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On the Simultaneous Mapping of Sodium Relaxation Parameters

using Magnetic Resonance Fingerprinting

In this thesis, the development of a framework for simultaneous sodium (23Na) mapping

of T1, T ∗2l, T
∗
2s, T

∗
2 and ∆B0, based on magnetic resonance fingerprinting (MRF), is

presented.

In initial experiments, the feasibility of 23Na MRF was investigated using a 2D MRF

sequence with variable-rate selective excitation pulses and density adapted readout gra-

dients at a static magnetic field strength of 7 T. The proposed technique was validated

in simulations and phantom experiments by comparison of the MRF results to reference

measurements. An ensuing in vivo study of the human brain was performed with five

healthy volunteers, yielding results in good agreement with the literature.

Subsequently, a 3D version of the pulse sequence was developed to increase the scan

efficiency and an improved signal model for spin 3/2 nuclei, based on irreducible spher-

ical tensor operators, was implemented. In an optimization step, a hybrid of single-

and double-echo readouts and a flip angle pattern optimized with the Cramér Rao lower

bound were implemented. Phantom experiments yielded a mean deviation of the quan-

tified relaxation times of 1.0 % with respect to the references. A second in vivo study,

conducted with the optimized 3D MRF framework, yielded good agreement to both

the 2D MRF study and literature values. Mean values of T1 = (35.0± 3.2) ms, T ∗2l =

(29.3± 3.8) ms and T ∗2s = (5.5± 1.3) ms were found in brain tissue, whereas T1 and T ∗2

were (61.9± 2.8) ms and (46.3± 4.5) ms in cerebrospinal fluid. The culmination of all

advancements proposed throughout this work enabled relaxometric sodium mapping of

the human head within approximately 1
2

h with a nominal resolution of (5 mm)3.

The findings of this work suggest that 23Na MRF is a promising candidate to push

sodium relaxometric mapping towards clinically feasible measurement times.





Über die simultane Quantifizierung von Natriumrelaxationszeiten

mit Hilfe von Magnetic Resonance Fingerprinting

In dieser Arbeit wird eine Technik zur simultanen Quantifizierung von T1, T ∗2l, T
∗
2s und T ∗2

von Natrium (23Na) sowie ∆B0 vorgestellt, die auf Magnetic Resonance Fingerprinting

(MRF) beruht.

In ersten Experimenten wurde die Anwendbarkeit von MRF auf die 23Na-MRT mit

Hilfe einer 2D-Pulssequenz untersucht, in welcher VERSE (variable-rate selective ex-

citation) Anregungspulse und dichteangepasste Auslesegradienten bei einer statischen

Magnetfeldstärke von 7 T genutzt werden. Die vorgestellte Technik wurde in Simulatio-

nen und Phantomexperimenten, in welchen die MRF-Ergebnisse mit Referenzmessungen

verglichen wurden, validiert. In einer darauffolgenden in-vivo-Studie wurden die Relax-

ationszeiten im Kopf von fünf gesunden Probanden quantifiziert, wobei sich eine gute

Übereinstimmung mit Literaturwerten ergab.

Anschließend wurde eine 3D-Version der Pulssequenz entwickelt, um die Messeffizienz

zu erhöhen und ein verbessertes Signalmodel für Spin-3/2-Kerne implementiert, welches

auf nichtreduzierbaren sphärischen Tensoroperatoren beruht. In der darauffolgenden

Optimierung wurde die Sequenz durch einen Hybrid aus Einfach- und Doppelauslesen

und eine Flipwinkel-Abfolge, welche mit dem Cramér Rao lower bound optimiert wurde,

verbessert. Phantomexperimente zeigten eine mittlere Abweichung der Relaxationspa-

rameter von 1,0 % zu den Referenzen. In einer zweiten in-vivo-Studie wurden die Re-

laxationszeiten im menschlichen Kopf mit der optimierten 3D-MRF-Sequenz bestimmt,

wobei sich eine gute Übereinstimmung zu der 2D-Studie und den Literaturwerten ergab.

In Hirngewebe wurden mittlere Werte von T1 = (35,0± 3,2) ms, T ∗2l = (29,3± 3,8) ms

und T ∗2s = (5,5± 1,3) ms quantifiziert, wohingegen ein T1 von (61,9± 2,8) ms und ein

T ∗2 von (46,3± 4,5) ms in Liquor bestimmt wurden. Die Methoden dieser Arbeit er-

möglichten die Quantifizierung der Relaxationszeiten im menschlichen Kopf bei einer

nominellen Auflösung von (5 mm)3 innerhalb von etwa 1
2

h.

Die Ergebnisse dieser Arbeit legen nahe, dass 23Na-MRF einen vielversprechenden Kan-

didaten zur Relaxometriemessung von Natrium innerhalb klinischer Messzeiten darstellt.
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1 Introduction

Medical imaging evolved to a key feature in medical diagnostics in the last decades,

wherefore a variety of imaging modalities is used in clinical routine. Magnetic resonance

imaging (MRI) is among the most prominent techniques since it provides excellent tis-

sue contrast without the need of ionizing radiation. Application of different magnetic

resonance (MR) sequences allows acquisition of a multitude of different information such

as spatiotemporal morphology, quantification of flow and imaging of physiological pro-

cesses, to name just a few.

In clinical routine, most MR sequences are qualitative in their nature, referring to the

fact that a good tissue contrast is achieved but the individual pixel value depends on a

variety of parameters, during data acquisition and reconstruction. This depicts only a

minor drawback as highly trained physicians are used to perform diagnostics based on

those images. However, quantitative measurements should allow automated diagnostics.

Further, true quantitative imaging would eliminate inter-site variability and diagnostics

could be based on a large database of normal and diseased tissue properties.

The vast majority of MRI sequences is based on acquiring the signal of 1H nuclei, as

they yield by far the highest signal in the human body. In theory, however, all other nu-

clei with non-vanishing spin can be used in MRI, which are commonly termed X-nuclei.

Some of them, such as 23Na, 31P and 39K, are involved in many cellular processes. Hence,

a variety of applications for X-nuclei MRI has been investigated to provide insight into

physiological processes. Sodium (23Na) ions provide the second highest signal in the hu-

man body and constitute a key component in a number of physiological processes, such

as the 23Na-39K-pump. Consequently, a multitude of pathologies, like neurodegenerative

diseases and cancer, were investigated using 23Na MRI. Many studies aimed for quan-

tification of the tissue sodium concentration (TSC), which provides a volume-weighted

combination of intra- and extracellular sodium concentrations [1]. Other studies applied

relaxation weighted imaging [2, 3, 4, 5], where altered relaxation times were found in

several diseases. Consequently, knowledge of 23Na relaxation times might give additional

diagnostic value, wherefore several studies aimed for quantification of them [6, 7, 8, 9].

However, sodium relaxometric mapping found limited application in clinical routine since

it suffers from long measurement times, which are required due to the inherently low

signal-to-noise ratio (SNR) of sodium imaging. To counteract these issues, the scans are

often performed at ultra-high static magnetic fields (B0 ≥ 7 T) and sequences with low

resolution and ultra-short echo times (UTEs) are exploited. Nevertheless, scan durations
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1 INTRODUCTION

of approximately one hour for quantification of either the longitudinal or the transverse

relaxation times have been reported [4, 8, 9]. This issue was tackled with techniques

such as 3D-MERINA [7] and the variable flip angle method [6].

In 1H imaging, magnetic resonance fingerprinting (MRF) evolved in recent years to one

of the most promising techniques for rapid multi-parametric quantification, mainly the

relaxation times [10]. Here, multiple tissue parameters are quantified simultaneously by

transferring the encoding problem of conventional mapping techniques to a separation

problem in MRF. This is achieved by driving the magnetization in a non-steady state

condition, which is commonly achieved by continuous change of the sequence parameters,

such as flip angles (FAs) and sequence timings. The exact signal evolution (fingerprint)

then depends on the tissue parameters. Hence, a series of highly undersampled images

is acquired to sample the evolution of the transient signal. The MR parameters in each

voxel can then be recovered using a simulation based image reconstruction. Due to those

properties, MRF was used to quantify a variety of tissue contrasts such as relaxometry

[10], flow velocity [11], chemical exchange [12] and many more. A connection to X-nuclei

imaging was established by Yu et al. [13], who presented simultaneous 1H MRF and
23Na imaging. In X-nuclei imaging, MRF was exploited for determination of the signal

distribution of different 23Na compartments [14] and for spectroscopic 31P quantification

of the creatine kinase reaction rate [15].

Therefore, the aim of this work was to develop an MRF framework for relaxometric 23Na

mapping, which is the first application of MRF in X-nuclei relaxometry, to the best of

the authors knowledge.

Hence, a 2D 23Na MRF sequence for simultaneous quantification of T1, T ∗2l, T
∗
2s, T

∗
2 and

∆B0 was developed as a proof of concept. The corresponding signal simluation was

based on a two-compartment Bloch model to enable biexponential transverse relaxation.

Moreover, automatic differentiation between bi- and monoexponential transverse relax-

ation without the need for prior knowledge was enabled in the reconstruction. The proof

of concept was shown by applying the 2D MRF sequence in phantom experiments and

conducting a subsequent in vivo study, quantifying the relaxometric parameters in the

heads of five healthy volunteers. After the feasibility of 23Na MRF was shown, the se-

quence was implemented as a 3D version, which allows 3D measurement of head-sized

objects in the same duration as required for acquisition of a single slice with the 2D

sequence. Further, the 3D dictionary simulations were based on irreducible spherical

tensor operators (ISTOs), which allow full description the spin dynamics of spin 3/2

particles. Finally, the 3D MRF sequence was refined by optimizing the FA pattern using

2



the Cramér Rao lower bound (CRLB) to improve T1 encoding. Moreover, the readout

efficiency was increased by implementing a hybrid of single- and double echo readouts.

The encoding capabilities of both 3D sequences were compared in phantom experiments

and the improved sequence version was used in subsequent in vivo experiments.

The final MRF framework allowed relaxometric mapping of the human head in approxi-

mately 1
2

h with a nominal resolution of (5 mm)3, pushing sodium relaxometric mapping

towards clinically feasible scan durations.
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2 Theory

In this section the basic concepts of MRI, MRF and the particularities of 23Na MR are

illustrated. A detailed description can be found in standard literature like [16, 17, 18],

on which this section is based on.

2.1 Nuclear magnetic resonance

In this work, two different spin dynamic models are used, where one is based on Bloch

equations, conventionally used for description of spin 1/2 nuclei. The other model is

based on ISTOs, which allow full description of the spin dynamics of spin 3/2 nuclei.

Consequently, both models are described in the following.

Every atom is composed of electrons and a nucleus, which itself consists out of protons

and neutrons. These protons and neutrons, also called nucleons, inherently posses an

intrinsic quantized angular momentum, called the nuclear spin. In cases where the spins

of the nucleons do not cancel out, the nucleus has non-vanishing nuclear spin, which

leads to the magnetic moment ~µ

~µ = γ~I. (2.1)

Here, γ corresponds to the nucleus-specific gyromagnetic ratio, which is γ1H = 267.522

· 106 rad/s T for hydrogen (1H) and γ23Na = 70.808 · 106 rad/s T for sodium (23Na).

In the quantum mechanical description the nuclear spin ~I fulfills the commutator rela-

tions

[Il, Im] = i~εlmnIn (2.2)

and

[~I, Il] = 0. (2.3)

Choosing the z-axis as quantization axis, the following eigenvalue equations are valid for

the angular momentum state vector |I,m〉:

~I2|I,m〉 = I(I + 1)~2|I,m〉 (2.4)

Iz|I,m〉 = m~|I,m〉. (2.5)

Here, I corresponds to the spin quantum number and m to the magnetic spin quantum
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2 THEORY

number, for which m ∈ {−I,−I + 1, ..., I} is valid.

In free space, the energy level of the nucleus is independent of m and consequently

(2I + 1)-fold degenerated.

Application of an external magnetic field ~B0 lifts this degeneration due to interaction

of the magnetic moment ~µ with the field. Without loss of generality we assume that
~B0 = (0, 0, B0)T points in z-direction, which yields the Hamilton operator H:

H = ~µ ~B0 = −γB0Iz. (2.6)

Equations 2.5 and 2.6, in conjunction with the time-independent Schrödinger equation,

therefore lead to the allowed energies Em

Em = 〈m, I|H|I,m〉 = −γ~mB0. (2.7)

The energy difference between two neighboring states is therefore given by

∆E = Em+1 − Em = ~ω0, (2.8)

where ω0 corresponds to the Larmor frequency

ω0 = γB0. (2.9)

Therefore, transitions between the states can be induced when a photon with this energy

is absorbed or emitted. The energy splitting of 1H and 23Na systems in an external

magnetic field are visualized in figure 1.

Figure 1: Zeeman splitting of hydrogen and sodium at 7 T.
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2.1 Nuclear magnetic resonance

The occupation numbers of the energy levels in thermal equilibrium follow a Fermi-Dirac

statistic, since both 1H and 23Na ions are fermions. However, in the high temperature

regime, which is well fulfilled in clinical NMR experiments, their occupation can be

approximated by a Boltzmann distribution

p(Em) =
1

Z
e
− Em

kBT (2.10)

with the canonical partition function

Z =
I∑

m=−I

e
− Em

kBT . (2.11)

Here, kB corresponds to the Boltzmann constant and T is the temperature.

The detected NMR signal is given by the superposition of all magnetic moments in the

sample, which motivates introducing the macroscopic magnetization ~M . This allows

a semi-classically description of the system since the quantum mechanical properties

of the system vanish in the averaging, which is termed correspondence principle. The

macroscopic magnetization ~M can be constructed by summation of the expectation

values of the magnetic moments ~µ per volume V :

~M =
1

V

∑
i

〈~µi〉 =
1

V

∑
i

γ〈~Ii〉 (2.12)

In thermal equilibrium the expectation values 〈Ix〉 and 〈Iy〉 vanish and only 〈Iz〉 com-

prises a finite value, where the first order Taylor series yields the macroscopic z-magnetization:

Mz =
N

V
γ〈Iz〉 =

N

V

γ2~2I(I + 1)B0

3kBT
. (2.13)

In the following, the magnetization in thermal equilibrium will be termed ~M0.

7



2 THEORY

2.2 Spin dynamics of spin 1/2 nuclei

The temporal evolution of the expectation value of the magnetic moment is given by the

von-Neumann equation
∂〈~µ〉
∂t

= 〈− i
~

[~µ,H]〉, (2.14)

which transforms, using equations 2.2 and 2.6, to

∂〈~µ〉
∂t

= ~µ× γ ~B. (2.15)

This result translates to the macroscopic magnetization for a non-interaction magneti-

zation vector as:
∂ ~M

∂t
= ~M × γ ~B0. (2.16)

Therefore, tipping ~M about a given FA with respect to the z-axis results in a precession

motion around the z-axis with the Larmor frequency. This precession generates the

measured NMR signal by inducing a voltage in the receive radiofrequency (RF) coils.

Excitation is achieved by applying an RF excitation pulse that creates a magnetic field

B1, which is oriented perpendicular to the main magnetic field:

~B1 = B1

cos(ωRF t)

sin(ωRF t)

0

 . (2.17)

In a coordinate system rotating with ω0, marked in the following with the asterisk ∗, the

equation of motion 2.16 in presence of an RF field transforms to

(
∂ ~M

∂t

)∗
= ~M ×

 ω1

0

ω0 − ωRF


= γ ~M × ~Beff ,

(2.18)

where ω1 = γB1. If the RF pulse is applied with the Larmor frequency (ωRF = ω0), the

resonance condition is met and the z∗-entry vanishes and the FA after time t is then

given by

α(t) =

∫ t

0

γB1(t′)dt′. (2.19)

8



2.2 Spin dynamics of spin 1/2 nuclei

The magnetization in an excited system in free precession relaxes towards thermal equi-

librium. The change in occupation numbers and therefore the longitudinal magnetization

M‖ = Mz is described by the time constant T1, which is also referred to as the spin-lattice

relaxation time. Here, energy is dissipated into molecular motion. Simultaneously a loss

of phase coherence in the transverse magnetization M⊥ = Mx + iMy can be observed,

described by the spin-spin relaxation time T2.

Empirical observation of these processes resulted in formulation of the Bloch-equations

dMx(t)

dt
= γ

(
~M × ~B

)
x
− Mx(t)

T2

dMy(t)

dt
= γ

(
~M × ~B

)
y
− My(t)

T2

dMz(t)

dt
= γ

(
~M × ~B

)
z
− Mz(t)−M0

T1

.

(2.20)

In the rotating frame, the solutions in absence of an RF field are given by

M⊥(t) = M⊥(0)e
− t

T2 (2.21)

and

M‖(t) = M0 −
(
M0 −M‖(0)

)
e
− t

T1 . (2.22)

For an inversion recovery (IR) experiment, where an 180◦ pulse is applied, equation 2.22

reduces to

M‖(t) = M0

(
1− 2e

− t
T1

)
. (2.23)
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2 THEORY

2.3 Spin dynamics of spin 3/2 nuclei

In this section, the spin dynamics of spin 3/2 particles are described, which constitute

the basis for the quantitative signal simulations used in the 3D fingerprinting framework.

For a more detailed description the reader is referred to [19, 20, 21], on which this section

is based on.

2.3.1 Density matrix and ISTOs

A macroscopic description of the state of a spin 3/2 system can be described by the

density matrix ρ, in which each entry ρij corresponds to a transition from state i to

state j:

ρ =
∑
ij

ρij|i〉〈j| =


ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ42 ρ44

 (2.24)

Here, |i〉 ∈ {|1〉, |2〉, |3〉, |4〉} represent the eigenstates of Iz, where the magnetic quantum

numbers m ∈ {−3
2
,−1

2
, 1

2
, 3

2
} are the corresponding eigenvalues. Transitions for which

|i − j| = 1 and combinations of the latter correspond to single quantum coherences,

whereas |i − j| = 2 and |i − j| = 3 are referred to as double and triple quantum

coherences, respectively.

A convenient representation of the density matrix for systems with spin ≥ 3/2 is achieved

by the use of ISTOs, due to their rotational symmetry. For a spin 3/2 system, 16

operators Tlm with rank l ∈ {0, 1, 2, 3} and order m ∈ {−l,−l + 1, ..., l} are required to

describe the system.

They are summarized in table 1 and their matrix representation can be found in appendix

7.2.

The density matrix ρ can be expressed as a linear combination of ISTOs:

ρ =
∑
lm

clmTlm. (2.25)

In the following, the symmetric and anti-symmetric tensor combinations

Tlm(s) =
1√
2

(Tl−m + Tlm)

Tlm(a) =
1√
2

(Tl−m − Tlm)
(2.26)

10



2.3 Spin dynamics of spin 3/2 nuclei

Table 1: Overview on the ISTOs and their Cartesian representation. Here, I± = Ix± iIy
was used. Table adapted from [21].

Operator Cartesian representation Meaning
T00 1 Identity
T10 Iz Longitudinal magnetization
T1±1 ∓ 1√

2
I± Rank 1 single quantum coherence

T20
1√
6

(
3I2
z − I(I + 1)

)
Quadrupolar order

T2±1 ∓1
2
{Iz, I±} Rank 2 single quantum coherence

T2±2
1
2
I2
± Rank 2 double quantum coherence

T30
1√
10

(
5I3
z − (3I(I + 1)− 1)Iz

)
Octopolar order

T3±1 ∓1
4

√
3
10

{
5I3
z − I(I + 1)− 1

2
, I±
}

Rank 3 single quantum coherence

T3±2
1
2

√
3
4

{
Iz, I

2
±
}

Rank 3 double quantum coherence

T3±3 ∓ 1
2
√

2
I3
± Rank 3 triple quantum coherence

and the normalizations

T̂00 =
1

2
T00

T̂1m =
1√
5
T1m

T̂2m =
1

2
√

2
T2m

T̂3m =

√
2

3
T3m

(2.27)

are used.

2.3.2 Interaction of spin 3/2 systems

Assuming no fields except a static magnetic field B0 in z-direction, the Zeeman Hamil-

tonian is given by

H0 = γB0Iz = ω0Iz = ω0T10. (2.28)

The use of Boltzmann statistics in conjunction with the high temperature approximation

yields the density matrix in thermal equilibrium:

ρ0 =
1

Z
e

ω0T10
kT ≈ 1

4
1 +

ω0

4kT
T10 with Z = Tr

(
e

ω0T10
kT

)
. (2.29)

11
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Since the identity matrix 1 has no influence on temporal evolution and gives no signal

contribution, the equilibrium magnetization is often referred to as

ρ0 =
ω0

4kT
T10. (2.30)

The temporal evolution of the density matrix can be described in dependence of the

Hamiltonian, which itself consists out of the individual Hamiltonians of static magnetic

fields, RF pulses as well as static and fluctuating quadrupolar interactions. A basis

transformation into a frame rotating with the Larmor frequency results in vanishing of

the Zeeman-Hamiltonian H0 = ω0T10. Any arbitrary Hamiltonian transforms as

H∗ = eiH0tHe−iH0t (2.31)

and the density matrix is given by

ρ∗ = eiH0tρe−iH0t, (2.32)

where the asterisk ∗ marks the rotating frame.

Excitation of the system can be achieved by applying an RF field. An on-resonant RF

field in x∗-direction with field strength B1 yields

H∗1 = ω1Ix = ω1T11(a) =
√

5ω1T̂11(a), (2.33)

where the excitation frequency

ω1 = −γB1 (2.34)

was used.

A non-zero pulse phase relative to the x∗-direction can be described by a change of basis

prior and subsequent to the pulse:

Tlm(s) = Tlm(s) cos(mφ) + iTlm(a) sin(mφ)

Tlm(a) = Tlm(a) cos(mφ) + iTlm(s) sin(mφ)
(2.35)

Due to their non-spherical charge distribution, spin 3/2 nuclei experience quadrupolar

interactions with surrounding electrical field gradients (EFGs), which dominate their

relaxation behaviour and can result in shifting of the energy levels and consequently

splitting of the resonance lines. One can differentiate between fluctuating and static

quadrupolar interactions. The former temporally average to zero and can for example

12



2.3 Spin dynamics of spin 3/2 nuclei

be generated by the atomic charges on macromolecules, ions or contributions from the

ion hydration shell [19]. The static quadrupolar coupling, on the other hand, is the part

that persists after temporal averaging.

Assuming cylindrical static quadrupolar interactions, the Hamiltonian can be expressed

as

H∗QS = ωQ
3I2
z − I(I + 1)

6
= ωQT̂20. (2.36)

Here, ωQ describes the residual quadrupolar coupling, which corresponds to the remain-

ing part of quadrupolar interaction after temporal averaging. For each domain, that is

the entirety of spins experiencing the same dynamic properties, the residual quadrupolar

coupling can be expressed as

ωQ =
ωQ
2

(
3 cos2(θ)− 1

)
. (2.37)

Here, the angle θ describes the local director relative to the direction of the static mag-

netic field and ωQ the maximum splitting for θ = 0.

The zero-average fluctuating quadrupolar interactions can be described by interactions

of the nuclei with fluctuating EFGs of the environment, yielding the Hamiltonian

H∗QF (t) = CQ

2∑
m=−2

(−1)mT2me
imω0t

(
F2−m − 〈F2−m〉

)
with CQ =

eQ

~
√

6
, (2.38)

where Q corresponds to the quadrupolar moment of the nucleus. F2m and 〈F2m〉 describe

the components of EFG tensor and their time-averaged means:

F20 =
1

2
Vzz

F2±1 =
1√
6

(
Vxz ± iVyz

)
F2±2 =

1

2
√

6

(
Vxx − Vyy ± i2Vxy

)
.

(2.39)

2.3.3 Temporal evolution of the density matrix

The temporal evolution of the density matrix under a static Hamiltonian H∗S results in

the master equation
dρ∗

dt
= −i [H∗S, ρ∗] , (2.40)

13
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where the Hamiltonian is given by

H∗S = H∗1 +H∗QS. (2.41)

Hence, expressing the master equation in terms of ISTOs yields

dρ∗

dt
= −i

[
ωQT̂20 +

√
5ω1T̂11(a), ρ∗

]
. (2.42)

Equation 2.42 can be reduced to two sets of coupled differential equations

d

dt



T̂10

T̂11(s)

T̂21(a)

T̂22(a)

T̂30

T̂31(s)

T̂32(s)

T̂33(s)


=



0 −iω1 0 0

−iω1 0 i
√

3
5
ωQ 0

0 i
√

3
5
ωQ 0 −iω1

0 0 −iω1 0

0 0 0 0

0 0 i
√

2
5
ωQ 0

0 0 0 iωQ

0 0 0 0

· · ·

· · ·

0 0 0 0

0 0 0 0

0 i
√

2
5
ωQ 0 0

0 0 iωQ 0

0 −i
√

6ω1 0 0

−i
√

6ω1 0 −i
√

5
2
ω1 0

0 −i
√

5
2
ω1 0 −i

√
3
2
ω1

0 0 −i
√

3
2
ω1 0





T̂10

T̂11(s)

T̂21(a)

T̂22(a)

T̂30

T̂31(s)

T̂32(s)

T̂33(s)



(2.43)

and
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2.3 Spin dynamics of spin 3/2 nuclei

d

dt



T̂11(a)

T̂20

T̂21(s)

T̂22(s)

T̂31(a)

T̂32(a)

T̂33(a)


=



0 0 i
√

3
5
ωQ 0

0 0 −i
√

3ω1 0

i
√

3
5
ωQ −i

√
3ω1 0 −iω1

0 0 −iω1 0

0 0 i
√

2
5
ωQ 0

0 0 0 iωQ

0 0 0 0

· · ·

· · ·

0 0 0

0 0 0

i
√

2
5
ωQ 0 0

0 iωQ 0

0 −i
√

5
2
ω1 0

−i
√

5
2
ω1 0 −i

√
3
2
ω1

0 −i
√

3
2
ω1 0





T̂11(a)

T̂20

T̂21(s)

T̂22(s)

T̂31(a)

T̂32(a)

T̂33(a)


.

(2.44)

In the Redfield relaxation theory, which is based on perturbation theory, the fluctuating

quadrupolar interactions yield the relaxation operator

f(ρ∗) = −
∫ ∞

0

〈
[
H∗QF (t),

[
e−iH

∗
SτH∗QF (t− τ)eiH

∗
Sτ , ρ∗(t)

]]
〉 dτ, (2.45)

resulting in the new master equation

dρ∗

dt
= −i [H∗S, ρ∗] + f(ρ∗). (2.46)

Using equation 2.38 and neglecting terms oscillating with multiples of ω0, equation 2.45

transforms to

f(ρ∗) =− C2
Q

2∑
m=−2

∫ ∞
0

[
T2m,

[
e−iH

∗
SτT †2me

iH∗Sτ , ρ∗(t)
]]

〈
(
F ∗2m(t)− 〈F ∗2m〉

) (
F2m(t− τ)− 〈F2m〉

)
〉eimω0τ dτ.

(2.47)
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The relaxation term reduces to complex spectral density functions at a number of fre-

quencies. In the following, the imaginary part Km of the spectral density functions will

be ignored, as it results in only very small, second-order frequency shifts and in a weak

coupling of the two sets of differential equations. The real part is given by

Jm(ω) =
6C2

Q

2

∫ ∞
−∞
〈
(
F ∗2m(t)− 〈F ∗2m〉

) (
F2m(t− τ)− 〈F2m〉

)
〉eiωτ dτ. (2.48)

f(ρ∗) includes terms proportional to Jm(mω0 ± λi), where λi are the eigenvalues of

equations 2.43 and 2.44. However, for the case m 6= 0 we will approximate Jm(mω0 ±
λi) ≈ Jm(mω0) in the following, since ω0 is generally much larger than λi. Hence, H∗S
commutes with T2m and vanishes in equation 2.47.

Consequently, the temporal evolution of the density matrix under relaxation can be

described by

d

dt



T̂10

T̂11(s)

T̂21(a)

T̂22(a)

T̂30

T̂31(s)

T̂32(s)

T̂33(s)


= −



2
5
J1 + 8

5
J2 0 0 0

0 J1 + 2
5
J2 0 0

0 0 J1 + 2J2 0

0 0 0 2J1 + J2

4
5
J1 − 4

5
J2 0 0 0

0 −
√

6
5
J2 0 0

0 0 0 0

0 0 0 0

· · ·

· · ·

4
5
J1 − 4

5
J2 0 0 0

0 −
√

6
5
J2 0 0

0 0 0 0

0 0 0 0
8
5
J1 + 2

5
J2 0 0 0

0 J1 + 3
5
J2 0 0

0 0 J2 0

0 0 0 J1 + J2





T̂10

T̂11(s)

T̂21(a)

T̂22(a)

T̂30

T̂31(s)

T̂32(s)

T̂33(s)



(2.49)

and

16



2.3 Spin dynamics of spin 3/2 nuclei

d

dt



T̂11(a)

T̂20

T̂21(s)

T̂22(s)

T̂31(a)

T̂32(a)

T̂33(a)


= −



J1 + 2
5
J2 0 0 0

0 2J1 + 2J2 0 0

0 0 J1 + 2J2 0

0 0 0 2J1 + J2

−
√

6
5
J2 0 0 0

0 0 0 0

0 0 0 0

· · ·

· · ·

−
√

6
5
J2 0 0

0 0 0

0 0 0

0 0 0

J1 + 3
5
J2 0 0

0 J2 0

0 0 J1 + J2





T̂11(a)

T̂20

T̂21(s)

T̂22(s)

T̂31(a)

T̂32(a)

T̂33(a)


,

(2.50)

where J1 = J1(ω0) and J2 = J2(2ω0) were used.

For the case m = 0 these assumptions do not hold true and a full evaluation of f(ρ∗)

is necessary. The relaxation rates are then dependent on the spectral density at the

frequencies 0, λ1 and λ2, which themselves are given by:

λ1 =
√
ω2
Q + 2ωQω1 + 4ω2

1

λ2 =
√
ω2
Q − 2ωQω1 + 4ω2

1.
(2.51)

Neglecting low-frequency dispersion in the order of λ1,2 yields J0(0) ≈ J0(λ1) ≈ J0(λ2),

resulting in the differential equations for m = 0 to be
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d

dt



T̂10

T̂11(s)

T̂21(a)

T̂22(a)

T̂30

T̂31(s)

T̂32(s)

T̂33(s)


= −



0 0 0 0 0 0 0 0

0 3
5
J0 0 0 0

√
6

5
J0 0 0

0 0 J0 0 0 0 0 0

0 0 0 J0 0 0 0 0

0 0 0 0 0 0 0 0

0
√

6
5
J0 0 0 0 2

5
J0 0 0

0 0 0 0 0 0 J0 0

0 0 0 0 0 0 0 0





T̂10

T̂11(s)

T̂21(a)

T̂22(a)

T̂30

T̂31(s)

T̂32(s)

T̂33(s)


(2.52)

and

d

dt



T̂11(a)

T̂20

T̂21(s)

T̂22(s)

T̂31(a)

T̂32(a)

T̂33(a)


= −



3
5
J0 0 0 0

√
6

5
J0 0 0

0 0 0 0 0 0 0

0 0 J0 0 0 0 0

0 0 0 J0 0 0 0
√

6
5
J0 0 0 0 2

5
J0 0 0

0 0 0 0 0 J0 0

0 0 0 0 0 0 0





T̂11(a)

T̂20

T̂21(s)

T̂22(s)

T̂31(a)

T̂32(a)

T̂33(a)


. (2.53)

Hence, the temporal evolution of the basis operators under the static Hamiltonian in-

cluding relaxation effects is given by two equations: the sum of equations 2.43, 2.49 2.52

and the sum of equations 2.44, 2.50 and 2.53. Both these equations can be expressed as

dT

dt
= MT, (2.54)

where T is given by
(
T̂10, T̂11(s), T̂21(a), T̂22(a), T̂30, T̂31(s), T̂32(s), T̂33(s)

)T
for the first

equation and
(
T̂11(a), T̂20, T̂21(s), T̂22(s), T̂31(a), T̂32(a), T̂33(a)

)T
for the second equation.

The solution of equation 2.54 is given by

T (t) = SeMdtS−1T (0). (2.55)

Here, T (0) is the initial condition, Md is the diagonal form of M and S the corresponding

similarity transform:

Md = S−1MS. (2.56)

Relaxation towards thermal equilibrium can be implemented by adding terms propor-

tional to the identity T00 to equation 2.54 [3].
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2.3 Spin dynamics of spin 3/2 nuclei

The effects of off-resonances can be implemented by addition of

d

dt

(
T̂lm(s)

T̂lm(a)

)
=

(
0 imωoff

imωoff 0

)(
T̂lm(s)

T̂lm(a)

)
. (2.57)

The full resulting equation of motion, used for numeric solving of the temporal density

matrix evolution in this work, can be found in the appendix in equations 7.1 and 7.2.

2.3.4 Relaxation

Equation 2.54 contains the full information on the temporal evolution of the spin opera-

tors. However, there are analytical solutions for thermal relaxation in absence of an RF

pulse, which are discussed in the following.

Exploiting equations 2.36, 2.38 and 2.45 yields the temporal evolution of the density

matrix:

dρ∗

dt
= −i ωQ√

6
[T20, ρ

∗]−
2∑

m=−2

[
T2m, [T2m, ρ

∗]
]

(Jm(mω0) + iKm(mω0)). (2.58)

The temporal evolution of the polarization tensors T̂10, T̂20 and T̂30 can be expressed as

d

dt

(
T̂10

T̂30

)
= −

(
2
5
J1 + 8

5
J2

4
5
J1 − 4

5
J2

4
5
J1 − 4

5
J2

8
5
J1 + 2

5
J2

)(
T̂10

T̂30

)
(2.59)

and

d

dt
T̂20 = − (2J1 + 2J2) T̂20. (2.60)

The solution of equation 2.59 in arrow notation is given by

T̂10
R(0)

−−→ T̂10f
(0)
11 (t) + T̂30f

(0)
31 (t)

T̂30
R(0)

−−→ T̂30f
(0)
33 (t) + T̂10f

(0)
13 (t),

(2.61)

where the index (0) labels quantum coherences of order zero and f(t) is the biexponential
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relaxation function:

f
(0)
11 (t) =

1

5

(
e−R

(0)
1 t + 4e−R

(0)
2 t
)

f
(0)
13 (t) = f

(0)
31 (t) =

2

5

(
e−R

(0)
1 t − e−R

(0)
2 t
)

f
(0)
33 (t) =

1

5

(
4e−R

(0)
1 t + e−R

(0)
2 t
)
.

(2.62)

Here, the relaxation rates R
(0)
1 and R

(0)
2 correspond to

R
(0)
1 =

1

T1s

= 2J1

R
(0)
2 =

1

T1l

= 2J2,
(2.63)

where T1s and T1l are the short and long longitudinal relaxation times.

Equation 2.60 can be solved by

T̂20
R(0)

−−→ T̂20f
(0)
22 (t), (2.64)

where the relaxation function and the corresponding relaxation rate are given by

f
(0)
11 (t) = e−R

(0)
3 t (2.65)

and

R
(0)
3 = 2J1 + 2J2. (2.66)

For the consideration of single and multi-quantum coherences, contributions of the imag-

inary part Km of the spectral density function are neglected since they are very small.

Single quantum coherences, which are equivalent to the transverse relaxation of the

measured NMR signal, can be described by
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2.3 Spin dynamics of spin 3/2 nuclei

d

dt

T̂11(a, s)

T̂21(s, a)

T̂31(a, s)

 = −


3
5
J0 + J1 + 2

5
J2 −i

√
3
5
ωQ

−i
√

3
5
ωQ J0 + J1 + 2J2

√
6

5
(J0 − J2) −i

√
2
5
ωQ

· · ·

· · ·

√
6

5
(J0 − J2)

−i
√

2
5
ωQ

2
5
J0 + J1 + 3

5
J2


T̂11(a, s)

T̂21(s, a)

T̂31(a, s)

 .

(2.67)

The solution of the latter is

T̂11(a, s)
R(1)

−−→ T̂11(a, s)f
(1)
11 (t) + T̂21(s, a)f

(1)
21 + T̂31(a, s)f

(1)
31 (t)

T̂21(s, a)
R(1)

−−→ T̂11(a, s)f
(1)
12 (t) + T̂21(s, a)f

(1)
22 + T̂31(a, s)f

(1)
32 (t)

T̂31(a, s)
R(1)

−−→ T̂11(a, s)f
(1)
13 (t) + T̂21(s, a)f

(1)
23 + T̂31(a, s)f

(1)
33 (t),

(2.68)

where the relaxation functions are

f
(1)
11 (t) =

1

5

(
3

2
(1 + κ(1))e−R

(1)
1 t + 2e−R

(1)
2 t +

3

2
(1− κ(1))e−R

(1)
3 t

)
f

(1)
12 (t) = f

(1)
21 (t) =

i

2

√
3

5

ωQ√
J2

2 − ω2
Q

(
e−R

(1)
1 t − e−R

(1)
3 t
)

f
(1)
13 (t) = f

(1)
31 (t) =

√
6

5

(
1

2
(1 + κ(1))e−R

(1)
1 t − e−R

(1)
2 t +

1

2
(1− κ(1))e−R

(1)
3 t

)
f

(1)
22 (t) =

1

2

(
(1− κ(1))e−R

(1)
1 t + (1 + κ(1))e−R

(1)
3 t
)

f
(1)
23 (t) = f

(1)
32 (t) =

i√
10

ωQ√
J2

2 − ω2
Q

(
e−R

(1)
1 t − e−R

(1)
3 t
)

f
(1)
33 (t) =

1

5

(
(1 + κ(1))e−R

(1)
1 t + 3e−R

(1)
2 t + (1− κ(1))e−R

(1)
3 t
)

(2.69)
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with

κ(1) =
J2√

J2
2 − ω2

Q

R
(1)
1 =

1

T2s

= J0 + J1 + J2 −
√
J2

2 − ω2
Q

R
(1)
2 =

1

T2l

= J1 + J2

R
(1)
3 = J0 + J1 + J2 +

√
J2

2 − ω2
Q.

(2.70)

The short and long transverse relaxation times T2s and T2l define the biexponential free

induction decay (FID) of a spin 3/2 system after excitation.

The temporal evolution of multi-quantum coherences (m > 1) are given by

d

dt

T̂22(s, a)

T̂32(a, s)

T̂33(a, s)

 = −

J0 + 2J1 + J2 −iωQ 0

−iωQ J0 + J2 0

0 0 J1 + J2


T̂22(s, a)

T̂32(a, s)

T̂33(a, s)

 . (2.71)

The solution is

T̂22(s, a)
R(2)

−−→ T̂22(s, a)f
(2)
22 (t) + T̂32(a, s)f

(2)
32 (t)

T̂32(a, s)
R(2)

−−→ T̂22(s, a)f
(2)
23 (t) + T̂32(a, s)f

(2)
33 (t)

T̂33(a, s)
R(3)

−−→ T̂33(a, s)f
(3)
33 (t),

(2.72)

with the relaxation functions

f
(2)
22 (t) =

1

2

(
(1 + κ(2))e−R

(2)
1 t + (1− κ(2))e−R

(2)
2 t
)

f
(2)
23 (t) = f

(2)
32 (t) = − i

2

ωQ√
J2

1 − ω2
Q

(
e−R

(2)
1 t − e−R

(2)
2 t
)

f
(2)
33 (t) =

1

2

(
(1− κ(2))e−R

(2)
1 t + (1 + κ(2))e−R

(2)
2 t
)

f
(3)
33 (t) = e−R

(3)
1 t

(2.73)
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and the relaxation rates

κ(2) =
J1√

J2
1 − ω2

Q

R
(2)
1 = J0 + J1 + J2 +

√
J2

1 − ω2
Q

R
(1)
2 = J0 + J1 + J2 −

√
J2

1 − ω2
Q

R
(3)
1 = J1 + J2.

(2.74)

The considerations in this work are focused on isotropic environments, in which ωQ = 0.

Consequently, equation 2.70 transforms to

T2s =
1

J0 + J1

T2l =
1

J1 + J2

,
(2.75)

wherefore an FID decays with

S(t) = S0

(
0.6e

− t
T2s + 0.4e

− t
T2l

)
. (2.76)

An IR experiment can be described by:

S(t) = S0

(
1− 2

(
0.8e

− t
T1l + 0.2e

− t
T1s

))
. (2.77)
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2.4 Specific absorption rate

Excitation of the magnetization is achieved using RF pulses (see section 2.5) and results

in a precession movement which generates the NMR signal. To ensure patient safety,

the specific absorption rate (SAR), which describes the amount of power absorbed in

the tissue, is strictly limited by the IEC-guidelines [22].

The SAR is limited for a mass of 10 g and both a 10 s and a 6 min window and is given

by:

SAR =
1

2V

∫
t

∫
V

σ(~r)

ρ(~r)
| ~E(~r)|2, (2.78)

where σ corresponds to the electrical conductivity and ρ is the density of the tissue.

If either the 10 s or the 6 min limit is reached, the measurement is aborted. Therefore,

the excitation field B1 is limited by the SAR constraints, since

| ~E(~r)|2 ∝ | ~B1(~r)|2 ∝ α2, (2.79)

where α is the FA. Hence, doubling the FA for a given pulse shape results in fourfold

the SAR. This is a limiting factor in ultra-high field MRI, wherefore strategies such as

variable-rate selective excitation (VERSE), as illustrated in section 2.5.1.3, are applied.

24



2.5 Magnetic resonance imaging

2.5 Magnetic resonance imaging

In magnetic resonance imaging, the magnetization is spatially encoded after magneti-

zation preparation. The easiest example of an MRI sequence is given by an excitation

pulse and subsequent spatial encoding, which will be discussed in the following. How-

ever, more complicated sequences of RF and gradient fields can be used to achieve a

multitude of image contrasts [23], but their description lies beyond the scope of this

work.

2.5.1 Selective and non-selective excitation

At the beginning of the pulse sequence, the magnetization is excited with an RF pulse,

which results in precession of the magnetization and therefore the NMR signal is induced

in the receive coils. A typical excitation pulse is composed of a pulse envelope modulated

with the Larmor frequency, which is true for all RF pulses discussed in the following.

2.5.1.1 Non-selective excitation

The simplest excitation pulse is a rectangular (rect) pulse without presence of any gra-

dient fields. Due to their absence, the magnetic field distribution is spatially indepen-

dent and therefore all spins experience the same Larmor frequency. Consequently, the

pulse non-selectively excites all spins similarly and a constant FA is achieved, when a

homogenous B1 distribution is assumed. A major advantage of this pulse type is its

SAR-efficiency due to the constant amplitude. Further, the absence of gradient fields

allows spatial encoding directly after the RF pulse since no gradient rewinders have to

be used, as required for selective excitation. On the downside, however, spatial encoding

of the entire magnetization in the coil is required to reconstruct artifact free images,

as discussed in section 2.5.2. This can be time consuming and is therefore especially

time-inefficient if only a small area is of interest.

2.5.1.2 Selective excitation

Selective excitation pulses only excite a certain area in the coil, leading to reduced time

required for spatial encoding. The most common selective excitation pulse is a filtered

sinc pulse, which is applied in conjunction with a slice selection gradient.

The bandwidth (BW) of the pulse determines the frequency band that is excited. Appli-

cation of a gradient field in z-direction yields a z-dependent Larmor frequency, wherefore

the BW of the pulse is imprinted on this direction, allowing excitation of an arbitrary
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slice thickness by changing the BW or the gradient amplitude. The sharpness of the slice

is determined by the bandwidth-time-product (BWT), which corresponds to the total

number of zero crossings of the RF pulse. However, with increasing BWT also the peak

amplitude of the pulse increases, resulting in a higher SAR demand and consequently a

compromise between SAR and slice sharpness has to be made. The use of a sinc pulse

comes at the expense of prolonged echo times (TEs) compared to rect pulses, since a

rewinder gradient has to be applied after the slice selection gradient. The 0th gradient

moment (i.e. the integral) of the rewinder is commonly equal to half the moment of the

slice selection gradient to allow refocusing of the magnetization after excitation. While

this poses no problem in conventional 1H imaging, the short relaxation times of 23Na can

result in significant signal decay during the rewinding. Moreover, the SAR of a sinc pulse

is high compared to the SAR of a rect pulse with similar FA and pulse duration, since

SAR ∝ |B1|. Further, the SAR increases with the BWT, which becomes apparent when

considering the maximal pulse amplitudes in figure 2. To tackle this issue, techniques

such as a VERSE routine are applied, as illustrated in the following.

Figure 2: Three sinc pulses (left) with BWT = [2.7, 6.0, 10.2, 20.0] and the correspond-
ing slice profiles (right) in the small tip angle approximation are shown. Mind
that the maximal pulse amplitude increases with the BWT and consequently
a sharper slice profile results in a higher SAR demand.

2.5.1.3 Variable-Rate Selective Excitation

Variable-rate selective excitation (VERSE) is a technique to reduce the SAR of RF pulses

[24], where both an existing RF pulse and the corresponding slice selection gradient are

modified to yield an unchanged excitation profile. Neglecting relaxation effects, the FA
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for a constant excitation pulse with duration ∆t is given by

α = γB1∆t. (2.80)

It is therefore obvious that an increase of ∆t can compensate any decrease of the ex-

citation field B1. In the following we consider an RF pulse B1(n) = B1r(n) + iB1i(n)

with N discrete samples of duration ∆t and the slice direction gradient G is chosen in

z-direction. Applying the pulse on the magnetization can therefore be expressed as the

matrix product

~M(z,N∆t) = Π1
n=Nexp


 0 Gz −B1i(n)

−Gz 0 B1r(n)

B1i(n) −B1r(n) 0

 γ∆t

 ~M(z, 0). (2.81)

Multiplication of 1 = β
β

changes the nth rotation matrix to

exp


 0 β(n)Gz −β(n)B1r(n)

−β(n)Gz 0 β(n)B1i(n)

β(n)B1r(n) −β(n)B1i(n) 0

 γ∆t

β(n)

 . (2.82)

Therefore, the nth RF entry can be modified when the corresponding gradient entry is

modified as well. This yields the VERSE-conditionsB1r(n)

B1i(n)

G

∆t =

β(n)B1r(n)

β(n)B1i(n)

β(n)G

 ∆t

β(n)
=

b1r(n)

b1i(n)

g(n)

 t(n) (2.83)

and the FA is unchanged if the temporal integral of the RF pulse and the gradient are

constant.

Since the SAR is described by

SAR ∝
N∑
n=1

|B1(n)|2∆t, (2.84)

reducing pulse areas with high amplitude while increasing the parts with low amplitude

can yield a new RF pulse with reduced SAR without changing neither the duration nor
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the excitation profile. An exemplary VERSE pulse and its initial sinc pulse (BWT =

10.2) are shown in figure 3. The SAR of the VERSE pulse is reduced by 36 % compared

to the initial pulse, without alteration of the slice profile.

Figure 3: An examplary VERSE pulse is shown, created by constraining the amplitude
to be below half the maximal amplitude of the initial sinc pulse (BWT = 10.2).
This results in a SAR reduction of 36 %, without alteration of the excitation
profile.

2.5.2 Spatial encoding

After excitation, the spatial information has to be encoded, which is based on linear

gradient fields ~G(t), whose application results in a spatially dependent Larmor frequency:

ω0(~r, t) = γ
(
B0 + ~r ~G(t)

)
. (2.85)

An object with non-interacting transverse magnetization is assumed in the following in

the rotating frame. Application of a temporally constant gradient field for the time t

results in a position-dependent Larmor frequency as described in equation 2.85. After

the gradient is switched off, all spins experience the same precession frequency again but

the accumulated position-dependent phase φ remains:

φ(~r, t) = −γ
∫ t

0

~r ~G(t′) dt′. (2.86)

The signal of the imaged object, described by the spatial magnetization distribution

M⊥(~r), is given by the spatial integral

s(t) =

∫
M⊥(~r)e−iφ(~r,t) d~r, (2.87)
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which can be expressed as

s(~k) =

∫
M⊥(~r)e−i2π

~k~r d~r, (2.88)

when the spatial frequency ~k is introduced.

~k =
γ

2π

∫ t

0

~G(t′) dt′, (2.89)

which spans the k-space.

Applying the inverse Fourier transform onto equation 2.88 yields the spatial magnetiza-

tion distribution

M⊥(~r) =

∫
s(~k)ei2π

~k~r d~k, (2.90)

if s(~k) is known.

In practice, only discrete values of ~k will be known and the Fourier transform is replaced

by a discrete FT (DFT), commonly implemented as a fast FT (FFT). The conditions on

the k-space sampling for artifact-free image reconstruction are discussed in the following

section.

Note that ~k can be changed by varying either t or ~G. Changing t while applying a gra-

dient is performed during data acquisition and is termed frequency encoding. Changing
~G, on the other hand, is called phase encoding and requires N measurement repetitions

to sample N data points to allow a constant t.

2.5.3 Discrete k-space sampling

In theory, the gradients allow free movement through k-space and therefore any arbitrary

sampling scheme can be used as long as the k-space is filled sufficiently. However, the

maximal amplitudes and maximal slewrates of the gradient system limit the choice of the

readout trajectory. Due to its efficiency, most MRI sequences apply a Cartesian readout.

In 2D Cartesian sampling, one frequency encoding and one phase encoding direction

are commonly used. In 3D MRI, the third direction is sampled with an additional

phase encoding. The Nyquist-Shannon theorem implies the maximal required k-value as

well as the minimal distance between sampling points in k-space for a given resolution

(∆x,∆y,∆z) and field of view (FOV):

∆~k =

(
1

FOVx
,

1

FOVy
,

1

FOVz

)T

, (2.91)
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~kmax =
1

2

(
1

∆x
,

1

∆y
,

1

∆z

)T
. (2.92)

Equation 2.91 directly implies that a larger FOV, which corresponds to the excited area,

results in the need of a higher sampling density in k-space and therefore prolonged scan

times. Consequently, MRI scans are commonly performed such that only the areas of

interest are excited, often via slice selection, to reduce the measurement duration. The

effect of different ~kmax on the reconstructed image is visualized in figure 4, where different

areas of k-space were cropped. It becomes apparent that the k-space center represents

the contrast and low resolution image features, whereas the k-space periphery represents

the fine image structures.

Figure 4: Different k-space coverage (shown on a logarithmic scale) and the correspond-
ing reconstructed images are shown. Cropping of the peripheral k-space areas
results in loss of fine image structures, whereas cropping of the k-space center
removes the contrast and low resolution structures.
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2.5.4 Radial sampling

The previously described Cartesian sampling is the most common k-space trajectory due

to a variety of reasons, such as efficiency and robustness against system imperfections.

However, other sampling strategies such as radial or spiral readouts are used as well.

In this work, center-out radial trajectories are used for 2D as well as 3D imaging as

illustrated in figure 5.

Figure 5: Schematic drawings of a 2D and a 3D radial readout trajectory are shown,
where the readout direction is determined by the applied gradient.

The use of radial sequences allows short TEs since no phase encoding gradient has to

be applied prior to the data acquisition. For selective sequences, such as a 2D radial se-

quence, therefore the rewinder gradient determines the minimal delay between excitation

and readout. The 3D radial sequence conventionally exploits a non-selective excitation

pulse and consequently the readout can be performed directly after the excitation pulse.

This is especially useful for 23Na imaging, where short relaxation times yield a rapid

signal decay.

Other advantages of radial imaging are the motion-robustness and the possibility to un-

dersample the k-space while preserving most of the image quality. Here, undersampling

refers to acquisition of less spokes than required to fulfill the Nyquist criterion. For a
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2D readout, the Nyquist criterion yields the minimal number of projections

NPmin = π
FOV

∆x
, (2.93)

where ∆x corresponds to the in-plane resolution.

In the 3D case, the Nyquist creterion is given by

NPmin = π

(
FOV

∆x

)2

. (2.94)

The undersampling factor (USF) is defined by

USF =
NPmin

NP

, (2.95)

where NP is the number of projections acquired in a measurement.

Figure 6 shows examples of different undersampling factors for both a 2D and a 3D

radial sequence.

Figure 6: Image reconstructions of a numerical head model with different undersampling
factors (USF = [1, 10, 50] ) are shown for both 2D and 3D radial imaging as
illustrated in figure 5. Streaking artifacts are visible in the undersampled 2D
acquisitions, whereas the artifacts in the 3D images appear noise-like.
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2.5.4.1 Density adapted radial sampling

Conventional radial sampling is achieved with a constant readout gradient, wherefore the

distance ∆k between samples on each spoke is constant along the readout direction. Due

to the radial geometry, however, the distance between spokes increases with the distance

to the k-space center, resulting in a decreasing k-space sampling density as illustrated

in figure 7. Since a more homogeneous k-space sampling increases the SNR, density

adapted (DA) readout gradients were introduced for both 2D and 3D radial trajectories

[25, 26]. They are designed to counteract the increasing distance between spokes by

reducing ∆k along the readout via variation of the gradient amplitude, as illustrated

in figure 7. The DA readout gradients consist of a ramp regiment, a trapezoidal part,

a density adapted part and a ramp down regiment. The maximal gradient amplitude

is described by G0 and t0 corresponds to the combined duration of the ramp and the

trapezoidal part. The readout duration TRO is defined as the gradient duration without

the ramp down area. The construction of the density adapted parts is illustrated in the

following.

In the 2D case, the sampling density distribution in k-space in radial direction is given

by

D2D(k) ∝ 1

2πkG(k)
. (2.96)

In practice, both the gradient amplitude and gradient slewrate are restricted due to

hardware and safety concerns. Consequently, the gradient starts with a linear ramp and

a flat top part with amplitude G0, resulting in the k-value after the time t0:

k0 = k(t0) =
γ

2π

∫ t0

0

G(t) dt. (2.97)

Hence, equation 2.96 and k0 yield the density adapted gradient for t > t0:

G2D,DA(t) =
d

dt

2πk(t)

γ

=
d

dt

2π

(√
k2

0 + γ
2π

2k0G0(t− t0)

)
γ

=
k0G0√

k2
0 + γ

2π
2k0G0(t− t0)

.

(2.98)
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For the 3D case

D3D(k) ∝ 1

4πk2G(k)
(2.99)

is valid, resulting in

G3D,DA(t) =
k2

0G0(
γk2

0G0(t− t0) + k3
0

) 2
3

. (2.100)

Figure 7: On the left hand side, a conventional radial sampling scheme and the corre-
sponding trapezoidal readout gradient are shown, illustrating the decreasing
sampling density in k-space. To counteract this effect, density adapted readout
gradients, illustrated on the right hand side, can be used. Here the gradient
amplitude is reduced during the readout and therefore the speed through k-
space is changed, resulting in decreasing distance between samples along the
readout if a fixed dwelltime is assumed. Note that the same principle can be
expanded to 3D imaging.
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2.6 Magnetic resonance fingerprinting

Magnetic resonance fingerprinting [10] is a technique for rapid and simultaneous quan-

tification of various parameters. This is achieved by acquisition of a spatially highly

undersampled time series of a sequence-driven transient state signal. The most common

aim is to simultaneously quantify both longitudinal and transverse relaxation times.

However, other parameters such as diffusion [27], velocity [11] and chemical exchange

[12] were quantified using MRF as well. A combination of 1H MRF and 23Na TSC

imaging was proposed by Yu et al. [13]. In X-nuclei MR, to the best of the authors

knowledge, MRF was only exploited in 31P magnetic resonance spectroscopy (MRS) for

quantification of the creatine kinase reaction rate [15] and in determination of the 23Na

signal contribution of different compartments [14]. In this work the potential of MRF

to quantify 23Na relaxation times is investigated.

In the following a brief overview on the basics of MRF is given. A more detailed de-

scription can be found in [28, 29, 30].

2.6.1 Transient signal evolution

Most MRI sequences use a steady state signal for imaging. The exact steady state in

these sequences is given by a multitude of parameters such as FA, TE, TR and the

off-resonance. Consequently, changing these parameters leads to a change of the state

and therefore variation of the signal. Hence, a transient signal can be constructed by

constantly changing the imaging parameters. The exact evolution of this transient state

signal depends on the tissue parameters, which is exploited in MRF to characterize

them. The most significant impact on the signal state for relaxometric quantification is

generated by the FA, TE and repetition time (TR).

To give a comprehensive example, the simulated signal evolution of brain tissue (BT;

T1 = 40 ms, T2l = 35 ms, T2s = 4.9 ms, T ∗2l = 30 ms, T ∗2s = 4.8 ms) and cerebrospinal fluid

(CSF; T1 = T2 = 60 ms, T ∗2 = 50 ms) for a FISP sequence (TE = 0.55 ms, TR = 10 ms)

with variable FA is shown in figure 8. These signal evolutions are well distinguishable due

to the different relaxation times of the given tissues. In the following, we assume imaging

a subject that solely consists of the two compartments BT and CSF. Consequently, when

an image is acquired for each signal state, the signal evolution in each voxel can be

determined and therefore each voxel can be assigned to one of the tissue types.

This approach can be expanded to a large number of parameter combinations, allowing

reconstruction of the parameters in each voxel. Relaxometric mapping with MRF is
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Figure 8: The FA pattern proposed by Jiang et al. [31] without prior inversion pulse
(left) was implemented in an ISTO simulation (see section 3.4.2) of FISP se-
quence (TE = 0.55 ms, TR = 10 ms). The resulting signal evolutions for brain
tissue (BT, T1 = 40 ms, T2l = 35 ms, T2s = 4.9 ms, T ∗2l = 30 ms, T ∗2s = 4.8 ms)
and cerebrospinal fluid (CSF, T1 = T2 = 60 ms, T ∗2 = 50 ms) show good dis-
tinguishability, which yields the basis for MRF.

based on the signal dynamics and is independent of the signal amplitude, assuming

sufficient SNR. Hence, inhomogeneous density distributions and receive sensitivities do

not alter the relaxometric mapping.

2.6.2 Undersampled image acquisition

As mentioned before, the signal evolution in each voxel can be used for reconstruction

of the parameter maps, when an image is acquired for each signal state. However,

this would lead to long acquisition times. Therefore, a key feature of MRF is the high

spatial undersampling of each time frame to reduce scan times. When different k-space

trajectories are sampled in each time frame, the overall measurement still contains the

full spatial information required to reconstruct an artifact free image, as illustrated in

section 3.5, figure 21. In practice, most MRF sequences exploit a radial or spiral readout

since their streak-like or noise-like undersampling artifacts can be well suppressed.

2.6.3 Simulation based reconstruction

A disadvantage of the transient state is that there is generally no analytic solution de-

scribing the signal evolution. This issue, however, can be tackled by conducting simula-

tions with a suitable signal model. Commonly, a discrete range is set for each parameter

that is to be quantified and all parameter combinations are stored in a lookup table

(LUT). Subsequently, the theoretical signal evolution is computed for all entries in the

36



2.6 Magnetic resonance fingerprinting

LUT and stored in a dictionary δ ∈ CM×T , where T is the number of signal observa-

tions and M the number of unique parameter combinations. The following description

is based on work by Assländer et al. [32].

Mathematically, the measurement process with an arbitrary k-space trajectory can be

described by

S = GFx, (2.101)

where x ∈ CNT corresponds to the image time series with N voxels and T time frames.

The measured signal is denoted by S ∈ CKT , where K is the trajectory length in each

time frame in k-space. F ∈ CNT×NT corresponds to be a block-diagonal matrix which

represents the Fourier transformation along all spatial dimensions for each time frame

T . The gridding operator G ∈ CKT×NT grids the Cartesian k-space onto the arbitrary

k-space trajectory.

Reconstruction of the parameters in each voxel can be achieved by finding the best

matching dictionary entry (atom) to the signal evolution in the voxel and extracting its

parameters. The dictionary entry matrix D ∈ CNT×N can be constructed by combining

the best fitting atoms of all voxels

D =



d1,1 · · · 0
...

. . .
...

0 · · · dN,1
...

...
...

d1,T · · · 0
...

. . .
...

0 · · · dN,T


. (2.102)

Therefore, DD†x is the time series of images, composed of dictionary atoms to match x.

Consequently, the forward model described by the dictionary is given by

S = GFDD†x (2.103)

and the general MRF reconstruction problem can be expressed by

min
D,x

=‖ GFDD†x− S ‖2
2, (2.104)

where the reconstructed images x and the best fitting dictionary entries D are unknown.
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To decrease memory consumption and to denoise the reconstructed images [33, 32],

the dictionary can be compressed. A common compression approach is to calculate a

singular value decomposition (SVD) which yields a new basis, sorted by the energy of

the individual basis functions.

The dictionary δ ∈ CM×T can be expressed using the SVD [32, 33]:

δ = uΣv†, (2.105)

where v ∈ CT×T and u ∈ CM×M are unitary matrices. The diagonal matrix Σ ∈ RM×T

contains decreasing singular values in decreasing order. A rank-k approximation of the

dictionary in the new space is given by

δ̃ = u†kδ, (2.106)

where uk corresponds to the first k columns of the unitary matrix.

Defining

Uk =


u1,11 · · · u1,k1

...
. . .

...

uT,11 · · · uT,k1

 , (2.107)

with ut,k ∈ C being the entries of the first k columns of u and 1 the identity matrix of

rank N , allows a low rank approximation of x:

x̃ = U †kx. (2.108)

Consequently, the compressed image series x̃ ∈ CNk and the compressed dictionary

matrix D̃ = (U †kD) change equation 2.104 to

min
D̃,x̃

=‖ GFUkD̃D̃†x̃− S ‖2
2 . (2.109)

Hence, minimization of equation 2.109 yields the optimized time series x̃ and the best

fitting dictionary entries with respect to the L2-norm, allowing the extraction of the

parameter combination in each voxel.
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2.7 Particularities of 23Na MRI

In the following, practical considerations on sodium imaging are described. A more

detailed description can be found in [34]. The main challenge in 23Na MRI is the low

SNR compared to 1H. The amplitude of the NMR signal is given by

S ∝ cγ3I(I + 1), (2.110)

which means that

S(23Na) = 0.093S(1H) (2.111)

for a similar concentration c. Considering the approximately 1000-fold lower 23Na con-

centration with respect to 1H, yields the signal ratio

S(23Na)

S(1H)
≈ 10−4. (2.112)

Moreover, the gyromagnetic ratio γ23Na is about 3.8 times smaller than γ1H, which leads

to the 3.8-fold reduced Larmor frequency. Hence, assuming the thermal noise to be

linearly dependent on the frequency [26], leads to

SNR(23Na)

SNR(1H)
≈ 2.5 · 10−3. (2.113)

Consequently, 23Na imaging suffers from long scan durations and reduced resolution to

achieve the required SNR. Further, the 23Na relaxation times are short and typically in

the order of T1 = 12 ms–65 ms, T ∗2l = 10 ms–65 ms and T ∗2s = 0.5 ms–6.5 ms [4, 8, 34]. This

motivates the use of UTE sequences for sodium imaging to minimize the signal decay

between excitation and data acquisition. Therefore, often sequences with non-selective

excitation and center-out readout techniques such as radial trajectories or twisted pro-

jection imaging (TPI) are used. The exhaustive use of non-selective excitation is a major

difference to 1H MRI, where commonly selective excitation pulses are used since here the

time for acquisition of the entire k-space is often larger than the time required to collect

sufficient SNR. In 23Na MRI however, the bottleneck is the SNR and acquisition of a

larger k-space is therefore rarely of concern. The reduced gyromagnetic ratio of 23Na

with respect to 1H allows construction of coils, producing a more homogeneous excitation

field, which is a big issue in 1H MRI at 7 T. Further, the reduced gyromagnetic ratio

makes 23Na MRI less sensitive to off-resonances with respect to 1H since ωoff = γ∆B0,
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which simultaneously comes at the expense of an increased gradient amplitude to reach

a certain k-value in k-space. However, in practice this is rarely of concern as the maxi-

mal k-values are commonly smaller in 23Na imaging due to the increased voxel size, as

explained in section 2.5.
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2.8 Sodium ions in the human body

Sodium ions play an important role in many physiological processes in the human body.

The basics of the 23Na-39K-pump and the distribution of sodium in the human head are

discussed briefly in the following. A more detailed description of 23Na physiology can be

found in standard literature [34, 35].

In a healthy cell, the 23Na concentration is in the order of
[
Na+

]
i

= 5 mmol/L–15 mmol/L,

whereas a concentration of
[
Na+

]
e

= 140 mmol/L–150 mmol/L is found in the extracel-

lular space [35]. The 39K gradient is orientated in the opposite direction, where concen-

trations of
[
K+
]
i

= 120 mmol/L–150 mmol/L and
[
Na+

]
e

= 4 mmol/L–5 mmol/L are

present. Those gradients are predominantly maintained by an enzyme in the cell mem-

brane, called the 23Na-39K-pump (23Na+-39K+-ATPase), illustrated in figure 9. The

latter extrudes three sodium ions and imports two potassium ions into the cell using

the energy obtained by transformation of adenosine triphosphate (ATP) to adenosine

diphosphate (ADP).

Figure 9: Illustration of the 23Na+-39K+-ATPase. Here, three 23Na ions are extruded
from the cell, while two 39K ions are imported under transformation of ATP
to ADP.

This, in conjunction with other ion channels in the cell membrane, leads to an approx-

imate cell potential of −70 mV. The latter plays an important role in both the central
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nervous system and muscular system. An incoming stimulus, which corresponds to a

voltage, depolarizes the cell by opening sodium channels and therefore allowing inflow

of 23Na ions into the cell. The subsequent repolarization is achieved by closing the 23Na

channels and opening other ion channels (K+, Cl-, Ca2+). This is driven forward along

the nerve fiber and therefore transmits the stimulus, where the dead time of the cell

leads to propagation of the stimulus in only one fiber direction.

A potential application of 23Na MRI is investigation of the sodium concentration in the

muscle, which can be changed due to malfunction of the 39K+-ATPase [5].

In the human head, 23Na concentrations of 20 mmol/L–60 mmol/L in white matter

(WM), 30 mmol/L–70 mmol/L in gray matter (GM) and 140 mmol/L–150 mmol/L in

CSF were measured [34]. In malignant brain tumors, on the other hand, an increased

cell division rate was found, preceded by a depolarization of the cell, resulting in an

increased 23Na concentration in the cell. This, in conjunction with a changed ratio of

intra- and extracellular volume, results in a higher sodium concentration in most brain

tumors compared to healthy tissue, enabling examination of brain cancer and monitoring

the course of therapy with 23Na MRI. Moreover, other applications of 23Na MRI in the

human head are the investigation of strokes, multiple sclerosis, Alzheimer’s disease and

Huntington’s disease [34].
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3.1 Hardware

All measurements were conducted on a whole body research system (Siemens Healthcare,

Erlangen, Germany) with a static field strength of 6.98 T, located at the German Cancer

Research Center (DKFZ) in Heidelberg, Germany. The scanner is equipped with an

AS095DS gradient coil, producing a maximal magnetic gradient of 38 mT/m and achieves

a maximal slewrate of 200 mT/m ms.

Figure 10: Photograph of the 7T whole body MR system, located at the German Cancer
Research Center (DKFZ) in Heidelberg, Germany.

3.1.1 RF coils

Two RF coils were used in this work, illustrated in figure 11. The first coil is a 23Na bird-

cage RF coil (Rapid Biomed GmbH, Rimpar, Germany), equipped with an additional
1H channel. This coil was the workhorse of this project, as it provides sufficient homo-

geneity but has only one receive channel, which decreases the computational burden in

the image reconstruction and consequently increases reconstruction speed, which was
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especially beneficial in the development process. The second RF coil used is a double-

resonant 1H/23Na head coil with 30 sodium receive channels (Rapid Biomed GmbH,

Rimpar, Germany), which was used in the 2D in vivo experiments.

Figure 11: Photograph of the RF coils used in this work. Left, the 23Na birdcage coil,
equipped with an additional 1H channel, is shown. On the right, the 23Na RF
coil with 30 receive channels and additional 1H module is displayed.

3.1.2 Phantoms

Two similar phantoms were used in this work, which are shown in figure 12. The first

phantom is cylindrically shaped with a diameter of 190 mm and a length of 160 mm.

It is filled with aqueous 0.9 % NaCl solution (compartment 0) and seven smaller vials

(compartments 1-7) with a diameter of 43 mm are inserted, which contain aqueous 0.9 %

NaCl solution and additional Agar concentrations ranging from 1 % to 7 % to cover a

range of relaxation times. This phantom was used for the 2D experiments. However, the

latter is approximately 2 mm to wide to fit into the 30-Ch coil. A second phantom version

was designed and manufactured at the house-internal workshop for the 3D experiments.

Here, the outer diameter was reduced to 180 mm to fit the 30-ch coil. The length is

155 mm and the vials have an outer diameter of 50 mm. Further, compartment 1 was

removed, as the 2D experiments showed that 1 % Agar yields relaxation times which are

not expected in vivo.
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Figure 12: The phantoms used in this work are displayed. On the left, phantom 1 is
shown, which is filled with a sodium concentration of 0.9 %. The vials con-
tain an additional Agar concentration of [1, 2, 3, 4, 5, 6, 7] %. Phantom 2,
illustrated on the right, contains similar 23Na and Agar concentrations, but
the vial with additional 1 % Agar was abandoned. The line widths are ad-
justed to represent the thickness of the acrylic glass. Image adapted from
[36].
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3.2 Reference pulse sequences and image reconstruction

In this work, well established 23Na MR sequences were used to acquire relaxometric

reference maps as well as the ∆B0 and B1 distributions. The sequence principles, the

corresponding image reconstructions and the model fitting are discussed in the following.

Note that the MRF sequences, developed in this work, are explained in section 3.3.

Since the reference sequences for 2D and 3D experiments are similar, they will be il-

lustrated jointly. Note that in the following excitation pulses are only characterized by

their nominal FA. If not stated differently, slice-selective sinc pulses are applied in 2D

imaging, whereas non-selective rect pulses are used for 3D measurements. Further, the

term DA gradients refers to either the 2D or the 3D implementation, depending on the

sequence type. All 23Na sequences, except for the transmitter voltage adjustment, use

center-out DA readout gradients.

3.2.1 23Na image reconstruction

All following 23Na measurements were reconstructed using an offline pipeline in MAT-

LAB (The MathWorks, Natick, MA, USA), which recovers all sequence parameters from

the measurement header and uses NUFFT operators for reconstruction [37]. A density

compensation was performed on the data to counteract non-homogeneous sampling den-

sity. Furthermore, the framework allows application of filters to increase the SNR and

reduce Gibbs ringing artifacts at the expense of a broadened point spread function (PSF).

The three most common filters are the Hamming, the Hanning and the Gaussian filter,

which are given by:

• Hamming:

w(k) =
25

46
+ (1− 25

46
) cos

(
πk

kmax

)
(3.1)

• Hanning:

w(k) =
1

2

(
1− cos

(
πk

kmax

))
(3.2)

• Gaussian:

w(k) = e−2(πkσ)2

(3.3)

Here, σ can be varied to adjust the amount of filtering.
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3.2.2 Determination of the 23Na reference voltage

At the beginning of each measurement session, the 23Na reference voltage was determined

by fitting a sine function to the data of 32 non-selective excitation pulses with increasing

pulse voltage. To allow full recovery towards thermal equilibrium a repetition time of

550 ms was used.

3.2.3 Relaxometric mapping

To characterize the abilities of the MRF sequences developed in this work, the resulting

MRF parameter maps were compared to those obtained with gold standard techniques,

which are explained in the following. Note that this section explains the basics of the

techniques used, whereas the sequence parameters used in the measurements are sum-

marized in section 3.7.

3.2.3.1 Mapping of longitudinal relaxation times

Mapping of the longitudinal relaxation times was performed using an inversion recovery

sequence. It begins with a non-selective excitation pulse in both the 2D and the 3D

sequence version. Next, a variable inversion time (TI) is inserted, allowing longitudinal

relaxation towards thermal equilibrium. Subsequently, an excitation pulse is applied to

convert longitudinal into measurable transverse magnetization. Finally, spatial encoding

is performed using a DA readout gradient, followed by a long pause (approximately

5T1 ≈ 300 ms for 23Na solution) to allow full magnetization recovery towards thermal

equilibrium before the next excitation. In the measurements, variation of TI permitted

sampling of the relaxation curve and a monoexponential relaxation model was fitted

pixelwise to the data after image reconstruction using a least squares fitting routine in

MATLAB:

S(TI) =

∣∣∣∣S0

(
1− 2e

−TI
T1

)
+N

∣∣∣∣ . (3.4)

Here, S0 denotes the amplitude at TI = 0 ms and N the noise floor.

A schematic sequence diagram for the 3D version is shown in figure 13.
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Figure 13: T1 mapping was performed by fitting a monoexponential relaxation model to
the data of an inversion recovery sequence. Sequence timings are not to scale.

3.2.3.2 Mapping of apparent transverse relaxation times

The transverse relaxation times were mapped with two different sequences but similar

data post processing was performed. For the 2D measurements, a gradient echo (GRE)

sequence was applied, where a single echo is acquired after excitation and echo time TE.

A long TR, in the order of 200 ms, allows recovery to thermal equilibrium before the next

excitation. The relaxation curve was sampled by variation of TE and a biexponential

relaxation model was fitted pixelwise to the time series in image space:

S(TE) =

∣∣∣∣∣S0

(
0.6e

− TE
T∗2s + 0.4e

−TE
T∗

2l

)
+N

∣∣∣∣∣ . (3.5)

Here, a fixed ratio of 0.6/0.4 for the short/long relaxation contribution was assumed,

based on the theoretical relaxation theory for a single tissue compartment. This allowed

comparison with the MRF sequences, where the same ratio was implied in the dictionary

simulations. The short relaxation time T ∗2s was restricted to a range between 1 ms and

20 ms, whereas T ∗2l was constrained to 10 ms–70 ms. Moreover, a monoexponential signal

model was fitted to the data, where T ∗2 = T ∗2s = T ∗2l was used in equation 3.5. Each

voxel was assigned to either bi- or monoexponential relaxation, based on the coefficient

of determination (R2) of the fits. In phantom measurements, the mean and standard

deviation (SD) of the relaxation times in each compartment were calculated for com-

parison with the MRF results. Biexponential voxels were neglected from the analysis in

predominantly monoexponential areas and vice versa.

The 3D reference measurements for determination of the transverse relaxation times

were conducted with a multi-echo GRE. Here, a rewinder gradient is used to null the

0th moment of the readout gradient, followed by a second readout. This procedure is

48



3.2 Reference pulse sequences and image reconstruction

repeated seven times such that eight readouts are performed, resulting in eight samples

along the TE direction per TR. A spoiler gradient is used to dephase remaining transverse

magnetization and a long TR allows relaxation towards thermal equilibrium. Since the

echo spacing between the readouts within each TR is constant, changing the first TE

results in a shift of all eight echo times. This allows dense sampling of the relaxation

curve by varying the TEs. Similar to the single-echo GRE measurements, both a bi-

and a monoexponential model were fitted to the reconstructed data and the relaxation

type was assigned to each pixel, based on R2. A schematic sequence diagram of the 3D

multi-echo GRE is shown in figure 14.

Figure 14: The multi-echo GRE sequence, used for 3D mapping of the transverse relax-
ation times, is shown. In the 2D experiments, a single-echo sequence with
a similar sequence schematic, but acquiring only one readout per TR, was
used. Sequence timings are not to scale.

3.2.4 B0 mapping

Inhomogenieties in the static magnetic field result in position dependent off-resonances,

which were mapped using the phase difference between two fast low-angle shot (FLASH)

sequences with different TEs. Here, dephasing of the magnetization at the end of each

TR is achieved by a spoiler gradient in readout direction and RF spoiling is used. The

off-resonance distribution can then be calculated as

∆B0 =
φ2(~r)− φ1(~r)

TE2 − TE1

=
∠
(
im2(~r)
im1(~r)

)
2π (TE2 − TE1)

, (3.6)

where φ1 and φ2 are the position dependent phases and im2 and im1 correspond to the

complex valued reconstructed images.
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Mind that only off-resonances in the interval (− 1
2(TE2−TE1)

, 1
2(TE2−TE1)

) can be quantified

due to the 2π periodicity of the signal phase.

3.2.5 B1 mapping

Mapping of the excitation field was performed using the phase sensitive method [38, 39].

Here, an excitation pulse with FA = 2α is applied, immediately followed by an α-pulse

with relative phase of 90◦ and subsequent readout. A second measurement is conducted,

where the pulse phase of the first pulse is incremented by 180◦. The phase difference

between both acquisitions is free of phase offsets from eddy currents and other sources

and the resulting phase is a monotonic function of the actual FA, which allows mapping

of the excitation field [38].

3.2.6 1H imaging

Two 1H sequences were used in this work. A localizer sequence, based on a FLASH

sequence, was used to image the phantoms and for initial B0 shimming.

In the 2D in vivo study, a turbo spin echo (TSE) image of each head was acquired

for co-registration with the 23Na images and subsequent defining of regions of interest

(ROIs) in BT and CSF. A detailed description of 1H sequences can be found in [17, 23].
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3.3 MRF sequences

3.3 MRF sequences

In this work three MRF sequences were developed, which are illustrated in the following.

The first one is a 2D MRF sequence, developed to investigate the feasibility of MRF for
23Na relaxometry [40].

When this was successful, a 3D version of the sequence was implemented to increase

the covered volume per measurement time and the SNR efficiency. Furthermore, a

simulation based on ISTOs was implemented to describe the full dynamics of spin 3/2

nuclei, as described in section 2.3. Finally, an optimized 3D MRF sequence, termed

MRF II, was developed. Here, the readout efficiency was increased by implementing a

hybrid of single- and a double-echo readouts. Moreover, the FA pattern was optimized

using the CRLB [41, 42] to improve the T1 encoding.

In all MRF sequences in this work, the transient signal is generated by varying FAs, TEs

and TRs and their commonalities are illustrated in the following. The specifics of each

sequence will be discussed below.

Each MRF measurement of this work can be divided into NPT pulse trains (PTs), in

which the same FA, TE and TR patterns are used to drive the magnetization in the same

transient state conditions. To ensure that the magnetization is in thermal equilibrium

at the beginning of each PT, consecutive PTs are separated by a pause of 1 s, allowing

full relaxation of the magnetization between them.

Each PT consists of a succession of Nc cycles (equivalent to TR intervals), where each

cycle uses a unique combination of FA, TE and TR. In this work, Nc = 1000 was

chosen for all experiments. Since all acquisitions within one PT are acquired in different

transient states, each readout is measured in a different time frame in k-space. Hence,

for a single-echo sequence the number of time frames Nf is equal to the number of cycles

Nc, whereas a double-echo sequence would yield Nf = 2Nc.

Since one pulse train results in acquisition of one spoke in Nf time frames in k-space,

measurement of NPT pulse trains results in NPT ×Nf k-spaces. However, the k-spaces

of all PTs can be cyclewise combined because they are sampled in the same Nf transient

states, resulting in Nf k-spaces containing NPT spokes each. Hence, each time frame

can be sampled homogeneously by incrementing the radial readout direction of each

PT by 2π
NPT

for a 2D sequence and a similar approach for the 3D case, respectively.

Furthermore, the spatial encoding is enabled by rotating the readout direction within

each pulse train successively by the golden angle. This finally results in Nf rotated,

homogeneously sampled time frames in k-space, as illustrated for the 3D case in section

3.3.2, figure 18.
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Therefore, the entire MRF data set contains the full spatial information required for

reconstruction of the images even if the individual time frames are highly undersampled.

The varying FAs mainly enable encoding of the longitudinal relaxation, whereas the

apparent transverse relaxation is predominantly determined by the varying TEs.

3.3.1 2D 23Na MRF

The 2D 23Na MRF sequence is based on a radial spoiled-steady-state free precession

(SSFP/FISP) sequence [31] and a sequence diagram is shown in figure 16.

The FA and TE pattern, used in each PT, are illustrated in figure 15.

Figure 15: The FA pattern used in 2D MRF is shown on the left, whose heuristic con-
struction is described in section 4.2.1.1. A pseudo-randomly chosen TE pat-
tern was used, ranging from 1.55 ms to 21.55 ms and illustrated on the right.
Image adapted from [40].

The FA pattern was constructed heuristically (see section 4.2.1.1) and consists of two

half sinc functions, starting and ending with the maximal FA of 90◦. Furthermore, step-

like modulations toggle the pattern between the original value and the value scaled by

4/3 every five cycles. Entries that would exceed 90◦ were not scaled. The TE pattern

was chosen pseudo-randomly, ranging from the minimal echo time TEmin = 1.55 ms

to 21.55 ms, constituting a trade-off between sensitivity towards T ∗2s and T ∗2l as well as

the scan efficiency. The short TE values are necessary to sample the short transverse

relaxation time T ∗2s, whereas the long TE-delays mainly encode T ∗2l and T ∗2 . Even longer

TEs could further improve encoding of T ∗2l and T ∗2 but would also linearly prolong the

scan duration. As described above, consecutive time frames in k-space are successively

rotated by the golden angle (111.2◦) to enable spatial encoding.

Each cycle starts with a VERSE sinc pulse with a duration of 1024 µs, a BWT of 2.7

and a variable FA according to the FA pattern. Subsequent to the excitation pulse, a
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rewinder gradient is inserted, whose length, in conjunction with half the pulse duration,

determines the minimal echo time TEmin. Next, a variable TE-delay is applied and a

DA readout gradient is used for data acquisition, followed by a rewinder gradient. Last,

a spoiler gradient in slice direction is used to dephase the spins by 4π over the slice at the

center of the next excitation pulse. Since the next cycle starts directly after the spoiler

gradient, the varying TE results in the same variation in TR: TR(i) = TR0 + TE(i).

Figure 16: A schematic of the 2D MRF sequence is illustrated, timings are not for
scale. A slice selective VERSE pulse is used for excitation, followed by a
rewinder gradient and variable TE. Spatial encoding is conducted using den-
sity adapted readout gradients and a subsequent spoiler gradient is used to
dephase the spins 4π in slice direction. Image adapted from [40].

The dictionary simulation for the 2D MRF sequence was based on adapted Bloch equa-

tions, as described in section 3.4.1.

3.3.2 3D 23Na MRF I

The MRF I sequence is an extension from 2D 23Na MRF to a 3D version, based on a 3D

center-out radial sequence with DA readout gradients [26]. A schematic of the sequence

is displayed in figure 17.

The MRF I sequence uses the same FA pattern as the 2D sequence and the TE pattern

only differs by a constant offset of −1.0 ms: TE3D(i) = TE2D(i)−1 ms. This TE reduc-

tion is possible because no slice selection rewinder gradients are needed due to the use

of non-selective excitation pulses.

Similar to the 2D MRF sequence, the readout direction of each PT was changed to

homogeneously cover a sphere in k-space. Furthermore, within each PT all readout

directions are successively rotated by the 13th tiny golden angle [43] to allow full k-space

coverage over the time dimension, as illustrated in figure 18. The tiny golden angles lead
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Figure 17: A schematic of the 3D MRF I sequence is shown, which starts with a non-
selective excitation pulse with variable amplitude. Both FA and TE pattern
were adopted from the 2D MRF sequence (figure 15). However, the TE
pattern was globally reduced by 1 ms, which was enabled by the absence of
a rewinder gradient after slice selection. A density adapted readout gradient
was used for spatial encoding, followed by a rewinder and a spoiler gradient.
Sequence timings are not to scale. Image adapted from [36].

to a similar k-space coverage as the conventional golden angles but with decreased eddy

currents, due to the smaller angle increment.

In each cycle the VERSE pulses are replaced by rect pulses with a duration of 1 ms.

Similar to the 2D sequence, the excitation is followed by a variable TE, a readout and

a rewinder gradient, which nulls the 0th gradient moment. Finally, a spoiler gradient is

applied in z-direction to dephase the magnetization in each voxel by 2π before the next

excitation pulse.

Since the required duration of both the rewinder and the spoiler gradient are resolution-

dependent, the time after the readout is unique to the nominal image resolution of the

measurement. The common image resolutions of (3 mm)3 and (5 mm)3 were used in this

work. The delays between readout and next excitation pulse for the latter were 3.79 ms

and 2.58 ms for the gradient system used in this work.

To accurately reconstruct the relaxation parameters, the different delays were taken

into account in the dictionary simulations, which were based on ISTOs, as described in

section 3.4.2.
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Figure 18: The spatial encoding of 3D MRF is illustrated. The first pulse train (blue)
results in acquisition of 1000 successively rotated time frames in k-space,
containing one spoke each. Relaxation of the magnetization towards thermal
equilibrium is allowed by inserting a pause of 1 ms. Consequently, the second
pulse train (red) results in acquisition of a second spoke in the same time
frames. Hence, acquisition of NPT results in 1000 rotated time frames, each
containing NPT spokes. Image adapted from [36].

3.3.3 3D 23Na MRF II

The 3D MRF II sequence is based on MRF I with two major improvements.

Looking at the sequence diagram of the MRF I sequence (figure 17), it becomes apparent

that the measurement time is not used efficiently since long TEs result in long waiting

periods without data sampling. This becomes even more evident when comparing the

total duration of a PT (∼ 25 s) with the sum of all echo times (10.53 s) within one PT.
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Thus, approximately 42 % of the PT duration are waiting periods and therefore unused

time. Since the TE pattern is a random distribution, a certain percentage will have a

TE-delay longer than the time required for an additional readout.

Hence, the readout efficiency was increased by inserting an extra readout between the

pulse and the original readout in those cases. This allows 425 extra readouts per pulse

train, resulting in acquisition of 1425 time frames per PT without changing the duration

of the latter. The echo times of these extra readouts TEadd are also varied, ranging from

0.55 ms to 5.05 ms to improve encoding of the short transverse relaxation time. Here,

the 425 echo times, suitable for acquisition of an additional echo, are binned into 10

subsets. The echo times (0.55, 1.05, . . ., 5.05) ms were assigned to the bins, ensuring a

homogeneous TEadd distribution in the specified range. A schematic sequence diagram

for MRF II is shown in figure 19.

Figure 19: The 3D MRF II sequence differs from the MRF I sequence in two ways. First,
an optimized FA pattern was used, shown in figure 20. Second, an additional
spoke, illustrated in purple, was acquired when the current TE was longer
than the time required for data acquisition and rewinding of the 0th gradient
moment. The echo time TEadd of the additional readout was varied between
0.55 ms and 20.55 ms. Image adapted from [36].

Second, an improved FA pattern was implemented, illustrated in figure 20. It was

numerically optimized using the CRLB, as described in section 4.2.1.1.

For this sequence four dictionaries were calculated. First, dictionaries based on ISTOs

for the isotropic resolutions of (3 mm)3 and (5 mm)3 were constructed. Second, two ad-

ditional dictionaries were calculated based on Bloch equations to investigate the impact

of the signal model on the quantified parameters.
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Figure 20: The 3D FA pattern was numerically optimized using the CRLB, as discussed
in section 4.2.1.1. Due to the computational burden, only 50 consecutive FAs
were optimized and concatenated 20 times to yield 1000 pattern entries. The
full pattern is shown on the left, whereas the right subfigure illustrates the
50 entries after optimization. Image adapted from [36].
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3.4 Dictionary simulations

In the following, the dictionary simulation process is described. The 2D sequence was

used as a proof of concept, wherefore a simplified model based on Bloch equations was

used for the dictionary simulation for a start. This comes with the advantage of reduced

computational burden and well-evaluated pre-excisting simulation code.

When the feasibility of 2D MRF was shown, two 3D MRF sequences were developed

and a sophisticated ISTO simulation was implemented to cover the full spin dynamics of

spin 3/2 nuclei. For the MRF II sequence, an additional Bloch dictionary was calculated

to investigate the differences in the results for the two signal models.

All dictionaries were compressed using an SVD, as described in section 3.4.3.

3.4.1 2D MRF dictionary simulation

The dictionary for the 2D MRF sequence was simulated using a Bloch model, imple-

mented in MATLAB and accelerated by the use of GPUs. Here the effect of RF pulses,

divided into n time steps, can be simulated using a rotation matrix R around the effective

field ~Beff . The magnetization ~Mi+1 is then a function of the previous state:

~Mi+1 = R ~Mi. (3.7)

In the absence of an RF pulse, the system can be described by

~Mi+1 = A ~Mi +B, (3.8)

with

A =


e
−∆t

T2 0 0

0 e
−∆t

T2 0

0 0 e
−∆t

T1

 (3.9)

and

B =


0

0

1− e−
∆t
T1

 . (3.10)
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Consequently, the state after the RF pulse can be expressed as

~Mn = An

Rn

...
A2

(
R2

(
A1

(
R1

~M0

)
+B1

))
+B2

 ...


+Bn, (3.11)

which allows description of the state of the magnetization at any given point.

This approach was used to simulate a dictionary for the 2D MRF sequence. Here,

T ∗2 = T2 was assumed to reduce the computational burden and because the relaxation

times are in the order of TR. The Bloch model was adapted to yield biexponential

transverse relaxation behavior by simulating two pools with similar parameters except

for T ∗2 , where one pool was characterized by T ∗2 = T ∗2l and the other pool by T ∗2 = T ∗2s.

This allowed construction of a biexponential transverse relaxation by summation of the

signals of both pools at the end of the simulation, weighted with a ratio of 0.6/0.4.

The simulation was initialized with the relaxation times and all sequence relevant pa-

rameters. Spatial variations of the excitation slice profile were considered by simulating

401 independent isochromats distributed equidistantly along the slice direction covering

3.4 times the slice thickness. A 20 µs temporal grid was used to simulate the VERSE

pulse and the corresponding VERSE slice selection gradient. Summation of the complex

transverse magnetization along the slice direction at the end of the simulation resulted

in a complex signal evolution for each parameter set.

In this work, the biexponential parameter space was: T1 = [20, 21, . . ., 70] ms, T ∗2l = [15,

16, . . ., 60] ms, T ∗2l = [1.0, 1.3, . . ., 14.8] ms and ∆B0 = [−60, −58, . . . .60] Hz. Tissues

experiencing a monoexponential relaxation, such as CSF, were considered in: T1 = [30,

31, . . ., 90] ms, T ∗2 = [5, 6, . . ., 80] ms and ∆B0 = [−60, −58, . . ., 60] Hz.

The biexponential and the monoexponential signals were concatenated to yield a single

dictionary, which was compressed as described in section 3.4.3.

3.4.2 3D MRF dictionary simulation

To enable simulation of the full spin dynamics of sodium, an ISTO simulation was

implemented for the 3D MRF sequences.

3.4.2.1 ISTO simulations

An ISTO simulation was implemented as described in section 2.3, which is based on

the model by Hancu et al. [20]. However, two additional steps regarding the relaxation
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times, were considered in this work as described in the following.

The ISTO model inherently yields a biexponential relaxation for both the transverse and

the longitudinal magnetization. However, fitting of a biexponential inversion recovery

curve to determine the longitudinal relaxation components is challenging, wherefore in

literature the longitudinal relaxation is commonly described with a single monoexpo-

nential relaxation constant T1.

Hence, in this work a monoexponential T1-estimate was constructed, as illustrated in

the following. Considering a biexponential function aea
′t + beb

′t with a + b = 1, a first

order Taylor expansion yields

aea
′t + beb

′t = a

∞∑
n=0

(a′t)n

n!
+ b

∞∑
n=0

(b′t)n

n!
≈ (a+ b) + aa′t+ bb′t

= 1 + (aa′ + bb′)t ≈
∞∑
n=0

(
(aa′ + bb′+)t

)n
n!

= e(aa′+bb′)t.

(3.12)

Comparison with equations 2.77 yields a = 0.8, a′ = −1
T1l

, b = 0.2 and b′ = −1
T1s

, which

results in the monoexponential estimate

T1 ≈
1

0.8
T1l

+ 0.2
T1s

. (3.13)

Equation 3.13 in conjunction with equations 2.75 and 2.63 leads to a bijective transfor-

mation

T1 =
1

1.6J2 + 0.4J1

T2l =
1

J1 + J2

T2s =
1

J0 + J1

(3.14)

and

J0 =
5

6T1

− 4

3T2l

+
1

T2s

J1 =
4

3T2l

− 5

6T1

J2 =
5

6T1

− 1

3T2l

.

(3.15)
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3.4 Dictionary simulations

In aqueous sodium solution, the inverse of the Larmor frequency is long compared to the

correlation time (ω0τc � 1) and a monoexponential transverse relaxation is expected,

wherefore J0 = J1 = J2 has to be valid. This however results in T1 = T2, which is not

found, when comparing the results of FID and IR experiments. This can be explained

by intravoxel dephasing due to field inhomogenieties in the static field, resulting in the

apparent transverse relaxation time T ∗2 (T ∗2s and T ∗2l respectively). Assuming a Lorentzian

off-resonance distribution pL with a half width at half maximum (HWHM) χL yields:

T ∗x =
1

2πχL + 1
Tx

, (3.16)

where x ∈ {2, 2s, 2l}.
These considerations were used in the dictionary simulation process as explained in the

following.

Three versions of the quantitative signal simulation were implemented, which are equiv-

alent and only differ in their computational performance for different sizes of parameter

sets as explained below. The simulations are initialized with the sequence (FA pattern,

timings, spoiling) and sample parameters (T1, T2l, T2s,∆B0). In a first step, the relax-

ation times are converted into spectral density parameters using equation 3.15. Each

parameter combination is represented by 100 isochromats to allow dephasing and po-

tential formation of spin echoes and stimulated echoes. The interaction matrices M (see

appendix, equations 7.1 and 7.2) are constructed for each parameter combination for

both cases with and without presence of an RF pulse. Subsequent application of a nu-

merical eigenvalue decomposition on M allows solving of equation 2.55 for each sequence

event, which enables simulation of the spin dynamics for each time step. Phase spoiling

was implemented by applying a phase of 2π over the sample using equation 2.35. The

signal for the fingerprint is extracted using s(t) = T11(a)(t)−T11(s)(t), summed over all

isochromats. Consequently, the simulation is independent of the spatial encoding in the

MRF sequence.

In this work, the parameter space for the 3D dictionaries was T1 = [20, 21, . . ., 70] ms,

T2l = [15, 16, . . ., 50] ms, T2s = [1.0, 1.3, . . ., 14.8] ms, ωQ = 0 and ∆B0 = [−50,

−48, . . ., 50] Hz for the biexponential dictionary part. Monoexponential tissues, such

as CSF, were taken into account in the monoexponential part: T1 = T2 = T2l = T2s =

[20, 21, . . ., 90] ms, ωQ = 0 and ∆B0 = [−50, −48, . . ., 50] Hz. Parameter sets that

violate 0 < J2 < J1 < J0 were neglected, for example (T1, T2l, T2s) = (20, 50, 5) ms

=̂(J2, J1, J0) = (35, −15, 215) Hz.
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To introduce T ∗2 , an off-resonance range of ± 100 Hz was simulated around each cen-

tral off-resonance ∆B0 ∈ [−50, −48, . . ., 50] Hz, yielding ∆B0 = [∆B0 − 100,∆B0 −
99, , ...,∆B0 + 100] Hz. Subsequently, the signals were interpolated along the ∆B0-axis

to yield a step size of 0.5 Hz. Different T ∗2 decays were constructed by summation of the

signals along the ∆B0-axis with varying χL, such that T2 > T ∗2 > 0.4T2 in 1 ms steps.

For the biexponential case T2l > T ∗2l > 0.6T2l was chosen. Since T ∗2s changes less then T ∗2l
(compare equation 3.16), here a step size below 1 ms is automatically achieved.

The biexponential and the monoexponential signal sets were concatenated to construct

a single dictionary, which was subsequently compressed as explained in paragraph 3.4.3.

Three equivalent versions of the simulation were implemented, optimized for different sce-

narios: The first version was implemented in MATLAB and runs on the CPU. This ver-

sion is the fastest if the signal evolution of only a small number of parameter combinations

is of interest (e.g. the FA optimization, see section 4.2.1.1). Secondly, a GPU-accelerated

version was implemented, allowing fast calculation of medium-sized parameter sets. In

spirit of reproducible research, both of the latter implementations are published [36] and

can be found online under https://github.com/7TGroupDKFZ/ISTO_MRF.

The last simulation version was tailored to calculate large data sets, such as complete dic-

tionaries, using the computational infrastructure at the German Cancer Reserach Center

(DKFZ) at the time of this thesis. Here, the simulation starts with the pre-computing of

the spectral density parameters and the parallelized eigenvalue decomposition required

for solving equation 2.55, which is performed on two OpenStack clusters (28 logical pro-

cessors: Intel Broadwell family 6 model 61, 240GB RAM). The pre-computed objects

are subsequently sent to the GPU-cluster (10x(Nvida V100)). Here, the signal evolution

is computed for each set of inputs, implemented in PYTHON 3.7. Last, the resulting

signal evolutions and the corresponding LUTs are send to a MATLAB worker (32 logical

processors Intel Xeon E5-2650 v2, 512GB RAM), where the Lorentz-combination and

the SVD are performed (see subsection 3.4.3). In this setup, a total duration of 2-3

days, depending on the exact sequence and parameter space, was required to simulate a

dictionary.

3.4.2.2 Bloch simulations

For the MRF II sequence an additional Bloch dictionary was calculated to evaluate the

benefit of ISTO simulations over the simplified Bloch model.

Here, the Bloch simulation used for 2D dictionary calculation was applied. However,

to allow a fair comparison between the ISTO and the Bloch model, the exact same
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3.4 Dictionary simulations

dictionary entries were considered for the Bloch and the ISTO simulation. Further, T ∗2 -

effects were taken into account using the same approach through the Lorentz-distribution

as in the ISTO simulations.

3.4.3 Dictionary compression

All entries in each dictionary were normalized, such that the L2-norm of each signal

evolution is equal to 1. Next, the dictionaries were compressed in MATLAB using an

SVD up to rank 12, which improves data handling and highly reduces the computa-

tional burden in the reconstruction. Furthermore, the low rank compression is useful for

denoising of the data in the reconstruction.
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3.5 MRF reconstruction

The reconstruction of the MRF data is explained in the following, which is valid for both

2D MRF and 3D MRF. The different readout trajectories are taken into account in the

NUFFT operators.

An offline reconstruction pipeline was developed, which retrieves all imaging parameters

required for reconstruction, such as number of spokes and k-space sampling trajectories

from the measurement data header.

As described in section 3.1.1, a single channel birdcage RF coil and an RF coil with

30 receive channels were used in this work. To reconstruct data acquired with the

latter, sensitivity maps are required, whose construction is explained below the MRF

reconstruction section.

3.5.1 LR ADMM reconstruction

Quantitative parameter maps were reconstructed using a low rank alternating direction

method of multipliers (LR ADMM) approach, proposed by Asslaender at al. [32] as

explained in theory section 2.6.3. Here, a conjugate gradient (CG) algorithm based on

NUFFT operators is used to iteratively reconstruct the measured data in the compressed

image space, sorted by their weights. For the 3D data, the LR ADMM approach was

reduced to its CG part in order to increase the reconstruction speed. In case of multi-

channel data, sensitivity maps, whose construction is described below, were intrinsically

used in the NUFFT operators. An L2-norm in the wavelet domain was applied as spatial

regularization (2D: λphantom = 1 × 10−2 and λinvivo = 5 × 10−2 ; 3D: λ = 0) and the

spatial information is recovered in the compression process, as illustrated in figure 21.

The quantitative parameter maps were extracted for each pixel by finding the highest

scalar product between the pixel coefficients in the compressed basis and all dictionary

entries. This approach intrinsically determined if the given pixel decayed with bi- or

monoexponential relaxation without prior knowledge.

In the following, monoexponential pixels are masked in all T ∗2l and T ∗2s maps in pink and

biexponential pixels are masked in the T ∗2 maps, respectively. Moreover, when mean

and SD were calculated, monoexponential pixels were excluded from analysis in mainly

biexponential areas and vice versa.
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3.5 MRF reconstruction

Figure 21: Applying the SVD compression onto the MRF data in image space yields
the approximated data in the compressed basis and the spatial information is
recovered. Voxelwise comparison of the signal evolution with the simulated
dictionary allows retrieving of the relaxometric parameters. Image adapted
from [40].

3.5.2 Reconstruction of sensitivity maps

Sensitvity maps are required to accurately reconstruct the phase information in the

image domain in multi-channel MRI. To determine the sensitivity maps, each time frame

of the measured data was reconstructed with a NUFFT operator for each receive coil

individually. Next, complex summation of all time frames yielded a single image for each

receive coil. These images were converted into Cartesian k-spaces, which were then used

to construct the sensitivity map of each coil using an ESPIRiT approach [44].
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3.6 Simulation experiments

In this work numerical simulations were used to investigate a variety of applications,

such as the construction of suitable FA patterns, the minimal number of spokes, PV

effects and parameter bias due to B1 inhomogeneities.

This section is supposed to shortly give a general idea on the basic concepts of those

simulations. The specifics of each simulation are described in the corresponding result

sections. All simulations were implemented in MATLAB if not stated otherwise and

can be divided into two groups: the signal simulations and the spatial simulations, as

discussed in the following.

3.6.1 Signal simulation experiments

Signal simulations were used for investigations which needed no spatial information.

These were the determination of the distinguishability of different signal evolutions,

parameter bias due to PV effects, impact of B1 deviations and comparison between the

ISTO and the Bloch model.

The signal simulations were all based on either the ISTO or the Bloch simulation frame-

work, described in section 3.4.

3.6.2 Spatial simulation experiments

Spatially resolved simulations were performed to investigate the feasibility of 23Na MRF,

to determine the minimal number of spokes for the 2D sequence and for investigation of

the achievable image resolution with 3D MRF. These simulations all aimed to construct

a numerical k-space, which was subsequently fed into the same reconstruction pipeline

as used for the measured data.

The 2D simulations were performed by applying NUFFT operators [37] on different

compartments of a numerical head model [45], yielding a separate k-space for each com-

partment and time frame. Due to k-space linearity, this allowed summation of the time

frames, weighted by complex scaling factors to describe both the 23Na concentration and

the current transient state.

The achievable image resolution for the 3D MRF framework was investigated by ana-

lytically calculating the k-space of each compartment with the Fourier Domain method

proposed by Koay et al. [46]. Again, the k-spaces were weighted with the simulated

signal evolutions and then summed up.
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3.7 Measurements and data analysis

3.7 Measurements and data analysis

In the following section the measurements conducted in this work are summarized. The
23Na transmitter voltage was adjusted at the beginning of each measurement session, as

described in section 3.2.2.

3.7.1 2D measurements

The 2D MRF sequence was used to show the feasibility of 23Na relaxometric mapping

using MRF. The measurements conducted are illustrated in the following.

3.7.1.1 Phantom measurements

The 2D MRF sequence was validated in phantom 1 with the birdcage coil by comparing

relaxometric maps acquired with MRF with results obtained with reference methods.

The following measurements were all acquired in the same 2D slice with a nominal

resolution of 2× 2×12 mm3 using density adapted readout gradients (512 samples, G0 =

20 mT/m, t0 = 120 µs). Further, all sequences applied a sinc pulse (τ = 1.024 ms, BWT

= 2.7), except for the MRF sequence, where the latter was modified using a VERSE

routine [47].

The 2D MRF sequence was acquired with 14 spokes per time frame, based on the

simulation results (see section 4.1.1). This, in conjunction with the use of 11 averages,

yielded a measurement time of 1:00h. The VERSE pulses were constructed such that

the maximal RF amplitude of the VERSE pulse was half the maximal amplitude of the

initial sinc pulse.

The reference maps of the transverse relaxation times were determined by acquiring

an image stack with varying TE using a single-echo GRE sequence. Both a bi- and

a monoexponential relaxation model were fitted pixelwise to the data, as discussed in

section 3.2.3.2. The imaging parameters are summarized in table 2. The FA was limited

to 60◦ due to SAR and pulse-voltage constraints. Acquisition of 18 echoes resulted in a

total measurement duration of 3:12h.

The longitudinal relaxation times were mapped using an inversion recovery sequence. As

illustrated in section 3.2.3.1, here a non-selective inversion pulse, a sinc pulse and DA

readout gradients were used. Again, the sinc pulse was similar to the pulse in the MRF

sequence but without the use of a VERSE routine. The total duration for acquisition of

an image stack with 10 inversion times (see table 2) was 1:40h.
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Table 2: Overview of the sequence parameters used in 2D phantom measurements. All sequences used DA readout gradients
(512 samples, G0 = 20 mT/m, t0 = 120 µs) and were acquired with a nominal resolution of 2 × 2×12 mm3.

FA(deg) TE and TI (ms) TR (ms) spokes averages TA (h)
2D 23Na MRF 0 to 90 TE = 1.55 to 21.55 13.34 to 33.34 14 × 1000 11 1:00

GRE (T ∗2l, T
∗
2s, T

∗
2 ) 60 TE = [1.24, 1.35, 2.0, 2.5, 3.0, 4.0,

5.0, 6.0, 7.0, 9.0, 13, 17, 23, 27,
35, 40, 50, 60]

200 320 10 3:12

GRE (∆B0) 45 TE = [1.55,6.55] 25 320 20 0:05
IR-GRE (T1) 180, 63 TE = 1.34; TI = [3.2, 10, 20, 40,

70, 100, 130, 160, 200, 250]
300 200 10 1:40
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3.7 Measurements and data analysis

To compare the results of the MRF and the reference measurements, mean and SD of

all relaxation times were quantified in each phantom compartment. In this process, each

compartment was assigned to either bi- or monoexponential transverse relaxation, based

on the ratio Nbi

Nbi+Nmono
and mismatched voxels were excluded from numerical analysis.

The ∆B0 maps were compared visually and by calculating the mean absolute difference

between the ∆B0 maps
∑N |∆B0,MRF−∆B0,reference|

N
.

3.7.1.2 In vivo measurements

The 2D MRF sequence was used to perform an in vivo study in five healthy volunteers

([22, 23, 24, 24, 25] years, 3 female and 2 male) with approval from the local ethics

committee and according to the institutional guidelines. Here, the 30-Ch head coil

was used to increase the SNR. A nominal resolution of 4 × 4×12 mm3 (512 samples,

G0 = 9 mT/m, t0 = 100 µs) was used and 7 spokes were acquired per time frame, based

on the simulation results (see section 4.1.1). To increase the SNR, 21-fold averaging

was performed, resulting in a scan duration of 1:00h. Subsequently, a TSE sequence

(TE = 72 ms, TR = 3000 ms, (0.7 mm–0.8 mm)2 in-plane resolution) with the same

slice thickness as the 23Na MRF measurement was applied to acquire 1H images. The

latter were co-registered onto a sodium image, constructed by summation of all MRF

time frames in the image domain. Mean and SD of the 23Na relaxation times were

then quantified in BT and CSF ROIs, which were manually drawn in the TSE images.

Again, biexponential voxels in predominantly monoexponential areas were neglected in

the numerical analysis and vice versa.

The influence of undersampling on the quantified parameters was investigated by mea-

suring volunteer 1 for a second time with the same protocol but using 147 instead of

7 spokes per time frame and a single average instead of 21. This resulted in the same

measurement duration and fulfilled the Nyquist criterion of approximately 140 spokes.

3.7.2 3D measurements

When the feasibility of 23Na MRF was shown using the 2D sequence, two 3D MRF

sequences were developed for more time-efficient relaxometric mapping. The measure-

ments conducted are illustrated in the following.
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3.7.2.1 Phantom measurements

The 3D MRF sequences were benchmarked using the phantom 2 (figure 11) and the bird-

cage coil. The following phantom measurements were all acquired in the same measure-

ment session to guarantee a similar position in the scanner, spatial alignment between

the measurements and a similar B0 shim. Further, a nominal resolution of (3 mm)3 and

a readout duration of 10 ms with 384 samples per spoke were used. The sequence pa-

rameters are summarized in table 3. After B0 shimming and determination of the 23Na

reference voltage, a measurement with the MRF II sequence was performed. Here, 150

pulse trains were acquired, resulting in a scan duration of 1:04h. Next, the off-resonance

distribution was acquired with a phase difference measurement, followed by an MRF

I measurement. Subsequently, the B0 shimming was repeated to eliminate potential

phase drifts; however, none were observed. To allow mapping of the reference transverse

relaxation times, four GRE measurements with eight echoes each were acquired, which

resulted in a total scan duration of 0:56h. Subsequently, T1 maps were acquired by

measuring a set of IR scans, which required 5:48h.

The impact of virtually reduced measurement time on the parameters was investigated by

retrospective undersampling of the MRF II data. Here, only every [2nd, 3rd, 4th, 6th, 9th,

25th] spoke of each time frame was reconstructed to yield reduced virtual measurement

times of [32, 21, 16, 11, 7.3, 2.6] min.
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Table 3: Overview of the sequence parameters used in 3D phantom measurements. All sequences were acquired with a
nominal resolution of (3 mm)3 and density adapted readout gradients (384 samples, G0 = 7.55 mT/m, t0 = 150 µs).

FA(deg) TE and TI (ms) TR (ms) spokes averages TA (h)
3D MRF II 20 to 91 TE = 0.55 to 20.55 14.8 to 24.8 150 × 1425 1 1 : 04
GRE (∆B0) 45 TE = [0.55,5.55] 25 8000 1 0 : 07
3D MRF I 0 to 90 TE = 0.55 to 20.55 14.8 to 24.8 150 × 1000 1 1 : 04
multi-echo GRE
(T ∗2l, T

∗
2s, T

∗
2 )

60 TE = [0.35, 2.1, 3.85, 5.6, 12.4,
14.1, 15.9, 17.6, 24.4, 26.1, 27.9,
29.6, 36.4, 38.1, 39.9, 41.6, 48.4,
50.1, 51.9, 53.6, 60.4, 62.1, 63.9,
65.6, 72.4, 74.1, 75.9, 77.6, 84.4,
86.1, 87.9, 89.6]

120 7050 1 0 : 56

IR-GRE (T1) 180, 90 TE = 0.55; TI = [4, 20, 40, 70,
100, 130, 170, 200, 250]

290 8000 1 5 : 48

Phase sensitive
(B1)

90 TE = 0.55 190 3800 1 0 : 24
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3.7.2.2 In vivo measurements

The relaxation times in the human head were determined in an in vivo study, conducted

in four healthy volunteers ([25, 24, 26, 27] years, 1 female and 3 male) with the MRF

II sequence. Here, a nominal resolution of (5 mm)3 was used and 150 pulse trains were

acquired (TRO = 10 ms, Nsamples/projection = 384), resulting in a measurement duration

of 1:04h.

Mean and SD of the relaxation times were determined in BT and CSF. The ROIs were

drawn in seven central slices of the first coefficient image in the compressed basis. To

decrease PV effects on the quantified parameters, border voxels between different tissue

types were eroded. To estimate the impact of virtually reduced measurement time on

the quantified in vivo parameters, the data was retrospectively undersampled to yield

virtual measurement times of [32, 21, 11, 6.4] min. These experiments suggested that a

32 min measurement yields a good compromise between image quality and scan duration.

Hence, volunteer 4 was measured a second time with reduced number of spokes per time

frame (75 PTs) and therefore with a shortened scan duration of 32 min.
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4 Results

This chapter presents the development and validation of both the 2D and the 3D MRF

frameworks. First, the 2D MRF simulation experiments are illustrated, which were

used for FA pattern design and for investigation of the MRF quantification capabilities

in spatially resolved simulations. Phantom measurements were used for validation of

the 2D MRF sequence by comparison of the quantified parameters with gold standard

references. This was followed by an in vivo study with the objective to quantify the

relaxation parameters in the human head. Next, the 3D MRF sequences were developed,

where multiple simulation experiments were applied for improvement and evaluation of

the 3D MRF framework. A subsequent phantom study was conducted to compare the

encoding capabilities of the two 3D MRF sequences with the references. Last, a second

in vivo study was performed with the final MRF sequence developed in this work.

4.1 2D MRF

In the following, the 2D MRF results are presented, parts of which are published in [40].

4.1.1 Simulation experiments

Simulations were applied to determine the minimal number of spokes and to test the

2D 23Na MRF sequence with two different FA patterns. The first pattern (see section

2.6, figure 8) is identical to the 1H FISP MRF pattern reported by Jiang et al. [31], but

without the inversion pulse. The inversion was not applied to reduce the SAR demands

and because of its limited effectiveness due to short relaxation times of 23Na nuclei.

The second FA pattern was heuristically designed to improve the T1 encoding and its

construction is described in the following.

4.1.1.1 2D MRF FA pattern design

To improve the T1 encoding, various FA patterns were constructed from combinations of

sine, sawtooth wave, step and sinc functions and their encoding capabilities were com-

pared based on their auto-correlations. The correlations were determined by calculating

the scalar product between one BT-simulating fingerprint (T1 = 37 ms, T ∗2l = 40 ms,

T ∗2s = 4.6 ms) and the other signal evolutions in the T1-T ∗2l- and the T1-T ∗2s-plane of the

dictionary (see section 3.4.1). Monoexponential relaxation was taken into account by

calculating the correlations in the T1-T ∗2 -plane through a CSF-like entry (T1 = 64 ms,
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T ∗2 = 56 ms). The entries above 99.95 % were counted in each correlation plane as a

measure of specificity and the FA pattern with the lowest count was chosen. It is shown

in section 3.3.1, figure 15 and consists of two half sinc functions, starting and ending

with the highest entry. Stepwise modulations were imprinted onto the pattern, toggeling

the amplitude between the initial value and the value scaled by 4/3 every five cycles.

These rapid changes were found to improve the T1 encoding, which later was confirmed

in the FA pattern optimization for the 3D MRF II sequence (see section 4.2.1.1). The

resulting correlation plots are displayed in figure 22, where the number of correlations

above 99.95 % was reduced by 33 % compared to the 1H FISP MRF pattern. This steeper

correlation distribution corresponds to improved distinguishability between the entries

and therefore hints increased specificity introduced by the new pattern.

Figure 22: The auto-correlations in the T1-T ∗2l- and the T1-T ∗2s-plane were calculated for
a BT-like parameter set (T1 = 37 ms, T ∗2l = 40 ms, T ∗2s = 4.6 ms) and in
the T1-T ∗2 -plane for CSF (T1 = 64 ms, T ∗2 = 56 ms). The total number of
correlations above 99.95 % in the proposed 2D FA pattern was reduced by
33 % with respect to the 1H FISP MRF pattern. Image adapted from [40].
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4.1 2D MRF

4.1.1.2 2D MRF imaging simulations

The imaging process was simulated to probe the impact of the two different FA patterns

on the quantified parameters. Furthermore, the impact of different numbers of spokes

on the resulting parameters was investigated and the minimal number of spokes was

determined for the two nominal in-plane resolutions of 2×2 mm2 and 4×4 mm2.

The imaging process was simulated in a transverse slice through a numerical brain model

[45], intersecting the ventricles. Here, a NUFFT operator [37] with Ns spokes was applied

onto high resolution maps of GM, WM and CSF, which were scaled to the estimated

sodium concentrations of 40 mmol/L, 30 mmol/L and 154 mmol/L. This was repeated

1000 times, where the readout directions were successively rotated by the golden angle,

which resulted in 3 × 1000 k-spaces, one for each time frame and tissue type. Each

k-space was then scaled with the corresponding theoretical signal evolution for the given

MRF sequence, obtained with a Bloch simulation. Here, relaxation times of T1 = 37 ms,

T ∗2l = 40 ms and T ∗2s = 4.6 ms were assumed in BT (GM and WM), whereas CSF was

simulated with T1 = 64 ms and T ∗2 = 56 ms. Next, the compartments were combined,

yielding 1000 time frames in k-space, which were subsequently reconstructed similar to

measured data, as explained in section 3.5.

To determine the minimal number of spokes, this procedure was performed for Ns =

[1, 2, ..., 15] for an in-plane resolution of 4×4 mm2 and Ns = [2, 4, ..., 30] for a resolution

of 2×2 mm2, where the heuristically constructed FA pattern was used. For each number

of spokes, the mean and SD were calculated in the relaxometric maps for BT and CSF

and the results are illustrated in figure 23 for the in-plane resolution of 2×2 mm2. The

results of the 4×4 mm2 simulation are displayed in the appendix, figure 43.

The minimal number of spokes was defined such that the deviation of each quantified

relaxation parameter was less than 5.0 % with respect to the results obtained with the

maximal number of spokes. For the 2×2 mm2 resolution, the minimal number of spokes

per time frame was 14, whereas 7 spokes were found to be sufficient for a resolution of

4×4 mm2. The resulting maps (2×2 mm2, Ns = 14) are shown in figure 24 in conjunction

with the corresponding ground truth (GT) maps. Mean and SD of all relaxation times

in BT and CSF were determined and are displayed in table 4. The mean absolute

difference between MRF and the GT was 2.6 %, where the largest deviation was −10.6 %,

found in T ∗2s in BT. Next, a simulation was conducted to compare the quantification

capabilities of both FA patterns in presence of thermal noise. Here, k-space data were

constructed for both patterns and complex Gaussian noise was added to the latter such

that the reconstructed images visually matched some measured data. The resulting
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Figure 23: The mean and SD of the relaxation parameters in BT and CSF are illustrated
for varying number of spokes per time frame and a nominal in-plane resolution
of 2×2 mm2. The minimal number of spokes per time frame was 14 as here the
mean deviation of each quantified relaxation parameter was less than 5.0 %
with respect to the results obtained with the maximal number of spokes. For
the 4×4 mm2 resolution a minimum of 7 spokes per time frame was found, as
shown in the appendix, figure 43. Image adapted from [40].

maps, are shown in figure 24 and the quantified means and SDs are summarized in table

4. The largest bias was −19.5 %, found in the T ∗2l values of BT. The mean absolute

difference between the ground truth and MRF with the 23Na FA pattern was 4.7 %,

whereas MRF with the 1H FISP FA pattern deviated by 4.9 %. Consequently, the

heuristically constructed pattern was used in the measurements.
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4.1 2D MRF

Figure 24: Simulation study of the 2D MRF framework in a numerical head phantom,
intersecting the lateral ventricles. The ground truth maps are shown in the
first row. Monoexponential voxels are masked in the T ∗2l and T ∗2s maps and
vice versa in the T ∗2 map. For simplicity, off-resonances were neglected in the
simulations. Noiseless reconstructions of the 2D MRF framework are shown
in the second row, whereas a comparison of the two FA patterns in presence
of noise is illustrated in the third and fourth rows. Mean and SD in BT and
CSF of each map are summarized in table 4. Image adapted from [40].
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Table 4: Mean and SD were quantified in BT and CSF in all maps shown in figure 24.

BT CSF
FA pattern T1 (ms) T ∗2l (ms) T ∗2s (ms) T1 (ms) T ∗2 (ms)

Ground truth 37.1 40.0 4.7 64.0 56.0
23Na MRF, noiseless 37.2± 7.4 39.5± 13.8 5.2± 2.3 63.9± 3.4 55.7± 4.0

23Na MRF 38.5± 13.3 32.2± 15.3 4.7± 3.5 63.9± 4.5 55.9± 5.1
FISP MRF 39.8± 16.3 33.7± 14.9 4.7± 3.2 63.7± 5.2 55.5± 3.9

4.1.2 Phantom measurements

Phantom measurements were conducted to validate the 2D MRF sequence by comparing

the resulting parameter maps to the ones obtained with reference methods. The mea-

surements and the corresponding sequence parameters (table 2) are described in section

3.7.1.

The measured T1 maps acquired with both MRF and the reference method are shown

in figure 25 in conjunction with the determined off-resonance distributions. Further,

the first coefficient image in the compressed basis x1 is shown, which is constructed by

applying the low rank compression onto the reconstructed time frames in image space.

The MRF T1 maps appear noisier but the mean relaxation times in each compartment

differed only 2 % on average with respect to the reference and a maximal deviation of

15 % was found. Good agreement in the ∆B0 maps was found and the pixelwise mean

absolute difference between MRF and the reference measurement was 2.7 Hz.
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Figure 25: The relaxation times were acquired in a phantom, containing 0.9 % NaCl
and various Agar concentrations ([0, 1, . . ., 7] %), with 2D MRF as well as
reference methods. The resulting T1 maps are shown, for which mean and
SD in each compartment are summarized in the appendix, table 10. In the
second column the ∆B0 distributions are displayed. In the last column the
first coefficient image in the compressed basis x1 is shown. Image adapted
from [40].

The measured T ∗2l, T
∗
2s and T ∗2 distributions are illustrated in figure 26. Here, the MRF

framework determined biexponential relaxation in [18, 49, 73, 87, 89, 96, 98, 98] % of

the voxels in the vials containing [0, 1, 2, 3, 4, 5, 6, 7] % Agar, whereas the reference

method yielded [1, 39, 59, 85, 95, 98, 98, 97] %. In the vial containing 1 % Agar, the

differentiation was unstable for both methods, suggesting that the bi- and the monoex-

ponential relaxation model both describe the relaxation behavior similarly well. The T ∗2l
values measured with MRF were overestimated by 15 % on average, whereas the short

component was underestimated by 14 %. Mean and SD of all relaxation times in each

compartment are illustrated in figure 27 and the corresponding numbers can be found

in the appendix, table 10. Averaged over all quantified parameters, a mean deviation

of 4.0 % between the results obtained with MRF and the reference results was found,
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whereas the mean absolute difference was 12.4 %.

Figure 26: The transverse relaxation times are shown, acquired with 2D MRF and ref-
erence methods. Here, monoexponential voxels are masked in pink in the
T ∗2l and T ∗2s maps, whereas biexponential voxels are masked in the T ∗2 maps.
Mean and SD of all compartments are summarized in the appendix, table 10.
Image adapted from [40].
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Figure 27: Mean and SD of all relaxation times in each phantom compartment are il-
lustrated, measured with the reference methods and 2D MRF. All values are
summarized in the appendix, table 10. Mind that the compartments with
0 % and 1 % Agar in the T ∗2(l) subfigure decay with a monoexponential T ∗2 ,
whereas the other compartments experience a biexponential relaxation and
T ∗2l is shown. The average deviation between the MRF results and the refer-
ences is 4.0 %.

4.1.3 In vivo studies

The relaxation parameters in BT and CSF were determined in an in vivo study, con-

ducted in five healthy volunteers. Here, a nominal resolution of 4×4 mm2 was used and 7

spokes were acquired per time frame with 21-fold averaging, resulting in a measurement

time of approximately 1 h. The resulting maps of an representative volunteer (volunteer

1) are illustrated in figure 28. In the first two images of the first row, the measured

T1 and ∆B0 distributions are shown, whereas the second row displays T ∗2l, T
∗
2s and T ∗2 .

Again, biexponential voxels are masked in pink in the monoexponential map and vice

versa. The third image in the first row shows the first coefficient image in the compressed

basis x1 in conjunction with the ROIs, drawn in the co-registered 1H images, which were

used for quantitative analysis.

Mean and SD determined in BT and CSF of all relaxation parameters in each volun-

81



4 RESULTS

teer are summarized in table 5. In BT, the average T1 values were in the range of

(37.2± 9.4) ms–(43.3± 12.4) ms, where the mean was (38.9± 4.8) ms. The long and

short transverse relaxation parameters were (29.2± 4.9) ms and (4.7± 1.2) ms on aver-

age, respectively. In CSF a mean T1 of (67.1± 6.3) ms was found and the monoexpo-

nential transverse relaxation time was T ∗2 = (41.5± 3.4) ms.

Figure 28: Relaxometric maps of an exemplary volunteer (volunteer 1) are illustrated,
measured with the 2D MRF framework. Mean and SD of the relaxation times
in the ROIs were calculated and are summarized in table 5 for all volunteers.
Image adapted from [40].

Volunteer 1 was measured a second time with 147 spokes per time frame with a single

average, resulting in the same scan duration as required for the measurement with 7

spokes and 21 averages. The resulting maps are shown in figure 29 and the quantified

relaxation parameters are compared to the first measurement in table 6. The mean

relaxation times were in good agreement and the maximal deviation was −6.9 % in T ∗2l,

which is well below the error of the individual measurements. However, decreased image

quality was found in the 147 spokes measurement compared to the 7 spoke measurement

and the SDs of all parameters were increased.
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Table 5: Relaxometric mapping was performed in five healthy volunteers using 2D 23Na
MRF. Mean and SD of all relaxation times were evaluated in BT and CSF for
each volunteer. Table adapted from [40].

BT CSF
Volunteer T1 (ms) T ∗2l (ms) T ∗2s (ms) T1 (ms) T ∗2 (ms)

1 38.9± 10.2 28.8± 11.1 4.9± 2.5 69.1± 10.9 47.4± 6.6
2 37.2± 9.4 32.0± 11.3 4.6± 2.4 65.9± 15.5 43.7± 7.7
3 37.8± 10.6 25.1± 9.6 4.5± 2.8 63.1± 16.6 32.2± 7.6
4 43.3± 12.4 27.1± 11.2 4.4± 2.8 71.3± 15.2 40.6± 8.1
5 37.3± 10.4 30.9± 11.6 4.9± 3.2 65.9± 10.0 43.4± 7.9

mean 38.9± 4.8 29.2± 4.9 4.7± 1.2 67.1± 6.3 41.5± 3.4

Figure 29: Volunteer 1 was measured a second time with 21-fold more spokes but a
single average, leading to the same scan duration as in the first measurement.
Similar relaxation times but increased noise and higher SDs in the quantified
parameters are found, summarized in table 6. Image adapted from [40].
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Table 6: Comparison of the quantified relaxation times acquired with 7 spokes per time
frame using 21-fold averaging and 147 spokes per time frame with a single
average [40].

BT CSF
spokes/averages T1 (ms) T ∗2l (ms) T ∗2s (ms) T1 (ms) T ∗2 ms

7/21 38.9± 10.2 28.8± 11.1 4.9± 2.5 69.1± 10.9 47.4± 6.6
147/1 38.8± 12.1 30.8± 14.2 4.7± 3.3 65.5± 11.9 48.1± 6.7
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4.2 3D MRF

When the feasibility of 23Na MRF was shown using the 2D MRF framework, two 3D

MRF sequences were developed to improve the quantification efficiency. First, the 3D

MRF I sequence was implemented as an extension of the 2D MRF sequence. Here, ISTO

simulations were applied in the dictionary calculation, which allowed description of the

full spin dynamics of spin 3/2 systems. Second, the MRF II sequence was developed,

which uses a numerically optimized FA pattern and a hybrid of single- and double-echo

readouts.

In the following, the 3D MRF results are presented, parts of which are published in [36].

4.2.1 Simulation experiments

Numerical simulations were used for FA pattern optimization to improve the T1 encoding

capability of the MRF II sequence. Further, the impact of PV effects on the quantified

parameters was investigated and the smallest quantifiable image feature was estimated

with respect to the nominal resolution. Finally, the influence of B1 deviations on the

quantified parameters was studied.

4.2.1.1 3D MRF FA pattern design

In the 3D 23Na MRF sequences two different FA patterns were used. The MRF I sequence

applies the same pattern as used in 2D MRF. For the MRF II sequence an FA pattern

was optimized with the use of the CRLB [41, 42] as described in the following. Here,

~s(T1, T2l, T2s) denotes the normalized signal evolution of the described MRF II sequence

for a given FA pattern and parameter set (T1, T2l, T2s). Note that T2-relaxation (not T ∗2 )

was assumed in the optimization to decrease the computational burden by simulating

an on-resonant spin ensemble without the use of a Lorentzian off-resonance distribution.

Further, finite differences were used to approximate the derivatives: T ux = Tx(1 + dT )

and T lx = Tx(1 − dT ), with 0 < dT < 1. Differentiation of the signal ~s along each

parameter dimension yields:

y =


d

dT1

d
dT2l

d
dT2s
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from which the Fisher information matrix F ∈ C4×4 can be constructed:

F = yy†. (4.2)

The FA pattern was then optimized by minimizing
(F−1)

11

T1
∝ CRLB(T1) using the

GlobalSearch algorithm in MATLAB. Here, each FA was constrained to be between 20◦

and 91◦.

To decrease the computational burden, the optimization was performed for one repre-

sentative parameter set (T1 = 40 ms, T2l = 30 ms, T2s = 4.5 ms, dT = 0.001 and ∆B0 =

0 Hz) after conversion into spectral density parameters. Since the computational bur-

den of the optimization increases exponentially with the number of FA entries, only 50

subsequent FAs were optimized, concatenated 20 times to obtain a pattern with 1000

entries. Note that a unique signal pattern over all cycles is achieved due to the changing

TE and TR even though repeating the 50 pulses 20 times.

The resulting FA pattern is illustrated in section 3.3.3, figure 20. Here, rapid increases

of the FA and subsequent exponential-like decreases were repeatedly found within the

50 FAs. These observations are similar to the findings in the construction of the 2D

pattern, where toggling the FA was found to improve the parameter quantification.

A 2.08-fold reduction of the CRLB(T1) of the optimized pattern was found compared

to the MRF I pattern for the optimization data set. Further, the CRLB(T1) of both

patterns was calculated for 1000 random parameter combinations in T1 = [20, 21, . . .,

70] ms, T2l = [15, 16, . . ., 50] ms and T2s = [1.0, 1.3, . . ., 14.8] ms. Here, on average

a 1.72-fold CRLB(T1) reduction was found, whereas the maximum and the minimal

reduction factors were 3.13 and 1.26. These findings indicate, that the T1 encoding

was improved over the entire parameter space and not only for the optimization data

set. This was confirmed in the phantom measurements where the quantification in all

compartments was improved, as illustrated in section 4.2.2.

Correlation plots for the 3D sequence with both the optimized and the 2D pattern, were

constructed (see figure 30) through the T1-T2l, the T1-T2s and the T2l-T2s plane, where

the central parameters were T1 = 40 ms, T2l = 30 ms and T2s = 4.6 ms (J0 = 193.8 Hz,

J1 = 23.6 Hz, J2 = 9.7 Hz). Parameter combinations violating J0 ≥ J1 ≥ J2 > 0 were

neglected in this process and are masked in pink. For all cases, the correlations were

narrowed for the optimized pattern compared to the initial one, also implying improved

parameter distinguishability.
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Figure 30: The auto-correlations in three orthogonal slices were calculated through the
point T1 = 40 ms, T2l = 30 ms and T2s = 4.6 ms (J0 = 193.8 Hz, J1 = 23.6 Hz,
J2 = 9.7 Hz). Here, values that violate J0 ≥ J1 ≥ J2 > 0 are masked in pink.
The optimized FA pattern shows a narrower distribution in all correlation
planes, indicating improved parameter distinguishability.

4.2.1.2 PV effects on the quantified relaxation parameters

If a voxel is composed of a mixture of different tissue types, the signal evolution cannot be

described well by the single-compartment model, which can yield a parameter bias. To

estimate this bias at the example of a BT-CSF interface, a set of two-compartment signal

evolutions was constructed by combining the simulated signal evolutions of BT (T1 =

40 ms, T2l = 35 ms, T2s = 4.9 ms, T ∗2l = 30 ms, T ∗2s = 4.8 ms) and CSF (T1 = T2 = 60 ms,

T ∗2 = 50 ms) with weighting factors between 0 % and 100 %. Subsequently, each mixed

fingerprint in the set was matched to the dictionary to extract the relaxation parameters.

This allowed investigation of the parameter bias and which ratio results in bi- and which

in monoexponential classification. The quantified parameters after dictionary matching

are illustrated in figure 31 in conjunction with the fraction-weighted sum of the input
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parameters.

Even though this weighted sum is the best estimate, it does not pose a ground truth and

consequently a numerical comparison between it and the matched parameters is waived.

Figure 31: Partial volume effects were investigated by matching the combined signal of
variable CSF and BT ratios to the dictionary. For a CSF content of 0 %–
48 %, biexponential relaxation behavior was found, whereas 49 % and above
resulted in monoexponential classification. Especially strong deviations were
found in T ∗2l for a CSF to BT ratio of approximately 1:1, since here effectively
triexponential relaxation is present, which is not represented in the dictionary.

The quantified T1 curve behaves approximately linearly with respect to the tissue frac-

tion, similar to the weighted sum. Only a small jump is observed at the point where the

detected biexponential transverse relaxation switches to a monoexponential relaxation.

A biexponential transverse relaxation was found for a CSF content of 0 %–48 %, whereas

a monoexponential relaxation was found for a CSF proportion of 49 % and higher. In

the monoexponential T ∗2 curve, a relaxation time below both input parameters is found

at the point where the transition from bi- to monoexponential relaxation is detected.

These effects can be explained since the mixing of the compartments results in a triexpo-

nential relaxation, which is not represented in the dictionary. However, in conventional

FID fitting similar problems are expected since here the model also does not describe

the data well.
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4.2.1.3 Simulations on the resolution

Two main effects can lead to the PV bias, described in the previous section: First, the

voxel size can be larger than the anatomical structures, resulting in a tissue mixture

in each voxel. Second, signal bleeding due to the PSF can cause a mixed signal in the

voxels even if the nominal resolution is similar to the image features.

In MR imaging the nominal resolution is determined by the most peripheral point ac-

quired in k-space (see section 2.5.3). The real resolution, however, is lower since the

PSF, which describes the response of an imaging system to a point source, is no Dirac

delta function. This results in smearing of the signal from neighboring voxels and there-

fore causes PV effects. The shape of the PSF mainly depends on the k-space sampling

scheme but also on effects like relaxation during data acquisition, reconstruction and

data filtering. Hence, knowledge on the PSF is of high interest to estimate the minimal

object size that can be imaged with a given sequence. For sampling schemes that fulfill

the Nyquist criterion, the PSF can be simulated straightforwardly and the real reso-

lution can be estimated by the width of the PSF. However, the heavy undersampling

of each time frame, the low rank compression and the non-linear reconstruction make

this approach unpractical for MRF. Consequently, simulations of the imaging process

were applied to estimate the real resolution, as this approach inherently covers most of

these issues. However, note that the choice of the phantom also impacts the achievable

resolution.

A numerical resolution phantom was constructed, consisting of a cylinder with 190 mm

diameter. Here, a 23Na concentration of 40 mmol/L and relaxation times of T1 = 40 ms,

T ∗2l = 30 ms (T2l = 35 ms) and T ∗2s = 4.8 ms (T2s = 4.9 ms) were assumed to imitate BT.

Eight cylinders with diameters of [3, 5, 8, 10, 20, 30, 40, 50] mm were incorporated, as

illustrated in figure 32. Their 23Na concentration was assumed to be 150 mmol/L and

the relaxation times were T1 = 60 ms and T ∗2 = 50 ms (T2 = 60 ms) to mimic CSF.

An analytical k-space was determined for both compartments individually in each MRF

time frame with the Fourier domain method proposed by Koay et al. [46]. Next, each

time frame was weighted with the theoretical signal evolution, obtained using the ISTO

simulation. Furthermore, transverse relaxation during data acquisition was incorporated

by weighting each spoke in k-space with an exponential decay. Combination of the two

compartments yielded a single set of time frames in k-space, which was subsequently

reconstructed similar to the MRF measurements. These simulations were conducted for

the nominal resolutions of (3 mm)3 and (5 mm)3 with both 150 and 50 spokes per time

frame. To estimate the real resolution, line profiles were determined along three straights

89



4 RESULTS

Figure 32: The phantom used for resolution simulations is illustrated. It is cylindrically
shaped and the relaxation times mimic BT (T1 = 40 ms, T2l = 35 ms, T2s =
4.9 ms, T ∗2l = 30 ms, T ∗2s = 4.8 ms). Eight CSF-like (T1 = T2 = 60 ms, T ∗2 =
50 ms) vials are inserted, whose diameter range from 3 mm to 50 mm. In the
resulting relaxometric maps, the parameter distributions along the red lines
were evaluated in the direction of the arrows to estimate the real resolution
of the MRF II sequence.

in the reconstructed parameter maps, as illustrated in figure 32.

The plots along the central line are illustrated in figure 33 for a nominal resolution of

(3 mm)3, whereas the other lines are shown in the appendix, figures 44 and 45.

Good differentiation between bi- and monoexponential relaxation was found in all cases,

which is in agreement to the findings in section 4.2.1.2. For the 150 spokes, the line plots

indicate that the relaxation parameters in liquor structures with a size of approximately

10 mm can be quantified for the (3 mm)3 resolution, since this allows eroding one pixel at

each side of the BT-CSF interface. The highest parameter bias at compartment borders

was found in T ∗2s and at the center of the compartments in T ∗2l. The 50 spoke simulations

showed stronger deviations, especially in T ∗2l and T ∗2s, where differences up to 56.7 % in

the compartment center compared to the ground truth were found.

The simulations with a resolution of (5 mm)3 yielded similar results, which are shown in
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appendix 7.5.1.

Figure 33: Line plots (150 spokes, 50 spokes and the ground truth) through the quantified
parameters along the second line are shown, intersecting the liquid-filled vials
with diameters of 50 mm and 30 mm.

4.2.1.4 Simulations on the influence of B1 deviations

In this work, a uniform B1 distribution was assumed in all measurements. However, any

B1 inhomogenieties linearly transfer into deviations in the actual FA, which can result

in parameter bias.

To estimate the order of magnitude of this effect, the signal evolutions for BT (T1 =

40 ms, T2l = 35 ms, T2s = 4.9 ms, T ∗2l = 30 ms, T ∗2s = 4.8 ms) and CSF (T1 = T2 =

60 ms, T ∗2 = 50 ms) were simulated for a relative B1 range of 0.8 to 1.2 and subsequently

matched to the dictionary. The resulting relaxation parameters are illustrated in figure

34. In the realistic relative B1 range of 0.87 to 1.095, the maximal relative deviation was

15.0 %, found in T1 of BT. In T1 an approximately linear slope dT1

dB1
was observed, which

was about -0.18 in CSF and 1.22 in BT. This B1 range was estimated from measurements

in the human head, conducted in a healthy volunteer. Here, the maps were acquired

with the phase sensitive method (FA = 90◦, TE = 0.55 ms, TR = 190 ms, (3 mm)3, TA
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= 24 min) and subsequently masked by thresholding of the image data. Next, the B1

data was plotted in a histogram, shown at the right of figure 34. The bins with 1/10th

the count of the highest bin count were determined to yield a realistic B1 range, which

resulted in the borders of 0.870 and 1.095. In this area, 87.6 % of the B1 values are

represented and the remaining 12.4 % values are mostly found in peripheral head areas

like the nose and ears (not shown), where a poor quantification is expected.

Figure 34: The impact of B1 deviations on the quantified parameters in BT and CSF
was simulated, shown in the left subfigure. Here the dashed lines correspond
to a relative B1 of 0.870 and 1.095. These limits were extracted by finding
the values for which the B1 distribution, illustrated in the right, was below
10 % of the maximum of the measured B1 distribution in a human head. The
specified interval contained 87.6 % of all measured B1 vaules.

4.2.2 Phantom measurements

Phantom studies were used to compare the relaxation parameters quantified using the

reference methods with the ones determined with both 3D MRF sequences. The phantom

has a 23Na concentration of 0.9 % (154 mmol/L) and six vials with additional Agar

concentration in the range of 2 %–7 %. All measurements had a nominal resolution of

(3 mm)3 and the sequence parameters are summarized in the methods section 3.7.2, table

3.

The central slice of all T1 maps is shown in figure 35 in conjunction with the off-resonance

distributions ∆B0. The T1 map acquired with MRF I shows increased values in the

liquid compartment compared to the reference map, whereas the results of the MRF

II measurement are in good agreement with the reference. Further, good accordance

between all ∆B0 maps is visible.

In figure 36 the transverse relaxation maps are shown. Note that monoexponential

92



4.2 3D MRF

Figure 35: The central slice of the T1 and the ∆B0 maps are compared, acquired with
the reference methods, MRF I and MRF II. The T1 encoding is strongly
improved in MRF II compared to MRF I due to the optimized FA pattern.
Mean and SD of T1 for all phantom compartments are illustrated in figure
37 and summarized in the appendix, table 11. Good agreement between all
∆B0 maps is found. Image adapted from [36].

areas are masked in pink in the T ∗2l and T ∗2s maps, whereas biexponential relaxation

is masked in the T ∗2 maps. Differentiation of the relaxation type was based on the

goodness of the fit R2 for the reference method and was automatically determined in the

dictionary matching step for the MRF sequences. Good differentiation between bi- and

monoexponential relaxation was found in all cases. Difference images between the maps

acquired with MRF and the reference are shown in the appendix, figures 49 and 50.

Mean and SD of all relaxation times in each compartment, evaluated over the ten central

slices, are illustrated in figure 37 and summarized in the appendix, table 11. Both the

mean deviation and the mean absolute deviation of MRF I with respect to the references

were 10.8 %. MRF II, on the other hand, deviated by 1.0 % on average and the mean

absolute deviation was 4.6 %.
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Figure 36: Comparison of the quantified transverse relaxation times in the central phan-
tom slice. In the T ∗2l and T ∗2s maps, monoexponentially relaxing voxels are
masked in pink, whereas in the T ∗2 maps biexponential areas are masked, re-
spectively. Mean and SD of all compartments are summarized in figure 37
and in the appendix, table 11. Image adapted from [36].
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Figure 37: Mean and SD are illustrated for all relaxation parameters in each phantom
compartment, evaluated over the ten central slices. Mind that in the T ∗2(l)

subplot T ∗2 is shown for the compartment with 0 % Agar, whereas the com-
partments with Agar concentrations of 2 %–7 % show T ∗2l. The mean devia-
tion between the results acquired with reference methods and with MRF I is
10.8 %, whereas MRF II only differed by 1.0 % on average. Image adapted
from [36].

Further, the impact of reduced measurement time was investigated by reconstructing

only subsets of the measured data. The corresponding reconstructed data is shown in

figure 38 for virtual measurement times of [2.6, 7.3, 11, 16, 21, 32, 64] min, where 64 min

corresponds to the full data set. For the 2.6 min measurement, a significant loss of the

spatial information is found and the differentiation between bi- and monoexponential

relaxation is perturbed. However, the relaxation times only differ by 3.2 % on average

compared to the full data set. The maximal deviation was found in the liquid com-

partment, where T ∗2 was reduced by 14.4 % from (51.2± 5.4) ms to (43.8± 10.8) ms. A

virtual measurement time of 21 min appeared to be a good compromise between scan

duration and image quality as here only minor alterations of the spatial information were

found and the average deviation in the relaxation parameters was −1.1 %. The maximal

deviation was a −3.1 % change of T ∗2l in the compartment containing 7 % Agar.
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Figure 38: Subsets of the measured phantom data were reconstructed to investigate the
impact of reduced measurement time on the quantitative maps. The spatial
structure is highly affected for the short scan durations and a maximal pa-
rameter deviation of 14.4 % with respect to the full data set was found in
the liquid-filled compartment. However, the virtual measurement of 21 min
yielded a good compromise between image quality and scan duration. Image
adapted from [36].
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4.2.3 In vivo studies

An in vivo study was conducted in four healthy volunteers using the MRF II frame-

work. The nominal resolution was (3 mm)3 and the measurement duration was 64 min.

Mean and SD of all relaxation times were determined in ROIs in BT and CSF, evalu-

ated over the seven central slices, and are summarized in table 7. In BT, an average

T1 of (35.0± 3.2) ms was found, whereas the mean transverse relaxation times were

T ∗2l = (29.3± 3.8) ms and T ∗2s = (5.5± 1.3) ms. In CSF T1 = (61.9± 2.8) ms and T ∗2 =

(46.3± 4.5) ms were found.

The relaxometric maps in six equidistant slices of a representative volunteer (volunteer

1) are shown in figure 39. The upper row shows the first coefficient in the compressed

basis. The second row corresponds to the T1 maps, where good distinction between CSF

and BT is achieved. In the T ∗2l and T ∗2s maps monoexponential voxels are masked in

pink, which is found in areas dominated by CSF. Erroneous T ∗2l quantification is found

in areas with high off-resonances, i.e. in the frontal lobe and near the ear canals.

Table 7: Relaxometric mapping was performed in four healthy volunteers using MRF II.
Mean and SD of all relaxation times were evaluated in 7 slices in each volunteer
[36].

BT CSF
Volunteer T1 (ms) T ∗2l (ms) T ∗2s (ms) T1 (ms) T ∗2 ms

1 35.3± 6.2 29.9± 7.9 5.6± 2.6 64.2± 5.1 50.9± 8.4
2 34.6± 5.6 29.0± 6.9 5.4± 2.4 60.6± 6.0 44.4± 9.6
3 35.0± 6.6 29.1± 7.8 5.2± 2.4 60.3± 6.2 39.0± 7.4
4 35.0± 6.8 29.0± 8.0 5.7± 2.8 62.8± 5.0 50.9± 10.3

mean 35.0± 3.2 29.3± 3.8 5.5± 1.3 61.9± 2.8 46.3± 4.5

Retrospective undersampling was performed to investigate the impact of reduced mea-

surement time on the quantified parameters. Resulting maps (of volunteer 2) for virtual

scan durations of [6.4, 11, 21, 32, 64] min are shown in figure 40, where 64 min corre-

sponds to the full data set. The quantified relaxation parameters in CSF and BT are

displayed in each image. In the 6.4 min measurement, the loss of spatial information

resulted in poor distinguishability between CSF and BT in the T1 map. A good compro-

mise between image quality and scan duration appears to be the 32 min measurement.

Here, all parameters deviated by less than 4 % compared to the full data set.

This was confirmed by measuring volunteer 4 a second time with reduced number of

97
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Figure 39: Six equidistant slices of the in vivo data of an exemplary volunteer are shown,
acquired with MRF II within 64 min with a nominal resolution of (5 mm)3. At
the top, the first coefficient image in the compressed basis is shown, followed
by the relaxation maps and the off-resonance distribution. In the T ∗2l and
T ∗2s maps, pink areas correspond to areas where monoexponential relaxation
was found. In the T ∗2 maps, biexponential relaxation is masked, respectively.
Image adapted from [36].
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spokes to yield a measurement time of 32 min. The quantified parameters of the 32 min

measurement, the retrospective reduced measurement (1/2×64 min) and the full data

set (64 min) are summarized in table 8. Good agreement between them is found as the

maximal deviation was less than 5.0 %, which is well below each SD, with respect to

the 64 min measurement. Images of the reduced measurement times are shown in the

appendix in figure 51.

Table 8: The relaxation parameters, determined (A) in a 32 min measurement and (B)
by retrospective undersampling of a 64 min data set are compared to the results
of the full data set.

BT CSF
Measurement T1 (ms) T ∗2l (ms) T ∗2s (ms) T1 (ms) T ∗2 ms
A: 32 min 35.1± 7.7 28.3± 8.4 5.8± 3.2 60.7± 5.3 49.9± 9.3
B: 1/2× 64 min 34.9± 7.7 28.0± 8.4 5.9± 3.1 60.9± 6.1 48.4± 10.5
C: 64 min 35.0± 6.8 29.0± 8.0 5.7± 2.8 62.8± 5.0 50.9± 10.3
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Figure 40: Parts of the data acquired in volunteer 2 were retrospectively discarded to
investigate the effect of reduced measurement time on the quantified parame-
ters. The virtual scan duration of 32 min showed a good compromise between
image quality and scan duration. This was confirmed in a shortened mea-
surement with reduced number of spokes, shown in the appendix in figure 51.
Image adapted from [36].
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4.2.4 Comparison between the Bloch and the ISTO model

The impact of the model used for dictionary simulation was investigated by matching

entries from the Bloch dictionary to the ISTO dictionary. To reduce the computational

burden, this approach was conducted for two off-resonance values: 0 Hz and 30 Hz, which

resulted in matching of 2× 645088 entries.

The deviations between the inputs and the matched parameters are summarized in

table 9. The matched off-resonances were identical to the inputs in all cases, whereas T1

deviated by −2.0 % on average for the 0 Hz-input and −4.1 % for the 30 Hz-input.

The maximal mean absolute deviation of 18.6 % was found in T ∗2l for the 0 Hz-inputs.

Table 9: The impact of the signal model used was investigated by matching the 0 Hz- and
the 30 Hz-entries of a Bloch dictionary to the corresponding ISTO dictionary.

∆B0 metric T1 T ∗2l T ∗2s T ∗2 ∆B0input

0 Hz
relative mean (%) -2.0 1.6 11.3 -0.8 0.0
relative absolute mean (%) 11.1 18.6 14.1 7.2 0.0

30 Hz
relative mean (%) -4.1 -1.8 12.2 -12.8 0.0
relative absolute mean (%) 10.5 12.3 14.6 12.8 0.0

Moreover, the MRF II measurements were reconstructed with both an ISTO and a

Bloch dictionary. The resulting parameters in the phantom for both signal models are

illustrated in figure 41 and summarized in the appendix, table 12. Good agreement

between the models was found for the longitudinal relaxation times. Here, the mean

deviation of the Bloch model with respect to the ISTO model was 0.0 % and the maximal

deviation was 3.3 %. For the transverse relaxation times, however, stronger differences

up to −25.0 % were found. The quantified long component T ∗2l was found to differ the

most. Here, the value only ranges from (23.7± 3.1) ms to (28.9± 6.0) ms for the Bloch

model, whereas the ISTO model yields a range of (26.0± 3.6) ms to (38.5± 8.0) ms.

The T ∗2s was in good agreement, except for the 2 % Agar vial, where the deviation was

−15.2 %. The off-resonance distributions were in excellent agreement and the mean

voxelwise difference was −0.9 Hz.
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Figure 41: Visual representation of mean and SD of the relaxation times determined in
a phantom measurement with both an ISTO and a Bloch model. The values
are summarized in the appendix, table 12.

A comparison between Bloch and ISTO results in the in vivo measurements is illustrated

in figure 42. In T1 in BT, the results obtained with the Bloch model differed by 1.8 %

on average with respect to the ISTO model, whereas the maximal deviation was 2.2 %.

The long and the short transverse relaxation times deviated by 13.2 % and −1.9 % on

average with maximal deviations of 16.5 % and −4.1 %. In CSF, the mean T1 deviation

was −2.6 % with a maximal value of −3.5 %, whereas T ∗2 differed by −2.5 % on average

and the maximum was −2.9 %.
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4.2 3D MRF

Figure 42: To investigate the impact of the signal model in in vivo experiments, the
measured data were reconstructed with both an ISTO and a Bloch dictionary.
The highest difference was found in T ∗2l in BT, where an average deviation of
13.2 % was found. In T1 and T ∗2s in BT the deviations were 1.8 % and −1.9 %.
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5 Discussion

Mapping of sodium relaxation times is of high interest, as they were found to be altered

in several diseases [2, 3, 4, 5]. However, low in vivo concentrations and short relaxation

times intrinsically result in a low SNR. Hence, sodium imaging suffers from long scan

durations, especially in relaxometric mapping, where scan times of approximately 1 h

were reported for mapping of one relaxation parameter [4, 8, 9]. The high costs of

MR scan time and the difficulty for the patient to lie still throughout the measurement

make these long scan times unfeasible in clinical routine. Hence, relaxometric sodium

mapping is rarely applied in clinical research and therefore remains to be limited to small

scale studies. To tackle this issue, techniques like 3D-MERINA [7] and the variable flip

angle method for 23Na [6] have been developed in recent years. In this work, a new

MRF approach for simultaneous 23Na quantification of T1, T ∗2l, T
∗
2s, T

∗
2 and ∆B0 with

automated differentiation between bi- and monoexponential transverse relaxation was

presented.

MRF was proposed in 2013 by Ma et al. [10] to enable simultaneous mapping of T1 and

T2 in 1H MRI. Since then, MRF based approaches have been used to tackle various multi-

parametric mapping problems such as chemical exchange [12] and flow velocity [11]. In

X-nuclei imaging, however, MRF was only applied for 31P spectroscopic quantification

of the creatine kinase reaction rate [15] and for compartment differentiation based on

known 23Na relaxation times [14].

In this work, the potential of 23Na MRF for relaxometric mapping was investigated,

which was approached in two stages.

First, a 2D MRF framework was developed which was validated in both simulations and

phantom experiments. Subsequently, an in vivo study was conducted in five healthy

volunteers. After this was successful, a 3D MRF framework with two pulse sequences

was implemented to improve the accuracy and the scan efficiency of the 2D sequence.

Here, an improved signal model was used to allow full description of the spin dynamics of

spin 3/2 particles. Further, a more efficient pulse sequence was proposed which applies

a hybrid of single- and double-echo readouts and an improved FA pattern was used,

optimized based on the CRLB.

Note that the 3D sequences were developed as an improvement of the 2D sequence to

increase the quantification efficiency. Hence, other potential improvements of the 2D

sequence were directly implemented in the more efficient 3D framework and refining of

the 2D framework was not pursued.
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5.1 Sequence structure and measurements

Each MRF sequence used in this work, can be divided into multiple pulse trains, in

which the FA, TE and TR are varied to drive the magnetization in non-steady state

conditions and therefore enable the simultaneous quantification of T1, T ∗2l and T ∗2s (T ∗2

respectively). While the T1 encoding is mainly achieved by FA variation, the apparent

transverse relaxation times are encoded by variation of TE, which makes the sequence

inherently sensitive to ∆B0. A radial center-out readout was used for spatial encoding

for both the 2D and the 3D sequences. The readout direction of each pulse train is

incremented linearly and within each pulse train by the golden angle for 2D MRF and

by the 13th tiny golden angle for 3D MRF. This approach results in 1000 homogeneously

sampled time frames in k-space with successively rotated readout directions.

The MRF pulse sequences use a FISP-based sequence design [31] and start with a VERSE

pulse with variable amplitude in the 2D case, whereas a rect pulse is applied in the 3D

sequences. Next, a variable TE was inserted, followed by a DA readout gradient, a

rewinder gradient in read direction and a spoiler gradient in z-direction. Since the next

excitation pulse is played out directly after the spoiler gradient, the variable TE directly

results in varying TR.

5.1.1 FA pattern

The FA pattern of the 2D MRF sequence was heuristically designed by combining sine,

sawtooth wave, step and sinc functions and calculating their auto-correlations in a T1−
T ∗2l, a T1−T ∗2s and a T1−T ∗2 plane as a measure of their encoding capability. The resulting

FA pattern consists of two half sinc functions, overlaid with step-like modulations. The

number of correlations above 99.95 % was reduced by 33 % for the optimized pattern

compared to the initial 1H FISP pattern [31]. However, even though the reduction of high

correlation entries hints an improved distinguishability between the signal evolutions,

this has no implications on the signal amplitude and thus on the SNR. Consequently,

the new pattern does not necessarily correspond to better encoding in real measurements.

In 23Na MRF this effect is important, as here the SNR is dominated by thermal noise,

whereas the SNR in 1H MRF is dominated by the undersampling. To give an intuitive

example, let’s assume a normalized fingerprint with 999 vanishing signal entries and a

single 1 at any arbitrary position in the fingerprint. A second fingerprint is constructed

similarly but with the non-vanishing entry at a neighboring position. Consequently, the

correlation between the latter, defined as the scalar product, is 0 and they are perfectly
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distinguishable. Nevertheless, in a real measurement this is unpractical because of two

reasons. First of all, spatial information is only acquired at the non-zero entry and

therefore is not sufficient for image reconstruction. Second, the noise present challenges

separation of the fingerprints based on only these two samples. To further validate the

encoding capabilities of the new pattern, spatially resolved simulations in a numerical

head model in presence of complex Gaussian noise and undersampling were conducted

and compared to simulations that used the initial 1H FISP pattern. In this experiment,

the mean absolute difference of the average relaxation times in BT and CSF between

MRF with the proposed FA pattern and the ground truth was 4.7 %, whereas the 1H

pattern resulted in deviations of 4.9 %. Consequently, the new pattern was used in all

2D measurements. However, the difference of 0.2 % and therefore the improvement due

to the new pattern appears to be minor.

Combining different functions or an automated numerical optimization based on the

CRLB, which was used in the 3D FA pattern design, could yield an improved FA pattern

as discussed in the following.

While the 3D MRF I sequence uses the same FA pattern as the 2D sequence, the FA

pattern of the 3D MRF II sequence was numerically optimized using the CRLB. To re-

duce the computational burden, only 50 subsequent FAs were optimized and this batch

was concatenated 20 times to yield 1000 pattern entries. Due to the constantly changing

TE and TR, the signal state in each cycle is still unique. However, optimization of all

1000 entries could further improve the encoding capability of the sequence. Moreover,

the pattern length and the TE pattern could be optimized as well. Yet, this would be

computationally unfeasibly expensive as the 50 FA optimization already required about

50 h on a standalone PC and the computational burden grows exponentially with the

number of parameters for a finite differences optimization. Furthermore, it is likely

that a local optimum was found and the global optimum is still unknown. Moreover,

the optimization was performed for a single representative parameter set. Even though

the CRLB was reduced by 58 % on average in 1000 parameter combinations in a large

parameter space, a more general solution might be found if the optimization was per-

formed on a multitude of optimization parameter sets, which again, would lead to high

computational demands.

5.1.2 TE pattern

After the excitation pulse, a variable TE was inserted, which was varied pseudo-randomly

between the minimal echo time TEmin (2D: 1.55 ms; 3D: 0.55 ms) and TEmin+ 20 ms to
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tackle the challenge of encoding a large range of apparent transverse relaxation times.

Here, the T ∗2s is mainly encoded with the short TE entries, whereas the long entries

are required for quantification of T ∗2l and T ∗2 . Consequently, the TE pattern comprises a

trade-off between time efficiency and sensitivity towards the short and the long transverse

relaxation times. However, a more sophisticated TE pattern could be constructed using

the CRLB.

In the 3D MRF II sequence, the readout efficiency was increased by implementing an ad-

ditional readout between the excitation pulse and signal acquisition when the current TE

was longer than the time required for acquisition of a spoke. In theory, the readout effi-

ciency could be further increased by using more data acquisitions with shorter duration,

which would result in an even higher sampling density within each cycle. Nonetheless,

this might need exact mapping of the gradients as any hardware error is summed up in

each cycle, which is a common problem in echo planar imaging (EPI) [48].

5.1.3 Minimal number of spokes

The number of spokes required per time frame was investigated for the 2D and the 3D

MRF II sequence.

For the 2D sequence, spatial simulations were conducted and the mean relaxation times

in BT and CSF were determined in dependence of the number of spokes. Here, 14 spokes

were found to be sufficient for a nominal in-plane resolution of 2×2 mm2, whereas only

7 spokes were required for a resolution of 4×4 mm2. This factor of two meets the expec-

tations as the Nyquist criterion for 2D radial imaging depends linearly on the inverse

of the voxel width. It became apparent that the quantified parameters asymptotically

approached a slightly different limit than the ground truth. This can be explained by

the spatial encoding, which leads to ringing artifacts and partial volume effects. The

minimal spoke number was used in the measurements as this requires only one averaging

step in the beginning of the reconstruction, whereas a higher number of spokes severely

increases the computational burden in the whole reconstruction. Furthermore, Behl et

al. [49] found an improved image quality for averaged data compared to more densely

sampled data in a compressed sensing (CS) reconstruction. This can be explained since

CS yields good results for removing undersampling artifacts but cannot distinguish be-

tween thermal noise and actual image features. Comparison of an in vivo measurement

with 7 spokes and 21 averages and a measurement with 147 spokes and a single average

supported the findings by Behl et al. [49] as similar mean relaxation parameters were

found, but the maps appeared more noisy for the 147 spoke measurement and all SDs
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were increased.

The minimal measurement duration of 3D MRF II was investigated by retrospective

undersampling of the measured phantom data. Note that the measurement duration

and the number of spokes are equivalent since no averaging was performed in the 3D

measurements. Here, the mean relaxation times in each compartment only changed

mildly with reduced spokes, whereas a loss of spatial information in form of smearing

was found for short virtual measurement times. A good compromise between image

quality and measurement time was found to be the 21 min measurement (50 spokes

per time frame) in the piecewise constant phantom. On the other hand in the in vivo

experiments, stronger image alterations became apparent, which can be explained by the

lower sodium concentration, the lower resolution and the small lateral ventricles. Here,

a scan time of 32 min (75 spokes per time frame) appeared to be promising, so a second

measurement in a representative volunteer was conducted with reduced measurement

time. This experiment yielded similar results as the retrospectively undersampled data.

However, more quantitative characterization of the effects of reduced spatial information,

such as the peak-SNR (PSNR) or the structural similarity (SSIM), could be subject to

future research.

5.1.4 Validation measurements

Phantom measurements were used to test the encoding capabilities of the MRF sequences

by comparing the results to the references.

In the 2D MRF experiments, a mean deviation of 4.0 % was found, whereas the mean

absolute difference was 12.4 % because 2D MRF overestimated T ∗2l in all cases. Here,

the mean deviation was 15 %. These deviations could arise from signal contributions

of refocusing T2-pathways, which were neglected by the approximation of T ∗2 = T2 (T ∗2l
respectively). T ∗2s, on the other hand, was always underestimated with an average dif-

ference of 14 %. The longitudinal relaxation parameters only deviated by 2 % and good

agreement was found for the ∆B0 map, where the mean voxelwise difference was 2.7 Hz.

Further, the differentiation between voxels experiencing a biexponential decay and the

ones relaxing monoexponentially appeared to be stable, as the MRF reconstruction pro-

vided the same classification like the reference for more than 80 % of the voxels in six

out of eight compartments. In the compartments with 1 % and 2 % Agar, MRF found

the same classification for 51 % and 73 % of the voxels, which is in agreement with the

reference where 61 % and 59 % were determined. These uncertainties in classification

might be caused by a similarly well description of the relaxation behavior by both re-
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laxation types, so that noise determined the detected relaxation type. Further, a single

compartment model was assumed in each vial, which might be violated for the low Agar

concentrations. In general, the MRF maps visually appear noisier, which is supported

by the increased SDs, found in all quantified parameters. Then again, the MRF ex-

periments were acquired in a 5-fold reduced scan time compared to the references and

investigation of the SNR efficiency could be subject of future research.

In the 3D experiments both an increased specificity and sensitivity were found for the

3D MRF sequences compared to 2D MRF and 3D MRF II was superior to 3D MRF

I. Both the mean and the mean absolute deviation between MRF I and the reference

methods were 10.8 % since MRF I constantly overestimated the parameters. MRF II,

on the contrary, only deviated by 1.0 % on average and the mean absolute difference was

4.6 %. Moreover, the SD was reduced for the MRF II sequence in all cases compared to

the MRF I sequence and the mean SD reduction was 39 %.

All three sequences were measured in approximately 1 h each, but the 2D sequence was

tested in a different phantom than the 3D versions. Further, the voxel volume of the 2D

sequence was 48 mm3, whereas the 3D sequences were acquired with a voxel volume of

27 mm3. Consequently, a fairer comparison between the sequences could be performed

by measuring the sequences within the same measurement session in the same phantom

and both similar voxel volumes as well as similar number of voxels.

5.1.5 In vivo measurements

The relaxation times in the human head were measured in two in vivo studies, one

conducted with the 2D MRF sequence and one with 3D MRF II.

In the 2D study, five healthy volunteers were measured, where 7 spokes per time frame

and 21-fold averaging yielded a measurement time of 1 h for a nominal resolution of

4 × 4×12 mm3. The 3D MRF study, conducted in four healthy volunteers, was also

measured in approximately 1 h measurement time with a nominal resolution of (5 mm)3.

Average T1 of (38.9± 4.8) ms and (67.1± 6.3) ms were found in BT and CSF with the

2D framework, which are in agreement with the 3D MRF II experiments, for which

(35.0± 3.2) ms and (61.9± 2.8) ms were determined. This is consistent with literature,

where values around 37 ms and 64 ms are reported [4]. The 2D MRF framework quan-

tified T ∗2l =(29.2± 4.9) ms and T ∗2s =(4.7± 1.2) ms in BT, whereas 3D MRF II yielded

T ∗2l =(29.3± 3.8) ms and T ∗2s =(5.5± 1.3) ms. Here, literature reports broad ranges of

20 ms–40 ms and 2 ms–6.5 ms [7, 8, 9], underlining the difficulty of accurate relaxometric

mapping. In CSF, a monoexponential transverse relaxation time of T ∗2 =(41.5± 3.4) ms
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was found with 2D MRF and T ∗2 =(46.3± 4.5) ms with 3D MRF. These values are lower

than the literature values, for which values about 55 ms [4, 50] are reported.

This deviation might be explained by residual partial volume effects, as the maximal

diameter of the lateral ventricles within the five volunteers was 15 mm at the widest

part. Hence, the nominal resolutions of 4 × 4×12 mm3 for the 2D case and (5 mm)3 for

the 3D experiments are low compared to the ventricle size, so that the CSF ROIs are

often only two voxels wide and only small areas at the BT-CSF interface were eroded.

Moreover, simulation experiments hinted that the nominal resolution used in the 3D in

vivo experiments allows reliable quantification of structures with a diameter of 15 mm–

25 mm or larger, making PV effects likely to occur in CSF quantification.

All SDs in the 3D MRF II results were reduced compared to the 2D MRF results, except

for T ∗2 . Moreover, the phantom experiments, discussed above, showed more accurate

quantification for MRF II. Hence, the 3D MRF II framework was heavily improved

compared to 2D MRF, as it provided both higher sensitivity and specificity while covering

a larger scan volume with smaller voxel volume in a similar measurement time.

5.2 Potential parameter biases

The potential biases of the quantified parameters are discussed in the following. Note

that the 3D MRF II framework was the final version developed in this work. There-

fore, some experiments, such as testing of the parameter bias by B1 deviations, were

representatively conducted using only the MRF II framework.

5.2.1 Signal model

In the 2D MRF framework, the dictionary was calculated using non-interacting two-pool

Bloch equations. For this, 60 % of the signal were assumed to originate from a pool with

T ∗2 = T ∗2s and 40 % from a second pool with T ∗2 = T ∗2l to allow biexponential transverse

relaxation. This ratio is given by the theoretical quantum mechanical description of

spin 3/2 particles for a single compartment [19]. In biological tissues, however, various

environments are commonly present within one voxel, potentially leading to a changed

effective ratio [1]. This could be taken into account as a free parameter in the dictionary

simulation, which on the other hand would dramatically increase the computational bur-

den in both the simulation and the image reconstruction. Separation of the parameters

would be challenging, making this approach currently unfeasible. Another limitation

of the signal model is the assumption of negligible signal contributions by refocusing
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T2-pathways, which allowed the reduction of the computational burden by simulating

T ∗2 = T2. Yet, if such signal contributions arise, this can lead to a bias in T ∗2 (T ∗2l re-

spectively). Nevertheless, this effect is assumed to be small since the sequence is not

optimized for refocusing and the average TR of 23.34 ms is in the order of T ∗2l, which

further reduces the chance of refocusing T2 signal contributions. Moreover, higher order

quantum coherences are not represented in the model, which could lead to a bias in the

quantified relaxometric parameters, as discussed below. A refined dictionary could be

constructed for 2D MRF by implementing the full sequence in the ISTO frameworks

developed for 3D MRF, which would lead to high computational cost. However, this

approach was not pursued due to the higher efficiency of 3D MRF sequences compared

to 2D MRF.

In the 3D MRF framework, the dictionary simulation was refined by implementing an

ISTO simulation framework to cover the full spin dynamics of spin 3/2 particles. How-

ever, this signal model again is based on some assumptions. The ISTO framework

inherently yields a biexponential longitudinal relaxation, whereas a monoexponential

model is commonly assumed in fitting of measured data since differentiation of the com-

ponents is unstable in presence of noise. Hence, a monoexponential T1 estimate was

developed in this work. Further, a Lorentz distribution of off-resonances was assumed in

each voxel to introduce T ∗2 over T2, which is a commonly used concept [51]. Neverthe-

less, some literature suggests that a Gaussian distribution might describe the situation

in biological tissues better [51]. Another assumption was that the residual quadrupolar

interaction vanishes (ωq = 0). Literature found signal contributions for which ωq 6= 0 in

the human head [52], but their amplitude appears to be small. Moreover, the assump-

tion of vanishing residual quadrupolar interaction is implicitly also made when a bi- or

monoexponential signal model is fitted to FID data, which is a common approach in
23Na relaxometry. Last, the signal in each voxel was assumed to originate from a single

compartment which could cause a bias in the quantified parameters, as investigated in

the PV simulations. This could be tackled by the use of multi-compartment MRF [53].

The impact of the signal model used was investigated in two ways: Entries in a 3D

MRF II Bloch dictionary were matched to the corresponding ISTO dictionary for the

off-resonance values of 0 Hz and 30 Hz. For this, the highest mean absolute relative

deviation was 18.6 %, found in T ∗2l for ∆B0 = 0 Hz. To investigate the impact of the

model onto the parameters in measurements, the phantom data was reconstructed with

both an ISTO and a Bloch dictionary. A maximal deviation of 3.3 % was found in T1,

whereas T ∗2l and T ∗2s differed with up to −25 % and 15.2 %. The same approach was used
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for the in vivo measurements, where T ∗2l in BT deviated the most with an average of

13.2 %. These findings hint that the ISTO model mainly improved the T ∗2l quantification,

whereas the other parameters were less effected.

In future, MRF could be used to determine spectral density parameter maps (J0, J1, J2)

instead of relaxation times, as the spectral density parameters are the basis of the ISTO

model. On the downside, this would require validation measurements of J0, J1, J2, ∆B0

and the intravoxel ∆B0-distribution and examination of the CRLB to investigate their

separability.

5.2.2 Partial volume effects

The impact of PV effects was estimated by simulating the signal evolution for a mix of

BT and CSF with varying ratio. The classification of the relaxation type appeared to be

stable, as the matching determined a biexponential relaxation for a BT content of 52 %

and higher. However, strong effects of PV contributions on the quantified parameters

were found, especially in T ∗2l in BT, where a severe bias in the quantified parameters was

found. This bias can be explained since mixing of BT and CSF results in a triexponential

transverse relaxation and a biexponential longitudinal relaxation, which is not modeled

in the dictionary. Similar problems arise in conventional fitting when and a biexponential

signal model is fitted to the FID of the mixed compartments.

Such PV effects can arise from structures smaller than the resolution and by signal bleed-

ing due to the PSF. For fully sampled measurements, the latter can be simulated and

consequently be corrected for, which is a common approach in 23Na TSC quantification

[54]. In MRF, however, the PSF is unknown due to the undersampling and is likely to

differ between the coefficient images in the compressed basis. Consequently, the imaging

process was simulated to estimate the smallest quantifiable image features for nominal

resolutions of (3 mm)3 and (5 mm)3. Here, structures larger than 3-5 times the voxel

width showed reasonable parameter quantifiability since this allowed eroding of one to

two pixels at each side. Consequently, a nominal isotropic resolution of 3 mm appears to

allow relaxometric quantification of structures with a diameter of 9 mm–15 mm or larger.

Structures with a size of 15 mm–25 mm or larger can be quantified with a nominal iso-

topic resolution of 5 mm. This suggests that the relaxation times quantified in CSF are

PV biased as the diameter of the lateral ventricles is in the order of 15 mm. However,

similar issues are expected in gold standard techniques such as IR experiments. Here,

the PSF also results in signal mixing of adjacent voxels, resulting in a quantification bias

at tissue interfaces.
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5.2.3 B1 deviations

In all measurements a uniform B1 distribution was assumed, based on previous work

[55]. To estimate the potential parameter bias due to B1 imperfections, the signal

evolution of BT and CSF for the MRF II sequence for a relative B1 range of 87.0 %–

109.5 % was simulated, which was found to be a realistic range in an in vivo experiment.

Subsequent matching to the dictionary resulted in a maximal deviation of 15.0 % and a

slope dT1

dB1
of approximately 1.22. Yet, simulation experiments were restricted to a BT

and a CSF compartment, which could be extended to a larger parameter range in future

research. Moreover, B1 could be implemented as a dictionary parameter to correct for

those errors, which might be especially useful when using RF coils with reduced B1

homogeneity. However, this would lead to a highly increased computational burden for

both the dictionary simulation and the reconstruction.
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As sodium relaxation times were found to be altered in several diseases, their quantifi-

cation may enable new opportunities in clinical research. Hence, a new MRF approach

for simultaneous 23Na quantification of T1, T ∗2l, T
∗
2s, T

∗
2 and ∆B0 was presented in this

work, which is the first application of MRF-based relaxometry in X-nuclei imaging.

First, a 2D MRF framework was developed, where a FISP-based radial sequence with

density adapted readout gradients and VERSE pulses [56] is used. Here, the magne-

tization is driven in non-steady state conditions by varying the FA, which enables T1

encoding, and variation of TE and TR, sensitizing the sequence towards the transverse

relaxation times. In the dictionary simulations, a two-pool Bloch model was applied to

describe biexponential transverse relaxation.

Simulation experiments were conducted for FA pattern design and for investigation of

the feasibility of spatially resolved 23Na MRF. Further, the minimal number of spokes

per time frame was determined in dependence of the in-plane resolution.

Phantom experiments were used for sequence validation by comparing the MRF results

to gold standard references, where a mean deviation of 4.0 % was found in the quanti-

fied relaxation times. The automatic differentiation between bi- and monoexponential

transverse relaxation was in agreement with the reference in all phantom compartments

and ∆B0 differed by 2.7 Hz on average.

In a subsequent in vivo study, conducted in five healthy volunteers, the relaxation times

in the human head were determined. Here, a nominal resolution of 4 × 4×12 mm3

was achieved in a scan duration of approximately 1 h. In brain tissue, average relax-

ation times of T1 = (38.9± 4.8) ms, T ∗2l = (29.2± 4.9) ms and T ∗2s = (4.7± 1.2) ms were

found. In CSF a monoexponential transverse relaxation was determined, yielding T1 =

(67.1± 6.3) ms and T ∗2 = (41.5± 3.4) ms.

Secondly, the 3D MRF framework with two 3D MRF sequences was developed to im-

prove both the scan efficiency and the accuracy of the 2D sequence. Here, a refined

signal model, based on ISTOs [19, 20], was implemented to allow full description of the

spin dynamics of spin 3/2 particles. However, the ISTO model intrinsically yields a

biexponential longitudinal relaxation, whereas a monoexponential relaxation model is

commonly assumed in literature, as separation of T1l and T1s is challenging with the

given noise level. Hence, a monoexponential T1 estimate was constructed in this work

to allow comparison to literature and reference methods. Further, T ∗2 relaxation was

simulated over T2 (T2l and T2s respectively) by assuming a Lorentzian shaped intravoxel
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6 SUMMARY AND CONCLUSION

∆B0 distribution.

In the 3D MRF sequences, non-selective excitation pulses and density adapted readout

gradients are applied [26]. The 3D MRF I sequence uses the same FA pattern as 2D

MRF and the TE pattern is similar except for a global off-set of −1.0 ms, as no rewinder

gradient is required due to the non-selective excitation pulses. The 3D MRF II sequence

was improved in two ways: In a first step, the scan efficiency was increased by inserting

an additional readout in each TE delay that is long enough, yielding a hybrid sequence

of single- and double-echo readouts. Subsequently, an improved FA pattern was applied,

which was optimized using the Cramér Rao lower bound.

Simulation experiments were conducted for investigation of the impact of PV contribu-

tions on the quantified parameters. Further, the smallest quantifiable image features

were investigated with respect to the nominal resolution and the impact of B1 imperfec-

tions was evaluated. The latter hinted a maximal bias of 15.0 % of the relaxation times

for a realistic B1 distribution in the human head. A comparison between the Bloch and

the ISTO model showed that the latter mainly improved quantification of T ∗2l, whereas

the other parameters were less affected.

Phantom experiments yielded a mean deviation between MRF I and the references of

10.8 %, whereas MRF II only deviated by 1.0 %. A second in vivo study was conducted

with MRF II, where a nominal resolution of (5 mm)3 was acquired in a scan duration of

about 1 h. Here, good agreement with literature and the 2D study was observed, as T1 =

(35.0± 3.2) ms, T ∗2l = (29.3± 3.8) ms and T ∗2s = (5.5± 1.3) ms were quantified in BT. In

CSF, T1 = (61.9± 2.8) ms and T ∗2 = (46.3± 4.5) ms were found. Further experiments

showed that 3D relaxometric mapping of the human head is possible using MRF within

a shortened scan time of approximately 1
2

h with a nominal resolution of (5 mm)3.

These findings suggest that 23Na MRF is a promising candidate to push sodium relax-

ometry towards clinically feasible scan times.
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7 Appendix

7.1 Abbreviations

ADP adenosine diphosphate
ATP adenosine triphosphate
BT brain tissue
BW bandwidth
BWT band width time product
CG conjugate gradient
CS compressed sensing
CSF cerebrospinal fluid
CRLB Cramér Rao lower bound
DA density adapted
EFG electrical field gradient
EPI echo-planar imaging
FA flip angle
FID free induction decay
GM gray matter
GT ground truth
HWHM half width at half maximum
ISTO irreducible spherical tensor operator
IR inversion recovery
MR magnetic resonance
MRF magnetic resonance fingerprinting
MRI magnetic resonance imaging
MRS magnetic resonance spectroscopy
NMR nuclear magnetic resonance
PSF point spread function
PSNR peak-signal-to-noise ratio
PT pulse train
RF radio frequency
ROI region of interest
SNR signal-to-noise ratio
SSIM structural similarity
TE echo time
TI inversion time
TPI twisted projection imaging
TR repetition time
TSC tissue sodium concentration
TSE turbo spin echo
UHF ultra-high fields
USF undersampling factor
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UTE ultra-short echo time
VERSE variable-rate selective excitation
WM white matter
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7.2 Matrix representations of ISTOs for spin 3/2 systems

7.2 Matrix representations of ISTOs for spin 3/2 systems

T00 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 T10 = 1
2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3



T11 = 1√
2


0 −

√
3 0 0

0 0 −2 0

0 0 0 −
√

3
0 0 0 0

 T1−1 = 1√
2


0 0 0 0√
3 0 0 0

0 2 0 0

0 0
√

3 0



T20 =
√

3
2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 T21 =
√

3


0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



T2−1 =
√

3


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

 T22 =
√

3


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



T2−2 =
√

3


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 T30 = 3
2
√

10


1 0 0 0
0 −3 0 0
0 0 3 0
0 0 0 −1
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T31 = 3√
10


0 −1 0 0

0 0
√

3 0
0 0 0 −1
0 0 0 0

 T3−1 = 3√
10


0 0 0 0
1 0 0 0

0 −
√

3 0 0
0 0 1 0



T32 = 3
2


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 T3−2 = 3
2


0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0



T33 = 3√
2


0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

 T3−3 = 3√
2


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
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7.3 Differential equation of motion for spin 3/2 systems

d

dT



T̂00

T̂10

T̂11(s)

T̂11(a)

T̂20

T̂21(s)

T̂21(a)

T̂22(s)

T̂22(a)

T̂30

T̂31(s)

T̂31(a)

T̂32(s)

T̂32(a)

T̂33(s)

T̂33(a)



= M



T̂00

T̂10

T̂11(s)

T̂11(a)

T̂20

T̂21(s)

T̂21(a)

T̂22(s)

T̂22(a)

T̂30

T̂31(s)

T̂31(a)

T̂32(s)

T̂32(a)

T̂33(s)

T̂33(a)



(7.1)
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M =



0 0 0 0 0 0 0 0
2
5J1 + 8

5J2 − 2
5J1 − 8

5J2 −iω1 0 0 0 0 0

0 −iω1 − 3
5J0 − J1 − 2

5J2 iωoff 0 0 i
√

3
5ωQ 0

0 0 iωoff − 3
5J0 − J1 − 2

5J2 0 i
√

3
5ωQ 0 0

0 0 0 0 −2J1 − 2J2 −i
√
3ω1 0 0

0 0 0 i
√

3
5ωQ −i

√
3ω1 −J0 − J1 − 2J2 0 −iω1

0 0 i
√

3
5ωQ 0 0 iωoff −J0 − J1 − 2J2 0

0 0 0 0 0 −iω1 0 −J0 − 2J1 − J2

0 0 0 0 0 0 −iω1 i2ωoff

4
5J1 − 4

5J2 − 4
5J1 + 4

5J2 0 0 0 0 0 0

0 0 −
√

6
5 J0 +

√
6

5 J2 0 0 0 i
√

2
5ωQ 0

0 0 0 −
√

6
5 J0 +

√
6

5 J2 0 i
√

2
5ωQ 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 iωQ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



· · ·

· · ·



0 0 0 0 0 0 0 0

0 − 4
5J1 + 4

5J2 0 0 0 0 0 0

0 0 −
√

6
5 J0 +

√
6

5 J2 0 0 0 0 0

0 0 0 −
√

6
5 J0 +

√
6

5 J2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 i
√

2
5ωQ 0 0 0 0

−iω1 0 i
√

2
5ωQ 0 0 0 0 0

i2ωoff 0 0 0 0 iωQ 0 0

J0 − 2J1 − J2 0 0 0 iωQ 0 0 0

0 − 8
5J1 − 2

5J2 −i
√
6ω1 0 0 0 0 0

0 −i
√
6ω1 − 2

5J0 − J1 − 3
5J2 iωoff −i

√
5
2ω1 0 0 0

0 0 iωoff − 2
5J0 − J1 − 3

5J2 0 −i
√

5
2ω1 0 0

iωQ 0 −i
√

5
2ω1 0 −J0 − J2 i2ωoff −i

√
3
2ω1 0

0 0 0 −i
√

5
2ω1 i2ωoff −J0 − J2 0 −i

√
3
2ω1

0 0 0 0 −i
√

3
2ω1 0 −J1 − J2 i3ωoff

0 0 0 0 0 −i
√

3
2ω1 i3ωoff −J1 − J2
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7.4 2D Results

7.4 2D Results

7.4.1 Simulations

Figure 43: A simulation was conducted to determine the minimal number of spokes re-
quired for sufficient reconstruction, described in section 4.1.1.2. Mean and SD
of the relaxation parameters in BT and CSF are illustrated for varying num-
ber of spokes per time frame for a nominal in-plane resolution of 4×4 mm2.
The minimal number of spokes per time frame was 7, as here the mean devia-
tion of each quantified relaxation parameter was less than 5.0 % with respect
to the results obtained with the maximal number of spokes. Image adapted
from [40].
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7.4.2 Measurements

Table 10: Phantom measurements were conducted to investigate the encoding capabili-
ties of the 2D MRF sequence, explained in section 3.7.1. Mean and SD of all
relaxation parameters in each compartment, acquired with 2D MRF and ref-
erence methods, are summarized. Mind that the compartments with 0 % and
1 % Agar in the T ∗2(l) column decay with a monoexponential T ∗2 , whereas the
other compartments experience a biexponential relaxation and T ∗2l is shown.
Table adapted from [40].

Agar T1 (ms) T ∗2(l) T ∗2s
conc. (%) Reference MRF Reference MRF Reference MRF

0 56.8± 4.6 63.4± 12.8 43.3± 7.5 55.2± 11.9
1 52.0± 3.8 51.2± 11.3 21.3± 2.7 26.8± 5.0
2 47.5± 3.6 48.7± 12.0 29.1± 9.2 35.3± 15.3 9.8± 1.4 8.1± 4.8
3 44.4± 3.8 46.9± 11.6 27.5± 7.7 31.7± 14.2 7.8± 1.3 6.4± 4.2
4 41.3± 3.4 47.4± 12.7 27.0± 7.8 29.7± 12.3 6.5± 1.3 5.5± 3.7
5 39.1± 3.3 41.7± 11.8 25.3± 7.2 27.3± 11.4 5.5± 1.1 4.9± 3.6
6 37.1± 3.6 35.0± 11.3 21.0± 6.0 24.8± 10.3 4.7± 1.1 4.2± 2.8
7 35.2± 4.1 33.4± 13.2 19.8± 5.7 22.7± 8.9 4.2± 1.1 3.8± 2.7
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7.5 3D Results

7.5.1 Simulations

Figure 44: The real resolution of the MRF II sequence for a given nominal resolution was
investigated in simulations, described in section 4.2.1.3. Here, line plots (150
spokes, 50 spokes and the ground truth) through the quantified parameters
along the first line, intersecting the liquid-filled vials with diameters of 3 mm,
20 mm and 10 mm, are shown for a nominal resolution of (3 mm)3.
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Figure 45: Line plots (150 spokes, 50 spokes and the ground truth) through the quan-
tified parameters along the third line, intersecting the liquid-filled vials with
diameters of 8 mm, 40 mm and 5 mm, are shown for a nominal resolution of
(3 mm)3.

Figure 46: Line plots (150 spokes, 50 spokes and the ground truth) through the quan-
tified parameters along the first line, intersecting the liquid-filled vials with
diameters of 3 mm, 20 mm and 10 mm, are shown for a nominal resolution of
(5 mm)3.
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7.5 3D Results

Figure 47: Line plots (150 spokes, 50 spokes and the ground truth) through the quanti-
fied parameters along the second line, intersecting the liquid-filled vials with
diameters of 50 mm and 30 mm, are shown for a nominal resolution of (5 mm)3.

Figure 48: Line plots (150 spokes, 50 spokes and the ground truth) through the quan-
tified parameters along the third line, intersecting the liquid-filled vials with
diameters of 8 mm, 40 mm and 5 mm, are shown for a nominal resolution of
(5 mm)3.

127



7
A

P
P

E
N

D
IX

7.5.2 Measurements

Table 11: Phantom measurements were conducted to investigate the encoding capabilities of the 3D MRF sequences, as
explained in section 3.7.2. Mean and SD of all relaxation times in each phantom compartment were determined
in the 10 central slices. The mean absolute difference between MRF I was 10.8 % with respect to the references,
whereas MRF II only differed by 4.6 %. Mind that in the T ∗2(l) column T ∗2 is shown for the compartment with 0 %

Agar, whereas the compartments with Agar concentrations of 2 %–7 % show T ∗2l.

Agar T1 (ms) T ∗2(l) T ∗2s
conc. (%) Reference MRF I MRF II Reference MRF I MRF II Reference MRF I MRF II

0 59.1± 3.1 68.5± 12.0 58.0± 4.3 47.0± 6.1 55.6± 9.7 51.2± 5.4
2 49.0± 2.0 53.4± 6.8 48.7± 3.7 36.8± 13.0 39.3± 8.0 38.5± 8.0 11.4± 3.6 12.0± 2.0 10.8± 1.5
3 45.0± 1.6 48.6± 6.9 44.9± 4.0 31.8± 7.4 34.9± 9.2 33.6± 7.3 7.9± 1.7 8.9± 2.4 7.8± 1.5
4 42.1± 1.7 48.9± 7.4 42.8± 4.0 31.6± 6.8 34.5± 8.6 32.4± 6.2 6.1± 0.9 6.7± 2.1 6.1± 1.3
5 39.2± 2.0 46.6± 6.8 40.6± 3.7 28.0± 5.6 32.7± 7.0 31.0± 5.0 5.3± 0.9 5.6± 1.7 5.0± 0.9
6 37.4± 2.0 38.9± 6.6 35.7± 3.5 26.6± 6.6 31.1± 5.9 28.9± 4.2 4.5± 0.9 4.7± 1.6 4.3± 0.8
7 36.6± 2.3 36.6± 6.9 33.4± 3.7 23.7± 5.3 28.7± 5.4 26.0± 3.6 3.8± 0.7 4.2± 1.7 3.8± 0.7
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7.5 3D Results

Figure 49: Difference maps of T1 and ∆B0 between the MRF measurements and the
references are shown. Image adapted from [36].
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Figure 50: Difference maps of T ∗2l, T
∗
2s and T ∗2 between the MRF measurements and the

references are shown. Image adapted from [36].
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7.5 3D Results

Figure 51: First coefficient images (top), relaxometric maps and off-resonance distribu-
tions for A) a measurement time of 32 min and B) every second spoke from a
64 min measurement are shown. The quantified parameters are summarized
in table 8. Image adapted from [36].
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7.5.3 Comparison between the ISTO and the Bloch model

Table 12: To investigate the effect of the signal model used in phantom measurements,
the measured phantom data was reconstructed with both an ISTO and a Bloch
dictionary. The largest bias is found in the long component of the transverse
relaxation time.

Agar T1 (ms) T ∗2(l) (ms) T ∗2s (ms)

conc. (%) ISTO Bloch ISTO Bloch ISTO Bloch
0 58.0± 4.3 59.5± 4.6 51.2± 5.4 51.7± 5.7
2 48.7± 3.7 50.3± 4.5 38.5± 8.0 28.9± 6.0 10.8± 1.5 12.5± 1.8
3 44.9± 4.0 45.2± 4.2 33.6± 7.3 26.7± 6.0 7.8± 1.5 8.8± 1.8
4 42.8± 4.0 42.8± 4.2 32.4± 6.2 26.6± 5.2 6.1± 1.3 6.6± 1.6
5 40.6± 3.7 39.9± 3.9 31.0± 5.0 26.6± 4.0 5.0± 0.9 5.2± 1.3
6 35.7± 3.5 34.7± 3.5 28.9± 4.2 26.2± 3.8 4.3± 0.8 4.2± 0.8
7 33.4± 3.7 32.7± 3.7 26.0± 3.6 23.7± 3.1 3.8± 0.7 3.6± 0.7

deviation (%):
mean 0.0 -13.6 -3.0
max 3.3 -25.0 15.2
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Parts of this work appear in the following publications:

Journal Publications

F.J. Kratzer, S. Flassbeck, S. Schmitter, T. Wilferth, A.W. Magill, B.R. Knowles,

T. Platt, P. Bachert, M.E. Ladd, and A.M. Nagel. 3D Sodium (23Na) Magnetic

Resonance Fingerprinting for time-efficient relaxometric mapping. Magnetic Reso-

nance in Medicine, 2021, doi. 10.1002/mrm.28873.

F.J. Kratzer, S. Flassbeck, A.M. Nagel, N.G.R. Behl, B.R. Knowles, P. Bachert,

M.E. Ladd, and S. Schmitter. Sodium relaxometry using 23Na MR fingerprinting:

A proof of concept. Magnetic Resonance in Medicine, 84(5):2577-2591, 2020.

Conference Talks

F.J. Kratzer, S. Flassbeck, S. Schmitter, T. Wilferth, A.W. Magill, B.R. Knowles,

T. Platt, P. Bachert, M.E. Ladd, and A.M. Nagel. 3D Sodium (23Na) Magnetic

Resonance Fingerprinting for time-efficient relaxometric mapping. In Proc. 23th

Annual Meeting of DS-ISMRM, 2021.

F.J. Kratzer, S. Schmitter, A.M. Nagel, N.G.R. Behl, B.R. Knowles, P. Bachert,

M.E. Ladd, and S. Flassbeck. Sodium Relaxometry using Magnetic Resonance Fin-

gerprinting. In Proc. 29th Annual Meeting of ISMRM, 2020. 1 2

F.J. Kratzer, S. Flassbeck, A.M. Nagel, T. Platt, B.R. Knowles, P. Bachert, M.E.

Ladd, and S. Schmitter. 23Na-Magnetic-Resonance-Fingerprinting: Ein Vergle-

ich zwischen gemittelten, unterabgetasteten Daten und voller Datenabtastung. In

Proc. DGMP, 2020.

F.J. Kratzer, S. Flassbeck, A.M. Nagel, S. Schmitter, P. Bachert, M.E. Ladd, and

N.G.R. Behl. 23Na Imaging using VERSE Pulses in a Density Adapted Stack-of-

Stars Sequence at 7T. In Proc. ISMRM Workshop on UHF MR, 2019.

1This contribution was awarded the 1st Place for the best Trainee Abstract in the X-nuclei imaging
study group.

2This contribution was awarded the ISMRM Summa Cum Laude Merit Award.
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Conference Posters

F.J. Kratzer, S. Flassbeck, S. Schmitter, T. Wilferth, A.W. Magill, B.R. Knowles,

T. Platt, P. Bachert, M.E. Ladd, and A.M. Nagel. Three Dimensional Sodium

Magnetic Resonance Fingerprinting using Irreducible Spherical Tensor Operator

Simulations. In Proc. 30th Annual Meeting of ISMRM, 2021. 1

F.J. Kratzer, S. Flassbeck, A.M. Nagel, P. Bachert, M.E. Ladd, and N.G.R. Behl.

Density Adapted Stack of Stars Sequence for 23Na using Dictionary Learning Com-

pressed Sensing Reconstruction. In Proc. 28th Annual Meeting of ISMRM, 2019.

1This contribution was awarded the 1st Place for the best Trainee Abstract in the X-nuclei imaging
study group.
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gegenüber der Fakultät bedanken. Der unkomplizierte und gute Umgang mit Ihnen hat

mir in den letzten Jahren vieles erleichtert.

Herrn Prof. Dr. Schad möchte ich für die Übernahme des Zweitgutachtens danken.
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gesondert danken. Die vielen Stunden des gemeinsamen Blödsinns, die Fußballtennis-
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