NSD was made by
following the recommendations of the Medical Segmentation Decathlon [Cardoso, 2018]. However,
both metrics could have been calculated either globally or image-based. While using a global
metric would not require aggregation of the scores per image (e.g., per mean or median), the
image-based approach has the benefit that instruments with a small area have the same impact
as big instruments. Using the global score would lead to a segmentation bias toward bigger
instruments.

While the accuracy ranking appears to be quite stable, the robustness ranking shows a higher
instability. These instabilities are probably due to the fact that the robustness was defined as the
5th percentile and is therefore already subject to more variability in comparison to aggregated
values. Thus, the robustness ranking is subject to greater uncertainty compared to that of the
accuracy ranking, as shown in Fig. 3.16.

Challenge data All images were pre-processed by downsampling the video images. This pre-
processing might have had an impact on the results. However, based on the submitted methods
many teams downsampled the images even further to fit more data on the GPU. As the conditions
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Figure 3.16: The ranking stability (based on a bootstrap sampling) is displaed in form of blob
plots, where algorithms are color-coded, and the area of each blob at position (Ai, rank j) is
proportional to the relative frequency Ai of the achieved rank j across b = 1000 bootstrap
samples. The median rank for each algorithm is given by a black cross. 95% bootstrap intervals
across bootstrap samples are indicated by black lines. The plots were generated using the
package challengeR [Wiesenfarth et al., 2019b, Wiesenfarth et al., 2019a].

were the same for all participants, and based on the observation that teams even used smaller
images, it can be assumed that any e�ect that may exist is likely to be rather small.

Inter-rater agreement

The inter-rater agreement results, as shown in Fig. 3.12, reveal a considerable performance drop
after approximately 80% of the data, where the performance quickly drops from a DSC>0.8 to
zero. However, this strong disagreement among the annotators is due to (1) missed or only one
partially segmented instrument instance (2) very complex and di�cult to judge images or (3)
multiple plausible answers (see Fig. 3.13). Smaller deviations could also result from the fact
that the annotation rules were not carefully followed in all cases. As data points with a strong
disagreement reflect more di�culties in finding an instrument, or very complex images, rather
than how close annotators are when segmentation of an instrument instance, excluding them
could be a valid option. Nonetheless, the real data contain problems with finding instances, and
thus, should remain in the setting. Based on the observation that over 75% of the annotations
are very close together, it can be assumed that the median reflects the real inter-rater variability
better than the mean performance. For this reason, the median of the HD metric was chosen as
τ for the NSD metric, reflecting the inter-rater uncertainty.

Challenge outcome

Methods Of the methods submitted, all but one were based on Mask R-CNN variations. The
method which does not use a mask R-CNN is a combination of a U-Net with a principal component
analysis, and was developed by team fisensee (see Tab. 3.6). Surprisingly, the combined approach
turned out to be a strong baseline in the DSC accuracy ranking. This can be attributed to two
main factors. The primary reason is that a huge percentage of the test data only contained one
instance (see Fig. 3.18) and is therefore only a binary segmentation. Additionally, the same figure
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(a) Function of the number of instruments (b) Function of the image characteristics

Figure 3.17: This figure shows how a human expert performs in comparison to the submitted
methods for the multi-instance segmentation task on Stage 2 data. In the first image (a) the
Median MI_DSC is presented as a function of the number of instruments. Clearly, all algorithms’
performance drops with the number of visible instruments in the image while the experts
performance stays constant. In the second image (b) the Median MI_DSC is shown as a function
of the image characteristics. It can be seen that the expert systematically outperforms the
algorithms.

reveals that the number of instruments that are overlapped by another instrument is only a tiny
part of the complete test dataset, which is the reason why the connected components analysis
approach is so successful.

Even if the success of the U-Net based approach can be explained, it is di�cult to understand
which specific design choices for the Mask R-CNN approaches led a submission to be superior to
the others. Interestingly, teams reported that during their evaluation settings the choice of their
architecture design was more successful, than for example, the U-Net architecture. However, in
the final ranking the U-Net outperformed their approach. Based on the summary of all methods
in Tab. 3.6, and based on the participants’ reports, one can conclude that the factors for success
were an extensive data augmentation and a well done hyperparameter search. This is in line
with recent findings in the field of radiological data science [Isensee et al., 2018].

Surprisingly, only three of the ten submitted methods incorporate the temporal information that
might be extracted from the provided video snippets along with the annotated data. Two of those
methods used the temporal information to extract the optical flow between the corresponding
frames, and one method used the additional video data for a multi-task setting which additionally
trained the likelihood of the instrument presence in a frame. While human annotators often
strongly rely on the temporal context, this was not the case for the algorithms. For this reason, it
can be speculated that the potential of temporal information still remains undiscovered.
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Results The key insides for all submitted methods are:

1. Submitted methods: The submitted methods for the binary instrument segmentation task
focused mainly on U-Nets [Ronneberger et al., 2015], and Mask R-CNNs [He et al., 2017]
for multi-instance segmentation. While the U-Net clearly outperformed all other methods
in the binary instrument segmentation, a Mask R-CNN approach yielded better results in
terms of robustness for the multi-instance segmentation approach.

2. Performance:

(a) Binary segmentation: With a mean DSC score of 0.88 for the accuracy task, the perfor-
mance of the winning algorithm for the accuracy task was similar to that of previous win-
ners of binary segmentation challenges (winner of EndoVis Instrument Segmentation
and Tracking Challenge 201518: 0.84 (DSC); winner of EndoVis 2017 Robotic Instrument
Segmentation Challenge [Allan et al., 2019]: 0.88 (DSC)). Given the high complexity
of ROBUST-MIS data in comparison to previously released datasets, the same per-
formance could be attributed to the greater amount of training data. However, in
comparison to the self-supervised approach from Sec. 3.1, the performance increased
from 0.71 for 23%. As the segmentation in Sec. 3.1 also relied on a U-Unet, this gain in
performance is due to the greater amount of training data.

(b) Multi-instance segmentation: The winning algorithms achieved a mean MI_DSC scores
of:

- 0.82 for cases with one instrument instance,
- 0.71 for cases with two instrument instances,
- 0.62 for cases with three instrument instances,
- 0.45 for cases with more than three instrument instances.

Thus, the multi-instance segmentation still has a problem with multiple instances.

3. Generalization: The generalization capabilities for all methods was satisfying, with only a
loss of 3% in the binary segmentation task and 5% for the multi-instance segmentation
task.

4. Robustness: The algorithms showed di�erent performances for di�erent image characteris-
tics. Further research is required.

Beside the key-findings in the beginning of the section, it is important to explicitly discuss
the performance drop when multiple instrument instances were visible in one image (see
Fig. 3.17). While the worst performance drop could be observed for the U-Net based approach
from fisensee, the drop of the other teams was less dramatic. However, the extent to which the
number of visible instruments impact the results can clearly be seen in Fig. 3.15 with the di�erent
clusters for the number of instruments. Though high metric values mainly correspond to only one
visible instance, images with more than one instance group multiple clusters around lower scores.

Due to the di�culties when there is more than one instance visible in an image, none of the
methods could outperform an expert annotator. Although most of the methods scored a median
MI_DSC above 0.9, a comparable performance could be achieved in cases where one instance
was visible. Only the team Uniandes achieved a median score for two visible instances close to

18https://endovissub-instrument.grand-challenge.org/
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the human annotator. Nevertheless, it can be observed that the expert’s performance does not
depend on the number of visible instances in an image, in contrast to the algorithms. Surprisingly,
the expert also achieved low values in the robustness ranking of only 0.43 for one visible instance
and 0.47 for two instruments due to missed or false instances. However, when comparing the
percentile, for MI_DSC= 0.9 and MI_DSC= 0.95, the expert is on the 14th, and 10th percentile,
while Uniandes is on the 14th and 48th percentile and fisensee on the 14th and 37th percentile.

While the expert’s performance is stable across all artifacts, fluctuations in the individual algo-
rithms can be observed (e.g., reflections in the background or an instrument motion). Thus, there
are signs that specific image characteristics can positively (e.g., background containing other
objects) or negatively (e.g., underexposed instrument) influence the algorithms’ performance.
However, it is di�cult to estimate how much the image characteristics a�ect the image quality.
Estimating the influence is di�cult because the number of available images with a certain charac-
teristic di�ers from each other. Thus, further analyses with better evaluation options are required.

Concerning the interpretation of the values, it must be said that the results are based on the
comparison with only one expert. Further, the comparison was exclusively made on Stage 2 of
the test data with only one medical expert for practical reasons. Thus, two additional e�ects
could further appear negatively with an increased di�culty if the comparison would have been
performed on Stage 3 data, and positively when further experts would have been included in the
validation.

Finally, even if an assessment of the inference time would have been of special interest (especially
with respect to a possible translation into the clinic), it was not further investigated. This was
because a respective metric was not announced to the challenge participants, and thus, the
participants did not have the opportunity to optimize their methods. This assumption was also
supported by the observation as a preliminary run-time analysis of the docker submissions,
which revealed huge di�erences in the computation times for similar architectures (0.07-7.3
seconds/image).

3.3.5 Conclusion
In summary, it can be said that an increased number of training data has led to better performance
in binary instrument segmentation, with a quality that is now very satisfactory in the median.
The performance of the multi-instance segmentation still has major weaknesses though. Among
other concerns, it was found that the presence of several instruments in one image harms the
performance of the algorithm. Despite experts that are not influenced by the presence of several
instances in their annotation quality, the performance of all currently available methods drops
significantly. In addition to the problem of multiple instances, there are also indications of further
influences (image characteristics such as blood or smoke) on the algorithms’ performance. A
systematic analysis of characteristics influence could enable a targeted development of methods
that could solve these problems. Overall, it can be said that multi-instance segmentation is not
yet suitable for translation into clinical practice.
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3.4 | E�ects of image characteristics on the algorithm per-
formance

Disclosures to this work:

Lena Maier-Hein supervised this work and was, along with Pierangela Bruno and
Manuel Wiesenfarth, part of the development of the methodology and involved in
the writing process. The detailed disclosure of this section can be found in Sec. 7.

3.4.1 Introduction
In recent years the number of international competitions has increased in the surgical data
science community, which can be seen in the dataset summary from Maier-Hein et al. [Maier-Hein
et al., 2020a]. The benefits of such challenges are that first, they enable a fair comparison across
multiple methods [Maier-Hein et al., 2018, Maier-Hein et al., 2019] and second, they arouse
interest in a specific problem.

One of such international challenges is the Endoscopic Vision (EndoVis) Challenge19, which
takes place on a regular basis at the International Conference on Medical Image Computing and
Computer Assisted Interventions (MICCAI) since 2015 (exception: 2016). The EndoVis challenge
itself hosts various sub-challenges with a broad variety of tasks in the field of endoscopic image
processing. The outcome of such challenges is usually a website and/or a publication, that
mainly contains reports on the methodologies of the participants and descriptive performance
statistics and rankings [Allan et al., 2019, Allan et al., 2020, Bodenstedt et al., 2018, Roß et al.,
2020]. Some of those publications also contain the reports of best/worst performance cases or
they report open challenges, based on a manual analysis, combined with an interpretation (e.g.,
[Allan et al., 2020, Bodenstedt et al., 2018, Roß et al., 2020]).

In a previous part of this thesis (Sec. 3.3), a comparison was made between an expert annotator
and all methods that were submitted for the ROBUST-MIS challenge, with respect for image
characteristics (see Fig. 3.17). The analysis revealed that image characteristics might influence
the performance of an algorithm on an image. However, due to statistical di�culties, no further
exploration of this problem has been performed. A review of the challenge publications to
date reveals, a structured and detailed analysis of the performance of algorithms (e.g., open
challenges regarding di�cult image scenarios such as bleeding, smoke and reflections) has
never been systematically and quantitatively performed. Thus, it remains unclear how strong
possible open challenges a�ect the performance of the algorithms, which might be helpful for a
problem-driven approach.

This part of the thesis presents an approach to how the results of a challenge can be used for an
in-depth image characteristic analysis, where the e�ect of the characteristics on the algorithms’

19https://endovis.grand-challenge.org/
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performance is quantified for the first time.

The outline of this part is as follows: to begin, the analysis itself is further explained in the
Methods Sec. 3.4.2. This section is followed by the Results of the analysis (Sec. 3.4.3), a Discussion
of the results in Sec. 3.4.4 and the Conclusion is found in Sec. 3.4.5.

3.4.2 Methods
Regardless of the use case, there typically exists domain and use case-dependent di�culties that
algorithms must deal with (e.g., reflections, smoke, or motion characteristics during instrument
segmentation). Often, there are multiple di�culties at once, and it is not always straightforward
how to identify and prioritize them during development. Especially in the medical domain, it is
crucial to understand how di�culties a�ect the performance of the algorithms [Esteva et al.,
2021]. To develop a good understanding of such characteristics, one might look at the worst
cases of the results. It needs to be considered, however, that only reviewing the worst cases
could lead to a concentration on exceptional border cases, which contains the potential for the
fundamental weaknesses of the algorithms being lost. Thus, an overall examination of possible
di�culties in images is of special interest.

This section begins by describing how the influence of image characteristics could statistically be
modeled to estimate their e�ect on the performance. This section is followed by the description
of the experimental setup for the e�ect estimation.

Quantification of the e�ect of image characteristics

The algorithms submitted to the ROBUST-MIS Challenge were used (see Sec. 3.3) to quantify the
e�ects of image characteristics, as the influence on a large number of di�erent algorithms can
be tested. The performance of these algorithms, which had been measured using the DSC metric
should now, in combination with the presence of the image characteristics, be included in a
statistical model to estimate the characteristics’ e�ect.

One way to model the e�ect of image characteristics is to use the challenge metric (DSC) to fit
a Linear Mixed E�ects Model (LMM), and later, analyze the resulting coe�cients. Nevertheless,
as already described in the paragraph 2.1.2 Generalized Linear Models, modeling the algorithm
performances directly on the challenge metric would violate the normality assumption, as the
DSC values are in the range of [0, 1]. Thus, a suitable transformation of such values into a range
of [− inf, inf] (e.g., using the logit or the arcsin) would make the values subject to the normal
distribution. Unfortunately, such a transformation directly a�ects coe�cients and thus could
make their interpretation harder. Instead of using segmentation metrics, an alternative method
is to model how many of the predicted instrument pixels are correct. This form of prediction
could be done with a model that does not require normally distributed data, a so-called GLMM
[Breslow and Clayton, 1993]. Such models combine the power of Linear Mixed-E�ects Models
[McCulloch and Neuhaus, 2001], which incorporate random e�ects, and generalized linear models
capable of handling non-linear data [Bolker et al., 2009].

However, when modeling correct pixels without the DSC metric, the overlap of the groundtruth
with the segmentation is no longer able to be examined directly. This problem is caused
because GLMM uses the binomial distribution function and thus models the number of successes
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taken from the total number of trials. In other words, it can only be examined (Q1) how many
groundtruth pixels are found by the prediction, and (Q2) how many pixels of the prediction are
inside the groundtruth. It is important to ask both questions because they contain mutually
complementary information. For example, a prediction that covers too many pixels would lead
to a high success rate in Q1, but a lower success rate in Q2. Thus, for Q1, the number of trials
was the number of pixels in an instrument instance, and for Q2 it was the total number of pixels
in the predicted instrument instance. For both, Q1 and Q2, the number of successes were the
intersecting instrument pixels between the reference and the predicted instance.

The interpretation of the coe�cients of a fitted GLMMs was done with the Odds Ratio (OR) [Bolker
et al., 2009, Holling and Schmitz, 2010]. The OR (expressed as R(AT : AF )) is a metric that
measures how two events are associated with each other regarding their presence or absence
(see Eq. 3.9 and Tab. 3.9) [Holling and Schmitz, 2010]. Thus, the OR is a measure of the e�ect
strength between two independent binary variables.

Table 3.9: Confusion matrix for two events (State A and Event B) regarding their presence or
absence.

Event A Event B
Present True AT BT

Present False AF BF

R(AT : AF ) =
AT ·BF

AF ·BT
(3.9)

with R(AT : AF ) being the OR for presence or absence AT and AF of the event A.

However, the fact that the OR is not symmetrical makes the interpretation less intuitive. This
can be illustrated on an OR of 4:6 (0.66) and its inverted ratio of 6:4 (1.5). For this reason, the
log of the OR is typically used which makes the ratios symmetrical (log(4 : 6) = −0.176 and
log(6 : 4) = 0.176).

The annotations of the characteristics as described in Sec. 3.2.2 were used in combination with
the challenge results, providing the performance of multiple state-of-the-art algorithms. Due
to the small number of data points for more than three visible instrument instances and the
associated di�culties in fitting a model, only images with n ∈ {1, 2, 3} instrument instances were
analyzed. To avoid modeling di�culties with the mixed amount of visible numbers in an image,
for each n, its own model was fitted resulting in three models.

Experimental setup

This section describes the experimental setup which was used to validate the developed concept.
For this purpose, the used dataset and metrics are first described, followed by the implementation
details of the presented deep learning model. The section concludes with an explanation of the
details for all experiments.
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Dataset and metrics The evaluation was based on the challenge dataset as described in Sec. 3.2.
Thus, the dataset consisted of 5,983 training and 4,057 test images, where each image came with
a 10s video snipped from the previous frames. Following the test and training set definition
from [Roß et al., 2020], the test set was split into three stages to explore di�erent grades of the
algorithm to generalize to new procedures and patients.

• Stage 1: 663 frames (16 % of the test data) which were not part of the training set extracted
from the videos of the same patient from where the training data had been extracted.

• Stage 2: 514 frames (13 %) were extracted from the same type of surgery as the training
data but had been taken from patients who had not been included in the training data

• Stage 3: 2,880 frames (71 %) where the data was extracted from a di�erent, but similar, type
of surgery

For the validation of the method the rankings and metrics were similar to Sec. 3.3.4. This was
specifically in regards to the use of the the multi-instance Dice Similarity Coe�cient (DSCMI ,
[Xu et al., 2017]) and so the Hungarian algorithm [Kuhn, 1955] was used to assign corresponding
pairs [Roß et al., 2020].

Implementation details All parameters were set according to small experiments on a held-out
validation set during the implementation process.

Influence of characteristics on the algorithm performance For analyzing the influence of characteris-
tics on the algorithm performance, the two questions Q1 and Q2 were individually investigated
to discern the number of visible instances n ∈ {1, 2, 3}. Thus, six models were fitted in total (two
questions times three visible instances). The separated evaluation was necessary because not
all characteristics are the same over all instances (e.g., overlapping instrument instances require
at least two instances in the image).

In order to interpret the results of the statistical model, it is essential to further compare the
characteristics distribution on both the training and the test set. This comparison is important
in order to be able to assess whether an image characteristic is complicated for an algorithm or
whether it was never or rarely present in the training set.

3.4.3 Results
In summary for Q1 and Q2 it can be said that algorithms have a problem with instrument instances
that are underexposed and covered by another instruments However, it is important to look at
both questions separately since they contain mutually complementary information (see Sec.
3.4.2).

The itemized results for the question (Q1 and Q2), how characteristics influence the probability
that an algorithm correctly classifies a pixel of the reference as an instrument, can be seen in
Fig. 3.19, Fig. 3.20 and Fig. 3.21 and are as follows: If only one instrument is visible in the image,
the main characteristics which statistically, significantly negatively (confidence level 3) influence
the results, are when the instrument is underexposed or covered by a material. Characteristics
such as an instrument covered by smoke, motion blur, or reflections have no significant impact.
The same holds true for all possible background characteristics. For two visible instruments,



3.4. EFFECTS OF IMAGE CHARACTERISTICS ON THE ALGORITHM PERFORMANCE 87

the harmful characteristics are when an instrument is underexposed and, with a large margin,
when it is covered by another instrument. For three visible instruments, a statistically significant
adverse impact can only be found for images where the background is covered by blood.

Regarding the impact of characteristics on correct predictions (Q2), the statistically significant
negative factors are when an instrument is underexposed, covered by material, is in motion, or
when the background contains other objects and is covered by smoke. For two visible instances,
again, the biggest negative impact is when an instrument is covered by another instrument.
This in addition to other significant characteristics such as an underexposed instrument or an
instrument covered by smoke. In comparison to Q1, there are two strong significant negative
characteristics when three instruments are visible: when the instrument is in motion or, again,
when another instrument covers it.

Besides negative influences, some characteristics appear to have a positive influence in both
questions Q1 and Q2. For two and three instances, it appears that the performance of an image
might be better when the instruments are overexposed or even when they are covered by tissue.

Figure 3.18: Representation of the occurrence of image characteristics and their distribution in
the test and training dataset, as well as the occurrence of the characteristics in images with one,
two or three visible instruments. While the size of the blocks and connecting lines in the image
correspond to the proportion of images that are subject to the written property (e.g., where
the background is covered by reflections), the color is only used to improve the legibility of the
image. The abbreviations "bg" stand for background and "instr." for instrument.

For the interpretation of the presented results, the distribution of characteristics in the test/train-
ing data is a relevant factor and is shown in the Fig. 3.18. The figure shows that (1) the occurrence
of the image characteristics is slightly di�erent between the training and the test dataset, (2) the
occurrence of characteristics in images with di�erent numbers of visible instruments varies, and
(3) the number of visible instruments in the training and test dataset was almost identical.
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Figure 3.19: Visualization of the e�ect of image characteristics on the algorithm performance for
one instance, interpreted as repeated Bernoulli experiments and the probability reparametrized
with a linear mixed-e�ects model. The characteristics’ e�ect is displayed in the form of the
log(odds) ratio, representing the odds that an outcome will occur compared to the odds of the
outcome occurring in the absence of that exposure. Significant e�ects are marked with an asterisk
∗. E�ects were analyzed for the reference and prediction.

3.4.4 Discussion

While di�culties such as the number of visible instruments in an image were already identified
in the challenge section (Sec. 3.3.3), the more in-depth statistical analysis of the e�ects of
characteristics provided further insights. Contrary to the observations made by, e.g., Bodenstedt
et al. [Bodenstedt et al., 2018], reflections, blood, and smoke do not seem to have a statistically
significant impact on the algorithm performances. Instead, the main limiting factors that reduced
the odds that a groundtruth pixel, or a predicted pixel, correctly being classified occurred when
an instrument was in motion, underexposed, or covered by another instrument.

The most significant impact by far was when the instrument is being covered by another instru-
ment. Such an impact can be attributed to the architecture of Mask R-CNNs and their way of
processing images. As Mask R-CNNs consist of a region proposal network, they provide bounding
boxes around regions of particular interest. Those bounding boxes will then be further processed
by the di�erent heads of the Mask R-CNN (e.g., classification, segmentation, scoring) [He et al.,
2017]. Especially in regions where instruments overlap, those bounding boxes might contain
parts of multiple instrument instances, which then leads to mis-segmentations. Interesting to
note are the characteristics that even seem to support outcome of the algorithms (e.g., in some
cases, reflections or when an instrument is covered by tissue or when the background is covered
by smoke). For the interpretation of such positive e�ects, it is important to include (1) how often
such characteristics appear in general and (2) how often such characteristics were visible in the
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Figure 3.20: Visualization of the impact of image characteristics on the algorithm performance for
two instances, interpreted as repeated Bernoulli experiments and the probability reparametrized
with a linear mixed-e�ects model. The characteristics’ e�ect is displayed in the form of the
log(odds) ratio, representing the odds that an outcome will occur, compared to the odds of the
outcome occurring in the absence of that exposure. Significant e�ects are marked with an asterisk
∗. E�ects were analyzed for the reference and for the prediction.

training data in comparison to the test data. By comparing how often characteristics, such as
blood or smoke, are present in the data, the positive e�ect of an instrument covered by tissue can
be supported. In contrast, the statistical significance of the background covered by smoke is very
likely due to the reduced number of presence in the data. Furthermore, a low significance level
of only one can be attributed to the high amount of data in general. Thus, for the interpretation,
only a higher confidence level should be considered.

3.4.5 Conclusion
For the first time, a method was presented that makes it possible to estimate the influence of
image characteristics on the segmentation quality of algorithms. It turned out that, contrary to
the assumptions of previous challenge publications, image characteristics such as smoke or blood
are statistically less complicated than assumed. Although statistically significant characteristics
were determined, it seems that there are more methodological di�culties with the algorithms
concerning multi-instance segmentation. This knowledge could make it possible to specifically
develop algorithms which address these di�culties.
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Figure 3.21: Visualization of the impact of image characteristics on the algorithm perfor-
mance for three instances, interpreted as repeated Bernoulli experiments, and the probability
reparametrized with a linear mixed-e�ects model. The characteristics’ e�ect is displayed in the
form of the log(odds) ratio, representing the odds that an outcome will occur, compared to the
odds of the outcome occurring in the absence of that exposure. Significant e�ects are marked
with an asterisk ∗. E�ects were analyzed for the reference and for the prediction.



3.5 | Multi-instance segmentation of medical instruments

Disclosures to this work:

Lena Maier-Hein supervised this work and was, along with Pierangela Bruno, Darya
Trofimova and Patrick Scholz, part of the development of the methodology and
involved in the writing process.

3.5.1 Introduction

Over the last decades, the number of minimally invasive surgeries continuously increased and
let to a significant reduction in patient hospitalization and recovery time as compared to open
surgery [Siddaiah-Subramanya et al., 2017]. Due to the nature of such surgeries, surgeons must
rely on imaging the operating field by means of an endoscope. This practice however, comes with
limitations such as lack of depth information [Bogdanova et al., 2016] and restricted freedom
of movement [Azimian et al., 2010]), which may a�ect the surgeon’s visual understanding. To
overcome such limitations, current research in surgical data science (SDS) [Maier-Hein et al.,
2017a] focuses on developing methods and systems capable of improving surgical vision and
providing context-aware assistance. To avoid the use of additional, and potentially expensive,
hardware in the operating room, many applications are only based on endoscopic videos (e.g.,
vision-based force estimation [Su et al., 2018], surgical skill assessment [Law et al., 2017, Lin et al.,
2019] and augmented reality [Wang et al., 2017, Burström et al., 2019]). As many such tasks rely
on accurate segmentation and tracking of medical instruments that are visible in the endoscopic
video stream [Wang et al., 2017, Shvets et al., 2018, Kletz et al., 2019], the segmentation algorithm
must provide accurate results.

How well such instrument segmentation algorithms currently work has already been analyzed in
detail in Sec. 3.3. It was observed that the segmentation quality could depend on the characteris-
tics on an image (e.g., presence of blood or smoke). In Sec. 3.4, a method was then presented that
made it possible to identify and quantify the e�ect of characteristics that harm the segmentation
quality.
Based on the findings reported in Sec. 3.4, the research question is whether an algorithm
can be developed that explicitly addresses the open challenges. Thus, this part of the thesis
presents a problem-driven development approach as to how the results of the in-depth image
characteristics analysis can be used to develop an algorithm that explicitly tackles some of the
open challenges.

The remainder of this part of the thesis is structured as follows: Sec. 3.5.2 presents the developed
concept, followed by the results in Sec. 3.5.3. A discussion of the results in then presented in
Sec. 3.5.4 and Sec. 3.5.5 concludes by summarizing the main achievements.
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3.5.2 Methods

Regardless of the use case, there are domain and use case-dependent di�culties that algorithms
must typically deal address (e.g., reflections, smoke, or motion characteristics during instrument
segmentation). In Sec. 3.4, an approach was presented that identifies and quantifies the impact
of such characteristics on current instrument segmentation algorithms. The characteristics that
were identified as having a significantly negative impact on the algorithm performance were
smoke or other objects in the background. Further negative e�ects occurred when the instrument
was underexposed, in motion, or covered (e.g. with smoke, material or another instrument).
Thus, the new algorithm should be explicitly designed to manage those di�culties.

Based on the experiences that could be gained during the annotation of the dataset, it is
noteworthy that most of the characteristics also cause di�culties for the annotators but these
problems could be handled better by using temporal information. Given this, inclusion of
temporal information in the instrument segmentation process may help to improve the perfor-
mance. It is of interest to note that the numerous teams which participated in the ROBUST-MIS
challenge (see Sec. 3.3.3) reported that they could not achieve a benefit from including temporal
information, and those teams which had attempted, did not achieve high performance scores
(see Sec. 3.3.3 Performance results of participating teams). The second placed team (Uniandes)
in the accuracy but first placed team in the robustness ranking attempted to use the optical flow
between the frames to improve their segmentation and reported no positive e�ect.

For these reasons, an alternative variant on how the temporal information could be included is
presented in this section. The core component of the presented deep learning architecture is a
Mask R-CNN [Huang et al., 2019a] that uses (1) the raw video frame, (2) the probability of a pixel
to be an instrument and (3) the LSTM-summarized information on object motion encoded in an
optical flow. The goal of this approach is to reduce the e�ect of the presented characteristics
for the task of the multi-instance segmentation. An overview of the approach is shown in Fig. 3.22.

The formal definition of the problem concerning the multi-instance instrument segmentation is
as follows: Given is a video sequence X = {xt−NX

, xt−NX+1, . . . , xt} at a given time step t that
consists ofNX frames. A frame x has the dimensions [hx×wx×3], where hx and wx are the image
height and width, and the three channels in the last dimension contain the RGB encoded color
information. To each x corresponds set of instrument instances Ix = {Ix,j |j ∈ {1 . . . NI(xt)}},
where NI(xt) denotes the number of instrument instances present in frame x.

In the next sections, the details of the instrument likelihood prediction are first presented,
followed by a description of how the temporal information was used before the instrument
instances are predicted. To further tackle some Mask R-CNN related problems, a post-processing
step was used, which is described in 3.5.2 Post-processing.

Prediction of the instrument likelihood

Given is a video frame x that is taken from a video sequence X , with x ∈ X and x of the
dimensions [hx, wx, 3]. The goal is to predict for each pixel p ∈ x the probability that it is an
instrument. Prediction is done with a 2D U-Net [Ronneberger et al., 2015] which achieved the
best results in the Robust Segmentation challenge [Roß et al., 2020] and that is further described
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Figure 3.22: This figure illustrates the concept of the multi-instance segmentation approach for
a video frame xt. At first the optical flow of a video sequence X = {xt−NX

, xt−NX+1, . . . , xt}
of length Nx is estimated for a consecutive pair of frames via FlowNet2. Then the estimated
optical flow is summarized with a LSTM into mt. F every pixel in xt the instrument likelihood lx is
estimated with a U-Net. A Mask R-CNN produces the multi-instance instrument segmentation
which gets as input the original image xt, lx, and mt. The final results of the instrument instances
are achieved after post-processing.

in Isensee et al. [Isensee and Maier-Hein, 2020].

The prediction model B(x) was trained with the following lossLSeg = LDSC+LCE , a combination
of the regular pixel-wise cross-entropy loss LCE (see Eq. 2.21) and the soft dice loss LDSC (see
Eq. 2.23).
The output of the model lx = B(x) has the dimension [hx, wx, 1] and contains the probability
values for all pixels of being an instrument in the range between [0, 1].

Use of the temporal information

For prediction of the segmentation for the frame xt at the time step t, the goal is to include the
knowledge of the previous frames. In the first step, the instrument motion is estimated using
the optical flow concept. In the second step, this movement is summarized so as to enable
straightforward processing in the segmentation task. The following two paragraphs will explain
how the optical flow is generated and summarized for later use in the segmentation network.

Prediction of the optical flow The computation of the optical flow was traditionally done by either
calculating the shift of corresponding feature points in two images [Lucas et al., 1981] or by using
the method of Farneback et al. [Farnebäck, 2003] to get a dense estimation for all image pixels.
However, compared to the recent methods based on neural networks, those methods are slower
and less accurate [Dosovitskiy et al., 2015, Ilg et al., 2017b]. For this reason, the optical flow
estimation was done with the FlowNet2 [Ilg et al., 2017b], an extension of the FlowNet [Dosovitskiy
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et al., 2015], that was pre-trained on the large synthetic Flying Chairs dataset [Dosovitskiy et al.,
2019]. The first version of FlowNet only stacks the two consecutive frames xt, xt−1 on each
other to predict the optical flow with one CNN, which had di�culties with large displacements.
FlowNet2 uses a faster and more accurate method by using separate networks for small and
large displacements, whose outputs are merged into a single flow image.

Prediction of the optical flow fxt,xt−1
is done for two consecutive frames xt and xt−1 at a given

time step t via the FlowNet2 F(xt, xt−1). The dimensions of fxt,xt−1
are [hx × wx × 2]. The two

layers in the last dimension correspond to the shift of each pixel in x- (first layer) and y- (second
layer) direction. Estimation of the optical flow is defined to be backwards in time, from xt, to
xt−1. Defining this is important because the optical flow estimation is not bijective due to e�ects
such as dis-/occluded regions [Sánchez et al., 2015].

Summarizing the optical flow To summarize the optical flow mt as a latent representation of the
motion in the complete sequence at a time step t, as modelR(X, t), a recurrent neural network in
the form of a Long short-term memory network (LSTM) was chosen (see Sec. 2.1.4 Recurrent neural
networks). The LSTM first computes the optical flow with F between all consecutive frames,
before it summarizes them all in the latent representation mt with the dimensions [hx × wx × 1]
(see Eq. 3.10).

mt = R({F(xi, xi+1)|i ∈ t−NX , ..., t− 1}, t) (3.10)
with X being the video sequence, xi being the i-th frame in that video, NX being the number of
video frames in the video snippet, t current the time step and F being the FlowNet2 model for
the flow estimation.

Segmentation of multiple instances

Given is a video sequence X of length NX , where for the last video frame xt at time step t, all
instrument instances Ix that are present in xt should be segmented. As the number of visible
instances di�ers from image to image, a Mask R-CNN [He et al., 2017] (see Sec. 2.1.4 Mask R-CNN)
was used as segmentation model S . To keep the same spatial dimensions, the input of S is
the concatenation in the last dimension of the RGB image xt, the likelihood of a pixel being an
instrument B(xt) and the latent space of the motion about all video frames R(X, t) (see Eq. 3.11).

Îx = S(xt,B(xt),R(X, t)) (3.11)

where Îx =
{

(̂ix,j , ŝx,j)|j ∈ {1, . . . , NÎx}
}

is a set of predictions that yields pairs of a predicted
instances îx,j with its corresponding predicted IoU score ŝx,j and NÎx being the number of
predicted instances. The dimensions of a îx,j are [hx × wx × 1], with values within [0, 1] that are
the probabilities of the image pixels belonging to instance number j, while îx,j is a value within
[0, 1].

Since the Mask R-CNN often produces thousands of candidates in an image, only instances
that have a high predicted IoU of the bounding box above a threshold τ are considered as
valid instances. After thresholding each pixel is usually assigned to an instance number by
performing the arg max per pixel to get the highest probability for an instance number. However,
this procedure might lead to problems, as will be explained in the next paragraph Post-processing.
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Post-processing

One of the peculiarities in the endoscopic instrument segmentation occurs in cases where
instruments overlap or are only partially visible on the side of an image. In both cases the
bounding box proposals can overlap, with all containing a high score which can make it di�cult
to proceed. These bounding box ambiguities [Robu et al., 2020] can lead when the usual pixel-
wise arg max operation is performed on the results, to a segmentation with mixed and distributed
instance numbers (see Fig. 3.23).

(a) Image with three bounding box proposals for
the same instrument

(b) Resulting image when performing the argmax
to achieve the predicted labels.

Figure 3.23: This figure shows (a) how the same instrument could become part of three di�erent
bounding box proposals where all three proposals achieve a high score of the Mask R-CNN.
Applying the arg max operation to achieve the predicted label would result a mixed up labeling
outcome (b).

Remove overlapping instances As usual, when working with Mask R-CNN, during the first step all
predicted instances that have a score greater than τ are considered as valid instances Ivalidx . In
the second step, however, all valid instances are pairwise compared with the DSC metric to find
proposals that have a large overlap Ifilteredx = {ij ∈ Ivalidx |@ik ∈ Ivalidx : DSC(ij , ik) ≥ γ ∧ ||ik|| >
||ij ||} (where ||il|| denotes the number of pixels in the instance il) In every case, where the
instances have a high degree of overlap (DSC ≥ γ), the proposal with fewer pixels is removed.

Refine labels After multiple proposals for the same instance were removed, there remains the
possibility of overlapping bounding boxes, especially in the case where instruments overlap (see
Fig. 3.24).

For this purpose, a CRF (see Sec. 2.3) is used, where the unary energy is defined as the probability
of each pixel belonging to an instance. After fitting the CRF, the arg max operation is applied
on each pixel to assign the corresponding instrument instance number. In a final check, the
result of the arg max is binarized and compared to the binary segmentation lx = B(x) from Sec.
3.5.2 Prediction of the instrument likelihood. If only small regions of pixels are left (number of
pixels ≥ δ), a connected component analysis [Shapiro, 1996] is performed to assign those small
regions to the labels previously assigned with the CRF. If there are still large areas of instruments
remaining, those are added as an additional class to the CRF and the CRF is fitted again to include
the missing pixels. The results of the post-processing can be seen in Fig. 3.25
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(a) Image (b) Reference segmentation with bounding boxes

Figure 3.24: The figure shows the original RGB image (a) and the corresponding instance segmen-
tation with their bounding boxes (b). It can be seen that the bounding boxes overlap.

(a) Image with bounding box pro-
posals

(b) Segmentation before post-
processing

(c) Segmentation after post-
processing

Figure 3.25: The figure shows the original RGB image (a) and the corresponding instance segmen-
tation with the bounding boxes proposed by the network (b). The results before post-processing
and (c) the results after post-processing.

Experimental setup

This section describes the experimental setup that was used to validate the developed concept.
For this purpose, the dataset and metrics used are first described, followed by the implementation
details of the presented deep learning model. To conclude, the details of all experiments are
explained.

Dataset and metrics The evaluation was based on the challenge dataset as described in Sec.
3.2 Conclusion. Thus, the dataset consisted of 5,983 training and 4,057 test images, where each
image comes with a 10s video snipped of previous frames. Following [Roß et al., 2020], the test
set was split into three stages to explore di�erent grades of the algorithm to generalize to new
procedures and patients.

• Stage 1: 663 (16 % of the test data) frames that are not part of the training set were extracted
from the same patient videos from which the training data were extracted

• Stage 2: 514 (13 %) frames were extracted of the same type of surgery as the training data,
but taken from patients not included in the training data

• Stage 3: 2,880 (71 %) frames were the data are from a di�erent, but similar type of surgery
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For the validation of the method, the rankings and metrics are similar to 3.3.4 Metrics and Ranking.
Specifically, the multi-instance Dice Similarity Coe�cient (DSCMI , [Xu et al., 2017]) was used,
and the Hungarian algorithm [Kuhn, 1955] was used to assign corresponding pairs [Roß et al.,
2020].

Implementation details All parameters were set according to small experiments on a held-out
validation set during the implementation process.

Instrument likelihood prediction The instrument likelihood prediction is based on the method
of Isensee et al. [Isensee and Maier-Hein, 2020] and thus uses an ensemble vote of eight
models, that were trained by leaving one surgery out on a 8-fold cross-validation. Each model
was trained for 2.000 epochs using randomly selected patches at size of 256x488, where an
epoch was defined as an iteration of over 100 batches. For preventing overfitting, the following
data-augmentation techniques were randomly applied on each image during training: contrast,
brightness and gamma-augmentation, image rotation, scaling, mirroring, elastic deformation
and additive Gaussian noise [Isensee and Maier-Hein, 2020]. The optimizer was the SGD, with
learning rate decay that went to 0, starting from 2−5 [Isensee and Maier-Hein, 2020].

Image flow prediction For all experiments, the optical flow was computed via a video sequence
that lasted 5s before t. Since using the original video frame rate of 25fps would result in a
vanishing gradient and would require too much memory, the optical flow was computed with a
frame rate of only 3fps. This resulted in an optical flow with the resolution of [15× hx × wx × 2].
As the computation of the optical flow is resource-intensive, it was pre-computed and stored.

Summarized was the optical flow with the LSTM using 6 hidden convolutional layers of dimension
{32, 16, 8, 4, 2, 1}. The optical flow consists of two components (x / y component), each being
summarized on its own, but all components with the same model.

Multi-instance segmentation The Mask R-CNN is based on a ResNet-50 backbone, with the anchor
sizes of (8, 16, 32, 64, 128, 256, 512, 1024) and aspect ratios of (0.5, 1.0, 2.0). The detection threshold
was 0.2 in order to also detect small instrument boundaries. For training the model, the SGD
optimizer was used, with a momentum of 0.9, a learning rate of 0.0005 and a batch consisting
of 2 samples. To prevent the training from crashing, all gradients were clipped at 1.0. Since
the meaning of the optical flow is not invariant to augmentation techniques that change pixel
locations, no data augmentation techniques were used. Only the image dimension was halved,
with respect to the optical flow vector.

Post-processing For the post-processing, γ (overlap between proposals) was set to 0.5 and δ (very
small pixel regions) was set to 100 pixels. The parameters were estimated on a small validation
set that was randomly taken from the training dataset.

Experiments

E1: E�ect of including temporal information and instrument likelihood This question for this experi-
ment is to assess whether the temporal information and/or the instrument likelihood can provide
information that can increase the multi-instance segmentation performance. For this purpose,
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an ablation study was carried out, which trained the five models with di�erent configurations,
as shown in Tab. 3.10 in order to see potential changes in the performance when temporal
and/or instrument likelihood information is not used for the training. All five experiments are
carried out with the same set of hyperparameters in order to maintain comparability between
the experiments.

Table 3.10: This table shows the training configuration for the ablation study. The name of the
trained model T with the indicesR,L andF are referring toR = raw, F = flow andL = likelihood

Name Raw Flow Likelihood

TR 3 7 7
TRF 3 3 7
TRL 3 7 3
TFL 7 3 3
TRFL 3 3 3

E2: E�ect of post-processing To assess the e�ect of the post-processing approach, the procedure
was applied on top of the model that takes as input the raw image, the optical flow, and the
instrument likelihood T+

RFL. The method is also compared to other state-of-the-art methods to
check whether it performs better than the others on images where instruments overlap. The
Wilcoxon signed-rank test [Wilcoxon, 1992] test was carried out to test for significance.

E3: Comparison to state-of-the-art The presented approach was compared to the ROBUST-MIS 2019
Challenge’s top-scoring methods based on the accuracy as in the ROBUST-MIS challenge [Roß
et al., 2020]. The ranking is based on the significance ranking described in [Maier-Hein et al.,
2018]. This yields the accuracy rank ra(ai). Additionally, the presented approach is compared to
the top-scoring methods when multiple instances are visible in the image.

E4: Investigation of characteristic influence To investigate whether the negative influence of image
characteristics could be successfully reduced, the influence of all characteristics on the challenge
participants’ methods is compared to the method developed in this thesis. For this reason, the
same accuracy ranking is performed as described in E3. Finally, a pairwise one-sided Wilcoxon
signed rank test at α = 5% significance level with adjustment for multiple testing according to
Holm [Holm, 1979] was used to check for statistical significance.

3.5.3 Results

E1: E�ect of including temporal information and instrument likelihood

In Fig. 3.26 it can be seen that including the optical flow improved the performance from 0.30 to
0.64 (213%) on the median MI_DSC and from 0.36 to 0.65 (181%)in the mean. When including the
instrument likelihood, the median MI_DSC improved from 0.30 to 0.93 (310%) and 0.36 to 0.79
(219%) in the mean. The best performance could be achieved when combining the RGB image
with the optical flow and the instrument likelihood, leading to the smallest IQR of 0.30. Further
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descriptive statistics can be found in Tab. 3.11.

Figure 3.26: This figure shows the performance of the models when trained on the raw only
(TR), on raw with the flow (TRF ), on raw and likelihood (TRL), and when combining all three
(TRFL) with and without post-processing (T+

RFL). As all models were trained with the same model
parameters, the raw performance is deficient.

E2: E�ect of post-processing

As shown in Fig. 3.26 and in Table 3.11, the post processing significantly (p = 2.7E − 7) increases
the mean performance of the model TRFL at 1%, while simultaneously reducing the IQR from
0.30 to 0.21. Also the robustness (defined in [Roß et al., 2020] as the worst 5%) of the method
increases from 0.28 to 0.32. However, the approach could not improve the problem with the
overlapping instruments.

Table 3.11: E�ect of the di�erent inputs for training the Mask R-CNN, showing the mean (µ), median
(x̃), 5th, 25th, and 75th quartile (Q1, Q3), and the interquartile range (IQR) of the multi-instance
dice coe�cient DSCMI . The name of the trained model T with the indices R, L and F are
referring to R = raw, F = flow and L = likelihood. The model T+

RFL is the same model as TRFL,
but followed by the post-processing.

Model µ x̃ Q5 Q25 Q75 IQR

TR 0.36 0.30 0.00 0.19 0.46 0.27
TRF 0.65 0.64 0.17 0.43 0.94 0.51
TRL 0.79 0.93 0.25 0.62 0.96 0.34
TFL 0.76 0.92 0.29 0.55 0.96 0.41
TRFL 0.80 0.93 0.28 0.63 0.96 0.30
T+
RFL 0.81 0.94 0.32 0.75 0.96 0.21
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E3: Comparison to state-of-the-art

Comparing this method to the current state-of-the-art methods from the challenge, the proposed
method in combination with the post-processing step achieves the highest median MI_DSC (0.94)
in comparison to the best performing method (Uniandes (#2) with 0.93) and the same mean
MI_DSC value as the best performing method of 0.81. The robustness is at 0.32, the same as the
best model (www (#4) with 0.32 and Uniandes (#2) with only 0.26). This result means that the
mean of the median is comparable, but the robustness is slightly better, which can also be seen
in (a) of Fig. 3.27.

As noted (b) in Fig. 3.27, the segmentation quality, according to the number of visible instruments,
is very mixed. While the method presented in this thesis is slightly better than the state-of-the-art
when only one or two instruments are visible in an image, the performance drops rapidly under
the state-of-the-art performance when three or more instances are visible.

(a) Comparison across the di�erent test stages. (b) Comparison across visible instances.

Figure 3.27: This figure shows how the presented method compares to the other state-of-the-
art algorithms (a) across the three di�erent test stages and (b) across the number of multiple
instrument instances visible in an image. It can be seen that the presented method has on Stage
3 the highest median score (a) and the best performance when one or two instruments are visible
(b).

E4: Investigation of characteristic influence

As can be seen in Fig. 3.29, there are slightly improved median values for the presented method
for the characteristics when other objects are visible in the background and when the background
contains smoke. For all the other characteristics, the proposed method is always as good as one
of the other state-of-the-art models. However, applied to the accuracy ranking, the presented
approach is the best model in four out of six characteristics, and ranked second place in two of
the cases. The stability of this ranking is shown in Fig. 3.28.
Tab. 3.12 lists characteristics in which the presented method is significantly better than the
state-of-the-art. For example, the proposed method handles equal or worse to the winning
algorithm fisensee (#1), two characteristics better than the winner of the robustness Uniandes
(#2), and, other than some exceptions, better than caresyntax (#3) and www (#4).
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Figure 3.28: The ranking of all algorithms, depending on six characteristics that have a significant
negative impact. The ranking was performed with 1,000 bootstrap samples. It can be seen that
the proposed method (T+

RFL) is for most of the characteristics on the first rank.

Table 3.12: This table shows whether the proposed method performs significantly better than
the state-of-the-art methods. The methods are named according their rank on the challenge (#1
is the first place, while #4 is the 4th place). A 3means that a the proposed method performs
statistical significantly better, while 7means no statistical significance could be found.

Characteristic #1 #2 #3 #4

Background: other objects 7 3 3 3
Background: Smoke 7 7 3 7
Instrument: Covered by material 7 7 7 7
Instrument: In motion 7 7 3 3
Instrument: Smoke 7 3 3 3
Instrument: Underexposed 7 7 3 3

3.5.4 Discussion
This section’s main goal was the development of an algorithm that should be able to specifically
improve the weaknesses of previous state-of-the-art algorithms. While current methods have
not yet managed to take advantage of the temporal information for multi-instance segmentation,
this work was the first that generated a benefit using the optical flow in combination with the
instrument probability. The increased performance was also present on images with di�cult
properties, which was the first time that an explicitly designed method that was based on a
statistical analysis of weaknesses did not only achieved a new top score on the dataset but was
also able to increase the performance for some of the di�cult image characteristics that were
identified in the previous section (Sec. 3.4). While this work is not the first that uses the optical
flow (e.g., [Allan et al., 2015]) in general, however, it is the first time that it was combined with
the instrument likelihood, summarized with an LSTM, and used in the context of multi-instance
segmentation.

The observation that the optical flow can help to improve the outcome is also in line with the
work of Allan et al. [Allan et al., 2015], where the authors showed that the optical flow could
improve the estimation of the surgical instrument pose, and is also consistent with Jin et al. [Jin
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et al., 2019], where the authors could show a benefit for the binary segmentation. Apart from a
better score, the algorithm manages obstacles with certain characteristics significantly better
than many other state-of-the-art methods.

However, it should be noted that the algorithms’ current weaknesses were evaluated on the test
set, and thus there was a small prior during the development of the method. Nevertheless, the
analysis revealed that the distribution of the characteristics is almost identical between the
training and test set; thus, it can be assumed that the observed e�ects are very likely not a fit to
the test data.

The presented results suggest that typical challenges of laparoscopic videos, such as reflection,
blood, and lighting variations, can already be managed well by state-of-the-art methods. How-
ever, there are still di�culties with tube-like structures that are misclassified as instruments or
transparent objects such as trocars. Furthermore, images with crossing or close instruments are
di�cult to separate for all state-of-the-art methods, as well as for the presented approach, even
though it was specially designed to manage such di�culties. One limiting factor may be due to
restrictions in the training and test dataset, where only 36% of the data contains at least two
and only 8% of the images have more than two instrument instances. Furthermore, only in rare
cases do those instances overlap or intersect; thus, there is only a limited possibility to train
and evaluate the algorithm’s separation capabilities.

Although real-time capability is an essential prerequisite for bringing the approach into a clinical
setting, this would not be possible with the approach presented here. The CRF and the estimation
of the optical flow would take already approximately more than 2 seconds per image. However, the
method presented was an attempt to work towards a solution of the multi-instance segmentation.
In the next step, an attempt could be made to make the algorithm real-time capable.

3.5.5 Conclusion
This work was the first that examined whether a method can be developed that improves the multi-
instance segmentation, based the findings of an in-depth statistical analysis of a benchmarking
competing, where unsolved problems were identified. The results of the experiments suggest,
that the performance could be increased to a new best-performance score and thus including
such information is helpful. However, an improvement could not be achieved for all identified
problems, but this was probably due to the architecture of the deep learning model used. In
conclusion, this approach is a good step towards problem-driven algorithm development.
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(a) Background: Other objects (b) Background: Smoke

(c) Instrument: Covered by material (d) Instrument: In motion

(e) Instrument: Smoke (f) Instrument: Underexposed

Figure 3.29: This figure shows the performance of the algorithms when applied to images con-
taining the specified characteristic. The value on the median line of the boxplot is the median
value.
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4 | Discussion

The main goal of SDS is to increase patient safety by supporting and assisting surgeons in
performing their daily clinical work. A successful transition from a SDS application into the
clinical routine requires that the application is robust, accurate, and generalizes well, up to a
certain degree, in the dynamic and complicated environment of the surgical suite. However,
these requirements are di�cult to achieve for state-of-the-art machine learning approaches,
because they heavily rely on representative data for training. Unfortunately, such data for the
SDS environment is very limited, and that which is available lacks quality control and o�ers only a
few samples which makes the data less representative of real-world scenarios. The experiments
and methods presented in this thesis are therefore directed towards resolution of these issues.

4.1 Summary of Contributions

The specific contributions to the field of SDS presented in this thesis can be summarized by
using the aforementioned objectives of this thesis:

O1: Incorporation of unlabeled data into the training of deep learning models
The contribution of this objective was to work towards the SDS challenge of managing sparse
data. It was investigated whether unlabeled data could be included into the training process
of deep learning models, with the goal to increase the algorithm performance. In order to
facilitate this questions, a method was developed using a self-supervised learning approach to
incorporate unlabeled data into the training process for the medical instrument segmentation.
Prior to this, state-of-the-art deep learning models had only been pre-trained on a related
dataset that required manually generated labels and then fine-tuned on the target domain.
Analysis of the results suggests that the developed concept enables the training of deep learning
models with a drastically reduced dataset of the target domain. Although with this method, the
performance of a deep learning model trained on only a few labeled data could be significantly
increased, the achieved performance was not high enough to cover the lack of training data. The

105
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methods used toward this end were presented at the International Conference on Information
Processing in Computer-Assisted Interventions and published in the corresponding International
Journal of Computer Assisted Radiology and Surgery [Ross et al., 2018].

O2: quality controlled, dataset generation for the task of multi-instance surgical instrument
segmentation
Based on the observation from the previous objective (O1) that more training data is needed,
the goal of this objective was to work towards the SDS challenge of the limited availability of
training data. Existing datasets consist mostly of only annotated data items numbering in the
thousands, or even only hundreds. Further, labels have often not been subject to quality control,
and labeling instructions are not yet standard. Thus, the contribution of this objective to the
SDS research area was to provide the largest dataset to date for multi-instance segmentation in
laparoscopic surgery. The definition of the labels was clearly defined in an annotation protocol,
and a quality control process ensured consistent labels, even across di�erent raters. The dataset
itself contains, besides the instrument annotations for each image in the dataset, global, and
local image characteristics, such as the presence of blood, smoke, or other similar factors. The
dataset is publicly available and is currently under review (minor revision) for the journal Nature
Scientific Data [Maier-Hein et al., 2020b].

O3: Structured assessment of state-of-the-art performance
The goal of this objective was to work towards the SDS challenge of the limited availability of
training data for the task of multi-instance instrument segmentation of laparoscopic instruments.
Due to the fact that no dataset for the problem of multi-instance segmentation to date has
been available, there is no related literature and benchmarking on this problem. To determine
the current state-of-the-art, the dataset from the previous Objective (O2) was released to
the community in the form of the Endoscopic Vision Challenge Robust Endoscopic Instrument
Segmentation Challenge 2019 at the International Conference on Medical Image Computer &
Computer Assisted Intervention. As expected, the results reviled that the increased dataset led
to an improvement of the binary instrument in comparison to the results of the first objective
(Incorporation of unlabeled data). Further insights were that there are image characteristics
(such as the presence of blood or smoke) which seems to harm the algorithm performances. The
results of this challenge were published in the Journal Medical Image Analysis [Roß et al., 2020].

O4: Systematic problem analysis of state-of-the-art methods for multi-instance surgical instru-
ment segmentation
The contribution of this objective was to work towards the SDS challenge of data sparsity. Based
on the observation that there is often not enough data available to enable su�cient training for
all edge-cases, a systematic problem analysis can provide valuable insights in order to develop
algorithms that specifically manage problems discovered during the analysis. Such an analysis is
particularly useful when several algorithms have been applied to the same problem, such as
during benchmarking competitions (see previous objective O3). Unlike previous benchmarking
competition publications, which mainly contain the performance results and a description
of the participating methods, such a problem analysis was carried out for the first time. For
this purpose, a statistical method was developed to identify and quantify the e�ect of image
characteristics (such as the presence of blood or smoke) on the performance of multi-instance
segmentation algorithms. The results from the experiments show that image characteristics that
were assumed to have a very negative e�ect on performance have significantly less influence on
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quality than assumed. Instead, it seems that there are more methodological di�culties with the
algorithms concerning multi-instance segmentation.

O5: Problem-driven multi-instance surgical instrument segmentation
The contribution of this objective was to work towards the SDS challenge of data sparsity. Based
on the previous objective’s findings (O4), the contribution of this part was to develop a method
that is explicitly designed to tackle the most significant image characteristics that harm the
performance of multi-instance segmentation algorithms. To address the problems an attempt
was made to include temporal information in the algorithm, and special post-processing was
used. The experiments showed that the overall algorithm performance could be increased with
this procedure, and a new top benchmarking score on the dataset from O2 could be achieved.
However, not all problems could be successfully addressed, even though the method was explicitly
designed for it.

4.2 Discussion of results

While a detailed discussion of the results and experiments can be found in the corresponding
Results sections, this part of the thesis provides a more general discussion of the experimental
validation.

4.2.1 Potential of unlabeled data

The results that were shown in Sec. 3.1 demonstrate the possibility of including unlabeled data
into the training process of binary instrument segmentation. Although this form of training
supplemented conventional approaches, such as data augmentation, a positive e�ect of the
self-supervision was particularly present when only little training data was available. While only
a single pre-training task was investigated in this work, there would, of course, also theoretically
be the possibility that choosing a di�erent auxiliary task, or combine several auxiliary tasks,
would improve the performance, even if more training data were available. Elastic deformation
of the image and the subsequent reconstruction, for example, might lead the network to acquire
more geometric knowledge about the images. Another alternative might be the combination
of self-supervised learning approaches with a taskonomy setting, as described by Zamir et al.
[Zamir et al., 2018]. Such a setting would improve the results by pre-training on related helpful
datasets. However, taking results from other self-supervised approaches into account, none
of them outperformed the model that was trained on full data. Thus, this method o�ers the
possibility to train a model with as little labeled data as possible, but it cannot replace the
generation of additional data.

That more labeled data leads to better performance becomes especially obvious when taking
the results of the ROBUST-MIS Challenge 2019 into account. The performance results of the
binary segmentation of a comparable segmentation model were significantly higher than those
of the self-supervised learning method. While the finding that including more data produces
better results is not new, it shows a new facet in this case. So is the number of data used for
the self-supervised learning approach higher than the number of training data available for the
models of the ROBUST-MIS challenge. Hence, the sheer mass of data itself could not compensate
for the lack of labels.
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4.2.2 Quality controlled dataset generation
The work presented in Sec. 3.2 presents the largest available for the training of multi-instance
segmentation of medical instruments in laparoscopic videos to date. The generation of this
dataset followed an annotation protocol and was subject to quality control. Nevertheless, the
inter-rater variability experiments in Sec. 3.3 revealed that annotators did not always follow the
defined rules exactly. Those errors could have happened because annotators may not have been
able to keep all the rules in mind. Consequently, it can be assumed that incorrect annotations
are always present in the data despite precise specifications and quality controls. Based on this
finding, there are multiple ways one could deal with it. One could be to increase the quality
control and develop tools to guide the labeling even further. However, this would come at the
cost of a more time-consuming process. Another possibility is to take errors into account and
design deep learning models accordingly (e.g., Guo et al. [Guo et al., 2019], and Gu et al. [Gu
et al., 2020]). Still, it should always be considered to find the sweet spot between label quality
and resource investment, such that a minimum level of quality is ensured, which needs to be
defined by the community.

Despite the labeling quality, another important point is the current lack of label standardization.
There are benchmarking competitions that provide segmentation,e.g., in the form of a polygon
encoded into a JSON file [Lin et al., 2014a], while others use images and assign each pixel a
value [Allan et al., 2019, Bodenstedt et al., 2018, Roß et al., 2020]. A standard would significantly
simplify loading, processing, and thus testing on several datasets in parallel, which would make
developing and benchmarking easier.

The final point of discussion is about the size of the dataset. It remains unclear which dataset
size is su�cient to train robust algorithms or how much additional data would be required to
achieve this goal. However, guided by the image characteristics (e.g., the presence of blood or
smoke in an image), one could see that certain combinations of characteristics are only very
rarely covered. Accordingly, it is to be expected that more labeled data will be necessary before
trained models could be transferred to the clinic. Nevertheless, this dataset o�ers an important
step in the direction of larger, publicly available datasets for the future benchmarking of the
segmentation of instruments in laparoscopic image data.

4.2.3 Comparative validation of multi-instance instrument segmentation
At the time of the development of Sec. 3.3 there was no comparative literature on the task of
multi-instance segmentation. Thus it was only the implementation of a benchmarking competi-
tion that made it possible to create a state-of-the-art baseline for the community and provide
deeper insights into the generalizability and robustness of current methods. An alternative
to the competition would have been if one had implemented all the methods him or herself.
However, taking the human and computational resources and know-how into account used to
optimize a single team submission, this method forms a significantly stronger baseline.

Still, it must be noted that all of these methods were developed by candidates who were under
time pressure because there was only a limited time window where the data was available
before they had to submit their solution as a docker. This time pressure might have caused
submissions do not have the same level of development as they would have in publications.
Further, the time pressure might have a�ected the diversity of the methods, which is reflected
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in the number of very similar Mask R-CNN methods. Surprisingly those similar methods often
performed very di�erently. These performance di�erences could either be due to the slight
di�erences in implementations and training processes, or, as shown in Pham et al. [Pham et al.,
2020], possibly due to chance. More research is needed here.

While the challenge design mainly focused on the performance of algorithms concerning gener-
alizability and robustness, it should be said that for clinical practice, however, further aspects
are potentially interesting (e.g., real-time capability). Nevertheless, one could argue that multi-
instance segmentation should be solved first before other aspects can be addressed in the next
step. As shown by the comparison the human expert annotator, there is still much room for
improvement. Although it was only a single annotator, all algorithms showed weaknesses when
specific image characteristics (e.g., blood and smoke) were present. These weaknesses could
come from the fact that the dataset was not large enough to contain enough examples of those
images.

4.2.4 E�ects of image characteristics on the algorithm performance
To estimate the influence of image characteristics on the performance of algorithms, as presented
in Sec. 3.4, this requires that the main image characteristics that could influence the performance
have mostly been identified. The identification of such characteristics, however, requires specific
domain knowledge, which might not be easy to gain. For this work, the characteristics were
identified by referring to literature and personal experiences during the labeling. Of course, this
could imply a bias concerning characteristics that make it di�cult for humans to process an
image, and it does not exclude the possibility that essential characteristics have been forgotten.

One might also argue that in addition to identifying the characteristics, those must also have
been assigned to the data. Of course, this labeling process comprises the risk of incorrect labels.
While the problem of label quality can be countered to some extent by selecting suitable tools,
the time aspect can still only be reduced to a limited extent. Thus, an alternative approach would
be to invest the labeling e�ort into the generation of labeled data that could directly improve
the training rather than annotating image characteristics. As long this additional data is not
randomly selected, but, e.g., by an active learning approach [Gal et al., 2017] (e.g., Bodenstedt et
al. [Bodenstedt et al., 2019]), this might be a valid objection. In contrast to the statistical analysis,
this procedure does o�er an easy possibility of a disentangled identification and quantification
of characteristics that influence an image. However, maybe it would make sense to combine
both approaches by identifying di�cult characteristics and then selecting training data that
would support the model.

A fascinating insight that the statistical method revealed is that many characteristics, which
have been described as complicated in the literature, play a relatively minor role in reality.
Instead, the most significant negative influence came from a methodological weakness, making
the separation of overlapping instruments very di�cult. Thus, even labeling additional data
using active learning would probably not have resulted in any noticeable improvement.

4.2.5 Multi-instance segmentation of medical instruments
The results of the work presented in Sec. 3.5 are based on the findings of the benchmarking
competition (Sec. 3.3) the lessons learned from image characteristics that negatively a�ect
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the algorithm performance (Sec. 3.4). To solve the problem of overlapping instruments and
to be able to better manage image characteristics, the optical flow was used to provide the
network temporal information. While the presented approach achieved a new top-score for the
ROBUST-MIS dataset, the new approach could not contribute to a better separation of overlapping
instruments. This observation is particularly surprising since overlapping instruments should
often have opposite movement directions, a feature that should help distinguish instrument
instances. One reason why this may not have worked so well could have been the choice of
FlowNet2 for the optical flow estimation. FlowNet2 is a network that was trained on synthetic
data, and there is a possibility that its learned features may not be optimal for laparoscopic
image data. Another reason could be the choice of the mask R-CNN architecture, which has
problems in dealing with this form of overlap (see Zhu et al. [Zhu et al., 2019]). In conclusion, this
form of algorithm development can lead to better results, but unfortunately, the mask R-CNN’s
methodological weakness could not be resolved.

4.2.6 Transition into clinical routine
Although a method was presented on how models could be trained with very little training data,
and approaches were presented that were supplied with a large number of training data, none
of them would be suitable for real use in clinical practice. While the self-supervision results are
not su�ciently robust and accurate enough, none of the ROBUST-MIS Challenge methods nor the
method from Section 3.5 are suitable for an application in a real-world setting. The reason lies in
the performance that is still not high enough and in the lack of real-time capability. It should
be mentioned that the run-time was not explicitly addressed either in the challenge or in this
thesis. In addition, there is the limitation that all the approaches presented produce particularly
good results when only one instrument is visible but have problems when several instances are
in the image. Thus, all methods would not be suitable for segmenting instruments in any kind of
application that aims to track for example individual instances between frames. Nevertheless,
they form a valuable piece of the puzzle towards a solution.

4.3 Conclusion
The work, presented in this thesis, investigated several means to alleviate two main SDS chal-
lenges, namely the problem of a limited data availability and how to deal with data scarcity.

For this purpose, first the potential of unlabeled data was investigated, which o�ers an exciting
possibility to train deep learning algorithms when only a limited amount of labels is available.
Although, the current performance is not high enough to be applied in a real clinical setting,
this method is an important step towards overcoming the SDS challenge of data availability by
managing sparse data.
Since it is foreseeable that the problem of data availability will not be easy to solve in the near
future and methods that deal with little data are still subject to research, the to date biggest
high quality dataset for the task of multi-instance segmentation was produced and released to
the community. This dataset has the potential to enable researches to train and benchmark their
algorithms on a bigger amount of data.
The first benchmarking of multi-instance segmentation algorithms has already been carried out
as part of an international challenge. The results of the challenge provide other researches the
possibility of a baseline and to compare their algorithms against many other approaches. While
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challenges reports are usually limited to reporting the di�erent methods and their performance,
a statistical method has been developed that analyzes and quantifies open problems. This
method is suitable for developing algorithms as targeted as possible.
To achieve a robust, accurate and generalizing application of multi-instance medical instrument
segmentation algorithms for laparoscopic videos, more work is required. However, this work
revealed the great potential of statistical analyzing benchmark competitions with respect to
unsolved problems. As these unsolved problems can be due to missing training data, the statistic
can be used to develop solutions, that can overcome these problems and might be another tool
for managing sparse data.

In conclusion, one can confidently assume that the combination of generating data and a problem-
driven algorithm development and design has the potential to finally bridge the gap between
research and clinical transition. Further, I believe that short-term and significant progress in the
field of SDS can be achieved by focusing on the generation of more labeled data and making it
available to the community in the form of challenges. The structured analysis of such challenges
enables the development of algorithms to be carried out in a much more targeted manner.
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5 | Summary

Surgical data science (SDS) is a research field that aims to improve the quality of interventional
healthcare by observing all aspects of the patient treatment process to provide the right
assistance at the right time. To date, most SDS applications are based on the deep learning
technique, which has shown great potential to solve challenging tasks in a complex surgical
environment.However, such algorithms are dependent on a large amount of training data, which
not only must contain data, but also labels (e.g., localization of an instrument in the image),
so that they can be used for training. To date, however, such a mass of training data is not
available. This is primarily because the creation of such data would often require medical
experts, as well as significant time and money resources. This data scarcity motivates the two
major challenges of surgical data science, namely, (1) how algorithms based on machine learning
methods can be trained despite the limited availability of such data and (2) how more training
data could be provided. For this work, as a concrete example of a surgical data science applica-
tion, instrument segmentation of medical instruments in images of laparoscopic videos was used.

This thesis investigated several means to alleviate this data scarcity in the context of laparoscopic
instrument segmentation resulting in the following main contributions: First, it was examined how
unlabeled data can be integrated into the training of a machine-based algorithm to reduce the
amount of annotated data. Although with this method, the performance of a deep learning model
trained on only a few labeled data could be significantly increased, the achieved performance was
not high enough to cover the lack of training data. For this reason, as second contribution, the
largest dataset to date for the segmentation of multiple instruments in images of laparoscopic
videos was created. Generating the dataset followed a strict annotation protocol and was
quality controlled. The created data was then published as part of an international challenge to
test the submitted methods and identify unresolved problems. The third contribution was that
image characteristics were determined which negatively a�ect the segmentation quality. In
order to identify and quantify the influence of such characteristics, a statistical method has been
developed. This analysis then flowed into the last contribution, the targeted development of
an algorithm that was designed to address the identified di�cult characteristics and achieved
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the best performance on the challenge dataset.

As a result, this work provided a new tool for dealing with data sparsity by revealing the great
potential of unlabeled data and the performance gain that can be achieved when generating
high-quality datasets. Further, it showed that an in-depth statistical analysis of challenge results
could be used to identify open issues of state-of-the-art methods and develop algorithms that
are specifically designed to address those issues. This problem-driven approach even leads to a
new best score on the task of multi-instance segmentation. Based on this thesis’s results, one
can confidently assume that the combination of generating data and problem-driven algorithm
development and design has the potential to bridge the gap between research and the transition
into clinical practice.



6 | Zusammenfassung

Die Surgical Data Science (SDS) ist ein Forschungsgebiet, das darauf abzielt die Qualität der
konventionellen Gesundheitsversorgung zu verbessern, indem alle Aspekte des Patientenbehand-
lungsprozesses beobachtet werden und die richtige Unterstützung zur richtigen Zeit bereitgestellt
wird. Zum aktuellen Zeitpunkt basieren die meisten SDS-Applikationen auf der Machine Learning
Technik "Deep Learnings", welche ein großes Potenzial für die Lösung von komplizierten Aufgaben
in der komplexen chirurgischen Umgebung gezeigt hat. Solche Algorithmen sind jedoch auf eine
große Menge an Trainingsdaten angewiesen, die nicht nur Daten, sondern auch sogenannte
Trainingsziele (z. B. Lokalisation eines Instruments im Bild) beinhalten müssen, damit sie
zuverlässig eingesetzt werden können. Zum aktuellen Zeitpunkt jedoch, steht diese Masse an
Trainingsdaten nicht zur Verfügung, weil die Erstellung von solchen Daten oftmals medizinische
Experten, sowie große Zeit und Geldressourcen beansprucht. Diese Datenknappheit motiviert die
zwei großen Herausforderungen des SDS-Forschungsgebiets, nämlich (1) wie können, trotz der
geringen Verfügbarkeit solcher Daten, Algorithmen die auf maschinellen Lernverfahren basieren
trainiert werden und (2), wie können Trainingsdaten bereitgestellt werden. Dabei konzentriert
sich diese Arbeit auf das konkrete Anwendungsbeispiel der Instrumentensegmentierung von
medizinischen Instrumenten in Bildern von laparoskopischen Videos.

Diese Arbeit untersucht verschiedene Methoden, um diese Datenknappheit im Zusammenhang
mit der Segmentierung laparoskopischer Instrumente zu verringern, was zu den folgenden
Hauptbeiträgen führte: Zunächst wurde untersucht, wie ungelabelte Daten mit in das Training
eines maschinellen lernverfahrenbasierten Algorithmusses eingebunden werden können, mit
dem Ziel, die Anzahl an annotierten Daten zu verringern. Obwohl mit dieser Methode die
Performanz eines deep learning Modells, welches mit nur wenigen gelabelten Daten trainiert
wurde, signifikant gesteigert werden konnte, war die Performanz noch nicht hoch genug, um den
Mangel an Trainingsdaten zu decken. Aus diesem Grund wurde als zweiter Beitrag dieser Arbeit
zusätzlich der bis dahin größte Datensatz für die Segmentierung von mehreren Instrumenten in
Bildern von laparoskopischen Videos erstellt. Die Erstellung des Datensatzes folgte dabei einem
strikten Annotationsprotokoll und wurde qualitätskontrolliert. Der so erstellte Datensatz wurde
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anschließend im Rahmen einer internationalen Challenge verö�entlicht, mit dem Ziel noch
ungelöste Probleme zu identifizieren. Der dritte Beitrag besteht darin, dass Bildeigenschaften
identifiziert wurden, welche die Segmentierungsqualität negativ beeinflussen. Um den Einfluss
solcher Charakteristika eindeutig zu identifizieren und zu quantifizieren, wurde eine statistische
Methode entwickelt. Die Ergebnisse dieser Analyse flossen dann in den letzten Beitrag dieser
Arbeit ein, nämlich in die zielgerichtete Entwicklung eines Algorithmus der die identifizierten
schwierigen Merkmale adressiert und welcher anschließend die beste Performanz auf dem
Challengedatensatz erreichte.

Infolgedessen bietet diese Arbeit ein neues Werkzeug für den Umgang mit dem Datenmangel,
indem das große Potenzial ungelabelter Daten und der Performanzgewinn, der beim Generieren
hochwertiger Datensätze erzielt werden kann, aufgezeigt wurde. Darüber hinaus zeigte sich, dass
eine eingehende statistische Analyse von Challengeergebnissen verwendet werden kann, um
o�ene Probleme aktueller Methoden zu identifizieren und Algorithmen zu entwickeln, welche
explizit auf die Probleme zugeschnitten sind. Dieser problemorientierte Ansatz führte zu einem
neuen Spitzenwert für den Task der Multi-Instanz Instrumentensegmentierung. Basierend auf
den Ergebnissen dieser Arbeit kann man davon ausgehen, dass die Kombination aus Datengener-
ierung und problemgesteuerter Algorithmenentwicklung das Potenzial hat, die Lücke zwischen
der Forschung und der Überführung der Ergebnisse in die klinische Praxis zu schließen.
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7 | Own contributions

In this chapter, I want to list my contributions and di�erentiate them from whole team e�orts.
Every section already discloses the team members that have been working on the presented
results.

7.1 Own share in data acquisition and analysis

Throughout my Ph.D. work, I was part of a multi-disciplinary team of scientists in the department
of Computer Assisted Medical Interventions (CAMI) headed by Prof. Dr. Lena Maier-Hein. As it is
common in larger research groups, many ideas on methods, experiments, or implementation
details were exchanged in the entire CAMI team. Because Prof. Dr. Lena Maier-Hein was the
primary supervisor for my thesis, and she supervised all experiments and was included in the
discussion and development of all concepts and methods.

Potential of unlabeled data The section Potential of unlabeled data is based on the related publi-
cation Ross et al. [Ross et al., 2018]. The concept for this section was developed closely together
with David Zimmerer, who has often given advice during the implementation phase. However the
implementation, evaluation and plot generation was all done by myself.

Quality controlled dataset generation The data for the section Quality controlled dataset gener-
ation was recorded during daily routine by Dr. Martin Wagner and Prof. Beat Müller-Stich. In
addition, Dr. Martin Wagner was responsible for phase annotations, which were the basis for the
frame extraction. He was further a medical expert who performed the instrument segmentations’
quality control. The concept for the frame extraction was developed by all the mentioned people
together. The annotations of the instruments were generated with the help of the entire CAMI
group. However, the instrument annotation Graphical User Interface (GUI), the labeling protocol,
the artifacts annotation GUI and the quality control was all done by myself. Parts of this section
are under minor revision for the related publication Maier-Hein et al. [Maier-Hein et al., 2020b].
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comparative validation of multi-instance instrument segmentation The section comparative valida-
tion of multi-instance instrument segmentation is based on the related publication Roß et
al. [Roß et al., 2020]. The concept for the challenge was developed in close cooperation with
Annika Reinke. Further, Annika Reinke helped with organizational aspects and performed the
participants’ rankings with the corresponding plots. However, the complete technical setup
and support of the challenge, evaluation scripts, and the generation all plots (excluding the
participants’ rankings) was done by myself.

E�ects of image characteristics on the algorithm performance The concept for the e�ects of image
characteristics was developed in cooperation with Dr. Manuel Wiesenfarth and Prof. Dr. Annette
Kopp-Schneider. They helped with the selection of the correct statistical tools for the analysis.
However, the implementation of all methods, evaluation and analysis was all done by myself.

Multi-instance instrument segmentation The concept for the multi-instance instrument segmen-
tation approach was developed in close cooperation with Pierangela Bruno, Dasha Trofimova
and Patrick Scholz. As it is usual for larger projects, the implementation of the concept has been
split up. Pierangela Bruno implemented the Mask R-CNN and Dasha Trofimova the LSTM. The
overall pipeline and the post-processing was implemented by myself, as well as the statistical
analysis and evaluation.
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7.2 Own publications
This section is about all papers I was part and contributed to during my time in the Department of
Computer Assisted Medical Interventions. For clarity, it is subdivided into first and co-authorships.
To make it easier to read, the first author(s) are underlined and my name is highlighted in bold.

First authorships
Tobias Ross, Annika Reinke, Peter M. Full, Martin Wagner, Hannes Kenngott, Martin Apitz,
Hellena Hempe, Diana Mindroc Filimon, Patrick Scholz, Thuy Nuong Tran, Pierangela Bruno,
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A. Riegler, Klaus Schoe�mann, Ruohua Shi, Stefanie Speidel, Michael Stenzel, Isabell Twick,
Gutai Wang, Jiacheng Wang, Liansheng Wang, Lu Wang, Yujie Zhang, Yan-Jie Zhou, Lei Zhu,
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