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Abstract

High-throughput techniques such as microarrays and RNA-sequencing enable the
relatively easy and inexpensive collection of bulk gene expression profiles from any
biological condition. Recently, also the transcriptome of single cells can be efficiently
captured via novel single-cell RNA-sequencing technologies. Functional analysis of
bulk or single-cell gene expression data has been proven to be a powerful approach as
they summarize the large and noisy gene expression space into a smaller number of
biologically meaningful features such as pathway and transcription factor activities.
In the first part of this thesis, I expanded the scope on the pathway analysis tool
PROGENy and the transcription factor analysis tool DoRothEA through thorough
benchmarking pipelines. First I transferred their regulatory knowledge from human
to mouse to enable the functional characterization of gene expression profiles from
mice. Moreover, I demonstrated the robustness and applicability of both tools on
human single-cell RNA-sequencing data. In the second part of this thesis, I focussed
on the analysis of gene expression profiles from mice and humans in the context of
acute and chronic liver diseases. Finally, I identified and functionally characterized
exclusively and commonly regulated genes of chronic and acute liver damage in mice
and a set of genes that were consistently altered in a novel chronic mouse model and
patients of chronic liver disease. Especially the latter demonstrates that, although
major interspecies differences remain, there is a common and consistent transcriptomic
response to chronic liver damage in mice and humans. This set of genes could be
further investigated to study the pathophysiology of the liver in in-vitro and in-vivo
studies.





Zusammenfassung

Hochdurchsatzmethoden, wie „Microarrays“ oder RNA-Sequenzierung erlauben die
einfache und kostengünstige Generierung von „bulk“ Genexpressionsprofilen von
beliebigen biologischen Zuständen. Ermöglicht durch neuartige Einzelzell RNA-
Sequenzier-Technologien kann seit Kurzem auch das Transkriptom auf Einzelzellebene
bestimmt werden. Funktionelle Analysen von Transkriptomdaten auf „bulk“ oder
Einzelzelleben haben sich als geeignete Methode etabliert, da sie den großen und stark
verrauschten Raum von Genexpressionswerten in eine kleinere Anzahl von biologisch
relevanten Größen zusammenfässt, wie z.B. die Aktivität von Signalwegen oder Tran-
skriptionsfaktoren. Im ersten Teil meiner Dissertation erweiterte ich die Funktionalität
des Signalweg-Analyse Werkzeugs PROGENy und des Transkriptionsfakor-Analyse
Werkzeugs DoRothEA durch systematische und sorgfältige Benchmark Analysen.
Zunächst habe ich die regulatorischen Informationen auf denen PROGENy und
DoRothEA basieren von Mensch auf Maus übertragen, um die funktionelle Analyse
von Maus Genexpressionsprofilen zu ermöglichen und zu gewährleisten. Zusätzlich
habe die Robustheit und Anwendbarkeit beider Werkzeuge auf humane Einzelzell
RNA-Sequenzierung Daten nachgewiesen. In zweiten Teil meiner Dissertation habe ich
mich auf akute und chronische Lebererkrankungen fokussiert und in diesem Zusammen-
hang human und maus-basierende Genexpressionsprofile analysiert. Schlussendlich
konnte ich Gengruppen identifizieren und funktionell charakterisieren die entweder
exklusiv im akuten oder chronischen oder in beiden Krankheitsbildern reguliert werden.
Zusätzlich ergab meine Analyse eine Gruppe von Genen die konsistent in einem neuar-
tigen chronischen Mausmodell und Patienten die an chronischen Lebererkrankung
leiden reguliert sind. Insbesondere die zuletzt genannte Gengruppe zeigt auf, dass
obwohl zwischen Mensch und Maus auf allen Ebenen große Unterschiede vorliegen,
doch eine gemeinsame und konsistente Genexpressionssignatur als Antwort auf chro-
nische Lebererkrankungen identifizieren werden kann. Diese Gene könnten in Zukunft
mittels in-vivo und in-vitro Studien genauer untersucht werden, mit dem Ziel neue
Erkenntnisse bezüglich der Pathophysiologie der Leber zu gewinnen.
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Figure 1: My Ph.D. collaboration network. Edge width corresponds to the number of
joined publications. As my supervisor Julio Saez-Rodriguez was involved in all my
collaborations we are represented in the network by a single node.





5

Acknowledgements
When I started my Ph.D. back in May 2017 in Aachen I would have never expected
to finally submit my thesis four years later at Heidelberg University. Looking back, I
am thankful for every experience and memory I was able to collect that allowed me to
grow as an early career researcher but also as a human being. However, I would never
have achieved anything presented in this thesis just on my own. Professionally and
privately I was always fortunate to be accompanied by many patient, supportive, and
friendly persons, I would like to thank here:

First of all, I wish to express my deepest gratitude to my doctoral supervisor
Prof. Dr. Julio Saez-Rodriguez who gave me the chance to perform my studies
in his lab. Throughout this entire time, I felt welcomed and respected. His liberal
way of leading the lab promoted a great working atmosphere I have never experienced
before to this extent. I truly enjoyed the freedom and always felt safe if things went
badly or ended up in a dead-end. Moreover, through the open-door sessions, Julio
was reachable on a daily basis which I definitely don’t take for granted. In summary,
Julio was the best supervisor I could have imagined and I deeply cherished the time I
was allowed to spend in his lab.

Also, I am indebted to my faculty supervisor Prof. Dr. Ursula Klingmüller. Though it
was not possible to share my entire Ph.D. process from the beginning with you due to
the movement from Aachen to Heidelberg, I am nevertheless thankful for the lively
discussions and feedback I received in the remaining time. Also, I would like to thank
Prof. Dr. Robert Russell who kindly agreed to act as the chair of my thesis advisory
committee. Lastly, I thank Prof. Dr. Karsten Niehaus who is my former supervisor of
my bachelor’s and master’s studies at Bielefeld University for his willingness to be
part of my committee.

Next, I am thankful for every past and current “saezlab” member who made this
time very special and makes me now also kind of sad that this time has come to an
end.

In particular, I wish to show my gratitude to the former postdoc Dr. Bence Szalai
who especially during the first two years took care of me from my very first day.
Just like Julio Bence has the talent to generate a psychologically safe and motivating
environment. In the end, Bence’s unwavering support and supervision were an
existential decisive factor for my scientific and personal development. I am more
than happy that our joyful collaboration was successfully crowned by several joint
publications.

Also, I would like to thank other lab members who always felt much more like friends
than colleagues: Alberto, Attila, Aurélien, Hyojin, Javier, Jovan, Luis, Nico, Mi, Olga,
Rico, Rosa. All of you contributed in your own way to my Ph.D. Either with scientific
discussions, valuable and highly appreciated contributions to my projects, or with
fun activities outside of the office. Although I am no longer in contact with all of
you, I am more than happy to have met you and will keep our time in the lab in



6

memory.

I also wish to acknowledge the significant contributions of my many collaborators,
without them the completion of my thesis would not have been possible. In particular,
I would like to mention Prof. Dr. Jan Hengstler from Dortmund University who
especially supported me in my liver disease-related project. With his outstanding
knowledge of liver physiology, he complemented my bioinformatics analyses so we
formed a successful and fruitful interdisciplinary collaboration.

Furthermore, I would like to thank the open-source software community who partially
on a voluntary basis develop and maintain software. Without this community, my
work would not have been possible.

Also I am especially grateful to my family who has supported me ever since.

Last but not least I wish to express my deepest gratitude to my girlfriend Laura:
Laura, ich danke Dir von ganzem Herzen, dafür, dass du mir tagtäglich zur Seite
standest und mir über all die Jahre den Rücken freigehalten hat, sodass ich mich,
wenn es drauf ankam, voll und ganz auf meine Promotion fokussieren konnte. Auch
hast du mich stets in all meinen, teils sehr weitreichenden, Entscheidungen unterstützt,
wie z.B. der Entschluss, dass ich mit der Arbeitsgruppe nach Heidelberg umziehe und
insgesamt für knapp 2 Jahre jede zweite Woche in Heidelberg verbracht habe, oder
die Entscheidung für ein halbes Jahr in die Schweiz zu ziehen um Industrieerfahrung
zu sammeln. Und selbst wenn ich dann zuhause war habe ich abends dann doch noch
regelmäßig vor dem Laptop gesessen und “noch schnell eine Mail geschrieben” oder
“nur kurz eine Idee ausprobiert.” Zum jetzigen Zeitpunkt steht es noch nicht fest wo
unsere nächste gemeinsame Station sein wird, aber wo auch immer es ist, wir werden
dort zusammen sein. Ich liebe dich.



Chapter 1

Introduction

1.1 The central dogma of molecular biology

All living organisms are based on a fundamental principle which is known as the central
dogma of molecular biology (Crick, 1970). This dogma describes the information flow
from a gene to a protein on the molecular level. Genes are encoded as the majority
part of the deoxyribonucleic acid (DNA) and serve as a blueprint for transcripts.
During the transcription, genes are copied from the DNA to a Ribonucleic acid (RNA)
based transcript that is referred to as messenger RNA (mRNA). The transcription is
followed by the process of translation. Thereby the mRNA is translated to a sequence
of amino acids that are the building blocks of proteins. The amino acid sequence itself
is linear but will form a complex three-dimensional structure.

Molecular Biology can be divided into several branches or disciplines each aiming
to analyze a different layer of biological entities. They are based on technologies
to quantitatively measure all involved biological molecules at each stage during the
information flow from a gene to a protein. The branch genomics, for instance, aims to
analyze the entire genome by deciphering the base sequence of the DNA via sequencing
technologies. Transcriptomics is highly related to genomics but focuses on all RNA-
based transcripts, the transcriptome. Proteomics detects proteins and quantifies their
abundance and modifications via mass spectrometry (Altelaar, Munoz, & Heck, 2013).
This list of omics technologies is by no means exhaustive as there exist many other
branches, such as metabolomics (Patti, Yanes, & Siuzdak, 2012), lipidomics (Wenk,
2005), or epigenomics (Stricker, Köferle, & Beck, 2017) which each analyze their
respective molecule class or layer of interest. The work described in this thesis focuses
on transcriptomics.
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1.2 Transcriptomics

Overview
Transcriptomics is the most widely studied field among the omics disciplines, which
is most likely related to ever decreasing costs and to the good coverage of RNAs.
The objective of transcriptomics is to quantify the entire transcriptome. Hence, this
analysis is not limited to mRNA but comprises also other types of RNA such as
ribosomal RNA or transfer RNA. The mRNA information alone is typically referred
to as a gene expression profile. These profiles have been proven as a meaningful and
interpretable data type as they can be considered as a blueprint of the status of the
underlying cell or tissue. Over the years many technologies have been developed
to measure the genome-wide expression profile. From the oldest to the most recent
methods, all of them owe their existence to the advances in genome sequencing in the
90s and early noughties, particularly the sequencing of the human genome in 2001
(Lander et al., 2001).

Microarrays
One of the oldest but still reasonably popular method makes use of microarrays
(Hoheisel, 2006). This technique is based on a chip with attached DNA fragments
complementary to the DNA sequence of the genes of interest. Isolated RNA from
the sample is reverse transcribed to complementary DNA (cDNA) and labeled with
fluorescent molecules. Afterward, the cDNA library is transferred to the chip where
cDNA molecules bind to their complement fragment that is attached to the chip.
The cDNAs that do not bind are washed off. This setup shows clearly the caveat of
microarrays as only the expression of genes for which there are attached complementary
sequences on the chip can be quantified. Finally, a laser excites the fluorescence of
the paired DNA sequences and considers their emission as a proxy for gene expression.
Based on these principles the first samples were analyzed in 2003 with the arrays
from Affymetrix. In 2015 the microarray technology reached its peak with over
15,000 samples analyzed and deposited on Gene Expression Omnibus (GEO) annually
(Lachmann et al., 2018). Afterward, RNA-sequencing (RNA-seq) replaced microarrays
as the most popular method for gene expression profiling.

RNA-sequencing
RNA-seq has a clear advantage over microarrays as theoretically nearly any RNA
molecule in a sample can be quantified without prioritizing a priori which genes or
transcripts are of interest (Zhong Wang, Gerstein, & Snyder, 2009). This implies
that novel or different non-coding transcripts and also splice variants can be detected
and quantified. Unlike microarrays, RNA-seq is not framed by background noise and
signal saturation and thus has a much higher dynamic range to quantify transcripts
(Wilhelm & Landry, 2009; Zhao, Fung-Leung, Bittner, Ngo, & Liu, 2014). Similar
to the microarray technology a typical RNA-seq protocol starts with the generation
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of a cDNA library by RNA isolation and cDNA synthesis via reverse transcription.
After amplification of the cDNA library via polymerase chain reaction (PCR), the
cDNA molecules are fragmented into smaller so-called reads with a typical length of
50-100 base pairs. This step is crucial for the subsequent sequencing of the reads,
as the standard sequencing machines cannot handle larger fragments, though this
is changing recently with the emergence of long-read technologies such as Oxford
Nanopore Technologies (Amarasinghe et al., 2020). After retrieving the base pair
sequence for each read, the reads are mapped back to a representative genome of
the respective species, a so-called reference genome. Since the number of reads can
easily exceed 10 million per human sample (based on the sequencing depth), this
step is highly computationally demanding. Hence, many computationally efficient
alignment tools have been developed such as STAR (Dobin et al., 2013) or Kallisto (N.
L. Bray, Pimentel, Melsted, & Pachter, 2016). Finally, the number of mapped reads
per transcript is counted, which serves as a proxy for gene expression. Until 2019
more than 400,000 samples have been analyzed and deposited on GEO with different
versions and protocols of the basic RNA-seq pipeline (Mahi, Najafabadi, Pilarczyk,
Kouril, & Medvedovic, 2019). Despite the above-mentioned advantages of RNA-seq
over microarrays, microarrays are still used and co-exist with RNA-seq.

While both methods made several important breakthroughs in biomedical research
possible in the first place, they suffer from the same limitation. Their measured
expression profile is the average of the expression profiles from many different cells
or cell types. Therefore, their approach is referred to as bulk transcriptomics. While
it is intuitive that highly distinct cell types such as parenchyma and immune cells
have completely different transcription programs, it was also possible to show that
even the gene expression of similar cell types is heterogeneous (Huang, Sherman, &
Lempicki, 2009; Li & Clevers, 2010; Shalek et al., 2014). However, over the past
decade, RNA-seq has evolved in such a way that nowadays the expression profile on a
single-cell level can be captured.

Single-cell RNA-sequencing
First attempts with single-cell RNA-sequencing (scRNA-seq) were made in 2009 where
the transcriptome of a single mouse blastomere was profiled (Tang et al., 2009). This
technology promises to capture expression profiles at an unprecedented detail and
was awarded as the technology of the year 2013 by Nature Methods (“Method of
the year 2013.” 2014). As the term scRNA-seq already indicates, RNA-sequencing is
used across the majority of all technologies and protocols to profile the transcriptome.
The different protocols vary how transcriptomic profiles are unambiguously mapped
back to their origin cell, which is mostly achieved by cellular barcodes and in the
construction of the cDNA library. Dependent on the experimental design either a
plate or droplet-based approach would be more suitable (Baran-Gale, Chandra, &
Kirschner, 2018). Inherently different protocols have different efficiency in capturing
transcripts. This leads to a varying complexity of library composition and sensitivity
to identify target genes. Recently, the human cell atlas consortium benchmarked



10 Chapter 1. Introduction

13 different protocols to identify the one with the greatest power of describing and
distinguishing cell types and states (Mereu et al., 2020). Over the years the number of
cells per study increased exponentially due to the rapid development of the underlying
technology or protocol (Svensson, Vento-Tormo, & Teichmann, 2018). In 2017 it was
possible to capture around 100,000 cells in a single run using in situ barcoding (Cao
et al., 2017; Rosenberg et al., 2018). Nowadays, several million cells can be profiled
as demonstrated in a recent study of human organ development where 4,000,000
single-cells have been sequenced (Cao et al., 2020).

Just like for bulk RNA-seq the transcripts must be reversely transcribed to cDNA.
However, in a single cell, the number of available transcripts is very low in comparison
to the number of transcripts in a bulk approach. Hence, some transcripts may be
missed in the process of reverse transcription (Kharchenko, Silberstein, & Scadden,
2014). This can be due to several reasons and is still not fully understood. One
essential factor is the gene expression level. Given that a gene is lowly expressed, also
a low number of transcripts will be present in a cell which increases the chance that
those transcripts are missed during reverse transcription (Kharchenko, Silberstein,
& Scadden, 2014; Qiu, 2020). However, also the ratio of guanine-cytosine base pairs
in the transcript or the enzyme named reverse transcriptase itself might influence
whether certain transcripts are reversely transcribed. Accordingly, the missed genes
are finally represented in the count matrix with zero counts even though they have
been originally expressed in the cell and are thus referred to as drop-outs. Up to 90%
of the final gene expression matrix can be zeros and it is not possible to distinguish
whether a gene with a count of 0 is a drop-out or has truly not been expressed. Hence,
scRNA-seq allows to profile the transcriptome of an enormous amount of cells but
with limited gene coverage.

Selected flagship projects
Due to the affordable and continuously decreasing costs of transcriptomic studies,
many large flagship projects have been established in the past two decades. The
common core of these international and interdisciplinary efforts is to provide the
scientific community with a comprehensive database of transcriptomic profiles of
various human tissues or phenotypes measured at different resolutions. The following
paragraphs briefly summarize selected flagship projects.

GTEx

GTEx stands for the Genotype-Tissue Expression Project and was launched in Septem-
ber 2010 by the National Institutes of Health (NIH) (Consortium, 2013). The main
objective of GTEx is to provide tissue-specific gene expression profiles obtained from
individual donors. In total GTEx provides these profiles for more than 30 distinct
tissue types. Scientists worldwide query this database to improve the understanding
of human diseases. A more concrete example of how this data is commonly used is the
inference of tissue-specific gene regulatory networks via gene expression-based network
reconstruction algorithms.
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TCGA

TCGA stands for The Cancer Genome Atlas Program and was launched already in 2006
by the National Cancer Institute and the National Human Genome Research Institute
(Network et al., 2013). Similar to the GTEx project TCGA focuses on individual tissue
types, however, the objective is to study the transcriptomic profiles of their respective
primary cancer (e.g. hepatocellular carcinoma or lung adenocarcinoma). Furthermore,
TCGA also generates genomic, epigenomic, and proteomic data of primary cancers.
This enormous data amount (2.5 petabytes) is interrogated to study the development
and treatment of cancer either in specified or in multi-omic integration fashion.

CMAP

CMAP stands for connectivity map and was initially released in 2006 by the Broad
Institute (Lamb et al., 2006). The objective of this project is to generate bulk gene
expression signatures upon chemical or genetic perturbation across various human
cell lines. Many of those perturbation experiments were also performed with different
doses and perturbation times. In 2017 the next generation of CMAP was released
which pushed the numbers of total perturbation signatures far beyond 1 million,
perturbed by more than 20,000 perturbagenes including the majority of Food and
Drug administration-approved drugs (Subramanian et al., 2017). This enormous effort
was facilitated by the new high-throughput transcriptomic technology L1000 which
lowered the sequencing costs drastically by only quantifying the expression of 978
landmark genes. The expression levels of the remaining genes are computationally
inferred. The resulting large dataset enables scientists to systematically compare the
signatures within CMAP or with custom gene signatures from e.g. a disease state.
Identifying similar or dissimilar pairs and sets of signatures can help to identify novel
drug targets or treatments for diseases such as cancer.

Human cell atlas

The human cell atlas is the most recent project and was launched in October 2016
(Regev et al., 2017). For a long time, there has been a wish to generate cellular
maps of the human body. This idea is similar to GTEx efforts but with a much
higher resolution. With the advent of fast-emerging single-cell RNA-seq technologies,
this objective is now within reach. The human cell atlas project aims to profile the
transcriptome of each cell type in the human body in unprecedented detail. From
this dataset, we can learn how tissues are formed, to identify specific subpopulation
cell types that drive the progression of a disease. This large-scale effort is still in its
infancy, but the first single-cell datasets of various organs have been published which
for sure will be a highly valuable resource for the entire scientific community.
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1.3 Functional analyses

Overview
In general, there are many types of analyses that can be performed with transcriptomics
data. Most commonly, the objective is to identify differences in gene expression levels
between groups of samples via differential gene expression analysis. Bulk transcriptomic
studies are often designed as perturbation studies to compare treated and untreated
samples. In the clinical context, transcriptomic profiles of patients suffering from a
certain disease are compared against the profiles of healthy individuals. In studies
with animal models, the effect of a drug or a specific treatment can be tested by
comparing treated and untreated animals. Since scRNA-seq is still in the early stages
and thus expensive most studies do not follow a perturbation-based design, although
this will increase in the future. Instead, individual cells of a tissue and organ are
investigated. Still, comparisons can be made, e.g. by comparing the expression levels
between different cell types of a tissue or organ.

Differential gene expression analysis typically leads to a large list with often more
than 1000 significantly altered genes with associated p-value and effect size indicating
the significance and magnitude of change in the expression level. Due to the vast
number of potentially interesting genes, those lists can be hard to analyze and interpret
looking at only a single gene at a time. Functional analysis of transcriptome data is a
powerful downstream approach as it summarizes the large and noisy gene expression
space into a smaller number of biological meaningful features. The concept behind
this methodology is to analyze not the change in expression of individual genes but of
groups of genes that are referred to as gene sets. This implies that each functional
analysis tool couples a resource of gene sets with a statistical method that aims to
analyze those sets.

Gene set types
Regarding gene sets, there is no limitation of how they can be constructed. Typically,
gene set members are a collection of genes that share a common biological characteristic
or function, such as the association to the same gene ontology term, position on the
same chromosome, regulation by a common regulator, or encoding for members of
a pathway. Especially the latter gene set type is widely used for classical pathway
analysis. There exist many databases that provide those gene sets such as KEGG,
REACTOME, PANTHER, or WikiPathways (Jassal et al., 2020; Kanehisa & Goto,
2000; Mi, Muruganujan, Ebert, Huang, & Thomas, 2019; Slenter et al., 2018). A
common underlying assumption to summarize the expression of pathway members
and then interpreted as pathway activity is that it is assumed that there is a positive
correlation between gene expression, protein abundance, and protein activity. Based
on those assumptions it follows that given that all genes of a pathway are highly
expressed, those proteins are highly abundant and thus highly active. And if all
individual proteins of a pathway are active, also the pathway itself is supposed to have
high activity. This chain of assumptions violates several well-investigated biological
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principles. Indeed, several studies have shown that mRNA level can explain only
~40% of the variation in protein expression (Greenbaum, Colangelo, Williams, &
Gerstein, 2003; Ideker et al., 2001; Sousa Abreu, Penalva, Marcotte, & Vogel, 2009;
Washburn et al., 2003), though this correlation is higher for genes that are differentially
expressed and thus under strong regulation (Koussounadis, Langdon, Um, Harrison,
& Smith, 2015). Moreover, the activity of proteins is often rather determined by post-
translational modifications than the abundance (Mann & Jensen, 2003). Regardless of
those weaknesses and limitations, pathway analysis with gene sets of pathway members
yields reasonable results and is widely used (Huang, Sherman, & Lempicki, 2009;
Khatri, Sirota, & Butte, 2012; Krämer, Green, Pollard, & Tugendreich, 2014; Nguyen,
Shafi, Nguyen, & Draghici, 2019; Tarca et al., 2009). A recent study indicates that this
approach is effective because gene set members are regulated by a common regulator so
that the pathway activity informs actually about the activity of the regulator (Szalai
& Saez-Rodriguez, 2020). These common regulators are typically transcription factors,
which serve as another class of biological meaning features, whose activity promises a
valuable readout of the cellular state. Following the idea of classical pathway analysis,
the activity of transcription factors could be inferred simply by their expression.
Interestingly, this approach is rarely used, even though it violates the same principles.
Instead, observing the expression of the transcriptional targets of a transcription factor
yields a much more robust estimation of the transcription factor activity (Alvarez et
al., 2016; Essaghir et al., 2010; Garcia-Alonso et al., 2018; Garcia-Alonso, Holland,
Ibrahim, Turei, & Saez-Rodriguez, 2019; Keenan et al., 2019; Kwon, Arenillas, Worsley
Hunt, & Wasserman, 2012; Puente-Santamaria, Wasserman, & Del Peso, 2019; Roopra,
2020; Zhenjia Wang et al., 2018). Hence, the gene sets used to infer transcription
factor activity is composed of downstream target genes, i.e. regulons. Those regulatory
networks can be reconstructed in many ways, ranging from wet-lab techniques to pure
in-silico generated networks and spanning multiple omics-technologies. In a recent
study, networks derived from Chromatin Immunoprecipitation Sequencing (ChIP-seq)
data, transcription factor binding sites, literature reviews, and gene expression data
were integrated into a single consensus network referred to as DoRothEA (Garcia-
Alonso, Holland, Ibrahim, Turei, & Saez-Rodriguez, 2019).

Observing the downstream effects of a biological process to gain functional and
mechanistic insight into the upstream event is referred to as footprint analysis (Dugourd
& Saez-Rodriguez, 2019). This concept is not exclusively limited to transcription
factors. Intuitively, it can be easily transferred to estimate also kinase activity from
phosphoproteomics data by exploiting the abundance of phosphorylated sites of kinase
targets (Hernandez-Armenta, Ochoa, Gonçalves, Saez-Rodriguez, & Beltrao, 2017;
Wiredja, Koyutürk, & Chance, 2017). However, this footprint concept can also be
applied to biological processes that only have an indirect effect on e.g. gene expression,
such as signaling pathways. This idea led to a novel way and perspective of predicting
pathway activities from gene expression data. Instead of observing the expression of
pathway members, the expression of the downstream affected genes is considered. The
first large-scale tools that followed this principle are SPEED(2) and PROGENy (Parikh,
Klinger, Xia, Marto, & Blüthgen, 2010; Rydenfelt, Klinger, Klünemann, & Blüthgen,
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2020; Schubert et al., 2018). The limiting step of these methods is the number of
pathways in the respective model. For each pathway separately, the downstream
affected genes must be identified. The identification strategy from SPEED(2), as well
as PROGENy, relies on the manual curation of pathway perturbation experiments
with corresponding expression profiles. The footprint-based pathway analysis approach
answers a different question than classical pathway analysis. The latter tries to explain
the consequences of the measured expression pattern while footprint-based tools aim to
identify the cause yielding the measured expression pattern (Szalai & Saez-Rodriguez,
2020).

Most gene sets are an unweighted collection of individual genes. However, it is also
possible to assign weights to each gene set member, which opens up new avenues for
how those gene sets could be analyzed. In terms of transcription factor analysis, the
assigned weight could denote the mode of regulation, i.e. whether a transcription factor
activates or suppresses the expression of its target gene. Similar to the footprint-based
pathway analysis this weight could indicate the strength and direction of regulation
upon pathway perturbation.

Different types of statistics to analyze gene sets
The available number of statistics to analyze gene sets together with transcriptomics
data is comparable to the various types and sources of gene sets. The first generation
of statistics tests whether gene set members are statistically over-represented in a list
of differentially expressed genes, and is therefore referred to as over-representation
analysis (ORA). Most commonly the test is based on the hypergeometric distribution
known as the Fisher exact test. If gene set members are significantly over-represented
in a list of differentially expressed genes it is assumed that the functional feature of
the gene set is relevant for the underlying biological context. This strategy implies
determining a cutoff classifying genes as differentially expressed. For instance, a gene
can be considered differentially expressed if it passes a false discovery rate (FDR) ≤
0.05 and an absolute log-fold change (logFC) ≥ 1. However, there is no objective
legitimation for those exact values, so that any other combination could be used as
well, and genes that just do not pass the chosen threshold won’t be considered at all,
even if they are just marginally below the thresholds. Consequently, the arbitrary
selection of cutoffs directly impacts the results of ORA. Besides this limitation, ORA
also treats the gene sets as an unweighted collection and thus equally, even though
the degree and strength of regulation, depicted as significance and effect size, could
be useful features to weight the individual gene set members.

The second generation of statistics tries to overcome those limitations and is referred
to as functional class scoring (FCS) (Khatri, Sirota, & Butte, 2012). As opposed to
ORA, where only the top differentially expressed genes are considered, FCS takes all
genes (i.e. gene signature), irrespective of their strength of regulation, into account.
Still, FCS builds on ORA as it acknowledges that if gene set members are strongly
differentially expressed this has a significant functional effect. However, additionally, it
is assumed that if gene set members are less strongly deregulated but in a coordinated
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manner this is still functionally relevant.

Gene set enrichment analysis (GSEA) is the most popular and widely used statistic
out of the FCS generation. To detect whether gene sets are functionally relevant
GSEA first ranks gene signatures derived from transcriptomic studies, based on a
gene-level statistic, which can be any quantitative metric that is assigned per gene.
Typically, log fold-changes, t-statistic, or even p-values serve as gene-level statistics.
Subsequently, GSEA tests whether a gene set is significantly enriched at the top or
the bottom of the list, indicating whether the functional feature of the gene set is
increased or depleted in the given biological context. The original implementation is a
rank-based approach, based on the Kolmogorov-Smirnov statistic. Next to GSEA and
similar statistics, also general-purpose statistics as simple as z-score transformation,
sum, or arithmetic mean could be applied to analyze gene sets operating on the chosen
gene-level statistic. In the case of weighted gene sets also more complex approaches
such as various types of linear models could be applied (Schubert et al., 2018; Trescher,
Münchmeyer, & Leser, 2017).

So far those described statistics from the first and second generation operate on
either a subset or entire gene signatures, which are typically the result of differential
expression analysis of a case-control study. However, there are also methods that have
been developed for the single-sample analysis such as ssGSEA, GSVA, PLAGE, or
singscore (Barbie et al., 2009; Foroutan et al., 2018; Hänzelmann, Castelo, & Guinney,
2013; Lee, Chuang, Kim, Ideker, & Lee, 2008; Tomfohr, Lu, & Kepler, 2005). Those
methods make gene set analysis also applicable to studies that do not follow the
case-control design.

There have been attempts to combine a set of different statistics from the first and
second generation to generate consensus functional analysis results (Väremo, Nielsen,
& Nookaew, 2013).

Specifically for classical pathway analysis, an even third generation of statistics has
been developed. As mentioned above classical pathway analysis is based on gene sets
containing pathway members. However, both ORA and FCS ignore the functional
relationship among pathway members. Especially the topology of a pathway has
been neglected so far, even though this information is easily accessible in numerous
databases. Henceforth, methods have been proposed that incorporate also pathway
topology (Draghici et al., 2007; Hidalgo et al., 2017; Salviato, Djordjilović, Chiogna,
& Romualdi, 2019; Tarca et al., 2009). Those methods assume that the position of
a gene within a pathway is a meaningful feature, such as that upstream pathway
members might have a larger influence on pathway activities than more downstream
members, respective members without any downstream connection.

In summary, the suite of different approaches to functionally analyze transcriptome
data can be applied to decipher key mechanisms of diseases and their progression. In
my thesis, I focussed on liver-related diseases and disorders.
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1.4 Chronic liver diseases

Structure of the liver
The liver is the largest solid organ in the human body comprising 2% of the body
weight under healthy conditions. Among its primary functions is the metabolism
of macromolecules such as fats, proteins, and carbohydrates to retain metabolic
homeostasis. Accordingly, the liver also stores and redistributes nutrients. On
a molecular level, the liver tissue is organized as hexagon-shaped hepatic lobules.
Hepatocytes, which serve as the functional cells of a liver (“the liver cells”), constitute
the largest part of those lobules and are circularly arranged around the lobule center.
At each of the corners of the lobules, there is a distinctive structure consisting of
branches of the portal vein, the hepatic artery, and the bile duct. Through the
portal vein, hepatocytes are supplied with nutrients coming from the spleen, stomach,
and intestines. This supply constitutes around 75% of the liver’s blood supply.
The remaining 25% of the blood supply is delivered by the hepatic artery to serve
hepatocytes with oxygen. The bile duct carries bile that is secreted by hepatocytes
into the gallbladder (Boyer, 2013). The nutrient as well as the oxygen-rich blood
flows to the center of the hepatic lobules and thereby distributes the nutrients and
oxygens among the cells via the liver sinusoids. Finally, the nutrient and oxygen-poor
blood reach the central vein from where it is transported to the hepatic vein that
leads the blood back to the heart. Through the blood supply of the portal vein,
the liver is continuously exposed to gut bacteria and associated endotoxins. Those
particles are eliminated through phagocytosis by specialized macrophages, so-called
Kupffer cells, which serve as another basic cell type of the liver. These Kupffer cells
are part of the innate immune system and reside in the lumen of the sinusoids while
being attached to the sinusoidal endothelial cells. Furthermore, the liver also contains
hepatic stellate cells (HSC), which are liver-specific mesenchymal cells. They are
located in the perisinusoidal space and store lipids. Under healthy conditions, they
represent only 5-8% of all liver cells and are situated in a quiescent state (Blouin,
Bolender, & Weibel, 1977).

Liver damage and repair
Like any other organ, the liver can take damage for various reasons. From a histological
perspective, liver damage is reflected by necrotic and apoptotic hepatocytes. HSCs are
pivotal for the wound healing response. Following liver damage, they get activated,
proliferate, and start to synthesize extracellular matrix (ECM). In case of a minor or
a single injury, ECM is deposited in and around the wound, which helps regenerate
functional liver tissue by the proliferation of hepatocytes. However, if there is major
damage ECM starts to accumulate which leads to scars on the liver. For repetitive
damage, ECM continues to accumulate, and thus replaces functional liver tissue
leading to the disruption of the tissue architecture. This scaring process is referred to
as fibrosis but it is not exclusive to the liver. In fact, fibrosis can affect any organ in the
body such as renal, pulmonary, or cardiac fibrosis (Henderson, Rieder, & Wynn, 2020).
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It is estimated that fibrosis is responsible for 45% of all deaths in the industrialized
world. If the underlying cause of the liver damage is not removed, over the years
more and more functional tissue will be replaced by ECM. This process can take any
time from 5 up to 50 years but ultimately leads to the loss of function (Pellicoro,
Ramachandran, Iredale, & Fallowfield, 2014). This disease stage is referred to as
cirrhosis and most patients suffering from it require liver transplantation. Otherwise,
they will develop hepatocellular carcinoma (HCC), which is the third most common
cause of cancer-related deaths worldwide and has an estimated incidence of more than
1,000,000 by 2025 (F. Bray et al., 2018; Llovet et al., 2021).

Etiologies of chronic liver diseases
Disorders that lead to repetitive liver damage are referred to as chronic liver diseases
(CLDs) and can have manifold etiologies. In the past chronic liver injury was particu-
larly induced by viral infections such as hepatitis C. In 1980 this virus was discovered
and the first blood tests for the virus detected were established. These efforts were
led by the scientists Harvey J. Alter, Charles M. Rice, and Michael Houghton who
ultimately got awarded the medicine Nobel prize in 2020 for their research. Nowadays,
there exist effective, yet expensive therapies for hepatitis. Therefore virus infections
remain only a minor cause for CLD in the industrialized world, though, this is still a
severe issue in developing countries.

Nevertheless, the number of chronic liver disease cases is increasing in the western
world. This is partly due to the changing lifestyle with unlimited access to unhealthy
food. Super nutrition leads finally to obesity, which goes along with several severe
health risks. In terms of the liver, obesity leads to the massive accumulation of fat in
the liver which is referred to as non-alcoholic fatty liver disease (NAFLD). Partially,
NAFLD progresses to non-alcoholic steatohepatitis (NASH), which involves continuous
damage of the liver tissue by inflammatory processes. Other etiologies are massive
alcohol abuse, auto-immune disorders as well as metabolic diseases such as diabetes.
If the underlying cause of CLD is removed even a cirrhotic liver has the capability to
repair itself (Pellicoro, Ramachandran, Iredale, & Fallowfield, 2014).

1.5 Thesis overview and aims
The incidence of chronic liver diseases and hepatocellular carcinoma is continuously
increasing. Therefore, scientists around the world are trying to decipher the molecular
mechanisms to ultimately develop therapeutic options. Is it obvious that a single
branch of biology or medicine cannot accomplish this goal alone. Instead, multiple
disciplines must come together. During my Ph.D., I aimed to contribute to these efforts
by analyzing transcriptomics data of liver diseases. Next to the classical analyses on
gene level, the focus was in particular on the further development and application of
the transcription factor and pathway analysis tools DoRothEA and PROGENy. On
my journey I completed the following milestones:
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1. Benchmarking the transcription factor and pathway analysis tools DoRothEA
and PROGENy for their application in mice (Chapter 2).

2. Testing the robustness and applicability of the transcription factor and pathway
analysis tools DoRothEA and PROGENy in single-cell RNA-sequencing data
(Chapter 3).

3. Analysis and functional characterization of acute and chronic liver disease
transcriptomic data in mice and humans (Chapter 4).



Chapter 2

Transfer of regulatory knowledge
from human to mouse for functional
genomics analysis

2.1 Preface
The text of the following chapter is largely taken from the publication “Transfer
of regulatory knowledge from human to mouse for functional genomics analysis”
(Christian H. Holland, Szalai, & Saez-Rodriguez, 2020) that was originally written
by myself. The only changes were made to clarify my contribution to this project.
Unless otherwise stated I performed all analyses myself. As the first author of this
study the publishing house Elsevier grants me the right to include this work in my
dissertation.

2.2 Background
The typical framework of functional genomics studies comprises the analysis of ex-
pression changes of groups of genes. These groups are referred to as gene sets and
typically consist of genes sharing common functions (e.g. Gene Ontology analysis) or
genes encoding for pathway members (Subramanian et al., 2005). The latter are used
for classical pathway analysis studies, which assume that the transcript level is a proxy
for protein abundance and thus the pathway activity. The framework of estimating
transcription factor (TF) activity based on its gene expression follows the same prin-
ciple (Figure 2.1A). However, mapping the transcript level to proteins neglects the
effects of post-transcriptional and post-translational modifications, even though they
are essential for the function of many proteins (Mann & Jensen, 2003).

To overcome this limitation, alternative approaches have been developed which are
based on newly derived gene sets containing gene signatures obtained from genetic or
chemical perturbations of pathways or TFs. These signatures are the footprint on gene

https://doi.org/10.1016/j.bbagrm.2019.194431
https://doi.org/10.1016/j.bbagrm.2019.194431


20
Chapter 2. Transfer of regulatory knowledge from human to mouse for functional

genomics analysis

expression of the corresponding pathway or TF (Figure 2.1A). Recent studies indicate
that footprints outperform mapping gene sets (Cantini et al., 2018; Schubert et al.,
2018). Since most of these footprints are generated for the application in humans,
their usability in model organisms is uncertain. This question is of importance since
the study of human diseases is limited by the availability of patient data and ethical
concerns, and are thus often complemented with experimental work in model organisms,
in particular mice (Mus musculus) (Fox, Barthold, Newcomer, Smith, & Quimby,
2006).

Perturbation of gene expression in humans can be estimated from mouse transcrip-
tomic data (Brubaker, Proctor, Haigis, & Lauffenburger, 2019; Normand et al., 2018).
Furthermore, previous studies suggest that pathway and TF footprints are evolution-
arily conserved between mice and humans: pathway footprints derived from mouse
B cells can provide valuable insights into human cancer (Tenenbaum, Walker, Utz,
& Butte, 2008), and inferred prostate-specific gene regulatory networks of mice and
humans overlap by over 70% (Aytes et al., 2014). This suggests that human functional
genomics tools, which consider footprints as gene sets, could be applied on mice data.
However, as of today there is no comprehensive study to prove this.

To validate whether pathway and TF footprints are evolutionarily conserved between
mice and humans I performed a comprehensive benchmark study. I exploited two state
of the art functional genomics approaches covering both aspects of gene regulatory
networks: signaling pathways and transcriptional regulation. The first approach is
PROGENy, a tool that estimated the activity of, originally, 11 signaling pathways
from gene expression data (Schubert et al., 2018). It is based on consensus tran-
scriptomic perturbation signatures, I refer to as footprints, of signaling pathways on
gene expression. In this work Bence Szalai extended PROGENy with novel footprints
of the signaling pathways Androgen, Estrogen, and WNT. The second approach is
DoRothEA, a resource matching TFs with their transcriptional targets (Garcia-Alonso,
Holland, Ibrahim, Turei, & Saez-Rodriguez, 2019), which allows me to estimate TF
activity from gene expression data in humans by enriched regulon analysis (Alvarez et
al., 2016). I consider the targets of a TF also as footprints of a TF on gene expression.
I validated that both PROGENy and DoRothEA can recover mice perturbations,
supporting my hypothesis about the conserved nature of pathway and TF footprints.
To demonstrate the usability of PROGENy and DoRothEA I estimated pathway and
TF activities for a large collection of mice and human diseases as well as chemical and
genetic perturbation experiments. Based on the activities of the disease experiments I
were able to recover known pathway/TF disease associations. For this, I constructed
738 novel disease sets matching 186 diseases with 467 disease experiments.
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2.3 Methods

Benchmark dataset collection
I collected transcriptomic perturbation experiments in human and mouse profiled by
single-channel microarrays from the database CREEDS (Zichen Wang et al., 2016),
which contains among others resources single drug and single gene perturbation ex-
periments from Gene Expression Omnibus (GEO). I extended this collection with
manually curated perturbation experiments from ArrayExpress using the data collec-
tion and curation pipeline described previously (Schubert et al., 2018). Arrays with
no raw data available or with no corresponding annotation package were discarded. I
translated GEO accession ids to ArrayExpress accession ids and downloaded CEL files
for all experiments using the function ArrayExpress from the BioConductor package
ArrayExpress (version 1.40.0; Kauffmann et al. (2009)).

New PROGENy pathway
PROGENy is based on footprints which are consensus gene signatures delivered from
pathway-related perturbation experiments. Bence Szalai added 3 new pathways foot-
prints (Androgen, Estrogen and WNT) to the existing 11 pathways of PROGENy in
this study. To collect the corresponding perturbation experiments, he queried Array-
Express (Kauffmann et al., 2009) with keywords {‘androgen,’ ’DHT’, ‘testosterone’},
{‘estrogen,’ ‘SERM,’ ‘tamoxifen’} and {‘APC,’ ‘axin,’ ‘catenin,’ ‘Frizzled,’ ‘GSK3,’
‘WNT’} for Androgen, Estrogen and WNT pathways, respectively. For further curation
and PROGENy model fitting he used the pipeline described previously (Schubert et
al., 2018).

Microarray processing
The processing steps from raw data to annotated probe levels, comprising quality
control, background correction, normalization and annotation is described in the
original PROGENy paper (Schubert et al., 2018).

Experiments with less than two control replicates remaining after the processing step
were discarded. I used the BioConductor package limma (version 3.36.2; Phipson, Lee,
Majewski, Alexander, & Smyth (2016)) to perform differential expression analysis
calculating the contrast between perturbed and control replicates. Instead of log-fold
changes I considered the moderated t-value as gene-level statistic.

Construction of mouse-PROGENy and calculation of pathway
activities
The original PROGENy model is a matrix with footprint genes in rows and pathways
in columns. The entries denote a measure accounting for how genes respond to pathway
perturbation (up- or downregulation). Each pathway is limited to the top 100 most
responsive genes.
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To construct mouse-PROGENy I mapped the HGNC symbols of the original
PROGENy matrix to their ortholog MGI-symbol using the BioConductor package
biomaRt (version 2.36.1, ensembl release 96 April 2019; Durinck, Spellman, Birney, &
Huber (2009)). The mapping can lead to duplicated genes. Either a single HGNC
symbol is mapped to several MGI symbols or several HGNC symbols are mapped to a
single MGI symbol. In the first case, the weight of the HGNC symbol is divided by
the number of mapping MGI genes. In the second case, the weight of the new MGI
symbol is the arithmetic mean value of all mapping HGNC symbols. Following this
strategy I introduce a bias to human genes which have multiple orthologs in mice
(e.g. the gene SERPINA3 that belongs to the footprint of JAK-STAT maps to 10
mouse genes: Serpina3a/b/c/f/g/i/j/k/m/n. Hence the JAK-STAT pathway is biased
to SERPINA3). In order to compensate for this bias I extend the pathway footprints
with a number of additional genes equal to the number of ortholog genes per human
gene - 1. Finally, a mouse specific PROGENy matrix is retrieved (mouse-PROGENy)
so that I can estimate pathway activity scores from mice gene expression data for the
original 11 (EGFR, Hypoxia, JAK-STAT, MAPK, NFkB, p53, PI3K, TGFb, TNFa,
Trail, VEGF) and the 3 newly added (Androgen, Estrogen, WNT) pathways. The
pathway activity scores are calculated for each contrast using moderated t-values as
gene-level statistic. Activity scores are pathway-wise z-score normalized.

Construction of mouse-DoRothEA and calculation of TF ac-
tivities
DoRothEA is a resource linking human TFs to their direct transcriptional targets.
Each TF is accompanied with a summary confidence level from A (high confidence)
to E (low confidence) based on the amount of supporting TF’s regulatory evidence. I
inferred mouse-DoRothEA by mapping HGNC-symbols to their ortholog MGI-symbol
using the BioConductor package BiomaRt (version 2.36.1, ensembl release 96 April
2019; Durinck, Spellman, Birney, & Huber (2009)). The mapping can lead to TFs
with multiple confidence levels. To be more conservative, the lowest confidence level
is chosen as TF-confidence level. The BioConductor package viper (version 1.14.0;
Alvarez et al. (2016)) considers the regulons as gene sets and, thus, estimates TF
activities from gene expression data using enriched regulon analysis. TF activity
scores are computed for each contrast using moderated t-values as gene-level statistic.
Only regulons comprised of at least 4 targets are tested. I consider the normalized
enrichment score (NES) provided by viper as a measure for TF activity.

Quality control of single gene perturbation experiments
Single gene perturbation experiments provide the possibility for an intuitive quality
control of the effect of the perturbation. If the gene-level statistic (t-value) sign of
the perturbation target is not in agreement with the underlying perturbation ((+) for
overexpression, (-) for knockdown/knockout) the perturbation experiment is considered
unsuccessful and is thus discarded.
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Computing ROC and PR curves
To transform the benchmark into a binary setup, all activity scores of experiments
with negative perturbation effect (inhibition/knockdown) are multiplied by -1. This
guarantees, that TFs/pathways belong to a binary class either deregulated or not
regulated.

I computed the ROC-curves and associated statistics using the R package pROC
(version 1.12.1; Robin et al. (2011)). For PR-curves I used the R package PRROC
(version 1.3.1; Grau, Grosse, & Keilwagen (2015)). For the construction of ROC and
PR curves I calculated for each perturbation experiment pathway (or TF) activities
using PROGENy (or DoRothEA). As each perturbation experiment targets either a
single pathway (or TF) only the activity score of the perturbed pathway (or TF) is
associated with the positive class (e.g. EGFR pathway activity score in an experiment
where EGFR was perturbed). Accordingly the activity scores of all non-perturbed
pathways (or TFs) belong to the negative class (e.g. EGFR pathway activity score in
an experiment where JAK-STAT pathway was perturbed). Using these positive and
negative classes Sensitivity/(1-Specificity) or Precision/Recall values were calculated
at different thresholds of activity, producing the ROC/PRC curves.

Downsampling true negatives
ROC curves are recommended when the numbers of true positives and true negatives
are balanced (J. Davis & Goadrich, 2006). In order to balance my benchmark dataset
I downsampled the number of true negatives to equal the number of true positives
3000 times and computed AUROC for each run.

Inference of disease sets using disease ontology network
To create disease sets I determined all related parent diseases of the diseases studied
in CREEDs by using the function ancestors from the BioConductor package rols
(version 2.9.1; https://github.com/lgatto/rols/) which provides an R interface
to the Ontology Lookup service (J, B, L, & Parkinson, 2015). Each possible parent
disease serves as a distinct disease set. CREEDs disease experiments which matches a
child disease of a given disease set is considered as a set member.

Disease set enrichment analysis
To explore TF/Pathway-disease associations I downloaded all human and mouse
disease signatures from the CREEDs database (Zichen Wang et al., 2016). I followed
the processing steps described before resulting in an expression vector of moderated
t-values for each disease experiment. I computed pathway and TF activity scores for
each vector. To apply the Gene Set Enrichment Analysis framework (Subramanian
et al., 2005) with my disease sets I used the BioConductor package fgsea (version
1.6.0; Sergushichev (2016)). Separately for each pathway/TF (e.g. only for EGFR),
disease experiments (with associated diseases) are ranked based on the pathway/TF

https://github.com/lgatto/rols/
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activity score (e.g. the activity score of EGFR). Subsequently, it is tested whether
experiments belonging to the same disease set are enriched either at the top or at
the bottom of the list. Disease sets with less than 5 and more than 45 members were
discarded. P-values were adjusted for multiple comparisons using false discovery rate
(FDR) (Benjamini & Hochberg, 1995).

2.4 Results

Benchmark pipeline
I established a benchmark pipeline to discover whether both PROGENy and DoRothEA
human footprint methods could be applied to functionally characterize mice data
(Figure 2.1B). Pathway/TF perturbation gene expression studies provide the op-
portunity to benchmark both tools: I can compare the predicted pathway and TF
activities with the ‘ground truth,’ denoted as the original perturbed target. The
database CREEDS (CRowd Extracted Expression of Differential Signatures) provides
manually curated single drug and single gene perturbation experiments in human
and mice (Zichen Wang et al., 2016). Additionally, I manually curated single drug
perturbation experiments (see Methods). I included both perturbation directions -
either activation/overexpression or inhibition/knockdown.

For the PROGENy validation I exploited both single drug and single gene perturbation
studies. Experiments are considered to be relevant for my study if the perturbation
target is a member or a gene encoding for a member of a PROGENy signaling pathway.
I identified 347 experiments (123 single gene and 224 single drug perturbation; Figure
2.1C). These experiments cover 11 and 13 out of 14 possible pathways for human
and mouse, respectively. These 14 pathways include Androgen, Estrogen, and WNT
besides the 11 in the original PROGENy publication (see Methods) (Schubert et al.,
2018). For DoRothEA I extracted only those single gene perturbation experiments
where the target gene encodes for a TF which is defined by the human TF census
from TFClass (Wingender, Schoeps, Haubrock, Krull, & Dönitz, 2018). In total I
collected 302 single gene perturbation experiments covering 144 mouse TFs (Figure
2.1D).

To evaluate if PROGENy is applicable on mice data in the fairest way I would
need to compare mouse-PROGENy vs a PROGENy version which was originally
developed for application in mice. Since, to my knowledge, this resource does not
currently exist I compared the performance of the newly derived mouse-PROGENy
versus the original human-PROGENy tool. Note that this procedure introduces a
bias towards the benchmark data as I benchmark mouse-PROGENy and human-
PROGENy on independent data sets: one with human and the other with mouse
pathway perturbation experiments. Regarding DoRothEA, there are resources that
provide TF-target interactions for mice. Hence, I compared the newly derived mouse-
DoRothEA versus dedicated mouse regulons from the TRRUST database (Han et al.,
2018). Both mouse-PROGENy and mouse-DoRothEA were constructed by mapping
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human genes to their orthologs in mice (see Methods). To assess the model’s prediction
power I utilized the Receiver Operating Characteristic (ROC) and Precision-Recall
(PR) curves (see Methods).

Benchmarking PROGENy
To compare mouse-PROGENy and human-PROGENy unbiasedly, I included only
pathways perturbed in both benchmark datasets. Moreover, I evaluated PROGENy’s
global performance across all pathways. Both models clearly performed better than
random (AUROC of 0.71 with 95% confidence interval of 0.662–0.757 and AUROC of
0.656 with 95% confidence interval of 0.610–0.703 for human and mouse-PROGENy
respectively; Figure 2.2A; ROC-curves for each pathway in Supplementary Figure
A.1). AUROC was not significantly different between mouse and human (DeLong-test,
p = 0.113). As my benchmark dataset is imbalanced (10% belong to the positive
class) I also computed AUROC’s upon multiple downsampling true negatives to equal
the number of true positives with a resulting median AUROC equal to the AUROC
of the unbalanced dataset (see Methods; Supplementary Figure A.2A and B). With
precision-recall analysis, I obtained consistent results: human-PROGENy performed
comparably to mouse-PROGENy (AUPRC of 0.254 and 0.246, respectively; Figure
2.2B; PR-curves for each pathway are provided in Supplementary Figure A.3. In
addition, both performed better than a random model which would result in an
AUPRC of 0.1. In summary, mouse-PROGENy performed comparably to human-
PROGENy and better than a random model, regardless of the metric used. Thus, I
conclude that PROGENy can recover pathway perturbations in mice.

Benchmarking DoRothEA
To evaluate if DoRothEA’s regulons can functionally characterize mice data, I next
compared the performance of mouse-DoRothEA to the performance of dedicated
mouse regulons from the TRRUST database (Han et al., 2018). Human-DoRothEA
was reconstructed by integrating different resources spanning from literature-curated
databases to predictions of TF-target interactions (Garcia-Alonso, Holland, Ibrahim,
Turei, & Saez-Rodriguez, 2019). Thereby, each TF is accompanied with a summary
confidence level from A (high confidence) to E (low confidence) based on the amount
of supporting TF’s regulatory evidence. My novel mouse-DoRothEA regulons com-
prise in total 1170 TFs, targeting 17,512 unique targets with 402,937 interactions
distributed across all confidence levels (see Methods; Supplementary Figure A.4A). In
contrast, TRRUST covers 828 TFs, which overlap 553 TFs from mouse-DoRothEA
(Supplementary Figure A.4B). Comparing similarity of overlapping regulons between
TRRUST and mouse-DoRothEA revealed, for most regulons, substantial differences
(Supplementary Figure A.4C). To benchmark the performance of mouse-DoRothEA
and TRRUST unbiasedly, I consider only the 553 TFs which are available in both
resources. I cover 34–76 TFs of those 553 TFs (dependent on mouse-DoRothEA
confidence level) with my benchmark data (Supplementary Figure A.4D). Moreover, I
evaluated DoRothEA’s global performance across all TFs since there were not enough
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Figure 2.1: Benchmark overview. (A) Visualization of the classical ‘mapping’ frame-
work, where transcript level is mapped to protein level and thus to protein activity in
contrast to the footprint based methods PROGENy and DoRothEA. (B) Benchmark
pipeline starting with the extraction of mouse and human single gene and single drug
perturbation experiments from the CREEDs database. Pathway and TF activities
are computed for each experiment separately based on their differential expression
signature. For the PROGENy benchmark I compared human-PROGENy vs mouse-
PROGENy. For DoRothEA benchmark I compared mouse-DoRothEA vs dedicated
mouse regulons from TRRUST. I evaluate the performance of both approaches using
ROC and PR-metrics. (CD) Overview of benchmark datasets for PROGENy (C) and
DoRothEA (D), including the perturbation type, organism, and perturbation effect.
Numbers indicate the amount of experiments in each group.
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Figure 2.2: Benchmark of mouse-PROGENy. ROC-curve (A) and PR-curve (B)
analysis comparing human-PROGENy vs. mouse-PROGENy. Dashed lines indicate
the performance of a random models.

public data sets available to evaluate the performance at the TF level. In ROC space
mouse-DoRothEA outperformed TRRUST at any confidence level combination (Figure
2.3A). However, in PR space I found that that TRRUST has an advantage throughout
all confidence level combinations except AB where DoRothEA is slightly better (Figure
2.3B). All model subtypes performed better than a corresponding random model. In
both metrics, I saw a peak at combined confidence level of A and B. Therefore, I
decided to consider only TFs accompanied with the confidence levels A and B in the
following analysis.

While both regulons resources performed better than random, mouse-DoRothEA
(AUROC: 0.711, 95% confidence interval: 0.649–0.772) performed better than TRRUST
(AUROC: 0.671, 95% confidence interval: 0.604–0.738; Figure 2.3C), but without a
significant difference (DeLong-test, p = 0.249). As the DoRothEA benchmark dataset
is even more imbalanced (2.63% belong to the positive class) I downsampled again
true negatives to equal the number of true positives, showing that the median of
downsampled AUROC is equal to the AUROC of the imbalanced dataset (see Methods;
Supplementary Figure A.5A and B). In PR-space mouse-DoRothEA performed just
as well as TRRUST (AUPRC of 0.108 for both; Figure 2.3D). Also both performed
better than a random model with a corresponding AUPRC of 0.026. Considering the
aforementioned results, I conclude that mouse-DoRothEA performs comparably to
TRRUST and can thus recover transcriptional regulation in mice.

Pathway/TF-disease associations
Once shown that PROGENy and DoRothEA can also be applied to mice data, I
investigated whether I can recover known associations between pathways/TFs and
human diseases based on transcriptomic disease signatures of both mice and humans.
I downloaded 469 disease signatures from the CREEDs database (Zichen Wang et al.,
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Figure 2.3: Benchmark of mouse-DoRothEA. DoRothEA result of ROC-curve (A)
and PR-curve (B) analysis summarized in AUROC and AUPRC, respectively, for
different confidence level cutoffs. ROC-curve (C) and PR-curve (D) analysis comparing
mouse-DoRothEA filtered for TFs with confidence level A or B vs. mouse-TRRUST.
Dashed lines indicate the performance of a random model.
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2016) and computed pathway and TF activity scores for each experiment. To find
associations I developed individual disease sets based on a disease ontology network
from EBI Ontology Lookup Service (J, B, L, & Parkinson, 2015). Each node in
this network represents a distinct disease set. If a node itself or a descendant of a
node matched a CREEDs signature disease, the corresponding CREEDs experiment
is considered as a member of the disease set (Figure 2.4A). In total I tested 732
distinct disease sets. Using these disease sets I found 434 significant (Gene set
Enrichment Analysis (Subramanian et al., 2005); FDR ≤ 0.1 & |NES| ≥ 1; see
Methods) pathway-disease associations and 3586 significant (FDR ≤ 0.1 |NES| ≥ 1)
TF-disease associations covering 156 and 281 disease sets, respectively.

The results were, in general, dominated by upregulated activity of two TFs, ETS2
(100 associations) and E2F1 (88 associations; Figure 2.4B). Both are well-known
oncogenes driving tumorigenesis (Fry & Inoue, 2018; Johnson, 2000). Accordingly,
most of their associations I found were related to different forms of cancer. Similarly,
I found the activity of the tumor suppressor TP53 to be downregulated in cancer (7
associations). Pathway specific associations were dominated by the PI3K pathway
(86 associations; Figure 2.4C). Additionally, almost half of them were associations
with different forms of cancer. My approach revealed for the majority of all cancer
associations an elevated activity level of PI3K. This finding is in agreement with the
literature that describes PI3K as having control over important hallmarks of cancer,
i.e. cell cycle, survival, and metabolism (Fruman & Rommel, 2014). Also I found a
strong upregulation of VEGF pathway in pancreatic cancer. Overexpressed VEGF
(Vascular endothelial growth factor) is involved in angiogenesis and is considered as
a diagnostic marker for pancreatic cancer (Costache et al., 2015). These examples
emphasize the importance of signaling pathways and transcriptional regulation in the
context of cancer diseases.

However, next to cancer related diseases I also recovered strong associations with
other disease types, e.g. upregulated Hypoxia pathway activity in rheumatoid arthritis
(Quiñonez-Flores, González-Chávez, & Pacheco-Tena, 2016). Also, NFKB1 and JAK-
STAT showed elevated activity in immune and, therefore, leukocyte related diseases,
such as inflammation of the lung, bowel, mucous membrane, or skin (Banerjee, Biehl,
Gadina, Hasni, & Schwartz, 2017; Tak & Firestein, 2001).

In the context of chronic liver disease I recovered the role of PPARA. It’s expression is
reduced in hepatic stellate cells during liver fibrosis (Zardi et al., 2013). This finding
is in agreement with my study as I found down regulated PPARA activity associated
with the set ‘liver disease.’ Moreover, reduced PPARA activity was also significantly
depleted within the disease sets ‘hepatocellular carcinoma’ and ‘liver carcinoma.’

Altogether, I showed that PROGENy and DoRothEA are capable to recover known
signaling pathway/TF disease association based on mice and human data.
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Figure 2.4: Pathway/TF-disease associations. (A) Framework of gene set enrichment
adapted for ‘disease set’ enrichment. The disease sets are created based on a disease
ontology network. Each node in the network represents a disease set. CREEDs diseases
which are the node itself or descendants of a node are considered as corresponding
disease set members. To perform the enrichment PROGENy and DoRothEA activity
levels are ranked separately and checked whether a disease set is enriched either at
the top or at the bottom of the ranked list. (B, C) Volcano plots showing separately
for pathways and TFs the outcome of disease set enrichment. Selected associations
are labelled.
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2.5 Discussion
The evolutionarily conserved gene regulatory system between mouse and human
suggests that the footprints of a pathway or TF on gene expression are evolutionarily
conserved as well. This hypothesis has a direct impact on footprint methods developed
for human application, such as PROGENy and DoRothEA. Both rely on gene sets
comprising footprints and given that my assumption is true, they can be applied to
mice data, which is an important resource for the study of human diseases. I addressed
this question by establishing a benchmark pipeline to validate if DoRothEA and an
extended version of PROGENy (footprints for Androgen, Estrogen and WNT were
added by Bence Szalai) can be applied to functionally characterize mice data (Figure
2.1B).

I found that mouse-PROGENy is globally effective in inferring pathway activity
on mouse data. However, the pathway-wise benchmark showed that the prediction
power varies across pathways (Supplementary Figures A.1 and A.3). Especially for
JAK-STAT, I saw a highly significant difference between mice and humans in ROC
space for the benefit of humans (DeLong-test, p = 5e-5). Interestingly, I observed
the inverse case for the pathway NFkB. Here, mouse-PROGENy tends to outperform
human-PROGENy (DeLong-test, p = 0.057), while NFkB still performed well in
human (Schubert et al., 2018). This difference emphasizes the importance of the
quality of the benchmark data. The benchmark data in (Schubert et al., 2018) was
curated very carefully by reviewing each perturbation experiment separately. My
analysis is based on a broad collection of curated experiments via crowdsourcing.
By their own nature, crowdsourcing projects cannot be fully controlled, and miss
annotations can occur, which could contribute to the low performance I found for some
pathways. Other pathways, with a low number of positive cases such as VEGF, must
be interpreted with caution as reliability of ROC/PR tests decreases with decreasing
positive cases.

Regarding mouse-DoRothEA, I found it’s performance comparable to dedicated mouse
regulons from TRRUST. However, I recommend the use of mouse-DoRothEA instead
of TRRUST as it provides a better coverage at similar performance. Regulons with
confidence levels A and B have been shown to perform the best for both resources.
Including confidence level C almost doubled the TF coverage from 34 to 59 TFs
(Supplementary Figure A.4B) but caused a performance drop. By including TFs
labelled with confidence level C, I introduce regulons in my benchmark data that
have not been thoroughly studied (Garcia-Alonso, Holland, Ibrahim, Turei, & Saez-
Rodriguez, 2019), hence the drop in performance is expected.

Our above stated findings about the performance of PROGENy and DoRothEA
support my initial hypothesis that footprints are evolutionarily conserved between
mice and humans, however only indirectly. Comparative transcriptomic analysis of
single drug and single gene perturbation experiments in mice and humans would be
required to show this fact in a direct manner. Thus I conclude that it is reasonable to
think that the footprints of a pathway or TF are evolutionarily conserved, at least at



32
Chapter 2. Transfer of regulatory knowledge from human to mouse for functional

genomics analysis

the level of my current footprint methods which rely on lists of genes.

Once shown that PROGENy and DoRothEA can also be applied to mouse data, I
computed TF and pathway activities for a large collection of chemical and genetic
perturbations and disease experiments. The results are provided as an interactive web
application to browse corresponding pathway and TF activities. I envision that this
resource can have broad applications including the study of diseases and therapeutics.
Moreover, I demonstrated the usability of PROGENy and DoRothEA by recovering
known pathway/TF disease associations using the aforementioned disease experiments.
I found 4020 significant associations in total, where most were related to different
forms of cancer, but I also recovered well-known associations of other disease types,
such as liver disease (Figure 2.4B).

Finally, I believe that my finding of the conserved nature of footprints is especially
interesting for further development of footprint methods. Integrating data from
mice and humans will provide a much stronger data background for future model
construction. Lastly, I speculate that the conserved nature of footprints will not hold
to be exclusively true for mouse and human but will also extend to other mammals
often used as model organisms.

2.6 Availability of data and materials
All source code is deposited at GitHub. Pathway and TF activities of perturbation
and disease experiments can be browsed in a user friendly web application.

https://saezlab.shinyapps.io/footprint_scores
https://saezlab.shinyapps.io/footprint_scores
https://github.com/saezlab/ConservedFootprints
https://saezlab.shinyapps.io/footprint_scores


Chapter 3

Robustness and applicability of
transcription factor and pathway
analysis tools on single-cell
RNA-seq data

3.1 Preface
The text of the following chapter is taken largely from the publication “Robustness
and applicability of transcription factor and pathway analysis tools on single-cell
RNA-seq data” (Christian H. Holland et al., 2020) that was originally written by
myself. Changes were made to focus on my contribution to this project. Unless
otherwise stated I performed all analyses myself. As the first author of this study
the publishing house Springer Nature grants me the right to include this work in my
dissertation.

3.2 Background
Gene expression profiles provide a blueprint of the status of cells. Thanks to diverse
high-throughput techniques, such as microarrays and RNA-seq, expression profiles
can be collected relatively easily and are hence very common. To extract functional
and mechanistic information from these profiles, many tools have been developed that
can, for example, estimate the status of molecular processes such as the activity of
pathways or transcription factors (TFs). These functional analysis tools are broadly
used and belong to the standard toolkit to analyze expression data (Essaghir et al.,
2010; Hung, Yang, Hu, Weng, & DeLisi, 2012; Khatri, Sirota, & Butte, 2012; Nguyen,
Shafi, Nguyen, & Draghici, 2019).

Functional analysis tools typically combine prior knowledge with a statistical method to
gain functional and mechanistic insights from omics data. In the case of transcriptomics,

https://doi.org/10.1186/s13059-020-1949-z
https://doi.org/10.1186/s13059-020-1949-z
https://doi.org/10.1186/s13059-020-1949-z
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prior knowledge is typically rendered as gene sets containing genes belonging to, e.g.,
the same biological process or to the same Gene Ontology (GO) annotation. The
Molecular Signature Database (MSigDB) is one of the largest collections of curated
and annotated gene sets (Liberzon et al., 2011). Statistical methods are as abundant
as the different types of gene sets. Among them, the most commonly used are over-
representation analysis (ORA) (Fisher, 1992) and Gene Set Enrichment Analysis
(GSEA) (Subramanian et al., 2005). Still, there is a growing number of statistical
methods spanning from simple linear models to advanced machine learning methods
(Pang et al., 2006; Trescher, Münchmeyer, & Leser, 2017).

Recent technological advances in single-cell RNA-seq (scRNA-seq) enable the profiling
of gene expression at the individual cell level (Tang et al., 2009). Multiple technologies
and protocols have been developed, and they have experienced a dramatic improvement
over recent years. However, single-cell data sets have a number of limitations and
biases, including low library size and drop-outs. Bulk RNA-seq tools that focus on
cell type identification and characterization as well as on inferring regulatory networks
can be readily applied to scRNA-seq data (Stegle, Teichmann, & Marioni, 2015). This
suggests that functional analysis tools should in principle be applicable to scRNA-seq
data as well. However, it has not been investigated yet whether these limitations
could distort and confound the results, rendering the tools not applicable to single-cell
data.

In this paper, I benchmarked the robustness and applicability of various TF and
pathway analysis tools on simulated and real scRNA-seq data. I focused on three
tools for bulk and three tools for scRNA-seq data. The bulk tools were PROGENy
(Schubert et al., 2018), DoRothEA (Garcia-Alonso, Holland, Ibrahim, Turei, & Saez-
Rodriguez, 2019), and classical GO enrichment analysis, combining GO gene sets
(Ashburner et al., 2000) with GSEA. PROGENy estimates the activity of 14 signaling
pathways by combining corresponding gene sets with a linear model. DoRothEA is
a collection of resources of TF’s targets (regulons) that can serve as gene sets for
TF activity inference. For this study, I coupled DoRothEA with the method VIPER
(Alvarez et al., 2016) as it incorporates the mode of regulation of each TF-target
interaction. Both PROGENy’s and DoRothEA’s gene sets are based on observing
the transcriptomic consequences (the “footprint”) of the processes of interest rather
than the genes composing the process as gene sets (Dugourd & Saez-Rodriguez, 2019).
This approach has been shown to be more accurate and informative in inferring the
process’s activity (Cantini et al., 2018; Schubert et al., 2018). The tools specifically
designed for application on scRNA-seq data that I considered are SCENIC/AUCell
(Aibar et al., 2017) and metaVIPER (Ding et al., 2018). SCENIC is a computational
workflow that comprises the construction of gene regulatory networks (GRNs) from
scRNA-seq data that are subsequently interrogated to infer TF activity with the
statistical method AUCell. In addition, I coupled AUCell with the footprint-based
gene sets from DoRothEA and PROGENy that I hereafter refer to as D-AUCell and
P-AUCell. Using DoRothEA with both VIPER and AUCell on scRNA-seq for TF
activity inference allowed me to compare the underlying statistical methods more
objectively. metaVIPER is an extension of VIPER which is based on the same
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statistical method but relies on multiple GRNs such as tissue-specific networks.

I first benchmarked the tools on simulated single-cell transcriptome profiles. I found
that on this in silico data the footprint-based gene sets from DoRothEA and PROGENy
can functionally characterize simulated single cells. I observed that the performance
of the different tools is dependent on the used statistical method and properties of the
data, such as library size. I then used real scRNA-seq data upon CRISPR-mediated
knock-out/knock-down of TFs (Dixit et al., 2016; Genga et al., 2019) to assess the
performance of TF analysis tools. The results of this benchmark further supported my
finding that TF analysis tools can provide accurate mechanistic insights into single cells.
Finally, I demonstrated the utility of the tools for pathway and TF activity estimation
on recently published data profiling a complex sample with 13 different scRNA-seq
technologies (Mereu et al., 2020). Here, I showed that summarizing gene expression
into TF and pathway activities preserves cell-type-specific information and leads to
biologically interpretable results. Collectively, my results suggest that the bulk- and
footprint-based TF and pathway analysis tools DoRothEA and PROGENy partially
outperform the single-cell tools SCENIC, AUCell, and metaVIPER. Although on
scRNA-seq data DoRothEA and PROGENy were less accurate than on bulk RNA-seq,
I were still able to extract relevant functional insight from scRNA-seq data.

3.3 Methods

Functional analysis tools, gene set resources, and statistical
methods
PROGENy

PROGENy is a tool that infers pathway activity for 14 signaling pathways (Androgen,
Estrogen, EGFR, Hypoxia, JAK-STAT, MAPK, NFkB, PI3K, p53, TGFb, TNFa,
Trail, VEGF, and WNT) from gene expression data (Christian H. Holland, Szalai, &
Saez-Rodriguez, 2020; Schubert et al., 2018). By default pathway activity inference is
based on gene sets comprising the top 100 most responsive genes upon corresponding
pathway perturbation, which I refer to as footprint genes of a pathway. Each footprint
gene is assigned a weight denoting the strength and direction of regulation upon
pathway perturbation. Pathway scores are computed by a weighted sum of the
product from expression and the weight of footprint genes.

DoRothEA

DoRothEA is a gene set resource containing signed transcription factor (TF)-target
interactions (Garcia-Alonso, Holland, Ibrahim, Turei, & Saez-Rodriguez, 2019). Those
interactions were curated and collected from different types of evidence such as
literature curated resources, ChIP-seq peaks, TF binding site motifs, and interactions
inferred directly from gene expression. Based on the number of supporting evidence,
each interaction is accompanied by an interaction confidence level ranging from A
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to E, with A being the most confidence interactions and E the least. In addition, a
summary TF confidence level is assigned (also from A to E) which is derived from the
leading confidence level of its interactions (e.g., a TF is assigned confidence level A
if at least ten targets have confidence level A as well). DoRothEA contains in total
470,711 interactions covering 1396 TFs targeting 20,238 unique genes. I use VIPER in
combination with DoRothEA to estimate TF activities from gene expression data, as
described in (Garcia-Alonso, Holland, Ibrahim, Turei, & Saez-Rodriguez, 2019).

GO-GSEA

I define GO-GSEA as an analysis tool that couples GO-terms from MsigDB with the
GSEA framework (Subramanian et al., 2005).

VIPER

VIPER is a statistical framework that was developed to estimate protein activity
from gene expression data using enriched regulon analysis performed by the algorithm
aREA (Alvarez et al., 2016). It requires information about interactions (if possible
signed) between a protein and its transcriptional targets and the likelihood of their
interaction. If not further specified, this likelihood is set to 1. In the original workflow,
this regulatory network was inferred from gene expression by the algorithm ARACNe
providing mode of regulation and likelihood for each interaction (Margolin et al.,
2006). However, it can be replaced by any other data resource reporting protein target
interactions.

metaVIPER

metaVIPER is an extension of VIPER that uses multiple gene regulatory networks
(Ding et al., 2018). TF activities predicted with each individual gene regulatory
network are finally integrated to a consensus TF activity score.

SCENIC

SCENIC is a computational workflow that predicts TF activities from scRNA-seq data
(Aibar et al., 2017). Instead of interrogating predefined regulons, individual regulons
are constructed from the scRNA-seq data. First TF-gene co-expression modules
are defined in a data-driven manner with GENIE3. Subsequently, those modules
are refined via RcisTarget by keeping only those genes than contain the respective
transcription factor binding motif. Once the regulons are constructed, the method
AUCell scores individual cells by assessing for each TF separately whether target
genes are enriched in the top quantile of the cell signature.

D-AUCell/P-AUCell

The statistical method AUCell is not limited to SCENIC regulons. In principle, it
can be combined with any gene set resources. Thus, I coupled AUCell with gene sets
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from DoRothEA (D-AUCell) and PROGENy (P-AUCell). In comparison to other
statistical methods, AUCell does not include weights of the gene set members. Thus,
the mode of regulation or the likelihood of TF-target interactions or weights of the
PROGENy gene sets are not considered for the computation of TF and pathway
activities.

Application of PROGENy on single samples/cells and con-
trasts
I applied PROGENy on matrices of single samples (genes in rows and either bulk
samples or single cells in columns) containing normalized gene expression scores or
on contrast matrices (genes in rows and summarized perturbation experiments into
contrasts in columns) containing logFCs. In the case of single sample analysis, the
contrasts were built based on pathway activity matrices yielding the change in pathway
activity (perturbed samples - control sample) summarized as logFC. Independent of
the input matrix, I scaled each pathway to have a mean activity of 0 and a standard
deviation of 1. I build different PROGENy versions by varying the number of footprint
genes per pathway (100, 200, 300, 500, 1000 or all which corresponds to ~ 29,000
genes).

Application of DoRothEA on single samples/cells and con-
trasts
I applied DoRothEA in combination with the statistical method VIPER on matrices
of single samples (genes in rows and either bulk samples or single cells in columns)
containing normalized gene expression scores scaled gene-wise to a mean value of 0
and standard deviation of 1 or on contrast matrices (genes in rows and summarized
perturbation experiments into contrasts in columns) containing logFCs. In the case
of single sample analysis, the contrasts were built based on TF activity matrices
yielding the change in TF activity (perturbed samples - control sample) summarized
as logFC. TFs with less than four targets listed in the corresponding gene expression
matrix were discarded from the analysis. VIPER provides a normalized enrichment
score (NES) for each TF which I consider as a metric for the activity. I used the R
package viper (version 1.17.0; Alvarez et al. (2016)) to run VIPER in combination
with DoRothEA.

Application of GO-GSEA sets on contrasts
I applied GSEA with GO gene sets on contrast matrices (genes in rows and summarized
perturbation experiments into contrasts in columns) containing logFCs that serve
also as gene-level statistic. I selected only those GO terms which map to PROGENy
pathways in order to guarantee a fair comparison between both tools. For the
enrichment analysis, I used the R package fgsea (version 1.10.0; Sergushichev (2016))
with 1000 permutations per gene signature.
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Application of metaVIPER on single samples
I ran metaVIPER with 27 tissue-specific gene regulatory networks which I constructed
before for one of my previous studies (Garcia-Alonso, Holland, Ibrahim, Turei, & Saez-
Rodriguez, 2019). Those tissue-specific gene regulatory networks were derived using
ARACNe (Margolin et al., 2006) taking the database GTEx (Carithers et al., 2015) as
tissue-specific gene expression sample resource. I applied metaVIPER on matrices of
single samples (genes in rows and single cells in columns) containing normalized gene
expression scores scaled gene-wise to a mean value of 0 and a standard deviation of 1.
If required, contrasts were built based on TF activity matrices yielding the change
in TF activity (perturbed samples - control sample) summarized as logFC. TFs with
less than four targets listed in the corresponding input matrix were discarded from
the analysis. metaVIPER provides a NES integrated across all regulatory networks
for each TF which I consider as a metric for the activity. I used the R package viper
(version 1.17.0; Alvarez et al. (2016)) to run metaVIPER.

Application of AUCell with either SCENIC, DoRothEA, or
PROGENy gene sets on single samples
AUCell is a statistical method to determine specifically for single cells whether a
given gene set is enriched at the top quantile of a ranked gene signature. Therefore,
AUCell determines the area under the recovery curve to compute the enrichment
score. I defined the top quantile as the top 5% of the ranked gene signature. I applied
this method coupled with SCENIC, PROGENy, and DoRothEA gene sets. Before
applying this method with PROGENy gene sets, I subsetted the footprint gene sets
to contain only genes available in the provided gene signature. This guarantees a
fair comparison as for the original PROGENy framework with a linear model, the
intersection of footprint (gene set) members and signature genes are considered. I
applied AUCell with SCENIC, PROGENy, and DoRothEA gene sets on matrices of
single samples (genes in rows and single cells in columns) containing raw gene counts.
Contrasts were built based on respective TF/pathway activity matrices yielding the
change in TF/pathway activity (perturbed samples - control sample) summarized as
logFC. For the AUCell analysis, I used the R package AUCell (version 1.5.5; Aibar et
al. (2017)).

Induction of artificial low gene coverage in bulk microarray
data
I induce the reduction of gene coverage by inserting zeros on the contrast level. In
detail, I insert for each contrast separately randomly zeros until I obtained a predefined
number of genes with a logFC unequal zero which I consider as “covered”/“measured”
genes. I perform this analysis for a gene coverage of 500, 1000, 2000, 3000, 5000,
7000, 8000 and as reference all available genes. To account for stochasticity effects
during inserting randomly zero, I repeat this analysis 25 times for each gene coverage
value.
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Simulation of single cells
Let C be a vector representing counts per gene for a single bulk sample. C is normalized
for gene length and library size resulting in vector B containing TPM values per gene.
I assume that samples are obtained from homogenous cell populations and that
the probability of a dropout event is inversely proportional to the relative TPM of
each measured gene in the bulk sample. Therefore, I define a discrete cumulative
distribution function from the vector of gene frequencies P = B

|B| . To simulate a
single cell from this distribution, I draw and aggregate L samples by inverse transform
sampling. L corresponds to the library size for the count vector of the simulated single
cell. I draw L from a normal distribution N(µ, µ/2).

To benchmark the robustness of the methods, I vary the number of cells sampled from
a single bulk sample (1, 10, 20, 30, 50, 100) and the value of µ (1000, 2000, 5000,
10,000, 20,000). To account for stochasticity effects during sampling, I repeat this
analysis 25 times for each parameter combination.

Prior to normalization, I discarded cells with a library size lower than 100. I normalized
the count matrices of the simulated cells by using the R package scran (version 1.11.27;
Lun, McCarthy, & Marioni (2016)). Contrast matrices were constructed by comparing
cells originating from one of the perturbation bulk samples vs cells originating from
one of the control bulk samples.

Gene regulatory network (GRN) reconstruction using
SCENIC
Javier Perales-Patón in close collaboration with me inferred GRNs on individual
sub-datasets using the SCENIC workflow (version 1.1.2-2; Aibar et al. (2017)). In
brief, gene expression was filtered using default parameters and log2-transformed for
co-expression analysis following the recommendations by the authors. I identified
potential targets of transcription factors (TFs) based on their co-expression to TFs
using GENIE3 (v. 1.6.0, Random Forest with 1000 trees). I pruned co-expression
modules to retrieve only putative direct-binding interactions using RcisTarget (v.
1.4.0) and the cis-regulatory DNA-motif databases for hg38 human genome assembly
(Version 9 - mc9nr, with distances TSS+/- 10kbp and 500bpUp100Dw, from https:
//resources.aertslab.org/cistarget/) with default parameters. Only modules
with a significant motif enrichment of the TF upstream were kept for the final GRN.
While I were running the workflow, 75 genes out of 27,091 from the first DNA-motif
database (TSS+/- 10kbp) were inconsistent, i.e., were not described in the second one
(500bpUp100Dw), leading to an error of the workflow execution. Thus, these 75 genes
were discarded from the database to complete the workflow.

Benchmarking process with ROC and PR metrics
To transform the benchmark into a binary setup, all activity scores of experiments
with negative perturbation effect (inhibition/knockdown) are multiplied by -1. This

https://resources.aertslab.org/cistarget/
https://resources.aertslab.org/cistarget/
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guarantees that TFs/pathways belong to a binary class either deregulated or not
regulated and that the perturbed pathway/TF has in the ideal case the highest
activity.

I performed the ROC and PR analysis with the R package yardstick (version 0.0.3;
https://github.com/tidymodels/yardstick). For the construction of ROC and PR
curves, I calculated for each perturbation experiment pathway (or TF) activities. As
each perturbation experiment targets either a single pathway (or TF), only the activity
score of the perturbed pathway (or TF) is associated with the positive class (e.g., EGFR
pathway activity score in an experiment where EGFR was perturbed). Accordingly,
the activity scores of all non-perturbed pathways (or TFs) belong to the negative class
(e.g., EGFR pathway activity score in an experiment where the JAK-STAT pathway
was perturbed). Using these positive and negative classes, Sensitivity/(1-Specificity)
or Precision/Recall values were calculated at different thresholds of activity, producing
the ROC/PR curves.

Collecting, curating, and processing of transcriptomic data
General robustness study

I extracted single-pathway and single-TF perturbation data profiled with microarrays
from a previous study conducted by me (Christian H. Holland, Szalai, & Saez-
Rodriguez, 2020). I followed the same procedure of collection, curating, and processing
the data as described in the previous study.

In silico benchmark

For the simulation of single cells, I collected, curated, and processed single TF
and single pathway perturbation data profiled with bulk RNA-seq. I downloaded
basic metadata of single TF perturbation experiments from the ChEA3 web-server
(Keenan et al., 2019) and refined the experiment and sample annotation. Metadata of
single pathway perturbation experiments were manually extracted by me from Gene
Expression Omnibus (GEO) (Edgar, Domrachev, & Lash, 2002). Count matrices for
all those experiments were downloaded from ARCHS4 (Lachmann et al., 2018).

I normalized count matrices by first calculating normalization factors and second
transforming count data to log2 counts per million (CPM) using the R packages edgeR
(version 3.25.8; Robinson, McCarthy, & Smyth (2010)) and limma (version 3.39.18;
Ritchie et al. (2015)), respectively.

In vitro benchmark

To benchmark VIPER on real single-cell data, Jan Gleixner and I inspected related
literature and identified two publications which systematically measure the effects of
transcription factors on gene expression in single cells:

https://github.com/tidymodels/yardstick
https://amp.pharm.mssm.edu/chea3/
https://amp.pharm.mssm.edu/archs4/


3.3. Methods 41

Dixit et al. introduced Perturb-seq and measured the knockout-effects of ten transcrip-
tion factors on K562 cells 7 and 13 days after transduction (Dixit et al., 2016). Jan
Gleixner downloaded the expression data from GEO (GSM2396858 and GSM2396859)
and sgRNA-cell mappings made available by the author upon request in the files pro-
moters_concat_all.csv (for GSM2396858) and pt2_concat_all.csv (for GSM2396859)
on github.com/asncd/MIMOSCA. He did not consider the High MOI dataset due to
the expected high number of duplicate sgRNA assignments. Cells were quality filtered
based on expression, keeping the upper half of cells for each dataset. Only sgRNAs
detected in at least 30 cells were used. For the day 7 dataset, 16,507, and for day 13
dataset, 9634 cells remained for benchmarking.

Ryan et al. measured knockdown effects of 50 transcription factors implicated in
human definitive endoderm differentiation using a CRISPRi variant of CROPseq in
human embryonic stem cells 6 days after transduction (Genga et al., 2019). Jan
Gleixner obtained data of both replicates from GEO (GSM3630200, GSM3630201),
which include sgRNA counts next to the rest of the transcription. He refrained from
using the targeted sequencing of the sgRNA in GSM3630202, GSM3630203 as it
contained less clear mappings due to amplification noise. Expression data lacked
information on mitochondrial genes, and therefore, no further quality filtering of cells
was performed. From this dataset, only sgRNAs detected in at least 100 cells were
used. A combined 5282 cells remained for benchmarking.

Analysis was limited to the 10,000 most expressed genes for all three datasets.

I normalized the count matrices for each individual dataset (Perturb-Seq (7d), Perturb-
Seq (13d), and CRISPRi) separately by using the R package scran (version 1.11.27;
Lun, McCarthy, & Marioni (2016)).

Human Cell Atlas study

This scRNA-seq dataset originates from a benchmark study of the Human Cell Atlas
project and is available on GEO (GSE133549) (Mereu et al., 2020). The dataset
consists of PBMCs and a HEK293T sample which was analyzed with 13 different
scRNA-seq technologies (CEL-Seq2, MARS-Seq, Quartz-Seq2, gmcSCRB-Seq, ddSEQ,
ICELL8, C1HT-Small, C1HT-Medium, Chromium, Chromium(sn), Drop-seq, inDrop).
Most cells are annotated with a specific cell type/cell line (CD4 T cells, CD8 T
cells, NK cells, B cells, CD14+ monocytes, FCGR3A+ monocytes, dendritic cells,
megakaryocytes, HEK cells). Megakaryocytes (due to their low abundance) and cells
without annotation were discarded from this analysis.

I normalized the count matrices for each technology separately by using the R package
scran (version 1.11.27; Lun, McCarthy, & Marioni (2016)).
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Dimensionality reduction with UMAP and assessment of clus-
ter purity
I used the R package umap (version 0.2.0.0) calling the Python implementation of
Uniform Manifold Approximation and Projection (UMAP) with the argument “method
= ‘umap-learn’ ” to perform dimensionality reduction on various input matrices (gene
expression matrix, pathway/TF activity matrix, etc.). I assume that the dimensionality
reduction will result in clustering of cells that corresponds well to the cell type/cell
type family. To assess the validity of this assumption, I assigned a cell-type/cell
family-specific cluster-id to each point in the low-dimensional space. I then defined a
global cluster purity measure based on silhouette widths (Rousseeuw, 1987), which is
a well-known clustering quality measure.

Given the cluster assignments, in the low-dimensional space, for each cell, the average
distance (a) to the cells that belong to the same cluster is calculated. Then, the
smallest average distance (b) to all cells belonging to the newest foreign cluster is
calculated. The difference, between the latter and the former, indicates the width
of the silhouette for that cell, i.e., how well the cell is embedded in the assigned
cluster. To make the silhouette widths comparable, they are normalized by dividing
the difference with the larger of the two average distances.

Therefore, the possible values for the silhouette widths lie in the range -1 to 1, where
higher values indicate good cluster assignment, while lower values close to 0 indicate
poor cluster assignment. Finally, the average silhouette width for every cluster is
calculated, and averages are aggregated to obtain a measure of the global purity of
clusters. For the silhouette analysis, I used the R package cluster (version 2.0.8).

For statistical analysis of cluster quality, I fitted a linear model score=f(scRNA-seq
protocol+input matrix), where score corresponds to average silhouette width for a
given scRNA-seq protocol - input matrix pair. Protocol and input matrix are factors,
with reference level Quartz-Seq2 and positive control, respectively. I fitted two separate
linear models for transcription factor and pathway activity inference methods. I report
the estimates and p values for the different coefficients of these linear models. Based
on these linear models, I performed a two-way ANOVA and pairwise comparisons
using TukeyHSD post hoc test.

3.4 Results

Robustness of bulk-based TF and pathway analysis tools
against low gene coverage
Single-cell RNA-seq profiling is hampered by low gene coverage due to drop-out
events (Kharchenko, Silberstein, & Scadden, 2014). In my first analysis, I focused
solely on the low gene coverage aspect and whether tools designed for bulk RNA-seq
can deal with it. Specifically, I aimed to explore how DoRothEA, PROGENy, and
GO gene sets combined with GSEA (GO-GSEA) can handle low gene coverage in
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general, independently of other technical artifacts and characteristics from scRNA-seq
protocols. Thus, I conducted this benchmark using bulk transcriptome benchmark
data. In these studies, single TFs and pathways are perturbed experimentally, and the
transcriptome profile is measured before and after the perturbation. These experiments
can be used to benchmark tools for TF/pathway activity estimation, as they should
estimate correctly the change in the perturbed TF or pathway. The use of these
datasets allowed me to systematically control the gene coverage (see the “Methods”
section). The workflow consisted of four steps (Supplementary Figure B.1a). In
the first step, I summarized all perturbation experiments into a matrix of contrasts
(with genes in rows and contrasts in columns) by differential gene expression analysis.
Subsequently, I randomly replaced, independently for each contrast, logFC values
with 0 so that I obtain a predefined number of “covered” genes with a logFC unequal
to zero. Accordingly, a gene with a logFC equal to 0 was considered as missing/not
covered. Then, I applied DoRothEA, PROGENy, and GO-GSEA to the contrast
matrix, subsetted only to those experiments which are suitable for the corresponding
tool: TF perturbation for DoRothEA and pathway perturbation for PROGENy and
GO-GSEA. I finally evaluate the global performance of the methods with receiver
operating characteristic (ROC) and precision-recall (PR) curves (see the “Methods”
section). This process was repeated 25 times to account for stochasticity effects during
inserting zeros in the contrast matrix (see the “Methods” section).

DoRothEA’s TFs are accompanied by an empirical confidence level indicating the
confidence in their regulons, ranging from A (most confident) to E (less confident; see
the “Methods” section). For this benchmark, I included only TFs with confidence levels
A and B (denoted as DoRothEA (AB)) as this combination has a reasonable tradeoff
between TF coverage and performance (Garcia-Alonso, Holland, Ibrahim, Turei, &
Saez-Rodriguez, 2019). In general, the performance of DoRothEA dropped as gene
coverage decreased. While it showed reasonable prediction power with all available
genes (AUROC of 0.690), it approached almost the performance of a random model
(AUROC of 0.5) when only 500 genes were covered (mean AUROC of 0.547, Figure 3.1a,
and similar trend with AUPRC, Supplementary Figure B.1b). I next benchmarked
pathway activities estimated by PROGENy and GO-GSEA. In the original PROGENy
framework, 100 footprint genes are used per pathway to compute pathway activities
by default, as it has been shown that this leads to the best performance on bulk
samples (Schubert et al., 2018). However, one can extend the footprint size to cover
more genes of the expression profiles. I reasoned that this might counteract low
gene coverage and implemented accordingly different PROGENy versions (see the
“Methods” section). With the default PROGENy version (100 footprint genes per
pathway), I observed a clear drop in the global performance with decreasing gene
coverage, even though less drastic than for DoRothEA (from AUROC of 0.724 to 0.636,
Figure 3.1b, similar trends with AUPRC, Supplementary Figure B.1c). As expected,
PROGENy performed the best with 100 footprint genes per pathway when there is
complete gene coverage. The performance differences between the various PROGENy
versions shrank with decreasing gene coverage. This suggests that increasing the
number of footprint genes can help to counteract low gene coverage. To provide a
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Figure 3.1: Testing the robustness of DoRothEA (AB), PROGENy, and GO-GSEA
against low gene coverage. a DoRothEA (AB) performance (area under ROC curve,
AUROC) versus gene coverage. b PROGENy performance (AUROC) for different
number of footprint genes per pathway versus gene coverage. c Performance (AUROC)
of GO-GSEA versus gene coverage. The dashed line indicates the performance of a
random model. The colors in a and c are meant only as a visual support to distinguish
between the individual violin plots and jittered point.

fair comparison between PROGENy and GO-GSEA, I used only those 14 GO terms
that match the 14 PROGENy pathways (Supplementary Figure B.1d). In general,
GO-GSEA showed weaker performance than PROGENy. The decrease in performance
was more prominent as gene coverage decreased (from AUROC of 0.662 to 0.525,
Figure 3.1c, and similar trend with AUPRC, Supplementary Figure B.1e). With a
gene coverage of less than 2000 genes, GO-GSEA performance was no better than
random.

As my benchmark data set comprises multiple perturbation experiments per pathway,
I also evaluated the performance of PROGENy and GO-GSEA at the pathway level
(Supplementary Figure B.2a and b). The pathway-wise evaluation supported my
finding that PROGENy outperforms GO-GSEA across all gene coverages, but the
performance between pathways is variable.

In summary, this first benchmark provided insight into the general robustness of the
bulk-based tools DoRothEA, PROGENy, and GO-GSEA with respect to low gene
coverage. DoRothEA performed reasonably well down to a gene coverage of 2000 genes.
The performance of all different PROGENy versions was robust across the entire
gene coverage range tested. GO-GSEA showed a worse performance than PROGENy,
especially in the low gene coverage range. Since DoRothEA and PROGENy showed
promising performance in low gene coverage ranges, I decided to explore them on
scRNA-seq data. Due to its poor performance, I did not include GO-GSEA in the
subsequent analyses.
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Benchmark on simulated single-cell RNA-seq data
For the following analyses, I expanded the set of tools with the statistical methods AU-
Cell that I decoupled from the SCENIC workflow (Aibar et al., 2017) and metaVIPER
(Ding et al., 2018). Both methods were developed specifically for scRNA-seq analysis
and thus allow the comparison of bulk vs single-cell based tools on scRNA-seq data.
AUCell is a statistical method that is originally used with GRNs constructed by
SCENIC and assesses whether gene sets are enriched in the top quantile of a ranked
gene signature (see the “Methods” section). In this study, I combined AUCell with
DoRothEA’s and PROGENy’s gene sets (referred to as D-AUCell and P-AUCell,
respectively). metaVIPER is an extension of VIPER and requires multiple gene regu-
latory networks instead of a single network. In my study, I coupled 27 tissue-specific
gene regulatory networks with metaVIPER, which provides a single TF consensus
activity score estimated across all networks (see the “Methods” section). To bench-
mark all these methods on single cells, ideally, I would have scRNA-seq datasets after
perturbations of TFs and pathways. However, these datasets, especially for pathways,
are currently very rare. To perform a comprehensive benchmark study, I developed a
strategy to simulate samples of single cells using bulk RNA-seq samples from TF and
pathway perturbation experiments.

A major cause of drop-outs in single-cell experiments is the abundance of transcripts
in the process of reverse-transcription of mRNA to cDNA (Kharchenko, Silberstein,
& Scadden, 2014). Thus, my simulation strategy was based on the assumption that
genes with low expression are more likely to result in drop-out events.

The simulation workflow started by transforming read counts of a single bulk RNA-seq
sample to transcripts per million (TPM), normalizing for gene length and library
size. Subsequently, for each gene, I assigned a sampling probability by dividing the
individual TPM values with the sum of all TPM values. These probabilities are
proportional to the likelihood for a given gene not to “drop-out” when simulating a
single cell from the bulk sample. I determined the total number of gene counts for a
simulated single cell by sampling from a normal distribution with a mean equal to
the desired library size which is specified as the first parameter of the simulation. I
refer hereafter to this number as the library size. For every single cell, I then sampled
with replacement genes from the gene probability vector up to the determined library
size. The frequency of occurrence of individual genes becomes the new gene count in
the single cell. The number of simulated single cells from a single bulk sample can be
specified as the second parameter of the simulation. Of note, this parameter is not
meant to reflect a realistic number of cells, but it is rather used to investigate the
loss of information: the lower the number of simulated cells, the more information
is lost from the original bulk sample (Figure 3.2a; see the “Methods” section). This
simple workflow guaranteed that the information of the original bulk perturbation is
preserved and scRNA-seq characteristics, such as drop-outs, low library size, and a
high number of samples/cells are introduced. Our bulk RNA-seq samples comprised 97
single TF perturbation experiments targeting 52 distinct TFs and 15 single pathway
perturbation experiments targeting 7 distinct pathways (Supplementary Figure B.3a
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Figure 3.2: Benchmark results of TF and pathway analysis tools on simulated scRNA-
seq data. a Simulation strategy of single cells from an RNA-seq bulk sample. b
Example workflow of DoRothEA’s performance evaluation on simulated single cells
for a specific parameter combination (number of cells=10, mean library size=5000). 1.
Step: ROC-curves of DoRothEA’s performance on single cells (25 replicates) and on
bulk data including only TFs with confidence level A. 2. Step: DoRothEA performance
on single cells and bulk data summarized as AUROC vs TF coverage. TF coverage
denotes the number of distinct perturbed TFs in the benchmark dataset that are also
covered by the gene set resource. Results are provided for different combinations of
DoRothEA’s confidence levels (A, B, C, D, E). Error bars of AUROC values depict the
standard deviation and correspond to different simulation replicates. Step 3: Averaged
difference across all confidence level combinations between AUROC of single cells and
bulk data for all possible parameter combinations. The letters within the tiles indicates
which confidence level combination performs the best on single cells. The tile marked
in red corresponds to the parameter setting used for previous plots (Steps 1 and 2).
c D-AUCell and d metaVIPER performance on simulated single cells summarized
as AUROC for a specific parameter combination (number of cells=10, mean library
size=5000) and corresponding bulk data vs TF coverage. e, f Performance results
of e PROGENy and f P-AUCell on simulated single cells for a specific parameter
combination (number of cells=10, mean library size=5000) and corresponding bulk
data in ROC space vs number of footprint genes per pathway. b–f The dashed line
indicates the performance of a random model.
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and b; see the “Methods” section). I repeated the simulation of single cells from each
bulk sample template to account for the stochasticity of the simulation procedure. I
tested my simulation strategy by comparing the characteristics of the simulated cells
to real single cells. In this respect, I compared the count distribution (Supplementary
Figure B.4a), the relationship of mean and variance of gene expression (Supplementary
Figure B.4b), and the relationship of library size to the number of detected genes
(Supplementary Figure B.4c). These comparisons suggested that my simulated single
cells closely resemble real single cells and are thus suitable for benchmarking.

Unlike in my first benchmark, I applied the TF and pathway analysis tools directly
on single samples/cells and built the contrasts between perturbed and control samples
at the level of pathway and TF activities (see the “Methods” section). I compared the
performance of all tools to recover the perturbed TFs/pathways. I also considered the
performance on the template bulk data, especially for the bulk-based tools DoRothEA
and PROGENy, as a baseline for comparison to their respective performance on the
single-cell data.

I show, as an example, the workflow of the performance evaluation for DoRothEA
(Figure 3.2b, 1. Step). As a first step, I applied DoRothEA to single cells generated for
one specific parameter combination and bulk samples, performed differential activity
analysis (see the “Methods” section), and evaluated the performance with ROC and
PR curves including only TFs with confidence level A. In this example, I set the
number of cells to 10 as this reflects an observable loss of information of the original
bulk sample and the mean library size to 5000 as this corresponds to a very low but
still realistic sequencing depths of scRNA-seq experiments. Each repetition of the
simulation is depicted by an individual ROC curve, which shows the variance in the
performance of DoRothEA on simulated single-cell data (Figure 3.2b, 1. Step). The
variance decreases as the library size and the number of cells increase (which holds
true for all tested tools, Supplementary Figure B.5a–e). The shown ROC curves are
summarized into a single AUROC value for bulk and mean AUROC value for single
cells. I performed this procedure also for different TF confidence level combinations
and show the performance change in these values in relation to the number of distinct
perturbed TFs in the benchmark that are also covered by the gene set resources that
I refer to as TF coverage (Figure 3.2b, 2. Step). For both bulk and single cells, I
observe a tradeoff between TF coverage and performance caused by including different
TF confidence level combinations in the benchmark. This result is supported by both
AUROC and AUPRC (Supplementary Figure B.6a) and corresponds to my previous
findings (Garcia-Alonso, Holland, Ibrahim, Turei, & Saez-Rodriguez, 2019). The
performance of DoRothEA on single cells does not reach the performance on bulk,
though it can still recover TF perturbations on the simulated single cells reasonably
well. This is especially evident for the most confident TFs (AUROC of 0.690 for
confidence level A and 0.682 for the confidence level combination AB). Finally, I
explore the effect of the simulation parameters library size and the number of cells on
the performance by performing the previously described analysis for all combinations
of library sizes and cell numbers. I computed the mean difference between AUROC
scores of single-cell and bulk data across all confidence level combinations. A negative
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difference indicates that the tool of interest performs overall better on bulk data than
on scRNA-seq data, and a positive difference that it performs better on scRNA-seq. I
observed a gradually decreasing negative difference approaching 0 when the size of
the library and the number of cells increase (Figure 3.2b, 3. Step, and Supplementary
Figure B.7a). Note, however, that the number of cells and thus the amount of lost
information of the original bulk sample has a stronger impact on the performance
than the mean library size. In addition, I identified the best performing combination
of DoRothEA’s TF confidence levels for different library sizes and the number of
single cells. Thus, the results can be used as recommendations for choosing the
confidence levels on data from an experiment with comparable characteristics in terms
of sequencing depths.

Similarly to DoRothEA, I also observed for D-AUCell a tradeoff between TF coverage
and performance on both single cells and bulk samples when using the same parameter
combination as before (Figure 3.2c, similar trend with AUPRC Supplementary Figure
B.6b). The summarized performance across all confidence level combinations of D-
AUCell on single cells slightly outperformed its performance on bulk samples (AUROC
of 0.601 on single cells and 0.597 on bulk). This trend becomes more evident with
increasing library size and the number of cells (Supplementary Figure B.7b).

For the benchmark of metaVIPER, I assigned confidence levels to the tissue-specific
GTEx regulons based on DoRothEA’s gene set classification. This was done for
consistency with DoRothEA and D-AUCell, even if there is no difference in confidence
among them. Hence, for metaVIPER, I do not observe a tradeoff between TF coverage
and performance (Figure 3.2d, similar trend with AUPRC Supplementary Figure B.6c).
As opposed to D-AUCell, metaVIPER performed clearly better on single cells than on
bulk samples across all confidence level combinations (AUROC of 0.584 on single cells
and 0.531 on bulk). This trend increased with increasing library size and number of
cells (Supplementary Figure B.7c). However, the overall performance of metaVIPER is
worse than the performance of DoRothEA and D-AUCell. In summary, the bulk-based
tool DoRothEA performed the best on the simulated single cells followed by D-AUCell.
metaVIPER performed slightly better than a random model.

For the benchmark of pathway analysis tools, I observed that PROGENy performed
well across different number of footprint genes per pathway, with a peak at 500
footprint genes for both single cells and bulk (AUROC of 0.856 for bulk and 0.831
for single cells, Figure 3.2e, similar trend with AUPRC Supplementary Figure B.6d).
A better performance for single-cell analysis with more than 100 footprint genes per
pathway is in agreement with the previous general robustness study that suggested that
a higher number of footprint genes can counteract low gene coverage. Similarly to the
benchmark of TF analysis tools, I studied the effect of the simulation parameters on
the performance of pathway analysis tools. I averaged for each parameter combination
the performance difference between single cells and bulk across the different versions
of PROGENy. For the parameter combination associated with Figure 3.2e (number
of cells=10, mean library size=5000), the average distance is negative showing that
the performance of PROGENy on bulk was, in general, better than on single-cell
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data. Increasing the library size and the number of cells improved the performance of
PROGENy on single cells reaching almost the same performance as on bulk samples
(Supplementary Figure B.7d). For most parameter combinations, PROGENy with
500 or 1000 footprint genes per pathway yields the best performance.

For P-AUCell, I observed a different pattern than for PROGENy as it worked best
with 100 footprint genes per pathway for both single cells and bulk (AUROC of
0.788 for bulk and 0.712 for single cells, Figure 3.2f, similar trends with AUPRC
Supplementary Figure B.6e). Similar to PROGENy, increasing the library size and the
number of cells improved the performance, but not to the extent of its performance
on bulk (Supplementary Figure B.7e). For most parameter combinations, P-AUCell
with 100 or 200 footprint genes per pathway yielded the best performance.

In summary, both PROGENy and P-AUCell performed well on the simulated single
cells, and PROGENy performed slightly better. For pathway analysis, P-AUCell did
not perform better on scRNA-seq than on bulk data. I then went on to perform a
benchmark analysis on real scRNA-seq datasets.

Benchmark on real single-cell RNA-seq data
After showing that the footprint-based gene sets from DoRothEA and PROGENy
can handle low gene coverage and work reasonably well on simulated scRNA-seq data
with different statistical methods, I performed a benchmark on real scRNA-seq data.
However, single-cell transcriptome profiles of TF and pathway perturbations are very
rare. To my knowledge, there are no datasets of pathway perturbations on single-cell
level comprehensive enough for a robust benchmark of pathway analysis tools. For
tools inferring TF activities, the situation is better: recent studies combined CRISPR
knock-outs/knock-down of TFs with scRNA-seq technologies (Dixit et al., 2016; Genga
et al., 2019) that can serve as potential benchmark data.

The first dataset is based on the Perturb-seq technology, which contains 26 knock-
out perturbations targeting 10 distinct TFs after 7 and 13 days of perturbations
(Supplementary Figure B.8a) (Dixit et al., 2016). To explore the effect of perturbation
time, I divided the dataset into two sub-datasets based on perturbation duration
(Perturb-seq (7d) and Perturb-seq (13d)). The second dataset is based on CRISPRi
protocol and contains 141 perturbation experiments targeting 50 distinct TFs (Genga
et al., 2019) (Supplementary Figure B.8a). The datasets showed a variation in terms
of drop-out rate, the number of cells, and sequencing depths (Supplementary Figure
B.8b).

To exclude bad or unsuccessful perturbations in the case of CRISPRi experiments,
I discarded experiments when the logFC of the targeted gene/TF was greater than
0 (12 out of 141, Supplementary Figure B.8c). This quality control is important
only in the case of CRISPRi, as it works on the transcriptional level. Perturb-seq
(CRISPR knock-out) acts on the genomic level, so I cannot expect a clear relationship
between KO efficacy and transcript level of the target. Note that the logFCs of both
Perturb-seq sub-datasets are in a narrower range in comparison to the logFCs of the
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CRISPRi dataset (Supplementary Figure B.8d). The perturbation experiments that
passed this quality check were used in the following analyses.

I also considered the SCENIC framework for TF analysis (Aibar et al., 2017). I
inferred GRNs for each sub-dataset using this framework (see the “Methods” section).
I set out to evaluate the performance of DoRothEA, D-AUCell, metaVIPER, and
SCENIC on each benchmark dataset individually.

To perform a fair comparison among the tools, I pruned their gene set resources to
the same set of TFs. However, the number of TFs in the dataset-specific SCENIC
networks was very low (109 for Perturb-Seq (7d), 126 for Perturb-Seq (13d), and
182 TFs for CRISPRi), yielding a low overlap with the other gene set resources.
Therefore, only a small fraction of the benchmark dataset was usable yielding low
TF coverage. Nevertheless, I found that DoRothEA performed the best on the
Perturb-seq (7d) dataset (AUROC of 0.752, Figure 3.3a) followed by D-AUCell and
SCENIC with almost identical performance (AUROC of 0.629 and 0.631, respectively).
metaVIPER performed just slightly better than a random model (AUROC of 0.533).
Interestingly, all tools performed poorly on the Perturb-seq (13d) dataset. In the
CRISPRi dataset, DoRothEA and D-AUCell performed the best with D-AUCell
showing slightly better performance than DoRothEA (AUROC of 0.626 for D-AUCell
and 0.608 for DoRothEA). SCENIC and metaVIPER performed slightly better than a
random model. Given that I included in this analysis only shared TFs across all gene
set resources, I covered only 5 and 17 distinct TFs of the Perturb-seq and CRISPRi
benchmark dataset. To make better use of the benchmark dataset, I repeated the
analysis without SCENIC, which resulted in a higher number of shared TFs among
the gene set resources and a higher TF coverage. The higher TF coverage allowed me
to investigate the performance of the tools in terms of DoRothEA’s confidence level.
For both Perturb-seq datasets, I found consistent results with the previous study when
the TF coverage increased from 5 to 10 (Figure 3.3b). However, for the CRISPRi
dataset, the performance of DoRothEA and metaVIPER remained comparable to the
previous study while the performance of D-AUCell dropped remarkably. These trends
can also be observed in PR-space (Supplementary Figure B.8e).

In summary, these analyses suggested that the tools DoRothEA and D-AUCell,
both interrogating the manually curated, high-quality regulons from DoRothEA, are
the best-performing tools to recover TF perturbation at the single-cell level of real
data.

Application of TF and pathway analysis tools on samples of
heterogeneous cell type populations (PBMC+HEK293T)
In my last analysis, I wanted to test the performance of all tested tools in a more
heterogeneous system that would illustrate a typical scRNA-seq data analysis scenario
where multiple cell types are present. I used a dataset from the Human Cell Atlas
project (Regev et al., 2017) that contains scRNA-seq profiles of human peripheral
blood mononuclear cells (PBMCs) and HEK 293T cell line with annotated cell types
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Figure 3.3: Benchmark results of TF analysis tools on real scRNA-seq data. a Perfor-
mance of DoRothEA, D-AUCell, metaVIPER, and SCENIC on all sub benchmark
datasets in ROC space vs TF coverage. b Performance of DoRothEA, D-AUCell,
and metaVIPER on all sub benchmark datasets in ROC vs TF coverage split up by
combinations of DoRothEA’s confidence levels (A-E). a, b In both panels, the results
for each tool are based on the same but for the respective panel different set of (shared)
TFs. TF coverage reflects the number of distinct perturbed TFs in the benchmark
data set that are also covered by the gene sets.
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(Mereu et al., 2020). This dataset was analyzed with 13 different scRNA-seq protocols
(see the “Methods” section). In this study, no ground truth (in contrast to the previous
perturbation experiments) for TF and pathway activities was available. To evaluate
the performance of all tools, I assessed the potential of TF and pathway activities to
cluster cells from the same cell type together based on a priori annotated cell types.
All pathway analysis tools and the TF analysis tools DoRothEA, D-AUCell, and
metaVIPER were readily applicable to the dataset, except for SCENIC, where I first
had to infer GRNs specific for each dataset (and thus experimental protocol) from the
respective data (e.g., Drop-seq regulons inferred from the Drop-seq dataset; see the
“Methods” section). The overlap of all protocol-specific SCENIC regulons comprised
only 24 TFs (Supplementary Figure B.9a). Including regulons from DoRothEA and
GTEx shrank the total overlap down to 20 (Supplementary Figure B.9b). In contrast,
high-quality regulons (confidence levels A and B) from DoRothEA and GTEx alone
overlapped in 113 TFs. Given the very low regulon overlap between DoRothEA, GTEx,
and all protocol-specific SCENIC regulons, I decided to subset DoRothEA and GTEx
to their shared TFs while using all available TFs of the protocol-specific SCENIC
regulons.

The low overlap of the SCENIC regulons motivated me to investigate the direct
functional consequences of their usage. Theoretically, one would expect to retrieve
highly similar regulons as they were constructed from the same biological context. I
calculated the pairwise (Pearson) correlations of TF activities between the scRNA-seq
technologies for each tool. The distribution of correlation coefficients for each tool
denotes the consistency of predicted TF activity across the protocols (Supplementary
Figure B.10). The tools DoRothEA, D-AUCell, and metaVIPER had all a similar
median Pearson correlation coefficient of ~0.63 and SCENIC of 0.34. This suggests that
the predicted TF activities via SCENIC networks are less consistent across the protocols
than the TF activities predicted via DoRothEA, D-AUCell, and metaVIPER.

To assess the clustering capacity of TF and pathway activities, I performed my
analysis for each scRNA-seq technology separately to identify protocol-specific and
protocol-independent trends. I assumed that the cell-type-specific information should
be preserved also on the reduced dimension space of TF and pathway activities if
these meaningfully capture the corresponding functional processes. Hence, I assessed
how well the individual clusters correspond to the annotated cell types by a two-step
approach. First, I applied UMAP on different input matrices, e.g., TF/pathway
activities or gene expression, and then I evaluated how well cells from the same cell
type cluster together. I considered silhouette widths as a metric of cluster purity
(see the “Methods” section). Intuitively, each cell type should form a distinct cluster.
However, some cell types are closely related, such as different T cells (CD4 and CD8)
or monocytes (CD14+ and FCGR3A+). Thus, I decided to evaluate the cluster purity
at different levels of the cell-type hierarchy from fine-grained to coarse-grained. I
started with the hierarchy level 0 where every cell type forms a distinct cluster and
ended with the hierarchy level 4 where all PBMC cell types and the HEK cell line form
a distinct cluster (Figure 3.4a). My main findings rely on hierarchy level 2. Silhouette
widths derived from a set of highly variable genes (HVGs) set the baseline for the
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Figure 3.4: Application of TF and pathway analysis tools on a representative scRNA-
seq dataset of PBMCs and HEK cells. a Dendrogram showing how cell lines/cell types
are clustered together based on different hierarchy levels. The dashed line marks the
hierarchy level 2, where CD4 T cells, CD8 T cells, and NK cells are aggregated into a
single cluster. Similarly, CD14+ monocytes, FCGR3A+ monocytes, and dendritic
cells are also aggregated to a single cluster. The B cells and HEK cells are represented
by separate, pure clusters. b, d Comparison of cluster purity (clusters are defined
by hierarchy level 2) between the top 2000 highly variable genes and b TF activity
and TF expression and d pathway activities. The dashed line in b separates SCENIC
as it is not directly comparable to the other TF analysis tools and controls due to a
different number of considered TFs. c UMAP plots of TF activities calculated with
DoRothEA and corresponding TF expression measured by SMART-Seq2 protocol. e
Heatmap of selected TF activities inferred with DoRothEA from gene expression data
generated via Quartz-Seq2.
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silhouette widths derived from pathway/TF activities. I identified the top 2000 HVGs
with Seurat (Butler, Hoffman, Smibert, Papalexi, & Satija, 2018) using the selection
method “vst” as it worked the best in my hands at four out of five hierarchy levels
(Supplementary Figure B.11). For both TF and pathway activity matrices, the number
of features available for dimensionality reduction using UMAP was substantially less
(113 TFs for DoRothEA/metaVIPER, up to 400 TFs for SCENIC GRNs and 14
pathways, respectively) than for a gene expression matrix containing the top 2000
HVGs. As the number of available features for dimensionality reduction is different
between HVGs, TFs, and pathways, I compare the cluster purity among these input
features, to a positive and negative control. The positive control is a gene expression
matrix with the top n HVGs and the negative control is a gene expression matrix with
randomly chosen n HVGs out of the 2000 HVGs (n equals 14 for pathway analysis and
113 for TF analysis). It should be noted that in terms of TF analysis, the positive and
negative control is only applicable to DoRothEA, D-AUCell, and metaVIPER as they
share the same number of features. As the protocol-specific SCENIC GRNs differ in
size (Supplementary Figure B.9a), each network would require its own positive and
negative control.

To evaluate the performance of the TF activity inference methods and the utility of TF
activity scores, I determined the cluster purity derived from TF activities predicted by
DoRothEA, D-AUCell, metaVIPER, and SCENIC, TF expression, and positive and
negative controls. scRNA-seq protocols and input matrices used for dimensionality
reduction affected cluster purity significantly (two-way ANOVA p values <2.2e-16
and 4.32e-12, respectively, p values and estimations for corresponding linear model
coefficients in Supplementary Figure B.12a; see the “Methods” section). The cluster
purity based on TF activities inferred using DoRothEA and D-AUCell did not differ
significantly (Figure 3.4b, corresponding plots for all hierarchy levels in Supplementary
Figure B.12b). In addition, the cluster purity of both tools was not significantly worse
than the purity based on all 2000 HVGs, though I observed a slight trend indicating a
better cluster purity based on HVGs. This trend is expected due to the large difference
in available features for dimensionality reduction. Instead, a comparison to the positive
and negative controls is more appropriate. Both DoRothEA and D-AUCell performed
comparably to the positive control but significantly better than the negative control
across all scRNA-seq protocols (TukeyHSD post-hoc-test, adj. p value of 1.26e-4 for
DoRothEA and 7.09e-4 for D-AUCell). The cluster purity derived from metaVIPER
was significantly worse than for DoRothEA (TukeyHSD post-hoc-test, adj. p value of
0.054) and tend to be worse than D-AUCell (TukeyHSD post-hoc-test, adj. p value
of 0.163) as well. metaVIPER was not significantly better than the negative control.
The cluster purity from SCENIC was significantly better than the negative control
(TukeyHSD post-hoc-test, adj. p value of 1.11e-6) and comparable to the positive
control and thus to DoRothEA and D-AUCell. However, as mentioned above, SCENIC
is only partially comparable to the controls and other tools due to the different number
of TFs.

Regardless of the underlying TF activity tool, except for metaVIPER, the cluster
purity derived from TF activities outperformed significantly the purity derived from
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TF expression (TukeyHSD post-hoc-test, adj. p value of 5.89e-6 for DoRothEA,
3.85-e5 for D-AUCell, and 4.0e-8 for SCENIC). This underlines the advantage and
relevance of using TF activities over the expression of the TF itself (Figure 3.4c).
With a comparable performance to a similar number of HVG and also to 2000 HVGs,
I concluded that TF activities serve—independently of the underlying scRNA-seq
protocol—as a complementary approach for cluster analysis that is based on generally
more interpretable cell type marker.

To evaluate the performance of pathway inference methods and the utility of pathway
activity scores, I determined cluster purity with pathway matrices generated by
different PROGENy versions and P-AUCell. I used 200 and 500 footprint genes per
pathway for PROGENy and P-AUCell, respectively, since they provided the best
performance in the previous analyses. As observed already for the TF analysis tools,
scRNA-seq protocols and matrices used for dimensionality reduction affected cluster
purity significantly (two-way ANOVA p values of 2.84e-7 and 1.13e-13, respectively, p
values and estimations for corresponding linear model coefficients in Supplementary
Figure B.13a; see the “Methods” section). The cluster purity derived from pathway
activity matrices is not significantly different between PROGENy and P-AUCell, while
worse than all HVGs (TukeyHSD post-hoc-test, adj. p value of 4.07e-10 for PROGENy
and 4.59e-9 for P-AUCell, Figure 3.4d, corresponding plots for all hierarchy levels
in Supplementary Figure B.13b). This is expected due to the large difference in the
number of available features for dimensionality reduction (2000 HVGs vs 14 pathways).
The cluster purity of both approaches was comparable to the positive control but
significantly better than the negative control (TukeyHSD post-hoc-test, adj. p value
of 0.077 for PROGENy and 0.013 for P-AUCell vs negative control). In summary,
this study indicated that the pathway activities contain relevant and cell-type-specific
information, even though they do not capture enough functional differences to be used
for effective clustering analysis. Overall, the cluster purity of cells represented by the
estimated pathway activities is worse than the cluster purity of cells represented by
the estimated TF activities.

In addition, I observed that TF and pathway matrices derived from Quartz-Seq2
protocol yielded for hierarchy level 2 in significantly better cluster purity than all other
protocols, which is in agreement with the original study of the PBMC + HEK293T
data (Supplementary Figures B.12a and B.13a) (Mereu et al., 2020).

TF and pathway activity scores are more interpretable than the expression of single
genes. Hence, I were interested to explore whether I could recover known cell-type-
specific TF and pathway activities from the PBMC data. I decided to focus on
the dataset measured with Quartz-Seq2 as this protocol showed in my and in the
original study superior performance over all other protocols (Mereu et al., 2020). I
calculated mean TF and pathway activity scores for each cell type using DoRothEA,
D-AUCell, metaVIPER, and SCENIC (using only TFs with confidence levels A and
B, Figure 3.4e and Supplementary Figure B.14a–c, respectively), PROGENy with 500
and P-AUCell with 200 footprint genes per pathway (Supplementary Figure B.14d
and e). In terms of TF activities, I observed high RFXAP, RFXANK, and RFX5
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activity (TFs responsible for MHCII expression) in monocytes, dendritic cells, and B
cells (the main antigen-presenting cells of the investigated population (Burd et al.,
2004)) (Supplementary Figure B.14a and b). Myeloid lineage-specific SPI1 activity
(Zakrzewska et al., 2010) was observed in monocytes and dendritic cells. The high
activity of repressor TF (where regulation directionality is important) FOXP1 in T
lymphocytes (Feng et al., 2011) was only revealed by DoRothEA. Proliferative TFs
like Myc and E2F4 had also high activity in HEK cells.

Regarding pathway activities, I observed across both methods, in agreement with the
literature, high activity of NFkB and TNFa in monocytes (T. Liu, Zhang, Joo, & Sun,
2017) and elevated Trail pathway activity in B cells (Supplementary Figure B.14d and
e) (Staniek et al., 2019). HEK cells, as expected from dividing cell lines, had higher
activity of proliferative pathways (MAPK, EGFR, and PI3K, Supplementary Figure
B.14d). These later pathway activity changes were only detected by PROGENy but
not with AUCell, highlighting the importance of directionality information.

In summary, the analysis of this mixture sample demonstrated that summarizing
gene expression into TF activities can preserve cell type-specific information while
drastically reducing the number of features. Hence, TF activities could be considered
as an alternative to gene expression for clustering analysis.

I also showed that pathway activity matrices contain cell-type-specific information,
too, although I do not recommend using them for clustering analysis as the number of
features is too low. In addition, I recovered known pathway/TF cell-type associations
showing the importance of directionality and supporting the utility and power of the
functional analysis tools DoRothEA and PROGENy.

3.5 Discussion
In this paper, I tested the robustness and applicability of functional analysis tools
on scRNA-seq data. I included both bulk- and single-cell-based tools that estimate
either TF or pathway activities from gene expression data and for which well-defined
benchmark data exist. The bulk-based tools were DoRothEA, PROGENy, and GO
gene sets analyzed with GSEA (GO-GSEA). The functional analysis tools specifically
designed for the application in single cells were SCENIC, AUCell combined with
DoRothEA (D-AUCell) and PROGENy (P-AUCell) gene sets, and metaVIPER.

I first explored the effect of low gene coverage in bulk data on the performance of
the bulk-based tools DoRothEA, PROGENy, and GO-GSEA. I found that for all
tools the performance dropped with decreasing gene coverage but at a different rate.
While PROGENy was robust down to 500 covered genes, DoRothEA’s performance
dropped markedly at 2000 covered genes. In addition, the results related to PROGENy
suggested that increasing the number of footprint genes per pathway counteracted
low gene coverage. GO-GSEA showed the strongest drop and did not perform better
than a random guess below 2000 covered genes. Comparing the global performance
across all pathways of both pathway analysis tools suggests that footprint-based gene
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sets are superior over gene sets containing pathway members (e.g., GO gene sets)
in recovering perturbed pathways. This observation is in agreement with previous
studies conducted by me and others (Parikh, Klinger, Xia, Marto, & Blüthgen, 2010;
Schubert et al., 2018). However, both PROGENy and GO-GSEA performed poorly
for some pathways, e.g., WNT pathway. I reason that this observation might be due
to the quality of the corresponding benchmark data (Christian H. Holland, Szalai, &
Saez-Rodriguez, 2020). Given this fact and that GO-GSEA cannot handle low gene
coverage (in my hands), I concluded that this approach is not suitable for scRNA-seq
analysis. Hence, I decided to focus only on PROGENy as bulk-based pathway analysis
tool for the following analyses.

Afterward, I benchmarked DoRothEA, PROGENy, D-AUCell, P-AUCell, and
metaVIPER on simulated single cells that I sampled from bulk pathway/TF
perturbation samples. I showed that my simulated single cells possess characteristics
comparable to real single-cell data, supporting the relevance of this strategy. Different
combinations of simulation parameters can be related to different scRNA-seq
technologies. For each combination, I provide a recommendation of how to use
DoRothEA’s and PROGENy’s gene sets (in terms of confidence level combination
or number of footprint genes per pathway) to yield the best performance. It should
be noted that my simulation approach, as it is now, allows only the simulation of
a homogenous cell population. This would correspond to a single cell experiment
where the transcriptome of a cell line is profiled. In future work, this simulation
strategy could be adapted to account for a heterogeneous dataset that would resemble
more realistic single-cell datasets (Peng, Zhu, Yin, & Tan, 2019; Zappia, Phipson, &
Oshlack, 2017).

In terms of TF activity inference, DoRothEA performed best on the simulated single
cells followed by D-AUCell and then metaVIPER. Both DoRothEA and D-AUCell
shared DoRothEA’s gene set collection but applied different statistics. Thus, I
concluded that, in my data, VIPER is more suitable to analyze scRNA-seq data than
AUCell. The tool metaVIPER performed only slightly better than a random model,
and since it uses VIPER like DoRothEA, the weak performance must be caused by the
selection of the gene set resource. DoRothEA’s gene sets/TF regulons were constructed
by integrating different types of evidence spanning from literature curated to predicted
TF-target interactions. For metaVIPER, I used 27 tissue-specific GRNs constructed
in a data-driven manner with ARACNe (Margolin et al., 2006) thus containing only
predicted TF-target interactions. The finding that especially the high-confidence TF
regulons from DoRothEA outperform pure ARACNe regulons is in agreement with
previous observations (Garcia-Alonso, Holland, Ibrahim, Turei, & Saez-Rodriguez,
2019; Keenan et al., 2019) and emphasizes the importance of combining literature
curated resources with in silico predicted resources. Moreover, I hypothesize based
on the pairwise comparison that for functional analysis, the choice of gene sets is of
higher relevance than the choice of the underlying statistical method.

As one could expect, the single-cell tools D-AUCell metaVIPER performed better on
single cells than on the original bulk samples. This trend becomes more pronounced
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with increasing library size and number of cells. However, the bulk-based tools
performed even better on the simulated single cells than the scRNA specific tools.

Related to pathway analysis, both PROGENy and P-AUCell performed well on the
simulated single cells. The original framework of PROGENy uses a linear model
that incorporates individual weights of the footprint genes, denoting the importance
and also the sign of the contribution (positive/negative) to the pathway activity
score. Those weights cannot be considered when applying AUCell with PROGENy
gene sets. The slightly higher performance of PROGENy suggests that individual
weights assigned to gene set members can improve the activity estimation of biological
processes.

Subsequently, I aimed to validate the functional analysis tools on real single-cell data.
While I could not find suitable benchmark data of pathway perturbations, I exploited
two independent datasets of TF perturbations to benchmark the TF analysis tools
which I extended with SCENIC. These datasets combined CRISPR-mediated TF
knock-out/knock-down (Perturb-Seq and CRISPRi) with scRNA-seq. It should be
noted that pooled screenings of gene knock-outs with Perturb-seq suffer from an often
faulty assignment of guide-RNA and single-cell (Hegde, Strand, Hanna, & Doench,
2018). Those mislabeled data confound the benchmark as the ground-truth is not
reliable. In addition, my definition of true-positives and true-negatives is commonly
used for such analyses (Garcia-Alonso, Holland, Ibrahim, Turei, & Saez-Rodriguez,
2019; Keenan et al., 2019; Nguyen, Shafi, Nguyen, & Draghici, 2019), but it might be
incorrect due to indirect and compensatory mechanisms (Smits et al., 2019). These
phenomena can confound the results of this type of benchmarks.

Nevertheless, I showed that DoRothEA’s gene sets were globally effective in inferring
TF activity from single-cell data with varying performance dependent on the used
statistical method. As already shown in the in silico benchmark, D-AUCell showed a
weaker performance than DoRothEA, supporting that VIPER performs better than
AUCell. Interestingly, metaVIPER’s performance was no better than random across
all datasets. metaVIPER used the same statistical method as DoRothEA but different
gene set resources. This further supports my hypothesis that the selection of gene
sets is more important than the statistical method for functional analysis. This trend
is also apparent when comparing the performance of SCENIC and D-AUCell as both
rely on the statistical method AUCell but differ in their gene set resource. SCENICs’
performance was consistently weaker than D-AUCell. In addition, I found that the
gene regulatory networks inferred with the SCENIC workflow covered only a limited
number of TFs in comparison to the relatively comprehensive regulons from DoRothEA
or GTEx.

Furthermore, the perturbation time had a profound effect on the performance of the
tools: while DoRothEA and D-AUCell worked well for a perturbation duration of 6
(CRISPRi) and 7 days (Perturb-Seq (7d)), the performance dropped markedly for 13
days. I reasoned that, within 13 days of perturbation, compensation effects are taking
place at the molecular level that confound the prediction of TF activities. In addition,
it is possible that cells without a gene edit outgrow cells with a successful knock-out
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after 13 days as the knock-out typically yield in a lower fitness and thus proliferation
rate.

In summary, DoRothEA subsetted to confidence levels A and B performed the best
on real scRNA-seq data but at the cost of the TF coverage. The results of the in silico
and in vitro benchmark are in agreement. Accordingly, I believe that it is reasonable
to assume that also PROGENy works on real data given the positive benchmark
results on simulated data.

Finally, I applied the tools of interest to a mixture sample of PBMCs and HEK
cells profiled with 13 different scRNA-seq protocols. I investigated to which extent
pathway and TF matrices retain cell-type-specific information, by evaluating how well
cells belonging to the same cell type or cell type family cluster together in reduced
dimensionality space. Given the lower numbers of features available for dimensionality
reduction using TF and pathway activities, cell types could be recovered equally
well as when using the same number of the top highly variable genes. In addition, I
showed that cell types could be recovered more precisely using TF activities than TF
expression, which is in agreement with previous studies [ding_2018]. This suggests
that summarizing gene expression as TF and pathway activities can lead to noise
filtering, particularly relevant for scRNA-seq data, though TF activities performed
better than pathway activities which is again attributed to the even lower number
of pathways. Specifically, TF activities computed with DoRothEA, D-AUCell, and
SCENIC yielded a reasonable cluster purity. It should be noted that, while DoRothEA
and D-AUCell rely on independent regulons, the SCENIC networks are constructed
from the same dataset they are applied to. This poses the risk of overfitting.

My analysis suggested at different points that the performance of TF and pathway
analysis tools is more sensitive to the selection of gene sets than the statistical methods.
In particular, manually curated footprint gene sets seem to perform generally better.
This hypothesis could be tested in the future by decoupling functional analysis tools
into gene sets and statistics. Benchmarking all possible combinations of gene sets and
statistics (i.e., DoRothEA gene sets with a linear model or PROGENy gene sets with
VIPER) would shed light on this question which I believe is of high relevance for the
community.

3.6 Conclusions
my systematic and comprehensive benchmark study suggests that functional analysis
tools that rely on manually curated footprint gene sets are effective in inferring TF
and pathway activity from scRNA-seq data, partially outperforming tools specifically
designed for scRNA-seq analysis. In particular, the performance of DoRothEA and
PROGENy was consistently better than all other tools. I showed the limits of
both tools with respect to low gene coverage. I also provided recommendations on
how to use DoRothEA’s and PROGENy’s gene sets in the best way dependent on
the number of cells, reflecting the amount of available information, and sequencing
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depths. Furthermore, I showed that TF and pathway activities are rich in cell-type-
specific information with a reduced amount of noise and provide an intuitive way of
interpretation and hypothesis generation. I provide my benchmark data and code to
the community for further assessment of methods for functional analysis.

3.7 Availability of data and materials
The code to perform all presented studies is written in R (Gentleman et al., 2004; R
Core Team, 2020; Wickham, 2016) and is freely available on GitHub. The datasets
supporting the conclusions of this article are available at Zenodo.

https://github.com/saezlab/FootprintMethods_on_scRNAseq
https://doi.org/10.5281/zenodo.3564179


Chapter 4

Transcriptomic cross-species
analysis of chronic liver disease
reveals consistent regulation
between humans and mice

4.1 Preface
The text of the following chapter is based on an early draft of the later published
manuscript “Transcriptomic cross-species analysis of chronic liver disease reveals consis-
tent regulation between humans and mice” (Christian H. Holland et al., 2021) that was
originally written by myself. Unless otherwise stated I performed all bioinformatics-
related analyses myself.

4.2 Background
In recent decades the number of patients suffering from chronic liver disease (CLD)
has increased (Younossi et al., 2020). To study the development and progression of
CLD, with the ultimate aim to identify therapeutic targets and test drug candidates
mouse models are often used. However, their use for translational research has been
discussed controversially due to known large interspecific differences (Leist & Hartung,
2013). An earlier comparison of gene expression in mouse models of non-alcoholic fatty
liver disease (NAFLD) and human liver tissue reported large interspecies differences,
with very little overlap in expression changes in mice and humans (Teufel et al.,
2016). This finding questions whether experiments in mice allow conclusions about
the pathophysiology of CLD in humans. To shed light on this question I revisited
the changes in gene expression in liver disease mouse models and compared them to
patient cohorts of CLD.

Previous comparisons between mice and humans were limited by exposure of mice
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to harmful substances and typically relied on exposure periods of only a few months
or even weeks (Campos et al., 2020; Teufel et al., 2016). This may seem appropriate
because a 1-year-old mouse is comparable to a 40-year-old, extrapolated from the
relative lifespans of humans and mice. However, it remains to be seen whether such
assumptions is justified, i.e., whether the disease progresses faster in mice, or whether
comparable time frames of damage are necessary to obtain similar phenotypes. To
answer this question, I analyzed gene expression data from a mouse model that was
treated with CCl4 for up to a year and compared it to a collection of human CLD
expression data. Furthermore, I characterized changes in gene expression in mice
with either chronic or acute liver injury. This was justified by a recent study that
suggested that the expression changes observed in mouse models of chronic and acute
damage are similar to those observed in human CLD (Campos et al., 2020). The liver
of mice responded to acute injuries by simultaneously upregulating inflammation- and
downregulating metabolism-associated gene regulatory networks, both controlled by a
common upstream master regulator. Chronic mouse models and even patients with
CLD responded similarly (Campos et al., 2020). To define the therapeutic window, it
may be important to distinguish between genes altered exclusively in chronic insult and
genes altered during both chronic and acute injury. If a gene that is altered exclusively
in chronic damage and is relevant to the progression of the disease, it is recommended
to focus therapeutically on advanced stages when its expression increases; in contrast,
genes altered under both chronic and acute conditions may be inhaled earlier in the
course of the disease.

In the present study, bioinformatics analysis confirmed the previously reported large
interspecies differences, but also revealed substantial sets of genes that respond similarly
in both species. Interestingly, the categories of genes that were exclusively altered
after acute or chronic injury compared to those conserved in both damage scenarios
differed in their similarity to human CLD. Genes conserved in both the acute and
chronic settings showed higher similarity to the human situation, and importantly,
the similarity to human CLD increased when mice were exposed for longer periods of
up to one year. These findings were compiled into a data resource linking expression
profile alterations of individual genes in CLD, their differential regulation in mice
and humans, and categorization into acute, chronic, or conserved response sets. This
resource is accessible via an online application to facilitate the intuitive exploration of
the role of genes in human and mouse CLD.

4.3 Materials and Methods
A detailed description is available in Supplementary Material and Methods (Section
C.1).

Mouse models and human datasets
The present analysis included genome-wide transcriptome data from seven mouse
models (one with chronic and six with acute liver damage) comprising 227 mice (Table
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4.1; Supplementary Figure C.1A) and five studies of human CLD with a total of 372
patients (Table 4.1; Supplementary Figure C.1B). The analyzed datasets were either
generated by the group of Jan Hengstler (all mouse models except tunicamycin) or
downloaded from public sources (acute tunicamycin model and all human datasets).
Additionally, I analyzed nine published sets of differentially expressed genes of CLD
mouse models, for which the corresponding raw data was not available (Teufel et al.,
2016).

For the mouse models generated by the group of Jan Hengstler, a detailed description
of treatment protocols, collection and processing of liver tissue, histopathology, RNA
isolation, RNA-sequencing, or Affymetrix gene array analysis, and immunostaining
were provided by them and is given in the supplement. In brief, for induction of
chronic liver injury, 8-10 weeks-old male C57BL/6N mice were injected with CCl4 (1
g/kg b.w.; i.p. in olive oil) twice a week for 2, 6, and 12 months (Ghallab, Myllys,
et al., 2019). For acute APAP intoxication, the mice received a single dose of 300
mg/kg i.p. in warm PBS (Ghallab, Myllys, et al., 2019). For acute intoxication with
CCl4, a single dose (1.6 g/kg, i.p.) was administered (Ghallab, Myllys, et al., 2019).
For acute intoxication with LPS, a single dose of 750 µg/kg was intraperitoneally
injected (Godoy et al., 2016). Partial hepatectomy (PH) and bile duct ligation (BDL)
were performed as previously published (Ghallab, Hofmann, et al., 2019; Mitchell &
Willenbring, 2008).

Biopsies from patients with primary sclerosing cholangitis (PSC) and alcoholic liver dis-
ease were used for validation by immunostaining performed by Ahmed Ghallab.

Table 4.1: Mouse models and patient cohorts with genome-wide expression data of
liver tissue.

OrganismDamage Treatment N Accession
ID

Reference

Mouse Chronic CCl4 (Up to 12
months)

36 GSE167216 Ghallab, Myllys, et al.
(2019) and present study

Mouse Acute APAP (Up to 16
days)

49 GSE167032 Present study

Mouse Acute CCl4 (Up to 16
days)

46 GSE167033 Campos et al. (2020) and
present study

Mouse Acute PH (Up to 3
months)

52 GSE167034 Present study

Mouse Acute BDL (Up to 3
weeks)

29 GSE166867 Ghallab, Hofmann, et al.
(2019) and present study

Mouse Acute LPS (24 hours) 8 GSE166488 Godoy et al. (2016)
Mouse Acute Tunicamycin (6

hours)
7 GSE29929 Teske et al. (2011)

Human Chronic Mild vs advanced
NAFLD

72 GSE49541 Moylan et al. (2014)
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OrganismDamage Treatment N Accession
ID

Reference

Human Chronic Full-spectrum of
NAFLD

78 GSE130970 Hoang et al. (2019)

Human Chronic NAFLD and NASH 46 GSE48452 Ahrens et al. (2013)
Human Chronic NASH, NAFLD,

PBC and PSC
109 GSE61260 Horvath et al. (2014)

Human Chronic HCV and NAFLD 67 E-MTAB-
6863

Ramnath et al. (2018)

Processing and analysis of transcriptomic data
Raw data of publicly available transcriptome studies were downloaded from Gene
Expression Omnibus or ArrayExpress. Microarray and RNA-sequencing data were
processed and normalized with the R/Bioconductor packages oligo, limma, and edgeR.
FASTQ files from the chronic CCl4 study were aligned using the web application
Biojupies (Torre, Lachmann, & Ma’ayan, 2018). Differential gene expression analysis
(DGEA) between two conditions was performed using the R/Bioconductor package
limma. A gene was considered differentially expressed with a false discovery rate
(FDR) ≤ 0.05 and an absolute log-fold change (logFC) ≥ 1. The result of a DGEA is
referred to as a (gene) signature.

Time-series clustering
Time-series gene expression data were clustered with the software program STEM
(Short Time-series Expression Miner, version 1.3.1216; Ernst, Nau, & Bar-Joseph
(2005); Ernst & Bar-Joseph (2006)) using logFC from the preceding DGEA.

Comparison of gene set similarity
The similarity or overlap between two gene sets was summarized either as Jaccard
Index or Overlap Coefficient. Unless otherwise stated, the gene sets were composed of
the top 500 differentially expressed genes based on limma’s moderated t-value.

Testing direction of regulation with Gene Set Enrichment
Analysis
To test whether the differentially expressed genes of a specific study are consistently
regulated in an independent study, Gene Set Enrichment Analysis (GSEA) was
performed. The gene sets comprised the top 500 up- and downregulated genes extracted
based on the moderated t-statistic. GSEA was performed with the R/Bioconductor
package fgsea (version 1.14.0; Sergushichev (2016)).
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Construction and ranking of exclusive chronic, exclusive acute,
and common gene sets
First, the union of all differentially expressed genes (FDR ≤ 1e-4 and |logFC| ≥ 1)
was built across all the signatures derived from the chronic or acute mouse experi-
ments. Subsequently, genes were classified as exclusively chronic, exclusively acute, or
commonly regulated in chronic and acute. For each of these three different gene set
classes, a custom metric was computed to rank genes within these sets, e.g. the metric
for the exclusive chronic gene set prioritized genes that were deregulated in chronic
but not in acute signatures. Similarly, the metric for exclusive acute genes highly
ranked genes that were deregulated in acute but not in chronic signatures. Finally,
the metric for the common genes ranked genes as ‘high’ that were altered in both
chronic and acute signatures.

Functional characterization of transcriptomic data with various
gene set resources
Transcriptomic data were functionally characterized using biological processes from
Gene Ontology (GO), DoRothEA’s regulons (Garcia-Alonso, Holland, Ibrahim, Turei,
& Saez-Rodriguez, 2019; Christian H. Holland, Szalai, & Saez-Rodriguez, 2020),
and PROGENy’s pathway responsive-genes (Christian H. Holland, Szalai, & Saez-
Rodriguez, 2020; Schubert et al., 2018), applying overrepresentation analysis. The
number of background genes was set to 20,000 and the minimal gene set size to
10.

Identification of consistently deregulated genes in patients and
chronic CCl4 mouse model
To identify consistently deregulated genes in patients of CLD and the chronic CCl4
mouse model, the top 500 up- and downregulated genes, respectively, were extracted
from each human signature. Subsequently, those gene sets were enriched in the
signatures from the chronic CCl4 mouse model by using the R/Bioconductor package
fgsea (version 1.14.0; Sergushichev (2016)) with 1000 permutations. Afterward, the
leading-edge genes were extracted from each enrichment if they met two criteria: i) FDR
≤ 0.05, and ii) consistent regulation between human and mouse data. Leading-edge
genes that appeared in at least three studies per chronic time point were considered
consistently deregulated in humans and mice.

4.4 Results

Chronic liver damage in mice
Ahmed Ghallab performed a study of chronic liver damage in mice with twice-weekly
administrations of the hepatotoxic compound CCl4 for up to twelve months. Six
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animals per group were analyzed by RNA-sequencing after two, six, and twelve months
(Figure 4.1A). Histological analyses showed progressive fibrogenesis particularly be-
tween months 6 and 12 accompanied by increased transaminase enzyme activities
in blood (Figure 4.1B and C). Principal component analysis (PCA) showed that
mice from the individual treatment groups clustered together; chronic CCl4 intox-
ication led to a shift inversely along with principal component 1 (PC1), while the
solvent oil caused a shift along PC2 (Supplementary Figure C.2A). The number of
differentially expressed genes increased particularly between months six and twelve
(Supplementary Figure C.2B and C). Overlap analysis of the differential genes showed
that most genes deregulated at an earlier time were also altered later and additional
differential genes occurred (Figure 4.1D). Among the genes in the overlap of all three
exposure periods with the highest fold-changes are the extracellular matrix protein
Col28a1, two sulfotransferase isoforms (Sult2a1 and 2a2), the basement membrane
glycoprotein Tinag, the positive regulator of PP1 phosphatase Ppp1r42 that plays a
role in centrosome separation (up); three members of the lipocalin family (Mup12,
15 and 19); the DBH-like monooxygenase protein 1, Moxd1 (down) (Figure 4.1E).
Time-dependent clustering resulted in 7 clusters, four clusters with up-, two with down,
and one with initially up and later downregulated genes (Figure 4.1F). Upregulated
clusters were enriched in inflammation and proliferation-associated genes, with Lyl1
and Maf as the most overrepresented transcription factors and TNFa as well as NFkB
as the most overrepresented pathways. The dominant GO terms of the downregulated
clusters were all metabolism-associated with HNF1a and HNF4a as most significantly
overrepresented TFs. The initially up- and later downregulated cluster contained
mostly extracellular matrix-associated genes.

In summary, transcriptomics in agreement with histological analyses consistently
supports progressive inflammation and fibrosis with a relatively mild phenotype until
month 6 in contrast to massive progression between months 6 and 12.

Acute liver damage in mice
Next, Ahmed Ghallab and I studied time-resolved acute liver damage after single
doses of CCl4 and APAP, as well as partial hepatectomy (PH), and common bile duct
ligation (BDL), and single time points after lipopolysaccharide (LPS) and tunicamycin
(Table 4.1). While I was responsible for the bioinformatics analysis Ahmed Ghallab
performed imaging and chemistry analyses. As an example, the APAP model is
presented in Figure 4.2, corresponding summaries of the other mouse are shown in
Supplementary Figures C.4-C.9.

To induce acute liver injury the mice were treated once with a hepatotoxic but not
lethal dose of 300 mg/kg body weight APAP and the transcriptome was profiled at 9
time points after injection spanning from 1 hour to 16 days (Figure 4.2A). Histological
analyses showed pericentral necrotic tissue on day 1 with almost complete regeneration
until day 8 without the formation of fibrosis (Figure 4.2B). Infiltration of CD45 positive
immune cells was observed between days 1 and 4. Clinical chemistry showed a transient
increase in liver enzymes (Figure 4.2C). Thus, the histological alterations correspond
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Figure 4.1: Gene expression changes in the CCl 4 mouse model of CLD. A. Exper-
imental design. Six mice were analyzed in each treatment group. B. Histological
analyses with hematoxylin and eosin (HE) staining, visualization of fibrosis by Sirius
red, and infiltration of immune cells by CD45; scale bars: 200 µm (HE; Sirius red)
and 100 µm (CD45). C. Clinical chemistry of alanine transaminase (ALT), aspartate
transaminase (AST) and alkaline phosphatase (ALP) activities in plasma. D. Overlaps
of up- and downregulated genes. E. Genes in the overlap of the three exposure periods
with the highest fold changes. F. Time-resolved clustering of deregulated genes with
the dominant GO terms or the default profile names (STEM ID), if no significantly
overrepresented GO term was obtained. The panels B and C were provided by Ahmed
Ghallab.



68
Chapter 4. Transcriptomic cross-species analysis of chronic liver disease reveals

consistent regulation between humans and mice

well to previous studies of APAP intoxication in mice (Sezgin et al., 2018). In the
PCA space, differences to the controls were largest between 12 hours and day 2 and
subsequently returned towards the control levels that is also reflected in the number
of differentially expressed genes (Figure 4.2D and E; Supplementary Figure C.3A and
B). The strongest upregulated genes were the chaperone Hspa1a (12 hours), Chil3,
a protein secreted by macrophages that is involved in inflammatory processes (day
1), and calcium-binding protein S100a6 that is involved in the response to different
types of cell stress (day 2). Among the most downregulated genes were numerous
cytochrome P450 enzymes, including Cyp7a1, a key enzyme in bile acid synthesis,
numerous further metabolic enzymes such as Acot1 that plays a role in fatty acid
metabolism, and also Inhbe, a member of the TGF-beta superfamily (Figure 4.2F).
Clustering of gene expression trajectories resulted in seven clusters, three with up-and
four with downregulated genes (Figure 4.2G). Upregulated clusters were enriched in
stress response, migration, and proliferation-associated genes with Atf3, Sp1, and
E2F4 as enriched transcription factors and TGF-beta as the most enriched pathway.
Genes of the downregulated clusters were predominantly metabolism-associated with
HNF4a and Cebpa as significantly overrepresented TFs. A common feature of the
studies with acute time series is that the maximal number of deregulated genes was
reached at 24 or 48 hours after the intervention and returned completely or almost
completely to control levels within 16 days. An exception was BDL, where expression
changes persisted due to the irreversible obstruction of the bile duct. To investigate
the consistency of the gene signature across the six acute mouse models I first set out
to compare the similarity of the top 500 differentially expressed genes. For mouse
models with several time points and a reversible phenotype, the time point with the
strongest deregulated expression profile was used (Supplementary Figure C.10), while
the 24 hour time point was selected for the BDL model.

Globally, I found a low gene overlap across the six models (mean Jaccard Index of
0.058; Figure 4.3A), with the highest similarity between APAP and CCl4 (Jaccard
Index of 0.157) and the lowest between LPS and tunicamycin (Jaccard Index of 0.012).
This pairwise comparison revealed that each treatment yields a distinctive set of top
differentially expressed genes which at first glance could be interpreted as inconsistency
across them. Next, I tested whether the direction of regulation of the top differentially
expressed genes is conserved within the six acute mouse models. For this purpose, I
performed a mutual enrichment of the top 500 up-and downregulated genes in the
acute contrasts. This analysis revealed that the different sets of upregulated genes were
coordinately upregulated in all other acute contrasts (Figure 4.3B). The same applied
to the sets of downregulated genes. As the only outlier, the top 500 upregulated
genes after LPS treatment tended to be enriched among the downregulated genes of
the tunicamycin model (FDR=0.052). These systematic comparisons showed that
although the top differentially expressed genes were distinct the direction of regulation
was consistent.
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Figure 4.2: Gene expression changes in a mouse model of acute liver damage induced
by administration of 300 mg/kg b.w. acetaminophen (APAP). A. Experimental design.
Five mice were analyzed in each treatment group. B. Histological analyses with
hematoxylin and eosin (HE) staining, lack of fibrosis visualized by Sirius red, and
infiltration of immune cells by CD45 immunostaining; scale bars: 100 µm (HE; Sirius
red) and 50 µm (CD45). C. Clinical chemistry of alanine transaminase (ALT) and
aspartate transaminase (AST) activity in plasma. D. PCA analysis of global expression
changes. E. Volcano plots of gene expression changes at 12 hours, days 1 and 2 after
APAP administration. F. Genes with the highest logFCs. G. Time-resolved clustering
of deregulated genes. The panels B and C were provided by Ahmed Ghallab.
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Exclusively and commonly regulated genes of chronic and acute
liver damage in mice
To identify a set of exclusive chronic, exclusive acute, and common acute and chronic
genes, I integrated and analyzed all available acute and chronic time points. I
constructed a pool of chronic and acute genes by taking the union of all differentially
expressed genes from the chronic and acute mouse models. The unified genes of
the acute and also chronic studies showed consistent up- or downregulation across
the individual contrasts, respectively (Supplementary Figure C.11). Set comparisons
between the pools of unified acute and chronic genes revealed 834 exclusive chronic,
2777 exclusive acute, and 586 common genes (Figure 4.3C). To identify the top 100
genes in each category, I developed a custom metric that ranks the genes based on
their expression in the chronic and selected acute contrasts.

In the top 100 exclusive chronic genes, 97 genes were up-and only 3 genes were down-
regulated (Figure 4.3D). Subsequently, I functionally characterized all up and downreg-
ulated exclusive chronic genes, by overrepresentation analysis. As gene set resources
I used DoRothEA’s transcription factor regulons (Garcia-Alonso, Holland, Ibrahim,
Turei, & Saez-Rodriguez, 2019; Christian H. Holland, Szalai, & Saez-Rodriguez, 2020),
PROGENy’s pathway footprints (Christian H. Holland, Szalai, & Saez-Rodriguez,
2020; Schubert et al., 2018), and GO-terms of biological processes. I found the target
genes from the transcription factors Hif1a and Klf as well as the footprint genes from
the TGF-beta pathway overrepresented in the set of upregulated exclusive chronic
genes (Figure 4.3E and F). Text analysis of overrepresented GO terms revealed that
most processes were associated with development and morphogenesis (Figure 4.3G). By
manual classification I found 38 GO terms related to “Development and Morphogene-
sis” and 24 GO terms related to “Migration,” while the latter was more pronounced
among the most significantly overrepresented GO terms. Functional characterization
of the downregulated exclusive chronic genes highlighted the TFs Stat3, Sox2, and
Hoxb13. Pathways as well as GO-terms, however, did not result in any significant
associations.

For the exclusive acute gene set, I also extracted the top 100 exclusive acute genes
(Supplementary Figure C.12A). The upregulated genes were associated with the
TFs Myc, Trp53, and the pathways MAPK, EGFR, and TNFa (Supplementary
Figure C.12B and C). GO terms were dominated by metabolic processes, however, I
also identified a cluster of endoplasmic reticulum stress-related processes among the
most significant GO-terms (Supplementary Figure C.12D). Downregulated genes were
associated with the TFs Hnf4a, Ubtf, and Zpf263 and the pathway Androgen, Estrogen,
EGFR, and MAPK (Supplementary Figure C.12E and F). GO terms were also almost
exclusively related to metabolic processes (Supplementary Figure C.12G).

Out of the top 100 common genes, 53 were consistently up- and 47 downregulated
(Figure 4.3H). Within this set, genes with inverse regulation in acute and chronic
scenarios were extremely rare. Functional analysis of the upregulated genes identified
the TF Klf5 and the pathways NFKb and TNFa as relevant (Figure 4.3I and J).



4.4. Results 71

Among the overrepresented GO terms, the term cell-cycle had the highest frequency
(Figure 4.3K). In agreement, I identified a cluster of 37 GO terms that corresponds to
the biological process of proliferation and represents the most significant GO terms.
Downregulated genes were associated with the TFs Hnf4a and Nr4a1 (Supplementary
Figure C.13A) and biological processes were dominated by metabolic and catabolic
related GO-terms (Supplementary Figure C.13B). Thus, the integration of chronic
and acute mouse data unveiled genes that are deregulated in both damage models
and can be differentiated from gene sets exclusively deregulated in acute or chronic
liver damage.

Similarities between humans and mice
I performed a cross-species analysis to evaluate how well the altered gene expression
in the chronic CCl4 mouse model reflects the transcriptomic changes in humans that
suffer from CLD. For this purpose, I collected genome-wide gene expression data from
5 publicly available patient cohorts with a total of 372 patients and five etiologies
(Table 4.1, Supplementary Figure C.1B). These studies allowed us to calculate a total
of 15 contrasts due to different disease stages and phenotypes.

Similar to the acute mouse models I first analyzed inter-study consistency comparing
the similarity of the top 500 differentially expressed genes from each signature. Differ-
ential genes obtained from studies of the same groups of authors showed a higher degree
of similarity (Supplementary Figure C.14). The highest similarity of two independent
contrasts was observed between NAFLD 7 and HCV 6 (Jaccard Index of 0.154). In
summary, the similarity of the top differentially expressed genes in humans appeared
to be low. However, the mutual enrichment of the top 500 up-and downregulated genes
demonstrated a very high consistency of the direction of regulation within contrasts
of the same group of authors but also observed still relatively high accordance across
the cohorts reported by different authors (Figure 4.4A). Partially, the direction of
regulation of genes from the cohorts of patients with PSC, PBC, and NAFLD did
not match well with the other contrasts. However, all other pairwise comparisons
yielded convincing consistent results. Similar to the analysis of the mouse studies, this
systematic comparison shows that similarities between different studies can better
be identified by an enrichment analysis that considers the orientation (up, down) of
expression changes than just focussing on the top differentially expressed genes.

Considering that previous studies reported only very low overlap between differentially
expressed genes of humans and mice in CLD (Teufel et al., 2016) and the above-
described limitations of this type of comparison I performed a cross-species enrichment
analysis between the chronic CCl4 model and the set of human data. For this purpose,
I enriched the top 500 up-and downregulated genes from each human contrast in the
three signatures from the individual time points of the chronic CCl4 experiment in
mice. I found a high degree of accordance where all human gene sets were significantly
and consistently enriched at any time point of the chronic CCl4 mouse signatures
except for the up- and-downregulated genes of the PBC contrast, the downregulated
genes of NAFLD contrast, and the upregulated genes of the NAFLD contrast; instead,
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Figure 4.3: Comparison of gene expression changes in acute and chronic mouse models.
A. Analysis of the similarity of the acute data sets. As a measure of similarity, the
Jaccard index was calculated at the indicated time periods after the acute challenge.
B. Pairwise enrichment analysis of the top 500 up- and downregulated genes (ES:
enrichment score). C. Overlap of the unified acute and chronic (2, 6, and 12 months
CCl 4 ) genes. D. Heatmap of genes exclusively deregulated in the chronic mouse
model. E-G. Overrepresented transcription factors, identified by DoRothEA (E),
pathways obtained by PROGENy (F), and GO terms (G) in the upregulated exclusive
chronic genes. H. Heatmap of genes commonly deregulated in the chronic and acute
mouse models. I-K. DoRothEA (I), PROGENy (J), and GO (K) overrepresentation
of the genes upregulated in the acute and chronic mouse models.
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I found that even the top 500 upregulated genes of the PBC contrast were significantly
enriched among the downregulated genes of the 6-month time point of the chronic
CCl4 signature (Figure 4.4B).

Having shown that the expression profiles of the here established CCl4 mouse model
and the patients contain similar features, I set out to identify the genes which are
consistently deregulated in humans and mice. My strategy is based on the leading-edge
genes of the above-conducted enrichment analyses. By default, the leading-edge is
defined as the subset of the gene set that mainly accounts for the enrichment score.
I extracted the leading-edge genes only from those enrichment analyses that led to
significant and consistent results in terms of the direction of regulation. Subsequently,
I kept only those leading-edge genes that were identified in at least three human studies
per time point in the chronic mouse model. The remaining leading-edge genes were
defined as consistently deregulated genes in humans and mice in at least a single time
point of the chronic mouse model. Across all time points, I identified 126 consistently
up- and 102 consistently downregulated genes, whereby 45 (up) and 23 (down) genes
were shared among all three chronic time points (Figure 4.4C).

To study whether it is possible to map those genes to individual cell types of the
liver I integrated single-cell RNA-sequencing (scRNA-seq) data with the existing
bulk data. For this purpose, I re-analyzed a publicly available scRNA-seq dataset of
cirrhotic patients and healthy controls annotated with different cell types. Differentially
expressed genes between cirrhotic and healthy patients were identified for each cell
type individually (FDR ≤ 0.05 & |logFC| ≥ 0.25). The resulting cell-type associated
sets of differential genes overlapped with 50 of the above described 228 genes that
are consistently regulated in humans and mice; 41 of the 50 genes were exclusive
for a single cell type. From the total 228 consistently deregulated genes I identified
the top 100 genes with respect to the highest average logFC across all human and
mouse bulk contrasts (Figure 4.4D). Of those 100 genes, 79 were up-and 21 were
downregulated and 31 were mapped to a specific cell type. Overall, the direction of
regulation was consistent between bulk and scRNA-seq data. Finally, a functional
characterization was performed separately for all up-and downregulated genes. The
upregulated genes were significantly associated with the pathways TGFb and TFNa
and the TFs SP1, RELA, and NFkB1 (Figure 4.4E and F). Biological processes
related to migration and development-and-morphogenesis functionally characterize the
upregulated genes. The downregulated genes were dominated by metabolic processes
including the pathway Androgen (Supplementary Figure C.15A and B). Remarkably, I
found that the upregulated genes mapped frequently to cholangiocytes, endothelial as
well as mesenchymal cells and macrophages, and downregulated genes to hepatocytes.
Mapping the consistently deregulated genes back to the 12-month signature which
contains all altered genes of the chronic CCl4 mouse model revealed that the log-fold
changes for upregulated genes are generally higher compared to the downregulated
genes (Figure 4.4H). Genes consistently regulated between humans and mice did not
show particularly low p-values or high fold-changes compared to all deregulated genes
upon CCl4 treatment. In summary, my cross-species enrichment analysis identified a
set of 228 genes that are consistently deregulated in humans and mice during CLD.
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The consistent regulation in humans and mice, as well as the cell type specificity
of gene expression, was confirmed at the protein level, using commercially available
antibodies against three of the consistently upregulated genes, LTBP2, ANXA5, and
AKR1B10. A strong increase in the extracellular matrix protein LTBP2 occurred
after 12 months of CCl4 treatment in mice, and was expressed in the fibrotic tissue
but not in the hepatocytes (Figure 4.5A). For analysis of the human situation, my
collaborators Ahmed Ghallab and Jan Hengstler used independent biopsies of PSC
patients. Since CCl4 induces pericentral necrosis in mice and a similar zonation is
known for alcohol-related liver disease (ARLD), they additionally tested biopsies of
ARLD patients. Similar to mice, LTBP2 was expressed in the fibrotic streets of PSC
(Figure 4.5B) and ALRD (Figure 4.5C) patients and the staining intensity increased
with the fibrosis stage. Expression in fibrotic tissue also confirmed the results of the
scRNA-seq analysis that identified a mesenchymal cell type preference of LTBP2.
Immunostaining of the aldo-keto reductase AKR1B10 and of annexin V (ANXA5)
also showed similar upregulation in mouse and human CLD (Supplementary Figure
C.16).

Next, I placed the deregulated genes identified in the present chronic CCl4 study into
the context of previously published chronic mouse models and compared them to
human CLD. The 12-month chronic CCl4 model resulted in a much higher number of
differentially expressed genes than all other previously published mouse models (2721
up- and 1437 downregulated genes; FDR ≤ 0.05 & |logFC| ≥ log2(1.5); Supplementary
Figure C.17A). In contrast, a model of the 18-week high-fat diet feeding yielded only
16 up and 19 downregulated genes, when applying the same cutoffs (Teufel et al.,
2016). Similarity analysis of the differentially expressed genes between the chronic
mouse models and the patient cohorts showed that the 12-month time point of the
chronic CCl4 model was more similar to human data than all other models (mean
overlap coefficient of 0.37; Supplementary Figure C.17B). However, this analysis is
biased towards the total number of differentially expressed genes. To study how well
mouse models reflect expression changes in human CLD independently from the total
number of differentially expressed genes, I first pooled the differentially expressed
genes of the same human etiology (NAFLD, NASH, HCV, PSC, PBC) to a unified
set of altered genes. NAFLD and HCV showed higher numbers of differential genes
than NASH, PSC, and PBC. The majority of differentially expressed genes occurred
in a single disease (84.9%), and 12.2, 2.4, 0.5% were altered in 2, 3, or 4 of the 5
investigated diseases, respectively (Figure 4.6A). No single gene was differentially
expressed in all etiologies. To quantify the similarity between the individual chronic
mouse models and the different human disease-specific gene sets, I computed precision
and recall metrics. Recall denotes the ratio of altered human genes that are also
altered in mice with respect to all altered human genes. Precision denotes the ratio of
genes altered in mice that are also altered in humans with respect to all altered mouse
genes. In general, precision and recall of the chronic mouse models for the different
human disease etiologies were highly variable (Figure 4.6B). Precision and recall pairs
were highest for NAFLD and lowest for PBC. The 12-month chronic CCl4 model
showed the highest recall among all etiologies. Moreover, recall of 12-months CCl4 was
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Figure 4.4: Human studies of liver disease and their similarities to the chronic
CCl 4 mouse model. A. Pairwise enrichment analysis of the top 500 up- or downregu-
lated genes of the human studies (ES: enrichment score). B. Similarity between the
human studies and the chronic CCl 4 mouse model by pairwise enrichment analysis
of the 500 top up- and downregulated genes. C. Overlaps of up- and downregulated
genes in the chronic mouse model after 2, 6, and 12 months of CCl 4 administration
that are consistently regulated in the human studies. D. Heatmap of the top 100
genes consistently regulated in the human studies and in the chronic CCl 4 mouse
model. E-G. Characterization of the consistently deregulated genes in humans and
mice by analysis of enriched pathways (E), transcription factors (F) and GO terms
(G). H. Volcano plot of genes consistently deregulated in mouse and man (red and
blue symbols) projected onto all genes deregulated in the chronic mouse model with
CCl 4 (grey symbols).
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Figure 4.5: The extracellular matrix protein LTBP2 increases in CLD of mice and
humans. A. Liver tissue of mice at different time periods after CCl 4 treatment. B.
Liver tissue of patients with different stages of PSC. C. Liver tissue of patients with
ARLD of different stages. Stainings were performed with Sirius red (scale bars 200
µm) to visualize fibrosis and with antibodies against LTBP2 (scale bars 200 µm) in
liver tissue of the same patients. The entire figure was provided by Ahmed Ghallab.
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always higher than that of the 6 or 2 months damage periods. The western-type diet
model had the highest precision related to the upregulated genes of NAFLD.

Finally, I revisited the exclusively and commonly regulated genes of chronic and acute
mouse models (Figure 4.3) to study their similarity to human CLD (Figure 4.6C).
As expected, exclusive acute mouse genes showed the lowest recall and precision
with respect to CLD. Remarkably, common genes (deregulated in acute and chronic
mouse models) resulted in higher metrics than the exclusive chronic genes for several
comparisons, particularly with respect to NAFLD.

Gene browser for comparison of human and mouse liver dis-
ease
To facilitate the assessment of the translational relevance of mouse models for specific
human liver diseases, I established an open-access gene browser. This application
provides for any gene of interest mean expression changes in the individual human
and mouse studies, categorization into acute, chronic, or common response sets, the
associated cell type, and if the gene is consistently altered in mice and humans.

4.5 Discussion
In the field of CLD, mouse models were successfully used for several preclinical
developments (Jansen et al., 2017), though, it is also known that there exist large
interspecies differences in the pathophysiology of the human and mouse liver. A
former study analyzing the overlap of differentially expressed genes of liver tissue
between CLD patients and mouse models with chronic liver injury reported only very
little overlap, however, I have revisited this comparison for three reasons. First, the
number of CLD patient cohorts with profiled transcriptome has increased in recent
years. While the previous mouse-human comparison from 2016 included data from
25 patients with NAFLD and 27 with NASH (Teufel et al., 2016) I included a total
372 expression profiles of patients with NAFLD (n = 147), NASH (n = 42), HCV (n
= 23), PBC (n = 11) and PSC (n = 14). Second, it is currently unclear, if longer
exposure periods in chronic mouse models will improve the similarity between mice and
human CLD. Third, a recent study suggested that a stress response with upregulated
inflammatory and downregulated metabolic genes occurs similarly in acute and chronic
mouse models and in human CLD. Thus, a comprehensive mouse-human comparison
should differentiate between acute, chronic, and common expression responses.

Of all the chronic studies analyzed, the mouse model with 12 months of CCl4 admin-
istration resulted in the highest recall of significantly altered genes in human liver
disease. In detail, 38, 40, 25, 34, and 33% of all significantly upregulated genes in
NAFLD, NASH, HCV, PBC, and PSC, respectively, were upregulated in the 12-month
CCl4 mouse model as well (Figure 4.6B). Considering that a previous study reported
a low overlap in differentially expressed genes between both species (Teufel et al.,
2016) my results show a remarkable higher similarity. I submit that the long exposure

https://saezlab.shinyapps.io/liverdiseaseatlas/
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Figure 4.6: Recall and precision of 12 individual mouse models with respect to the
human liver diseases NAFLD, NASH, HCV, PBC, and PSC. A. Gene sets that are
uniquely or commonly deregulated in individual human diseases. B. Recall and
precision of the individual mouse models with respect to the five human liver diseases.
All genes with FDR <= 0.05 and |logFC| >= log2(1.5) were included. C. Comparison
of exclusive chronic, exclusive acute and common genes in acute and chronic mouse
models to human data. To allow a direct comparison, the top 120 genes of each
category were included.
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time of mice is an important factor for the larger human-mouse overlap The recall
of upregulated genes for human NASH was only 0.16 and 0.18 for the models where
mice were exposed for 2 or 6 months but increased to ~0.4 after 12 months exposure.
This trend was also observed in the other liver disease etiologies. Consequently, the
relatively short exposure times used in previous mouse studies may explain the small
overlap in differentially expressed genes between humans and mice. Although the
recall of downregulated genes was generally lower than that of upregulated genes,
the same basic observations were made with respect to time. In contrast to the high
recall, precision was lower for the 12-month CCl4 mouse model, suggesting that in
addition to a number of human-relevant genes, many other genes are significantly
deregulated in mice which is not the case for humans. Of the 12 different mouse
models of CLD analyzed, the western-type diet (WTD) had the highest precision
(0.33) for human NAFLD. This was not unexpected given the similarity in disease
etiology. However, the WTD mouse model had a much lower recall (0.02), which may
be due to the relatively short feeding period of only three months. Assuming that
WTD has a similar time dependence as the CCl4 model additional studies with longer
feeding periods could improve the human-mouse similarity.

From a bioinformatics perspective, overlap analysis of differentially expressed genes
may not be the optimal approach to identify a consensus set of genes altered in a
specific human CLD and in a mouse model. Instead, I propose enrichment analysis
to be superior, as it focuses on the direction of regulation and not the effect size of
individual genes. Following this strategy, a more sophisticated comparison of the
chronic CCl4 mouse model and human studies identified a set of 228 genes with similar
regulation in mouse and human CLD. These genes are enriched in the GO terms
migration, development, and morphogenesis, and several are associated with immune
cells and ductular reactions. Including scRNA-seq, I found that the upregulated genes
were mostly expressed in cholangiocytes, macrophages, endothelial and mesenchymal
cells; whereas, the downregulated genes were expressed in hepatocytes. This finding is
consistent with the known characteristics of CLD, in which the number of cholangio-
cytes increases due to ductal reactions, while macrophages, mesenchymal cells, and
endothelial cells are involved in inflammatory processes related to GO terms identified
among the upregulated genes, such as migration and adhesion. In contrast, genes
related to hepatocyte metabolism are mainly downregulated. For selected upregulated
genes in mouse and human CLD, their protein expression was analyzed as well. This
analysis highlighted the extracellular matrix protein LTBP2, which is involved in
anchoring the latent form of TGF-beta to the ECM and plays a role in cell adhesion
and tumor promotion (Chen et al., 2019; Michel et al., 1998). Accordingly, LTBP2
staining is negative in the liver of normal mice, weakly positive after 2 and 6 months
of CCl4 treatment, and strongly signaled at 12 months. Similarly, positive LTBP2
staining was observed in human PSC and alcoholic liver fibrosis, which increased with
the fibrosis stage. I propose for further studies to analyze whether upregulation of
LTBP2 is associated with TGF-beta signaling activity, as the TGF-beta pathway is
significantly activated. Two other genes that were both upregulated in human and
mouse CLD, namely aldoketoreductase AKR1B10 and annexin V, showed a similar



80
Chapter 4. Transcriptomic cross-species analysis of chronic liver disease reveals

consistent regulation between humans and mice

pattern in gene and protein expression. Although a more systematic and comprehen-
sive validation is still needed, these preliminary immunostainings suggest that the
mouse-human consensus set identified here contains genes that can be validated at
the protein level.

To compare the exclusively acute, exclusively chronic, and commonly altered genes in
mice with the genes deregulated in human CLD, the group of Jan Hengstler generated
additional data on acute challenges in mice. In the different acute challenges induced
by chemical and surgical insults, I classified expression changes in exclusively acute,
exclusively chronic, and common gene sets. The separation of the three groups seemed
relevant to human CLD as exclusively acute genes showed only little overlap with
human genes, which is not surprising given the chronic nature of CLD. However, the
common genes showed the highest similarity to patient CLD, especially for NAFLD
and NASH. This was surprising given the difference in CCl4 damage compared to the
hypercaloric, high-fat etiology of human NAFLD/NASH. One explanation may be the
recently published hypothesis that different types of injury cause similar expression
changes in mouse and human liver, with inflammatory genes upregulated and metabolic
genes downregulated (Campos et al., 2020). Exclusively chronic genes with enriched
GO processes of development and morphogenesis also showed relatively high similarity,
but lower than for the common genes.

In conclusion, my analyses led to the identification of genes that are similarly regulated
in human and mouse liver disease. Although major species differences exist, the
currently best available mouse models reach a recall of 0.4 and precision of 0.33 with
respect to the genes significantly altered in human liver diseases.

4.6 Availability of data and materials
The code to perform all presented analyses is written in R (Gentleman et al., 2004; R
Core Team, 2020; Wickham, 2016) and is freely available on Github. Reproducibility of
all analyses is ensured by the R package workflowr (version 1.6.2; Blischak, Carbonetto,
& Stephens (2019)) by deploying all my analysis scripts at a dedicated webpage. All
datasets required to execute the code are available at Zenodo. The transcriptomics raw
data of the here analyzed chronic and acute mouse models are available as superseries
at GEO under accession number GSE166868.

https://github.com/saezlab/liver-disease-atlas
https://saezlab.github.io/liver-disease-atlas/
https://doi.org/10.5281/zenodo.4568505
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166868
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General conclusion and outlook

Chapter 2 and 3 of this thesis focussed on broadening the scope of the functional
analysis tools PROGENy and DoRothEA by thorough benchmarking studies.

In the past, both tools had been shown to provide valuable mechanistic insight by
inferring pathway and transcription factor activities from human bulk transcriptome
data (Garcia-Alonso, Holland, Ibrahim, Turei, & Saez-Rodriguez, 2019; Schubert
et al., 2018). Motivated by the fact that in my project within the “Liver Systems
Medicine” (LiSyM) network many different gene expression data sets from mouse
models were generated I strived for analyzing and characterizing also data from this
model organism with PROGENy and DoRothEA. However, it was not clear whether
both tools could provide biologically meaningful insight from mouse transcriptome
data. For this purpose, I developed a systematic benchmarking pipeline where I
showed that it is possible to transfer the regulatory knowledge of PROGENy and
DoRothEA from human to mouse to functionally characterize also mice data.

With the emergence of scRNA-seq data, there was a growing need for functional analysis
tools to analyze this novel data type. In the early days of this technology, many tools
developed for bulk transcriptome analysis were readily applied to scRNA-seq data
without any reasonable justification. My benchmarking study about the robustness
and applicability of transcription factor and pathway analysis tools on scRNA-seq
data was one of the first attempts to systematically evaluate the performance of
bulk and scRNA-seq based tools. In summary, I was able to show that PROGENy
and DoRothEA i) are robust against low gene coverage, i.e. drop-outs, ii) detect
experimentally perturbed TFs/pathways with moderate accuracy iii) preserve cell-
type-specific information while reducing noise in parallel, and iv) provide biologically
meaningful activity scores.

Both benchmark studies were highly dependent on collecting and curating appropriate
pathways and TF perturbation experiments as ground truth for the benchmark. Hence
I mined the largest publicly available repositories of gene expression data such as
Gene Expression Omnibus and Array Express to identify suitable experiments. For
the cross-species benchmark, this endeavor was significantly facilitated by mining the

https://lisym.org/
https://lisym.org/
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then recently published CREEDS database containing the metadata of thousands
of manually curated microarray data of drug and gene perturbation experiments for
humans and mice (Zichen Wang et al., 2016). Although the scRNA-seq benchmark
study was by far more complex in terms of included data than the cross-species
benchmark, I needed also for the latter project a large collection of pathway and TF
perturbation experiments. I was able to expand my previous collection of perturbation
experiments with mostly further TF perturbation experiments that were previously
collected and curated by Keenan et al. (2019) for the benchmark of the TF analysis
tools ChEA3. In summary, both benchmark studies’ feasibility and ultimate success
were primarily made possible by the scientific community, who made their datasets or
databases freely and publicly available.

Chapter 4 of this thesis demonstrated how functional analysis tools can provide
meaningful insight from transcriptome data. In particular, I studied the similarities
and differences in gene expression changes of acute and chronic liver disease in humans
and mice. By a systematic analysis, I was able to identify gene sets containing i)
genes similar altered between mouse models with chronic damage and liver disease
patients or ii) genes exclusively and commonly regulated in chronic and acute liver
damage in mice. Each gene set was systematically characterized by applying the
tools PROGENy and DoRothEA which was made possible for the mouse-based gene
sets by my previous cross-species benchmark. By integrating scRNA-seq I matched
commonly deregulated genes in humans and mice to liver-specific cell types. In the
future, I envision that the research of the liver and its diseases will benefit greatly from
scRNA-seq data, which makes it possible to study the interplay of the individual liver
and immune cell types on an unprecedented scale. The first corresponding large-scale
data sets have recently been published (Cao et al., 2020; Dobie et al., 2019; Kim, Wu,
Allende, & Nagy, 2021; Krenkel, Hundertmark, Ritz, Weiskirchen, & Tacke, 2019;
Ramachandran et al., 2019; Segal et al., 2019).

As a side product of the scRNA-seq benchmark study, the results suggested that
the performance of TF and pathway analysis tools is more sensitive to the quality
of the used prior knowledge in the form of gene sets than the selected statistic to
analyze them. This hypothesis laid the foundation for a crowdsourced follow-up
project named decoupleR to systematically explore the impact of gene sets and
statistics on the performance of functional analysis tools. Initial analyses confirm the
hypothesis that well-curated gene sets are the most critical component for this type
of analysis. Accordingly, and to make a significant step forward in the development
of pathway and TF activity analysis tools, it is crucial to improve the quality of
the used prior knowledge. The ever-increasing amount of generated transcriptome
data promises a valuable data mine for this purpose. Regarding PROGENy, new
pathway footprint signatures could be created or existing ones could be improved by
exploiting the vast number of perturbation experiments from the Connectivity Map
that systematically generated more than 1,500,000 perturbation signatures (Lamb et
al., 2006; Subramanian et al., 2017). In addition, my cross-species benchmark suggests
that mouse data could be integrated, but, to avoid additional confounding factors,
I recommend relying on human data if possible. DoRothEA’s regulons could be

https://github.com/saezlab/decoupler
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improved by integrating further data modalities such as information about chromatin
accessibility generated via ATAC-seq. A recently published cell atlas of chromatin
accessibility across 25 human tissues could be a precious data resource to tackle this
challenge (Zhang et al., 2021)

Next to the general improvement of the consensus gene sets, there is a pressing need to
derive and construct also cell-type-specific gene sets. This is particularly important for
gene regulatory networks as different cell types can have fundamentally different gene
regulatory programs. Currently, most attempts rely on reverse engineering of such
networks from gene expression data of specific cell types or tissues. However, these
approaches are mainly based on co-expression or mutual information so that there
are many indirect and thus false-positive TF-target interactions (Barbosa, Niebel,
Wolf, Mauch, & Takors, 2018). In Garcia-Alonso et al. (2019), it was shown that a
consensus gene regulatory network constructed from various tissues and cell types still
outperforms purely data-driven cell-type/tissue-specific networks. However, as soon
as the generation of cell-type-specific improves cell type-specific information will be
the preferred resource.

In recent years the first platforms to profile the transcriptome spatially resolved
became available. This technology is referred to as spatial transcriptomics and
promises to study the organization of cells in tissue in unprecedented detail. Hopes
and expectations related to spatial transcriptomics were reflected by being awarded
the method of the year 2020 by Nature Methods (“Method of the year 2020,” n.d.).
In general, spatial transcriptomics resides in terms of covered genes and the number
of cells per sample between scRNA-seq and bulk transcriptomics. Considering that I
have shown that PROGENy and DoRothEA can be applied to scRNA-seq data and as
originally intended to bulk transcriptomics it is reasonable to assume that they should
also deliver biologically meaningful results for spatial transcriptome data, though a
thorough benchmark study is still outstanding. Nevertheless, both tools have been
recently successfully applied to one of the first spatial transcriptome data set of human
myocardial infarction providing mechanistic insight into the differentiation of cardiac
myofibroblast (Kuppe et al., 2020).

Even though pathway and TF activities alone are meaningful readouts of a
cell’s/system’s state they must not be the endpoint of an analysis pipeline. Instead,
these can be interpreted as features for further and more sophisticated downstream
analyses. For example, Liu et al. (2019) utilize pathway and TF activities to identify
and contextualize a causal signaling network from gene expression data using the
tool CARNIVAL. Moreover, Tanevski et al. (2020) exploit these activities either as a
predictor or response variable for a machine learning model named MISTy that aims
to explain inter-cellular signaling from spatial transcriptome data.

In summary, I am convinced that the feature space of pathway and TF activities can
contribute significantly to decipher the key mechanisms of diseases. For example, as
the company DarwinHealth demonstrates, identifying master regulators in the field
of personalized healthcare successfully helps identify the right drug at the right time
for the right patient (Alvarez et al., 2018). Still, I am looking forward to seeing the
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impact of the next generation of these types of tools relying on substantially improved
and extended prior knowledge.
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Figure A.1: Results of pathway-wise ROC-curves analysis. The dashed line indicate
the performance of a random model. Missing mouse or human ROC-curves are due to
missing benchmark data for the corresponding pathway.
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Figure A.2: (A) Barplot showing the imbalance of true negatives (TN) and true
positives (TP) in our benchmark dataset for human and mouse. (B) Distribution
of AUROC’s computed for human and mouse separately from a balanced dataset
(generated by downsampling the TN to equal the number of TP). The diamonds
indicate the AUROC of the unbalanced dataset.
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Figure A.3: Results of pathway-wise PR-curves analysis. The dashed line indicates
the performance of a random model. Missing mouse or human PR-curves are due to
missing benchmark data for the corresponding pathway.
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Figure A.4: (A) Mouse-DoRothEA properties showing number of transcription factors
(TF), targets, and interactions itemized by confidence level. (B) Overlap of TFs
between mouse-DoRothEA and TRRUST. (C) Similarity analysis of target genes for
each overlapping TF between mouse-DoRothEA and TRRUST. Jaccard index and
overlap coefficient were used to quantify similarity. Color and size indicate if and how
often the TF was covered in the benchmark data. (D) Number of TFs covered in the
benchmark dataset by intersection of mouse-DoRothEA and TRRUST dependent of
the TF-confidence level.
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Figure A.5: (A) Barplot showing the imbalance of true negatives (TN) and true
positives (TP) in our benchmark dataset for mouse-DoRothEA filtered for confidence
level A or B. (B) Distribution of AUROC’s computed for DoRothEA and TRRUST
separately from a balanced dataset (generated by downsampling the TN to equal the
number of TP). The diamonds indicate the AUROC of the unbalanced dataset.
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Figure B.1: a Workflow to induce low gene coverage with a subsequent benchmark
of the tools PROGENy, DoRothEA and GO-GSEA against low gene coverage. b,c,e
Scatterplot showing how well AUROC and AUPRC of b DoRothEA (AB), c PROGENy
with 100 footprint genes per pathway, and GO-GSEA are correlated. The labels
correspond to the gene coverages. d Mapping table between PROGENy pathways and
GO terms/GO IDs.



B.1. Supplementary Figures 93

Figure B.2: Pathway-wise evaluation of a PROGENy and b GO-GSEA at different
gene coverages. Performance is measured as Area under the ROC curve (AUROC).
The dashed line indicates the performance of a random model. The colors in b are
meant only as a visual support to distinguish between the individual violin plots and
jittered points.
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Figure B.3: Overview of the benchmark dataset of the in silico study for a TF and b
pathway analysis tools. The term coverage denotes the number of distinct perturbed
TFs and pathways in the benchmark dataset covered by the respective gene set
resource. As individual pathways/TFs can be perturbed several times in independent
experiments we also provide the total number of perturbation experiments. In the
case of TF perturbation experiments we also provide DoRothEA’s confidence class for
each perturbed TF indicating the quality of its regulon within DoRothEA (A - high
quality to E - low quality).
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Figure B.4: Comparison of single-cell-specific properties between real and simulated
single cells. a Count distribution of a representative gene for a real and a simulated
single cell. b Mean-variance relationship of gene expression of a representative data
set for a real and a simulated single cell. c The dependence of the number of detected
genes in a real and a simulated single cell on the library size.
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Figure B.5: Variance in the performance (measured as AUROC) of a DoRothEA, b
D-AUCell, c metaVIPER, d PROGENy and e P-AUCell on single cells for different
combinations of simulation parameters. The variance is calculated by repeating the
simulation of each single-cell for each parameter combination 25 times.

Figure B.6: Scatterplot comparing the performance of a DoRothEA, b D-AUCell, c
metaVIPER, d PROGENy, and e P-AUCell on single cells and bulk, measured with
AUROC and AUPRC with respect to different combinations of a,b,c DoRothEA’s
confidence levels or d,e different number of footprint genes per pathway.
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Figure B.7: Effect of the simulation parameters on the performance of TF and pathway
analysis tools. The tile plots show the difference in performance of a DoRothEA, b
D-AUCell, c metaVIPER, d PROGENy, and e P-AUCell between single cells and
corresponding bulk samples, a,b,c across all confidence level combinations or d,e
different number of footprint genes per pathway. A negative value indicates that the
performance on bulk was better than on the simulated single cells and vice versa. The
letters/numbers within the tiles indicates which confidence level combination/number
of footprint genes per pathway performed the best on the single-cell data for the given
parameter combination. The tile marked in red corresponds to the parameter setting
used for previous plots in the main manuscript.



98
Appendix B. Robustness and applicability of transcription factor and pathway

analysis tools on single-cell RNA-seq data

Figure B.8: a Overview of the in-vitro benchmark dataset. The term coverage denotes
the number of distinct perturbed TFs in the benchmark datasets. As individual
TFs can be perturbed several times in independent experiments we also provide the
total number of perturbation experiments. We also provide DoRothEA’s confidence
class for each TF indicating the quality of its regulon (A - high quality to E - low
quality). b The dependence of the number of detected genes on the library size for
all benchmark datasets. The number of corresponding cells are displayed as well.
c logFC of perturbed target/TF for the corresponding perturbation experiment for
all benchmark datasets. d Distribution of logFC of all genes for each benchmark
dataset. e Relationship between AUROC and AUPRC for DoRothEA, D-AUCell and
metaVIPER with respect to different combinations of DoRothEA’s confidence levels
for each benchmark dataset.
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Figure B.9: Overlap of TF regulon resources. a Overlapping TFs of protocol-specific
SCENIC regulatory networks. All 13 networks share 24 TFs. b Overlapping TFs be-
tween protocol-specific SCENIC regulatory networks, GTEx regulons and DoRothEA.
All resources share 20 TFs. The remaining vertical bar plots indicate the number of
TFs that are exclusive for the respective regulon resource. The horizontal bar plots
indicate the total number of TFs for the regulon resource.
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Figure B.10: Pairwise (Pearson) correlations of TF activities between the scRNA-
technologies for each TF analysis tool.

Figure B.11: Identification of the best method to determine the top 2000 highly
variable genes to be considered for dimensionality reduction. We tested three different
selection methods implemented in Seurat (disp = dispersion, mvp = mean.var.plot,
vst). We also included CV (squared coefficient of variation - (sd/mean)**2) and MVG
(most variable genes - genes with the highest variance). Those methods are compared
to the case of considering the full gene expression matrix for dimensionality reduction,
indicated here as ‘Normalized expression’.
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Figure B.12: a Statistical analysis of cell cluster purity in the reduced space: i)
differences in the quality of clustering with respect to the positive control and ii)
quality of clustering of scRNA-seq protocols in contrast to Quartz-Seq2 for TF activity
tools. This analysis was performed independently for all hierarchy levels (Hrchy. Lvl.).
The legend key ‘estimate’ corresponds to the estimated coefficients of the linear model.
A negative value indicates a worse performance than the reference level (positive
control for input matrices and Quartz-Seq2 for protocols) and vice versa.The dashed
line indicates a p-value of 0.05. b Comparison of cluster purity measured by the
silhouette widths obtained when considering highly variable genes identified by Seurat,
TF analysis tools and controls for all hierarchy levels.
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Figure B.13: a Statistical analysis of cell cluster purity in the reduced space : i)
differences in the quality of clustering using different input matrices with respect to
positive control and ii) quality of clustering of scRNA-seq protocol in contrast to Quartz-
Seq2 for pathway activity inference tools. This analysis was performed independently
for all hierarchy levels (Hrchy. Lvl.). The legend key ‘estimate’ corresponds to
the estimated coefficients of the linear model. A negative value indicates a worse
performance than the reference level (positive control for input matrices and Quartz-
Seq2 for protocols) and vice versa. The dashed line indicates a p-value of 0.05.
b Comparison of cluster purity measured by the silhouette widths obtained when
considering highly variable genes defined by Seurat, pathway analysis tools and controls
for all hierarchy levels.



B.1. Supplementary Figures 103

Figure B.14: Selected TF and pathway activities of various tools inferred from the
Quartz-Seq2 gene expression data summarized for each cell type/cell line separately.
The letters in the brackets correspond to DoRothEA’s confidence levels and the
numbers in brackets correspond to the number of footprint genes per pathway.
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C.1 Supplementary Material and Methods

Collecting, curating, and processing publicly available genome-
wide transcriptomics data
The raw data of the publicly available genome-wide transcriptomic studies (.CEL
files for microarrays and count matrices for RNA-seq) were downloaded from Gene
Expression Omnibus (GEO; Edgar, Domrachev, & Lash (2002)) and ArrayExpress
(Kauffmann et al., 2009). For the respective accession, identifier see Table 4.1.
Associated metadata was manually collected or accessed via the R/Bioconductor
package GEOquery (version 2.56.0; S. Davis & Meltzer (2007)). To further process
the raw data of microarrays and RNA-seq a suite of different Bioconductor packages
(Gentleman et al., 2004) was used.

Processing of microarray data

First, a probe-level model was fitted to the raw data to subsequently control the
array quality based on the relative log expression values (RLE) and the normalized
unscaled standard errors (NUSE) using the R/Bioconductor package oligo (version
1.52.0; Carvalho & Irizarry (2010)). Arrays that deviated more than 0.1 from 0 for
RLE and from 1 for NUSE were discarded due to expected poor quality. Subsequently,
the raw data was normalized with the RMA algorithm, also implemented within the
oligo package. Dependent on the studied organisms probe identifiers were mapped
either to mouse/MGI or human/HGNC symbols using the R/Bioconductor package
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annotate (version 1.66.0) in combination with the individual annotation package of
the used array type (e.g. hugene11sttranscriptcluster.db). If several probes matched
the same gene symbol the expression was averaged. Genes with a constant expression
across all samples were manually removed.

Processing of RNA-seq data

The preprocessing started by filtering out lowly expressed genes using the
R/Bioconductor package edgeR (version 3.30.0; Robinson, McCarthy, & Smyth
(2010)) to increase the power of downstream statistical tests. Subsequently, the
expression data was normalized by correcting for differences in library composition
using also edgeR. Finally, the normalized data was transformed to log2-counts
per million with the R/Bioconductor package limma (version 3.44.1; Ritchie et al.
(2015))

Differential gene expression analysis
The differential gene expression analysis was performed using the R/Bioconductor
package limma (version 3.44.1; Ritchie et al. (2015)). Unless otherwise stated a gene
is considered differentially expressed with a false discovery rate (FDR) ≤ 0.05 and
|logFC| ≥ 1. Experiments with a time course or case-control design were handled
differently. The resulting gene signatures of a differential gene expression analysis is
referred to as contrast.

Time course design

For the acute CCl4, Acetaminophen (APAP), and partial hepatectomy (PH) experi-
ment, each time point is compared vs time point 0 to extract the effect of the respective
intoxication or treatment. The chronic CCl4 experiment was handled differently since
time-matched oil controls were available for month 2 and month 12, but not for month
6 (Figure 4.1A). As the oil effect was assumed to be constant across time the expression
values for the oil sample at month 6 were imputed by averaging the expression of the
oil samples at month 2 and month 12. To regress out the effect of the oil the treated
samples were compared against their time-matched oil controls. Also, the Bile duct
ligation (BDL) experiment was handled differently because there were time-matched
sham surgery samples available for days 1, 3, and 7 but not for day 21 (Supplementary
Figure C.8A). For this reason, the expression values for the sham surgery sample at
day 21 were again imputed by averaging the expression of the remaining sham surgery
samples. Finally, the effect of BDL was extracted by comparing BDL samples vs
time-matched sham surgery samples.

Case-Control design

For the experiments following the classical case-control design which is true for the
Lipopolysaccharide (LPS) and Tunicamycin mouse models and all human studies,
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treated samples/patients with CLD were compared against untreated/healthy sam-
ples/patients or samples of patients with lower disease stages.

Clustering of time-series gene expression data

Time-series gene expression data were clustered with the software program STEM
(Short Time-series Expression Miner, version 1.3.12; Ernst, Nau, & Bar-Joseph (2005);
Ernst & Bar-Joseph (2006)). As input, log-fold changes were provided from preceded
differential gene expression analysis, where each time point was compared against time
point 0. Accordingly, within STEM the normalization strategy “No normalization/add
0” was selected. Expression profiles were clustered using the default STEM clustering
method with a specified maximal change between time points of 10 to not exclude
drastic changes in the gene expression program, given partially large time spans
between individual time points. Up to 20 different model profiles were returned by
STEM. All other STEM parameters were left as default.

Comparing the similarity of gene sets via the Jaccard Index
and Overlap Coefficient

The similarity or overlap between two gene sets was summarized either as Jaccard
Index or Overlap Coefficient. Jaccard Index was used if the tested gene set had the
same size, while for unbalanced gene set size the Overlap Coefficient was used. For
the similarity analysis among the different acute mouse models or patient cohorts,
the gene sets were composed of the top 500 differentially expressed genes based on
limma’s moderated t-value.

Testing direction of regulation with Gene Set Enrichment
Analysis

To test whether the differentially expressed genes of an arbitrary study A are consis-
tently regulated in an also arbitrary but independent study B Gene Set Enrichment
Analysis (GSEA; Subramanian et al. (2005)) was performed. From study A the top
500 up-and downregulated genes were extracted based on the moderated t-statistic.
If the upregulated genes of study A are enriched among the upregulated genes of
study B GSEA returns a positive enrichment score (ES). For enriched downregulated
genes among the downregulated genes of study B a negative ES. GSEA was performed
with the R/Bioconductor package fgsea (version 1.14.0; Sergushichev (2016)). If
the enrichment was significant (FDR ≤ 0.05) it is concluded that either up- and/or
downregulated genes of study A are consistently regulated also in study B.
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Selection of the time point of the strongest altered expression
profile

For the reversible acute time-course experiments (CCl4, APAP, and BDL) the time
point with the strongest deregulated expression profile was determined by comparing
the mean distance of the individual time points to their respective control time point
along with the principal component 1 (PC1) axis in the principal component (PC)
space. The time point with the largest mean distance was considered as the time
point of strongest deregulation. For the bile duct ligation experiment this strategy
was not applicable due to the irreversible damage. We selected 24 hours as this was
comparable to the selected time points of the other acute experiments.

Functional characterization of transcriptomic data with various
gene set resources

To functionally characterize the mouse and human transcriptomic data sets different
gene set resources were used, such as biological processes from Gene Ontology (GO
(Ashburner et al., 2000)), DoRothEA’s regulons of confidence level A, B, and C (Garcia-
Alonso, Holland, Ibrahim, Turei, & Saez-Rodriguez, 2019; Christian H. Holland, Szalai,
& Saez-Rodriguez, 2020) and PROGENy’s top 100 pathway responsive-genes (Christian
H. Holland, Szalai, & Saez-Rodriguez, 2020; Schubert et al., 2018). GO gene sets were
accessed with the R package msigdf (version 7.1; https://github.com/ToledoEM/
msigdf), which queries itself the Molecular Signatures Database (MSigDB; Liberzon et
al. (2011)). DoRothEA and PROGENy gene sets were accessed via their corresponding
R/Bioconductor packages dorothea (version 1.0.1) and progeny (version 1.11.3).

As the statistical method overrepresentation analysis (ORA) was applied via the R
function stats::fisher.test(). The number of background genes was set to 20,000
as this reflects a reasonable number of covered genes in transcriptomic studies. The
minimum required gene set size was set to 10. The false discovery rate (FDR) is
computed for each gene set resource individually to account for multiple hypothesis
testing.

Manual clustering and text analysis of GO-terms

Significantly overrepresented GO-terms (FDR ≤ 0.05) were further analyzed by manual
classification into more coarse-grained biological processes and text analysis to identify
the most common keywords. Text analysis was performed with the R package tidytext
(version 0.2.6; Silge & Robinson (2016)). Numbers and highly unspecific words such
as “process” or “regulation” were removed. The frequencies of the most common
keywords were visualized as word cloud with the R package ggwordcloud (version
0.5.0; https://lepennec.github.io/ggwordcloud/).

https://github.com/ToledoEM/msigdf
https://github.com/ToledoEM/msigdf
https://lepennec.github.io/ggwordcloud/
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Construction and ranking of exclusive chronic, exclusive acute,
and common gene sets
To identify a set of genes that is exclusive for chronic or acute liver damage in mouse
models the acute and chronic mouse studies were integrated.

Construction of gene sets

First, the union of all differentially expressed genes was built across all the contrasts de-
rived from the chronic or acute mouse experiment. A gene was considered differentially
expressed with a FDR ≤ 1e-4 and |logFC| ≥ 1. This conservative FDR threshold was
opted for to include only the most reliable deregulated genes in this analysis. Indeed
all chronic contrasts were considered. In the acute setup, however, the last time point
of the bile duct ligation experiment (21 days after surgery) was removed as this damage
is no longer considered to be acute. A consensus gene-level statistic was assigned
for each gene in the unified chronic and acute gene set by computing the median of
the t-statistics. Based on the sign of this consensus gene-level statistic genes were
classified as up or downregulated. Genes that are listed only in the chronic or acute
gene set were considered as exclusive chronic or exclusive acute genes, respectively.
Accordingly, genes that were covered by both gene sets were deregulated in the liver
irrespective of the nature of the damage. Therefore this gene set is referred to as the
“common” gene set.

Ranking of gene sets

For these three different gene sets, a metric was computed per gene i integrating
statistics from the chronic and selected acute contrasts. Regarding the acute mouse
models, the number of considered acute contrasts was expanded. Next to the time
points with the strongest deregulated profile, all time points between 8 and 48
hours were integrated to take into account the dynamic process of liver injury and
recovery.

Metric for exclusive chronic gene set: i) consensus chronic gene-level statistic
cconsensus−chronici

, ii) median t-statistic of selected acute contrasts µacutei
, and iii)

variance of selected acute contrasts σ2
acutei

.

rank

(∣∣∣∣∣cconsensus−chronici
· 1

µacutei

·
√

1
σ2

acutei

∣∣∣∣∣
)

This metric prioritizes genes that have a high consensus chronic gene-level statistic and
at the same time are consistently not deregulated in selected acute contrasts.

Metric for exclusive acute gene set: i) consensus acute gene-level statistic
aconsensus−acutei

, ii) median t-statistic of selected chronic contrasts µchronici
and iii)

variance of selected chronic contrasts σ2
chronici

.
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rank

∣∣∣∣∣∣aconsensus−acutei
· 1

µchronici

·
√√√√ 1

σ2
chronici

∣∣∣∣∣∣


Similar to above this metric ranks genes high that have a high consensus acute gene-
level statistic and at the same time are consistently not deregulated in the chronic
contrasts.

Metric for common gene set: same variables as for the exclusive chronic gene set.

rank

(
cconsensus−chronici

· 1
µacutei

·
√

1
σ2

acutei

)

This metric will rank genes high that have a high consensus chronic gene-level statistic
and simultaneously are consistently and strongly regulated in the same direction as in
the chronic scenario in selected acute contrasts.

Identification of consistently deregulated genes in patients and
chronic CCl4 mouse model
To identify consistently deregulated genes in patients of CLD and chronic CCl4 mouse
model the top 500 up and top 500 downregulated genes selected by the absolute value
of the moderated t-statistic were extracted from each human contrast. Subsequently,
those gene sets were enriched in the three different contrasts from the chronic CCl4
mouse model corresponding to the three different time points: 2, 6, and 12 months.
For the enrichment, the R/Bioconductor package fgsea (version 1.14.0; Sergushichev
(2016)) was used with 1000 permutations. Afterward, the leading-edge genes were
extracted from each enrichment if it met two criteria: i) FDR ≤ 0.05 and ii) consistent
regulation between human and mouse data, i.e. when the upregulated human genes
were enriched in the upregulated mouse genes indicated by a positive enrichment
score (ES)) and vice versa, indicated by a negative ES. As some human studies have
multiple contrasts the leading-edge genes were unified per study and chronic time
point. Subsequently, those leading-edge genes were filtered for appearing per chronic
time point in at least three studies.

Mapping of consistently deregulated genes in human and mouse
to cell types using single-cell RNA-sequencing data
To identify whether the consistently deregulated genes in mice and humans are
deregulated in a specific cell type single-cell RNA-sequencing (scRNA-seq) data
was required. A preprocessed scRNA-seq data set of cirrhotic patients and healthy
controls generated by Ramachandran et al. (2019) was downloaded from https:
//datashare.is.ed.ac.uk/handle/10283/3433. The single-cells were annotated by
11 different cell types: MPs, T Cells, ILCs, endothelia, B cells, pDCs, plasma B cells,
mast cells, mesenchyme, cholangiocytes, hepatocytes. This data set was stored in a

https://datashare.is.ed.ac.uk/handle/10283/3433
https://datashare.is.ed.ac.uk/handle/10283/3433
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Seurat version 2 object and was manually transformed to a Seurat version 3 object,
to make it compatible with the latest version of the R package Seurat (version 3.2.3;
Butler, Hoffman, Smibert, Papalexi, & Satija (2018)) Subsequently, a differential gene
expression analysis was performed for each cell type individually between cirrhotic
and healthy individuals using the function Seurat::FindAllMarkers(). A gene was
considered differentially expressed with an absolute logFC ≥ 0.25 and an FDR ≤
0.05.

Cross-species mapping of gene symbols
To map MGI gene symbols to HGNC symbols or vice versa the R/Bioconductor
package biomaRt (version 2.44.0; Durinck, Spellman, Birney, & Huber (2009)) was
used, which itself queries the Ensembl Archive Release 99 from January 2020. Gene
that did not match were discarded and in case of an ambiguous mapping, the gene
with the highest absolute log-fold change was selected.

Accessing differentially expressed genes from published mouse
models of CLD
The differentially expressed genes of 9 published mouse models of CLD were extracted
from Supplementary Table 2 of (Teufel et al., 2016). The 9 mouse models are defined
as: WTD = Western-type diet; HF12/18/30 = High fat diet for 12, 18 and 30 weeks;
STZ12/18 = Streptozocin diet for 12 and 18 weeks ; MCD4/8 = Methionine- and
choline-deficient diet for 4 and 8 weeks; PTEN = Phosphatase and tensin homologue
deleted on chromosome 10 knockout mice

Teufel et al. (2016) defined a gene differentially expressed with FDR ≤ 0.05 and logFC
≥ log2(1.5). Hence, this cutoff is also applied for the other mouse models and patients
cohorts to make them compared to these chronic mouse models.

Gene browser for comparison of human and mouse liver dis-
ease
The online gene browser was built with the R package shiny (version 1.6.0; https:
//shiny.rstudio.com). The code to generate the application is freely available on
GitHub.

C.2 Supplementary Figures

https://shiny.rstudio.com
https://shiny.rstudio.com
https://github.com/saezlab/liver-disease-atlas-app
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Figure C.1: Overview of the study cohorts. A. Number of analyzed mice per mouse
model (control/treated). B. Number of analyzed patients per cohort (control/disease).
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Figure C.2: Gene expression changes after induction of chronic liver damage in mice
by repeated administration of 1 g/kg b.w. CCl 4 twice weekly for up to 12 months. A.
PCA plot contextualized by time points and treatments. B. Volcano plots of months
2, 6 and 12. C. Genes with the highest log-fold changes.
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Figure C.3: Expression changes in an acute liver damage mouse model following a
single administration of 300 mg/kg b.w. acetaminophen (APAP). A. Volcano plots at
hours 1 and 6, and on days 4, 6, 8, 16 after APAP administration. B. Genes with the
highest log-fold changes.
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Figure C.4: Expression changes in an acute liver damage mouse model induced
by administration of a single administration of CCl 4 . A. Experimental design.
B. Histological analysis with hematoxylin and eosin (HE) staining, fibrosis grade
visualized by Sirius red, and infiltration of immune cells by CD45. The images show
induction of pericentral liver lobule damage but without fibrosis development. Scale
bars: 100 µm (HE; Sirius red) and 50 µm (CD45). C. Clinical chemistry with alanine
transaminase (ALT), aspartate transaminase (AST) activities in plasma. D. PCA
analysis of global expression changes. E. Volcano plots at12 hours, and on days 1
and 2 after CCl 4 administration. F. Genes with the highest log-fold changes. G.
Time-resolved clustering of deregulated genes. The panels B and C were provided by
Ahmed Ghallab.
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Figure C.5: Expression changes in an acute liver damage mouse model following a
single administration of CCl 4 . A. Volcano plots at 2 hours and on days 4, 6, 8, 16
after CCl 4 administration. B. Genes with the highest log-fold changes.
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Figure C.6: Characterization and expression changes of mouse liver tissue after two-
third hepatectomy. A. Experimental design. B. Transient increase in cell proliferation
after hepatectomy based on BrDU staining and lobule area at different time periods
after hepatectomy. C. Tissue morphology visualized by co-staining of bile canaliculi
(DPPIV; green), pericentral hepatocytes (glutamine synthetase, white) and sinusoidal
endothelial cells (yellow). D. PCA analysis of global expression changes. E. Volcano
plots at 12 hours, and on days 1 and 2 after partial hepatectomy. F. Genes with the
highest log-fold changes. G. Time-resolved clustering of deregulated genes. The panels
B and C were provided by Ahmed Ghallab.
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Figure C.7: Characterization and expression changes of mouse liver tissue after two-
third hepatectomy. A. Volcano plots at hours 1 and 6, and on days 3 and 4, weeks
1 and 2, and months 1 and 3 after partial hepatectomy. B. Genes with the highest
log-fold changes.
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Figure C.8: Gene expression changes at different time intervals after induction of
obstructive cholestasis by bile duct ligation (BDL). A. Experimental design. B.
Histological analysis with hematoxylin and eosin (HE) staining, fibrosis grade visualized
by Sirius red, and infiltration of immune cells by CD45. The images show bile infarct
formation on days 1 and 3, and periportal fibrosis on day 21. Scale bars: 50 µm (HE;
CD45) and 200 µm (Sirius red). C. Clinical chemistry with alanine transaminase
(ALT), aspartate transaminase (AST) and alkaline phosphatase activities in plasma.
D. PCA analysis of global expression changes. E. Volcano plots on days 1, 3 and 7
after BDL. F. Genes with the highest log-fold changes. G. Time-resolved clustering of
deregulated genes. The panels B and C were provided by Ahmed Ghallab.
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Figure C.9: Expression changes in the chronic stage after induction of obstructive
cholestasis by bile duct ligation (BDL). A. Volcano plots on day 21 after BDL. B.
Genes with the highest log-fold changes.

Figure C.10: Identification of the time point with the most deregulated expression
profile after induction of acute liver injury based on the distance to the respective
controls in PCA space along principle component 1 (PC1). Identified time point is
colored in green.



C.2. Supplementary Figures 121

Figure C.11: Pool of unified acute and chronic genes demonstrating their respective
consistent direction of regulation as indicated by t-statistic.

Figure C.12: Characterization of exclusive acute genes. A. Heatmap of top 100 exclu-
sive acute genes. B-D. Overrepresented transcription factors identified by DoRothEA
(B), pathways obtained by PROGENy (C), and GO terms (D) in the upregulated
exclusive acute genes. E-F. Same as B-D but for the downregulated exclusive acute
genes.
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Figure C.13: A-B Overrepresented transcription factors identified by DoRothEA (A),
and GO terms (B) in the set of commonly downregulated genes in acute and chronic
mouse models.

Figure C.14: Pairwise comparison of the similarity of the 500 deregulated genes per
human contrast. Similarity is computed with the Jaccard index.

Figure C.15: A-B Overrepresented pathways obtained by PROGENy (A), and GO
terms (B) in the set of consistently downregulated genes between human and mouse.
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Figure C.16: Aldo-keto reductase (AKR1B10) and annexin V (ANXA5) increase
in CLD of mice and humans. A. Immunostaining of AKR1B10 and ANXA5 at
different stages during CLD progression induced by chronic CCl 4 administration
in mice; AKR1B10 shows clusters of positive signals at 12 months (arrows); ANXA5
stained positive in the progressive ductular reaction. B. AKR1B10 and ANXA5
immunostaining in fibrotic tissues of human patients showing similar expression
patterns as in mice. Scale bars: 100 µm. The entire figure was provided by Ahmed
Ghallab.
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Figure C.17: A. Number of deregulated genes for the chronic CCl 4 mouse models
complemented by 9 additional publicly available mouse models of chronic liver diseases.
B Similarity of the significantly deregulated genes between all chronic mouse models
and the human data. Similarity is computed as overlap coefficient.
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